]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/xtensa/xtensa.h
always define WORD_REGISTER_OPERATIONS
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
CommitLineData
03984308 1/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
5624e564 2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
03984308
BW
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
2f83c7d6 9Software Foundation; either version 3, or (at your option) any later
03984308
BW
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
2f83c7d6
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
03984308
BW
20
21/* Get Xtensa configuration settings */
e677f70c 22#include "xtensa-config.h"
03984308 23
03984308
BW
24/* External variables defined in xtensa.c. */
25
03984308
BW
26extern unsigned xtensa_current_frame_size;
27
6cedbe44
BW
28/* Macros used in the machine description to select various Xtensa
29 configuration options. */
327e3a03
BW
30#ifndef XCHAL_HAVE_MUL32_HIGH
31#define XCHAL_HAVE_MUL32_HIGH 0
32#endif
2a48b790
BW
33#ifndef XCHAL_HAVE_RELEASE_SYNC
34#define XCHAL_HAVE_RELEASE_SYNC 0
35#endif
36#ifndef XCHAL_HAVE_S32C1I
37#define XCHAL_HAVE_S32C1I 0
38#endif
6a7a462c
BW
39#ifndef XCHAL_HAVE_THREADPTR
40#define XCHAL_HAVE_THREADPTR 0
41#endif
f211daa3
MF
42#ifndef XCHAL_HAVE_FP_POSTINC
43#define XCHAL_HAVE_FP_POSTINC 0
44#endif
6cedbe44
BW
45#define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
46#define TARGET_DENSITY XCHAL_HAVE_DENSITY
47#define TARGET_MAC16 XCHAL_HAVE_MAC16
48#define TARGET_MUL16 XCHAL_HAVE_MUL16
49#define TARGET_MUL32 XCHAL_HAVE_MUL32
09fa8841 50#define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
6cedbe44
BW
51#define TARGET_DIV32 XCHAL_HAVE_DIV32
52#define TARGET_NSA XCHAL_HAVE_NSA
53#define TARGET_MINMAX XCHAL_HAVE_MINMAX
54#define TARGET_SEXT XCHAL_HAVE_SEXT
55#define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
56#define TARGET_HARD_FLOAT XCHAL_HAVE_FP
57#define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
58#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
59#define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
60#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
f211daa3 61#define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
6cedbe44
BW
62#define TARGET_ABS XCHAL_HAVE_ABS
63#define TARGET_ADDX XCHAL_HAVE_ADDX
2a48b790
BW
64#define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
65#define TARGET_S32C1I XCHAL_HAVE_S32C1I
7f0ee694 66#define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
6a7a462c 67#define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
6383386a 68#define TARGET_LOOPS XCHAL_HAVE_LOOPS
590e2636 69#define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED)
768b6664 70#define TARGET_DEBUG XCHAL_HAVE_DEBUG
6cedbe44 71
66e58b33
BW
72#define TARGET_DEFAULT \
73 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
74 MASK_SERIALIZE_VOLATILE)
03984308 75
6a7a462c
BW
76#ifndef HAVE_AS_TLS
77#define HAVE_AS_TLS 0
78#endif
79
624f0d60
BW
80\f
81/* Target CPU builtins. */
82#define TARGET_CPU_CPP_BUILTINS() \
83 do { \
84 builtin_assert ("cpu=xtensa"); \
85 builtin_assert ("machine=xtensa"); \
48c0150c 86 builtin_define ("__xtensa__"); \
624f0d60 87 builtin_define ("__XTENSA__"); \
590e2636
MF
88 builtin_define (TARGET_WINDOWED_ABI ? \
89 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
624f0d60
BW
90 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
91 if (!TARGET_HARD_FLOAT) \
92 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
624f0d60 93 } while (0)
03984308 94
6a2b287f
BW
95#define CPP_SPEC " %(subtarget_cpp_spec) "
96
97#ifndef SUBTARGET_CPP_SPEC
98#define SUBTARGET_CPP_SPEC ""
99#endif
100
ab409f1b 101#define EXTRA_SPECS \
6a2b287f
BW
102 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
103
03984308
BW
104/* Target machine storage layout */
105
03984308
BW
106/* Define this if most significant bit is lowest numbered
107 in instructions that operate on numbered bit-fields. */
108#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
109
3bbc2af6 110/* Define this if most significant byte of a word is the lowest numbered. */
03984308
BW
111#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
112
3bbc2af6 113/* Define this if most significant word of a multiword number is the lowest. */
03984308
BW
114#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
115
03984308
BW
116#define MAX_BITS_PER_WORD 32
117
118/* Width of a word, in units (bytes). */
119#define UNITS_PER_WORD 4
120#define MIN_UNITS_PER_WORD 4
121
122/* Width of a floating point register. */
123#define UNITS_PER_FPREG 4
124
125/* Size in bits of various types on the target machine. */
126#define INT_TYPE_SIZE 32
03984308
BW
127#define SHORT_TYPE_SIZE 16
128#define LONG_TYPE_SIZE 32
03984308 129#define LONG_LONG_TYPE_SIZE 64
03984308
BW
130#define FLOAT_TYPE_SIZE 32
131#define DOUBLE_TYPE_SIZE 64
132#define LONG_DOUBLE_TYPE_SIZE 64
03984308 133
03984308
BW
134/* Allocation boundary (in *bits*) for storing pointers in memory. */
135#define POINTER_BOUNDARY 32
136
137/* Allocation boundary (in *bits*) for storing arguments in argument list. */
138#define PARM_BOUNDARY 32
139
140/* Allocation boundary (in *bits*) for the code of a function. */
141#define FUNCTION_BOUNDARY 32
142
143/* Alignment of field after 'int : 0' in a structure. */
144#define EMPTY_FIELD_BOUNDARY 32
145
146/* Every structure's size must be a multiple of this. */
147#define STRUCTURE_SIZE_BOUNDARY 8
148
149/* There is no point aligning anything to a rounder boundary than this. */
150#define BIGGEST_ALIGNMENT 128
151
152/* Set this nonzero if move instructions will actually fail to work
153 when given unaligned data. */
154#define STRICT_ALIGNMENT 1
155
156/* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
157 for QImode, because there is no 8-bit load from memory with sign
158 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
159 loads both with and without sign extension. */
160#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
161 do { \
162 if (GET_MODE_CLASS (MODE) == MODE_INT \
163 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
164 { \
165 if ((MODE) == QImode) \
166 (UNSIGNEDP) = 1; \
167 (MODE) = SImode; \
168 } \
169 } while (0)
170
03984308
BW
171/* Imitate the way many other C compilers handle alignment of
172 bitfields and the structures that contain them. */
173#define PCC_BITFIELD_TYPE_MATTERS 1
174
175/* Align string constants and constructors to at least a word boundary.
176 The typical use of this macro is to increase alignment for string
177 constants to be word aligned so that 'strcpy' calls that copy
178 constants can be done inline. */
179#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
637ece3f
MF
180 (!optimize_size && \
181 (TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
03984308
BW
182 && (ALIGN) < BITS_PER_WORD \
183 ? BITS_PER_WORD \
184 : (ALIGN))
185
186/* Align arrays, unions and records to at least a word boundary.
187 One use of this macro is to increase alignment of medium-size
188 data to make it all fit in fewer cache lines. Another is to
189 cause character arrays to be word-aligned so that 'strcpy' calls
190 that copy constants to character arrays can be done inline. */
191#undef DATA_ALIGNMENT
192#define DATA_ALIGNMENT(TYPE, ALIGN) \
637ece3f 193 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
03984308
BW
194 && (TREE_CODE (TYPE) == ARRAY_TYPE \
195 || TREE_CODE (TYPE) == UNION_TYPE \
196 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
197
03984308
BW
198/* Operations between registers always perform the operation
199 on the full register even if a narrower mode is specified. */
9e11bfef 200#define WORD_REGISTER_OPERATIONS 1
03984308
BW
201
202/* Xtensa loads are zero-extended by default. */
203#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
204
205/* Standard register usage. */
206
207/* Number of actual hardware registers.
208 The hardware registers are assigned numbers for the compiler
209 from 0 to just below FIRST_PSEUDO_REGISTER.
210 All registers that the compiler knows about must be given numbers,
211 even those that are not normally considered general registers.
212
213 The fake frame pointer and argument pointer will never appear in
214 the generated code, since they will always be eliminated and replaced
215 by either the stack pointer or the hard frame pointer.
216
217 0 - 15 AR[0] - AR[15]
218 16 FRAME_POINTER (fake = initial sp)
219 17 ARG_POINTER (fake = initial sp + framesize)
03984308
BW
220 18 BR[0] for floating-point CC
221 19 - 34 FR[0] - FR[15]
222 35 MAC16 accumulator */
223
224#define FIRST_PSEUDO_REGISTER 36
225
3bbc2af6 226/* Return the stabs register number to use for REGNO. */
03984308
BW
227#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
228
229/* 1 for registers that have pervasive standard uses
3bbc2af6 230 and are not available for the register allocator. */
03984308
BW
231#define FIXED_REGISTERS \
232{ \
233 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
234 1, 1, 0, \
235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
236 0, \
237}
238
239/* 1 for registers not available across function calls.
240 These must include the FIXED_REGISTERS and also any
241 registers that can be used without being saved.
242 The latter must include the registers where values are returned
243 and the register where structure-value addresses are passed.
590e2636
MF
244 Aside from that, you can include as many other registers as you like.
245
246 The value encoding is the following:
247 1: register is used by all ABIs;
248 bit 1 is set: register is used by windowed ABI;
249 bit 2 is set: register is used by call0 ABI.
250
251 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
252
03984308
BW
253#define CALL_USED_REGISTERS \
254{ \
590e2636 255 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
03984308
BW
256 1, 1, 1, \
257 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
258 1, \
259}
260
261/* For non-leaf procedures on Xtensa processors, the allocation order
262 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
263 want to use the lowest numbered registers first to minimize
264 register window overflows. However, local-alloc is not smart
265 enough to consider conflicts with incoming arguments. If an
266 incoming argument in a2 is live throughout the function and
267 local-alloc decides to use a2, then the incoming argument must
268 either be spilled or copied to another register. To get around
5a733826 269 this, we define ADJUST_REG_ALLOC_ORDER to redefine
03984308
BW
270 reg_alloc_order for leaf functions such that lowest numbered
271 registers are used first with the exception that the incoming
272 argument registers are not used until after other register choices
273 have been exhausted. */
274
275#define REG_ALLOC_ORDER \
985d0d50
BW
276{ 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
277 18, \
278 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
03984308 279 0, 1, 16, 17, \
985d0d50 280 35, \
03984308
BW
281}
282
5a733826 283#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
03984308
BW
284
285/* For Xtensa, the only point of this is to prevent GCC from otherwise
286 giving preference to call-used registers. To minimize window
287 overflows for the AR registers, we want to give preference to the
288 lower-numbered AR registers. For other register files, which are
3bbc2af6 289 not windowed, we still prefer call-used registers, if there are any. */
03984308
BW
290extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
291#define LEAF_REGISTERS xtensa_leaf_regs
292
293/* For Xtensa, no remapping is necessary, but this macro must be
3bbc2af6 294 defined if LEAF_REGISTERS is defined. */
03984308
BW
295#define LEAF_REG_REMAP(REGNO) (REGNO)
296
3bbc2af6 297/* This must be declared if LEAF_REGISTERS is set. */
03984308
BW
298extern int leaf_function;
299
3bbc2af6 300/* Internal macros to classify a register number. */
03984308
BW
301
302/* 16 address registers + fake registers */
303#define GP_REG_FIRST 0
304#define GP_REG_LAST 17
305#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
306
03984308
BW
307/* Coprocessor registers */
308#define BR_REG_FIRST 18
309#define BR_REG_LAST 18
310#define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
311
312/* 16 floating-point registers */
313#define FP_REG_FIRST 19
314#define FP_REG_LAST 34
315#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
316
317/* MAC16 accumulator */
318#define ACC_REG_FIRST 35
319#define ACC_REG_LAST 35
320#define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
321
322#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
323#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
324#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
325#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
326
327/* Return number of consecutive hard regs needed starting at reg REGNO
328 to hold something of mode MODE. */
329#define HARD_REGNO_NREGS(REGNO, MODE) \
330 (FP_REG_P (REGNO) ? \
331 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
332 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
333
334/* Value is 1 if hard register REGNO can hold a value of machine-mode
3bbc2af6 335 MODE. */
03984308
BW
336extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
337
338#define HARD_REGNO_MODE_OK(REGNO, MODE) \
339 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
340
341/* Value is 1 if it is a good idea to tie two pseudo registers
342 when one has mode MODE1 and one has mode MODE2.
343 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
344 for any hard reg, then this must be 0 for correct output. */
345#define MODES_TIEABLE_P(MODE1, MODE2) \
346 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
347 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
348 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
349 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
350
03984308
BW
351/* Register to use for pushing function arguments. */
352#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
353
354/* Base register for access to local variables of the function. */
590e2636
MF
355#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
356 (TARGET_WINDOWED_ABI ? 7 : 15))
03984308
BW
357
358/* The register number of the frame pointer register, which is used to
359 access automatic variables in the stack frame. For Xtensa, this
360 register never appears in the output. It is always eliminated to
3bbc2af6 361 either the stack pointer or the hard frame pointer. */
03984308
BW
362#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
363
03984308
BW
364/* Base register for access to arguments of the function. */
365#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
366
03984308
BW
367/* For now we don't try to use the full set of boolean registers. Without
368 software pipelining of FP operations, there's not much to gain and it's
369 a real pain to get them reloaded. */
370#define FPCC_REGNUM (BR_REG_FIRST + 0)
371
03984308
BW
372/* It is as good or better to call a constant function address than to
373 call an address kept in a register. */
374#define NO_FUNCTION_CSE 1
375
03984308
BW
376/* Xtensa processors have "register windows". GCC does not currently
377 take advantage of the possibility for variable-sized windows; instead,
378 we use a fixed window size of 8. */
379
380#define INCOMING_REGNO(OUT) \
590e2636
MF
381 (TARGET_WINDOWED_ABI ? \
382 ((GP_REG_P (OUT) && \
383 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
384 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
03984308
BW
385
386#define OUTGOING_REGNO(IN) \
590e2636
MF
387 (TARGET_WINDOWED_ABI ? \
388 ((GP_REG_P (IN) && \
389 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
390 (IN) + WINDOW_SIZE : (IN)) : (IN))
03984308
BW
391
392
393/* Define the classes of registers for register constraints in the
394 machine description. */
395enum reg_class
396{
397 NO_REGS, /* no registers in set */
398 BR_REGS, /* coprocessor boolean registers */
399 FP_REGS, /* floating point registers */
400 ACC_REG, /* MAC16 accumulator */
401 SP_REG, /* sp register (aka a1) */
89f6025d 402 RL_REGS, /* preferred reload regs (not sp or fp) */
03984308
BW
403 GR_REGS, /* integer registers except sp */
404 AR_REGS, /* all integer registers */
405 ALL_REGS, /* all registers */
406 LIM_REG_CLASSES /* max value + 1 */
407};
408
409#define N_REG_CLASSES (int) LIM_REG_CLASSES
410
411#define GENERAL_REGS AR_REGS
412
413/* An initializer containing the names of the register classes as C
414 string constants. These names are used in writing some of the
415 debugging dumps. */
416#define REG_CLASS_NAMES \
417{ \
418 "NO_REGS", \
419 "BR_REGS", \
420 "FP_REGS", \
421 "ACC_REG", \
422 "SP_REG", \
89f6025d 423 "RL_REGS", \
03984308
BW
424 "GR_REGS", \
425 "AR_REGS", \
426 "ALL_REGS" \
427}
428
429/* Contents of the register classes. The Nth integer specifies the
430 contents of class N. The way the integer MASK is interpreted is
431 that register R is in the class if 'MASK & (1 << R)' is 1. */
432#define REG_CLASS_CONTENTS \
433{ \
434 { 0x00000000, 0x00000000 }, /* no registers */ \
435 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
436 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
437 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
438 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
590e2636 439 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
03984308
BW
440 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
441 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
442 { 0xffffffff, 0x0000000f } /* all registers */ \
443}
444
445/* A C expression whose value is a register class containing hard
446 register REGNO. In general there is more that one such class;
447 choose a class which is "minimal", meaning that no smaller class
448 also contains the register. */
590e2636 449#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
03984308
BW
450
451/* Use the Xtensa AR register file for base registers.
452 No index registers. */
453#define BASE_REG_CLASS AR_REGS
454#define INDEX_REG_CLASS NO_REGS
455
42db504c
SB
456/* The small_register_classes_for_mode_p hook must always return true for
457 Xtrnase, because all of the 16 AR registers may be explicitly used in
458 the RTL, as either incoming or outgoing arguments. */
459#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
03984308 460
03984308
BW
461/* Stack layout; function entry, exit and calling. */
462
62f9f30b 463#define STACK_GROWS_DOWNWARD 1
03984308
BW
464
465/* Offset within stack frame to start allocating local variables at. */
466#define STARTING_FRAME_OFFSET \
38173d38 467 crtl->outgoing_args_size
03984308
BW
468
469/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
470 they are eliminated to either the stack pointer or hard frame pointer. */
471#define ELIMINABLE_REGS \
472{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
473 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
474 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
475 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
476
03984308
BW
477/* Specify the initial difference between the specified pair of registers. */
478#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
479 do { \
480 compute_frame_size (get_frame_size ()); \
177b6be0
NS
481 switch (FROM) \
482 { \
483 case FRAME_POINTER_REGNUM: \
484 (OFFSET) = 0; \
485 break; \
486 case ARG_POINTER_REGNUM: \
487 (OFFSET) = xtensa_current_frame_size; \
488 break; \
489 default: \
490 gcc_unreachable (); \
491 } \
03984308
BW
492 } while (0)
493
494/* If defined, the maximum amount of space required for outgoing
495 arguments will be computed and placed into the variable
38173d38 496 'crtl->outgoing_args_size'. No space will be pushed
03984308
BW
497 onto the stack for each call; instead, the function prologue
498 should increase the stack frame size by this amount. */
499#define ACCUMULATE_OUTGOING_ARGS 1
500
501/* Offset from the argument pointer register to the first argument's
502 address. On some machines it may depend on the data type of the
503 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
504 location above the first argument's address. */
505#define FIRST_PARM_OFFSET(FNDECL) 0
506
507/* Align stack frames on 128 bits for Xtensa. This is necessary for
508 128-bit datatypes defined in TIE (e.g., for Vectra). */
509#define STACK_BOUNDARY 128
510
03984308 511/* Use a fixed register window size of 8. */
590e2636 512#define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
03984308
BW
513
514/* Symbolic macros for the registers used to return integer, floating
515 point, and values of coprocessor and user-defined modes. */
516#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
517#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
518
519/* Symbolic macros for the first/last argument registers. */
520#define GP_ARG_FIRST (GP_REG_FIRST + 2)
521#define GP_ARG_LAST (GP_REG_FIRST + 7)
522#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
523#define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
524
525#define MAX_ARGS_IN_REGISTERS 6
526
527/* Don't worry about compatibility with PCC. */
528#define DEFAULT_PCC_STRUCT_RETURN 0
529
03984308
BW
530/* A C expression that is nonzero if REGNO is the number of a hard
531 register in which function arguments are sometimes passed. This
532 does *not* include implicit arguments such as the static chain and
533 the structure-value address. On many machines, no registers can be
534 used for this purpose since all function arguments are pushed on
3bbc2af6 535 the stack. */
03984308
BW
536#define FUNCTION_ARG_REGNO_P(N) \
537 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
538
997b8b4d
BW
539/* Record the number of argument words seen so far, along with a flag to
540 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
541 is used for both incoming and outgoing args, so a separate flag is
542 needed. */
543typedef struct xtensa_args
544{
545 int arg_words;
546 int incoming;
03984308
BW
547} CUMULATIVE_ARGS;
548
0f6937fe 549#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
997b8b4d 550 init_cumulative_args (&CUM, 0)
03984308
BW
551
552#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
997b8b4d 553 init_cumulative_args (&CUM, 1)
03984308 554
5ee924c2
BW
555/* Profiling Xtensa code is typically done with the built-in profiling
556 feature of Tensilica's instruction set simulator, which does not
557 require any compiler support. Profiling code on a real (i.e.,
558 non-simulated) Xtensa processor is currently only supported by
559 GNU/Linux with glibc. The glibc version of _mcount doesn't require
560 counter variables. The _mcount function needs the current PC and
561 the current return address to identify an arc in the call graph.
562 Pass the current return address as the first argument; the current
563 PC is available as a0 in _mcount's register window. Both of these
564 values contain window size information in the two most significant
565 bits; we assume that _mcount will mask off those bits. The call to
566 _mcount uses a window size of 8 to make sure that it doesn't clobber
3bbc2af6 567 any incoming argument values. */
03984308 568
9739c90c 569#define NO_PROFILE_COUNTERS 1
5ee924c2
BW
570
571#define FUNCTION_PROFILER(FILE, LABELNO) \
03984308 572 do { \
5ee924c2
BW
573 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
574 if (flag_pic) \
575 { \
590e2636
MF
576 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
577 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
5ee924c2
BW
578 } \
579 else \
590e2636 580 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
5ee924c2 581 } while (0)
03984308
BW
582
583/* Stack pointer value doesn't matter at exit. */
584#define EXIT_IGNORE_STACK 1
585
85333688
BW
586/* Size in bytes of the trampoline, as an integer. Make sure this is
587 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
590e2636
MF
588#define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
589 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
590 60 : 52) : \
591 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
592 32 : 24))
03984308
BW
593
594/* Alignment required for trampolines, in bits. */
7f0ee694 595#define TRAMPOLINE_ALIGNMENT 32
03984308 596
03984308
BW
597/* If defined, a C expression that produces the machine-specific code
598 to setup the stack so that arbitrary frames can be accessed.
599
600 On Xtensa, a stack back-trace must always begin from the stack pointer,
601 so that the register overflow save area can be located. However, the
602 stack-walking code in GCC always begins from the hard_frame_pointer
603 register, not the stack pointer. The frame pointer is usually equal
604 to the stack pointer, but the __builtin_return_address and
605 __builtin_frame_address functions will not work if count > 0 and
606 they are called from a routine that uses alloca. These functions
607 are not guaranteed to work at all if count > 0 so maybe that is OK.
608
609 A nicer solution would be to allow the architecture-specific files to
610 specify whether to start from the stack pointer or frame pointer. That
611 would also allow us to skip the machine->accesses_prev_frame stuff that
612 we currently need to ensure that there is a frame pointer when these
3bbc2af6 613 builtin functions are used. */
03984308 614
0c14a54d 615#define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
03984308
BW
616
617/* A C expression whose value is RTL representing the address in a
618 stack frame where the pointer to the caller's frame is stored.
619 Assume that FRAMEADDR is an RTL expression for the address of the
620 stack frame itself.
621
622 For Xtensa, there is no easy way to get the frame pointer if it is
623 not equivalent to the stack pointer. Moreover, the result of this
624 macro is used for continuing to walk back up the stack, so it must
625 return the stack pointer address. Thus, there is some inconsistency
626 here in that __builtin_frame_address will return the frame pointer
3bbc2af6 627 when count == 0 and the stack pointer when count > 0. */
03984308
BW
628
629#define DYNAMIC_CHAIN_ADDRESS(frame) \
f1c25d3b 630 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
03984308
BW
631
632/* Define this if the return address of a particular stack frame is
3bbc2af6 633 accessed from the frame pointer of the previous stack frame. */
590e2636 634#define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
03984308
BW
635
636/* A C expression whose value is RTL representing the value of the
637 return address for the frame COUNT steps up from the current
0c14a54d
BW
638 frame, after the prologue. */
639#define RETURN_ADDR_RTX xtensa_return_addr
03984308
BW
640
641/* Addressing modes, and classification of registers for them. */
642
643/* C expressions which are nonzero if register number NUM is suitable
da1f39e4 644 for use as a base or index register in operand addresses. */
03984308 645
da1f39e4 646#define REGNO_OK_FOR_INDEX_P(NUM) 0
03984308
BW
647#define REGNO_OK_FOR_BASE_P(NUM) \
648 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
649
03984308 650/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
da1f39e4 651 valid for use as a base or index register. */
03984308
BW
652
653#ifdef REG_OK_STRICT
da1f39e4
BW
654#define REG_OK_STRICT_FLAG 1
655#else
656#define REG_OK_STRICT_FLAG 0
657#endif
03984308 658
da1f39e4
BW
659#define BASE_REG_P(X, STRICT) \
660 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
661 || REGNO_OK_FOR_BASE_P (REGNO (X)))
03984308
BW
662
663#define REG_OK_FOR_INDEX_P(X) 0
da1f39e4 664#define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
03984308
BW
665
666/* Maximum number of registers that can appear in a valid memory address. */
667#define MAX_REGS_PER_ADDRESS 1
668
03984308
BW
669/* A C expression that is 1 if the RTX X is a constant which is a
670 valid address. This is defined to be the same as 'CONSTANT_P (X)',
671 but rejecting CONST_DOUBLE. */
672#define CONSTANT_ADDRESS_P(X) \
673 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
674 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
675 || (GET_CODE (X) == CONST)))
676
03984308
BW
677/* A C expression that is nonzero if X is a legitimate immediate
678 operand on the target machine when generating position independent
679 code. */
680#define LEGITIMATE_PIC_OPERAND_P(X) \
f1dfe704
BW
681 ((GET_CODE (X) != SYMBOL_REF \
682 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
03984308
BW
683 && GET_CODE (X) != LABEL_REF \
684 && GET_CODE (X) != CONST)
685
03984308
BW
686/* Specify the machine mode that this machine uses
687 for the index in the tablejump instruction. */
688#define CASE_VECTOR_MODE (SImode)
689
03984308
BW
690/* Define this as 1 if 'char' should by default be signed; else as 0. */
691#define DEFAULT_SIGNED_CHAR 0
692
693/* Max number of bytes we can move from memory to memory
694 in one reasonably fast instruction. */
695#define MOVE_MAX 4
696#define MAX_MOVE_MAX 4
697
698/* Prefer word-sized loads. */
699#define SLOW_BYTE_ACCESS 1
700
03984308
BW
701/* Shift instructions ignore all but the low-order few bits. */
702#define SHIFT_COUNT_TRUNCATED 1
703
704/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3bbc2af6 705 is done just by pretending it is already truncated. */
03984308
BW
706#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
707
09fa8841
BW
708#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
709#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
710
03984308
BW
711/* Specify the machine mode that pointers have.
712 After generation of rtl, the compiler makes no further distinction
713 between pointers and any other objects of this machine mode. */
714#define Pmode SImode
715
716/* A function address in a call instruction is a word address (for
717 indexing purposes) so give the MEM rtx a words's mode. */
718#define FUNCTION_MODE SImode
719
3a4fd356 720#define BRANCH_COST(speed_p, predictable_p) 3
03984308 721
03984308 722/* How to refer to registers in assembler output.
3bbc2af6 723 This sequence is indexed by compiler's hard-register-number (see above). */
03984308
BW
724#define REGISTER_NAMES \
725{ \
726 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
727 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
728 "fp", "argp", "b0", \
729 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
730 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
731 "acc" \
732}
733
734/* If defined, a C initializer for an array of structures containing a
735 name and a register number. This macro defines additional names
736 for hard registers, thus allowing the 'asm' option in declarations
3bbc2af6 737 to refer to registers using alternate names. */
03984308
BW
738#define ADDITIONAL_REGISTER_NAMES \
739{ \
740 { "a1", 1 + GP_REG_FIRST } \
741}
742
743#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
744#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
745
506a61b1
KG
746/* Globalizing directive for a label. */
747#define GLOBAL_ASM_OP "\t.global\t"
03984308 748
6a2b287f
BW
749/* Declare an uninitialized external linkage data object. */
750#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
751 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
03984308
BW
752
753/* This is how to output an element of a case-vector that is absolute. */
754#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
755 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
756 LOCAL_LABEL_PREFIX, VALUE)
757
758/* This is how to output an element of a case-vector that is relative.
3bbc2af6 759 This is used for pc-relative code. */
03984308
BW
760#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
761 do { \
762 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
763 LOCAL_LABEL_PREFIX, (VALUE), \
764 LOCAL_LABEL_PREFIX, (REL)); \
765 } while (0)
766
767/* This is how to output an assembler line that says to advance the
768 location counter to a multiple of 2**LOG bytes. */
769#define ASM_OUTPUT_ALIGN(STREAM, LOG) \
770 do { \
771 if ((LOG) != 0) \
772 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
773 } while (0)
774
775/* Indicate that jump tables go in the text section. This is
776 necessary when compiling PIC code. */
777#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
778
779
03984308 780/* Define the strings to put out for each section in the object file. */
6a2b287f
BW
781#define TEXT_SECTION_ASM_OP "\t.text"
782#define DATA_SECTION_ASM_OP "\t.data"
783#define BSS_SECTION_ASM_OP "\t.section\t.bss"
03984308
BW
784
785
9eb8a531 786/* Define output to appear before the constant pool. */
03984308
BW
787#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
788 do { \
590e2636 789 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
86d8c251 790 { \
9eb8a531 791 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
d6b5193b 792 switch_to_section (function_section (FUNDECL)); \
86d8c251
BW
793 fprintf (FILE, "\t.literal_position\n"); \
794 } \
03984308
BW
795 } while (0)
796
797
03984308
BW
798/* A C statement (with or without semicolon) to output a constant in
799 the constant pool, if it needs special treatment. */
800#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
801 do { \
802 xtensa_output_literal (FILE, X, MODE, LABELNO); \
803 goto JUMPTO; \
804 } while (0)
805
3bbc2af6 806/* How to start an assembler comment. */
03984308
BW
807#define ASM_COMMENT_START "#"
808
6eb065e6
SA
809/* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
810 machinery, but the variable size register window save areas are too
811 complicated to efficiently describe with CFI entries. The CFA must
812 still be specified in DWARF so that DW_AT_frame_base is set correctly
813 for debugging. */
4e6c2193
BW
814#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
815#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
6eb065e6
SA
816#define DWARF_FRAME_REGISTERS 16
817#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
24eaa34f
BW
818#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
819 (flag_pic \
820 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
821 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
822 : DW_EH_PE_absptr)
823
590e2636
MF
824#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
825
24eaa34f
BW
826/* Emit a PC-relative relocation. */
827#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
828 do { \
829 fputs (integer_asm_op (SIZE, FALSE), FILE); \
830 assemble_name (FILE, LABEL); \
831 fputs ("@pcrel", FILE); \
832 } while (0)
03984308 833
a7bda3d5
BW
834/* Xtensa constant pool breaks the devices in crtstuff.c to control
835 section in where code resides. We have to write it as asm code. Use
836 a MOVI and let the assembler relax it -- for the .init and .fini
837 sections, the assembler knows to put the literal in the right
838 place. */
590e2636 839#if defined(__XTENSA_WINDOWED_ABI__)
a7bda3d5
BW
840#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
841 asm (SECTION_OP "\n\
842 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
843 callx8\ta8\n" \
844 TEXT_SECTION_ASM_OP);
590e2636
MF
845#elif defined(__XTENSA_CALL0_ABI__)
846#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
847 asm (SECTION_OP "\n\
848 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
849 callx0\ta0\n" \
850 TEXT_SECTION_ASM_OP);
851#endif