]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/xtensa/xtensa.h
Turn HARD_REGNO_MODE_OK into a target hook
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
CommitLineData
03984308 1/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
cbe34bb5 2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
03984308
BW
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
2f83c7d6 9Software Foundation; either version 3, or (at your option) any later
03984308
BW
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
2f83c7d6
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
03984308
BW
20
21/* Get Xtensa configuration settings */
e677f70c 22#include "xtensa-config.h"
03984308 23
03984308
BW
24/* External variables defined in xtensa.c. */
25
6cedbe44
BW
26/* Macros used in the machine description to select various Xtensa
27 configuration options. */
327e3a03
BW
28#ifndef XCHAL_HAVE_MUL32_HIGH
29#define XCHAL_HAVE_MUL32_HIGH 0
30#endif
2a48b790
BW
31#ifndef XCHAL_HAVE_RELEASE_SYNC
32#define XCHAL_HAVE_RELEASE_SYNC 0
33#endif
34#ifndef XCHAL_HAVE_S32C1I
35#define XCHAL_HAVE_S32C1I 0
36#endif
6a7a462c
BW
37#ifndef XCHAL_HAVE_THREADPTR
38#define XCHAL_HAVE_THREADPTR 0
39#endif
f211daa3
MF
40#ifndef XCHAL_HAVE_FP_POSTINC
41#define XCHAL_HAVE_FP_POSTINC 0
42#endif
6cedbe44
BW
43#define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
44#define TARGET_DENSITY XCHAL_HAVE_DENSITY
45#define TARGET_MAC16 XCHAL_HAVE_MAC16
46#define TARGET_MUL16 XCHAL_HAVE_MUL16
47#define TARGET_MUL32 XCHAL_HAVE_MUL32
09fa8841 48#define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
6cedbe44
BW
49#define TARGET_DIV32 XCHAL_HAVE_DIV32
50#define TARGET_NSA XCHAL_HAVE_NSA
51#define TARGET_MINMAX XCHAL_HAVE_MINMAX
52#define TARGET_SEXT XCHAL_HAVE_SEXT
53#define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
54#define TARGET_HARD_FLOAT XCHAL_HAVE_FP
55#define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
56#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
57#define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
58#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
f211daa3 59#define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
6cedbe44
BW
60#define TARGET_ABS XCHAL_HAVE_ABS
61#define TARGET_ADDX XCHAL_HAVE_ADDX
2a48b790
BW
62#define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
63#define TARGET_S32C1I XCHAL_HAVE_S32C1I
7f0ee694 64#define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
6a7a462c 65#define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
6383386a 66#define TARGET_LOOPS XCHAL_HAVE_LOOPS
590e2636 67#define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED)
768b6664 68#define TARGET_DEBUG XCHAL_HAVE_DEBUG
1a711a0b 69#define TARGET_L32R XCHAL_HAVE_L32R
6cedbe44 70
1a711a0b 71#define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
03984308 72
6a7a462c
BW
73#ifndef HAVE_AS_TLS
74#define HAVE_AS_TLS 0
75#endif
76
624f0d60
BW
77\f
78/* Target CPU builtins. */
79#define TARGET_CPU_CPP_BUILTINS() \
80 do { \
81 builtin_assert ("cpu=xtensa"); \
82 builtin_assert ("machine=xtensa"); \
48c0150c 83 builtin_define ("__xtensa__"); \
624f0d60 84 builtin_define ("__XTENSA__"); \
590e2636
MF
85 builtin_define (TARGET_WINDOWED_ABI ? \
86 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
624f0d60
BW
87 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
88 if (!TARGET_HARD_FLOAT) \
89 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
624f0d60 90 } while (0)
03984308 91
6a2b287f
BW
92#define CPP_SPEC " %(subtarget_cpp_spec) "
93
94#ifndef SUBTARGET_CPP_SPEC
95#define SUBTARGET_CPP_SPEC ""
96#endif
97
ab409f1b 98#define EXTRA_SPECS \
6a2b287f
BW
99 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
100
03984308
BW
101/* Target machine storage layout */
102
03984308
BW
103/* Define this if most significant bit is lowest numbered
104 in instructions that operate on numbered bit-fields. */
105#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
106
3bbc2af6 107/* Define this if most significant byte of a word is the lowest numbered. */
03984308
BW
108#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
109
3bbc2af6 110/* Define this if most significant word of a multiword number is the lowest. */
03984308
BW
111#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
112
03984308
BW
113#define MAX_BITS_PER_WORD 32
114
115/* Width of a word, in units (bytes). */
116#define UNITS_PER_WORD 4
117#define MIN_UNITS_PER_WORD 4
118
119/* Width of a floating point register. */
120#define UNITS_PER_FPREG 4
121
122/* Size in bits of various types on the target machine. */
123#define INT_TYPE_SIZE 32
03984308
BW
124#define SHORT_TYPE_SIZE 16
125#define LONG_TYPE_SIZE 32
03984308 126#define LONG_LONG_TYPE_SIZE 64
03984308
BW
127#define FLOAT_TYPE_SIZE 32
128#define DOUBLE_TYPE_SIZE 64
129#define LONG_DOUBLE_TYPE_SIZE 64
03984308 130
03984308
BW
131/* Allocation boundary (in *bits*) for storing pointers in memory. */
132#define POINTER_BOUNDARY 32
133
134/* Allocation boundary (in *bits*) for storing arguments in argument list. */
135#define PARM_BOUNDARY 32
136
137/* Allocation boundary (in *bits*) for the code of a function. */
138#define FUNCTION_BOUNDARY 32
139
140/* Alignment of field after 'int : 0' in a structure. */
141#define EMPTY_FIELD_BOUNDARY 32
142
143/* Every structure's size must be a multiple of this. */
144#define STRUCTURE_SIZE_BOUNDARY 8
145
146/* There is no point aligning anything to a rounder boundary than this. */
147#define BIGGEST_ALIGNMENT 128
148
149/* Set this nonzero if move instructions will actually fail to work
150 when given unaligned data. */
151#define STRICT_ALIGNMENT 1
152
153/* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
154 for QImode, because there is no 8-bit load from memory with sign
155 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
156 loads both with and without sign extension. */
157#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
158 do { \
159 if (GET_MODE_CLASS (MODE) == MODE_INT \
160 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
161 { \
162 if ((MODE) == QImode) \
163 (UNSIGNEDP) = 1; \
164 (MODE) = SImode; \
165 } \
166 } while (0)
167
03984308
BW
168/* Imitate the way many other C compilers handle alignment of
169 bitfields and the structures that contain them. */
170#define PCC_BITFIELD_TYPE_MATTERS 1
171
172/* Align string constants and constructors to at least a word boundary.
173 The typical use of this macro is to increase alignment for string
174 constants to be word aligned so that 'strcpy' calls that copy
175 constants can be done inline. */
176#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
637ece3f
MF
177 (!optimize_size && \
178 (TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
03984308
BW
179 && (ALIGN) < BITS_PER_WORD \
180 ? BITS_PER_WORD \
181 : (ALIGN))
182
183/* Align arrays, unions and records to at least a word boundary.
184 One use of this macro is to increase alignment of medium-size
185 data to make it all fit in fewer cache lines. Another is to
186 cause character arrays to be word-aligned so that 'strcpy' calls
187 that copy constants to character arrays can be done inline. */
188#undef DATA_ALIGNMENT
189#define DATA_ALIGNMENT(TYPE, ALIGN) \
637ece3f 190 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
03984308
BW
191 && (TREE_CODE (TYPE) == ARRAY_TYPE \
192 || TREE_CODE (TYPE) == UNION_TYPE \
193 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
194
03984308
BW
195/* Operations between registers always perform the operation
196 on the full register even if a narrower mode is specified. */
9e11bfef 197#define WORD_REGISTER_OPERATIONS 1
03984308
BW
198
199/* Xtensa loads are zero-extended by default. */
200#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
201
202/* Standard register usage. */
203
204/* Number of actual hardware registers.
205 The hardware registers are assigned numbers for the compiler
206 from 0 to just below FIRST_PSEUDO_REGISTER.
207 All registers that the compiler knows about must be given numbers,
208 even those that are not normally considered general registers.
209
210 The fake frame pointer and argument pointer will never appear in
211 the generated code, since they will always be eliminated and replaced
212 by either the stack pointer or the hard frame pointer.
213
214 0 - 15 AR[0] - AR[15]
215 16 FRAME_POINTER (fake = initial sp)
216 17 ARG_POINTER (fake = initial sp + framesize)
03984308
BW
217 18 BR[0] for floating-point CC
218 19 - 34 FR[0] - FR[15]
219 35 MAC16 accumulator */
220
221#define FIRST_PSEUDO_REGISTER 36
222
3bbc2af6 223/* Return the stabs register number to use for REGNO. */
03984308
BW
224#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
225
226/* 1 for registers that have pervasive standard uses
3bbc2af6 227 and are not available for the register allocator. */
03984308
BW
228#define FIXED_REGISTERS \
229{ \
230 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
231 1, 1, 0, \
232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
233 0, \
234}
235
236/* 1 for registers not available across function calls.
237 These must include the FIXED_REGISTERS and also any
238 registers that can be used without being saved.
239 The latter must include the registers where values are returned
240 and the register where structure-value addresses are passed.
590e2636
MF
241 Aside from that, you can include as many other registers as you like.
242
243 The value encoding is the following:
244 1: register is used by all ABIs;
245 bit 1 is set: register is used by windowed ABI;
246 bit 2 is set: register is used by call0 ABI.
247
248 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
249
03984308
BW
250#define CALL_USED_REGISTERS \
251{ \
590e2636 252 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
03984308
BW
253 1, 1, 1, \
254 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
255 1, \
256}
257
258/* For non-leaf procedures on Xtensa processors, the allocation order
259 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
260 want to use the lowest numbered registers first to minimize
261 register window overflows. However, local-alloc is not smart
262 enough to consider conflicts with incoming arguments. If an
263 incoming argument in a2 is live throughout the function and
264 local-alloc decides to use a2, then the incoming argument must
265 either be spilled or copied to another register. To get around
5a733826 266 this, we define ADJUST_REG_ALLOC_ORDER to redefine
03984308
BW
267 reg_alloc_order for leaf functions such that lowest numbered
268 registers are used first with the exception that the incoming
269 argument registers are not used until after other register choices
270 have been exhausted. */
271
272#define REG_ALLOC_ORDER \
985d0d50
BW
273{ 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
274 18, \
275 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
03984308 276 0, 1, 16, 17, \
985d0d50 277 35, \
03984308
BW
278}
279
5a733826 280#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
03984308
BW
281
282/* For Xtensa, the only point of this is to prevent GCC from otherwise
283 giving preference to call-used registers. To minimize window
284 overflows for the AR registers, we want to give preference to the
285 lower-numbered AR registers. For other register files, which are
3bbc2af6 286 not windowed, we still prefer call-used registers, if there are any. */
03984308
BW
287extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
288#define LEAF_REGISTERS xtensa_leaf_regs
289
290/* For Xtensa, no remapping is necessary, but this macro must be
3bbc2af6 291 defined if LEAF_REGISTERS is defined. */
03984308
BW
292#define LEAF_REG_REMAP(REGNO) (REGNO)
293
3bbc2af6 294/* This must be declared if LEAF_REGISTERS is set. */
03984308
BW
295extern int leaf_function;
296
3bbc2af6 297/* Internal macros to classify a register number. */
03984308
BW
298
299/* 16 address registers + fake registers */
300#define GP_REG_FIRST 0
301#define GP_REG_LAST 17
302#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
303
03984308
BW
304/* Coprocessor registers */
305#define BR_REG_FIRST 18
306#define BR_REG_LAST 18
307#define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
308
309/* 16 floating-point registers */
310#define FP_REG_FIRST 19
311#define FP_REG_LAST 34
312#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
313
314/* MAC16 accumulator */
315#define ACC_REG_FIRST 35
316#define ACC_REG_LAST 35
317#define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
318
319#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
320#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
321#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
322#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
323
324/* Return number of consecutive hard regs needed starting at reg REGNO
325 to hold something of mode MODE. */
326#define HARD_REGNO_NREGS(REGNO, MODE) \
327 (FP_REG_P (REGNO) ? \
328 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
329 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
330
03984308
BW
331/* Value is 1 if it is a good idea to tie two pseudo registers
332 when one has mode MODE1 and one has mode MODE2.
f939c3e6
RS
333 If TARGET_HARD_REGNO_MODE_OK could produce different values for MODE1
334 and MODE2, for any hard reg, then this must be 0 for correct output. */
03984308
BW
335#define MODES_TIEABLE_P(MODE1, MODE2) \
336 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
337 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
338 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
339 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
340
03984308
BW
341/* Register to use for pushing function arguments. */
342#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
343
344/* Base register for access to local variables of the function. */
590e2636
MF
345#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
346 (TARGET_WINDOWED_ABI ? 7 : 15))
03984308
BW
347
348/* The register number of the frame pointer register, which is used to
349 access automatic variables in the stack frame. For Xtensa, this
350 register never appears in the output. It is always eliminated to
3bbc2af6 351 either the stack pointer or the hard frame pointer. */
03984308
BW
352#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
353
03984308
BW
354/* Base register for access to arguments of the function. */
355#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
356
1a711a0b
MF
357/* Hard frame pointer is neither frame nor arg pointer.
358 The definitions are here because actual hard frame pointer register
359 definition is not a preprocessor constant. */
360#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
361#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
362
03984308
BW
363/* For now we don't try to use the full set of boolean registers. Without
364 software pipelining of FP operations, there's not much to gain and it's
365 a real pain to get them reloaded. */
366#define FPCC_REGNUM (BR_REG_FIRST + 0)
367
03984308
BW
368/* It is as good or better to call a constant function address than to
369 call an address kept in a register. */
370#define NO_FUNCTION_CSE 1
371
03984308
BW
372/* Xtensa processors have "register windows". GCC does not currently
373 take advantage of the possibility for variable-sized windows; instead,
374 we use a fixed window size of 8. */
375
376#define INCOMING_REGNO(OUT) \
590e2636
MF
377 (TARGET_WINDOWED_ABI ? \
378 ((GP_REG_P (OUT) && \
379 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
380 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
03984308
BW
381
382#define OUTGOING_REGNO(IN) \
590e2636
MF
383 (TARGET_WINDOWED_ABI ? \
384 ((GP_REG_P (IN) && \
385 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
386 (IN) + WINDOW_SIZE : (IN)) : (IN))
03984308
BW
387
388
389/* Define the classes of registers for register constraints in the
390 machine description. */
391enum reg_class
392{
393 NO_REGS, /* no registers in set */
394 BR_REGS, /* coprocessor boolean registers */
395 FP_REGS, /* floating point registers */
396 ACC_REG, /* MAC16 accumulator */
397 SP_REG, /* sp register (aka a1) */
89f6025d 398 RL_REGS, /* preferred reload regs (not sp or fp) */
03984308
BW
399 GR_REGS, /* integer registers except sp */
400 AR_REGS, /* all integer registers */
401 ALL_REGS, /* all registers */
402 LIM_REG_CLASSES /* max value + 1 */
403};
404
405#define N_REG_CLASSES (int) LIM_REG_CLASSES
406
407#define GENERAL_REGS AR_REGS
408
409/* An initializer containing the names of the register classes as C
410 string constants. These names are used in writing some of the
411 debugging dumps. */
412#define REG_CLASS_NAMES \
413{ \
414 "NO_REGS", \
415 "BR_REGS", \
416 "FP_REGS", \
417 "ACC_REG", \
418 "SP_REG", \
89f6025d 419 "RL_REGS", \
03984308
BW
420 "GR_REGS", \
421 "AR_REGS", \
422 "ALL_REGS" \
423}
424
425/* Contents of the register classes. The Nth integer specifies the
426 contents of class N. The way the integer MASK is interpreted is
427 that register R is in the class if 'MASK & (1 << R)' is 1. */
428#define REG_CLASS_CONTENTS \
429{ \
430 { 0x00000000, 0x00000000 }, /* no registers */ \
431 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
432 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
433 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
434 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
590e2636 435 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
03984308
BW
436 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
437 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
438 { 0xffffffff, 0x0000000f } /* all registers */ \
439}
440
441/* A C expression whose value is a register class containing hard
442 register REGNO. In general there is more that one such class;
443 choose a class which is "minimal", meaning that no smaller class
444 also contains the register. */
590e2636 445#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
03984308
BW
446
447/* Use the Xtensa AR register file for base registers.
448 No index registers. */
449#define BASE_REG_CLASS AR_REGS
450#define INDEX_REG_CLASS NO_REGS
451
42db504c
SB
452/* The small_register_classes_for_mode_p hook must always return true for
453 Xtrnase, because all of the 16 AR registers may be explicitly used in
454 the RTL, as either incoming or outgoing arguments. */
455#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
03984308 456
03984308
BW
457/* Stack layout; function entry, exit and calling. */
458
62f9f30b 459#define STACK_GROWS_DOWNWARD 1
03984308 460
5057f9e0
MF
461#define FRAME_GROWS_DOWNWARD flag_stack_protect
462
03984308
BW
463/* Offset within stack frame to start allocating local variables at. */
464#define STARTING_FRAME_OFFSET \
5057f9e0 465 (FRAME_GROWS_DOWNWARD ? 0 : crtl->outgoing_args_size)
03984308
BW
466
467/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
468 they are eliminated to either the stack pointer or hard frame pointer. */
469#define ELIMINABLE_REGS \
470{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
471 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
472 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
473 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
474
03984308
BW
475/* Specify the initial difference between the specified pair of registers. */
476#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
5057f9e0 477 (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
03984308
BW
478
479/* If defined, the maximum amount of space required for outgoing
480 arguments will be computed and placed into the variable
38173d38 481 'crtl->outgoing_args_size'. No space will be pushed
03984308
BW
482 onto the stack for each call; instead, the function prologue
483 should increase the stack frame size by this amount. */
484#define ACCUMULATE_OUTGOING_ARGS 1
485
486/* Offset from the argument pointer register to the first argument's
487 address. On some machines it may depend on the data type of the
488 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
489 location above the first argument's address. */
490#define FIRST_PARM_OFFSET(FNDECL) 0
491
492/* Align stack frames on 128 bits for Xtensa. This is necessary for
493 128-bit datatypes defined in TIE (e.g., for Vectra). */
494#define STACK_BOUNDARY 128
495
03984308 496/* Use a fixed register window size of 8. */
590e2636 497#define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
03984308
BW
498
499/* Symbolic macros for the registers used to return integer, floating
500 point, and values of coprocessor and user-defined modes. */
501#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
502#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
503
504/* Symbolic macros for the first/last argument registers. */
505#define GP_ARG_FIRST (GP_REG_FIRST + 2)
506#define GP_ARG_LAST (GP_REG_FIRST + 7)
507#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
508#define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
509
510#define MAX_ARGS_IN_REGISTERS 6
511
512/* Don't worry about compatibility with PCC. */
513#define DEFAULT_PCC_STRUCT_RETURN 0
514
03984308
BW
515/* A C expression that is nonzero if REGNO is the number of a hard
516 register in which function arguments are sometimes passed. This
517 does *not* include implicit arguments such as the static chain and
518 the structure-value address. On many machines, no registers can be
519 used for this purpose since all function arguments are pushed on
3bbc2af6 520 the stack. */
03984308
BW
521#define FUNCTION_ARG_REGNO_P(N) \
522 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
523
997b8b4d
BW
524/* Record the number of argument words seen so far, along with a flag to
525 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
526 is used for both incoming and outgoing args, so a separate flag is
527 needed. */
528typedef struct xtensa_args
529{
530 int arg_words;
531 int incoming;
03984308
BW
532} CUMULATIVE_ARGS;
533
0f6937fe 534#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
997b8b4d 535 init_cumulative_args (&CUM, 0)
03984308
BW
536
537#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
997b8b4d 538 init_cumulative_args (&CUM, 1)
03984308 539
5ee924c2
BW
540/* Profiling Xtensa code is typically done with the built-in profiling
541 feature of Tensilica's instruction set simulator, which does not
542 require any compiler support. Profiling code on a real (i.e.,
543 non-simulated) Xtensa processor is currently only supported by
544 GNU/Linux with glibc. The glibc version of _mcount doesn't require
545 counter variables. The _mcount function needs the current PC and
546 the current return address to identify an arc in the call graph.
547 Pass the current return address as the first argument; the current
548 PC is available as a0 in _mcount's register window. Both of these
549 values contain window size information in the two most significant
550 bits; we assume that _mcount will mask off those bits. The call to
551 _mcount uses a window size of 8 to make sure that it doesn't clobber
3bbc2af6 552 any incoming argument values. */
03984308 553
9739c90c 554#define NO_PROFILE_COUNTERS 1
5ee924c2
BW
555
556#define FUNCTION_PROFILER(FILE, LABELNO) \
03984308 557 do { \
5ee924c2
BW
558 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
559 if (flag_pic) \
560 { \
590e2636
MF
561 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
562 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
5ee924c2
BW
563 } \
564 else \
590e2636 565 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
5ee924c2 566 } while (0)
03984308
BW
567
568/* Stack pointer value doesn't matter at exit. */
569#define EXIT_IGNORE_STACK 1
570
85333688
BW
571/* Size in bytes of the trampoline, as an integer. Make sure this is
572 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
590e2636
MF
573#define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
574 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
575 60 : 52) : \
576 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
577 32 : 24))
03984308
BW
578
579/* Alignment required for trampolines, in bits. */
7f0ee694 580#define TRAMPOLINE_ALIGNMENT 32
03984308 581
03984308
BW
582/* If defined, a C expression that produces the machine-specific code
583 to setup the stack so that arbitrary frames can be accessed.
584
585 On Xtensa, a stack back-trace must always begin from the stack pointer,
586 so that the register overflow save area can be located. However, the
587 stack-walking code in GCC always begins from the hard_frame_pointer
588 register, not the stack pointer. The frame pointer is usually equal
589 to the stack pointer, but the __builtin_return_address and
590 __builtin_frame_address functions will not work if count > 0 and
591 they are called from a routine that uses alloca. These functions
592 are not guaranteed to work at all if count > 0 so maybe that is OK.
593
594 A nicer solution would be to allow the architecture-specific files to
595 specify whether to start from the stack pointer or frame pointer. That
596 would also allow us to skip the machine->accesses_prev_frame stuff that
597 we currently need to ensure that there is a frame pointer when these
3bbc2af6 598 builtin functions are used. */
03984308 599
0c14a54d 600#define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
03984308
BW
601
602/* A C expression whose value is RTL representing the address in a
603 stack frame where the pointer to the caller's frame is stored.
604 Assume that FRAMEADDR is an RTL expression for the address of the
605 stack frame itself.
606
607 For Xtensa, there is no easy way to get the frame pointer if it is
608 not equivalent to the stack pointer. Moreover, the result of this
609 macro is used for continuing to walk back up the stack, so it must
610 return the stack pointer address. Thus, there is some inconsistency
611 here in that __builtin_frame_address will return the frame pointer
3bbc2af6 612 when count == 0 and the stack pointer when count > 0. */
03984308
BW
613
614#define DYNAMIC_CHAIN_ADDRESS(frame) \
f1c25d3b 615 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
03984308
BW
616
617/* Define this if the return address of a particular stack frame is
3bbc2af6 618 accessed from the frame pointer of the previous stack frame. */
590e2636 619#define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
03984308
BW
620
621/* A C expression whose value is RTL representing the value of the
622 return address for the frame COUNT steps up from the current
0c14a54d
BW
623 frame, after the prologue. */
624#define RETURN_ADDR_RTX xtensa_return_addr
03984308
BW
625
626/* Addressing modes, and classification of registers for them. */
627
628/* C expressions which are nonzero if register number NUM is suitable
da1f39e4 629 for use as a base or index register in operand addresses. */
03984308 630
da1f39e4 631#define REGNO_OK_FOR_INDEX_P(NUM) 0
03984308
BW
632#define REGNO_OK_FOR_BASE_P(NUM) \
633 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
634
03984308 635/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
da1f39e4 636 valid for use as a base or index register. */
03984308
BW
637
638#ifdef REG_OK_STRICT
da1f39e4
BW
639#define REG_OK_STRICT_FLAG 1
640#else
641#define REG_OK_STRICT_FLAG 0
642#endif
03984308 643
da1f39e4
BW
644#define BASE_REG_P(X, STRICT) \
645 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
646 || REGNO_OK_FOR_BASE_P (REGNO (X)))
03984308
BW
647
648#define REG_OK_FOR_INDEX_P(X) 0
da1f39e4 649#define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
03984308
BW
650
651/* Maximum number of registers that can appear in a valid memory address. */
652#define MAX_REGS_PER_ADDRESS 1
653
03984308
BW
654/* A C expression that is 1 if the RTX X is a constant which is a
655 valid address. This is defined to be the same as 'CONSTANT_P (X)',
656 but rejecting CONST_DOUBLE. */
657#define CONSTANT_ADDRESS_P(X) \
658 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
659 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
660 || (GET_CODE (X) == CONST)))
661
03984308
BW
662/* A C expression that is nonzero if X is a legitimate immediate
663 operand on the target machine when generating position independent
664 code. */
665#define LEGITIMATE_PIC_OPERAND_P(X) \
f1dfe704
BW
666 ((GET_CODE (X) != SYMBOL_REF \
667 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
03984308
BW
668 && GET_CODE (X) != LABEL_REF \
669 && GET_CODE (X) != CONST)
670
03984308
BW
671/* Specify the machine mode that this machine uses
672 for the index in the tablejump instruction. */
673#define CASE_VECTOR_MODE (SImode)
674
03984308
BW
675/* Define this as 1 if 'char' should by default be signed; else as 0. */
676#define DEFAULT_SIGNED_CHAR 0
677
678/* Max number of bytes we can move from memory to memory
679 in one reasonably fast instruction. */
680#define MOVE_MAX 4
681#define MAX_MOVE_MAX 4
682
683/* Prefer word-sized loads. */
684#define SLOW_BYTE_ACCESS 1
685
03984308
BW
686/* Shift instructions ignore all but the low-order few bits. */
687#define SHIFT_COUNT_TRUNCATED 1
688
689/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3bbc2af6 690 is done just by pretending it is already truncated. */
03984308
BW
691#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
692
09fa8841
BW
693#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
694#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
695
03984308
BW
696/* Specify the machine mode that pointers have.
697 After generation of rtl, the compiler makes no further distinction
698 between pointers and any other objects of this machine mode. */
699#define Pmode SImode
700
701/* A function address in a call instruction is a word address (for
702 indexing purposes) so give the MEM rtx a words's mode. */
703#define FUNCTION_MODE SImode
704
3a4fd356 705#define BRANCH_COST(speed_p, predictable_p) 3
03984308 706
03984308 707/* How to refer to registers in assembler output.
3bbc2af6 708 This sequence is indexed by compiler's hard-register-number (see above). */
03984308
BW
709#define REGISTER_NAMES \
710{ \
711 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
712 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
713 "fp", "argp", "b0", \
714 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
715 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
716 "acc" \
717}
718
719/* If defined, a C initializer for an array of structures containing a
720 name and a register number. This macro defines additional names
721 for hard registers, thus allowing the 'asm' option in declarations
3bbc2af6 722 to refer to registers using alternate names. */
03984308
BW
723#define ADDITIONAL_REGISTER_NAMES \
724{ \
725 { "a1", 1 + GP_REG_FIRST } \
726}
727
728#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
729#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
730
506a61b1
KG
731/* Globalizing directive for a label. */
732#define GLOBAL_ASM_OP "\t.global\t"
03984308 733
6a2b287f
BW
734/* Declare an uninitialized external linkage data object. */
735#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
736 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
03984308
BW
737
738/* This is how to output an element of a case-vector that is absolute. */
739#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
740 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
741 LOCAL_LABEL_PREFIX, VALUE)
742
743/* This is how to output an element of a case-vector that is relative.
3bbc2af6 744 This is used for pc-relative code. */
03984308
BW
745#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
746 do { \
747 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
748 LOCAL_LABEL_PREFIX, (VALUE), \
749 LOCAL_LABEL_PREFIX, (REL)); \
750 } while (0)
751
752/* This is how to output an assembler line that says to advance the
753 location counter to a multiple of 2**LOG bytes. */
754#define ASM_OUTPUT_ALIGN(STREAM, LOG) \
755 do { \
756 if ((LOG) != 0) \
757 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
758 } while (0)
759
760/* Indicate that jump tables go in the text section. This is
761 necessary when compiling PIC code. */
762#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
763
764
03984308 765/* Define the strings to put out for each section in the object file. */
6a2b287f
BW
766#define TEXT_SECTION_ASM_OP "\t.text"
767#define DATA_SECTION_ASM_OP "\t.data"
768#define BSS_SECTION_ASM_OP "\t.section\t.bss"
03984308
BW
769
770
9eb8a531 771/* Define output to appear before the constant pool. */
03984308
BW
772#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
773 do { \
590e2636 774 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
86d8c251 775 { \
9eb8a531 776 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
d6b5193b 777 switch_to_section (function_section (FUNDECL)); \
86d8c251
BW
778 fprintf (FILE, "\t.literal_position\n"); \
779 } \
03984308
BW
780 } while (0)
781
782
03984308
BW
783/* A C statement (with or without semicolon) to output a constant in
784 the constant pool, if it needs special treatment. */
785#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
786 do { \
787 xtensa_output_literal (FILE, X, MODE, LABELNO); \
788 goto JUMPTO; \
789 } while (0)
790
3bbc2af6 791/* How to start an assembler comment. */
03984308
BW
792#define ASM_COMMENT_START "#"
793
6eb065e6
SA
794/* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
795 machinery, but the variable size register window save areas are too
796 complicated to efficiently describe with CFI entries. The CFA must
797 still be specified in DWARF so that DW_AT_frame_base is set correctly
798 for debugging. */
4e6c2193
BW
799#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
800#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
c8338173
MF
801#define DWARF_ALT_FRAME_RETURN_COLUMN 16
802#define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN \
803 + (TARGET_WINDOWED_ABI ? 0 : 1))
6eb065e6 804#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
24eaa34f
BW
805#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
806 (flag_pic \
807 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
808 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
809 : DW_EH_PE_absptr)
810
590e2636
MF
811#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
812
24eaa34f
BW
813/* Emit a PC-relative relocation. */
814#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
815 do { \
816 fputs (integer_asm_op (SIZE, FALSE), FILE); \
817 assemble_name (FILE, LABEL); \
818 fputs ("@pcrel", FILE); \
819 } while (0)
03984308 820
a7bda3d5
BW
821/* Xtensa constant pool breaks the devices in crtstuff.c to control
822 section in where code resides. We have to write it as asm code. Use
823 a MOVI and let the assembler relax it -- for the .init and .fini
824 sections, the assembler knows to put the literal in the right
825 place. */
590e2636 826#if defined(__XTENSA_WINDOWED_ABI__)
a7bda3d5
BW
827#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
828 asm (SECTION_OP "\n\
829 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
830 callx8\ta8\n" \
831 TEXT_SECTION_ASM_OP);
590e2636
MF
832#elif defined(__XTENSA_CALL0_ABI__)
833#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
834 asm (SECTION_OP "\n\
835 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
836 callx0\ta0\n" \
837 TEXT_SECTION_ASM_OP);
838#endif