]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/convert.c
cp-tree.h (language_to_string): Adjust declaration.
[thirdparty/gcc.git] / gcc / convert.c
CommitLineData
5e6908ea 1/* Utility routines for data type conversion for GCC.
78bd5210
RS
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
76e616db 4
1322177d 5This file is part of GCC.
76e616db 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
76e616db 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
76e616db
BK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
76e616db
BK
21
22
23/* These routines are somewhat language-independent utility function
0f41302f 24 intended to be called by the language-specific convert () functions. */
76e616db
BK
25
26#include "config.h"
c5c76735 27#include "system.h"
4977bab6
ZW
28#include "coretypes.h"
29#include "tm.h"
76e616db
BK
30#include "tree.h"
31#include "flags.h"
32#include "convert.h"
10f0ad3d 33#include "toplev.h"
b0c48229 34#include "langhooks.h"
77f9af81 35#include "real.h"
98c76e3c 36/* Convert EXPR to some pointer or reference type TYPE.
76e616db 37
98c76e3c 38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
0f41302f 39 in other cases error is called. */
76e616db
BK
40
41tree
42convert_to_pointer (type, expr)
43 tree type, expr;
44{
76e616db
BK
45 if (integer_zerop (expr))
46 {
76e616db
BK
47 expr = build_int_2 (0, 0);
48 TREE_TYPE (expr) = type;
49 return expr;
50 }
51
f5963e61 52 switch (TREE_CODE (TREE_TYPE (expr)))
76e616db 53 {
f5963e61
JL
54 case POINTER_TYPE:
55 case REFERENCE_TYPE:
56 return build1 (NOP_EXPR, type, expr);
57
58 case INTEGER_TYPE:
59 case ENUMERAL_TYPE:
60 case BOOLEAN_TYPE:
61 case CHAR_TYPE:
62 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
76e616db 63 return build1 (CONVERT_EXPR, type, expr);
76e616db 64
f5963e61
JL
65 return
66 convert_to_pointer (type,
b0c48229
NB
67 convert ((*lang_hooks.types.type_for_size)
68 (POINTER_SIZE, 0), expr));
76e616db 69
f5963e61
JL
70 default:
71 error ("cannot convert to a pointer type");
72 return convert_to_pointer (type, integer_zero_node);
73 }
76e616db
BK
74}
75
4977bab6 76/* Avoid any floating point extensions from EXP. */
77f9af81 77tree
4977bab6
ZW
78strip_float_extensions (exp)
79 tree exp;
80{
81 tree sub, expt, subt;
82
77f9af81
JH
83 /* For floating point constant look up the narrowest type that can hold
84 it properly and handle it like (type)(narrowest_type)constant.
85 This way we can optimize for instance a=a*2.0 where "a" is float
86 but 2.0 is double constant. */
87 if (TREE_CODE (exp) == REAL_CST)
88 {
89 REAL_VALUE_TYPE orig;
90 tree type = NULL;
91
92 orig = TREE_REAL_CST (exp);
93 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
94 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
95 type = float_type_node;
96 else if (TYPE_PRECISION (TREE_TYPE (exp))
97 > TYPE_PRECISION (double_type_node)
98 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
99 type = double_type_node;
100 if (type)
101 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
102 }
103
4977bab6
ZW
104 if (TREE_CODE (exp) != NOP_EXPR)
105 return exp;
106
107 sub = TREE_OPERAND (exp, 0);
108 subt = TREE_TYPE (sub);
109 expt = TREE_TYPE (exp);
110
111 if (!FLOAT_TYPE_P (subt))
112 return exp;
113
114 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
115 return exp;
116
117 return strip_float_extensions (sub);
118}
119
120
76e616db
BK
121/* Convert EXPR to some floating-point type TYPE.
122
123 EXPR must be float, integer, or enumeral;
0f41302f 124 in other cases error is called. */
76e616db
BK
125
126tree
127convert_to_real (type, expr)
128 tree type, expr;
129{
27a6aa72 130 enum built_in_function fcode = builtin_mathfn_code (expr);
4977bab6
ZW
131 tree itype = TREE_TYPE (expr);
132
4b207444
JH
133 /* Disable until we figure out how to decide whether the functions are
134 present in runtime. */
4977bab6 135 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
78bd5210
RS
136 if (optimize
137 && (fcode == BUILT_IN_SQRT
138 || fcode == BUILT_IN_SQRTL
139 || fcode == BUILT_IN_SIN
140 || fcode == BUILT_IN_SINL
141 || fcode == BUILT_IN_COS
142 || fcode == BUILT_IN_COSL
143 || fcode == BUILT_IN_EXP
144 || fcode == BUILT_IN_EXPL
145 || fcode == BUILT_IN_LOG
146 || fcode == BUILT_IN_LOGL)
4977bab6
ZW
147 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
148 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
149 {
150 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
151 tree newtype = type;
152
153 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
154 the both as the safe type for operation. */
155 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
156 newtype = TREE_TYPE (arg0);
157
27a6aa72 158 /* Be curefull about integer to fp conversions.
4977bab6
ZW
159 These may overflow still. */
160 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
27a6aa72 161 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
4977bab6
ZW
162 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
163 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
164 {
165 tree arglist;
27a6aa72
JH
166 tree fn = mathfn_built_in (newtype, fcode);
167
168 if (fn)
4977bab6
ZW
169 {
170 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
27a6aa72 171 expr = build_function_call_expr (fn, arglist);
4977bab6
ZW
172 if (newtype == type)
173 return expr;
174 }
175 }
176 }
27a6aa72
JH
177 if (optimize
178 && (((fcode == BUILT_IN_FLOORL
179 || fcode == BUILT_IN_CEILL
180 || fcode == BUILT_IN_ROUND
181 || fcode == BUILT_IN_TRUNC
182 || fcode == BUILT_IN_NEARBYINT)
183 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
184 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
185 || ((fcode == BUILT_IN_FLOOR
186 || fcode == BUILT_IN_CEIL
187 || fcode == BUILT_IN_ROUND
188 || fcode == BUILT_IN_TRUNC
189 || fcode == BUILT_IN_NEARBYINT)
190 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
191 {
192 tree fn = mathfn_built_in (type, fcode);
193
194 if (fn)
195 {
196 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
197 1)));
198 tree arglist = build_tree_list (NULL_TREE,
199 fold (convert_to_real (type, arg0)));
200
201 return build_function_call_expr (fn, arglist);
202 }
203 }
4977bab6
ZW
204
205 /* Propagate the cast into the operation. */
206 if (itype != type && FLOAT_TYPE_P (type))
207 switch (TREE_CODE (expr))
208 {
209 /* convert (float)-x into -(float)x. This is always safe. */
210 case ABS_EXPR:
211 case NEGATE_EXPR:
b1a6f8db
JH
212 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
213 return build1 (TREE_CODE (expr), type,
214 fold (convert_to_real (type,
215 TREE_OPERAND (expr, 0))));
216 break;
4977bab6
ZW
217 /* convert (outertype)((innertype0)a+(innertype1)b)
218 into ((newtype)a+(newtype)b) where newtype
219 is the widest mode from all of these. */
220 case PLUS_EXPR:
221 case MINUS_EXPR:
222 case MULT_EXPR:
223 case RDIV_EXPR:
224 {
225 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
226 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
227
228 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
229 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
230 {
231 tree newtype = type;
232 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
233 newtype = TREE_TYPE (arg0);
234 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
235 newtype = TREE_TYPE (arg1);
236 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
237 {
238 expr = build (TREE_CODE (expr), newtype,
239 fold (convert_to_real (newtype, arg0)),
240 fold (convert_to_real (newtype, arg1)));
241 if (newtype == type)
242 return expr;
243 }
244 }
245 }
246 break;
247 default:
248 break;
249 }
250
f5963e61
JL
251 switch (TREE_CODE (TREE_TYPE (expr)))
252 {
253 case REAL_TYPE:
254 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
255 type, expr);
256
257 case INTEGER_TYPE:
258 case ENUMERAL_TYPE:
259 case BOOLEAN_TYPE:
260 case CHAR_TYPE:
261 return build1 (FLOAT_EXPR, type, expr);
262
263 case COMPLEX_TYPE:
264 return convert (type,
265 fold (build1 (REALPART_EXPR,
266 TREE_TYPE (TREE_TYPE (expr)), expr)));
267
268 case POINTER_TYPE:
269 case REFERENCE_TYPE:
270 error ("pointer value used where a floating point value was expected");
271 return convert_to_real (type, integer_zero_node);
272
273 default:
274 error ("aggregate value used where a float was expected");
275 return convert_to_real (type, integer_zero_node);
276 }
76e616db
BK
277}
278
279/* Convert EXPR to some integer (or enum) type TYPE.
280
0b4565c9
BS
281 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
282 vector; in other cases error is called.
76e616db
BK
283
284 The result of this is always supposed to be a newly created tree node
285 not in use in any existing structure. */
286
287tree
288convert_to_integer (type, expr)
289 tree type, expr;
290{
f5963e61
JL
291 enum tree_code ex_form = TREE_CODE (expr);
292 tree intype = TREE_TYPE (expr);
770ae6cc
RK
293 unsigned int inprec = TYPE_PRECISION (intype);
294 unsigned int outprec = TYPE_PRECISION (type);
76e616db 295
9c4cb3a3
MM
296 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
297 be. Consider `enum E = { a, b = (enum E) 3 };'. */
d0f062fb 298 if (!COMPLETE_TYPE_P (type))
9c4cb3a3
MM
299 {
300 error ("conversion to incomplete type");
301 return error_mark_node;
302 }
303
f5963e61 304 switch (TREE_CODE (intype))
76e616db 305 {
f5963e61
JL
306 case POINTER_TYPE:
307 case REFERENCE_TYPE:
76e616db
BK
308 if (integer_zerop (expr))
309 expr = integer_zero_node;
310 else
b0c48229
NB
311 expr = fold (build1 (CONVERT_EXPR, (*lang_hooks.types.type_for_size)
312 (POINTER_SIZE, 0), expr));
76e616db 313
f5963e61 314 return convert_to_integer (type, expr);
76e616db 315
f5963e61
JL
316 case INTEGER_TYPE:
317 case ENUMERAL_TYPE:
318 case BOOLEAN_TYPE:
319 case CHAR_TYPE:
320 /* If this is a logical operation, which just returns 0 or 1, we can
321 change the type of the expression. For some logical operations,
322 we must also change the types of the operands to maintain type
c9529354 323 correctness. */
76e616db 324
c9529354 325 if (TREE_CODE_CLASS (ex_form) == '<')
76e616db
BK
326 {
327 TREE_TYPE (expr) = type;
328 return expr;
329 }
f5963e61 330
c9529354
RK
331 else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR
332 || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR
333 || ex_form == TRUTH_XOR_EXPR)
334 {
335 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
336 TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1));
337 TREE_TYPE (expr) = type;
338 return expr;
339 }
f5963e61 340
c9529354
RK
341 else if (ex_form == TRUTH_NOT_EXPR)
342 {
343 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
344 TREE_TYPE (expr) = type;
345 return expr;
346 }
f5963e61
JL
347
348 /* If we are widening the type, put in an explicit conversion.
349 Similarly if we are not changing the width. After this, we know
350 we are truncating EXPR. */
351
76e616db
BK
352 else if (outprec >= inprec)
353 return build1 (NOP_EXPR, type, expr);
354
1c013b45
RK
355 /* If TYPE is an enumeral type or a type with a precision less
356 than the number of bits in its mode, do the conversion to the
357 type corresponding to its mode, then do a nop conversion
358 to TYPE. */
359 else if (TREE_CODE (type) == ENUMERAL_TYPE
360 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
361 return build1 (NOP_EXPR, type,
b0c48229
NB
362 convert ((*lang_hooks.types.type_for_mode)
363 (TYPE_MODE (type), TREE_UNSIGNED (type)),
1c013b45
RK
364 expr));
365
ab29fdfc
RK
366 /* Here detect when we can distribute the truncation down past some
367 arithmetic. For example, if adding two longs and converting to an
368 int, we can equally well convert both to ints and then add.
369 For the operations handled here, such truncation distribution
370 is always safe.
371 It is desirable in these cases:
372 1) when truncating down to full-word from a larger size
373 2) when truncating takes no work.
374 3) when at least one operand of the arithmetic has been extended
375 (as by C's default conversions). In this case we need two conversions
376 if we do the arithmetic as already requested, so we might as well
377 truncate both and then combine. Perhaps that way we need only one.
378
379 Note that in general we cannot do the arithmetic in a type
380 shorter than the desired result of conversion, even if the operands
381 are both extended from a shorter type, because they might overflow
382 if combined in that type. The exceptions to this--the times when
383 two narrow values can be combined in their narrow type even to
384 make a wider result--are handled by "shorten" in build_binary_op. */
76e616db
BK
385
386 switch (ex_form)
387 {
388 case RSHIFT_EXPR:
389 /* We can pass truncation down through right shifting
390 when the shift count is a nonpositive constant. */
391 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
ab29fdfc
RK
392 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
393 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
394 integer_one_node)))
76e616db
BK
395 goto trunc1;
396 break;
397
398 case LSHIFT_EXPR:
399 /* We can pass truncation down through left shifting
43e4a9d8
EB
400 when the shift count is a nonnegative constant and
401 the target type is unsigned. */
76e616db 402 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
ab29fdfc 403 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
43e4a9d8 404 && TREE_UNSIGNED (type)
76e616db
BK
405 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
406 {
407 /* If shift count is less than the width of the truncated type,
408 really shift. */
409 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
410 /* In this case, shifting is like multiplication. */
411 goto trunc1;
412 else
d9a9c5a7
RK
413 {
414 /* If it is >= that width, result is zero.
415 Handling this with trunc1 would give the wrong result:
416 (int) ((long long) a << 32) is well defined (as 0)
417 but (int) a << 32 is undefined and would get a
418 warning. */
419
420 tree t = convert_to_integer (type, integer_zero_node);
421
422 /* If the original expression had side-effects, we must
423 preserve it. */
424 if (TREE_SIDE_EFFECTS (expr))
425 return build (COMPOUND_EXPR, type, expr, t);
426 else
427 return t;
428 }
76e616db
BK
429 }
430 break;
431
432 case MAX_EXPR:
433 case MIN_EXPR:
434 case MULT_EXPR:
435 {
436 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
437 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
438
439 /* Don't distribute unless the output precision is at least as big
440 as the actual inputs. Otherwise, the comparison of the
441 truncated values will be wrong. */
442 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
443 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
444 /* If signedness of arg0 and arg1 don't match,
445 we can't necessarily find a type to compare them in. */
446 && (TREE_UNSIGNED (TREE_TYPE (arg0))
447 == TREE_UNSIGNED (TREE_TYPE (arg1))))
448 goto trunc1;
449 break;
450 }
451
452 case PLUS_EXPR:
453 case MINUS_EXPR:
454 case BIT_AND_EXPR:
455 case BIT_IOR_EXPR:
456 case BIT_XOR_EXPR:
457 case BIT_ANDTC_EXPR:
458 trunc1:
459 {
460 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
461 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
462
463 if (outprec >= BITS_PER_WORD
464 || TRULY_NOOP_TRUNCATION (outprec, inprec)
465 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
466 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
467 {
468 /* Do the arithmetic in type TYPEX,
469 then convert result to TYPE. */
b3694847 470 tree typex = type;
76e616db
BK
471
472 /* Can't do arithmetic in enumeral types
473 so use an integer type that will hold the values. */
474 if (TREE_CODE (typex) == ENUMERAL_TYPE)
b0c48229
NB
475 typex = (*lang_hooks.types.type_for_size)
476 (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
76e616db
BK
477
478 /* But now perhaps TYPEX is as wide as INPREC.
479 In that case, do nothing special here.
480 (Otherwise would recurse infinitely in convert. */
481 if (TYPE_PRECISION (typex) != inprec)
482 {
483 /* Don't do unsigned arithmetic where signed was wanted,
484 or vice versa.
3cc247a8 485 Exception: if both of the original operands were
43e4a9d8
EB
486 unsigned then we can safely do the work as unsigned.
487 Exception: shift operations take their type solely
488 from the first argument.
489 Exception: the LSHIFT_EXPR case above requires that
490 we perform this operation unsigned lest we produce
491 signed-overflow undefinedness.
76e616db
BK
492 And we may need to do it as unsigned
493 if we truncate to the original size. */
ceef8ce4
NB
494 if (TREE_UNSIGNED (TREE_TYPE (expr))
495 || (TREE_UNSIGNED (TREE_TYPE (arg0))
43e4a9d8
EB
496 && (TREE_UNSIGNED (TREE_TYPE (arg1))
497 || ex_form == LSHIFT_EXPR
498 || ex_form == RSHIFT_EXPR
499 || ex_form == LROTATE_EXPR
500 || ex_form == RROTATE_EXPR))
501 || ex_form == LSHIFT_EXPR)
ceef8ce4
NB
502 typex = (*lang_hooks.types.unsigned_type) (typex);
503 else
504 typex = (*lang_hooks.types.signed_type) (typex);
76e616db 505 return convert (type,
95e78909
RK
506 fold (build (ex_form, typex,
507 convert (typex, arg0),
508 convert (typex, arg1),
509 0)));
76e616db
BK
510 }
511 }
512 }
513 break;
514
515 case NEGATE_EXPR:
516 case BIT_NOT_EXPR:
d283912a
RS
517 /* This is not correct for ABS_EXPR,
518 since we must test the sign before truncation. */
76e616db 519 {
b3694847 520 tree typex = type;
76e616db
BK
521
522 /* Can't do arithmetic in enumeral types
523 so use an integer type that will hold the values. */
524 if (TREE_CODE (typex) == ENUMERAL_TYPE)
b0c48229
NB
525 typex = (*lang_hooks.types.type_for_size)
526 (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
76e616db
BK
527
528 /* But now perhaps TYPEX is as wide as INPREC.
529 In that case, do nothing special here.
530 (Otherwise would recurse infinitely in convert. */
531 if (TYPE_PRECISION (typex) != inprec)
532 {
533 /* Don't do unsigned arithmetic where signed was wanted,
534 or vice versa. */
ceef8ce4
NB
535 if (TREE_UNSIGNED (TREE_TYPE (expr)))
536 typex = (*lang_hooks.types.unsigned_type) (typex);
537 else
538 typex = (*lang_hooks.types.signed_type) (typex);
76e616db 539 return convert (type,
95e78909
RK
540 fold (build1 (ex_form, typex,
541 convert (typex,
542 TREE_OPERAND (expr, 0)))));
76e616db
BK
543 }
544 }
545
546 case NOP_EXPR:
3767c0fd
R
547 /* Don't introduce a
548 "can't convert between vector values of different size" error. */
549 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
550 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
551 != GET_MODE_SIZE (TYPE_MODE (type))))
552 break;
76e616db
BK
553 /* If truncating after truncating, might as well do all at once.
554 If truncating after extending, we may get rid of wasted work. */
555 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
556
557 case COND_EXPR:
f5963e61
JL
558 /* It is sometimes worthwhile to push the narrowing down through
559 the conditional and never loses. */
560 return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0),
561 convert (type, TREE_OPERAND (expr, 1)),
562 convert (type, TREE_OPERAND (expr, 2))));
76e616db 563
31031edd
JL
564 default:
565 break;
76e616db
BK
566 }
567
568 return build1 (NOP_EXPR, type, expr);
76e616db 569
f5963e61
JL
570 case REAL_TYPE:
571 return build1 (FIX_TRUNC_EXPR, type, expr);
76e616db 572
f5963e61
JL
573 case COMPLEX_TYPE:
574 return convert (type,
575 fold (build1 (REALPART_EXPR,
576 TREE_TYPE (TREE_TYPE (expr)), expr)));
0b127821 577
0b4565c9
BS
578 case VECTOR_TYPE:
579 if (GET_MODE_SIZE (TYPE_MODE (type))
580 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
581 {
582 error ("can't convert between vector values of different size");
583 return error_mark_node;
584 }
585 return build1 (NOP_EXPR, type, expr);
586
f5963e61
JL
587 default:
588 error ("aggregate value used where an integer was expected");
589 return convert (type, integer_zero_node);
590 }
76e616db 591}
0b127821
RS
592
593/* Convert EXPR to the complex type TYPE in the usual ways. */
594
595tree
596convert_to_complex (type, expr)
597 tree type, expr;
598{
0b127821
RS
599 tree subtype = TREE_TYPE (type);
600
f5963e61 601 switch (TREE_CODE (TREE_TYPE (expr)))
0b127821 602 {
f5963e61
JL
603 case REAL_TYPE:
604 case INTEGER_TYPE:
605 case ENUMERAL_TYPE:
606 case BOOLEAN_TYPE:
607 case CHAR_TYPE:
608 return build (COMPLEX_EXPR, type, convert (subtype, expr),
0b127821 609 convert (subtype, integer_zero_node));
0b127821 610
f5963e61
JL
611 case COMPLEX_TYPE:
612 {
613 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
614
615 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
616 return expr;
617 else if (TREE_CODE (expr) == COMPLEX_EXPR)
0b127821
RS
618 return fold (build (COMPLEX_EXPR,
619 type,
f5963e61
JL
620 convert (subtype, TREE_OPERAND (expr, 0)),
621 convert (subtype, TREE_OPERAND (expr, 1))));
622 else
623 {
624 expr = save_expr (expr);
625 return
626 fold (build (COMPLEX_EXPR,
627 type, convert (subtype,
628 fold (build1 (REALPART_EXPR,
629 TREE_TYPE (TREE_TYPE (expr)),
630 expr))),
631 convert (subtype,
632 fold (build1 (IMAGPART_EXPR,
633 TREE_TYPE (TREE_TYPE (expr)),
634 expr)))));
635 }
636 }
0b127821 637
f5963e61
JL
638 case POINTER_TYPE:
639 case REFERENCE_TYPE:
640 error ("pointer value used where a complex was expected");
641 return convert_to_complex (type, integer_zero_node);
642
643 default:
644 error ("aggregate value used where a complex was expected");
645 return convert_to_complex (type, integer_zero_node);
646 }
0b127821 647}
0b4565c9
BS
648
649/* Convert EXPR to the vector type TYPE in the usual ways. */
650
651tree
652convert_to_vector (type, expr)
653 tree type, expr;
654{
0b4565c9
BS
655 switch (TREE_CODE (TREE_TYPE (expr)))
656 {
657 case INTEGER_TYPE:
658 case VECTOR_TYPE:
659 if (GET_MODE_SIZE (TYPE_MODE (type))
660 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
661 {
662 error ("can't convert between vector values of different size");
663 return error_mark_node;
664 }
665 return build1 (NOP_EXPR, type, expr);
666
667 default:
668 error ("can't convert value to a vector");
669 return convert_to_vector (type, integer_zero_node);
670 }
671}