]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/convert.c
20030505.c: Only run for SPE.
[thirdparty/gcc.git] / gcc / convert.c
CommitLineData
5e6908ea 1/* Utility routines for data type conversion for GCC.
78bd5210
RS
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
76e616db 4
1322177d 5This file is part of GCC.
76e616db 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
76e616db 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
76e616db
BK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
76e616db
BK
21
22
23/* These routines are somewhat language-independent utility function
0f41302f 24 intended to be called by the language-specific convert () functions. */
76e616db
BK
25
26#include "config.h"
c5c76735 27#include "system.h"
4977bab6
ZW
28#include "coretypes.h"
29#include "tm.h"
76e616db
BK
30#include "tree.h"
31#include "flags.h"
32#include "convert.h"
10f0ad3d 33#include "toplev.h"
b0c48229 34#include "langhooks.h"
77f9af81 35#include "real.h"
98c76e3c 36/* Convert EXPR to some pointer or reference type TYPE.
76e616db 37
98c76e3c 38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
0f41302f 39 in other cases error is called. */
76e616db
BK
40
41tree
159b3be1 42convert_to_pointer (tree type, tree expr)
76e616db 43{
76e616db
BK
44 if (integer_zerop (expr))
45 {
76e616db
BK
46 expr = build_int_2 (0, 0);
47 TREE_TYPE (expr) = type;
48 return expr;
49 }
50
f5963e61 51 switch (TREE_CODE (TREE_TYPE (expr)))
76e616db 52 {
f5963e61
JL
53 case POINTER_TYPE:
54 case REFERENCE_TYPE:
55 return build1 (NOP_EXPR, type, expr);
56
57 case INTEGER_TYPE:
58 case ENUMERAL_TYPE:
59 case BOOLEAN_TYPE:
60 case CHAR_TYPE:
61 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
76e616db 62 return build1 (CONVERT_EXPR, type, expr);
76e616db 63
f5963e61
JL
64 return
65 convert_to_pointer (type,
b0c48229
NB
66 convert ((*lang_hooks.types.type_for_size)
67 (POINTER_SIZE, 0), expr));
76e616db 68
f5963e61
JL
69 default:
70 error ("cannot convert to a pointer type");
71 return convert_to_pointer (type, integer_zero_node);
72 }
76e616db
BK
73}
74
4977bab6 75/* Avoid any floating point extensions from EXP. */
77f9af81 76tree
159b3be1 77strip_float_extensions (tree exp)
4977bab6
ZW
78{
79 tree sub, expt, subt;
80
77f9af81
JH
81 /* For floating point constant look up the narrowest type that can hold
82 it properly and handle it like (type)(narrowest_type)constant.
83 This way we can optimize for instance a=a*2.0 where "a" is float
84 but 2.0 is double constant. */
85 if (TREE_CODE (exp) == REAL_CST)
86 {
87 REAL_VALUE_TYPE orig;
88 tree type = NULL;
89
90 orig = TREE_REAL_CST (exp);
91 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
92 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
93 type = float_type_node;
94 else if (TYPE_PRECISION (TREE_TYPE (exp))
95 > TYPE_PRECISION (double_type_node)
96 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
97 type = double_type_node;
98 if (type)
99 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
100 }
101
4977bab6
ZW
102 if (TREE_CODE (exp) != NOP_EXPR)
103 return exp;
104
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
108
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
111
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
114
115 return strip_float_extensions (sub);
116}
117
118
76e616db
BK
119/* Convert EXPR to some floating-point type TYPE.
120
121 EXPR must be float, integer, or enumeral;
0f41302f 122 in other cases error is called. */
76e616db
BK
123
124tree
159b3be1 125convert_to_real (tree type, tree expr)
76e616db 126{
27a6aa72 127 enum built_in_function fcode = builtin_mathfn_code (expr);
4977bab6
ZW
128 tree itype = TREE_TYPE (expr);
129
4b207444
JH
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
4977bab6 132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
78bd5210
RS
133 if (optimize
134 && (fcode == BUILT_IN_SQRT
135 || fcode == BUILT_IN_SQRTL
136 || fcode == BUILT_IN_SIN
137 || fcode == BUILT_IN_SINL
138 || fcode == BUILT_IN_COS
139 || fcode == BUILT_IN_COSL
140 || fcode == BUILT_IN_EXP
141 || fcode == BUILT_IN_EXPL
142 || fcode == BUILT_IN_LOG
143 || fcode == BUILT_IN_LOGL)
4977bab6
ZW
144 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
145 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
146 {
147 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
148 tree newtype = type;
149
150 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
151 the both as the safe type for operation. */
152 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
153 newtype = TREE_TYPE (arg0);
154
e0bb17a8 155 /* Be careful about integer to fp conversions.
4977bab6
ZW
156 These may overflow still. */
157 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
27a6aa72 158 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
4977bab6
ZW
159 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
160 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
161 {
162 tree arglist;
27a6aa72
JH
163 tree fn = mathfn_built_in (newtype, fcode);
164
165 if (fn)
4977bab6
ZW
166 {
167 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
27a6aa72 168 expr = build_function_call_expr (fn, arglist);
4977bab6
ZW
169 if (newtype == type)
170 return expr;
171 }
172 }
173 }
27a6aa72
JH
174 if (optimize
175 && (((fcode == BUILT_IN_FLOORL
176 || fcode == BUILT_IN_CEILL
177 || fcode == BUILT_IN_ROUND
178 || fcode == BUILT_IN_TRUNC
179 || fcode == BUILT_IN_NEARBYINT)
180 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
181 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
182 || ((fcode == BUILT_IN_FLOOR
183 || fcode == BUILT_IN_CEIL
184 || fcode == BUILT_IN_ROUND
185 || fcode == BUILT_IN_TRUNC
186 || fcode == BUILT_IN_NEARBYINT)
187 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
188 {
189 tree fn = mathfn_built_in (type, fcode);
190
191 if (fn)
192 {
193 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
159b3be1 194 1)));
27a6aa72 195 tree arglist = build_tree_list (NULL_TREE,
159b3be1 196 fold (convert_to_real (type, arg0)));
27a6aa72
JH
197
198 return build_function_call_expr (fn, arglist);
199 }
200 }
4977bab6
ZW
201
202 /* Propagate the cast into the operation. */
203 if (itype != type && FLOAT_TYPE_P (type))
204 switch (TREE_CODE (expr))
205 {
206 /* convert (float)-x into -(float)x. This is always safe. */
207 case ABS_EXPR:
208 case NEGATE_EXPR:
b1a6f8db
JH
209 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
210 return build1 (TREE_CODE (expr), type,
211 fold (convert_to_real (type,
212 TREE_OPERAND (expr, 0))));
213 break;
4977bab6
ZW
214 /* convert (outertype)((innertype0)a+(innertype1)b)
215 into ((newtype)a+(newtype)b) where newtype
216 is the widest mode from all of these. */
217 case PLUS_EXPR:
218 case MINUS_EXPR:
219 case MULT_EXPR:
220 case RDIV_EXPR:
221 {
222 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
223 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
224
225 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
226 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
227 {
228 tree newtype = type;
229 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
230 newtype = TREE_TYPE (arg0);
231 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
232 newtype = TREE_TYPE (arg1);
233 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
234 {
235 expr = build (TREE_CODE (expr), newtype,
236 fold (convert_to_real (newtype, arg0)),
237 fold (convert_to_real (newtype, arg1)));
238 if (newtype == type)
239 return expr;
240 }
241 }
242 }
243 break;
244 default:
245 break;
246 }
247
f5963e61
JL
248 switch (TREE_CODE (TREE_TYPE (expr)))
249 {
250 case REAL_TYPE:
251 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
252 type, expr);
253
254 case INTEGER_TYPE:
255 case ENUMERAL_TYPE:
256 case BOOLEAN_TYPE:
257 case CHAR_TYPE:
258 return build1 (FLOAT_EXPR, type, expr);
259
260 case COMPLEX_TYPE:
261 return convert (type,
262 fold (build1 (REALPART_EXPR,
263 TREE_TYPE (TREE_TYPE (expr)), expr)));
264
265 case POINTER_TYPE:
266 case REFERENCE_TYPE:
267 error ("pointer value used where a floating point value was expected");
268 return convert_to_real (type, integer_zero_node);
269
270 default:
271 error ("aggregate value used where a float was expected");
272 return convert_to_real (type, integer_zero_node);
273 }
76e616db
BK
274}
275
276/* Convert EXPR to some integer (or enum) type TYPE.
277
0b4565c9
BS
278 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
279 vector; in other cases error is called.
76e616db
BK
280
281 The result of this is always supposed to be a newly created tree node
282 not in use in any existing structure. */
283
284tree
159b3be1 285convert_to_integer (tree type, tree expr)
76e616db 286{
f5963e61
JL
287 enum tree_code ex_form = TREE_CODE (expr);
288 tree intype = TREE_TYPE (expr);
770ae6cc
RK
289 unsigned int inprec = TYPE_PRECISION (intype);
290 unsigned int outprec = TYPE_PRECISION (type);
76e616db 291
9c4cb3a3
MM
292 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
293 be. Consider `enum E = { a, b = (enum E) 3 };'. */
d0f062fb 294 if (!COMPLETE_TYPE_P (type))
9c4cb3a3
MM
295 {
296 error ("conversion to incomplete type");
297 return error_mark_node;
298 }
299
f5963e61 300 switch (TREE_CODE (intype))
76e616db 301 {
f5963e61
JL
302 case POINTER_TYPE:
303 case REFERENCE_TYPE:
76e616db
BK
304 if (integer_zerop (expr))
305 expr = integer_zero_node;
306 else
b0c48229
NB
307 expr = fold (build1 (CONVERT_EXPR, (*lang_hooks.types.type_for_size)
308 (POINTER_SIZE, 0), expr));
76e616db 309
f5963e61 310 return convert_to_integer (type, expr);
76e616db 311
f5963e61
JL
312 case INTEGER_TYPE:
313 case ENUMERAL_TYPE:
314 case BOOLEAN_TYPE:
315 case CHAR_TYPE:
316 /* If this is a logical operation, which just returns 0 or 1, we can
317 change the type of the expression. For some logical operations,
318 we must also change the types of the operands to maintain type
c9529354 319 correctness. */
76e616db 320
c9529354 321 if (TREE_CODE_CLASS (ex_form) == '<')
76e616db
BK
322 {
323 TREE_TYPE (expr) = type;
324 return expr;
325 }
f5963e61 326
c9529354
RK
327 else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR
328 || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR
329 || ex_form == TRUTH_XOR_EXPR)
330 {
331 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
332 TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1));
333 TREE_TYPE (expr) = type;
334 return expr;
335 }
f5963e61 336
c9529354
RK
337 else if (ex_form == TRUTH_NOT_EXPR)
338 {
339 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
340 TREE_TYPE (expr) = type;
341 return expr;
342 }
f5963e61
JL
343
344 /* If we are widening the type, put in an explicit conversion.
345 Similarly if we are not changing the width. After this, we know
346 we are truncating EXPR. */
347
76e616db
BK
348 else if (outprec >= inprec)
349 return build1 (NOP_EXPR, type, expr);
350
1c013b45
RK
351 /* If TYPE is an enumeral type or a type with a precision less
352 than the number of bits in its mode, do the conversion to the
353 type corresponding to its mode, then do a nop conversion
354 to TYPE. */
355 else if (TREE_CODE (type) == ENUMERAL_TYPE
356 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
357 return build1 (NOP_EXPR, type,
b0c48229
NB
358 convert ((*lang_hooks.types.type_for_mode)
359 (TYPE_MODE (type), TREE_UNSIGNED (type)),
1c013b45
RK
360 expr));
361
ab29fdfc
RK
362 /* Here detect when we can distribute the truncation down past some
363 arithmetic. For example, if adding two longs and converting to an
364 int, we can equally well convert both to ints and then add.
365 For the operations handled here, such truncation distribution
366 is always safe.
367 It is desirable in these cases:
368 1) when truncating down to full-word from a larger size
369 2) when truncating takes no work.
370 3) when at least one operand of the arithmetic has been extended
371 (as by C's default conversions). In this case we need two conversions
372 if we do the arithmetic as already requested, so we might as well
373 truncate both and then combine. Perhaps that way we need only one.
374
375 Note that in general we cannot do the arithmetic in a type
376 shorter than the desired result of conversion, even if the operands
377 are both extended from a shorter type, because they might overflow
378 if combined in that type. The exceptions to this--the times when
379 two narrow values can be combined in their narrow type even to
380 make a wider result--are handled by "shorten" in build_binary_op. */
76e616db
BK
381
382 switch (ex_form)
383 {
384 case RSHIFT_EXPR:
385 /* We can pass truncation down through right shifting
386 when the shift count is a nonpositive constant. */
387 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
ab29fdfc
RK
388 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
389 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
390 integer_one_node)))
76e616db
BK
391 goto trunc1;
392 break;
393
394 case LSHIFT_EXPR:
395 /* We can pass truncation down through left shifting
43e4a9d8
EB
396 when the shift count is a nonnegative constant and
397 the target type is unsigned. */
76e616db 398 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
ab29fdfc 399 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
43e4a9d8 400 && TREE_UNSIGNED (type)
76e616db
BK
401 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
402 {
403 /* If shift count is less than the width of the truncated type,
404 really shift. */
405 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
406 /* In this case, shifting is like multiplication. */
407 goto trunc1;
408 else
d9a9c5a7
RK
409 {
410 /* If it is >= that width, result is zero.
411 Handling this with trunc1 would give the wrong result:
412 (int) ((long long) a << 32) is well defined (as 0)
413 but (int) a << 32 is undefined and would get a
414 warning. */
415
416 tree t = convert_to_integer (type, integer_zero_node);
417
418 /* If the original expression had side-effects, we must
419 preserve it. */
420 if (TREE_SIDE_EFFECTS (expr))
421 return build (COMPOUND_EXPR, type, expr, t);
422 else
423 return t;
424 }
76e616db
BK
425 }
426 break;
427
428 case MAX_EXPR:
429 case MIN_EXPR:
430 case MULT_EXPR:
431 {
432 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
433 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
434
435 /* Don't distribute unless the output precision is at least as big
436 as the actual inputs. Otherwise, the comparison of the
437 truncated values will be wrong. */
438 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
439 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
440 /* If signedness of arg0 and arg1 don't match,
441 we can't necessarily find a type to compare them in. */
442 && (TREE_UNSIGNED (TREE_TYPE (arg0))
443 == TREE_UNSIGNED (TREE_TYPE (arg1))))
444 goto trunc1;
445 break;
446 }
447
448 case PLUS_EXPR:
449 case MINUS_EXPR:
450 case BIT_AND_EXPR:
451 case BIT_IOR_EXPR:
452 case BIT_XOR_EXPR:
453 case BIT_ANDTC_EXPR:
454 trunc1:
455 {
456 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
457 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
458
459 if (outprec >= BITS_PER_WORD
460 || TRULY_NOOP_TRUNCATION (outprec, inprec)
461 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
462 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
463 {
464 /* Do the arithmetic in type TYPEX,
465 then convert result to TYPE. */
b3694847 466 tree typex = type;
76e616db
BK
467
468 /* Can't do arithmetic in enumeral types
469 so use an integer type that will hold the values. */
470 if (TREE_CODE (typex) == ENUMERAL_TYPE)
b0c48229
NB
471 typex = (*lang_hooks.types.type_for_size)
472 (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
76e616db
BK
473
474 /* But now perhaps TYPEX is as wide as INPREC.
475 In that case, do nothing special here.
476 (Otherwise would recurse infinitely in convert. */
477 if (TYPE_PRECISION (typex) != inprec)
478 {
479 /* Don't do unsigned arithmetic where signed was wanted,
480 or vice versa.
3cc247a8 481 Exception: if both of the original operands were
159b3be1 482 unsigned then we can safely do the work as unsigned.
43e4a9d8
EB
483 Exception: shift operations take their type solely
484 from the first argument.
485 Exception: the LSHIFT_EXPR case above requires that
486 we perform this operation unsigned lest we produce
487 signed-overflow undefinedness.
76e616db
BK
488 And we may need to do it as unsigned
489 if we truncate to the original size. */
ceef8ce4
NB
490 if (TREE_UNSIGNED (TREE_TYPE (expr))
491 || (TREE_UNSIGNED (TREE_TYPE (arg0))
43e4a9d8
EB
492 && (TREE_UNSIGNED (TREE_TYPE (arg1))
493 || ex_form == LSHIFT_EXPR
494 || ex_form == RSHIFT_EXPR
495 || ex_form == LROTATE_EXPR
496 || ex_form == RROTATE_EXPR))
497 || ex_form == LSHIFT_EXPR)
ceef8ce4
NB
498 typex = (*lang_hooks.types.unsigned_type) (typex);
499 else
500 typex = (*lang_hooks.types.signed_type) (typex);
76e616db 501 return convert (type,
95e78909
RK
502 fold (build (ex_form, typex,
503 convert (typex, arg0),
504 convert (typex, arg1),
505 0)));
76e616db
BK
506 }
507 }
508 }
509 break;
510
511 case NEGATE_EXPR:
512 case BIT_NOT_EXPR:
d283912a
RS
513 /* This is not correct for ABS_EXPR,
514 since we must test the sign before truncation. */
76e616db 515 {
b3694847 516 tree typex = type;
76e616db
BK
517
518 /* Can't do arithmetic in enumeral types
519 so use an integer type that will hold the values. */
520 if (TREE_CODE (typex) == ENUMERAL_TYPE)
b0c48229
NB
521 typex = (*lang_hooks.types.type_for_size)
522 (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
76e616db
BK
523
524 /* But now perhaps TYPEX is as wide as INPREC.
525 In that case, do nothing special here.
526 (Otherwise would recurse infinitely in convert. */
527 if (TYPE_PRECISION (typex) != inprec)
528 {
529 /* Don't do unsigned arithmetic where signed was wanted,
530 or vice versa. */
ceef8ce4
NB
531 if (TREE_UNSIGNED (TREE_TYPE (expr)))
532 typex = (*lang_hooks.types.unsigned_type) (typex);
533 else
534 typex = (*lang_hooks.types.signed_type) (typex);
76e616db 535 return convert (type,
95e78909
RK
536 fold (build1 (ex_form, typex,
537 convert (typex,
538 TREE_OPERAND (expr, 0)))));
76e616db
BK
539 }
540 }
541
542 case NOP_EXPR:
3767c0fd
R
543 /* Don't introduce a
544 "can't convert between vector values of different size" error. */
545 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
546 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
547 != GET_MODE_SIZE (TYPE_MODE (type))))
548 break;
76e616db
BK
549 /* If truncating after truncating, might as well do all at once.
550 If truncating after extending, we may get rid of wasted work. */
551 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
552
553 case COND_EXPR:
f5963e61
JL
554 /* It is sometimes worthwhile to push the narrowing down through
555 the conditional and never loses. */
556 return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0),
159b3be1 557 convert (type, TREE_OPERAND (expr, 1)),
f5963e61 558 convert (type, TREE_OPERAND (expr, 2))));
76e616db 559
31031edd
JL
560 default:
561 break;
76e616db
BK
562 }
563
564 return build1 (NOP_EXPR, type, expr);
76e616db 565
f5963e61
JL
566 case REAL_TYPE:
567 return build1 (FIX_TRUNC_EXPR, type, expr);
76e616db 568
f5963e61
JL
569 case COMPLEX_TYPE:
570 return convert (type,
571 fold (build1 (REALPART_EXPR,
572 TREE_TYPE (TREE_TYPE (expr)), expr)));
0b127821 573
0b4565c9
BS
574 case VECTOR_TYPE:
575 if (GET_MODE_SIZE (TYPE_MODE (type))
576 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
577 {
578 error ("can't convert between vector values of different size");
579 return error_mark_node;
580 }
581 return build1 (NOP_EXPR, type, expr);
582
f5963e61
JL
583 default:
584 error ("aggregate value used where an integer was expected");
585 return convert (type, integer_zero_node);
586 }
76e616db 587}
0b127821
RS
588
589/* Convert EXPR to the complex type TYPE in the usual ways. */
590
591tree
159b3be1 592convert_to_complex (tree type, tree expr)
0b127821 593{
0b127821 594 tree subtype = TREE_TYPE (type);
159b3be1 595
f5963e61 596 switch (TREE_CODE (TREE_TYPE (expr)))
0b127821 597 {
f5963e61
JL
598 case REAL_TYPE:
599 case INTEGER_TYPE:
600 case ENUMERAL_TYPE:
601 case BOOLEAN_TYPE:
602 case CHAR_TYPE:
603 return build (COMPLEX_EXPR, type, convert (subtype, expr),
0b127821 604 convert (subtype, integer_zero_node));
0b127821 605
f5963e61
JL
606 case COMPLEX_TYPE:
607 {
608 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
609
610 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
611 return expr;
612 else if (TREE_CODE (expr) == COMPLEX_EXPR)
0b127821
RS
613 return fold (build (COMPLEX_EXPR,
614 type,
f5963e61
JL
615 convert (subtype, TREE_OPERAND (expr, 0)),
616 convert (subtype, TREE_OPERAND (expr, 1))));
617 else
618 {
619 expr = save_expr (expr);
620 return
621 fold (build (COMPLEX_EXPR,
622 type, convert (subtype,
623 fold (build1 (REALPART_EXPR,
624 TREE_TYPE (TREE_TYPE (expr)),
625 expr))),
626 convert (subtype,
627 fold (build1 (IMAGPART_EXPR,
628 TREE_TYPE (TREE_TYPE (expr)),
629 expr)))));
630 }
631 }
0b127821 632
f5963e61
JL
633 case POINTER_TYPE:
634 case REFERENCE_TYPE:
635 error ("pointer value used where a complex was expected");
636 return convert_to_complex (type, integer_zero_node);
637
638 default:
639 error ("aggregate value used where a complex was expected");
640 return convert_to_complex (type, integer_zero_node);
641 }
0b127821 642}
0b4565c9
BS
643
644/* Convert EXPR to the vector type TYPE in the usual ways. */
645
646tree
159b3be1 647convert_to_vector (tree type, tree expr)
0b4565c9 648{
0b4565c9
BS
649 switch (TREE_CODE (TREE_TYPE (expr)))
650 {
651 case INTEGER_TYPE:
652 case VECTOR_TYPE:
653 if (GET_MODE_SIZE (TYPE_MODE (type))
654 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
655 {
656 error ("can't convert between vector values of different size");
657 return error_mark_node;
658 }
659 return build1 (NOP_EXPR, type, expr);
660
661 default:
662 error ("can't convert value to a vector");
663 return convert_to_vector (type, integer_zero_node);
664 }
665}