]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
752df20e 1/* Common subexpression elimination for GNU compiler.
fbd26352 2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
752df20e 3
f12b58b3 4This file is part of GCC.
752df20e 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
752df20e 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
752df20e 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
752df20e 19
752df20e 20#include "config.h"
405711de 21#include "system.h"
805e22b2 22#include "coretypes.h"
9ef16211 23#include "backend.h"
7c29e30e 24#include "target.h"
752df20e 25#include "rtl.h"
7c29e30e 26#include "tree.h"
27#include "cfghooks.h"
9ef16211 28#include "df.h"
ad7b10a2 29#include "memmodel.h"
7953c610 30#include "tm_p.h"
7c29e30e 31#include "insn-config.h"
42fe97ed 32#include "regs.h"
7c29e30e 33#include "emit-rtl.h"
34#include "recog.h"
94ea8568 35#include "cfgrtl.h"
36#include "cfganal.h"
37#include "cfgcleanup.h"
d53441c8 38#include "alias.h"
ebd9163c 39#include "toplev.h"
38ccff25 40#include "params.h"
d263732c 41#include "rtlhooks-def.h"
77fce4cd 42#include "tree-pass.h"
3072d30e 43#include "dbgcnt.h"
ff17e9ce 44#include "rtl-iter.h"
752df20e 45
46/* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
c863f0f6 52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
752df20e 60
61 We use two data structures to record the equivalent expressions:
a7f3b1c7 62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
752df20e 64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74Registers and "quantity numbers":
cb10db9d 75
752df20e 76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
96d808c2 82 `REG_QTY (N)' records what quantity register N is currently thought
752df20e 83 of as containing.
84
1a5bccce 85 All real quantity numbers are greater than or equal to zero.
96d808c2 86 If register N has not been assigned a quantity, `REG_QTY (N)' will
1a5bccce 87 equal -N - 1, which is always negative.
752df20e 88
1a5bccce 89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
752df20e 91
92 We also maintain a bidirectional chain of registers for each
a7f3b1c7 93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
752df20e 95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
a7f3b1c7 101 REG expressions with qty_table `mode' must be in the hash table for both
752df20e 102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
cb10db9d 108
752df20e 109Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
a7f3b1c7 112 in the appropriate qty_table `const_rtx'. This is in addition to
752df20e 113 putting the constant in the hash table as is usual for non-regs.
114
f9e15121 115 Whether a reg or a constant is preferred is determined by the configuration
752df20e 116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
a7f3b1c7 120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
752df20e 122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
a7f3b1c7 141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
752df20e 142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
96d808c2 174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
752df20e 184
185 Registers themselves are entered in the hash table as well as in
96d808c2 186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
752df20e 188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
cb10db9d 205
a7f3b1c7 206/* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
752df20e 208
209static int max_qty;
210
211/* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214static int next_qty;
215
a7f3b1c7 216/* Per-qty information tracking.
752df20e 217
a7f3b1c7 218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
752df20e 220
a7f3b1c7 221 `mode' contains the machine mode of this quantity.
752df20e 222
a7f3b1c7 223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
752df20e 228
a7f3b1c7 229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
752df20e 240
a7f3b1c7 241struct qty_table_elem
242{
243 rtx const_rtx;
47f1d198 244 rtx_insn *const_insn;
a7f3b1c7 245 rtx comparison_const;
246 int comparison_qty;
02e7a332 247 unsigned int first_reg, last_reg;
d8b9732d 248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
a7f3b1c7 252};
752df20e 253
a7f3b1c7 254/* The table of all qtys, indexed by qty number. */
255static struct qty_table_elem *qty_table;
752df20e 256
752df20e 257/* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
260
c6ddfc69 261 Instead, we store below the current and last value assigned to CC0.
262 If it should happen to be a constant, it is stored in preference
263 to the actual assigned value. In case it is a constant, we store
264 the mode in which the constant should be interpreted. */
752df20e 265
c6ddfc69 266static rtx this_insn_cc0, prev_insn_cc0;
3754d046 267static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
752df20e 268
269/* Insn being scanned. */
270
47f1d198 271static rtx_insn *this_insn;
f529eb25 272static bool optimize_this_for_speed_p;
752df20e 273
2a384a22 274/* Index by register number, gives the number of the next (or
275 previous) register in the chain of registers sharing the same
752df20e 276 value.
277
278 Or -1 if this register is at the end of the chain.
279
96d808c2 280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
a7f3b1c7 281
282/* Per-register equivalence chain. */
283struct reg_eqv_elem
284{
285 int next, prev;
286};
752df20e 287
a7f3b1c7 288/* The table of all register equivalence chains. */
289static struct reg_eqv_elem *reg_eqv_table;
752df20e 290
155b05dc 291struct cse_reg_info
292{
3bd20490 293 /* The timestamp at which this register is initialized. */
294 unsigned int timestamp;
9c4f3716 295
296 /* The quantity number of the register's current contents. */
297 int reg_qty;
298
299 /* The number of times the register has been altered in the current
300 basic block. */
301 int reg_tick;
302
d1264606 303 /* The REG_TICK value at which rtx's containing this register are
304 valid in the hash table. If this does not equal the current
305 reg_tick value, such expressions existing in the hash table are
306 invalid. */
307 int reg_in_table;
126fb012 308
309 /* The SUBREG that was set when REG_TICK was last incremented. Set
310 to -1 if the last store was to the whole register, not a subreg. */
70e488ba 311 unsigned int subreg_ticked;
d1264606 312};
752df20e 313
3bd20490 314/* A table of cse_reg_info indexed by register numbers. */
f9413025 315static struct cse_reg_info *cse_reg_info_table;
ac613367 316
3bd20490 317/* The size of the above table. */
318static unsigned int cse_reg_info_table_size;
9c4f3716 319
3bd20490 320/* The index of the first entry that has not been initialized. */
321static unsigned int cse_reg_info_table_first_uninitialized;
752df20e 322
3bd20490 323/* The timestamp at the beginning of the current run of
be22716f 324 cse_extended_basic_block. We increment this variable at the beginning of
325 the current run of cse_extended_basic_block. The timestamp field of a
3bd20490 326 cse_reg_info entry matches the value of this variable if and only
327 if the entry has been initialized during the current run of
be22716f 328 cse_extended_basic_block. */
3bd20490 329static unsigned int cse_reg_info_timestamp;
752df20e 330
cb10db9d 331/* A HARD_REG_SET containing all the hard registers for which there is
752df20e 332 currently a REG expression in the hash table. Note the difference
333 from the above variables, which indicate if the REG is mentioned in some
334 expression in the table. */
335
336static HARD_REG_SET hard_regs_in_table;
337
283a6b26 338/* True if CSE has altered the CFG. */
339static bool cse_cfg_altered;
752df20e 340
283a6b26 341/* True if CSE has altered conditional jump insns in such a way
342 that jump optimization should be redone. */
343static bool cse_jumps_altered;
752df20e 344
283a6b26 345/* True if we put a LABEL_REF into the hash table for an INSN
346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347 to put in the note. */
348static bool recorded_label_ref;
26db0da8 349
752df20e 350/* canon_hash stores 1 in do_not_record
351 if it notices a reference to CC0, PC, or some other volatile
352 subexpression. */
353
354static int do_not_record;
355
356/* canon_hash stores 1 in hash_arg_in_memory
357 if it notices a reference to memory within the expression being hashed. */
358
359static int hash_arg_in_memory;
360
752df20e 361/* The hash table contains buckets which are chains of `struct table_elt's,
362 each recording one expression's information.
363 That expression is in the `exp' field.
364
7cfb9bcf 365 The canon_exp field contains a canonical (from the point of view of
366 alias analysis) version of the `exp' field.
367
752df20e 368 Those elements with the same hash code are chained in both directions
369 through the `next_same_hash' and `prev_same_hash' fields.
370
371 Each set of expressions with equivalent values
372 are on a two-way chain through the `next_same_value'
373 and `prev_same_value' fields, and all point with
374 the `first_same_value' field at the first element in
375 that chain. The chain is in order of increasing cost.
376 Each element's cost value is in its `cost' field.
377
378 The `in_memory' field is nonzero for elements that
379 involve any reference to memory. These elements are removed
380 whenever a write is done to an unidentified location in memory.
381 To be safe, we assume that a memory address is unidentified unless
382 the address is either a symbol constant or a constant plus
383 the frame pointer or argument pointer.
384
752df20e 385 The `related_value' field is used to connect related expressions
386 (that differ by adding an integer).
387 The related expressions are chained in a circular fashion.
388 `related_value' is zero for expressions for which this
389 chain is not useful.
390
391 The `cost' field stores the cost of this element's expression.
d27eb4b1 392 The `regcost' field stores the value returned by approx_reg_cost for
393 this element's expression.
752df20e 394
395 The `is_const' flag is set if the element is a constant (including
396 a fixed address).
397
398 The `flag' field is used as a temporary during some search routines.
399
400 The `mode' field is usually the same as GET_MODE (`exp'), but
401 if `exp' is a CONST_INT and has no machine mode then the `mode'
402 field is the mode it was being used as. Each constant is
403 recorded separately for each mode it is used with. */
404
752df20e 405struct table_elt
406{
407 rtx exp;
7cfb9bcf 408 rtx canon_exp;
752df20e 409 struct table_elt *next_same_hash;
410 struct table_elt *prev_same_hash;
411 struct table_elt *next_same_value;
412 struct table_elt *prev_same_value;
413 struct table_elt *first_same_value;
414 struct table_elt *related_value;
415 int cost;
d27eb4b1 416 int regcost;
d8b9732d 417 /* The size of this field should match the size
418 of the mode field of struct rtx_def (see rtl.h). */
419 ENUM_BITFIELD(machine_mode) mode : 8;
752df20e 420 char in_memory;
752df20e 421 char is_const;
422 char flag;
423};
424
752df20e 425/* We don't want a lot of buckets, because we rarely have very many
426 things stored in the hash table, and a lot of buckets slows
427 down a lot of loops that happen frequently. */
9c4f3716 428#define HASH_SHIFT 5
429#define HASH_SIZE (1 << HASH_SHIFT)
430#define HASH_MASK (HASH_SIZE - 1)
752df20e 431
432/* Compute hash code of X in mode M. Special-case case where X is a pseudo
433 register (hard registers may require `do_not_record' to be set). */
434
435#define HASH(X, M) \
8ad4c111 436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9c4f3716 437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
438 : canon_hash (X, M)) & HASH_MASK)
752df20e 439
78d140c9 440/* Like HASH, but without side-effects. */
441#define SAFE_HASH(X, M) \
442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
444 : safe_hash (X, M)) & HASH_MASK)
445
d27eb4b1 446/* Determine whether register number N is considered a fixed register for the
447 purpose of approximating register costs.
752df20e 448 It is desirable to replace other regs with fixed regs, to reduce need for
449 non-fixed hard regs.
349858d4 450 A reg wins if it is either the frame pointer or designated as fixed. */
752df20e 451#define FIXED_REGNO_P(N) \
b69007e1 452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
4313a67c 453 || fixed_regs[N] || global_regs[N])
752df20e 454
455/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
2e16c7bd 456 hard registers and pointers into the frame are the cheapest with a cost
457 of 0. Next come pseudos with a cost of one and other hard registers with
458 a cost of 2. Aside from these special cases, call `rtx_cost'. */
459
5bbaf5ca 460#define CHEAP_REGNO(N) \
9af5ce0c 461 (REGNO_PTR_FRAME_P (N) \
5bbaf5ca 462 || (HARD_REGISTER_NUM_P (N) \
c0191571 463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
752df20e 464
5ae4887d 465#define COST(X, MODE) \
466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467#define COST_IN(X, MODE, OUTER, OPNO) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
752df20e 469
d1264606 470/* Get the number of times this register has been updated in this
471 basic block. */
472
3bd20490 473#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
d1264606 474
475/* Get the point at which REG was recorded in the table. */
476
3bd20490 477#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
d1264606 478
126fb012 479/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480 SUBREG). */
481
3bd20490 482#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
126fb012 483
d1264606 484/* Get the quantity number for REG. */
485
3bd20490 486#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
d1264606 487
752df20e 488/* Determine if the quantity number for register X represents a valid index
a7f3b1c7 489 into the qty_table. */
752df20e 490
1a5bccce 491#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
752df20e 492
01c8e4c9 493/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
494
495#define CHEAPER(X, Y) \
496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
497
9c4f3716 498static struct table_elt *table[HASH_SIZE];
752df20e 499
500/* Chain of `struct table_elt's made so far for this function
501 but currently removed from the table. */
502
503static struct table_elt *free_element_chain;
504
752df20e 505/* Set to the cost of a constant pool reference if one was found for a
506 symbolic constant. If this was found, it means we should try to
507 convert constants into constant pool entries if they don't fit in
508 the insn. */
509
510static int constant_pool_entries_cost;
634d45d7 511static int constant_pool_entries_regcost;
752df20e 512
0b09525f 513/* Trace a patch through the CFG. */
514
515struct branch_path
516{
517 /* The basic block for this path entry. */
518 basic_block bb;
519};
520
be22716f 521/* This data describes a block that will be processed by
522 cse_extended_basic_block. */
9def8c3e 523
155b05dc 524struct cse_basic_block_data
525{
9def8c3e 526 /* Total number of SETs in block. */
527 int nsets;
9def8c3e 528 /* Size of current branch path, if any. */
529 int path_size;
be22716f 530 /* Current path, indicating which basic_blocks will be processed. */
0b09525f 531 struct branch_path *path;
9def8c3e 532};
533
3072d30e 534
535/* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537static bitmap cse_ebb_live_in, cse_ebb_live_out;
538
be22716f 539/* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541static sbitmap cse_visited_basic_blocks;
542
8ec3a57b 543static bool fixed_base_plus_p (rtx x);
5ae4887d 544static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
069eea26 545static int preferable (int, int, int, int);
8ec3a57b 546static void new_basic_block (void);
3754d046 547static void make_new_qty (unsigned int, machine_mode);
8ec3a57b 548static void make_regs_eqv (unsigned int, unsigned int);
549static void delete_reg_equiv (unsigned int);
550static int mention_regs (rtx);
551static int insert_regs (rtx, struct table_elt *, int);
552static void remove_from_table (struct table_elt *, unsigned);
d2c970fe 553static void remove_pseudo_from_table (rtx, unsigned);
3754d046 554static struct table_elt *lookup (rtx, unsigned, machine_mode);
555static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
8ec3a57b 556static rtx lookup_as_function (rtx, enum rtx_code);
01c8e4c9 557static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
3754d046 558 machine_mode, int, int);
8ec3a57b 559static struct table_elt *insert (rtx, struct table_elt *, unsigned,
3754d046 560 machine_mode);
8ec3a57b 561static void merge_equiv_classes (struct table_elt *, struct table_elt *);
52620891 562static void invalidate_reg (rtx, bool);
3754d046 563static void invalidate (rtx, machine_mode);
8ec3a57b 564static void remove_invalid_refs (unsigned int);
9edf7ea8 565static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
3754d046 566 machine_mode);
8ec3a57b 567static void rehash_using_reg (rtx);
568static void invalidate_memory (void);
569static void invalidate_for_call (void);
570static rtx use_related_value (rtx, struct table_elt *);
78d140c9 571
3754d046 572static inline unsigned canon_hash (rtx, machine_mode);
573static inline unsigned safe_hash (rtx, machine_mode);
e1ab7874 574static inline unsigned hash_rtx_string (const char *);
78d140c9 575
47f1d198 576static rtx canon_reg (rtx, rtx_insn *);
8ec3a57b 577static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
3754d046 578 machine_mode *,
579 machine_mode *);
47f1d198 580static rtx fold_rtx (rtx, rtx_insn *);
8ec3a57b 581static rtx equiv_constant (rtx);
47f1d198 582static void record_jump_equiv (rtx_insn *, bool);
3754d046 583static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
8ec3a57b 584 int);
47f1d198 585static void cse_insn (rtx_insn *);
be22716f 586static void cse_prescan_path (struct cse_basic_block_data *);
47f1d198 587static void invalidate_from_clobbers (rtx_insn *);
588static void invalidate_from_sets_and_clobbers (rtx_insn *);
3072d30e 589static rtx cse_process_notes (rtx, rtx, bool *);
be22716f 590static void cse_extended_basic_block (struct cse_basic_block_data *);
8ec3a57b 591extern void dump_class (struct table_elt*);
3bd20490 592static void get_cse_reg_info_1 (unsigned int regno);
593static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
8ec3a57b 594
595static void flush_hash_table (void);
47f1d198 596static bool insn_live_p (rtx_insn *, int *);
597static bool set_live_p (rtx, rtx_insn *, int *);
47f1d198 598static void cse_change_cc_mode_insn (rtx_insn *, rtx);
599static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
3754d046 600static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
650d2134 601 bool);
752df20e 602\f
d263732c 603
604#undef RTL_HOOKS_GEN_LOWPART
605#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
606
607static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
608\f
ea1760a3 609/* Nonzero if X has the form (PLUS frame-pointer integer). */
805e22b2 610
611static bool
8ec3a57b 612fixed_base_plus_p (rtx x)
805e22b2 613{
614 switch (GET_CODE (x))
615 {
616 case REG:
617 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
618 return true;
619 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
620 return true;
805e22b2 621 return false;
622
623 case PLUS:
971ba038 624 if (!CONST_INT_P (XEXP (x, 1)))
805e22b2 625 return false;
626 return fixed_base_plus_p (XEXP (x, 0));
627
805e22b2 628 default:
629 return false;
630 }
631}
632
59241190 633/* Dump the expressions in the equivalence class indicated by CLASSP.
634 This function is used only for debugging. */
d2bb3f9d 635DEBUG_FUNCTION void
8ec3a57b 636dump_class (struct table_elt *classp)
59241190 637{
638 struct table_elt *elt;
639
640 fprintf (stderr, "Equivalence chain for ");
641 print_rtl (stderr, classp->exp);
642 fprintf (stderr, ": \n");
cb10db9d 643
59241190 644 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
645 {
646 print_rtl (stderr, elt->exp);
647 fprintf (stderr, "\n");
648 }
649}
650
ff17e9ce 651/* Return an estimate of the cost of the registers used in an rtx.
652 This is mostly the number of different REG expressions in the rtx;
653 however for some exceptions like fixed registers we use a cost of
654 0. If any other hard register reference occurs, return MAX_COST. */
37b8a8d6 655
d27eb4b1 656static int
ff17e9ce 657approx_reg_cost (const_rtx x)
d27eb4b1 658{
ff17e9ce 659 int cost = 0;
660 subrtx_iterator::array_type array;
661 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
88bc3f54 662 {
ff17e9ce 663 const_rtx x = *iter;
664 if (REG_P (x))
88bc3f54 665 {
ff17e9ce 666 unsigned int regno = REGNO (x);
667 if (!CHEAP_REGNO (regno))
88bc3f54 668 {
ff17e9ce 669 if (regno < FIRST_PSEUDO_REGISTER)
670 {
671 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
672 return MAX_COST;
673 cost += 2;
674 }
675 else
676 cost += 1;
88bc3f54 677 }
88bc3f54 678 }
679 }
88bc3f54 680 return cost;
d27eb4b1 681}
682
683/* Return a negative value if an rtx A, whose costs are given by COST_A
684 and REGCOST_A, is more desirable than an rtx B.
685 Return a positive value if A is less desirable, or 0 if the two are
686 equally good. */
687static int
069eea26 688preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
d27eb4b1 689{
e61c498c 690 /* First, get rid of cases involving expressions that are entirely
589ff9e7 691 unwanted. */
692 if (cost_a != cost_b)
693 {
694 if (cost_a == MAX_COST)
695 return 1;
696 if (cost_b == MAX_COST)
697 return -1;
698 }
699
700 /* Avoid extending lifetimes of hardregs. */
701 if (regcost_a != regcost_b)
702 {
703 if (regcost_a == MAX_COST)
704 return 1;
705 if (regcost_b == MAX_COST)
706 return -1;
707 }
708
709 /* Normal operation costs take precedence. */
d27eb4b1 710 if (cost_a != cost_b)
711 return cost_a - cost_b;
589ff9e7 712 /* Only if these are identical consider effects on register pressure. */
d27eb4b1 713 if (regcost_a != regcost_b)
714 return regcost_a - regcost_b;
715 return 0;
716}
717
de164820 718/* Internal function, to compute cost when X is not a register; called
719 from COST macro to keep it simple. */
720
721static int
5ae4887d 722notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
de164820 723{
8b449599 724 scalar_int_mode int_mode, inner_mode;
de164820 725 return ((GET_CODE (x) == SUBREG
8ad4c111 726 && REG_P (SUBREG_REG (x))
8b449599 727 && is_int_mode (mode, &int_mode)
728 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
729 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
de164820 730 && subreg_lowpart_p (x)
8b449599 731 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
d27eb4b1 732 ? 0
5ae4887d 733 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
de164820 734}
735
cf495191 736\f
3bd20490 737/* Initialize CSE_REG_INFO_TABLE. */
9c4f3716 738
3bd20490 739static void
740init_cse_reg_info (unsigned int nregs)
741{
742 /* Do we need to grow the table? */
743 if (nregs > cse_reg_info_table_size)
d1264606 744 {
3bd20490 745 unsigned int new_size;
746
747 if (cse_reg_info_table_size < 2048)
d1264606 748 {
3bd20490 749 /* Compute a new size that is a power of 2 and no smaller
750 than the large of NREGS and 64. */
751 new_size = (cse_reg_info_table_size
752 ? cse_reg_info_table_size : 64);
753
754 while (new_size < nregs)
755 new_size *= 2;
d1264606 756 }
757 else
926f1f1f 758 {
3bd20490 759 /* If we need a big table, allocate just enough to hold
760 NREGS registers. */
761 new_size = nregs;
926f1f1f 762 }
9c4f3716 763
3bd20490 764 /* Reallocate the table with NEW_SIZE entries. */
dd045aee 765 free (cse_reg_info_table);
4c36ffe6 766 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
3bd20490 767 cse_reg_info_table_size = new_size;
bee2651c 768 cse_reg_info_table_first_uninitialized = 0;
3bd20490 769 }
770
771 /* Do we have all of the first NREGS entries initialized? */
772 if (cse_reg_info_table_first_uninitialized < nregs)
773 {
774 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
775 unsigned int i;
776
777 /* Put the old timestamp on newly allocated entries so that they
778 will all be considered out of date. We do not touch those
779 entries beyond the first NREGS entries to be nice to the
780 virtual memory. */
781 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
782 cse_reg_info_table[i].timestamp = old_timestamp;
d1264606 783
3bd20490 784 cse_reg_info_table_first_uninitialized = nregs;
d1264606 785 }
3bd20490 786}
787
b5ee2efd 788/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
3bd20490 789
790static void
791get_cse_reg_info_1 (unsigned int regno)
792{
793 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
794 entry will be considered to have been initialized. */
795 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
796
797 /* Initialize the rest of the entry. */
798 cse_reg_info_table[regno].reg_tick = 1;
799 cse_reg_info_table[regno].reg_in_table = -1;
800 cse_reg_info_table[regno].subreg_ticked = -1;
801 cse_reg_info_table[regno].reg_qty = -regno - 1;
802}
803
804/* Find a cse_reg_info entry for REGNO. */
d1264606 805
3bd20490 806static inline struct cse_reg_info *
807get_cse_reg_info (unsigned int regno)
808{
809 struct cse_reg_info *p = &cse_reg_info_table[regno];
810
e02a4f0d 811 /* If this entry has not been initialized, go ahead and initialize
812 it. */
3bd20490 813 if (p->timestamp != cse_reg_info_timestamp)
814 get_cse_reg_info_1 (regno);
d1264606 815
9c4f3716 816 return p;
d1264606 817}
818
752df20e 819/* Clear the hash table and initialize each register with its own quantity,
820 for a new basic block. */
821
822static void
8ec3a57b 823new_basic_block (void)
752df20e 824{
19cb6b50 825 int i;
752df20e 826
1a5bccce 827 next_qty = 0;
752df20e 828
b5ee2efd 829 /* Invalidate cse_reg_info_table. */
3bd20490 830 cse_reg_info_timestamp++;
752df20e 831
3bd20490 832 /* Clear out hash table state for this pass. */
752df20e 833 CLEAR_HARD_REG_SET (hard_regs_in_table);
834
835 /* The per-quantity values used to be initialized here, but it is
836 much faster to initialize each as it is made in `make_new_qty'. */
837
9c4f3716 838 for (i = 0; i < HASH_SIZE; i++)
752df20e 839 {
9c4f3716 840 struct table_elt *first;
841
842 first = table[i];
843 if (first != NULL)
752df20e 844 {
9c4f3716 845 struct table_elt *last = first;
846
847 table[i] = NULL;
848
849 while (last->next_same_hash != NULL)
850 last = last->next_same_hash;
851
852 /* Now relink this hash entire chain into
853 the free element list. */
854
855 last->next_same_hash = free_element_chain;
856 free_element_chain = first;
752df20e 857 }
858 }
859
752df20e 860 prev_insn_cc0 = 0;
752df20e 861}
862
a7f3b1c7 863/* Say that register REG contains a quantity in mode MODE not in any
864 register before and initialize that quantity. */
752df20e 865
866static void
3754d046 867make_new_qty (unsigned int reg, machine_mode mode)
752df20e 868{
19cb6b50 869 int q;
870 struct qty_table_elem *ent;
871 struct reg_eqv_elem *eqv;
752df20e 872
cc636d56 873 gcc_assert (next_qty < max_qty);
752df20e 874
d1264606 875 q = REG_QTY (reg) = next_qty++;
a7f3b1c7 876 ent = &qty_table[q];
877 ent->first_reg = reg;
878 ent->last_reg = reg;
879 ent->mode = mode;
47f1d198 880 ent->const_rtx = ent->const_insn = NULL;
a7f3b1c7 881 ent->comparison_code = UNKNOWN;
882
883 eqv = &reg_eqv_table[reg];
884 eqv->next = eqv->prev = -1;
752df20e 885}
886
887/* Make reg NEW equivalent to reg OLD.
888 OLD is not changing; NEW is. */
889
890static void
d328ebdf 891make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
752df20e 892{
02e7a332 893 unsigned int lastr, firstr;
d328ebdf 894 int q = REG_QTY (old_reg);
02e7a332 895 struct qty_table_elem *ent;
a7f3b1c7 896
897 ent = &qty_table[q];
752df20e 898
899 /* Nothing should become eqv until it has a "non-invalid" qty number. */
d328ebdf 900 gcc_assert (REGNO_QTY_VALID_P (old_reg));
752df20e 901
d328ebdf 902 REG_QTY (new_reg) = q;
a7f3b1c7 903 firstr = ent->first_reg;
904 lastr = ent->last_reg;
752df20e 905
906 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
907 hard regs. Among pseudos, if NEW will live longer than any other reg
908 of the same qty, and that is beyond the current basic block,
909 make it the new canonical replacement for this qty. */
910 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
911 /* Certain fixed registers might be of the class NO_REGS. This means
912 that not only can they not be allocated by the compiler, but
5202ecf2 913 they cannot be used in substitutions or canonicalizations
752df20e 914 either. */
d328ebdf 915 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
916 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
917 || (new_reg >= FIRST_PSEUDO_REGISTER
752df20e 918 && (firstr < FIRST_PSEUDO_REGISTER
d328ebdf 919 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
3072d30e 920 && !bitmap_bit_p (cse_ebb_live_out, firstr))
d328ebdf 921 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
3072d30e 922 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
752df20e 923 {
d328ebdf 924 reg_eqv_table[firstr].prev = new_reg;
925 reg_eqv_table[new_reg].next = firstr;
926 reg_eqv_table[new_reg].prev = -1;
927 ent->first_reg = new_reg;
752df20e 928 }
929 else
930 {
931 /* If NEW is a hard reg (known to be non-fixed), insert at end.
932 Otherwise, insert before any non-fixed hard regs that are at the
933 end. Registers of class NO_REGS cannot be used as an
934 equivalent for anything. */
a7f3b1c7 935 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
752df20e 936 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
d328ebdf 937 && new_reg >= FIRST_PSEUDO_REGISTER)
a7f3b1c7 938 lastr = reg_eqv_table[lastr].prev;
d328ebdf 939 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
a7f3b1c7 940 if (reg_eqv_table[lastr].next >= 0)
d328ebdf 941 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
752df20e 942 else
d328ebdf 943 qty_table[q].last_reg = new_reg;
944 reg_eqv_table[lastr].next = new_reg;
945 reg_eqv_table[new_reg].prev = lastr;
752df20e 946 }
947}
948
949/* Remove REG from its equivalence class. */
950
951static void
8ec3a57b 952delete_reg_equiv (unsigned int reg)
752df20e 953{
19cb6b50 954 struct qty_table_elem *ent;
955 int q = REG_QTY (reg);
956 int p, n;
752df20e 957
7046c09e 958 /* If invalid, do nothing. */
1a5bccce 959 if (! REGNO_QTY_VALID_P (reg))
752df20e 960 return;
961
a7f3b1c7 962 ent = &qty_table[q];
963
964 p = reg_eqv_table[reg].prev;
965 n = reg_eqv_table[reg].next;
7046c09e 966
752df20e 967 if (n != -1)
a7f3b1c7 968 reg_eqv_table[n].prev = p;
752df20e 969 else
a7f3b1c7 970 ent->last_reg = p;
752df20e 971 if (p != -1)
a7f3b1c7 972 reg_eqv_table[p].next = n;
752df20e 973 else
a7f3b1c7 974 ent->first_reg = n;
752df20e 975
1a5bccce 976 REG_QTY (reg) = -reg - 1;
752df20e 977}
978
979/* Remove any invalid expressions from the hash table
980 that refer to any of the registers contained in expression X.
981
982 Make sure that newly inserted references to those registers
983 as subexpressions will be considered valid.
984
985 mention_regs is not called when a register itself
986 is being stored in the table.
987
988 Return 1 if we have done something that may have changed the hash code
989 of X. */
990
991static int
8ec3a57b 992mention_regs (rtx x)
752df20e 993{
19cb6b50 994 enum rtx_code code;
995 int i, j;
996 const char *fmt;
997 int changed = 0;
752df20e 998
999 if (x == 0)
c39100fe 1000 return 0;
752df20e 1001
1002 code = GET_CODE (x);
1003 if (code == REG)
1004 {
02e7a332 1005 unsigned int regno = REGNO (x);
a2c6f0b7 1006 unsigned int endregno = END_REGNO (x);
02e7a332 1007 unsigned int i;
752df20e 1008
1009 for (i = regno; i < endregno; i++)
1010 {
d1264606 1011 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
752df20e 1012 remove_invalid_refs (i);
1013
d1264606 1014 REG_IN_TABLE (i) = REG_TICK (i);
126fb012 1015 SUBREG_TICKED (i) = -1;
752df20e 1016 }
1017
1018 return 0;
1019 }
1020
e6860d27 1021 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1022 pseudo if they don't use overlapping words. We handle only pseudos
1023 here for simplicity. */
8ad4c111 1024 if (code == SUBREG && REG_P (SUBREG_REG (x))
e6860d27 1025 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1026 {
02e7a332 1027 unsigned int i = REGNO (SUBREG_REG (x));
e6860d27 1028
d1264606 1029 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
e6860d27 1030 {
126fb012 1031 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1032 the last store to this register really stored into this
1033 subreg, then remove the memory of this subreg.
1034 Otherwise, remove any memory of the entire register and
1035 all its subregs from the table. */
1036 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
70e488ba 1037 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
e6860d27 1038 remove_invalid_refs (i);
1039 else
701e46d0 1040 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
e6860d27 1041 }
1042
d1264606 1043 REG_IN_TABLE (i) = REG_TICK (i);
70e488ba 1044 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
e6860d27 1045 return 0;
1046 }
1047
752df20e 1048 /* If X is a comparison or a COMPARE and either operand is a register
1049 that does not have a quantity, give it one. This is so that a later
1050 call to record_jump_equiv won't cause X to be assigned a different
1051 hash code and not found in the table after that call.
1052
1053 It is not necessary to do this here, since rehash_using_reg can
1054 fix up the table later, but doing this here eliminates the need to
1055 call that expensive function in the most common case where the only
1056 use of the register is in the comparison. */
1057
6720e96c 1058 if (code == COMPARE || COMPARISON_P (x))
752df20e 1059 {
8ad4c111 1060 if (REG_P (XEXP (x, 0))
752df20e 1061 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
4679ade3 1062 if (insert_regs (XEXP (x, 0), NULL, 0))
752df20e 1063 {
1064 rehash_using_reg (XEXP (x, 0));
1065 changed = 1;
1066 }
1067
8ad4c111 1068 if (REG_P (XEXP (x, 1))
752df20e 1069 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
4679ade3 1070 if (insert_regs (XEXP (x, 1), NULL, 0))
752df20e 1071 {
1072 rehash_using_reg (XEXP (x, 1));
1073 changed = 1;
1074 }
1075 }
1076
1077 fmt = GET_RTX_FORMAT (code);
1078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1079 if (fmt[i] == 'e')
1080 changed |= mention_regs (XEXP (x, i));
1081 else if (fmt[i] == 'E')
1082 for (j = 0; j < XVECLEN (x, i); j++)
1083 changed |= mention_regs (XVECEXP (x, i, j));
1084
1085 return changed;
1086}
1087
1088/* Update the register quantities for inserting X into the hash table
1089 with a value equivalent to CLASSP.
1090 (If the class does not contain a REG, it is irrelevant.)
1091 If MODIFIED is nonzero, X is a destination; it is being modified.
1092 Note that delete_reg_equiv should be called on a register
1093 before insert_regs is done on that register with MODIFIED != 0.
1094
1095 Nonzero value means that elements of reg_qty have changed
1096 so X's hash code may be different. */
1097
1098static int
8ec3a57b 1099insert_regs (rtx x, struct table_elt *classp, int modified)
752df20e 1100{
8ad4c111 1101 if (REG_P (x))
752df20e 1102 {
02e7a332 1103 unsigned int regno = REGNO (x);
1104 int qty_valid;
752df20e 1105
0aee3bb1 1106 /* If REGNO is in the equivalence table already but is of the
1107 wrong mode for that equivalence, don't do anything here. */
1108
a7f3b1c7 1109 qty_valid = REGNO_QTY_VALID_P (regno);
1110 if (qty_valid)
1111 {
1112 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
0aee3bb1 1113
a7f3b1c7 1114 if (ent->mode != GET_MODE (x))
1115 return 0;
1116 }
1117
1118 if (modified || ! qty_valid)
752df20e 1119 {
1120 if (classp)
1121 for (classp = classp->first_same_value;
1122 classp != 0;
1123 classp = classp->next_same_value)
8ad4c111 1124 if (REG_P (classp->exp)
752df20e 1125 && GET_MODE (classp->exp) == GET_MODE (x))
1126 {
412c63b0 1127 unsigned c_regno = REGNO (classp->exp);
1128
1129 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1130
1131 /* Suppose that 5 is hard reg and 100 and 101 are
1132 pseudos. Consider
1133
1134 (set (reg:si 100) (reg:si 5))
1135 (set (reg:si 5) (reg:si 100))
1136 (set (reg:di 101) (reg:di 5))
1137
1138 We would now set REG_QTY (101) = REG_QTY (5), but the
1139 entry for 5 is in SImode. When we use this later in
1140 copy propagation, we get the register in wrong mode. */
1141 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1142 continue;
1143
1144 make_regs_eqv (regno, c_regno);
752df20e 1145 return 1;
1146 }
1147
6c1128fe 1148 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1149 than REG_IN_TABLE to find out if there was only a single preceding
1150 invalidation - for the SUBREG - or another one, which would be
1151 for the full register. However, if we find here that REG_TICK
1152 indicates that the register is invalid, it means that it has
1153 been invalidated in a separate operation. The SUBREG might be used
1154 now (then this is a recursive call), or we might use the full REG
1155 now and a SUBREG of it later. So bump up REG_TICK so that
1156 mention_regs will do the right thing. */
1157 if (! modified
1158 && REG_IN_TABLE (regno) >= 0
1159 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1160 REG_TICK (regno)++;
a7f3b1c7 1161 make_new_qty (regno, GET_MODE (x));
752df20e 1162 return 1;
1163 }
89bbb48f 1164
1165 return 0;
752df20e 1166 }
50cf1c21 1167
1168 /* If X is a SUBREG, we will likely be inserting the inner register in the
1169 table. If that register doesn't have an assigned quantity number at
1170 this point but does later, the insertion that we will be doing now will
1171 not be accessible because its hash code will have changed. So assign
1172 a quantity number now. */
1173
8ad4c111 1174 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
50cf1c21 1175 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1176 {
4679ade3 1177 insert_regs (SUBREG_REG (x), NULL, 0);
e6860d27 1178 mention_regs (x);
50cf1c21 1179 return 1;
1180 }
752df20e 1181 else
1182 return mention_regs (x);
1183}
1184\f
01c8e4c9 1185
1186/* Compute upper and lower anchors for CST. Also compute the offset of CST
1187 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1188 CST is equal to an anchor. */
1189
1190static bool
1191compute_const_anchors (rtx cst,
1192 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1193 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1194{
1195 HOST_WIDE_INT n = INTVAL (cst);
1196
1197 *lower_base = n & ~(targetm.const_anchor - 1);
1198 if (*lower_base == n)
1199 return false;
1200
1201 *upper_base =
1202 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1203 *upper_offs = n - *upper_base;
1204 *lower_offs = n - *lower_base;
1205 return true;
1206}
1207
1208/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1209
1210static void
1211insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
3754d046 1212 machine_mode mode)
01c8e4c9 1213{
1214 struct table_elt *elt;
1215 unsigned hash;
1216 rtx anchor_exp;
1217 rtx exp;
1218
1219 anchor_exp = GEN_INT (anchor);
1220 hash = HASH (anchor_exp, mode);
1221 elt = lookup (anchor_exp, hash, mode);
1222 if (!elt)
1223 elt = insert (anchor_exp, NULL, hash, mode);
1224
29c05e22 1225 exp = plus_constant (mode, reg, offs);
01c8e4c9 1226 /* REG has just been inserted and the hash codes recomputed. */
1227 mention_regs (exp);
1228 hash = HASH (exp, mode);
1229
1230 /* Use the cost of the register rather than the whole expression. When
1231 looking up constant anchors we will further offset the corresponding
1232 expression therefore it does not make sense to prefer REGs over
1233 reg-immediate additions. Prefer instead the oldest expression. Also
1234 don't prefer pseudos over hard regs so that we derive constants in
1235 argument registers from other argument registers rather than from the
1236 original pseudo that was used to synthesize the constant. */
5ae4887d 1237 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
01c8e4c9 1238}
1239
1240/* The constant CST is equivalent to the register REG. Create
1241 equivalences between the two anchors of CST and the corresponding
1242 register-offset expressions using REG. */
1243
1244static void
3754d046 1245insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
01c8e4c9 1246{
1247 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1248
1249 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1250 &upper_base, &upper_offs))
1251 return;
1252
1253 /* Ignore anchors of value 0. Constants accessible from zero are
1254 simple. */
1255 if (lower_base != 0)
1256 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1257
1258 if (upper_base != 0)
1259 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1260}
1261
1262/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1263 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1264 valid expression. Return the cheapest and oldest of such expressions. In
1265 *OLD, return how old the resulting expression is compared to the other
1266 equivalent expressions. */
1267
1268static rtx
1269find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1270 unsigned *old)
1271{
1272 struct table_elt *elt;
1273 unsigned idx;
1274 struct table_elt *match_elt;
1275 rtx match;
1276
1277 /* Find the cheapest and *oldest* expression to maximize the chance of
1278 reusing the same pseudo. */
1279
1280 match_elt = NULL;
1281 match = NULL_RTX;
1282 for (elt = anchor_elt->first_same_value, idx = 0;
1283 elt;
1284 elt = elt->next_same_value, idx++)
1285 {
1286 if (match_elt && CHEAPER (match_elt, elt))
1287 return match;
1288
1289 if (REG_P (elt->exp)
1290 || (GET_CODE (elt->exp) == PLUS
1291 && REG_P (XEXP (elt->exp, 0))
1292 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1293 {
1294 rtx x;
1295
1296 /* Ignore expressions that are no longer valid. */
1297 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1298 continue;
1299
29c05e22 1300 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
01c8e4c9 1301 if (REG_P (x)
1302 || (GET_CODE (x) == PLUS
1303 && IN_RANGE (INTVAL (XEXP (x, 1)),
1304 -targetm.const_anchor,
1305 targetm.const_anchor - 1)))
1306 {
1307 match = x;
1308 match_elt = elt;
1309 *old = idx;
1310 }
1311 }
1312 }
1313
1314 return match;
1315}
1316
1317/* Try to express the constant SRC_CONST using a register+offset expression
1318 derived from a constant anchor. Return it if successful or NULL_RTX,
1319 otherwise. */
1320
1321static rtx
3754d046 1322try_const_anchors (rtx src_const, machine_mode mode)
01c8e4c9 1323{
1324 struct table_elt *lower_elt, *upper_elt;
1325 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1326 rtx lower_anchor_rtx, upper_anchor_rtx;
1327 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1328 unsigned lower_old, upper_old;
1329
211e63b0 1330 /* CONST_INT is used for CC modes, but we should leave those alone. */
1331 if (GET_MODE_CLASS (mode) == MODE_CC)
1332 return NULL_RTX;
1333
1334 gcc_assert (SCALAR_INT_MODE_P (mode));
01c8e4c9 1335 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1336 &upper_base, &upper_offs))
1337 return NULL_RTX;
1338
1339 lower_anchor_rtx = GEN_INT (lower_base);
1340 upper_anchor_rtx = GEN_INT (upper_base);
1341 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1342 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1343
1344 if (lower_elt)
1345 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1346 if (upper_elt)
1347 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1348
1349 if (!lower_exp)
1350 return upper_exp;
1351 if (!upper_exp)
1352 return lower_exp;
1353
1354 /* Return the older expression. */
1355 return (upper_old > lower_old ? upper_exp : lower_exp);
1356}
1357\f
752df20e 1358/* Look in or update the hash table. */
1359
752df20e 1360/* Remove table element ELT from use in the table.
1361 HASH is its hash code, made using the HASH macro.
1362 It's an argument because often that is known in advance
1363 and we save much time not recomputing it. */
1364
1365static void
8ec3a57b 1366remove_from_table (struct table_elt *elt, unsigned int hash)
752df20e 1367{
1368 if (elt == 0)
1369 return;
1370
1371 /* Mark this element as removed. See cse_insn. */
1372 elt->first_same_value = 0;
1373
1374 /* Remove the table element from its equivalence class. */
cb10db9d 1375
752df20e 1376 {
19cb6b50 1377 struct table_elt *prev = elt->prev_same_value;
1378 struct table_elt *next = elt->next_same_value;
752df20e 1379
cb10db9d 1380 if (next)
1381 next->prev_same_value = prev;
752df20e 1382
1383 if (prev)
1384 prev->next_same_value = next;
1385 else
1386 {
19cb6b50 1387 struct table_elt *newfirst = next;
752df20e 1388 while (next)
1389 {
1390 next->first_same_value = newfirst;
1391 next = next->next_same_value;
1392 }
1393 }
1394 }
1395
1396 /* Remove the table element from its hash bucket. */
1397
1398 {
19cb6b50 1399 struct table_elt *prev = elt->prev_same_hash;
1400 struct table_elt *next = elt->next_same_hash;
752df20e 1401
cb10db9d 1402 if (next)
1403 next->prev_same_hash = prev;
752df20e 1404
1405 if (prev)
1406 prev->next_same_hash = next;
1407 else if (table[hash] == elt)
1408 table[hash] = next;
1409 else
1410 {
1411 /* This entry is not in the proper hash bucket. This can happen
1412 when two classes were merged by `merge_equiv_classes'. Search
1413 for the hash bucket that it heads. This happens only very
1414 rarely, so the cost is acceptable. */
9c4f3716 1415 for (hash = 0; hash < HASH_SIZE; hash++)
752df20e 1416 if (table[hash] == elt)
1417 table[hash] = next;
1418 }
1419 }
1420
1421 /* Remove the table element from its related-value circular chain. */
1422
1423 if (elt->related_value != 0 && elt->related_value != elt)
1424 {
19cb6b50 1425 struct table_elt *p = elt->related_value;
02e7a332 1426
752df20e 1427 while (p->related_value != elt)
1428 p = p->related_value;
1429 p->related_value = elt->related_value;
1430 if (p->related_value == p)
1431 p->related_value = 0;
1432 }
1433
9c4f3716 1434 /* Now add it to the free element chain. */
1435 elt->next_same_hash = free_element_chain;
1436 free_element_chain = elt;
752df20e 1437}
1438
d2c970fe 1439/* Same as above, but X is a pseudo-register. */
1440
1441static void
1442remove_pseudo_from_table (rtx x, unsigned int hash)
1443{
1444 struct table_elt *elt;
1445
1446 /* Because a pseudo-register can be referenced in more than one
1447 mode, we might have to remove more than one table entry. */
1448 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1449 remove_from_table (elt, hash);
1450}
1451
752df20e 1452/* Look up X in the hash table and return its table element,
1453 or 0 if X is not in the table.
1454
1455 MODE is the machine-mode of X, or if X is an integer constant
1456 with VOIDmode then MODE is the mode with which X will be used.
1457
1458 Here we are satisfied to find an expression whose tree structure
1459 looks like X. */
1460
1461static struct table_elt *
3754d046 1462lookup (rtx x, unsigned int hash, machine_mode mode)
752df20e 1463{
19cb6b50 1464 struct table_elt *p;
752df20e 1465
1466 for (p = table[hash]; p; p = p->next_same_hash)
8ad4c111 1467 if (mode == p->mode && ((x == p->exp && REG_P (x))
78d140c9 1468 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
752df20e 1469 return p;
1470
1471 return 0;
1472}
1473
1474/* Like `lookup' but don't care whether the table element uses invalid regs.
1475 Also ignore discrepancies in the machine mode of a register. */
1476
1477static struct table_elt *
3754d046 1478lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
752df20e 1479{
19cb6b50 1480 struct table_elt *p;
752df20e 1481
8ad4c111 1482 if (REG_P (x))
752df20e 1483 {
02e7a332 1484 unsigned int regno = REGNO (x);
1485
752df20e 1486 /* Don't check the machine mode when comparing registers;
1487 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1488 for (p = table[hash]; p; p = p->next_same_hash)
8ad4c111 1489 if (REG_P (p->exp)
752df20e 1490 && REGNO (p->exp) == regno)
1491 return p;
1492 }
1493 else
1494 {
1495 for (p = table[hash]; p; p = p->next_same_hash)
78d140c9 1496 if (mode == p->mode
1497 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
752df20e 1498 return p;
1499 }
1500
1501 return 0;
1502}
1503
1504/* Look for an expression equivalent to X and with code CODE.
1505 If one is found, return that expression. */
1506
1507static rtx
8ec3a57b 1508lookup_as_function (rtx x, enum rtx_code code)
752df20e 1509{
19cb6b50 1510 struct table_elt *p
78d140c9 1511 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
02e7a332 1512
752df20e 1513 if (p == 0)
1514 return 0;
1515
1516 for (p = p->first_same_value; p; p = p->next_same_value)
02e7a332 1517 if (GET_CODE (p->exp) == code
1518 /* Make sure this is a valid entry in the table. */
78d140c9 1519 && exp_equiv_p (p->exp, p->exp, 1, false))
02e7a332 1520 return p->exp;
cb10db9d 1521
752df20e 1522 return 0;
1523}
1524
01c8e4c9 1525/* Insert X in the hash table, assuming HASH is its hash code and
1526 CLASSP is an element of the class it should go in (or 0 if a new
1527 class should be made). COST is the code of X and reg_cost is the
1528 cost of registers in X. It is inserted at the proper position to
1529 keep the class in the order cheapest first.
752df20e 1530
1531 MODE is the machine-mode of X, or if X is an integer constant
1532 with VOIDmode then MODE is the mode with which X will be used.
1533
1534 For elements of equal cheapness, the most recent one
1535 goes in front, except that the first element in the list
1536 remains first unless a cheaper element is added. The order of
1537 pseudo-registers does not matter, as canon_reg will be called to
5202ecf2 1538 find the cheapest when a register is retrieved from the table.
752df20e 1539
1540 The in_memory field in the hash table element is set to 0.
1541 The caller must set it nonzero if appropriate.
1542
1543 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1544 and if insert_regs returns a nonzero value
1545 you must then recompute its hash code before calling here.
1546
1547 If necessary, update table showing constant values of quantities. */
1548
752df20e 1549static struct table_elt *
01c8e4c9 1550insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
3754d046 1551 machine_mode mode, int cost, int reg_cost)
752df20e 1552{
19cb6b50 1553 struct table_elt *elt;
752df20e 1554
1555 /* If X is a register and we haven't made a quantity for it,
1556 something is wrong. */
cc636d56 1557 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
752df20e 1558
1559 /* If X is a hard register, show it is being put in the table. */
8ad4c111 1560 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
a2c6f0b7 1561 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
752df20e 1562
752df20e 1563 /* Put an element for X into the right hash bucket. */
1564
9c4f3716 1565 elt = free_element_chain;
1566 if (elt)
02e7a332 1567 free_element_chain = elt->next_same_hash;
9c4f3716 1568 else
4c36ffe6 1569 elt = XNEW (struct table_elt);
9c4f3716 1570
752df20e 1571 elt->exp = x;
7cfb9bcf 1572 elt->canon_exp = NULL_RTX;
01c8e4c9 1573 elt->cost = cost;
1574 elt->regcost = reg_cost;
752df20e 1575 elt->next_same_value = 0;
1576 elt->prev_same_value = 0;
1577 elt->next_same_hash = table[hash];
1578 elt->prev_same_hash = 0;
1579 elt->related_value = 0;
1580 elt->in_memory = 0;
1581 elt->mode = mode;
b04fab2a 1582 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
752df20e 1583
1584 if (table[hash])
1585 table[hash]->prev_same_hash = elt;
1586 table[hash] = elt;
1587
1588 /* Put it into the proper value-class. */
1589 if (classp)
1590 {
1591 classp = classp->first_same_value;
1592 if (CHEAPER (elt, classp))
2358393e 1593 /* Insert at the head of the class. */
752df20e 1594 {
19cb6b50 1595 struct table_elt *p;
752df20e 1596 elt->next_same_value = classp;
1597 classp->prev_same_value = elt;
1598 elt->first_same_value = elt;
1599
1600 for (p = classp; p; p = p->next_same_value)
1601 p->first_same_value = elt;
1602 }
1603 else
1604 {
1605 /* Insert not at head of the class. */
1606 /* Put it after the last element cheaper than X. */
19cb6b50 1607 struct table_elt *p, *next;
02e7a332 1608
3c802a1e 1609 for (p = classp;
1610 (next = p->next_same_value) && CHEAPER (next, elt);
1611 p = next)
1612 ;
02e7a332 1613
752df20e 1614 /* Put it after P and before NEXT. */
1615 elt->next_same_value = next;
1616 if (next)
1617 next->prev_same_value = elt;
02e7a332 1618
752df20e 1619 elt->prev_same_value = p;
1620 p->next_same_value = elt;
1621 elt->first_same_value = classp;
1622 }
1623 }
1624 else
1625 elt->first_same_value = elt;
1626
1627 /* If this is a constant being set equivalent to a register or a register
1628 being set equivalent to a constant, note the constant equivalence.
1629
1630 If this is a constant, it cannot be equivalent to a different constant,
1631 and a constant is the only thing that can be cheaper than a register. So
1632 we know the register is the head of the class (before the constant was
1633 inserted).
1634
1635 If this is a register that is not already known equivalent to a
1636 constant, we must check the entire class.
1637
1638 If this is a register that is already known equivalent to an insn,
a7f3b1c7 1639 update the qtys `const_insn' to show that `this_insn' is the latest
752df20e 1640 insn making that quantity equivalent to the constant. */
1641
8ad4c111 1642 if (elt->is_const && classp && REG_P (classp->exp)
1643 && !REG_P (x))
752df20e 1644 {
a7f3b1c7 1645 int exp_q = REG_QTY (REGNO (classp->exp));
1646 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1647
316f48ea 1648 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
a7f3b1c7 1649 exp_ent->const_insn = this_insn;
752df20e 1650 }
1651
8ad4c111 1652 else if (REG_P (x)
a7f3b1c7 1653 && classp
1654 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
67123c3e 1655 && ! elt->is_const)
752df20e 1656 {
19cb6b50 1657 struct table_elt *p;
752df20e 1658
1659 for (p = classp; p != 0; p = p->next_same_value)
1660 {
8ad4c111 1661 if (p->is_const && !REG_P (p->exp))
752df20e 1662 {
a7f3b1c7 1663 int x_q = REG_QTY (REGNO (x));
1664 struct qty_table_elem *x_ent = &qty_table[x_q];
1665
02e7a332 1666 x_ent->const_rtx
316f48ea 1667 = gen_lowpart (GET_MODE (x), p->exp);
a7f3b1c7 1668 x_ent->const_insn = this_insn;
752df20e 1669 break;
1670 }
1671 }
1672 }
1673
8ad4c111 1674 else if (REG_P (x)
a7f3b1c7 1675 && qty_table[REG_QTY (REGNO (x))].const_rtx
1676 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1677 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
752df20e 1678
1679 /* If this is a constant with symbolic value,
1680 and it has a term with an explicit integer value,
1681 link it up with related expressions. */
1682 if (GET_CODE (x) == CONST)
1683 {
1684 rtx subexp = get_related_value (x);
952bc06d 1685 unsigned subhash;
752df20e 1686 struct table_elt *subelt, *subelt_prev;
1687
1688 if (subexp != 0)
1689 {
1690 /* Get the integer-free subexpression in the hash table. */
78d140c9 1691 subhash = SAFE_HASH (subexp, mode);
752df20e 1692 subelt = lookup (subexp, subhash, mode);
1693 if (subelt == 0)
4679ade3 1694 subelt = insert (subexp, NULL, subhash, mode);
752df20e 1695 /* Initialize SUBELT's circular chain if it has none. */
1696 if (subelt->related_value == 0)
1697 subelt->related_value = subelt;
1698 /* Find the element in the circular chain that precedes SUBELT. */
1699 subelt_prev = subelt;
1700 while (subelt_prev->related_value != subelt)
1701 subelt_prev = subelt_prev->related_value;
1702 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1703 This way the element that follows SUBELT is the oldest one. */
1704 elt->related_value = subelt_prev->related_value;
1705 subelt_prev->related_value = elt;
1706 }
1707 }
1708
1709 return elt;
1710}
01c8e4c9 1711
1712/* Wrap insert_with_costs by passing the default costs. */
1713
1714static struct table_elt *
1715insert (rtx x, struct table_elt *classp, unsigned int hash,
3754d046 1716 machine_mode mode)
01c8e4c9 1717{
5ae4887d 1718 return insert_with_costs (x, classp, hash, mode,
1719 COST (x, mode), approx_reg_cost (x));
01c8e4c9 1720}
1721
752df20e 1722\f
1723/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1724 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1725 the two classes equivalent.
1726
1727 CLASS1 will be the surviving class; CLASS2 should not be used after this
1728 call.
1729
1730 Any invalid entries in CLASS2 will not be copied. */
1731
1732static void
8ec3a57b 1733merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
752df20e 1734{
d328ebdf 1735 struct table_elt *elt, *next, *new_elt;
752df20e 1736
1737 /* Ensure we start with the head of the classes. */
1738 class1 = class1->first_same_value;
1739 class2 = class2->first_same_value;
1740
1741 /* If they were already equal, forget it. */
1742 if (class1 == class2)
1743 return;
1744
1745 for (elt = class2; elt; elt = next)
1746 {
02e7a332 1747 unsigned int hash;
752df20e 1748 rtx exp = elt->exp;
3754d046 1749 machine_mode mode = elt->mode;
752df20e 1750
1751 next = elt->next_same_value;
1752
1753 /* Remove old entry, make a new one in CLASS1's class.
1754 Don't do this for invalid entries as we cannot find their
a92771b8 1755 hash code (it also isn't necessary). */
78d140c9 1756 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
752df20e 1757 {
b57e33a4 1758 bool need_rehash = false;
1759
752df20e 1760 hash_arg_in_memory = 0;
752df20e 1761 hash = HASH (exp, mode);
cb10db9d 1762
8ad4c111 1763 if (REG_P (exp))
b57e33a4 1764 {
1a5bccce 1765 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
b57e33a4 1766 delete_reg_equiv (REGNO (exp));
1767 }
cb10db9d 1768
d2c970fe 1769 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1770 remove_pseudo_from_table (exp, hash);
1771 else
1772 remove_from_table (elt, hash);
752df20e 1773
b57e33a4 1774 if (insert_regs (exp, class1, 0) || need_rehash)
1b033cc3 1775 {
1776 rehash_using_reg (exp);
1777 hash = HASH (exp, mode);
1778 }
d328ebdf 1779 new_elt = insert (exp, class1, hash, mode);
1780 new_elt->in_memory = hash_arg_in_memory;
20d3ff08 1781 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1782 new_elt->cost = MAX_COST;
752df20e 1783 }
1784 }
1785}
1786\f
53d90e4e 1787/* Flush the entire hash table. */
1788
1789static void
8ec3a57b 1790flush_hash_table (void)
53d90e4e 1791{
1792 int i;
1793 struct table_elt *p;
1794
9c4f3716 1795 for (i = 0; i < HASH_SIZE; i++)
53d90e4e 1796 for (p = table[i]; p; p = table[i])
1797 {
1798 /* Note that invalidate can remove elements
1799 after P in the current hash chain. */
8ad4c111 1800 if (REG_P (p->exp))
4c958a22 1801 invalidate (p->exp, VOIDmode);
53d90e4e 1802 else
1803 remove_from_table (p, i);
1804 }
1805}
155b05dc 1806\f
e4a58c60 1807/* Check whether an anti dependence exists between X and EXP. MODE and
1808 ADDR are as for canon_anti_dependence. */
37b8a8d6 1809
e4a58c60 1810static bool
3754d046 1811check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
02b0feeb 1812{
e4a58c60 1813 subrtx_iterator::array_type array;
1814 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1815 {
1816 const_rtx x = *iter;
1817 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1818 return true;
1819 }
1820 return false;
02b0feeb 1821}
52620891 1822
1823/* Remove from the hash table, or mark as invalid, all expressions whose
1824 values could be altered by storing in register X.
1825
1826 CLOBBER_HIGH is set if X was part of a CLOBBER_HIGH expression. */
1827
1828static void
1829invalidate_reg (rtx x, bool clobber_high)
1830{
1831 gcc_assert (GET_CODE (x) == REG);
1832
1833 /* If X is a register, dependencies on its contents are recorded
1834 through the qty number mechanism. Just change the qty number of
1835 the register, mark it as invalid for expressions that refer to it,
1836 and remove it itself. */
1837 unsigned int regno = REGNO (x);
1838 unsigned int hash = HASH (x, GET_MODE (x));
1839
1840 /* Remove REGNO from any quantity list it might be on and indicate
1841 that its value might have changed. If it is a pseudo, remove its
1842 entry from the hash table.
1843
1844 For a hard register, we do the first two actions above for any
1845 additional hard registers corresponding to X. Then, if any of these
1846 registers are in the table, we must remove any REG entries that
1847 overlap these registers. */
1848
1849 delete_reg_equiv (regno);
1850 REG_TICK (regno)++;
1851 SUBREG_TICKED (regno) = -1;
1852
1853 if (regno >= FIRST_PSEUDO_REGISTER)
1854 {
1855 gcc_assert (!clobber_high);
1856 remove_pseudo_from_table (x, hash);
1857 }
1858 else
1859 {
1860 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1861 unsigned int endregno = END_REGNO (x);
1862 unsigned int rn;
1863 struct table_elt *p, *next;
1864
1865 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1866
1867 for (rn = regno + 1; rn < endregno; rn++)
1868 {
1869 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1870 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1871 delete_reg_equiv (rn);
1872 REG_TICK (rn)++;
1873 SUBREG_TICKED (rn) = -1;
1874 }
1875
1876 if (in_table)
1877 for (hash = 0; hash < HASH_SIZE; hash++)
1878 for (p = table[hash]; p; p = next)
1879 {
1880 next = p->next_same_hash;
1881
1882 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1883 continue;
1884
1885 if (clobber_high)
1886 {
1887 if (reg_is_clobbered_by_clobber_high (p->exp, x))
1888 remove_from_table (p, hash);
1889 }
1890 else
1891 {
1892 unsigned int tregno = REGNO (p->exp);
1893 unsigned int tendregno = END_REGNO (p->exp);
1894 if (tendregno > regno && tregno < endregno)
1895 remove_from_table (p, hash);
1896 }
1897 }
1898 }
1899}
1900
155b05dc 1901/* Remove from the hash table, or mark as invalid, all expressions whose
1902 values could be altered by storing in X. X is a register, a subreg, or
1903 a memory reference with nonvarying address (because, when a memory
1904 reference with a varying address is stored in, all memory references are
1905 removed by invalidate_memory so specific invalidation is superfluous).
1906 FULL_MODE, if not VOIDmode, indicates that this much should be
1907 invalidated instead of just the amount indicated by the mode of X. This
1908 is only used for bitfield stores into memory.
1909
1910 A nonvarying address may be just a register or just a symbol reference,
1911 or it may be either of those plus a numeric offset. */
752df20e 1912
1913static void
3754d046 1914invalidate (rtx x, machine_mode full_mode)
752df20e 1915{
19cb6b50 1916 int i;
1917 struct table_elt *p;
56bbdce4 1918 rtx addr;
752df20e 1919
155b05dc 1920 switch (GET_CODE (x))
752df20e 1921 {
155b05dc 1922 case REG:
52620891 1923 invalidate_reg (x, false);
752df20e 1924 return;
752df20e 1925
155b05dc 1926 case SUBREG:
fdb25961 1927 invalidate (SUBREG_REG (x), VOIDmode);
752df20e 1928 return;
6ede8018 1929
155b05dc 1930 case PARALLEL:
cb10db9d 1931 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
6ede8018 1932 invalidate (XVECEXP (x, 0, i), VOIDmode);
1933 return;
6ede8018 1934
155b05dc 1935 case EXPR_LIST:
1936 /* This is part of a disjoint return value; extract the location in
1937 question ignoring the offset. */
6ede8018 1938 invalidate (XEXP (x, 0), VOIDmode);
1939 return;
752df20e 1940
155b05dc 1941 case MEM:
56bbdce4 1942 addr = canon_rtx (get_addr (XEXP (x, 0)));
7cfb9bcf 1943 /* Calculate the canonical version of X here so that
1944 true_dependence doesn't generate new RTL for X on each call. */
1945 x = canon_rtx (x);
1946
155b05dc 1947 /* Remove all hash table elements that refer to overlapping pieces of
1948 memory. */
1949 if (full_mode == VOIDmode)
1950 full_mode = GET_MODE (x);
fdb25961 1951
9c4f3716 1952 for (i = 0; i < HASH_SIZE; i++)
752df20e 1953 {
19cb6b50 1954 struct table_elt *next;
155b05dc 1955
1956 for (p = table[i]; p; p = next)
1957 {
1958 next = p->next_same_hash;
7cfb9bcf 1959 if (p->in_memory)
1960 {
02b0feeb 1961 /* Just canonicalize the expression once;
1962 otherwise each time we call invalidate
1963 true_dependence will canonicalize the
1964 expression again. */
1965 if (!p->canon_exp)
1966 p->canon_exp = canon_rtx (p->exp);
e4a58c60 1967 if (check_dependence (p->canon_exp, x, full_mode, addr))
7cfb9bcf 1968 remove_from_table (p, i);
7cfb9bcf 1969 }
155b05dc 1970 }
752df20e 1971 }
155b05dc 1972 return;
1973
1974 default:
cc636d56 1975 gcc_unreachable ();
752df20e 1976 }
1977}
7a49a822 1978
1979/* Invalidate DEST. Used when DEST is not going to be added
1980 into the hash table for some reason, e.g. do_not_record
1981 flagged on it. */
1982
1983static void
1984invalidate_dest (rtx dest)
1985{
1986 if (REG_P (dest)
1987 || GET_CODE (dest) == SUBREG
1988 || MEM_P (dest))
1989 invalidate (dest, VOIDmode);
1990 else if (GET_CODE (dest) == STRICT_LOW_PART
1991 || GET_CODE (dest) == ZERO_EXTRACT)
1992 invalidate (XEXP (dest, 0), GET_MODE (dest));
1993}
155b05dc 1994\f
752df20e 1995/* Remove all expressions that refer to register REGNO,
1996 since they are already invalid, and we are about to
1997 mark that register valid again and don't want the old
1998 expressions to reappear as valid. */
1999
2000static void
8ec3a57b 2001remove_invalid_refs (unsigned int regno)
752df20e 2002{
02e7a332 2003 unsigned int i;
2004 struct table_elt *p, *next;
752df20e 2005
9c4f3716 2006 for (i = 0; i < HASH_SIZE; i++)
752df20e 2007 for (p = table[i]; p; p = next)
2008 {
2009 next = p->next_same_hash;
2ec77a7c 2010 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
752df20e 2011 remove_from_table (p, i);
2012 }
2013}
e6860d27 2014
701e46d0 2015/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2016 and mode MODE. */
e6860d27 2017static void
9edf7ea8 2018remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
3754d046 2019 machine_mode mode)
e6860d27 2020{
02e7a332 2021 unsigned int i;
2022 struct table_elt *p, *next;
e6860d27 2023
9c4f3716 2024 for (i = 0; i < HASH_SIZE; i++)
e6860d27 2025 for (p = table[i]; p; p = next)
2026 {
701e46d0 2027 rtx exp = p->exp;
e6860d27 2028 next = p->next_same_hash;
cb10db9d 2029
8ad4c111 2030 if (!REG_P (exp)
e6860d27 2031 && (GET_CODE (exp) != SUBREG
8ad4c111 2032 || !REG_P (SUBREG_REG (exp))
e6860d27 2033 || REGNO (SUBREG_REG (exp)) != regno
9edf7ea8 2034 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2035 GET_MODE_SIZE (GET_MODE (exp)),
2036 offset, GET_MODE_SIZE (mode)))
2ec77a7c 2037 && refers_to_regno_p (regno, p->exp))
e6860d27 2038 remove_from_table (p, i);
2039 }
2040}
752df20e 2041\f
2042/* Recompute the hash codes of any valid entries in the hash table that
2043 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2044
2045 This is called when we make a jump equivalence. */
2046
2047static void
8ec3a57b 2048rehash_using_reg (rtx x)
752df20e 2049{
3c1d7436 2050 unsigned int i;
752df20e 2051 struct table_elt *p, *next;
952bc06d 2052 unsigned hash;
752df20e 2053
2054 if (GET_CODE (x) == SUBREG)
2055 x = SUBREG_REG (x);
2056
2057 /* If X is not a register or if the register is known not to be in any
2058 valid entries in the table, we have no work to do. */
2059
8ad4c111 2060 if (!REG_P (x)
d1264606 2061 || REG_IN_TABLE (REGNO (x)) < 0
2062 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
752df20e 2063 return;
2064
2065 /* Scan all hash chains looking for valid entries that mention X.
b57e33a4 2066 If we find one and it is in the wrong hash chain, move it. */
752df20e 2067
9c4f3716 2068 for (i = 0; i < HASH_SIZE; i++)
752df20e 2069 for (p = table[i]; p; p = next)
2070 {
2071 next = p->next_same_hash;
b57e33a4 2072 if (reg_mentioned_p (x, p->exp)
78d140c9 2073 && exp_equiv_p (p->exp, p->exp, 1, false)
2074 && i != (hash = SAFE_HASH (p->exp, p->mode)))
752df20e 2075 {
2076 if (p->next_same_hash)
2077 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2078
2079 if (p->prev_same_hash)
2080 p->prev_same_hash->next_same_hash = p->next_same_hash;
2081 else
2082 table[i] = p->next_same_hash;
2083
2084 p->next_same_hash = table[hash];
2085 p->prev_same_hash = 0;
2086 if (table[hash])
2087 table[hash]->prev_same_hash = p;
2088 table[hash] = p;
2089 }
2090 }
2091}
2092\f
752df20e 2093/* Remove from the hash table any expression that is a call-clobbered
2094 register. Also update their TICK values. */
2095
2096static void
8ec3a57b 2097invalidate_for_call (void)
752df20e 2098{
02e7a332 2099 unsigned int regno, endregno;
2100 unsigned int i;
952bc06d 2101 unsigned hash;
752df20e 2102 struct table_elt *p, *next;
2103 int in_table = 0;
24ec6636 2104 hard_reg_set_iterator hrsi;
752df20e 2105
2106 /* Go through all the hard registers. For each that is clobbered in
2107 a CALL_INSN, remove the register from quantity chains and update
2108 reg_tick if defined. Also see if any of these registers is currently
2109 in the table. */
24ec6636 2110 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2111 {
2112 delete_reg_equiv (regno);
2113 if (REG_TICK (regno) >= 0)
2114 {
2115 REG_TICK (regno)++;
2116 SUBREG_TICKED (regno) = -1;
2117 }
2118 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2119 }
752df20e 2120
2121 /* In the case where we have no call-clobbered hard registers in the
2122 table, we are done. Otherwise, scan the table and remove any
2123 entry that overlaps a call-clobbered register. */
2124
2125 if (in_table)
9c4f3716 2126 for (hash = 0; hash < HASH_SIZE; hash++)
752df20e 2127 for (p = table[hash]; p; p = next)
2128 {
2129 next = p->next_same_hash;
2130
8ad4c111 2131 if (!REG_P (p->exp)
752df20e 2132 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2133 continue;
2134
2135 regno = REGNO (p->exp);
788bed51 2136 endregno = END_REGNO (p->exp);
752df20e 2137
2138 for (i = regno; i < endregno; i++)
2139 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2140 {
2141 remove_from_table (p, hash);
2142 break;
2143 }
2144 }
2145}
2146\f
2147/* Given an expression X of type CONST,
2148 and ELT which is its table entry (or 0 if it
2149 is not in the hash table),
2150 return an alternate expression for X as a register plus integer.
2151 If none can be found, return 0. */
2152
2153static rtx
8ec3a57b 2154use_related_value (rtx x, struct table_elt *elt)
752df20e 2155{
19cb6b50 2156 struct table_elt *relt = 0;
2157 struct table_elt *p, *q;
b572011e 2158 HOST_WIDE_INT offset;
752df20e 2159
2160 /* First, is there anything related known?
2161 If we have a table element, we can tell from that.
2162 Otherwise, must look it up. */
2163
2164 if (elt != 0 && elt->related_value != 0)
2165 relt = elt;
2166 else if (elt == 0 && GET_CODE (x) == CONST)
2167 {
2168 rtx subexp = get_related_value (x);
2169 if (subexp != 0)
2170 relt = lookup (subexp,
78d140c9 2171 SAFE_HASH (subexp, GET_MODE (subexp)),
752df20e 2172 GET_MODE (subexp));
2173 }
2174
2175 if (relt == 0)
2176 return 0;
2177
2178 /* Search all related table entries for one that has an
2179 equivalent register. */
2180
2181 p = relt;
2182 while (1)
2183 {
2184 /* This loop is strange in that it is executed in two different cases.
2185 The first is when X is already in the table. Then it is searching
2186 the RELATED_VALUE list of X's class (RELT). The second case is when
2187 X is not in the table. Then RELT points to a class for the related
2188 value.
2189
2190 Ensure that, whatever case we are in, that we ignore classes that have
2191 the same value as X. */
2192
2193 if (rtx_equal_p (x, p->exp))
2194 q = 0;
2195 else
2196 for (q = p->first_same_value; q; q = q->next_same_value)
8ad4c111 2197 if (REG_P (q->exp))
752df20e 2198 break;
2199
2200 if (q)
2201 break;
2202
2203 p = p->related_value;
2204
2205 /* We went all the way around, so there is nothing to be found.
2206 Alternatively, perhaps RELT was in the table for some other reason
2207 and it has no related values recorded. */
2208 if (p == relt || p == 0)
2209 break;
2210 }
2211
2212 if (q == 0)
2213 return 0;
2214
2215 offset = (get_integer_term (x) - get_integer_term (p->exp));
2216 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
29c05e22 2217 return plus_constant (q->mode, q->exp, offset);
752df20e 2218}
2219\f
e1ab7874 2220
d91f2122 2221/* Hash a string. Just add its bytes up. */
2222static inline unsigned
78d140c9 2223hash_rtx_string (const char *ps)
d91f2122 2224{
2225 unsigned hash = 0;
d4c5e26d 2226 const unsigned char *p = (const unsigned char *) ps;
2227
d91f2122 2228 if (p)
2229 while (*p)
2230 hash += *p++;
2231
2232 return hash;
2233}
2234
48e1416a 2235/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
e1ab7874 2236 When the callback returns true, we continue with the new rtx. */
752df20e 2237
78d140c9 2238unsigned
3754d046 2239hash_rtx_cb (const_rtx x, machine_mode mode,
e1ab7874 2240 int *do_not_record_p, int *hash_arg_in_memory_p,
2241 bool have_reg_qty, hash_rtx_callback_function cb)
752df20e 2242{
19cb6b50 2243 int i, j;
2244 unsigned hash = 0;
2245 enum rtx_code code;
2246 const char *fmt;
3754d046 2247 machine_mode newmode;
e1ab7874 2248 rtx newx;
752df20e 2249
78d140c9 2250 /* Used to turn recursion into iteration. We can't rely on GCC's
2251 tail-recursion elimination since we need to keep accumulating values
2252 in HASH. */
752df20e 2253 repeat:
2254 if (x == 0)
2255 return hash;
2256
e1ab7874 2257 /* Invoke the callback first. */
48e1416a 2258 if (cb != NULL
e1ab7874 2259 && ((*cb) (x, mode, &newx, &newmode)))
2260 {
2261 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2262 hash_arg_in_memory_p, have_reg_qty, cb);
2263 return hash;
2264 }
2265
752df20e 2266 code = GET_CODE (x);
2267 switch (code)
2268 {
2269 case REG:
2270 {
02e7a332 2271 unsigned int regno = REGNO (x);
752df20e 2272
e1ab7874 2273 if (do_not_record_p && !reload_completed)
752df20e 2274 {
78d140c9 2275 /* On some machines, we can't record any non-fixed hard register,
2276 because extending its life will cause reload problems. We
2277 consider ap, fp, sp, gp to be fixed for this purpose.
2278
2279 We also consider CCmode registers to be fixed for this purpose;
2280 failure to do so leads to failure to simplify 0<100 type of
2281 conditionals.
2282
2283 On all machines, we can't record any global registers.
2284 Nor should we record any register that is in a small
24dd0668 2285 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
78d140c9 2286 bool record;
2287
2288 if (regno >= FIRST_PSEUDO_REGISTER)
2289 record = true;
2290 else if (x == frame_pointer_rtx
2291 || x == hard_frame_pointer_rtx
2292 || x == arg_pointer_rtx
2293 || x == stack_pointer_rtx
2294 || x == pic_offset_table_rtx)
2295 record = true;
2296 else if (global_regs[regno])
2297 record = false;
2298 else if (fixed_regs[regno])
2299 record = true;
2300 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2301 record = true;
ed5527ca 2302 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
78d140c9 2303 record = false;
24dd0668 2304 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
78d140c9 2305 record = false;
2306 else
2307 record = true;
2308
2309 if (!record)
2310 {
2311 *do_not_record_p = 1;
2312 return 0;
2313 }
752df20e 2314 }
02e7a332 2315
78d140c9 2316 hash += ((unsigned int) REG << 7);
2317 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
952bc06d 2318 return hash;
752df20e 2319 }
2320
e6860d27 2321 /* We handle SUBREG of a REG specially because the underlying
2322 reg changes its hash value with every value change; we don't
2323 want to have to forget unrelated subregs when one subreg changes. */
2324 case SUBREG:
2325 {
8ad4c111 2326 if (REG_P (SUBREG_REG (x)))
e6860d27 2327 {
78d140c9 2328 hash += (((unsigned int) SUBREG << 7)
701e46d0 2329 + REGNO (SUBREG_REG (x))
9edf7ea8 2330 + (constant_lower_bound (SUBREG_BYTE (x))
2331 / UNITS_PER_WORD));
e6860d27 2332 return hash;
2333 }
2334 break;
2335 }
2336
752df20e 2337 case CONST_INT:
78d140c9 2338 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2339 + (unsigned int) INTVAL (x));
2340 return hash;
752df20e 2341
e913b5cd 2342 case CONST_WIDE_INT:
c4050ce7 2343 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2344 hash += CONST_WIDE_INT_ELT (x, i);
e913b5cd 2345 return hash;
2346
bbad7cd0 2347 case CONST_POLY_INT:
2348 {
2349 inchash::hash h;
2350 h.add_int (hash);
2351 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2352 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2353 return h.end ();
2354 }
2355
752df20e 2356 case CONST_DOUBLE:
2357 /* This is like the general case, except that it only counts
2358 the integers representing the constant. */
78d140c9 2359 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
e913b5cd 2360 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
78d140c9 2361 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2362 + (unsigned int) CONST_DOUBLE_HIGH (x));
e913b5cd 2363 else
2364 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
752df20e 2365 return hash;
2366
e397ad8e 2367 case CONST_FIXED:
2368 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2369 hash += fixed_hash (CONST_FIXED_VALUE (x));
2370 return hash;
2371
886cfd4f 2372 case CONST_VECTOR:
2373 {
2374 int units;
2375 rtx elt;
2376
00bc18a2 2377 units = const_vector_encoded_nelts (x);
886cfd4f 2378
2379 for (i = 0; i < units; ++i)
2380 {
00bc18a2 2381 elt = CONST_VECTOR_ENCODED_ELT (x, i);
e1ab7874 2382 hash += hash_rtx_cb (elt, GET_MODE (elt),
48e1416a 2383 do_not_record_p, hash_arg_in_memory_p,
e1ab7874 2384 have_reg_qty, cb);
886cfd4f 2385 }
2386
2387 return hash;
2388 }
2389
752df20e 2390 /* Assume there is only one rtx object for any given label. */
2391 case LABEL_REF:
78d140c9 2392 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2393 differences and differences between each stage's debugging dumps. */
2394 hash += (((unsigned int) LABEL_REF << 7)
c7799456 2395 + CODE_LABEL_NUMBER (label_ref_label (x)));
952bc06d 2396 return hash;
752df20e 2397
2398 case SYMBOL_REF:
78d140c9 2399 {
2400 /* Don't hash on the symbol's address to avoid bootstrap differences.
2401 Different hash values may cause expressions to be recorded in
2402 different orders and thus different registers to be used in the
2403 final assembler. This also avoids differences in the dump files
2404 between various stages. */
2405 unsigned int h = 0;
2406 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2407
2408 while (*p)
2409 h += (h << 7) + *p++; /* ??? revisit */
2410
2411 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2412 return hash;
2413 }
752df20e 2414
2415 case MEM:
155b05dc 2416 /* We don't record if marked volatile or if BLKmode since we don't
2417 know the size of the move. */
e1ab7874 2418 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
752df20e 2419 {
78d140c9 2420 *do_not_record_p = 1;
752df20e 2421 return 0;
2422 }
78d140c9 2423 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2424 *hash_arg_in_memory_p = 1;
805e22b2 2425
752df20e 2426 /* Now that we have already found this special case,
2427 might as well speed it up as much as possible. */
952bc06d 2428 hash += (unsigned) MEM;
752df20e 2429 x = XEXP (x, 0);
2430 goto repeat;
2431
7002e559 2432 case USE:
2433 /* A USE that mentions non-volatile memory needs special
2434 handling since the MEM may be BLKmode which normally
2435 prevents an entry from being made. Pure calls are
78d140c9 2436 marked by a USE which mentions BLKmode memory.
2437 See calls.c:emit_call_1. */
e16ceb8e 2438 if (MEM_P (XEXP (x, 0))
7002e559 2439 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2440 {
d4c5e26d 2441 hash += (unsigned) USE;
7002e559 2442 x = XEXP (x, 0);
2443
78d140c9 2444 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2445 *hash_arg_in_memory_p = 1;
7002e559 2446
2447 /* Now that we have already found this special case,
2448 might as well speed it up as much as possible. */
2449 hash += (unsigned) MEM;
2450 x = XEXP (x, 0);
2451 goto repeat;
2452 }
2453 break;
2454
752df20e 2455 case PRE_DEC:
2456 case PRE_INC:
2457 case POST_DEC:
2458 case POST_INC:
40988080 2459 case PRE_MODIFY:
2460 case POST_MODIFY:
752df20e 2461 case PC:
2462 case CC0:
2463 case CALL:
2464 case UNSPEC_VOLATILE:
e1ab7874 2465 if (do_not_record_p) {
2466 *do_not_record_p = 1;
2467 return 0;
2468 }
2469 else
2470 return hash;
2471 break;
752df20e 2472
2473 case ASM_OPERANDS:
e1ab7874 2474 if (do_not_record_p && MEM_VOLATILE_P (x))
752df20e 2475 {
78d140c9 2476 *do_not_record_p = 1;
752df20e 2477 return 0;
2478 }
d91f2122 2479 else
2480 {
2481 /* We don't want to take the filename and line into account. */
2482 hash += (unsigned) code + (unsigned) GET_MODE (x)
78d140c9 2483 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2484 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
d91f2122 2485 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2486
2487 if (ASM_OPERANDS_INPUT_LENGTH (x))
2488 {
2489 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2490 {
e1ab7874 2491 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2492 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2493 do_not_record_p, hash_arg_in_memory_p,
2494 have_reg_qty, cb)
78d140c9 2495 + hash_rtx_string
e1ab7874 2496 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
d91f2122 2497 }
2498
78d140c9 2499 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
d91f2122 2500 x = ASM_OPERANDS_INPUT (x, 0);
2501 mode = GET_MODE (x);
2502 goto repeat;
2503 }
2504
2505 return hash;
2506 }
0dbd1c74 2507 break;
cb10db9d 2508
0dbd1c74 2509 default:
2510 break;
752df20e 2511 }
2512
2513 i = GET_RTX_LENGTH (code) - 1;
952bc06d 2514 hash += (unsigned) code + (unsigned) GET_MODE (x);
752df20e 2515 fmt = GET_RTX_FORMAT (code);
2516 for (; i >= 0; i--)
2517 {
cc636d56 2518 switch (fmt[i])
752df20e 2519 {
cc636d56 2520 case 'e':
752df20e 2521 /* If we are about to do the last recursive call
2522 needed at this level, change it into iteration.
2523 This function is called enough to be worth it. */
2524 if (i == 0)
2525 {
78d140c9 2526 x = XEXP (x, i);
752df20e 2527 goto repeat;
2528 }
48e1416a 2529
b9c74b4d 2530 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
e1ab7874 2531 hash_arg_in_memory_p,
2532 have_reg_qty, cb);
cc636d56 2533 break;
78d140c9 2534
cc636d56 2535 case 'E':
2536 for (j = 0; j < XVECLEN (x, i); j++)
b9c74b4d 2537 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
e1ab7874 2538 hash_arg_in_memory_p,
2539 have_reg_qty, cb);
cc636d56 2540 break;
78d140c9 2541
cc636d56 2542 case 's':
2543 hash += hash_rtx_string (XSTR (x, i));
2544 break;
2545
2546 case 'i':
2547 hash += (unsigned int) XINT (x, i);
2548 break;
2549
9edf7ea8 2550 case 'p':
2551 hash += constant_lower_bound (SUBREG_BYTE (x));
2552 break;
2553
cc636d56 2554 case '0': case 't':
2555 /* Unused. */
2556 break;
2557
2558 default:
2559 gcc_unreachable ();
2560 }
752df20e 2561 }
78d140c9 2562
752df20e 2563 return hash;
2564}
2565
e1ab7874 2566/* Hash an rtx. We are careful to make sure the value is never negative.
2567 Equivalent registers hash identically.
2568 MODE is used in hashing for CONST_INTs only;
2569 otherwise the mode of X is used.
2570
2571 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2572
2573 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2e444733 2574 a MEM rtx which does not have the MEM_READONLY_P flag set.
e1ab7874 2575
2576 Note that cse_insn knows that the hash code of a MEM expression
2577 is just (int) MEM plus the hash code of the address. */
2578
2579unsigned
3754d046 2580hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
e1ab7874 2581 int *hash_arg_in_memory_p, bool have_reg_qty)
2582{
2583 return hash_rtx_cb (x, mode, do_not_record_p,
2584 hash_arg_in_memory_p, have_reg_qty, NULL);
2585}
2586
78d140c9 2587/* Hash an rtx X for cse via hash_rtx.
2588 Stores 1 in do_not_record if any subexpression is volatile.
2589 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2e444733 2590 does not have the MEM_READONLY_P flag set. */
78d140c9 2591
2592static inline unsigned
3754d046 2593canon_hash (rtx x, machine_mode mode)
78d140c9 2594{
2595 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2596}
2597
2598/* Like canon_hash but with no side effects, i.e. do_not_record
2599 and hash_arg_in_memory are not changed. */
752df20e 2600
78d140c9 2601static inline unsigned
3754d046 2602safe_hash (rtx x, machine_mode mode)
752df20e 2603{
78d140c9 2604 int dummy_do_not_record;
2605 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
752df20e 2606}
2607\f
2608/* Return 1 iff X and Y would canonicalize into the same thing,
2609 without actually constructing the canonicalization of either one.
2610 If VALIDATE is nonzero,
2611 we assume X is an expression being processed from the rtl
2612 and Y was found in the hash table. We check register refs
2613 in Y for being marked as valid.
2614
78d140c9 2615 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
752df20e 2616
78d140c9 2617int
52d07779 2618exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
752df20e 2619{
19cb6b50 2620 int i, j;
2621 enum rtx_code code;
2622 const char *fmt;
752df20e 2623
2624 /* Note: it is incorrect to assume an expression is equivalent to itself
2625 if VALIDATE is nonzero. */
2626 if (x == y && !validate)
2627 return 1;
78d140c9 2628
752df20e 2629 if (x == 0 || y == 0)
2630 return x == y;
2631
2632 code = GET_CODE (x);
2633 if (code != GET_CODE (y))
78d140c9 2634 return 0;
752df20e 2635
2636 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2637 if (GET_MODE (x) != GET_MODE (y))
2638 return 0;
2639
04ec15fa 2640 /* MEMs referring to different address space are not equivalent. */
bd1a81f7 2641 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2642 return 0;
2643
752df20e 2644 switch (code)
2645 {
2646 case PC:
2647 case CC0:
0349edce 2648 CASE_CONST_UNIQUE:
73f5c1e3 2649 return x == y;
752df20e 2650
2651 case LABEL_REF:
c7799456 2652 return label_ref_label (x) == label_ref_label (y);
752df20e 2653
d1a40e76 2654 case SYMBOL_REF:
2655 return XSTR (x, 0) == XSTR (y, 0);
2656
752df20e 2657 case REG:
78d140c9 2658 if (for_gcse)
2659 return REGNO (x) == REGNO (y);
2660 else
2661 {
2662 unsigned int regno = REGNO (y);
2663 unsigned int i;
a2c6f0b7 2664 unsigned int endregno = END_REGNO (y);
752df20e 2665
78d140c9 2666 /* If the quantities are not the same, the expressions are not
2667 equivalent. If there are and we are not to validate, they
2668 are equivalent. Otherwise, ensure all regs are up-to-date. */
752df20e 2669
78d140c9 2670 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2671 return 0;
2672
2673 if (! validate)
2674 return 1;
2675
2676 for (i = regno; i < endregno; i++)
2677 if (REG_IN_TABLE (i) != REG_TICK (i))
2678 return 0;
752df20e 2679
752df20e 2680 return 1;
78d140c9 2681 }
752df20e 2682
78d140c9 2683 case MEM:
2684 if (for_gcse)
2685 {
78d140c9 2686 /* A volatile mem should not be considered equivalent to any
2687 other. */
2688 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2689 return 0;
a79761ff 2690
2691 /* Can't merge two expressions in different alias sets, since we
2692 can decide that the expression is transparent in a block when
2693 it isn't, due to it being set with the different alias set.
2694
2695 Also, can't merge two expressions with different MEM_ATTRS.
2696 They could e.g. be two different entities allocated into the
2697 same space on the stack (see e.g. PR25130). In that case, the
2698 MEM addresses can be the same, even though the two MEMs are
2699 absolutely not equivalent.
2700
2701 But because really all MEM attributes should be the same for
2702 equivalent MEMs, we just use the invariant that MEMs that have
2703 the same attributes share the same mem_attrs data structure. */
7e304b71 2704 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
a79761ff 2705 return 0;
4ee783fc 2706
2707 /* If we are handling exceptions, we cannot consider two expressions
2708 with different trapping status as equivalent, because simple_mem
2709 might accept one and reject the other. */
2710 if (cfun->can_throw_non_call_exceptions
2711 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2712 return 0;
78d140c9 2713 }
2714 break;
752df20e 2715
2716 /* For commutative operations, check both orders. */
2717 case PLUS:
2718 case MULT:
2719 case AND:
2720 case IOR:
2721 case XOR:
2722 case NE:
2723 case EQ:
78d140c9 2724 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2725 validate, for_gcse)
752df20e 2726 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
78d140c9 2727 validate, for_gcse))
752df20e 2728 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
78d140c9 2729 validate, for_gcse)
752df20e 2730 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
78d140c9 2731 validate, for_gcse)));
cb10db9d 2732
d91f2122 2733 case ASM_OPERANDS:
2734 /* We don't use the generic code below because we want to
2735 disregard filename and line numbers. */
2736
2737 /* A volatile asm isn't equivalent to any other. */
2738 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2739 return 0;
2740
2741 if (GET_MODE (x) != GET_MODE (y)
2742 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2743 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2744 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2745 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2746 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2747 return 0;
2748
2749 if (ASM_OPERANDS_INPUT_LENGTH (x))
2750 {
2751 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2752 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2753 ASM_OPERANDS_INPUT (y, i),
78d140c9 2754 validate, for_gcse)
d91f2122 2755 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2756 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2757 return 0;
2758 }
2759
2760 return 1;
2761
0dbd1c74 2762 default:
2763 break;
752df20e 2764 }
2765
2766 /* Compare the elements. If any pair of corresponding elements
78d140c9 2767 fail to match, return 0 for the whole thing. */
752df20e 2768
2769 fmt = GET_RTX_FORMAT (code);
2770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2771 {
b572011e 2772 switch (fmt[i])
752df20e 2773 {
b572011e 2774 case 'e':
78d140c9 2775 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2776 validate, for_gcse))
752df20e 2777 return 0;
b572011e 2778 break;
2779
2780 case 'E':
752df20e 2781 if (XVECLEN (x, i) != XVECLEN (y, i))
2782 return 0;
2783 for (j = 0; j < XVECLEN (x, i); j++)
2784 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
78d140c9 2785 validate, for_gcse))
752df20e 2786 return 0;
b572011e 2787 break;
2788
2789 case 's':
752df20e 2790 if (strcmp (XSTR (x, i), XSTR (y, i)))
2791 return 0;
b572011e 2792 break;
2793
2794 case 'i':
752df20e 2795 if (XINT (x, i) != XINT (y, i))
2796 return 0;
b572011e 2797 break;
2798
2799 case 'w':
2800 if (XWINT (x, i) != XWINT (y, i))
2801 return 0;
cb10db9d 2802 break;
b572011e 2803
9edf7ea8 2804 case 'p':
2805 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2806 return 0;
2807 break;
2808
b572011e 2809 case '0':
a4070a91 2810 case 't':
b572011e 2811 break;
2812
2813 default:
cc636d56 2814 gcc_unreachable ();
752df20e 2815 }
cb10db9d 2816 }
b572011e 2817
752df20e 2818 return 1;
2819}
2820\f
1cc37766 2821/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2822 the result if necessary. INSN is as for canon_reg. */
2823
2824static void
47f1d198 2825validate_canon_reg (rtx *xloc, rtx_insn *insn)
1cc37766 2826{
3072d30e 2827 if (*xloc)
2828 {
d328ebdf 2829 rtx new_rtx = canon_reg (*xloc, insn);
1cc37766 2830
3072d30e 2831 /* If replacing pseudo with hard reg or vice versa, ensure the
2832 insn remains valid. Likewise if the insn has MATCH_DUPs. */
d328ebdf 2833 gcc_assert (insn && new_rtx);
2834 validate_change (insn, xloc, new_rtx, 1);
3072d30e 2835 }
1cc37766 2836}
2837
752df20e 2838/* Canonicalize an expression:
2839 replace each register reference inside it
2840 with the "oldest" equivalent register.
2841
0c0acbaa 2842 If INSN is nonzero validate_change is used to ensure that INSN remains valid
d10cfa8d 2843 after we make our substitution. The calls are made with IN_GROUP nonzero
8d5dd220 2844 so apply_change_group must be called upon the outermost return from this
2845 function (unless INSN is zero). The result of apply_change_group can
2846 generally be discarded since the changes we are making are optional. */
752df20e 2847
2848static rtx
47f1d198 2849canon_reg (rtx x, rtx_insn *insn)
752df20e 2850{
19cb6b50 2851 int i;
2852 enum rtx_code code;
2853 const char *fmt;
752df20e 2854
2855 if (x == 0)
2856 return x;
2857
2858 code = GET_CODE (x);
2859 switch (code)
2860 {
2861 case PC:
2862 case CC0:
2863 case CONST:
0349edce 2864 CASE_CONST_ANY:
752df20e 2865 case SYMBOL_REF:
2866 case LABEL_REF:
2867 case ADDR_VEC:
2868 case ADDR_DIFF_VEC:
2869 return x;
2870
2871 case REG:
2872 {
19cb6b50 2873 int first;
2874 int q;
2875 struct qty_table_elem *ent;
752df20e 2876
2877 /* Never replace a hard reg, because hard regs can appear
2878 in more than one machine mode, and we must preserve the mode
2879 of each occurrence. Also, some hard regs appear in
2880 MEMs that are shared and mustn't be altered. Don't try to
2881 replace any reg that maps to a reg of class NO_REGS. */
2882 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2883 || ! REGNO_QTY_VALID_P (REGNO (x)))
2884 return x;
2885
cb10db9d 2886 q = REG_QTY (REGNO (x));
a7f3b1c7 2887 ent = &qty_table[q];
2888 first = ent->first_reg;
752df20e 2889 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2890 : REGNO_REG_CLASS (first) == NO_REGS ? x
a7f3b1c7 2891 : gen_rtx_REG (ent->mode, first));
752df20e 2892 }
cb10db9d 2893
0dbd1c74 2894 default:
2895 break;
752df20e 2896 }
2897
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2900 {
19cb6b50 2901 int j;
752df20e 2902
2903 if (fmt[i] == 'e')
1cc37766 2904 validate_canon_reg (&XEXP (x, i), insn);
752df20e 2905 else if (fmt[i] == 'E')
2906 for (j = 0; j < XVECLEN (x, i); j++)
1cc37766 2907 validate_canon_reg (&XVECEXP (x, i, j), insn);
752df20e 2908 }
2909
2910 return x;
2911}
2912\f
6a8939cc 2913/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2914 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2915 what values are being compared.
9ce37dcf 2916
6a8939cc 2917 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2918 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2919 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2920 compared to produce cc0.
61b1f5a7 2921
6a8939cc 2922 The return value is the comparison operator and is either the code of
2923 A or the code corresponding to the inverse of the comparison. */
752df20e 2924
af21a202 2925static enum rtx_code
8ec3a57b 2926find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3754d046 2927 machine_mode *pmode1, machine_mode *pmode2)
752df20e 2928{
af21a202 2929 rtx arg1, arg2;
431205b7 2930 hash_set<rtx> *visited = NULL;
7d8df2ae 2931 /* Set nonzero when we find something of interest. */
2932 rtx x = NULL;
9ce37dcf 2933
af21a202 2934 arg1 = *parg1, arg2 = *parg2;
752df20e 2935
af21a202 2936 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
752df20e 2937
af21a202 2938 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
61b1f5a7 2939 {
af21a202 2940 int reverse_code = 0;
2941 struct table_elt *p = 0;
308a5ff6 2942
7d8df2ae 2943 /* Remember state from previous iteration. */
2944 if (x)
2945 {
2946 if (!visited)
431205b7 2947 visited = new hash_set<rtx>;
2948 visited->add (x);
7d8df2ae 2949 x = 0;
2950 }
2951
af21a202 2952 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2953 On machines with CC0, this is the only case that can occur, since
2954 fold_rtx will return the COMPARE or item being compared with zero
2955 when given CC0. */
308a5ff6 2956
af21a202 2957 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2958 x = arg1;
308a5ff6 2959
af21a202 2960 /* If ARG1 is a comparison operator and CODE is testing for
2961 STORE_FLAG_VALUE, get the inner arguments. */
61b1f5a7 2962
6720e96c 2963 else if (COMPARISON_P (arg1))
752df20e 2964 {
aa870c1b 2965#ifdef FLOAT_STORE_FLAG_VALUE
2966 REAL_VALUE_TYPE fsfv;
2967#endif
2968
af21a202 2969 if (code == NE
2970 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2971 && code == LT && STORE_FLAG_VALUE == -1)
2972#ifdef FLOAT_STORE_FLAG_VALUE
95204692 2973 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
aa870c1b 2974 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2975 REAL_VALUE_NEGATIVE (fsfv)))
752df20e 2976#endif
61b1f5a7 2977 )
af21a202 2978 x = arg1;
2979 else if (code == EQ
2980 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2981 && code == GE && STORE_FLAG_VALUE == -1)
2982#ifdef FLOAT_STORE_FLAG_VALUE
95204692 2983 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
aa870c1b 2984 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2985 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 2986#endif
2987 )
2988 x = arg1, reverse_code = 1;
752df20e 2989 }
2990
af21a202 2991 /* ??? We could also check for
752df20e 2992
af21a202 2993 (ne (and (eq (...) (const_int 1))) (const_int 0))
752df20e 2994
af21a202 2995 and related forms, but let's wait until we see them occurring. */
752df20e 2996
af21a202 2997 if (x == 0)
2998 /* Look up ARG1 in the hash table and see if it has an equivalence
2999 that lets us see what is being compared. */
78d140c9 3000 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
cb10db9d 3001 if (p)
e9a91a9e 3002 {
3003 p = p->first_same_value;
3004
3005 /* If what we compare is already known to be constant, that is as
3006 good as it gets.
3007 We need to break the loop in this case, because otherwise we
3008 can have an infinite loop when looking at a reg that is known
3009 to be a constant which is the same as a comparison of a reg
3010 against zero which appears later in the insn stream, which in
3011 turn is constant and the same as the comparison of the first reg
3012 against zero... */
3013 if (p->is_const)
3014 break;
3015 }
752df20e 3016
af21a202 3017 for (; p; p = p->next_same_value)
752df20e 3018 {
3754d046 3019 machine_mode inner_mode = GET_MODE (p->exp);
aa870c1b 3020#ifdef FLOAT_STORE_FLAG_VALUE
3021 REAL_VALUE_TYPE fsfv;
3022#endif
752df20e 3023
af21a202 3024 /* If the entry isn't valid, skip it. */
78d140c9 3025 if (! exp_equiv_p (p->exp, p->exp, 1, false))
af21a202 3026 continue;
51356f86 3027
7d8df2ae 3028 /* If it's a comparison we've used before, skip it. */
431205b7 3029 if (visited && visited->contains (p->exp))
7a49726a 3030 continue;
3031
6a8939cc 3032 if (GET_CODE (p->exp) == COMPARE
3033 /* Another possibility is that this machine has a compare insn
3034 that includes the comparison code. In that case, ARG1 would
3035 be equivalent to a comparison operation that would set ARG1 to
3036 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3037 ORIG_CODE is the actual comparison being done; if it is an EQ,
3038 we must reverse ORIG_CODE. On machine with a negative value
3039 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3040 || ((code == NE
3041 || (code == LT
f92430e0 3042 && val_signbit_known_set_p (inner_mode,
3043 STORE_FLAG_VALUE))
af21a202 3044#ifdef FLOAT_STORE_FLAG_VALUE
6a8939cc 3045 || (code == LT
cee7491d 3046 && SCALAR_FLOAT_MODE_P (inner_mode)
aa870c1b 3047 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3048 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3049#endif
6a8939cc 3050 )
6720e96c 3051 && COMPARISON_P (p->exp)))
752df20e 3052 {
af21a202 3053 x = p->exp;
3054 break;
3055 }
3056 else if ((code == EQ
3057 || (code == GE
f92430e0 3058 && val_signbit_known_set_p (inner_mode,
3059 STORE_FLAG_VALUE))
af21a202 3060#ifdef FLOAT_STORE_FLAG_VALUE
3061 || (code == GE
cee7491d 3062 && SCALAR_FLOAT_MODE_P (inner_mode)
aa870c1b 3063 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3064 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3065#endif
3066 )
6720e96c 3067 && COMPARISON_P (p->exp))
af21a202 3068 {
3069 reverse_code = 1;
3070 x = p->exp;
3071 break;
752df20e 3072 }
3073
805e22b2 3074 /* If this non-trapping address, e.g. fp + constant, the
3075 equivalent is a better operand since it may let us predict
3076 the value of the comparison. */
3077 else if (!rtx_addr_can_trap_p (p->exp))
af21a202 3078 {
3079 arg1 = p->exp;
3080 continue;
3081 }
752df20e 3082 }
752df20e 3083
af21a202 3084 /* If we didn't find a useful equivalence for ARG1, we are done.
3085 Otherwise, set up for the next iteration. */
3086 if (x == 0)
3087 break;
752df20e 3088
47ae02b7 3089 /* If we need to reverse the comparison, make sure that is
6d1304b6 3090 possible -- we can't necessarily infer the value of GE from LT
3091 with floating-point operands. */
af21a202 3092 if (reverse_code)
7da6ea0c 3093 {
4066f31e 3094 enum rtx_code reversed = reversed_comparison_code (x, NULL);
7da6ea0c 3095 if (reversed == UNKNOWN)
3096 break;
d4c5e26d 3097 else
3098 code = reversed;
7da6ea0c 3099 }
6720e96c 3100 else if (COMPARISON_P (x))
7da6ea0c 3101 code = GET_CODE (x);
3102 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
752df20e 3103 }
3104
af21a202 3105 /* Return our results. Return the modes from before fold_rtx
3106 because fold_rtx might produce const_int, and then it's too late. */
3107 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3108 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3109
7d8df2ae 3110 if (visited)
431205b7 3111 delete visited;
af21a202 3112 return code;
752df20e 3113}
3114\f
42a3a38b 3115/* If X is a nontrivial arithmetic operation on an argument for which
3116 a constant value can be determined, return the result of operating
3117 on that value, as a constant. Otherwise, return X, possibly with
3118 one or more operands changed to a forward-propagated constant.
18b14db6 3119
42a3a38b 3120 If X is a register whose contents are known, we do NOT return
3121 those contents here; equiv_constant is called to perform that task.
3122 For SUBREGs and MEMs, we do that both here and in equiv_constant.
752df20e 3123
3124 INSN is the insn that we may be modifying. If it is 0, make a copy
3125 of X before modifying it. */
3126
3127static rtx
47f1d198 3128fold_rtx (rtx x, rtx_insn *insn)
752df20e 3129{
19cb6b50 3130 enum rtx_code code;
3754d046 3131 machine_mode mode;
19cb6b50 3132 const char *fmt;
3133 int i;
d328ebdf 3134 rtx new_rtx = 0;
42a3a38b 3135 int changed = 0;
7e3747b0 3136 poly_int64 xval;
752df20e 3137
42a3a38b 3138 /* Operands of X. */
a561ec10 3139 /* Workaround -Wmaybe-uninitialized false positive during
3140 profiledbootstrap by initializing them. */
3141 rtx folded_arg0 = NULL_RTX;
3142 rtx folded_arg1 = NULL_RTX;
752df20e 3143
3144 /* Constant equivalents of first three operands of X;
3145 0 when no such equivalent is known. */
3146 rtx const_arg0;
3147 rtx const_arg1;
3148 rtx const_arg2;
3149
3150 /* The mode of the first operand of X. We need this for sign and zero
3151 extends. */
3754d046 3152 machine_mode mode_arg0;
752df20e 3153
3154 if (x == 0)
3155 return x;
3156
42a3a38b 3157 /* Try to perform some initial simplifications on X. */
752df20e 3158 code = GET_CODE (x);
3159 switch (code)
3160 {
42a3a38b 3161 case MEM:
3162 case SUBREG:
b803a3c1 3163 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3164 than it would in other contexts. Basically its mode does not
3165 signify the size of the object read. That information is carried
3166 by size operand. If we happen to have a MEM of the appropriate
3167 mode in our tables with a constant value we could simplify the
3168 extraction incorrectly if we allowed substitution of that value
3169 for the MEM. */
3170 case ZERO_EXTRACT:
3171 case SIGN_EXTRACT:
d328ebdf 3172 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3173 return new_rtx;
42a3a38b 3174 return x;
3175
752df20e 3176 case CONST:
0349edce 3177 CASE_CONST_ANY:
752df20e 3178 case SYMBOL_REF:
3179 case LABEL_REF:
3180 case REG:
97108156 3181 case PC:
752df20e 3182 /* No use simplifying an EXPR_LIST
3183 since they are used only for lists of args
3184 in a function call's REG_EQUAL note. */
3185 case EXPR_LIST:
3186 return x;
3187
752df20e 3188 case CC0:
3189 return prev_insn_cc0;
752df20e 3190
c97a7837 3191 case ASM_OPERANDS:
d239a9ad 3192 if (insn)
3193 {
3194 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3195 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3196 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3197 }
42a3a38b 3198 return x;
3199
42a3a38b 3200 case CALL:
93516111 3201 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
42a3a38b 3202 return x;
c97a7837 3203 break;
cb10db9d 3204
42a3a38b 3205 /* Anything else goes through the loop below. */
0dbd1c74 3206 default:
3207 break;
752df20e 3208 }
3209
42a3a38b 3210 mode = GET_MODE (x);
752df20e 3211 const_arg0 = 0;
3212 const_arg1 = 0;
3213 const_arg2 = 0;
3214 mode_arg0 = VOIDmode;
3215
3216 /* Try folding our operands.
3217 Then see which ones have constant values known. */
3218
3219 fmt = GET_RTX_FORMAT (code);
3220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3221 if (fmt[i] == 'e')
3222 {
42a3a38b 3223 rtx folded_arg = XEXP (x, i), const_arg;
3754d046 3224 machine_mode mode_arg = GET_MODE (folded_arg);
06320855 3225
3226 switch (GET_CODE (folded_arg))
3227 {
3228 case MEM:
3229 case REG:
3230 case SUBREG:
3231 const_arg = equiv_constant (folded_arg);
3232 break;
3233
3234 case CONST:
0349edce 3235 CASE_CONST_ANY:
06320855 3236 case SYMBOL_REF:
3237 case LABEL_REF:
06320855 3238 const_arg = folded_arg;
3239 break;
3240
06320855 3241 case CC0:
77cb85b2 3242 /* The cc0-user and cc0-setter may be in different blocks if
3243 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3244 will have been cleared as we exited the block with the
3245 setter.
3246
3247 While we could potentially track cc0 in this case, it just
3248 doesn't seem to be worth it given that cc0 targets are not
3249 terribly common or important these days and trapping math
3250 is rarely used. The combination of those two conditions
3251 necessary to trip this situation is exceedingly rare in the
3252 real world. */
3253 if (!prev_insn_cc0)
3254 {
3255 const_arg = NULL_RTX;
3256 }
3257 else
3258 {
3259 folded_arg = prev_insn_cc0;
3260 mode_arg = prev_insn_cc0_mode;
3261 const_arg = equiv_constant (folded_arg);
3262 }
06320855 3263 break;
06320855 3264
3265 default:
3266 folded_arg = fold_rtx (folded_arg, insn);
3267 const_arg = equiv_constant (folded_arg);
3268 break;
3269 }
752df20e 3270
3271 /* For the first three operands, see if the operand
3272 is constant or equivalent to a constant. */
3273 switch (i)
3274 {
3275 case 0:
3276 folded_arg0 = folded_arg;
3277 const_arg0 = const_arg;
3278 mode_arg0 = mode_arg;
3279 break;
3280 case 1:
3281 folded_arg1 = folded_arg;
3282 const_arg1 = const_arg;
3283 break;
3284 case 2:
3285 const_arg2 = const_arg;
3286 break;
3287 }
3288
42a3a38b 3289 /* Pick the least expensive of the argument and an equivalent constant
3290 argument. */
3291 if (const_arg != 0
3292 && const_arg != folded_arg
5ae4887d 3293 && (COST_IN (const_arg, mode_arg, code, i)
3294 <= COST_IN (folded_arg, mode_arg, code, i))
f35e401c 3295
8f1e01cb 3296 /* It's not safe to substitute the operand of a conversion
3297 operator with a constant, as the conversion's identity
fe24f256 3298 depends upon the mode of its operand. This optimization
8f1e01cb 3299 is handled by the call to simplify_unary_operation. */
42a3a38b 3300 && (GET_RTX_CLASS (code) != RTX_UNARY
3301 || GET_MODE (const_arg) == mode_arg0
3302 || (code != ZERO_EXTEND
3303 && code != SIGN_EXTEND
3304 && code != TRUNCATE
3305 && code != FLOAT_TRUNCATE
3306 && code != FLOAT_EXTEND
3307 && code != FLOAT
3308 && code != FIX
3309 && code != UNSIGNED_FLOAT
3310 && code != UNSIGNED_FIX)))
3311 folded_arg = const_arg;
3312
3313 if (folded_arg == XEXP (x, i))
3314 continue;
752df20e 3315
42a3a38b 3316 if (insn == NULL_RTX && !changed)
3317 x = copy_rtx (x);
3318 changed = 1;
4f34fbd6 3319 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
c08e043f 3320 }
752df20e 3321
42a3a38b 3322 if (changed)
752df20e 3323 {
42a3a38b 3324 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3325 consistent with the order in X. */
3326 if (canonicalize_change_group (insn, x))
752df20e 3327 {
c586a5e3 3328 std::swap (const_arg0, const_arg1);
3329 std::swap (folded_arg0, folded_arg1);
752df20e 3330 }
42a3a38b 3331
3332 apply_change_group ();
752df20e 3333 }
3334
3335 /* If X is an arithmetic operation, see if we can simplify it. */
3336
3337 switch (GET_RTX_CLASS (code))
3338 {
6720e96c 3339 case RTX_UNARY:
528b0df8 3340 {
528b0df8 3341 /* We can't simplify extension ops unless we know the
3342 original mode. */
3343 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3344 && mode_arg0 == VOIDmode)
3345 break;
3346
d328ebdf 3347 new_rtx = simplify_unary_operation (code, mode,
2bde5b8e 3348 const_arg0 ? const_arg0 : folded_arg0,
3349 mode_arg0);
528b0df8 3350 }
752df20e 3351 break;
cb10db9d 3352
6720e96c 3353 case RTX_COMPARE:
3354 case RTX_COMM_COMPARE:
752df20e 3355 /* See what items are actually being compared and set FOLDED_ARG[01]
3356 to those values and CODE to the actual comparison code. If any are
3357 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3358 do anything if both operands are already known to be constant. */
3359
5b2d8298 3360 /* ??? Vector mode comparisons are not supported yet. */
3361 if (VECTOR_MODE_P (mode))
3362 break;
3363
752df20e 3364 if (const_arg0 == 0 || const_arg1 == 0)
3365 {
3366 struct table_elt *p0, *p1;
ecb6ee6d 3367 rtx true_rtx, false_rtx;
3754d046 3368 machine_mode mode_arg1;
50cf1c21 3369
95204692 3370 if (SCALAR_FLOAT_MODE_P (mode))
50cf1c21 3371 {
ecb6ee6d 3372#ifdef FLOAT_STORE_FLAG_VALUE
d5f9611d 3373 true_rtx = (const_double_from_real_value
d4c5e26d 3374 (FLOAT_STORE_FLAG_VALUE (mode), mode));
ecb6ee6d 3375#else
3376 true_rtx = NULL_RTX;
3377#endif
9c811526 3378 false_rtx = CONST0_RTX (mode);
50cf1c21 3379 }
ecb6ee6d 3380 else
3381 {
3382 true_rtx = const_true_rtx;
3383 false_rtx = const0_rtx;
3384 }
752df20e 3385
5c4c31e3 3386 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3387 &mode_arg0, &mode_arg1);
752df20e 3388
5c4c31e3 3389 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3390 what kinds of things are being compared, so we can't do
3391 anything with this comparison. */
752df20e 3392
3393 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3394 break;
3395
58a1adea 3396 const_arg0 = equiv_constant (folded_arg0);
3397 const_arg1 = equiv_constant (folded_arg1);
3398
a92771b8 3399 /* If we do not now have two constants being compared, see
3400 if we can nevertheless deduce some things about the
3401 comparison. */
752df20e 3402 if (const_arg0 == 0 || const_arg1 == 0)
3403 {
9d3874a6 3404 if (const_arg1 != NULL)
3405 {
3406 rtx cheapest_simplification;
3407 int cheapest_cost;
3408 rtx simp_result;
3409 struct table_elt *p;
3410
3411 /* See if we can find an equivalent of folded_arg0
3412 that gets us a cheaper expression, possibly a
3413 constant through simplifications. */
3414 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3415 mode_arg0);
48e1416a 3416
9d3874a6 3417 if (p != NULL)
3418 {
3419 cheapest_simplification = x;
5ae4887d 3420 cheapest_cost = COST (x, mode);
9d3874a6 3421
3422 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3423 {
3424 int cost;
3425
3426 /* If the entry isn't valid, skip it. */
3427 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3428 continue;
3429
3430 /* Try to simplify using this equivalence. */
3431 simp_result
3432 = simplify_relational_operation (code, mode,
3433 mode_arg0,
3434 p->exp,
3435 const_arg1);
3436
3437 if (simp_result == NULL)
3438 continue;
3439
5ae4887d 3440 cost = COST (simp_result, mode);
9d3874a6 3441 if (cost < cheapest_cost)
3442 {
3443 cheapest_cost = cost;
3444 cheapest_simplification = simp_result;
3445 }
3446 }
3447
3448 /* If we have a cheaper expression now, use that
3449 and try folding it further, from the top. */
3450 if (cheapest_simplification != x)
045ed337 3451 return fold_rtx (copy_rtx (cheapest_simplification),
3452 insn);
9d3874a6 3453 }
3454 }
3455
03a563f6 3456 /* See if the two operands are the same. */
3457
3bac3cce 3458 if ((REG_P (folded_arg0)
3459 && REG_P (folded_arg1)
3460 && (REG_QTY (REGNO (folded_arg0))
3461 == REG_QTY (REGNO (folded_arg1))))
03a563f6 3462 || ((p0 = lookup (folded_arg0,
78d140c9 3463 SAFE_HASH (folded_arg0, mode_arg0),
3464 mode_arg0))
03a563f6 3465 && (p1 = lookup (folded_arg1,
78d140c9 3466 SAFE_HASH (folded_arg1, mode_arg0),
3467 mode_arg0))
03a563f6 3468 && p0->first_same_value == p1->first_same_value))
3bac3cce 3469 folded_arg1 = folded_arg0;
752df20e 3470
3471 /* If FOLDED_ARG0 is a register, see if the comparison we are
3472 doing now is either the same as we did before or the reverse
3473 (we only check the reverse if not floating-point). */
8ad4c111 3474 else if (REG_P (folded_arg0))
752df20e 3475 {
d1264606 3476 int qty = REG_QTY (REGNO (folded_arg0));
752df20e 3477
a7f3b1c7 3478 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3479 {
3480 struct qty_table_elem *ent = &qty_table[qty];
3481
3482 if ((comparison_dominates_p (ent->comparison_code, code)
a4110d9a 3483 || (! FLOAT_MODE_P (mode_arg0)
3484 && comparison_dominates_p (ent->comparison_code,
3485 reverse_condition (code))))
a7f3b1c7 3486 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3487 || (const_arg1
3488 && rtx_equal_p (ent->comparison_const,
3489 const_arg1))
8ad4c111 3490 || (REG_P (folded_arg1)
a7f3b1c7 3491 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
ecb6ee6d 3492 {
3493 if (comparison_dominates_p (ent->comparison_code, code))
3494 {
3495 if (true_rtx)
3496 return true_rtx;
3497 else
3498 break;
3499 }
3500 else
3501 return false_rtx;
3502 }
a7f3b1c7 3503 }
752df20e 3504 }
3505 }
3506 }
3507
3508 /* If we are comparing against zero, see if the first operand is
3509 equivalent to an IOR with a constant. If so, we may be able to
3510 determine the result of this comparison. */
3bac3cce 3511 if (const_arg1 == const0_rtx && !const_arg0)
752df20e 3512 {
3513 rtx y = lookup_as_function (folded_arg0, IOR);
3514 rtx inner_const;
3515
3516 if (y != 0
3517 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
971ba038 3518 && CONST_INT_P (inner_const)
752df20e 3519 && INTVAL (inner_const) != 0)
3bac3cce 3520 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
752df20e 3521 }
3522
ac503e50 3523 {
b9b50b55 3524 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3525 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3526 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3527 op0, op1);
ac503e50 3528 }
752df20e 3529 break;
3530
6720e96c 3531 case RTX_BIN_ARITH:
3532 case RTX_COMM_ARITH:
752df20e 3533 switch (code)
3534 {
3535 case PLUS:
3536 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3537 with that LABEL_REF as its second operand. If so, the result is
3538 the first operand of that MINUS. This handles switches with an
3539 ADDR_DIFF_VEC table. */
3540 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3541 {
e6d1f05b 3542 rtx y
3543 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
b74befc5 3544 : lookup_as_function (folded_arg0, MINUS);
752df20e 3545
3546 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
c7799456 3547 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
752df20e 3548 return XEXP (y, 0);
528b0df8 3549
3550 /* Now try for a CONST of a MINUS like the above. */
e6d1f05b 3551 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3552 : lookup_as_function (folded_arg0, CONST))) != 0
528b0df8 3553 && GET_CODE (XEXP (y, 0)) == MINUS
3554 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
c7799456 3555 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
528b0df8 3556 return XEXP (XEXP (y, 0), 0);
752df20e 3557 }
f7cf73ed 3558
e6d1f05b 3559 /* Likewise if the operands are in the other order. */
3560 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3561 {
3562 rtx y
3563 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
b74befc5 3564 : lookup_as_function (folded_arg1, MINUS);
e6d1f05b 3565
3566 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
c7799456 3567 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
e6d1f05b 3568 return XEXP (y, 0);
3569
3570 /* Now try for a CONST of a MINUS like the above. */
3571 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3572 : lookup_as_function (folded_arg1, CONST))) != 0
3573 && GET_CODE (XEXP (y, 0)) == MINUS
3574 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
c7799456 3575 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
e6d1f05b 3576 return XEXP (XEXP (y, 0), 0);
3577 }
3578
f7cf73ed 3579 /* If second operand is a register equivalent to a negative
3580 CONST_INT, see if we can find a register equivalent to the
3581 positive constant. Make a MINUS if so. Don't do this for
337bf63c 3582 a non-negative constant since we might then alternate between
3fb1e43b 3583 choosing positive and negative constants. Having the positive
337bf63c 3584 constant previously-used is the more common case. Be sure
3585 the resulting constant is non-negative; if const_arg1 were
3586 the smallest negative number this would overflow: depending
3587 on the mode, this would either just be the same value (and
3588 hence not save anything) or be incorrect. */
971ba038 3589 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
337bf63c 3590 && INTVAL (const_arg1) < 0
aaa2446c 3591 /* This used to test
3592
b74befc5 3593 -INTVAL (const_arg1) >= 0
aaa2446c 3594
3595 But The Sun V5.0 compilers mis-compiled that test. So
3596 instead we test for the problematic value in a more direct
3597 manner and hope the Sun compilers get it correct. */
76d98649 3598 && INTVAL (const_arg1) !=
edc19fd0 3599 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
8ad4c111 3600 && REG_P (folded_arg1))
f7cf73ed 3601 {
b74befc5 3602 rtx new_const = GEN_INT (-INTVAL (const_arg1));
f7cf73ed 3603 struct table_elt *p
78d140c9 3604 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
f7cf73ed 3605
3606 if (p)
3607 for (p = p->first_same_value; p; p = p->next_same_value)
8ad4c111 3608 if (REG_P (p->exp))
af21a202 3609 return simplify_gen_binary (MINUS, mode, folded_arg0,
47f1d198 3610 canon_reg (p->exp, NULL));
f7cf73ed 3611 }
5c4c31e3 3612 goto from_plus;
3613
3614 case MINUS:
3615 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3616 If so, produce (PLUS Z C2-C). */
7e3747b0 3617 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
5c4c31e3 3618 {
3619 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
7e3747b0 3620 if (y && poly_int_rtx_p (XEXP (y, 1)))
3621 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
47f1d198 3622 NULL);
5c4c31e3 3623 }
752df20e 3624
b74befc5 3625 /* Fall through. */
752df20e 3626
5c4c31e3 3627 from_plus:
752df20e 3628 case SMIN: case SMAX: case UMIN: case UMAX:
3629 case IOR: case AND: case XOR:
7a4fa2a1 3630 case MULT:
752df20e 3631 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3632 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3633 is known to be of similar form, we may be able to replace the
3634 operation with a combined operation. This may eliminate the
3635 intermediate operation if every use is simplified in this way.
3636 Note that the similar optimization done by combine.c only works
3637 if the intermediate operation's result has only one reference. */
3638
8ad4c111 3639 if (REG_P (folded_arg0)
971ba038 3640 && const_arg1 && CONST_INT_P (const_arg1))
752df20e 3641 {
3642 int is_shift
3643 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
8f353ea8 3644 rtx y, inner_const, new_const;
6026d749 3645 rtx canon_const_arg1 = const_arg1;
752df20e 3646 enum rtx_code associate_code;
752df20e 3647
0518a465 3648 if (is_shift
1048c155 3649 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
0518a465 3650 || INTVAL (const_arg1) < 0))
3651 {
3652 if (SHIFT_COUNT_TRUNCATED)
bd39703a 3653 canon_const_arg1 = gen_int_shift_amount
3654 (mode, (INTVAL (const_arg1)
3655 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
0518a465 3656 else
3657 break;
3658 }
3659
8f353ea8 3660 y = lookup_as_function (folded_arg0, code);
0518a465 3661 if (y == 0)
3662 break;
0518a465 3663
3664 /* If we have compiled a statement like
3665 "if (x == (x & mask1))", and now are looking at
3666 "x & mask2", we will have a case where the first operand
3667 of Y is the same as our first operand. Unless we detect
3668 this case, an infinite loop will result. */
3669 if (XEXP (y, 0) == folded_arg0)
752df20e 3670 break;
3671
8f353ea8 3672 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
971ba038 3673 if (!inner_const || !CONST_INT_P (inner_const))
8f353ea8 3674 break;
3675
752df20e 3676 /* Don't associate these operations if they are a PLUS with the
3677 same constant and it is a power of two. These might be doable
3678 with a pre- or post-increment. Similarly for two subtracts of
3679 identical powers of two with post decrement. */
3680
9cae6d48 3681 if (code == PLUS && const_arg1 == inner_const
e4e498cf 3682 && ((HAVE_PRE_INCREMENT
ac29ece2 3683 && pow2p_hwi (INTVAL (const_arg1)))
e4e498cf 3684 || (HAVE_POST_INCREMENT
ac29ece2 3685 && pow2p_hwi (INTVAL (const_arg1)))
e4e498cf 3686 || (HAVE_PRE_DECREMENT
ac29ece2 3687 && pow2p_hwi (- INTVAL (const_arg1)))
e4e498cf 3688 || (HAVE_POST_DECREMENT
ac29ece2 3689 && pow2p_hwi (- INTVAL (const_arg1)))))
752df20e 3690 break;
3691
e7323ddd 3692 /* ??? Vector mode shifts by scalar
3693 shift operand are not supported yet. */
3694 if (is_shift && VECTOR_MODE_P (mode))
3695 break;
3696
0518a465 3697 if (is_shift
1048c155 3698 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
0518a465 3699 || INTVAL (inner_const) < 0))
3700 {
3701 if (SHIFT_COUNT_TRUNCATED)
bd39703a 3702 inner_const = gen_int_shift_amount
3703 (mode, (INTVAL (inner_const)
3704 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
0518a465 3705 else
3706 break;
3707 }
3708
752df20e 3709 /* Compute the code used to compose the constants. For example,
7a4fa2a1 3710 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
752df20e 3711
7a4fa2a1 3712 associate_code = (is_shift || code == MINUS ? PLUS : code);
752df20e 3713
3714 new_const = simplify_binary_operation (associate_code, mode,
6026d749 3715 canon_const_arg1,
3716 inner_const);
752df20e 3717
3718 if (new_const == 0)
3719 break;
3720
3721 /* If we are associating shift operations, don't let this
94ad8c53 3722 produce a shift of the size of the object or larger.
3723 This could occur when we follow a sign-extend by a right
3724 shift on a machine that does a sign-extend as a pair
3725 of shifts. */
752df20e 3726
0518a465 3727 if (is_shift
971ba038 3728 && CONST_INT_P (new_const)
1048c155 3729 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
94ad8c53 3730 {
3731 /* As an exception, we can turn an ASHIFTRT of this
3732 form into a shift of the number of bits - 1. */
3733 if (code == ASHIFTRT)
bd39703a 3734 new_const = gen_int_shift_amount
3735 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
0518a465 3736 else if (!side_effects_p (XEXP (y, 0)))
3737 return CONST0_RTX (mode);
94ad8c53 3738 else
3739 break;
3740 }
752df20e 3741
3742 y = copy_rtx (XEXP (y, 0));
3743
3744 /* If Y contains our first operand (the most common way this
3745 can happen is if Y is a MEM), we would do into an infinite
3746 loop if we tried to fold it. So don't in that case. */
3747
3748 if (! reg_mentioned_p (folded_arg0, y))
3749 y = fold_rtx (y, insn);
3750
af21a202 3751 return simplify_gen_binary (code, mode, y, new_const);
752df20e 3752 }
0dbd1c74 3753 break;
3754
7a4fa2a1 3755 case DIV: case UDIV:
3756 /* ??? The associative optimization performed immediately above is
3757 also possible for DIV and UDIV using associate_code of MULT.
3758 However, we would need extra code to verify that the
3759 multiplication does not overflow, that is, there is no overflow
3760 in the calculation of new_const. */
3761 break;
3762
0dbd1c74 3763 default:
3764 break;
752df20e 3765 }
3766
d328ebdf 3767 new_rtx = simplify_binary_operation (code, mode,
752df20e 3768 const_arg0 ? const_arg0 : folded_arg0,
3769 const_arg1 ? const_arg1 : folded_arg1);
3770 break;
3771
6720e96c 3772 case RTX_OBJ:
752df20e 3773 /* (lo_sum (high X) X) is simply X. */
3774 if (code == LO_SUM && const_arg0 != 0
3775 && GET_CODE (const_arg0) == HIGH
3776 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3777 return const_arg1;
3778 break;
3779
6720e96c 3780 case RTX_TERNARY:
3781 case RTX_BITFIELD_OPS:
d328ebdf 3782 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
752df20e 3783 const_arg0 ? const_arg0 : folded_arg0,
3784 const_arg1 ? const_arg1 : folded_arg1,
3785 const_arg2 ? const_arg2 : XEXP (x, 2));
3786 break;
dd5ff96d 3787
6720e96c 3788 default:
3789 break;
752df20e 3790 }
3791
d328ebdf 3792 return new_rtx ? new_rtx : x;
752df20e 3793}
3794\f
3795/* Return a constant value currently equivalent to X.
3796 Return 0 if we don't know one. */
3797
3798static rtx
8ec3a57b 3799equiv_constant (rtx x)
752df20e 3800{
8ad4c111 3801 if (REG_P (x)
a7f3b1c7 3802 && REGNO_QTY_VALID_P (REGNO (x)))
3803 {
3804 int x_q = REG_QTY (REGNO (x));
3805 struct qty_table_elem *x_ent = &qty_table[x_q];
3806
3807 if (x_ent->const_rtx)
316f48ea 3808 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
a7f3b1c7 3809 }
752df20e 3810
f2f6be45 3811 if (x == 0 || CONSTANT_P (x))
752df20e 3812 return x;
3813
42a3a38b 3814 if (GET_CODE (x) == SUBREG)
3815 {
3754d046 3816 machine_mode mode = GET_MODE (x);
3817 machine_mode imode = GET_MODE (SUBREG_REG (x));
d328ebdf 3818 rtx new_rtx;
42a3a38b 3819
3820 /* See if we previously assigned a constant value to this SUBREG. */
d328ebdf 3821 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
e913b5cd 3822 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
bbad7cd0 3823 || (NUM_POLY_INT_COEFFS > 1
3824 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
d328ebdf 3825 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3826 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3827 return new_rtx;
42a3a38b 3828
5216d9e8 3829 /* If we didn't and if doing so makes sense, see if we previously
3830 assigned a constant value to the enclosing word mode SUBREG. */
52acb7ae 3831 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3832 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
5216d9e8 3833 {
9edf7ea8 3834 poly_int64 byte = (SUBREG_BYTE (x)
3835 - subreg_lowpart_offset (mode, word_mode));
3836 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
5216d9e8 3837 {
3838 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3839 new_rtx = lookup_as_function (y, CONST_INT);
3840 if (new_rtx)
3841 return gen_lowpart (mode, new_rtx);
3842 }
3843 }
3844
3a966565 3845 /* Otherwise see if we already have a constant for the inner REG,
3846 and if that is enough to calculate an equivalent constant for
3847 the subreg. Note that the upper bits of paradoxical subregs
3848 are undefined, so they cannot be said to equal anything. */
42a3a38b 3849 if (REG_P (SUBREG_REG (x))
d0257d43 3850 && !paradoxical_subreg_p (x)
d328ebdf 3851 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
5216d9e8 3852 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
42a3a38b 3853
3854 return 0;
3855 }
3856
3857 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3858 the hash table in case its value was seen before. */
e516eaa9 3859
e16ceb8e 3860 if (MEM_P (x))
e516eaa9 3861 {
3862 struct table_elt *elt;
3863
42a3a38b 3864 x = avoid_constant_pool_reference (x);
e516eaa9 3865 if (CONSTANT_P (x))
3866 return x;
3867
78d140c9 3868 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
e516eaa9 3869 if (elt == 0)
3870 return 0;
3871
3872 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3873 if (elt->is_const && CONSTANT_P (elt->exp))
3874 return elt->exp;
3875 }
3876
752df20e 3877 return 0;
3878}
3879\f
bbe0b6d7 3880/* Given INSN, a jump insn, TAKEN indicates if we are following the
3881 "taken" branch.
752df20e 3882
3883 In certain cases, this can cause us to add an equivalence. For example,
cb10db9d 3884 if we are following the taken case of
8ec3a57b 3885 if (i == 2)
752df20e 3886 we can add the fact that `i' and '2' are now equivalent.
3887
3888 In any case, we can record that this comparison was passed. If the same
3889 comparison is seen later, we will know its value. */
3890
3891static void
47f1d198 3892record_jump_equiv (rtx_insn *insn, bool taken)
752df20e 3893{
3894 int cond_known_true;
3895 rtx op0, op1;
b2816317 3896 rtx set;
3754d046 3897 machine_mode mode, mode0, mode1;
752df20e 3898 int reversed_nonequality = 0;
3899 enum rtx_code code;
3900
3901 /* Ensure this is the right kind of insn. */
bbe0b6d7 3902 gcc_assert (any_condjump_p (insn));
3903
b2816317 3904 set = pc_set (insn);
752df20e 3905
3906 /* See if this jump condition is known true or false. */
3907 if (taken)
b2816317 3908 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
752df20e 3909 else
b2816317 3910 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
752df20e 3911
3912 /* Get the type of comparison being done and the operands being compared.
3913 If we had to reverse a non-equality condition, record that fact so we
3914 know that it isn't valid for floating-point. */
b2816317 3915 code = GET_CODE (XEXP (SET_SRC (set), 0));
3916 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3917 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
752df20e 3918
40c562ee 3919 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3920 blocks. When that happens the tracking of the cc0-setter via
3921 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3922 NULL_RTX. In those cases, there's nothing to record. */
3923 if (op0 == NULL_RTX || op1 == NULL_RTX)
3924 return;
3925
5c4c31e3 3926 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
752df20e 3927 if (! cond_known_true)
3928 {
7da6ea0c 3929 code = reversed_comparison_code_parts (code, op0, op1, insn);
a4110d9a 3930
3931 /* Don't remember if we can't find the inverse. */
3932 if (code == UNKNOWN)
3933 return;
752df20e 3934 }
3935
3936 /* The mode is the mode of the non-constant. */
5c4c31e3 3937 mode = mode0;
3938 if (mode1 != VOIDmode)
3939 mode = mode1;
752df20e 3940
3941 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3942}
3943
cfa1a80d 3944/* Yet another form of subreg creation. In this case, we want something in
3945 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3946
3947static rtx
3754d046 3948record_jump_cond_subreg (machine_mode mode, rtx op)
cfa1a80d 3949{
3754d046 3950 machine_mode op_mode = GET_MODE (op);
cfa1a80d 3951 if (op_mode == mode || op_mode == VOIDmode)
3952 return op;
3953 return lowpart_subreg (mode, op, op_mode);
3954}
3955
752df20e 3956/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3957 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3958 Make any useful entries we can with that information. Called from
3959 above function and called recursively. */
3960
3961static void
3754d046 3962record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
8ec3a57b 3963 rtx op1, int reversed_nonequality)
752df20e 3964{
952bc06d 3965 unsigned op0_hash, op1_hash;
0af17926 3966 int op0_in_memory, op1_in_memory;
752df20e 3967 struct table_elt *op0_elt, *op1_elt;
3968
3969 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3970 we know that they are also equal in the smaller mode (this is also
3971 true for all smaller modes whether or not there is a SUBREG, but
f5d1f9f9 3972 is not worth testing for with no SUBREG). */
752df20e 3973
3c5cc27f 3974 /* Note that GET_MODE (op0) may not equal MODE. */
b537bfdb 3975 if (code == EQ && paradoxical_subreg_p (op0))
752df20e 3976 {
3754d046 3977 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
cfa1a80d 3978 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3979 if (tem)
3980 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3981 reversed_nonequality);
752df20e 3982 }
3983
b537bfdb 3984 if (code == EQ && paradoxical_subreg_p (op1))
752df20e 3985 {
3754d046 3986 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
cfa1a80d 3987 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3988 if (tem)
3989 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3990 reversed_nonequality);
752df20e 3991 }
3992
cb10db9d 3993 /* Similarly, if this is an NE comparison, and either is a SUBREG
752df20e 3994 making a smaller mode, we know the whole thing is also NE. */
3995
3c5cc27f 3996 /* Note that GET_MODE (op0) may not equal MODE;
3997 if we test MODE instead, we can get an infinite recursion
3998 alternating between two modes each wider than MODE. */
3999
974534ab 4000 if (code == NE
4001 && partial_subreg_p (op0)
4002 && subreg_lowpart_p (op0))
752df20e 4003 {
3754d046 4004 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
cfa1a80d 4005 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4006 if (tem)
4007 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4008 reversed_nonequality);
752df20e 4009 }
4010
974534ab 4011 if (code == NE
4012 && partial_subreg_p (op1)
4013 && subreg_lowpart_p (op1))
752df20e 4014 {
3754d046 4015 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
cfa1a80d 4016 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4017 if (tem)
4018 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4019 reversed_nonequality);
752df20e 4020 }
4021
4022 /* Hash both operands. */
4023
4024 do_not_record = 0;
4025 hash_arg_in_memory = 0;
952bc06d 4026 op0_hash = HASH (op0, mode);
752df20e 4027 op0_in_memory = hash_arg_in_memory;
752df20e 4028
4029 if (do_not_record)
4030 return;
4031
4032 do_not_record = 0;
4033 hash_arg_in_memory = 0;
952bc06d 4034 op1_hash = HASH (op1, mode);
752df20e 4035 op1_in_memory = hash_arg_in_memory;
cb10db9d 4036
752df20e 4037 if (do_not_record)
4038 return;
4039
4040 /* Look up both operands. */
952bc06d 4041 op0_elt = lookup (op0, op0_hash, mode);
4042 op1_elt = lookup (op1, op1_hash, mode);
752df20e 4043
9f8339f2 4044 /* If both operands are already equivalent or if they are not in the
4045 table but are identical, do nothing. */
4046 if ((op0_elt != 0 && op1_elt != 0
4047 && op0_elt->first_same_value == op1_elt->first_same_value)
4048 || op0 == op1 || rtx_equal_p (op0, op1))
4049 return;
4050
752df20e 4051 /* If we aren't setting two things equal all we can do is save this
5b620701 4052 comparison. Similarly if this is floating-point. In the latter
4053 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4054 If we record the equality, we might inadvertently delete code
4055 whose intent was to change -0 to +0. */
4056
c1712420 4057 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
752df20e 4058 {
a7f3b1c7 4059 struct qty_table_elem *ent;
4060 int qty;
4061
752df20e 4062 /* If we reversed a floating-point comparison, if OP0 is not a
4063 register, or if OP1 is neither a register or constant, we can't
4064 do anything. */
4065
8ad4c111 4066 if (!REG_P (op1))
752df20e 4067 op1 = equiv_constant (op1);
4068
c1712420 4069 if ((reversed_nonequality && FLOAT_MODE_P (mode))
8ad4c111 4070 || !REG_P (op0) || op1 == 0)
752df20e 4071 return;
4072
4073 /* Put OP0 in the hash table if it isn't already. This gives it a
4074 new quantity number. */
4075 if (op0_elt == 0)
4076 {
4679ade3 4077 if (insert_regs (op0, NULL, 0))
752df20e 4078 {
4079 rehash_using_reg (op0);
952bc06d 4080 op0_hash = HASH (op0, mode);
a45f1da6 4081
4082 /* If OP0 is contained in OP1, this changes its hash code
4083 as well. Faster to rehash than to check, except
4084 for the simple case of a constant. */
4085 if (! CONSTANT_P (op1))
952bc06d 4086 op1_hash = HASH (op1,mode);
752df20e 4087 }
4088
4679ade3 4089 op0_elt = insert (op0, NULL, op0_hash, mode);
752df20e 4090 op0_elt->in_memory = op0_in_memory;
752df20e 4091 }
4092
a7f3b1c7 4093 qty = REG_QTY (REGNO (op0));
4094 ent = &qty_table[qty];
4095
4096 ent->comparison_code = code;
8ad4c111 4097 if (REG_P (op1))
752df20e 4098 {
95f65c26 4099 /* Look it up again--in case op0 and op1 are the same. */
952bc06d 4100 op1_elt = lookup (op1, op1_hash, mode);
95f65c26 4101
752df20e 4102 /* Put OP1 in the hash table so it gets a new quantity number. */
4103 if (op1_elt == 0)
4104 {
4679ade3 4105 if (insert_regs (op1, NULL, 0))
752df20e 4106 {
4107 rehash_using_reg (op1);
952bc06d 4108 op1_hash = HASH (op1, mode);
752df20e 4109 }
4110
4679ade3 4111 op1_elt = insert (op1, NULL, op1_hash, mode);
752df20e 4112 op1_elt->in_memory = op1_in_memory;
752df20e 4113 }
4114
a7f3b1c7 4115 ent->comparison_const = NULL_RTX;
4116 ent->comparison_qty = REG_QTY (REGNO (op1));
752df20e 4117 }
4118 else
4119 {
a7f3b1c7 4120 ent->comparison_const = op1;
4121 ent->comparison_qty = -1;
752df20e 4122 }
4123
4124 return;
4125 }
4126
56e155ea 4127 /* If either side is still missing an equivalence, make it now,
4128 then merge the equivalences. */
752df20e 4129
752df20e 4130 if (op0_elt == 0)
4131 {
4679ade3 4132 if (insert_regs (op0, NULL, 0))
752df20e 4133 {
4134 rehash_using_reg (op0);
952bc06d 4135 op0_hash = HASH (op0, mode);
752df20e 4136 }
4137
4679ade3 4138 op0_elt = insert (op0, NULL, op0_hash, mode);
752df20e 4139 op0_elt->in_memory = op0_in_memory;
752df20e 4140 }
4141
4142 if (op1_elt == 0)
4143 {
4679ade3 4144 if (insert_regs (op1, NULL, 0))
752df20e 4145 {
4146 rehash_using_reg (op1);
952bc06d 4147 op1_hash = HASH (op1, mode);
752df20e 4148 }
4149
4679ade3 4150 op1_elt = insert (op1, NULL, op1_hash, mode);
752df20e 4151 op1_elt->in_memory = op1_in_memory;
752df20e 4152 }
56e155ea 4153
4154 merge_equiv_classes (op0_elt, op1_elt);
752df20e 4155}
4156\f
4157/* CSE processing for one instruction.
2aca5650 4158
4159 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4160 but the few that "leak through" are cleaned up by cse_insn, and complex
4161 addressing modes are often formed here.
4162
4163 The main function is cse_insn, and between here and that function
4164 a couple of helper functions is defined to keep the size of cse_insn
4165 within reasonable proportions.
4166
4167 Data is shared between the main and helper functions via STRUCT SET,
4168 that contains all data related for every set in the instruction that
4169 is being processed.
4170
4171 Note that cse_main processes all sets in the instruction. Most
4172 passes in GCC only process simple SET insns or single_set insns, but
4173 CSE processes insns with multiple sets as well. */
752df20e 4174
4175/* Data on one SET contained in the instruction. */
4176
4177struct set
4178{
4179 /* The SET rtx itself. */
4180 rtx rtl;
4181 /* The SET_SRC of the rtx (the original value, if it is changing). */
4182 rtx src;
4183 /* The hash-table element for the SET_SRC of the SET. */
4184 struct table_elt *src_elt;
952bc06d 4185 /* Hash value for the SET_SRC. */
4186 unsigned src_hash;
4187 /* Hash value for the SET_DEST. */
4188 unsigned dest_hash;
752df20e 4189 /* The SET_DEST, with SUBREG, etc., stripped. */
4190 rtx inner_dest;
cb10db9d 4191 /* Nonzero if the SET_SRC is in memory. */
752df20e 4192 char src_in_memory;
752df20e 4193 /* Nonzero if the SET_SRC contains something
4194 whose value cannot be predicted and understood. */
4195 char src_volatile;
d8b9732d 4196 /* Original machine mode, in case it becomes a CONST_INT.
4197 The size of this field should match the size of the mode
4198 field of struct rtx_def (see rtl.h). */
4199 ENUM_BITFIELD(machine_mode) mode : 8;
952bc06d 4200 /* Hash value of constant equivalent for SET_SRC. */
4201 unsigned src_const_hash;
487798e2 4202 /* A constant equivalent for SET_SRC, if any. */
4203 rtx src_const;
752df20e 4204 /* Table entry for constant equivalent for SET_SRC, if any. */
4205 struct table_elt *src_const_elt;
977ffed2 4206 /* Table entry for the destination address. */
4207 struct table_elt *dest_addr_elt;
752df20e 4208};
2aca5650 4209\f
4210/* Special handling for (set REG0 REG1) where REG0 is the
4211 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4212 be used in the sequel, so (if easily done) change this insn to
4213 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4214 that computed their value. Then REG1 will become a dead store
4215 and won't cloud the situation for later optimizations.
4216
4217 Do not make this change if REG1 is a hard register, because it will
4218 then be used in the sequel and we may be changing a two-operand insn
4219 into a three-operand insn.
4220
4221 This is the last transformation that cse_insn will try to do. */
752df20e 4222
4223static void
47f1d198 4224try_back_substitute_reg (rtx set, rtx_insn *insn)
752df20e 4225{
2aca5650 4226 rtx dest = SET_DEST (set);
4227 rtx src = SET_SRC (set);
752df20e 4228
2aca5650 4229 if (REG_P (dest)
4230 && REG_P (src) && ! HARD_REGISTER_P (src)
4231 && REGNO_QTY_VALID_P (REGNO (src)))
4232 {
4233 int src_q = REG_QTY (REGNO (src));
4234 struct qty_table_elem *src_ent = &qty_table[src_q];
752df20e 4235
2aca5650 4236 if (src_ent->first_reg == REGNO (dest))
4237 {
4238 /* Scan for the previous nonnote insn, but stop at a basic
4239 block boundary. */
47f1d198 4240 rtx_insn *prev = insn;
4241 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
2aca5650 4242 do
4243 {
4244 prev = PREV_INSN (prev);
4245 }
4246 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
752df20e 4247
2aca5650 4248 /* Do not swap the registers around if the previous instruction
4249 attaches a REG_EQUIV note to REG1.
752df20e 4250
2aca5650 4251 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4252 from the pseudo that originally shadowed an incoming argument
4253 to another register. Some uses of REG_EQUIV might rely on it
4254 being attached to REG1 rather than REG2.
752df20e 4255
2aca5650 4256 This section previously turned the REG_EQUIV into a REG_EQUAL
4257 note. We cannot do that because REG_EQUIV may provide an
4258 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4259 if (NONJUMP_INSN_P (prev)
4260 && GET_CODE (PATTERN (prev)) == SET
4261 && SET_DEST (PATTERN (prev)) == src
4262 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4263 {
4264 rtx note;
4265
4266 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4267 validate_change (insn, &SET_DEST (set), src, 1);
4268 validate_change (insn, &SET_SRC (set), dest, 1);
4269 apply_change_group ();
4270
4271 /* If INSN has a REG_EQUAL note, and this note mentions
4272 REG0, then we must delete it, because the value in
4273 REG0 has changed. If the note's value is REG1, we must
4274 also delete it because that is now this insn's dest. */
4275 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4276 if (note != 0
4277 && (reg_mentioned_p (dest, XEXP (note, 0))
4278 || rtx_equal_p (src, XEXP (note, 0))))
4279 remove_note (insn, note);
322eecc0 4280
4281 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4282 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4283 if (note != 0)
4284 {
4285 remove_note (insn, note);
4286 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4287 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4288 }
2aca5650 4289 }
ddaf7ad3 4290 }
b84155cd 4291 }
2aca5650 4292}
4293\f
4294/* Record all the SETs in this instruction into SETS_PTR,
4295 and return the number of recorded sets. */
4296static int
47f1d198 4297find_sets_in_insn (rtx_insn *insn, struct set **psets)
2aca5650 4298{
4299 struct set *sets = *psets;
4300 int n_sets = 0;
4301 rtx x = PATTERN (insn);
b84155cd 4302
752df20e 4303 if (GET_CODE (x) == SET)
4304 {
752df20e 4305 /* Ignore SETs that are unconditional jumps.
4306 They never need cse processing, so this does not hurt.
4307 The reason is not efficiency but rather
4308 so that we can test at the end for instructions
4309 that have been simplified to unconditional jumps
4310 and not be misled by unchanged instructions
4311 that were unconditional jumps to begin with. */
4312 if (SET_DEST (x) == pc_rtx
4313 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4314 ;
752df20e 4315 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4316 The hard function value register is used only once, to copy to
2aca5650 4317 someplace else, so it isn't worth cse'ing. */
752df20e 4318 else if (GET_CODE (SET_SRC (x)) == CALL)
2aca5650 4319 ;
752df20e 4320 else
2aca5650 4321 sets[n_sets++].rtl = x;
752df20e 4322 }
4323 else if (GET_CODE (x) == PARALLEL)
4324 {
2aca5650 4325 int i, lim = XVECLEN (x, 0);
cb10db9d 4326
20d3ff08 4327 /* Go over the expressions of the PARALLEL in forward order, to
2aca5650 4328 put them in the same order in the SETS array. */
752df20e 4329 for (i = 0; i < lim; i++)
4330 {
19cb6b50 4331 rtx y = XVECEXP (x, 0, i);
752df20e 4332 if (GET_CODE (y) == SET)
4333 {
8d5dd220 4334 /* As above, we ignore unconditional jumps and call-insns and
4335 ignore the result of apply_change_group. */
2aca5650 4336 if (SET_DEST (y) == pc_rtx
4337 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4338 ;
4339 else if (GET_CODE (SET_SRC (y)) == CALL)
752df20e 4340 ;
4341 else
4342 sets[n_sets++].rtl = y;
4343 }
752df20e 4344 }
4345 }
2aca5650 4346
4347 return n_sets;
4348}
4349\f
c0ac34cf 4350/* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4351
4352static void
4353canon_asm_operands (rtx x, rtx_insn *insn)
4354{
4355 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4356 {
4357 rtx input = ASM_OPERANDS_INPUT (x, i);
4358 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4359 {
4360 input = canon_reg (input, insn);
4361 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4362 }
4363 }
4364}
4365
2aca5650 4366/* Where possible, substitute every register reference in the N_SETS
47ae02b7 4367 number of SETS in INSN with the canonical register.
2aca5650 4368
4369 Register canonicalization propagatest the earliest register (i.e.
4370 one that is set before INSN) with the same value. This is a very
4371 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4372 to RTL. For instance, a CONST for an address is usually expanded
4373 multiple times to loads into different registers, thus creating many
4374 subexpressions of the form:
4375
4376 (set (reg1) (some_const))
4377 (set (mem (... reg1 ...) (thing)))
4378 (set (reg2) (some_const))
4379 (set (mem (... reg2 ...) (thing)))
4380
4381 After canonicalizing, the code takes the following form:
4382
4383 (set (reg1) (some_const))
4384 (set (mem (... reg1 ...) (thing)))
4385 (set (reg2) (some_const))
4386 (set (mem (... reg1 ...) (thing)))
4387
4388 The set to reg2 is now trivially dead, and the memory reference (or
4389 address, or whatever) may be a candidate for further CSEing.
4390
4391 In this function, the result of apply_change_group can be ignored;
4392 see canon_reg. */
4393
4394static void
47f1d198 4395canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
2aca5650 4396{
4397 struct set *sets = *psets;
4398 rtx tem;
4399 rtx x = PATTERN (insn);
4400 int i;
4401
4402 if (CALL_P (insn))
4403 {
4404 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
c8010b80 4405 if (GET_CODE (XEXP (tem, 0)) != SET)
4406 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
2aca5650 4407 }
4408
4409 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4410 {
4411 canon_reg (SET_SRC (x), insn);
4412 apply_change_group ();
4413 fold_rtx (SET_SRC (x), insn);
4414 }
752df20e 4415 else if (GET_CODE (x) == CLOBBER)
4416 {
2aca5650 4417 /* If we clobber memory, canon the address.
4418 This does nothing when a register is clobbered
4419 because we have already invalidated the reg. */
e16ceb8e 4420 if (MEM_P (XEXP (x, 0)))
3072d30e 4421 canon_reg (XEXP (x, 0), insn);
752df20e 4422 }
52620891 4423 else if (GET_CODE (x) == CLOBBER_HIGH)
4424 gcc_assert (REG_P (XEXP (x, 0)));
752df20e 4425 else if (GET_CODE (x) == USE
8ad4c111 4426 && ! (REG_P (XEXP (x, 0))
752df20e 4427 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
2aca5650 4428 /* Canonicalize a USE of a pseudo register or memory location. */
e126ac03 4429 canon_reg (x, insn);
4430 else if (GET_CODE (x) == ASM_OPERANDS)
c0ac34cf 4431 canon_asm_operands (x, insn);
752df20e 4432 else if (GET_CODE (x) == CALL)
4433 {
4434 canon_reg (x, insn);
8b82837b 4435 apply_change_group ();
752df20e 4436 fold_rtx (x, insn);
4437 }
9845d120 4438 else if (DEBUG_INSN_P (insn))
4439 canon_reg (PATTERN (insn), insn);
2aca5650 4440 else if (GET_CODE (x) == PARALLEL)
4441 {
4442 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4443 {
4444 rtx y = XVECEXP (x, 0, i);
4445 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4446 {
4447 canon_reg (SET_SRC (y), insn);
4448 apply_change_group ();
4449 fold_rtx (SET_SRC (y), insn);
4450 }
4451 else if (GET_CODE (y) == CLOBBER)
4452 {
4453 if (MEM_P (XEXP (y, 0)))
4454 canon_reg (XEXP (y, 0), insn);
4455 }
52620891 4456 else if (GET_CODE (y) == CLOBBER_HIGH)
4457 gcc_assert (REG_P (XEXP (y, 0)));
2aca5650 4458 else if (GET_CODE (y) == USE
4459 && ! (REG_P (XEXP (y, 0))
4460 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4461 canon_reg (y, insn);
c0ac34cf 4462 else if (GET_CODE (y) == ASM_OPERANDS)
4463 canon_asm_operands (y, insn);
2aca5650 4464 else if (GET_CODE (y) == CALL)
4465 {
4466 canon_reg (y, insn);
4467 apply_change_group ();
4468 fold_rtx (y, insn);
4469 }
4470 }
4471 }
752df20e 4472
384770d0 4473 if (n_sets == 1 && REG_NOTES (insn) != 0
2aca5650 4474 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
24d87432 4475 {
2aca5650 4476 /* We potentially will process this insn many times. Therefore,
4477 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4478 unique set in INSN.
4479
4480 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4481 because cse_insn handles those specially. */
4482 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4483 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4484 remove_note (insn, tem);
4485 else
4486 {
4487 canon_reg (XEXP (tem, 0), insn);
4488 apply_change_group ();
4489 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4490 df_notes_rescan (insn);
4491 }
24d87432 4492 }
752df20e 4493
4494 /* Canonicalize sources and addresses of destinations.
4495 We do this in a separate pass to avoid problems when a MATCH_DUP is
4496 present in the insn pattern. In that case, we want to ensure that
4497 we don't break the duplicate nature of the pattern. So we will replace
4498 both operands at the same time. Otherwise, we would fail to find an
4499 equivalent substitution in the loop calling validate_change below.
752df20e 4500
4501 We used to suppress canonicalization of DEST if it appears in SRC,
8b82837b 4502 but we don't do this any more. */
752df20e 4503
4504 for (i = 0; i < n_sets; i++)
4505 {
4506 rtx dest = SET_DEST (sets[i].rtl);
4507 rtx src = SET_SRC (sets[i].rtl);
d328ebdf 4508 rtx new_rtx = canon_reg (src, insn);
752df20e 4509
d328ebdf 4510 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
752df20e 4511
476d094d 4512 if (GET_CODE (dest) == ZERO_EXTRACT)
752df20e 4513 {
4514 validate_change (insn, &XEXP (dest, 1),
8b82837b 4515 canon_reg (XEXP (dest, 1), insn), 1);
752df20e 4516 validate_change (insn, &XEXP (dest, 2),
8b82837b 4517 canon_reg (XEXP (dest, 2), insn), 1);
752df20e 4518 }
4519
476d094d 4520 while (GET_CODE (dest) == SUBREG
752df20e 4521 || GET_CODE (dest) == ZERO_EXTRACT
476d094d 4522 || GET_CODE (dest) == STRICT_LOW_PART)
752df20e 4523 dest = XEXP (dest, 0);
4524
e16ceb8e 4525 if (MEM_P (dest))
752df20e 4526 canon_reg (dest, insn);
4527 }
4528
8b82837b 4529 /* Now that we have done all the replacements, we can apply the change
4530 group and see if they all work. Note that this will cause some
4531 canonicalizations that would have worked individually not to be applied
4532 because some other canonicalization didn't work, but this should not
cb10db9d 4533 occur often.
8d5dd220 4534
4535 The result of apply_change_group can be ignored; see canon_reg. */
8b82837b 4536
4537 apply_change_group ();
2aca5650 4538}
4539\f
4540/* Main function of CSE.
4541 First simplify sources and addresses of all assignments
4542 in the instruction, using previously-computed equivalents values.
4543 Then install the new sources and destinations in the table
4544 of available values. */
4545
4546static void
47f1d198 4547cse_insn (rtx_insn *insn)
2aca5650 4548{
4549 rtx x = PATTERN (insn);
4550 int i;
4551 rtx tem;
4552 int n_sets = 0;
4553
4554 rtx src_eqv = 0;
4555 struct table_elt *src_eqv_elt = 0;
4556 int src_eqv_volatile = 0;
4557 int src_eqv_in_memory = 0;
4558 unsigned src_eqv_hash = 0;
4559
4560 struct set *sets = (struct set *) 0;
4561
4562 if (GET_CODE (x) == SET)
4563 sets = XALLOCA (struct set);
4564 else if (GET_CODE (x) == PARALLEL)
4565 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4566
4567 this_insn = insn;
2aca5650 4568 /* Records what this insn does to set CC0. */
4569 this_insn_cc0 = 0;
4570 this_insn_cc0_mode = VOIDmode;
2aca5650 4571
4572 /* Find all regs explicitly clobbered in this insn,
4573 to ensure they are not replaced with any other regs
4574 elsewhere in this insn. */
4575 invalidate_from_sets_and_clobbers (insn);
4576
4577 /* Record all the SETs in this instruction. */
4578 n_sets = find_sets_in_insn (insn, &sets);
4579
4580 /* Substitute the canonical register where possible. */
4581 canonicalize_insn (insn, &sets, n_sets);
4582
4583 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
f2c7e335 4584 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4585 latter condition is necessary because SRC_EQV is handled specially for
4586 this case, and if it isn't set, then there will be no equivalence
4587 for the destination. */
2aca5650 4588 if (n_sets == 1 && REG_NOTES (insn) != 0
6c1fc504 4589 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
f2c7e335 4590 {
f2c7e335 4591
6c1fc504 4592 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4593 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4594 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4595 src_eqv = copy_rtx (XEXP (tem, 0));
f2c7e335 4596 /* If DEST is of the form ZERO_EXTACT, as in:
4597 (set (zero_extract:SI (reg:SI 119)
4598 (const_int 16 [0x10])
4599 (const_int 16 [0x10]))
4600 (const_int 51154 [0xc7d2]))
4601 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4602 point. Note that this is different from SRC_EQV. We can however
4603 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4604 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
a76e121f 4605 && CONST_INT_P (XEXP (tem, 0))
f2c7e335 4606 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4607 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4608 {
4609 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
7a6aeeed 4610 /* This is the mode of XEXP (tem, 0) as well. */
4611 scalar_int_mode dest_mode
4612 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
f2c7e335 4613 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4614 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
a76e121f 4615 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
f2c7e335 4616 HOST_WIDE_INT mask;
4617 unsigned int shift;
4618 if (BITS_BIG_ENDIAN)
7a6aeeed 4619 shift = (GET_MODE_PRECISION (dest_mode)
4620 - INTVAL (pos) - INTVAL (width));
f2c7e335 4621 else
4622 shift = INTVAL (pos);
4623 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
7097b942 4624 mask = HOST_WIDE_INT_M1;
f2c7e335 4625 else
edc19fd0 4626 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
f2c7e335 4627 val = (val >> shift) & mask;
4628 src_eqv = GEN_INT (val);
4629 }
4630 }
8b82837b 4631
752df20e 4632 /* Set sets[i].src_elt to the class each source belongs to.
4633 Detect assignments from or to volatile things
4634 and set set[i] to zero so they will be ignored
4635 in the rest of this function.
4636
4637 Nothing in this loop changes the hash table or the register chains. */
4638
4639 for (i = 0; i < n_sets; i++)
4640 {
a49d9163 4641 bool repeat = false;
663f4248 4642 bool mem_noop_insn = false;
19cb6b50 4643 rtx src, dest;
4644 rtx src_folded;
4645 struct table_elt *elt = 0, *p;
3754d046 4646 machine_mode mode;
752df20e 4647 rtx src_eqv_here;
4648 rtx src_const = 0;
4649 rtx src_related = 0;
01c8e4c9 4650 bool src_related_is_const_anchor = false;
752df20e 4651 struct table_elt *src_const_elt = 0;
fb561825 4652 int src_cost = MAX_COST;
4653 int src_eqv_cost = MAX_COST;
4654 int src_folded_cost = MAX_COST;
4655 int src_related_cost = MAX_COST;
4656 int src_elt_cost = MAX_COST;
4657 int src_regcost = MAX_COST;
4658 int src_eqv_regcost = MAX_COST;
4659 int src_folded_regcost = MAX_COST;
4660 int src_related_regcost = MAX_COST;
4661 int src_elt_regcost = MAX_COST;
d10cfa8d 4662 /* Set nonzero if we need to call force_const_mem on with the
752df20e 4663 contents of src_folded before using it. */
4664 int src_folded_force_flag = 0;
8b449599 4665 scalar_int_mode int_mode;
752df20e 4666
4667 dest = SET_DEST (sets[i].rtl);
4668 src = SET_SRC (sets[i].rtl);
4669
4670 /* If SRC is a constant that has no machine mode,
4671 hash it with the destination's machine mode.
4672 This way we can keep different modes separate. */
4673
4674 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4675 sets[i].mode = mode;
4676
4677 if (src_eqv)
4678 {
3754d046 4679 machine_mode eqvmode = mode;
752df20e 4680 if (GET_CODE (dest) == STRICT_LOW_PART)
4681 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4682 do_not_record = 0;
4683 hash_arg_in_memory = 0;
952bc06d 4684 src_eqv_hash = HASH (src_eqv, eqvmode);
752df20e 4685
4686 /* Find the equivalence class for the equivalent expression. */
4687
4688 if (!do_not_record)
952bc06d 4689 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
752df20e 4690
4691 src_eqv_volatile = do_not_record;
4692 src_eqv_in_memory = hash_arg_in_memory;
752df20e 4693 }
4694
4695 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4696 value of the INNER register, not the destination. So it is not
fd6efe25 4697 a valid substitution for the source. But save it for later. */
752df20e 4698 if (GET_CODE (dest) == STRICT_LOW_PART)
4699 src_eqv_here = 0;
4700 else
4701 src_eqv_here = src_eqv;
4702
4703 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4704 simplified result, which may not necessarily be valid. */
afabf5e0 4705 src_folded = fold_rtx (src, NULL);
752df20e 4706
c93674f2 4707#if 0
4708 /* ??? This caused bad code to be generated for the m68k port with -O2.
4709 Suppose src is (CONST_INT -1), and that after truncation src_folded
4710 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4711 At the end we will add src and src_const to the same equivalence
4712 class. We now have 3 and -1 on the same equivalence class. This
4713 causes later instructions to be mis-optimized. */
752df20e 4714 /* If storing a constant in a bitfield, pre-truncate the constant
4715 so we will be able to record it later. */
476d094d 4716 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
752df20e 4717 {
4718 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4719
971ba038 4720 if (CONST_INT_P (src)
4721 && CONST_INT_P (width)
b572011e 4722 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4723 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4724 src_folded
edc19fd0 4725 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
b572011e 4726 << INTVAL (width)) - 1));
752df20e 4727 }
c93674f2 4728#endif
752df20e 4729
4730 /* Compute SRC's hash code, and also notice if it
4731 should not be recorded at all. In that case,
4732 prevent any further processing of this assignment. */
4733 do_not_record = 0;
4734 hash_arg_in_memory = 0;
752df20e 4735
4736 sets[i].src = src;
952bc06d 4737 sets[i].src_hash = HASH (src, mode);
752df20e 4738 sets[i].src_volatile = do_not_record;
4739 sets[i].src_in_memory = hash_arg_in_memory;
752df20e 4740
6ea5a450 4741 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
75f84104 4742 a pseudo, do not record SRC. Using SRC as a replacement for
4743 anything else will be incorrect in that situation. Note that
4744 this usually occurs only for stack slots, in which case all the
4745 RTL would be referring to SRC, so we don't lose any optimization
4746 opportunities by not having SRC in the hash table. */
6ea5a450 4747
e16ceb8e 4748 if (MEM_P (src)
75f84104 4749 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
8ad4c111 4750 && REG_P (dest)
75f84104 4751 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
6ea5a450 4752 sets[i].src_volatile = 1;
4753
f3f18244 4754 else if (GET_CODE (src) == ASM_OPERANDS
4755 && GET_CODE (x) == PARALLEL)
20d3ff08 4756 {
4757 /* Do not record result of a non-volatile inline asm with
4758 more than one result. */
4759 if (n_sets > 1)
4760 sets[i].src_volatile = 1;
4761
4762 int j, lim = XVECLEN (x, 0);
4763 for (j = 0; j < lim; j++)
4764 {
4765 rtx y = XVECEXP (x, 0, j);
4766 /* And do not record result of a non-volatile inline asm
4767 with "memory" clobber. */
4768 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4769 {
4770 sets[i].src_volatile = 1;
4771 break;
4772 }
4773 }
4774 }
f3f18244 4775
c538053c 4776#if 0
4777 /* It is no longer clear why we used to do this, but it doesn't
4778 appear to still be needed. So let's try without it since this
4779 code hurts cse'ing widened ops. */
5f3447b0 4780 /* If source is a paradoxical subreg (such as QI treated as an SI),
752df20e 4781 treat it as volatile. It may do the work of an SI in one context
4782 where the extra bits are not being used, but cannot replace an SI
4783 in general. */
b537bfdb 4784 if (paradoxical_subreg_p (src))
752df20e 4785 sets[i].src_volatile = 1;
c538053c 4786#endif
752df20e 4787
4788 /* Locate all possible equivalent forms for SRC. Try to replace
4789 SRC in the insn with each cheaper equivalent.
4790
4791 We have the following types of equivalents: SRC itself, a folded
4792 version, a value given in a REG_EQUAL note, or a value related
4793 to a constant.
4794
4795 Each of these equivalents may be part of an additional class
4796 of equivalents (if more than one is in the table, they must be in
4797 the same class; we check for this).
4798
4799 If the source is volatile, we don't do any table lookups.
4800
4801 We note any constant equivalent for possible later use in a
4802 REG_NOTE. */
4803
4804 if (!sets[i].src_volatile)
952bc06d 4805 elt = lookup (src, sets[i].src_hash, mode);
752df20e 4806
4807 sets[i].src_elt = elt;
4808
4809 if (elt && src_eqv_here && src_eqv_elt)
cb10db9d 4810 {
4811 if (elt->first_same_value != src_eqv_elt->first_same_value)
752df20e 4812 {
4813 /* The REG_EQUAL is indicating that two formerly distinct
4814 classes are now equivalent. So merge them. */
4815 merge_equiv_classes (elt, src_eqv_elt);
952bc06d 4816 src_eqv_hash = HASH (src_eqv, elt->mode);
4817 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
752df20e 4818 }
4819
cb10db9d 4820 src_eqv_here = 0;
4821 }
752df20e 4822
4823 else if (src_eqv_elt)
cb10db9d 4824 elt = src_eqv_elt;
752df20e 4825
4826 /* Try to find a constant somewhere and record it in `src_const'.
4827 Record its table element, if any, in `src_const_elt'. Look in
4828 any known equivalences first. (If the constant is not in the
952bc06d 4829 table, also set `sets[i].src_const_hash'). */
752df20e 4830 if (elt)
cb10db9d 4831 for (p = elt->first_same_value; p; p = p->next_same_value)
752df20e 4832 if (p->is_const)
4833 {
4834 src_const = p->exp;
4835 src_const_elt = elt;
4836 break;
4837 }
4838
4839 if (src_const == 0
4840 && (CONSTANT_P (src_folded)
cb10db9d 4841 /* Consider (minus (label_ref L1) (label_ref L2)) as
752df20e 4842 "constant" here so we will record it. This allows us
4843 to fold switch statements when an ADDR_DIFF_VEC is used. */
4844 || (GET_CODE (src_folded) == MINUS
4845 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4846 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4847 src_const = src_folded, src_const_elt = elt;
4848 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4849 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4850
4851 /* If we don't know if the constant is in the table, get its
4852 hash code and look it up. */
4853 if (src_const && src_const_elt == 0)
4854 {
952bc06d 4855 sets[i].src_const_hash = HASH (src_const, mode);
4856 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
752df20e 4857 }
4858
4859 sets[i].src_const = src_const;
4860 sets[i].src_const_elt = src_const_elt;
4861
4862 /* If the constant and our source are both in the table, mark them as
4863 equivalent. Otherwise, if a constant is in the table but the source
4864 isn't, set ELT to it. */
4865 if (src_const_elt && elt
4866 && src_const_elt->first_same_value != elt->first_same_value)
4867 merge_equiv_classes (elt, src_const_elt);
4868 else if (src_const_elt && elt == 0)
4869 elt = src_const_elt;
4870
4871 /* See if there is a register linearly related to a constant
4872 equivalent of SRC. */
4873 if (src_const
4874 && (GET_CODE (src_const) == CONST
4875 || (src_const_elt && src_const_elt->related_value != 0)))
cb10db9d 4876 {
4877 src_related = use_related_value (src_const, src_const_elt);
4878 if (src_related)
4879 {
752df20e 4880 struct table_elt *src_related_elt
cb10db9d 4881 = lookup (src_related, HASH (src_related, mode), mode);
752df20e 4882 if (src_related_elt && elt)
cb10db9d 4883 {
752df20e 4884 if (elt->first_same_value
4885 != src_related_elt->first_same_value)
cb10db9d 4886 /* This can occur when we previously saw a CONST
752df20e 4887 involving a SYMBOL_REF and then see the SYMBOL_REF
4888 twice. Merge the involved classes. */
4889 merge_equiv_classes (elt, src_related_elt);
4890
cb10db9d 4891 src_related = 0;
752df20e 4892 src_related_elt = 0;
cb10db9d 4893 }
4894 else if (src_related_elt && elt == 0)
4895 elt = src_related_elt;
752df20e 4896 }
cb10db9d 4897 }
752df20e 4898
4023cea7 4899 /* See if we have a CONST_INT that is already in a register in a
4900 wider mode. */
4901
971ba038 4902 if (src_const && src_related == 0 && CONST_INT_P (src_const)
8b449599 4903 && is_int_mode (mode, &int_mode)
4904 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4023cea7 4905 {
8b449599 4906 opt_scalar_int_mode wider_mode_iter;
4907 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4023cea7 4908 {
8b449599 4909 scalar_int_mode wider_mode = wider_mode_iter.require ();
19a4dce4 4910 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4911 break;
4912
4023cea7 4913 struct table_elt *const_elt
4914 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4915
4916 if (const_elt == 0)
4917 continue;
4918
4919 for (const_elt = const_elt->first_same_value;
4920 const_elt; const_elt = const_elt->next_same_value)
8ad4c111 4921 if (REG_P (const_elt->exp))
4023cea7 4922 {
8b449599 4923 src_related = gen_lowpart (int_mode, const_elt->exp);
4023cea7 4924 break;
4925 }
19a4dce4 4926
4927 if (src_related != 0)
4928 break;
4023cea7 4929 }
4930 }
4931
f9e15121 4932 /* Another possibility is that we have an AND with a constant in
4933 a mode narrower than a word. If so, it might have been generated
4934 as part of an "if" which would narrow the AND. If we already
4935 have done the AND in a wider mode, we can use a SUBREG of that
4936 value. */
4937
4938 if (flag_expensive_optimizations && ! src_related
58a70f63 4939 && is_a <scalar_int_mode> (mode, &int_mode)
971ba038 4940 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
58a70f63 4941 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
f9e15121 4942 {
2216255f 4943 opt_scalar_int_mode tmode_iter;
941522d6 4944 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
f9e15121 4945
2216255f 4946 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
f9e15121 4947 {
2216255f 4948 scalar_int_mode tmode = tmode_iter.require ();
19a4dce4 4949 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4950 break;
4951
316f48ea 4952 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
f9e15121 4953 struct table_elt *larger_elt;
4954
4955 if (inner)
4956 {
4957 PUT_MODE (new_and, tmode);
4958 XEXP (new_and, 0) = inner;
4959 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4960 if (larger_elt == 0)
4961 continue;
4962
4963 for (larger_elt = larger_elt->first_same_value;
4964 larger_elt; larger_elt = larger_elt->next_same_value)
8ad4c111 4965 if (REG_P (larger_elt->exp))
f9e15121 4966 {
4967 src_related
58a70f63 4968 = gen_lowpart (int_mode, larger_elt->exp);
f9e15121 4969 break;
4970 }
4971
4972 if (src_related)
4973 break;
4974 }
4975 }
4976 }
c13941f4 4977
c13941f4 4978 /* See if a MEM has already been loaded with a widening operation;
4979 if it has, we can use a subreg of that. Many CISC machines
4980 also have such operations, but this is only likely to be
5aedf60c 4981 beneficial on these machines. */
cb10db9d 4982
e73fe78f 4983 rtx_code extend_op;
b74befc5 4984 if (flag_expensive_optimizations && src_related == 0
e16ceb8e 4985 && MEM_P (src) && ! do_not_record
4a36ac44 4986 && is_a <scalar_int_mode> (mode, &int_mode)
4987 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
c13941f4 4988 {
89333dfe 4989 struct rtx_def memory_extend_buf;
4990 rtx memory_extend_rtx = &memory_extend_buf;
cb10db9d 4991
c13941f4 4992 /* Set what we are trying to extend and the operation it might
4993 have been extended with. */
9af5ce0c 4994 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
e73fe78f 4995 PUT_CODE (memory_extend_rtx, extend_op);
c13941f4 4996 XEXP (memory_extend_rtx, 0) = src;
cb10db9d 4997
2216255f 4998 opt_scalar_int_mode tmode_iter;
4999 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
c13941f4 5000 {
5001 struct table_elt *larger_elt;
cb10db9d 5002
2216255f 5003 scalar_int_mode tmode = tmode_iter.require ();
19a4dce4 5004 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5005 break;
5006
c13941f4 5007 PUT_MODE (memory_extend_rtx, tmode);
cb10db9d 5008 larger_elt = lookup (memory_extend_rtx,
c13941f4 5009 HASH (memory_extend_rtx, tmode), tmode);
5010 if (larger_elt == 0)
5011 continue;
cb10db9d 5012
c13941f4 5013 for (larger_elt = larger_elt->first_same_value;
5014 larger_elt; larger_elt = larger_elt->next_same_value)
8ad4c111 5015 if (REG_P (larger_elt->exp))
c13941f4 5016 {
4a36ac44 5017 src_related = gen_lowpart (int_mode, larger_elt->exp);
c13941f4 5018 break;
5019 }
cb10db9d 5020
c13941f4 5021 if (src_related)
5022 break;
5023 }
5024 }
cb10db9d 5025
01c8e4c9 5026 /* Try to express the constant using a register+offset expression
5027 derived from a constant anchor. */
5028
5029 if (targetm.const_anchor
5030 && !src_related
5031 && src_const
5032 && GET_CODE (src_const) == CONST_INT)
5033 {
5034 src_related = try_const_anchors (src_const, mode);
5035 src_related_is_const_anchor = src_related != NULL_RTX;
5036 }
5037
5038
752df20e 5039 if (src == src_folded)
cb10db9d 5040 src_folded = 0;
752df20e 5041
d10cfa8d 5042 /* At this point, ELT, if nonzero, points to a class of expressions
752df20e 5043 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
d10cfa8d 5044 and SRC_RELATED, if nonzero, each contain additional equivalent
752df20e 5045 expressions. Prune these latter expressions by deleting expressions
5046 already in the equivalence class.
5047
5048 Check for an equivalent identical to the destination. If found,
5049 this is the preferred equivalent since it will likely lead to
5050 elimination of the insn. Indicate this by placing it in
5051 `src_related'. */
5052
cb10db9d 5053 if (elt)
5054 elt = elt->first_same_value;
752df20e 5055 for (p = elt; p; p = p->next_same_value)
cb10db9d 5056 {
752df20e 5057 enum rtx_code code = GET_CODE (p->exp);
5058
5059 /* If the expression is not valid, ignore it. Then we do not
5060 have to check for validity below. In most cases, we can use
5061 `rtx_equal_p', since canonicalization has already been done. */
78d140c9 5062 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
752df20e 5063 continue;
5064
47ac60a3 5065 /* Also skip paradoxical subregs, unless that's what we're
5066 looking for. */
b537bfdb 5067 if (paradoxical_subreg_p (p->exp)
47ac60a3 5068 && ! (src != 0
5069 && GET_CODE (src) == SUBREG
5070 && GET_MODE (src) == GET_MODE (p->exp)
974534ab 5071 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5072 GET_MODE (SUBREG_REG (p->exp)))))
47ac60a3 5073 continue;
5074
cb10db9d 5075 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
752df20e 5076 src = 0;
cb10db9d 5077 else if (src_folded && GET_CODE (src_folded) == code
752df20e 5078 && rtx_equal_p (src_folded, p->exp))
5079 src_folded = 0;
cb10db9d 5080 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
752df20e 5081 && rtx_equal_p (src_eqv_here, p->exp))
5082 src_eqv_here = 0;
cb10db9d 5083 else if (src_related && GET_CODE (src_related) == code
752df20e 5084 && rtx_equal_p (src_related, p->exp))
5085 src_related = 0;
5086
5087 /* This is the same as the destination of the insns, we want
5088 to prefer it. Copy it to src_related. The code below will
5089 then give it a negative cost. */
5090 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5091 src_related = dest;
cb10db9d 5092 }
752df20e 5093
5094 /* Find the cheapest valid equivalent, trying all the available
5095 possibilities. Prefer items not in the hash table to ones
5096 that are when they are equal cost. Note that we can never
5097 worsen an insn as the current contents will also succeed.
e2ef73d2 5098 If we find an equivalent identical to the destination, use it as best,
a92771b8 5099 since this insn will probably be eliminated in that case. */
752df20e 5100 if (src)
5101 {
5102 if (rtx_equal_p (src, dest))
589ff9e7 5103 src_cost = src_regcost = -1;
752df20e 5104 else
d27eb4b1 5105 {
5ae4887d 5106 src_cost = COST (src, mode);
d27eb4b1 5107 src_regcost = approx_reg_cost (src);
5108 }
752df20e 5109 }
5110
5111 if (src_eqv_here)
5112 {
5113 if (rtx_equal_p (src_eqv_here, dest))
589ff9e7 5114 src_eqv_cost = src_eqv_regcost = -1;
752df20e 5115 else
d27eb4b1 5116 {
5ae4887d 5117 src_eqv_cost = COST (src_eqv_here, mode);
d27eb4b1 5118 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5119 }
752df20e 5120 }
5121
5122 if (src_folded)
5123 {
5124 if (rtx_equal_p (src_folded, dest))
589ff9e7 5125 src_folded_cost = src_folded_regcost = -1;
752df20e 5126 else
d27eb4b1 5127 {
5ae4887d 5128 src_folded_cost = COST (src_folded, mode);
d27eb4b1 5129 src_folded_regcost = approx_reg_cost (src_folded);
5130 }
752df20e 5131 }
5132
5133 if (src_related)
5134 {
5135 if (rtx_equal_p (src_related, dest))
589ff9e7 5136 src_related_cost = src_related_regcost = -1;
752df20e 5137 else
d27eb4b1 5138 {
5ae4887d 5139 src_related_cost = COST (src_related, mode);
d27eb4b1 5140 src_related_regcost = approx_reg_cost (src_related);
01c8e4c9 5141
5142 /* If a const-anchor is used to synthesize a constant that
5143 normally requires multiple instructions then slightly prefer
5144 it over the original sequence. These instructions are likely
5145 to become redundant now. We can't compare against the cost
5146 of src_eqv_here because, on MIPS for example, multi-insn
5147 constants have zero cost; they are assumed to be hoisted from
5148 loops. */
5149 if (src_related_is_const_anchor
5150 && src_related_cost == src_cost
5151 && src_eqv_here)
5152 src_related_cost--;
d27eb4b1 5153 }
752df20e 5154 }
5155
5156 /* If this was an indirect jump insn, a known label will really be
5157 cheaper even though it looks more expensive. */
5158 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
fb561825 5159 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
cb10db9d 5160
752df20e 5161 /* Terminate loop when replacement made. This must terminate since
5162 the current contents will be tested and will always be valid. */
5163 while (1)
cb10db9d 5164 {
5165 rtx trial;
752df20e 5166
cb10db9d 5167 /* Skip invalid entries. */
8ad4c111 5168 while (elt && !REG_P (elt->exp)
78d140c9 5169 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
cb10db9d 5170 elt = elt->next_same_value;
47ac60a3 5171
5172 /* A paradoxical subreg would be bad here: it'll be the right
5173 size, but later may be adjusted so that the upper bits aren't
5174 what we want. So reject it. */
5175 if (elt != 0
b537bfdb 5176 && paradoxical_subreg_p (elt->exp)
47ac60a3 5177 /* It is okay, though, if the rtx we're trying to match
5178 will ignore any of the bits we can't predict. */
5179 && ! (src != 0
5180 && GET_CODE (src) == SUBREG
5181 && GET_MODE (src) == GET_MODE (elt->exp)
974534ab 5182 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5183 GET_MODE (SUBREG_REG (elt->exp)))))
47ac60a3 5184 {
5185 elt = elt->next_same_value;
5186 continue;
5187 }
cb10db9d 5188
d4c5e26d 5189 if (elt)
d27eb4b1 5190 {
5191 src_elt_cost = elt->cost;
5192 src_elt_regcost = elt->regcost;
5193 }
752df20e 5194
d4c5e26d 5195 /* Find cheapest and skip it for the next time. For items
752df20e 5196 of equal cost, use this order:
5197 src_folded, src, src_eqv, src_related and hash table entry. */
fb561825 5198 if (src_folded
069eea26 5199 && preferable (src_folded_cost, src_folded_regcost,
5200 src_cost, src_regcost) <= 0
5201 && preferable (src_folded_cost, src_folded_regcost,
5202 src_eqv_cost, src_eqv_regcost) <= 0
5203 && preferable (src_folded_cost, src_folded_regcost,
5204 src_related_cost, src_related_regcost) <= 0
5205 && preferable (src_folded_cost, src_folded_regcost,
5206 src_elt_cost, src_elt_regcost) <= 0)
752df20e 5207 {
589ff9e7 5208 trial = src_folded, src_folded_cost = MAX_COST;
752df20e 5209 if (src_folded_force_flag)
d4a75790 5210 {
5211 rtx forced = force_const_mem (mode, trial);
5212 if (forced)
5213 trial = forced;
5214 }
752df20e 5215 }
fb561825 5216 else if (src
069eea26 5217 && preferable (src_cost, src_regcost,
5218 src_eqv_cost, src_eqv_regcost) <= 0
5219 && preferable (src_cost, src_regcost,
5220 src_related_cost, src_related_regcost) <= 0
5221 && preferable (src_cost, src_regcost,
5222 src_elt_cost, src_elt_regcost) <= 0)
589ff9e7 5223 trial = src, src_cost = MAX_COST;
fb561825 5224 else if (src_eqv_here
069eea26 5225 && preferable (src_eqv_cost, src_eqv_regcost,
5226 src_related_cost, src_related_regcost) <= 0
5227 && preferable (src_eqv_cost, src_eqv_regcost,
5228 src_elt_cost, src_elt_regcost) <= 0)
0806b508 5229 trial = src_eqv_here, src_eqv_cost = MAX_COST;
fb561825 5230 else if (src_related
069eea26 5231 && preferable (src_related_cost, src_related_regcost,
5232 src_elt_cost, src_elt_regcost) <= 0)
0806b508 5233 trial = src_related, src_related_cost = MAX_COST;
cb10db9d 5234 else
752df20e 5235 {
0806b508 5236 trial = elt->exp;
752df20e 5237 elt = elt->next_same_value;
589ff9e7 5238 src_elt_cost = MAX_COST;
752df20e 5239 }
5240
5fe61d21 5241 /* Avoid creation of overlapping memory moves. */
663f4248 5242 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
5fe61d21 5243 {
5244 rtx src, dest;
5245
5246 /* BLKmode moves are not handled by cse anyway. */
5247 if (GET_MODE (trial) == BLKmode)
5248 break;
5249
5250 src = canon_rtx (trial);
5251 dest = canon_rtx (SET_DEST (sets[i].rtl));
5252
5253 if (!MEM_P (src) || !MEM_P (dest)
a84256aa 5254 || !nonoverlapping_memrefs_p (src, dest, false))
5fe61d21 5255 break;
5256 }
5257
a49d9163 5258 /* Try to optimize
5259 (set (reg:M N) (const_int A))
5260 (set (reg:M2 O) (const_int B))
5261 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5262 (reg:M2 O)). */
5263 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5264 && CONST_INT_P (trial)
5265 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5266 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5267 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
3ce67adc 5268 && (known_ge
5269 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5270 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
a49d9163 5271 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5272 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5273 <= HOST_BITS_PER_WIDE_INT))
5274 {
5275 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5276 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5277 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5278 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5279 struct table_elt *dest_elt
5280 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5281 rtx dest_cst = NULL;
5282
5283 if (dest_elt)
5284 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5285 if (p->is_const && CONST_INT_P (p->exp))
5286 {
5287 dest_cst = p->exp;
5288 break;
5289 }
5290 if (dest_cst)
5291 {
5292 HOST_WIDE_INT val = INTVAL (dest_cst);
5293 HOST_WIDE_INT mask;
5294 unsigned int shift;
7a6aeeed 5295 /* This is the mode of DEST_CST as well. */
5296 scalar_int_mode dest_mode
5297 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
a49d9163 5298 if (BITS_BIG_ENDIAN)
7a6aeeed 5299 shift = GET_MODE_PRECISION (dest_mode)
a49d9163 5300 - INTVAL (pos) - INTVAL (width);
5301 else
5302 shift = INTVAL (pos);
5303 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
7097b942 5304 mask = HOST_WIDE_INT_M1;
a49d9163 5305 else
edc19fd0 5306 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
a49d9163 5307 val &= ~(mask << shift);
5308 val |= (INTVAL (trial) & mask) << shift;
7a6aeeed 5309 val = trunc_int_for_mode (val, dest_mode);
a49d9163 5310 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5311 dest_reg, 1);
5312 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5313 GEN_INT (val), 1);
5314 if (apply_change_group ())
5315 {
5316 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5317 if (note)
5318 {
5319 remove_note (insn, note);
5320 df_notes_rescan (insn);
5321 }
5322 src_eqv = NULL_RTX;
5323 src_eqv_elt = NULL;
5324 src_eqv_volatile = 0;
5325 src_eqv_in_memory = 0;
5326 src_eqv_hash = 0;
5327 repeat = true;
5328 break;
5329 }
5330 }
5331 }
5332
752df20e 5333 /* We don't normally have an insn matching (set (pc) (pc)), so
5334 check for this separately here. We will delete such an
5335 insn below.
5336
0f48207f 5337 For other cases such as a table jump or conditional jump
5338 where we know the ultimate target, go ahead and replace the
5339 operand. While that may not make a valid insn, we will
5340 reemit the jump below (and also insert any necessary
5341 barriers). */
752df20e 5342 if (n_sets == 1 && dest == pc_rtx
5343 && (trial == pc_rtx
5344 || (GET_CODE (trial) == LABEL_REF
5345 && ! condjump_p (insn))))
5346 {
806351c6 5347 /* Don't substitute non-local labels, this confuses CFG. */
5348 if (GET_CODE (trial) == LABEL_REF
5349 && LABEL_REF_NONLOCAL_P (trial))
5350 continue;
5351
0f48207f 5352 SET_SRC (sets[i].rtl) = trial;
283a6b26 5353 cse_jumps_altered = true;
752df20e 5354 break;
5355 }
cb10db9d 5356
663f4248 5357 /* Similarly, lots of targets don't allow no-op
5358 (set (mem x) (mem x)) moves. */
5359 else if (n_sets == 1
5360 && MEM_P (trial)
5361 && MEM_P (dest)
5362 && rtx_equal_p (trial, dest)
5363 && !side_effects_p (dest)
5364 && (cfun->can_delete_dead_exceptions
5365 || insn_nothrow_p (insn)))
5366 {
5367 SET_SRC (sets[i].rtl) = trial;
5368 mem_noop_insn = true;
5369 break;
5370 }
5371
0ab04fbf 5372 /* Reject certain invalid forms of CONST that we create. */
5373 else if (CONSTANT_P (trial)
5374 && GET_CODE (trial) == CONST
5375 /* Reject cases that will cause decode_rtx_const to
5376 die. On the alpha when simplifying a switch, we
5377 get (const (truncate (minus (label_ref)
5378 (label_ref)))). */
5379 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5380 /* Likewise on IA-64, except without the
5381 truncate. */
5382 || (GET_CODE (XEXP (trial, 0)) == MINUS
5383 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5384 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5385 /* Do nothing for this case. */
5386 ;
5387
752df20e 5388 /* Look for a substitution that makes a valid insn. */
20d3ff08 5389 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5390 trial, 0))
e2ef73d2 5391 {
d328ebdf 5392 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
e30d7fb3 5393
8d5dd220 5394 /* The result of apply_change_group can be ignored; see
5395 canon_reg. */
5396
d328ebdf 5397 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
e443ebaf 5398 apply_change_group ();
be22716f 5399
e2ef73d2 5400 break;
5401 }
752df20e 5402
cb10db9d 5403 /* If we previously found constant pool entries for
752df20e 5404 constants and this is a constant, try making a
5405 pool entry. Put it in src_folded unless we already have done
5406 this since that is where it likely came from. */
5407
5408 else if (constant_pool_entries_cost
5409 && CONSTANT_P (trial)
88f6e1a4 5410 && (src_folded == 0
e16ceb8e 5411 || (!MEM_P (src_folded)
88f6e1a4 5412 && ! src_folded_force_flag))
ea0cb7ae 5413 && GET_MODE_CLASS (mode) != MODE_CC
5414 && mode != VOIDmode)
752df20e 5415 {
5416 src_folded_force_flag = 1;
5417 src_folded = trial;
5418 src_folded_cost = constant_pool_entries_cost;
634d45d7 5419 src_folded_regcost = constant_pool_entries_regcost;
752df20e 5420 }
cb10db9d 5421 }
752df20e 5422
a49d9163 5423 /* If we changed the insn too much, handle this set from scratch. */
5424 if (repeat)
5425 {
5426 i--;
5427 continue;
5428 }
5429
752df20e 5430 src = SET_SRC (sets[i].rtl);
5431
5432 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5433 However, there is an important exception: If both are registers
5434 that are not the head of their equivalence class, replace SET_SRC
5435 with the head of the class. If we do not do this, we will have
5436 both registers live over a portion of the basic block. This way,
5437 their lifetimes will likely abut instead of overlapping. */
8ad4c111 5438 if (REG_P (dest)
a7f3b1c7 5439 && REGNO_QTY_VALID_P (REGNO (dest)))
752df20e 5440 {
a7f3b1c7 5441 int dest_q = REG_QTY (REGNO (dest));
5442 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5443
5444 if (dest_ent->mode == GET_MODE (dest)
5445 && dest_ent->first_reg != REGNO (dest)
8ad4c111 5446 && REG_P (src) && REGNO (src) == REGNO (dest)
a7f3b1c7 5447 /* Don't do this if the original insn had a hard reg as
5448 SET_SRC or SET_DEST. */
8ad4c111 5449 && (!REG_P (sets[i].src)
a7f3b1c7 5450 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
8ad4c111 5451 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
a7f3b1c7 5452 /* We can't call canon_reg here because it won't do anything if
5453 SRC is a hard register. */
05b1716f 5454 {
a7f3b1c7 5455 int src_q = REG_QTY (REGNO (src));
5456 struct qty_table_elem *src_ent = &qty_table[src_q];
5457 int first = src_ent->first_reg;
5458 rtx new_src
5459 = (first >= FIRST_PSEUDO_REGISTER
5460 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5461
5462 /* We must use validate-change even for this, because this
5463 might be a special no-op instruction, suitable only to
5464 tag notes onto. */
5465 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5466 {
5467 src = new_src;
5468 /* If we had a constant that is cheaper than what we are now
5469 setting SRC to, use that constant. We ignored it when we
5470 thought we could make this into a no-op. */
5ae4887d 5471 if (src_const && COST (src_const, mode) < COST (src, mode)
cb10db9d 5472 && validate_change (insn, &SET_SRC (sets[i].rtl),
5473 src_const, 0))
a7f3b1c7 5474 src = src_const;
5475 }
05b1716f 5476 }
752df20e 5477 }
5478
5479 /* If we made a change, recompute SRC values. */
5480 if (src != sets[i].src)
cb10db9d 5481 {
cb10db9d 5482 do_not_record = 0;
5483 hash_arg_in_memory = 0;
752df20e 5484 sets[i].src = src;
cb10db9d 5485 sets[i].src_hash = HASH (src, mode);
5486 sets[i].src_volatile = do_not_record;
5487 sets[i].src_in_memory = hash_arg_in_memory;
5488 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5489 }
752df20e 5490
5491 /* If this is a single SET, we are setting a register, and we have an
a24ec999 5492 equivalent constant, we want to add a REG_EQUAL note if the constant
5493 is different from the source. We don't want to do it for a constant
5494 pseudo since verifying that this pseudo hasn't been eliminated is a
5495 pain; moreover such a note won't help anything.
f5d1f9f9 5496
5497 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5498 which can be created for a reference to a compile time computable
5499 entry in a jump table. */
a24ec999 5500 if (n_sets == 1
5501 && REG_P (dest)
5502 && src_const
8ad4c111 5503 && !REG_P (src_const)
a24ec999 5504 && !(GET_CODE (src_const) == SUBREG
5505 && REG_P (SUBREG_REG (src_const)))
5506 && !(GET_CODE (src_const) == CONST
5507 && GET_CODE (XEXP (src_const, 0)) == MINUS
5508 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5509 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5510 && !rtx_equal_p (src, src_const))
752df20e 5511 {
a24ec999 5512 /* Make sure that the rtx is not shared. */
5513 src_const = copy_rtx (src_const);
c69ad724 5514
a24ec999 5515 /* Record the actual constant value in a REG_EQUAL note,
5516 making a new one if one does not already exist. */
5517 set_unique_reg_note (insn, REG_EQUAL, src_const);
5518 df_notes_rescan (insn);
752df20e 5519 }
5520
5521 /* Now deal with the destination. */
5522 do_not_record = 0;
752df20e 5523
476d094d 5524 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5525 while (GET_CODE (dest) == SUBREG
752df20e 5526 || GET_CODE (dest) == ZERO_EXTRACT
752df20e 5527 || GET_CODE (dest) == STRICT_LOW_PART)
8f4cc641 5528 dest = XEXP (dest, 0);
752df20e 5529
5530 sets[i].inner_dest = dest;
5531
e16ceb8e 5532 if (MEM_P (dest))
752df20e 5533 {
ea0cb7ae 5534#ifdef PUSH_ROUNDING
5535 /* Stack pushes invalidate the stack pointer. */
5536 rtx addr = XEXP (dest, 0);
6720e96c 5537 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
ea0cb7ae 5538 && XEXP (addr, 0) == stack_pointer_rtx)
4c958a22 5539 invalidate (stack_pointer_rtx, VOIDmode);
ea0cb7ae 5540#endif
752df20e 5541 dest = fold_rtx (dest, insn);
752df20e 5542 }
5543
5544 /* Compute the hash code of the destination now,
5545 before the effects of this instruction are recorded,
5546 since the register values used in the address computation
5547 are those before this instruction. */
952bc06d 5548 sets[i].dest_hash = HASH (dest, mode);
752df20e 5549
5550 /* Don't enter a bit-field in the hash table
5551 because the value in it after the store
5552 may not equal what was stored, due to truncation. */
5553
476d094d 5554 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
752df20e 5555 {
5556 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5557
971ba038 5558 if (src_const != 0 && CONST_INT_P (src_const)
5559 && CONST_INT_P (width)
b572011e 5560 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5561 && ! (INTVAL (src_const)
561f0ec8 5562 & (HOST_WIDE_INT_M1U << INTVAL (width))))
752df20e 5563 /* Exception: if the value is constant,
5564 and it won't be truncated, record it. */
5565 ;
5566 else
5567 {
5568 /* This is chosen so that the destination will be invalidated
5569 but no new value will be recorded.
5570 We must invalidate because sometimes constant
5571 values can be recorded for bitfields. */
5572 sets[i].src_elt = 0;
5573 sets[i].src_volatile = 1;
5574 src_eqv = 0;
5575 src_eqv_elt = 0;
5576 }
5577 }
5578
5579 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5580 the insn. */
5581 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5582 {
25999090 5583 /* One less use of the label this insn used to jump to. */
bfa8ea12 5584 cse_cfg_altered |= delete_insn_and_edges (insn);
283a6b26 5585 cse_jumps_altered = true;
752df20e 5586 /* No more processing for this set. */
5587 sets[i].rtl = 0;
5588 }
5589
663f4248 5590 /* Similarly for no-op MEM moves. */
5591 else if (mem_noop_insn)
5592 {
5593 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5594 cse_cfg_altered = true;
bfa8ea12 5595 cse_cfg_altered |= delete_insn_and_edges (insn);
663f4248 5596 /* No more processing for this set. */
5597 sets[i].rtl = 0;
5598 }
5599
752df20e 5600 /* If this SET is now setting PC to a label, we know it used to
0f48207f 5601 be a conditional or computed branch. */
9d95b2b0 5602 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5603 && !LABEL_REF_NONLOCAL_P (src))
752df20e 5604 {
0f48207f 5605 /* We reemit the jump in as many cases as possible just in
5606 case the form of an unconditional jump is significantly
5607 different than a computed jump or conditional jump.
5608
5609 If this insn has multiple sets, then reemitting the
5610 jump is nontrivial. So instead we just force rerecognition
5611 and hope for the best. */
5612 if (n_sets == 1)
752df20e 5613 {
9ed997be 5614 rtx_jump_insn *new_rtx;
32a6f3ca 5615 rtx note;
743ce3f8 5616
1d5ad681 5617 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5618 new_rtx = emit_jump_insn_before (seq, insn);
d328ebdf 5619 JUMP_LABEL (new_rtx) = XEXP (src, 0);
752df20e 5620 LABEL_NUSES (XEXP (src, 0))++;
9074c68b 5621
5622 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5623 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5624 if (note)
5625 {
5626 XEXP (note, 1) = NULL_RTX;
d328ebdf 5627 REG_NOTES (new_rtx) = note;
9074c68b 5628 }
5629
bfa8ea12 5630 cse_cfg_altered |= delete_insn_and_edges (insn);
32a6f3ca 5631 insn = new_rtx;
752df20e 5632 }
d578a436 5633 else
d578a436 5634 INSN_CODE (insn) = -1;
752df20e 5635
283a6b26 5636 /* Do not bother deleting any unreachable code, let jump do it. */
5637 cse_jumps_altered = true;
752df20e 5638 sets[i].rtl = 0;
5639 }
5640
8cdd0f84 5641 /* If destination is volatile, invalidate it and then do no further
5642 processing for this assignment. */
752df20e 5643
5644 else if (do_not_record)
8cdd0f84 5645 {
7a49a822 5646 invalidate_dest (dest);
8cdd0f84 5647 sets[i].rtl = 0;
5648 }
752df20e 5649
5650 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
7a49a822 5651 {
5652 do_not_record = 0;
5653 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5654 if (do_not_record)
5655 {
5656 invalidate_dest (SET_DEST (sets[i].rtl));
5657 sets[i].rtl = 0;
5658 }
5659 }
752df20e 5660
752df20e 5661 /* If setting CC0, record what it was set to, or a constant, if it
5662 is equivalent to a constant. If it is being set to a floating-point
5663 value, make a COMPARE with the appropriate constant of 0. If we
5664 don't do this, later code can interpret this as a test against
5665 const0_rtx, which can cause problems if we try to put it into an
5666 insn as a floating-point operand. */
5667 if (dest == cc0_rtx)
5668 {
5669 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5670 this_insn_cc0_mode = mode;
c1712420 5671 if (FLOAT_MODE_P (mode))
941522d6 5672 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5673 CONST0_RTX (mode));
752df20e 5674 }
752df20e 5675 }
5676
5677 /* Now enter all non-volatile source expressions in the hash table
5678 if they are not already present.
5679 Record their equivalence classes in src_elt.
5680 This way we can insert the corresponding destinations into
5681 the same classes even if the actual sources are no longer in them
5682 (having been invalidated). */
5683
5684 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5685 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5686 {
19cb6b50 5687 struct table_elt *elt;
5688 struct table_elt *classp = sets[0].src_elt;
752df20e 5689 rtx dest = SET_DEST (sets[0].rtl);
3754d046 5690 machine_mode eqvmode = GET_MODE (dest);
752df20e 5691
5692 if (GET_CODE (dest) == STRICT_LOW_PART)
5693 {
5694 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5695 classp = 0;
5696 }
5697 if (insert_regs (src_eqv, classp, 0))
1b033cc3 5698 {
5699 rehash_using_reg (src_eqv);
5700 src_eqv_hash = HASH (src_eqv, eqvmode);
5701 }
952bc06d 5702 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
752df20e 5703 elt->in_memory = src_eqv_in_memory;
752df20e 5704 src_eqv_elt = elt;
c697ea36 5705
5706 /* Check to see if src_eqv_elt is the same as a set source which
5707 does not yet have an elt, and if so set the elt of the set source
5708 to src_eqv_elt. */
5709 for (i = 0; i < n_sets; i++)
cf541778 5710 if (sets[i].rtl && sets[i].src_elt == 0
5711 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
c697ea36 5712 sets[i].src_elt = src_eqv_elt;
752df20e 5713 }
5714
5715 for (i = 0; i < n_sets; i++)
5716 if (sets[i].rtl && ! sets[i].src_volatile
5717 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5718 {
5719 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5720 {
5721 /* REG_EQUAL in setting a STRICT_LOW_PART
5722 gives an equivalent for the entire destination register,
5723 not just for the subreg being stored in now.
5724 This is a more interesting equivalence, so we arrange later
5725 to treat the entire reg as the destination. */
5726 sets[i].src_elt = src_eqv_elt;
952bc06d 5727 sets[i].src_hash = src_eqv_hash;
752df20e 5728 }
5729 else
5730 {
5731 /* Insert source and constant equivalent into hash table, if not
5732 already present. */
19cb6b50 5733 struct table_elt *classp = src_eqv_elt;
5734 rtx src = sets[i].src;
5735 rtx dest = SET_DEST (sets[i].rtl);
3754d046 5736 machine_mode mode
752df20e 5737 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5738
3c512ee7 5739 /* It's possible that we have a source value known to be
5740 constant but don't have a REG_EQUAL note on the insn.
5741 Lack of a note will mean src_eqv_elt will be NULL. This
5742 can happen where we've generated a SUBREG to access a
5743 CONST_INT that is already in a register in a wider mode.
5744 Ensure that the source expression is put in the proper
5745 constant class. */
5746 if (!classp)
5747 classp = sets[i].src_const_elt;
5748
cf541778 5749 if (sets[i].src_elt == 0)
752df20e 5750 {
1e5b92fa 5751 struct table_elt *elt;
cf541778 5752
1e5b92fa 5753 /* Note that these insert_regs calls cannot remove
5754 any of the src_elt's, because they would have failed to
5755 match if not still valid. */
5756 if (insert_regs (src, classp, 0))
5757 {
5758 rehash_using_reg (src);
5759 sets[i].src_hash = HASH (src, mode);
1b033cc3 5760 }
1e5b92fa 5761 elt = insert (src, classp, sets[i].src_hash, mode);
5762 elt->in_memory = sets[i].src_in_memory;
20d3ff08 5763 /* If inline asm has any clobbers, ensure we only reuse
5764 existing inline asms and never try to put the ASM_OPERANDS
5765 into an insn that isn't inline asm. */
5766 if (GET_CODE (src) == ASM_OPERANDS
5767 && GET_CODE (x) == PARALLEL)
5768 elt->cost = MAX_COST;
1e5b92fa 5769 sets[i].src_elt = classp = elt;
752df20e 5770 }
752df20e 5771 if (sets[i].src_const && sets[i].src_const_elt == 0
5772 && src != sets[i].src_const
5773 && ! rtx_equal_p (sets[i].src_const, src))
5774 sets[i].src_elt = insert (sets[i].src_const, classp,
952bc06d 5775 sets[i].src_const_hash, mode);
752df20e 5776 }
5777 }
5778 else if (sets[i].src_elt == 0)
5779 /* If we did not insert the source into the hash table (e.g., it was
5780 volatile), note the equivalence class for the REG_EQUAL value, if any,
5781 so that the destination goes into that class. */
5782 sets[i].src_elt = src_eqv_elt;
5783
977ffed2 5784 /* Record destination addresses in the hash table. This allows us to
5785 check if they are invalidated by other sets. */
5786 for (i = 0; i < n_sets; i++)
5787 {
5788 if (sets[i].rtl)
5789 {
5790 rtx x = sets[i].inner_dest;
5791 struct table_elt *elt;
3754d046 5792 machine_mode mode;
977ffed2 5793 unsigned hash;
5794
5795 if (MEM_P (x))
5796 {
5797 x = XEXP (x, 0);
5798 mode = GET_MODE (x);
5799 hash = HASH (x, mode);
5800 elt = lookup (x, hash, mode);
5801 if (!elt)
5802 {
5803 if (insert_regs (x, NULL, 0))
5804 {
06320855 5805 rtx dest = SET_DEST (sets[i].rtl);
5806
977ffed2 5807 rehash_using_reg (x);
5808 hash = HASH (x, mode);
06320855 5809 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
977ffed2 5810 }
5811 elt = insert (x, NULL, hash, mode);
5812 }
5813
5814 sets[i].dest_addr_elt = elt;
5815 }
5816 else
5817 sets[i].dest_addr_elt = NULL;
5818 }
5819 }
5820
2aca5650 5821 invalidate_from_clobbers (insn);
8b82837b 5822
cb10db9d 5823 /* Some registers are invalidated by subroutine calls. Memory is
8b82837b 5824 invalidated by non-constant calls. */
5825
6d7dc5b9 5826 if (CALL_P (insn))
752df20e 5827 {
9c2a0c05 5828 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
ea0cb7ae 5829 invalidate_memory ();
33698dfe 5830 else
5831 /* For const/pure calls, invalidate any argument slots, because
5832 those are owned by the callee. */
5833 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5834 if (GET_CODE (XEXP (tem, 0)) == USE
5835 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5836 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
752df20e 5837 invalidate_for_call ();
5838 }
5839
5840 /* Now invalidate everything set by this instruction.
5841 If a SUBREG or other funny destination is being set,
5842 sets[i].rtl is still nonzero, so here we invalidate the reg
5843 a part of which is being set. */
5844
5845 for (i = 0; i < n_sets; i++)
5846 if (sets[i].rtl)
5847 {
fdb25961 5848 /* We can't use the inner dest, because the mode associated with
5849 a ZERO_EXTRACT is significant. */
19cb6b50 5850 rtx dest = SET_DEST (sets[i].rtl);
752df20e 5851
5852 /* Needed for registers to remove the register from its
5853 previous quantity's chain.
5854 Needed for memory if this is a nonvarying address, unless
5855 we have just done an invalidate_memory that covers even those. */
8ad4c111 5856 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
fdb25961 5857 invalidate (dest, VOIDmode);
e16ceb8e 5858 else if (MEM_P (dest))
2046d6d5 5859 invalidate (dest, VOIDmode);
319134e7 5860 else if (GET_CODE (dest) == STRICT_LOW_PART
5861 || GET_CODE (dest) == ZERO_EXTRACT)
fdb25961 5862 invalidate (XEXP (dest, 0), GET_MODE (dest));
752df20e 5863 }
5864
be22716f 5865 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5866 the regs restored by the longjmp come from a later time
5867 than the setjmp. */
5868 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5869 {
5870 flush_hash_table ();
5871 goto done;
5872 }
5873
752df20e 5874 /* Make sure registers mentioned in destinations
5875 are safe for use in an expression to be inserted.
5876 This removes from the hash table
5877 any invalid entry that refers to one of these registers.
5878
5879 We don't care about the return value from mention_regs because
5880 we are going to hash the SET_DEST values unconditionally. */
5881
5882 for (i = 0; i < n_sets; i++)
e6860d27 5883 {
5884 if (sets[i].rtl)
5885 {
5886 rtx x = SET_DEST (sets[i].rtl);
5887
8ad4c111 5888 if (!REG_P (x))
e6860d27 5889 mention_regs (x);
5890 else
5891 {
5892 /* We used to rely on all references to a register becoming
5893 inaccessible when a register changes to a new quantity,
5894 since that changes the hash code. However, that is not
9c4f3716 5895 safe, since after HASH_SIZE new quantities we get a
e6860d27 5896 hash 'collision' of a register with its own invalid
5897 entries. And since SUBREGs have been changed not to
5898 change their hash code with the hash code of the register,
5899 it wouldn't work any longer at all. So we have to check
5900 for any invalid references lying around now.
5901 This code is similar to the REG case in mention_regs,
5902 but it knows that reg_tick has been incremented, and
5903 it leaves reg_in_table as -1 . */
02e7a332 5904 unsigned int regno = REGNO (x);
a2c6f0b7 5905 unsigned int endregno = END_REGNO (x);
02e7a332 5906 unsigned int i;
e6860d27 5907
5908 for (i = regno; i < endregno; i++)
5909 {
d1264606 5910 if (REG_IN_TABLE (i) >= 0)
e6860d27 5911 {
5912 remove_invalid_refs (i);
d1264606 5913 REG_IN_TABLE (i) = -1;
e6860d27 5914 }
5915 }
5916 }
5917 }
5918 }
752df20e 5919
5920 /* We may have just removed some of the src_elt's from the hash table.
977ffed2 5921 So replace each one with the current head of the same class.
5922 Also check if destination addresses have been removed. */
752df20e 5923
5924 for (i = 0; i < n_sets; i++)
5925 if (sets[i].rtl)
5926 {
977ffed2 5927 if (sets[i].dest_addr_elt
5928 && sets[i].dest_addr_elt->first_same_value == 0)
5929 {
d249588e 5930 /* The elt was removed, which means this destination is not
977ffed2 5931 valid after this instruction. */
5932 sets[i].rtl = NULL_RTX;
5933 }
5934 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
752df20e 5935 /* If elt was removed, find current head of same class,
5936 or 0 if nothing remains of that class. */
5937 {
19cb6b50 5938 struct table_elt *elt = sets[i].src_elt;
752df20e 5939
5940 while (elt && elt->prev_same_value)
5941 elt = elt->prev_same_value;
5942
5943 while (elt && elt->first_same_value == 0)
5944 elt = elt->next_same_value;
5945 sets[i].src_elt = elt ? elt->first_same_value : 0;
5946 }
5947 }
5948
5949 /* Now insert the destinations into their equivalence classes. */
5950
5951 for (i = 0; i < n_sets; i++)
5952 if (sets[i].rtl)
5953 {
19cb6b50 5954 rtx dest = SET_DEST (sets[i].rtl);
19cb6b50 5955 struct table_elt *elt;
752df20e 5956
5957 /* Don't record value if we are not supposed to risk allocating
5958 floating-point values in registers that might be wider than
5959 memory. */
5960 if ((flag_float_store
e16ceb8e 5961 && MEM_P (dest)
c1712420 5962 && FLOAT_MODE_P (GET_MODE (dest)))
6510de05 5963 /* Don't record BLKmode values, because we don't know the
5964 size of it, and can't be sure that other BLKmode values
5965 have the same or smaller size. */
5966 || GET_MODE (dest) == BLKmode
752df20e 5967 /* If we didn't put a REG_EQUAL value or a source into the hash
5968 table, there is no point is recording DEST. */
e8dedc4a 5969 || sets[i].src_elt == 0)
752df20e 5970 continue;
5971
5972 /* STRICT_LOW_PART isn't part of the value BEING set,
5973 and neither is the SUBREG inside it.
5974 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5975 if (GET_CODE (dest) == STRICT_LOW_PART)
5976 dest = SUBREG_REG (XEXP (dest, 0));
5977
8ad4c111 5978 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
752df20e 5979 /* Registers must also be inserted into chains for quantities. */
5980 if (insert_regs (dest, sets[i].src_elt, 1))
1b033cc3 5981 {
5982 /* If `insert_regs' changes something, the hash code must be
5983 recalculated. */
5984 rehash_using_reg (dest);
5985 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5986 }
752df20e 5987
e8dedc4a 5988 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5989 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5990 if (paradoxical_subreg_p (dest))
5991 continue;
5992
e8825bb0 5993 elt = insert (dest, sets[i].src_elt,
5994 sets[i].dest_hash, GET_MODE (dest));
a97275a9 5995
01c8e4c9 5996 /* If this is a constant, insert the constant anchors with the
5997 equivalent register-offset expressions using register DEST. */
5998 if (targetm.const_anchor
5999 && REG_P (dest)
6000 && SCALAR_INT_MODE_P (GET_MODE (dest))
6001 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
6002 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
6003
e16ceb8e 6004 elt->in_memory = (MEM_P (sets[i].inner_dest)
b04fab2a 6005 && !MEM_READONLY_P (sets[i].inner_dest));
26830081 6006
e516eaa9 6007 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6008 narrower than M2, and both M1 and M2 are the same number of words,
6009 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6010 make that equivalence as well.
752df20e 6011
316f48ea 6012 However, BAR may have equivalences for which gen_lowpart
6013 will produce a simpler value than gen_lowpart applied to
752df20e 6014 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
cb10db9d 6015 BAR's equivalences. If we don't get a simplified form, make
752df20e 6016 the SUBREG. It will not be used in an equivalence, but will
6017 cause two similar assignments to be detected.
6018
6019 Note the loop below will find SUBREG_REG (DEST) since we have
6020 already entered SRC and DEST of the SET in the table. */
6021
6022 if (GET_CODE (dest) == SUBREG
52acb7ae 6023 && (known_equal_after_align_down
6024 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6025 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6026 UNITS_PER_WORD))
974534ab 6027 && !partial_subreg_p (dest)
752df20e 6028 && sets[i].src_elt != 0)
6029 {
3754d046 6030 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
752df20e 6031 struct table_elt *elt, *classp = 0;
6032
6033 for (elt = sets[i].src_elt->first_same_value; elt;
6034 elt = elt->next_same_value)
6035 {
6036 rtx new_src = 0;
952bc06d 6037 unsigned src_hash;
752df20e 6038 struct table_elt *src_elt;
6039
6040 /* Ignore invalid entries. */
8ad4c111 6041 if (!REG_P (elt->exp)
78d140c9 6042 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
752df20e 6043 continue;
6044
38b13a9b 6045 /* We may have already been playing subreg games. If the
6046 mode is already correct for the destination, use it. */
6047 if (GET_MODE (elt->exp) == new_mode)
6048 new_src = elt->exp;
6049 else
6050 {
9edf7ea8 6051 poly_uint64 byte
41aff804 6052 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
38b13a9b 6053 new_src = simplify_gen_subreg (new_mode, elt->exp,
6054 GET_MODE (dest), byte);
6055 }
6056
cdc84acd 6057 /* The call to simplify_gen_subreg fails if the value
6058 is VOIDmode, yet we can't do any simplification, e.g.
6059 for EXPR_LISTs denoting function call results.
6060 It is invalid to construct a SUBREG with a VOIDmode
6061 SUBREG_REG, hence a zero new_src means we can't do
6062 this substitution. */
6063 if (! new_src)
6064 continue;
752df20e 6065
6066 src_hash = HASH (new_src, new_mode);
6067 src_elt = lookup (new_src, src_hash, new_mode);
6068
6069 /* Put the new source in the hash table is if isn't
6070 already. */
6071 if (src_elt == 0)
6072 {
6073 if (insert_regs (new_src, classp, 0))
1b033cc3 6074 {
6075 rehash_using_reg (new_src);
6076 src_hash = HASH (new_src, new_mode);
6077 }
752df20e 6078 src_elt = insert (new_src, classp, src_hash, new_mode);
6079 src_elt->in_memory = elt->in_memory;
20d3ff08 6080 if (GET_CODE (new_src) == ASM_OPERANDS
6081 && elt->cost == MAX_COST)
6082 src_elt->cost = MAX_COST;
752df20e 6083 }
6084 else if (classp && classp != src_elt->first_same_value)
cb10db9d 6085 /* Show that two things that we've seen before are
752df20e 6086 actually the same. */
6087 merge_equiv_classes (src_elt, classp);
6088
6089 classp = src_elt->first_same_value;
7720c877 6090 /* Ignore invalid entries. */
6091 while (classp
8ad4c111 6092 && !REG_P (classp->exp)
78d140c9 6093 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
7720c877 6094 classp = classp->next_same_value;
752df20e 6095 }
6096 }
6097 }
6098
01a22203 6099 /* Special handling for (set REG0 REG1) where REG0 is the
6100 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6101 be used in the sequel, so (if easily done) change this insn to
6102 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6103 that computed their value. Then REG1 will become a dead store
6104 and won't cloud the situation for later optimizations.
752df20e 6105
6106 Do not make this change if REG1 is a hard register, because it will
6107 then be used in the sequel and we may be changing a two-operand insn
6108 into a three-operand insn.
6109
1e5b92fa 6110 Also do not do this if we are operating on a copy of INSN. */
752df20e 6111
2aca5650 6112 if (n_sets == 1 && sets[0].rtl)
6113 try_back_substitute_reg (sets[0].rtl, insn);
752df20e 6114
be22716f 6115done:;
752df20e 6116}
6117\f
59241190 6118/* Remove from the hash table all expressions that reference memory. */
155b05dc 6119
752df20e 6120static void
8ec3a57b 6121invalidate_memory (void)
752df20e 6122{
19cb6b50 6123 int i;
6124 struct table_elt *p, *next;
752df20e 6125
9c4f3716 6126 for (i = 0; i < HASH_SIZE; i++)
ea0cb7ae 6127 for (p = table[i]; p; p = next)
6128 {
6129 next = p->next_same_hash;
6130 if (p->in_memory)
6131 remove_from_table (p, i);
6132 }
6133}
6134
2aca5650 6135/* Perform invalidation on the basis of everything about INSN,
752df20e 6136 except for invalidating the actual places that are SET in it.
6137 This includes the places CLOBBERed, and anything that might
2aca5650 6138 alias with something that is SET or CLOBBERed. */
752df20e 6139
6140static void
47f1d198 6141invalidate_from_clobbers (rtx_insn *insn)
752df20e 6142{
2aca5650 6143 rtx x = PATTERN (insn);
6144
752df20e 6145 if (GET_CODE (x) == CLOBBER)
6146 {
6147 rtx ref = XEXP (x, 0);
ea0cb7ae 6148 if (ref)
6149 {
8ad4c111 6150 if (REG_P (ref) || GET_CODE (ref) == SUBREG
e16ceb8e 6151 || MEM_P (ref))
ea0cb7ae 6152 invalidate (ref, VOIDmode);
6153 else if (GET_CODE (ref) == STRICT_LOW_PART
6154 || GET_CODE (ref) == ZERO_EXTRACT)
6155 invalidate (XEXP (ref, 0), GET_MODE (ref));
6156 }
752df20e 6157 }
52620891 6158 if (GET_CODE (x) == CLOBBER_HIGH)
6159 {
6160 rtx ref = XEXP (x, 0);
6161 gcc_assert (REG_P (ref));
6162 invalidate_reg (ref, true);
6163 }
752df20e 6164 else if (GET_CODE (x) == PARALLEL)
6165 {
19cb6b50 6166 int i;
752df20e 6167 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6168 {
19cb6b50 6169 rtx y = XVECEXP (x, 0, i);
752df20e 6170 if (GET_CODE (y) == CLOBBER)
6171 {
6172 rtx ref = XEXP (y, 0);
8ad4c111 6173 if (REG_P (ref) || GET_CODE (ref) == SUBREG
e16ceb8e 6174 || MEM_P (ref))
ea0cb7ae 6175 invalidate (ref, VOIDmode);
6176 else if (GET_CODE (ref) == STRICT_LOW_PART
6177 || GET_CODE (ref) == ZERO_EXTRACT)
6178 invalidate (XEXP (ref, 0), GET_MODE (ref));
752df20e 6179 }
52620891 6180 else if (GET_CODE (y) == CLOBBER_HIGH)
6181 {
6182 rtx ref = XEXP (y, 0);
6183 gcc_assert (REG_P (ref));
6184 invalidate_reg (ref, true);
6185 }
752df20e 6186 }
6187 }
6188}
6189\f
2aca5650 6190/* Perform invalidation on the basis of everything about INSN.
6191 This includes the places CLOBBERed, and anything that might
6192 alias with something that is SET or CLOBBERed. */
6193
6194static void
47f1d198 6195invalidate_from_sets_and_clobbers (rtx_insn *insn)
2aca5650 6196{
6197 rtx tem;
6198 rtx x = PATTERN (insn);
6199
6200 if (CALL_P (insn))
6201 {
6202 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
52620891 6203 {
6204 rtx temx = XEXP (tem, 0);
6205 if (GET_CODE (temx) == CLOBBER)
6206 invalidate (SET_DEST (temx), VOIDmode);
6207 else if (GET_CODE (temx) == CLOBBER_HIGH)
6208 {
6209 rtx temref = XEXP (temx, 0);
6210 gcc_assert (REG_P (temref));
6211 invalidate_reg (temref, true);
6212 }
6213 }
2aca5650 6214 }
6215
6216 /* Ensure we invalidate the destination register of a CALL insn.
6217 This is necessary for machines where this register is a fixed_reg,
6218 because no other code would invalidate it. */
6219 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6220 invalidate (SET_DEST (x), VOIDmode);
6221
6222 else if (GET_CODE (x) == PARALLEL)
6223 {
6224 int i;
6225
6226 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6227 {
6228 rtx y = XVECEXP (x, 0, i);
6229 if (GET_CODE (y) == CLOBBER)
6230 {
6231 rtx clobbered = XEXP (y, 0);
6232
6233 if (REG_P (clobbered)
6234 || GET_CODE (clobbered) == SUBREG)
6235 invalidate (clobbered, VOIDmode);
6236 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6237 || GET_CODE (clobbered) == ZERO_EXTRACT)
6238 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6239 }
52620891 6240 else if (GET_CODE (y) == CLOBBER_HIGH)
6241 {
6242 rtx ref = XEXP (y, 0);
6243 gcc_assert (REG_P (ref));
6244 invalidate_reg (ref, true);
6245 }
2aca5650 6246 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6247 invalidate (SET_DEST (y), VOIDmode);
6248 }
6249 }
6250}
6251\f
752df20e 6252/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6253 and replace any registers in them with either an equivalent constant
6254 or the canonical form of the register. If we are inside an address,
6255 only do this if the address remains valid.
6256
6257 OBJECT is 0 except when within a MEM in which case it is the MEM.
6258
6259 Return the replacement for X. */
6260
6261static rtx
3072d30e 6262cse_process_notes_1 (rtx x, rtx object, bool *changed)
752df20e 6263{
6264 enum rtx_code code = GET_CODE (x);
d2ca078f 6265 const char *fmt = GET_RTX_FORMAT (code);
752df20e 6266 int i;
6267
6268 switch (code)
6269 {
752df20e 6270 case CONST:
6271 case SYMBOL_REF:
6272 case LABEL_REF:
0349edce 6273 CASE_CONST_ANY:
752df20e 6274 case PC:
6275 case CC0:
6276 case LO_SUM:
6277 return x;
6278
6279 case MEM:
a344307e 6280 validate_change (x, &XEXP (x, 0),
3072d30e 6281 cse_process_notes (XEXP (x, 0), x, changed), 0);
752df20e 6282 return x;
6283
6284 case EXPR_LIST:
752df20e 6285 if (REG_NOTE_KIND (x) == REG_EQUAL)
3072d30e 6286 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
9eb946de 6287 /* Fall through. */
6288
6289 case INSN_LIST:
6290 case INT_LIST:
752df20e 6291 if (XEXP (x, 1))
3072d30e 6292 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
752df20e 6293 return x;
6294
21c77c5d 6295 case SIGN_EXTEND:
6296 case ZERO_EXTEND:
5afa7a07 6297 case SUBREG:
21c77c5d 6298 {
d328ebdf 6299 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
21c77c5d 6300 /* We don't substitute VOIDmode constants into these rtx,
6301 since they would impede folding. */
d328ebdf 6302 if (GET_MODE (new_rtx) != VOIDmode)
6303 validate_change (object, &XEXP (x, 0), new_rtx, 0);
21c77c5d 6304 return x;
6305 }
6306
d733203b 6307 case UNSIGNED_FLOAT:
6308 {
6309 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6310 /* We don't substitute negative VOIDmode constants into these rtx,
6311 since they would impede folding. */
6312 if (GET_MODE (new_rtx) != VOIDmode
6313 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6314 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6315 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6316 return x;
6317 }
6318
752df20e 6319 case REG:
d1264606 6320 i = REG_QTY (REGNO (x));
752df20e 6321
6322 /* Return a constant or a constant register. */
a7f3b1c7 6323 if (REGNO_QTY_VALID_P (REGNO (x)))
752df20e 6324 {
a7f3b1c7 6325 struct qty_table_elem *ent = &qty_table[i];
6326
6327 if (ent->const_rtx != NULL_RTX
6328 && (CONSTANT_P (ent->const_rtx)
8ad4c111 6329 || REG_P (ent->const_rtx)))
a7f3b1c7 6330 {
d328ebdf 6331 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6332 if (new_rtx)
6333 return copy_rtx (new_rtx);
a7f3b1c7 6334 }
752df20e 6335 }
6336
6337 /* Otherwise, canonicalize this register. */
47f1d198 6338 return canon_reg (x, NULL);
cb10db9d 6339
0dbd1c74 6340 default:
6341 break;
752df20e 6342 }
6343
6344 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6345 if (fmt[i] == 'e')
6346 validate_change (object, &XEXP (x, i),
3072d30e 6347 cse_process_notes (XEXP (x, i), object, changed), 0);
752df20e 6348
6349 return x;
6350}
3072d30e 6351
6352static rtx
6353cse_process_notes (rtx x, rtx object, bool *changed)
6354{
d328ebdf 6355 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6356 if (new_rtx != x)
3072d30e 6357 *changed = true;
d328ebdf 6358 return new_rtx;
3072d30e 6359}
6360
752df20e 6361\f
be22716f 6362/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
752df20e 6363
be22716f 6364 DATA is a pointer to a struct cse_basic_block_data, that is used to
6365 describe the path.
6366 It is filled with a queue of basic blocks, starting with FIRST_BB
6367 and following a trace through the CFG.
48e1416a 6368
be22716f 6369 If all paths starting at FIRST_BB have been followed, or no new path
6370 starting at FIRST_BB can be constructed, this function returns FALSE.
6371 Otherwise, DATA->path is filled and the function returns TRUE indicating
6372 that a path to follow was found.
752df20e 6373
7920eed5 6374 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
be22716f 6375 block in the path will be FIRST_BB. */
752df20e 6376
be22716f 6377static bool
6378cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6379 int follow_jumps)
752df20e 6380{
be22716f 6381 basic_block bb;
6382 edge e;
6383 int path_size;
48e1416a 6384
08b7917c 6385 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
752df20e 6386
be22716f 6387 /* See if there is a previous path. */
6388 path_size = data->path_size;
6389
6390 /* There is a previous path. Make sure it started with FIRST_BB. */
6391 if (path_size)
6392 gcc_assert (data->path[0].bb == first_bb);
6393
6394 /* There was only one basic block in the last path. Clear the path and
6395 return, so that paths starting at another basic block can be tried. */
6396 if (path_size == 1)
6397 {
6398 path_size = 0;
6399 goto done;
6400 }
6401
6402 /* If the path was empty from the beginning, construct a new path. */
6403 if (path_size == 0)
6404 data->path[path_size++].bb = first_bb;
6405 else
752df20e 6406 {
be22716f 6407 /* Otherwise, path_size must be equal to or greater than 2, because
6408 a previous path exists that is at least two basic blocks long.
6409
6410 Update the previous branch path, if any. If the last branch was
6411 previously along the branch edge, take the fallthrough edge now. */
6412 while (path_size >= 2)
752df20e 6413 {
be22716f 6414 basic_block last_bb_in_path, previous_bb_in_path;
6415 edge e;
6416
6417 --path_size;
6418 last_bb_in_path = data->path[path_size].bb;
6419 previous_bb_in_path = data->path[path_size - 1].bb;
6420
6421 /* If we previously followed a path along the branch edge, try
6422 the fallthru edge now. */
6423 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6424 && any_condjump_p (BB_END (previous_bb_in_path))
6425 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6426 && e == BRANCH_EDGE (previous_bb_in_path))
6427 {
6428 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
34154e27 6429 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
3752d411 6430 && single_pred_p (bb)
6431 /* We used to assert here that we would only see blocks
6432 that we have not visited yet. But we may end up
6433 visiting basic blocks twice if the CFG has changed
6434 in this run of cse_main, because when the CFG changes
6435 the topological sort of the CFG also changes. A basic
6436 blocks that previously had more than two predecessors
6437 may now have a single predecessor, and become part of
6438 a path that starts at another basic block.
6439
6440 We still want to visit each basic block only once, so
6441 halt the path here if we have already visited BB. */
08b7917c 6442 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
be22716f 6443 {
08b7917c 6444 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
be22716f 6445 data->path[path_size++].bb = bb;
6446 break;
6447 }
6448 }
6449
6450 data->path[path_size].bb = NULL;
6451 }
6452
6453 /* If only one block remains in the path, bail. */
6454 if (path_size == 1)
6455 {
6456 path_size = 0;
6457 goto done;
752df20e 6458 }
752df20e 6459 }
6460
be22716f 6461 /* Extend the path if possible. */
6462 if (follow_jumps)
752df20e 6463 {
be22716f 6464 bb = data->path[path_size - 1].bb;
6465 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6466 {
6467 if (single_succ_p (bb))
6468 e = single_succ_edge (bb);
6469 else if (EDGE_COUNT (bb->succs) == 2
6470 && any_condjump_p (BB_END (bb)))
6471 {
6472 /* First try to follow the branch. If that doesn't lead
6473 to a useful path, follow the fallthru edge. */
6474 e = BRANCH_EDGE (bb);
6475 if (!single_pred_p (e->dest))
6476 e = FALLTHRU_EDGE (bb);
6477 }
6478 else
6479 e = NULL;
752df20e 6480
d1ff492e 6481 if (e
4c43a998 6482 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
34154e27 6483 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3752d411 6484 && single_pred_p (e->dest)
6485 /* Avoid visiting basic blocks twice. The large comment
6486 above explains why this can happen. */
08b7917c 6487 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
be22716f 6488 {
6489 basic_block bb2 = e->dest;
08b7917c 6490 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
be22716f 6491 data->path[path_size++].bb = bb2;
6492 bb = bb2;
6493 }
6494 else
6495 bb = NULL;
6496 }
6497 }
6498
6499done:
6500 data->path_size = path_size;
6501 return path_size != 0;
6502}
6503\f
6504/* Dump the path in DATA to file F. NSETS is the number of sets
6505 in the path. */
6506
6507static void
6508cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6509{
6510 int path_entry;
6511
6512 fprintf (f, ";; Following path with %d sets: ", nsets);
6513 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6514 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
40d10c37 6515 fputc ('\n', f);
be22716f 6516 fflush (f);
6517}
6518
99013338 6519\f
6520/* Return true if BB has exception handling successor edges. */
6521
6522static bool
6523have_eh_succ_edges (basic_block bb)
6524{
6525 edge e;
6526 edge_iterator ei;
6527
6528 FOR_EACH_EDGE (e, ei, bb->succs)
6529 if (e->flags & EDGE_EH)
6530 return true;
6531
6532 return false;
6533}
6534
be22716f 6535\f
6536/* Scan to the end of the path described by DATA. Return an estimate of
3072d30e 6537 the total number of SETs of all insns in the path. */
be22716f 6538
6539static void
6540cse_prescan_path (struct cse_basic_block_data *data)
6541{
6542 int nsets = 0;
be22716f 6543 int path_size = data->path_size;
6544 int path_entry;
6545
6546 /* Scan to end of each basic block in the path. */
48e1416a 6547 for (path_entry = 0; path_entry < path_size; path_entry++)
be22716f 6548 {
6549 basic_block bb;
47f1d198 6550 rtx_insn *insn;
dfcbcd81 6551
be22716f 6552 bb = data->path[path_entry].bb;
752df20e 6553
be22716f 6554 FOR_BB_INSNS (bb, insn)
752df20e 6555 {
be22716f 6556 if (!INSN_P (insn))
6557 continue;
cb10db9d 6558
be22716f 6559 /* A PARALLEL can have lots of SETs in it,
6560 especially if it is really an ASM_OPERANDS. */
6561 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6562 nsets += XVECLEN (PATTERN (insn), 0);
6563 else
6564 nsets += 1;
752df20e 6565 }
be22716f 6566 }
6567
be22716f 6568 data->nsets = nsets;
6569}
6570\f
9206d997 6571/* Return true if the pattern of INSN uses a LABEL_REF for which
6572 there isn't a REG_LABEL_OPERAND note. */
6573
6574static bool
6575check_for_label_ref (rtx_insn *insn)
6576{
6577 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6578 note for it, we must rerun jump since it needs to place the note. If
6579 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6580 don't do this since no REG_LABEL_OPERAND will be added. */
6581 subrtx_iterator::array_type array;
6582 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6583 {
6584 const_rtx x = *iter;
6585 if (GET_CODE (x) == LABEL_REF
6586 && !LABEL_REF_NONLOCAL_P (x)
6587 && (!JUMP_P (insn)
c7799456 6588 || !label_is_jump_target_p (label_ref_label (x), insn))
6589 && LABEL_P (label_ref_label (x))
6590 && INSN_UID (label_ref_label (x)) != 0
6591 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
9206d997 6592 return true;
6593 }
6594 return false;
6595}
6596
be22716f 6597/* Process a single extended basic block described by EBB_DATA. */
752df20e 6598
be22716f 6599static void
6600cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6601{
6602 int path_size = ebb_data->path_size;
6603 int path_entry;
6604 int num_insns = 0;
6605
6606 /* Allocate the space needed by qty_table. */
6607 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6608
6609 new_basic_block ();
deb2741b 6610 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6611 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
be22716f 6612 for (path_entry = 0; path_entry < path_size; path_entry++)
6613 {
6614 basic_block bb;
47f1d198 6615 rtx_insn *insn;
be22716f 6616
6617 bb = ebb_data->path[path_entry].bb;
b357aba8 6618
6619 /* Invalidate recorded information for eh regs if there is an EH
6620 edge pointing to that bb. */
6621 if (bb_has_eh_pred (bb))
6622 {
f1c570a6 6623 df_ref def;
b357aba8 6624
f1c570a6 6625 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6626 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6627 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
b357aba8 6628 }
6629
396a4a1d 6630 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
201f6961 6631 FOR_BB_INSNS (bb, insn)
752df20e 6632 {
be22716f 6633 /* If we have processed 1,000 insns, flush the hash table to
6634 avoid extreme quadratic behavior. We must not include NOTEs
6635 in the count since there may be more of them when generating
6636 debugging information. If we clear the table at different
6637 times, code generated with -g -O might be different than code
6638 generated with -O but not -g.
6639
6640 FIXME: This is a real kludge and needs to be done some other
6641 way. */
9845d120 6642 if (NONDEBUG_INSN_P (insn)
be22716f 6643 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6644 {
6645 flush_hash_table ();
6646 num_insns = 0;
6647 }
752df20e 6648
be22716f 6649 if (INSN_P (insn))
752df20e 6650 {
be22716f 6651 /* Process notes first so we have all notes in canonical forms
6652 when looking for duplicate operations. */
6653 if (REG_NOTES (insn))
3072d30e 6654 {
6655 bool changed = false;
6656 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6657 NULL_RTX, &changed);
6658 if (changed)
6659 df_notes_rescan (insn);
6660 }
be22716f 6661
1e5b92fa 6662 cse_insn (insn);
be22716f 6663
be22716f 6664 /* If we haven't already found an insn where we added a LABEL_REF,
6665 check this one. */
283a6b26 6666 if (INSN_P (insn) && !recorded_label_ref
9206d997 6667 && check_for_label_ref (insn))
283a6b26 6668 recorded_label_ref = true;
c6ddfc69 6669
ff900b8e 6670 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
c6ddfc69 6671 {
5542b661 6672 /* If the previous insn sets CC0 and this insn no
6673 longer references CC0, delete the previous insn.
6674 Here we use fact that nothing expects CC0 to be
6675 valid over an insn, which is true until the final
6676 pass. */
47f1d198 6677 rtx_insn *prev_insn;
6678 rtx tem;
5542b661 6679
6680 prev_insn = prev_nonnote_nondebug_insn (insn);
6681 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6682 && (tem = single_set (prev_insn)) != NULL_RTX
6683 && SET_DEST (tem) == cc0_rtx
6684 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6685 delete_insn (prev_insn);
6686
6687 /* If this insn is not the last insn in the basic
6688 block, it will be PREV_INSN(insn) in the next
6689 iteration. If we recorded any CC0-related
6690 information for this insn, remember it. */
6691 if (insn != BB_END (bb))
6692 {
6693 prev_insn_cc0 = this_insn_cc0;
6694 prev_insn_cc0_mode = this_insn_cc0_mode;
6695 }
c6ddfc69 6696 }
be22716f 6697 }
6698 }
752df20e 6699
99013338 6700 /* With non-call exceptions, we are not always able to update
6701 the CFG properly inside cse_insn. So clean up possibly
6702 redundant EH edges here. */
cbeb677e 6703 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
283a6b26 6704 cse_cfg_altered |= purge_dead_edges (bb);
99013338 6705
be22716f 6706 /* If we changed a conditional jump, we may have terminated
6707 the path we are following. Check that by verifying that
6708 the edge we would take still exists. If the edge does
6709 not exist anymore, purge the remainder of the path.
6710 Note that this will cause us to return to the caller. */
6711 if (path_entry < path_size - 1)
6712 {
6713 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6714 if (!find_edge (bb, next_bb))
5b58e627 6715 {
6716 do
6717 {
6718 path_size--;
6719
6720 /* If we truncate the path, we must also reset the
6721 visited bit on the remaining blocks in the path,
6722 or we will never visit them at all. */
08b7917c 6723 bitmap_clear_bit (cse_visited_basic_blocks,
5b58e627 6724 ebb_data->path[path_size].bb->index);
6725 ebb_data->path[path_size].bb = NULL;
6726 }
6727 while (path_size - 1 != path_entry);
6728 ebb_data->path_size = path_size;
6729 }
752df20e 6730 }
752df20e 6731
be22716f 6732 /* If this is a conditional jump insn, record any known
6733 equivalences due to the condition being tested. */
6734 insn = BB_END (bb);
6735 if (path_entry < path_size - 1
1a0056ba 6736 && EDGE_COUNT (bb->succs) == 2
be22716f 6737 && JUMP_P (insn)
6738 && single_set (insn)
6739 && any_condjump_p (insn))
6740 {
6741 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6742 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6743 record_jump_equiv (insn, taken);
6744 }
c6ddfc69 6745
c6ddfc69 6746 /* Clear the CC0-tracking related insns, they can't provide
6747 useful information across basic block boundaries. */
6748 prev_insn_cc0 = 0;
be22716f 6749 }
752df20e 6750
be22716f 6751 gcc_assert (next_qty <= max_qty);
752df20e 6752
be22716f 6753 free (qty_table);
752df20e 6754}
3072d30e 6755
752df20e 6756\f
752df20e 6757/* Perform cse on the instructions of a function.
6758 F is the first instruction.
6759 NREGS is one plus the highest pseudo-reg number used in the instruction.
6760
283a6b26 6761 Return 2 if jump optimizations should be redone due to simplifications
6762 in conditional jump instructions.
6763 Return 1 if the CFG should be cleaned up because it has been modified.
6764 Return 0 otherwise. */
752df20e 6765
d2bb3f9d 6766static int
47f1d198 6767cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
752df20e 6768{
be22716f 6769 struct cse_basic_block_data ebb_data;
6770 basic_block bb;
fe672ac0 6771 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
be22716f 6772 int i, n_blocks;
752df20e 6773
c28211ae 6774 /* CSE doesn't use dominane info but can invalidate it in different ways.
6775 For simplicity free dominance info here. */
6776 free_dominance_info (CDI_DOMINATORS);
6777
3072d30e 6778 df_set_flags (DF_LR_RUN_DCE);
264adf90 6779 df_note_add_problem ();
3072d30e 6780 df_analyze ();
6781 df_set_flags (DF_DEFER_INSN_RESCAN);
6782
6783 reg_scan (get_insns (), max_reg_num ());
3bd20490 6784 init_cse_reg_info (nregs);
6785
be22716f 6786 ebb_data.path = XNEWVEC (struct branch_path,
6787 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
38ccff25 6788
283a6b26 6789 cse_cfg_altered = false;
6790 cse_jumps_altered = false;
6791 recorded_label_ref = false;
752df20e 6792 constant_pool_entries_cost = 0;
634d45d7 6793 constant_pool_entries_regcost = 0;
be22716f 6794 ebb_data.path_size = 0;
6795 ebb_data.nsets = 0;
d263732c 6796 rtl_hooks = cse_rtl_hooks;
752df20e 6797
6798 init_recog ();
ea0cb7ae 6799 init_alias_analysis ();
752df20e 6800
4c36ffe6 6801 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
752df20e 6802
be22716f 6803 /* Set up the table of already visited basic blocks. */
fe672ac0 6804 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 6805 bitmap_clear (cse_visited_basic_blocks);
752df20e 6806
99013338 6807 /* Loop over basic blocks in reverse completion order (RPO),
be22716f 6808 excluding the ENTRY and EXIT blocks. */
5b58e627 6809 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
be22716f 6810 i = 0;
6811 while (i < n_blocks)
752df20e 6812 {
99013338 6813 /* Find the first block in the RPO queue that we have not yet
be22716f 6814 processed before. */
6815 do
0dbd1c74 6816 {
f5a6b05f 6817 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
0dbd1c74 6818 }
08b7917c 6819 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
be22716f 6820 && i < n_blocks);
752df20e 6821
be22716f 6822 /* Find all paths starting with BB, and process them. */
6823 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
752df20e 6824 {
be22716f 6825 /* Pre-scan the path. */
6826 cse_prescan_path (&ebb_data);
752df20e 6827
be22716f 6828 /* If this basic block has no sets, skip it. */
6829 if (ebb_data.nsets == 0)
6830 continue;
752df20e 6831
7920eed5 6832 /* Get a reasonable estimate for the maximum number of qty's
be22716f 6833 needed for this path. For this, we take the number of sets
6834 and multiply that by MAX_RECOG_OPERANDS. */
6835 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
752df20e 6836
be22716f 6837 /* Dump the path we're about to process. */
6838 if (dump_file)
6839 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
541a035f 6840
be22716f 6841 cse_extended_basic_block (&ebb_data);
752df20e 6842 }
752df20e 6843 }
6844
be22716f 6845 /* Clean up. */
6846 end_alias_analysis ();
be22716f 6847 free (reg_eqv_table);
6848 free (ebb_data.path);
6849 sbitmap_free (cse_visited_basic_blocks);
5b58e627 6850 free (rc_order);
be22716f 6851 rtl_hooks = general_rtl_hooks;
ef866782 6852
283a6b26 6853 if (cse_jumps_altered || recorded_label_ref)
6854 return 2;
6855 else if (cse_cfg_altered)
6856 return 1;
6857 else
6858 return 0;
752df20e 6859}
6860\f
6861/* Count the number of times registers are used (not set) in X.
6862 COUNTS is an array in which we accumulate the count, INCR is how much
e6bf10d8 6863 we count each register usage.
6864
6865 Don't count a usage of DEST, which is the SET_DEST of a SET which
6866 contains X in its SET_SRC. This is because such a SET does not
6867 modify the liveness of DEST.
46313beb 6868 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6869 We must then count uses of a SET_DEST regardless, because the insn can't be
6870 deleted here. */
752df20e 6871
6872static void
e6bf10d8 6873count_reg_usage (rtx x, int *counts, rtx dest, int incr)
752df20e 6874{
b84155cd 6875 enum rtx_code code;
ce32fe65 6876 rtx note;
d2ca078f 6877 const char *fmt;
752df20e 6878 int i, j;
6879
b84155cd 6880 if (x == 0)
6881 return;
6882
6883 switch (code = GET_CODE (x))
752df20e 6884 {
6885 case REG:
e6bf10d8 6886 if (x != dest)
6887 counts[REGNO (x)] += incr;
752df20e 6888 return;
6889
6890 case PC:
6891 case CC0:
6892 case CONST:
0349edce 6893 CASE_CONST_ANY:
752df20e 6894 case SYMBOL_REF:
6895 case LABEL_REF:
a51d039e 6896 return;
6897
cb10db9d 6898 case CLOBBER:
a51d039e 6899 /* If we are clobbering a MEM, mark any registers inside the address
6900 as being used. */
e16ceb8e 6901 if (MEM_P (XEXP (x, 0)))
e6bf10d8 6902 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
752df20e 6903 return;
6904
52620891 6905 case CLOBBER_HIGH:
6906 gcc_assert (REG_P ((XEXP (x, 0))));
6907 return;
6908
752df20e 6909 case SET:
6910 /* Unless we are setting a REG, count everything in SET_DEST. */
8ad4c111 6911 if (!REG_P (SET_DEST (x)))
e6bf10d8 6912 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6913 count_reg_usage (SET_SRC (x), counts,
6914 dest ? dest : SET_DEST (x),
6915 incr);
752df20e 6916 return;
6917
9845d120 6918 case DEBUG_INSN:
6919 return;
6920
b84155cd 6921 case CALL_INSN:
752df20e 6922 case INSN:
6923 case JUMP_INSN:
bc0dfc8d 6924 /* We expect dest to be NULL_RTX here. If the insn may throw,
46313beb 6925 or if it cannot be deleted due to side-effects, mark this fact
6926 by setting DEST to pc_rtx. */
bc0dfc8d 6927 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6928 || side_effects_p (PATTERN (x)))
e6bf10d8 6929 dest = pc_rtx;
6930 if (code == CALL_INSN)
6931 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6932 count_reg_usage (PATTERN (x), counts, dest, incr);
752df20e 6933
6934 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6935 use them. */
6936
ce32fe65 6937 note = find_reg_equal_equiv_note (x);
6938 if (note)
86178c33 6939 {
6940 rtx eqv = XEXP (note, 0);
6941
6942 if (GET_CODE (eqv) == EXPR_LIST)
6943 /* This REG_EQUAL note describes the result of a function call.
6944 Process all the arguments. */
6945 do
6946 {
e6bf10d8 6947 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
86178c33 6948 eqv = XEXP (eqv, 1);
6949 }
6950 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6951 else
e6bf10d8 6952 count_reg_usage (eqv, counts, dest, incr);
86178c33 6953 }
752df20e 6954 return;
6955
d5f9786f 6956 case EXPR_LIST:
6957 if (REG_NOTE_KIND (x) == REG_EQUAL
6958 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6959 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6960 involving registers in the address. */
52620891 6961 || GET_CODE (XEXP (x, 0)) == CLOBBER
6962 || GET_CODE (XEXP (x, 0)) == CLOBBER_HIGH)
e6bf10d8 6963 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
d5f9786f 6964
e6bf10d8 6965 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
d5f9786f 6966 return;
6967
16d4da86 6968 case ASM_OPERANDS:
16d4da86 6969 /* Iterate over just the inputs, not the constraints as well. */
6970 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
e6bf10d8 6971 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
16d4da86 6972 return;
6973
752df20e 6974 case INSN_LIST:
b3578ae7 6975 case INT_LIST:
cc636d56 6976 gcc_unreachable ();
cb10db9d 6977
0dbd1c74 6978 default:
6979 break;
752df20e 6980 }
6981
6982 fmt = GET_RTX_FORMAT (code);
6983 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6984 {
6985 if (fmt[i] == 'e')
e6bf10d8 6986 count_reg_usage (XEXP (x, i), counts, dest, incr);
752df20e 6987 else if (fmt[i] == 'E')
6988 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e6bf10d8 6989 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
752df20e 6990 }
6991}
6992\f
a52dfddb 6993/* Return true if X is a dead register. */
9845d120 6994
a52dfddb 6995static inline int
a51848dc 6996is_dead_reg (const_rtx x, int *counts)
9845d120 6997{
9845d120 6998 return (REG_P (x)
6999 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7000 && counts[REGNO (x)] == 0);
7001}
7002
6d866f03 7003/* Return true if set is live. */
7004static bool
47f1d198 7005set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
8ec3a57b 7006 int *counts)
6d866f03 7007{
9ed997be 7008 rtx_insn *tem;
6d866f03 7009
7010 if (set_noop_p (set))
7011 ;
7012
6d866f03 7013 else if (GET_CODE (SET_DEST (set)) == CC0
7014 && !side_effects_p (SET_SRC (set))
5542b661 7015 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6d866f03 7016 || !INSN_P (tem)
7017 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7018 return false;
a52dfddb 7019 else if (!is_dead_reg (SET_DEST (set), counts)
e8825bb0 7020 || side_effects_p (SET_SRC (set)))
6d866f03 7021 return true;
7022 return false;
7023}
7024
7025/* Return true if insn is live. */
7026
7027static bool
47f1d198 7028insn_live_p (rtx_insn *insn, int *counts)
6d866f03 7029{
7030 int i;
bc0dfc8d 7031 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
8ca56a3b 7032 return true;
7033 else if (GET_CODE (PATTERN (insn)) == SET)
6fc669ae 7034 return set_live_p (PATTERN (insn), insn, counts);
6d866f03 7035 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6fc669ae 7036 {
7037 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7038 {
7039 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6d866f03 7040
6fc669ae 7041 if (GET_CODE (elt) == SET)
7042 {
7043 if (set_live_p (elt, insn, counts))
7044 return true;
7045 }
52620891 7046 else if (GET_CODE (elt) != CLOBBER
7047 && GET_CODE (elt) != CLOBBER_HIGH
7048 && GET_CODE (elt) != USE)
6fc669ae 7049 return true;
7050 }
7051 return false;
7052 }
9845d120 7053 else if (DEBUG_INSN_P (insn))
7054 {
47f1d198 7055 rtx_insn *next;
9845d120 7056
90567983 7057 if (DEBUG_MARKER_INSN_P (insn))
7058 return true;
7059
9845d120 7060 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
7061 if (NOTE_P (next))
7062 continue;
7063 else if (!DEBUG_INSN_P (next))
7064 return true;
90567983 7065 /* If we find an inspection point, such as a debug begin stmt,
7066 we want to keep the earlier debug insn. */
7067 else if (DEBUG_MARKER_INSN_P (next))
7068 return true;
9845d120 7069 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
7070 return false;
7071
9845d120 7072 return true;
7073 }
6d866f03 7074 else
7075 return true;
7076}
7077
a52dfddb 7078/* Count the number of stores into pseudo. Callback for note_stores. */
7079
7080static void
7081count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7082{
7083 int *counts = (int *) data;
7084 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7085 counts[REGNO (x)]++;
7086}
7087
a51848dc 7088/* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7089 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7090 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7091 Set *SEEN_REPL to true if we see a dead register that does have
7092 a replacement. */
a52dfddb 7093
a51848dc 7094static bool
7095is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7096 bool *seen_repl)
a52dfddb 7097{
a51848dc 7098 subrtx_iterator::array_type array;
7099 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
a52dfddb 7100 {
a51848dc 7101 const_rtx x = *iter;
7102 if (is_dead_reg (x, counts))
7103 {
7104 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7105 *seen_repl = true;
7106 else
7107 return true;
7108 }
a52dfddb 7109 }
a51848dc 7110 return false;
a52dfddb 7111}
7112
7113/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7114 Callback for simplify_replace_fn_rtx. */
7115
7116static rtx
7117replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7118{
7119 rtx *replacements = (rtx *) data;
7120
7121 if (REG_P (x)
7122 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7123 && replacements[REGNO (x)] != NULL_RTX)
7124 {
7125 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7126 return replacements[REGNO (x)];
7127 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7128 GET_MODE (replacements[REGNO (x)]));
7129 }
7130 return NULL_RTX;
7131}
7132
752df20e 7133/* Scan all the insns and delete any that are dead; i.e., they store a register
7134 that is never used or they copy a register to itself.
7135
33752533 7136 This is used to remove insns made obviously dead by cse, loop or other
7137 optimizations. It improves the heuristics in loop since it won't try to
7138 move dead invariants out of loops or make givs for dead quantities. The
7139 remaining passes of the compilation are also sped up. */
752df20e 7140
fb20d6fa 7141int
f2f648a3 7142delete_trivially_dead_insns (rtx_insn *insns, int nreg)
752df20e 7143{
b9cf3f63 7144 int *counts;
f2f648a3 7145 rtx_insn *insn, *prev;
a52dfddb 7146 rtx *replacements = NULL;
2aaf7099 7147 int ndead = 0;
752df20e 7148
fb20d6fa 7149 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
752df20e 7150 /* First count the number of times each register is used. */
c64f38bf 7151 if (MAY_HAVE_DEBUG_BIND_INSNS)
a52dfddb 7152 {
7153 counts = XCNEWVEC (int, nreg * 3);
7154 for (insn = insns; insn; insn = NEXT_INSN (insn))
c64f38bf 7155 if (DEBUG_BIND_INSN_P (insn))
a52dfddb 7156 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7157 NULL_RTX, 1);
7158 else if (INSN_P (insn))
7159 {
7160 count_reg_usage (insn, counts, NULL_RTX, 1);
7161 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7162 }
7163 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7164 First one counts how many times each pseudo is used outside
7165 of debug insns, second counts how many times each pseudo is
7166 used in debug insns and third counts how many times a pseudo
7167 is stored. */
7168 }
7169 else
7170 {
7171 counts = XCNEWVEC (int, nreg);
7172 for (insn = insns; insn; insn = NEXT_INSN (insn))
7173 if (INSN_P (insn))
7174 count_reg_usage (insn, counts, NULL_RTX, 1);
7175 /* If no debug insns can be present, COUNTS is just an array
7176 which counts how many times each pseudo is used. */
7177 }
0d1f9fde 7178 /* Pseudo PIC register should be considered as used due to possible
7179 new usages generated. */
7180 if (!reload_completed
7181 && pic_offset_table_rtx
7182 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7183 counts[REGNO (pic_offset_table_rtx)]++;
2aaf7099 7184 /* Go from the last insn to the first and delete insns that only set unused
7185 registers or copy a register to itself. As we delete an insn, remove
7186 usage counts for registers it uses.
af21a202 7187
2aaf7099 7188 The first jump optimization pass may leave a real insn as the last
7189 insn in the function. We must not skip that insn or we may end
a52dfddb 7190 up deleting code that is not really dead.
7191
7192 If some otherwise unused register is only used in DEBUG_INSNs,
7193 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7194 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7195 has been created for the unused register, replace it with
7196 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
4ac6fa85 7197 for (insn = get_last_insn (); insn; insn = prev)
2aaf7099 7198 {
7199 int live_insn = 0;
752df20e 7200
4ac6fa85 7201 prev = PREV_INSN (insn);
7202 if (!INSN_P (insn))
7203 continue;
752df20e 7204
1e5b92fa 7205 live_insn = insn_live_p (insn, counts);
752df20e 7206
2aaf7099 7207 /* If this is a dead insn, delete it and show registers in it aren't
7208 being used. */
752df20e 7209
3072d30e 7210 if (! live_insn && dbg_cnt (delete_trivial_dead))
2aaf7099 7211 {
a52dfddb 7212 if (DEBUG_INSN_P (insn))
c64f38bf 7213 {
7214 if (DEBUG_BIND_INSN_P (insn))
7215 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7216 NULL_RTX, -1);
7217 }
a52dfddb 7218 else
7219 {
7220 rtx set;
c64f38bf 7221 if (MAY_HAVE_DEBUG_BIND_INSNS
a52dfddb 7222 && (set = single_set (insn)) != NULL_RTX
7223 && is_dead_reg (SET_DEST (set), counts)
7224 /* Used at least once in some DEBUG_INSN. */
7225 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7226 /* And set exactly once. */
7227 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7228 && !side_effects_p (SET_SRC (set))
7229 && asm_noperands (PATTERN (insn)) < 0)
7230 {
e149ca56 7231 rtx dval, bind_var_loc;
7232 rtx_insn *bind;
a52dfddb 7233
7234 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7235 dval = make_debug_expr_from_rtl (SET_DEST (set));
7236
7237 /* Emit a debug bind insn before the insn in which
7238 reg dies. */
e149ca56 7239 bind_var_loc =
7240 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7241 DEBUG_EXPR_TREE_DECL (dval),
7242 SET_SRC (set),
7243 VAR_INIT_STATUS_INITIALIZED);
7244 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7245
7246 bind = emit_debug_insn_before (bind_var_loc, insn);
a52dfddb 7247 df_insn_rescan (bind);
7248
7249 if (replacements == NULL)
7250 replacements = XCNEWVEC (rtx, nreg);
7251 replacements[REGNO (SET_DEST (set))] = dval;
7252 }
7253
7254 count_reg_usage (insn, counts, NULL_RTX, -1);
7255 ndead++;
7256 }
bfa8ea12 7257 cse_cfg_altered |= delete_insn_and_edges (insn);
2aaf7099 7258 }
d4c5e26d 7259 }
b9cf3f63 7260
c64f38bf 7261 if (MAY_HAVE_DEBUG_BIND_INSNS)
a52dfddb 7262 {
a52dfddb 7263 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
c64f38bf 7264 if (DEBUG_BIND_INSN_P (insn))
a52dfddb 7265 {
7266 /* If this debug insn references a dead register that wasn't replaced
7267 with an DEBUG_EXPR, reset the DEBUG_INSN. */
a51848dc 7268 bool seen_repl = false;
7269 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7270 counts, replacements, &seen_repl))
a52dfddb 7271 {
7272 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7273 df_insn_rescan (insn);
7274 }
a51848dc 7275 else if (seen_repl)
a52dfddb 7276 {
7277 INSN_VAR_LOCATION_LOC (insn)
7278 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7279 NULL_RTX, replace_dead_reg,
7280 replacements);
7281 df_insn_rescan (insn);
7282 }
7283 }
dd045aee 7284 free (replacements);
a52dfddb 7285 }
7286
450d042a 7287 if (dump_file && ndead)
2aaf7099 7288 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7289 ndead);
b9cf3f63 7290 /* Clean up. */
7291 free (counts);
fb20d6fa 7292 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7293 return ndead;
752df20e 7294}
124ac4e4 7295
2342ac7b 7296/* If LOC contains references to NEWREG in a different mode, change them
7297 to use NEWREG instead. */
124ac4e4 7298
2342ac7b 7299static void
7300cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
41805aed 7301 rtx *loc, rtx_insn *insn, rtx newreg)
124ac4e4 7302{
2342ac7b 7303 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
124ac4e4 7304 {
2342ac7b 7305 rtx *loc = *iter;
7306 rtx x = *loc;
7307 if (x
7308 && REG_P (x)
7309 && REGNO (x) == REGNO (newreg)
7310 && GET_MODE (x) != GET_MODE (newreg))
7311 {
7312 validate_change (insn, loc, newreg, 1);
7313 iter.skip_subrtxes ();
7314 }
124ac4e4 7315 }
124ac4e4 7316}
7317
b866694e 7318/* Change the mode of any reference to the register REGNO (NEWREG) to
7319 GET_MODE (NEWREG) in INSN. */
7320
7321static void
47f1d198 7322cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
b866694e 7323{
b866694e 7324 int success;
7325
7326 if (!INSN_P (insn))
7327 return;
7328
2342ac7b 7329 subrtx_ptr_iterator::array_type array;
7330 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7331 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
48e1416a 7332
b866694e 7333 /* If the following assertion was triggered, there is most probably
7334 something wrong with the cc_modes_compatible back end function.
7335 CC modes only can be considered compatible if the insn - with the mode
7336 replaced by any of the compatible modes - can still be recognized. */
7337 success = apply_change_group ();
7338 gcc_assert (success);
7339}
7340
124ac4e4 7341/* Change the mode of any reference to the register REGNO (NEWREG) to
7342 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
4362e8e0 7343 any instruction which modifies NEWREG. */
124ac4e4 7344
7345static void
47f1d198 7346cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
124ac4e4 7347{
47f1d198 7348 rtx_insn *insn;
124ac4e4 7349
7350 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7351 {
7352 if (! INSN_P (insn))
7353 continue;
7354
4362e8e0 7355 if (reg_set_p (newreg, insn))
124ac4e4 7356 return;
7357
b866694e 7358 cse_change_cc_mode_insn (insn, newreg);
124ac4e4 7359 }
7360}
7361
7362/* BB is a basic block which finishes with CC_REG as a condition code
7363 register which is set to CC_SRC. Look through the successors of BB
7364 to find blocks which have a single predecessor (i.e., this one),
7365 and look through those blocks for an assignment to CC_REG which is
7366 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7367 permitted to change the mode of CC_SRC to a compatible mode. This
7368 returns VOIDmode if no equivalent assignments were found.
7369 Otherwise it returns the mode which CC_SRC should wind up with.
650d2134 7370 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7371 but is passed unmodified down to recursive calls in order to prevent
7372 endless recursion.
124ac4e4 7373
7374 The main complexity in this function is handling the mode issues.
7375 We may have more than one duplicate which we can eliminate, and we
7376 try to find a mode which will work for multiple duplicates. */
7377
3754d046 7378static machine_mode
650d2134 7379cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7380 bool can_change_mode)
124ac4e4 7381{
7382 bool found_equiv;
3754d046 7383 machine_mode mode;
124ac4e4 7384 unsigned int insn_count;
7385 edge e;
47f1d198 7386 rtx_insn *insns[2];
3754d046 7387 machine_mode modes[2];
47f1d198 7388 rtx_insn *last_insns[2];
124ac4e4 7389 unsigned int i;
7390 rtx newreg;
cd665a06 7391 edge_iterator ei;
124ac4e4 7392
7393 /* We expect to have two successors. Look at both before picking
7394 the final mode for the comparison. If we have more successors
7395 (i.e., some sort of table jump, although that seems unlikely),
7396 then we require all beyond the first two to use the same
7397 mode. */
7398
7399 found_equiv = false;
7400 mode = GET_MODE (cc_src);
7401 insn_count = 0;
cd665a06 7402 FOR_EACH_EDGE (e, ei, bb->succs)
124ac4e4 7403 {
47f1d198 7404 rtx_insn *insn;
7405 rtx_insn *end;
124ac4e4 7406
7407 if (e->flags & EDGE_COMPLEX)
7408 continue;
7409
cd665a06 7410 if (EDGE_COUNT (e->dest->preds) != 1
34154e27 7411 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
650d2134 7412 /* Avoid endless recursion on unreachable blocks. */
7413 || e->dest == orig_bb)
124ac4e4 7414 continue;
7415
7416 end = NEXT_INSN (BB_END (e->dest));
7417 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7418 {
7419 rtx set;
7420
7421 if (! INSN_P (insn))
7422 continue;
7423
7424 /* If CC_SRC is modified, we have to stop looking for
7425 something which uses it. */
7426 if (modified_in_p (cc_src, insn))
7427 break;
7428
7429 /* Check whether INSN sets CC_REG to CC_SRC. */
7430 set = single_set (insn);
7431 if (set
8ad4c111 7432 && REG_P (SET_DEST (set))
124ac4e4 7433 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7434 {
7435 bool found;
3754d046 7436 machine_mode set_mode;
7437 machine_mode comp_mode;
124ac4e4 7438
7439 found = false;
7440 set_mode = GET_MODE (SET_SRC (set));
7441 comp_mode = set_mode;
7442 if (rtx_equal_p (cc_src, SET_SRC (set)))
7443 found = true;
7444 else if (GET_CODE (cc_src) == COMPARE
7445 && GET_CODE (SET_SRC (set)) == COMPARE
960670fc 7446 && mode != set_mode
124ac4e4 7447 && rtx_equal_p (XEXP (cc_src, 0),
7448 XEXP (SET_SRC (set), 0))
7449 && rtx_equal_p (XEXP (cc_src, 1),
7450 XEXP (SET_SRC (set), 1)))
48e1416a 7451
124ac4e4 7452 {
883b2e73 7453 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
124ac4e4 7454 if (comp_mode != VOIDmode
7455 && (can_change_mode || comp_mode == mode))
7456 found = true;
7457 }
7458
7459 if (found)
7460 {
7461 found_equiv = true;
960670fc 7462 if (insn_count < ARRAY_SIZE (insns))
124ac4e4 7463 {
7464 insns[insn_count] = insn;
7465 modes[insn_count] = set_mode;
7466 last_insns[insn_count] = end;
7467 ++insn_count;
7468
960670fc 7469 if (mode != comp_mode)
7470 {
cc636d56 7471 gcc_assert (can_change_mode);
960670fc 7472 mode = comp_mode;
b866694e 7473
7474 /* The modified insn will be re-recognized later. */
960670fc 7475 PUT_MODE (cc_src, mode);
7476 }
124ac4e4 7477 }
7478 else
7479 {
7480 if (set_mode != mode)
960670fc 7481 {
7482 /* We found a matching expression in the
7483 wrong mode, but we don't have room to
7484 store it in the array. Punt. This case
7485 should be rare. */
7486 break;
7487 }
124ac4e4 7488 /* INSN sets CC_REG to a value equal to CC_SRC
7489 with the right mode. We can simply delete
7490 it. */
7491 delete_insn (insn);
7492 }
7493
7494 /* We found an instruction to delete. Keep looking,
7495 in the hopes of finding a three-way jump. */
7496 continue;
7497 }
7498
7499 /* We found an instruction which sets the condition
7500 code, so don't look any farther. */
7501 break;
7502 }
7503
7504 /* If INSN sets CC_REG in some other way, don't look any
7505 farther. */
7506 if (reg_set_p (cc_reg, insn))
7507 break;
7508 }
7509
7510 /* If we fell off the bottom of the block, we can keep looking
7511 through successors. We pass CAN_CHANGE_MODE as false because
7512 we aren't prepared to handle compatibility between the
7513 further blocks and this block. */
7514 if (insn == end)
7515 {
3754d046 7516 machine_mode submode;
960670fc 7517
650d2134 7518 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
960670fc 7519 if (submode != VOIDmode)
7520 {
cc636d56 7521 gcc_assert (submode == mode);
960670fc 7522 found_equiv = true;
7523 can_change_mode = false;
7524 }
124ac4e4 7525 }
7526 }
7527
7528 if (! found_equiv)
7529 return VOIDmode;
7530
7531 /* Now INSN_COUNT is the number of instructions we found which set
7532 CC_REG to a value equivalent to CC_SRC. The instructions are in
7533 INSNS. The modes used by those instructions are in MODES. */
7534
7535 newreg = NULL_RTX;
7536 for (i = 0; i < insn_count; ++i)
7537 {
7538 if (modes[i] != mode)
7539 {
7540 /* We need to change the mode of CC_REG in INSNS[i] and
7541 subsequent instructions. */
7542 if (! newreg)
7543 {
7544 if (GET_MODE (cc_reg) == mode)
7545 newreg = cc_reg;
7546 else
7547 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7548 }
7549 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7550 newreg);
7551 }
7552
bfa8ea12 7553 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
124ac4e4 7554 }
7555
7556 return mode;
7557}
7558
7559/* If we have a fixed condition code register (or two), walk through
7560 the instructions and try to eliminate duplicate assignments. */
7561
66c2c707 7562static void
124ac4e4 7563cse_condition_code_reg (void)
7564{
7565 unsigned int cc_regno_1;
7566 unsigned int cc_regno_2;
7567 rtx cc_reg_1;
7568 rtx cc_reg_2;
7569 basic_block bb;
7570
883b2e73 7571 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
124ac4e4 7572 return;
7573
7574 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7575 if (cc_regno_2 != INVALID_REGNUM)
7576 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7577 else
7578 cc_reg_2 = NULL_RTX;
7579
fc00614f 7580 FOR_EACH_BB_FN (bb, cfun)
124ac4e4 7581 {
47f1d198 7582 rtx_insn *last_insn;
124ac4e4 7583 rtx cc_reg;
47f1d198 7584 rtx_insn *insn;
7585 rtx_insn *cc_src_insn;
124ac4e4 7586 rtx cc_src;
3754d046 7587 machine_mode mode;
7588 machine_mode orig_mode;
124ac4e4 7589
7590 /* Look for blocks which end with a conditional jump based on a
7591 condition code register. Then look for the instruction which
7592 sets the condition code register. Then look through the
7593 successor blocks for instructions which set the condition
7594 code register to the same value. There are other possible
7595 uses of the condition code register, but these are by far the
7596 most common and the ones which we are most likely to be able
7597 to optimize. */
7598
7599 last_insn = BB_END (bb);
6d7dc5b9 7600 if (!JUMP_P (last_insn))
124ac4e4 7601 continue;
7602
7603 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7604 cc_reg = cc_reg_1;
7605 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7606 cc_reg = cc_reg_2;
7607 else
7608 continue;
7609
47f1d198 7610 cc_src_insn = NULL;
124ac4e4 7611 cc_src = NULL_RTX;
7612 for (insn = PREV_INSN (last_insn);
7613 insn && insn != PREV_INSN (BB_HEAD (bb));
7614 insn = PREV_INSN (insn))
7615 {
7616 rtx set;
7617
7618 if (! INSN_P (insn))
7619 continue;
7620 set = single_set (insn);
7621 if (set
8ad4c111 7622 && REG_P (SET_DEST (set))
124ac4e4 7623 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7624 {
7625 cc_src_insn = insn;
7626 cc_src = SET_SRC (set);
7627 break;
7628 }
7629 else if (reg_set_p (cc_reg, insn))
7630 break;
7631 }
7632
7633 if (! cc_src_insn)
7634 continue;
7635
7636 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7637 continue;
7638
7639 /* Now CC_REG is a condition code register used for a
7640 conditional jump at the end of the block, and CC_SRC, in
7641 CC_SRC_INSN, is the value to which that condition code
7642 register is set, and CC_SRC is still meaningful at the end of
7643 the basic block. */
7644
960670fc 7645 orig_mode = GET_MODE (cc_src);
650d2134 7646 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
960670fc 7647 if (mode != VOIDmode)
124ac4e4 7648 {
cc636d56 7649 gcc_assert (mode == GET_MODE (cc_src));
960670fc 7650 if (mode != orig_mode)
4362e8e0 7651 {
7652 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7653
b866694e 7654 cse_change_cc_mode_insn (cc_src_insn, newreg);
4362e8e0 7655
7656 /* Do the same in the following insns that use the
7657 current value of CC_REG within BB. */
7658 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7659 NEXT_INSN (last_insn),
7660 newreg);
7661 }
124ac4e4 7662 }
7663 }
7664}
77fce4cd 7665\f
7666
7667/* Perform common subexpression elimination. Nonzero value from
7668 `cse_main' means that jumps were simplified and some code may now
7669 be unreachable, so do jump optimization again. */
2a1990e9 7670static unsigned int
77fce4cd 7671rest_of_handle_cse (void)
7672{
7673 int tem;
3072d30e 7674
77fce4cd 7675 if (dump_file)
562d71e8 7676 dump_flow_info (dump_file, dump_flags);
77fce4cd 7677
3f5be5f4 7678 tem = cse_main (get_insns (), max_reg_num ());
77fce4cd 7679
7680 /* If we are not running more CSE passes, then we are no longer
7681 expecting CSE to be run. But always rerun it in a cheap mode. */
7682 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7683
283a6b26 7684 if (tem == 2)
7685 {
7686 timevar_push (TV_JUMP);
7687 rebuild_jump_labels (get_insns ());
03a400fb 7688 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
283a6b26 7689 timevar_pop (TV_JUMP);
7690 }
7691 else if (tem == 1 || optimize > 1)
03a400fb 7692 cse_cfg_altered |= cleanup_cfg (0);
be22716f 7693
2a1990e9 7694 return 0;
77fce4cd 7695}
7696
cbe8bda8 7697namespace {
7698
7699const pass_data pass_data_cse =
77fce4cd 7700{
cbe8bda8 7701 RTL_PASS, /* type */
7702 "cse1", /* name */
7703 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 7704 TV_CSE, /* tv_id */
7705 0, /* properties_required */
7706 0, /* properties_provided */
7707 0, /* properties_destroyed */
7708 0, /* todo_flags_start */
8b88439e 7709 TODO_df_finish, /* todo_flags_finish */
77fce4cd 7710};
7711
cbe8bda8 7712class pass_cse : public rtl_opt_pass
7713{
7714public:
9af5ce0c 7715 pass_cse (gcc::context *ctxt)
7716 : rtl_opt_pass (pass_data_cse, ctxt)
cbe8bda8 7717 {}
7718
7719 /* opt_pass methods: */
31315c24 7720 virtual bool gate (function *) { return optimize > 0; }
65b0537f 7721 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
cbe8bda8 7722
7723}; // class pass_cse
7724
7725} // anon namespace
7726
7727rtl_opt_pass *
7728make_pass_cse (gcc::context *ctxt)
7729{
7730 return new pass_cse (ctxt);
7731}
7732
77fce4cd 7733
77fce4cd 7734/* Run second CSE pass after loop optimizations. */
2a1990e9 7735static unsigned int
77fce4cd 7736rest_of_handle_cse2 (void)
7737{
7738 int tem;
7739
7740 if (dump_file)
562d71e8 7741 dump_flow_info (dump_file, dump_flags);
77fce4cd 7742
3f5be5f4 7743 tem = cse_main (get_insns (), max_reg_num ());
77fce4cd 7744
7745 /* Run a pass to eliminate duplicated assignments to condition code
7746 registers. We have to run this after bypass_jumps, because it
7747 makes it harder for that pass to determine whether a jump can be
7748 bypassed safely. */
7749 cse_condition_code_reg ();
7750
77fce4cd 7751 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7752
283a6b26 7753 if (tem == 2)
77fce4cd 7754 {
7755 timevar_push (TV_JUMP);
7756 rebuild_jump_labels (get_insns ());
03a400fb 7757 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
77fce4cd 7758 timevar_pop (TV_JUMP);
7759 }
283a6b26 7760 else if (tem == 1)
03a400fb 7761 cse_cfg_altered |= cleanup_cfg (0);
283a6b26 7762
77fce4cd 7763 cse_not_expected = 1;
2a1990e9 7764 return 0;
77fce4cd 7765}
7766
7767
cbe8bda8 7768namespace {
7769
7770const pass_data pass_data_cse2 =
77fce4cd 7771{
cbe8bda8 7772 RTL_PASS, /* type */
7773 "cse2", /* name */
7774 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 7775 TV_CSE2, /* tv_id */
7776 0, /* properties_required */
7777 0, /* properties_provided */
7778 0, /* properties_destroyed */
7779 0, /* todo_flags_start */
8b88439e 7780 TODO_df_finish, /* todo_flags_finish */
77fce4cd 7781};
d743aba2 7782
cbe8bda8 7783class pass_cse2 : public rtl_opt_pass
7784{
7785public:
9af5ce0c 7786 pass_cse2 (gcc::context *ctxt)
7787 : rtl_opt_pass (pass_data_cse2, ctxt)
cbe8bda8 7788 {}
7789
7790 /* opt_pass methods: */
31315c24 7791 virtual bool gate (function *)
7792 {
7793 return optimize > 0 && flag_rerun_cse_after_loop;
7794 }
7795
65b0537f 7796 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
cbe8bda8 7797
7798}; // class pass_cse2
7799
7800} // anon namespace
7801
7802rtl_opt_pass *
7803make_pass_cse2 (gcc::context *ctxt)
7804{
7805 return new pass_cse2 (ctxt);
7806}
7807
d743aba2 7808/* Run second CSE pass after loop optimizations. */
7809static unsigned int
7810rest_of_handle_cse_after_global_opts (void)
7811{
7812 int save_cfj;
7813 int tem;
7814
7815 /* We only want to do local CSE, so don't follow jumps. */
7816 save_cfj = flag_cse_follow_jumps;
7817 flag_cse_follow_jumps = 0;
7818
7819 rebuild_jump_labels (get_insns ());
7820 tem = cse_main (get_insns (), max_reg_num ());
bfa8ea12 7821 cse_cfg_altered |= purge_all_dead_edges ();
d743aba2 7822 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7823
7824 cse_not_expected = !flag_rerun_cse_after_loop;
7825
7826 /* If cse altered any jumps, rerun jump opts to clean things up. */
7827 if (tem == 2)
7828 {
7829 timevar_push (TV_JUMP);
7830 rebuild_jump_labels (get_insns ());
03a400fb 7831 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
d743aba2 7832 timevar_pop (TV_JUMP);
7833 }
7834 else if (tem == 1)
03a400fb 7835 cse_cfg_altered |= cleanup_cfg (0);
d743aba2 7836
7837 flag_cse_follow_jumps = save_cfj;
7838 return 0;
7839}
7840
cbe8bda8 7841namespace {
7842
7843const pass_data pass_data_cse_after_global_opts =
d743aba2 7844{
cbe8bda8 7845 RTL_PASS, /* type */
7846 "cse_local", /* name */
7847 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 7848 TV_CSE, /* tv_id */
7849 0, /* properties_required */
7850 0, /* properties_provided */
7851 0, /* properties_destroyed */
7852 0, /* todo_flags_start */
8b88439e 7853 TODO_df_finish, /* todo_flags_finish */
d743aba2 7854};
cbe8bda8 7855
7856class pass_cse_after_global_opts : public rtl_opt_pass
7857{
7858public:
9af5ce0c 7859 pass_cse_after_global_opts (gcc::context *ctxt)
7860 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
cbe8bda8 7861 {}
7862
7863 /* opt_pass methods: */
31315c24 7864 virtual bool gate (function *)
7865 {
7866 return optimize > 0 && flag_rerun_cse_after_global_opts;
7867 }
7868
65b0537f 7869 virtual unsigned int execute (function *)
7870 {
7871 return rest_of_handle_cse_after_global_opts ();
7872 }
cbe8bda8 7873
7874}; // class pass_cse_after_global_opts
7875
7876} // anon namespace
7877
7878rtl_opt_pass *
7879make_pass_cse_after_global_opts (gcc::context *ctxt)
7880{
7881 return new pass_cse_after_global_opts (ctxt);
7882}