]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
Fix ada enabled "make html".
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
5e7b4e25 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
ad616de1 3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
7afe21cc 4
1322177d 5This file is part of GCC.
7afe21cc 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
7afe21cc 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
7afe21cc
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
7afe21cc 21
7afe21cc 22#include "config.h"
670ee920
KG
23/* stdio.h must precede rtl.h for FFS. */
24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
7afe21cc 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
7afe21cc 29#include "hard-reg-set.h"
7932a3db 30#include "regs.h"
630c79be 31#include "basic-block.h"
7afe21cc
RK
32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
49ad7cfa 36#include "function.h"
956d6950 37#include "expr.h"
50b2596f
KG
38#include "toplev.h"
39#include "output.h"
1497faf6 40#include "ggc.h"
3dec4024 41#include "timevar.h"
26771da7 42#include "except.h"
3c50106f 43#include "target.h"
9bf8cfbf 44#include "params.h"
2f93eea8 45#include "rtlhooks-def.h"
7afe21cc
RK
46
47/* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
61
62 We use two data structures to record the equivalent expressions:
1bb98cec
DM
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75Registers and "quantity numbers":
278a83b2 76
7afe21cc
RK
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
459281be 83 `REG_QTY (N)' records what quantity register N is currently thought
7afe21cc
RK
84 of as containing.
85
08a69267 86 All real quantity numbers are greater than or equal to zero.
459281be 87 If register N has not been assigned a quantity, `REG_QTY (N)' will
08a69267 88 equal -N - 1, which is always negative.
7afe21cc 89
08a69267
RS
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
7afe21cc
RK
92
93 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
1bb98cec 102 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
278a83b2 109
7afe21cc
RK
110Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
1bb98cec 113 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
114 putting the constant in the hash table as is usual for non-regs.
115
d45cf215 116 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
7afe21cc
RK
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
1bb98cec 142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
459281be
KH
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
7afe21cc
RK
185
186 Registers themselves are entered in the hash table as well as in
459281be
KH
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
7afe21cc
RK
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
193
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
197
198Related expressions:
199
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
278a83b2 206
1bb98cec
DM
207/* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
7afe21cc
RK
209
210static int max_qty;
211
212/* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
214
215static int next_qty;
216
1bb98cec 217/* Per-qty information tracking.
7afe21cc 218
1bb98cec
DM
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
7afe21cc 221
1bb98cec 222 `mode' contains the machine mode of this quantity.
7afe21cc 223
1bb98cec
DM
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
7afe21cc 229
1bb98cec
DM
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
7afe21cc 241
1bb98cec
DM
242struct qty_table_elem
243{
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
770ae6cc 248 unsigned int first_reg, last_reg;
496324d0
DN
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
1bb98cec 253};
7afe21cc 254
1bb98cec
DM
255/* The table of all qtys, indexed by qty number. */
256static struct qty_table_elem *qty_table;
7afe21cc 257
fc188d37
AK
258/* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260struct change_cc_mode_args
261{
262 rtx insn;
263 rtx newreg;
264};
265
7afe21cc
RK
266#ifdef HAVE_cc0
267/* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
270
271 Instead, we store below the value last assigned to CC0. If it should
272 happen to be a constant, it is stored in preference to the actual
273 assigned value. In case it is a constant, we store the mode in which
274 the constant should be interpreted. */
275
276static rtx prev_insn_cc0;
277static enum machine_mode prev_insn_cc0_mode;
7afe21cc
RK
278
279/* Previous actual insn. 0 if at first insn of basic block. */
280
281static rtx prev_insn;
4977bab6 282#endif
7afe21cc
RK
283
284/* Insn being scanned. */
285
286static rtx this_insn;
287
71d306d1
DE
288/* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
7afe21cc
RK
290 value.
291
292 Or -1 if this register is at the end of the chain.
293
459281be 294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
1bb98cec
DM
295
296/* Per-register equivalence chain. */
297struct reg_eqv_elem
298{
299 int next, prev;
300};
7afe21cc 301
1bb98cec
DM
302/* The table of all register equivalence chains. */
303static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 304
14a774a9
RK
305struct cse_reg_info
306{
bc5e3b54
KH
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
9b1549b8
DM
309
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
312
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
316
30f72379
MM
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
46081bb3
SH
322
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 325 unsigned int subreg_ticked;
30f72379 326};
7afe21cc 327
bc5e3b54 328/* A table of cse_reg_info indexed by register numbers. */
f00822b2 329static struct cse_reg_info *cse_reg_info_table;
c1edba58 330
bc5e3b54
KH
331/* The size of the above table. */
332static unsigned int cse_reg_info_table_size;
9b1549b8 333
bc5e3b54
KH
334/* The index of the first entry that has not been initialized. */
335static unsigned int cse_reg_info_table_first_uninitialized;
7afe21cc 336
bc5e3b54 337/* The timestamp at the beginning of the current run of
0388d40a 338 cse_basic_block. We increment this variable at the beginning of
bc5e3b54
KH
339 the current run of cse_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_basic_block. */
343static unsigned int cse_reg_info_timestamp;
7afe21cc 344
278a83b2 345/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
349
350static HARD_REG_SET hard_regs_in_table;
351
7afe21cc
RK
352/* CUID of insn that starts the basic block currently being cse-processed. */
353
354static int cse_basic_block_start;
355
356/* CUID of insn that ends the basic block currently being cse-processed. */
357
358static int cse_basic_block_end;
359
360/* Vector mapping INSN_UIDs to cuids.
d45cf215 361 The cuids are like uids but increase monotonically always.
7afe21cc
RK
362 We use them to see whether a reg is used outside a given basic block. */
363
906c4e36 364static int *uid_cuid;
7afe21cc 365
164c8956
RK
366/* Highest UID in UID_CUID. */
367static int max_uid;
368
7afe21cc
RK
369/* Get the cuid of an insn. */
370
371#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
372
4eadede7
ZW
373/* Nonzero if this pass has made changes, and therefore it's
374 worthwhile to run the garbage collector. */
375
376static int cse_altered;
377
7afe21cc
RK
378/* Nonzero if cse has altered conditional jump insns
379 in such a way that jump optimization should be redone. */
380
381static int cse_jumps_altered;
382
f85cc4cb
RK
383/* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
384 REG_LABEL, we have to rerun jump after CSE to put in the note. */
a5dfb4ee
RK
385static int recorded_label_ref;
386
7afe21cc
RK
387/* canon_hash stores 1 in do_not_record
388 if it notices a reference to CC0, PC, or some other volatile
389 subexpression. */
390
391static int do_not_record;
392
393/* canon_hash stores 1 in hash_arg_in_memory
394 if it notices a reference to memory within the expression being hashed. */
395
396static int hash_arg_in_memory;
397
7afe21cc
RK
398/* The hash table contains buckets which are chains of `struct table_elt's,
399 each recording one expression's information.
400 That expression is in the `exp' field.
401
db048faf
MM
402 The canon_exp field contains a canonical (from the point of view of
403 alias analysis) version of the `exp' field.
404
7afe21cc
RK
405 Those elements with the same hash code are chained in both directions
406 through the `next_same_hash' and `prev_same_hash' fields.
407
408 Each set of expressions with equivalent values
409 are on a two-way chain through the `next_same_value'
410 and `prev_same_value' fields, and all point with
411 the `first_same_value' field at the first element in
412 that chain. The chain is in order of increasing cost.
413 Each element's cost value is in its `cost' field.
414
415 The `in_memory' field is nonzero for elements that
416 involve any reference to memory. These elements are removed
417 whenever a write is done to an unidentified location in memory.
418 To be safe, we assume that a memory address is unidentified unless
419 the address is either a symbol constant or a constant plus
420 the frame pointer or argument pointer.
421
7afe21cc
RK
422 The `related_value' field is used to connect related expressions
423 (that differ by adding an integer).
424 The related expressions are chained in a circular fashion.
425 `related_value' is zero for expressions for which this
426 chain is not useful.
427
428 The `cost' field stores the cost of this element's expression.
630c79be
BS
429 The `regcost' field stores the value returned by approx_reg_cost for
430 this element's expression.
7afe21cc
RK
431
432 The `is_const' flag is set if the element is a constant (including
433 a fixed address).
434
435 The `flag' field is used as a temporary during some search routines.
436
437 The `mode' field is usually the same as GET_MODE (`exp'), but
438 if `exp' is a CONST_INT and has no machine mode then the `mode'
439 field is the mode it was being used as. Each constant is
440 recorded separately for each mode it is used with. */
441
7afe21cc
RK
442struct table_elt
443{
444 rtx exp;
db048faf 445 rtx canon_exp;
7afe21cc
RK
446 struct table_elt *next_same_hash;
447 struct table_elt *prev_same_hash;
448 struct table_elt *next_same_value;
449 struct table_elt *prev_same_value;
450 struct table_elt *first_same_value;
451 struct table_elt *related_value;
452 int cost;
630c79be 453 int regcost;
496324d0
DN
454 /* The size of this field should match the size
455 of the mode field of struct rtx_def (see rtl.h). */
456 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc 457 char in_memory;
7afe21cc
RK
458 char is_const;
459 char flag;
460};
461
7afe21cc
RK
462/* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
9b1549b8
DM
465#define HASH_SHIFT 5
466#define HASH_SIZE (1 << HASH_SHIFT)
467#define HASH_MASK (HASH_SIZE - 1)
7afe21cc
RK
468
469/* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
471
472#define HASH(X, M) \
f8cfc6aa 473 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9b1549b8
DM
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
7afe21cc 476
0516f6fe
SB
477/* Like HASH, but without side-effects. */
478#define SAFE_HASH(X, M) \
479 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
480 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
481 : safe_hash (X, M)) & HASH_MASK)
482
630c79be
BS
483/* Determine whether register number N is considered a fixed register for the
484 purpose of approximating register costs.
7afe21cc
RK
485 It is desirable to replace other regs with fixed regs, to reduce need for
486 non-fixed hard regs.
553687c9 487 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 488#define FIXED_REGNO_P(N) \
8bc169f2 489 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 490 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
491
492/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
493 hard registers and pointers into the frame are the cheapest with a cost
494 of 0. Next come pseudos with a cost of one and other hard registers with
495 a cost of 2. Aside from these special cases, call `rtx_cost'. */
496
d67fb775
SB
497#define CHEAP_REGNO(N) \
498 (REGNO_PTR_FRAME_P(N) \
499 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 500 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 501
f8cfc6aa
JQ
502#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
503#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
7afe21cc 504
30f72379
MM
505/* Get the number of times this register has been updated in this
506 basic block. */
507
bc5e3b54 508#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
30f72379
MM
509
510/* Get the point at which REG was recorded in the table. */
511
bc5e3b54 512#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
30f72379 513
46081bb3
SH
514/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
515 SUBREG). */
516
bc5e3b54 517#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
46081bb3 518
30f72379
MM
519/* Get the quantity number for REG. */
520
bc5e3b54 521#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
30f72379 522
7afe21cc 523/* Determine if the quantity number for register X represents a valid index
1bb98cec 524 into the qty_table. */
7afe21cc 525
08a69267 526#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 527
9b1549b8 528static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
529
530/* Chain of `struct table_elt's made so far for this function
531 but currently removed from the table. */
532
533static struct table_elt *free_element_chain;
534
7afe21cc
RK
535/* Set to the cost of a constant pool reference if one was found for a
536 symbolic constant. If this was found, it means we should try to
537 convert constants into constant pool entries if they don't fit in
538 the insn. */
539
540static int constant_pool_entries_cost;
dd0ba281 541static int constant_pool_entries_regcost;
7afe21cc 542
6cd4575e
RK
543/* This data describes a block that will be processed by cse_basic_block. */
544
14a774a9
RK
545struct cse_basic_block_data
546{
6cd4575e
RK
547 /* Lowest CUID value of insns in block. */
548 int low_cuid;
549 /* Highest CUID value of insns in block. */
550 int high_cuid;
551 /* Total number of SETs in block. */
552 int nsets;
553 /* Last insn in the block. */
554 rtx last;
555 /* Size of current branch path, if any. */
556 int path_size;
557 /* Current branch path, indicating which branches will be taken. */
14a774a9
RK
558 struct branch_path
559 {
560 /* The branch insn. */
561 rtx branch;
562 /* Whether it should be taken or not. AROUND is the same as taken
563 except that it is used when the destination label is not preceded
6cd4575e 564 by a BARRIER. */
6de9cd9a 565 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
9bf8cfbf 566 } *path;
6cd4575e
RK
567};
568
7080f735
AJ
569static bool fixed_base_plus_p (rtx x);
570static int notreg_cost (rtx, enum rtx_code);
571static int approx_reg_cost_1 (rtx *, void *);
572static int approx_reg_cost (rtx);
56ae04af 573static int preferable (int, int, int, int);
7080f735
AJ
574static void new_basic_block (void);
575static void make_new_qty (unsigned int, enum machine_mode);
576static void make_regs_eqv (unsigned int, unsigned int);
577static void delete_reg_equiv (unsigned int);
578static int mention_regs (rtx);
579static int insert_regs (rtx, struct table_elt *, int);
580static void remove_from_table (struct table_elt *, unsigned);
581static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
582static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
583static rtx lookup_as_function (rtx, enum rtx_code);
584static struct table_elt *insert (rtx, struct table_elt *, unsigned,
585 enum machine_mode);
586static void merge_equiv_classes (struct table_elt *, struct table_elt *);
587static void invalidate (rtx, enum machine_mode);
588static int cse_rtx_varies_p (rtx, int);
589static void remove_invalid_refs (unsigned int);
590static void remove_invalid_subreg_refs (unsigned int, unsigned int,
591 enum machine_mode);
592static void rehash_using_reg (rtx);
593static void invalidate_memory (void);
594static void invalidate_for_call (void);
595static rtx use_related_value (rtx, struct table_elt *);
0516f6fe
SB
596
597static inline unsigned canon_hash (rtx, enum machine_mode);
598static inline unsigned safe_hash (rtx, enum machine_mode);
599static unsigned hash_rtx_string (const char *);
600
7080f735
AJ
601static rtx canon_reg (rtx, rtx);
602static void find_best_addr (rtx, rtx *, enum machine_mode);
603static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
604 enum machine_mode *,
605 enum machine_mode *);
606static rtx fold_rtx (rtx, rtx);
607static rtx equiv_constant (rtx);
608static void record_jump_equiv (rtx, int);
609static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
610 int);
611static void cse_insn (rtx, rtx);
86caf04d 612static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
5affca01 613 int, int);
7080f735
AJ
614static int addr_affects_sp_p (rtx);
615static void invalidate_from_clobbers (rtx);
616static rtx cse_process_notes (rtx, rtx);
7080f735
AJ
617static void invalidate_skipped_set (rtx, rtx, void *);
618static void invalidate_skipped_block (rtx);
5affca01 619static rtx cse_basic_block (rtx, rtx, struct branch_path *);
9ab81df2 620static void count_reg_usage (rtx, int *, int);
7080f735
AJ
621static int check_for_label_ref (rtx *, void *);
622extern void dump_class (struct table_elt*);
bc5e3b54
KH
623static void get_cse_reg_info_1 (unsigned int regno);
624static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
7080f735
AJ
625static int check_dependence (rtx *, void *);
626
627static void flush_hash_table (void);
628static bool insn_live_p (rtx, int *);
629static bool set_live_p (rtx, rtx, int *);
630static bool dead_libcall_p (rtx, int *);
e129d93a 631static int cse_change_cc_mode (rtx *, void *);
fc188d37 632static void cse_change_cc_mode_insn (rtx, rtx);
e129d93a
ILT
633static void cse_change_cc_mode_insns (rtx, rtx, rtx);
634static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
7afe21cc 635\f
2f93eea8
PB
636
637#undef RTL_HOOKS_GEN_LOWPART
638#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
639
640static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
641\f
4977bab6
ZW
642/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
643 virtual regs here because the simplify_*_operation routines are called
644 by integrate.c, which is called before virtual register instantiation. */
645
646static bool
7080f735 647fixed_base_plus_p (rtx x)
4977bab6
ZW
648{
649 switch (GET_CODE (x))
650 {
651 case REG:
652 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
653 return true;
654 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
655 return true;
656 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
657 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
658 return true;
659 return false;
660
661 case PLUS:
662 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
663 return false;
664 return fixed_base_plus_p (XEXP (x, 0));
665
4977bab6
ZW
666 default:
667 return false;
668 }
669}
670
a4c6502a
MM
671/* Dump the expressions in the equivalence class indicated by CLASSP.
672 This function is used only for debugging. */
a0153051 673void
7080f735 674dump_class (struct table_elt *classp)
a4c6502a
MM
675{
676 struct table_elt *elt;
677
678 fprintf (stderr, "Equivalence chain for ");
679 print_rtl (stderr, classp->exp);
680 fprintf (stderr, ": \n");
278a83b2 681
a4c6502a
MM
682 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
683 {
684 print_rtl (stderr, elt->exp);
685 fprintf (stderr, "\n");
686 }
687}
688
630c79be 689/* Subroutine of approx_reg_cost; called through for_each_rtx. */
be8ac49a 690
630c79be 691static int
7080f735 692approx_reg_cost_1 (rtx *xp, void *data)
630c79be
BS
693{
694 rtx x = *xp;
c863f8c2 695 int *cost_p = data;
630c79be 696
f8cfc6aa 697 if (x && REG_P (x))
c863f8c2
DM
698 {
699 unsigned int regno = REGNO (x);
700
701 if (! CHEAP_REGNO (regno))
702 {
703 if (regno < FIRST_PSEUDO_REGISTER)
704 {
705 if (SMALL_REGISTER_CLASSES)
706 return 1;
707 *cost_p += 2;
708 }
709 else
710 *cost_p += 1;
711 }
712 }
713
630c79be
BS
714 return 0;
715}
716
717/* Return an estimate of the cost of the registers used in an rtx.
718 This is mostly the number of different REG expressions in the rtx;
a1f300c0 719 however for some exceptions like fixed registers we use a cost of
f1c1dfc3 720 0. If any other hard register reference occurs, return MAX_COST. */
630c79be
BS
721
722static int
7080f735 723approx_reg_cost (rtx x)
630c79be 724{
630c79be 725 int cost = 0;
f1c1dfc3 726
c863f8c2
DM
727 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
728 return MAX_COST;
630c79be 729
c863f8c2 730 return cost;
630c79be
BS
731}
732
b7ca416f 733/* Returns a canonical version of X for the address, from the point of view,
6668f6a7
KH
734 that all multiplications are represented as MULT instead of the multiply
735 by a power of 2 being represented as ASHIFT. */
b7ca416f
AP
736
737static rtx
738canon_for_address (rtx x)
739{
740 enum rtx_code code;
741 enum machine_mode mode;
742 rtx new = 0;
743 int i;
744 const char *fmt;
745
746 if (!x)
747 return x;
748
749 code = GET_CODE (x);
750 mode = GET_MODE (x);
751
752 switch (code)
753 {
754 case ASHIFT:
755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
756 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
757 && INTVAL (XEXP (x, 1)) >= 0)
758 {
759 new = canon_for_address (XEXP (x, 0));
760 new = gen_rtx_MULT (mode, new,
761 gen_int_mode ((HOST_WIDE_INT) 1
762 << INTVAL (XEXP (x, 1)),
763 mode));
764 }
765 break;
766 default:
767 break;
768
769 }
770 if (new)
771 return new;
772
773 /* Now recursively process each operand of this operation. */
774 fmt = GET_RTX_FORMAT (code);
775 for (i = 0; i < GET_RTX_LENGTH (code); i++)
776 if (fmt[i] == 'e')
777 {
778 new = canon_for_address (XEXP (x, i));
779 XEXP (x, i) = new;
780 }
781 return x;
782}
783
630c79be
BS
784/* Return a negative value if an rtx A, whose costs are given by COST_A
785 and REGCOST_A, is more desirable than an rtx B.
786 Return a positive value if A is less desirable, or 0 if the two are
787 equally good. */
788static int
56ae04af 789preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 790{
423adbb9 791 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
792 unwanted. */
793 if (cost_a != cost_b)
794 {
795 if (cost_a == MAX_COST)
796 return 1;
797 if (cost_b == MAX_COST)
798 return -1;
799 }
800
801 /* Avoid extending lifetimes of hardregs. */
802 if (regcost_a != regcost_b)
803 {
804 if (regcost_a == MAX_COST)
805 return 1;
806 if (regcost_b == MAX_COST)
807 return -1;
808 }
809
810 /* Normal operation costs take precedence. */
630c79be
BS
811 if (cost_a != cost_b)
812 return cost_a - cost_b;
f1c1dfc3 813 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
814 if (regcost_a != regcost_b)
815 return regcost_a - regcost_b;
816 return 0;
817}
818
954a5693
RK
819/* Internal function, to compute cost when X is not a register; called
820 from COST macro to keep it simple. */
821
822static int
7080f735 823notreg_cost (rtx x, enum rtx_code outer)
954a5693
RK
824{
825 return ((GET_CODE (x) == SUBREG
f8cfc6aa 826 && REG_P (SUBREG_REG (x))
954a5693
RK
827 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
828 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
829 && (GET_MODE_SIZE (GET_MODE (x))
830 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
831 && subreg_lowpart_p (x)
832 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
833 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
630c79be 834 ? 0
f2fa288f 835 : rtx_cost (x, outer) * 2);
954a5693
RK
836}
837
01329426 838\f
bc5e3b54 839/* Initialize CSE_REG_INFO_TABLE. */
9b1549b8 840
bc5e3b54
KH
841static void
842init_cse_reg_info (unsigned int nregs)
843{
844 /* Do we need to grow the table? */
845 if (nregs > cse_reg_info_table_size)
30f72379 846 {
bc5e3b54
KH
847 unsigned int new_size;
848
849 if (cse_reg_info_table_size < 2048)
30f72379 850 {
bc5e3b54
KH
851 /* Compute a new size that is a power of 2 and no smaller
852 than the large of NREGS and 64. */
853 new_size = (cse_reg_info_table_size
854 ? cse_reg_info_table_size : 64);
855
856 while (new_size < nregs)
857 new_size *= 2;
30f72379
MM
858 }
859 else
1590d0d4 860 {
bc5e3b54
KH
861 /* If we need a big table, allocate just enough to hold
862 NREGS registers. */
863 new_size = nregs;
1590d0d4 864 }
9b1549b8 865
bc5e3b54 866 /* Reallocate the table with NEW_SIZE entries. */
a811c672
KH
867 if (cse_reg_info_table)
868 free (cse_reg_info_table);
869 cse_reg_info_table = xmalloc (sizeof (struct cse_reg_info)
870 * new_size);
bc5e3b54 871 cse_reg_info_table_size = new_size;
a811c672 872 cse_reg_info_table_first_uninitialized = 0;
bc5e3b54
KH
873 }
874
875 /* Do we have all of the first NREGS entries initialized? */
876 if (cse_reg_info_table_first_uninitialized < nregs)
877 {
878 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
879 unsigned int i;
880
881 /* Put the old timestamp on newly allocated entries so that they
882 will all be considered out of date. We do not touch those
883 entries beyond the first NREGS entries to be nice to the
884 virtual memory. */
885 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
886 cse_reg_info_table[i].timestamp = old_timestamp;
30f72379 887
bc5e3b54 888 cse_reg_info_table_first_uninitialized = nregs;
30f72379 889 }
bc5e3b54
KH
890}
891
a52aff23 892/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
bc5e3b54
KH
893
894static void
895get_cse_reg_info_1 (unsigned int regno)
896{
897 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
898 entry will be considered to have been initialized. */
899 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
900
901 /* Initialize the rest of the entry. */
902 cse_reg_info_table[regno].reg_tick = 1;
903 cse_reg_info_table[regno].reg_in_table = -1;
904 cse_reg_info_table[regno].subreg_ticked = -1;
905 cse_reg_info_table[regno].reg_qty = -regno - 1;
906}
907
908/* Find a cse_reg_info entry for REGNO. */
30f72379 909
bc5e3b54
KH
910static inline struct cse_reg_info *
911get_cse_reg_info (unsigned int regno)
912{
913 struct cse_reg_info *p = &cse_reg_info_table[regno];
914
782c0a3e
KH
915 /* If this entry has not been initialized, go ahead and initialize
916 it. */
bc5e3b54
KH
917 if (p->timestamp != cse_reg_info_timestamp)
918 get_cse_reg_info_1 (regno);
30f72379 919
9b1549b8 920 return p;
30f72379
MM
921}
922
7afe21cc
RK
923/* Clear the hash table and initialize each register with its own quantity,
924 for a new basic block. */
925
926static void
7080f735 927new_basic_block (void)
7afe21cc 928{
b3694847 929 int i;
7afe21cc 930
08a69267 931 next_qty = 0;
7afe21cc 932
a52aff23 933 /* Invalidate cse_reg_info_table. */
bc5e3b54 934 cse_reg_info_timestamp++;
7afe21cc 935
bc5e3b54 936 /* Clear out hash table state for this pass. */
7afe21cc
RK
937 CLEAR_HARD_REG_SET (hard_regs_in_table);
938
939 /* The per-quantity values used to be initialized here, but it is
940 much faster to initialize each as it is made in `make_new_qty'. */
941
9b1549b8 942 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 943 {
9b1549b8
DM
944 struct table_elt *first;
945
946 first = table[i];
947 if (first != NULL)
7afe21cc 948 {
9b1549b8
DM
949 struct table_elt *last = first;
950
951 table[i] = NULL;
952
953 while (last->next_same_hash != NULL)
954 last = last->next_same_hash;
955
956 /* Now relink this hash entire chain into
957 the free element list. */
958
959 last->next_same_hash = free_element_chain;
960 free_element_chain = first;
7afe21cc
RK
961 }
962 }
963
7afe21cc 964#ifdef HAVE_cc0
4977bab6 965 prev_insn = 0;
7afe21cc
RK
966 prev_insn_cc0 = 0;
967#endif
968}
969
1bb98cec
DM
970/* Say that register REG contains a quantity in mode MODE not in any
971 register before and initialize that quantity. */
7afe21cc
RK
972
973static void
7080f735 974make_new_qty (unsigned int reg, enum machine_mode mode)
7afe21cc 975{
b3694847
SS
976 int q;
977 struct qty_table_elem *ent;
978 struct reg_eqv_elem *eqv;
7afe21cc 979
341c100f 980 gcc_assert (next_qty < max_qty);
7afe21cc 981
30f72379 982 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
983 ent = &qty_table[q];
984 ent->first_reg = reg;
985 ent->last_reg = reg;
986 ent->mode = mode;
987 ent->const_rtx = ent->const_insn = NULL_RTX;
988 ent->comparison_code = UNKNOWN;
989
990 eqv = &reg_eqv_table[reg];
991 eqv->next = eqv->prev = -1;
7afe21cc
RK
992}
993
994/* Make reg NEW equivalent to reg OLD.
995 OLD is not changing; NEW is. */
996
997static void
7080f735 998make_regs_eqv (unsigned int new, unsigned int old)
7afe21cc 999{
770ae6cc
RK
1000 unsigned int lastr, firstr;
1001 int q = REG_QTY (old);
1002 struct qty_table_elem *ent;
1bb98cec
DM
1003
1004 ent = &qty_table[q];
7afe21cc
RK
1005
1006 /* Nothing should become eqv until it has a "non-invalid" qty number. */
341c100f 1007 gcc_assert (REGNO_QTY_VALID_P (old));
7afe21cc 1008
30f72379 1009 REG_QTY (new) = q;
1bb98cec
DM
1010 firstr = ent->first_reg;
1011 lastr = ent->last_reg;
7afe21cc
RK
1012
1013 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1014 hard regs. Among pseudos, if NEW will live longer than any other reg
1015 of the same qty, and that is beyond the current basic block,
1016 make it the new canonical replacement for this qty. */
1017 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1018 /* Certain fixed registers might be of the class NO_REGS. This means
1019 that not only can they not be allocated by the compiler, but
830a38ee 1020 they cannot be used in substitutions or canonicalizations
7afe21cc
RK
1021 either. */
1022 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1023 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1024 || (new >= FIRST_PSEUDO_REGISTER
1025 && (firstr < FIRST_PSEUDO_REGISTER
b1f21e0a
MM
1026 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1027 || (uid_cuid[REGNO_FIRST_UID (new)]
7afe21cc 1028 < cse_basic_block_start))
b1f21e0a
MM
1029 && (uid_cuid[REGNO_LAST_UID (new)]
1030 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
7afe21cc 1031 {
1bb98cec
DM
1032 reg_eqv_table[firstr].prev = new;
1033 reg_eqv_table[new].next = firstr;
1034 reg_eqv_table[new].prev = -1;
1035 ent->first_reg = new;
7afe21cc
RK
1036 }
1037 else
1038 {
1039 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1040 Otherwise, insert before any non-fixed hard regs that are at the
1041 end. Registers of class NO_REGS cannot be used as an
1042 equivalent for anything. */
1bb98cec 1043 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc
RK
1044 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1045 && new >= FIRST_PSEUDO_REGISTER)
1bb98cec
DM
1046 lastr = reg_eqv_table[lastr].prev;
1047 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1048 if (reg_eqv_table[lastr].next >= 0)
1049 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
7afe21cc 1050 else
1bb98cec
DM
1051 qty_table[q].last_reg = new;
1052 reg_eqv_table[lastr].next = new;
1053 reg_eqv_table[new].prev = lastr;
7afe21cc
RK
1054 }
1055}
1056
1057/* Remove REG from its equivalence class. */
1058
1059static void
7080f735 1060delete_reg_equiv (unsigned int reg)
7afe21cc 1061{
b3694847
SS
1062 struct qty_table_elem *ent;
1063 int q = REG_QTY (reg);
1064 int p, n;
7afe21cc 1065
a4e262bc 1066 /* If invalid, do nothing. */
08a69267 1067 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
1068 return;
1069
1bb98cec
DM
1070 ent = &qty_table[q];
1071
1072 p = reg_eqv_table[reg].prev;
1073 n = reg_eqv_table[reg].next;
a4e262bc 1074
7afe21cc 1075 if (n != -1)
1bb98cec 1076 reg_eqv_table[n].prev = p;
7afe21cc 1077 else
1bb98cec 1078 ent->last_reg = p;
7afe21cc 1079 if (p != -1)
1bb98cec 1080 reg_eqv_table[p].next = n;
7afe21cc 1081 else
1bb98cec 1082 ent->first_reg = n;
7afe21cc 1083
08a69267 1084 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
1085}
1086
1087/* Remove any invalid expressions from the hash table
1088 that refer to any of the registers contained in expression X.
1089
1090 Make sure that newly inserted references to those registers
1091 as subexpressions will be considered valid.
1092
1093 mention_regs is not called when a register itself
1094 is being stored in the table.
1095
1096 Return 1 if we have done something that may have changed the hash code
1097 of X. */
1098
1099static int
7080f735 1100mention_regs (rtx x)
7afe21cc 1101{
b3694847
SS
1102 enum rtx_code code;
1103 int i, j;
1104 const char *fmt;
1105 int changed = 0;
7afe21cc
RK
1106
1107 if (x == 0)
e5f6a288 1108 return 0;
7afe21cc
RK
1109
1110 code = GET_CODE (x);
1111 if (code == REG)
1112 {
770ae6cc
RK
1113 unsigned int regno = REGNO (x);
1114 unsigned int endregno
7afe21cc 1115 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6 1116 : hard_regno_nregs[regno][GET_MODE (x)]);
770ae6cc 1117 unsigned int i;
7afe21cc
RK
1118
1119 for (i = regno; i < endregno; i++)
1120 {
30f72379 1121 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1122 remove_invalid_refs (i);
1123
30f72379 1124 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 1125 SUBREG_TICKED (i) = -1;
7afe21cc
RK
1126 }
1127
1128 return 0;
1129 }
1130
34c73909
R
1131 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1132 pseudo if they don't use overlapping words. We handle only pseudos
1133 here for simplicity. */
f8cfc6aa 1134 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1135 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1136 {
770ae6cc 1137 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1138
30f72379 1139 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1140 {
46081bb3
SH
1141 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1142 the last store to this register really stored into this
1143 subreg, then remove the memory of this subreg.
1144 Otherwise, remove any memory of the entire register and
1145 all its subregs from the table. */
1146 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1147 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1148 remove_invalid_refs (i);
1149 else
ddef6bc7 1150 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1151 }
1152
30f72379 1153 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1154 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
34c73909
R
1155 return 0;
1156 }
1157
7afe21cc
RK
1158 /* If X is a comparison or a COMPARE and either operand is a register
1159 that does not have a quantity, give it one. This is so that a later
1160 call to record_jump_equiv won't cause X to be assigned a different
1161 hash code and not found in the table after that call.
1162
1163 It is not necessary to do this here, since rehash_using_reg can
1164 fix up the table later, but doing this here eliminates the need to
1165 call that expensive function in the most common case where the only
1166 use of the register is in the comparison. */
1167
ec8e098d 1168 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1169 {
f8cfc6aa 1170 if (REG_P (XEXP (x, 0))
7afe21cc 1171 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
9714cf43 1172 if (insert_regs (XEXP (x, 0), NULL, 0))
7afe21cc
RK
1173 {
1174 rehash_using_reg (XEXP (x, 0));
1175 changed = 1;
1176 }
1177
f8cfc6aa 1178 if (REG_P (XEXP (x, 1))
7afe21cc 1179 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
9714cf43 1180 if (insert_regs (XEXP (x, 1), NULL, 0))
7afe21cc
RK
1181 {
1182 rehash_using_reg (XEXP (x, 1));
1183 changed = 1;
1184 }
1185 }
1186
1187 fmt = GET_RTX_FORMAT (code);
1188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1189 if (fmt[i] == 'e')
1190 changed |= mention_regs (XEXP (x, i));
1191 else if (fmt[i] == 'E')
1192 for (j = 0; j < XVECLEN (x, i); j++)
1193 changed |= mention_regs (XVECEXP (x, i, j));
1194
1195 return changed;
1196}
1197
1198/* Update the register quantities for inserting X into the hash table
1199 with a value equivalent to CLASSP.
1200 (If the class does not contain a REG, it is irrelevant.)
1201 If MODIFIED is nonzero, X is a destination; it is being modified.
1202 Note that delete_reg_equiv should be called on a register
1203 before insert_regs is done on that register with MODIFIED != 0.
1204
1205 Nonzero value means that elements of reg_qty have changed
1206 so X's hash code may be different. */
1207
1208static int
7080f735 1209insert_regs (rtx x, struct table_elt *classp, int modified)
7afe21cc 1210{
f8cfc6aa 1211 if (REG_P (x))
7afe21cc 1212 {
770ae6cc
RK
1213 unsigned int regno = REGNO (x);
1214 int qty_valid;
7afe21cc 1215
1ff0c00d
RK
1216 /* If REGNO is in the equivalence table already but is of the
1217 wrong mode for that equivalence, don't do anything here. */
1218
1bb98cec
DM
1219 qty_valid = REGNO_QTY_VALID_P (regno);
1220 if (qty_valid)
1221 {
1222 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1223
1bb98cec
DM
1224 if (ent->mode != GET_MODE (x))
1225 return 0;
1226 }
1227
1228 if (modified || ! qty_valid)
7afe21cc
RK
1229 {
1230 if (classp)
1231 for (classp = classp->first_same_value;
1232 classp != 0;
1233 classp = classp->next_same_value)
f8cfc6aa 1234 if (REG_P (classp->exp)
7afe21cc
RK
1235 && GET_MODE (classp->exp) == GET_MODE (x))
1236 {
cd928652
ZD
1237 unsigned c_regno = REGNO (classp->exp);
1238
1239 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1240
1241 /* Suppose that 5 is hard reg and 100 and 101 are
1242 pseudos. Consider
1243
1244 (set (reg:si 100) (reg:si 5))
1245 (set (reg:si 5) (reg:si 100))
1246 (set (reg:di 101) (reg:di 5))
1247
1248 We would now set REG_QTY (101) = REG_QTY (5), but the
1249 entry for 5 is in SImode. When we use this later in
1250 copy propagation, we get the register in wrong mode. */
1251 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1252 continue;
1253
1254 make_regs_eqv (regno, c_regno);
7afe21cc
RK
1255 return 1;
1256 }
1257
d9f20424
R
1258 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1259 than REG_IN_TABLE to find out if there was only a single preceding
1260 invalidation - for the SUBREG - or another one, which would be
1261 for the full register. However, if we find here that REG_TICK
1262 indicates that the register is invalid, it means that it has
1263 been invalidated in a separate operation. The SUBREG might be used
1264 now (then this is a recursive call), or we might use the full REG
1265 now and a SUBREG of it later. So bump up REG_TICK so that
1266 mention_regs will do the right thing. */
1267 if (! modified
1268 && REG_IN_TABLE (regno) >= 0
1269 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1270 REG_TICK (regno)++;
1bb98cec 1271 make_new_qty (regno, GET_MODE (x));
7afe21cc
RK
1272 return 1;
1273 }
cdf4112f
TG
1274
1275 return 0;
7afe21cc 1276 }
c610adec
RK
1277
1278 /* If X is a SUBREG, we will likely be inserting the inner register in the
1279 table. If that register doesn't have an assigned quantity number at
1280 this point but does later, the insertion that we will be doing now will
1281 not be accessible because its hash code will have changed. So assign
1282 a quantity number now. */
1283
f8cfc6aa 1284 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1285 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1286 {
9714cf43 1287 insert_regs (SUBREG_REG (x), NULL, 0);
34c73909 1288 mention_regs (x);
c610adec
RK
1289 return 1;
1290 }
7afe21cc
RK
1291 else
1292 return mention_regs (x);
1293}
1294\f
1295/* Look in or update the hash table. */
1296
7afe21cc
RK
1297/* Remove table element ELT from use in the table.
1298 HASH is its hash code, made using the HASH macro.
1299 It's an argument because often that is known in advance
1300 and we save much time not recomputing it. */
1301
1302static void
7080f735 1303remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1304{
1305 if (elt == 0)
1306 return;
1307
1308 /* Mark this element as removed. See cse_insn. */
1309 elt->first_same_value = 0;
1310
1311 /* Remove the table element from its equivalence class. */
278a83b2 1312
7afe21cc 1313 {
b3694847
SS
1314 struct table_elt *prev = elt->prev_same_value;
1315 struct table_elt *next = elt->next_same_value;
7afe21cc 1316
278a83b2
KH
1317 if (next)
1318 next->prev_same_value = prev;
7afe21cc
RK
1319
1320 if (prev)
1321 prev->next_same_value = next;
1322 else
1323 {
b3694847 1324 struct table_elt *newfirst = next;
7afe21cc
RK
1325 while (next)
1326 {
1327 next->first_same_value = newfirst;
1328 next = next->next_same_value;
1329 }
1330 }
1331 }
1332
1333 /* Remove the table element from its hash bucket. */
1334
1335 {
b3694847
SS
1336 struct table_elt *prev = elt->prev_same_hash;
1337 struct table_elt *next = elt->next_same_hash;
7afe21cc 1338
278a83b2
KH
1339 if (next)
1340 next->prev_same_hash = prev;
7afe21cc
RK
1341
1342 if (prev)
1343 prev->next_same_hash = next;
1344 else if (table[hash] == elt)
1345 table[hash] = next;
1346 else
1347 {
1348 /* This entry is not in the proper hash bucket. This can happen
1349 when two classes were merged by `merge_equiv_classes'. Search
1350 for the hash bucket that it heads. This happens only very
1351 rarely, so the cost is acceptable. */
9b1549b8 1352 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1353 if (table[hash] == elt)
1354 table[hash] = next;
1355 }
1356 }
1357
1358 /* Remove the table element from its related-value circular chain. */
1359
1360 if (elt->related_value != 0 && elt->related_value != elt)
1361 {
b3694847 1362 struct table_elt *p = elt->related_value;
770ae6cc 1363
7afe21cc
RK
1364 while (p->related_value != elt)
1365 p = p->related_value;
1366 p->related_value = elt->related_value;
1367 if (p->related_value == p)
1368 p->related_value = 0;
1369 }
1370
9b1549b8
DM
1371 /* Now add it to the free element chain. */
1372 elt->next_same_hash = free_element_chain;
1373 free_element_chain = elt;
7afe21cc
RK
1374}
1375
1376/* Look up X in the hash table and return its table element,
1377 or 0 if X is not in the table.
1378
1379 MODE is the machine-mode of X, or if X is an integer constant
1380 with VOIDmode then MODE is the mode with which X will be used.
1381
1382 Here we are satisfied to find an expression whose tree structure
1383 looks like X. */
1384
1385static struct table_elt *
7080f735 1386lookup (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1387{
b3694847 1388 struct table_elt *p;
7afe21cc
RK
1389
1390 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1391 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1392 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1393 return p;
1394
1395 return 0;
1396}
1397
1398/* Like `lookup' but don't care whether the table element uses invalid regs.
1399 Also ignore discrepancies in the machine mode of a register. */
1400
1401static struct table_elt *
7080f735 1402lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1403{
b3694847 1404 struct table_elt *p;
7afe21cc 1405
f8cfc6aa 1406 if (REG_P (x))
7afe21cc 1407 {
770ae6cc
RK
1408 unsigned int regno = REGNO (x);
1409
7afe21cc
RK
1410 /* Don't check the machine mode when comparing registers;
1411 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1412 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1413 if (REG_P (p->exp)
7afe21cc
RK
1414 && REGNO (p->exp) == regno)
1415 return p;
1416 }
1417 else
1418 {
1419 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1420 if (mode == p->mode
1421 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1422 return p;
1423 }
1424
1425 return 0;
1426}
1427
1428/* Look for an expression equivalent to X and with code CODE.
1429 If one is found, return that expression. */
1430
1431static rtx
7080f735 1432lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1433{
b3694847 1434 struct table_elt *p
0516f6fe 1435 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1436
34c73909
R
1437 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1438 long as we are narrowing. So if we looked in vain for a mode narrower
1439 than word_mode before, look for word_mode now. */
1440 if (p == 0 && code == CONST_INT
1441 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1442 {
1443 x = copy_rtx (x);
1444 PUT_MODE (x, word_mode);
0516f6fe 1445 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
34c73909
R
1446 }
1447
7afe21cc
RK
1448 if (p == 0)
1449 return 0;
1450
1451 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1452 if (GET_CODE (p->exp) == code
1453 /* Make sure this is a valid entry in the table. */
0516f6fe 1454 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1455 return p->exp;
278a83b2 1456
7afe21cc
RK
1457 return 0;
1458}
1459
1460/* Insert X in the hash table, assuming HASH is its hash code
1461 and CLASSP is an element of the class it should go in
1462 (or 0 if a new class should be made).
1463 It is inserted at the proper position to keep the class in
1464 the order cheapest first.
1465
1466 MODE is the machine-mode of X, or if X is an integer constant
1467 with VOIDmode then MODE is the mode with which X will be used.
1468
1469 For elements of equal cheapness, the most recent one
1470 goes in front, except that the first element in the list
1471 remains first unless a cheaper element is added. The order of
1472 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1473 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1474
1475 The in_memory field in the hash table element is set to 0.
1476 The caller must set it nonzero if appropriate.
1477
1478 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1479 and if insert_regs returns a nonzero value
1480 you must then recompute its hash code before calling here.
1481
1482 If necessary, update table showing constant values of quantities. */
1483
630c79be 1484#define CHEAPER(X, Y) \
56ae04af 1485 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
7afe21cc
RK
1486
1487static struct table_elt *
7080f735 1488insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
7afe21cc 1489{
b3694847 1490 struct table_elt *elt;
7afe21cc
RK
1491
1492 /* If X is a register and we haven't made a quantity for it,
1493 something is wrong. */
341c100f 1494 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1495
1496 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1497 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7afe21cc 1498 {
770ae6cc 1499 unsigned int regno = REGNO (x);
66fd46b6 1500 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 1501 unsigned int i;
7afe21cc
RK
1502
1503 for (i = regno; i < endregno; i++)
770ae6cc 1504 SET_HARD_REG_BIT (hard_regs_in_table, i);
7afe21cc
RK
1505 }
1506
7afe21cc
RK
1507 /* Put an element for X into the right hash bucket. */
1508
9b1549b8
DM
1509 elt = free_element_chain;
1510 if (elt)
770ae6cc 1511 free_element_chain = elt->next_same_hash;
9b1549b8 1512 else
26af0046 1513 elt = xmalloc (sizeof (struct table_elt));
9b1549b8 1514
7afe21cc 1515 elt->exp = x;
db048faf 1516 elt->canon_exp = NULL_RTX;
7afe21cc 1517 elt->cost = COST (x);
630c79be 1518 elt->regcost = approx_reg_cost (x);
7afe21cc
RK
1519 elt->next_same_value = 0;
1520 elt->prev_same_value = 0;
1521 elt->next_same_hash = table[hash];
1522 elt->prev_same_hash = 0;
1523 elt->related_value = 0;
1524 elt->in_memory = 0;
1525 elt->mode = mode;
389fdba0 1526 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1527
1528 if (table[hash])
1529 table[hash]->prev_same_hash = elt;
1530 table[hash] = elt;
1531
1532 /* Put it into the proper value-class. */
1533 if (classp)
1534 {
1535 classp = classp->first_same_value;
1536 if (CHEAPER (elt, classp))
f9da5064 1537 /* Insert at the head of the class. */
7afe21cc 1538 {
b3694847 1539 struct table_elt *p;
7afe21cc
RK
1540 elt->next_same_value = classp;
1541 classp->prev_same_value = elt;
1542 elt->first_same_value = elt;
1543
1544 for (p = classp; p; p = p->next_same_value)
1545 p->first_same_value = elt;
1546 }
1547 else
1548 {
1549 /* Insert not at head of the class. */
1550 /* Put it after the last element cheaper than X. */
b3694847 1551 struct table_elt *p, *next;
770ae6cc 1552
7afe21cc
RK
1553 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1554 p = next);
770ae6cc 1555
7afe21cc
RK
1556 /* Put it after P and before NEXT. */
1557 elt->next_same_value = next;
1558 if (next)
1559 next->prev_same_value = elt;
770ae6cc 1560
7afe21cc
RK
1561 elt->prev_same_value = p;
1562 p->next_same_value = elt;
1563 elt->first_same_value = classp;
1564 }
1565 }
1566 else
1567 elt->first_same_value = elt;
1568
1569 /* If this is a constant being set equivalent to a register or a register
1570 being set equivalent to a constant, note the constant equivalence.
1571
1572 If this is a constant, it cannot be equivalent to a different constant,
1573 and a constant is the only thing that can be cheaper than a register. So
1574 we know the register is the head of the class (before the constant was
1575 inserted).
1576
1577 If this is a register that is not already known equivalent to a
1578 constant, we must check the entire class.
1579
1580 If this is a register that is already known equivalent to an insn,
1bb98cec 1581 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1582 insn making that quantity equivalent to the constant. */
1583
f8cfc6aa
JQ
1584 if (elt->is_const && classp && REG_P (classp->exp)
1585 && !REG_P (x))
7afe21cc 1586 {
1bb98cec
DM
1587 int exp_q = REG_QTY (REGNO (classp->exp));
1588 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1589
4de249d9 1590 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1591 exp_ent->const_insn = this_insn;
7afe21cc
RK
1592 }
1593
f8cfc6aa 1594 else if (REG_P (x)
1bb98cec
DM
1595 && classp
1596 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1597 && ! elt->is_const)
7afe21cc 1598 {
b3694847 1599 struct table_elt *p;
7afe21cc
RK
1600
1601 for (p = classp; p != 0; p = p->next_same_value)
1602 {
f8cfc6aa 1603 if (p->is_const && !REG_P (p->exp))
7afe21cc 1604 {
1bb98cec
DM
1605 int x_q = REG_QTY (REGNO (x));
1606 struct qty_table_elem *x_ent = &qty_table[x_q];
1607
770ae6cc 1608 x_ent->const_rtx
4de249d9 1609 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1610 x_ent->const_insn = this_insn;
7afe21cc
RK
1611 break;
1612 }
1613 }
1614 }
1615
f8cfc6aa 1616 else if (REG_P (x)
1bb98cec
DM
1617 && qty_table[REG_QTY (REGNO (x))].const_rtx
1618 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1619 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1620
1621 /* If this is a constant with symbolic value,
1622 and it has a term with an explicit integer value,
1623 link it up with related expressions. */
1624 if (GET_CODE (x) == CONST)
1625 {
1626 rtx subexp = get_related_value (x);
2197a88a 1627 unsigned subhash;
7afe21cc
RK
1628 struct table_elt *subelt, *subelt_prev;
1629
1630 if (subexp != 0)
1631 {
1632 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1633 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1634 subelt = lookup (subexp, subhash, mode);
1635 if (subelt == 0)
9714cf43 1636 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1637 /* Initialize SUBELT's circular chain if it has none. */
1638 if (subelt->related_value == 0)
1639 subelt->related_value = subelt;
1640 /* Find the element in the circular chain that precedes SUBELT. */
1641 subelt_prev = subelt;
1642 while (subelt_prev->related_value != subelt)
1643 subelt_prev = subelt_prev->related_value;
1644 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1645 This way the element that follows SUBELT is the oldest one. */
1646 elt->related_value = subelt_prev->related_value;
1647 subelt_prev->related_value = elt;
1648 }
1649 }
1650
1651 return elt;
1652}
1653\f
1654/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1655 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1656 the two classes equivalent.
1657
1658 CLASS1 will be the surviving class; CLASS2 should not be used after this
1659 call.
1660
1661 Any invalid entries in CLASS2 will not be copied. */
1662
1663static void
7080f735 1664merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc
RK
1665{
1666 struct table_elt *elt, *next, *new;
1667
1668 /* Ensure we start with the head of the classes. */
1669 class1 = class1->first_same_value;
1670 class2 = class2->first_same_value;
1671
1672 /* If they were already equal, forget it. */
1673 if (class1 == class2)
1674 return;
1675
1676 for (elt = class2; elt; elt = next)
1677 {
770ae6cc 1678 unsigned int hash;
7afe21cc
RK
1679 rtx exp = elt->exp;
1680 enum machine_mode mode = elt->mode;
1681
1682 next = elt->next_same_value;
1683
1684 /* Remove old entry, make a new one in CLASS1's class.
1685 Don't do this for invalid entries as we cannot find their
0f41302f 1686 hash code (it also isn't necessary). */
0516f6fe 1687 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1688 {
a90fc8e0
RH
1689 bool need_rehash = false;
1690
7afe21cc 1691 hash_arg_in_memory = 0;
7afe21cc 1692 hash = HASH (exp, mode);
278a83b2 1693
f8cfc6aa 1694 if (REG_P (exp))
a90fc8e0 1695 {
08a69267 1696 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1697 delete_reg_equiv (REGNO (exp));
1698 }
278a83b2 1699
7afe21cc
RK
1700 remove_from_table (elt, hash);
1701
a90fc8e0 1702 if (insert_regs (exp, class1, 0) || need_rehash)
8ae2b8f6
JW
1703 {
1704 rehash_using_reg (exp);
1705 hash = HASH (exp, mode);
1706 }
7afe21cc
RK
1707 new = insert (exp, class1, hash, mode);
1708 new->in_memory = hash_arg_in_memory;
7afe21cc
RK
1709 }
1710 }
1711}
1712\f
01e752d3
JL
1713/* Flush the entire hash table. */
1714
1715static void
7080f735 1716flush_hash_table (void)
01e752d3
JL
1717{
1718 int i;
1719 struct table_elt *p;
1720
9b1549b8 1721 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1722 for (p = table[i]; p; p = table[i])
1723 {
1724 /* Note that invalidate can remove elements
1725 after P in the current hash chain. */
f8cfc6aa 1726 if (REG_P (p->exp))
01e752d3
JL
1727 invalidate (p->exp, p->mode);
1728 else
1729 remove_from_table (p, i);
1730 }
1731}
14a774a9 1732\f
2ce6dc2f
JH
1733/* Function called for each rtx to check whether true dependence exist. */
1734struct check_dependence_data
1735{
1736 enum machine_mode mode;
1737 rtx exp;
9ddb66ca 1738 rtx addr;
2ce6dc2f 1739};
be8ac49a 1740
2ce6dc2f 1741static int
7080f735 1742check_dependence (rtx *x, void *data)
2ce6dc2f
JH
1743{
1744 struct check_dependence_data *d = (struct check_dependence_data *) data;
3c0cb5de 1745 if (*x && MEM_P (*x))
9ddb66ca
JH
1746 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1747 cse_rtx_varies_p);
2ce6dc2f
JH
1748 else
1749 return 0;
1750}
1751\f
14a774a9
RK
1752/* Remove from the hash table, or mark as invalid, all expressions whose
1753 values could be altered by storing in X. X is a register, a subreg, or
1754 a memory reference with nonvarying address (because, when a memory
1755 reference with a varying address is stored in, all memory references are
1756 removed by invalidate_memory so specific invalidation is superfluous).
1757 FULL_MODE, if not VOIDmode, indicates that this much should be
1758 invalidated instead of just the amount indicated by the mode of X. This
1759 is only used for bitfield stores into memory.
1760
1761 A nonvarying address may be just a register or just a symbol reference,
1762 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1763
1764static void
7080f735 1765invalidate (rtx x, enum machine_mode full_mode)
7afe21cc 1766{
b3694847
SS
1767 int i;
1768 struct table_elt *p;
9ddb66ca 1769 rtx addr;
7afe21cc 1770
14a774a9 1771 switch (GET_CODE (x))
7afe21cc 1772 {
14a774a9
RK
1773 case REG:
1774 {
1775 /* If X is a register, dependencies on its contents are recorded
1776 through the qty number mechanism. Just change the qty number of
1777 the register, mark it as invalid for expressions that refer to it,
1778 and remove it itself. */
770ae6cc
RK
1779 unsigned int regno = REGNO (x);
1780 unsigned int hash = HASH (x, GET_MODE (x));
7afe21cc 1781
14a774a9
RK
1782 /* Remove REGNO from any quantity list it might be on and indicate
1783 that its value might have changed. If it is a pseudo, remove its
1784 entry from the hash table.
7afe21cc 1785
14a774a9
RK
1786 For a hard register, we do the first two actions above for any
1787 additional hard registers corresponding to X. Then, if any of these
1788 registers are in the table, we must remove any REG entries that
1789 overlap these registers. */
7afe21cc 1790
14a774a9
RK
1791 delete_reg_equiv (regno);
1792 REG_TICK (regno)++;
46081bb3 1793 SUBREG_TICKED (regno) = -1;
85e4d983 1794
14a774a9
RK
1795 if (regno >= FIRST_PSEUDO_REGISTER)
1796 {
1797 /* Because a register can be referenced in more than one mode,
1798 we might have to remove more than one table entry. */
1799 struct table_elt *elt;
85e4d983 1800
14a774a9
RK
1801 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1802 remove_from_table (elt, hash);
1803 }
1804 else
1805 {
1806 HOST_WIDE_INT in_table
1807 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
770ae6cc 1808 unsigned int endregno
66fd46b6 1809 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 1810 unsigned int tregno, tendregno, rn;
b3694847 1811 struct table_elt *p, *next;
7afe21cc 1812
14a774a9 1813 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc 1814
770ae6cc 1815 for (rn = regno + 1; rn < endregno; rn++)
14a774a9 1816 {
770ae6cc
RK
1817 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1818 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1819 delete_reg_equiv (rn);
1820 REG_TICK (rn)++;
46081bb3 1821 SUBREG_TICKED (rn) = -1;
14a774a9 1822 }
7afe21cc 1823
14a774a9 1824 if (in_table)
9b1549b8 1825 for (hash = 0; hash < HASH_SIZE; hash++)
14a774a9
RK
1826 for (p = table[hash]; p; p = next)
1827 {
1828 next = p->next_same_hash;
7afe21cc 1829
f8cfc6aa 1830 if (!REG_P (p->exp)
278a83b2
KH
1831 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1832 continue;
1833
14a774a9
RK
1834 tregno = REGNO (p->exp);
1835 tendregno
66fd46b6 1836 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
14a774a9
RK
1837 if (tendregno > regno && tregno < endregno)
1838 remove_from_table (p, hash);
1839 }
1840 }
1841 }
7afe21cc 1842 return;
7afe21cc 1843
14a774a9 1844 case SUBREG:
bb4034b3 1845 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1846 return;
aac5cc16 1847
14a774a9 1848 case PARALLEL:
278a83b2 1849 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1850 invalidate (XVECEXP (x, 0, i), VOIDmode);
1851 return;
aac5cc16 1852
14a774a9
RK
1853 case EXPR_LIST:
1854 /* This is part of a disjoint return value; extract the location in
1855 question ignoring the offset. */
aac5cc16
RH
1856 invalidate (XEXP (x, 0), VOIDmode);
1857 return;
7afe21cc 1858
14a774a9 1859 case MEM:
9ddb66ca 1860 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1861 /* Calculate the canonical version of X here so that
1862 true_dependence doesn't generate new RTL for X on each call. */
1863 x = canon_rtx (x);
1864
14a774a9
RK
1865 /* Remove all hash table elements that refer to overlapping pieces of
1866 memory. */
1867 if (full_mode == VOIDmode)
1868 full_mode = GET_MODE (x);
bb4034b3 1869
9b1549b8 1870 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1871 {
b3694847 1872 struct table_elt *next;
14a774a9
RK
1873
1874 for (p = table[i]; p; p = next)
1875 {
1876 next = p->next_same_hash;
db048faf
MM
1877 if (p->in_memory)
1878 {
2ce6dc2f
JH
1879 struct check_dependence_data d;
1880
1881 /* Just canonicalize the expression once;
1882 otherwise each time we call invalidate
1883 true_dependence will canonicalize the
1884 expression again. */
1885 if (!p->canon_exp)
1886 p->canon_exp = canon_rtx (p->exp);
1887 d.exp = x;
9ddb66ca 1888 d.addr = addr;
2ce6dc2f
JH
1889 d.mode = full_mode;
1890 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
db048faf 1891 remove_from_table (p, i);
db048faf 1892 }
14a774a9 1893 }
7afe21cc 1894 }
14a774a9
RK
1895 return;
1896
1897 default:
341c100f 1898 gcc_unreachable ();
7afe21cc
RK
1899 }
1900}
14a774a9 1901\f
7afe21cc
RK
1902/* Remove all expressions that refer to register REGNO,
1903 since they are already invalid, and we are about to
1904 mark that register valid again and don't want the old
1905 expressions to reappear as valid. */
1906
1907static void
7080f735 1908remove_invalid_refs (unsigned int regno)
7afe21cc 1909{
770ae6cc
RK
1910 unsigned int i;
1911 struct table_elt *p, *next;
7afe21cc 1912
9b1549b8 1913 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1914 for (p = table[i]; p; p = next)
1915 {
1916 next = p->next_same_hash;
f8cfc6aa 1917 if (!REG_P (p->exp)
68252e27 1918 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
7afe21cc
RK
1919 remove_from_table (p, i);
1920 }
1921}
34c73909 1922
ddef6bc7
JJ
1923/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1924 and mode MODE. */
34c73909 1925static void
7080f735
AJ
1926remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1927 enum machine_mode mode)
34c73909 1928{
770ae6cc
RK
1929 unsigned int i;
1930 struct table_elt *p, *next;
ddef6bc7 1931 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
34c73909 1932
9b1549b8 1933 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
1934 for (p = table[i]; p; p = next)
1935 {
ddef6bc7 1936 rtx exp = p->exp;
34c73909 1937 next = p->next_same_hash;
278a83b2 1938
f8cfc6aa 1939 if (!REG_P (exp)
34c73909 1940 && (GET_CODE (exp) != SUBREG
f8cfc6aa 1941 || !REG_P (SUBREG_REG (exp))
34c73909 1942 || REGNO (SUBREG_REG (exp)) != regno
ddef6bc7
JJ
1943 || (((SUBREG_BYTE (exp)
1944 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1945 && SUBREG_BYTE (exp) <= end))
68252e27 1946 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
34c73909
R
1947 remove_from_table (p, i);
1948 }
1949}
7afe21cc
RK
1950\f
1951/* Recompute the hash codes of any valid entries in the hash table that
1952 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1953
1954 This is called when we make a jump equivalence. */
1955
1956static void
7080f735 1957rehash_using_reg (rtx x)
7afe21cc 1958{
973838fd 1959 unsigned int i;
7afe21cc 1960 struct table_elt *p, *next;
2197a88a 1961 unsigned hash;
7afe21cc
RK
1962
1963 if (GET_CODE (x) == SUBREG)
1964 x = SUBREG_REG (x);
1965
1966 /* If X is not a register or if the register is known not to be in any
1967 valid entries in the table, we have no work to do. */
1968
f8cfc6aa 1969 if (!REG_P (x)
30f72379
MM
1970 || REG_IN_TABLE (REGNO (x)) < 0
1971 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
1972 return;
1973
1974 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 1975 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 1976
9b1549b8 1977 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1978 for (p = table[i]; p; p = next)
1979 {
1980 next = p->next_same_hash;
a90fc8e0 1981 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
1982 && exp_equiv_p (p->exp, p->exp, 1, false)
1983 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
1984 {
1985 if (p->next_same_hash)
1986 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1987
1988 if (p->prev_same_hash)
1989 p->prev_same_hash->next_same_hash = p->next_same_hash;
1990 else
1991 table[i] = p->next_same_hash;
1992
1993 p->next_same_hash = table[hash];
1994 p->prev_same_hash = 0;
1995 if (table[hash])
1996 table[hash]->prev_same_hash = p;
1997 table[hash] = p;
1998 }
1999 }
2000}
2001\f
7afe21cc
RK
2002/* Remove from the hash table any expression that is a call-clobbered
2003 register. Also update their TICK values. */
2004
2005static void
7080f735 2006invalidate_for_call (void)
7afe21cc 2007{
770ae6cc
RK
2008 unsigned int regno, endregno;
2009 unsigned int i;
2197a88a 2010 unsigned hash;
7afe21cc
RK
2011 struct table_elt *p, *next;
2012 int in_table = 0;
2013
2014 /* Go through all the hard registers. For each that is clobbered in
2015 a CALL_INSN, remove the register from quantity chains and update
2016 reg_tick if defined. Also see if any of these registers is currently
2017 in the table. */
2018
2019 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2020 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2021 {
2022 delete_reg_equiv (regno);
30f72379 2023 if (REG_TICK (regno) >= 0)
46081bb3
SH
2024 {
2025 REG_TICK (regno)++;
2026 SUBREG_TICKED (regno) = -1;
2027 }
7afe21cc 2028
0e227018 2029 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
7afe21cc
RK
2030 }
2031
2032 /* In the case where we have no call-clobbered hard registers in the
2033 table, we are done. Otherwise, scan the table and remove any
2034 entry that overlaps a call-clobbered register. */
2035
2036 if (in_table)
9b1549b8 2037 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
2038 for (p = table[hash]; p; p = next)
2039 {
2040 next = p->next_same_hash;
2041
f8cfc6aa 2042 if (!REG_P (p->exp)
7afe21cc
RK
2043 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2044 continue;
2045
2046 regno = REGNO (p->exp);
66fd46b6 2047 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
7afe21cc
RK
2048
2049 for (i = regno; i < endregno; i++)
2050 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2051 {
2052 remove_from_table (p, hash);
2053 break;
2054 }
2055 }
2056}
2057\f
2058/* Given an expression X of type CONST,
2059 and ELT which is its table entry (or 0 if it
2060 is not in the hash table),
2061 return an alternate expression for X as a register plus integer.
2062 If none can be found, return 0. */
2063
2064static rtx
7080f735 2065use_related_value (rtx x, struct table_elt *elt)
7afe21cc 2066{
b3694847
SS
2067 struct table_elt *relt = 0;
2068 struct table_elt *p, *q;
906c4e36 2069 HOST_WIDE_INT offset;
7afe21cc
RK
2070
2071 /* First, is there anything related known?
2072 If we have a table element, we can tell from that.
2073 Otherwise, must look it up. */
2074
2075 if (elt != 0 && elt->related_value != 0)
2076 relt = elt;
2077 else if (elt == 0 && GET_CODE (x) == CONST)
2078 {
2079 rtx subexp = get_related_value (x);
2080 if (subexp != 0)
2081 relt = lookup (subexp,
0516f6fe 2082 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
2083 GET_MODE (subexp));
2084 }
2085
2086 if (relt == 0)
2087 return 0;
2088
2089 /* Search all related table entries for one that has an
2090 equivalent register. */
2091
2092 p = relt;
2093 while (1)
2094 {
2095 /* This loop is strange in that it is executed in two different cases.
2096 The first is when X is already in the table. Then it is searching
2097 the RELATED_VALUE list of X's class (RELT). The second case is when
2098 X is not in the table. Then RELT points to a class for the related
2099 value.
2100
2101 Ensure that, whatever case we are in, that we ignore classes that have
2102 the same value as X. */
2103
2104 if (rtx_equal_p (x, p->exp))
2105 q = 0;
2106 else
2107 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2108 if (REG_P (q->exp))
7afe21cc
RK
2109 break;
2110
2111 if (q)
2112 break;
2113
2114 p = p->related_value;
2115
2116 /* We went all the way around, so there is nothing to be found.
2117 Alternatively, perhaps RELT was in the table for some other reason
2118 and it has no related values recorded. */
2119 if (p == relt || p == 0)
2120 break;
2121 }
2122
2123 if (q == 0)
2124 return 0;
2125
2126 offset = (get_integer_term (x) - get_integer_term (p->exp));
2127 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2128 return plus_constant (q->exp, offset);
2129}
2130\f
6462bb43
AO
2131/* Hash a string. Just add its bytes up. */
2132static inline unsigned
0516f6fe 2133hash_rtx_string (const char *ps)
6462bb43
AO
2134{
2135 unsigned hash = 0;
68252e27
KH
2136 const unsigned char *p = (const unsigned char *) ps;
2137
6462bb43
AO
2138 if (p)
2139 while (*p)
2140 hash += *p++;
2141
2142 return hash;
2143}
2144
7afe21cc
RK
2145/* Hash an rtx. We are careful to make sure the value is never negative.
2146 Equivalent registers hash identically.
2147 MODE is used in hashing for CONST_INTs only;
2148 otherwise the mode of X is used.
2149
0516f6fe 2150 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
7afe21cc 2151
0516f6fe
SB
2152 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2153 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
7afe21cc
RK
2154
2155 Note that cse_insn knows that the hash code of a MEM expression
2156 is just (int) MEM plus the hash code of the address. */
2157
0516f6fe
SB
2158unsigned
2159hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2160 int *hash_arg_in_memory_p, bool have_reg_qty)
7afe21cc 2161{
b3694847
SS
2162 int i, j;
2163 unsigned hash = 0;
2164 enum rtx_code code;
2165 const char *fmt;
7afe21cc 2166
0516f6fe
SB
2167 /* Used to turn recursion into iteration. We can't rely on GCC's
2168 tail-recursion elimination since we need to keep accumulating values
2169 in HASH. */
7afe21cc
RK
2170 repeat:
2171 if (x == 0)
2172 return hash;
2173
2174 code = GET_CODE (x);
2175 switch (code)
2176 {
2177 case REG:
2178 {
770ae6cc 2179 unsigned int regno = REGNO (x);
7afe21cc 2180
0516f6fe 2181 if (!reload_completed)
7afe21cc 2182 {
0516f6fe
SB
2183 /* On some machines, we can't record any non-fixed hard register,
2184 because extending its life will cause reload problems. We
2185 consider ap, fp, sp, gp to be fixed for this purpose.
2186
2187 We also consider CCmode registers to be fixed for this purpose;
2188 failure to do so leads to failure to simplify 0<100 type of
2189 conditionals.
2190
2191 On all machines, we can't record any global registers.
2192 Nor should we record any register that is in a small
2193 class, as defined by CLASS_LIKELY_SPILLED_P. */
2194 bool record;
2195
2196 if (regno >= FIRST_PSEUDO_REGISTER)
2197 record = true;
2198 else if (x == frame_pointer_rtx
2199 || x == hard_frame_pointer_rtx
2200 || x == arg_pointer_rtx
2201 || x == stack_pointer_rtx
2202 || x == pic_offset_table_rtx)
2203 record = true;
2204 else if (global_regs[regno])
2205 record = false;
2206 else if (fixed_regs[regno])
2207 record = true;
2208 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2209 record = true;
2210 else if (SMALL_REGISTER_CLASSES)
2211 record = false;
2212 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2213 record = false;
2214 else
2215 record = true;
2216
2217 if (!record)
2218 {
2219 *do_not_record_p = 1;
2220 return 0;
2221 }
7afe21cc 2222 }
770ae6cc 2223
0516f6fe
SB
2224 hash += ((unsigned int) REG << 7);
2225 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2226 return hash;
7afe21cc
RK
2227 }
2228
34c73909
R
2229 /* We handle SUBREG of a REG specially because the underlying
2230 reg changes its hash value with every value change; we don't
2231 want to have to forget unrelated subregs when one subreg changes. */
2232 case SUBREG:
2233 {
f8cfc6aa 2234 if (REG_P (SUBREG_REG (x)))
34c73909 2235 {
0516f6fe 2236 hash += (((unsigned int) SUBREG << 7)
ddef6bc7
JJ
2237 + REGNO (SUBREG_REG (x))
2238 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
34c73909
R
2239 return hash;
2240 }
2241 break;
2242 }
2243
7afe21cc 2244 case CONST_INT:
0516f6fe
SB
2245 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2246 + (unsigned int) INTVAL (x));
2247 return hash;
7afe21cc
RK
2248
2249 case CONST_DOUBLE:
2250 /* This is like the general case, except that it only counts
2251 the integers representing the constant. */
0516f6fe 2252 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
969c8517 2253 if (GET_MODE (x) != VOIDmode)
46b33600 2254 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
969c8517 2255 else
0516f6fe
SB
2256 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2257 + (unsigned int) CONST_DOUBLE_HIGH (x));
7afe21cc
RK
2258 return hash;
2259
69ef87e2
AH
2260 case CONST_VECTOR:
2261 {
2262 int units;
2263 rtx elt;
2264
2265 units = CONST_VECTOR_NUNITS (x);
2266
2267 for (i = 0; i < units; ++i)
2268 {
2269 elt = CONST_VECTOR_ELT (x, i);
0516f6fe
SB
2270 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2271 hash_arg_in_memory_p, have_reg_qty);
69ef87e2
AH
2272 }
2273
2274 return hash;
2275 }
2276
7afe21cc
RK
2277 /* Assume there is only one rtx object for any given label. */
2278 case LABEL_REF:
0516f6fe
SB
2279 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2280 differences and differences between each stage's debugging dumps. */
2281 hash += (((unsigned int) LABEL_REF << 7)
2282 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2197a88a 2283 return hash;
7afe21cc
RK
2284
2285 case SYMBOL_REF:
0516f6fe
SB
2286 {
2287 /* Don't hash on the symbol's address to avoid bootstrap differences.
2288 Different hash values may cause expressions to be recorded in
2289 different orders and thus different registers to be used in the
2290 final assembler. This also avoids differences in the dump files
2291 between various stages. */
2292 unsigned int h = 0;
2293 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2294
2295 while (*p)
2296 h += (h << 7) + *p++; /* ??? revisit */
2297
2298 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2299 return hash;
2300 }
7afe21cc
RK
2301
2302 case MEM:
14a774a9
RK
2303 /* We don't record if marked volatile or if BLKmode since we don't
2304 know the size of the move. */
2305 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
7afe21cc 2306 {
0516f6fe 2307 *do_not_record_p = 1;
7afe21cc
RK
2308 return 0;
2309 }
0516f6fe
SB
2310 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2311 *hash_arg_in_memory_p = 1;
4977bab6 2312
7afe21cc
RK
2313 /* Now that we have already found this special case,
2314 might as well speed it up as much as possible. */
2197a88a 2315 hash += (unsigned) MEM;
7afe21cc
RK
2316 x = XEXP (x, 0);
2317 goto repeat;
2318
bb07060a
JW
2319 case USE:
2320 /* A USE that mentions non-volatile memory needs special
2321 handling since the MEM may be BLKmode which normally
2322 prevents an entry from being made. Pure calls are
0516f6fe
SB
2323 marked by a USE which mentions BLKmode memory.
2324 See calls.c:emit_call_1. */
3c0cb5de 2325 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2326 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2327 {
68252e27 2328 hash += (unsigned) USE;
bb07060a
JW
2329 x = XEXP (x, 0);
2330
0516f6fe
SB
2331 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2332 *hash_arg_in_memory_p = 1;
bb07060a
JW
2333
2334 /* Now that we have already found this special case,
2335 might as well speed it up as much as possible. */
2336 hash += (unsigned) MEM;
2337 x = XEXP (x, 0);
2338 goto repeat;
2339 }
2340 break;
2341
7afe21cc
RK
2342 case PRE_DEC:
2343 case PRE_INC:
2344 case POST_DEC:
2345 case POST_INC:
4b983fdc
RH
2346 case PRE_MODIFY:
2347 case POST_MODIFY:
7afe21cc
RK
2348 case PC:
2349 case CC0:
2350 case CALL:
2351 case UNSPEC_VOLATILE:
0516f6fe 2352 *do_not_record_p = 1;
7afe21cc
RK
2353 return 0;
2354
2355 case ASM_OPERANDS:
2356 if (MEM_VOLATILE_P (x))
2357 {
0516f6fe 2358 *do_not_record_p = 1;
7afe21cc
RK
2359 return 0;
2360 }
6462bb43
AO
2361 else
2362 {
2363 /* We don't want to take the filename and line into account. */
2364 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2365 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2366 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2367 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2368
2369 if (ASM_OPERANDS_INPUT_LENGTH (x))
2370 {
2371 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2372 {
0516f6fe
SB
2373 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2374 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2375 do_not_record_p, hash_arg_in_memory_p,
2376 have_reg_qty)
2377 + hash_rtx_string
2378 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2379 }
2380
0516f6fe 2381 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2382 x = ASM_OPERANDS_INPUT (x, 0);
2383 mode = GET_MODE (x);
2384 goto repeat;
2385 }
2386
2387 return hash;
2388 }
e9a25f70 2389 break;
278a83b2 2390
e9a25f70
JL
2391 default:
2392 break;
7afe21cc
RK
2393 }
2394
2395 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2396 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2397 fmt = GET_RTX_FORMAT (code);
2398 for (; i >= 0; i--)
2399 {
341c100f 2400 switch (fmt[i])
7afe21cc 2401 {
341c100f 2402 case 'e':
7afe21cc
RK
2403 /* If we are about to do the last recursive call
2404 needed at this level, change it into iteration.
2405 This function is called enough to be worth it. */
2406 if (i == 0)
2407 {
0516f6fe 2408 x = XEXP (x, i);
7afe21cc
RK
2409 goto repeat;
2410 }
0516f6fe
SB
2411
2412 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2413 hash_arg_in_memory_p, have_reg_qty);
341c100f 2414 break;
0516f6fe 2415
341c100f
NS
2416 case 'E':
2417 for (j = 0; j < XVECLEN (x, i); j++)
0516f6fe
SB
2418 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2419 hash_arg_in_memory_p, have_reg_qty);
341c100f 2420 break;
0516f6fe 2421
341c100f
NS
2422 case 's':
2423 hash += hash_rtx_string (XSTR (x, i));
2424 break;
2425
2426 case 'i':
2427 hash += (unsigned int) XINT (x, i);
2428 break;
2429
2430 case '0': case 't':
2431 /* Unused. */
2432 break;
2433
2434 default:
2435 gcc_unreachable ();
2436 }
7afe21cc 2437 }
0516f6fe 2438
7afe21cc
RK
2439 return hash;
2440}
2441
0516f6fe
SB
2442/* Hash an rtx X for cse via hash_rtx.
2443 Stores 1 in do_not_record if any subexpression is volatile.
2444 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2445 does not have the RTX_UNCHANGING_P bit set. */
2446
2447static inline unsigned
2448canon_hash (rtx x, enum machine_mode mode)
2449{
2450 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2451}
2452
2453/* Like canon_hash but with no side effects, i.e. do_not_record
2454 and hash_arg_in_memory are not changed. */
7afe21cc 2455
0516f6fe 2456static inline unsigned
7080f735 2457safe_hash (rtx x, enum machine_mode mode)
7afe21cc 2458{
0516f6fe
SB
2459 int dummy_do_not_record;
2460 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2461}
2462\f
2463/* Return 1 iff X and Y would canonicalize into the same thing,
2464 without actually constructing the canonicalization of either one.
2465 If VALIDATE is nonzero,
2466 we assume X is an expression being processed from the rtl
2467 and Y was found in the hash table. We check register refs
2468 in Y for being marked as valid.
2469
0516f6fe 2470 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2471
0516f6fe
SB
2472int
2473exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
7afe21cc 2474{
b3694847
SS
2475 int i, j;
2476 enum rtx_code code;
2477 const char *fmt;
7afe21cc
RK
2478
2479 /* Note: it is incorrect to assume an expression is equivalent to itself
2480 if VALIDATE is nonzero. */
2481 if (x == y && !validate)
2482 return 1;
0516f6fe 2483
7afe21cc
RK
2484 if (x == 0 || y == 0)
2485 return x == y;
2486
2487 code = GET_CODE (x);
2488 if (code != GET_CODE (y))
0516f6fe 2489 return 0;
7afe21cc
RK
2490
2491 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2492 if (GET_MODE (x) != GET_MODE (y))
2493 return 0;
2494
2495 switch (code)
2496 {
2497 case PC:
2498 case CC0:
7afe21cc 2499 case CONST_INT:
c13e8210 2500 return x == y;
7afe21cc
RK
2501
2502 case LABEL_REF:
7afe21cc
RK
2503 return XEXP (x, 0) == XEXP (y, 0);
2504
f54d4924
RK
2505 case SYMBOL_REF:
2506 return XSTR (x, 0) == XSTR (y, 0);
2507
7afe21cc 2508 case REG:
0516f6fe
SB
2509 if (for_gcse)
2510 return REGNO (x) == REGNO (y);
2511 else
2512 {
2513 unsigned int regno = REGNO (y);
2514 unsigned int i;
2515 unsigned int endregno
2516 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2517 : hard_regno_nregs[regno][GET_MODE (y)]);
7afe21cc 2518
0516f6fe
SB
2519 /* If the quantities are not the same, the expressions are not
2520 equivalent. If there are and we are not to validate, they
2521 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2522
0516f6fe
SB
2523 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2524 return 0;
2525
2526 if (! validate)
2527 return 1;
2528
2529 for (i = regno; i < endregno; i++)
2530 if (REG_IN_TABLE (i) != REG_TICK (i))
2531 return 0;
7afe21cc 2532
7afe21cc 2533 return 1;
0516f6fe 2534 }
7afe21cc 2535
0516f6fe
SB
2536 case MEM:
2537 if (for_gcse)
2538 {
2539 /* Can't merge two expressions in different alias sets, since we
2540 can decide that the expression is transparent in a block when
2541 it isn't, due to it being set with the different alias set. */
2542 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
7afe21cc
RK
2543 return 0;
2544
0516f6fe
SB
2545 /* A volatile mem should not be considered equivalent to any
2546 other. */
2547 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2548 return 0;
2549 }
2550 break;
7afe21cc
RK
2551
2552 /* For commutative operations, check both orders. */
2553 case PLUS:
2554 case MULT:
2555 case AND:
2556 case IOR:
2557 case XOR:
2558 case NE:
2559 case EQ:
0516f6fe
SB
2560 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2561 validate, for_gcse)
7afe21cc 2562 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2563 validate, for_gcse))
7afe21cc 2564 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2565 validate, for_gcse)
7afe21cc 2566 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2567 validate, for_gcse)));
278a83b2 2568
6462bb43
AO
2569 case ASM_OPERANDS:
2570 /* We don't use the generic code below because we want to
2571 disregard filename and line numbers. */
2572
2573 /* A volatile asm isn't equivalent to any other. */
2574 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2575 return 0;
2576
2577 if (GET_MODE (x) != GET_MODE (y)
2578 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2579 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2580 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2581 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2582 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2583 return 0;
2584
2585 if (ASM_OPERANDS_INPUT_LENGTH (x))
2586 {
2587 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2588 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2589 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2590 validate, for_gcse)
6462bb43
AO
2591 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2592 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2593 return 0;
2594 }
2595
2596 return 1;
2597
e9a25f70
JL
2598 default:
2599 break;
7afe21cc
RK
2600 }
2601
2602 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2603 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2604
2605 fmt = GET_RTX_FORMAT (code);
2606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2607 {
906c4e36 2608 switch (fmt[i])
7afe21cc 2609 {
906c4e36 2610 case 'e':
0516f6fe
SB
2611 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2612 validate, for_gcse))
7afe21cc 2613 return 0;
906c4e36
RK
2614 break;
2615
2616 case 'E':
7afe21cc
RK
2617 if (XVECLEN (x, i) != XVECLEN (y, i))
2618 return 0;
2619 for (j = 0; j < XVECLEN (x, i); j++)
2620 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2621 validate, for_gcse))
7afe21cc 2622 return 0;
906c4e36
RK
2623 break;
2624
2625 case 's':
7afe21cc
RK
2626 if (strcmp (XSTR (x, i), XSTR (y, i)))
2627 return 0;
906c4e36
RK
2628 break;
2629
2630 case 'i':
7afe21cc
RK
2631 if (XINT (x, i) != XINT (y, i))
2632 return 0;
906c4e36
RK
2633 break;
2634
2635 case 'w':
2636 if (XWINT (x, i) != XWINT (y, i))
2637 return 0;
278a83b2 2638 break;
906c4e36
RK
2639
2640 case '0':
8f985ec4 2641 case 't':
906c4e36
RK
2642 break;
2643
2644 default:
341c100f 2645 gcc_unreachable ();
7afe21cc 2646 }
278a83b2 2647 }
906c4e36 2648
7afe21cc
RK
2649 return 1;
2650}
2651\f
9ae8ffe7
JL
2652/* Return 1 if X has a value that can vary even between two
2653 executions of the program. 0 means X can be compared reliably
2654 against certain constants or near-constants. */
7afe21cc
RK
2655
2656static int
7080f735 2657cse_rtx_varies_p (rtx x, int from_alias)
7afe21cc
RK
2658{
2659 /* We need not check for X and the equivalence class being of the same
2660 mode because if X is equivalent to a constant in some mode, it
2661 doesn't vary in any mode. */
2662
f8cfc6aa 2663 if (REG_P (x)
1bb98cec
DM
2664 && REGNO_QTY_VALID_P (REGNO (x)))
2665 {
2666 int x_q = REG_QTY (REGNO (x));
2667 struct qty_table_elem *x_ent = &qty_table[x_q];
2668
2669 if (GET_MODE (x) == x_ent->mode
2670 && x_ent->const_rtx != NULL_RTX)
2671 return 0;
2672 }
7afe21cc 2673
9ae8ffe7
JL
2674 if (GET_CODE (x) == PLUS
2675 && GET_CODE (XEXP (x, 1)) == CONST_INT
f8cfc6aa 2676 && REG_P (XEXP (x, 0))
1bb98cec
DM
2677 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2678 {
2679 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2680 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2681
2682 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2683 && x0_ent->const_rtx != NULL_RTX)
2684 return 0;
2685 }
7afe21cc 2686
9c6b0bae
RK
2687 /* This can happen as the result of virtual register instantiation, if
2688 the initial constant is too large to be a valid address. This gives
2689 us a three instruction sequence, load large offset into a register,
2690 load fp minus a constant into a register, then a MEM which is the
2691 sum of the two `constant' registers. */
9ae8ffe7 2692 if (GET_CODE (x) == PLUS
f8cfc6aa
JQ
2693 && REG_P (XEXP (x, 0))
2694 && REG_P (XEXP (x, 1))
9ae8ffe7 2695 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
1bb98cec
DM
2696 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2697 {
2698 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2699 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2700 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2701 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2702
2703 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2704 && x0_ent->const_rtx != NULL_RTX
2705 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2706 && x1_ent->const_rtx != NULL_RTX)
2707 return 0;
2708 }
9c6b0bae 2709
2be28ee2 2710 return rtx_varies_p (x, from_alias);
7afe21cc
RK
2711}
2712\f
eef3c949
RS
2713/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2714 the result if necessary. INSN is as for canon_reg. */
2715
2716static void
2717validate_canon_reg (rtx *xloc, rtx insn)
2718{
2719 rtx new = canon_reg (*xloc, insn);
2720 int insn_code;
2721
2722 /* If replacing pseudo with hard reg or vice versa, ensure the
2723 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2724 if (insn != 0 && new != 0
2725 && REG_P (new) && REG_P (*xloc)
2726 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2727 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2728 || GET_MODE (new) != GET_MODE (*xloc)
2729 || (insn_code = recog_memoized (insn)) < 0
2730 || insn_data[insn_code].n_dups > 0))
2731 validate_change (insn, xloc, new, 1);
2732 else
2733 *xloc = new;
2734}
2735
7afe21cc
RK
2736/* Canonicalize an expression:
2737 replace each register reference inside it
2738 with the "oldest" equivalent register.
2739
da7d8304 2740 If INSN is nonzero and we are replacing a pseudo with a hard register
7722328e 2741 or vice versa, validate_change is used to ensure that INSN remains valid
da7d8304 2742 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2743 so apply_change_group must be called upon the outermost return from this
2744 function (unless INSN is zero). The result of apply_change_group can
2745 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2746
2747static rtx
7080f735 2748canon_reg (rtx x, rtx insn)
7afe21cc 2749{
b3694847
SS
2750 int i;
2751 enum rtx_code code;
2752 const char *fmt;
7afe21cc
RK
2753
2754 if (x == 0)
2755 return x;
2756
2757 code = GET_CODE (x);
2758 switch (code)
2759 {
2760 case PC:
2761 case CC0:
2762 case CONST:
2763 case CONST_INT:
2764 case CONST_DOUBLE:
69ef87e2 2765 case CONST_VECTOR:
7afe21cc
RK
2766 case SYMBOL_REF:
2767 case LABEL_REF:
2768 case ADDR_VEC:
2769 case ADDR_DIFF_VEC:
2770 return x;
2771
2772 case REG:
2773 {
b3694847
SS
2774 int first;
2775 int q;
2776 struct qty_table_elem *ent;
7afe21cc
RK
2777
2778 /* Never replace a hard reg, because hard regs can appear
2779 in more than one machine mode, and we must preserve the mode
2780 of each occurrence. Also, some hard regs appear in
2781 MEMs that are shared and mustn't be altered. Don't try to
2782 replace any reg that maps to a reg of class NO_REGS. */
2783 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2784 || ! REGNO_QTY_VALID_P (REGNO (x)))
2785 return x;
2786
278a83b2 2787 q = REG_QTY (REGNO (x));
1bb98cec
DM
2788 ent = &qty_table[q];
2789 first = ent->first_reg;
7afe21cc
RK
2790 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2791 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2792 : gen_rtx_REG (ent->mode, first));
7afe21cc 2793 }
278a83b2 2794
e9a25f70
JL
2795 default:
2796 break;
7afe21cc
RK
2797 }
2798
2799 fmt = GET_RTX_FORMAT (code);
2800 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2801 {
b3694847 2802 int j;
7afe21cc
RK
2803
2804 if (fmt[i] == 'e')
eef3c949 2805 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2806 else if (fmt[i] == 'E')
2807 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2808 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2809 }
2810
2811 return x;
2812}
2813\f
a2cabb29 2814/* LOC is a location within INSN that is an operand address (the contents of
7afe21cc
RK
2815 a MEM). Find the best equivalent address to use that is valid for this
2816 insn.
2817
2818 On most CISC machines, complicated address modes are costly, and rtx_cost
2819 is a good approximation for that cost. However, most RISC machines have
2820 only a few (usually only one) memory reference formats. If an address is
2821 valid at all, it is often just as cheap as any other address. Hence, for
e37135f7
RH
2822 RISC machines, we use `address_cost' to compare the costs of various
2823 addresses. For two addresses of equal cost, choose the one with the
2824 highest `rtx_cost' value as that has the potential of eliminating the
2825 most insns. For equal costs, we choose the first in the equivalence
2826 class. Note that we ignore the fact that pseudo registers are cheaper than
2827 hard registers here because we would also prefer the pseudo registers. */
7afe21cc 2828
6cd4575e 2829static void
7080f735 2830find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
7afe21cc 2831{
7a87758d 2832 struct table_elt *elt;
7afe21cc 2833 rtx addr = *loc;
7a87758d 2834 struct table_elt *p;
7afe21cc
RK
2835 int found_better = 1;
2836 int save_do_not_record = do_not_record;
2837 int save_hash_arg_in_memory = hash_arg_in_memory;
7afe21cc
RK
2838 int addr_volatile;
2839 int regno;
2197a88a 2840 unsigned hash;
7afe21cc
RK
2841
2842 /* Do not try to replace constant addresses or addresses of local and
2843 argument slots. These MEM expressions are made only once and inserted
2844 in many instructions, as well as being used to control symbol table
2845 output. It is not safe to clobber them.
2846
2847 There are some uncommon cases where the address is already in a register
2848 for some reason, but we cannot take advantage of that because we have
2849 no easy way to unshare the MEM. In addition, looking up all stack
2850 addresses is costly. */
2851 if ((GET_CODE (addr) == PLUS
f8cfc6aa 2852 && REG_P (XEXP (addr, 0))
7afe21cc
RK
2853 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2854 && (regno = REGNO (XEXP (addr, 0)),
8bc169f2
DE
2855 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2856 || regno == ARG_POINTER_REGNUM))
f8cfc6aa 2857 || (REG_P (addr)
8bc169f2
DE
2858 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2859 || regno == HARD_FRAME_POINTER_REGNUM
2860 || regno == ARG_POINTER_REGNUM))
7afe21cc
RK
2861 || CONSTANT_ADDRESS_P (addr))
2862 return;
2863
2864 /* If this address is not simply a register, try to fold it. This will
2865 sometimes simplify the expression. Many simplifications
2866 will not be valid, but some, usually applying the associative rule, will
2867 be valid and produce better code. */
f8cfc6aa 2868 if (!REG_P (addr))
8c87f107 2869 {
21cf294f
ZD
2870 rtx folded = canon_for_address (fold_rtx (addr, NULL_RTX));
2871
6c667859
AB
2872 if (folded != addr)
2873 {
2874 int addr_folded_cost = address_cost (folded, mode);
2875 int addr_cost = address_cost (addr, mode);
2876
2877 if ((addr_folded_cost < addr_cost
2878 || (addr_folded_cost == addr_cost
2879 /* ??? The rtx_cost comparison is left over from an older
2880 version of this code. It is probably no longer helpful.*/
2881 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2882 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2883 && validate_change (insn, loc, folded, 0))
2884 addr = folded;
2885 }
8c87f107 2886 }
278a83b2 2887
42495ca0
RK
2888 /* If this address is not in the hash table, we can't look for equivalences
2889 of the whole address. Also, ignore if volatile. */
2890
7afe21cc 2891 do_not_record = 0;
2197a88a 2892 hash = HASH (addr, Pmode);
7afe21cc
RK
2893 addr_volatile = do_not_record;
2894 do_not_record = save_do_not_record;
2895 hash_arg_in_memory = save_hash_arg_in_memory;
7afe21cc
RK
2896
2897 if (addr_volatile)
2898 return;
2899
2197a88a 2900 elt = lookup (addr, hash, Pmode);
7afe21cc 2901
42495ca0
RK
2902 if (elt)
2903 {
2904 /* We need to find the best (under the criteria documented above) entry
2905 in the class that is valid. We use the `flag' field to indicate
2906 choices that were invalid and iterate until we can't find a better
2907 one that hasn't already been tried. */
7afe21cc 2908
42495ca0
RK
2909 for (p = elt->first_same_value; p; p = p->next_same_value)
2910 p->flag = 0;
7afe21cc 2911
42495ca0
RK
2912 while (found_better)
2913 {
01329426 2914 int best_addr_cost = address_cost (*loc, mode);
42495ca0 2915 int best_rtx_cost = (elt->cost + 1) >> 1;
01329426 2916 int exp_cost;
278a83b2 2917 struct table_elt *best_elt = elt;
42495ca0
RK
2918
2919 found_better = 0;
2920 for (p = elt->first_same_value; p; p = p->next_same_value)
2f541799 2921 if (! p->flag)
42495ca0 2922 {
f8cfc6aa 2923 if ((REG_P (p->exp)
0516f6fe 2924 || exp_equiv_p (p->exp, p->exp, 1, false))
01329426
JH
2925 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2926 || (exp_cost == best_addr_cost
05bd3d41 2927 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2f541799
MM
2928 {
2929 found_better = 1;
01329426 2930 best_addr_cost = exp_cost;
2f541799
MM
2931 best_rtx_cost = (p->cost + 1) >> 1;
2932 best_elt = p;
2933 }
42495ca0 2934 }
7afe21cc 2935
42495ca0
RK
2936 if (found_better)
2937 {
2938 if (validate_change (insn, loc,
906c4e36
RK
2939 canon_reg (copy_rtx (best_elt->exp),
2940 NULL_RTX), 0))
42495ca0
RK
2941 return;
2942 else
2943 best_elt->flag = 1;
2944 }
2945 }
2946 }
7afe21cc 2947
42495ca0
RK
2948 /* If the address is a binary operation with the first operand a register
2949 and the second a constant, do the same as above, but looking for
2950 equivalences of the register. Then try to simplify before checking for
2951 the best address to use. This catches a few cases: First is when we
2952 have REG+const and the register is another REG+const. We can often merge
2953 the constants and eliminate one insn and one register. It may also be
2954 that a machine has a cheap REG+REG+const. Finally, this improves the
2955 code on the Alpha for unaligned byte stores. */
2956
2957 if (flag_expensive_optimizations
ec8e098d 2958 && ARITHMETIC_P (*loc)
f8cfc6aa 2959 && REG_P (XEXP (*loc, 0)))
7afe21cc 2960 {
7b9c108f 2961 rtx op1 = XEXP (*loc, 1);
42495ca0
RK
2962
2963 do_not_record = 0;
2197a88a 2964 hash = HASH (XEXP (*loc, 0), Pmode);
42495ca0
RK
2965 do_not_record = save_do_not_record;
2966 hash_arg_in_memory = save_hash_arg_in_memory;
42495ca0 2967
2197a88a 2968 elt = lookup (XEXP (*loc, 0), hash, Pmode);
42495ca0
RK
2969 if (elt == 0)
2970 return;
2971
2972 /* We need to find the best (under the criteria documented above) entry
2973 in the class that is valid. We use the `flag' field to indicate
2974 choices that were invalid and iterate until we can't find a better
2975 one that hasn't already been tried. */
7afe21cc 2976
7afe21cc 2977 for (p = elt->first_same_value; p; p = p->next_same_value)
42495ca0 2978 p->flag = 0;
7afe21cc 2979
42495ca0 2980 while (found_better)
7afe21cc 2981 {
01329426 2982 int best_addr_cost = address_cost (*loc, mode);
42495ca0 2983 int best_rtx_cost = (COST (*loc) + 1) >> 1;
278a83b2 2984 struct table_elt *best_elt = elt;
42495ca0 2985 rtx best_rtx = *loc;
f6516aee
JW
2986 int count;
2987
2988 /* This is at worst case an O(n^2) algorithm, so limit our search
2989 to the first 32 elements on the list. This avoids trouble
2990 compiling code with very long basic blocks that can easily
0cedb36c
JL
2991 call simplify_gen_binary so many times that we run out of
2992 memory. */
96b0e481 2993
0cedb36c
JL
2994 found_better = 0;
2995 for (p = elt->first_same_value, count = 0;
2996 p && count < 32;
2997 p = p->next_same_value, count++)
2998 if (! p->flag
f8cfc6aa 2999 && (REG_P (p->exp)
0516f6fe 3000 || exp_equiv_p (p->exp, p->exp, 1, false)))
0cedb36c
JL
3001 {
3002 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
7b9c108f 3003 p->exp, op1);
01329426 3004 int new_cost;
b7ca416f
AP
3005
3006 /* Get the canonical version of the address so we can accept
6c6cfbfd 3007 more. */
b7ca416f
AP
3008 new = canon_for_address (new);
3009
01329426 3010 new_cost = address_cost (new, mode);
96b0e481 3011
01329426
JH
3012 if (new_cost < best_addr_cost
3013 || (new_cost == best_addr_cost
3014 && (COST (new) + 1) >> 1 > best_rtx_cost))
0cedb36c
JL
3015 {
3016 found_better = 1;
01329426 3017 best_addr_cost = new_cost;
0cedb36c
JL
3018 best_rtx_cost = (COST (new) + 1) >> 1;
3019 best_elt = p;
3020 best_rtx = new;
3021 }
3022 }
96b0e481 3023
0cedb36c
JL
3024 if (found_better)
3025 {
3026 if (validate_change (insn, loc,
3027 canon_reg (copy_rtx (best_rtx),
3028 NULL_RTX), 0))
3029 return;
3030 else
3031 best_elt->flag = 1;
3032 }
3033 }
3034 }
96b0e481
RK
3035}
3036\f
bca05d20
RK
3037/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3038 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3039 what values are being compared.
1a87eea2 3040
bca05d20
RK
3041 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3042 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3043 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3044 compared to produce cc0.
a432f20d 3045
bca05d20
RK
3046 The return value is the comparison operator and is either the code of
3047 A or the code corresponding to the inverse of the comparison. */
7afe21cc 3048
0cedb36c 3049static enum rtx_code
7080f735
AJ
3050find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3051 enum machine_mode *pmode1, enum machine_mode *pmode2)
7afe21cc 3052{
0cedb36c 3053 rtx arg1, arg2;
1a87eea2 3054
0cedb36c 3055 arg1 = *parg1, arg2 = *parg2;
7afe21cc 3056
0cedb36c 3057 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 3058
0cedb36c 3059 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 3060 {
da7d8304 3061 /* Set nonzero when we find something of interest. */
0cedb36c
JL
3062 rtx x = 0;
3063 int reverse_code = 0;
3064 struct table_elt *p = 0;
6076248a 3065
0cedb36c
JL
3066 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3067 On machines with CC0, this is the only case that can occur, since
3068 fold_rtx will return the COMPARE or item being compared with zero
3069 when given CC0. */
6076248a 3070
0cedb36c
JL
3071 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3072 x = arg1;
6076248a 3073
0cedb36c
JL
3074 /* If ARG1 is a comparison operator and CODE is testing for
3075 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 3076
ec8e098d 3077 else if (COMPARISON_P (arg1))
7afe21cc 3078 {
efdc7e19
RH
3079#ifdef FLOAT_STORE_FLAG_VALUE
3080 REAL_VALUE_TYPE fsfv;
3081#endif
3082
0cedb36c
JL
3083 if (code == NE
3084 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3085 && code == LT && STORE_FLAG_VALUE == -1)
3086#ifdef FLOAT_STORE_FLAG_VALUE
3087 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
efdc7e19
RH
3088 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3089 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 3090#endif
a432f20d 3091 )
0cedb36c
JL
3092 x = arg1;
3093 else if (code == EQ
3094 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3095 && code == GE && STORE_FLAG_VALUE == -1)
3096#ifdef FLOAT_STORE_FLAG_VALUE
3097 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
efdc7e19
RH
3098 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3099 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3100#endif
3101 )
3102 x = arg1, reverse_code = 1;
7afe21cc
RK
3103 }
3104
0cedb36c 3105 /* ??? We could also check for
7afe21cc 3106
0cedb36c 3107 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 3108
0cedb36c 3109 and related forms, but let's wait until we see them occurring. */
7afe21cc 3110
0cedb36c
JL
3111 if (x == 0)
3112 /* Look up ARG1 in the hash table and see if it has an equivalence
3113 that lets us see what is being compared. */
0516f6fe 3114 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 3115 if (p)
8b03b984
R
3116 {
3117 p = p->first_same_value;
3118
3119 /* If what we compare is already known to be constant, that is as
3120 good as it gets.
3121 We need to break the loop in this case, because otherwise we
3122 can have an infinite loop when looking at a reg that is known
3123 to be a constant which is the same as a comparison of a reg
3124 against zero which appears later in the insn stream, which in
3125 turn is constant and the same as the comparison of the first reg
3126 against zero... */
3127 if (p->is_const)
3128 break;
3129 }
7afe21cc 3130
0cedb36c 3131 for (; p; p = p->next_same_value)
7afe21cc 3132 {
0cedb36c 3133 enum machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
3134#ifdef FLOAT_STORE_FLAG_VALUE
3135 REAL_VALUE_TYPE fsfv;
3136#endif
7afe21cc 3137
0cedb36c 3138 /* If the entry isn't valid, skip it. */
0516f6fe 3139 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 3140 continue;
f76b9db2 3141
bca05d20
RK
3142 if (GET_CODE (p->exp) == COMPARE
3143 /* Another possibility is that this machine has a compare insn
3144 that includes the comparison code. In that case, ARG1 would
3145 be equivalent to a comparison operation that would set ARG1 to
3146 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3147 ORIG_CODE is the actual comparison being done; if it is an EQ,
3148 we must reverse ORIG_CODE. On machine with a negative value
3149 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3150 || ((code == NE
3151 || (code == LT
3152 && GET_MODE_CLASS (inner_mode) == MODE_INT
3153 && (GET_MODE_BITSIZE (inner_mode)
3154 <= HOST_BITS_PER_WIDE_INT)
3155 && (STORE_FLAG_VALUE
3156 & ((HOST_WIDE_INT) 1
3157 << (GET_MODE_BITSIZE (inner_mode) - 1))))
0cedb36c 3158#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20
RK
3159 || (code == LT
3160 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
efdc7e19
RH
3161 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3162 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 3163#endif
bca05d20 3164 )
ec8e098d 3165 && COMPARISON_P (p->exp)))
7afe21cc 3166 {
0cedb36c
JL
3167 x = p->exp;
3168 break;
3169 }
3170 else if ((code == EQ
3171 || (code == GE
3172 && GET_MODE_CLASS (inner_mode) == MODE_INT
3173 && (GET_MODE_BITSIZE (inner_mode)
3174 <= HOST_BITS_PER_WIDE_INT)
3175 && (STORE_FLAG_VALUE
3176 & ((HOST_WIDE_INT) 1
3177 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3178#ifdef FLOAT_STORE_FLAG_VALUE
3179 || (code == GE
3180 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
efdc7e19
RH
3181 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3182 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3183#endif
3184 )
ec8e098d 3185 && COMPARISON_P (p->exp))
0cedb36c
JL
3186 {
3187 reverse_code = 1;
3188 x = p->exp;
3189 break;
7afe21cc
RK
3190 }
3191
4977bab6
ZW
3192 /* If this non-trapping address, e.g. fp + constant, the
3193 equivalent is a better operand since it may let us predict
3194 the value of the comparison. */
3195 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
3196 {
3197 arg1 = p->exp;
3198 continue;
3199 }
7afe21cc 3200 }
7afe21cc 3201
0cedb36c
JL
3202 /* If we didn't find a useful equivalence for ARG1, we are done.
3203 Otherwise, set up for the next iteration. */
3204 if (x == 0)
3205 break;
7afe21cc 3206
78192b09
RH
3207 /* If we need to reverse the comparison, make sure that that is
3208 possible -- we can't necessarily infer the value of GE from LT
3209 with floating-point operands. */
0cedb36c 3210 if (reverse_code)
261efdef
JH
3211 {
3212 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3213 if (reversed == UNKNOWN)
3214 break;
68252e27
KH
3215 else
3216 code = reversed;
261efdef 3217 }
ec8e098d 3218 else if (COMPARISON_P (x))
261efdef
JH
3219 code = GET_CODE (x);
3220 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
3221 }
3222
0cedb36c
JL
3223 /* Return our results. Return the modes from before fold_rtx
3224 because fold_rtx might produce const_int, and then it's too late. */
3225 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3226 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3227
3228 return code;
7afe21cc
RK
3229}
3230\f
25910ca4
KH
3231/* Fold SUBREG. */
3232
3233static rtx
3234fold_rtx_subreg (rtx x, rtx insn)
3235{
3236 enum machine_mode mode = GET_MODE (x);
3237 rtx folded_arg0;
3238 rtx const_arg0;
3239 rtx new;
3240
3241 /* See if we previously assigned a constant value to this SUBREG. */
3242 if ((new = lookup_as_function (x, CONST_INT)) != 0
3243 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3244 return new;
3245
3246 /* If this is a paradoxical SUBREG, we have no idea what value the
3247 extra bits would have. However, if the operand is equivalent to
3248 a SUBREG whose operand is the same as our mode, and all the modes
3249 are within a word, we can just use the inner operand because
3250 these SUBREGs just say how to treat the register.
3251
3252 Similarly if we find an integer constant. */
3253
3254 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3255 {
3256 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3257 struct table_elt *elt;
3258
3259 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3260 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3261 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3262 imode)) != 0)
3263 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3264 {
3265 if (CONSTANT_P (elt->exp)
3266 && GET_MODE (elt->exp) == VOIDmode)
3267 return elt->exp;
3268
3269 if (GET_CODE (elt->exp) == SUBREG
3270 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3271 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3272 return copy_rtx (SUBREG_REG (elt->exp));
3273 }
3274
3275 return x;
3276 }
3277
3278 /* Fold SUBREG_REG. If it changed, see if we can simplify the
3279 SUBREG. We might be able to if the SUBREG is extracting a single
3280 word in an integral mode or extracting the low part. */
3281
3282 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3283 const_arg0 = equiv_constant (folded_arg0);
3284 if (const_arg0)
3285 folded_arg0 = const_arg0;
3286
3287 if (folded_arg0 != SUBREG_REG (x))
3288 {
3289 new = simplify_subreg (mode, folded_arg0,
3290 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3291 if (new)
3292 return new;
3293 }
3294
3295 if (REG_P (folded_arg0)
3296 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3297 {
3298 struct table_elt *elt;
3299
3300 elt = lookup (folded_arg0,
3301 HASH (folded_arg0, GET_MODE (folded_arg0)),
3302 GET_MODE (folded_arg0));
3303
3304 if (elt)
3305 elt = elt->first_same_value;
3306
3307 if (subreg_lowpart_p (x))
3308 /* If this is a narrowing SUBREG and our operand is a REG, see
3309 if we can find an equivalence for REG that is an arithmetic
3310 operation in a wider mode where both operands are
3311 paradoxical SUBREGs from objects of our result mode. In
3312 that case, we couldn-t report an equivalent value for that
3313 operation, since we don't know what the extra bits will be.
3314 But we can find an equivalence for this SUBREG by folding
3315 that operation in the narrow mode. This allows us to fold
3316 arithmetic in narrow modes when the machine only supports
3317 word-sized arithmetic.
3318
3319 Also look for a case where we have a SUBREG whose operand
3320 is the same as our result. If both modes are smaller than
3321 a word, we are simply interpreting a register in different
3322 modes and we can use the inner value. */
3323
3324 for (; elt; elt = elt->next_same_value)
3325 {
3326 enum rtx_code eltcode = GET_CODE (elt->exp);
3327
3328 /* Just check for unary and binary operations. */
3329 if (UNARY_P (elt->exp)
3330 && eltcode != SIGN_EXTEND
3331 && eltcode != ZERO_EXTEND
3332 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3333 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3334 && (GET_MODE_CLASS (mode)
3335 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3336 {
3337 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3338
3339 if (!REG_P (op0) && ! CONSTANT_P (op0))
3340 op0 = fold_rtx (op0, NULL_RTX);
3341
3342 op0 = equiv_constant (op0);
3343 if (op0)
3344 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3345 op0, mode);
3346 }
3347 else if (ARITHMETIC_P (elt->exp)
3348 && eltcode != DIV && eltcode != MOD
3349 && eltcode != UDIV && eltcode != UMOD
3350 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3351 && eltcode != ROTATE && eltcode != ROTATERT
3352 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3353 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3354 == mode))
3355 || CONSTANT_P (XEXP (elt->exp, 0)))
3356 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3357 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3358 == mode))
3359 || CONSTANT_P (XEXP (elt->exp, 1))))
3360 {
3361 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3362 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3363
3364 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3365 op0 = fold_rtx (op0, NULL_RTX);
3366
3367 if (op0)
3368 op0 = equiv_constant (op0);
3369
3370 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3371 op1 = fold_rtx (op1, NULL_RTX);
3372
3373 if (op1)
3374 op1 = equiv_constant (op1);
3375
3376 /* If we are looking for the low SImode part of
3377 (ashift:DI c (const_int 32)), it doesn't work to
3378 compute that in SImode, because a 32-bit shift in
3379 SImode is unpredictable. We know the value is
3380 0. */
3381 if (op0 && op1
3382 && GET_CODE (elt->exp) == ASHIFT
3383 && GET_CODE (op1) == CONST_INT
3384 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3385 {
3386 if (INTVAL (op1)
3387 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3388 /* If the count fits in the inner mode's width,
3389 but exceeds the outer mode's width, the value
3390 will get truncated to 0 by the subreg. */
3391 new = CONST0_RTX (mode);
3392 else
3393 /* If the count exceeds even the inner mode's width,
3394 don't fold this expression. */
3395 new = 0;
3396 }
3397 else if (op0 && op1)
3398 new = simplify_binary_operation (GET_CODE (elt->exp),
3399 mode, op0, op1);
3400 }
3401
3402 else if (GET_CODE (elt->exp) == SUBREG
3403 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3404 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3405 <= UNITS_PER_WORD)
3406 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3407 new = copy_rtx (SUBREG_REG (elt->exp));
3408
3409 if (new)
3410 return new;
3411 }
3412 else
3413 /* A SUBREG resulting from a zero extension may fold to zero
3414 if it extracts higher bits than the ZERO_EXTEND's source
3415 bits. FIXME: if combine tried to, er, combine these
3416 instructions, this transformation may be moved to
3417 simplify_subreg. */
3418 for (; elt; elt = elt->next_same_value)
3419 {
3420 if (GET_CODE (elt->exp) == ZERO_EXTEND
3421 && subreg_lsb (x)
3422 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3423 return CONST0_RTX (mode);
3424 }
3425 }
3426
3427 return x;
3428}
3429
3430/* Fold MEM. */
3431
3432static rtx
3433fold_rtx_mem (rtx x, rtx insn)
3434{
3435 enum machine_mode mode = GET_MODE (x);
3436 rtx new;
3437
3438 /* If we are not actually processing an insn, don't try to find the
3439 best address. Not only don't we care, but we could modify the
3440 MEM in an invalid way since we have no insn to validate
3441 against. */
3442 if (insn != 0)
3443 find_best_addr (insn, &XEXP (x, 0), mode);
3444
3445 {
3446 /* Even if we don't fold in the insn itself, we can safely do so
3447 here, in hopes of getting a constant. */
3448 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3449 rtx base = 0;
3450 HOST_WIDE_INT offset = 0;
3451
3452 if (REG_P (addr)
3453 && REGNO_QTY_VALID_P (REGNO (addr)))
3454 {
3455 int addr_q = REG_QTY (REGNO (addr));
3456 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3457
3458 if (GET_MODE (addr) == addr_ent->mode
3459 && addr_ent->const_rtx != NULL_RTX)
3460 addr = addr_ent->const_rtx;
3461 }
3462
3463 /* If address is constant, split it into a base and integer
3464 offset. */
3465 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3466 base = addr;
3467 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3468 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3469 {
3470 base = XEXP (XEXP (addr, 0), 0);
3471 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3472 }
3473 else if (GET_CODE (addr) == LO_SUM
3474 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3475 base = XEXP (addr, 1);
3476
3477 /* If this is a constant pool reference, we can fold it into its
3478 constant to allow better value tracking. */
3479 if (base && GET_CODE (base) == SYMBOL_REF
3480 && CONSTANT_POOL_ADDRESS_P (base))
3481 {
3482 rtx constant = get_pool_constant (base);
3483 enum machine_mode const_mode = get_pool_mode (base);
3484 rtx new;
3485
3486 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3487 {
3488 constant_pool_entries_cost = COST (constant);
3489 constant_pool_entries_regcost = approx_reg_cost (constant);
3490 }
3491
3492 /* If we are loading the full constant, we have an
3493 equivalence. */
3494 if (offset == 0 && mode == const_mode)
3495 return constant;
3496
3497 /* If this actually isn't a constant (weird!), we can't do
3498 anything. Otherwise, handle the two most common cases:
3499 extracting a word from a multi-word constant, and
3500 extracting the low-order bits. Other cases don't seem
3501 common enough to worry about. */
3502 if (! CONSTANT_P (constant))
3503 return x;
3504
3505 if (GET_MODE_CLASS (mode) == MODE_INT
3506 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3507 && offset % UNITS_PER_WORD == 0
3508 && (new = operand_subword (constant,
3509 offset / UNITS_PER_WORD,
3510 0, const_mode)) != 0)
3511 return new;
3512
3513 if (((BYTES_BIG_ENDIAN
3514 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3515 || (! BYTES_BIG_ENDIAN && offset == 0))
3516 && (new = gen_lowpart (mode, constant)) != 0)
3517 return new;
3518 }
3519
3520 /* If this is a reference to a label at a known position in a jump
3521 table, we also know its value. */
3522 if (base && GET_CODE (base) == LABEL_REF)
3523 {
3524 rtx label = XEXP (base, 0);
3525 rtx table_insn = NEXT_INSN (label);
3526
3527 if (table_insn && JUMP_P (table_insn)
3528 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3529 {
3530 rtx table = PATTERN (table_insn);
3531
3532 if (offset >= 0
3533 && (offset / GET_MODE_SIZE (GET_MODE (table))
3534 < XVECLEN (table, 0)))
3a3b81e7
AO
3535 {
3536 rtx label = XVECEXP
3537 (table, 0, offset / GET_MODE_SIZE (GET_MODE (table)));
3538 rtx set;
3539
3540 /* If we have an insn that loads the label from the
3541 jumptable into a reg, we don't want to set the reg
3542 to the label, because this may cause a reference to
3543 the label to remain after the label is removed in
3544 some very obscure cases (PR middle-end/18628). */
3545 if (!insn)
3546 return label;
3547
3548 set = single_set (insn);
3549
3550 if (! set || SET_SRC (set) != x)
3551 return x;
3552
3553 /* If it's a jump, it's safe to reference the label. */
3554 if (SET_DEST (set) == pc_rtx)
3555 return label;
3556
3557 return x;
3558 }
25910ca4
KH
3559 }
3560 if (table_insn && JUMP_P (table_insn)
3561 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3562 {
3563 rtx table = PATTERN (table_insn);
3564
3565 if (offset >= 0
3566 && (offset / GET_MODE_SIZE (GET_MODE (table))
3567 < XVECLEN (table, 1)))
3568 {
3569 offset /= GET_MODE_SIZE (GET_MODE (table));
3570 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3571 XEXP (table, 0));
3572
3573 if (GET_MODE (table) != Pmode)
3574 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3575
3576 /* Indicate this is a constant. This isn't a valid
3577 form of CONST, but it will only be used to fold the
3578 next insns and then discarded, so it should be
3579 safe.
3580
3581 Note this expression must be explicitly discarded,
3582 by cse_insn, else it may end up in a REG_EQUAL note
3583 and "escape" to cause problems elsewhere. */
3584 return gen_rtx_CONST (GET_MODE (new), new);
3585 }
3586 }
3587 }
3588
3589 return x;
3590 }
3591}
3592
7afe21cc
RK
3593/* If X is a nontrivial arithmetic operation on an argument
3594 for which a constant value can be determined, return
3595 the result of operating on that value, as a constant.
3596 Otherwise, return X, possibly with one or more operands
3597 modified by recursive calls to this function.
3598
e7bb59fa
RK
3599 If X is a register whose contents are known, we do NOT
3600 return those contents here. equiv_constant is called to
3601 perform that task.
7afe21cc
RK
3602
3603 INSN is the insn that we may be modifying. If it is 0, make a copy
3604 of X before modifying it. */
3605
3606static rtx
7080f735 3607fold_rtx (rtx x, rtx insn)
7afe21cc 3608{
b3694847
SS
3609 enum rtx_code code;
3610 enum machine_mode mode;
3611 const char *fmt;
3612 int i;
7afe21cc
RK
3613 rtx new = 0;
3614 int copied = 0;
3615 int must_swap = 0;
3616
3617 /* Folded equivalents of first two operands of X. */
3618 rtx folded_arg0;
3619 rtx folded_arg1;
3620
3621 /* Constant equivalents of first three operands of X;
3622 0 when no such equivalent is known. */
3623 rtx const_arg0;
3624 rtx const_arg1;
3625 rtx const_arg2;
3626
3627 /* The mode of the first operand of X. We need this for sign and zero
3628 extends. */
3629 enum machine_mode mode_arg0;
3630
3631 if (x == 0)
3632 return x;
3633
3634 mode = GET_MODE (x);
3635 code = GET_CODE (x);
3636 switch (code)
3637 {
3638 case CONST:
3639 case CONST_INT:
3640 case CONST_DOUBLE:
69ef87e2 3641 case CONST_VECTOR:
7afe21cc
RK
3642 case SYMBOL_REF:
3643 case LABEL_REF:
3644 case REG:
01aa1d43 3645 case PC:
7afe21cc
RK
3646 /* No use simplifying an EXPR_LIST
3647 since they are used only for lists of args
3648 in a function call's REG_EQUAL note. */
3649 case EXPR_LIST:
3650 return x;
3651
3652#ifdef HAVE_cc0
3653 case CC0:
3654 return prev_insn_cc0;
3655#endif
3656
7afe21cc 3657 case SUBREG:
25910ca4 3658 return fold_rtx_subreg (x, insn);
7afe21cc
RK
3659
3660 case NOT:
3661 case NEG:
3662 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3663 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3664 new = lookup_as_function (XEXP (x, 0), code);
3665 if (new)
3666 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3667 break;
13c9910f 3668
7afe21cc 3669 case MEM:
25910ca4 3670 return fold_rtx_mem (x, insn);
9255709c 3671
a5e5cf67
RH
3672#ifdef NO_FUNCTION_CSE
3673 case CALL:
3674 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3675 return x;
3676 break;
3677#endif
3678
9255709c 3679 case ASM_OPERANDS:
6c667859
AB
3680 if (insn)
3681 {
3682 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3683 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3684 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3685 }
9255709c 3686 break;
278a83b2 3687
e9a25f70
JL
3688 default:
3689 break;
7afe21cc
RK
3690 }
3691
3692 const_arg0 = 0;
3693 const_arg1 = 0;
3694 const_arg2 = 0;
3695 mode_arg0 = VOIDmode;
3696
3697 /* Try folding our operands.
3698 Then see which ones have constant values known. */
3699
3700 fmt = GET_RTX_FORMAT (code);
3701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3702 if (fmt[i] == 'e')
3703 {
3704 rtx arg = XEXP (x, i);
3705 rtx folded_arg = arg, const_arg = 0;
3706 enum machine_mode mode_arg = GET_MODE (arg);
3707 rtx cheap_arg, expensive_arg;
3708 rtx replacements[2];
3709 int j;
5b437e0f 3710 int old_cost = COST_IN (XEXP (x, i), code);
7afe21cc
RK
3711
3712 /* Most arguments are cheap, so handle them specially. */
3713 switch (GET_CODE (arg))
3714 {
3715 case REG:
3716 /* This is the same as calling equiv_constant; it is duplicated
3717 here for speed. */
1bb98cec
DM
3718 if (REGNO_QTY_VALID_P (REGNO (arg)))
3719 {
3720 int arg_q = REG_QTY (REGNO (arg));
3721 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3722
3723 if (arg_ent->const_rtx != NULL_RTX
f8cfc6aa 3724 && !REG_P (arg_ent->const_rtx)
1bb98cec
DM
3725 && GET_CODE (arg_ent->const_rtx) != PLUS)
3726 const_arg
4de249d9 3727 = gen_lowpart (GET_MODE (arg),
1bb98cec
DM
3728 arg_ent->const_rtx);
3729 }
7afe21cc
RK
3730 break;
3731
3732 case CONST:
3733 case CONST_INT:
3734 case SYMBOL_REF:
3735 case LABEL_REF:
3736 case CONST_DOUBLE:
69ef87e2 3737 case CONST_VECTOR:
7afe21cc
RK
3738 const_arg = arg;
3739 break;
3740
3741#ifdef HAVE_cc0
3742 case CC0:
3743 folded_arg = prev_insn_cc0;
3744 mode_arg = prev_insn_cc0_mode;
3745 const_arg = equiv_constant (folded_arg);
3746 break;
3747#endif
3748
3749 default:
3750 folded_arg = fold_rtx (arg, insn);
3751 const_arg = equiv_constant (folded_arg);
3752 }
3753
3754 /* For the first three operands, see if the operand
3755 is constant or equivalent to a constant. */
3756 switch (i)
3757 {
3758 case 0:
3759 folded_arg0 = folded_arg;
3760 const_arg0 = const_arg;
3761 mode_arg0 = mode_arg;
3762 break;
3763 case 1:
3764 folded_arg1 = folded_arg;
3765 const_arg1 = const_arg;
3766 break;
3767 case 2:
3768 const_arg2 = const_arg;
3769 break;
3770 }
3771
3772 /* Pick the least expensive of the folded argument and an
3773 equivalent constant argument. */
3774 if (const_arg == 0 || const_arg == folded_arg
f2fa288f 3775 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
7afe21cc
RK
3776 cheap_arg = folded_arg, expensive_arg = const_arg;
3777 else
3778 cheap_arg = const_arg, expensive_arg = folded_arg;
3779
3780 /* Try to replace the operand with the cheapest of the two
3781 possibilities. If it doesn't work and this is either of the first
3782 two operands of a commutative operation, try swapping them.
3783 If THAT fails, try the more expensive, provided it is cheaper
3784 than what is already there. */
3785
3786 if (cheap_arg == XEXP (x, i))
3787 continue;
3788
3789 if (insn == 0 && ! copied)
3790 {
3791 x = copy_rtx (x);
3792 copied = 1;
3793 }
3794
f2fa288f
RH
3795 /* Order the replacements from cheapest to most expensive. */
3796 replacements[0] = cheap_arg;
3797 replacements[1] = expensive_arg;
3798
68252e27 3799 for (j = 0; j < 2 && replacements[j]; j++)
7afe21cc 3800 {
f2fa288f
RH
3801 int new_cost = COST_IN (replacements[j], code);
3802
3803 /* Stop if what existed before was cheaper. Prefer constants
3804 in the case of a tie. */
3805 if (new_cost > old_cost
3806 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3807 break;
3808
8cce3d04
RS
3809 /* It's not safe to substitute the operand of a conversion
3810 operator with a constant, as the conversion's identity
f652d14b 3811 depends upon the mode of its operand. This optimization
8cce3d04
RS
3812 is handled by the call to simplify_unary_operation. */
3813 if (GET_RTX_CLASS (code) == RTX_UNARY
3814 && GET_MODE (replacements[j]) != mode_arg0
3815 && (code == ZERO_EXTEND
3816 || code == SIGN_EXTEND
3817 || code == TRUNCATE
3818 || code == FLOAT_TRUNCATE
3819 || code == FLOAT_EXTEND
3820 || code == FLOAT
3821 || code == FIX
3822 || code == UNSIGNED_FLOAT
3823 || code == UNSIGNED_FIX))
3824 continue;
3825
7afe21cc
RK
3826 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3827 break;
3828
ec8e098d
PB
3829 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3830 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
7afe21cc
RK
3831 {
3832 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3833 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3834
3835 if (apply_change_group ())
3836 {
3837 /* Swap them back to be invalid so that this loop can
3838 continue and flag them to be swapped back later. */
3839 rtx tem;
3840
3841 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3842 XEXP (x, 1) = tem;
3843 must_swap = 1;
3844 break;
3845 }
3846 }
3847 }
3848 }
3849
2d8b0f3a
JL
3850 else
3851 {
3852 if (fmt[i] == 'E')
3853 /* Don't try to fold inside of a vector of expressions.
3854 Doing nothing is harmless. */
e49a1d2e 3855 {;}
2d8b0f3a 3856 }
7afe21cc
RK
3857
3858 /* If a commutative operation, place a constant integer as the second
3859 operand unless the first operand is also a constant integer. Otherwise,
3860 place any constant second unless the first operand is also a constant. */
3861
ec8e098d 3862 if (COMMUTATIVE_P (x))
7afe21cc 3863 {
c715abdd
RS
3864 if (must_swap
3865 || swap_commutative_operands_p (const_arg0 ? const_arg0
3866 : XEXP (x, 0),
3867 const_arg1 ? const_arg1
3868 : XEXP (x, 1)))
7afe21cc 3869 {
b3694847 3870 rtx tem = XEXP (x, 0);
7afe21cc
RK
3871
3872 if (insn == 0 && ! copied)
3873 {
3874 x = copy_rtx (x);
3875 copied = 1;
3876 }
3877
3878 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3879 validate_change (insn, &XEXP (x, 1), tem, 1);
3880 if (apply_change_group ())
3881 {
3882 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3883 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3884 }
3885 }
3886 }
3887
3888 /* If X is an arithmetic operation, see if we can simplify it. */
3889
3890 switch (GET_RTX_CLASS (code))
3891 {
ec8e098d 3892 case RTX_UNARY:
67a37737
RK
3893 {
3894 int is_const = 0;
3895
3896 /* We can't simplify extension ops unless we know the
3897 original mode. */
3898 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3899 && mode_arg0 == VOIDmode)
3900 break;
3901
3902 /* If we had a CONST, strip it off and put it back later if we
3903 fold. */
3904 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3905 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3906
3907 new = simplify_unary_operation (code, mode,
3908 const_arg0 ? const_arg0 : folded_arg0,
3909 mode_arg0);
ec666d23
JH
3910 /* NEG of PLUS could be converted into MINUS, but that causes
3911 expressions of the form
3912 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3913 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3914 FIXME: those ports should be fixed. */
3915 if (new != 0 && is_const
3916 && GET_CODE (new) == PLUS
3917 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3918 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3919 && GET_CODE (XEXP (new, 1)) == CONST_INT)
38a448ca 3920 new = gen_rtx_CONST (mode, new);
67a37737 3921 }
7afe21cc 3922 break;
278a83b2 3923
ec8e098d
PB
3924 case RTX_COMPARE:
3925 case RTX_COMM_COMPARE:
7afe21cc
RK
3926 /* See what items are actually being compared and set FOLDED_ARG[01]
3927 to those values and CODE to the actual comparison code. If any are
3928 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3929 do anything if both operands are already known to be constant. */
3930
21e5076a
UB
3931 /* ??? Vector mode comparisons are not supported yet. */
3932 if (VECTOR_MODE_P (mode))
3933 break;
3934
7afe21cc
RK
3935 if (const_arg0 == 0 || const_arg1 == 0)
3936 {
3937 struct table_elt *p0, *p1;
d6edb99e 3938 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
13c9910f 3939 enum machine_mode mode_arg1;
c610adec
RK
3940
3941#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 3942 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 3943 {
d6edb99e 3944 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
68252e27 3945 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 3946 false_rtx = CONST0_RTX (mode);
c610adec
RK
3947 }
3948#endif
7afe21cc 3949
13c9910f
RS
3950 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3951 &mode_arg0, &mode_arg1);
7afe21cc 3952
13c9910f
RS
3953 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3954 what kinds of things are being compared, so we can't do
3955 anything with this comparison. */
7afe21cc
RK
3956
3957 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3958 break;
3959
75335440
KH
3960 const_arg0 = equiv_constant (folded_arg0);
3961 const_arg1 = equiv_constant (folded_arg1);
3962
0f41302f
MS
3963 /* If we do not now have two constants being compared, see
3964 if we can nevertheless deduce some things about the
3965 comparison. */
7afe21cc
RK
3966 if (const_arg0 == 0 || const_arg1 == 0)
3967 {
4977bab6
ZW
3968 /* Some addresses are known to be nonzero. We don't know
3969 their sign, but equality comparisons are known. */
7afe21cc 3970 if (const_arg1 == const0_rtx
4977bab6 3971 && nonzero_address_p (folded_arg0))
7afe21cc
RK
3972 {
3973 if (code == EQ)
d6edb99e 3974 return false_rtx;
7afe21cc 3975 else if (code == NE)
d6edb99e 3976 return true_rtx;
7afe21cc
RK
3977 }
3978
fd13313f
JH
3979 /* See if the two operands are the same. */
3980
3981 if (folded_arg0 == folded_arg1
f8cfc6aa
JQ
3982 || (REG_P (folded_arg0)
3983 && REG_P (folded_arg1)
fd13313f
JH
3984 && (REG_QTY (REGNO (folded_arg0))
3985 == REG_QTY (REGNO (folded_arg1))))
3986 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3987 SAFE_HASH (folded_arg0, mode_arg0),
3988 mode_arg0))
fd13313f 3989 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3990 SAFE_HASH (folded_arg1, mode_arg0),
3991 mode_arg0))
fd13313f
JH
3992 && p0->first_same_value == p1->first_same_value))
3993 {
71925bc0
RS
3994 /* Sadly two equal NaNs are not equivalent. */
3995 if (!HONOR_NANS (mode_arg0))
3996 return ((code == EQ || code == LE || code == GE
3997 || code == LEU || code == GEU || code == UNEQ
3998 || code == UNLE || code == UNGE
3999 || code == ORDERED)
4000 ? true_rtx : false_rtx);
4001 /* Take care for the FP compares we can resolve. */
4002 if (code == UNEQ || code == UNLE || code == UNGE)
4003 return true_rtx;
4004 if (code == LTGT || code == LT || code == GT)
4005 return false_rtx;
fd13313f 4006 }
7afe21cc
RK
4007
4008 /* If FOLDED_ARG0 is a register, see if the comparison we are
4009 doing now is either the same as we did before or the reverse
4010 (we only check the reverse if not floating-point). */
f8cfc6aa 4011 else if (REG_P (folded_arg0))
7afe21cc 4012 {
30f72379 4013 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 4014
1bb98cec
DM
4015 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4016 {
4017 struct qty_table_elem *ent = &qty_table[qty];
4018
4019 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
4020 || (! FLOAT_MODE_P (mode_arg0)
4021 && comparison_dominates_p (ent->comparison_code,
4022 reverse_condition (code))))
1bb98cec
DM
4023 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4024 || (const_arg1
4025 && rtx_equal_p (ent->comparison_const,
4026 const_arg1))
f8cfc6aa 4027 || (REG_P (folded_arg1)
1bb98cec
DM
4028 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4029 return (comparison_dominates_p (ent->comparison_code, code)
d6edb99e 4030 ? true_rtx : false_rtx);
1bb98cec 4031 }
7afe21cc
RK
4032 }
4033 }
4034 }
4035
4036 /* If we are comparing against zero, see if the first operand is
4037 equivalent to an IOR with a constant. If so, we may be able to
4038 determine the result of this comparison. */
4039
4040 if (const_arg1 == const0_rtx)
4041 {
4042 rtx y = lookup_as_function (folded_arg0, IOR);
4043 rtx inner_const;
4044
4045 if (y != 0
4046 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4047 && GET_CODE (inner_const) == CONST_INT
4048 && INTVAL (inner_const) != 0)
4049 {
4050 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
906c4e36
RK
4051 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4052 && (INTVAL (inner_const)
4053 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
d6edb99e 4054 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
c610adec
RK
4055
4056#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 4057 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 4058 {
d6edb99e 4059 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
12530dbe 4060 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 4061 false_rtx = CONST0_RTX (mode);
c610adec
RK
4062 }
4063#endif
7afe21cc
RK
4064
4065 switch (code)
4066 {
4067 case EQ:
d6edb99e 4068 return false_rtx;
7afe21cc 4069 case NE:
d6edb99e 4070 return true_rtx;
7afe21cc
RK
4071 case LT: case LE:
4072 if (has_sign)
d6edb99e 4073 return true_rtx;
7afe21cc
RK
4074 break;
4075 case GT: case GE:
4076 if (has_sign)
d6edb99e 4077 return false_rtx;
7afe21cc 4078 break;
e9a25f70
JL
4079 default:
4080 break;
7afe21cc
RK
4081 }
4082 }
4083 }
4084
c6fb08ad
PB
4085 {
4086 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4087 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4088 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4089 }
7afe21cc
RK
4090 break;
4091
ec8e098d
PB
4092 case RTX_BIN_ARITH:
4093 case RTX_COMM_ARITH:
7afe21cc
RK
4094 switch (code)
4095 {
4096 case PLUS:
4097 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4098 with that LABEL_REF as its second operand. If so, the result is
4099 the first operand of that MINUS. This handles switches with an
4100 ADDR_DIFF_VEC table. */
4101 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4102 {
e650cbda
RK
4103 rtx y
4104 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 4105 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
4106
4107 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4108 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4109 return XEXP (y, 0);
67a37737
RK
4110
4111 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
4112 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4113 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
4114 && GET_CODE (XEXP (y, 0)) == MINUS
4115 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 4116 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
67a37737 4117 return XEXP (XEXP (y, 0), 0);
7afe21cc 4118 }
c2cc0778 4119
e650cbda
RK
4120 /* Likewise if the operands are in the other order. */
4121 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4122 {
4123 rtx y
4124 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 4125 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
4126
4127 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4128 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4129 return XEXP (y, 0);
4130
4131 /* Now try for a CONST of a MINUS like the above. */
4132 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4133 : lookup_as_function (folded_arg1, CONST))) != 0
4134 && GET_CODE (XEXP (y, 0)) == MINUS
4135 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 4136 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
e650cbda
RK
4137 return XEXP (XEXP (y, 0), 0);
4138 }
4139
c2cc0778
RK
4140 /* If second operand is a register equivalent to a negative
4141 CONST_INT, see if we can find a register equivalent to the
4142 positive constant. Make a MINUS if so. Don't do this for
5d595063 4143 a non-negative constant since we might then alternate between
a1f300c0 4144 choosing positive and negative constants. Having the positive
5d595063
RK
4145 constant previously-used is the more common case. Be sure
4146 the resulting constant is non-negative; if const_arg1 were
4147 the smallest negative number this would overflow: depending
4148 on the mode, this would either just be the same value (and
4149 hence not save anything) or be incorrect. */
4150 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4151 && INTVAL (const_arg1) < 0
4741f6ad
JL
4152 /* This used to test
4153
ddc356e8 4154 -INTVAL (const_arg1) >= 0
4741f6ad
JL
4155
4156 But The Sun V5.0 compilers mis-compiled that test. So
4157 instead we test for the problematic value in a more direct
4158 manner and hope the Sun compilers get it correct. */
5c45a8ac
KG
4159 && INTVAL (const_arg1) !=
4160 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 4161 && REG_P (folded_arg1))
c2cc0778 4162 {
ddc356e8 4163 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 4164 struct table_elt *p
0516f6fe 4165 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
4166
4167 if (p)
4168 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 4169 if (REG_P (p->exp))
0cedb36c
JL
4170 return simplify_gen_binary (MINUS, mode, folded_arg0,
4171 canon_reg (p->exp, NULL_RTX));
c2cc0778 4172 }
13c9910f
RS
4173 goto from_plus;
4174
4175 case MINUS:
4176 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4177 If so, produce (PLUS Z C2-C). */
4178 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4179 {
4180 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4181 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
f3becefd
RK
4182 return fold_rtx (plus_constant (copy_rtx (y),
4183 -INTVAL (const_arg1)),
a3b5c94a 4184 NULL_RTX);
13c9910f 4185 }
7afe21cc 4186
ddc356e8 4187 /* Fall through. */
7afe21cc 4188
13c9910f 4189 from_plus:
7afe21cc
RK
4190 case SMIN: case SMAX: case UMIN: case UMAX:
4191 case IOR: case AND: case XOR:
f930bfd0 4192 case MULT:
7afe21cc
RK
4193 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4194 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4195 is known to be of similar form, we may be able to replace the
4196 operation with a combined operation. This may eliminate the
4197 intermediate operation if every use is simplified in this way.
4198 Note that the similar optimization done by combine.c only works
4199 if the intermediate operation's result has only one reference. */
4200
f8cfc6aa 4201 if (REG_P (folded_arg0)
7afe21cc
RK
4202 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4203 {
4204 int is_shift
4205 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4206 rtx y = lookup_as_function (folded_arg0, code);
4207 rtx inner_const;
4208 enum rtx_code associate_code;
4209 rtx new_const;
4210
4211 if (y == 0
4212 || 0 == (inner_const
4213 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4214 || GET_CODE (inner_const) != CONST_INT
4215 /* If we have compiled a statement like
4216 "if (x == (x & mask1))", and now are looking at
4217 "x & mask2", we will have a case where the first operand
4218 of Y is the same as our first operand. Unless we detect
4219 this case, an infinite loop will result. */
4220 || XEXP (y, 0) == folded_arg0)
4221 break;
4222
4223 /* Don't associate these operations if they are a PLUS with the
4224 same constant and it is a power of two. These might be doable
4225 with a pre- or post-increment. Similarly for two subtracts of
4226 identical powers of two with post decrement. */
4227
213d5fbc 4228 if (code == PLUS && const_arg1 == inner_const
940da324
JL
4229 && ((HAVE_PRE_INCREMENT
4230 && exact_log2 (INTVAL (const_arg1)) >= 0)
4231 || (HAVE_POST_INCREMENT
4232 && exact_log2 (INTVAL (const_arg1)) >= 0)
4233 || (HAVE_PRE_DECREMENT
4234 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4235 || (HAVE_POST_DECREMENT
4236 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
7afe21cc
RK
4237 break;
4238
4239 /* Compute the code used to compose the constants. For example,
f930bfd0 4240 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 4241
f930bfd0 4242 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
4243
4244 new_const = simplify_binary_operation (associate_code, mode,
4245 const_arg1, inner_const);
4246
4247 if (new_const == 0)
4248 break;
4249
4250 /* If we are associating shift operations, don't let this
4908e508
RS
4251 produce a shift of the size of the object or larger.
4252 This could occur when we follow a sign-extend by a right
4253 shift on a machine that does a sign-extend as a pair
4254 of shifts. */
7afe21cc
RK
4255
4256 if (is_shift && GET_CODE (new_const) == CONST_INT
4908e508
RS
4257 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4258 {
4259 /* As an exception, we can turn an ASHIFTRT of this
4260 form into a shift of the number of bits - 1. */
4261 if (code == ASHIFTRT)
4262 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4263 else
4264 break;
4265 }
7afe21cc
RK
4266
4267 y = copy_rtx (XEXP (y, 0));
4268
4269 /* If Y contains our first operand (the most common way this
4270 can happen is if Y is a MEM), we would do into an infinite
4271 loop if we tried to fold it. So don't in that case. */
4272
4273 if (! reg_mentioned_p (folded_arg0, y))
4274 y = fold_rtx (y, insn);
4275
0cedb36c 4276 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 4277 }
e9a25f70
JL
4278 break;
4279
f930bfd0
JW
4280 case DIV: case UDIV:
4281 /* ??? The associative optimization performed immediately above is
4282 also possible for DIV and UDIV using associate_code of MULT.
4283 However, we would need extra code to verify that the
4284 multiplication does not overflow, that is, there is no overflow
4285 in the calculation of new_const. */
4286 break;
4287
e9a25f70
JL
4288 default:
4289 break;
7afe21cc
RK
4290 }
4291
4292 new = simplify_binary_operation (code, mode,
4293 const_arg0 ? const_arg0 : folded_arg0,
4294 const_arg1 ? const_arg1 : folded_arg1);
4295 break;
4296
ec8e098d 4297 case RTX_OBJ:
7afe21cc
RK
4298 /* (lo_sum (high X) X) is simply X. */
4299 if (code == LO_SUM && const_arg0 != 0
4300 && GET_CODE (const_arg0) == HIGH
4301 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4302 return const_arg1;
4303 break;
4304
ec8e098d
PB
4305 case RTX_TERNARY:
4306 case RTX_BITFIELD_OPS:
7afe21cc
RK
4307 new = simplify_ternary_operation (code, mode, mode_arg0,
4308 const_arg0 ? const_arg0 : folded_arg0,
4309 const_arg1 ? const_arg1 : folded_arg1,
4310 const_arg2 ? const_arg2 : XEXP (x, 2));
4311 break;
ee5332b8 4312
ec8e098d
PB
4313 default:
4314 break;
7afe21cc
RK
4315 }
4316
4317 return new ? new : x;
4318}
4319\f
4320/* Return a constant value currently equivalent to X.
4321 Return 0 if we don't know one. */
4322
4323static rtx
7080f735 4324equiv_constant (rtx x)
7afe21cc 4325{
f8cfc6aa 4326 if (REG_P (x)
1bb98cec
DM
4327 && REGNO_QTY_VALID_P (REGNO (x)))
4328 {
4329 int x_q = REG_QTY (REGNO (x));
4330 struct qty_table_elem *x_ent = &qty_table[x_q];
4331
4332 if (x_ent->const_rtx)
4de249d9 4333 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 4334 }
7afe21cc 4335
2ce5e1b4 4336 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
4337 return x;
4338
fc3ffe83
RK
4339 /* If X is a MEM, try to fold it outside the context of any insn to see if
4340 it might be equivalent to a constant. That handles the case where it
4341 is a constant-pool reference. Then try to look it up in the hash table
4342 in case it is something whose value we have seen before. */
4343
3c0cb5de 4344 if (MEM_P (x))
fc3ffe83
RK
4345 {
4346 struct table_elt *elt;
4347
906c4e36 4348 x = fold_rtx (x, NULL_RTX);
fc3ffe83
RK
4349 if (CONSTANT_P (x))
4350 return x;
4351
0516f6fe 4352 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
4353 if (elt == 0)
4354 return 0;
4355
4356 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4357 if (elt->is_const && CONSTANT_P (elt->exp))
4358 return elt->exp;
4359 }
4360
7afe21cc
RK
4361 return 0;
4362}
4363\f
6de9cd9a 4364/* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
7afe21cc
RK
4365 branch. It will be zero if not.
4366
4367 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 4368 if we are following the taken case of
7080f735 4369 if (i == 2)
7afe21cc
RK
4370 we can add the fact that `i' and '2' are now equivalent.
4371
4372 In any case, we can record that this comparison was passed. If the same
4373 comparison is seen later, we will know its value. */
4374
4375static void
7080f735 4376record_jump_equiv (rtx insn, int taken)
7afe21cc
RK
4377{
4378 int cond_known_true;
4379 rtx op0, op1;
7f1c097d 4380 rtx set;
13c9910f 4381 enum machine_mode mode, mode0, mode1;
7afe21cc
RK
4382 int reversed_nonequality = 0;
4383 enum rtx_code code;
4384
4385 /* Ensure this is the right kind of insn. */
7f1c097d 4386 if (! any_condjump_p (insn))
7afe21cc 4387 return;
7f1c097d 4388 set = pc_set (insn);
7afe21cc
RK
4389
4390 /* See if this jump condition is known true or false. */
4391 if (taken)
7f1c097d 4392 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 4393 else
7f1c097d 4394 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
4395
4396 /* Get the type of comparison being done and the operands being compared.
4397 If we had to reverse a non-equality condition, record that fact so we
4398 know that it isn't valid for floating-point. */
7f1c097d
JH
4399 code = GET_CODE (XEXP (SET_SRC (set), 0));
4400 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4401 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 4402
13c9910f 4403 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
4404 if (! cond_known_true)
4405 {
261efdef 4406 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
4407
4408 /* Don't remember if we can't find the inverse. */
4409 if (code == UNKNOWN)
4410 return;
7afe21cc
RK
4411 }
4412
4413 /* The mode is the mode of the non-constant. */
13c9910f
RS
4414 mode = mode0;
4415 if (mode1 != VOIDmode)
4416 mode = mode1;
7afe21cc
RK
4417
4418 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4419}
4420
794693c0
RH
4421/* Yet another form of subreg creation. In this case, we want something in
4422 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4423
4424static rtx
4425record_jump_cond_subreg (enum machine_mode mode, rtx op)
4426{
4427 enum machine_mode op_mode = GET_MODE (op);
4428 if (op_mode == mode || op_mode == VOIDmode)
4429 return op;
4430 return lowpart_subreg (mode, op, op_mode);
4431}
4432
7afe21cc
RK
4433/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4434 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4435 Make any useful entries we can with that information. Called from
4436 above function and called recursively. */
4437
4438static void
7080f735
AJ
4439record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4440 rtx op1, int reversed_nonequality)
7afe21cc 4441{
2197a88a 4442 unsigned op0_hash, op1_hash;
e428d738 4443 int op0_in_memory, op1_in_memory;
7afe21cc
RK
4444 struct table_elt *op0_elt, *op1_elt;
4445
4446 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4447 we know that they are also equal in the smaller mode (this is also
4448 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 4449 is not worth testing for with no SUBREG). */
7afe21cc 4450
2e794ee8 4451 /* Note that GET_MODE (op0) may not equal MODE. */
7afe21cc 4452 if (code == EQ && GET_CODE (op0) == SUBREG
2e794ee8
RS
4453 && (GET_MODE_SIZE (GET_MODE (op0))
4454 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
4455 {
4456 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
4457 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4458 if (tem)
4459 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4460 reversed_nonequality);
7afe21cc
RK
4461 }
4462
4463 if (code == EQ && GET_CODE (op1) == SUBREG
2e794ee8
RS
4464 && (GET_MODE_SIZE (GET_MODE (op1))
4465 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
4466 {
4467 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
4468 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4469 if (tem)
4470 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4471 reversed_nonequality);
7afe21cc
RK
4472 }
4473
278a83b2 4474 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
4475 making a smaller mode, we know the whole thing is also NE. */
4476
2e794ee8
RS
4477 /* Note that GET_MODE (op0) may not equal MODE;
4478 if we test MODE instead, we can get an infinite recursion
4479 alternating between two modes each wider than MODE. */
4480
7afe21cc
RK
4481 if (code == NE && GET_CODE (op0) == SUBREG
4482 && subreg_lowpart_p (op0)
2e794ee8
RS
4483 && (GET_MODE_SIZE (GET_MODE (op0))
4484 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
4485 {
4486 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
4487 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4488 if (tem)
4489 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4490 reversed_nonequality);
7afe21cc
RK
4491 }
4492
4493 if (code == NE && GET_CODE (op1) == SUBREG
4494 && subreg_lowpart_p (op1)
2e794ee8
RS
4495 && (GET_MODE_SIZE (GET_MODE (op1))
4496 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
4497 {
4498 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
4499 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4500 if (tem)
4501 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4502 reversed_nonequality);
7afe21cc
RK
4503 }
4504
4505 /* Hash both operands. */
4506
4507 do_not_record = 0;
4508 hash_arg_in_memory = 0;
2197a88a 4509 op0_hash = HASH (op0, mode);
7afe21cc 4510 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
4511
4512 if (do_not_record)
4513 return;
4514
4515 do_not_record = 0;
4516 hash_arg_in_memory = 0;
2197a88a 4517 op1_hash = HASH (op1, mode);
7afe21cc 4518 op1_in_memory = hash_arg_in_memory;
278a83b2 4519
7afe21cc
RK
4520 if (do_not_record)
4521 return;
4522
4523 /* Look up both operands. */
2197a88a
RK
4524 op0_elt = lookup (op0, op0_hash, mode);
4525 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 4526
af3869c1
RK
4527 /* If both operands are already equivalent or if they are not in the
4528 table but are identical, do nothing. */
4529 if ((op0_elt != 0 && op1_elt != 0
4530 && op0_elt->first_same_value == op1_elt->first_same_value)
4531 || op0 == op1 || rtx_equal_p (op0, op1))
4532 return;
4533
7afe21cc 4534 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
4535 comparison. Similarly if this is floating-point. In the latter
4536 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4537 If we record the equality, we might inadvertently delete code
4538 whose intent was to change -0 to +0. */
4539
cbf6a543 4540 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 4541 {
1bb98cec
DM
4542 struct qty_table_elem *ent;
4543 int qty;
4544
7afe21cc
RK
4545 /* If we reversed a floating-point comparison, if OP0 is not a
4546 register, or if OP1 is neither a register or constant, we can't
4547 do anything. */
4548
f8cfc6aa 4549 if (!REG_P (op1))
7afe21cc
RK
4550 op1 = equiv_constant (op1);
4551
cbf6a543 4552 if ((reversed_nonequality && FLOAT_MODE_P (mode))
f8cfc6aa 4553 || !REG_P (op0) || op1 == 0)
7afe21cc
RK
4554 return;
4555
4556 /* Put OP0 in the hash table if it isn't already. This gives it a
4557 new quantity number. */
4558 if (op0_elt == 0)
4559 {
9714cf43 4560 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4561 {
4562 rehash_using_reg (op0);
2197a88a 4563 op0_hash = HASH (op0, mode);
2bb81c86
RK
4564
4565 /* If OP0 is contained in OP1, this changes its hash code
4566 as well. Faster to rehash than to check, except
4567 for the simple case of a constant. */
4568 if (! CONSTANT_P (op1))
2197a88a 4569 op1_hash = HASH (op1,mode);
7afe21cc
RK
4570 }
4571
9714cf43 4572 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4573 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4574 }
4575
1bb98cec
DM
4576 qty = REG_QTY (REGNO (op0));
4577 ent = &qty_table[qty];
4578
4579 ent->comparison_code = code;
f8cfc6aa 4580 if (REG_P (op1))
7afe21cc 4581 {
5d5ea909 4582 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 4583 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 4584
7afe21cc
RK
4585 /* Put OP1 in the hash table so it gets a new quantity number. */
4586 if (op1_elt == 0)
4587 {
9714cf43 4588 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4589 {
4590 rehash_using_reg (op1);
2197a88a 4591 op1_hash = HASH (op1, mode);
7afe21cc
RK
4592 }
4593
9714cf43 4594 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4595 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
4596 }
4597
1bb98cec
DM
4598 ent->comparison_const = NULL_RTX;
4599 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
4600 }
4601 else
4602 {
1bb98cec
DM
4603 ent->comparison_const = op1;
4604 ent->comparison_qty = -1;
7afe21cc
RK
4605 }
4606
4607 return;
4608 }
4609
eb5ad42a
RS
4610 /* If either side is still missing an equivalence, make it now,
4611 then merge the equivalences. */
7afe21cc 4612
7afe21cc
RK
4613 if (op0_elt == 0)
4614 {
9714cf43 4615 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4616 {
4617 rehash_using_reg (op0);
2197a88a 4618 op0_hash = HASH (op0, mode);
7afe21cc
RK
4619 }
4620
9714cf43 4621 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4622 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4623 }
4624
4625 if (op1_elt == 0)
4626 {
9714cf43 4627 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4628 {
4629 rehash_using_reg (op1);
2197a88a 4630 op1_hash = HASH (op1, mode);
7afe21cc
RK
4631 }
4632
9714cf43 4633 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4634 op1_elt->in_memory = op1_in_memory;
7afe21cc 4635 }
eb5ad42a
RS
4636
4637 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
4638}
4639\f
4640/* CSE processing for one instruction.
4641 First simplify sources and addresses of all assignments
4642 in the instruction, using previously-computed equivalents values.
4643 Then install the new sources and destinations in the table
278a83b2 4644 of available values.
7afe21cc 4645
1ed0205e
VM
4646 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4647 the insn. It means that INSN is inside libcall block. In this
ddc356e8 4648 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
7afe21cc
RK
4649
4650/* Data on one SET contained in the instruction. */
4651
4652struct set
4653{
4654 /* The SET rtx itself. */
4655 rtx rtl;
4656 /* The SET_SRC of the rtx (the original value, if it is changing). */
4657 rtx src;
4658 /* The hash-table element for the SET_SRC of the SET. */
4659 struct table_elt *src_elt;
2197a88a
RK
4660 /* Hash value for the SET_SRC. */
4661 unsigned src_hash;
4662 /* Hash value for the SET_DEST. */
4663 unsigned dest_hash;
7afe21cc
RK
4664 /* The SET_DEST, with SUBREG, etc., stripped. */
4665 rtx inner_dest;
278a83b2 4666 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 4667 char src_in_memory;
7afe21cc
RK
4668 /* Nonzero if the SET_SRC contains something
4669 whose value cannot be predicted and understood. */
4670 char src_volatile;
496324d0
DN
4671 /* Original machine mode, in case it becomes a CONST_INT.
4672 The size of this field should match the size of the mode
4673 field of struct rtx_def (see rtl.h). */
4674 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc
RK
4675 /* A constant equivalent for SET_SRC, if any. */
4676 rtx src_const;
47841d1b
JJ
4677 /* Original SET_SRC value used for libcall notes. */
4678 rtx orig_src;
2197a88a
RK
4679 /* Hash value of constant equivalent for SET_SRC. */
4680 unsigned src_const_hash;
7afe21cc
RK
4681 /* Table entry for constant equivalent for SET_SRC, if any. */
4682 struct table_elt *src_const_elt;
4683};
4684
4685static void
7080f735 4686cse_insn (rtx insn, rtx libcall_insn)
7afe21cc 4687{
b3694847
SS
4688 rtx x = PATTERN (insn);
4689 int i;
92f9aa51 4690 rtx tem;
b3694847 4691 int n_sets = 0;
7afe21cc 4692
2d8b0f3a 4693#ifdef HAVE_cc0
7afe21cc
RK
4694 /* Records what this insn does to set CC0. */
4695 rtx this_insn_cc0 = 0;
135d84b8 4696 enum machine_mode this_insn_cc0_mode = VOIDmode;
2d8b0f3a 4697#endif
7afe21cc
RK
4698
4699 rtx src_eqv = 0;
4700 struct table_elt *src_eqv_elt = 0;
6a651371
KG
4701 int src_eqv_volatile = 0;
4702 int src_eqv_in_memory = 0;
6a651371 4703 unsigned src_eqv_hash = 0;
7afe21cc 4704
9714cf43 4705 struct set *sets = (struct set *) 0;
7afe21cc
RK
4706
4707 this_insn = insn;
7afe21cc
RK
4708
4709 /* Find all the SETs and CLOBBERs in this instruction.
4710 Record all the SETs in the array `set' and count them.
4711 Also determine whether there is a CLOBBER that invalidates
4712 all memory references, or all references at varying addresses. */
4713
4b4bf941 4714 if (CALL_P (insn))
f1e7c95f
RK
4715 {
4716 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
f474c6f8
AO
4717 {
4718 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4719 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4720 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4721 }
f1e7c95f
RK
4722 }
4723
7afe21cc
RK
4724 if (GET_CODE (x) == SET)
4725 {
703ad42b 4726 sets = alloca (sizeof (struct set));
7afe21cc
RK
4727 sets[0].rtl = x;
4728
4729 /* Ignore SETs that are unconditional jumps.
4730 They never need cse processing, so this does not hurt.
4731 The reason is not efficiency but rather
4732 so that we can test at the end for instructions
4733 that have been simplified to unconditional jumps
4734 and not be misled by unchanged instructions
4735 that were unconditional jumps to begin with. */
4736 if (SET_DEST (x) == pc_rtx
4737 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4738 ;
4739
4740 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4741 The hard function value register is used only once, to copy to
4742 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4743 Ensure we invalidate the destination register. On the 80386 no
7722328e 4744 other code would invalidate it since it is a fixed_reg.
0f41302f 4745 We need not check the return of apply_change_group; see canon_reg. */
7afe21cc
RK
4746
4747 else if (GET_CODE (SET_SRC (x)) == CALL)
4748 {
4749 canon_reg (SET_SRC (x), insn);
77fa0940 4750 apply_change_group ();
7afe21cc 4751 fold_rtx (SET_SRC (x), insn);
bb4034b3 4752 invalidate (SET_DEST (x), VOIDmode);
7afe21cc
RK
4753 }
4754 else
4755 n_sets = 1;
4756 }
4757 else if (GET_CODE (x) == PARALLEL)
4758 {
b3694847 4759 int lim = XVECLEN (x, 0);
7afe21cc 4760
703ad42b 4761 sets = alloca (lim * sizeof (struct set));
7afe21cc
RK
4762
4763 /* Find all regs explicitly clobbered in this insn,
4764 and ensure they are not replaced with any other regs
4765 elsewhere in this insn.
4766 When a reg that is clobbered is also used for input,
4767 we should presume that that is for a reason,
4768 and we should not substitute some other register
4769 which is not supposed to be clobbered.
4770 Therefore, this loop cannot be merged into the one below
830a38ee 4771 because a CALL may precede a CLOBBER and refer to the
7afe21cc
RK
4772 value clobbered. We must not let a canonicalization do
4773 anything in that case. */
4774 for (i = 0; i < lim; i++)
4775 {
b3694847 4776 rtx y = XVECEXP (x, 0, i);
2708da92
RS
4777 if (GET_CODE (y) == CLOBBER)
4778 {
4779 rtx clobbered = XEXP (y, 0);
4780
f8cfc6aa 4781 if (REG_P (clobbered)
2708da92 4782 || GET_CODE (clobbered) == SUBREG)
bb4034b3 4783 invalidate (clobbered, VOIDmode);
2708da92
RS
4784 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4785 || GET_CODE (clobbered) == ZERO_EXTRACT)
bb4034b3 4786 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
2708da92 4787 }
7afe21cc 4788 }
278a83b2 4789
7afe21cc
RK
4790 for (i = 0; i < lim; i++)
4791 {
b3694847 4792 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4793 if (GET_CODE (y) == SET)
4794 {
7722328e
RK
4795 /* As above, we ignore unconditional jumps and call-insns and
4796 ignore the result of apply_change_group. */
7afe21cc
RK
4797 if (GET_CODE (SET_SRC (y)) == CALL)
4798 {
4799 canon_reg (SET_SRC (y), insn);
77fa0940 4800 apply_change_group ();
7afe21cc 4801 fold_rtx (SET_SRC (y), insn);
bb4034b3 4802 invalidate (SET_DEST (y), VOIDmode);
7afe21cc
RK
4803 }
4804 else if (SET_DEST (y) == pc_rtx
4805 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4806 ;
4807 else
4808 sets[n_sets++].rtl = y;
4809 }
4810 else if (GET_CODE (y) == CLOBBER)
4811 {
9ae8ffe7 4812 /* If we clobber memory, canon the address.
7afe21cc
RK
4813 This does nothing when a register is clobbered
4814 because we have already invalidated the reg. */
3c0cb5de 4815 if (MEM_P (XEXP (y, 0)))
9ae8ffe7 4816 canon_reg (XEXP (y, 0), NULL_RTX);
7afe21cc
RK
4817 }
4818 else if (GET_CODE (y) == USE
f8cfc6aa 4819 && ! (REG_P (XEXP (y, 0))
7afe21cc 4820 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 4821 canon_reg (y, NULL_RTX);
7afe21cc
RK
4822 else if (GET_CODE (y) == CALL)
4823 {
7722328e
RK
4824 /* The result of apply_change_group can be ignored; see
4825 canon_reg. */
7afe21cc 4826 canon_reg (y, insn);
77fa0940 4827 apply_change_group ();
7afe21cc
RK
4828 fold_rtx (y, insn);
4829 }
4830 }
4831 }
4832 else if (GET_CODE (x) == CLOBBER)
4833 {
3c0cb5de 4834 if (MEM_P (XEXP (x, 0)))
9ae8ffe7 4835 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
4836 }
4837
4838 /* Canonicalize a USE of a pseudo register or memory location. */
4839 else if (GET_CODE (x) == USE
f8cfc6aa 4840 && ! (REG_P (XEXP (x, 0))
7afe21cc 4841 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 4842 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
4843 else if (GET_CODE (x) == CALL)
4844 {
7722328e 4845 /* The result of apply_change_group can be ignored; see canon_reg. */
7afe21cc 4846 canon_reg (x, insn);
77fa0940 4847 apply_change_group ();
7afe21cc
RK
4848 fold_rtx (x, insn);
4849 }
4850
7b3ab05e
JW
4851 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4852 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4853 is handled specially for this case, and if it isn't set, then there will
9faa82d8 4854 be no equivalence for the destination. */
92f9aa51
RK
4855 if (n_sets == 1 && REG_NOTES (insn) != 0
4856 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
7b3ab05e
JW
4857 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4858 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
7b668f9e
JJ
4859 {
4860 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4861 XEXP (tem, 0) = src_eqv;
4862 }
7afe21cc
RK
4863
4864 /* Canonicalize sources and addresses of destinations.
4865 We do this in a separate pass to avoid problems when a MATCH_DUP is
4866 present in the insn pattern. In that case, we want to ensure that
4867 we don't break the duplicate nature of the pattern. So we will replace
4868 both operands at the same time. Otherwise, we would fail to find an
4869 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4870
4871 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4872 but we don't do this any more. */
7afe21cc
RK
4873
4874 for (i = 0; i < n_sets; i++)
4875 {
4876 rtx dest = SET_DEST (sets[i].rtl);
4877 rtx src = SET_SRC (sets[i].rtl);
4878 rtx new = canon_reg (src, insn);
58873255 4879 int insn_code;
7afe21cc 4880
47841d1b 4881 sets[i].orig_src = src;
f8cfc6aa 4882 if ((REG_P (new) && REG_P (src)
77fa0940
RK
4883 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4884 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
58873255 4885 || (insn_code = recog_memoized (insn)) < 0
a995e389 4886 || insn_data[insn_code].n_dups > 0)
77fa0940 4887 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
7afe21cc
RK
4888 else
4889 SET_SRC (sets[i].rtl) = new;
4890
46d096a3 4891 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4892 {
4893 validate_change (insn, &XEXP (dest, 1),
77fa0940 4894 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4895 validate_change (insn, &XEXP (dest, 2),
77fa0940 4896 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4897 }
4898
46d096a3 4899 while (GET_CODE (dest) == SUBREG
7afe21cc 4900 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4901 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4902 dest = XEXP (dest, 0);
4903
3c0cb5de 4904 if (MEM_P (dest))
7afe21cc
RK
4905 canon_reg (dest, insn);
4906 }
4907
77fa0940
RK
4908 /* Now that we have done all the replacements, we can apply the change
4909 group and see if they all work. Note that this will cause some
4910 canonicalizations that would have worked individually not to be applied
4911 because some other canonicalization didn't work, but this should not
278a83b2 4912 occur often.
7722328e
RK
4913
4914 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4915
4916 apply_change_group ();
4917
7afe21cc
RK
4918 /* Set sets[i].src_elt to the class each source belongs to.
4919 Detect assignments from or to volatile things
4920 and set set[i] to zero so they will be ignored
4921 in the rest of this function.
4922
4923 Nothing in this loop changes the hash table or the register chains. */
4924
4925 for (i = 0; i < n_sets; i++)
4926 {
b3694847
SS
4927 rtx src, dest;
4928 rtx src_folded;
4929 struct table_elt *elt = 0, *p;
7afe21cc
RK
4930 enum machine_mode mode;
4931 rtx src_eqv_here;
4932 rtx src_const = 0;
4933 rtx src_related = 0;
4934 struct table_elt *src_const_elt = 0;
99a9c946
GS
4935 int src_cost = MAX_COST;
4936 int src_eqv_cost = MAX_COST;
4937 int src_folded_cost = MAX_COST;
4938 int src_related_cost = MAX_COST;
4939 int src_elt_cost = MAX_COST;
4940 int src_regcost = MAX_COST;
4941 int src_eqv_regcost = MAX_COST;
4942 int src_folded_regcost = MAX_COST;
4943 int src_related_regcost = MAX_COST;
4944 int src_elt_regcost = MAX_COST;
da7d8304 4945 /* Set nonzero if we need to call force_const_mem on with the
7afe21cc
RK
4946 contents of src_folded before using it. */
4947 int src_folded_force_flag = 0;
4948
4949 dest = SET_DEST (sets[i].rtl);
4950 src = SET_SRC (sets[i].rtl);
4951
4952 /* If SRC is a constant that has no machine mode,
4953 hash it with the destination's machine mode.
4954 This way we can keep different modes separate. */
4955
4956 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4957 sets[i].mode = mode;
4958
4959 if (src_eqv)
4960 {
4961 enum machine_mode eqvmode = mode;
4962 if (GET_CODE (dest) == STRICT_LOW_PART)
4963 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4964 do_not_record = 0;
4965 hash_arg_in_memory = 0;
2197a88a 4966 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4967
4968 /* Find the equivalence class for the equivalent expression. */
4969
4970 if (!do_not_record)
2197a88a 4971 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4972
4973 src_eqv_volatile = do_not_record;
4974 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4975 }
4976
4977 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4978 value of the INNER register, not the destination. So it is not
3826a3da 4979 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4980 if (GET_CODE (dest) == STRICT_LOW_PART)
4981 src_eqv_here = 0;
4982 else
4983 src_eqv_here = src_eqv;
4984
4985 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4986 simplified result, which may not necessarily be valid. */
4987 src_folded = fold_rtx (src, insn);
4988
e6a125a0
RK
4989#if 0
4990 /* ??? This caused bad code to be generated for the m68k port with -O2.
4991 Suppose src is (CONST_INT -1), and that after truncation src_folded
4992 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4993 At the end we will add src and src_const to the same equivalence
4994 class. We now have 3 and -1 on the same equivalence class. This
4995 causes later instructions to be mis-optimized. */
7afe21cc
RK
4996 /* If storing a constant in a bitfield, pre-truncate the constant
4997 so we will be able to record it later. */
46d096a3 4998 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4999 {
5000 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5001
5002 if (GET_CODE (src) == CONST_INT
5003 && GET_CODE (width) == CONST_INT
906c4e36
RK
5004 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5005 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5006 src_folded
5007 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5008 << INTVAL (width)) - 1));
7afe21cc 5009 }
e6a125a0 5010#endif
7afe21cc
RK
5011
5012 /* Compute SRC's hash code, and also notice if it
5013 should not be recorded at all. In that case,
5014 prevent any further processing of this assignment. */
5015 do_not_record = 0;
5016 hash_arg_in_memory = 0;
7afe21cc
RK
5017
5018 sets[i].src = src;
2197a88a 5019 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
5020 sets[i].src_volatile = do_not_record;
5021 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 5022
50196afa 5023 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
5024 a pseudo, do not record SRC. Using SRC as a replacement for
5025 anything else will be incorrect in that situation. Note that
5026 this usually occurs only for stack slots, in which case all the
5027 RTL would be referring to SRC, so we don't lose any optimization
5028 opportunities by not having SRC in the hash table. */
50196afa 5029
3c0cb5de 5030 if (MEM_P (src)
43e72072 5031 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 5032 && REG_P (dest)
43e72072 5033 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
5034 sets[i].src_volatile = 1;
5035
0dadecf6
RK
5036#if 0
5037 /* It is no longer clear why we used to do this, but it doesn't
5038 appear to still be needed. So let's try without it since this
5039 code hurts cse'ing widened ops. */
9a5a17f3 5040 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
5041 treat it as volatile. It may do the work of an SI in one context
5042 where the extra bits are not being used, but cannot replace an SI
5043 in general. */
5044 if (GET_CODE (src) == SUBREG
5045 && (GET_MODE_SIZE (GET_MODE (src))
5046 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5047 sets[i].src_volatile = 1;
0dadecf6 5048#endif
7afe21cc
RK
5049
5050 /* Locate all possible equivalent forms for SRC. Try to replace
5051 SRC in the insn with each cheaper equivalent.
5052
5053 We have the following types of equivalents: SRC itself, a folded
5054 version, a value given in a REG_EQUAL note, or a value related
5055 to a constant.
5056
5057 Each of these equivalents may be part of an additional class
5058 of equivalents (if more than one is in the table, they must be in
5059 the same class; we check for this).
5060
5061 If the source is volatile, we don't do any table lookups.
5062
5063 We note any constant equivalent for possible later use in a
5064 REG_NOTE. */
5065
5066 if (!sets[i].src_volatile)
2197a88a 5067 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
5068
5069 sets[i].src_elt = elt;
5070
5071 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
5072 {
5073 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
5074 {
5075 /* The REG_EQUAL is indicating that two formerly distinct
5076 classes are now equivalent. So merge them. */
5077 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
5078 src_eqv_hash = HASH (src_eqv, elt->mode);
5079 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
5080 }
5081
278a83b2
KH
5082 src_eqv_here = 0;
5083 }
7afe21cc
RK
5084
5085 else if (src_eqv_elt)
278a83b2 5086 elt = src_eqv_elt;
7afe21cc
RK
5087
5088 /* Try to find a constant somewhere and record it in `src_const'.
5089 Record its table element, if any, in `src_const_elt'. Look in
5090 any known equivalences first. (If the constant is not in the
2197a88a 5091 table, also set `sets[i].src_const_hash'). */
7afe21cc 5092 if (elt)
278a83b2 5093 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
5094 if (p->is_const)
5095 {
5096 src_const = p->exp;
5097 src_const_elt = elt;
5098 break;
5099 }
5100
5101 if (src_const == 0
5102 && (CONSTANT_P (src_folded)
278a83b2 5103 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
5104 "constant" here so we will record it. This allows us
5105 to fold switch statements when an ADDR_DIFF_VEC is used. */
5106 || (GET_CODE (src_folded) == MINUS
5107 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5108 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5109 src_const = src_folded, src_const_elt = elt;
5110 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5111 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5112
5113 /* If we don't know if the constant is in the table, get its
5114 hash code and look it up. */
5115 if (src_const && src_const_elt == 0)
5116 {
2197a88a
RK
5117 sets[i].src_const_hash = HASH (src_const, mode);
5118 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
5119 }
5120
5121 sets[i].src_const = src_const;
5122 sets[i].src_const_elt = src_const_elt;
5123
5124 /* If the constant and our source are both in the table, mark them as
5125 equivalent. Otherwise, if a constant is in the table but the source
5126 isn't, set ELT to it. */
5127 if (src_const_elt && elt
5128 && src_const_elt->first_same_value != elt->first_same_value)
5129 merge_equiv_classes (elt, src_const_elt);
5130 else if (src_const_elt && elt == 0)
5131 elt = src_const_elt;
5132
5133 /* See if there is a register linearly related to a constant
5134 equivalent of SRC. */
5135 if (src_const
5136 && (GET_CODE (src_const) == CONST
5137 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
5138 {
5139 src_related = use_related_value (src_const, src_const_elt);
5140 if (src_related)
5141 {
7afe21cc 5142 struct table_elt *src_related_elt
278a83b2 5143 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 5144 if (src_related_elt && elt)
278a83b2 5145 {
7afe21cc
RK
5146 if (elt->first_same_value
5147 != src_related_elt->first_same_value)
278a83b2 5148 /* This can occur when we previously saw a CONST
7afe21cc
RK
5149 involving a SYMBOL_REF and then see the SYMBOL_REF
5150 twice. Merge the involved classes. */
5151 merge_equiv_classes (elt, src_related_elt);
5152
278a83b2 5153 src_related = 0;
7afe21cc 5154 src_related_elt = 0;
278a83b2
KH
5155 }
5156 else if (src_related_elt && elt == 0)
5157 elt = src_related_elt;
7afe21cc 5158 }
278a83b2 5159 }
7afe21cc 5160
e4600702
RK
5161 /* See if we have a CONST_INT that is already in a register in a
5162 wider mode. */
5163
5164 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5165 && GET_MODE_CLASS (mode) == MODE_INT
5166 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5167 {
5168 enum machine_mode wider_mode;
5169
5170 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5171 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5172 && src_related == 0;
5173 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5174 {
5175 struct table_elt *const_elt
5176 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5177
5178 if (const_elt == 0)
5179 continue;
5180
5181 for (const_elt = const_elt->first_same_value;
5182 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 5183 if (REG_P (const_elt->exp))
e4600702 5184 {
4de249d9 5185 src_related = gen_lowpart (mode,
e4600702
RK
5186 const_elt->exp);
5187 break;
5188 }
5189 }
5190 }
5191
d45cf215
RS
5192 /* Another possibility is that we have an AND with a constant in
5193 a mode narrower than a word. If so, it might have been generated
5194 as part of an "if" which would narrow the AND. If we already
5195 have done the AND in a wider mode, we can use a SUBREG of that
5196 value. */
5197
5198 if (flag_expensive_optimizations && ! src_related
5199 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5200 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5201 {
5202 enum machine_mode tmode;
38a448ca 5203 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215
RS
5204
5205 for (tmode = GET_MODE_WIDER_MODE (mode);
5206 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5207 tmode = GET_MODE_WIDER_MODE (tmode))
5208 {
4de249d9 5209 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
5210 struct table_elt *larger_elt;
5211
5212 if (inner)
5213 {
5214 PUT_MODE (new_and, tmode);
5215 XEXP (new_and, 0) = inner;
5216 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5217 if (larger_elt == 0)
5218 continue;
5219
5220 for (larger_elt = larger_elt->first_same_value;
5221 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 5222 if (REG_P (larger_elt->exp))
d45cf215
RS
5223 {
5224 src_related
4de249d9 5225 = gen_lowpart (mode, larger_elt->exp);
d45cf215
RS
5226 break;
5227 }
5228
5229 if (src_related)
5230 break;
5231 }
5232 }
5233 }
7bac1be0
RK
5234
5235#ifdef LOAD_EXTEND_OP
5236 /* See if a MEM has already been loaded with a widening operation;
5237 if it has, we can use a subreg of that. Many CISC machines
5238 also have such operations, but this is only likely to be
71cc389b 5239 beneficial on these machines. */
278a83b2 5240
ddc356e8 5241 if (flag_expensive_optimizations && src_related == 0
7bac1be0
RK
5242 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5243 && GET_MODE_CLASS (mode) == MODE_INT
3c0cb5de 5244 && MEM_P (src) && ! do_not_record
f822d252 5245 && LOAD_EXTEND_OP (mode) != UNKNOWN)
7bac1be0 5246 {
9d80ef7c
RH
5247 struct rtx_def memory_extend_buf;
5248 rtx memory_extend_rtx = &memory_extend_buf;
7bac1be0 5249 enum machine_mode tmode;
278a83b2 5250
7bac1be0
RK
5251 /* Set what we are trying to extend and the operation it might
5252 have been extended with. */
9d80ef7c 5253 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
7bac1be0
RK
5254 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5255 XEXP (memory_extend_rtx, 0) = src;
278a83b2 5256
7bac1be0
RK
5257 for (tmode = GET_MODE_WIDER_MODE (mode);
5258 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5259 tmode = GET_MODE_WIDER_MODE (tmode))
5260 {
5261 struct table_elt *larger_elt;
278a83b2 5262
7bac1be0 5263 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 5264 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
5265 HASH (memory_extend_rtx, tmode), tmode);
5266 if (larger_elt == 0)
5267 continue;
278a83b2 5268
7bac1be0
RK
5269 for (larger_elt = larger_elt->first_same_value;
5270 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 5271 if (REG_P (larger_elt->exp))
7bac1be0 5272 {
4de249d9 5273 src_related = gen_lowpart (mode,
7bac1be0
RK
5274 larger_elt->exp);
5275 break;
5276 }
278a83b2 5277
7bac1be0
RK
5278 if (src_related)
5279 break;
5280 }
5281 }
5282#endif /* LOAD_EXTEND_OP */
278a83b2 5283
7afe21cc 5284 if (src == src_folded)
278a83b2 5285 src_folded = 0;
7afe21cc 5286
da7d8304 5287 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 5288 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 5289 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
5290 expressions. Prune these latter expressions by deleting expressions
5291 already in the equivalence class.
5292
5293 Check for an equivalent identical to the destination. If found,
5294 this is the preferred equivalent since it will likely lead to
5295 elimination of the insn. Indicate this by placing it in
5296 `src_related'. */
5297
278a83b2
KH
5298 if (elt)
5299 elt = elt->first_same_value;
7afe21cc 5300 for (p = elt; p; p = p->next_same_value)
278a83b2 5301 {
7afe21cc
RK
5302 enum rtx_code code = GET_CODE (p->exp);
5303
5304 /* If the expression is not valid, ignore it. Then we do not
5305 have to check for validity below. In most cases, we can use
5306 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 5307 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
5308 continue;
5309
5a03c8c4
RK
5310 /* Also skip paradoxical subregs, unless that's what we're
5311 looking for. */
5312 if (code == SUBREG
5313 && (GET_MODE_SIZE (GET_MODE (p->exp))
5314 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5315 && ! (src != 0
5316 && GET_CODE (src) == SUBREG
5317 && GET_MODE (src) == GET_MODE (p->exp)
5318 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5319 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5320 continue;
5321
278a83b2 5322 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 5323 src = 0;
278a83b2 5324 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
5325 && rtx_equal_p (src_folded, p->exp))
5326 src_folded = 0;
278a83b2 5327 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
5328 && rtx_equal_p (src_eqv_here, p->exp))
5329 src_eqv_here = 0;
278a83b2 5330 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
5331 && rtx_equal_p (src_related, p->exp))
5332 src_related = 0;
5333
5334 /* This is the same as the destination of the insns, we want
5335 to prefer it. Copy it to src_related. The code below will
5336 then give it a negative cost. */
5337 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5338 src_related = dest;
278a83b2 5339 }
7afe21cc
RK
5340
5341 /* Find the cheapest valid equivalent, trying all the available
5342 possibilities. Prefer items not in the hash table to ones
5343 that are when they are equal cost. Note that we can never
5344 worsen an insn as the current contents will also succeed.
05c33dd8 5345 If we find an equivalent identical to the destination, use it as best,
0f41302f 5346 since this insn will probably be eliminated in that case. */
7afe21cc
RK
5347 if (src)
5348 {
5349 if (rtx_equal_p (src, dest))
f1c1dfc3 5350 src_cost = src_regcost = -1;
7afe21cc 5351 else
630c79be
BS
5352 {
5353 src_cost = COST (src);
5354 src_regcost = approx_reg_cost (src);
5355 }
7afe21cc
RK
5356 }
5357
5358 if (src_eqv_here)
5359 {
5360 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 5361 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 5362 else
630c79be
BS
5363 {
5364 src_eqv_cost = COST (src_eqv_here);
5365 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5366 }
7afe21cc
RK
5367 }
5368
5369 if (src_folded)
5370 {
5371 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 5372 src_folded_cost = src_folded_regcost = -1;
7afe21cc 5373 else
630c79be
BS
5374 {
5375 src_folded_cost = COST (src_folded);
5376 src_folded_regcost = approx_reg_cost (src_folded);
5377 }
7afe21cc
RK
5378 }
5379
5380 if (src_related)
5381 {
5382 if (rtx_equal_p (src_related, dest))
f1c1dfc3 5383 src_related_cost = src_related_regcost = -1;
7afe21cc 5384 else
630c79be
BS
5385 {
5386 src_related_cost = COST (src_related);
5387 src_related_regcost = approx_reg_cost (src_related);
5388 }
7afe21cc
RK
5389 }
5390
5391 /* If this was an indirect jump insn, a known label will really be
5392 cheaper even though it looks more expensive. */
5393 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 5394 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 5395
7afe21cc
RK
5396 /* Terminate loop when replacement made. This must terminate since
5397 the current contents will be tested and will always be valid. */
5398 while (1)
278a83b2
KH
5399 {
5400 rtx trial;
7afe21cc 5401
278a83b2 5402 /* Skip invalid entries. */
f8cfc6aa 5403 while (elt && !REG_P (elt->exp)
0516f6fe 5404 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 5405 elt = elt->next_same_value;
5a03c8c4
RK
5406
5407 /* A paradoxical subreg would be bad here: it'll be the right
5408 size, but later may be adjusted so that the upper bits aren't
5409 what we want. So reject it. */
5410 if (elt != 0
5411 && GET_CODE (elt->exp) == SUBREG
5412 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5413 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5414 /* It is okay, though, if the rtx we're trying to match
5415 will ignore any of the bits we can't predict. */
5416 && ! (src != 0
5417 && GET_CODE (src) == SUBREG
5418 && GET_MODE (src) == GET_MODE (elt->exp)
5419 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5420 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5421 {
5422 elt = elt->next_same_value;
5423 continue;
5424 }
278a83b2 5425
68252e27 5426 if (elt)
630c79be
BS
5427 {
5428 src_elt_cost = elt->cost;
5429 src_elt_regcost = elt->regcost;
5430 }
7afe21cc 5431
68252e27 5432 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
5433 of equal cost, use this order:
5434 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 5435 if (src_folded
56ae04af
KH
5436 && preferable (src_folded_cost, src_folded_regcost,
5437 src_cost, src_regcost) <= 0
5438 && preferable (src_folded_cost, src_folded_regcost,
5439 src_eqv_cost, src_eqv_regcost) <= 0
5440 && preferable (src_folded_cost, src_folded_regcost,
5441 src_related_cost, src_related_regcost) <= 0
5442 && preferable (src_folded_cost, src_folded_regcost,
5443 src_elt_cost, src_elt_regcost) <= 0)
7afe21cc 5444 {
f1c1dfc3 5445 trial = src_folded, src_folded_cost = MAX_COST;
7afe21cc 5446 if (src_folded_force_flag)
9d8de1de
EB
5447 {
5448 rtx forced = force_const_mem (mode, trial);
5449 if (forced)
5450 trial = forced;
5451 }
7afe21cc 5452 }
99a9c946 5453 else if (src
56ae04af
KH
5454 && preferable (src_cost, src_regcost,
5455 src_eqv_cost, src_eqv_regcost) <= 0
5456 && preferable (src_cost, src_regcost,
5457 src_related_cost, src_related_regcost) <= 0
5458 && preferable (src_cost, src_regcost,
5459 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5460 trial = src, src_cost = MAX_COST;
99a9c946 5461 else if (src_eqv_here
56ae04af
KH
5462 && preferable (src_eqv_cost, src_eqv_regcost,
5463 src_related_cost, src_related_regcost) <= 0
5464 && preferable (src_eqv_cost, src_eqv_regcost,
5465 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5466 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
99a9c946 5467 else if (src_related
56ae04af
KH
5468 && preferable (src_related_cost, src_related_regcost,
5469 src_elt_cost, src_elt_regcost) <= 0)
68252e27 5470 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
278a83b2 5471 else
7afe21cc 5472 {
05c33dd8 5473 trial = copy_rtx (elt->exp);
7afe21cc 5474 elt = elt->next_same_value;
f1c1dfc3 5475 src_elt_cost = MAX_COST;
7afe21cc
RK
5476 }
5477
5478 /* We don't normally have an insn matching (set (pc) (pc)), so
5479 check for this separately here. We will delete such an
5480 insn below.
5481
d466c016
JL
5482 For other cases such as a table jump or conditional jump
5483 where we know the ultimate target, go ahead and replace the
5484 operand. While that may not make a valid insn, we will
5485 reemit the jump below (and also insert any necessary
5486 barriers). */
7afe21cc
RK
5487 if (n_sets == 1 && dest == pc_rtx
5488 && (trial == pc_rtx
5489 || (GET_CODE (trial) == LABEL_REF
5490 && ! condjump_p (insn))))
5491 {
2f39b6ca
UW
5492 /* Don't substitute non-local labels, this confuses CFG. */
5493 if (GET_CODE (trial) == LABEL_REF
5494 && LABEL_REF_NONLOCAL_P (trial))
5495 continue;
5496
d466c016 5497 SET_SRC (sets[i].rtl) = trial;
602c4c0d 5498 cse_jumps_altered = 1;
7afe21cc
RK
5499 break;
5500 }
278a83b2 5501
7afe21cc 5502 /* Look for a substitution that makes a valid insn. */
ddc356e8 5503 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
05c33dd8 5504 {
dbaff908
RS
5505 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5506
7bd8b2a8
JL
5507 /* If we just made a substitution inside a libcall, then we
5508 need to make the same substitution in any notes attached
5509 to the RETVAL insn. */
1ed0205e 5510 if (libcall_insn
f8cfc6aa 5511 && (REG_P (sets[i].orig_src)
47841d1b 5512 || GET_CODE (sets[i].orig_src) == SUBREG
3c0cb5de 5513 || MEM_P (sets[i].orig_src)))
d8b7ec41
RS
5514 {
5515 rtx note = find_reg_equal_equiv_note (libcall_insn);
5516 if (note != 0)
5517 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5518 sets[i].orig_src,
5519 copy_rtx (new));
5520 }
7bd8b2a8 5521
7722328e
RK
5522 /* The result of apply_change_group can be ignored; see
5523 canon_reg. */
5524
dbaff908 5525 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
6702af89 5526 apply_change_group ();
05c33dd8
RK
5527 break;
5528 }
7afe21cc 5529
278a83b2 5530 /* If we previously found constant pool entries for
7afe21cc
RK
5531 constants and this is a constant, try making a
5532 pool entry. Put it in src_folded unless we already have done
5533 this since that is where it likely came from. */
5534
5535 else if (constant_pool_entries_cost
5536 && CONSTANT_P (trial)
535a42b1
NS
5537 /* Reject cases that will cause decode_rtx_const to
5538 die. On the alpha when simplifying a switch, we
5539 get (const (truncate (minus (label_ref)
5540 (label_ref)))). */
1bbd065b
RK
5541 && ! (GET_CODE (trial) == CONST
5542 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
d51ff7cb
JW
5543 /* Likewise on IA-64, except without the truncate. */
5544 && ! (GET_CODE (trial) == CONST
5545 && GET_CODE (XEXP (trial, 0)) == MINUS
5546 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5547 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
1bbd065b 5548 && (src_folded == 0
3c0cb5de 5549 || (!MEM_P (src_folded)
1bbd065b 5550 && ! src_folded_force_flag))
9ae8ffe7
JL
5551 && GET_MODE_CLASS (mode) != MODE_CC
5552 && mode != VOIDmode)
7afe21cc
RK
5553 {
5554 src_folded_force_flag = 1;
5555 src_folded = trial;
5556 src_folded_cost = constant_pool_entries_cost;
dd0ba281 5557 src_folded_regcost = constant_pool_entries_regcost;
7afe21cc 5558 }
278a83b2 5559 }
7afe21cc
RK
5560
5561 src = SET_SRC (sets[i].rtl);
5562
5563 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5564 However, there is an important exception: If both are registers
5565 that are not the head of their equivalence class, replace SET_SRC
5566 with the head of the class. If we do not do this, we will have
5567 both registers live over a portion of the basic block. This way,
5568 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 5569 if (REG_P (dest)
1bb98cec 5570 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 5571 {
1bb98cec
DM
5572 int dest_q = REG_QTY (REGNO (dest));
5573 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5574
5575 if (dest_ent->mode == GET_MODE (dest)
5576 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 5577 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
5578 /* Don't do this if the original insn had a hard reg as
5579 SET_SRC or SET_DEST. */
f8cfc6aa 5580 && (!REG_P (sets[i].src)
1bb98cec 5581 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 5582 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
5583 /* We can't call canon_reg here because it won't do anything if
5584 SRC is a hard register. */
759bd8b7 5585 {
1bb98cec
DM
5586 int src_q = REG_QTY (REGNO (src));
5587 struct qty_table_elem *src_ent = &qty_table[src_q];
5588 int first = src_ent->first_reg;
5589 rtx new_src
5590 = (first >= FIRST_PSEUDO_REGISTER
5591 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5592
5593 /* We must use validate-change even for this, because this
5594 might be a special no-op instruction, suitable only to
5595 tag notes onto. */
5596 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5597 {
5598 src = new_src;
5599 /* If we had a constant that is cheaper than what we are now
5600 setting SRC to, use that constant. We ignored it when we
5601 thought we could make this into a no-op. */
5602 if (src_const && COST (src_const) < COST (src)
278a83b2
KH
5603 && validate_change (insn, &SET_SRC (sets[i].rtl),
5604 src_const, 0))
1bb98cec
DM
5605 src = src_const;
5606 }
759bd8b7 5607 }
7afe21cc
RK
5608 }
5609
5610 /* If we made a change, recompute SRC values. */
5611 if (src != sets[i].src)
278a83b2 5612 {
4eadede7 5613 cse_altered = 1;
278a83b2
KH
5614 do_not_record = 0;
5615 hash_arg_in_memory = 0;
7afe21cc 5616 sets[i].src = src;
278a83b2
KH
5617 sets[i].src_hash = HASH (src, mode);
5618 sets[i].src_volatile = do_not_record;
5619 sets[i].src_in_memory = hash_arg_in_memory;
5620 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5621 }
7afe21cc
RK
5622
5623 /* If this is a single SET, we are setting a register, and we have an
5624 equivalent constant, we want to add a REG_NOTE. We don't want
5625 to write a REG_EQUAL note for a constant pseudo since verifying that
d45cf215 5626 that pseudo hasn't been eliminated is a pain. Such a note also
278a83b2 5627 won't help anything.
ac7ef8d5
FS
5628
5629 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5630 which can be created for a reference to a compile time computable
5631 entry in a jump table. */
5632
f8cfc6aa
JQ
5633 if (n_sets == 1 && src_const && REG_P (dest)
5634 && !REG_P (src_const)
ac7ef8d5
FS
5635 && ! (GET_CODE (src_const) == CONST
5636 && GET_CODE (XEXP (src_const, 0)) == MINUS
5637 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5638 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
7afe21cc 5639 {
a77b7e32
RS
5640 /* We only want a REG_EQUAL note if src_const != src. */
5641 if (! rtx_equal_p (src, src_const))
5642 {
5643 /* Make sure that the rtx is not shared. */
5644 src_const = copy_rtx (src_const);
51e2a951 5645
a77b7e32
RS
5646 /* Record the actual constant value in a REG_EQUAL note,
5647 making a new one if one does not already exist. */
5648 set_unique_reg_note (insn, REG_EQUAL, src_const);
5649 }
7afe21cc
RK
5650 }
5651
5652 /* Now deal with the destination. */
5653 do_not_record = 0;
7afe21cc 5654
46d096a3
SB
5655 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5656 while (GET_CODE (dest) == SUBREG
7afe21cc 5657 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 5658 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 5659 dest = XEXP (dest, 0);
7afe21cc
RK
5660
5661 sets[i].inner_dest = dest;
5662
3c0cb5de 5663 if (MEM_P (dest))
7afe21cc 5664 {
9ae8ffe7
JL
5665#ifdef PUSH_ROUNDING
5666 /* Stack pushes invalidate the stack pointer. */
5667 rtx addr = XEXP (dest, 0);
ec8e098d 5668 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7
JL
5669 && XEXP (addr, 0) == stack_pointer_rtx)
5670 invalidate (stack_pointer_rtx, Pmode);
5671#endif
7afe21cc 5672 dest = fold_rtx (dest, insn);
7afe21cc
RK
5673 }
5674
5675 /* Compute the hash code of the destination now,
5676 before the effects of this instruction are recorded,
5677 since the register values used in the address computation
5678 are those before this instruction. */
2197a88a 5679 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
5680
5681 /* Don't enter a bit-field in the hash table
5682 because the value in it after the store
5683 may not equal what was stored, due to truncation. */
5684
46d096a3 5685 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
5686 {
5687 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5688
5689 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5690 && GET_CODE (width) == CONST_INT
906c4e36
RK
5691 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5692 && ! (INTVAL (src_const)
5693 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
7afe21cc
RK
5694 /* Exception: if the value is constant,
5695 and it won't be truncated, record it. */
5696 ;
5697 else
5698 {
5699 /* This is chosen so that the destination will be invalidated
5700 but no new value will be recorded.
5701 We must invalidate because sometimes constant
5702 values can be recorded for bitfields. */
5703 sets[i].src_elt = 0;
5704 sets[i].src_volatile = 1;
5705 src_eqv = 0;
5706 src_eqv_elt = 0;
5707 }
5708 }
5709
5710 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5711 the insn. */
5712 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5713 {
ef178af3 5714 /* One less use of the label this insn used to jump to. */
49ce134f 5715 delete_insn (insn);
7afe21cc 5716 cse_jumps_altered = 1;
7afe21cc
RK
5717 /* No more processing for this set. */
5718 sets[i].rtl = 0;
5719 }
5720
5721 /* If this SET is now setting PC to a label, we know it used to
d466c016 5722 be a conditional or computed branch. */
8f235343
JH
5723 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5724 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5725 {
8fb1e50e
GS
5726 /* Now emit a BARRIER after the unconditional jump. */
5727 if (NEXT_INSN (insn) == 0
4b4bf941 5728 || !BARRIER_P (NEXT_INSN (insn)))
8fb1e50e
GS
5729 emit_barrier_after (insn);
5730
d466c016
JL
5731 /* We reemit the jump in as many cases as possible just in
5732 case the form of an unconditional jump is significantly
5733 different than a computed jump or conditional jump.
5734
5735 If this insn has multiple sets, then reemitting the
5736 jump is nontrivial. So instead we just force rerecognition
5737 and hope for the best. */
5738 if (n_sets == 1)
7afe21cc 5739 {
9dcb4381 5740 rtx new, note;
8fb1e50e 5741
9dcb4381 5742 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
7afe21cc
RK
5743 JUMP_LABEL (new) = XEXP (src, 0);
5744 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5745
5746 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5747 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5748 if (note)
5749 {
5750 XEXP (note, 1) = NULL_RTX;
5751 REG_NOTES (new) = note;
5752 }
5753
38c1593d 5754 delete_insn (insn);
7afe21cc 5755 insn = new;
8fb1e50e
GS
5756
5757 /* Now emit a BARRIER after the unconditional jump. */
5758 if (NEXT_INSN (insn) == 0
4b4bf941 5759 || !BARRIER_P (NEXT_INSN (insn)))
8fb1e50e 5760 emit_barrier_after (insn);
7afe21cc 5761 }
31dcf83f 5762 else
31dcf83f 5763 INSN_CODE (insn) = -1;
7afe21cc 5764
8fb1e50e
GS
5765 /* Do not bother deleting any unreachable code,
5766 let jump/flow do that. */
7afe21cc
RK
5767
5768 cse_jumps_altered = 1;
5769 sets[i].rtl = 0;
5770 }
5771
c2a47e48
RK
5772 /* If destination is volatile, invalidate it and then do no further
5773 processing for this assignment. */
7afe21cc
RK
5774
5775 else if (do_not_record)
c2a47e48 5776 {
f8cfc6aa 5777 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5778 invalidate (dest, VOIDmode);
3c0cb5de 5779 else if (MEM_P (dest))
32fab725 5780 invalidate (dest, VOIDmode);
2708da92
RS
5781 else if (GET_CODE (dest) == STRICT_LOW_PART
5782 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5783 invalidate (XEXP (dest, 0), GET_MODE (dest));
c2a47e48
RK
5784 sets[i].rtl = 0;
5785 }
7afe21cc
RK
5786
5787 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2197a88a 5788 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
7afe21cc
RK
5789
5790#ifdef HAVE_cc0
5791 /* If setting CC0, record what it was set to, or a constant, if it
5792 is equivalent to a constant. If it is being set to a floating-point
5793 value, make a COMPARE with the appropriate constant of 0. If we
5794 don't do this, later code can interpret this as a test against
5795 const0_rtx, which can cause problems if we try to put it into an
5796 insn as a floating-point operand. */
5797 if (dest == cc0_rtx)
5798 {
5799 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5800 this_insn_cc0_mode = mode;
cbf6a543 5801 if (FLOAT_MODE_P (mode))
38a448ca
RH
5802 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5803 CONST0_RTX (mode));
7afe21cc
RK
5804 }
5805#endif
5806 }
5807
5808 /* Now enter all non-volatile source expressions in the hash table
5809 if they are not already present.
5810 Record their equivalence classes in src_elt.
5811 This way we can insert the corresponding destinations into
5812 the same classes even if the actual sources are no longer in them
5813 (having been invalidated). */
5814
5815 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5816 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5817 {
b3694847
SS
5818 struct table_elt *elt;
5819 struct table_elt *classp = sets[0].src_elt;
7afe21cc
RK
5820 rtx dest = SET_DEST (sets[0].rtl);
5821 enum machine_mode eqvmode = GET_MODE (dest);
5822
5823 if (GET_CODE (dest) == STRICT_LOW_PART)
5824 {
5825 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5826 classp = 0;
5827 }
5828 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
5829 {
5830 rehash_using_reg (src_eqv);
5831 src_eqv_hash = HASH (src_eqv, eqvmode);
5832 }
2197a88a 5833 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5834 elt->in_memory = src_eqv_in_memory;
7afe21cc 5835 src_eqv_elt = elt;
f7911249
JW
5836
5837 /* Check to see if src_eqv_elt is the same as a set source which
5838 does not yet have an elt, and if so set the elt of the set source
5839 to src_eqv_elt. */
5840 for (i = 0; i < n_sets; i++)
26132f71
JW
5841 if (sets[i].rtl && sets[i].src_elt == 0
5842 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5843 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5844 }
5845
5846 for (i = 0; i < n_sets; i++)
5847 if (sets[i].rtl && ! sets[i].src_volatile
5848 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5849 {
5850 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5851 {
5852 /* REG_EQUAL in setting a STRICT_LOW_PART
5853 gives an equivalent for the entire destination register,
5854 not just for the subreg being stored in now.
5855 This is a more interesting equivalence, so we arrange later
5856 to treat the entire reg as the destination. */
5857 sets[i].src_elt = src_eqv_elt;
2197a88a 5858 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5859 }
5860 else
5861 {
5862 /* Insert source and constant equivalent into hash table, if not
5863 already present. */
b3694847
SS
5864 struct table_elt *classp = src_eqv_elt;
5865 rtx src = sets[i].src;
5866 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5867 enum machine_mode mode
5868 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5869
1fcc57f1
AM
5870 /* It's possible that we have a source value known to be
5871 constant but don't have a REG_EQUAL note on the insn.
5872 Lack of a note will mean src_eqv_elt will be NULL. This
5873 can happen where we've generated a SUBREG to access a
5874 CONST_INT that is already in a register in a wider mode.
5875 Ensure that the source expression is put in the proper
5876 constant class. */
5877 if (!classp)
5878 classp = sets[i].src_const_elt;
5879
26132f71 5880 if (sets[i].src_elt == 0)
7afe21cc 5881 {
26132f71
JW
5882 /* Don't put a hard register source into the table if this is
5883 the last insn of a libcall. In this case, we only need
5884 to put src_eqv_elt in src_elt. */
db4a8254 5885 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
8ae2b8f6 5886 {
b3694847 5887 struct table_elt *elt;
26132f71
JW
5888
5889 /* Note that these insert_regs calls cannot remove
5890 any of the src_elt's, because they would have failed to
5891 match if not still valid. */
5892 if (insert_regs (src, classp, 0))
5893 {
5894 rehash_using_reg (src);
5895 sets[i].src_hash = HASH (src, mode);
5896 }
5897 elt = insert (src, classp, sets[i].src_hash, mode);
5898 elt->in_memory = sets[i].src_in_memory;
26132f71 5899 sets[i].src_elt = classp = elt;
8ae2b8f6 5900 }
26132f71
JW
5901 else
5902 sets[i].src_elt = classp;
7afe21cc 5903 }
7afe21cc
RK
5904 if (sets[i].src_const && sets[i].src_const_elt == 0
5905 && src != sets[i].src_const
5906 && ! rtx_equal_p (sets[i].src_const, src))
5907 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5908 sets[i].src_const_hash, mode);
7afe21cc
RK
5909 }
5910 }
5911 else if (sets[i].src_elt == 0)
5912 /* If we did not insert the source into the hash table (e.g., it was
5913 volatile), note the equivalence class for the REG_EQUAL value, if any,
5914 so that the destination goes into that class. */
5915 sets[i].src_elt = src_eqv_elt;
5916
9ae8ffe7 5917 invalidate_from_clobbers (x);
77fa0940 5918
278a83b2 5919 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5920 invalidated by non-constant calls. */
5921
4b4bf941 5922 if (CALL_P (insn))
7afe21cc 5923 {
24a28584 5924 if (! CONST_OR_PURE_CALL_P (insn))
9ae8ffe7 5925 invalidate_memory ();
7afe21cc
RK
5926 invalidate_for_call ();
5927 }
5928
5929 /* Now invalidate everything set by this instruction.
5930 If a SUBREG or other funny destination is being set,
5931 sets[i].rtl is still nonzero, so here we invalidate the reg
5932 a part of which is being set. */
5933
5934 for (i = 0; i < n_sets; i++)
5935 if (sets[i].rtl)
5936 {
bb4034b3
JW
5937 /* We can't use the inner dest, because the mode associated with
5938 a ZERO_EXTRACT is significant. */
b3694847 5939 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5940
5941 /* Needed for registers to remove the register from its
5942 previous quantity's chain.
5943 Needed for memory if this is a nonvarying address, unless
5944 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5945 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5946 invalidate (dest, VOIDmode);
3c0cb5de 5947 else if (MEM_P (dest))
32fab725 5948 invalidate (dest, VOIDmode);
2708da92
RS
5949 else if (GET_CODE (dest) == STRICT_LOW_PART
5950 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5951 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5952 }
5953
01e752d3 5954 /* A volatile ASM invalidates everything. */
4b4bf941 5955 if (NONJUMP_INSN_P (insn)
01e752d3
JL
5956 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5957 && MEM_VOLATILE_P (PATTERN (insn)))
5958 flush_hash_table ();
5959
7afe21cc
RK
5960 /* Make sure registers mentioned in destinations
5961 are safe for use in an expression to be inserted.
5962 This removes from the hash table
5963 any invalid entry that refers to one of these registers.
5964
5965 We don't care about the return value from mention_regs because
5966 we are going to hash the SET_DEST values unconditionally. */
5967
5968 for (i = 0; i < n_sets; i++)
34c73909
R
5969 {
5970 if (sets[i].rtl)
5971 {
5972 rtx x = SET_DEST (sets[i].rtl);
5973
f8cfc6aa 5974 if (!REG_P (x))
34c73909
R
5975 mention_regs (x);
5976 else
5977 {
5978 /* We used to rely on all references to a register becoming
5979 inaccessible when a register changes to a new quantity,
5980 since that changes the hash code. However, that is not
9b1549b8 5981 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5982 hash 'collision' of a register with its own invalid
5983 entries. And since SUBREGs have been changed not to
5984 change their hash code with the hash code of the register,
5985 it wouldn't work any longer at all. So we have to check
5986 for any invalid references lying around now.
5987 This code is similar to the REG case in mention_regs,
5988 but it knows that reg_tick has been incremented, and
5989 it leaves reg_in_table as -1 . */
770ae6cc
RK
5990 unsigned int regno = REGNO (x);
5991 unsigned int endregno
34c73909 5992 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6 5993 : hard_regno_nregs[regno][GET_MODE (x)]);
770ae6cc 5994 unsigned int i;
34c73909
R
5995
5996 for (i = regno; i < endregno; i++)
5997 {
30f72379 5998 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5999 {
6000 remove_invalid_refs (i);
30f72379 6001 REG_IN_TABLE (i) = -1;
34c73909
R
6002 }
6003 }
6004 }
6005 }
6006 }
7afe21cc
RK
6007
6008 /* We may have just removed some of the src_elt's from the hash table.
6009 So replace each one with the current head of the same class. */
6010
6011 for (i = 0; i < n_sets; i++)
6012 if (sets[i].rtl)
6013 {
6014 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6015 /* If elt was removed, find current head of same class,
6016 or 0 if nothing remains of that class. */
6017 {
b3694847 6018 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
6019
6020 while (elt && elt->prev_same_value)
6021 elt = elt->prev_same_value;
6022
6023 while (elt && elt->first_same_value == 0)
6024 elt = elt->next_same_value;
6025 sets[i].src_elt = elt ? elt->first_same_value : 0;
6026 }
6027 }
6028
6029 /* Now insert the destinations into their equivalence classes. */
6030
6031 for (i = 0; i < n_sets; i++)
6032 if (sets[i].rtl)
6033 {
b3694847 6034 rtx dest = SET_DEST (sets[i].rtl);
b3694847 6035 struct table_elt *elt;
7afe21cc
RK
6036
6037 /* Don't record value if we are not supposed to risk allocating
6038 floating-point values in registers that might be wider than
6039 memory. */
6040 if ((flag_float_store
3c0cb5de 6041 && MEM_P (dest)
cbf6a543 6042 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
6043 /* Don't record BLKmode values, because we don't know the
6044 size of it, and can't be sure that other BLKmode values
6045 have the same or smaller size. */
6046 || GET_MODE (dest) == BLKmode
7afe21cc
RK
6047 /* Don't record values of destinations set inside a libcall block
6048 since we might delete the libcall. Things should have been set
6049 up so we won't want to reuse such a value, but we play it safe
6050 here. */
7bd8b2a8 6051 || libcall_insn
7afe21cc
RK
6052 /* If we didn't put a REG_EQUAL value or a source into the hash
6053 table, there is no point is recording DEST. */
1a8e9a8e
RK
6054 || sets[i].src_elt == 0
6055 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6056 or SIGN_EXTEND, don't record DEST since it can cause
6057 some tracking to be wrong.
6058
6059 ??? Think about this more later. */
6060 || (GET_CODE (dest) == SUBREG
6061 && (GET_MODE_SIZE (GET_MODE (dest))
6062 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6063 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6064 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7afe21cc
RK
6065 continue;
6066
6067 /* STRICT_LOW_PART isn't part of the value BEING set,
6068 and neither is the SUBREG inside it.
6069 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6070 if (GET_CODE (dest) == STRICT_LOW_PART)
6071 dest = SUBREG_REG (XEXP (dest, 0));
6072
f8cfc6aa 6073 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc
RK
6074 /* Registers must also be inserted into chains for quantities. */
6075 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
6076 {
6077 /* If `insert_regs' changes something, the hash code must be
6078 recalculated. */
6079 rehash_using_reg (dest);
6080 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6081 }
7afe21cc 6082
8fff4fc1
RH
6083 elt = insert (dest, sets[i].src_elt,
6084 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 6085
3c0cb5de 6086 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 6087 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 6088
fc3ffe83
RK
6089 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6090 narrower than M2, and both M1 and M2 are the same number of words,
6091 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6092 make that equivalence as well.
7afe21cc 6093
4de249d9
PB
6094 However, BAR may have equivalences for which gen_lowpart
6095 will produce a simpler value than gen_lowpart applied to
7afe21cc 6096 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 6097 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
6098 the SUBREG. It will not be used in an equivalence, but will
6099 cause two similar assignments to be detected.
6100
6101 Note the loop below will find SUBREG_REG (DEST) since we have
6102 already entered SRC and DEST of the SET in the table. */
6103
6104 if (GET_CODE (dest) == SUBREG
6cdbaec4
RK
6105 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6106 / UNITS_PER_WORD)
278a83b2 6107 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
7afe21cc
RK
6108 && (GET_MODE_SIZE (GET_MODE (dest))
6109 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6110 && sets[i].src_elt != 0)
6111 {
6112 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6113 struct table_elt *elt, *classp = 0;
6114
6115 for (elt = sets[i].src_elt->first_same_value; elt;
6116 elt = elt->next_same_value)
6117 {
6118 rtx new_src = 0;
2197a88a 6119 unsigned src_hash;
7afe21cc 6120 struct table_elt *src_elt;
ff27a429 6121 int byte = 0;
7afe21cc
RK
6122
6123 /* Ignore invalid entries. */
f8cfc6aa 6124 if (!REG_P (elt->exp)
0516f6fe 6125 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
6126 continue;
6127
9beb7d20
RH
6128 /* We may have already been playing subreg games. If the
6129 mode is already correct for the destination, use it. */
6130 if (GET_MODE (elt->exp) == new_mode)
6131 new_src = elt->exp;
6132 else
6133 {
6134 /* Calculate big endian correction for the SUBREG_BYTE.
6135 We have already checked that M1 (GET_MODE (dest))
6136 is not narrower than M2 (new_mode). */
6137 if (BYTES_BIG_ENDIAN)
6138 byte = (GET_MODE_SIZE (GET_MODE (dest))
6139 - GET_MODE_SIZE (new_mode));
6140
6141 new_src = simplify_gen_subreg (new_mode, elt->exp,
6142 GET_MODE (dest), byte);
6143 }
6144
ff27a429
R
6145 /* The call to simplify_gen_subreg fails if the value
6146 is VOIDmode, yet we can't do any simplification, e.g.
6147 for EXPR_LISTs denoting function call results.
6148 It is invalid to construct a SUBREG with a VOIDmode
6149 SUBREG_REG, hence a zero new_src means we can't do
6150 this substitution. */
6151 if (! new_src)
6152 continue;
7afe21cc
RK
6153
6154 src_hash = HASH (new_src, new_mode);
6155 src_elt = lookup (new_src, src_hash, new_mode);
6156
6157 /* Put the new source in the hash table is if isn't
6158 already. */
6159 if (src_elt == 0)
6160 {
6161 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
6162 {
6163 rehash_using_reg (new_src);
6164 src_hash = HASH (new_src, new_mode);
6165 }
7afe21cc
RK
6166 src_elt = insert (new_src, classp, src_hash, new_mode);
6167 src_elt->in_memory = elt->in_memory;
7afe21cc
RK
6168 }
6169 else if (classp && classp != src_elt->first_same_value)
278a83b2 6170 /* Show that two things that we've seen before are
7afe21cc
RK
6171 actually the same. */
6172 merge_equiv_classes (src_elt, classp);
6173
6174 classp = src_elt->first_same_value;
da932f04
JL
6175 /* Ignore invalid entries. */
6176 while (classp
f8cfc6aa 6177 && !REG_P (classp->exp)
0516f6fe 6178 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 6179 classp = classp->next_same_value;
7afe21cc
RK
6180 }
6181 }
6182 }
6183
403e25d0
RK
6184 /* Special handling for (set REG0 REG1) where REG0 is the
6185 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6186 be used in the sequel, so (if easily done) change this insn to
6187 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6188 that computed their value. Then REG1 will become a dead store
6189 and won't cloud the situation for later optimizations.
7afe21cc
RK
6190
6191 Do not make this change if REG1 is a hard register, because it will
6192 then be used in the sequel and we may be changing a two-operand insn
6193 into a three-operand insn.
6194
50270076
R
6195 Also do not do this if we are operating on a copy of INSN.
6196
6197 Also don't do this if INSN ends a libcall; this would cause an unrelated
6198 register to be set in the middle of a libcall, and we then get bad code
6199 if the libcall is deleted. */
7afe21cc 6200
f8cfc6aa 6201 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
7afe21cc 6202 && NEXT_INSN (PREV_INSN (insn)) == insn
f8cfc6aa 6203 && REG_P (SET_SRC (sets[0].rtl))
7afe21cc 6204 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
1bb98cec 6205 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
7afe21cc 6206 {
1bb98cec
DM
6207 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6208 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 6209
1bb98cec
DM
6210 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6211 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
7afe21cc 6212 {
3e25353e
AH
6213 rtx prev = insn;
6214 /* Scan for the previous nonnote insn, but stop at a basic
6215 block boundary. */
6216 do
6217 {
6218 prev = PREV_INSN (prev);
6219 }
4b4bf941 6220 while (prev && NOTE_P (prev)
3e25353e 6221 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
7080f735 6222
58ecb5e2
RS
6223 /* Do not swap the registers around if the previous instruction
6224 attaches a REG_EQUIV note to REG1.
6225
6226 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6227 from the pseudo that originally shadowed an incoming argument
6228 to another register. Some uses of REG_EQUIV might rely on it
6229 being attached to REG1 rather than REG2.
6230
6231 This section previously turned the REG_EQUIV into a REG_EQUAL
6232 note. We cannot do that because REG_EQUIV may provide an
4912a07c 6233 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
58ecb5e2 6234
4b4bf941 6235 if (prev != 0 && NONJUMP_INSN_P (prev)
403e25d0 6236 && GET_CODE (PATTERN (prev)) == SET
58ecb5e2
RS
6237 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6238 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
1bb98cec
DM
6239 {
6240 rtx dest = SET_DEST (sets[0].rtl);
403e25d0 6241 rtx src = SET_SRC (sets[0].rtl);
58ecb5e2 6242 rtx note;
7afe21cc 6243
278a83b2
KH
6244 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6245 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6246 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
1bb98cec 6247 apply_change_group ();
7afe21cc 6248
403e25d0
RK
6249 /* If INSN has a REG_EQUAL note, and this note mentions
6250 REG0, then we must delete it, because the value in
6251 REG0 has changed. If the note's value is REG1, we must
6252 also delete it because that is now this insn's dest. */
1bb98cec 6253 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
403e25d0
RK
6254 if (note != 0
6255 && (reg_mentioned_p (dest, XEXP (note, 0))
6256 || rtx_equal_p (src, XEXP (note, 0))))
1bb98cec
DM
6257 remove_note (insn, note);
6258 }
7afe21cc
RK
6259 }
6260 }
6261
6262 /* If this is a conditional jump insn, record any known equivalences due to
6263 the condition being tested. */
6264
4b4bf941 6265 if (JUMP_P (insn)
7afe21cc
RK
6266 && n_sets == 1 && GET_CODE (x) == SET
6267 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6268 record_jump_equiv (insn, 0);
6269
6270#ifdef HAVE_cc0
6271 /* If the previous insn set CC0 and this insn no longer references CC0,
6272 delete the previous insn. Here we use the fact that nothing expects CC0
6273 to be valid over an insn, which is true until the final pass. */
4b4bf941 6274 if (prev_insn && NONJUMP_INSN_P (prev_insn)
7afe21cc
RK
6275 && (tem = single_set (prev_insn)) != 0
6276 && SET_DEST (tem) == cc0_rtx
6277 && ! reg_mentioned_p (cc0_rtx, x))
6dee7384 6278 delete_insn (prev_insn);
7afe21cc
RK
6279
6280 prev_insn_cc0 = this_insn_cc0;
6281 prev_insn_cc0_mode = this_insn_cc0_mode;
7afe21cc 6282 prev_insn = insn;
4977bab6 6283#endif
7afe21cc
RK
6284}
6285\f
a4c6502a 6286/* Remove from the hash table all expressions that reference memory. */
14a774a9 6287
7afe21cc 6288static void
7080f735 6289invalidate_memory (void)
7afe21cc 6290{
b3694847
SS
6291 int i;
6292 struct table_elt *p, *next;
7afe21cc 6293
9b1549b8 6294 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
6295 for (p = table[i]; p; p = next)
6296 {
6297 next = p->next_same_hash;
6298 if (p->in_memory)
6299 remove_from_table (p, i);
6300 }
6301}
6302
14a774a9
RK
6303/* If ADDR is an address that implicitly affects the stack pointer, return
6304 1 and update the register tables to show the effect. Else, return 0. */
6305
9ae8ffe7 6306static int
7080f735 6307addr_affects_sp_p (rtx addr)
9ae8ffe7 6308{
ec8e098d 6309 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
f8cfc6aa 6310 && REG_P (XEXP (addr, 0))
9ae8ffe7 6311 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
7afe21cc 6312 {
30f72379 6313 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
46081bb3
SH
6314 {
6315 REG_TICK (STACK_POINTER_REGNUM)++;
6316 /* Is it possible to use a subreg of SP? */
6317 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6318 }
9ae8ffe7
JL
6319
6320 /* This should be *very* rare. */
6321 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6322 invalidate (stack_pointer_rtx, VOIDmode);
14a774a9 6323
9ae8ffe7 6324 return 1;
7afe21cc 6325 }
14a774a9 6326
9ae8ffe7 6327 return 0;
7afe21cc
RK
6328}
6329
6330/* Perform invalidation on the basis of everything about an insn
6331 except for invalidating the actual places that are SET in it.
6332 This includes the places CLOBBERed, and anything that might
6333 alias with something that is SET or CLOBBERed.
6334
7afe21cc
RK
6335 X is the pattern of the insn. */
6336
6337static void
7080f735 6338invalidate_from_clobbers (rtx x)
7afe21cc 6339{
7afe21cc
RK
6340 if (GET_CODE (x) == CLOBBER)
6341 {
6342 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
6343 if (ref)
6344 {
f8cfc6aa 6345 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6346 || MEM_P (ref))
9ae8ffe7
JL
6347 invalidate (ref, VOIDmode);
6348 else if (GET_CODE (ref) == STRICT_LOW_PART
6349 || GET_CODE (ref) == ZERO_EXTRACT)
6350 invalidate (XEXP (ref, 0), GET_MODE (ref));
6351 }
7afe21cc
RK
6352 }
6353 else if (GET_CODE (x) == PARALLEL)
6354 {
b3694847 6355 int i;
7afe21cc
RK
6356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6357 {
b3694847 6358 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
6359 if (GET_CODE (y) == CLOBBER)
6360 {
6361 rtx ref = XEXP (y, 0);
f8cfc6aa 6362 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6363 || MEM_P (ref))
9ae8ffe7
JL
6364 invalidate (ref, VOIDmode);
6365 else if (GET_CODE (ref) == STRICT_LOW_PART
6366 || GET_CODE (ref) == ZERO_EXTRACT)
6367 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
6368 }
6369 }
6370 }
6371}
6372\f
6373/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6374 and replace any registers in them with either an equivalent constant
6375 or the canonical form of the register. If we are inside an address,
6376 only do this if the address remains valid.
6377
6378 OBJECT is 0 except when within a MEM in which case it is the MEM.
6379
6380 Return the replacement for X. */
6381
6382static rtx
7080f735 6383cse_process_notes (rtx x, rtx object)
7afe21cc
RK
6384{
6385 enum rtx_code code = GET_CODE (x);
6f7d635c 6386 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
6387 int i;
6388
6389 switch (code)
6390 {
6391 case CONST_INT:
6392 case CONST:
6393 case SYMBOL_REF:
6394 case LABEL_REF:
6395 case CONST_DOUBLE:
69ef87e2 6396 case CONST_VECTOR:
7afe21cc
RK
6397 case PC:
6398 case CC0:
6399 case LO_SUM:
6400 return x;
6401
6402 case MEM:
c96208fa
DC
6403 validate_change (x, &XEXP (x, 0),
6404 cse_process_notes (XEXP (x, 0), x), 0);
7afe21cc
RK
6405 return x;
6406
6407 case EXPR_LIST:
6408 case INSN_LIST:
6409 if (REG_NOTE_KIND (x) == REG_EQUAL)
906c4e36 6410 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
7afe21cc 6411 if (XEXP (x, 1))
906c4e36 6412 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
7afe21cc
RK
6413 return x;
6414
e4890d45
RS
6415 case SIGN_EXTEND:
6416 case ZERO_EXTEND:
0b0ee36c 6417 case SUBREG:
e4890d45
RS
6418 {
6419 rtx new = cse_process_notes (XEXP (x, 0), object);
6420 /* We don't substitute VOIDmode constants into these rtx,
6421 since they would impede folding. */
6422 if (GET_MODE (new) != VOIDmode)
6423 validate_change (object, &XEXP (x, 0), new, 0);
6424 return x;
6425 }
6426
7afe21cc 6427 case REG:
30f72379 6428 i = REG_QTY (REGNO (x));
7afe21cc
RK
6429
6430 /* Return a constant or a constant register. */
1bb98cec 6431 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 6432 {
1bb98cec
DM
6433 struct qty_table_elem *ent = &qty_table[i];
6434
6435 if (ent->const_rtx != NULL_RTX
6436 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 6437 || REG_P (ent->const_rtx)))
1bb98cec 6438 {
4de249d9 6439 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
1bb98cec
DM
6440 if (new)
6441 return new;
6442 }
7afe21cc
RK
6443 }
6444
6445 /* Otherwise, canonicalize this register. */
906c4e36 6446 return canon_reg (x, NULL_RTX);
278a83b2 6447
e9a25f70
JL
6448 default:
6449 break;
7afe21cc
RK
6450 }
6451
6452 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6453 if (fmt[i] == 'e')
6454 validate_change (object, &XEXP (x, i),
7fe34fdf 6455 cse_process_notes (XEXP (x, i), object), 0);
7afe21cc
RK
6456
6457 return x;
6458}
6459\f
8b3686ed
RK
6460/* Process one SET of an insn that was skipped. We ignore CLOBBERs
6461 since they are done elsewhere. This function is called via note_stores. */
6462
6463static void
7080f735 6464invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
8b3686ed 6465{
9ae8ffe7
JL
6466 enum rtx_code code = GET_CODE (dest);
6467
6468 if (code == MEM
ddc356e8 6469 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
9ae8ffe7
JL
6470 /* There are times when an address can appear varying and be a PLUS
6471 during this scan when it would be a fixed address were we to know
6472 the proper equivalences. So invalidate all memory if there is
6473 a BLKmode or nonscalar memory reference or a reference to a
6474 variable address. */
6475 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
2be28ee2 6476 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
9ae8ffe7
JL
6477 {
6478 invalidate_memory ();
6479 return;
6480 }
ffcf6393 6481
f47c02fa 6482 if (GET_CODE (set) == CLOBBER
8beccec8 6483 || CC0_P (dest)
f47c02fa
RK
6484 || dest == pc_rtx)
6485 return;
6486
9ae8ffe7 6487 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
bb4034b3 6488 invalidate (XEXP (dest, 0), GET_MODE (dest));
9ae8ffe7
JL
6489 else if (code == REG || code == SUBREG || code == MEM)
6490 invalidate (dest, VOIDmode);
8b3686ed
RK
6491}
6492
6493/* Invalidate all insns from START up to the end of the function or the
6494 next label. This called when we wish to CSE around a block that is
6495 conditionally executed. */
6496
6497static void
7080f735 6498invalidate_skipped_block (rtx start)
8b3686ed
RK
6499{
6500 rtx insn;
8b3686ed 6501
4b4bf941 6502 for (insn = start; insn && !LABEL_P (insn);
8b3686ed
RK
6503 insn = NEXT_INSN (insn))
6504 {
2c3c49de 6505 if (! INSN_P (insn))
8b3686ed
RK
6506 continue;
6507
4b4bf941 6508 if (CALL_P (insn))
8b3686ed 6509 {
24a28584 6510 if (! CONST_OR_PURE_CALL_P (insn))
9ae8ffe7 6511 invalidate_memory ();
8b3686ed 6512 invalidate_for_call ();
8b3686ed
RK
6513 }
6514
97577254 6515 invalidate_from_clobbers (PATTERN (insn));
84832317 6516 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
8b3686ed
RK
6517 }
6518}
6519\f
7afe21cc
RK
6520/* Find the end of INSN's basic block and return its range,
6521 the total number of SETs in all the insns of the block, the last insn of the
6522 block, and the branch path.
6523
da7d8304 6524 The branch path indicates which branches should be followed. If a nonzero
7afe21cc
RK
6525 path size is specified, the block should be rescanned and a different set
6526 of branches will be taken. The branch path is only used if
da7d8304 6527 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
7afe21cc
RK
6528
6529 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6530 used to describe the block. It is filled in with the information about
6531 the current block. The incoming structure's branch path, if any, is used
6532 to construct the output branch path. */
6533
86caf04d 6534static void
7080f735 6535cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
5affca01 6536 int follow_jumps, int skip_blocks)
7afe21cc
RK
6537{
6538 rtx p = insn, q;
6539 int nsets = 0;
6540 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
2c3c49de 6541 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
7afe21cc
RK
6542 int path_size = data->path_size;
6543 int path_entry = 0;
6544 int i;
6545
6546 /* Update the previous branch path, if any. If the last branch was
6de9cd9a
DN
6547 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6548 If it was previously PATH_NOT_TAKEN,
7afe21cc 6549 shorten the path by one and look at the previous branch. We know that
da7d8304 6550 at least one branch must have been taken if PATH_SIZE is nonzero. */
7afe21cc
RK
6551 while (path_size > 0)
6552 {
6de9cd9a 6553 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
7afe21cc 6554 {
6de9cd9a 6555 data->path[path_size - 1].status = PATH_NOT_TAKEN;
7afe21cc
RK
6556 break;
6557 }
6558 else
6559 path_size--;
6560 }
6561
16b702cd
MM
6562 /* If the first instruction is marked with QImode, that means we've
6563 already processed this block. Our caller will look at DATA->LAST
6564 to figure out where to go next. We want to return the next block
6565 in the instruction stream, not some branched-to block somewhere
6566 else. We accomplish this by pretending our called forbid us to
6567 follow jumps, or skip blocks. */
6568 if (GET_MODE (insn) == QImode)
6569 follow_jumps = skip_blocks = 0;
6570
7afe21cc 6571 /* Scan to end of this basic block. */
4b4bf941 6572 while (p && !LABEL_P (p))
7afe21cc 6573 {
8aeea6e6 6574 /* Don't cse over a call to setjmp; on some machines (eg VAX)
7afe21cc
RK
6575 the regs restored by the longjmp come from
6576 a later time than the setjmp. */
4b4bf941 6577 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
570a98eb 6578 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
7afe21cc
RK
6579 break;
6580
6581 /* A PARALLEL can have lots of SETs in it,
6582 especially if it is really an ASM_OPERANDS. */
2c3c49de 6583 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
7afe21cc 6584 nsets += XVECLEN (PATTERN (p), 0);
4b4bf941 6585 else if (!NOTE_P (p))
7afe21cc 6586 nsets += 1;
278a83b2 6587
164c8956
RK
6588 /* Ignore insns made by CSE; they cannot affect the boundaries of
6589 the basic block. */
6590
6591 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
8b3686ed 6592 high_cuid = INSN_CUID (p);
164c8956
RK
6593 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6594 low_cuid = INSN_CUID (p);
7afe21cc
RK
6595
6596 /* See if this insn is in our branch path. If it is and we are to
6597 take it, do so. */
6598 if (path_entry < path_size && data->path[path_entry].branch == p)
6599 {
6de9cd9a 6600 if (data->path[path_entry].status != PATH_NOT_TAKEN)
7afe21cc 6601 p = JUMP_LABEL (p);
278a83b2 6602
7afe21cc
RK
6603 /* Point to next entry in path, if any. */
6604 path_entry++;
6605 }
6606
6607 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6608 was specified, we haven't reached our maximum path length, there are
6609 insns following the target of the jump, this is the only use of the
8b3686ed
RK
6610 jump label, and the target label is preceded by a BARRIER.
6611
6612 Alternatively, we can follow the jump if it branches around a
6613 block of code and there are no other branches into the block.
6614 In this case invalidate_skipped_block will be called to invalidate any
6615 registers set in the block when following the jump. */
6616
9bf8cfbf 6617 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
4b4bf941 6618 && JUMP_P (p)
278a83b2 6619 && GET_CODE (PATTERN (p)) == SET
7afe21cc 6620 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
85c3ba60 6621 && JUMP_LABEL (p) != 0
7afe21cc
RK
6622 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6623 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6624 {
6625 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
4b4bf941 6626 if ((!NOTE_P (q)
278a83b2 6627 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
4b4bf941 6628 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
570a98eb 6629 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
4b4bf941 6630 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
7afe21cc
RK
6631 break;
6632
6633 /* If we ran into a BARRIER, this code is an extension of the
6634 basic block when the branch is taken. */
4b4bf941 6635 if (follow_jumps && q != 0 && BARRIER_P (q))
7afe21cc
RK
6636 {
6637 /* Don't allow ourself to keep walking around an
6638 always-executed loop. */
fc3ffe83
RK
6639 if (next_real_insn (q) == next)
6640 {
6641 p = NEXT_INSN (p);
6642 continue;
6643 }
7afe21cc
RK
6644
6645 /* Similarly, don't put a branch in our path more than once. */
6646 for (i = 0; i < path_entry; i++)
6647 if (data->path[i].branch == p)
6648 break;
6649
6650 if (i != path_entry)
6651 break;
6652
6653 data->path[path_entry].branch = p;
6de9cd9a 6654 data->path[path_entry++].status = PATH_TAKEN;
7afe21cc
RK
6655
6656 /* This branch now ends our path. It was possible that we
6657 didn't see this branch the last time around (when the
6658 insn in front of the target was a JUMP_INSN that was
6659 turned into a no-op). */
6660 path_size = path_entry;
6661
6662 p = JUMP_LABEL (p);
6663 /* Mark block so we won't scan it again later. */
6664 PUT_MODE (NEXT_INSN (p), QImode);
6665 }
8b3686ed 6666 /* Detect a branch around a block of code. */
4b4bf941 6667 else if (skip_blocks && q != 0 && !LABEL_P (q))
8b3686ed 6668 {
b3694847 6669 rtx tmp;
8b3686ed 6670
fc3ffe83
RK
6671 if (next_real_insn (q) == next)
6672 {
6673 p = NEXT_INSN (p);
6674 continue;
6675 }
8b3686ed
RK
6676
6677 for (i = 0; i < path_entry; i++)
6678 if (data->path[i].branch == p)
6679 break;
6680
6681 if (i != path_entry)
6682 break;
6683
6684 /* This is no_labels_between_p (p, q) with an added check for
6685 reaching the end of a function (in case Q precedes P). */
6686 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
4b4bf941 6687 if (LABEL_P (tmp))
8b3686ed 6688 break;
278a83b2 6689
8b3686ed
RK
6690 if (tmp == q)
6691 {
6692 data->path[path_entry].branch = p;
6de9cd9a 6693 data->path[path_entry++].status = PATH_AROUND;
8b3686ed
RK
6694
6695 path_size = path_entry;
6696
6697 p = JUMP_LABEL (p);
6698 /* Mark block so we won't scan it again later. */
6699 PUT_MODE (NEXT_INSN (p), QImode);
6700 }
6701 }
7afe21cc 6702 }
7afe21cc
RK
6703 p = NEXT_INSN (p);
6704 }
6705
6706 data->low_cuid = low_cuid;
6707 data->high_cuid = high_cuid;
6708 data->nsets = nsets;
6709 data->last = p;
6710
6711 /* If all jumps in the path are not taken, set our path length to zero
6712 so a rescan won't be done. */
6713 for (i = path_size - 1; i >= 0; i--)
6de9cd9a 6714 if (data->path[i].status != PATH_NOT_TAKEN)
7afe21cc
RK
6715 break;
6716
6717 if (i == -1)
6718 data->path_size = 0;
6719 else
6720 data->path_size = path_size;
6721
6722 /* End the current branch path. */
6723 data->path[path_size].branch = 0;
6724}
6725\f
7afe21cc
RK
6726/* Perform cse on the instructions of a function.
6727 F is the first instruction.
6728 NREGS is one plus the highest pseudo-reg number used in the instruction.
6729
7afe21cc
RK
6730 Returns 1 if jump_optimize should be redone due to simplifications
6731 in conditional jump instructions. */
6732
6733int
5affca01 6734cse_main (rtx f, int nregs, FILE *file)
7afe21cc
RK
6735{
6736 struct cse_basic_block_data val;
b3694847
SS
6737 rtx insn = f;
6738 int i;
7afe21cc 6739
bc5e3b54
KH
6740 init_cse_reg_info (nregs);
6741
9bf8cfbf
ZD
6742 val.path = xmalloc (sizeof (struct branch_path)
6743 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6744
7afe21cc 6745 cse_jumps_altered = 0;
a5dfb4ee 6746 recorded_label_ref = 0;
7afe21cc 6747 constant_pool_entries_cost = 0;
dd0ba281 6748 constant_pool_entries_regcost = 0;
7afe21cc 6749 val.path_size = 0;
2f93eea8 6750 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6751
6752 init_recog ();
9ae8ffe7 6753 init_alias_analysis ();
7afe21cc 6754
703ad42b 6755 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
7afe21cc 6756
7afe21cc
RK
6757 /* Find the largest uid. */
6758
164c8956 6759 max_uid = get_max_uid ();
703ad42b 6760 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
7afe21cc
RK
6761
6762 /* Compute the mapping from uids to cuids.
6763 CUIDs are numbers assigned to insns, like uids,
6764 except that cuids increase monotonically through the code.
6765 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6766 between two insns is not affected by -g. */
6767
6768 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6769 {
4b4bf941 6770 if (!NOTE_P (insn)
7afe21cc
RK
6771 || NOTE_LINE_NUMBER (insn) < 0)
6772 INSN_CUID (insn) = ++i;
6773 else
6774 /* Give a line number note the same cuid as preceding insn. */
6775 INSN_CUID (insn) = i;
6776 }
6777
7afe21cc
RK
6778 /* Loop over basic blocks.
6779 Compute the maximum number of qty's needed for each basic block
6780 (which is 2 for each SET). */
6781 insn = f;
6782 while (insn)
6783 {
4eadede7 6784 cse_altered = 0;
5affca01 6785 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
8b3686ed 6786 flag_cse_skip_blocks);
7afe21cc
RK
6787
6788 /* If this basic block was already processed or has no sets, skip it. */
6789 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6790 {
6791 PUT_MODE (insn, VOIDmode);
6792 insn = (val.last ? NEXT_INSN (val.last) : 0);
6793 val.path_size = 0;
6794 continue;
6795 }
6796
6797 cse_basic_block_start = val.low_cuid;
6798 cse_basic_block_end = val.high_cuid;
6799 max_qty = val.nsets * 2;
278a83b2 6800
7afe21cc 6801 if (file)
ab87f8c8 6802 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7afe21cc
RK
6803 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6804 val.nsets);
6805
6806 /* Make MAX_QTY bigger to give us room to optimize
6807 past the end of this basic block, if that should prove useful. */
6808 if (max_qty < 500)
6809 max_qty = 500;
6810
7afe21cc
RK
6811 /* If this basic block is being extended by following certain jumps,
6812 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6813 Otherwise, we start after this basic block. */
6814 if (val.path_size > 0)
5affca01 6815 cse_basic_block (insn, val.last, val.path);
7afe21cc
RK
6816 else
6817 {
6818 int old_cse_jumps_altered = cse_jumps_altered;
6819 rtx temp;
6820
6821 /* When cse changes a conditional jump to an unconditional
6822 jump, we want to reprocess the block, since it will give
6823 us a new branch path to investigate. */
6824 cse_jumps_altered = 0;
5affca01 6825 temp = cse_basic_block (insn, val.last, val.path);
8b3686ed
RK
6826 if (cse_jumps_altered == 0
6827 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7afe21cc
RK
6828 insn = temp;
6829
6830 cse_jumps_altered |= old_cse_jumps_altered;
6831 }
6832
1f8f4a0b 6833 if (cse_altered)
1497faf6
RH
6834 ggc_collect ();
6835
7afe21cc
RK
6836#ifdef USE_C_ALLOCA
6837 alloca (0);
6838#endif
6839 }
6840
e05e2395
MM
6841 /* Clean up. */
6842 end_alias_analysis ();
75c6bd46 6843 free (uid_cuid);
1bb98cec 6844 free (reg_eqv_table);
9bf8cfbf 6845 free (val.path);
2f93eea8 6846 rtl_hooks = general_rtl_hooks;
e05e2395 6847
a5dfb4ee 6848 return cse_jumps_altered || recorded_label_ref;
7afe21cc
RK
6849}
6850
6851/* Process a single basic block. FROM and TO and the limits of the basic
6852 block. NEXT_BRANCH points to the branch path when following jumps or
75473b02 6853 a null path when not following jumps. */
7afe21cc
RK
6854
6855static rtx
5affca01 6856cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
7afe21cc 6857{
b3694847 6858 rtx insn;
7afe21cc 6859 int to_usage = 0;
7bd8b2a8 6860 rtx libcall_insn = NULL_RTX;
e9a25f70 6861 int num_insns = 0;
26d107db 6862 int no_conflict = 0;
7afe21cc 6863
08a69267
RS
6864 /* Allocate the space needed by qty_table. */
6865 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
7afe21cc
RK
6866
6867 new_basic_block ();
6868
6869 /* TO might be a label. If so, protect it from being deleted. */
4b4bf941 6870 if (to != 0 && LABEL_P (to))
7afe21cc
RK
6871 ++LABEL_NUSES (to);
6872
6873 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6874 {
b3694847 6875 enum rtx_code code = GET_CODE (insn);
e9a25f70 6876
1d22a2c1
MM
6877 /* If we have processed 1,000 insns, flush the hash table to
6878 avoid extreme quadratic behavior. We must not include NOTEs
c13e8210 6879 in the count since there may be more of them when generating
1d22a2c1
MM
6880 debugging information. If we clear the table at different
6881 times, code generated with -g -O might be different than code
6882 generated with -O but not -g.
e9a25f70
JL
6883
6884 ??? This is a real kludge and needs to be done some other way.
6885 Perhaps for 2.9. */
1d22a2c1 6886 if (code != NOTE && num_insns++ > 1000)
e9a25f70 6887 {
01e752d3 6888 flush_hash_table ();
e9a25f70
JL
6889 num_insns = 0;
6890 }
7afe21cc
RK
6891
6892 /* See if this is a branch that is part of the path. If so, and it is
6893 to be taken, do so. */
6894 if (next_branch->branch == insn)
6895 {
8b3686ed 6896 enum taken status = next_branch++->status;
6de9cd9a 6897 if (status != PATH_NOT_TAKEN)
7afe21cc 6898 {
6de9cd9a 6899 if (status == PATH_TAKEN)
8b3686ed
RK
6900 record_jump_equiv (insn, 1);
6901 else
6902 invalidate_skipped_block (NEXT_INSN (insn));
6903
7afe21cc
RK
6904 /* Set the last insn as the jump insn; it doesn't affect cc0.
6905 Then follow this branch. */
6906#ifdef HAVE_cc0
6907 prev_insn_cc0 = 0;
7afe21cc 6908 prev_insn = insn;
4977bab6 6909#endif
7afe21cc
RK
6910 insn = JUMP_LABEL (insn);
6911 continue;
6912 }
6913 }
278a83b2 6914
7afe21cc
RK
6915 if (GET_MODE (insn) == QImode)
6916 PUT_MODE (insn, VOIDmode);
6917
ec8e098d 6918 if (GET_RTX_CLASS (code) == RTX_INSN)
7afe21cc 6919 {
7bd8b2a8
JL
6920 rtx p;
6921
7afe21cc
RK
6922 /* Process notes first so we have all notes in canonical forms when
6923 looking for duplicate operations. */
6924
6925 if (REG_NOTES (insn))
906c4e36 6926 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7afe21cc
RK
6927
6928 /* Track when we are inside in LIBCALL block. Inside such a block,
6929 we do not want to record destinations. The last insn of a
6930 LIBCALL block is not considered to be part of the block, since
830a38ee 6931 its destination is the result of the block and hence should be
7afe21cc
RK
6932 recorded. */
6933
efc9bd41
RK
6934 if (REG_NOTES (insn) != 0)
6935 {
6936 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6937 libcall_insn = XEXP (p, 0);
6938 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
26d107db
KK
6939 {
6940 /* Keep libcall_insn for the last SET insn of a no-conflict
6941 block to prevent changing the destination. */
6942 if (! no_conflict)
6943 libcall_insn = 0;
6944 else
6945 no_conflict = -1;
6946 }
6947 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6948 no_conflict = 1;
efc9bd41 6949 }
7afe21cc 6950
7bd8b2a8 6951 cse_insn (insn, libcall_insn);
f85cc4cb 6952
26d107db
KK
6953 if (no_conflict == -1)
6954 {
6955 libcall_insn = 0;
6956 no_conflict = 0;
6957 }
6958
be8ac49a
RK
6959 /* If we haven't already found an insn where we added a LABEL_REF,
6960 check this one. */
4b4bf941 6961 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
be8ac49a
RK
6962 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6963 (void *) insn))
f85cc4cb 6964 recorded_label_ref = 1;
7afe21cc
RK
6965 }
6966
6967 /* If INSN is now an unconditional jump, skip to the end of our
6968 basic block by pretending that we just did the last insn in the
6969 basic block. If we are jumping to the end of our block, show
6970 that we can have one usage of TO. */
6971
7f1c097d 6972 if (any_uncondjump_p (insn))
7afe21cc
RK
6973 {
6974 if (to == 0)
fa0933ba 6975 {
08a69267 6976 free (qty_table);
fa0933ba
JL
6977 return 0;
6978 }
7afe21cc
RK
6979
6980 if (JUMP_LABEL (insn) == to)
6981 to_usage = 1;
6982
6a5293dc
RS
6983 /* Maybe TO was deleted because the jump is unconditional.
6984 If so, there is nothing left in this basic block. */
6985 /* ??? Perhaps it would be smarter to set TO
278a83b2 6986 to whatever follows this insn,
6a5293dc
RS
6987 and pretend the basic block had always ended here. */
6988 if (INSN_DELETED_P (to))
6989 break;
6990
7afe21cc
RK
6991 insn = PREV_INSN (to);
6992 }
6993
6994 /* See if it is ok to keep on going past the label
6995 which used to end our basic block. Remember that we incremented
d45cf215 6996 the count of that label, so we decrement it here. If we made
7afe21cc
RK
6997 a jump unconditional, TO_USAGE will be one; in that case, we don't
6998 want to count the use in that jump. */
6999
7000 if (to != 0 && NEXT_INSN (insn) == to
4b4bf941 7001 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7afe21cc
RK
7002 {
7003 struct cse_basic_block_data val;
146135d6 7004 rtx prev;
7afe21cc
RK
7005
7006 insn = NEXT_INSN (to);
7007
146135d6
RK
7008 /* If TO was the last insn in the function, we are done. */
7009 if (insn == 0)
fa0933ba 7010 {
08a69267 7011 free (qty_table);
fa0933ba
JL
7012 return 0;
7013 }
7afe21cc 7014
146135d6
RK
7015 /* If TO was preceded by a BARRIER we are done with this block
7016 because it has no continuation. */
7017 prev = prev_nonnote_insn (to);
4b4bf941 7018 if (prev && BARRIER_P (prev))
fa0933ba 7019 {
08a69267 7020 free (qty_table);
fa0933ba
JL
7021 return insn;
7022 }
146135d6
RK
7023
7024 /* Find the end of the following block. Note that we won't be
7025 following branches in this case. */
7afe21cc
RK
7026 to_usage = 0;
7027 val.path_size = 0;
9bf8cfbf
ZD
7028 val.path = xmalloc (sizeof (struct branch_path)
7029 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
5affca01 7030 cse_end_of_basic_block (insn, &val, 0, 0);
9bf8cfbf 7031 free (val.path);
7afe21cc
RK
7032
7033 /* If the tables we allocated have enough space left
7034 to handle all the SETs in the next basic block,
7035 continue through it. Otherwise, return,
7036 and that block will be scanned individually. */
7037 if (val.nsets * 2 + next_qty > max_qty)
7038 break;
7039
7040 cse_basic_block_start = val.low_cuid;
7041 cse_basic_block_end = val.high_cuid;
7042 to = val.last;
7043
7044 /* Prevent TO from being deleted if it is a label. */
4b4bf941 7045 if (to != 0 && LABEL_P (to))
7afe21cc
RK
7046 ++LABEL_NUSES (to);
7047
7048 /* Back up so we process the first insn in the extension. */
7049 insn = PREV_INSN (insn);
7050 }
7051 }
7052
341c100f 7053 gcc_assert (next_qty <= max_qty);
7afe21cc 7054
08a69267 7055 free (qty_table);
75c6bd46 7056
7afe21cc
RK
7057 return to ? NEXT_INSN (to) : 0;
7058}
7059\f
be8ac49a 7060/* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
45c23566 7061 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
be8ac49a
RK
7062
7063static int
7080f735 7064check_for_label_ref (rtx *rtl, void *data)
be8ac49a
RK
7065{
7066 rtx insn = (rtx) data;
7067
7068 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7069 we must rerun jump since it needs to place the note. If this is a
7070 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
ec5c56db 7071 since no REG_LABEL will be added. */
be8ac49a 7072 return (GET_CODE (*rtl) == LABEL_REF
45c23566 7073 && ! LABEL_REF_NONLOCAL_P (*rtl)
4838c5ee 7074 && LABEL_P (XEXP (*rtl, 0))
be8ac49a
RK
7075 && INSN_UID (XEXP (*rtl, 0)) != 0
7076 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7077}
7078\f
7afe21cc
RK
7079/* Count the number of times registers are used (not set) in X.
7080 COUNTS is an array in which we accumulate the count, INCR is how much
9ab81df2 7081 we count each register usage. */
7afe21cc
RK
7082
7083static void
9ab81df2 7084count_reg_usage (rtx x, int *counts, int incr)
7afe21cc 7085{
f1e7c95f 7086 enum rtx_code code;
b17d5d7c 7087 rtx note;
6f7d635c 7088 const char *fmt;
7afe21cc
RK
7089 int i, j;
7090
f1e7c95f
RK
7091 if (x == 0)
7092 return;
7093
7094 switch (code = GET_CODE (x))
7afe21cc
RK
7095 {
7096 case REG:
9ab81df2 7097 counts[REGNO (x)] += incr;
7afe21cc
RK
7098 return;
7099
7100 case PC:
7101 case CC0:
7102 case CONST:
7103 case CONST_INT:
7104 case CONST_DOUBLE:
69ef87e2 7105 case CONST_VECTOR:
7afe21cc
RK
7106 case SYMBOL_REF:
7107 case LABEL_REF:
02e39abc
JL
7108 return;
7109
278a83b2 7110 case CLOBBER:
02e39abc
JL
7111 /* If we are clobbering a MEM, mark any registers inside the address
7112 as being used. */
3c0cb5de 7113 if (MEM_P (XEXP (x, 0)))
9ab81df2 7114 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7afe21cc
RK
7115 return;
7116
7117 case SET:
7118 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 7119 if (!REG_P (SET_DEST (x)))
9ab81df2
JDA
7120 count_reg_usage (SET_DEST (x), counts, incr);
7121 count_reg_usage (SET_SRC (x), counts, incr);
7afe21cc
RK
7122 return;
7123
f1e7c95f 7124 case CALL_INSN:
9ab81df2 7125 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
ddc356e8 7126 /* Fall through. */
f1e7c95f 7127
7afe21cc
RK
7128 case INSN:
7129 case JUMP_INSN:
9ab81df2 7130 count_reg_usage (PATTERN (x), counts, incr);
7afe21cc
RK
7131
7132 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7133 use them. */
7134
b17d5d7c
ZD
7135 note = find_reg_equal_equiv_note (x);
7136 if (note)
839844be
R
7137 {
7138 rtx eqv = XEXP (note, 0);
7139
7140 if (GET_CODE (eqv) == EXPR_LIST)
7141 /* This REG_EQUAL note describes the result of a function call.
7142 Process all the arguments. */
7143 do
7144 {
9ab81df2 7145 count_reg_usage (XEXP (eqv, 0), counts, incr);
839844be
R
7146 eqv = XEXP (eqv, 1);
7147 }
7148 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7149 else
9ab81df2 7150 count_reg_usage (eqv, counts, incr);
839844be 7151 }
7afe21cc
RK
7152 return;
7153
ee960939
OH
7154 case EXPR_LIST:
7155 if (REG_NOTE_KIND (x) == REG_EQUAL
7156 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7157 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7158 involving registers in the address. */
7159 || GET_CODE (XEXP (x, 0)) == CLOBBER)
9ab81df2 7160 count_reg_usage (XEXP (x, 0), counts, incr);
ee960939 7161
9ab81df2 7162 count_reg_usage (XEXP (x, 1), counts, incr);
ee960939
OH
7163 return;
7164
a6c14a64 7165 case ASM_OPERANDS:
a6c14a64
RH
7166 /* Iterate over just the inputs, not the constraints as well. */
7167 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
9ab81df2 7168 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
a6c14a64
RH
7169 return;
7170
7afe21cc 7171 case INSN_LIST:
341c100f 7172 gcc_unreachable ();
278a83b2 7173
e9a25f70
JL
7174 default:
7175 break;
7afe21cc
RK
7176 }
7177
7178 fmt = GET_RTX_FORMAT (code);
7179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7180 {
7181 if (fmt[i] == 'e')
9ab81df2 7182 count_reg_usage (XEXP (x, i), counts, incr);
7afe21cc
RK
7183 else if (fmt[i] == 'E')
7184 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9ab81df2 7185 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7afe21cc
RK
7186 }
7187}
7188\f
4793dca1
JH
7189/* Return true if set is live. */
7190static bool
7080f735
AJ
7191set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7192 int *counts)
4793dca1
JH
7193{
7194#ifdef HAVE_cc0
7195 rtx tem;
7196#endif
7197
7198 if (set_noop_p (set))
7199 ;
7200
7201#ifdef HAVE_cc0
7202 else if (GET_CODE (SET_DEST (set)) == CC0
7203 && !side_effects_p (SET_SRC (set))
7204 && ((tem = next_nonnote_insn (insn)) == 0
7205 || !INSN_P (tem)
7206 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7207 return false;
7208#endif
f8cfc6aa 7209 else if (!REG_P (SET_DEST (set))
4793dca1
JH
7210 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7211 || counts[REGNO (SET_DEST (set))] != 0
8fff4fc1 7212 || side_effects_p (SET_SRC (set)))
4793dca1
JH
7213 return true;
7214 return false;
7215}
7216
7217/* Return true if insn is live. */
7218
7219static bool
7080f735 7220insn_live_p (rtx insn, int *counts)
4793dca1
JH
7221{
7222 int i;
a3745024 7223 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
a646f6cc
AH
7224 return true;
7225 else if (GET_CODE (PATTERN (insn)) == SET)
0021de69 7226 return set_live_p (PATTERN (insn), insn, counts);
4793dca1 7227 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
7228 {
7229 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7230 {
7231 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 7232
0021de69
DB
7233 if (GET_CODE (elt) == SET)
7234 {
7235 if (set_live_p (elt, insn, counts))
7236 return true;
7237 }
7238 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7239 return true;
7240 }
7241 return false;
7242 }
4793dca1
JH
7243 else
7244 return true;
7245}
7246
7247/* Return true if libcall is dead as a whole. */
7248
7249static bool
7080f735 7250dead_libcall_p (rtx insn, int *counts)
4793dca1 7251{
0c19a26f
RS
7252 rtx note, set, new;
7253
4793dca1
JH
7254 /* See if there's a REG_EQUAL note on this insn and try to
7255 replace the source with the REG_EQUAL expression.
7256
7257 We assume that insns with REG_RETVALs can only be reg->reg
7258 copies at this point. */
7259 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
0c19a26f
RS
7260 if (!note)
7261 return false;
7262
7263 set = single_set (insn);
7264 if (!set)
7265 return false;
4793dca1 7266
0c19a26f
RS
7267 new = simplify_rtx (XEXP (note, 0));
7268 if (!new)
7269 new = XEXP (note, 0);
4793dca1 7270
0c19a26f 7271 /* While changing insn, we must update the counts accordingly. */
9ab81df2 7272 count_reg_usage (insn, counts, -1);
1e150f2c 7273
0c19a26f
RS
7274 if (validate_change (insn, &SET_SRC (set), new, 0))
7275 {
9ab81df2 7276 count_reg_usage (insn, counts, 1);
0c19a26f
RS
7277 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7278 remove_note (insn, note);
7279 return true;
7280 }
7281
7282 if (CONSTANT_P (new))
7283 {
7284 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7285 if (new && validate_change (insn, &SET_SRC (set), new, 0))
4793dca1 7286 {
9ab81df2 7287 count_reg_usage (insn, counts, 1);
4793dca1 7288 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
1e150f2c 7289 remove_note (insn, note);
4793dca1
JH
7290 return true;
7291 }
7292 }
7080f735 7293
9ab81df2 7294 count_reg_usage (insn, counts, 1);
4793dca1
JH
7295 return false;
7296}
7297
7afe21cc
RK
7298/* Scan all the insns and delete any that are dead; i.e., they store a register
7299 that is never used or they copy a register to itself.
7300
c6a26dc4
JL
7301 This is used to remove insns made obviously dead by cse, loop or other
7302 optimizations. It improves the heuristics in loop since it won't try to
7303 move dead invariants out of loops or make givs for dead quantities. The
7304 remaining passes of the compilation are also sped up. */
7afe21cc 7305
3dec4024 7306int
7080f735 7307delete_trivially_dead_insns (rtx insns, int nreg)
7afe21cc 7308{
4da896b2 7309 int *counts;
77fa0940 7310 rtx insn, prev;
614bb5d4 7311 int in_libcall = 0, dead_libcall = 0;
65e9fa10 7312 int ndead = 0;
7afe21cc 7313
3dec4024 7314 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 7315 /* First count the number of times each register is used. */
703ad42b 7316 counts = xcalloc (nreg, sizeof (int));
03ce14db
KH
7317 for (insn = insns; insn; insn = NEXT_INSN (insn))
7318 if (INSN_P (insn))
7319 count_reg_usage (insn, counts, 1);
7afe21cc 7320
65e9fa10
KH
7321 /* Go from the last insn to the first and delete insns that only set unused
7322 registers or copy a register to itself. As we delete an insn, remove
7323 usage counts for registers it uses.
0cedb36c 7324
65e9fa10
KH
7325 The first jump optimization pass may leave a real insn as the last
7326 insn in the function. We must not skip that insn or we may end
7327 up deleting code that is not really dead. */
03ce14db 7328 for (insn = get_last_insn (); insn; insn = prev)
65e9fa10
KH
7329 {
7330 int live_insn = 0;
7afe21cc 7331
03ce14db
KH
7332 prev = PREV_INSN (insn);
7333 if (!INSN_P (insn))
7334 continue;
7afe21cc 7335
65e9fa10
KH
7336 /* Don't delete any insns that are part of a libcall block unless
7337 we can delete the whole libcall block.
7338
7339 Flow or loop might get confused if we did that. Remember
7340 that we are scanning backwards. */
7341 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7342 {
7343 in_libcall = 1;
7344 live_insn = 1;
7345 dead_libcall = dead_libcall_p (insn, counts);
7346 }
7347 else if (in_libcall)
7348 live_insn = ! dead_libcall;
7349 else
7350 live_insn = insn_live_p (insn, counts);
7afe21cc 7351
65e9fa10
KH
7352 /* If this is a dead insn, delete it and show registers in it aren't
7353 being used. */
7afe21cc 7354
65e9fa10
KH
7355 if (! live_insn)
7356 {
7357 count_reg_usage (insn, counts, -1);
7358 delete_insn_and_edges (insn);
7359 ndead++;
7360 }
e4890d45 7361
2b5936fd 7362 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
65e9fa10
KH
7363 {
7364 in_libcall = 0;
7365 dead_libcall = 0;
614bb5d4 7366 }
68252e27 7367 }
4da896b2 7368
c263766c 7369 if (dump_file && ndead)
65e9fa10
KH
7370 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7371 ndead);
4da896b2
MM
7372 /* Clean up. */
7373 free (counts);
3dec4024
JH
7374 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7375 return ndead;
7afe21cc 7376}
e129d93a
ILT
7377
7378/* This function is called via for_each_rtx. The argument, NEWREG, is
7379 a condition code register with the desired mode. If we are looking
7380 at the same register in a different mode, replace it with
7381 NEWREG. */
7382
7383static int
7384cse_change_cc_mode (rtx *loc, void *data)
7385{
fc188d37 7386 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
e129d93a
ILT
7387
7388 if (*loc
f8cfc6aa 7389 && REG_P (*loc)
fc188d37
AK
7390 && REGNO (*loc) == REGNO (args->newreg)
7391 && GET_MODE (*loc) != GET_MODE (args->newreg))
e129d93a 7392 {
fc188d37
AK
7393 validate_change (args->insn, loc, args->newreg, 1);
7394
e129d93a
ILT
7395 return -1;
7396 }
7397 return 0;
7398}
7399
fc188d37
AK
7400/* Change the mode of any reference to the register REGNO (NEWREG) to
7401 GET_MODE (NEWREG) in INSN. */
7402
7403static void
7404cse_change_cc_mode_insn (rtx insn, rtx newreg)
7405{
7406 struct change_cc_mode_args args;
7407 int success;
7408
7409 if (!INSN_P (insn))
7410 return;
7411
7412 args.insn = insn;
7413 args.newreg = newreg;
7414
7415 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7416 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7417
7418 /* If the following assertion was triggered, there is most probably
7419 something wrong with the cc_modes_compatible back end function.
7420 CC modes only can be considered compatible if the insn - with the mode
7421 replaced by any of the compatible modes - can still be recognized. */
7422 success = apply_change_group ();
7423 gcc_assert (success);
7424}
7425
e129d93a
ILT
7426/* Change the mode of any reference to the register REGNO (NEWREG) to
7427 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 7428 any instruction which modifies NEWREG. */
e129d93a
ILT
7429
7430static void
7431cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7432{
7433 rtx insn;
7434
7435 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7436 {
7437 if (! INSN_P (insn))
7438 continue;
7439
2e802a6f 7440 if (reg_set_p (newreg, insn))
e129d93a
ILT
7441 return;
7442
fc188d37 7443 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
7444 }
7445}
7446
7447/* BB is a basic block which finishes with CC_REG as a condition code
7448 register which is set to CC_SRC. Look through the successors of BB
7449 to find blocks which have a single predecessor (i.e., this one),
7450 and look through those blocks for an assignment to CC_REG which is
7451 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7452 permitted to change the mode of CC_SRC to a compatible mode. This
7453 returns VOIDmode if no equivalent assignments were found.
7454 Otherwise it returns the mode which CC_SRC should wind up with.
7455
7456 The main complexity in this function is handling the mode issues.
7457 We may have more than one duplicate which we can eliminate, and we
7458 try to find a mode which will work for multiple duplicates. */
7459
7460static enum machine_mode
7461cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7462{
7463 bool found_equiv;
7464 enum machine_mode mode;
7465 unsigned int insn_count;
7466 edge e;
7467 rtx insns[2];
7468 enum machine_mode modes[2];
7469 rtx last_insns[2];
7470 unsigned int i;
7471 rtx newreg;
628f6a4e 7472 edge_iterator ei;
e129d93a
ILT
7473
7474 /* We expect to have two successors. Look at both before picking
7475 the final mode for the comparison. If we have more successors
7476 (i.e., some sort of table jump, although that seems unlikely),
7477 then we require all beyond the first two to use the same
7478 mode. */
7479
7480 found_equiv = false;
7481 mode = GET_MODE (cc_src);
7482 insn_count = 0;
628f6a4e 7483 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a
ILT
7484 {
7485 rtx insn;
7486 rtx end;
7487
7488 if (e->flags & EDGE_COMPLEX)
7489 continue;
7490
628f6a4e 7491 if (EDGE_COUNT (e->dest->preds) != 1
e129d93a
ILT
7492 || e->dest == EXIT_BLOCK_PTR)
7493 continue;
7494
7495 end = NEXT_INSN (BB_END (e->dest));
7496 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7497 {
7498 rtx set;
7499
7500 if (! INSN_P (insn))
7501 continue;
7502
7503 /* If CC_SRC is modified, we have to stop looking for
7504 something which uses it. */
7505 if (modified_in_p (cc_src, insn))
7506 break;
7507
7508 /* Check whether INSN sets CC_REG to CC_SRC. */
7509 set = single_set (insn);
7510 if (set
f8cfc6aa 7511 && REG_P (SET_DEST (set))
e129d93a
ILT
7512 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7513 {
7514 bool found;
7515 enum machine_mode set_mode;
7516 enum machine_mode comp_mode;
7517
7518 found = false;
7519 set_mode = GET_MODE (SET_SRC (set));
7520 comp_mode = set_mode;
7521 if (rtx_equal_p (cc_src, SET_SRC (set)))
7522 found = true;
7523 else if (GET_CODE (cc_src) == COMPARE
7524 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 7525 && mode != set_mode
e129d93a
ILT
7526 && rtx_equal_p (XEXP (cc_src, 0),
7527 XEXP (SET_SRC (set), 0))
7528 && rtx_equal_p (XEXP (cc_src, 1),
7529 XEXP (SET_SRC (set), 1)))
7530
7531 {
5fd9b178 7532 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
7533 if (comp_mode != VOIDmode
7534 && (can_change_mode || comp_mode == mode))
7535 found = true;
7536 }
7537
7538 if (found)
7539 {
7540 found_equiv = true;
1f44254c 7541 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
7542 {
7543 insns[insn_count] = insn;
7544 modes[insn_count] = set_mode;
7545 last_insns[insn_count] = end;
7546 ++insn_count;
7547
1f44254c
ILT
7548 if (mode != comp_mode)
7549 {
341c100f 7550 gcc_assert (can_change_mode);
1f44254c 7551 mode = comp_mode;
fc188d37
AK
7552
7553 /* The modified insn will be re-recognized later. */
1f44254c
ILT
7554 PUT_MODE (cc_src, mode);
7555 }
e129d93a
ILT
7556 }
7557 else
7558 {
7559 if (set_mode != mode)
1f44254c
ILT
7560 {
7561 /* We found a matching expression in the
7562 wrong mode, but we don't have room to
7563 store it in the array. Punt. This case
7564 should be rare. */
7565 break;
7566 }
e129d93a
ILT
7567 /* INSN sets CC_REG to a value equal to CC_SRC
7568 with the right mode. We can simply delete
7569 it. */
7570 delete_insn (insn);
7571 }
7572
7573 /* We found an instruction to delete. Keep looking,
7574 in the hopes of finding a three-way jump. */
7575 continue;
7576 }
7577
7578 /* We found an instruction which sets the condition
7579 code, so don't look any farther. */
7580 break;
7581 }
7582
7583 /* If INSN sets CC_REG in some other way, don't look any
7584 farther. */
7585 if (reg_set_p (cc_reg, insn))
7586 break;
7587 }
7588
7589 /* If we fell off the bottom of the block, we can keep looking
7590 through successors. We pass CAN_CHANGE_MODE as false because
7591 we aren't prepared to handle compatibility between the
7592 further blocks and this block. */
7593 if (insn == end)
7594 {
1f44254c
ILT
7595 enum machine_mode submode;
7596
7597 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7598 if (submode != VOIDmode)
7599 {
341c100f 7600 gcc_assert (submode == mode);
1f44254c
ILT
7601 found_equiv = true;
7602 can_change_mode = false;
7603 }
e129d93a
ILT
7604 }
7605 }
7606
7607 if (! found_equiv)
7608 return VOIDmode;
7609
7610 /* Now INSN_COUNT is the number of instructions we found which set
7611 CC_REG to a value equivalent to CC_SRC. The instructions are in
7612 INSNS. The modes used by those instructions are in MODES. */
7613
7614 newreg = NULL_RTX;
7615 for (i = 0; i < insn_count; ++i)
7616 {
7617 if (modes[i] != mode)
7618 {
7619 /* We need to change the mode of CC_REG in INSNS[i] and
7620 subsequent instructions. */
7621 if (! newreg)
7622 {
7623 if (GET_MODE (cc_reg) == mode)
7624 newreg = cc_reg;
7625 else
7626 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7627 }
7628 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7629 newreg);
7630 }
7631
7632 delete_insn (insns[i]);
7633 }
7634
7635 return mode;
7636}
7637
7638/* If we have a fixed condition code register (or two), walk through
7639 the instructions and try to eliminate duplicate assignments. */
7640
7641void
7642cse_condition_code_reg (void)
7643{
7644 unsigned int cc_regno_1;
7645 unsigned int cc_regno_2;
7646 rtx cc_reg_1;
7647 rtx cc_reg_2;
7648 basic_block bb;
7649
5fd9b178 7650 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
7651 return;
7652
7653 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7654 if (cc_regno_2 != INVALID_REGNUM)
7655 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7656 else
7657 cc_reg_2 = NULL_RTX;
7658
7659 FOR_EACH_BB (bb)
7660 {
7661 rtx last_insn;
7662 rtx cc_reg;
7663 rtx insn;
7664 rtx cc_src_insn;
7665 rtx cc_src;
7666 enum machine_mode mode;
1f44254c 7667 enum machine_mode orig_mode;
e129d93a
ILT
7668
7669 /* Look for blocks which end with a conditional jump based on a
7670 condition code register. Then look for the instruction which
7671 sets the condition code register. Then look through the
7672 successor blocks for instructions which set the condition
7673 code register to the same value. There are other possible
7674 uses of the condition code register, but these are by far the
7675 most common and the ones which we are most likely to be able
7676 to optimize. */
7677
7678 last_insn = BB_END (bb);
4b4bf941 7679 if (!JUMP_P (last_insn))
e129d93a
ILT
7680 continue;
7681
7682 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7683 cc_reg = cc_reg_1;
7684 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7685 cc_reg = cc_reg_2;
7686 else
7687 continue;
7688
7689 cc_src_insn = NULL_RTX;
7690 cc_src = NULL_RTX;
7691 for (insn = PREV_INSN (last_insn);
7692 insn && insn != PREV_INSN (BB_HEAD (bb));
7693 insn = PREV_INSN (insn))
7694 {
7695 rtx set;
7696
7697 if (! INSN_P (insn))
7698 continue;
7699 set = single_set (insn);
7700 if (set
f8cfc6aa 7701 && REG_P (SET_DEST (set))
e129d93a
ILT
7702 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7703 {
7704 cc_src_insn = insn;
7705 cc_src = SET_SRC (set);
7706 break;
7707 }
7708 else if (reg_set_p (cc_reg, insn))
7709 break;
7710 }
7711
7712 if (! cc_src_insn)
7713 continue;
7714
7715 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7716 continue;
7717
7718 /* Now CC_REG is a condition code register used for a
7719 conditional jump at the end of the block, and CC_SRC, in
7720 CC_SRC_INSN, is the value to which that condition code
7721 register is set, and CC_SRC is still meaningful at the end of
7722 the basic block. */
7723
1f44254c 7724 orig_mode = GET_MODE (cc_src);
e129d93a 7725 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
1f44254c 7726 if (mode != VOIDmode)
e129d93a 7727 {
341c100f 7728 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 7729 if (mode != orig_mode)
2e802a6f
KH
7730 {
7731 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7732
fc188d37 7733 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
7734
7735 /* Do the same in the following insns that use the
7736 current value of CC_REG within BB. */
7737 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7738 NEXT_INSN (last_insn),
7739 newreg);
7740 }
e129d93a
ILT
7741 }
7742 }
7743}