]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
lra support for clobber_high
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
85ec4feb 2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
7afe21cc 3
1322177d 4This file is part of GCC.
7afe21cc 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7afe21cc 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7afe21cc
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7afe21cc 19
7afe21cc 20#include "config.h"
670ee920 21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
7afe21cc 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "cfghooks.h"
c7131fb2 28#include "df.h"
4d0cdd0c 29#include "memmodel.h"
6baf1cc8 30#include "tm_p.h"
957060b5 31#include "insn-config.h"
7932a3db 32#include "regs.h"
957060b5
AM
33#include "emit-rtl.h"
34#include "recog.h"
60393bbc
AM
35#include "cfgrtl.h"
36#include "cfganal.h"
37#include "cfgcleanup.h"
36566b39 38#include "alias.h"
50b2596f 39#include "toplev.h"
9bf8cfbf 40#include "params.h"
2f93eea8 41#include "rtlhooks-def.h"
ef330312 42#include "tree-pass.h"
6fb5fa3c 43#include "dbgcnt.h"
e89b312e 44#include "rtl-iter.h"
7afe21cc
RK
45
46/* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
60
61 We use two data structures to record the equivalent expressions:
1bb98cec
DM
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74Registers and "quantity numbers":
278a83b2 75
7afe21cc
RK
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
459281be 82 `REG_QTY (N)' records what quantity register N is currently thought
7afe21cc
RK
83 of as containing.
84
08a69267 85 All real quantity numbers are greater than or equal to zero.
459281be 86 If register N has not been assigned a quantity, `REG_QTY (N)' will
08a69267 87 equal -N - 1, which is always negative.
7afe21cc 88
08a69267
RS
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
7afe21cc
RK
91
92 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
1bb98cec 101 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
278a83b2 108
7afe21cc
RK
109Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
1bb98cec 112 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
113 putting the constant in the hash table as is usual for non-regs.
114
d45cf215 115 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
7afe21cc
RK
122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
1bb98cec 141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
459281be
KH
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
7afe21cc
RK
184
185 Registers themselves are entered in the hash table as well as in
459281be
KH
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
7afe21cc
RK
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
278a83b2 205
1bb98cec
DM
206/* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
7afe21cc
RK
208
209static int max_qty;
210
211/* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214static int next_qty;
215
1bb98cec 216/* Per-qty information tracking.
7afe21cc 217
1bb98cec
DM
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
7afe21cc 220
1bb98cec 221 `mode' contains the machine mode of this quantity.
7afe21cc 222
1bb98cec
DM
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
7afe21cc 228
1bb98cec
DM
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
7afe21cc 240
1bb98cec
DM
241struct qty_table_elem
242{
243 rtx const_rtx;
20468884 244 rtx_insn *const_insn;
1bb98cec
DM
245 rtx comparison_const;
246 int comparison_qty;
770ae6cc 247 unsigned int first_reg, last_reg;
496324d0
DN
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
1bb98cec 252};
7afe21cc 253
1bb98cec
DM
254/* The table of all qtys, indexed by qty number. */
255static struct qty_table_elem *qty_table;
7afe21cc 256
7afe21cc
RK
257/* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
260
96fb470d
SB
261 Instead, we store below the current and last value assigned to CC0.
262 If it should happen to be a constant, it is stored in preference
263 to the actual assigned value. In case it is a constant, we store
264 the mode in which the constant should be interpreted. */
7afe21cc 265
96fb470d 266static rtx this_insn_cc0, prev_insn_cc0;
ef4bddc2 267static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
7afe21cc
RK
268
269/* Insn being scanned. */
270
20468884 271static rtx_insn *this_insn;
f40751dd 272static bool optimize_this_for_speed_p;
7afe21cc 273
71d306d1
DE
274/* Index by register number, gives the number of the next (or
275 previous) register in the chain of registers sharing the same
7afe21cc
RK
276 value.
277
278 Or -1 if this register is at the end of the chain.
279
459281be 280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
1bb98cec
DM
281
282/* Per-register equivalence chain. */
283struct reg_eqv_elem
284{
285 int next, prev;
286};
7afe21cc 287
1bb98cec
DM
288/* The table of all register equivalence chains. */
289static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 290
14a774a9
RK
291struct cse_reg_info
292{
bc5e3b54
KH
293 /* The timestamp at which this register is initialized. */
294 unsigned int timestamp;
9b1549b8
DM
295
296 /* The quantity number of the register's current contents. */
297 int reg_qty;
298
299 /* The number of times the register has been altered in the current
300 basic block. */
301 int reg_tick;
302
30f72379
MM
303 /* The REG_TICK value at which rtx's containing this register are
304 valid in the hash table. If this does not equal the current
305 reg_tick value, such expressions existing in the hash table are
306 invalid. */
307 int reg_in_table;
46081bb3
SH
308
309 /* The SUBREG that was set when REG_TICK was last incremented. Set
310 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 311 unsigned int subreg_ticked;
30f72379 312};
7afe21cc 313
bc5e3b54 314/* A table of cse_reg_info indexed by register numbers. */
f00822b2 315static struct cse_reg_info *cse_reg_info_table;
c1edba58 316
bc5e3b54
KH
317/* The size of the above table. */
318static unsigned int cse_reg_info_table_size;
9b1549b8 319
bc5e3b54
KH
320/* The index of the first entry that has not been initialized. */
321static unsigned int cse_reg_info_table_first_uninitialized;
7afe21cc 322
bc5e3b54 323/* The timestamp at the beginning of the current run of
932ad4d9
SB
324 cse_extended_basic_block. We increment this variable at the beginning of
325 the current run of cse_extended_basic_block. The timestamp field of a
bc5e3b54
KH
326 cse_reg_info entry matches the value of this variable if and only
327 if the entry has been initialized during the current run of
932ad4d9 328 cse_extended_basic_block. */
bc5e3b54 329static unsigned int cse_reg_info_timestamp;
7afe21cc 330
278a83b2 331/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
332 currently a REG expression in the hash table. Note the difference
333 from the above variables, which indicate if the REG is mentioned in some
334 expression in the table. */
335
336static HARD_REG_SET hard_regs_in_table;
337
2aac3a01
EB
338/* True if CSE has altered the CFG. */
339static bool cse_cfg_altered;
7afe21cc 340
2aac3a01
EB
341/* True if CSE has altered conditional jump insns in such a way
342 that jump optimization should be redone. */
343static bool cse_jumps_altered;
7afe21cc 344
2aac3a01
EB
345/* True if we put a LABEL_REF into the hash table for an INSN
346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347 to put in the note. */
348static bool recorded_label_ref;
a5dfb4ee 349
7afe21cc
RK
350/* canon_hash stores 1 in do_not_record
351 if it notices a reference to CC0, PC, or some other volatile
352 subexpression. */
353
354static int do_not_record;
355
356/* canon_hash stores 1 in hash_arg_in_memory
357 if it notices a reference to memory within the expression being hashed. */
358
359static int hash_arg_in_memory;
360
7afe21cc
RK
361/* The hash table contains buckets which are chains of `struct table_elt's,
362 each recording one expression's information.
363 That expression is in the `exp' field.
364
db048faf
MM
365 The canon_exp field contains a canonical (from the point of view of
366 alias analysis) version of the `exp' field.
367
7afe21cc
RK
368 Those elements with the same hash code are chained in both directions
369 through the `next_same_hash' and `prev_same_hash' fields.
370
371 Each set of expressions with equivalent values
372 are on a two-way chain through the `next_same_value'
373 and `prev_same_value' fields, and all point with
374 the `first_same_value' field at the first element in
375 that chain. The chain is in order of increasing cost.
376 Each element's cost value is in its `cost' field.
377
378 The `in_memory' field is nonzero for elements that
379 involve any reference to memory. These elements are removed
380 whenever a write is done to an unidentified location in memory.
381 To be safe, we assume that a memory address is unidentified unless
382 the address is either a symbol constant or a constant plus
383 the frame pointer or argument pointer.
384
7afe21cc
RK
385 The `related_value' field is used to connect related expressions
386 (that differ by adding an integer).
387 The related expressions are chained in a circular fashion.
388 `related_value' is zero for expressions for which this
389 chain is not useful.
390
391 The `cost' field stores the cost of this element's expression.
630c79be
BS
392 The `regcost' field stores the value returned by approx_reg_cost for
393 this element's expression.
7afe21cc
RK
394
395 The `is_const' flag is set if the element is a constant (including
396 a fixed address).
397
398 The `flag' field is used as a temporary during some search routines.
399
400 The `mode' field is usually the same as GET_MODE (`exp'), but
401 if `exp' is a CONST_INT and has no machine mode then the `mode'
402 field is the mode it was being used as. Each constant is
403 recorded separately for each mode it is used with. */
404
7afe21cc
RK
405struct table_elt
406{
407 rtx exp;
db048faf 408 rtx canon_exp;
7afe21cc
RK
409 struct table_elt *next_same_hash;
410 struct table_elt *prev_same_hash;
411 struct table_elt *next_same_value;
412 struct table_elt *prev_same_value;
413 struct table_elt *first_same_value;
414 struct table_elt *related_value;
415 int cost;
630c79be 416 int regcost;
496324d0
DN
417 /* The size of this field should match the size
418 of the mode field of struct rtx_def (see rtl.h). */
419 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc 420 char in_memory;
7afe21cc
RK
421 char is_const;
422 char flag;
423};
424
7afe21cc
RK
425/* We don't want a lot of buckets, because we rarely have very many
426 things stored in the hash table, and a lot of buckets slows
427 down a lot of loops that happen frequently. */
9b1549b8
DM
428#define HASH_SHIFT 5
429#define HASH_SIZE (1 << HASH_SHIFT)
430#define HASH_MASK (HASH_SIZE - 1)
7afe21cc
RK
431
432/* Compute hash code of X in mode M. Special-case case where X is a pseudo
433 register (hard registers may require `do_not_record' to be set). */
434
435#define HASH(X, M) \
f8cfc6aa 436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9b1549b8
DM
437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
438 : canon_hash (X, M)) & HASH_MASK)
7afe21cc 439
0516f6fe
SB
440/* Like HASH, but without side-effects. */
441#define SAFE_HASH(X, M) \
442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
444 : safe_hash (X, M)) & HASH_MASK)
445
630c79be
BS
446/* Determine whether register number N is considered a fixed register for the
447 purpose of approximating register costs.
7afe21cc
RK
448 It is desirable to replace other regs with fixed regs, to reduce need for
449 non-fixed hard regs.
553687c9 450 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 451#define FIXED_REGNO_P(N) \
8bc169f2 452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 453 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
454
455/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
456 hard registers and pointers into the frame are the cheapest with a cost
457 of 0. Next come pseudos with a cost of one and other hard registers with
458 a cost of 2. Aside from these special cases, call `rtx_cost'. */
459
d67fb775 460#define CHEAP_REGNO(N) \
c3284718 461 (REGNO_PTR_FRAME_P (N) \
d67fb775 462 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 464
e548c9df
AM
465#define COST(X, MODE) \
466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467#define COST_IN(X, MODE, OUTER, OPNO) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
7afe21cc 469
30f72379
MM
470/* Get the number of times this register has been updated in this
471 basic block. */
472
bc5e3b54 473#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
30f72379
MM
474
475/* Get the point at which REG was recorded in the table. */
476
bc5e3b54 477#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
30f72379 478
46081bb3
SH
479/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480 SUBREG). */
481
bc5e3b54 482#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
46081bb3 483
30f72379
MM
484/* Get the quantity number for REG. */
485
bc5e3b54 486#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
30f72379 487
7afe21cc 488/* Determine if the quantity number for register X represents a valid index
1bb98cec 489 into the qty_table. */
7afe21cc 490
08a69267 491#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 492
2c5bfdf7
AN
493/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
494
495#define CHEAPER(X, Y) \
496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
497
9b1549b8 498static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
499
500/* Chain of `struct table_elt's made so far for this function
501 but currently removed from the table. */
502
503static struct table_elt *free_element_chain;
504
7afe21cc
RK
505/* Set to the cost of a constant pool reference if one was found for a
506 symbolic constant. If this was found, it means we should try to
507 convert constants into constant pool entries if they don't fit in
508 the insn. */
509
510static int constant_pool_entries_cost;
dd0ba281 511static int constant_pool_entries_regcost;
7afe21cc 512
24b97832
ILT
513/* Trace a patch through the CFG. */
514
515struct branch_path
516{
517 /* The basic block for this path entry. */
518 basic_block bb;
519};
520
932ad4d9
SB
521/* This data describes a block that will be processed by
522 cse_extended_basic_block. */
6cd4575e 523
14a774a9
RK
524struct cse_basic_block_data
525{
6cd4575e
RK
526 /* Total number of SETs in block. */
527 int nsets;
6cd4575e
RK
528 /* Size of current branch path, if any. */
529 int path_size;
932ad4d9 530 /* Current path, indicating which basic_blocks will be processed. */
24b97832 531 struct branch_path *path;
6cd4575e
RK
532};
533
6fb5fa3c
DB
534
535/* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537static bitmap cse_ebb_live_in, cse_ebb_live_out;
538
932ad4d9
SB
539/* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541static sbitmap cse_visited_basic_blocks;
542
7080f735 543static bool fixed_base_plus_p (rtx x);
e548c9df 544static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
56ae04af 545static int preferable (int, int, int, int);
7080f735 546static void new_basic_block (void);
ef4bddc2 547static void make_new_qty (unsigned int, machine_mode);
7080f735
AJ
548static void make_regs_eqv (unsigned int, unsigned int);
549static void delete_reg_equiv (unsigned int);
550static int mention_regs (rtx);
551static int insert_regs (rtx, struct table_elt *, int);
552static void remove_from_table (struct table_elt *, unsigned);
d556d181 553static void remove_pseudo_from_table (rtx, unsigned);
ef4bddc2
RS
554static struct table_elt *lookup (rtx, unsigned, machine_mode);
555static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
7080f735 556static rtx lookup_as_function (rtx, enum rtx_code);
2c5bfdf7 557static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
ef4bddc2 558 machine_mode, int, int);
7080f735 559static struct table_elt *insert (rtx, struct table_elt *, unsigned,
ef4bddc2 560 machine_mode);
7080f735 561static void merge_equiv_classes (struct table_elt *, struct table_elt *);
ef4bddc2 562static void invalidate (rtx, machine_mode);
7080f735 563static void remove_invalid_refs (unsigned int);
91914e56 564static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
ef4bddc2 565 machine_mode);
7080f735
AJ
566static void rehash_using_reg (rtx);
567static void invalidate_memory (void);
568static void invalidate_for_call (void);
569static rtx use_related_value (rtx, struct table_elt *);
0516f6fe 570
ef4bddc2
RS
571static inline unsigned canon_hash (rtx, machine_mode);
572static inline unsigned safe_hash (rtx, machine_mode);
e855c69d 573static inline unsigned hash_rtx_string (const char *);
0516f6fe 574
20468884 575static rtx canon_reg (rtx, rtx_insn *);
7080f735 576static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
ef4bddc2
RS
577 machine_mode *,
578 machine_mode *);
20468884 579static rtx fold_rtx (rtx, rtx_insn *);
7080f735 580static rtx equiv_constant (rtx);
20468884 581static void record_jump_equiv (rtx_insn *, bool);
ef4bddc2 582static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
7080f735 583 int);
20468884 584static void cse_insn (rtx_insn *);
932ad4d9 585static void cse_prescan_path (struct cse_basic_block_data *);
20468884
DM
586static void invalidate_from_clobbers (rtx_insn *);
587static void invalidate_from_sets_and_clobbers (rtx_insn *);
6fb5fa3c 588static rtx cse_process_notes (rtx, rtx, bool *);
932ad4d9 589static void cse_extended_basic_block (struct cse_basic_block_data *);
7080f735 590extern void dump_class (struct table_elt*);
bc5e3b54
KH
591static void get_cse_reg_info_1 (unsigned int regno);
592static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
7080f735
AJ
593
594static void flush_hash_table (void);
20468884
DM
595static bool insn_live_p (rtx_insn *, int *);
596static bool set_live_p (rtx, rtx_insn *, int *);
20468884
DM
597static void cse_change_cc_mode_insn (rtx_insn *, rtx);
598static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
ef4bddc2 599static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
31e9ebaf 600 bool);
7afe21cc 601\f
2f93eea8
PB
602
603#undef RTL_HOOKS_GEN_LOWPART
604#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
605
606static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
607\f
6399c0ab 608/* Nonzero if X has the form (PLUS frame-pointer integer). */
4977bab6
ZW
609
610static bool
7080f735 611fixed_base_plus_p (rtx x)
4977bab6
ZW
612{
613 switch (GET_CODE (x))
614 {
615 case REG:
616 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
617 return true;
618 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
619 return true;
4977bab6
ZW
620 return false;
621
622 case PLUS:
481683e1 623 if (!CONST_INT_P (XEXP (x, 1)))
4977bab6
ZW
624 return false;
625 return fixed_base_plus_p (XEXP (x, 0));
626
4977bab6
ZW
627 default:
628 return false;
629 }
630}
631
a4c6502a
MM
632/* Dump the expressions in the equivalence class indicated by CLASSP.
633 This function is used only for debugging. */
711417cd 634DEBUG_FUNCTION void
7080f735 635dump_class (struct table_elt *classp)
a4c6502a
MM
636{
637 struct table_elt *elt;
638
639 fprintf (stderr, "Equivalence chain for ");
640 print_rtl (stderr, classp->exp);
641 fprintf (stderr, ": \n");
278a83b2 642
a4c6502a
MM
643 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
644 {
645 print_rtl (stderr, elt->exp);
646 fprintf (stderr, "\n");
647 }
648}
649
e89b312e
RS
650/* Return an estimate of the cost of the registers used in an rtx.
651 This is mostly the number of different REG expressions in the rtx;
652 however for some exceptions like fixed registers we use a cost of
653 0. If any other hard register reference occurs, return MAX_COST. */
be8ac49a 654
630c79be 655static int
e89b312e 656approx_reg_cost (const_rtx x)
630c79be 657{
e89b312e
RS
658 int cost = 0;
659 subrtx_iterator::array_type array;
660 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
c863f8c2 661 {
e89b312e
RS
662 const_rtx x = *iter;
663 if (REG_P (x))
c863f8c2 664 {
e89b312e
RS
665 unsigned int regno = REGNO (x);
666 if (!CHEAP_REGNO (regno))
c863f8c2 667 {
e89b312e
RS
668 if (regno < FIRST_PSEUDO_REGISTER)
669 {
670 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
671 return MAX_COST;
672 cost += 2;
673 }
674 else
675 cost += 1;
c863f8c2 676 }
c863f8c2
DM
677 }
678 }
c863f8c2 679 return cost;
630c79be
BS
680}
681
682/* Return a negative value if an rtx A, whose costs are given by COST_A
683 and REGCOST_A, is more desirable than an rtx B.
684 Return a positive value if A is less desirable, or 0 if the two are
685 equally good. */
686static int
56ae04af 687preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 688{
423adbb9 689 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
690 unwanted. */
691 if (cost_a != cost_b)
692 {
693 if (cost_a == MAX_COST)
694 return 1;
695 if (cost_b == MAX_COST)
696 return -1;
697 }
698
699 /* Avoid extending lifetimes of hardregs. */
700 if (regcost_a != regcost_b)
701 {
702 if (regcost_a == MAX_COST)
703 return 1;
704 if (regcost_b == MAX_COST)
705 return -1;
706 }
707
708 /* Normal operation costs take precedence. */
630c79be
BS
709 if (cost_a != cost_b)
710 return cost_a - cost_b;
f1c1dfc3 711 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
712 if (regcost_a != regcost_b)
713 return regcost_a - regcost_b;
714 return 0;
715}
716
954a5693
RK
717/* Internal function, to compute cost when X is not a register; called
718 from COST macro to keep it simple. */
719
720static int
e548c9df 721notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
954a5693 722{
b4206259 723 scalar_int_mode int_mode, inner_mode;
954a5693 724 return ((GET_CODE (x) == SUBREG
f8cfc6aa 725 && REG_P (SUBREG_REG (x))
b4206259
RS
726 && is_int_mode (mode, &int_mode)
727 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
728 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
954a5693 729 && subreg_lowpart_p (x)
b4206259 730 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
630c79be 731 ? 0
e548c9df 732 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
954a5693
RK
733}
734
01329426 735\f
bc5e3b54 736/* Initialize CSE_REG_INFO_TABLE. */
9b1549b8 737
bc5e3b54
KH
738static void
739init_cse_reg_info (unsigned int nregs)
740{
741 /* Do we need to grow the table? */
742 if (nregs > cse_reg_info_table_size)
30f72379 743 {
bc5e3b54
KH
744 unsigned int new_size;
745
746 if (cse_reg_info_table_size < 2048)
30f72379 747 {
bc5e3b54
KH
748 /* Compute a new size that is a power of 2 and no smaller
749 than the large of NREGS and 64. */
750 new_size = (cse_reg_info_table_size
751 ? cse_reg_info_table_size : 64);
752
753 while (new_size < nregs)
754 new_size *= 2;
30f72379
MM
755 }
756 else
1590d0d4 757 {
bc5e3b54
KH
758 /* If we need a big table, allocate just enough to hold
759 NREGS registers. */
760 new_size = nregs;
1590d0d4 761 }
9b1549b8 762
bc5e3b54 763 /* Reallocate the table with NEW_SIZE entries. */
04695783 764 free (cse_reg_info_table);
5ed6ace5 765 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
bc5e3b54 766 cse_reg_info_table_size = new_size;
a811c672 767 cse_reg_info_table_first_uninitialized = 0;
bc5e3b54
KH
768 }
769
770 /* Do we have all of the first NREGS entries initialized? */
771 if (cse_reg_info_table_first_uninitialized < nregs)
772 {
773 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
774 unsigned int i;
775
776 /* Put the old timestamp on newly allocated entries so that they
777 will all be considered out of date. We do not touch those
778 entries beyond the first NREGS entries to be nice to the
779 virtual memory. */
780 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
781 cse_reg_info_table[i].timestamp = old_timestamp;
30f72379 782
bc5e3b54 783 cse_reg_info_table_first_uninitialized = nregs;
30f72379 784 }
bc5e3b54
KH
785}
786
a52aff23 787/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
bc5e3b54
KH
788
789static void
790get_cse_reg_info_1 (unsigned int regno)
791{
792 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
793 entry will be considered to have been initialized. */
794 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
795
796 /* Initialize the rest of the entry. */
797 cse_reg_info_table[regno].reg_tick = 1;
798 cse_reg_info_table[regno].reg_in_table = -1;
799 cse_reg_info_table[regno].subreg_ticked = -1;
800 cse_reg_info_table[regno].reg_qty = -regno - 1;
801}
802
803/* Find a cse_reg_info entry for REGNO. */
30f72379 804
bc5e3b54
KH
805static inline struct cse_reg_info *
806get_cse_reg_info (unsigned int regno)
807{
808 struct cse_reg_info *p = &cse_reg_info_table[regno];
809
782c0a3e
KH
810 /* If this entry has not been initialized, go ahead and initialize
811 it. */
bc5e3b54
KH
812 if (p->timestamp != cse_reg_info_timestamp)
813 get_cse_reg_info_1 (regno);
30f72379 814
9b1549b8 815 return p;
30f72379
MM
816}
817
7afe21cc
RK
818/* Clear the hash table and initialize each register with its own quantity,
819 for a new basic block. */
820
821static void
7080f735 822new_basic_block (void)
7afe21cc 823{
b3694847 824 int i;
7afe21cc 825
08a69267 826 next_qty = 0;
7afe21cc 827
a52aff23 828 /* Invalidate cse_reg_info_table. */
bc5e3b54 829 cse_reg_info_timestamp++;
7afe21cc 830
bc5e3b54 831 /* Clear out hash table state for this pass. */
7afe21cc
RK
832 CLEAR_HARD_REG_SET (hard_regs_in_table);
833
834 /* The per-quantity values used to be initialized here, but it is
835 much faster to initialize each as it is made in `make_new_qty'. */
836
9b1549b8 837 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 838 {
9b1549b8
DM
839 struct table_elt *first;
840
841 first = table[i];
842 if (first != NULL)
7afe21cc 843 {
9b1549b8
DM
844 struct table_elt *last = first;
845
846 table[i] = NULL;
847
848 while (last->next_same_hash != NULL)
849 last = last->next_same_hash;
850
851 /* Now relink this hash entire chain into
852 the free element list. */
853
854 last->next_same_hash = free_element_chain;
855 free_element_chain = first;
7afe21cc
RK
856 }
857 }
858
7afe21cc 859 prev_insn_cc0 = 0;
7afe21cc
RK
860}
861
1bb98cec
DM
862/* Say that register REG contains a quantity in mode MODE not in any
863 register before and initialize that quantity. */
7afe21cc
RK
864
865static void
ef4bddc2 866make_new_qty (unsigned int reg, machine_mode mode)
7afe21cc 867{
b3694847
SS
868 int q;
869 struct qty_table_elem *ent;
870 struct reg_eqv_elem *eqv;
7afe21cc 871
341c100f 872 gcc_assert (next_qty < max_qty);
7afe21cc 873
30f72379 874 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
875 ent = &qty_table[q];
876 ent->first_reg = reg;
877 ent->last_reg = reg;
878 ent->mode = mode;
20468884 879 ent->const_rtx = ent->const_insn = NULL;
1bb98cec
DM
880 ent->comparison_code = UNKNOWN;
881
882 eqv = &reg_eqv_table[reg];
883 eqv->next = eqv->prev = -1;
7afe21cc
RK
884}
885
886/* Make reg NEW equivalent to reg OLD.
887 OLD is not changing; NEW is. */
888
889static void
32e9fa48 890make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
7afe21cc 891{
770ae6cc 892 unsigned int lastr, firstr;
32e9fa48 893 int q = REG_QTY (old_reg);
770ae6cc 894 struct qty_table_elem *ent;
1bb98cec
DM
895
896 ent = &qty_table[q];
7afe21cc
RK
897
898 /* Nothing should become eqv until it has a "non-invalid" qty number. */
32e9fa48 899 gcc_assert (REGNO_QTY_VALID_P (old_reg));
7afe21cc 900
32e9fa48 901 REG_QTY (new_reg) = q;
1bb98cec
DM
902 firstr = ent->first_reg;
903 lastr = ent->last_reg;
7afe21cc
RK
904
905 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
906 hard regs. Among pseudos, if NEW will live longer than any other reg
907 of the same qty, and that is beyond the current basic block,
908 make it the new canonical replacement for this qty. */
909 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
910 /* Certain fixed registers might be of the class NO_REGS. This means
911 that not only can they not be allocated by the compiler, but
830a38ee 912 they cannot be used in substitutions or canonicalizations
7afe21cc 913 either. */
32e9fa48
KG
914 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
915 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
916 || (new_reg >= FIRST_PSEUDO_REGISTER
7afe21cc 917 && (firstr < FIRST_PSEUDO_REGISTER
32e9fa48 918 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
6fb5fa3c 919 && !bitmap_bit_p (cse_ebb_live_out, firstr))
32e9fa48 920 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
6fb5fa3c 921 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
7afe21cc 922 {
32e9fa48
KG
923 reg_eqv_table[firstr].prev = new_reg;
924 reg_eqv_table[new_reg].next = firstr;
925 reg_eqv_table[new_reg].prev = -1;
926 ent->first_reg = new_reg;
7afe21cc
RK
927 }
928 else
929 {
930 /* If NEW is a hard reg (known to be non-fixed), insert at end.
931 Otherwise, insert before any non-fixed hard regs that are at the
932 end. Registers of class NO_REGS cannot be used as an
933 equivalent for anything. */
1bb98cec 934 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc 935 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
32e9fa48 936 && new_reg >= FIRST_PSEUDO_REGISTER)
1bb98cec 937 lastr = reg_eqv_table[lastr].prev;
32e9fa48 938 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
1bb98cec 939 if (reg_eqv_table[lastr].next >= 0)
32e9fa48 940 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
7afe21cc 941 else
32e9fa48
KG
942 qty_table[q].last_reg = new_reg;
943 reg_eqv_table[lastr].next = new_reg;
944 reg_eqv_table[new_reg].prev = lastr;
7afe21cc
RK
945 }
946}
947
948/* Remove REG from its equivalence class. */
949
950static void
7080f735 951delete_reg_equiv (unsigned int reg)
7afe21cc 952{
b3694847
SS
953 struct qty_table_elem *ent;
954 int q = REG_QTY (reg);
955 int p, n;
7afe21cc 956
a4e262bc 957 /* If invalid, do nothing. */
08a69267 958 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
959 return;
960
1bb98cec
DM
961 ent = &qty_table[q];
962
963 p = reg_eqv_table[reg].prev;
964 n = reg_eqv_table[reg].next;
a4e262bc 965
7afe21cc 966 if (n != -1)
1bb98cec 967 reg_eqv_table[n].prev = p;
7afe21cc 968 else
1bb98cec 969 ent->last_reg = p;
7afe21cc 970 if (p != -1)
1bb98cec 971 reg_eqv_table[p].next = n;
7afe21cc 972 else
1bb98cec 973 ent->first_reg = n;
7afe21cc 974
08a69267 975 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
976}
977
978/* Remove any invalid expressions from the hash table
979 that refer to any of the registers contained in expression X.
980
981 Make sure that newly inserted references to those registers
982 as subexpressions will be considered valid.
983
984 mention_regs is not called when a register itself
985 is being stored in the table.
986
987 Return 1 if we have done something that may have changed the hash code
988 of X. */
989
990static int
7080f735 991mention_regs (rtx x)
7afe21cc 992{
b3694847
SS
993 enum rtx_code code;
994 int i, j;
995 const char *fmt;
996 int changed = 0;
7afe21cc
RK
997
998 if (x == 0)
e5f6a288 999 return 0;
7afe21cc
RK
1000
1001 code = GET_CODE (x);
1002 if (code == REG)
1003 {
770ae6cc 1004 unsigned int regno = REGNO (x);
09e18274 1005 unsigned int endregno = END_REGNO (x);
770ae6cc 1006 unsigned int i;
7afe21cc
RK
1007
1008 for (i = regno; i < endregno; i++)
1009 {
30f72379 1010 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1011 remove_invalid_refs (i);
1012
30f72379 1013 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 1014 SUBREG_TICKED (i) = -1;
7afe21cc
RK
1015 }
1016
1017 return 0;
1018 }
1019
34c73909
R
1020 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1021 pseudo if they don't use overlapping words. We handle only pseudos
1022 here for simplicity. */
f8cfc6aa 1023 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1024 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1025 {
770ae6cc 1026 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1027
30f72379 1028 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1029 {
46081bb3
SH
1030 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1031 the last store to this register really stored into this
1032 subreg, then remove the memory of this subreg.
1033 Otherwise, remove any memory of the entire register and
1034 all its subregs from the table. */
1035 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1036 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1037 remove_invalid_refs (i);
1038 else
ddef6bc7 1039 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1040 }
1041
30f72379 1042 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1043 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
34c73909
R
1044 return 0;
1045 }
1046
7afe21cc
RK
1047 /* If X is a comparison or a COMPARE and either operand is a register
1048 that does not have a quantity, give it one. This is so that a later
1049 call to record_jump_equiv won't cause X to be assigned a different
1050 hash code and not found in the table after that call.
1051
1052 It is not necessary to do this here, since rehash_using_reg can
1053 fix up the table later, but doing this here eliminates the need to
1054 call that expensive function in the most common case where the only
1055 use of the register is in the comparison. */
1056
ec8e098d 1057 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1058 {
f8cfc6aa 1059 if (REG_P (XEXP (x, 0))
7afe21cc 1060 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
9714cf43 1061 if (insert_regs (XEXP (x, 0), NULL, 0))
7afe21cc
RK
1062 {
1063 rehash_using_reg (XEXP (x, 0));
1064 changed = 1;
1065 }
1066
f8cfc6aa 1067 if (REG_P (XEXP (x, 1))
7afe21cc 1068 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
9714cf43 1069 if (insert_regs (XEXP (x, 1), NULL, 0))
7afe21cc
RK
1070 {
1071 rehash_using_reg (XEXP (x, 1));
1072 changed = 1;
1073 }
1074 }
1075
1076 fmt = GET_RTX_FORMAT (code);
1077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1078 if (fmt[i] == 'e')
1079 changed |= mention_regs (XEXP (x, i));
1080 else if (fmt[i] == 'E')
1081 for (j = 0; j < XVECLEN (x, i); j++)
1082 changed |= mention_regs (XVECEXP (x, i, j));
1083
1084 return changed;
1085}
1086
1087/* Update the register quantities for inserting X into the hash table
1088 with a value equivalent to CLASSP.
1089 (If the class does not contain a REG, it is irrelevant.)
1090 If MODIFIED is nonzero, X is a destination; it is being modified.
1091 Note that delete_reg_equiv should be called on a register
1092 before insert_regs is done on that register with MODIFIED != 0.
1093
1094 Nonzero value means that elements of reg_qty have changed
1095 so X's hash code may be different. */
1096
1097static int
7080f735 1098insert_regs (rtx x, struct table_elt *classp, int modified)
7afe21cc 1099{
f8cfc6aa 1100 if (REG_P (x))
7afe21cc 1101 {
770ae6cc
RK
1102 unsigned int regno = REGNO (x);
1103 int qty_valid;
7afe21cc 1104
1ff0c00d
RK
1105 /* If REGNO is in the equivalence table already but is of the
1106 wrong mode for that equivalence, don't do anything here. */
1107
1bb98cec
DM
1108 qty_valid = REGNO_QTY_VALID_P (regno);
1109 if (qty_valid)
1110 {
1111 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1112
1bb98cec
DM
1113 if (ent->mode != GET_MODE (x))
1114 return 0;
1115 }
1116
1117 if (modified || ! qty_valid)
7afe21cc
RK
1118 {
1119 if (classp)
1120 for (classp = classp->first_same_value;
1121 classp != 0;
1122 classp = classp->next_same_value)
f8cfc6aa 1123 if (REG_P (classp->exp)
7afe21cc
RK
1124 && GET_MODE (classp->exp) == GET_MODE (x))
1125 {
cd928652
ZD
1126 unsigned c_regno = REGNO (classp->exp);
1127
1128 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1129
1130 /* Suppose that 5 is hard reg and 100 and 101 are
1131 pseudos. Consider
1132
1133 (set (reg:si 100) (reg:si 5))
1134 (set (reg:si 5) (reg:si 100))
1135 (set (reg:di 101) (reg:di 5))
1136
1137 We would now set REG_QTY (101) = REG_QTY (5), but the
1138 entry for 5 is in SImode. When we use this later in
1139 copy propagation, we get the register in wrong mode. */
1140 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1141 continue;
1142
1143 make_regs_eqv (regno, c_regno);
7afe21cc
RK
1144 return 1;
1145 }
1146
d9f20424
R
1147 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1148 than REG_IN_TABLE to find out if there was only a single preceding
1149 invalidation - for the SUBREG - or another one, which would be
1150 for the full register. However, if we find here that REG_TICK
1151 indicates that the register is invalid, it means that it has
1152 been invalidated in a separate operation. The SUBREG might be used
1153 now (then this is a recursive call), or we might use the full REG
1154 now and a SUBREG of it later. So bump up REG_TICK so that
1155 mention_regs will do the right thing. */
1156 if (! modified
1157 && REG_IN_TABLE (regno) >= 0
1158 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1159 REG_TICK (regno)++;
1bb98cec 1160 make_new_qty (regno, GET_MODE (x));
7afe21cc
RK
1161 return 1;
1162 }
cdf4112f
TG
1163
1164 return 0;
7afe21cc 1165 }
c610adec
RK
1166
1167 /* If X is a SUBREG, we will likely be inserting the inner register in the
1168 table. If that register doesn't have an assigned quantity number at
1169 this point but does later, the insertion that we will be doing now will
1170 not be accessible because its hash code will have changed. So assign
1171 a quantity number now. */
1172
f8cfc6aa 1173 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1174 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1175 {
9714cf43 1176 insert_regs (SUBREG_REG (x), NULL, 0);
34c73909 1177 mention_regs (x);
c610adec
RK
1178 return 1;
1179 }
7afe21cc
RK
1180 else
1181 return mention_regs (x);
1182}
1183\f
2c5bfdf7
AN
1184
1185/* Compute upper and lower anchors for CST. Also compute the offset of CST
1186 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1187 CST is equal to an anchor. */
1188
1189static bool
1190compute_const_anchors (rtx cst,
1191 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1192 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1193{
1194 HOST_WIDE_INT n = INTVAL (cst);
1195
1196 *lower_base = n & ~(targetm.const_anchor - 1);
1197 if (*lower_base == n)
1198 return false;
1199
1200 *upper_base =
1201 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1202 *upper_offs = n - *upper_base;
1203 *lower_offs = n - *lower_base;
1204 return true;
1205}
1206
1207/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1208
1209static void
1210insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
ef4bddc2 1211 machine_mode mode)
2c5bfdf7
AN
1212{
1213 struct table_elt *elt;
1214 unsigned hash;
1215 rtx anchor_exp;
1216 rtx exp;
1217
1218 anchor_exp = GEN_INT (anchor);
1219 hash = HASH (anchor_exp, mode);
1220 elt = lookup (anchor_exp, hash, mode);
1221 if (!elt)
1222 elt = insert (anchor_exp, NULL, hash, mode);
1223
0a81f074 1224 exp = plus_constant (mode, reg, offs);
2c5bfdf7
AN
1225 /* REG has just been inserted and the hash codes recomputed. */
1226 mention_regs (exp);
1227 hash = HASH (exp, mode);
1228
1229 /* Use the cost of the register rather than the whole expression. When
1230 looking up constant anchors we will further offset the corresponding
1231 expression therefore it does not make sense to prefer REGs over
1232 reg-immediate additions. Prefer instead the oldest expression. Also
1233 don't prefer pseudos over hard regs so that we derive constants in
1234 argument registers from other argument registers rather than from the
1235 original pseudo that was used to synthesize the constant. */
e548c9df 1236 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
2c5bfdf7
AN
1237}
1238
1239/* The constant CST is equivalent to the register REG. Create
1240 equivalences between the two anchors of CST and the corresponding
1241 register-offset expressions using REG. */
1242
1243static void
ef4bddc2 1244insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
2c5bfdf7
AN
1245{
1246 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1247
1248 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1249 &upper_base, &upper_offs))
1250 return;
1251
1252 /* Ignore anchors of value 0. Constants accessible from zero are
1253 simple. */
1254 if (lower_base != 0)
1255 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1256
1257 if (upper_base != 0)
1258 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1259}
1260
1261/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1262 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1263 valid expression. Return the cheapest and oldest of such expressions. In
1264 *OLD, return how old the resulting expression is compared to the other
1265 equivalent expressions. */
1266
1267static rtx
1268find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1269 unsigned *old)
1270{
1271 struct table_elt *elt;
1272 unsigned idx;
1273 struct table_elt *match_elt;
1274 rtx match;
1275
1276 /* Find the cheapest and *oldest* expression to maximize the chance of
1277 reusing the same pseudo. */
1278
1279 match_elt = NULL;
1280 match = NULL_RTX;
1281 for (elt = anchor_elt->first_same_value, idx = 0;
1282 elt;
1283 elt = elt->next_same_value, idx++)
1284 {
1285 if (match_elt && CHEAPER (match_elt, elt))
1286 return match;
1287
1288 if (REG_P (elt->exp)
1289 || (GET_CODE (elt->exp) == PLUS
1290 && REG_P (XEXP (elt->exp, 0))
1291 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1292 {
1293 rtx x;
1294
1295 /* Ignore expressions that are no longer valid. */
1296 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1297 continue;
1298
0a81f074 1299 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
2c5bfdf7
AN
1300 if (REG_P (x)
1301 || (GET_CODE (x) == PLUS
1302 && IN_RANGE (INTVAL (XEXP (x, 1)),
1303 -targetm.const_anchor,
1304 targetm.const_anchor - 1)))
1305 {
1306 match = x;
1307 match_elt = elt;
1308 *old = idx;
1309 }
1310 }
1311 }
1312
1313 return match;
1314}
1315
1316/* Try to express the constant SRC_CONST using a register+offset expression
1317 derived from a constant anchor. Return it if successful or NULL_RTX,
1318 otherwise. */
1319
1320static rtx
ef4bddc2 1321try_const_anchors (rtx src_const, machine_mode mode)
2c5bfdf7
AN
1322{
1323 struct table_elt *lower_elt, *upper_elt;
1324 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1325 rtx lower_anchor_rtx, upper_anchor_rtx;
1326 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1327 unsigned lower_old, upper_old;
1328
40dbb05c
RS
1329 /* CONST_INT is used for CC modes, but we should leave those alone. */
1330 if (GET_MODE_CLASS (mode) == MODE_CC)
1331 return NULL_RTX;
1332
1333 gcc_assert (SCALAR_INT_MODE_P (mode));
2c5bfdf7
AN
1334 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1335 &upper_base, &upper_offs))
1336 return NULL_RTX;
1337
1338 lower_anchor_rtx = GEN_INT (lower_base);
1339 upper_anchor_rtx = GEN_INT (upper_base);
1340 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1341 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1342
1343 if (lower_elt)
1344 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1345 if (upper_elt)
1346 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1347
1348 if (!lower_exp)
1349 return upper_exp;
1350 if (!upper_exp)
1351 return lower_exp;
1352
1353 /* Return the older expression. */
1354 return (upper_old > lower_old ? upper_exp : lower_exp);
1355}
1356\f
7afe21cc
RK
1357/* Look in or update the hash table. */
1358
7afe21cc
RK
1359/* Remove table element ELT from use in the table.
1360 HASH is its hash code, made using the HASH macro.
1361 It's an argument because often that is known in advance
1362 and we save much time not recomputing it. */
1363
1364static void
7080f735 1365remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1366{
1367 if (elt == 0)
1368 return;
1369
1370 /* Mark this element as removed. See cse_insn. */
1371 elt->first_same_value = 0;
1372
1373 /* Remove the table element from its equivalence class. */
278a83b2 1374
7afe21cc 1375 {
b3694847
SS
1376 struct table_elt *prev = elt->prev_same_value;
1377 struct table_elt *next = elt->next_same_value;
7afe21cc 1378
278a83b2
KH
1379 if (next)
1380 next->prev_same_value = prev;
7afe21cc
RK
1381
1382 if (prev)
1383 prev->next_same_value = next;
1384 else
1385 {
b3694847 1386 struct table_elt *newfirst = next;
7afe21cc
RK
1387 while (next)
1388 {
1389 next->first_same_value = newfirst;
1390 next = next->next_same_value;
1391 }
1392 }
1393 }
1394
1395 /* Remove the table element from its hash bucket. */
1396
1397 {
b3694847
SS
1398 struct table_elt *prev = elt->prev_same_hash;
1399 struct table_elt *next = elt->next_same_hash;
7afe21cc 1400
278a83b2
KH
1401 if (next)
1402 next->prev_same_hash = prev;
7afe21cc
RK
1403
1404 if (prev)
1405 prev->next_same_hash = next;
1406 else if (table[hash] == elt)
1407 table[hash] = next;
1408 else
1409 {
1410 /* This entry is not in the proper hash bucket. This can happen
1411 when two classes were merged by `merge_equiv_classes'. Search
1412 for the hash bucket that it heads. This happens only very
1413 rarely, so the cost is acceptable. */
9b1549b8 1414 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1415 if (table[hash] == elt)
1416 table[hash] = next;
1417 }
1418 }
1419
1420 /* Remove the table element from its related-value circular chain. */
1421
1422 if (elt->related_value != 0 && elt->related_value != elt)
1423 {
b3694847 1424 struct table_elt *p = elt->related_value;
770ae6cc 1425
7afe21cc
RK
1426 while (p->related_value != elt)
1427 p = p->related_value;
1428 p->related_value = elt->related_value;
1429 if (p->related_value == p)
1430 p->related_value = 0;
1431 }
1432
9b1549b8
DM
1433 /* Now add it to the free element chain. */
1434 elt->next_same_hash = free_element_chain;
1435 free_element_chain = elt;
7afe21cc
RK
1436}
1437
d556d181
EB
1438/* Same as above, but X is a pseudo-register. */
1439
1440static void
1441remove_pseudo_from_table (rtx x, unsigned int hash)
1442{
1443 struct table_elt *elt;
1444
1445 /* Because a pseudo-register can be referenced in more than one
1446 mode, we might have to remove more than one table entry. */
1447 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1448 remove_from_table (elt, hash);
1449}
1450
7afe21cc
RK
1451/* Look up X in the hash table and return its table element,
1452 or 0 if X is not in the table.
1453
1454 MODE is the machine-mode of X, or if X is an integer constant
1455 with VOIDmode then MODE is the mode with which X will be used.
1456
1457 Here we are satisfied to find an expression whose tree structure
1458 looks like X. */
1459
1460static struct table_elt *
ef4bddc2 1461lookup (rtx x, unsigned int hash, machine_mode mode)
7afe21cc 1462{
b3694847 1463 struct table_elt *p;
7afe21cc
RK
1464
1465 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1466 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1467 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1468 return p;
1469
1470 return 0;
1471}
1472
1473/* Like `lookup' but don't care whether the table element uses invalid regs.
1474 Also ignore discrepancies in the machine mode of a register. */
1475
1476static struct table_elt *
ef4bddc2 1477lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
7afe21cc 1478{
b3694847 1479 struct table_elt *p;
7afe21cc 1480
f8cfc6aa 1481 if (REG_P (x))
7afe21cc 1482 {
770ae6cc
RK
1483 unsigned int regno = REGNO (x);
1484
7afe21cc
RK
1485 /* Don't check the machine mode when comparing registers;
1486 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1487 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1488 if (REG_P (p->exp)
7afe21cc
RK
1489 && REGNO (p->exp) == regno)
1490 return p;
1491 }
1492 else
1493 {
1494 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1495 if (mode == p->mode
1496 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1497 return p;
1498 }
1499
1500 return 0;
1501}
1502
1503/* Look for an expression equivalent to X and with code CODE.
1504 If one is found, return that expression. */
1505
1506static rtx
7080f735 1507lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1508{
b3694847 1509 struct table_elt *p
0516f6fe 1510 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1511
7afe21cc
RK
1512 if (p == 0)
1513 return 0;
1514
1515 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1516 if (GET_CODE (p->exp) == code
1517 /* Make sure this is a valid entry in the table. */
0516f6fe 1518 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1519 return p->exp;
278a83b2 1520
7afe21cc
RK
1521 return 0;
1522}
1523
2c5bfdf7
AN
1524/* Insert X in the hash table, assuming HASH is its hash code and
1525 CLASSP is an element of the class it should go in (or 0 if a new
1526 class should be made). COST is the code of X and reg_cost is the
1527 cost of registers in X. It is inserted at the proper position to
1528 keep the class in the order cheapest first.
7afe21cc
RK
1529
1530 MODE is the machine-mode of X, or if X is an integer constant
1531 with VOIDmode then MODE is the mode with which X will be used.
1532
1533 For elements of equal cheapness, the most recent one
1534 goes in front, except that the first element in the list
1535 remains first unless a cheaper element is added. The order of
1536 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1537 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1538
1539 The in_memory field in the hash table element is set to 0.
1540 The caller must set it nonzero if appropriate.
1541
1542 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1543 and if insert_regs returns a nonzero value
1544 you must then recompute its hash code before calling here.
1545
1546 If necessary, update table showing constant values of quantities. */
1547
7afe21cc 1548static struct table_elt *
2c5bfdf7 1549insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
ef4bddc2 1550 machine_mode mode, int cost, int reg_cost)
7afe21cc 1551{
b3694847 1552 struct table_elt *elt;
7afe21cc
RK
1553
1554 /* If X is a register and we haven't made a quantity for it,
1555 something is wrong. */
341c100f 1556 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1557
1558 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1559 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
09e18274 1560 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
7afe21cc 1561
7afe21cc
RK
1562 /* Put an element for X into the right hash bucket. */
1563
9b1549b8
DM
1564 elt = free_element_chain;
1565 if (elt)
770ae6cc 1566 free_element_chain = elt->next_same_hash;
9b1549b8 1567 else
5ed6ace5 1568 elt = XNEW (struct table_elt);
9b1549b8 1569
7afe21cc 1570 elt->exp = x;
db048faf 1571 elt->canon_exp = NULL_RTX;
2c5bfdf7
AN
1572 elt->cost = cost;
1573 elt->regcost = reg_cost;
7afe21cc
RK
1574 elt->next_same_value = 0;
1575 elt->prev_same_value = 0;
1576 elt->next_same_hash = table[hash];
1577 elt->prev_same_hash = 0;
1578 elt->related_value = 0;
1579 elt->in_memory = 0;
1580 elt->mode = mode;
389fdba0 1581 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1582
1583 if (table[hash])
1584 table[hash]->prev_same_hash = elt;
1585 table[hash] = elt;
1586
1587 /* Put it into the proper value-class. */
1588 if (classp)
1589 {
1590 classp = classp->first_same_value;
1591 if (CHEAPER (elt, classp))
f9da5064 1592 /* Insert at the head of the class. */
7afe21cc 1593 {
b3694847 1594 struct table_elt *p;
7afe21cc
RK
1595 elt->next_same_value = classp;
1596 classp->prev_same_value = elt;
1597 elt->first_same_value = elt;
1598
1599 for (p = classp; p; p = p->next_same_value)
1600 p->first_same_value = elt;
1601 }
1602 else
1603 {
1604 /* Insert not at head of the class. */
1605 /* Put it after the last element cheaper than X. */
b3694847 1606 struct table_elt *p, *next;
770ae6cc 1607
e84a58ff
EB
1608 for (p = classp;
1609 (next = p->next_same_value) && CHEAPER (next, elt);
1610 p = next)
1611 ;
770ae6cc 1612
7afe21cc
RK
1613 /* Put it after P and before NEXT. */
1614 elt->next_same_value = next;
1615 if (next)
1616 next->prev_same_value = elt;
770ae6cc 1617
7afe21cc
RK
1618 elt->prev_same_value = p;
1619 p->next_same_value = elt;
1620 elt->first_same_value = classp;
1621 }
1622 }
1623 else
1624 elt->first_same_value = elt;
1625
1626 /* If this is a constant being set equivalent to a register or a register
1627 being set equivalent to a constant, note the constant equivalence.
1628
1629 If this is a constant, it cannot be equivalent to a different constant,
1630 and a constant is the only thing that can be cheaper than a register. So
1631 we know the register is the head of the class (before the constant was
1632 inserted).
1633
1634 If this is a register that is not already known equivalent to a
1635 constant, we must check the entire class.
1636
1637 If this is a register that is already known equivalent to an insn,
1bb98cec 1638 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1639 insn making that quantity equivalent to the constant. */
1640
f8cfc6aa
JQ
1641 if (elt->is_const && classp && REG_P (classp->exp)
1642 && !REG_P (x))
7afe21cc 1643 {
1bb98cec
DM
1644 int exp_q = REG_QTY (REGNO (classp->exp));
1645 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1646
4de249d9 1647 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1648 exp_ent->const_insn = this_insn;
7afe21cc
RK
1649 }
1650
f8cfc6aa 1651 else if (REG_P (x)
1bb98cec
DM
1652 && classp
1653 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1654 && ! elt->is_const)
7afe21cc 1655 {
b3694847 1656 struct table_elt *p;
7afe21cc
RK
1657
1658 for (p = classp; p != 0; p = p->next_same_value)
1659 {
f8cfc6aa 1660 if (p->is_const && !REG_P (p->exp))
7afe21cc 1661 {
1bb98cec
DM
1662 int x_q = REG_QTY (REGNO (x));
1663 struct qty_table_elem *x_ent = &qty_table[x_q];
1664
770ae6cc 1665 x_ent->const_rtx
4de249d9 1666 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1667 x_ent->const_insn = this_insn;
7afe21cc
RK
1668 break;
1669 }
1670 }
1671 }
1672
f8cfc6aa 1673 else if (REG_P (x)
1bb98cec
DM
1674 && qty_table[REG_QTY (REGNO (x))].const_rtx
1675 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1676 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1677
1678 /* If this is a constant with symbolic value,
1679 and it has a term with an explicit integer value,
1680 link it up with related expressions. */
1681 if (GET_CODE (x) == CONST)
1682 {
1683 rtx subexp = get_related_value (x);
2197a88a 1684 unsigned subhash;
7afe21cc
RK
1685 struct table_elt *subelt, *subelt_prev;
1686
1687 if (subexp != 0)
1688 {
1689 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1690 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1691 subelt = lookup (subexp, subhash, mode);
1692 if (subelt == 0)
9714cf43 1693 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1694 /* Initialize SUBELT's circular chain if it has none. */
1695 if (subelt->related_value == 0)
1696 subelt->related_value = subelt;
1697 /* Find the element in the circular chain that precedes SUBELT. */
1698 subelt_prev = subelt;
1699 while (subelt_prev->related_value != subelt)
1700 subelt_prev = subelt_prev->related_value;
1701 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1702 This way the element that follows SUBELT is the oldest one. */
1703 elt->related_value = subelt_prev->related_value;
1704 subelt_prev->related_value = elt;
1705 }
1706 }
1707
1708 return elt;
1709}
2c5bfdf7
AN
1710
1711/* Wrap insert_with_costs by passing the default costs. */
1712
1713static struct table_elt *
1714insert (rtx x, struct table_elt *classp, unsigned int hash,
ef4bddc2 1715 machine_mode mode)
2c5bfdf7 1716{
e548c9df
AM
1717 return insert_with_costs (x, classp, hash, mode,
1718 COST (x, mode), approx_reg_cost (x));
2c5bfdf7
AN
1719}
1720
7afe21cc
RK
1721\f
1722/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1723 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1724 the two classes equivalent.
1725
1726 CLASS1 will be the surviving class; CLASS2 should not be used after this
1727 call.
1728
1729 Any invalid entries in CLASS2 will not be copied. */
1730
1731static void
7080f735 1732merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc 1733{
32e9fa48 1734 struct table_elt *elt, *next, *new_elt;
7afe21cc
RK
1735
1736 /* Ensure we start with the head of the classes. */
1737 class1 = class1->first_same_value;
1738 class2 = class2->first_same_value;
1739
1740 /* If they were already equal, forget it. */
1741 if (class1 == class2)
1742 return;
1743
1744 for (elt = class2; elt; elt = next)
1745 {
770ae6cc 1746 unsigned int hash;
7afe21cc 1747 rtx exp = elt->exp;
ef4bddc2 1748 machine_mode mode = elt->mode;
7afe21cc
RK
1749
1750 next = elt->next_same_value;
1751
1752 /* Remove old entry, make a new one in CLASS1's class.
1753 Don't do this for invalid entries as we cannot find their
0f41302f 1754 hash code (it also isn't necessary). */
0516f6fe 1755 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1756 {
a90fc8e0
RH
1757 bool need_rehash = false;
1758
7afe21cc 1759 hash_arg_in_memory = 0;
7afe21cc 1760 hash = HASH (exp, mode);
278a83b2 1761
f8cfc6aa 1762 if (REG_P (exp))
a90fc8e0 1763 {
08a69267 1764 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1765 delete_reg_equiv (REGNO (exp));
1766 }
278a83b2 1767
d556d181
EB
1768 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1769 remove_pseudo_from_table (exp, hash);
1770 else
1771 remove_from_table (elt, hash);
7afe21cc 1772
a90fc8e0 1773 if (insert_regs (exp, class1, 0) || need_rehash)
8ae2b8f6
JW
1774 {
1775 rehash_using_reg (exp);
1776 hash = HASH (exp, mode);
1777 }
32e9fa48
KG
1778 new_elt = insert (exp, class1, hash, mode);
1779 new_elt->in_memory = hash_arg_in_memory;
6c4d60f8
JJ
1780 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1781 new_elt->cost = MAX_COST;
7afe21cc
RK
1782 }
1783 }
1784}
1785\f
01e752d3
JL
1786/* Flush the entire hash table. */
1787
1788static void
7080f735 1789flush_hash_table (void)
01e752d3
JL
1790{
1791 int i;
1792 struct table_elt *p;
1793
9b1549b8 1794 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1795 for (p = table[i]; p; p = table[i])
1796 {
1797 /* Note that invalidate can remove elements
1798 after P in the current hash chain. */
f8cfc6aa 1799 if (REG_P (p->exp))
524e3576 1800 invalidate (p->exp, VOIDmode);
01e752d3
JL
1801 else
1802 remove_from_table (p, i);
1803 }
1804}
14a774a9 1805\f
c992c066
RS
1806/* Check whether an anti dependence exists between X and EXP. MODE and
1807 ADDR are as for canon_anti_dependence. */
be8ac49a 1808
c992c066 1809static bool
ef4bddc2 1810check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
2ce6dc2f 1811{
c992c066
RS
1812 subrtx_iterator::array_type array;
1813 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1814 {
1815 const_rtx x = *iter;
1816 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1817 return true;
1818 }
1819 return false;
2ce6dc2f
JH
1820}
1821\f
14a774a9
RK
1822/* Remove from the hash table, or mark as invalid, all expressions whose
1823 values could be altered by storing in X. X is a register, a subreg, or
1824 a memory reference with nonvarying address (because, when a memory
1825 reference with a varying address is stored in, all memory references are
1826 removed by invalidate_memory so specific invalidation is superfluous).
1827 FULL_MODE, if not VOIDmode, indicates that this much should be
1828 invalidated instead of just the amount indicated by the mode of X. This
1829 is only used for bitfield stores into memory.
1830
1831 A nonvarying address may be just a register or just a symbol reference,
1832 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1833
1834static void
ef4bddc2 1835invalidate (rtx x, machine_mode full_mode)
7afe21cc 1836{
b3694847
SS
1837 int i;
1838 struct table_elt *p;
9ddb66ca 1839 rtx addr;
7afe21cc 1840
14a774a9 1841 switch (GET_CODE (x))
7afe21cc 1842 {
14a774a9
RK
1843 case REG:
1844 {
1845 /* If X is a register, dependencies on its contents are recorded
1846 through the qty number mechanism. Just change the qty number of
1847 the register, mark it as invalid for expressions that refer to it,
1848 and remove it itself. */
770ae6cc
RK
1849 unsigned int regno = REGNO (x);
1850 unsigned int hash = HASH (x, GET_MODE (x));
7afe21cc 1851
14a774a9
RK
1852 /* Remove REGNO from any quantity list it might be on and indicate
1853 that its value might have changed. If it is a pseudo, remove its
1854 entry from the hash table.
7afe21cc 1855
14a774a9
RK
1856 For a hard register, we do the first two actions above for any
1857 additional hard registers corresponding to X. Then, if any of these
1858 registers are in the table, we must remove any REG entries that
1859 overlap these registers. */
7afe21cc 1860
14a774a9
RK
1861 delete_reg_equiv (regno);
1862 REG_TICK (regno)++;
46081bb3 1863 SUBREG_TICKED (regno) = -1;
85e4d983 1864
14a774a9 1865 if (regno >= FIRST_PSEUDO_REGISTER)
d556d181 1866 remove_pseudo_from_table (x, hash);
14a774a9
RK
1867 else
1868 {
1869 HOST_WIDE_INT in_table
1870 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
72d19505 1871 unsigned int endregno = END_REGNO (x);
770ae6cc 1872 unsigned int tregno, tendregno, rn;
b3694847 1873 struct table_elt *p, *next;
7afe21cc 1874
14a774a9 1875 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc 1876
770ae6cc 1877 for (rn = regno + 1; rn < endregno; rn++)
14a774a9 1878 {
770ae6cc
RK
1879 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1880 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1881 delete_reg_equiv (rn);
1882 REG_TICK (rn)++;
46081bb3 1883 SUBREG_TICKED (rn) = -1;
14a774a9 1884 }
7afe21cc 1885
14a774a9 1886 if (in_table)
9b1549b8 1887 for (hash = 0; hash < HASH_SIZE; hash++)
14a774a9
RK
1888 for (p = table[hash]; p; p = next)
1889 {
1890 next = p->next_same_hash;
7afe21cc 1891
f8cfc6aa 1892 if (!REG_P (p->exp)
278a83b2
KH
1893 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1894 continue;
1895
14a774a9 1896 tregno = REGNO (p->exp);
72d19505 1897 tendregno = END_REGNO (p->exp);
14a774a9
RK
1898 if (tendregno > regno && tregno < endregno)
1899 remove_from_table (p, hash);
1900 }
1901 }
1902 }
7afe21cc 1903 return;
7afe21cc 1904
14a774a9 1905 case SUBREG:
bb4034b3 1906 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1907 return;
aac5cc16 1908
14a774a9 1909 case PARALLEL:
278a83b2 1910 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1911 invalidate (XVECEXP (x, 0, i), VOIDmode);
1912 return;
aac5cc16 1913
14a774a9
RK
1914 case EXPR_LIST:
1915 /* This is part of a disjoint return value; extract the location in
1916 question ignoring the offset. */
aac5cc16
RH
1917 invalidate (XEXP (x, 0), VOIDmode);
1918 return;
7afe21cc 1919
14a774a9 1920 case MEM:
9ddb66ca 1921 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1922 /* Calculate the canonical version of X here so that
1923 true_dependence doesn't generate new RTL for X on each call. */
1924 x = canon_rtx (x);
1925
14a774a9
RK
1926 /* Remove all hash table elements that refer to overlapping pieces of
1927 memory. */
1928 if (full_mode == VOIDmode)
1929 full_mode = GET_MODE (x);
bb4034b3 1930
9b1549b8 1931 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1932 {
b3694847 1933 struct table_elt *next;
14a774a9
RK
1934
1935 for (p = table[i]; p; p = next)
1936 {
1937 next = p->next_same_hash;
db048faf
MM
1938 if (p->in_memory)
1939 {
2ce6dc2f
JH
1940 /* Just canonicalize the expression once;
1941 otherwise each time we call invalidate
1942 true_dependence will canonicalize the
1943 expression again. */
1944 if (!p->canon_exp)
1945 p->canon_exp = canon_rtx (p->exp);
c992c066 1946 if (check_dependence (p->canon_exp, x, full_mode, addr))
db048faf 1947 remove_from_table (p, i);
db048faf 1948 }
14a774a9 1949 }
7afe21cc 1950 }
14a774a9
RK
1951 return;
1952
1953 default:
341c100f 1954 gcc_unreachable ();
7afe21cc
RK
1955 }
1956}
2a1d78d8
JJ
1957
1958/* Invalidate DEST. Used when DEST is not going to be added
1959 into the hash table for some reason, e.g. do_not_record
1960 flagged on it. */
1961
1962static void
1963invalidate_dest (rtx dest)
1964{
1965 if (REG_P (dest)
1966 || GET_CODE (dest) == SUBREG
1967 || MEM_P (dest))
1968 invalidate (dest, VOIDmode);
1969 else if (GET_CODE (dest) == STRICT_LOW_PART
1970 || GET_CODE (dest) == ZERO_EXTRACT)
1971 invalidate (XEXP (dest, 0), GET_MODE (dest));
1972}
14a774a9 1973\f
7afe21cc
RK
1974/* Remove all expressions that refer to register REGNO,
1975 since they are already invalid, and we are about to
1976 mark that register valid again and don't want the old
1977 expressions to reappear as valid. */
1978
1979static void
7080f735 1980remove_invalid_refs (unsigned int regno)
7afe21cc 1981{
770ae6cc
RK
1982 unsigned int i;
1983 struct table_elt *p, *next;
7afe21cc 1984
9b1549b8 1985 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1986 for (p = table[i]; p; p = next)
1987 {
1988 next = p->next_same_hash;
c9bd6bcd 1989 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
7afe21cc
RK
1990 remove_from_table (p, i);
1991 }
1992}
34c73909 1993
ddef6bc7
JJ
1994/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1995 and mode MODE. */
34c73909 1996static void
91914e56 1997remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
ef4bddc2 1998 machine_mode mode)
34c73909 1999{
770ae6cc
RK
2000 unsigned int i;
2001 struct table_elt *p, *next;
34c73909 2002
9b1549b8 2003 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
2004 for (p = table[i]; p; p = next)
2005 {
ddef6bc7 2006 rtx exp = p->exp;
34c73909 2007 next = p->next_same_hash;
278a83b2 2008
f8cfc6aa 2009 if (!REG_P (exp)
34c73909 2010 && (GET_CODE (exp) != SUBREG
f8cfc6aa 2011 || !REG_P (SUBREG_REG (exp))
34c73909 2012 || REGNO (SUBREG_REG (exp)) != regno
91914e56
RS
2013 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2014 GET_MODE_SIZE (GET_MODE (exp)),
2015 offset, GET_MODE_SIZE (mode)))
c9bd6bcd 2016 && refers_to_regno_p (regno, p->exp))
34c73909
R
2017 remove_from_table (p, i);
2018 }
2019}
7afe21cc
RK
2020\f
2021/* Recompute the hash codes of any valid entries in the hash table that
2022 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2023
2024 This is called when we make a jump equivalence. */
2025
2026static void
7080f735 2027rehash_using_reg (rtx x)
7afe21cc 2028{
973838fd 2029 unsigned int i;
7afe21cc 2030 struct table_elt *p, *next;
2197a88a 2031 unsigned hash;
7afe21cc
RK
2032
2033 if (GET_CODE (x) == SUBREG)
2034 x = SUBREG_REG (x);
2035
2036 /* If X is not a register or if the register is known not to be in any
2037 valid entries in the table, we have no work to do. */
2038
f8cfc6aa 2039 if (!REG_P (x)
30f72379
MM
2040 || REG_IN_TABLE (REGNO (x)) < 0
2041 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
2042 return;
2043
2044 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 2045 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 2046
9b1549b8 2047 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
2048 for (p = table[i]; p; p = next)
2049 {
2050 next = p->next_same_hash;
a90fc8e0 2051 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
2052 && exp_equiv_p (p->exp, p->exp, 1, false)
2053 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
2054 {
2055 if (p->next_same_hash)
2056 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2057
2058 if (p->prev_same_hash)
2059 p->prev_same_hash->next_same_hash = p->next_same_hash;
2060 else
2061 table[i] = p->next_same_hash;
2062
2063 p->next_same_hash = table[hash];
2064 p->prev_same_hash = 0;
2065 if (table[hash])
2066 table[hash]->prev_same_hash = p;
2067 table[hash] = p;
2068 }
2069 }
2070}
2071\f
7afe21cc
RK
2072/* Remove from the hash table any expression that is a call-clobbered
2073 register. Also update their TICK values. */
2074
2075static void
7080f735 2076invalidate_for_call (void)
7afe21cc 2077{
770ae6cc
RK
2078 unsigned int regno, endregno;
2079 unsigned int i;
2197a88a 2080 unsigned hash;
7afe21cc
RK
2081 struct table_elt *p, *next;
2082 int in_table = 0;
c7fb4c7a 2083 hard_reg_set_iterator hrsi;
7afe21cc
RK
2084
2085 /* Go through all the hard registers. For each that is clobbered in
2086 a CALL_INSN, remove the register from quantity chains and update
2087 reg_tick if defined. Also see if any of these registers is currently
2088 in the table. */
c7fb4c7a
SB
2089 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2090 {
2091 delete_reg_equiv (regno);
2092 if (REG_TICK (regno) >= 0)
2093 {
2094 REG_TICK (regno)++;
2095 SUBREG_TICKED (regno) = -1;
2096 }
2097 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2098 }
7afe21cc
RK
2099
2100 /* In the case where we have no call-clobbered hard registers in the
2101 table, we are done. Otherwise, scan the table and remove any
2102 entry that overlaps a call-clobbered register. */
2103
2104 if (in_table)
9b1549b8 2105 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
2106 for (p = table[hash]; p; p = next)
2107 {
2108 next = p->next_same_hash;
2109
f8cfc6aa 2110 if (!REG_P (p->exp)
7afe21cc
RK
2111 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2112 continue;
2113
2114 regno = REGNO (p->exp);
72d19505 2115 endregno = END_REGNO (p->exp);
7afe21cc
RK
2116
2117 for (i = regno; i < endregno; i++)
2118 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2119 {
2120 remove_from_table (p, hash);
2121 break;
2122 }
2123 }
2124}
2125\f
2126/* Given an expression X of type CONST,
2127 and ELT which is its table entry (or 0 if it
2128 is not in the hash table),
2129 return an alternate expression for X as a register plus integer.
2130 If none can be found, return 0. */
2131
2132static rtx
7080f735 2133use_related_value (rtx x, struct table_elt *elt)
7afe21cc 2134{
b3694847
SS
2135 struct table_elt *relt = 0;
2136 struct table_elt *p, *q;
906c4e36 2137 HOST_WIDE_INT offset;
7afe21cc
RK
2138
2139 /* First, is there anything related known?
2140 If we have a table element, we can tell from that.
2141 Otherwise, must look it up. */
2142
2143 if (elt != 0 && elt->related_value != 0)
2144 relt = elt;
2145 else if (elt == 0 && GET_CODE (x) == CONST)
2146 {
2147 rtx subexp = get_related_value (x);
2148 if (subexp != 0)
2149 relt = lookup (subexp,
0516f6fe 2150 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
2151 GET_MODE (subexp));
2152 }
2153
2154 if (relt == 0)
2155 return 0;
2156
2157 /* Search all related table entries for one that has an
2158 equivalent register. */
2159
2160 p = relt;
2161 while (1)
2162 {
2163 /* This loop is strange in that it is executed in two different cases.
2164 The first is when X is already in the table. Then it is searching
2165 the RELATED_VALUE list of X's class (RELT). The second case is when
2166 X is not in the table. Then RELT points to a class for the related
2167 value.
2168
2169 Ensure that, whatever case we are in, that we ignore classes that have
2170 the same value as X. */
2171
2172 if (rtx_equal_p (x, p->exp))
2173 q = 0;
2174 else
2175 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2176 if (REG_P (q->exp))
7afe21cc
RK
2177 break;
2178
2179 if (q)
2180 break;
2181
2182 p = p->related_value;
2183
2184 /* We went all the way around, so there is nothing to be found.
2185 Alternatively, perhaps RELT was in the table for some other reason
2186 and it has no related values recorded. */
2187 if (p == relt || p == 0)
2188 break;
2189 }
2190
2191 if (q == 0)
2192 return 0;
2193
2194 offset = (get_integer_term (x) - get_integer_term (p->exp));
2195 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
0a81f074 2196 return plus_constant (q->mode, q->exp, offset);
7afe21cc
RK
2197}
2198\f
e855c69d 2199
6462bb43
AO
2200/* Hash a string. Just add its bytes up. */
2201static inline unsigned
0516f6fe 2202hash_rtx_string (const char *ps)
6462bb43
AO
2203{
2204 unsigned hash = 0;
68252e27
KH
2205 const unsigned char *p = (const unsigned char *) ps;
2206
6462bb43
AO
2207 if (p)
2208 while (*p)
2209 hash += *p++;
2210
2211 return hash;
2212}
2213
b8698a0f 2214/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
e855c69d 2215 When the callback returns true, we continue with the new rtx. */
7afe21cc 2216
0516f6fe 2217unsigned
ef4bddc2 2218hash_rtx_cb (const_rtx x, machine_mode mode,
e855c69d
AB
2219 int *do_not_record_p, int *hash_arg_in_memory_p,
2220 bool have_reg_qty, hash_rtx_callback_function cb)
7afe21cc 2221{
b3694847
SS
2222 int i, j;
2223 unsigned hash = 0;
2224 enum rtx_code code;
2225 const char *fmt;
ef4bddc2 2226 machine_mode newmode;
e855c69d 2227 rtx newx;
7afe21cc 2228
0516f6fe
SB
2229 /* Used to turn recursion into iteration. We can't rely on GCC's
2230 tail-recursion elimination since we need to keep accumulating values
2231 in HASH. */
7afe21cc
RK
2232 repeat:
2233 if (x == 0)
2234 return hash;
2235
e855c69d 2236 /* Invoke the callback first. */
b8698a0f 2237 if (cb != NULL
e855c69d
AB
2238 && ((*cb) (x, mode, &newx, &newmode)))
2239 {
2240 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2241 hash_arg_in_memory_p, have_reg_qty, cb);
2242 return hash;
2243 }
2244
7afe21cc
RK
2245 code = GET_CODE (x);
2246 switch (code)
2247 {
2248 case REG:
2249 {
770ae6cc 2250 unsigned int regno = REGNO (x);
7afe21cc 2251
e855c69d 2252 if (do_not_record_p && !reload_completed)
7afe21cc 2253 {
0516f6fe
SB
2254 /* On some machines, we can't record any non-fixed hard register,
2255 because extending its life will cause reload problems. We
2256 consider ap, fp, sp, gp to be fixed for this purpose.
2257
2258 We also consider CCmode registers to be fixed for this purpose;
2259 failure to do so leads to failure to simplify 0<100 type of
2260 conditionals.
2261
2262 On all machines, we can't record any global registers.
2263 Nor should we record any register that is in a small
07b8f0a8 2264 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
0516f6fe
SB
2265 bool record;
2266
2267 if (regno >= FIRST_PSEUDO_REGISTER)
2268 record = true;
2269 else if (x == frame_pointer_rtx
2270 || x == hard_frame_pointer_rtx
2271 || x == arg_pointer_rtx
2272 || x == stack_pointer_rtx
2273 || x == pic_offset_table_rtx)
2274 record = true;
2275 else if (global_regs[regno])
2276 record = false;
2277 else if (fixed_regs[regno])
2278 record = true;
2279 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2280 record = true;
42db504c 2281 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
0516f6fe 2282 record = false;
07b8f0a8 2283 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
0516f6fe
SB
2284 record = false;
2285 else
2286 record = true;
2287
2288 if (!record)
2289 {
2290 *do_not_record_p = 1;
2291 return 0;
2292 }
7afe21cc 2293 }
770ae6cc 2294
0516f6fe
SB
2295 hash += ((unsigned int) REG << 7);
2296 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2297 return hash;
7afe21cc
RK
2298 }
2299
34c73909
R
2300 /* We handle SUBREG of a REG specially because the underlying
2301 reg changes its hash value with every value change; we don't
2302 want to have to forget unrelated subregs when one subreg changes. */
2303 case SUBREG:
2304 {
f8cfc6aa 2305 if (REG_P (SUBREG_REG (x)))
34c73909 2306 {
0516f6fe 2307 hash += (((unsigned int) SUBREG << 7)
ddef6bc7 2308 + REGNO (SUBREG_REG (x))
91914e56
RS
2309 + (constant_lower_bound (SUBREG_BYTE (x))
2310 / UNITS_PER_WORD));
34c73909
R
2311 return hash;
2312 }
2313 break;
2314 }
2315
7afe21cc 2316 case CONST_INT:
0516f6fe
SB
2317 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2318 + (unsigned int) INTVAL (x));
2319 return hash;
7afe21cc 2320
807e902e
KZ
2321 case CONST_WIDE_INT:
2322 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2323 hash += CONST_WIDE_INT_ELT (x, i);
2324 return hash;
2325
0c12fc9b
RS
2326 case CONST_POLY_INT:
2327 {
2328 inchash::hash h;
2329 h.add_int (hash);
2330 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2331 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2332 return h.end ();
2333 }
2334
7afe21cc
RK
2335 case CONST_DOUBLE:
2336 /* This is like the general case, except that it only counts
2337 the integers representing the constant. */
0516f6fe 2338 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
807e902e 2339 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
0516f6fe
SB
2340 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2341 + (unsigned int) CONST_DOUBLE_HIGH (x));
807e902e
KZ
2342 else
2343 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
7afe21cc
RK
2344 return hash;
2345
091a3ac7
CF
2346 case CONST_FIXED:
2347 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2348 hash += fixed_hash (CONST_FIXED_VALUE (x));
2349 return hash;
2350
69ef87e2
AH
2351 case CONST_VECTOR:
2352 {
2353 int units;
2354 rtx elt;
2355
16c78b66 2356 units = const_vector_encoded_nelts (x);
69ef87e2
AH
2357
2358 for (i = 0; i < units; ++i)
2359 {
16c78b66 2360 elt = CONST_VECTOR_ENCODED_ELT (x, i);
e855c69d 2361 hash += hash_rtx_cb (elt, GET_MODE (elt),
b8698a0f 2362 do_not_record_p, hash_arg_in_memory_p,
e855c69d 2363 have_reg_qty, cb);
69ef87e2
AH
2364 }
2365
2366 return hash;
2367 }
2368
7afe21cc
RK
2369 /* Assume there is only one rtx object for any given label. */
2370 case LABEL_REF:
0516f6fe
SB
2371 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2372 differences and differences between each stage's debugging dumps. */
2373 hash += (((unsigned int) LABEL_REF << 7)
04a121a7 2374 + CODE_LABEL_NUMBER (label_ref_label (x)));
2197a88a 2375 return hash;
7afe21cc
RK
2376
2377 case SYMBOL_REF:
0516f6fe
SB
2378 {
2379 /* Don't hash on the symbol's address to avoid bootstrap differences.
2380 Different hash values may cause expressions to be recorded in
2381 different orders and thus different registers to be used in the
2382 final assembler. This also avoids differences in the dump files
2383 between various stages. */
2384 unsigned int h = 0;
2385 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2386
2387 while (*p)
2388 h += (h << 7) + *p++; /* ??? revisit */
2389
2390 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2391 return hash;
2392 }
7afe21cc
RK
2393
2394 case MEM:
14a774a9
RK
2395 /* We don't record if marked volatile or if BLKmode since we don't
2396 know the size of the move. */
e855c69d 2397 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
7afe21cc 2398 {
0516f6fe 2399 *do_not_record_p = 1;
7afe21cc
RK
2400 return 0;
2401 }
0516f6fe
SB
2402 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2403 *hash_arg_in_memory_p = 1;
4977bab6 2404
7afe21cc
RK
2405 /* Now that we have already found this special case,
2406 might as well speed it up as much as possible. */
2197a88a 2407 hash += (unsigned) MEM;
7afe21cc
RK
2408 x = XEXP (x, 0);
2409 goto repeat;
2410
bb07060a
JW
2411 case USE:
2412 /* A USE that mentions non-volatile memory needs special
2413 handling since the MEM may be BLKmode which normally
2414 prevents an entry from being made. Pure calls are
0516f6fe
SB
2415 marked by a USE which mentions BLKmode memory.
2416 See calls.c:emit_call_1. */
3c0cb5de 2417 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2418 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2419 {
68252e27 2420 hash += (unsigned) USE;
bb07060a
JW
2421 x = XEXP (x, 0);
2422
0516f6fe
SB
2423 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2424 *hash_arg_in_memory_p = 1;
bb07060a
JW
2425
2426 /* Now that we have already found this special case,
2427 might as well speed it up as much as possible. */
2428 hash += (unsigned) MEM;
2429 x = XEXP (x, 0);
2430 goto repeat;
2431 }
2432 break;
2433
7afe21cc
RK
2434 case PRE_DEC:
2435 case PRE_INC:
2436 case POST_DEC:
2437 case POST_INC:
4b983fdc
RH
2438 case PRE_MODIFY:
2439 case POST_MODIFY:
7afe21cc
RK
2440 case PC:
2441 case CC0:
2442 case CALL:
2443 case UNSPEC_VOLATILE:
e855c69d
AB
2444 if (do_not_record_p) {
2445 *do_not_record_p = 1;
2446 return 0;
2447 }
2448 else
2449 return hash;
2450 break;
7afe21cc
RK
2451
2452 case ASM_OPERANDS:
e855c69d 2453 if (do_not_record_p && MEM_VOLATILE_P (x))
7afe21cc 2454 {
0516f6fe 2455 *do_not_record_p = 1;
7afe21cc
RK
2456 return 0;
2457 }
6462bb43
AO
2458 else
2459 {
2460 /* We don't want to take the filename and line into account. */
2461 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2462 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2463 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2464 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2465
2466 if (ASM_OPERANDS_INPUT_LENGTH (x))
2467 {
2468 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2469 {
e855c69d
AB
2470 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2471 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2472 do_not_record_p, hash_arg_in_memory_p,
2473 have_reg_qty, cb)
0516f6fe 2474 + hash_rtx_string
e855c69d 2475 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2476 }
2477
0516f6fe 2478 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2479 x = ASM_OPERANDS_INPUT (x, 0);
2480 mode = GET_MODE (x);
2481 goto repeat;
2482 }
2483
2484 return hash;
2485 }
e9a25f70 2486 break;
278a83b2 2487
e9a25f70
JL
2488 default:
2489 break;
7afe21cc
RK
2490 }
2491
2492 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2493 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2494 fmt = GET_RTX_FORMAT (code);
2495 for (; i >= 0; i--)
2496 {
341c100f 2497 switch (fmt[i])
7afe21cc 2498 {
341c100f 2499 case 'e':
7afe21cc
RK
2500 /* If we are about to do the last recursive call
2501 needed at this level, change it into iteration.
2502 This function is called enough to be worth it. */
2503 if (i == 0)
2504 {
0516f6fe 2505 x = XEXP (x, i);
7afe21cc
RK
2506 goto repeat;
2507 }
b8698a0f 2508
bbbbb16a 2509 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
e855c69d
AB
2510 hash_arg_in_memory_p,
2511 have_reg_qty, cb);
341c100f 2512 break;
0516f6fe 2513
341c100f
NS
2514 case 'E':
2515 for (j = 0; j < XVECLEN (x, i); j++)
bbbbb16a 2516 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
e855c69d
AB
2517 hash_arg_in_memory_p,
2518 have_reg_qty, cb);
341c100f 2519 break;
0516f6fe 2520
341c100f
NS
2521 case 's':
2522 hash += hash_rtx_string (XSTR (x, i));
2523 break;
2524
2525 case 'i':
2526 hash += (unsigned int) XINT (x, i);
2527 break;
2528
91914e56
RS
2529 case 'p':
2530 hash += constant_lower_bound (SUBREG_BYTE (x));
2531 break;
2532
341c100f
NS
2533 case '0': case 't':
2534 /* Unused. */
2535 break;
2536
2537 default:
2538 gcc_unreachable ();
2539 }
7afe21cc 2540 }
0516f6fe 2541
7afe21cc
RK
2542 return hash;
2543}
2544
e855c69d
AB
2545/* Hash an rtx. We are careful to make sure the value is never negative.
2546 Equivalent registers hash identically.
2547 MODE is used in hashing for CONST_INTs only;
2548 otherwise the mode of X is used.
2549
2550 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2551
2552 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
3e55d79b 2553 a MEM rtx which does not have the MEM_READONLY_P flag set.
e855c69d
AB
2554
2555 Note that cse_insn knows that the hash code of a MEM expression
2556 is just (int) MEM plus the hash code of the address. */
2557
2558unsigned
ef4bddc2 2559hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
e855c69d
AB
2560 int *hash_arg_in_memory_p, bool have_reg_qty)
2561{
2562 return hash_rtx_cb (x, mode, do_not_record_p,
2563 hash_arg_in_memory_p, have_reg_qty, NULL);
2564}
2565
0516f6fe
SB
2566/* Hash an rtx X for cse via hash_rtx.
2567 Stores 1 in do_not_record if any subexpression is volatile.
2568 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
3e55d79b 2569 does not have the MEM_READONLY_P flag set. */
0516f6fe
SB
2570
2571static inline unsigned
ef4bddc2 2572canon_hash (rtx x, machine_mode mode)
0516f6fe
SB
2573{
2574 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2575}
2576
2577/* Like canon_hash but with no side effects, i.e. do_not_record
2578 and hash_arg_in_memory are not changed. */
7afe21cc 2579
0516f6fe 2580static inline unsigned
ef4bddc2 2581safe_hash (rtx x, machine_mode mode)
7afe21cc 2582{
0516f6fe
SB
2583 int dummy_do_not_record;
2584 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2585}
2586\f
2587/* Return 1 iff X and Y would canonicalize into the same thing,
2588 without actually constructing the canonicalization of either one.
2589 If VALIDATE is nonzero,
2590 we assume X is an expression being processed from the rtl
2591 and Y was found in the hash table. We check register refs
2592 in Y for being marked as valid.
2593
0516f6fe 2594 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2595
0516f6fe 2596int
4f588890 2597exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
7afe21cc 2598{
b3694847
SS
2599 int i, j;
2600 enum rtx_code code;
2601 const char *fmt;
7afe21cc
RK
2602
2603 /* Note: it is incorrect to assume an expression is equivalent to itself
2604 if VALIDATE is nonzero. */
2605 if (x == y && !validate)
2606 return 1;
0516f6fe 2607
7afe21cc
RK
2608 if (x == 0 || y == 0)
2609 return x == y;
2610
2611 code = GET_CODE (x);
2612 if (code != GET_CODE (y))
0516f6fe 2613 return 0;
7afe21cc
RK
2614
2615 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2616 if (GET_MODE (x) != GET_MODE (y))
2617 return 0;
2618
5932a4d4 2619 /* MEMs referring to different address space are not equivalent. */
09e881c9
BE
2620 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2621 return 0;
2622
7afe21cc
RK
2623 switch (code)
2624 {
2625 case PC:
2626 case CC0:
d8116890 2627 CASE_CONST_UNIQUE:
c13e8210 2628 return x == y;
7afe21cc
RK
2629
2630 case LABEL_REF:
04a121a7 2631 return label_ref_label (x) == label_ref_label (y);
7afe21cc 2632
f54d4924
RK
2633 case SYMBOL_REF:
2634 return XSTR (x, 0) == XSTR (y, 0);
2635
7afe21cc 2636 case REG:
0516f6fe
SB
2637 if (for_gcse)
2638 return REGNO (x) == REGNO (y);
2639 else
2640 {
2641 unsigned int regno = REGNO (y);
2642 unsigned int i;
09e18274 2643 unsigned int endregno = END_REGNO (y);
7afe21cc 2644
0516f6fe
SB
2645 /* If the quantities are not the same, the expressions are not
2646 equivalent. If there are and we are not to validate, they
2647 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2648
0516f6fe
SB
2649 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2650 return 0;
2651
2652 if (! validate)
2653 return 1;
2654
2655 for (i = regno; i < endregno; i++)
2656 if (REG_IN_TABLE (i) != REG_TICK (i))
2657 return 0;
7afe21cc 2658
7afe21cc 2659 return 1;
0516f6fe 2660 }
7afe21cc 2661
0516f6fe
SB
2662 case MEM:
2663 if (for_gcse)
2664 {
0516f6fe
SB
2665 /* A volatile mem should not be considered equivalent to any
2666 other. */
2667 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2668 return 0;
8a76c4a0
JJ
2669
2670 /* Can't merge two expressions in different alias sets, since we
2671 can decide that the expression is transparent in a block when
2672 it isn't, due to it being set with the different alias set.
2673
2674 Also, can't merge two expressions with different MEM_ATTRS.
2675 They could e.g. be two different entities allocated into the
2676 same space on the stack (see e.g. PR25130). In that case, the
2677 MEM addresses can be the same, even though the two MEMs are
2678 absolutely not equivalent.
2679
2680 But because really all MEM attributes should be the same for
2681 equivalent MEMs, we just use the invariant that MEMs that have
2682 the same attributes share the same mem_attrs data structure. */
96b3c03f 2683 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
8a76c4a0 2684 return 0;
e304caa4
EB
2685
2686 /* If we are handling exceptions, we cannot consider two expressions
2687 with different trapping status as equivalent, because simple_mem
2688 might accept one and reject the other. */
2689 if (cfun->can_throw_non_call_exceptions
2690 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2691 return 0;
0516f6fe
SB
2692 }
2693 break;
7afe21cc
RK
2694
2695 /* For commutative operations, check both orders. */
2696 case PLUS:
2697 case MULT:
2698 case AND:
2699 case IOR:
2700 case XOR:
2701 case NE:
2702 case EQ:
0516f6fe
SB
2703 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2704 validate, for_gcse)
7afe21cc 2705 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2706 validate, for_gcse))
7afe21cc 2707 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2708 validate, for_gcse)
7afe21cc 2709 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2710 validate, for_gcse)));
278a83b2 2711
6462bb43
AO
2712 case ASM_OPERANDS:
2713 /* We don't use the generic code below because we want to
2714 disregard filename and line numbers. */
2715
2716 /* A volatile asm isn't equivalent to any other. */
2717 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2718 return 0;
2719
2720 if (GET_MODE (x) != GET_MODE (y)
2721 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2722 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2723 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2724 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2725 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2726 return 0;
2727
2728 if (ASM_OPERANDS_INPUT_LENGTH (x))
2729 {
2730 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2731 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2732 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2733 validate, for_gcse)
6462bb43
AO
2734 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2735 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2736 return 0;
2737 }
2738
2739 return 1;
2740
e9a25f70
JL
2741 default:
2742 break;
7afe21cc
RK
2743 }
2744
2745 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2746 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2747
2748 fmt = GET_RTX_FORMAT (code);
2749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2750 {
906c4e36 2751 switch (fmt[i])
7afe21cc 2752 {
906c4e36 2753 case 'e':
0516f6fe
SB
2754 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2755 validate, for_gcse))
7afe21cc 2756 return 0;
906c4e36
RK
2757 break;
2758
2759 case 'E':
7afe21cc
RK
2760 if (XVECLEN (x, i) != XVECLEN (y, i))
2761 return 0;
2762 for (j = 0; j < XVECLEN (x, i); j++)
2763 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2764 validate, for_gcse))
7afe21cc 2765 return 0;
906c4e36
RK
2766 break;
2767
2768 case 's':
7afe21cc
RK
2769 if (strcmp (XSTR (x, i), XSTR (y, i)))
2770 return 0;
906c4e36
RK
2771 break;
2772
2773 case 'i':
7afe21cc
RK
2774 if (XINT (x, i) != XINT (y, i))
2775 return 0;
906c4e36
RK
2776 break;
2777
2778 case 'w':
2779 if (XWINT (x, i) != XWINT (y, i))
2780 return 0;
278a83b2 2781 break;
906c4e36 2782
91914e56
RS
2783 case 'p':
2784 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2785 return 0;
2786 break;
2787
906c4e36 2788 case '0':
8f985ec4 2789 case 't':
906c4e36
RK
2790 break;
2791
2792 default:
341c100f 2793 gcc_unreachable ();
7afe21cc 2794 }
278a83b2 2795 }
906c4e36 2796
7afe21cc
RK
2797 return 1;
2798}
2799\f
eef3c949
RS
2800/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2801 the result if necessary. INSN is as for canon_reg. */
2802
2803static void
20468884 2804validate_canon_reg (rtx *xloc, rtx_insn *insn)
eef3c949 2805{
6fb5fa3c
DB
2806 if (*xloc)
2807 {
32e9fa48 2808 rtx new_rtx = canon_reg (*xloc, insn);
eef3c949 2809
6fb5fa3c
DB
2810 /* If replacing pseudo with hard reg or vice versa, ensure the
2811 insn remains valid. Likewise if the insn has MATCH_DUPs. */
32e9fa48
KG
2812 gcc_assert (insn && new_rtx);
2813 validate_change (insn, xloc, new_rtx, 1);
6fb5fa3c 2814 }
eef3c949
RS
2815}
2816
7afe21cc
RK
2817/* Canonicalize an expression:
2818 replace each register reference inside it
2819 with the "oldest" equivalent register.
2820
67e0a632 2821 If INSN is nonzero validate_change is used to ensure that INSN remains valid
da7d8304 2822 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2823 so apply_change_group must be called upon the outermost return from this
2824 function (unless INSN is zero). The result of apply_change_group can
2825 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2826
2827static rtx
20468884 2828canon_reg (rtx x, rtx_insn *insn)
7afe21cc 2829{
b3694847
SS
2830 int i;
2831 enum rtx_code code;
2832 const char *fmt;
7afe21cc
RK
2833
2834 if (x == 0)
2835 return x;
2836
2837 code = GET_CODE (x);
2838 switch (code)
2839 {
2840 case PC:
2841 case CC0:
2842 case CONST:
d8116890 2843 CASE_CONST_ANY:
7afe21cc
RK
2844 case SYMBOL_REF:
2845 case LABEL_REF:
2846 case ADDR_VEC:
2847 case ADDR_DIFF_VEC:
2848 return x;
2849
2850 case REG:
2851 {
b3694847
SS
2852 int first;
2853 int q;
2854 struct qty_table_elem *ent;
7afe21cc
RK
2855
2856 /* Never replace a hard reg, because hard regs can appear
2857 in more than one machine mode, and we must preserve the mode
2858 of each occurrence. Also, some hard regs appear in
2859 MEMs that are shared and mustn't be altered. Don't try to
2860 replace any reg that maps to a reg of class NO_REGS. */
2861 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2862 || ! REGNO_QTY_VALID_P (REGNO (x)))
2863 return x;
2864
278a83b2 2865 q = REG_QTY (REGNO (x));
1bb98cec
DM
2866 ent = &qty_table[q];
2867 first = ent->first_reg;
7afe21cc
RK
2868 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2869 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2870 : gen_rtx_REG (ent->mode, first));
7afe21cc 2871 }
278a83b2 2872
e9a25f70
JL
2873 default:
2874 break;
7afe21cc
RK
2875 }
2876
2877 fmt = GET_RTX_FORMAT (code);
2878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2879 {
b3694847 2880 int j;
7afe21cc
RK
2881
2882 if (fmt[i] == 'e')
eef3c949 2883 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2884 else if (fmt[i] == 'E')
2885 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2886 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2887 }
2888
2889 return x;
2890}
2891\f
bca05d20
RK
2892/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2893 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2894 what values are being compared.
1a87eea2 2895
bca05d20
RK
2896 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2897 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2898 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2899 compared to produce cc0.
a432f20d 2900
bca05d20
RK
2901 The return value is the comparison operator and is either the code of
2902 A or the code corresponding to the inverse of the comparison. */
7afe21cc 2903
0cedb36c 2904static enum rtx_code
7080f735 2905find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
ef4bddc2 2906 machine_mode *pmode1, machine_mode *pmode2)
7afe21cc 2907{
0cedb36c 2908 rtx arg1, arg2;
6e2830c3 2909 hash_set<rtx> *visited = NULL;
27ec0502
AJ
2910 /* Set nonzero when we find something of interest. */
2911 rtx x = NULL;
1a87eea2 2912
0cedb36c 2913 arg1 = *parg1, arg2 = *parg2;
7afe21cc 2914
0cedb36c 2915 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 2916
0cedb36c 2917 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 2918 {
0cedb36c
JL
2919 int reverse_code = 0;
2920 struct table_elt *p = 0;
6076248a 2921
27ec0502
AJ
2922 /* Remember state from previous iteration. */
2923 if (x)
2924 {
2925 if (!visited)
6e2830c3
TS
2926 visited = new hash_set<rtx>;
2927 visited->add (x);
27ec0502
AJ
2928 x = 0;
2929 }
2930
0cedb36c
JL
2931 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2932 On machines with CC0, this is the only case that can occur, since
2933 fold_rtx will return the COMPARE or item being compared with zero
2934 when given CC0. */
6076248a 2935
0cedb36c
JL
2936 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2937 x = arg1;
6076248a 2938
0cedb36c
JL
2939 /* If ARG1 is a comparison operator and CODE is testing for
2940 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 2941
ec8e098d 2942 else if (COMPARISON_P (arg1))
7afe21cc 2943 {
efdc7e19
RH
2944#ifdef FLOAT_STORE_FLAG_VALUE
2945 REAL_VALUE_TYPE fsfv;
2946#endif
2947
0cedb36c
JL
2948 if (code == NE
2949 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2950 && code == LT && STORE_FLAG_VALUE == -1)
2951#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2952 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2953 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2954 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 2955#endif
a432f20d 2956 )
0cedb36c
JL
2957 x = arg1;
2958 else if (code == EQ
2959 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2960 && code == GE && STORE_FLAG_VALUE == -1)
2961#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2962 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2963 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2964 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
2965#endif
2966 )
2967 x = arg1, reverse_code = 1;
7afe21cc
RK
2968 }
2969
0cedb36c 2970 /* ??? We could also check for
7afe21cc 2971
0cedb36c 2972 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 2973
0cedb36c 2974 and related forms, but let's wait until we see them occurring. */
7afe21cc 2975
0cedb36c
JL
2976 if (x == 0)
2977 /* Look up ARG1 in the hash table and see if it has an equivalence
2978 that lets us see what is being compared. */
0516f6fe 2979 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 2980 if (p)
8b03b984
R
2981 {
2982 p = p->first_same_value;
2983
2984 /* If what we compare is already known to be constant, that is as
2985 good as it gets.
2986 We need to break the loop in this case, because otherwise we
2987 can have an infinite loop when looking at a reg that is known
2988 to be a constant which is the same as a comparison of a reg
2989 against zero which appears later in the insn stream, which in
2990 turn is constant and the same as the comparison of the first reg
2991 against zero... */
2992 if (p->is_const)
2993 break;
2994 }
7afe21cc 2995
0cedb36c 2996 for (; p; p = p->next_same_value)
7afe21cc 2997 {
ef4bddc2 2998 machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
2999#ifdef FLOAT_STORE_FLAG_VALUE
3000 REAL_VALUE_TYPE fsfv;
3001#endif
7afe21cc 3002
0cedb36c 3003 /* If the entry isn't valid, skip it. */
0516f6fe 3004 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 3005 continue;
f76b9db2 3006
27ec0502 3007 /* If it's a comparison we've used before, skip it. */
6e2830c3 3008 if (visited && visited->contains (p->exp))
8f1ad6b6
SL
3009 continue;
3010
bca05d20
RK
3011 if (GET_CODE (p->exp) == COMPARE
3012 /* Another possibility is that this machine has a compare insn
3013 that includes the comparison code. In that case, ARG1 would
3014 be equivalent to a comparison operation that would set ARG1 to
3015 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3016 ORIG_CODE is the actual comparison being done; if it is an EQ,
3017 we must reverse ORIG_CODE. On machine with a negative value
3018 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3019 || ((code == NE
3020 || (code == LT
2d0c270f
BS
3021 && val_signbit_known_set_p (inner_mode,
3022 STORE_FLAG_VALUE))
0cedb36c 3023#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20 3024 || (code == LT
3d8bf70f 3025 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
3026 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3027 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 3028#endif
bca05d20 3029 )
ec8e098d 3030 && COMPARISON_P (p->exp)))
7afe21cc 3031 {
0cedb36c
JL
3032 x = p->exp;
3033 break;
3034 }
3035 else if ((code == EQ
3036 || (code == GE
2d0c270f
BS
3037 && val_signbit_known_set_p (inner_mode,
3038 STORE_FLAG_VALUE))
0cedb36c
JL
3039#ifdef FLOAT_STORE_FLAG_VALUE
3040 || (code == GE
3d8bf70f 3041 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
3042 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3043 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3044#endif
3045 )
ec8e098d 3046 && COMPARISON_P (p->exp))
0cedb36c
JL
3047 {
3048 reverse_code = 1;
3049 x = p->exp;
3050 break;
7afe21cc
RK
3051 }
3052
4977bab6
ZW
3053 /* If this non-trapping address, e.g. fp + constant, the
3054 equivalent is a better operand since it may let us predict
3055 the value of the comparison. */
3056 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
3057 {
3058 arg1 = p->exp;
3059 continue;
3060 }
7afe21cc 3061 }
7afe21cc 3062
0cedb36c
JL
3063 /* If we didn't find a useful equivalence for ARG1, we are done.
3064 Otherwise, set up for the next iteration. */
3065 if (x == 0)
3066 break;
7afe21cc 3067
026c3cfd 3068 /* If we need to reverse the comparison, make sure that is
78192b09
RH
3069 possible -- we can't necessarily infer the value of GE from LT
3070 with floating-point operands. */
0cedb36c 3071 if (reverse_code)
261efdef 3072 {
c9b0a227 3073 enum rtx_code reversed = reversed_comparison_code (x, NULL);
261efdef
JH
3074 if (reversed == UNKNOWN)
3075 break;
68252e27
KH
3076 else
3077 code = reversed;
261efdef 3078 }
ec8e098d 3079 else if (COMPARISON_P (x))
261efdef
JH
3080 code = GET_CODE (x);
3081 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
3082 }
3083
0cedb36c
JL
3084 /* Return our results. Return the modes from before fold_rtx
3085 because fold_rtx might produce const_int, and then it's too late. */
3086 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3087 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3088
27ec0502 3089 if (visited)
6e2830c3 3090 delete visited;
0cedb36c 3091 return code;
7afe21cc
RK
3092}
3093\f
a52b023a
PB
3094/* If X is a nontrivial arithmetic operation on an argument for which
3095 a constant value can be determined, return the result of operating
3096 on that value, as a constant. Otherwise, return X, possibly with
3097 one or more operands changed to a forward-propagated constant.
25910ca4 3098
a52b023a
PB
3099 If X is a register whose contents are known, we do NOT return
3100 those contents here; equiv_constant is called to perform that task.
3101 For SUBREGs and MEMs, we do that both here and in equiv_constant.
7afe21cc
RK
3102
3103 INSN is the insn that we may be modifying. If it is 0, make a copy
3104 of X before modifying it. */
3105
3106static rtx
20468884 3107fold_rtx (rtx x, rtx_insn *insn)
7afe21cc 3108{
b3694847 3109 enum rtx_code code;
ef4bddc2 3110 machine_mode mode;
b3694847
SS
3111 const char *fmt;
3112 int i;
32e9fa48 3113 rtx new_rtx = 0;
a52b023a 3114 int changed = 0;
5284e559 3115 poly_int64 xval;
7afe21cc 3116
a52b023a 3117 /* Operands of X. */
e54bd4ab
JJ
3118 /* Workaround -Wmaybe-uninitialized false positive during
3119 profiledbootstrap by initializing them. */
3120 rtx folded_arg0 = NULL_RTX;
3121 rtx folded_arg1 = NULL_RTX;
7afe21cc
RK
3122
3123 /* Constant equivalents of first three operands of X;
3124 0 when no such equivalent is known. */
3125 rtx const_arg0;
3126 rtx const_arg1;
3127 rtx const_arg2;
3128
3129 /* The mode of the first operand of X. We need this for sign and zero
3130 extends. */
ef4bddc2 3131 machine_mode mode_arg0;
7afe21cc
RK
3132
3133 if (x == 0)
3134 return x;
3135
a52b023a 3136 /* Try to perform some initial simplifications on X. */
7afe21cc
RK
3137 code = GET_CODE (x);
3138 switch (code)
3139 {
a52b023a
PB
3140 case MEM:
3141 case SUBREG:
5141ed42
JL
3142 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3143 than it would in other contexts. Basically its mode does not
3144 signify the size of the object read. That information is carried
3145 by size operand. If we happen to have a MEM of the appropriate
3146 mode in our tables with a constant value we could simplify the
3147 extraction incorrectly if we allowed substitution of that value
3148 for the MEM. */
3149 case ZERO_EXTRACT:
3150 case SIGN_EXTRACT:
32e9fa48
KG
3151 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3152 return new_rtx;
a52b023a
PB
3153 return x;
3154
7afe21cc 3155 case CONST:
d8116890 3156 CASE_CONST_ANY:
7afe21cc
RK
3157 case SYMBOL_REF:
3158 case LABEL_REF:
3159 case REG:
01aa1d43 3160 case PC:
7afe21cc
RK
3161 /* No use simplifying an EXPR_LIST
3162 since they are used only for lists of args
3163 in a function call's REG_EQUAL note. */
3164 case EXPR_LIST:
3165 return x;
3166
7afe21cc
RK
3167 case CC0:
3168 return prev_insn_cc0;
7afe21cc 3169
9255709c 3170 case ASM_OPERANDS:
6c667859
AB
3171 if (insn)
3172 {
3173 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3174 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3175 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3176 }
a52b023a
PB
3177 return x;
3178
a52b023a 3179 case CALL:
1e8552c2 3180 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
a52b023a 3181 return x;
9255709c 3182 break;
278a83b2 3183
a52b023a 3184 /* Anything else goes through the loop below. */
e9a25f70
JL
3185 default:
3186 break;
7afe21cc
RK
3187 }
3188
a52b023a 3189 mode = GET_MODE (x);
7afe21cc
RK
3190 const_arg0 = 0;
3191 const_arg1 = 0;
3192 const_arg2 = 0;
3193 mode_arg0 = VOIDmode;
3194
3195 /* Try folding our operands.
3196 Then see which ones have constant values known. */
3197
3198 fmt = GET_RTX_FORMAT (code);
3199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3200 if (fmt[i] == 'e')
3201 {
a52b023a 3202 rtx folded_arg = XEXP (x, i), const_arg;
ef4bddc2 3203 machine_mode mode_arg = GET_MODE (folded_arg);
7e7e28c7
AO
3204
3205 switch (GET_CODE (folded_arg))
3206 {
3207 case MEM:
3208 case REG:
3209 case SUBREG:
3210 const_arg = equiv_constant (folded_arg);
3211 break;
3212
3213 case CONST:
d8116890 3214 CASE_CONST_ANY:
7e7e28c7
AO
3215 case SYMBOL_REF:
3216 case LABEL_REF:
7e7e28c7
AO
3217 const_arg = folded_arg;
3218 break;
3219
7e7e28c7 3220 case CC0:
728acca0
MP
3221 /* The cc0-user and cc0-setter may be in different blocks if
3222 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3223 will have been cleared as we exited the block with the
3224 setter.
3225
3226 While we could potentially track cc0 in this case, it just
3227 doesn't seem to be worth it given that cc0 targets are not
3228 terribly common or important these days and trapping math
3229 is rarely used. The combination of those two conditions
3230 necessary to trip this situation is exceedingly rare in the
3231 real world. */
3232 if (!prev_insn_cc0)
3233 {
3234 const_arg = NULL_RTX;
3235 }
3236 else
3237 {
3238 folded_arg = prev_insn_cc0;
3239 mode_arg = prev_insn_cc0_mode;
3240 const_arg = equiv_constant (folded_arg);
3241 }
7e7e28c7 3242 break;
7e7e28c7
AO
3243
3244 default:
3245 folded_arg = fold_rtx (folded_arg, insn);
3246 const_arg = equiv_constant (folded_arg);
3247 break;
3248 }
7afe21cc
RK
3249
3250 /* For the first three operands, see if the operand
3251 is constant or equivalent to a constant. */
3252 switch (i)
3253 {
3254 case 0:
3255 folded_arg0 = folded_arg;
3256 const_arg0 = const_arg;
3257 mode_arg0 = mode_arg;
3258 break;
3259 case 1:
3260 folded_arg1 = folded_arg;
3261 const_arg1 = const_arg;
3262 break;
3263 case 2:
3264 const_arg2 = const_arg;
3265 break;
3266 }
3267
a52b023a
PB
3268 /* Pick the least expensive of the argument and an equivalent constant
3269 argument. */
3270 if (const_arg != 0
3271 && const_arg != folded_arg
e548c9df
AM
3272 && (COST_IN (const_arg, mode_arg, code, i)
3273 <= COST_IN (folded_arg, mode_arg, code, i))
f2fa288f 3274
8cce3d04
RS
3275 /* It's not safe to substitute the operand of a conversion
3276 operator with a constant, as the conversion's identity
f652d14b 3277 depends upon the mode of its operand. This optimization
8cce3d04 3278 is handled by the call to simplify_unary_operation. */
a52b023a
PB
3279 && (GET_RTX_CLASS (code) != RTX_UNARY
3280 || GET_MODE (const_arg) == mode_arg0
3281 || (code != ZERO_EXTEND
3282 && code != SIGN_EXTEND
3283 && code != TRUNCATE
3284 && code != FLOAT_TRUNCATE
3285 && code != FLOAT_EXTEND
3286 && code != FLOAT
3287 && code != FIX
3288 && code != UNSIGNED_FLOAT
3289 && code != UNSIGNED_FIX)))
3290 folded_arg = const_arg;
3291
3292 if (folded_arg == XEXP (x, i))
3293 continue;
7afe21cc 3294
a52b023a
PB
3295 if (insn == NULL_RTX && !changed)
3296 x = copy_rtx (x);
3297 changed = 1;
b8b89e7c 3298 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
2d8b0f3a 3299 }
7afe21cc 3300
a52b023a 3301 if (changed)
7afe21cc 3302 {
a52b023a
PB
3303 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3304 consistent with the order in X. */
3305 if (canonicalize_change_group (insn, x))
7afe21cc 3306 {
4e1952ab
KT
3307 std::swap (const_arg0, const_arg1);
3308 std::swap (folded_arg0, folded_arg1);
7afe21cc 3309 }
a52b023a
PB
3310
3311 apply_change_group ();
7afe21cc
RK
3312 }
3313
3314 /* If X is an arithmetic operation, see if we can simplify it. */
3315
3316 switch (GET_RTX_CLASS (code))
3317 {
ec8e098d 3318 case RTX_UNARY:
67a37737 3319 {
67a37737
RK
3320 /* We can't simplify extension ops unless we know the
3321 original mode. */
3322 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3323 && mode_arg0 == VOIDmode)
3324 break;
3325
32e9fa48 3326 new_rtx = simplify_unary_operation (code, mode,
696d76a5
MS
3327 const_arg0 ? const_arg0 : folded_arg0,
3328 mode_arg0);
67a37737 3329 }
7afe21cc 3330 break;
278a83b2 3331
ec8e098d
PB
3332 case RTX_COMPARE:
3333 case RTX_COMM_COMPARE:
7afe21cc
RK
3334 /* See what items are actually being compared and set FOLDED_ARG[01]
3335 to those values and CODE to the actual comparison code. If any are
3336 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3337 do anything if both operands are already known to be constant. */
3338
21e5076a
UB
3339 /* ??? Vector mode comparisons are not supported yet. */
3340 if (VECTOR_MODE_P (mode))
3341 break;
3342
7afe21cc
RK
3343 if (const_arg0 == 0 || const_arg1 == 0)
3344 {
3345 struct table_elt *p0, *p1;
9e6a14a4 3346 rtx true_rtx, false_rtx;
ef4bddc2 3347 machine_mode mode_arg1;
c610adec 3348
9b92bf04 3349 if (SCALAR_FLOAT_MODE_P (mode))
c610adec 3350 {
9e6a14a4 3351#ifdef FLOAT_STORE_FLAG_VALUE
555affd7 3352 true_rtx = (const_double_from_real_value
68252e27 3353 (FLOAT_STORE_FLAG_VALUE (mode), mode));
9e6a14a4
L
3354#else
3355 true_rtx = NULL_RTX;
3356#endif
d6edb99e 3357 false_rtx = CONST0_RTX (mode);
c610adec 3358 }
9e6a14a4
L
3359 else
3360 {
3361 true_rtx = const_true_rtx;
3362 false_rtx = const0_rtx;
3363 }
7afe21cc 3364
13c9910f
RS
3365 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3366 &mode_arg0, &mode_arg1);
7afe21cc 3367
13c9910f
RS
3368 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3369 what kinds of things are being compared, so we can't do
3370 anything with this comparison. */
7afe21cc
RK
3371
3372 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3373 break;
3374
75335440
KH
3375 const_arg0 = equiv_constant (folded_arg0);
3376 const_arg1 = equiv_constant (folded_arg1);
3377
0f41302f
MS
3378 /* If we do not now have two constants being compared, see
3379 if we can nevertheless deduce some things about the
3380 comparison. */
7afe21cc
RK
3381 if (const_arg0 == 0 || const_arg1 == 0)
3382 {
08678f51
HPN
3383 if (const_arg1 != NULL)
3384 {
3385 rtx cheapest_simplification;
3386 int cheapest_cost;
3387 rtx simp_result;
3388 struct table_elt *p;
3389
3390 /* See if we can find an equivalent of folded_arg0
3391 that gets us a cheaper expression, possibly a
3392 constant through simplifications. */
3393 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3394 mode_arg0);
b8698a0f 3395
08678f51
HPN
3396 if (p != NULL)
3397 {
3398 cheapest_simplification = x;
e548c9df 3399 cheapest_cost = COST (x, mode);
08678f51
HPN
3400
3401 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3402 {
3403 int cost;
3404
3405 /* If the entry isn't valid, skip it. */
3406 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3407 continue;
3408
3409 /* Try to simplify using this equivalence. */
3410 simp_result
3411 = simplify_relational_operation (code, mode,
3412 mode_arg0,
3413 p->exp,
3414 const_arg1);
3415
3416 if (simp_result == NULL)
3417 continue;
3418
e548c9df 3419 cost = COST (simp_result, mode);
08678f51
HPN
3420 if (cost < cheapest_cost)
3421 {
3422 cheapest_cost = cost;
3423 cheapest_simplification = simp_result;
3424 }
3425 }
3426
3427 /* If we have a cheaper expression now, use that
3428 and try folding it further, from the top. */
3429 if (cheapest_simplification != x)
7903b3e5
JH
3430 return fold_rtx (copy_rtx (cheapest_simplification),
3431 insn);
08678f51
HPN
3432 }
3433 }
3434
fd13313f
JH
3435 /* See if the two operands are the same. */
3436
39641489
PB
3437 if ((REG_P (folded_arg0)
3438 && REG_P (folded_arg1)
3439 && (REG_QTY (REGNO (folded_arg0))
3440 == REG_QTY (REGNO (folded_arg1))))
fd13313f 3441 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3442 SAFE_HASH (folded_arg0, mode_arg0),
3443 mode_arg0))
fd13313f 3444 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3445 SAFE_HASH (folded_arg1, mode_arg0),
3446 mode_arg0))
fd13313f 3447 && p0->first_same_value == p1->first_same_value))
39641489 3448 folded_arg1 = folded_arg0;
7afe21cc
RK
3449
3450 /* If FOLDED_ARG0 is a register, see if the comparison we are
3451 doing now is either the same as we did before or the reverse
3452 (we only check the reverse if not floating-point). */
f8cfc6aa 3453 else if (REG_P (folded_arg0))
7afe21cc 3454 {
30f72379 3455 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 3456
1bb98cec
DM
3457 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3458 {
3459 struct qty_table_elem *ent = &qty_table[qty];
3460
3461 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
3462 || (! FLOAT_MODE_P (mode_arg0)
3463 && comparison_dominates_p (ent->comparison_code,
3464 reverse_condition (code))))
1bb98cec
DM
3465 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3466 || (const_arg1
3467 && rtx_equal_p (ent->comparison_const,
3468 const_arg1))
f8cfc6aa 3469 || (REG_P (folded_arg1)
1bb98cec 3470 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
9e6a14a4
L
3471 {
3472 if (comparison_dominates_p (ent->comparison_code, code))
3473 {
3474 if (true_rtx)
3475 return true_rtx;
3476 else
3477 break;
3478 }
3479 else
3480 return false_rtx;
3481 }
1bb98cec 3482 }
7afe21cc
RK
3483 }
3484 }
3485 }
3486
3487 /* If we are comparing against zero, see if the first operand is
3488 equivalent to an IOR with a constant. If so, we may be able to
3489 determine the result of this comparison. */
39641489 3490 if (const_arg1 == const0_rtx && !const_arg0)
7afe21cc
RK
3491 {
3492 rtx y = lookup_as_function (folded_arg0, IOR);
3493 rtx inner_const;
3494
3495 if (y != 0
3496 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
481683e1 3497 && CONST_INT_P (inner_const)
7afe21cc 3498 && INTVAL (inner_const) != 0)
39641489 3499 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
7afe21cc
RK
3500 }
3501
c6fb08ad 3502 {
bca3cc97
JJ
3503 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3504 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3505 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3506 op0, op1);
c6fb08ad 3507 }
7afe21cc
RK
3508 break;
3509
ec8e098d
PB
3510 case RTX_BIN_ARITH:
3511 case RTX_COMM_ARITH:
7afe21cc
RK
3512 switch (code)
3513 {
3514 case PLUS:
3515 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3516 with that LABEL_REF as its second operand. If so, the result is
3517 the first operand of that MINUS. This handles switches with an
3518 ADDR_DIFF_VEC table. */
3519 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3520 {
e650cbda
RK
3521 rtx y
3522 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 3523 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
3524
3525 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
04a121a7 3526 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
7afe21cc 3527 return XEXP (y, 0);
67a37737
RK
3528
3529 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
3530 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3531 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
3532 && GET_CODE (XEXP (y, 0)) == MINUS
3533 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
04a121a7 3534 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
67a37737 3535 return XEXP (XEXP (y, 0), 0);
7afe21cc 3536 }
c2cc0778 3537
e650cbda
RK
3538 /* Likewise if the operands are in the other order. */
3539 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3540 {
3541 rtx y
3542 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 3543 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
3544
3545 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
04a121a7 3546 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
e650cbda
RK
3547 return XEXP (y, 0);
3548
3549 /* Now try for a CONST of a MINUS like the above. */
3550 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3551 : lookup_as_function (folded_arg1, CONST))) != 0
3552 && GET_CODE (XEXP (y, 0)) == MINUS
3553 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
04a121a7 3554 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
e650cbda
RK
3555 return XEXP (XEXP (y, 0), 0);
3556 }
3557
c2cc0778
RK
3558 /* If second operand is a register equivalent to a negative
3559 CONST_INT, see if we can find a register equivalent to the
3560 positive constant. Make a MINUS if so. Don't do this for
5d595063 3561 a non-negative constant since we might then alternate between
a1f300c0 3562 choosing positive and negative constants. Having the positive
5d595063
RK
3563 constant previously-used is the more common case. Be sure
3564 the resulting constant is non-negative; if const_arg1 were
3565 the smallest negative number this would overflow: depending
3566 on the mode, this would either just be the same value (and
3567 hence not save anything) or be incorrect. */
481683e1 3568 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
5d595063 3569 && INTVAL (const_arg1) < 0
4741f6ad
JL
3570 /* This used to test
3571
ddc356e8 3572 -INTVAL (const_arg1) >= 0
4741f6ad
JL
3573
3574 But The Sun V5.0 compilers mis-compiled that test. So
3575 instead we test for the problematic value in a more direct
3576 manner and hope the Sun compilers get it correct. */
5c45a8ac 3577 && INTVAL (const_arg1) !=
fecfbfa4 3578 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 3579 && REG_P (folded_arg1))
c2cc0778 3580 {
ddc356e8 3581 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 3582 struct table_elt *p
0516f6fe 3583 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
3584
3585 if (p)
3586 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 3587 if (REG_P (p->exp))
0cedb36c 3588 return simplify_gen_binary (MINUS, mode, folded_arg0,
20468884 3589 canon_reg (p->exp, NULL));
c2cc0778 3590 }
13c9910f
RS
3591 goto from_plus;
3592
3593 case MINUS:
3594 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3595 If so, produce (PLUS Z C2-C). */
5284e559 3596 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
13c9910f
RS
3597 {
3598 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
5284e559
RS
3599 if (y && poly_int_rtx_p (XEXP (y, 1)))
3600 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
20468884 3601 NULL);
13c9910f 3602 }
7afe21cc 3603
ddc356e8 3604 /* Fall through. */
7afe21cc 3605
13c9910f 3606 from_plus:
7afe21cc
RK
3607 case SMIN: case SMAX: case UMIN: case UMAX:
3608 case IOR: case AND: case XOR:
f930bfd0 3609 case MULT:
7afe21cc
RK
3610 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3611 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3612 is known to be of similar form, we may be able to replace the
3613 operation with a combined operation. This may eliminate the
3614 intermediate operation if every use is simplified in this way.
3615 Note that the similar optimization done by combine.c only works
3616 if the intermediate operation's result has only one reference. */
3617
f8cfc6aa 3618 if (REG_P (folded_arg0)
481683e1 3619 && const_arg1 && CONST_INT_P (const_arg1))
7afe21cc
RK
3620 {
3621 int is_shift
3622 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5bb51e1d 3623 rtx y, inner_const, new_const;
39b2ac74 3624 rtx canon_const_arg1 = const_arg1;
7afe21cc 3625 enum rtx_code associate_code;
7afe21cc 3626
824a4527 3627 if (is_shift
bb06a2d8 3628 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
824a4527
JDA
3629 || INTVAL (const_arg1) < 0))
3630 {
3631 if (SHIFT_COUNT_TRUNCATED)
abd3c800
RS
3632 canon_const_arg1 = gen_int_shift_amount
3633 (mode, (INTVAL (const_arg1)
3634 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
824a4527
JDA
3635 else
3636 break;
3637 }
3638
5bb51e1d 3639 y = lookup_as_function (folded_arg0, code);
824a4527
JDA
3640 if (y == 0)
3641 break;
824a4527
JDA
3642
3643 /* If we have compiled a statement like
3644 "if (x == (x & mask1))", and now are looking at
3645 "x & mask2", we will have a case where the first operand
3646 of Y is the same as our first operand. Unless we detect
3647 this case, an infinite loop will result. */
3648 if (XEXP (y, 0) == folded_arg0)
7afe21cc
RK
3649 break;
3650
5bb51e1d 3651 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
481683e1 3652 if (!inner_const || !CONST_INT_P (inner_const))
5bb51e1d
EB
3653 break;
3654
7afe21cc
RK
3655 /* Don't associate these operations if they are a PLUS with the
3656 same constant and it is a power of two. These might be doable
3657 with a pre- or post-increment. Similarly for two subtracts of
3658 identical powers of two with post decrement. */
3659
213d5fbc 3660 if (code == PLUS && const_arg1 == inner_const
940da324 3661 && ((HAVE_PRE_INCREMENT
146ec50f 3662 && pow2p_hwi (INTVAL (const_arg1)))
940da324 3663 || (HAVE_POST_INCREMENT
146ec50f 3664 && pow2p_hwi (INTVAL (const_arg1)))
940da324 3665 || (HAVE_PRE_DECREMENT
146ec50f 3666 && pow2p_hwi (- INTVAL (const_arg1)))
940da324 3667 || (HAVE_POST_DECREMENT
146ec50f 3668 && pow2p_hwi (- INTVAL (const_arg1)))))
7afe21cc
RK
3669 break;
3670
88057dc8
UB
3671 /* ??? Vector mode shifts by scalar
3672 shift operand are not supported yet. */
3673 if (is_shift && VECTOR_MODE_P (mode))
3674 break;
3675
824a4527 3676 if (is_shift
bb06a2d8 3677 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
824a4527
JDA
3678 || INTVAL (inner_const) < 0))
3679 {
3680 if (SHIFT_COUNT_TRUNCATED)
abd3c800
RS
3681 inner_const = gen_int_shift_amount
3682 (mode, (INTVAL (inner_const)
3683 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
824a4527
JDA
3684 else
3685 break;
3686 }
3687
7afe21cc 3688 /* Compute the code used to compose the constants. For example,
f930bfd0 3689 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 3690
f930bfd0 3691 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
3692
3693 new_const = simplify_binary_operation (associate_code, mode,
39b2ac74
JJ
3694 canon_const_arg1,
3695 inner_const);
7afe21cc
RK
3696
3697 if (new_const == 0)
3698 break;
3699
3700 /* If we are associating shift operations, don't let this
4908e508
RS
3701 produce a shift of the size of the object or larger.
3702 This could occur when we follow a sign-extend by a right
3703 shift on a machine that does a sign-extend as a pair
3704 of shifts. */
7afe21cc 3705
824a4527 3706 if (is_shift
481683e1 3707 && CONST_INT_P (new_const)
bb06a2d8 3708 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
4908e508
RS
3709 {
3710 /* As an exception, we can turn an ASHIFTRT of this
3711 form into a shift of the number of bits - 1. */
3712 if (code == ASHIFTRT)
abd3c800
RS
3713 new_const = gen_int_shift_amount
3714 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
824a4527
JDA
3715 else if (!side_effects_p (XEXP (y, 0)))
3716 return CONST0_RTX (mode);
4908e508
RS
3717 else
3718 break;
3719 }
7afe21cc
RK
3720
3721 y = copy_rtx (XEXP (y, 0));
3722
3723 /* If Y contains our first operand (the most common way this
3724 can happen is if Y is a MEM), we would do into an infinite
3725 loop if we tried to fold it. So don't in that case. */
3726
3727 if (! reg_mentioned_p (folded_arg0, y))
3728 y = fold_rtx (y, insn);
3729
0cedb36c 3730 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 3731 }
e9a25f70
JL
3732 break;
3733
f930bfd0
JW
3734 case DIV: case UDIV:
3735 /* ??? The associative optimization performed immediately above is
3736 also possible for DIV and UDIV using associate_code of MULT.
3737 However, we would need extra code to verify that the
3738 multiplication does not overflow, that is, there is no overflow
3739 in the calculation of new_const. */
3740 break;
3741
e9a25f70
JL
3742 default:
3743 break;
7afe21cc
RK
3744 }
3745
32e9fa48 3746 new_rtx = simplify_binary_operation (code, mode,
7afe21cc
RK
3747 const_arg0 ? const_arg0 : folded_arg0,
3748 const_arg1 ? const_arg1 : folded_arg1);
3749 break;
3750
ec8e098d 3751 case RTX_OBJ:
7afe21cc
RK
3752 /* (lo_sum (high X) X) is simply X. */
3753 if (code == LO_SUM && const_arg0 != 0
3754 && GET_CODE (const_arg0) == HIGH
3755 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3756 return const_arg1;
3757 break;
3758
ec8e098d
PB
3759 case RTX_TERNARY:
3760 case RTX_BITFIELD_OPS:
32e9fa48 3761 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
7afe21cc
RK
3762 const_arg0 ? const_arg0 : folded_arg0,
3763 const_arg1 ? const_arg1 : folded_arg1,
3764 const_arg2 ? const_arg2 : XEXP (x, 2));
3765 break;
ee5332b8 3766
ec8e098d
PB
3767 default:
3768 break;
7afe21cc
RK
3769 }
3770
32e9fa48 3771 return new_rtx ? new_rtx : x;
7afe21cc
RK
3772}
3773\f
3774/* Return a constant value currently equivalent to X.
3775 Return 0 if we don't know one. */
3776
3777static rtx
7080f735 3778equiv_constant (rtx x)
7afe21cc 3779{
f8cfc6aa 3780 if (REG_P (x)
1bb98cec
DM
3781 && REGNO_QTY_VALID_P (REGNO (x)))
3782 {
3783 int x_q = REG_QTY (REGNO (x));
3784 struct qty_table_elem *x_ent = &qty_table[x_q];
3785
3786 if (x_ent->const_rtx)
4de249d9 3787 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 3788 }
7afe21cc 3789
2ce5e1b4 3790 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
3791 return x;
3792
a52b023a
PB
3793 if (GET_CODE (x) == SUBREG)
3794 {
ef4bddc2
RS
3795 machine_mode mode = GET_MODE (x);
3796 machine_mode imode = GET_MODE (SUBREG_REG (x));
32e9fa48 3797 rtx new_rtx;
a52b023a
PB
3798
3799 /* See if we previously assigned a constant value to this SUBREG. */
32e9fa48 3800 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
807e902e 3801 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
0c12fc9b
RS
3802 || (NUM_POLY_INT_COEFFS > 1
3803 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
32e9fa48
KG
3804 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3805 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3806 return new_rtx;
a52b023a 3807
f5f8d79d
EB
3808 /* If we didn't and if doing so makes sense, see if we previously
3809 assigned a constant value to the enclosing word mode SUBREG. */
cf098191
RS
3810 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3811 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
f5f8d79d 3812 {
91914e56
RS
3813 poly_int64 byte = (SUBREG_BYTE (x)
3814 - subreg_lowpart_offset (mode, word_mode));
3815 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
f5f8d79d
EB
3816 {
3817 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3818 new_rtx = lookup_as_function (y, CONST_INT);
3819 if (new_rtx)
3820 return gen_lowpart (mode, new_rtx);
3821 }
3822 }
3823
7cb6668a
MI
3824 /* Otherwise see if we already have a constant for the inner REG,
3825 and if that is enough to calculate an equivalent constant for
3826 the subreg. Note that the upper bits of paradoxical subregs
3827 are undefined, so they cannot be said to equal anything. */
a52b023a 3828 if (REG_P (SUBREG_REG (x))
03a95621 3829 && !paradoxical_subreg_p (x)
32e9fa48 3830 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
f5f8d79d 3831 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
a52b023a
PB
3832
3833 return 0;
3834 }
3835
3836 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3837 the hash table in case its value was seen before. */
fc3ffe83 3838
3c0cb5de 3839 if (MEM_P (x))
fc3ffe83
RK
3840 {
3841 struct table_elt *elt;
3842
a52b023a 3843 x = avoid_constant_pool_reference (x);
fc3ffe83
RK
3844 if (CONSTANT_P (x))
3845 return x;
3846
0516f6fe 3847 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
3848 if (elt == 0)
3849 return 0;
3850
3851 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3852 if (elt->is_const && CONSTANT_P (elt->exp))
3853 return elt->exp;
3854 }
3855
7afe21cc
RK
3856 return 0;
3857}
3858\f
0129d079
SB
3859/* Given INSN, a jump insn, TAKEN indicates if we are following the
3860 "taken" branch.
7afe21cc
RK
3861
3862 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 3863 if we are following the taken case of
7080f735 3864 if (i == 2)
7afe21cc
RK
3865 we can add the fact that `i' and '2' are now equivalent.
3866
3867 In any case, we can record that this comparison was passed. If the same
3868 comparison is seen later, we will know its value. */
3869
3870static void
20468884 3871record_jump_equiv (rtx_insn *insn, bool taken)
7afe21cc
RK
3872{
3873 int cond_known_true;
3874 rtx op0, op1;
7f1c097d 3875 rtx set;
ef4bddc2 3876 machine_mode mode, mode0, mode1;
7afe21cc
RK
3877 int reversed_nonequality = 0;
3878 enum rtx_code code;
3879
3880 /* Ensure this is the right kind of insn. */
0129d079
SB
3881 gcc_assert (any_condjump_p (insn));
3882
7f1c097d 3883 set = pc_set (insn);
7afe21cc
RK
3884
3885 /* See if this jump condition is known true or false. */
3886 if (taken)
7f1c097d 3887 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 3888 else
7f1c097d 3889 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
3890
3891 /* Get the type of comparison being done and the operands being compared.
3892 If we had to reverse a non-equality condition, record that fact so we
3893 know that it isn't valid for floating-point. */
7f1c097d
JH
3894 code = GET_CODE (XEXP (SET_SRC (set), 0));
3895 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3896 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 3897
3f1d32a5
JL
3898 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3899 blocks. When that happens the tracking of the cc0-setter via
3900 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3901 NULL_RTX. In those cases, there's nothing to record. */
3902 if (op0 == NULL_RTX || op1 == NULL_RTX)
3903 return;
3904
13c9910f 3905 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
3906 if (! cond_known_true)
3907 {
261efdef 3908 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
3909
3910 /* Don't remember if we can't find the inverse. */
3911 if (code == UNKNOWN)
3912 return;
7afe21cc
RK
3913 }
3914
3915 /* The mode is the mode of the non-constant. */
13c9910f
RS
3916 mode = mode0;
3917 if (mode1 != VOIDmode)
3918 mode = mode1;
7afe21cc
RK
3919
3920 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3921}
3922
794693c0
RH
3923/* Yet another form of subreg creation. In this case, we want something in
3924 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3925
3926static rtx
ef4bddc2 3927record_jump_cond_subreg (machine_mode mode, rtx op)
794693c0 3928{
ef4bddc2 3929 machine_mode op_mode = GET_MODE (op);
794693c0
RH
3930 if (op_mode == mode || op_mode == VOIDmode)
3931 return op;
3932 return lowpart_subreg (mode, op, op_mode);
3933}
3934
7afe21cc
RK
3935/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3936 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3937 Make any useful entries we can with that information. Called from
3938 above function and called recursively. */
3939
3940static void
ef4bddc2 3941record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
7080f735 3942 rtx op1, int reversed_nonequality)
7afe21cc 3943{
2197a88a 3944 unsigned op0_hash, op1_hash;
e428d738 3945 int op0_in_memory, op1_in_memory;
7afe21cc
RK
3946 struct table_elt *op0_elt, *op1_elt;
3947
3948 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3949 we know that they are also equal in the smaller mode (this is also
3950 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 3951 is not worth testing for with no SUBREG). */
7afe21cc 3952
2e794ee8 3953 /* Note that GET_MODE (op0) may not equal MODE. */
6a4bdc79 3954 if (code == EQ && paradoxical_subreg_p (op0))
7afe21cc 3955 {
ef4bddc2 3956 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3957 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3958 if (tem)
3959 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3960 reversed_nonequality);
7afe21cc
RK
3961 }
3962
6a4bdc79 3963 if (code == EQ && paradoxical_subreg_p (op1))
7afe21cc 3964 {
ef4bddc2 3965 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3966 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3967 if (tem)
3968 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3969 reversed_nonequality);
7afe21cc
RK
3970 }
3971
278a83b2 3972 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
3973 making a smaller mode, we know the whole thing is also NE. */
3974
2e794ee8
RS
3975 /* Note that GET_MODE (op0) may not equal MODE;
3976 if we test MODE instead, we can get an infinite recursion
3977 alternating between two modes each wider than MODE. */
3978
bd4288c0
RS
3979 if (code == NE
3980 && partial_subreg_p (op0)
3981 && subreg_lowpart_p (op0))
7afe21cc 3982 {
ef4bddc2 3983 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3984 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3985 if (tem)
3986 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3987 reversed_nonequality);
7afe21cc
RK
3988 }
3989
bd4288c0
RS
3990 if (code == NE
3991 && partial_subreg_p (op1)
3992 && subreg_lowpart_p (op1))
7afe21cc 3993 {
ef4bddc2 3994 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3995 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3996 if (tem)
3997 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3998 reversed_nonequality);
7afe21cc
RK
3999 }
4000
4001 /* Hash both operands. */
4002
4003 do_not_record = 0;
4004 hash_arg_in_memory = 0;
2197a88a 4005 op0_hash = HASH (op0, mode);
7afe21cc 4006 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
4007
4008 if (do_not_record)
4009 return;
4010
4011 do_not_record = 0;
4012 hash_arg_in_memory = 0;
2197a88a 4013 op1_hash = HASH (op1, mode);
7afe21cc 4014 op1_in_memory = hash_arg_in_memory;
278a83b2 4015
7afe21cc
RK
4016 if (do_not_record)
4017 return;
4018
4019 /* Look up both operands. */
2197a88a
RK
4020 op0_elt = lookup (op0, op0_hash, mode);
4021 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 4022
af3869c1
RK
4023 /* If both operands are already equivalent or if they are not in the
4024 table but are identical, do nothing. */
4025 if ((op0_elt != 0 && op1_elt != 0
4026 && op0_elt->first_same_value == op1_elt->first_same_value)
4027 || op0 == op1 || rtx_equal_p (op0, op1))
4028 return;
4029
7afe21cc 4030 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
4031 comparison. Similarly if this is floating-point. In the latter
4032 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4033 If we record the equality, we might inadvertently delete code
4034 whose intent was to change -0 to +0. */
4035
cbf6a543 4036 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 4037 {
1bb98cec
DM
4038 struct qty_table_elem *ent;
4039 int qty;
4040
7afe21cc
RK
4041 /* If we reversed a floating-point comparison, if OP0 is not a
4042 register, or if OP1 is neither a register or constant, we can't
4043 do anything. */
4044
f8cfc6aa 4045 if (!REG_P (op1))
7afe21cc
RK
4046 op1 = equiv_constant (op1);
4047
cbf6a543 4048 if ((reversed_nonequality && FLOAT_MODE_P (mode))
f8cfc6aa 4049 || !REG_P (op0) || op1 == 0)
7afe21cc
RK
4050 return;
4051
4052 /* Put OP0 in the hash table if it isn't already. This gives it a
4053 new quantity number. */
4054 if (op0_elt == 0)
4055 {
9714cf43 4056 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4057 {
4058 rehash_using_reg (op0);
2197a88a 4059 op0_hash = HASH (op0, mode);
2bb81c86
RK
4060
4061 /* If OP0 is contained in OP1, this changes its hash code
4062 as well. Faster to rehash than to check, except
4063 for the simple case of a constant. */
4064 if (! CONSTANT_P (op1))
2197a88a 4065 op1_hash = HASH (op1,mode);
7afe21cc
RK
4066 }
4067
9714cf43 4068 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4069 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4070 }
4071
1bb98cec
DM
4072 qty = REG_QTY (REGNO (op0));
4073 ent = &qty_table[qty];
4074
4075 ent->comparison_code = code;
f8cfc6aa 4076 if (REG_P (op1))
7afe21cc 4077 {
5d5ea909 4078 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 4079 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 4080
7afe21cc
RK
4081 /* Put OP1 in the hash table so it gets a new quantity number. */
4082 if (op1_elt == 0)
4083 {
9714cf43 4084 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4085 {
4086 rehash_using_reg (op1);
2197a88a 4087 op1_hash = HASH (op1, mode);
7afe21cc
RK
4088 }
4089
9714cf43 4090 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4091 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
4092 }
4093
1bb98cec
DM
4094 ent->comparison_const = NULL_RTX;
4095 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
4096 }
4097 else
4098 {
1bb98cec
DM
4099 ent->comparison_const = op1;
4100 ent->comparison_qty = -1;
7afe21cc
RK
4101 }
4102
4103 return;
4104 }
4105
eb5ad42a
RS
4106 /* If either side is still missing an equivalence, make it now,
4107 then merge the equivalences. */
7afe21cc 4108
7afe21cc
RK
4109 if (op0_elt == 0)
4110 {
9714cf43 4111 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4112 {
4113 rehash_using_reg (op0);
2197a88a 4114 op0_hash = HASH (op0, mode);
7afe21cc
RK
4115 }
4116
9714cf43 4117 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4118 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4119 }
4120
4121 if (op1_elt == 0)
4122 {
9714cf43 4123 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4124 {
4125 rehash_using_reg (op1);
2197a88a 4126 op1_hash = HASH (op1, mode);
7afe21cc
RK
4127 }
4128
9714cf43 4129 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4130 op1_elt->in_memory = op1_in_memory;
7afe21cc 4131 }
eb5ad42a
RS
4132
4133 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
4134}
4135\f
4136/* CSE processing for one instruction.
7b02f4e0
SB
4137
4138 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4139 but the few that "leak through" are cleaned up by cse_insn, and complex
4140 addressing modes are often formed here.
4141
4142 The main function is cse_insn, and between here and that function
4143 a couple of helper functions is defined to keep the size of cse_insn
4144 within reasonable proportions.
4145
4146 Data is shared between the main and helper functions via STRUCT SET,
4147 that contains all data related for every set in the instruction that
4148 is being processed.
4149
4150 Note that cse_main processes all sets in the instruction. Most
4151 passes in GCC only process simple SET insns or single_set insns, but
4152 CSE processes insns with multiple sets as well. */
7afe21cc
RK
4153
4154/* Data on one SET contained in the instruction. */
4155
4156struct set
4157{
4158 /* The SET rtx itself. */
4159 rtx rtl;
4160 /* The SET_SRC of the rtx (the original value, if it is changing). */
4161 rtx src;
4162 /* The hash-table element for the SET_SRC of the SET. */
4163 struct table_elt *src_elt;
2197a88a
RK
4164 /* Hash value for the SET_SRC. */
4165 unsigned src_hash;
4166 /* Hash value for the SET_DEST. */
4167 unsigned dest_hash;
7afe21cc
RK
4168 /* The SET_DEST, with SUBREG, etc., stripped. */
4169 rtx inner_dest;
278a83b2 4170 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 4171 char src_in_memory;
7afe21cc
RK
4172 /* Nonzero if the SET_SRC contains something
4173 whose value cannot be predicted and understood. */
4174 char src_volatile;
496324d0
DN
4175 /* Original machine mode, in case it becomes a CONST_INT.
4176 The size of this field should match the size of the mode
4177 field of struct rtx_def (see rtl.h). */
4178 ENUM_BITFIELD(machine_mode) mode : 8;
2197a88a
RK
4179 /* Hash value of constant equivalent for SET_SRC. */
4180 unsigned src_const_hash;
34e82342
RB
4181 /* A constant equivalent for SET_SRC, if any. */
4182 rtx src_const;
7afe21cc
RK
4183 /* Table entry for constant equivalent for SET_SRC, if any. */
4184 struct table_elt *src_const_elt;
05c433f3
PB
4185 /* Table entry for the destination address. */
4186 struct table_elt *dest_addr_elt;
7afe21cc 4187};
7b02f4e0
SB
4188\f
4189/* Special handling for (set REG0 REG1) where REG0 is the
4190 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4191 be used in the sequel, so (if easily done) change this insn to
4192 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4193 that computed their value. Then REG1 will become a dead store
4194 and won't cloud the situation for later optimizations.
4195
4196 Do not make this change if REG1 is a hard register, because it will
4197 then be used in the sequel and we may be changing a two-operand insn
4198 into a three-operand insn.
4199
4200 This is the last transformation that cse_insn will try to do. */
7afe21cc
RK
4201
4202static void
20468884 4203try_back_substitute_reg (rtx set, rtx_insn *insn)
7afe21cc 4204{
7b02f4e0
SB
4205 rtx dest = SET_DEST (set);
4206 rtx src = SET_SRC (set);
7afe21cc 4207
7b02f4e0
SB
4208 if (REG_P (dest)
4209 && REG_P (src) && ! HARD_REGISTER_P (src)
4210 && REGNO_QTY_VALID_P (REGNO (src)))
4211 {
4212 int src_q = REG_QTY (REGNO (src));
4213 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 4214
7b02f4e0
SB
4215 if (src_ent->first_reg == REGNO (dest))
4216 {
4217 /* Scan for the previous nonnote insn, but stop at a basic
4218 block boundary. */
20468884
DM
4219 rtx_insn *prev = insn;
4220 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
7b02f4e0
SB
4221 do
4222 {
4223 prev = PREV_INSN (prev);
4224 }
4225 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
7afe21cc 4226
7b02f4e0
SB
4227 /* Do not swap the registers around if the previous instruction
4228 attaches a REG_EQUIV note to REG1.
7afe21cc 4229
7b02f4e0
SB
4230 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4231 from the pseudo that originally shadowed an incoming argument
4232 to another register. Some uses of REG_EQUIV might rely on it
4233 being attached to REG1 rather than REG2.
7afe21cc 4234
7b02f4e0
SB
4235 This section previously turned the REG_EQUIV into a REG_EQUAL
4236 note. We cannot do that because REG_EQUIV may provide an
4237 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4238 if (NONJUMP_INSN_P (prev)
4239 && GET_CODE (PATTERN (prev)) == SET
4240 && SET_DEST (PATTERN (prev)) == src
4241 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4242 {
4243 rtx note;
4244
4245 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4246 validate_change (insn, &SET_DEST (set), src, 1);
4247 validate_change (insn, &SET_SRC (set), dest, 1);
4248 apply_change_group ();
4249
4250 /* If INSN has a REG_EQUAL note, and this note mentions
4251 REG0, then we must delete it, because the value in
4252 REG0 has changed. If the note's value is REG1, we must
4253 also delete it because that is now this insn's dest. */
4254 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4255 if (note != 0
4256 && (reg_mentioned_p (dest, XEXP (note, 0))
4257 || rtx_equal_p (src, XEXP (note, 0))))
4258 remove_note (insn, note);
966a140d
JL
4259
4260 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4261 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4262 if (note != 0)
4263 {
4264 remove_note (insn, note);
4265 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4266 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4267 }
7b02f4e0 4268 }
f474c6f8 4269 }
f1e7c95f 4270 }
7b02f4e0
SB
4271}
4272\f
4273/* Record all the SETs in this instruction into SETS_PTR,
4274 and return the number of recorded sets. */
4275static int
20468884 4276find_sets_in_insn (rtx_insn *insn, struct set **psets)
7b02f4e0
SB
4277{
4278 struct set *sets = *psets;
4279 int n_sets = 0;
4280 rtx x = PATTERN (insn);
f1e7c95f 4281
7afe21cc
RK
4282 if (GET_CODE (x) == SET)
4283 {
7afe21cc
RK
4284 /* Ignore SETs that are unconditional jumps.
4285 They never need cse processing, so this does not hurt.
4286 The reason is not efficiency but rather
4287 so that we can test at the end for instructions
4288 that have been simplified to unconditional jumps
4289 and not be misled by unchanged instructions
4290 that were unconditional jumps to begin with. */
4291 if (SET_DEST (x) == pc_rtx
4292 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4293 ;
7afe21cc
RK
4294 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4295 The hard function value register is used only once, to copy to
7b02f4e0 4296 someplace else, so it isn't worth cse'ing. */
7afe21cc 4297 else if (GET_CODE (SET_SRC (x)) == CALL)
7b02f4e0 4298 ;
7afe21cc 4299 else
7b02f4e0 4300 sets[n_sets++].rtl = x;
7afe21cc
RK
4301 }
4302 else if (GET_CODE (x) == PARALLEL)
4303 {
7b02f4e0 4304 int i, lim = XVECLEN (x, 0);
278a83b2 4305
6c4d60f8 4306 /* Go over the expressions of the PARALLEL in forward order, to
7b02f4e0 4307 put them in the same order in the SETS array. */
7afe21cc
RK
4308 for (i = 0; i < lim; i++)
4309 {
b3694847 4310 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4311 if (GET_CODE (y) == SET)
4312 {
7722328e
RK
4313 /* As above, we ignore unconditional jumps and call-insns and
4314 ignore the result of apply_change_group. */
7b02f4e0
SB
4315 if (SET_DEST (y) == pc_rtx
4316 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4317 ;
4318 else if (GET_CODE (SET_SRC (y)) == CALL)
7afe21cc
RK
4319 ;
4320 else
4321 sets[n_sets++].rtl = y;
4322 }
7afe21cc
RK
4323 }
4324 }
7b02f4e0
SB
4325
4326 return n_sets;
4327}
4328\f
6380a82e
EB
4329/* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4330
4331static void
4332canon_asm_operands (rtx x, rtx_insn *insn)
4333{
4334 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4335 {
4336 rtx input = ASM_OPERANDS_INPUT (x, i);
4337 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4338 {
4339 input = canon_reg (input, insn);
4340 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4341 }
4342 }
4343}
4344
7b02f4e0 4345/* Where possible, substitute every register reference in the N_SETS
026c3cfd 4346 number of SETS in INSN with the canonical register.
7b02f4e0
SB
4347
4348 Register canonicalization propagatest the earliest register (i.e.
4349 one that is set before INSN) with the same value. This is a very
4350 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4351 to RTL. For instance, a CONST for an address is usually expanded
4352 multiple times to loads into different registers, thus creating many
4353 subexpressions of the form:
4354
4355 (set (reg1) (some_const))
4356 (set (mem (... reg1 ...) (thing)))
4357 (set (reg2) (some_const))
4358 (set (mem (... reg2 ...) (thing)))
4359
4360 After canonicalizing, the code takes the following form:
4361
4362 (set (reg1) (some_const))
4363 (set (mem (... reg1 ...) (thing)))
4364 (set (reg2) (some_const))
4365 (set (mem (... reg1 ...) (thing)))
4366
4367 The set to reg2 is now trivially dead, and the memory reference (or
4368 address, or whatever) may be a candidate for further CSEing.
4369
4370 In this function, the result of apply_change_group can be ignored;
4371 see canon_reg. */
4372
4373static void
20468884 4374canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
7b02f4e0
SB
4375{
4376 struct set *sets = *psets;
4377 rtx tem;
4378 rtx x = PATTERN (insn);
4379 int i;
4380
4381 if (CALL_P (insn))
4382 {
4383 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
e384e6b5
BS
4384 if (GET_CODE (XEXP (tem, 0)) != SET)
4385 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
7b02f4e0
SB
4386 }
4387
4388 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4389 {
4390 canon_reg (SET_SRC (x), insn);
4391 apply_change_group ();
4392 fold_rtx (SET_SRC (x), insn);
4393 }
7afe21cc
RK
4394 else if (GET_CODE (x) == CLOBBER)
4395 {
7b02f4e0
SB
4396 /* If we clobber memory, canon the address.
4397 This does nothing when a register is clobbered
4398 because we have already invalidated the reg. */
3c0cb5de 4399 if (MEM_P (XEXP (x, 0)))
6fb5fa3c 4400 canon_reg (XEXP (x, 0), insn);
7afe21cc 4401 }
7afe21cc 4402 else if (GET_CODE (x) == USE
f8cfc6aa 4403 && ! (REG_P (XEXP (x, 0))
7afe21cc 4404 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
7b02f4e0 4405 /* Canonicalize a USE of a pseudo register or memory location. */
b1ba284c
EB
4406 canon_reg (x, insn);
4407 else if (GET_CODE (x) == ASM_OPERANDS)
6380a82e 4408 canon_asm_operands (x, insn);
7afe21cc
RK
4409 else if (GET_CODE (x) == CALL)
4410 {
4411 canon_reg (x, insn);
77fa0940 4412 apply_change_group ();
7afe21cc
RK
4413 fold_rtx (x, insn);
4414 }
b5b8b0ac
AO
4415 else if (DEBUG_INSN_P (insn))
4416 canon_reg (PATTERN (insn), insn);
7b02f4e0
SB
4417 else if (GET_CODE (x) == PARALLEL)
4418 {
4419 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4420 {
4421 rtx y = XVECEXP (x, 0, i);
4422 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4423 {
4424 canon_reg (SET_SRC (y), insn);
4425 apply_change_group ();
4426 fold_rtx (SET_SRC (y), insn);
4427 }
4428 else if (GET_CODE (y) == CLOBBER)
4429 {
4430 if (MEM_P (XEXP (y, 0)))
4431 canon_reg (XEXP (y, 0), insn);
4432 }
4433 else if (GET_CODE (y) == USE
4434 && ! (REG_P (XEXP (y, 0))
4435 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4436 canon_reg (y, insn);
6380a82e
EB
4437 else if (GET_CODE (y) == ASM_OPERANDS)
4438 canon_asm_operands (y, insn);
7b02f4e0
SB
4439 else if (GET_CODE (y) == CALL)
4440 {
4441 canon_reg (y, insn);
4442 apply_change_group ();
4443 fold_rtx (y, insn);
4444 }
4445 }
4446 }
7afe21cc 4447
92f9aa51 4448 if (n_sets == 1 && REG_NOTES (insn) != 0
7b02f4e0 4449 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
7b668f9e 4450 {
7b02f4e0
SB
4451 /* We potentially will process this insn many times. Therefore,
4452 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4453 unique set in INSN.
4454
4455 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4456 because cse_insn handles those specially. */
4457 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4458 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4459 remove_note (insn, tem);
4460 else
4461 {
4462 canon_reg (XEXP (tem, 0), insn);
4463 apply_change_group ();
4464 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4465 df_notes_rescan (insn);
4466 }
7b668f9e 4467 }
7afe21cc
RK
4468
4469 /* Canonicalize sources and addresses of destinations.
4470 We do this in a separate pass to avoid problems when a MATCH_DUP is
4471 present in the insn pattern. In that case, we want to ensure that
4472 we don't break the duplicate nature of the pattern. So we will replace
4473 both operands at the same time. Otherwise, we would fail to find an
4474 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4475
4476 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4477 but we don't do this any more. */
7afe21cc
RK
4478
4479 for (i = 0; i < n_sets; i++)
4480 {
4481 rtx dest = SET_DEST (sets[i].rtl);
4482 rtx src = SET_SRC (sets[i].rtl);
32e9fa48 4483 rtx new_rtx = canon_reg (src, insn);
7afe21cc 4484
32e9fa48 4485 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
7afe21cc 4486
46d096a3 4487 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4488 {
4489 validate_change (insn, &XEXP (dest, 1),
77fa0940 4490 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4491 validate_change (insn, &XEXP (dest, 2),
77fa0940 4492 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4493 }
4494
46d096a3 4495 while (GET_CODE (dest) == SUBREG
7afe21cc 4496 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4497 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4498 dest = XEXP (dest, 0);
4499
3c0cb5de 4500 if (MEM_P (dest))
7afe21cc
RK
4501 canon_reg (dest, insn);
4502 }
4503
77fa0940
RK
4504 /* Now that we have done all the replacements, we can apply the change
4505 group and see if they all work. Note that this will cause some
4506 canonicalizations that would have worked individually not to be applied
4507 because some other canonicalization didn't work, but this should not
278a83b2 4508 occur often.
7722328e
RK
4509
4510 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4511
4512 apply_change_group ();
7b02f4e0
SB
4513}
4514\f
4515/* Main function of CSE.
4516 First simplify sources and addresses of all assignments
4517 in the instruction, using previously-computed equivalents values.
4518 Then install the new sources and destinations in the table
4519 of available values. */
4520
4521static void
20468884 4522cse_insn (rtx_insn *insn)
7b02f4e0
SB
4523{
4524 rtx x = PATTERN (insn);
4525 int i;
4526 rtx tem;
4527 int n_sets = 0;
4528
4529 rtx src_eqv = 0;
4530 struct table_elt *src_eqv_elt = 0;
4531 int src_eqv_volatile = 0;
4532 int src_eqv_in_memory = 0;
4533 unsigned src_eqv_hash = 0;
4534
4535 struct set *sets = (struct set *) 0;
4536
4537 if (GET_CODE (x) == SET)
4538 sets = XALLOCA (struct set);
4539 else if (GET_CODE (x) == PARALLEL)
4540 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4541
4542 this_insn = insn;
7b02f4e0
SB
4543 /* Records what this insn does to set CC0. */
4544 this_insn_cc0 = 0;
4545 this_insn_cc0_mode = VOIDmode;
7b02f4e0
SB
4546
4547 /* Find all regs explicitly clobbered in this insn,
4548 to ensure they are not replaced with any other regs
4549 elsewhere in this insn. */
4550 invalidate_from_sets_and_clobbers (insn);
4551
4552 /* Record all the SETs in this instruction. */
4553 n_sets = find_sets_in_insn (insn, &sets);
4554
4555 /* Substitute the canonical register where possible. */
4556 canonicalize_insn (insn, &sets, n_sets);
4557
4558 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
7f7379f6
KV
4559 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4560 latter condition is necessary because SRC_EQV is handled specially for
4561 this case, and if it isn't set, then there will be no equivalence
4562 for the destination. */
7b02f4e0 4563 if (n_sets == 1 && REG_NOTES (insn) != 0
1e928e07 4564 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
7f7379f6 4565 {
7f7379f6 4566
1e928e07
KV
4567 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4568 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4569 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4570 src_eqv = copy_rtx (XEXP (tem, 0));
7f7379f6
KV
4571 /* If DEST is of the form ZERO_EXTACT, as in:
4572 (set (zero_extract:SI (reg:SI 119)
4573 (const_int 16 [0x10])
4574 (const_int 16 [0x10]))
4575 (const_int 51154 [0xc7d2]))
4576 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4577 point. Note that this is different from SRC_EQV. We can however
4578 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4579 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
fa24123b 4580 && CONST_INT_P (XEXP (tem, 0))
7f7379f6
KV
4581 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4582 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4583 {
4584 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
c7ad039d
RS
4585 /* This is the mode of XEXP (tem, 0) as well. */
4586 scalar_int_mode dest_mode
4587 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
7f7379f6
KV
4588 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4589 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
fa24123b 4590 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
7f7379f6
KV
4591 HOST_WIDE_INT mask;
4592 unsigned int shift;
4593 if (BITS_BIG_ENDIAN)
c7ad039d
RS
4594 shift = (GET_MODE_PRECISION (dest_mode)
4595 - INTVAL (pos) - INTVAL (width));
7f7379f6
KV
4596 else
4597 shift = INTVAL (pos);
4598 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
dd4786fe 4599 mask = HOST_WIDE_INT_M1;
7f7379f6 4600 else
fecfbfa4 4601 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
7f7379f6
KV
4602 val = (val >> shift) & mask;
4603 src_eqv = GEN_INT (val);
4604 }
4605 }
77fa0940 4606
7afe21cc
RK
4607 /* Set sets[i].src_elt to the class each source belongs to.
4608 Detect assignments from or to volatile things
4609 and set set[i] to zero so they will be ignored
4610 in the rest of this function.
4611
4612 Nothing in this loop changes the hash table or the register chains. */
4613
4614 for (i = 0; i < n_sets; i++)
4615 {
b4ab701f 4616 bool repeat = false;
dd77684f 4617 bool mem_noop_insn = false;
b3694847
SS
4618 rtx src, dest;
4619 rtx src_folded;
4620 struct table_elt *elt = 0, *p;
ef4bddc2 4621 machine_mode mode;
7afe21cc
RK
4622 rtx src_eqv_here;
4623 rtx src_const = 0;
4624 rtx src_related = 0;
2c5bfdf7 4625 bool src_related_is_const_anchor = false;
7afe21cc 4626 struct table_elt *src_const_elt = 0;
99a9c946
GS
4627 int src_cost = MAX_COST;
4628 int src_eqv_cost = MAX_COST;
4629 int src_folded_cost = MAX_COST;
4630 int src_related_cost = MAX_COST;
4631 int src_elt_cost = MAX_COST;
4632 int src_regcost = MAX_COST;
4633 int src_eqv_regcost = MAX_COST;
4634 int src_folded_regcost = MAX_COST;
4635 int src_related_regcost = MAX_COST;
4636 int src_elt_regcost = MAX_COST;
da7d8304 4637 /* Set nonzero if we need to call force_const_mem on with the
7afe21cc
RK
4638 contents of src_folded before using it. */
4639 int src_folded_force_flag = 0;
b4206259 4640 scalar_int_mode int_mode;
7afe21cc
RK
4641
4642 dest = SET_DEST (sets[i].rtl);
4643 src = SET_SRC (sets[i].rtl);
4644
4645 /* If SRC is a constant that has no machine mode,
4646 hash it with the destination's machine mode.
4647 This way we can keep different modes separate. */
4648
4649 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4650 sets[i].mode = mode;
4651
4652 if (src_eqv)
4653 {
ef4bddc2 4654 machine_mode eqvmode = mode;
7afe21cc
RK
4655 if (GET_CODE (dest) == STRICT_LOW_PART)
4656 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4657 do_not_record = 0;
4658 hash_arg_in_memory = 0;
2197a88a 4659 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4660
4661 /* Find the equivalence class for the equivalent expression. */
4662
4663 if (!do_not_record)
2197a88a 4664 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4665
4666 src_eqv_volatile = do_not_record;
4667 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4668 }
4669
4670 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4671 value of the INNER register, not the destination. So it is not
3826a3da 4672 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4673 if (GET_CODE (dest) == STRICT_LOW_PART)
4674 src_eqv_here = 0;
4675 else
4676 src_eqv_here = src_eqv;
4677
4678 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4679 simplified result, which may not necessarily be valid. */
625d55af 4680 src_folded = fold_rtx (src, NULL);
7afe21cc 4681
e6a125a0
RK
4682#if 0
4683 /* ??? This caused bad code to be generated for the m68k port with -O2.
4684 Suppose src is (CONST_INT -1), and that after truncation src_folded
4685 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4686 At the end we will add src and src_const to the same equivalence
4687 class. We now have 3 and -1 on the same equivalence class. This
4688 causes later instructions to be mis-optimized. */
7afe21cc
RK
4689 /* If storing a constant in a bitfield, pre-truncate the constant
4690 so we will be able to record it later. */
46d096a3 4691 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4692 {
4693 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4694
481683e1
SZ
4695 if (CONST_INT_P (src)
4696 && CONST_INT_P (width)
906c4e36
RK
4697 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4698 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4699 src_folded
fecfbfa4 4700 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
906c4e36 4701 << INTVAL (width)) - 1));
7afe21cc 4702 }
e6a125a0 4703#endif
7afe21cc
RK
4704
4705 /* Compute SRC's hash code, and also notice if it
4706 should not be recorded at all. In that case,
4707 prevent any further processing of this assignment. */
4708 do_not_record = 0;
4709 hash_arg_in_memory = 0;
7afe21cc
RK
4710
4711 sets[i].src = src;
2197a88a 4712 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
4713 sets[i].src_volatile = do_not_record;
4714 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 4715
50196afa 4716 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
4717 a pseudo, do not record SRC. Using SRC as a replacement for
4718 anything else will be incorrect in that situation. Note that
4719 this usually occurs only for stack slots, in which case all the
4720 RTL would be referring to SRC, so we don't lose any optimization
4721 opportunities by not having SRC in the hash table. */
50196afa 4722
3c0cb5de 4723 if (MEM_P (src)
43e72072 4724 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 4725 && REG_P (dest)
43e72072 4726 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
4727 sets[i].src_volatile = 1;
4728
d8d6ea53
JJ
4729 else if (GET_CODE (src) == ASM_OPERANDS
4730 && GET_CODE (x) == PARALLEL)
6c4d60f8
JJ
4731 {
4732 /* Do not record result of a non-volatile inline asm with
4733 more than one result. */
4734 if (n_sets > 1)
4735 sets[i].src_volatile = 1;
4736
4737 int j, lim = XVECLEN (x, 0);
4738 for (j = 0; j < lim; j++)
4739 {
4740 rtx y = XVECEXP (x, 0, j);
4741 /* And do not record result of a non-volatile inline asm
4742 with "memory" clobber. */
4743 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4744 {
4745 sets[i].src_volatile = 1;
4746 break;
4747 }
4748 }
4749 }
d8d6ea53 4750
0dadecf6
RK
4751#if 0
4752 /* It is no longer clear why we used to do this, but it doesn't
4753 appear to still be needed. So let's try without it since this
4754 code hurts cse'ing widened ops. */
9a5a17f3 4755 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
4756 treat it as volatile. It may do the work of an SI in one context
4757 where the extra bits are not being used, but cannot replace an SI
4758 in general. */
6a4bdc79 4759 if (paradoxical_subreg_p (src))
7afe21cc 4760 sets[i].src_volatile = 1;
0dadecf6 4761#endif
7afe21cc
RK
4762
4763 /* Locate all possible equivalent forms for SRC. Try to replace
4764 SRC in the insn with each cheaper equivalent.
4765
4766 We have the following types of equivalents: SRC itself, a folded
4767 version, a value given in a REG_EQUAL note, or a value related
4768 to a constant.
4769
4770 Each of these equivalents may be part of an additional class
4771 of equivalents (if more than one is in the table, they must be in
4772 the same class; we check for this).
4773
4774 If the source is volatile, we don't do any table lookups.
4775
4776 We note any constant equivalent for possible later use in a
4777 REG_NOTE. */
4778
4779 if (!sets[i].src_volatile)
2197a88a 4780 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
4781
4782 sets[i].src_elt = elt;
4783
4784 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
4785 {
4786 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
4787 {
4788 /* The REG_EQUAL is indicating that two formerly distinct
4789 classes are now equivalent. So merge them. */
4790 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
4791 src_eqv_hash = HASH (src_eqv, elt->mode);
4792 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
4793 }
4794
278a83b2
KH
4795 src_eqv_here = 0;
4796 }
7afe21cc
RK
4797
4798 else if (src_eqv_elt)
278a83b2 4799 elt = src_eqv_elt;
7afe21cc
RK
4800
4801 /* Try to find a constant somewhere and record it in `src_const'.
4802 Record its table element, if any, in `src_const_elt'. Look in
4803 any known equivalences first. (If the constant is not in the
2197a88a 4804 table, also set `sets[i].src_const_hash'). */
7afe21cc 4805 if (elt)
278a83b2 4806 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
4807 if (p->is_const)
4808 {
4809 src_const = p->exp;
4810 src_const_elt = elt;
4811 break;
4812 }
4813
4814 if (src_const == 0
4815 && (CONSTANT_P (src_folded)
278a83b2 4816 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
4817 "constant" here so we will record it. This allows us
4818 to fold switch statements when an ADDR_DIFF_VEC is used. */
4819 || (GET_CODE (src_folded) == MINUS
4820 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4821 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4822 src_const = src_folded, src_const_elt = elt;
4823 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4824 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4825
4826 /* If we don't know if the constant is in the table, get its
4827 hash code and look it up. */
4828 if (src_const && src_const_elt == 0)
4829 {
2197a88a
RK
4830 sets[i].src_const_hash = HASH (src_const, mode);
4831 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
4832 }
4833
4834 sets[i].src_const = src_const;
4835 sets[i].src_const_elt = src_const_elt;
4836
4837 /* If the constant and our source are both in the table, mark them as
4838 equivalent. Otherwise, if a constant is in the table but the source
4839 isn't, set ELT to it. */
4840 if (src_const_elt && elt
4841 && src_const_elt->first_same_value != elt->first_same_value)
4842 merge_equiv_classes (elt, src_const_elt);
4843 else if (src_const_elt && elt == 0)
4844 elt = src_const_elt;
4845
4846 /* See if there is a register linearly related to a constant
4847 equivalent of SRC. */
4848 if (src_const
4849 && (GET_CODE (src_const) == CONST
4850 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
4851 {
4852 src_related = use_related_value (src_const, src_const_elt);
4853 if (src_related)
4854 {
7afe21cc 4855 struct table_elt *src_related_elt
278a83b2 4856 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 4857 if (src_related_elt && elt)
278a83b2 4858 {
7afe21cc
RK
4859 if (elt->first_same_value
4860 != src_related_elt->first_same_value)
278a83b2 4861 /* This can occur when we previously saw a CONST
7afe21cc
RK
4862 involving a SYMBOL_REF and then see the SYMBOL_REF
4863 twice. Merge the involved classes. */
4864 merge_equiv_classes (elt, src_related_elt);
4865
278a83b2 4866 src_related = 0;
7afe21cc 4867 src_related_elt = 0;
278a83b2
KH
4868 }
4869 else if (src_related_elt && elt == 0)
4870 elt = src_related_elt;
7afe21cc 4871 }
278a83b2 4872 }
7afe21cc 4873
e4600702
RK
4874 /* See if we have a CONST_INT that is already in a register in a
4875 wider mode. */
4876
481683e1 4877 if (src_const && src_related == 0 && CONST_INT_P (src_const)
b4206259
RS
4878 && is_int_mode (mode, &int_mode)
4879 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
e4600702 4880 {
b4206259
RS
4881 opt_scalar_int_mode wider_mode_iter;
4882 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
e4600702 4883 {
b4206259 4884 scalar_int_mode wider_mode = wider_mode_iter.require ();
c94843d2
RS
4885 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4886 break;
4887
e4600702
RK
4888 struct table_elt *const_elt
4889 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4890
4891 if (const_elt == 0)
4892 continue;
4893
4894 for (const_elt = const_elt->first_same_value;
4895 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 4896 if (REG_P (const_elt->exp))
e4600702 4897 {
b4206259 4898 src_related = gen_lowpart (int_mode, const_elt->exp);
e4600702
RK
4899 break;
4900 }
c94843d2
RS
4901
4902 if (src_related != 0)
4903 break;
e4600702
RK
4904 }
4905 }
4906
d45cf215
RS
4907 /* Another possibility is that we have an AND with a constant in
4908 a mode narrower than a word. If so, it might have been generated
4909 as part of an "if" which would narrow the AND. If we already
4910 have done the AND in a wider mode, we can use a SUBREG of that
4911 value. */
4912
4913 if (flag_expensive_optimizations && ! src_related
54651377 4914 && is_a <scalar_int_mode> (mode, &int_mode)
481683e1 4915 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
54651377 4916 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
d45cf215 4917 {
59b51186 4918 opt_scalar_int_mode tmode_iter;
38a448ca 4919 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215 4920
59b51186 4921 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
d45cf215 4922 {
59b51186 4923 scalar_int_mode tmode = tmode_iter.require ();
c94843d2
RS
4924 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4925 break;
4926
4de249d9 4927 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
4928 struct table_elt *larger_elt;
4929
4930 if (inner)
4931 {
4932 PUT_MODE (new_and, tmode);
4933 XEXP (new_and, 0) = inner;
4934 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4935 if (larger_elt == 0)
4936 continue;
4937
4938 for (larger_elt = larger_elt->first_same_value;
4939 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4940 if (REG_P (larger_elt->exp))
d45cf215
RS
4941 {
4942 src_related
54651377 4943 = gen_lowpart (int_mode, larger_elt->exp);
d45cf215
RS
4944 break;
4945 }
4946
4947 if (src_related)
4948 break;
4949 }
4950 }
4951 }
7bac1be0 4952
7bac1be0
RK
4953 /* See if a MEM has already been loaded with a widening operation;
4954 if it has, we can use a subreg of that. Many CISC machines
4955 also have such operations, but this is only likely to be
71cc389b 4956 beneficial on these machines. */
278a83b2 4957
3712c7a3 4958 rtx_code extend_op;
ddc356e8 4959 if (flag_expensive_optimizations && src_related == 0
3c0cb5de 4960 && MEM_P (src) && ! do_not_record
095a49c8
RS
4961 && is_a <scalar_int_mode> (mode, &int_mode)
4962 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
7bac1be0 4963 {
9d80ef7c
RH
4964 struct rtx_def memory_extend_buf;
4965 rtx memory_extend_rtx = &memory_extend_buf;
278a83b2 4966
7bac1be0
RK
4967 /* Set what we are trying to extend and the operation it might
4968 have been extended with. */
c3284718 4969 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
3712c7a3 4970 PUT_CODE (memory_extend_rtx, extend_op);
7bac1be0 4971 XEXP (memory_extend_rtx, 0) = src;
278a83b2 4972
59b51186
RS
4973 opt_scalar_int_mode tmode_iter;
4974 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
7bac1be0
RK
4975 {
4976 struct table_elt *larger_elt;
278a83b2 4977
59b51186 4978 scalar_int_mode tmode = tmode_iter.require ();
c94843d2
RS
4979 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4980 break;
4981
7bac1be0 4982 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 4983 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
4984 HASH (memory_extend_rtx, tmode), tmode);
4985 if (larger_elt == 0)
4986 continue;
278a83b2 4987
7bac1be0
RK
4988 for (larger_elt = larger_elt->first_same_value;
4989 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4990 if (REG_P (larger_elt->exp))
7bac1be0 4991 {
095a49c8 4992 src_related = gen_lowpart (int_mode, larger_elt->exp);
7bac1be0
RK
4993 break;
4994 }
278a83b2 4995
7bac1be0
RK
4996 if (src_related)
4997 break;
4998 }
4999 }
278a83b2 5000
2c5bfdf7
AN
5001 /* Try to express the constant using a register+offset expression
5002 derived from a constant anchor. */
5003
5004 if (targetm.const_anchor
5005 && !src_related
5006 && src_const
5007 && GET_CODE (src_const) == CONST_INT)
5008 {
5009 src_related = try_const_anchors (src_const, mode);
5010 src_related_is_const_anchor = src_related != NULL_RTX;
5011 }
5012
5013
7afe21cc 5014 if (src == src_folded)
278a83b2 5015 src_folded = 0;
7afe21cc 5016
da7d8304 5017 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 5018 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 5019 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
5020 expressions. Prune these latter expressions by deleting expressions
5021 already in the equivalence class.
5022
5023 Check for an equivalent identical to the destination. If found,
5024 this is the preferred equivalent since it will likely lead to
5025 elimination of the insn. Indicate this by placing it in
5026 `src_related'. */
5027
278a83b2
KH
5028 if (elt)
5029 elt = elt->first_same_value;
7afe21cc 5030 for (p = elt; p; p = p->next_same_value)
278a83b2 5031 {
7afe21cc
RK
5032 enum rtx_code code = GET_CODE (p->exp);
5033
5034 /* If the expression is not valid, ignore it. Then we do not
5035 have to check for validity below. In most cases, we can use
5036 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 5037 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
5038 continue;
5039
5a03c8c4
RK
5040 /* Also skip paradoxical subregs, unless that's what we're
5041 looking for. */
6a4bdc79 5042 if (paradoxical_subreg_p (p->exp)
5a03c8c4
RK
5043 && ! (src != 0
5044 && GET_CODE (src) == SUBREG
5045 && GET_MODE (src) == GET_MODE (p->exp)
bd4288c0
RS
5046 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5047 GET_MODE (SUBREG_REG (p->exp)))))
5a03c8c4
RK
5048 continue;
5049
278a83b2 5050 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 5051 src = 0;
278a83b2 5052 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
5053 && rtx_equal_p (src_folded, p->exp))
5054 src_folded = 0;
278a83b2 5055 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
5056 && rtx_equal_p (src_eqv_here, p->exp))
5057 src_eqv_here = 0;
278a83b2 5058 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
5059 && rtx_equal_p (src_related, p->exp))
5060 src_related = 0;
5061
5062 /* This is the same as the destination of the insns, we want
5063 to prefer it. Copy it to src_related. The code below will
5064 then give it a negative cost. */
5065 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5066 src_related = dest;
278a83b2 5067 }
7afe21cc
RK
5068
5069 /* Find the cheapest valid equivalent, trying all the available
5070 possibilities. Prefer items not in the hash table to ones
5071 that are when they are equal cost. Note that we can never
5072 worsen an insn as the current contents will also succeed.
05c33dd8 5073 If we find an equivalent identical to the destination, use it as best,
0f41302f 5074 since this insn will probably be eliminated in that case. */
7afe21cc
RK
5075 if (src)
5076 {
5077 if (rtx_equal_p (src, dest))
f1c1dfc3 5078 src_cost = src_regcost = -1;
7afe21cc 5079 else
630c79be 5080 {
e548c9df 5081 src_cost = COST (src, mode);
630c79be
BS
5082 src_regcost = approx_reg_cost (src);
5083 }
7afe21cc
RK
5084 }
5085
5086 if (src_eqv_here)
5087 {
5088 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 5089 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 5090 else
630c79be 5091 {
e548c9df 5092 src_eqv_cost = COST (src_eqv_here, mode);
630c79be
BS
5093 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5094 }
7afe21cc
RK
5095 }
5096
5097 if (src_folded)
5098 {
5099 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 5100 src_folded_cost = src_folded_regcost = -1;
7afe21cc 5101 else
630c79be 5102 {
e548c9df 5103 src_folded_cost = COST (src_folded, mode);
630c79be
BS
5104 src_folded_regcost = approx_reg_cost (src_folded);
5105 }
7afe21cc
RK
5106 }
5107
5108 if (src_related)
5109 {
5110 if (rtx_equal_p (src_related, dest))
f1c1dfc3 5111 src_related_cost = src_related_regcost = -1;
7afe21cc 5112 else
630c79be 5113 {
e548c9df 5114 src_related_cost = COST (src_related, mode);
630c79be 5115 src_related_regcost = approx_reg_cost (src_related);
2c5bfdf7
AN
5116
5117 /* If a const-anchor is used to synthesize a constant that
5118 normally requires multiple instructions then slightly prefer
5119 it over the original sequence. These instructions are likely
5120 to become redundant now. We can't compare against the cost
5121 of src_eqv_here because, on MIPS for example, multi-insn
5122 constants have zero cost; they are assumed to be hoisted from
5123 loops. */
5124 if (src_related_is_const_anchor
5125 && src_related_cost == src_cost
5126 && src_eqv_here)
5127 src_related_cost--;
630c79be 5128 }
7afe21cc
RK
5129 }
5130
5131 /* If this was an indirect jump insn, a known label will really be
5132 cheaper even though it looks more expensive. */
5133 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 5134 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 5135
7afe21cc
RK
5136 /* Terminate loop when replacement made. This must terminate since
5137 the current contents will be tested and will always be valid. */
5138 while (1)
278a83b2
KH
5139 {
5140 rtx trial;
7afe21cc 5141
278a83b2 5142 /* Skip invalid entries. */
f8cfc6aa 5143 while (elt && !REG_P (elt->exp)
0516f6fe 5144 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 5145 elt = elt->next_same_value;
5a03c8c4
RK
5146
5147 /* A paradoxical subreg would be bad here: it'll be the right
5148 size, but later may be adjusted so that the upper bits aren't
5149 what we want. So reject it. */
5150 if (elt != 0
6a4bdc79 5151 && paradoxical_subreg_p (elt->exp)
5a03c8c4
RK
5152 /* It is okay, though, if the rtx we're trying to match
5153 will ignore any of the bits we can't predict. */
5154 && ! (src != 0
5155 && GET_CODE (src) == SUBREG
5156 && GET_MODE (src) == GET_MODE (elt->exp)
bd4288c0
RS
5157 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5158 GET_MODE (SUBREG_REG (elt->exp)))))
5a03c8c4
RK
5159 {
5160 elt = elt->next_same_value;
5161 continue;
5162 }
278a83b2 5163
68252e27 5164 if (elt)
630c79be
BS
5165 {
5166 src_elt_cost = elt->cost;
5167 src_elt_regcost = elt->regcost;
5168 }
7afe21cc 5169
68252e27 5170 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
5171 of equal cost, use this order:
5172 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 5173 if (src_folded
56ae04af
KH
5174 && preferable (src_folded_cost, src_folded_regcost,
5175 src_cost, src_regcost) <= 0
5176 && preferable (src_folded_cost, src_folded_regcost,
5177 src_eqv_cost, src_eqv_regcost) <= 0
5178 && preferable (src_folded_cost, src_folded_regcost,
5179 src_related_cost, src_related_regcost) <= 0
5180 && preferable (src_folded_cost, src_folded_regcost,
5181 src_elt_cost, src_elt_regcost) <= 0)
7afe21cc 5182 {
f1c1dfc3 5183 trial = src_folded, src_folded_cost = MAX_COST;
7afe21cc 5184 if (src_folded_force_flag)
9d8de1de
EB
5185 {
5186 rtx forced = force_const_mem (mode, trial);
5187 if (forced)
5188 trial = forced;
5189 }
7afe21cc 5190 }
99a9c946 5191 else if (src
56ae04af
KH
5192 && preferable (src_cost, src_regcost,
5193 src_eqv_cost, src_eqv_regcost) <= 0
5194 && preferable (src_cost, src_regcost,
5195 src_related_cost, src_related_regcost) <= 0
5196 && preferable (src_cost, src_regcost,
5197 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5198 trial = src, src_cost = MAX_COST;
99a9c946 5199 else if (src_eqv_here
56ae04af
KH
5200 && preferable (src_eqv_cost, src_eqv_regcost,
5201 src_related_cost, src_related_regcost) <= 0
5202 && preferable (src_eqv_cost, src_eqv_regcost,
5203 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 5204 trial = src_eqv_here, src_eqv_cost = MAX_COST;
99a9c946 5205 else if (src_related
56ae04af
KH
5206 && preferable (src_related_cost, src_related_regcost,
5207 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 5208 trial = src_related, src_related_cost = MAX_COST;
278a83b2 5209 else
7afe21cc 5210 {
a36b8a1e 5211 trial = elt->exp;
7afe21cc 5212 elt = elt->next_same_value;
f1c1dfc3 5213 src_elt_cost = MAX_COST;
7afe21cc
RK
5214 }
5215
2e4e39f6 5216 /* Avoid creation of overlapping memory moves. */
dd77684f 5217 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
2e4e39f6
AK
5218 {
5219 rtx src, dest;
5220
5221 /* BLKmode moves are not handled by cse anyway. */
5222 if (GET_MODE (trial) == BLKmode)
5223 break;
5224
5225 src = canon_rtx (trial);
5226 dest = canon_rtx (SET_DEST (sets[i].rtl));
5227
5228 if (!MEM_P (src) || !MEM_P (dest)
c6ea834c 5229 || !nonoverlapping_memrefs_p (src, dest, false))
2e4e39f6
AK
5230 break;
5231 }
5232
b4ab701f
JJ
5233 /* Try to optimize
5234 (set (reg:M N) (const_int A))
5235 (set (reg:M2 O) (const_int B))
5236 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5237 (reg:M2 O)). */
5238 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5239 && CONST_INT_P (trial)
5240 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5241 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5242 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
bb94ec76
RS
5243 && (known_ge
5244 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5245 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
b4ab701f
JJ
5246 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5247 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5248 <= HOST_BITS_PER_WIDE_INT))
5249 {
5250 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5251 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5252 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5253 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5254 struct table_elt *dest_elt
5255 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5256 rtx dest_cst = NULL;
5257
5258 if (dest_elt)
5259 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5260 if (p->is_const && CONST_INT_P (p->exp))
5261 {
5262 dest_cst = p->exp;
5263 break;
5264 }
5265 if (dest_cst)
5266 {
5267 HOST_WIDE_INT val = INTVAL (dest_cst);
5268 HOST_WIDE_INT mask;
5269 unsigned int shift;
c7ad039d
RS
5270 /* This is the mode of DEST_CST as well. */
5271 scalar_int_mode dest_mode
5272 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
b4ab701f 5273 if (BITS_BIG_ENDIAN)
c7ad039d 5274 shift = GET_MODE_PRECISION (dest_mode)
b4ab701f
JJ
5275 - INTVAL (pos) - INTVAL (width);
5276 else
5277 shift = INTVAL (pos);
5278 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
dd4786fe 5279 mask = HOST_WIDE_INT_M1;
b4ab701f 5280 else
fecfbfa4 5281 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
b4ab701f
JJ
5282 val &= ~(mask << shift);
5283 val |= (INTVAL (trial) & mask) << shift;
c7ad039d 5284 val = trunc_int_for_mode (val, dest_mode);
b4ab701f
JJ
5285 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5286 dest_reg, 1);
5287 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5288 GEN_INT (val), 1);
5289 if (apply_change_group ())
5290 {
5291 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5292 if (note)
5293 {
5294 remove_note (insn, note);
5295 df_notes_rescan (insn);
5296 }
5297 src_eqv = NULL_RTX;
5298 src_eqv_elt = NULL;
5299 src_eqv_volatile = 0;
5300 src_eqv_in_memory = 0;
5301 src_eqv_hash = 0;
5302 repeat = true;
5303 break;
5304 }
5305 }
5306 }
5307
7afe21cc
RK
5308 /* We don't normally have an insn matching (set (pc) (pc)), so
5309 check for this separately here. We will delete such an
5310 insn below.
5311
d466c016
JL
5312 For other cases such as a table jump or conditional jump
5313 where we know the ultimate target, go ahead and replace the
5314 operand. While that may not make a valid insn, we will
5315 reemit the jump below (and also insert any necessary
5316 barriers). */
7afe21cc
RK
5317 if (n_sets == 1 && dest == pc_rtx
5318 && (trial == pc_rtx
5319 || (GET_CODE (trial) == LABEL_REF
5320 && ! condjump_p (insn))))
5321 {
2f39b6ca
UW
5322 /* Don't substitute non-local labels, this confuses CFG. */
5323 if (GET_CODE (trial) == LABEL_REF
5324 && LABEL_REF_NONLOCAL_P (trial))
5325 continue;
5326
d466c016 5327 SET_SRC (sets[i].rtl) = trial;
2aac3a01 5328 cse_jumps_altered = true;
7afe21cc
RK
5329 break;
5330 }
278a83b2 5331
dd77684f
JJ
5332 /* Similarly, lots of targets don't allow no-op
5333 (set (mem x) (mem x)) moves. */
5334 else if (n_sets == 1
5335 && MEM_P (trial)
5336 && MEM_P (dest)
5337 && rtx_equal_p (trial, dest)
5338 && !side_effects_p (dest)
5339 && (cfun->can_delete_dead_exceptions
5340 || insn_nothrow_p (insn)))
5341 {
5342 SET_SRC (sets[i].rtl) = trial;
5343 mem_noop_insn = true;
5344 break;
5345 }
5346
1ef6855c
KH
5347 /* Reject certain invalid forms of CONST that we create. */
5348 else if (CONSTANT_P (trial)
5349 && GET_CODE (trial) == CONST
5350 /* Reject cases that will cause decode_rtx_const to
5351 die. On the alpha when simplifying a switch, we
5352 get (const (truncate (minus (label_ref)
5353 (label_ref)))). */
5354 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5355 /* Likewise on IA-64, except without the
5356 truncate. */
5357 || (GET_CODE (XEXP (trial, 0)) == MINUS
5358 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5359 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5360 /* Do nothing for this case. */
5361 ;
5362
7afe21cc 5363 /* Look for a substitution that makes a valid insn. */
6c4d60f8
JJ
5364 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5365 trial, 0))
05c33dd8 5366 {
32e9fa48 5367 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
dbaff908 5368
7722328e
RK
5369 /* The result of apply_change_group can be ignored; see
5370 canon_reg. */
5371
32e9fa48 5372 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
6702af89 5373 apply_change_group ();
932ad4d9 5374
05c33dd8
RK
5375 break;
5376 }
7afe21cc 5377
278a83b2 5378 /* If we previously found constant pool entries for
7afe21cc
RK
5379 constants and this is a constant, try making a
5380 pool entry. Put it in src_folded unless we already have done
5381 this since that is where it likely came from. */
5382
5383 else if (constant_pool_entries_cost
5384 && CONSTANT_P (trial)
1bbd065b 5385 && (src_folded == 0
3c0cb5de 5386 || (!MEM_P (src_folded)
1bbd065b 5387 && ! src_folded_force_flag))
9ae8ffe7
JL
5388 && GET_MODE_CLASS (mode) != MODE_CC
5389 && mode != VOIDmode)
7afe21cc
RK
5390 {
5391 src_folded_force_flag = 1;
5392 src_folded = trial;
5393 src_folded_cost = constant_pool_entries_cost;
dd0ba281 5394 src_folded_regcost = constant_pool_entries_regcost;
7afe21cc 5395 }
278a83b2 5396 }
7afe21cc 5397
b4ab701f
JJ
5398 /* If we changed the insn too much, handle this set from scratch. */
5399 if (repeat)
5400 {
5401 i--;
5402 continue;
5403 }
5404
7afe21cc
RK
5405 src = SET_SRC (sets[i].rtl);
5406
5407 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5408 However, there is an important exception: If both are registers
5409 that are not the head of their equivalence class, replace SET_SRC
5410 with the head of the class. If we do not do this, we will have
5411 both registers live over a portion of the basic block. This way,
5412 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 5413 if (REG_P (dest)
1bb98cec 5414 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 5415 {
1bb98cec
DM
5416 int dest_q = REG_QTY (REGNO (dest));
5417 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5418
5419 if (dest_ent->mode == GET_MODE (dest)
5420 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 5421 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
5422 /* Don't do this if the original insn had a hard reg as
5423 SET_SRC or SET_DEST. */
f8cfc6aa 5424 && (!REG_P (sets[i].src)
1bb98cec 5425 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 5426 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
5427 /* We can't call canon_reg here because it won't do anything if
5428 SRC is a hard register. */
759bd8b7 5429 {
1bb98cec
DM
5430 int src_q = REG_QTY (REGNO (src));
5431 struct qty_table_elem *src_ent = &qty_table[src_q];
5432 int first = src_ent->first_reg;
5433 rtx new_src
5434 = (first >= FIRST_PSEUDO_REGISTER
5435 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5436
5437 /* We must use validate-change even for this, because this
5438 might be a special no-op instruction, suitable only to
5439 tag notes onto. */
5440 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5441 {
5442 src = new_src;
5443 /* If we had a constant that is cheaper than what we are now
5444 setting SRC to, use that constant. We ignored it when we
5445 thought we could make this into a no-op. */
e548c9df 5446 if (src_const && COST (src_const, mode) < COST (src, mode)
278a83b2
KH
5447 && validate_change (insn, &SET_SRC (sets[i].rtl),
5448 src_const, 0))
1bb98cec
DM
5449 src = src_const;
5450 }
759bd8b7 5451 }
7afe21cc
RK
5452 }
5453
5454 /* If we made a change, recompute SRC values. */
5455 if (src != sets[i].src)
278a83b2 5456 {
278a83b2
KH
5457 do_not_record = 0;
5458 hash_arg_in_memory = 0;
7afe21cc 5459 sets[i].src = src;
278a83b2
KH
5460 sets[i].src_hash = HASH (src, mode);
5461 sets[i].src_volatile = do_not_record;
5462 sets[i].src_in_memory = hash_arg_in_memory;
5463 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5464 }
7afe21cc
RK
5465
5466 /* If this is a single SET, we are setting a register, and we have an
73dd3123
EB
5467 equivalent constant, we want to add a REG_EQUAL note if the constant
5468 is different from the source. We don't want to do it for a constant
5469 pseudo since verifying that this pseudo hasn't been eliminated is a
5470 pain; moreover such a note won't help anything.
ac7ef8d5
FS
5471
5472 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5473 which can be created for a reference to a compile time computable
5474 entry in a jump table. */
73dd3123
EB
5475 if (n_sets == 1
5476 && REG_P (dest)
5477 && src_const
f8cfc6aa 5478 && !REG_P (src_const)
73dd3123
EB
5479 && !(GET_CODE (src_const) == SUBREG
5480 && REG_P (SUBREG_REG (src_const)))
5481 && !(GET_CODE (src_const) == CONST
5482 && GET_CODE (XEXP (src_const, 0)) == MINUS
5483 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5484 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5485 && !rtx_equal_p (src, src_const))
7afe21cc 5486 {
73dd3123
EB
5487 /* Make sure that the rtx is not shared. */
5488 src_const = copy_rtx (src_const);
51e2a951 5489
73dd3123
EB
5490 /* Record the actual constant value in a REG_EQUAL note,
5491 making a new one if one does not already exist. */
5492 set_unique_reg_note (insn, REG_EQUAL, src_const);
5493 df_notes_rescan (insn);
7afe21cc
RK
5494 }
5495
5496 /* Now deal with the destination. */
5497 do_not_record = 0;
7afe21cc 5498
46d096a3
SB
5499 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5500 while (GET_CODE (dest) == SUBREG
7afe21cc 5501 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 5502 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 5503 dest = XEXP (dest, 0);
7afe21cc
RK
5504
5505 sets[i].inner_dest = dest;
5506
3c0cb5de 5507 if (MEM_P (dest))
7afe21cc 5508 {
9ae8ffe7
JL
5509#ifdef PUSH_ROUNDING
5510 /* Stack pushes invalidate the stack pointer. */
5511 rtx addr = XEXP (dest, 0);
ec8e098d 5512 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7 5513 && XEXP (addr, 0) == stack_pointer_rtx)
524e3576 5514 invalidate (stack_pointer_rtx, VOIDmode);
9ae8ffe7 5515#endif
7afe21cc 5516 dest = fold_rtx (dest, insn);
7afe21cc
RK
5517 }
5518
5519 /* Compute the hash code of the destination now,
5520 before the effects of this instruction are recorded,
5521 since the register values used in the address computation
5522 are those before this instruction. */
2197a88a 5523 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
5524
5525 /* Don't enter a bit-field in the hash table
5526 because the value in it after the store
5527 may not equal what was stored, due to truncation. */
5528
46d096a3 5529 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
5530 {
5531 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5532
481683e1
SZ
5533 if (src_const != 0 && CONST_INT_P (src_const)
5534 && CONST_INT_P (width)
906c4e36
RK
5535 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5536 && ! (INTVAL (src_const)
0cadbfaa 5537 & (HOST_WIDE_INT_M1U << INTVAL (width))))
7afe21cc
RK
5538 /* Exception: if the value is constant,
5539 and it won't be truncated, record it. */
5540 ;
5541 else
5542 {
5543 /* This is chosen so that the destination will be invalidated
5544 but no new value will be recorded.
5545 We must invalidate because sometimes constant
5546 values can be recorded for bitfields. */
5547 sets[i].src_elt = 0;
5548 sets[i].src_volatile = 1;
5549 src_eqv = 0;
5550 src_eqv_elt = 0;
5551 }
5552 }
5553
5554 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5555 the insn. */
5556 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5557 {
ef178af3 5558 /* One less use of the label this insn used to jump to. */
98ccd1d7 5559 cse_cfg_altered |= delete_insn_and_edges (insn);
2aac3a01 5560 cse_jumps_altered = true;
7afe21cc
RK
5561 /* No more processing for this set. */
5562 sets[i].rtl = 0;
5563 }
5564
dd77684f
JJ
5565 /* Similarly for no-op MEM moves. */
5566 else if (mem_noop_insn)
5567 {
5568 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5569 cse_cfg_altered = true;
98ccd1d7 5570 cse_cfg_altered |= delete_insn_and_edges (insn);
dd77684f
JJ
5571 /* No more processing for this set. */
5572 sets[i].rtl = 0;
5573 }
5574
7afe21cc 5575 /* If this SET is now setting PC to a label, we know it used to
d466c016 5576 be a conditional or computed branch. */
8f235343
JH
5577 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5578 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5579 {
d466c016
JL
5580 /* We reemit the jump in as many cases as possible just in
5581 case the form of an unconditional jump is significantly
5582 different than a computed jump or conditional jump.
5583
5584 If this insn has multiple sets, then reemitting the
5585 jump is nontrivial. So instead we just force rerecognition
5586 and hope for the best. */
5587 if (n_sets == 1)
7afe21cc 5588 {
e67d1102 5589 rtx_jump_insn *new_rtx;
49506606 5590 rtx note;
8fb1e50e 5591
ec4a505f
RS
5592 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5593 new_rtx = emit_jump_insn_before (seq, insn);
32e9fa48 5594 JUMP_LABEL (new_rtx) = XEXP (src, 0);
7afe21cc 5595 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5596
5597 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5598 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5599 if (note)
5600 {
5601 XEXP (note, 1) = NULL_RTX;
32e9fa48 5602 REG_NOTES (new_rtx) = note;
9dcb4381
RH
5603 }
5604
98ccd1d7 5605 cse_cfg_altered |= delete_insn_and_edges (insn);
49506606 5606 insn = new_rtx;
7afe21cc 5607 }
31dcf83f 5608 else
31dcf83f 5609 INSN_CODE (insn) = -1;
7afe21cc 5610
2aac3a01
EB
5611 /* Do not bother deleting any unreachable code, let jump do it. */
5612 cse_jumps_altered = true;
7afe21cc
RK
5613 sets[i].rtl = 0;
5614 }
5615
c2a47e48
RK
5616 /* If destination is volatile, invalidate it and then do no further
5617 processing for this assignment. */
7afe21cc
RK
5618
5619 else if (do_not_record)
c2a47e48 5620 {
2a1d78d8 5621 invalidate_dest (dest);
c2a47e48
RK
5622 sets[i].rtl = 0;
5623 }
7afe21cc
RK
5624
5625 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2a1d78d8
JJ
5626 {
5627 do_not_record = 0;
5628 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5629 if (do_not_record)
5630 {
5631 invalidate_dest (SET_DEST (sets[i].rtl));
5632 sets[i].rtl = 0;
5633 }
5634 }
7afe21cc 5635
7afe21cc
RK
5636 /* If setting CC0, record what it was set to, or a constant, if it
5637 is equivalent to a constant. If it is being set to a floating-point
5638 value, make a COMPARE with the appropriate constant of 0. If we
5639 don't do this, later code can interpret this as a test against
5640 const0_rtx, which can cause problems if we try to put it into an
5641 insn as a floating-point operand. */
5642 if (dest == cc0_rtx)
5643 {
5644 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5645 this_insn_cc0_mode = mode;
cbf6a543 5646 if (FLOAT_MODE_P (mode))
38a448ca
RH
5647 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5648 CONST0_RTX (mode));
7afe21cc 5649 }
7afe21cc
RK
5650 }
5651
5652 /* Now enter all non-volatile source expressions in the hash table
5653 if they are not already present.
5654 Record their equivalence classes in src_elt.
5655 This way we can insert the corresponding destinations into
5656 the same classes even if the actual sources are no longer in them
5657 (having been invalidated). */
5658
5659 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5660 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5661 {
b3694847
SS
5662 struct table_elt *elt;
5663 struct table_elt *classp = sets[0].src_elt;
7afe21cc 5664 rtx dest = SET_DEST (sets[0].rtl);
ef4bddc2 5665 machine_mode eqvmode = GET_MODE (dest);
7afe21cc
RK
5666
5667 if (GET_CODE (dest) == STRICT_LOW_PART)
5668 {
5669 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5670 classp = 0;
5671 }
5672 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
5673 {
5674 rehash_using_reg (src_eqv);
5675 src_eqv_hash = HASH (src_eqv, eqvmode);
5676 }
2197a88a 5677 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5678 elt->in_memory = src_eqv_in_memory;
7afe21cc 5679 src_eqv_elt = elt;
f7911249
JW
5680
5681 /* Check to see if src_eqv_elt is the same as a set source which
5682 does not yet have an elt, and if so set the elt of the set source
5683 to src_eqv_elt. */
5684 for (i = 0; i < n_sets; i++)
26132f71
JW
5685 if (sets[i].rtl && sets[i].src_elt == 0
5686 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5687 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5688 }
5689
5690 for (i = 0; i < n_sets; i++)
5691 if (sets[i].rtl && ! sets[i].src_volatile
5692 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5693 {
5694 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5695 {
5696 /* REG_EQUAL in setting a STRICT_LOW_PART
5697 gives an equivalent for the entire destination register,
5698 not just for the subreg being stored in now.
5699 This is a more interesting equivalence, so we arrange later
5700 to treat the entire reg as the destination. */
5701 sets[i].src_elt = src_eqv_elt;
2197a88a 5702 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5703 }
5704 else
5705 {
5706 /* Insert source and constant equivalent into hash table, if not
5707 already present. */
b3694847
SS
5708 struct table_elt *classp = src_eqv_elt;
5709 rtx src = sets[i].src;
5710 rtx dest = SET_DEST (sets[i].rtl);
ef4bddc2 5711 machine_mode mode
7afe21cc
RK
5712 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5713
1fcc57f1
AM
5714 /* It's possible that we have a source value known to be
5715 constant but don't have a REG_EQUAL note on the insn.
5716 Lack of a note will mean src_eqv_elt will be NULL. This
5717 can happen where we've generated a SUBREG to access a
5718 CONST_INT that is already in a register in a wider mode.
5719 Ensure that the source expression is put in the proper
5720 constant class. */
5721 if (!classp)
5722 classp = sets[i].src_const_elt;
5723
26132f71 5724 if (sets[i].src_elt == 0)
7afe21cc 5725 {
4a8cae83 5726 struct table_elt *elt;
26132f71 5727
4a8cae83
SB
5728 /* Note that these insert_regs calls cannot remove
5729 any of the src_elt's, because they would have failed to
5730 match if not still valid. */
5731 if (insert_regs (src, classp, 0))
5732 {
5733 rehash_using_reg (src);
5734 sets[i].src_hash = HASH (src, mode);
8ae2b8f6 5735 }
4a8cae83
SB
5736 elt = insert (src, classp, sets[i].src_hash, mode);
5737 elt->in_memory = sets[i].src_in_memory;
6c4d60f8
JJ
5738 /* If inline asm has any clobbers, ensure we only reuse
5739 existing inline asms and never try to put the ASM_OPERANDS
5740 into an insn that isn't inline asm. */
5741 if (GET_CODE (src) == ASM_OPERANDS
5742 && GET_CODE (x) == PARALLEL)
5743 elt->cost = MAX_COST;
4a8cae83 5744 sets[i].src_elt = classp = elt;
7afe21cc 5745 }
7afe21cc
RK
5746 if (sets[i].src_const && sets[i].src_const_elt == 0
5747 && src != sets[i].src_const
5748 && ! rtx_equal_p (sets[i].src_const, src))
5749 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5750 sets[i].src_const_hash, mode);
7afe21cc
RK
5751 }
5752 }
5753 else if (sets[i].src_elt == 0)
5754 /* If we did not insert the source into the hash table (e.g., it was
5755 volatile), note the equivalence class for the REG_EQUAL value, if any,
5756 so that the destination goes into that class. */
5757 sets[i].src_elt = src_eqv_elt;
5758
05c433f3
PB
5759 /* Record destination addresses in the hash table. This allows us to
5760 check if they are invalidated by other sets. */
5761 for (i = 0; i < n_sets; i++)
5762 {
5763 if (sets[i].rtl)
5764 {
5765 rtx x = sets[i].inner_dest;
5766 struct table_elt *elt;
ef4bddc2 5767 machine_mode mode;
05c433f3
PB
5768 unsigned hash;
5769
5770 if (MEM_P (x))
5771 {
5772 x = XEXP (x, 0);
5773 mode = GET_MODE (x);
5774 hash = HASH (x, mode);
5775 elt = lookup (x, hash, mode);
5776 if (!elt)
5777 {
5778 if (insert_regs (x, NULL, 0))
5779 {
7e7e28c7
AO
5780 rtx dest = SET_DEST (sets[i].rtl);
5781
05c433f3
PB
5782 rehash_using_reg (x);
5783 hash = HASH (x, mode);
7e7e28c7 5784 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
05c433f3
PB
5785 }
5786 elt = insert (x, NULL, hash, mode);
5787 }
5788
5789 sets[i].dest_addr_elt = elt;
5790 }
5791 else
5792 sets[i].dest_addr_elt = NULL;
5793 }
5794 }
5795
7b02f4e0 5796 invalidate_from_clobbers (insn);
77fa0940 5797
278a83b2 5798 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5799 invalidated by non-constant calls. */
5800
4b4bf941 5801 if (CALL_P (insn))
7afe21cc 5802 {
becfd6e5 5803 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
9ae8ffe7 5804 invalidate_memory ();
67c25816
JJ
5805 else
5806 /* For const/pure calls, invalidate any argument slots, because
5807 those are owned by the callee. */
5808 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5809 if (GET_CODE (XEXP (tem, 0)) == USE
5810 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5811 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
7afe21cc
RK
5812 invalidate_for_call ();
5813 }
5814
5815 /* Now invalidate everything set by this instruction.
5816 If a SUBREG or other funny destination is being set,
5817 sets[i].rtl is still nonzero, so here we invalidate the reg
5818 a part of which is being set. */
5819
5820 for (i = 0; i < n_sets; i++)
5821 if (sets[i].rtl)
5822 {
bb4034b3
JW
5823 /* We can't use the inner dest, because the mode associated with
5824 a ZERO_EXTRACT is significant. */
b3694847 5825 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5826
5827 /* Needed for registers to remove the register from its
5828 previous quantity's chain.
5829 Needed for memory if this is a nonvarying address, unless
5830 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5831 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5832 invalidate (dest, VOIDmode);
3c0cb5de 5833 else if (MEM_P (dest))
32fab725 5834 invalidate (dest, VOIDmode);
2708da92
RS
5835 else if (GET_CODE (dest) == STRICT_LOW_PART
5836 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5837 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5838 }
5839
932ad4d9
SB
5840 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5841 the regs restored by the longjmp come from a later time
5842 than the setjmp. */
5843 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5844 {
5845 flush_hash_table ();
5846 goto done;
5847 }
5848
7afe21cc
RK
5849 /* Make sure registers mentioned in destinations
5850 are safe for use in an expression to be inserted.
5851 This removes from the hash table
5852 any invalid entry that refers to one of these registers.
5853
5854 We don't care about the return value from mention_regs because
5855 we are going to hash the SET_DEST values unconditionally. */
5856
5857 for (i = 0; i < n_sets; i++)
34c73909
R
5858 {
5859 if (sets[i].rtl)
5860 {
5861 rtx x = SET_DEST (sets[i].rtl);
5862
f8cfc6aa 5863 if (!REG_P (x))
34c73909
R
5864 mention_regs (x);
5865 else
5866 {
5867 /* We used to rely on all references to a register becoming
5868 inaccessible when a register changes to a new quantity,
5869 since that changes the hash code. However, that is not
9b1549b8 5870 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5871 hash 'collision' of a register with its own invalid
5872 entries. And since SUBREGs have been changed not to
5873 change their hash code with the hash code of the register,
5874 it wouldn't work any longer at all. So we have to check
5875 for any invalid references lying around now.
5876 This code is similar to the REG case in mention_regs,
5877 but it knows that reg_tick has been incremented, and
5878 it leaves reg_in_table as -1 . */
770ae6cc 5879 unsigned int regno = REGNO (x);
09e18274 5880 unsigned int endregno = END_REGNO (x);
770ae6cc 5881 unsigned int i;
34c73909
R
5882
5883 for (i = regno; i < endregno; i++)
5884 {
30f72379 5885 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5886 {
5887 remove_invalid_refs (i);
30f72379 5888 REG_IN_TABLE (i) = -1;
34c73909
R
5889 }
5890 }
5891 }
5892 }
5893 }
7afe21cc
RK
5894
5895 /* We may have just removed some of the src_elt's from the hash table.
05c433f3
PB
5896 So replace each one with the current head of the same class.
5897 Also check if destination addresses have been removed. */
7afe21cc
RK
5898
5899 for (i = 0; i < n_sets; i++)
5900 if (sets[i].rtl)
5901 {
05c433f3
PB
5902 if (sets[i].dest_addr_elt
5903 && sets[i].dest_addr_elt->first_same_value == 0)
5904 {
e67b81d1 5905 /* The elt was removed, which means this destination is not
05c433f3
PB
5906 valid after this instruction. */
5907 sets[i].rtl = NULL_RTX;
5908 }
5909 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
7afe21cc
RK
5910 /* If elt was removed, find current head of same class,
5911 or 0 if nothing remains of that class. */
5912 {
b3694847 5913 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
5914
5915 while (elt && elt->prev_same_value)
5916 elt = elt->prev_same_value;
5917
5918 while (elt && elt->first_same_value == 0)
5919 elt = elt->next_same_value;
5920 sets[i].src_elt = elt ? elt->first_same_value : 0;
5921 }
5922 }
5923
5924 /* Now insert the destinations into their equivalence classes. */
5925
5926 for (i = 0; i < n_sets; i++)
5927 if (sets[i].rtl)
5928 {
b3694847 5929 rtx dest = SET_DEST (sets[i].rtl);
b3694847 5930 struct table_elt *elt;
7afe21cc
RK
5931
5932 /* Don't record value if we are not supposed to risk allocating
5933 floating-point values in registers that might be wider than
5934 memory. */
5935 if ((flag_float_store
3c0cb5de 5936 && MEM_P (dest)
cbf6a543 5937 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
5938 /* Don't record BLKmode values, because we don't know the
5939 size of it, and can't be sure that other BLKmode values
5940 have the same or smaller size. */
5941 || GET_MODE (dest) == BLKmode
7afe21cc
RK
5942 /* If we didn't put a REG_EQUAL value or a source into the hash
5943 table, there is no point is recording DEST. */
086ad22e 5944 || sets[i].src_elt == 0)
7afe21cc
RK
5945 continue;
5946
5947 /* STRICT_LOW_PART isn't part of the value BEING set,
5948 and neither is the SUBREG inside it.
5949 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5950 if (GET_CODE (dest) == STRICT_LOW_PART)
5951 dest = SUBREG_REG (XEXP (dest, 0));
5952
f8cfc6aa 5953 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc
RK
5954 /* Registers must also be inserted into chains for quantities. */
5955 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
5956 {
5957 /* If `insert_regs' changes something, the hash code must be
5958 recalculated. */
5959 rehash_using_reg (dest);
5960 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5961 }
7afe21cc 5962
086ad22e
BE
5963 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5964 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5965 if (paradoxical_subreg_p (dest))
5966 continue;
5967
8fff4fc1
RH
5968 elt = insert (dest, sets[i].src_elt,
5969 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 5970
2c5bfdf7
AN
5971 /* If this is a constant, insert the constant anchors with the
5972 equivalent register-offset expressions using register DEST. */
5973 if (targetm.const_anchor
5974 && REG_P (dest)
5975 && SCALAR_INT_MODE_P (GET_MODE (dest))
5976 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5977 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5978
3c0cb5de 5979 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 5980 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 5981
fc3ffe83
RK
5982 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5983 narrower than M2, and both M1 and M2 are the same number of words,
5984 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5985 make that equivalence as well.
7afe21cc 5986
4de249d9
PB
5987 However, BAR may have equivalences for which gen_lowpart
5988 will produce a simpler value than gen_lowpart applied to
7afe21cc 5989 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 5990 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
5991 the SUBREG. It will not be used in an equivalence, but will
5992 cause two similar assignments to be detected.
5993
5994 Note the loop below will find SUBREG_REG (DEST) since we have
5995 already entered SRC and DEST of the SET in the table. */
5996
5997 if (GET_CODE (dest) == SUBREG
cf098191
RS
5998 && (known_equal_after_align_down
5999 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6000 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6001 UNITS_PER_WORD))
bd4288c0 6002 && !partial_subreg_p (dest)
7afe21cc
RK
6003 && sets[i].src_elt != 0)
6004 {
ef4bddc2 6005 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
7afe21cc
RK
6006 struct table_elt *elt, *classp = 0;
6007
6008 for (elt = sets[i].src_elt->first_same_value; elt;
6009 elt = elt->next_same_value)
6010 {
6011 rtx new_src = 0;
2197a88a 6012 unsigned src_hash;
7afe21cc
RK
6013 struct table_elt *src_elt;
6014
6015 /* Ignore invalid entries. */
f8cfc6aa 6016 if (!REG_P (elt->exp)
0516f6fe 6017 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
6018 continue;
6019
9beb7d20
RH
6020 /* We may have already been playing subreg games. If the
6021 mode is already correct for the destination, use it. */
6022 if (GET_MODE (elt->exp) == new_mode)
6023 new_src = elt->exp;
6024 else
6025 {
91914e56 6026 poly_uint64 byte
610c45fc 6027 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
9beb7d20
RH
6028 new_src = simplify_gen_subreg (new_mode, elt->exp,
6029 GET_MODE (dest), byte);
6030 }
6031
ff27a429
R
6032 /* The call to simplify_gen_subreg fails if the value
6033 is VOIDmode, yet we can't do any simplification, e.g.
6034 for EXPR_LISTs denoting function call results.
6035 It is invalid to construct a SUBREG with a VOIDmode
6036 SUBREG_REG, hence a zero new_src means we can't do
6037 this substitution. */
6038 if (! new_src)
6039 continue;
7afe21cc
RK
6040
6041 src_hash = HASH (new_src, new_mode);
6042 src_elt = lookup (new_src, src_hash, new_mode);
6043
6044 /* Put the new source in the hash table is if isn't
6045 already. */
6046 if (src_elt == 0)
6047 {
6048 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
6049 {
6050 rehash_using_reg (new_src);
6051 src_hash = HASH (new_src, new_mode);
6052 }
7afe21cc
RK
6053 src_elt = insert (new_src, classp, src_hash, new_mode);
6054 src_elt->in_memory = elt->in_memory;
6c4d60f8
JJ
6055 if (GET_CODE (new_src) == ASM_OPERANDS
6056 && elt->cost == MAX_COST)
6057 src_elt->cost = MAX_COST;
7afe21cc
RK
6058 }
6059 else if (classp && classp != src_elt->first_same_value)
278a83b2 6060 /* Show that two things that we've seen before are
7afe21cc
RK
6061 actually the same. */
6062 merge_equiv_classes (src_elt, classp);
6063
6064 classp = src_elt->first_same_value;
da932f04
JL
6065 /* Ignore invalid entries. */
6066 while (classp
f8cfc6aa 6067 && !REG_P (classp->exp)
0516f6fe 6068 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 6069 classp = classp->next_same_value;
7afe21cc
RK
6070 }
6071 }
6072 }
6073
403e25d0
RK
6074 /* Special handling for (set REG0 REG1) where REG0 is the
6075 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6076 be used in the sequel, so (if easily done) change this insn to
6077 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6078 that computed their value. Then REG1 will become a dead store
6079 and won't cloud the situation for later optimizations.
7afe21cc
RK
6080
6081 Do not make this change if REG1 is a hard register, because it will
6082 then be used in the sequel and we may be changing a two-operand insn
6083 into a three-operand insn.
6084
4a8cae83 6085 Also do not do this if we are operating on a copy of INSN. */
7afe21cc 6086
7b02f4e0
SB
6087 if (n_sets == 1 && sets[0].rtl)
6088 try_back_substitute_reg (sets[0].rtl, insn);
7afe21cc 6089
932ad4d9 6090done:;
7afe21cc
RK
6091}
6092\f
a4c6502a 6093/* Remove from the hash table all expressions that reference memory. */
14a774a9 6094
7afe21cc 6095static void
7080f735 6096invalidate_memory (void)
7afe21cc 6097{
b3694847
SS
6098 int i;
6099 struct table_elt *p, *next;
7afe21cc 6100
9b1549b8 6101 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
6102 for (p = table[i]; p; p = next)
6103 {
6104 next = p->next_same_hash;
6105 if (p->in_memory)
6106 remove_from_table (p, i);
6107 }
6108}
6109
7b02f4e0 6110/* Perform invalidation on the basis of everything about INSN,
7afe21cc
RK
6111 except for invalidating the actual places that are SET in it.
6112 This includes the places CLOBBERed, and anything that might
7b02f4e0 6113 alias with something that is SET or CLOBBERed. */
7afe21cc
RK
6114
6115static void
20468884 6116invalidate_from_clobbers (rtx_insn *insn)
7afe21cc 6117{
7b02f4e0
SB
6118 rtx x = PATTERN (insn);
6119
7afe21cc
RK
6120 if (GET_CODE (x) == CLOBBER)
6121 {
6122 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
6123 if (ref)
6124 {
f8cfc6aa 6125 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6126 || MEM_P (ref))
9ae8ffe7
JL
6127 invalidate (ref, VOIDmode);
6128 else if (GET_CODE (ref) == STRICT_LOW_PART
6129 || GET_CODE (ref) == ZERO_EXTRACT)
6130 invalidate (XEXP (ref, 0), GET_MODE (ref));
6131 }
7afe21cc
RK
6132 }
6133 else if (GET_CODE (x) == PARALLEL)
6134 {
b3694847 6135 int i;
7afe21cc
RK
6136 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6137 {
b3694847 6138 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
6139 if (GET_CODE (y) == CLOBBER)
6140 {
6141 rtx ref = XEXP (y, 0);
f8cfc6aa 6142 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6143 || MEM_P (ref))
9ae8ffe7
JL
6144 invalidate (ref, VOIDmode);
6145 else if (GET_CODE (ref) == STRICT_LOW_PART
6146 || GET_CODE (ref) == ZERO_EXTRACT)
6147 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
6148 }
6149 }
6150 }
6151}
6152\f
7b02f4e0
SB
6153/* Perform invalidation on the basis of everything about INSN.
6154 This includes the places CLOBBERed, and anything that might
6155 alias with something that is SET or CLOBBERed. */
6156
6157static void
20468884 6158invalidate_from_sets_and_clobbers (rtx_insn *insn)
7b02f4e0
SB
6159{
6160 rtx tem;
6161 rtx x = PATTERN (insn);
6162
6163 if (CALL_P (insn))
6164 {
6165 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6166 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6167 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6168 }
6169
6170 /* Ensure we invalidate the destination register of a CALL insn.
6171 This is necessary for machines where this register is a fixed_reg,
6172 because no other code would invalidate it. */
6173 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6174 invalidate (SET_DEST (x), VOIDmode);
6175
6176 else if (GET_CODE (x) == PARALLEL)
6177 {
6178 int i;
6179
6180 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6181 {
6182 rtx y = XVECEXP (x, 0, i);
6183 if (GET_CODE (y) == CLOBBER)
6184 {
6185 rtx clobbered = XEXP (y, 0);
6186
6187 if (REG_P (clobbered)
6188 || GET_CODE (clobbered) == SUBREG)
6189 invalidate (clobbered, VOIDmode);
6190 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6191 || GET_CODE (clobbered) == ZERO_EXTRACT)
6192 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6193 }
6194 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6195 invalidate (SET_DEST (y), VOIDmode);
6196 }
6197 }
6198}
6199\f
7afe21cc
RK
6200/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6201 and replace any registers in them with either an equivalent constant
6202 or the canonical form of the register. If we are inside an address,
6203 only do this if the address remains valid.
6204
6205 OBJECT is 0 except when within a MEM in which case it is the MEM.
6206
6207 Return the replacement for X. */
6208
6209static rtx
6fb5fa3c 6210cse_process_notes_1 (rtx x, rtx object, bool *changed)
7afe21cc
RK
6211{
6212 enum rtx_code code = GET_CODE (x);
6f7d635c 6213 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
6214 int i;
6215
6216 switch (code)
6217 {
7afe21cc
RK
6218 case CONST:
6219 case SYMBOL_REF:
6220 case LABEL_REF:
d8116890 6221 CASE_CONST_ANY:
7afe21cc
RK
6222 case PC:
6223 case CC0:
6224 case LO_SUM:
6225 return x;
6226
6227 case MEM:
c96208fa 6228 validate_change (x, &XEXP (x, 0),
6fb5fa3c 6229 cse_process_notes (XEXP (x, 0), x, changed), 0);
7afe21cc
RK
6230 return x;
6231
6232 case EXPR_LIST:
7afe21cc 6233 if (REG_NOTE_KIND (x) == REG_EQUAL)
6fb5fa3c 6234 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
e5af9ddd
RS
6235 /* Fall through. */
6236
6237 case INSN_LIST:
6238 case INT_LIST:
7afe21cc 6239 if (XEXP (x, 1))
6fb5fa3c 6240 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
7afe21cc
RK
6241 return x;
6242
e4890d45
RS
6243 case SIGN_EXTEND:
6244 case ZERO_EXTEND:
0b0ee36c 6245 case SUBREG:
e4890d45 6246 {
32e9fa48 6247 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
e4890d45
RS
6248 /* We don't substitute VOIDmode constants into these rtx,
6249 since they would impede folding. */
32e9fa48
KG
6250 if (GET_MODE (new_rtx) != VOIDmode)
6251 validate_change (object, &XEXP (x, 0), new_rtx, 0);
e4890d45
RS
6252 return x;
6253 }
6254
dfebbdc6
JJ
6255 case UNSIGNED_FLOAT:
6256 {
6257 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6258 /* We don't substitute negative VOIDmode constants into these rtx,
6259 since they would impede folding. */
6260 if (GET_MODE (new_rtx) != VOIDmode
6261 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6262 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6263 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6264 return x;
6265 }
6266
7afe21cc 6267 case REG:
30f72379 6268 i = REG_QTY (REGNO (x));
7afe21cc
RK
6269
6270 /* Return a constant or a constant register. */
1bb98cec 6271 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 6272 {
1bb98cec
DM
6273 struct qty_table_elem *ent = &qty_table[i];
6274
6275 if (ent->const_rtx != NULL_RTX
6276 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 6277 || REG_P (ent->const_rtx)))
1bb98cec 6278 {
32e9fa48
KG
6279 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6280 if (new_rtx)
6281 return copy_rtx (new_rtx);
1bb98cec 6282 }
7afe21cc
RK
6283 }
6284
6285 /* Otherwise, canonicalize this register. */
20468884 6286 return canon_reg (x, NULL);
278a83b2 6287
e9a25f70
JL
6288 default:
6289 break;
7afe21cc
RK
6290 }
6291
6292 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6293 if (fmt[i] == 'e')
6294 validate_change (object, &XEXP (x, i),
6fb5fa3c 6295 cse_process_notes (XEXP (x, i), object, changed), 0);
7afe21cc
RK
6296
6297 return x;
6298}
6fb5fa3c
DB
6299
6300static rtx
6301cse_process_notes (rtx x, rtx object, bool *changed)
6302{
32e9fa48
KG
6303 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6304 if (new_rtx != x)
6fb5fa3c 6305 *changed = true;
32e9fa48 6306 return new_rtx;
6fb5fa3c
DB
6307}
6308
7afe21cc 6309\f
932ad4d9 6310/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
7afe21cc 6311
932ad4d9
SB
6312 DATA is a pointer to a struct cse_basic_block_data, that is used to
6313 describe the path.
6314 It is filled with a queue of basic blocks, starting with FIRST_BB
6315 and following a trace through the CFG.
b8698a0f 6316
932ad4d9
SB
6317 If all paths starting at FIRST_BB have been followed, or no new path
6318 starting at FIRST_BB can be constructed, this function returns FALSE.
6319 Otherwise, DATA->path is filled and the function returns TRUE indicating
6320 that a path to follow was found.
7afe21cc 6321
2e226e66 6322 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
932ad4d9 6323 block in the path will be FIRST_BB. */
7afe21cc 6324
932ad4d9
SB
6325static bool
6326cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6327 int follow_jumps)
7afe21cc 6328{
932ad4d9
SB
6329 basic_block bb;
6330 edge e;
6331 int path_size;
b8698a0f 6332
d7c028c0 6333 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
7afe21cc 6334
932ad4d9
SB
6335 /* See if there is a previous path. */
6336 path_size = data->path_size;
6337
6338 /* There is a previous path. Make sure it started with FIRST_BB. */
6339 if (path_size)
6340 gcc_assert (data->path[0].bb == first_bb);
6341
6342 /* There was only one basic block in the last path. Clear the path and
6343 return, so that paths starting at another basic block can be tried. */
6344 if (path_size == 1)
6345 {
6346 path_size = 0;
6347 goto done;
6348 }
6349
6350 /* If the path was empty from the beginning, construct a new path. */
6351 if (path_size == 0)
6352 data->path[path_size++].bb = first_bb;
6353 else
7afe21cc 6354 {
932ad4d9
SB
6355 /* Otherwise, path_size must be equal to or greater than 2, because
6356 a previous path exists that is at least two basic blocks long.
6357
6358 Update the previous branch path, if any. If the last branch was
6359 previously along the branch edge, take the fallthrough edge now. */
6360 while (path_size >= 2)
7afe21cc 6361 {
932ad4d9
SB
6362 basic_block last_bb_in_path, previous_bb_in_path;
6363 edge e;
6364
6365 --path_size;
6366 last_bb_in_path = data->path[path_size].bb;
6367 previous_bb_in_path = data->path[path_size - 1].bb;
6368
6369 /* If we previously followed a path along the branch edge, try
6370 the fallthru edge now. */
6371 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6372 && any_condjump_p (BB_END (previous_bb_in_path))
6373 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6374 && e == BRANCH_EDGE (previous_bb_in_path))
6375 {
6376 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
fefa31b5 6377 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
481e0a49
AO
6378 && single_pred_p (bb)
6379 /* We used to assert here that we would only see blocks
6380 that we have not visited yet. But we may end up
6381 visiting basic blocks twice if the CFG has changed
6382 in this run of cse_main, because when the CFG changes
6383 the topological sort of the CFG also changes. A basic
6384 blocks that previously had more than two predecessors
6385 may now have a single predecessor, and become part of
6386 a path that starts at another basic block.
6387
6388 We still want to visit each basic block only once, so
6389 halt the path here if we have already visited BB. */
d7c028c0 6390 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
932ad4d9 6391 {
d7c028c0 6392 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
932ad4d9
SB
6393 data->path[path_size++].bb = bb;
6394 break;
6395 }
6396 }
6397
6398 data->path[path_size].bb = NULL;
6399 }
6400
6401 /* If only one block remains in the path, bail. */
6402 if (path_size == 1)
6403 {
6404 path_size = 0;
6405 goto done;
7afe21cc 6406 }
7afe21cc
RK
6407 }
6408
932ad4d9
SB
6409 /* Extend the path if possible. */
6410 if (follow_jumps)
7afe21cc 6411 {
932ad4d9
SB
6412 bb = data->path[path_size - 1].bb;
6413 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6414 {
6415 if (single_succ_p (bb))
6416 e = single_succ_edge (bb);
6417 else if (EDGE_COUNT (bb->succs) == 2
6418 && any_condjump_p (BB_END (bb)))
6419 {
6420 /* First try to follow the branch. If that doesn't lead
6421 to a useful path, follow the fallthru edge. */
6422 e = BRANCH_EDGE (bb);
6423 if (!single_pred_p (e->dest))
6424 e = FALLTHRU_EDGE (bb);
6425 }
6426 else
6427 e = NULL;
7afe21cc 6428
bc6d3f91 6429 if (e
76015c34 6430 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
fefa31b5 6431 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
481e0a49
AO
6432 && single_pred_p (e->dest)
6433 /* Avoid visiting basic blocks twice. The large comment
6434 above explains why this can happen. */
d7c028c0 6435 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
932ad4d9
SB
6436 {
6437 basic_block bb2 = e->dest;
d7c028c0 6438 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
932ad4d9
SB
6439 data->path[path_size++].bb = bb2;
6440 bb = bb2;
6441 }
6442 else
6443 bb = NULL;
6444 }
6445 }
6446
6447done:
6448 data->path_size = path_size;
6449 return path_size != 0;
6450}
6451\f
6452/* Dump the path in DATA to file F. NSETS is the number of sets
6453 in the path. */
6454
6455static void
6456cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6457{
6458 int path_entry;
6459
6460 fprintf (f, ";; Following path with %d sets: ", nsets);
6461 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6462 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6463 fputc ('\n', dump_file);
6464 fflush (f);
6465}
6466
a7582f7c
SB
6467\f
6468/* Return true if BB has exception handling successor edges. */
6469
6470static bool
6471have_eh_succ_edges (basic_block bb)
6472{
6473 edge e;
6474 edge_iterator ei;
6475
6476 FOR_EACH_EDGE (e, ei, bb->succs)
6477 if (e->flags & EDGE_EH)
6478 return true;
6479
6480 return false;
6481}
6482
932ad4d9
SB
6483\f
6484/* Scan to the end of the path described by DATA. Return an estimate of
6fb5fa3c 6485 the total number of SETs of all insns in the path. */
932ad4d9
SB
6486
6487static void
6488cse_prescan_path (struct cse_basic_block_data *data)
6489{
6490 int nsets = 0;
932ad4d9
SB
6491 int path_size = data->path_size;
6492 int path_entry;
6493
6494 /* Scan to end of each basic block in the path. */
b8698a0f 6495 for (path_entry = 0; path_entry < path_size; path_entry++)
932ad4d9
SB
6496 {
6497 basic_block bb;
20468884 6498 rtx_insn *insn;
164c8956 6499
932ad4d9 6500 bb = data->path[path_entry].bb;
7afe21cc 6501
932ad4d9 6502 FOR_BB_INSNS (bb, insn)
7afe21cc 6503 {
932ad4d9
SB
6504 if (!INSN_P (insn))
6505 continue;
278a83b2 6506
932ad4d9
SB
6507 /* A PARALLEL can have lots of SETs in it,
6508 especially if it is really an ASM_OPERANDS. */
6509 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6510 nsets += XVECLEN (PATTERN (insn), 0);
6511 else
6512 nsets += 1;
7afe21cc 6513 }
932ad4d9
SB
6514 }
6515
932ad4d9
SB
6516 data->nsets = nsets;
6517}
6518\f
f0002948
RS
6519/* Return true if the pattern of INSN uses a LABEL_REF for which
6520 there isn't a REG_LABEL_OPERAND note. */
6521
6522static bool
6523check_for_label_ref (rtx_insn *insn)
6524{
6525 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6526 note for it, we must rerun jump since it needs to place the note. If
6527 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6528 don't do this since no REG_LABEL_OPERAND will be added. */
6529 subrtx_iterator::array_type array;
6530 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6531 {
6532 const_rtx x = *iter;
6533 if (GET_CODE (x) == LABEL_REF
6534 && !LABEL_REF_NONLOCAL_P (x)
6535 && (!JUMP_P (insn)
04a121a7
TS
6536 || !label_is_jump_target_p (label_ref_label (x), insn))
6537 && LABEL_P (label_ref_label (x))
6538 && INSN_UID (label_ref_label (x)) != 0
6539 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
f0002948
RS
6540 return true;
6541 }
6542 return false;
6543}
6544
932ad4d9 6545/* Process a single extended basic block described by EBB_DATA. */
7afe21cc 6546
932ad4d9
SB
6547static void
6548cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6549{
6550 int path_size = ebb_data->path_size;
6551 int path_entry;
6552 int num_insns = 0;
6553
6554 /* Allocate the space needed by qty_table. */
6555 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6556
6557 new_basic_block ();
89a95777
KZ
6558 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6559 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
932ad4d9
SB
6560 for (path_entry = 0; path_entry < path_size; path_entry++)
6561 {
6562 basic_block bb;
20468884 6563 rtx_insn *insn;
932ad4d9
SB
6564
6565 bb = ebb_data->path[path_entry].bb;
e186ff69
AK
6566
6567 /* Invalidate recorded information for eh regs if there is an EH
6568 edge pointing to that bb. */
6569 if (bb_has_eh_pred (bb))
6570 {
292321a5 6571 df_ref def;
e186ff69 6572
292321a5
RS
6573 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6574 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6575 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
e186ff69
AK
6576 }
6577
9fcb01de 6578 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
ba4807a0 6579 FOR_BB_INSNS (bb, insn)
7afe21cc 6580 {
932ad4d9
SB
6581 /* If we have processed 1,000 insns, flush the hash table to
6582 avoid extreme quadratic behavior. We must not include NOTEs
6583 in the count since there may be more of them when generating
6584 debugging information. If we clear the table at different
6585 times, code generated with -g -O might be different than code
6586 generated with -O but not -g.
6587
6588 FIXME: This is a real kludge and needs to be done some other
6589 way. */
b5b8b0ac 6590 if (NONDEBUG_INSN_P (insn)
932ad4d9
SB
6591 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6592 {
6593 flush_hash_table ();
6594 num_insns = 0;
6595 }
7afe21cc 6596
932ad4d9 6597 if (INSN_P (insn))
7afe21cc 6598 {
932ad4d9
SB
6599 /* Process notes first so we have all notes in canonical forms
6600 when looking for duplicate operations. */
6601 if (REG_NOTES (insn))
6fb5fa3c
DB
6602 {
6603 bool changed = false;
6604 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6605 NULL_RTX, &changed);
6606 if (changed)
6607 df_notes_rescan (insn);
6608 }
932ad4d9 6609
4a8cae83 6610 cse_insn (insn);
932ad4d9 6611
932ad4d9
SB
6612 /* If we haven't already found an insn where we added a LABEL_REF,
6613 check this one. */
2aac3a01 6614 if (INSN_P (insn) && !recorded_label_ref
f0002948 6615 && check_for_label_ref (insn))
2aac3a01 6616 recorded_label_ref = true;
96fb470d 6617
058eb3b0 6618 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
96fb470d 6619 {
5f262d13
AO
6620 /* If the previous insn sets CC0 and this insn no
6621 longer references CC0, delete the previous insn.
6622 Here we use fact that nothing expects CC0 to be
6623 valid over an insn, which is true until the final
6624 pass. */
20468884
DM
6625 rtx_insn *prev_insn;
6626 rtx tem;
5f262d13
AO
6627
6628 prev_insn = prev_nonnote_nondebug_insn (insn);
6629 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6630 && (tem = single_set (prev_insn)) != NULL_RTX
6631 && SET_DEST (tem) == cc0_rtx
6632 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6633 delete_insn (prev_insn);
6634
6635 /* If this insn is not the last insn in the basic
6636 block, it will be PREV_INSN(insn) in the next
6637 iteration. If we recorded any CC0-related
6638 information for this insn, remember it. */
6639 if (insn != BB_END (bb))
6640 {
6641 prev_insn_cc0 = this_insn_cc0;
6642 prev_insn_cc0_mode = this_insn_cc0_mode;
6643 }
96fb470d 6644 }
932ad4d9
SB
6645 }
6646 }
7afe21cc 6647
a7582f7c
SB
6648 /* With non-call exceptions, we are not always able to update
6649 the CFG properly inside cse_insn. So clean up possibly
6650 redundant EH edges here. */
8f4f502f 6651 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
2aac3a01 6652 cse_cfg_altered |= purge_dead_edges (bb);
a7582f7c 6653
932ad4d9
SB
6654 /* If we changed a conditional jump, we may have terminated
6655 the path we are following. Check that by verifying that
6656 the edge we would take still exists. If the edge does
6657 not exist anymore, purge the remainder of the path.
6658 Note that this will cause us to return to the caller. */
6659 if (path_entry < path_size - 1)
6660 {
6661 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6662 if (!find_edge (bb, next_bb))
27511c65
SB
6663 {
6664 do
6665 {
6666 path_size--;
6667
6668 /* If we truncate the path, we must also reset the
6669 visited bit on the remaining blocks in the path,
6670 or we will never visit them at all. */
d7c028c0 6671 bitmap_clear_bit (cse_visited_basic_blocks,
27511c65
SB
6672 ebb_data->path[path_size].bb->index);
6673 ebb_data->path[path_size].bb = NULL;
6674 }
6675 while (path_size - 1 != path_entry);
6676 ebb_data->path_size = path_size;
6677 }
7afe21cc 6678 }
7afe21cc 6679
932ad4d9
SB
6680 /* If this is a conditional jump insn, record any known
6681 equivalences due to the condition being tested. */
6682 insn = BB_END (bb);
6683 if (path_entry < path_size - 1
e2da9ffe 6684 && EDGE_COUNT (bb->succs) == 2
932ad4d9
SB
6685 && JUMP_P (insn)
6686 && single_set (insn)
6687 && any_condjump_p (insn))
6688 {
6689 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6690 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6691 record_jump_equiv (insn, taken);
6692 }
96fb470d 6693
96fb470d
SB
6694 /* Clear the CC0-tracking related insns, they can't provide
6695 useful information across basic block boundaries. */
6696 prev_insn_cc0 = 0;
932ad4d9 6697 }
7afe21cc 6698
932ad4d9 6699 gcc_assert (next_qty <= max_qty);
7afe21cc 6700
932ad4d9 6701 free (qty_table);
7afe21cc 6702}
6fb5fa3c 6703
7afe21cc 6704\f
7afe21cc
RK
6705/* Perform cse on the instructions of a function.
6706 F is the first instruction.
6707 NREGS is one plus the highest pseudo-reg number used in the instruction.
6708
2aac3a01
EB
6709 Return 2 if jump optimizations should be redone due to simplifications
6710 in conditional jump instructions.
6711 Return 1 if the CFG should be cleaned up because it has been modified.
6712 Return 0 otherwise. */
7afe21cc 6713
711417cd 6714static int
20468884 6715cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
7afe21cc 6716{
932ad4d9
SB
6717 struct cse_basic_block_data ebb_data;
6718 basic_block bb;
8b1c6fd7 6719 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
932ad4d9 6720 int i, n_blocks;
7afe21cc 6721
afb72432
IE
6722 /* CSE doesn't use dominane info but can invalidate it in different ways.
6723 For simplicity free dominance info here. */
6724 free_dominance_info (CDI_DOMINATORS);
6725
6fb5fa3c 6726 df_set_flags (DF_LR_RUN_DCE);
dca3da7a 6727 df_note_add_problem ();
6fb5fa3c
DB
6728 df_analyze ();
6729 df_set_flags (DF_DEFER_INSN_RESCAN);
6730
6731 reg_scan (get_insns (), max_reg_num ());
bc5e3b54
KH
6732 init_cse_reg_info (nregs);
6733
932ad4d9
SB
6734 ebb_data.path = XNEWVEC (struct branch_path,
6735 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
9bf8cfbf 6736
2aac3a01
EB
6737 cse_cfg_altered = false;
6738 cse_jumps_altered = false;
6739 recorded_label_ref = false;
7afe21cc 6740 constant_pool_entries_cost = 0;
dd0ba281 6741 constant_pool_entries_regcost = 0;
932ad4d9
SB
6742 ebb_data.path_size = 0;
6743 ebb_data.nsets = 0;
2f93eea8 6744 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6745
6746 init_recog ();
9ae8ffe7 6747 init_alias_analysis ();
7afe21cc 6748
5ed6ace5 6749 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
7afe21cc 6750
932ad4d9 6751 /* Set up the table of already visited basic blocks. */
8b1c6fd7 6752 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 6753 bitmap_clear (cse_visited_basic_blocks);
7afe21cc 6754
a7582f7c 6755 /* Loop over basic blocks in reverse completion order (RPO),
932ad4d9 6756 excluding the ENTRY and EXIT blocks. */
27511c65 6757 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
932ad4d9
SB
6758 i = 0;
6759 while (i < n_blocks)
7afe21cc 6760 {
a7582f7c 6761 /* Find the first block in the RPO queue that we have not yet
932ad4d9
SB
6762 processed before. */
6763 do
e9a25f70 6764 {
06e28de2 6765 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
e9a25f70 6766 }
d7c028c0 6767 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
932ad4d9 6768 && i < n_blocks);
7afe21cc 6769
932ad4d9
SB
6770 /* Find all paths starting with BB, and process them. */
6771 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
7afe21cc 6772 {
932ad4d9
SB
6773 /* Pre-scan the path. */
6774 cse_prescan_path (&ebb_data);
7afe21cc 6775
932ad4d9
SB
6776 /* If this basic block has no sets, skip it. */
6777 if (ebb_data.nsets == 0)
6778 continue;
7afe21cc 6779
2e226e66 6780 /* Get a reasonable estimate for the maximum number of qty's
932ad4d9
SB
6781 needed for this path. For this, we take the number of sets
6782 and multiply that by MAX_RECOG_OPERANDS. */
6783 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
7afe21cc 6784
932ad4d9
SB
6785 /* Dump the path we're about to process. */
6786 if (dump_file)
6787 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6a5293dc 6788
932ad4d9 6789 cse_extended_basic_block (&ebb_data);
7afe21cc 6790 }
7afe21cc
RK
6791 }
6792
932ad4d9
SB
6793 /* Clean up. */
6794 end_alias_analysis ();
932ad4d9
SB
6795 free (reg_eqv_table);
6796 free (ebb_data.path);
6797 sbitmap_free (cse_visited_basic_blocks);
27511c65 6798 free (rc_order);
932ad4d9 6799 rtl_hooks = general_rtl_hooks;
75c6bd46 6800
2aac3a01
EB
6801 if (cse_jumps_altered || recorded_label_ref)
6802 return 2;
6803 else if (cse_cfg_altered)
6804 return 1;
6805 else
6806 return 0;
7afe21cc
RK
6807}
6808\f
6809/* Count the number of times registers are used (not set) in X.
6810 COUNTS is an array in which we accumulate the count, INCR is how much
b92ba6ff
R
6811 we count each register usage.
6812
6813 Don't count a usage of DEST, which is the SET_DEST of a SET which
6814 contains X in its SET_SRC. This is because such a SET does not
6815 modify the liveness of DEST.
34161e98
RS
6816 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6817 We must then count uses of a SET_DEST regardless, because the insn can't be
6818 deleted here. */
7afe21cc
RK
6819
6820static void
b92ba6ff 6821count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7afe21cc 6822{
f1e7c95f 6823 enum rtx_code code;
b17d5d7c 6824 rtx note;
6f7d635c 6825 const char *fmt;
7afe21cc
RK
6826 int i, j;
6827
f1e7c95f
RK
6828 if (x == 0)
6829 return;
6830
6831 switch (code = GET_CODE (x))
7afe21cc
RK
6832 {
6833 case REG:
b92ba6ff
R
6834 if (x != dest)
6835 counts[REGNO (x)] += incr;
7afe21cc
RK
6836 return;
6837
6838 case PC:
6839 case CC0:
6840 case CONST:
d8116890 6841 CASE_CONST_ANY:
7afe21cc
RK
6842 case SYMBOL_REF:
6843 case LABEL_REF:
02e39abc
JL
6844 return;
6845
278a83b2 6846 case CLOBBER:
02e39abc
JL
6847 /* If we are clobbering a MEM, mark any registers inside the address
6848 as being used. */
3c0cb5de 6849 if (MEM_P (XEXP (x, 0)))
b92ba6ff 6850 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7afe21cc
RK
6851 return;
6852
6853 case SET:
6854 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 6855 if (!REG_P (SET_DEST (x)))
b92ba6ff
R
6856 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6857 count_reg_usage (SET_SRC (x), counts,
6858 dest ? dest : SET_DEST (x),
6859 incr);
7afe21cc
RK
6860 return;
6861
b5b8b0ac
AO
6862 case DEBUG_INSN:
6863 return;
6864
f1e7c95f 6865 case CALL_INSN:
7afe21cc
RK
6866 case INSN:
6867 case JUMP_INSN:
2da02156 6868 /* We expect dest to be NULL_RTX here. If the insn may throw,
34161e98
RS
6869 or if it cannot be deleted due to side-effects, mark this fact
6870 by setting DEST to pc_rtx. */
2da02156
EB
6871 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6872 || side_effects_p (PATTERN (x)))
b92ba6ff
R
6873 dest = pc_rtx;
6874 if (code == CALL_INSN)
6875 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6876 count_reg_usage (PATTERN (x), counts, dest, incr);
7afe21cc
RK
6877
6878 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6879 use them. */
6880
b17d5d7c
ZD
6881 note = find_reg_equal_equiv_note (x);
6882 if (note)
839844be
R
6883 {
6884 rtx eqv = XEXP (note, 0);
6885
6886 if (GET_CODE (eqv) == EXPR_LIST)
6887 /* This REG_EQUAL note describes the result of a function call.
6888 Process all the arguments. */
6889 do
6890 {
b92ba6ff 6891 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
839844be
R
6892 eqv = XEXP (eqv, 1);
6893 }
6894 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6895 else
b92ba6ff 6896 count_reg_usage (eqv, counts, dest, incr);
839844be 6897 }
7afe21cc
RK
6898 return;
6899
ee960939
OH
6900 case EXPR_LIST:
6901 if (REG_NOTE_KIND (x) == REG_EQUAL
6902 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6903 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6904 involving registers in the address. */
6905 || GET_CODE (XEXP (x, 0)) == CLOBBER)
b92ba6ff 6906 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
ee960939 6907
b92ba6ff 6908 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
ee960939
OH
6909 return;
6910
a6c14a64 6911 case ASM_OPERANDS:
a6c14a64
RH
6912 /* Iterate over just the inputs, not the constraints as well. */
6913 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
b92ba6ff 6914 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
a6c14a64
RH
6915 return;
6916
7afe21cc 6917 case INSN_LIST:
f91aec98 6918 case INT_LIST:
341c100f 6919 gcc_unreachable ();
278a83b2 6920
e9a25f70
JL
6921 default:
6922 break;
7afe21cc
RK
6923 }
6924
6925 fmt = GET_RTX_FORMAT (code);
6926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6927 {
6928 if (fmt[i] == 'e')
b92ba6ff 6929 count_reg_usage (XEXP (x, i), counts, dest, incr);
7afe21cc
RK
6930 else if (fmt[i] == 'E')
6931 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
b92ba6ff 6932 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7afe21cc
RK
6933 }
6934}
6935\f
6699b754 6936/* Return true if X is a dead register. */
b5b8b0ac 6937
6699b754 6938static inline int
a5b9bc17 6939is_dead_reg (const_rtx x, int *counts)
b5b8b0ac 6940{
b5b8b0ac
AO
6941 return (REG_P (x)
6942 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6943 && counts[REGNO (x)] == 0);
6944}
6945
4793dca1
JH
6946/* Return true if set is live. */
6947static bool
20468884 6948set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7080f735 6949 int *counts)
4793dca1 6950{
e67d1102 6951 rtx_insn *tem;
4793dca1
JH
6952
6953 if (set_noop_p (set))
6954 ;
6955
4793dca1
JH
6956 else if (GET_CODE (SET_DEST (set)) == CC0
6957 && !side_effects_p (SET_SRC (set))
5f262d13 6958 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
4793dca1
JH
6959 || !INSN_P (tem)
6960 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6961 return false;
6699b754 6962 else if (!is_dead_reg (SET_DEST (set), counts)
8fff4fc1 6963 || side_effects_p (SET_SRC (set)))
4793dca1
JH
6964 return true;
6965 return false;
6966}
6967
6968/* Return true if insn is live. */
6969
6970static bool
20468884 6971insn_live_p (rtx_insn *insn, int *counts)
4793dca1
JH
6972{
6973 int i;
2da02156 6974 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
a646f6cc
AH
6975 return true;
6976 else if (GET_CODE (PATTERN (insn)) == SET)
0021de69 6977 return set_live_p (PATTERN (insn), insn, counts);
4793dca1 6978 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
6979 {
6980 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6981 {
6982 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 6983
0021de69
DB
6984 if (GET_CODE (elt) == SET)
6985 {
6986 if (set_live_p (elt, insn, counts))
6987 return true;
6988 }
6989 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6990 return true;
6991 }
6992 return false;
6993 }
b5b8b0ac
AO
6994 else if (DEBUG_INSN_P (insn))
6995 {
20468884 6996 rtx_insn *next;
b5b8b0ac 6997
96a95ac1
AO
6998 if (DEBUG_MARKER_INSN_P (insn))
6999 return true;
7000
b5b8b0ac
AO
7001 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
7002 if (NOTE_P (next))
7003 continue;
7004 else if (!DEBUG_INSN_P (next))
7005 return true;
96a95ac1
AO
7006 /* If we find an inspection point, such as a debug begin stmt,
7007 we want to keep the earlier debug insn. */
7008 else if (DEBUG_MARKER_INSN_P (next))
7009 return true;
b5b8b0ac
AO
7010 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
7011 return false;
7012
b5b8b0ac
AO
7013 return true;
7014 }
4793dca1
JH
7015 else
7016 return true;
7017}
7018
6699b754
JJ
7019/* Count the number of stores into pseudo. Callback for note_stores. */
7020
7021static void
7022count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7023{
7024 int *counts = (int *) data;
7025 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7026 counts[REGNO (x)]++;
7027}
7028
a5b9bc17
RS
7029/* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7030 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7031 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7032 Set *SEEN_REPL to true if we see a dead register that does have
7033 a replacement. */
6699b754 7034
a5b9bc17
RS
7035static bool
7036is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7037 bool *seen_repl)
6699b754 7038{
a5b9bc17
RS
7039 subrtx_iterator::array_type array;
7040 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6699b754 7041 {
a5b9bc17
RS
7042 const_rtx x = *iter;
7043 if (is_dead_reg (x, counts))
7044 {
7045 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7046 *seen_repl = true;
7047 else
7048 return true;
7049 }
6699b754 7050 }
a5b9bc17 7051 return false;
6699b754
JJ
7052}
7053
7054/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7055 Callback for simplify_replace_fn_rtx. */
7056
7057static rtx
7058replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7059{
7060 rtx *replacements = (rtx *) data;
7061
7062 if (REG_P (x)
7063 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7064 && replacements[REGNO (x)] != NULL_RTX)
7065 {
7066 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7067 return replacements[REGNO (x)];
7068 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7069 GET_MODE (replacements[REGNO (x)]));
7070 }
7071 return NULL_RTX;
7072}
7073
7afe21cc
RK
7074/* Scan all the insns and delete any that are dead; i.e., they store a register
7075 that is never used or they copy a register to itself.
7076
c6a26dc4
JL
7077 This is used to remove insns made obviously dead by cse, loop or other
7078 optimizations. It improves the heuristics in loop since it won't try to
7079 move dead invariants out of loops or make givs for dead quantities. The
7080 remaining passes of the compilation are also sped up. */
7afe21cc 7081
3dec4024 7082int
169d13f5 7083delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7afe21cc 7084{
4da896b2 7085 int *counts;
169d13f5 7086 rtx_insn *insn, *prev;
6699b754 7087 rtx *replacements = NULL;
65e9fa10 7088 int ndead = 0;
7afe21cc 7089
3dec4024 7090 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 7091 /* First count the number of times each register is used. */
36f52e8f 7092 if (MAY_HAVE_DEBUG_BIND_INSNS)
6699b754
JJ
7093 {
7094 counts = XCNEWVEC (int, nreg * 3);
7095 for (insn = insns; insn; insn = NEXT_INSN (insn))
36f52e8f 7096 if (DEBUG_BIND_INSN_P (insn))
6699b754
JJ
7097 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7098 NULL_RTX, 1);
7099 else if (INSN_P (insn))
7100 {
7101 count_reg_usage (insn, counts, NULL_RTX, 1);
7102 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7103 }
7104 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7105 First one counts how many times each pseudo is used outside
7106 of debug insns, second counts how many times each pseudo is
7107 used in debug insns and third counts how many times a pseudo
7108 is stored. */
7109 }
7110 else
7111 {
7112 counts = XCNEWVEC (int, nreg);
7113 for (insn = insns; insn; insn = NEXT_INSN (insn))
7114 if (INSN_P (insn))
7115 count_reg_usage (insn, counts, NULL_RTX, 1);
7116 /* If no debug insns can be present, COUNTS is just an array
7117 which counts how many times each pseudo is used. */
7118 }
56873e13
ES
7119 /* Pseudo PIC register should be considered as used due to possible
7120 new usages generated. */
7121 if (!reload_completed
7122 && pic_offset_table_rtx
7123 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7124 counts[REGNO (pic_offset_table_rtx)]++;
65e9fa10
KH
7125 /* Go from the last insn to the first and delete insns that only set unused
7126 registers or copy a register to itself. As we delete an insn, remove
7127 usage counts for registers it uses.
0cedb36c 7128
65e9fa10
KH
7129 The first jump optimization pass may leave a real insn as the last
7130 insn in the function. We must not skip that insn or we may end
6699b754
JJ
7131 up deleting code that is not really dead.
7132
7133 If some otherwise unused register is only used in DEBUG_INSNs,
7134 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7135 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7136 has been created for the unused register, replace it with
7137 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
03ce14db 7138 for (insn = get_last_insn (); insn; insn = prev)
65e9fa10
KH
7139 {
7140 int live_insn = 0;
7afe21cc 7141
03ce14db
KH
7142 prev = PREV_INSN (insn);
7143 if (!INSN_P (insn))
7144 continue;
7afe21cc 7145
4a8cae83 7146 live_insn = insn_live_p (insn, counts);
7afe21cc 7147
65e9fa10
KH
7148 /* If this is a dead insn, delete it and show registers in it aren't
7149 being used. */
7afe21cc 7150
6fb5fa3c 7151 if (! live_insn && dbg_cnt (delete_trivial_dead))
65e9fa10 7152 {
6699b754 7153 if (DEBUG_INSN_P (insn))
36f52e8f
AO
7154 {
7155 if (DEBUG_BIND_INSN_P (insn))
7156 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7157 NULL_RTX, -1);
7158 }
6699b754
JJ
7159 else
7160 {
7161 rtx set;
36f52e8f 7162 if (MAY_HAVE_DEBUG_BIND_INSNS
6699b754
JJ
7163 && (set = single_set (insn)) != NULL_RTX
7164 && is_dead_reg (SET_DEST (set), counts)
7165 /* Used at least once in some DEBUG_INSN. */
7166 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7167 /* And set exactly once. */
7168 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7169 && !side_effects_p (SET_SRC (set))
7170 && asm_noperands (PATTERN (insn)) < 0)
7171 {
b2908ba6
DM
7172 rtx dval, bind_var_loc;
7173 rtx_insn *bind;
6699b754
JJ
7174
7175 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7176 dval = make_debug_expr_from_rtl (SET_DEST (set));
7177
7178 /* Emit a debug bind insn before the insn in which
7179 reg dies. */
b2908ba6
DM
7180 bind_var_loc =
7181 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7182 DEBUG_EXPR_TREE_DECL (dval),
7183 SET_SRC (set),
7184 VAR_INIT_STATUS_INITIALIZED);
7185 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7186
7187 bind = emit_debug_insn_before (bind_var_loc, insn);
6699b754
JJ
7188 df_insn_rescan (bind);
7189
7190 if (replacements == NULL)
7191 replacements = XCNEWVEC (rtx, nreg);
7192 replacements[REGNO (SET_DEST (set))] = dval;
7193 }
7194
7195 count_reg_usage (insn, counts, NULL_RTX, -1);
7196 ndead++;
7197 }
98ccd1d7 7198 cse_cfg_altered |= delete_insn_and_edges (insn);
65e9fa10 7199 }
68252e27 7200 }
4da896b2 7201
36f52e8f 7202 if (MAY_HAVE_DEBUG_BIND_INSNS)
6699b754 7203 {
6699b754 7204 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
36f52e8f 7205 if (DEBUG_BIND_INSN_P (insn))
6699b754
JJ
7206 {
7207 /* If this debug insn references a dead register that wasn't replaced
7208 with an DEBUG_EXPR, reset the DEBUG_INSN. */
a5b9bc17
RS
7209 bool seen_repl = false;
7210 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7211 counts, replacements, &seen_repl))
6699b754
JJ
7212 {
7213 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7214 df_insn_rescan (insn);
7215 }
a5b9bc17 7216 else if (seen_repl)
6699b754
JJ
7217 {
7218 INSN_VAR_LOCATION_LOC (insn)
7219 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7220 NULL_RTX, replace_dead_reg,
7221 replacements);
7222 df_insn_rescan (insn);
7223 }
7224 }
04695783 7225 free (replacements);
6699b754
JJ
7226 }
7227
c263766c 7228 if (dump_file && ndead)
65e9fa10
KH
7229 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7230 ndead);
4da896b2
MM
7231 /* Clean up. */
7232 free (counts);
3dec4024
JH
7233 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7234 return ndead;
7afe21cc 7235}
e129d93a 7236
a9052a40
RS
7237/* If LOC contains references to NEWREG in a different mode, change them
7238 to use NEWREG instead. */
e129d93a 7239
a9052a40
RS
7240static void
7241cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
88bdcd3d 7242 rtx *loc, rtx_insn *insn, rtx newreg)
e129d93a 7243{
a9052a40 7244 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
e129d93a 7245 {
a9052a40
RS
7246 rtx *loc = *iter;
7247 rtx x = *loc;
7248 if (x
7249 && REG_P (x)
7250 && REGNO (x) == REGNO (newreg)
7251 && GET_MODE (x) != GET_MODE (newreg))
7252 {
7253 validate_change (insn, loc, newreg, 1);
7254 iter.skip_subrtxes ();
7255 }
e129d93a 7256 }
e129d93a
ILT
7257}
7258
fc188d37
AK
7259/* Change the mode of any reference to the register REGNO (NEWREG) to
7260 GET_MODE (NEWREG) in INSN. */
7261
7262static void
20468884 7263cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
fc188d37 7264{
fc188d37
AK
7265 int success;
7266
7267 if (!INSN_P (insn))
7268 return;
7269
a9052a40
RS
7270 subrtx_ptr_iterator::array_type array;
7271 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7272 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
b8698a0f 7273
fc188d37
AK
7274 /* If the following assertion was triggered, there is most probably
7275 something wrong with the cc_modes_compatible back end function.
7276 CC modes only can be considered compatible if the insn - with the mode
7277 replaced by any of the compatible modes - can still be recognized. */
7278 success = apply_change_group ();
7279 gcc_assert (success);
7280}
7281
e129d93a
ILT
7282/* Change the mode of any reference to the register REGNO (NEWREG) to
7283 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 7284 any instruction which modifies NEWREG. */
e129d93a
ILT
7285
7286static void
20468884 7287cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
e129d93a 7288{
20468884 7289 rtx_insn *insn;
e129d93a
ILT
7290
7291 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7292 {
7293 if (! INSN_P (insn))
7294 continue;
7295
2e802a6f 7296 if (reg_set_p (newreg, insn))
e129d93a
ILT
7297 return;
7298
fc188d37 7299 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
7300 }
7301}
7302
7303/* BB is a basic block which finishes with CC_REG as a condition code
7304 register which is set to CC_SRC. Look through the successors of BB
7305 to find blocks which have a single predecessor (i.e., this one),
7306 and look through those blocks for an assignment to CC_REG which is
7307 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7308 permitted to change the mode of CC_SRC to a compatible mode. This
7309 returns VOIDmode if no equivalent assignments were found.
7310 Otherwise it returns the mode which CC_SRC should wind up with.
31e9ebaf
JJ
7311 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7312 but is passed unmodified down to recursive calls in order to prevent
7313 endless recursion.
e129d93a
ILT
7314
7315 The main complexity in this function is handling the mode issues.
7316 We may have more than one duplicate which we can eliminate, and we
7317 try to find a mode which will work for multiple duplicates. */
7318
ef4bddc2 7319static machine_mode
31e9ebaf
JJ
7320cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7321 bool can_change_mode)
e129d93a
ILT
7322{
7323 bool found_equiv;
ef4bddc2 7324 machine_mode mode;
e129d93a
ILT
7325 unsigned int insn_count;
7326 edge e;
20468884 7327 rtx_insn *insns[2];
ef4bddc2 7328 machine_mode modes[2];
20468884 7329 rtx_insn *last_insns[2];
e129d93a
ILT
7330 unsigned int i;
7331 rtx newreg;
628f6a4e 7332 edge_iterator ei;
e129d93a
ILT
7333
7334 /* We expect to have two successors. Look at both before picking
7335 the final mode for the comparison. If we have more successors
7336 (i.e., some sort of table jump, although that seems unlikely),
7337 then we require all beyond the first two to use the same
7338 mode. */
7339
7340 found_equiv = false;
7341 mode = GET_MODE (cc_src);
7342 insn_count = 0;
628f6a4e 7343 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a 7344 {
20468884
DM
7345 rtx_insn *insn;
7346 rtx_insn *end;
e129d93a
ILT
7347
7348 if (e->flags & EDGE_COMPLEX)
7349 continue;
7350
628f6a4e 7351 if (EDGE_COUNT (e->dest->preds) != 1
fefa31b5 7352 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
31e9ebaf
JJ
7353 /* Avoid endless recursion on unreachable blocks. */
7354 || e->dest == orig_bb)
e129d93a
ILT
7355 continue;
7356
7357 end = NEXT_INSN (BB_END (e->dest));
7358 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7359 {
7360 rtx set;
7361
7362 if (! INSN_P (insn))
7363 continue;
7364
7365 /* If CC_SRC is modified, we have to stop looking for
7366 something which uses it. */
7367 if (modified_in_p (cc_src, insn))
7368 break;
7369
7370 /* Check whether INSN sets CC_REG to CC_SRC. */
7371 set = single_set (insn);
7372 if (set
f8cfc6aa 7373 && REG_P (SET_DEST (set))
e129d93a
ILT
7374 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7375 {
7376 bool found;
ef4bddc2
RS
7377 machine_mode set_mode;
7378 machine_mode comp_mode;
e129d93a
ILT
7379
7380 found = false;
7381 set_mode = GET_MODE (SET_SRC (set));
7382 comp_mode = set_mode;
7383 if (rtx_equal_p (cc_src, SET_SRC (set)))
7384 found = true;
7385 else if (GET_CODE (cc_src) == COMPARE
7386 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 7387 && mode != set_mode
e129d93a
ILT
7388 && rtx_equal_p (XEXP (cc_src, 0),
7389 XEXP (SET_SRC (set), 0))
7390 && rtx_equal_p (XEXP (cc_src, 1),
7391 XEXP (SET_SRC (set), 1)))
b8698a0f 7392
e129d93a 7393 {
5fd9b178 7394 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
7395 if (comp_mode != VOIDmode
7396 && (can_change_mode || comp_mode == mode))
7397 found = true;
7398 }
7399
7400 if (found)
7401 {
7402 found_equiv = true;
1f44254c 7403 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
7404 {
7405 insns[insn_count] = insn;
7406 modes[insn_count] = set_mode;
7407 last_insns[insn_count] = end;
7408 ++insn_count;
7409
1f44254c
ILT
7410 if (mode != comp_mode)
7411 {
341c100f 7412 gcc_assert (can_change_mode);
1f44254c 7413 mode = comp_mode;
fc188d37
AK
7414
7415 /* The modified insn will be re-recognized later. */
1f44254c
ILT
7416 PUT_MODE (cc_src, mode);
7417 }
e129d93a
ILT
7418 }
7419 else
7420 {
7421 if (set_mode != mode)
1f44254c
ILT
7422 {
7423 /* We found a matching expression in the
7424 wrong mode, but we don't have room to
7425 store it in the array. Punt. This case
7426 should be rare. */
7427 break;
7428 }
e129d93a
ILT
7429 /* INSN sets CC_REG to a value equal to CC_SRC
7430 with the right mode. We can simply delete
7431 it. */
7432 delete_insn (insn);
7433 }
7434
7435 /* We found an instruction to delete. Keep looking,
7436 in the hopes of finding a three-way jump. */
7437 continue;
7438 }
7439
7440 /* We found an instruction which sets the condition
7441 code, so don't look any farther. */
7442 break;
7443 }
7444
7445 /* If INSN sets CC_REG in some other way, don't look any
7446 farther. */
7447 if (reg_set_p (cc_reg, insn))
7448 break;
7449 }
7450
7451 /* If we fell off the bottom of the block, we can keep looking
7452 through successors. We pass CAN_CHANGE_MODE as false because
7453 we aren't prepared to handle compatibility between the
7454 further blocks and this block. */
7455 if (insn == end)
7456 {
ef4bddc2 7457 machine_mode submode;
1f44254c 7458
31e9ebaf 7459 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
1f44254c
ILT
7460 if (submode != VOIDmode)
7461 {
341c100f 7462 gcc_assert (submode == mode);
1f44254c
ILT
7463 found_equiv = true;
7464 can_change_mode = false;
7465 }
e129d93a
ILT
7466 }
7467 }
7468
7469 if (! found_equiv)
7470 return VOIDmode;
7471
7472 /* Now INSN_COUNT is the number of instructions we found which set
7473 CC_REG to a value equivalent to CC_SRC. The instructions are in
7474 INSNS. The modes used by those instructions are in MODES. */
7475
7476 newreg = NULL_RTX;
7477 for (i = 0; i < insn_count; ++i)
7478 {
7479 if (modes[i] != mode)
7480 {
7481 /* We need to change the mode of CC_REG in INSNS[i] and
7482 subsequent instructions. */
7483 if (! newreg)
7484 {
7485 if (GET_MODE (cc_reg) == mode)
7486 newreg = cc_reg;
7487 else
7488 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7489 }
7490 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7491 newreg);
7492 }
7493
98ccd1d7 7494 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
e129d93a
ILT
7495 }
7496
7497 return mode;
7498}
7499
7500/* If we have a fixed condition code register (or two), walk through
7501 the instructions and try to eliminate duplicate assignments. */
7502
cab2264d 7503static void
e129d93a
ILT
7504cse_condition_code_reg (void)
7505{
7506 unsigned int cc_regno_1;
7507 unsigned int cc_regno_2;
7508 rtx cc_reg_1;
7509 rtx cc_reg_2;
7510 basic_block bb;
7511
5fd9b178 7512 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
7513 return;
7514
7515 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7516 if (cc_regno_2 != INVALID_REGNUM)
7517 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7518 else
7519 cc_reg_2 = NULL_RTX;
7520
11cd3bed 7521 FOR_EACH_BB_FN (bb, cfun)
e129d93a 7522 {
20468884 7523 rtx_insn *last_insn;
e129d93a 7524 rtx cc_reg;
20468884
DM
7525 rtx_insn *insn;
7526 rtx_insn *cc_src_insn;
e129d93a 7527 rtx cc_src;
ef4bddc2
RS
7528 machine_mode mode;
7529 machine_mode orig_mode;
e129d93a
ILT
7530
7531 /* Look for blocks which end with a conditional jump based on a
7532 condition code register. Then look for the instruction which
7533 sets the condition code register. Then look through the
7534 successor blocks for instructions which set the condition
7535 code register to the same value. There are other possible
7536 uses of the condition code register, but these are by far the
7537 most common and the ones which we are most likely to be able
7538 to optimize. */
7539
7540 last_insn = BB_END (bb);
4b4bf941 7541 if (!JUMP_P (last_insn))
e129d93a
ILT
7542 continue;
7543
7544 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7545 cc_reg = cc_reg_1;
7546 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7547 cc_reg = cc_reg_2;
7548 else
7549 continue;
7550
20468884 7551 cc_src_insn = NULL;
e129d93a
ILT
7552 cc_src = NULL_RTX;
7553 for (insn = PREV_INSN (last_insn);
7554 insn && insn != PREV_INSN (BB_HEAD (bb));
7555 insn = PREV_INSN (insn))
7556 {
7557 rtx set;
7558
7559 if (! INSN_P (insn))
7560 continue;
7561 set = single_set (insn);
7562 if (set
f8cfc6aa 7563 && REG_P (SET_DEST (set))
e129d93a
ILT
7564 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7565 {
7566 cc_src_insn = insn;
7567 cc_src = SET_SRC (set);
7568 break;
7569 }
7570 else if (reg_set_p (cc_reg, insn))
7571 break;
7572 }
7573
7574 if (! cc_src_insn)
7575 continue;
7576
7577 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7578 continue;
7579
7580 /* Now CC_REG is a condition code register used for a
7581 conditional jump at the end of the block, and CC_SRC, in
7582 CC_SRC_INSN, is the value to which that condition code
7583 register is set, and CC_SRC is still meaningful at the end of
7584 the basic block. */
7585
1f44254c 7586 orig_mode = GET_MODE (cc_src);
31e9ebaf 7587 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
1f44254c 7588 if (mode != VOIDmode)
e129d93a 7589 {
341c100f 7590 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 7591 if (mode != orig_mode)
2e802a6f
KH
7592 {
7593 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7594
fc188d37 7595 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
7596
7597 /* Do the same in the following insns that use the
7598 current value of CC_REG within BB. */
7599 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7600 NEXT_INSN (last_insn),
7601 newreg);
7602 }
e129d93a
ILT
7603 }
7604 }
7605}
ef330312
PB
7606\f
7607
7608/* Perform common subexpression elimination. Nonzero value from
7609 `cse_main' means that jumps were simplified and some code may now
7610 be unreachable, so do jump optimization again. */
c2924966 7611static unsigned int
ef330312
PB
7612rest_of_handle_cse (void)
7613{
7614 int tem;
6fb5fa3c 7615
ef330312 7616 if (dump_file)
5b4fdb20 7617 dump_flow_info (dump_file, dump_flags);
ef330312 7618
10d22567 7619 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7620
7621 /* If we are not running more CSE passes, then we are no longer
7622 expecting CSE to be run. But always rerun it in a cheap mode. */
7623 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7624
2aac3a01
EB
7625 if (tem == 2)
7626 {
7627 timevar_push (TV_JUMP);
7628 rebuild_jump_labels (get_insns ());
da7674f6 7629 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
2aac3a01
EB
7630 timevar_pop (TV_JUMP);
7631 }
7632 else if (tem == 1 || optimize > 1)
da7674f6 7633 cse_cfg_altered |= cleanup_cfg (0);
932ad4d9 7634
c2924966 7635 return 0;
ef330312
PB
7636}
7637
27a4cd48
DM
7638namespace {
7639
7640const pass_data pass_data_cse =
ef330312 7641{
27a4cd48
DM
7642 RTL_PASS, /* type */
7643 "cse1", /* name */
7644 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7645 TV_CSE, /* tv_id */
7646 0, /* properties_required */
7647 0, /* properties_provided */
7648 0, /* properties_destroyed */
7649 0, /* todo_flags_start */
3bea341f 7650 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
7651};
7652
27a4cd48
DM
7653class pass_cse : public rtl_opt_pass
7654{
7655public:
c3284718
RS
7656 pass_cse (gcc::context *ctxt)
7657 : rtl_opt_pass (pass_data_cse, ctxt)
27a4cd48
DM
7658 {}
7659
7660 /* opt_pass methods: */
1a3d085c 7661 virtual bool gate (function *) { return optimize > 0; }
be55bfe6 7662 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
27a4cd48
DM
7663
7664}; // class pass_cse
7665
7666} // anon namespace
7667
7668rtl_opt_pass *
7669make_pass_cse (gcc::context *ctxt)
7670{
7671 return new pass_cse (ctxt);
7672}
7673
ef330312 7674
ef330312 7675/* Run second CSE pass after loop optimizations. */
c2924966 7676static unsigned int
ef330312
PB
7677rest_of_handle_cse2 (void)
7678{
7679 int tem;
7680
7681 if (dump_file)
5b4fdb20 7682 dump_flow_info (dump_file, dump_flags);
ef330312 7683
10d22567 7684 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7685
7686 /* Run a pass to eliminate duplicated assignments to condition code
7687 registers. We have to run this after bypass_jumps, because it
7688 makes it harder for that pass to determine whether a jump can be
7689 bypassed safely. */
7690 cse_condition_code_reg ();
7691
ef330312
PB
7692 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7693
2aac3a01 7694 if (tem == 2)
ef330312
PB
7695 {
7696 timevar_push (TV_JUMP);
7697 rebuild_jump_labels (get_insns ());
da7674f6 7698 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
ef330312
PB
7699 timevar_pop (TV_JUMP);
7700 }
2aac3a01 7701 else if (tem == 1)
da7674f6 7702 cse_cfg_altered |= cleanup_cfg (0);
2aac3a01 7703
ef330312 7704 cse_not_expected = 1;
c2924966 7705 return 0;
ef330312
PB
7706}
7707
7708
27a4cd48
DM
7709namespace {
7710
7711const pass_data pass_data_cse2 =
ef330312 7712{
27a4cd48
DM
7713 RTL_PASS, /* type */
7714 "cse2", /* name */
7715 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7716 TV_CSE2, /* tv_id */
7717 0, /* properties_required */
7718 0, /* properties_provided */
7719 0, /* properties_destroyed */
7720 0, /* todo_flags_start */
3bea341f 7721 TODO_df_finish, /* todo_flags_finish */
ef330312 7722};
5f39ad47 7723
27a4cd48
DM
7724class pass_cse2 : public rtl_opt_pass
7725{
7726public:
c3284718
RS
7727 pass_cse2 (gcc::context *ctxt)
7728 : rtl_opt_pass (pass_data_cse2, ctxt)
27a4cd48
DM
7729 {}
7730
7731 /* opt_pass methods: */
1a3d085c
TS
7732 virtual bool gate (function *)
7733 {
7734 return optimize > 0 && flag_rerun_cse_after_loop;
7735 }
7736
be55bfe6 7737 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
27a4cd48
DM
7738
7739}; // class pass_cse2
7740
7741} // anon namespace
7742
7743rtl_opt_pass *
7744make_pass_cse2 (gcc::context *ctxt)
7745{
7746 return new pass_cse2 (ctxt);
7747}
7748
5f39ad47
SB
7749/* Run second CSE pass after loop optimizations. */
7750static unsigned int
7751rest_of_handle_cse_after_global_opts (void)
7752{
7753 int save_cfj;
7754 int tem;
7755
7756 /* We only want to do local CSE, so don't follow jumps. */
7757 save_cfj = flag_cse_follow_jumps;
7758 flag_cse_follow_jumps = 0;
7759
7760 rebuild_jump_labels (get_insns ());
7761 tem = cse_main (get_insns (), max_reg_num ());
98ccd1d7 7762 cse_cfg_altered |= purge_all_dead_edges ();
5f39ad47
SB
7763 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7764
7765 cse_not_expected = !flag_rerun_cse_after_loop;
7766
7767 /* If cse altered any jumps, rerun jump opts to clean things up. */
7768 if (tem == 2)
7769 {
7770 timevar_push (TV_JUMP);
7771 rebuild_jump_labels (get_insns ());
da7674f6 7772 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
5f39ad47
SB
7773 timevar_pop (TV_JUMP);
7774 }
7775 else if (tem == 1)
da7674f6 7776 cse_cfg_altered |= cleanup_cfg (0);
5f39ad47
SB
7777
7778 flag_cse_follow_jumps = save_cfj;
7779 return 0;
7780}
7781
27a4cd48
DM
7782namespace {
7783
7784const pass_data pass_data_cse_after_global_opts =
5f39ad47 7785{
27a4cd48
DM
7786 RTL_PASS, /* type */
7787 "cse_local", /* name */
7788 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7789 TV_CSE, /* tv_id */
7790 0, /* properties_required */
7791 0, /* properties_provided */
7792 0, /* properties_destroyed */
7793 0, /* todo_flags_start */
3bea341f 7794 TODO_df_finish, /* todo_flags_finish */
5f39ad47 7795};
27a4cd48
DM
7796
7797class pass_cse_after_global_opts : public rtl_opt_pass
7798{
7799public:
c3284718
RS
7800 pass_cse_after_global_opts (gcc::context *ctxt)
7801 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
27a4cd48
DM
7802 {}
7803
7804 /* opt_pass methods: */
1a3d085c
TS
7805 virtual bool gate (function *)
7806 {
7807 return optimize > 0 && flag_rerun_cse_after_global_opts;
7808 }
7809
be55bfe6
TS
7810 virtual unsigned int execute (function *)
7811 {
7812 return rest_of_handle_cse_after_global_opts ();
7813 }
27a4cd48
DM
7814
7815}; // class pass_cse_after_global_opts
7816
7817} // anon namespace
7818
7819rtl_opt_pass *
7820make_pass_cse_after_global_opts (gcc::context *ctxt)
7821{
7822 return new pass_cse_after_global_opts (ctxt);
7823}