]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
Remove trailing white spaces.
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
752df20e 1/* Common subexpression elimination for GNU compiler.
00059bc7 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
b9c74b4d 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
06320855 4 Free Software Foundation, Inc.
752df20e 5
f12b58b3 6This file is part of GCC.
752df20e 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
f12b58b3 11version.
752df20e 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
752df20e 17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
752df20e 21
752df20e 22#include "config.h"
405711de 23/* stdio.h must precede rtl.h for FFS. */
24#include "system.h"
805e22b2 25#include "coretypes.h"
26#include "tm.h"
752df20e 27#include "rtl.h"
7953c610 28#include "tm_p.h"
752df20e 29#include "hard-reg-set.h"
42fe97ed 30#include "regs.h"
d27eb4b1 31#include "basic-block.h"
752df20e 32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
0a893c29 36#include "function.h"
ad87de1e 37#include "expr.h"
ebd9163c 38#include "toplev.h"
39#include "output.h"
41843f13 40#include "ggc.h"
fb20d6fa 41#include "timevar.h"
65e8d683 42#include "except.h"
fab7adbf 43#include "target.h"
38ccff25 44#include "params.h"
d263732c 45#include "rtlhooks-def.h"
77fce4cd 46#include "tree-pass.h"
3072d30e 47#include "df.h"
48#include "dbgcnt.h"
752df20e 49
50/* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
54
55 It is too complicated to keep track of the different possibilities
c863f0f6 56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
60
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
752df20e 64
65 We use two data structures to record the equivalent expressions:
a7f3b1c7 66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
752df20e 68
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
77
78Registers and "quantity numbers":
cb10db9d 79
752df20e 80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
96d808c2 86 `REG_QTY (N)' records what quantity register N is currently thought
752df20e 87 of as containing.
88
1a5bccce 89 All real quantity numbers are greater than or equal to zero.
96d808c2 90 If register N has not been assigned a quantity, `REG_QTY (N)' will
1a5bccce 91 equal -N - 1, which is always negative.
752df20e 92
1a5bccce 93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
752df20e 95
96 We also maintain a bidirectional chain of registers for each
a7f3b1c7 97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
752df20e 99
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
103
104 If two registers have the same quantity number, it must be true that
a7f3b1c7 105 REG expressions with qty_table `mode' must be in the hash table for both
752df20e 106 registers and must be in the same class.
107
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
cb10db9d 112
752df20e 113Constants and quantity numbers
114
115 When a quantity has a known constant value, that value is stored
a7f3b1c7 116 in the appropriate qty_table `const_rtx'. This is in addition to
752df20e 117 putting the constant in the hash table as is usual for non-regs.
118
f9e15121 119 Whether a reg or a constant is preferred is determined by the configuration
752df20e 120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
122
123 When a quantity has a known nearly constant value (such as an address
a7f3b1c7 124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
752df20e 126
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
132
133Other expressions:
134
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
140
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
143
144 Register references in an expression are canonicalized before hashing
a7f3b1c7 145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
752df20e 146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
148
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
152
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
157
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
165
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
169
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
177
96d808c2 178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
752df20e 188
189 Registers themselves are entered in the hash table as well as in
96d808c2 190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
752df20e 192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
196
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
200
201Related expressions:
202
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
cb10db9d 209
a7f3b1c7 210/* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
752df20e 212
213static int max_qty;
214
215/* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
217
218static int next_qty;
219
a7f3b1c7 220/* Per-qty information tracking.
752df20e 221
a7f3b1c7 222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
752df20e 224
a7f3b1c7 225 `mode' contains the machine mode of this quantity.
752df20e 226
a7f3b1c7 227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
752df20e 232
a7f3b1c7 233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
752df20e 244
a7f3b1c7 245struct qty_table_elem
246{
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
02e7a332 251 unsigned int first_reg, last_reg;
d8b9732d 252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
a7f3b1c7 256};
752df20e 257
a7f3b1c7 258/* The table of all qtys, indexed by qty number. */
259static struct qty_table_elem *qty_table;
752df20e 260
b866694e 261/* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263struct change_cc_mode_args
264{
265 rtx insn;
266 rtx newreg;
267};
268
752df20e 269#ifdef HAVE_cc0
270/* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
273
c6ddfc69 274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
752df20e 278
c6ddfc69 279static rtx this_insn_cc0, prev_insn_cc0;
280static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
805e22b2 281#endif
752df20e 282
283/* Insn being scanned. */
284
285static rtx this_insn;
f529eb25 286static bool optimize_this_for_speed_p;
752df20e 287
2a384a22 288/* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
752df20e 290 value.
291
292 Or -1 if this register is at the end of the chain.
293
96d808c2 294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
a7f3b1c7 295
296/* Per-register equivalence chain. */
297struct reg_eqv_elem
298{
299 int next, prev;
300};
752df20e 301
a7f3b1c7 302/* The table of all register equivalence chains. */
303static struct reg_eqv_elem *reg_eqv_table;
752df20e 304
155b05dc 305struct cse_reg_info
306{
3bd20490 307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
9c4f3716 309
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
312
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
316
d1264606 317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
126fb012 322
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
70e488ba 325 unsigned int subreg_ticked;
d1264606 326};
752df20e 327
3bd20490 328/* A table of cse_reg_info indexed by register numbers. */
f9413025 329static struct cse_reg_info *cse_reg_info_table;
ac613367 330
3bd20490 331/* The size of the above table. */
332static unsigned int cse_reg_info_table_size;
9c4f3716 333
3bd20490 334/* The index of the first entry that has not been initialized. */
335static unsigned int cse_reg_info_table_first_uninitialized;
752df20e 336
3bd20490 337/* The timestamp at the beginning of the current run of
be22716f 338 cse_extended_basic_block. We increment this variable at the beginning of
339 the current run of cse_extended_basic_block. The timestamp field of a
3bd20490 340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
be22716f 342 cse_extended_basic_block. */
3bd20490 343static unsigned int cse_reg_info_timestamp;
752df20e 344
cb10db9d 345/* A HARD_REG_SET containing all the hard registers for which there is
752df20e 346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
349
350static HARD_REG_SET hard_regs_in_table;
351
283a6b26 352/* True if CSE has altered the CFG. */
353static bool cse_cfg_altered;
752df20e 354
283a6b26 355/* True if CSE has altered conditional jump insns in such a way
356 that jump optimization should be redone. */
357static bool cse_jumps_altered;
752df20e 358
283a6b26 359/* True if we put a LABEL_REF into the hash table for an INSN
360 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
361 to put in the note. */
362static bool recorded_label_ref;
26db0da8 363
752df20e 364/* canon_hash stores 1 in do_not_record
365 if it notices a reference to CC0, PC, or some other volatile
366 subexpression. */
367
368static int do_not_record;
369
370/* canon_hash stores 1 in hash_arg_in_memory
371 if it notices a reference to memory within the expression being hashed. */
372
373static int hash_arg_in_memory;
374
752df20e 375/* The hash table contains buckets which are chains of `struct table_elt's,
376 each recording one expression's information.
377 That expression is in the `exp' field.
378
7cfb9bcf 379 The canon_exp field contains a canonical (from the point of view of
380 alias analysis) version of the `exp' field.
381
752df20e 382 Those elements with the same hash code are chained in both directions
383 through the `next_same_hash' and `prev_same_hash' fields.
384
385 Each set of expressions with equivalent values
386 are on a two-way chain through the `next_same_value'
387 and `prev_same_value' fields, and all point with
388 the `first_same_value' field at the first element in
389 that chain. The chain is in order of increasing cost.
390 Each element's cost value is in its `cost' field.
391
392 The `in_memory' field is nonzero for elements that
393 involve any reference to memory. These elements are removed
394 whenever a write is done to an unidentified location in memory.
395 To be safe, we assume that a memory address is unidentified unless
396 the address is either a symbol constant or a constant plus
397 the frame pointer or argument pointer.
398
752df20e 399 The `related_value' field is used to connect related expressions
400 (that differ by adding an integer).
401 The related expressions are chained in a circular fashion.
402 `related_value' is zero for expressions for which this
403 chain is not useful.
404
405 The `cost' field stores the cost of this element's expression.
d27eb4b1 406 The `regcost' field stores the value returned by approx_reg_cost for
407 this element's expression.
752df20e 408
409 The `is_const' flag is set if the element is a constant (including
410 a fixed address).
411
412 The `flag' field is used as a temporary during some search routines.
413
414 The `mode' field is usually the same as GET_MODE (`exp'), but
415 if `exp' is a CONST_INT and has no machine mode then the `mode'
416 field is the mode it was being used as. Each constant is
417 recorded separately for each mode it is used with. */
418
752df20e 419struct table_elt
420{
421 rtx exp;
7cfb9bcf 422 rtx canon_exp;
752df20e 423 struct table_elt *next_same_hash;
424 struct table_elt *prev_same_hash;
425 struct table_elt *next_same_value;
426 struct table_elt *prev_same_value;
427 struct table_elt *first_same_value;
428 struct table_elt *related_value;
429 int cost;
d27eb4b1 430 int regcost;
d8b9732d 431 /* The size of this field should match the size
432 of the mode field of struct rtx_def (see rtl.h). */
433 ENUM_BITFIELD(machine_mode) mode : 8;
752df20e 434 char in_memory;
752df20e 435 char is_const;
436 char flag;
437};
438
752df20e 439/* We don't want a lot of buckets, because we rarely have very many
440 things stored in the hash table, and a lot of buckets slows
441 down a lot of loops that happen frequently. */
9c4f3716 442#define HASH_SHIFT 5
443#define HASH_SIZE (1 << HASH_SHIFT)
444#define HASH_MASK (HASH_SIZE - 1)
752df20e 445
446/* Compute hash code of X in mode M. Special-case case where X is a pseudo
447 register (hard registers may require `do_not_record' to be set). */
448
449#define HASH(X, M) \
8ad4c111 450 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9c4f3716 451 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
452 : canon_hash (X, M)) & HASH_MASK)
752df20e 453
78d140c9 454/* Like HASH, but without side-effects. */
455#define SAFE_HASH(X, M) \
456 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
457 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
458 : safe_hash (X, M)) & HASH_MASK)
459
d27eb4b1 460/* Determine whether register number N is considered a fixed register for the
461 purpose of approximating register costs.
752df20e 462 It is desirable to replace other regs with fixed regs, to reduce need for
463 non-fixed hard regs.
349858d4 464 A reg wins if it is either the frame pointer or designated as fixed. */
752df20e 465#define FIXED_REGNO_P(N) \
b69007e1 466 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
4313a67c 467 || fixed_regs[N] || global_regs[N])
752df20e 468
469/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
2e16c7bd 470 hard registers and pointers into the frame are the cheapest with a cost
471 of 0. Next come pseudos with a cost of one and other hard registers with
472 a cost of 2. Aside from these special cases, call `rtx_cost'. */
473
5bbaf5ca 474#define CHEAP_REGNO(N) \
475 (REGNO_PTR_FRAME_P(N) \
476 || (HARD_REGISTER_NUM_P (N) \
c0191571 477 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
752df20e 478
8ad4c111 479#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
480#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
752df20e 481
d1264606 482/* Get the number of times this register has been updated in this
483 basic block. */
484
3bd20490 485#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
d1264606 486
487/* Get the point at which REG was recorded in the table. */
488
3bd20490 489#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
d1264606 490
126fb012 491/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
492 SUBREG). */
493
3bd20490 494#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
126fb012 495
d1264606 496/* Get the quantity number for REG. */
497
3bd20490 498#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
d1264606 499
752df20e 500/* Determine if the quantity number for register X represents a valid index
a7f3b1c7 501 into the qty_table. */
752df20e 502
1a5bccce 503#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
752df20e 504
01c8e4c9 505/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
506
507#define CHEAPER(X, Y) \
508 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
509
9c4f3716 510static struct table_elt *table[HASH_SIZE];
752df20e 511
512/* Chain of `struct table_elt's made so far for this function
513 but currently removed from the table. */
514
515static struct table_elt *free_element_chain;
516
752df20e 517/* Set to the cost of a constant pool reference if one was found for a
518 symbolic constant. If this was found, it means we should try to
519 convert constants into constant pool entries if they don't fit in
520 the insn. */
521
522static int constant_pool_entries_cost;
634d45d7 523static int constant_pool_entries_regcost;
752df20e 524
0b09525f 525/* Trace a patch through the CFG. */
526
527struct branch_path
528{
529 /* The basic block for this path entry. */
530 basic_block bb;
531};
532
be22716f 533/* This data describes a block that will be processed by
534 cse_extended_basic_block. */
9def8c3e 535
155b05dc 536struct cse_basic_block_data
537{
9def8c3e 538 /* Total number of SETs in block. */
539 int nsets;
9def8c3e 540 /* Size of current branch path, if any. */
541 int path_size;
be22716f 542 /* Current path, indicating which basic_blocks will be processed. */
0b09525f 543 struct branch_path *path;
9def8c3e 544};
545
3072d30e 546
547/* Pointers to the live in/live out bitmaps for the boundaries of the
548 current EBB. */
549static bitmap cse_ebb_live_in, cse_ebb_live_out;
550
be22716f 551/* A simple bitmap to track which basic blocks have been visited
552 already as part of an already processed extended basic block. */
553static sbitmap cse_visited_basic_blocks;
554
8ec3a57b 555static bool fixed_base_plus_p (rtx x);
556static int notreg_cost (rtx, enum rtx_code);
557static int approx_reg_cost_1 (rtx *, void *);
558static int approx_reg_cost (rtx);
069eea26 559static int preferable (int, int, int, int);
8ec3a57b 560static void new_basic_block (void);
561static void make_new_qty (unsigned int, enum machine_mode);
562static void make_regs_eqv (unsigned int, unsigned int);
563static void delete_reg_equiv (unsigned int);
564static int mention_regs (rtx);
565static int insert_regs (rtx, struct table_elt *, int);
566static void remove_from_table (struct table_elt *, unsigned);
d2c970fe 567static void remove_pseudo_from_table (rtx, unsigned);
568static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
8ec3a57b 569static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
570static rtx lookup_as_function (rtx, enum rtx_code);
01c8e4c9 571static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
572 enum machine_mode, int, int);
8ec3a57b 573static struct table_elt *insert (rtx, struct table_elt *, unsigned,
574 enum machine_mode);
575static void merge_equiv_classes (struct table_elt *, struct table_elt *);
576static void invalidate (rtx, enum machine_mode);
52d07779 577static bool cse_rtx_varies_p (const_rtx, bool);
8ec3a57b 578static void remove_invalid_refs (unsigned int);
579static void remove_invalid_subreg_refs (unsigned int, unsigned int,
580 enum machine_mode);
581static void rehash_using_reg (rtx);
582static void invalidate_memory (void);
583static void invalidate_for_call (void);
584static rtx use_related_value (rtx, struct table_elt *);
78d140c9 585
586static inline unsigned canon_hash (rtx, enum machine_mode);
587static inline unsigned safe_hash (rtx, enum machine_mode);
e1ab7874 588static inline unsigned hash_rtx_string (const char *);
78d140c9 589
8ec3a57b 590static rtx canon_reg (rtx, rtx);
8ec3a57b 591static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
592 enum machine_mode *,
593 enum machine_mode *);
594static rtx fold_rtx (rtx, rtx);
595static rtx equiv_constant (rtx);
bbe0b6d7 596static void record_jump_equiv (rtx, bool);
8ec3a57b 597static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
598 int);
1e5b92fa 599static void cse_insn (rtx);
be22716f 600static void cse_prescan_path (struct cse_basic_block_data *);
8ec3a57b 601static void invalidate_from_clobbers (rtx);
3072d30e 602static rtx cse_process_notes (rtx, rtx, bool *);
be22716f 603static void cse_extended_basic_block (struct cse_basic_block_data *);
e6bf10d8 604static void count_reg_usage (rtx, int *, rtx, int);
8ec3a57b 605static int check_for_label_ref (rtx *, void *);
606extern void dump_class (struct table_elt*);
3bd20490 607static void get_cse_reg_info_1 (unsigned int regno);
608static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
8ec3a57b 609static int check_dependence (rtx *, void *);
610
611static void flush_hash_table (void);
612static bool insn_live_p (rtx, int *);
613static bool set_live_p (rtx, rtx, int *);
124ac4e4 614static int cse_change_cc_mode (rtx *, void *);
b866694e 615static void cse_change_cc_mode_insn (rtx, rtx);
124ac4e4 616static void cse_change_cc_mode_insns (rtx, rtx, rtx);
650d2134 617static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
618 bool);
752df20e 619\f
d263732c 620
621#undef RTL_HOOKS_GEN_LOWPART
622#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
623
624static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
625\f
805e22b2 626/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
627 virtual regs here because the simplify_*_operation routines are called
628 by integrate.c, which is called before virtual register instantiation. */
629
630static bool
8ec3a57b 631fixed_base_plus_p (rtx x)
805e22b2 632{
633 switch (GET_CODE (x))
634 {
635 case REG:
636 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
637 return true;
638 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
639 return true;
640 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
641 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
642 return true;
643 return false;
644
645 case PLUS:
971ba038 646 if (!CONST_INT_P (XEXP (x, 1)))
805e22b2 647 return false;
648 return fixed_base_plus_p (XEXP (x, 0));
649
805e22b2 650 default:
651 return false;
652 }
653}
654
59241190 655/* Dump the expressions in the equivalence class indicated by CLASSP.
656 This function is used only for debugging. */
efabe77f 657void
8ec3a57b 658dump_class (struct table_elt *classp)
59241190 659{
660 struct table_elt *elt;
661
662 fprintf (stderr, "Equivalence chain for ");
663 print_rtl (stderr, classp->exp);
664 fprintf (stderr, ": \n");
cb10db9d 665
59241190 666 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
667 {
668 print_rtl (stderr, elt->exp);
669 fprintf (stderr, "\n");
670 }
671}
672
d27eb4b1 673/* Subroutine of approx_reg_cost; called through for_each_rtx. */
37b8a8d6 674
d27eb4b1 675static int
8ec3a57b 676approx_reg_cost_1 (rtx *xp, void *data)
d27eb4b1 677{
678 rtx x = *xp;
65b198c2 679 int *cost_p = (int *) data;
d27eb4b1 680
8ad4c111 681 if (x && REG_P (x))
88bc3f54 682 {
683 unsigned int regno = REGNO (x);
684
685 if (! CHEAP_REGNO (regno))
686 {
687 if (regno < FIRST_PSEUDO_REGISTER)
688 {
689 if (SMALL_REGISTER_CLASSES)
690 return 1;
691 *cost_p += 2;
692 }
693 else
694 *cost_p += 1;
695 }
696 }
697
d27eb4b1 698 return 0;
699}
700
701/* Return an estimate of the cost of the registers used in an rtx.
702 This is mostly the number of different REG expressions in the rtx;
3fb1e43b 703 however for some exceptions like fixed registers we use a cost of
589ff9e7 704 0. If any other hard register reference occurs, return MAX_COST. */
d27eb4b1 705
706static int
8ec3a57b 707approx_reg_cost (rtx x)
d27eb4b1 708{
d27eb4b1 709 int cost = 0;
589ff9e7 710
88bc3f54 711 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
712 return MAX_COST;
d27eb4b1 713
88bc3f54 714 return cost;
d27eb4b1 715}
716
717/* Return a negative value if an rtx A, whose costs are given by COST_A
718 and REGCOST_A, is more desirable than an rtx B.
719 Return a positive value if A is less desirable, or 0 if the two are
720 equally good. */
721static int
069eea26 722preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
d27eb4b1 723{
e61c498c 724 /* First, get rid of cases involving expressions that are entirely
589ff9e7 725 unwanted. */
726 if (cost_a != cost_b)
727 {
728 if (cost_a == MAX_COST)
729 return 1;
730 if (cost_b == MAX_COST)
731 return -1;
732 }
733
734 /* Avoid extending lifetimes of hardregs. */
735 if (regcost_a != regcost_b)
736 {
737 if (regcost_a == MAX_COST)
738 return 1;
739 if (regcost_b == MAX_COST)
740 return -1;
741 }
742
743 /* Normal operation costs take precedence. */
d27eb4b1 744 if (cost_a != cost_b)
745 return cost_a - cost_b;
589ff9e7 746 /* Only if these are identical consider effects on register pressure. */
d27eb4b1 747 if (regcost_a != regcost_b)
748 return regcost_a - regcost_b;
749 return 0;
750}
751
de164820 752/* Internal function, to compute cost when X is not a register; called
753 from COST macro to keep it simple. */
754
755static int
8ec3a57b 756notreg_cost (rtx x, enum rtx_code outer)
de164820 757{
758 return ((GET_CODE (x) == SUBREG
8ad4c111 759 && REG_P (SUBREG_REG (x))
de164820 760 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
761 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
762 && (GET_MODE_SIZE (GET_MODE (x))
763 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
764 && subreg_lowpart_p (x)
765 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
766 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
d27eb4b1 767 ? 0
f529eb25 768 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
de164820 769}
770
cf495191 771\f
3bd20490 772/* Initialize CSE_REG_INFO_TABLE. */
9c4f3716 773
3bd20490 774static void
775init_cse_reg_info (unsigned int nregs)
776{
777 /* Do we need to grow the table? */
778 if (nregs > cse_reg_info_table_size)
d1264606 779 {
3bd20490 780 unsigned int new_size;
781
782 if (cse_reg_info_table_size < 2048)
d1264606 783 {
3bd20490 784 /* Compute a new size that is a power of 2 and no smaller
785 than the large of NREGS and 64. */
786 new_size = (cse_reg_info_table_size
787 ? cse_reg_info_table_size : 64);
788
789 while (new_size < nregs)
790 new_size *= 2;
d1264606 791 }
792 else
926f1f1f 793 {
3bd20490 794 /* If we need a big table, allocate just enough to hold
795 NREGS registers. */
796 new_size = nregs;
926f1f1f 797 }
9c4f3716 798
3bd20490 799 /* Reallocate the table with NEW_SIZE entries. */
bee2651c 800 if (cse_reg_info_table)
801 free (cse_reg_info_table);
4c36ffe6 802 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
3bd20490 803 cse_reg_info_table_size = new_size;
bee2651c 804 cse_reg_info_table_first_uninitialized = 0;
3bd20490 805 }
806
807 /* Do we have all of the first NREGS entries initialized? */
808 if (cse_reg_info_table_first_uninitialized < nregs)
809 {
810 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
811 unsigned int i;
812
813 /* Put the old timestamp on newly allocated entries so that they
814 will all be considered out of date. We do not touch those
815 entries beyond the first NREGS entries to be nice to the
816 virtual memory. */
817 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
818 cse_reg_info_table[i].timestamp = old_timestamp;
d1264606 819
3bd20490 820 cse_reg_info_table_first_uninitialized = nregs;
d1264606 821 }
3bd20490 822}
823
b5ee2efd 824/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
3bd20490 825
826static void
827get_cse_reg_info_1 (unsigned int regno)
828{
829 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
830 entry will be considered to have been initialized. */
831 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
832
833 /* Initialize the rest of the entry. */
834 cse_reg_info_table[regno].reg_tick = 1;
835 cse_reg_info_table[regno].reg_in_table = -1;
836 cse_reg_info_table[regno].subreg_ticked = -1;
837 cse_reg_info_table[regno].reg_qty = -regno - 1;
838}
839
840/* Find a cse_reg_info entry for REGNO. */
d1264606 841
3bd20490 842static inline struct cse_reg_info *
843get_cse_reg_info (unsigned int regno)
844{
845 struct cse_reg_info *p = &cse_reg_info_table[regno];
846
e02a4f0d 847 /* If this entry has not been initialized, go ahead and initialize
848 it. */
3bd20490 849 if (p->timestamp != cse_reg_info_timestamp)
850 get_cse_reg_info_1 (regno);
d1264606 851
9c4f3716 852 return p;
d1264606 853}
854
752df20e 855/* Clear the hash table and initialize each register with its own quantity,
856 for a new basic block. */
857
858static void
8ec3a57b 859new_basic_block (void)
752df20e 860{
19cb6b50 861 int i;
752df20e 862
1a5bccce 863 next_qty = 0;
752df20e 864
b5ee2efd 865 /* Invalidate cse_reg_info_table. */
3bd20490 866 cse_reg_info_timestamp++;
752df20e 867
3bd20490 868 /* Clear out hash table state for this pass. */
752df20e 869 CLEAR_HARD_REG_SET (hard_regs_in_table);
870
871 /* The per-quantity values used to be initialized here, but it is
872 much faster to initialize each as it is made in `make_new_qty'. */
873
9c4f3716 874 for (i = 0; i < HASH_SIZE; i++)
752df20e 875 {
9c4f3716 876 struct table_elt *first;
877
878 first = table[i];
879 if (first != NULL)
752df20e 880 {
9c4f3716 881 struct table_elt *last = first;
882
883 table[i] = NULL;
884
885 while (last->next_same_hash != NULL)
886 last = last->next_same_hash;
887
888 /* Now relink this hash entire chain into
889 the free element list. */
890
891 last->next_same_hash = free_element_chain;
892 free_element_chain = first;
752df20e 893 }
894 }
895
752df20e 896#ifdef HAVE_cc0
897 prev_insn_cc0 = 0;
898#endif
899}
900
a7f3b1c7 901/* Say that register REG contains a quantity in mode MODE not in any
902 register before and initialize that quantity. */
752df20e 903
904static void
8ec3a57b 905make_new_qty (unsigned int reg, enum machine_mode mode)
752df20e 906{
19cb6b50 907 int q;
908 struct qty_table_elem *ent;
909 struct reg_eqv_elem *eqv;
752df20e 910
cc636d56 911 gcc_assert (next_qty < max_qty);
752df20e 912
d1264606 913 q = REG_QTY (reg) = next_qty++;
a7f3b1c7 914 ent = &qty_table[q];
915 ent->first_reg = reg;
916 ent->last_reg = reg;
917 ent->mode = mode;
918 ent->const_rtx = ent->const_insn = NULL_RTX;
919 ent->comparison_code = UNKNOWN;
920
921 eqv = &reg_eqv_table[reg];
922 eqv->next = eqv->prev = -1;
752df20e 923}
924
925/* Make reg NEW equivalent to reg OLD.
926 OLD is not changing; NEW is. */
927
928static void
d328ebdf 929make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
752df20e 930{
02e7a332 931 unsigned int lastr, firstr;
d328ebdf 932 int q = REG_QTY (old_reg);
02e7a332 933 struct qty_table_elem *ent;
a7f3b1c7 934
935 ent = &qty_table[q];
752df20e 936
937 /* Nothing should become eqv until it has a "non-invalid" qty number. */
d328ebdf 938 gcc_assert (REGNO_QTY_VALID_P (old_reg));
752df20e 939
d328ebdf 940 REG_QTY (new_reg) = q;
a7f3b1c7 941 firstr = ent->first_reg;
942 lastr = ent->last_reg;
752df20e 943
944 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
945 hard regs. Among pseudos, if NEW will live longer than any other reg
946 of the same qty, and that is beyond the current basic block,
947 make it the new canonical replacement for this qty. */
948 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
949 /* Certain fixed registers might be of the class NO_REGS. This means
950 that not only can they not be allocated by the compiler, but
5202ecf2 951 they cannot be used in substitutions or canonicalizations
752df20e 952 either. */
d328ebdf 953 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
954 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
955 || (new_reg >= FIRST_PSEUDO_REGISTER
752df20e 956 && (firstr < FIRST_PSEUDO_REGISTER
d328ebdf 957 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
3072d30e 958 && !bitmap_bit_p (cse_ebb_live_out, firstr))
d328ebdf 959 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
3072d30e 960 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
752df20e 961 {
d328ebdf 962 reg_eqv_table[firstr].prev = new_reg;
963 reg_eqv_table[new_reg].next = firstr;
964 reg_eqv_table[new_reg].prev = -1;
965 ent->first_reg = new_reg;
752df20e 966 }
967 else
968 {
969 /* If NEW is a hard reg (known to be non-fixed), insert at end.
970 Otherwise, insert before any non-fixed hard regs that are at the
971 end. Registers of class NO_REGS cannot be used as an
972 equivalent for anything. */
a7f3b1c7 973 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
752df20e 974 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
d328ebdf 975 && new_reg >= FIRST_PSEUDO_REGISTER)
a7f3b1c7 976 lastr = reg_eqv_table[lastr].prev;
d328ebdf 977 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
a7f3b1c7 978 if (reg_eqv_table[lastr].next >= 0)
d328ebdf 979 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
752df20e 980 else
d328ebdf 981 qty_table[q].last_reg = new_reg;
982 reg_eqv_table[lastr].next = new_reg;
983 reg_eqv_table[new_reg].prev = lastr;
752df20e 984 }
985}
986
987/* Remove REG from its equivalence class. */
988
989static void
8ec3a57b 990delete_reg_equiv (unsigned int reg)
752df20e 991{
19cb6b50 992 struct qty_table_elem *ent;
993 int q = REG_QTY (reg);
994 int p, n;
752df20e 995
7046c09e 996 /* If invalid, do nothing. */
1a5bccce 997 if (! REGNO_QTY_VALID_P (reg))
752df20e 998 return;
999
a7f3b1c7 1000 ent = &qty_table[q];
1001
1002 p = reg_eqv_table[reg].prev;
1003 n = reg_eqv_table[reg].next;
7046c09e 1004
752df20e 1005 if (n != -1)
a7f3b1c7 1006 reg_eqv_table[n].prev = p;
752df20e 1007 else
a7f3b1c7 1008 ent->last_reg = p;
752df20e 1009 if (p != -1)
a7f3b1c7 1010 reg_eqv_table[p].next = n;
752df20e 1011 else
a7f3b1c7 1012 ent->first_reg = n;
752df20e 1013
1a5bccce 1014 REG_QTY (reg) = -reg - 1;
752df20e 1015}
1016
1017/* Remove any invalid expressions from the hash table
1018 that refer to any of the registers contained in expression X.
1019
1020 Make sure that newly inserted references to those registers
1021 as subexpressions will be considered valid.
1022
1023 mention_regs is not called when a register itself
1024 is being stored in the table.
1025
1026 Return 1 if we have done something that may have changed the hash code
1027 of X. */
1028
1029static int
8ec3a57b 1030mention_regs (rtx x)
752df20e 1031{
19cb6b50 1032 enum rtx_code code;
1033 int i, j;
1034 const char *fmt;
1035 int changed = 0;
752df20e 1036
1037 if (x == 0)
c39100fe 1038 return 0;
752df20e 1039
1040 code = GET_CODE (x);
1041 if (code == REG)
1042 {
02e7a332 1043 unsigned int regno = REGNO (x);
a2c6f0b7 1044 unsigned int endregno = END_REGNO (x);
02e7a332 1045 unsigned int i;
752df20e 1046
1047 for (i = regno; i < endregno; i++)
1048 {
d1264606 1049 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
752df20e 1050 remove_invalid_refs (i);
1051
d1264606 1052 REG_IN_TABLE (i) = REG_TICK (i);
126fb012 1053 SUBREG_TICKED (i) = -1;
752df20e 1054 }
1055
1056 return 0;
1057 }
1058
e6860d27 1059 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1060 pseudo if they don't use overlapping words. We handle only pseudos
1061 here for simplicity. */
8ad4c111 1062 if (code == SUBREG && REG_P (SUBREG_REG (x))
e6860d27 1063 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1064 {
02e7a332 1065 unsigned int i = REGNO (SUBREG_REG (x));
e6860d27 1066
d1264606 1067 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
e6860d27 1068 {
126fb012 1069 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1070 the last store to this register really stored into this
1071 subreg, then remove the memory of this subreg.
1072 Otherwise, remove any memory of the entire register and
1073 all its subregs from the table. */
1074 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
70e488ba 1075 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
e6860d27 1076 remove_invalid_refs (i);
1077 else
701e46d0 1078 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
e6860d27 1079 }
1080
d1264606 1081 REG_IN_TABLE (i) = REG_TICK (i);
70e488ba 1082 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
e6860d27 1083 return 0;
1084 }
1085
752df20e 1086 /* If X is a comparison or a COMPARE and either operand is a register
1087 that does not have a quantity, give it one. This is so that a later
1088 call to record_jump_equiv won't cause X to be assigned a different
1089 hash code and not found in the table after that call.
1090
1091 It is not necessary to do this here, since rehash_using_reg can
1092 fix up the table later, but doing this here eliminates the need to
1093 call that expensive function in the most common case where the only
1094 use of the register is in the comparison. */
1095
6720e96c 1096 if (code == COMPARE || COMPARISON_P (x))
752df20e 1097 {
8ad4c111 1098 if (REG_P (XEXP (x, 0))
752df20e 1099 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
4679ade3 1100 if (insert_regs (XEXP (x, 0), NULL, 0))
752df20e 1101 {
1102 rehash_using_reg (XEXP (x, 0));
1103 changed = 1;
1104 }
1105
8ad4c111 1106 if (REG_P (XEXP (x, 1))
752df20e 1107 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
4679ade3 1108 if (insert_regs (XEXP (x, 1), NULL, 0))
752df20e 1109 {
1110 rehash_using_reg (XEXP (x, 1));
1111 changed = 1;
1112 }
1113 }
1114
1115 fmt = GET_RTX_FORMAT (code);
1116 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1117 if (fmt[i] == 'e')
1118 changed |= mention_regs (XEXP (x, i));
1119 else if (fmt[i] == 'E')
1120 for (j = 0; j < XVECLEN (x, i); j++)
1121 changed |= mention_regs (XVECEXP (x, i, j));
1122
1123 return changed;
1124}
1125
1126/* Update the register quantities for inserting X into the hash table
1127 with a value equivalent to CLASSP.
1128 (If the class does not contain a REG, it is irrelevant.)
1129 If MODIFIED is nonzero, X is a destination; it is being modified.
1130 Note that delete_reg_equiv should be called on a register
1131 before insert_regs is done on that register with MODIFIED != 0.
1132
1133 Nonzero value means that elements of reg_qty have changed
1134 so X's hash code may be different. */
1135
1136static int
8ec3a57b 1137insert_regs (rtx x, struct table_elt *classp, int modified)
752df20e 1138{
8ad4c111 1139 if (REG_P (x))
752df20e 1140 {
02e7a332 1141 unsigned int regno = REGNO (x);
1142 int qty_valid;
752df20e 1143
0aee3bb1 1144 /* If REGNO is in the equivalence table already but is of the
1145 wrong mode for that equivalence, don't do anything here. */
1146
a7f3b1c7 1147 qty_valid = REGNO_QTY_VALID_P (regno);
1148 if (qty_valid)
1149 {
1150 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
0aee3bb1 1151
a7f3b1c7 1152 if (ent->mode != GET_MODE (x))
1153 return 0;
1154 }
1155
1156 if (modified || ! qty_valid)
752df20e 1157 {
1158 if (classp)
1159 for (classp = classp->first_same_value;
1160 classp != 0;
1161 classp = classp->next_same_value)
8ad4c111 1162 if (REG_P (classp->exp)
752df20e 1163 && GET_MODE (classp->exp) == GET_MODE (x))
1164 {
412c63b0 1165 unsigned c_regno = REGNO (classp->exp);
1166
1167 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1168
1169 /* Suppose that 5 is hard reg and 100 and 101 are
1170 pseudos. Consider
1171
1172 (set (reg:si 100) (reg:si 5))
1173 (set (reg:si 5) (reg:si 100))
1174 (set (reg:di 101) (reg:di 5))
1175
1176 We would now set REG_QTY (101) = REG_QTY (5), but the
1177 entry for 5 is in SImode. When we use this later in
1178 copy propagation, we get the register in wrong mode. */
1179 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1180 continue;
1181
1182 make_regs_eqv (regno, c_regno);
752df20e 1183 return 1;
1184 }
1185
6c1128fe 1186 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1187 than REG_IN_TABLE to find out if there was only a single preceding
1188 invalidation - for the SUBREG - or another one, which would be
1189 for the full register. However, if we find here that REG_TICK
1190 indicates that the register is invalid, it means that it has
1191 been invalidated in a separate operation. The SUBREG might be used
1192 now (then this is a recursive call), or we might use the full REG
1193 now and a SUBREG of it later. So bump up REG_TICK so that
1194 mention_regs will do the right thing. */
1195 if (! modified
1196 && REG_IN_TABLE (regno) >= 0
1197 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1198 REG_TICK (regno)++;
a7f3b1c7 1199 make_new_qty (regno, GET_MODE (x));
752df20e 1200 return 1;
1201 }
89bbb48f 1202
1203 return 0;
752df20e 1204 }
50cf1c21 1205
1206 /* If X is a SUBREG, we will likely be inserting the inner register in the
1207 table. If that register doesn't have an assigned quantity number at
1208 this point but does later, the insertion that we will be doing now will
1209 not be accessible because its hash code will have changed. So assign
1210 a quantity number now. */
1211
8ad4c111 1212 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
50cf1c21 1213 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1214 {
4679ade3 1215 insert_regs (SUBREG_REG (x), NULL, 0);
e6860d27 1216 mention_regs (x);
50cf1c21 1217 return 1;
1218 }
752df20e 1219 else
1220 return mention_regs (x);
1221}
1222\f
01c8e4c9 1223
1224/* Compute upper and lower anchors for CST. Also compute the offset of CST
1225 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1226 CST is equal to an anchor. */
1227
1228static bool
1229compute_const_anchors (rtx cst,
1230 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1231 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1232{
1233 HOST_WIDE_INT n = INTVAL (cst);
1234
1235 *lower_base = n & ~(targetm.const_anchor - 1);
1236 if (*lower_base == n)
1237 return false;
1238
1239 *upper_base =
1240 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1241 *upper_offs = n - *upper_base;
1242 *lower_offs = n - *lower_base;
1243 return true;
1244}
1245
1246/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1247
1248static void
1249insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1250 enum machine_mode mode)
1251{
1252 struct table_elt *elt;
1253 unsigned hash;
1254 rtx anchor_exp;
1255 rtx exp;
1256
1257 anchor_exp = GEN_INT (anchor);
1258 hash = HASH (anchor_exp, mode);
1259 elt = lookup (anchor_exp, hash, mode);
1260 if (!elt)
1261 elt = insert (anchor_exp, NULL, hash, mode);
1262
1263 exp = plus_constant (reg, offs);
1264 /* REG has just been inserted and the hash codes recomputed. */
1265 mention_regs (exp);
1266 hash = HASH (exp, mode);
1267
1268 /* Use the cost of the register rather than the whole expression. When
1269 looking up constant anchors we will further offset the corresponding
1270 expression therefore it does not make sense to prefer REGs over
1271 reg-immediate additions. Prefer instead the oldest expression. Also
1272 don't prefer pseudos over hard regs so that we derive constants in
1273 argument registers from other argument registers rather than from the
1274 original pseudo that was used to synthesize the constant. */
1275 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1276}
1277
1278/* The constant CST is equivalent to the register REG. Create
1279 equivalences between the two anchors of CST and the corresponding
1280 register-offset expressions using REG. */
1281
1282static void
1283insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1284{
1285 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1286
1287 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1288 &upper_base, &upper_offs))
1289 return;
1290
1291 /* Ignore anchors of value 0. Constants accessible from zero are
1292 simple. */
1293 if (lower_base != 0)
1294 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1295
1296 if (upper_base != 0)
1297 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1298}
1299
1300/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1301 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1302 valid expression. Return the cheapest and oldest of such expressions. In
1303 *OLD, return how old the resulting expression is compared to the other
1304 equivalent expressions. */
1305
1306static rtx
1307find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1308 unsigned *old)
1309{
1310 struct table_elt *elt;
1311 unsigned idx;
1312 struct table_elt *match_elt;
1313 rtx match;
1314
1315 /* Find the cheapest and *oldest* expression to maximize the chance of
1316 reusing the same pseudo. */
1317
1318 match_elt = NULL;
1319 match = NULL_RTX;
1320 for (elt = anchor_elt->first_same_value, idx = 0;
1321 elt;
1322 elt = elt->next_same_value, idx++)
1323 {
1324 if (match_elt && CHEAPER (match_elt, elt))
1325 return match;
1326
1327 if (REG_P (elt->exp)
1328 || (GET_CODE (elt->exp) == PLUS
1329 && REG_P (XEXP (elt->exp, 0))
1330 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1331 {
1332 rtx x;
1333
1334 /* Ignore expressions that are no longer valid. */
1335 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1336 continue;
1337
1338 x = plus_constant (elt->exp, offs);
1339 if (REG_P (x)
1340 || (GET_CODE (x) == PLUS
1341 && IN_RANGE (INTVAL (XEXP (x, 1)),
1342 -targetm.const_anchor,
1343 targetm.const_anchor - 1)))
1344 {
1345 match = x;
1346 match_elt = elt;
1347 *old = idx;
1348 }
1349 }
1350 }
1351
1352 return match;
1353}
1354
1355/* Try to express the constant SRC_CONST using a register+offset expression
1356 derived from a constant anchor. Return it if successful or NULL_RTX,
1357 otherwise. */
1358
1359static rtx
1360try_const_anchors (rtx src_const, enum machine_mode mode)
1361{
1362 struct table_elt *lower_elt, *upper_elt;
1363 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1364 rtx lower_anchor_rtx, upper_anchor_rtx;
1365 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1366 unsigned lower_old, upper_old;
1367
1368 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1369 &upper_base, &upper_offs))
1370 return NULL_RTX;
1371
1372 lower_anchor_rtx = GEN_INT (lower_base);
1373 upper_anchor_rtx = GEN_INT (upper_base);
1374 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1375 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1376
1377 if (lower_elt)
1378 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1379 if (upper_elt)
1380 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1381
1382 if (!lower_exp)
1383 return upper_exp;
1384 if (!upper_exp)
1385 return lower_exp;
1386
1387 /* Return the older expression. */
1388 return (upper_old > lower_old ? upper_exp : lower_exp);
1389}
1390\f
752df20e 1391/* Look in or update the hash table. */
1392
752df20e 1393/* Remove table element ELT from use in the table.
1394 HASH is its hash code, made using the HASH macro.
1395 It's an argument because often that is known in advance
1396 and we save much time not recomputing it. */
1397
1398static void
8ec3a57b 1399remove_from_table (struct table_elt *elt, unsigned int hash)
752df20e 1400{
1401 if (elt == 0)
1402 return;
1403
1404 /* Mark this element as removed. See cse_insn. */
1405 elt->first_same_value = 0;
1406
1407 /* Remove the table element from its equivalence class. */
cb10db9d 1408
752df20e 1409 {
19cb6b50 1410 struct table_elt *prev = elt->prev_same_value;
1411 struct table_elt *next = elt->next_same_value;
752df20e 1412
cb10db9d 1413 if (next)
1414 next->prev_same_value = prev;
752df20e 1415
1416 if (prev)
1417 prev->next_same_value = next;
1418 else
1419 {
19cb6b50 1420 struct table_elt *newfirst = next;
752df20e 1421 while (next)
1422 {
1423 next->first_same_value = newfirst;
1424 next = next->next_same_value;
1425 }
1426 }
1427 }
1428
1429 /* Remove the table element from its hash bucket. */
1430
1431 {
19cb6b50 1432 struct table_elt *prev = elt->prev_same_hash;
1433 struct table_elt *next = elt->next_same_hash;
752df20e 1434
cb10db9d 1435 if (next)
1436 next->prev_same_hash = prev;
752df20e 1437
1438 if (prev)
1439 prev->next_same_hash = next;
1440 else if (table[hash] == elt)
1441 table[hash] = next;
1442 else
1443 {
1444 /* This entry is not in the proper hash bucket. This can happen
1445 when two classes were merged by `merge_equiv_classes'. Search
1446 for the hash bucket that it heads. This happens only very
1447 rarely, so the cost is acceptable. */
9c4f3716 1448 for (hash = 0; hash < HASH_SIZE; hash++)
752df20e 1449 if (table[hash] == elt)
1450 table[hash] = next;
1451 }
1452 }
1453
1454 /* Remove the table element from its related-value circular chain. */
1455
1456 if (elt->related_value != 0 && elt->related_value != elt)
1457 {
19cb6b50 1458 struct table_elt *p = elt->related_value;
02e7a332 1459
752df20e 1460 while (p->related_value != elt)
1461 p = p->related_value;
1462 p->related_value = elt->related_value;
1463 if (p->related_value == p)
1464 p->related_value = 0;
1465 }
1466
9c4f3716 1467 /* Now add it to the free element chain. */
1468 elt->next_same_hash = free_element_chain;
1469 free_element_chain = elt;
752df20e 1470}
1471
d2c970fe 1472/* Same as above, but X is a pseudo-register. */
1473
1474static void
1475remove_pseudo_from_table (rtx x, unsigned int hash)
1476{
1477 struct table_elt *elt;
1478
1479 /* Because a pseudo-register can be referenced in more than one
1480 mode, we might have to remove more than one table entry. */
1481 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1482 remove_from_table (elt, hash);
1483}
1484
752df20e 1485/* Look up X in the hash table and return its table element,
1486 or 0 if X is not in the table.
1487
1488 MODE is the machine-mode of X, or if X is an integer constant
1489 with VOIDmode then MODE is the mode with which X will be used.
1490
1491 Here we are satisfied to find an expression whose tree structure
1492 looks like X. */
1493
1494static struct table_elt *
8ec3a57b 1495lookup (rtx x, unsigned int hash, enum machine_mode mode)
752df20e 1496{
19cb6b50 1497 struct table_elt *p;
752df20e 1498
1499 for (p = table[hash]; p; p = p->next_same_hash)
8ad4c111 1500 if (mode == p->mode && ((x == p->exp && REG_P (x))
78d140c9 1501 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
752df20e 1502 return p;
1503
1504 return 0;
1505}
1506
1507/* Like `lookup' but don't care whether the table element uses invalid regs.
1508 Also ignore discrepancies in the machine mode of a register. */
1509
1510static struct table_elt *
8ec3a57b 1511lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
752df20e 1512{
19cb6b50 1513 struct table_elt *p;
752df20e 1514
8ad4c111 1515 if (REG_P (x))
752df20e 1516 {
02e7a332 1517 unsigned int regno = REGNO (x);
1518
752df20e 1519 /* Don't check the machine mode when comparing registers;
1520 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1521 for (p = table[hash]; p; p = p->next_same_hash)
8ad4c111 1522 if (REG_P (p->exp)
752df20e 1523 && REGNO (p->exp) == regno)
1524 return p;
1525 }
1526 else
1527 {
1528 for (p = table[hash]; p; p = p->next_same_hash)
78d140c9 1529 if (mode == p->mode
1530 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
752df20e 1531 return p;
1532 }
1533
1534 return 0;
1535}
1536
1537/* Look for an expression equivalent to X and with code CODE.
1538 If one is found, return that expression. */
1539
1540static rtx
8ec3a57b 1541lookup_as_function (rtx x, enum rtx_code code)
752df20e 1542{
19cb6b50 1543 struct table_elt *p
78d140c9 1544 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
02e7a332 1545
752df20e 1546 if (p == 0)
1547 return 0;
1548
1549 for (p = p->first_same_value; p; p = p->next_same_value)
02e7a332 1550 if (GET_CODE (p->exp) == code
1551 /* Make sure this is a valid entry in the table. */
78d140c9 1552 && exp_equiv_p (p->exp, p->exp, 1, false))
02e7a332 1553 return p->exp;
cb10db9d 1554
752df20e 1555 return 0;
1556}
1557
01c8e4c9 1558/* Insert X in the hash table, assuming HASH is its hash code and
1559 CLASSP is an element of the class it should go in (or 0 if a new
1560 class should be made). COST is the code of X and reg_cost is the
1561 cost of registers in X. It is inserted at the proper position to
1562 keep the class in the order cheapest first.
752df20e 1563
1564 MODE is the machine-mode of X, or if X is an integer constant
1565 with VOIDmode then MODE is the mode with which X will be used.
1566
1567 For elements of equal cheapness, the most recent one
1568 goes in front, except that the first element in the list
1569 remains first unless a cheaper element is added. The order of
1570 pseudo-registers does not matter, as canon_reg will be called to
5202ecf2 1571 find the cheapest when a register is retrieved from the table.
752df20e 1572
1573 The in_memory field in the hash table element is set to 0.
1574 The caller must set it nonzero if appropriate.
1575
1576 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1577 and if insert_regs returns a nonzero value
1578 you must then recompute its hash code before calling here.
1579
1580 If necessary, update table showing constant values of quantities. */
1581
752df20e 1582static struct table_elt *
01c8e4c9 1583insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1584 enum machine_mode mode, int cost, int reg_cost)
752df20e 1585{
19cb6b50 1586 struct table_elt *elt;
752df20e 1587
1588 /* If X is a register and we haven't made a quantity for it,
1589 something is wrong. */
cc636d56 1590 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
752df20e 1591
1592 /* If X is a hard register, show it is being put in the table. */
8ad4c111 1593 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
a2c6f0b7 1594 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
752df20e 1595
752df20e 1596 /* Put an element for X into the right hash bucket. */
1597
9c4f3716 1598 elt = free_element_chain;
1599 if (elt)
02e7a332 1600 free_element_chain = elt->next_same_hash;
9c4f3716 1601 else
4c36ffe6 1602 elt = XNEW (struct table_elt);
9c4f3716 1603
752df20e 1604 elt->exp = x;
7cfb9bcf 1605 elt->canon_exp = NULL_RTX;
01c8e4c9 1606 elt->cost = cost;
1607 elt->regcost = reg_cost;
752df20e 1608 elt->next_same_value = 0;
1609 elt->prev_same_value = 0;
1610 elt->next_same_hash = table[hash];
1611 elt->prev_same_hash = 0;
1612 elt->related_value = 0;
1613 elt->in_memory = 0;
1614 elt->mode = mode;
b04fab2a 1615 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
752df20e 1616
1617 if (table[hash])
1618 table[hash]->prev_same_hash = elt;
1619 table[hash] = elt;
1620
1621 /* Put it into the proper value-class. */
1622 if (classp)
1623 {
1624 classp = classp->first_same_value;
1625 if (CHEAPER (elt, classp))
2358393e 1626 /* Insert at the head of the class. */
752df20e 1627 {
19cb6b50 1628 struct table_elt *p;
752df20e 1629 elt->next_same_value = classp;
1630 classp->prev_same_value = elt;
1631 elt->first_same_value = elt;
1632
1633 for (p = classp; p; p = p->next_same_value)
1634 p->first_same_value = elt;
1635 }
1636 else
1637 {
1638 /* Insert not at head of the class. */
1639 /* Put it after the last element cheaper than X. */
19cb6b50 1640 struct table_elt *p, *next;
02e7a332 1641
752df20e 1642 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1643 p = next);
02e7a332 1644
752df20e 1645 /* Put it after P and before NEXT. */
1646 elt->next_same_value = next;
1647 if (next)
1648 next->prev_same_value = elt;
02e7a332 1649
752df20e 1650 elt->prev_same_value = p;
1651 p->next_same_value = elt;
1652 elt->first_same_value = classp;
1653 }
1654 }
1655 else
1656 elt->first_same_value = elt;
1657
1658 /* If this is a constant being set equivalent to a register or a register
1659 being set equivalent to a constant, note the constant equivalence.
1660
1661 If this is a constant, it cannot be equivalent to a different constant,
1662 and a constant is the only thing that can be cheaper than a register. So
1663 we know the register is the head of the class (before the constant was
1664 inserted).
1665
1666 If this is a register that is not already known equivalent to a
1667 constant, we must check the entire class.
1668
1669 If this is a register that is already known equivalent to an insn,
a7f3b1c7 1670 update the qtys `const_insn' to show that `this_insn' is the latest
752df20e 1671 insn making that quantity equivalent to the constant. */
1672
8ad4c111 1673 if (elt->is_const && classp && REG_P (classp->exp)
1674 && !REG_P (x))
752df20e 1675 {
a7f3b1c7 1676 int exp_q = REG_QTY (REGNO (classp->exp));
1677 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1678
316f48ea 1679 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
a7f3b1c7 1680 exp_ent->const_insn = this_insn;
752df20e 1681 }
1682
8ad4c111 1683 else if (REG_P (x)
a7f3b1c7 1684 && classp
1685 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
67123c3e 1686 && ! elt->is_const)
752df20e 1687 {
19cb6b50 1688 struct table_elt *p;
752df20e 1689
1690 for (p = classp; p != 0; p = p->next_same_value)
1691 {
8ad4c111 1692 if (p->is_const && !REG_P (p->exp))
752df20e 1693 {
a7f3b1c7 1694 int x_q = REG_QTY (REGNO (x));
1695 struct qty_table_elem *x_ent = &qty_table[x_q];
1696
02e7a332 1697 x_ent->const_rtx
316f48ea 1698 = gen_lowpart (GET_MODE (x), p->exp);
a7f3b1c7 1699 x_ent->const_insn = this_insn;
752df20e 1700 break;
1701 }
1702 }
1703 }
1704
8ad4c111 1705 else if (REG_P (x)
a7f3b1c7 1706 && qty_table[REG_QTY (REGNO (x))].const_rtx
1707 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1708 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
752df20e 1709
1710 /* If this is a constant with symbolic value,
1711 and it has a term with an explicit integer value,
1712 link it up with related expressions. */
1713 if (GET_CODE (x) == CONST)
1714 {
1715 rtx subexp = get_related_value (x);
952bc06d 1716 unsigned subhash;
752df20e 1717 struct table_elt *subelt, *subelt_prev;
1718
1719 if (subexp != 0)
1720 {
1721 /* Get the integer-free subexpression in the hash table. */
78d140c9 1722 subhash = SAFE_HASH (subexp, mode);
752df20e 1723 subelt = lookup (subexp, subhash, mode);
1724 if (subelt == 0)
4679ade3 1725 subelt = insert (subexp, NULL, subhash, mode);
752df20e 1726 /* Initialize SUBELT's circular chain if it has none. */
1727 if (subelt->related_value == 0)
1728 subelt->related_value = subelt;
1729 /* Find the element in the circular chain that precedes SUBELT. */
1730 subelt_prev = subelt;
1731 while (subelt_prev->related_value != subelt)
1732 subelt_prev = subelt_prev->related_value;
1733 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1734 This way the element that follows SUBELT is the oldest one. */
1735 elt->related_value = subelt_prev->related_value;
1736 subelt_prev->related_value = elt;
1737 }
1738 }
1739
1740 return elt;
1741}
01c8e4c9 1742
1743/* Wrap insert_with_costs by passing the default costs. */
1744
1745static struct table_elt *
1746insert (rtx x, struct table_elt *classp, unsigned int hash,
1747 enum machine_mode mode)
1748{
1749 return
1750 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1751}
1752
752df20e 1753\f
1754/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1755 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1756 the two classes equivalent.
1757
1758 CLASS1 will be the surviving class; CLASS2 should not be used after this
1759 call.
1760
1761 Any invalid entries in CLASS2 will not be copied. */
1762
1763static void
8ec3a57b 1764merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
752df20e 1765{
d328ebdf 1766 struct table_elt *elt, *next, *new_elt;
752df20e 1767
1768 /* Ensure we start with the head of the classes. */
1769 class1 = class1->first_same_value;
1770 class2 = class2->first_same_value;
1771
1772 /* If they were already equal, forget it. */
1773 if (class1 == class2)
1774 return;
1775
1776 for (elt = class2; elt; elt = next)
1777 {
02e7a332 1778 unsigned int hash;
752df20e 1779 rtx exp = elt->exp;
1780 enum machine_mode mode = elt->mode;
1781
1782 next = elt->next_same_value;
1783
1784 /* Remove old entry, make a new one in CLASS1's class.
1785 Don't do this for invalid entries as we cannot find their
a92771b8 1786 hash code (it also isn't necessary). */
78d140c9 1787 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
752df20e 1788 {
b57e33a4 1789 bool need_rehash = false;
1790
752df20e 1791 hash_arg_in_memory = 0;
752df20e 1792 hash = HASH (exp, mode);
cb10db9d 1793
8ad4c111 1794 if (REG_P (exp))
b57e33a4 1795 {
1a5bccce 1796 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
b57e33a4 1797 delete_reg_equiv (REGNO (exp));
1798 }
cb10db9d 1799
d2c970fe 1800 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1801 remove_pseudo_from_table (exp, hash);
1802 else
1803 remove_from_table (elt, hash);
752df20e 1804
b57e33a4 1805 if (insert_regs (exp, class1, 0) || need_rehash)
1b033cc3 1806 {
1807 rehash_using_reg (exp);
1808 hash = HASH (exp, mode);
1809 }
d328ebdf 1810 new_elt = insert (exp, class1, hash, mode);
1811 new_elt->in_memory = hash_arg_in_memory;
752df20e 1812 }
1813 }
1814}
1815\f
53d90e4e 1816/* Flush the entire hash table. */
1817
1818static void
8ec3a57b 1819flush_hash_table (void)
53d90e4e 1820{
1821 int i;
1822 struct table_elt *p;
1823
9c4f3716 1824 for (i = 0; i < HASH_SIZE; i++)
53d90e4e 1825 for (p = table[i]; p; p = table[i])
1826 {
1827 /* Note that invalidate can remove elements
1828 after P in the current hash chain. */
8ad4c111 1829 if (REG_P (p->exp))
4c958a22 1830 invalidate (p->exp, VOIDmode);
53d90e4e 1831 else
1832 remove_from_table (p, i);
1833 }
1834}
155b05dc 1835\f
02b0feeb 1836/* Function called for each rtx to check whether true dependence exist. */
1837struct check_dependence_data
1838{
1839 enum machine_mode mode;
1840 rtx exp;
56bbdce4 1841 rtx addr;
02b0feeb 1842};
37b8a8d6 1843
02b0feeb 1844static int
8ec3a57b 1845check_dependence (rtx *x, void *data)
02b0feeb 1846{
1847 struct check_dependence_data *d = (struct check_dependence_data *) data;
e16ceb8e 1848 if (*x && MEM_P (*x))
82d2c88b 1849 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX,
56bbdce4 1850 cse_rtx_varies_p);
02b0feeb 1851 else
1852 return 0;
1853}
1854\f
155b05dc 1855/* Remove from the hash table, or mark as invalid, all expressions whose
1856 values could be altered by storing in X. X is a register, a subreg, or
1857 a memory reference with nonvarying address (because, when a memory
1858 reference with a varying address is stored in, all memory references are
1859 removed by invalidate_memory so specific invalidation is superfluous).
1860 FULL_MODE, if not VOIDmode, indicates that this much should be
1861 invalidated instead of just the amount indicated by the mode of X. This
1862 is only used for bitfield stores into memory.
1863
1864 A nonvarying address may be just a register or just a symbol reference,
1865 or it may be either of those plus a numeric offset. */
752df20e 1866
1867static void
8ec3a57b 1868invalidate (rtx x, enum machine_mode full_mode)
752df20e 1869{
19cb6b50 1870 int i;
1871 struct table_elt *p;
56bbdce4 1872 rtx addr;
752df20e 1873
155b05dc 1874 switch (GET_CODE (x))
752df20e 1875 {
155b05dc 1876 case REG:
1877 {
1878 /* If X is a register, dependencies on its contents are recorded
1879 through the qty number mechanism. Just change the qty number of
1880 the register, mark it as invalid for expressions that refer to it,
1881 and remove it itself. */
02e7a332 1882 unsigned int regno = REGNO (x);
1883 unsigned int hash = HASH (x, GET_MODE (x));
752df20e 1884
155b05dc 1885 /* Remove REGNO from any quantity list it might be on and indicate
1886 that its value might have changed. If it is a pseudo, remove its
1887 entry from the hash table.
752df20e 1888
155b05dc 1889 For a hard register, we do the first two actions above for any
1890 additional hard registers corresponding to X. Then, if any of these
1891 registers are in the table, we must remove any REG entries that
1892 overlap these registers. */
752df20e 1893
155b05dc 1894 delete_reg_equiv (regno);
1895 REG_TICK (regno)++;
126fb012 1896 SUBREG_TICKED (regno) = -1;
f356ea3f 1897
155b05dc 1898 if (regno >= FIRST_PSEUDO_REGISTER)
d2c970fe 1899 remove_pseudo_from_table (x, hash);
155b05dc 1900 else
1901 {
1902 HOST_WIDE_INT in_table
1903 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
a2c6f0b7 1904 unsigned int endregno = END_HARD_REGNO (x);
02e7a332 1905 unsigned int tregno, tendregno, rn;
19cb6b50 1906 struct table_elt *p, *next;
752df20e 1907
155b05dc 1908 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
752df20e 1909
02e7a332 1910 for (rn = regno + 1; rn < endregno; rn++)
155b05dc 1911 {
02e7a332 1912 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1913 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1914 delete_reg_equiv (rn);
1915 REG_TICK (rn)++;
126fb012 1916 SUBREG_TICKED (rn) = -1;
155b05dc 1917 }
752df20e 1918
155b05dc 1919 if (in_table)
9c4f3716 1920 for (hash = 0; hash < HASH_SIZE; hash++)
155b05dc 1921 for (p = table[hash]; p; p = next)
1922 {
1923 next = p->next_same_hash;
752df20e 1924
8ad4c111 1925 if (!REG_P (p->exp)
cb10db9d 1926 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1927 continue;
1928
155b05dc 1929 tregno = REGNO (p->exp);
a2c6f0b7 1930 tendregno = END_HARD_REGNO (p->exp);
155b05dc 1931 if (tendregno > regno && tregno < endregno)
1932 remove_from_table (p, hash);
1933 }
1934 }
1935 }
752df20e 1936 return;
752df20e 1937
155b05dc 1938 case SUBREG:
fdb25961 1939 invalidate (SUBREG_REG (x), VOIDmode);
752df20e 1940 return;
6ede8018 1941
155b05dc 1942 case PARALLEL:
cb10db9d 1943 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
6ede8018 1944 invalidate (XVECEXP (x, 0, i), VOIDmode);
1945 return;
6ede8018 1946
155b05dc 1947 case EXPR_LIST:
1948 /* This is part of a disjoint return value; extract the location in
1949 question ignoring the offset. */
6ede8018 1950 invalidate (XEXP (x, 0), VOIDmode);
1951 return;
752df20e 1952
155b05dc 1953 case MEM:
56bbdce4 1954 addr = canon_rtx (get_addr (XEXP (x, 0)));
7cfb9bcf 1955 /* Calculate the canonical version of X here so that
1956 true_dependence doesn't generate new RTL for X on each call. */
1957 x = canon_rtx (x);
1958
155b05dc 1959 /* Remove all hash table elements that refer to overlapping pieces of
1960 memory. */
1961 if (full_mode == VOIDmode)
1962 full_mode = GET_MODE (x);
fdb25961 1963
9c4f3716 1964 for (i = 0; i < HASH_SIZE; i++)
752df20e 1965 {
19cb6b50 1966 struct table_elt *next;
155b05dc 1967
1968 for (p = table[i]; p; p = next)
1969 {
1970 next = p->next_same_hash;
7cfb9bcf 1971 if (p->in_memory)
1972 {
02b0feeb 1973 struct check_dependence_data d;
1974
1975 /* Just canonicalize the expression once;
1976 otherwise each time we call invalidate
1977 true_dependence will canonicalize the
1978 expression again. */
1979 if (!p->canon_exp)
1980 p->canon_exp = canon_rtx (p->exp);
1981 d.exp = x;
56bbdce4 1982 d.addr = addr;
02b0feeb 1983 d.mode = full_mode;
1984 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
7cfb9bcf 1985 remove_from_table (p, i);
7cfb9bcf 1986 }
155b05dc 1987 }
752df20e 1988 }
155b05dc 1989 return;
1990
1991 default:
cc636d56 1992 gcc_unreachable ();
752df20e 1993 }
1994}
155b05dc 1995\f
752df20e 1996/* Remove all expressions that refer to register REGNO,
1997 since they are already invalid, and we are about to
1998 mark that register valid again and don't want the old
1999 expressions to reappear as valid. */
2000
2001static void
8ec3a57b 2002remove_invalid_refs (unsigned int regno)
752df20e 2003{
02e7a332 2004 unsigned int i;
2005 struct table_elt *p, *next;
752df20e 2006
9c4f3716 2007 for (i = 0; i < HASH_SIZE; i++)
752df20e 2008 for (p = table[i]; p; p = next)
2009 {
2010 next = p->next_same_hash;
8ad4c111 2011 if (!REG_P (p->exp)
d4c5e26d 2012 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
752df20e 2013 remove_from_table (p, i);
2014 }
2015}
e6860d27 2016
701e46d0 2017/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2018 and mode MODE. */
e6860d27 2019static void
8ec3a57b 2020remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2021 enum machine_mode mode)
e6860d27 2022{
02e7a332 2023 unsigned int i;
2024 struct table_elt *p, *next;
701e46d0 2025 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
e6860d27 2026
9c4f3716 2027 for (i = 0; i < HASH_SIZE; i++)
e6860d27 2028 for (p = table[i]; p; p = next)
2029 {
701e46d0 2030 rtx exp = p->exp;
e6860d27 2031 next = p->next_same_hash;
cb10db9d 2032
8ad4c111 2033 if (!REG_P (exp)
e6860d27 2034 && (GET_CODE (exp) != SUBREG
8ad4c111 2035 || !REG_P (SUBREG_REG (exp))
e6860d27 2036 || REGNO (SUBREG_REG (exp)) != regno
701e46d0 2037 || (((SUBREG_BYTE (exp)
2038 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2039 && SUBREG_BYTE (exp) <= end))
d4c5e26d 2040 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
e6860d27 2041 remove_from_table (p, i);
2042 }
2043}
752df20e 2044\f
2045/* Recompute the hash codes of any valid entries in the hash table that
2046 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2047
2048 This is called when we make a jump equivalence. */
2049
2050static void
8ec3a57b 2051rehash_using_reg (rtx x)
752df20e 2052{
3c1d7436 2053 unsigned int i;
752df20e 2054 struct table_elt *p, *next;
952bc06d 2055 unsigned hash;
752df20e 2056
2057 if (GET_CODE (x) == SUBREG)
2058 x = SUBREG_REG (x);
2059
2060 /* If X is not a register or if the register is known not to be in any
2061 valid entries in the table, we have no work to do. */
2062
8ad4c111 2063 if (!REG_P (x)
d1264606 2064 || REG_IN_TABLE (REGNO (x)) < 0
2065 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
752df20e 2066 return;
2067
2068 /* Scan all hash chains looking for valid entries that mention X.
b57e33a4 2069 If we find one and it is in the wrong hash chain, move it. */
752df20e 2070
9c4f3716 2071 for (i = 0; i < HASH_SIZE; i++)
752df20e 2072 for (p = table[i]; p; p = next)
2073 {
2074 next = p->next_same_hash;
b57e33a4 2075 if (reg_mentioned_p (x, p->exp)
78d140c9 2076 && exp_equiv_p (p->exp, p->exp, 1, false)
2077 && i != (hash = SAFE_HASH (p->exp, p->mode)))
752df20e 2078 {
2079 if (p->next_same_hash)
2080 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2081
2082 if (p->prev_same_hash)
2083 p->prev_same_hash->next_same_hash = p->next_same_hash;
2084 else
2085 table[i] = p->next_same_hash;
2086
2087 p->next_same_hash = table[hash];
2088 p->prev_same_hash = 0;
2089 if (table[hash])
2090 table[hash]->prev_same_hash = p;
2091 table[hash] = p;
2092 }
2093 }
2094}
2095\f
752df20e 2096/* Remove from the hash table any expression that is a call-clobbered
2097 register. Also update their TICK values. */
2098
2099static void
8ec3a57b 2100invalidate_for_call (void)
752df20e 2101{
02e7a332 2102 unsigned int regno, endregno;
2103 unsigned int i;
952bc06d 2104 unsigned hash;
752df20e 2105 struct table_elt *p, *next;
2106 int in_table = 0;
2107
2108 /* Go through all the hard registers. For each that is clobbered in
2109 a CALL_INSN, remove the register from quantity chains and update
2110 reg_tick if defined. Also see if any of these registers is currently
2111 in the table. */
2112
2113 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2114 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2115 {
2116 delete_reg_equiv (regno);
d1264606 2117 if (REG_TICK (regno) >= 0)
126fb012 2118 {
2119 REG_TICK (regno)++;
2120 SUBREG_TICKED (regno) = -1;
2121 }
752df20e 2122
3ee3bf98 2123 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
752df20e 2124 }
2125
2126 /* In the case where we have no call-clobbered hard registers in the
2127 table, we are done. Otherwise, scan the table and remove any
2128 entry that overlaps a call-clobbered register. */
2129
2130 if (in_table)
9c4f3716 2131 for (hash = 0; hash < HASH_SIZE; hash++)
752df20e 2132 for (p = table[hash]; p; p = next)
2133 {
2134 next = p->next_same_hash;
2135
8ad4c111 2136 if (!REG_P (p->exp)
752df20e 2137 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2138 continue;
2139
2140 regno = REGNO (p->exp);
a2c6f0b7 2141 endregno = END_HARD_REGNO (p->exp);
752df20e 2142
2143 for (i = regno; i < endregno; i++)
2144 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2145 {
2146 remove_from_table (p, hash);
2147 break;
2148 }
2149 }
2150}
2151\f
2152/* Given an expression X of type CONST,
2153 and ELT which is its table entry (or 0 if it
2154 is not in the hash table),
2155 return an alternate expression for X as a register plus integer.
2156 If none can be found, return 0. */
2157
2158static rtx
8ec3a57b 2159use_related_value (rtx x, struct table_elt *elt)
752df20e 2160{
19cb6b50 2161 struct table_elt *relt = 0;
2162 struct table_elt *p, *q;
b572011e 2163 HOST_WIDE_INT offset;
752df20e 2164
2165 /* First, is there anything related known?
2166 If we have a table element, we can tell from that.
2167 Otherwise, must look it up. */
2168
2169 if (elt != 0 && elt->related_value != 0)
2170 relt = elt;
2171 else if (elt == 0 && GET_CODE (x) == CONST)
2172 {
2173 rtx subexp = get_related_value (x);
2174 if (subexp != 0)
2175 relt = lookup (subexp,
78d140c9 2176 SAFE_HASH (subexp, GET_MODE (subexp)),
752df20e 2177 GET_MODE (subexp));
2178 }
2179
2180 if (relt == 0)
2181 return 0;
2182
2183 /* Search all related table entries for one that has an
2184 equivalent register. */
2185
2186 p = relt;
2187 while (1)
2188 {
2189 /* This loop is strange in that it is executed in two different cases.
2190 The first is when X is already in the table. Then it is searching
2191 the RELATED_VALUE list of X's class (RELT). The second case is when
2192 X is not in the table. Then RELT points to a class for the related
2193 value.
2194
2195 Ensure that, whatever case we are in, that we ignore classes that have
2196 the same value as X. */
2197
2198 if (rtx_equal_p (x, p->exp))
2199 q = 0;
2200 else
2201 for (q = p->first_same_value; q; q = q->next_same_value)
8ad4c111 2202 if (REG_P (q->exp))
752df20e 2203 break;
2204
2205 if (q)
2206 break;
2207
2208 p = p->related_value;
2209
2210 /* We went all the way around, so there is nothing to be found.
2211 Alternatively, perhaps RELT was in the table for some other reason
2212 and it has no related values recorded. */
2213 if (p == relt || p == 0)
2214 break;
2215 }
2216
2217 if (q == 0)
2218 return 0;
2219
2220 offset = (get_integer_term (x) - get_integer_term (p->exp));
2221 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2222 return plus_constant (q->exp, offset);
2223}
2224\f
e1ab7874 2225
d91f2122 2226/* Hash a string. Just add its bytes up. */
2227static inline unsigned
78d140c9 2228hash_rtx_string (const char *ps)
d91f2122 2229{
2230 unsigned hash = 0;
d4c5e26d 2231 const unsigned char *p = (const unsigned char *) ps;
2232
d91f2122 2233 if (p)
2234 while (*p)
2235 hash += *p++;
2236
2237 return hash;
2238}
2239
48e1416a 2240/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
e1ab7874 2241 When the callback returns true, we continue with the new rtx. */
752df20e 2242
78d140c9 2243unsigned
e1ab7874 2244hash_rtx_cb (const_rtx x, enum machine_mode mode,
2245 int *do_not_record_p, int *hash_arg_in_memory_p,
2246 bool have_reg_qty, hash_rtx_callback_function cb)
752df20e 2247{
19cb6b50 2248 int i, j;
2249 unsigned hash = 0;
2250 enum rtx_code code;
2251 const char *fmt;
e1ab7874 2252 enum machine_mode newmode;
2253 rtx newx;
752df20e 2254
78d140c9 2255 /* Used to turn recursion into iteration. We can't rely on GCC's
2256 tail-recursion elimination since we need to keep accumulating values
2257 in HASH. */
752df20e 2258 repeat:
2259 if (x == 0)
2260 return hash;
2261
e1ab7874 2262 /* Invoke the callback first. */
48e1416a 2263 if (cb != NULL
e1ab7874 2264 && ((*cb) (x, mode, &newx, &newmode)))
2265 {
2266 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2267 hash_arg_in_memory_p, have_reg_qty, cb);
2268 return hash;
2269 }
2270
752df20e 2271 code = GET_CODE (x);
2272 switch (code)
2273 {
2274 case REG:
2275 {
02e7a332 2276 unsigned int regno = REGNO (x);
752df20e 2277
e1ab7874 2278 if (do_not_record_p && !reload_completed)
752df20e 2279 {
78d140c9 2280 /* On some machines, we can't record any non-fixed hard register,
2281 because extending its life will cause reload problems. We
2282 consider ap, fp, sp, gp to be fixed for this purpose.
2283
2284 We also consider CCmode registers to be fixed for this purpose;
2285 failure to do so leads to failure to simplify 0<100 type of
2286 conditionals.
2287
2288 On all machines, we can't record any global registers.
2289 Nor should we record any register that is in a small
2290 class, as defined by CLASS_LIKELY_SPILLED_P. */
2291 bool record;
2292
2293 if (regno >= FIRST_PSEUDO_REGISTER)
2294 record = true;
2295 else if (x == frame_pointer_rtx
2296 || x == hard_frame_pointer_rtx
2297 || x == arg_pointer_rtx
2298 || x == stack_pointer_rtx
2299 || x == pic_offset_table_rtx)
2300 record = true;
2301 else if (global_regs[regno])
2302 record = false;
2303 else if (fixed_regs[regno])
2304 record = true;
2305 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2306 record = true;
2307 else if (SMALL_REGISTER_CLASSES)
2308 record = false;
2309 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2310 record = false;
2311 else
2312 record = true;
2313
2314 if (!record)
2315 {
2316 *do_not_record_p = 1;
2317 return 0;
2318 }
752df20e 2319 }
02e7a332 2320
78d140c9 2321 hash += ((unsigned int) REG << 7);
2322 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
952bc06d 2323 return hash;
752df20e 2324 }
2325
e6860d27 2326 /* We handle SUBREG of a REG specially because the underlying
2327 reg changes its hash value with every value change; we don't
2328 want to have to forget unrelated subregs when one subreg changes. */
2329 case SUBREG:
2330 {
8ad4c111 2331 if (REG_P (SUBREG_REG (x)))
e6860d27 2332 {
78d140c9 2333 hash += (((unsigned int) SUBREG << 7)
701e46d0 2334 + REGNO (SUBREG_REG (x))
2335 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
e6860d27 2336 return hash;
2337 }
2338 break;
2339 }
2340
752df20e 2341 case CONST_INT:
78d140c9 2342 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2343 + (unsigned int) INTVAL (x));
2344 return hash;
752df20e 2345
2346 case CONST_DOUBLE:
2347 /* This is like the general case, except that it only counts
2348 the integers representing the constant. */
78d140c9 2349 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
32cf9a0f 2350 if (GET_MODE (x) != VOIDmode)
3393215f 2351 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
32cf9a0f 2352 else
78d140c9 2353 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2354 + (unsigned int) CONST_DOUBLE_HIGH (x));
752df20e 2355 return hash;
2356
e397ad8e 2357 case CONST_FIXED:
2358 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2359 hash += fixed_hash (CONST_FIXED_VALUE (x));
2360 return hash;
2361
886cfd4f 2362 case CONST_VECTOR:
2363 {
2364 int units;
2365 rtx elt;
2366
2367 units = CONST_VECTOR_NUNITS (x);
2368
2369 for (i = 0; i < units; ++i)
2370 {
2371 elt = CONST_VECTOR_ELT (x, i);
e1ab7874 2372 hash += hash_rtx_cb (elt, GET_MODE (elt),
48e1416a 2373 do_not_record_p, hash_arg_in_memory_p,
e1ab7874 2374 have_reg_qty, cb);
886cfd4f 2375 }
2376
2377 return hash;
2378 }
2379
752df20e 2380 /* Assume there is only one rtx object for any given label. */
2381 case LABEL_REF:
78d140c9 2382 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2383 differences and differences between each stage's debugging dumps. */
2384 hash += (((unsigned int) LABEL_REF << 7)
2385 + CODE_LABEL_NUMBER (XEXP (x, 0)));
952bc06d 2386 return hash;
752df20e 2387
2388 case SYMBOL_REF:
78d140c9 2389 {
2390 /* Don't hash on the symbol's address to avoid bootstrap differences.
2391 Different hash values may cause expressions to be recorded in
2392 different orders and thus different registers to be used in the
2393 final assembler. This also avoids differences in the dump files
2394 between various stages. */
2395 unsigned int h = 0;
2396 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2397
2398 while (*p)
2399 h += (h << 7) + *p++; /* ??? revisit */
2400
2401 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2402 return hash;
2403 }
752df20e 2404
2405 case MEM:
155b05dc 2406 /* We don't record if marked volatile or if BLKmode since we don't
2407 know the size of the move. */
e1ab7874 2408 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
752df20e 2409 {
78d140c9 2410 *do_not_record_p = 1;
752df20e 2411 return 0;
2412 }
78d140c9 2413 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2414 *hash_arg_in_memory_p = 1;
805e22b2 2415
752df20e 2416 /* Now that we have already found this special case,
2417 might as well speed it up as much as possible. */
952bc06d 2418 hash += (unsigned) MEM;
752df20e 2419 x = XEXP (x, 0);
2420 goto repeat;
2421
7002e559 2422 case USE:
2423 /* A USE that mentions non-volatile memory needs special
2424 handling since the MEM may be BLKmode which normally
2425 prevents an entry from being made. Pure calls are
78d140c9 2426 marked by a USE which mentions BLKmode memory.
2427 See calls.c:emit_call_1. */
e16ceb8e 2428 if (MEM_P (XEXP (x, 0))
7002e559 2429 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2430 {
d4c5e26d 2431 hash += (unsigned) USE;
7002e559 2432 x = XEXP (x, 0);
2433
78d140c9 2434 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2435 *hash_arg_in_memory_p = 1;
7002e559 2436
2437 /* Now that we have already found this special case,
2438 might as well speed it up as much as possible. */
2439 hash += (unsigned) MEM;
2440 x = XEXP (x, 0);
2441 goto repeat;
2442 }
2443 break;
2444
752df20e 2445 case PRE_DEC:
2446 case PRE_INC:
2447 case POST_DEC:
2448 case POST_INC:
40988080 2449 case PRE_MODIFY:
2450 case POST_MODIFY:
752df20e 2451 case PC:
2452 case CC0:
2453 case CALL:
2454 case UNSPEC_VOLATILE:
e1ab7874 2455 if (do_not_record_p) {
2456 *do_not_record_p = 1;
2457 return 0;
2458 }
2459 else
2460 return hash;
2461 break;
752df20e 2462
2463 case ASM_OPERANDS:
e1ab7874 2464 if (do_not_record_p && MEM_VOLATILE_P (x))
752df20e 2465 {
78d140c9 2466 *do_not_record_p = 1;
752df20e 2467 return 0;
2468 }
d91f2122 2469 else
2470 {
2471 /* We don't want to take the filename and line into account. */
2472 hash += (unsigned) code + (unsigned) GET_MODE (x)
78d140c9 2473 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2474 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
d91f2122 2475 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2476
2477 if (ASM_OPERANDS_INPUT_LENGTH (x))
2478 {
2479 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2480 {
e1ab7874 2481 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2482 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2483 do_not_record_p, hash_arg_in_memory_p,
2484 have_reg_qty, cb)
78d140c9 2485 + hash_rtx_string
e1ab7874 2486 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
d91f2122 2487 }
2488
78d140c9 2489 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
d91f2122 2490 x = ASM_OPERANDS_INPUT (x, 0);
2491 mode = GET_MODE (x);
2492 goto repeat;
2493 }
2494
2495 return hash;
2496 }
0dbd1c74 2497 break;
cb10db9d 2498
0dbd1c74 2499 default:
2500 break;
752df20e 2501 }
2502
2503 i = GET_RTX_LENGTH (code) - 1;
952bc06d 2504 hash += (unsigned) code + (unsigned) GET_MODE (x);
752df20e 2505 fmt = GET_RTX_FORMAT (code);
2506 for (; i >= 0; i--)
2507 {
cc636d56 2508 switch (fmt[i])
752df20e 2509 {
cc636d56 2510 case 'e':
752df20e 2511 /* If we are about to do the last recursive call
2512 needed at this level, change it into iteration.
2513 This function is called enough to be worth it. */
2514 if (i == 0)
2515 {
78d140c9 2516 x = XEXP (x, i);
752df20e 2517 goto repeat;
2518 }
48e1416a 2519
b9c74b4d 2520 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
e1ab7874 2521 hash_arg_in_memory_p,
2522 have_reg_qty, cb);
cc636d56 2523 break;
78d140c9 2524
cc636d56 2525 case 'E':
2526 for (j = 0; j < XVECLEN (x, i); j++)
b9c74b4d 2527 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
e1ab7874 2528 hash_arg_in_memory_p,
2529 have_reg_qty, cb);
cc636d56 2530 break;
78d140c9 2531
cc636d56 2532 case 's':
2533 hash += hash_rtx_string (XSTR (x, i));
2534 break;
2535
2536 case 'i':
2537 hash += (unsigned int) XINT (x, i);
2538 break;
2539
2540 case '0': case 't':
2541 /* Unused. */
2542 break;
2543
2544 default:
2545 gcc_unreachable ();
2546 }
752df20e 2547 }
78d140c9 2548
752df20e 2549 return hash;
2550}
2551
e1ab7874 2552/* Hash an rtx. We are careful to make sure the value is never negative.
2553 Equivalent registers hash identically.
2554 MODE is used in hashing for CONST_INTs only;
2555 otherwise the mode of X is used.
2556
2557 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2558
2559 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2560 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2561
2562 Note that cse_insn knows that the hash code of a MEM expression
2563 is just (int) MEM plus the hash code of the address. */
2564
2565unsigned
2566hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2567 int *hash_arg_in_memory_p, bool have_reg_qty)
2568{
2569 return hash_rtx_cb (x, mode, do_not_record_p,
2570 hash_arg_in_memory_p, have_reg_qty, NULL);
2571}
2572
78d140c9 2573/* Hash an rtx X for cse via hash_rtx.
2574 Stores 1 in do_not_record if any subexpression is volatile.
2575 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2576 does not have the RTX_UNCHANGING_P bit set. */
2577
2578static inline unsigned
2579canon_hash (rtx x, enum machine_mode mode)
2580{
2581 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2582}
2583
2584/* Like canon_hash but with no side effects, i.e. do_not_record
2585 and hash_arg_in_memory are not changed. */
752df20e 2586
78d140c9 2587static inline unsigned
8ec3a57b 2588safe_hash (rtx x, enum machine_mode mode)
752df20e 2589{
78d140c9 2590 int dummy_do_not_record;
2591 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
752df20e 2592}
2593\f
2594/* Return 1 iff X and Y would canonicalize into the same thing,
2595 without actually constructing the canonicalization of either one.
2596 If VALIDATE is nonzero,
2597 we assume X is an expression being processed from the rtl
2598 and Y was found in the hash table. We check register refs
2599 in Y for being marked as valid.
2600
78d140c9 2601 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
752df20e 2602
78d140c9 2603int
52d07779 2604exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
752df20e 2605{
19cb6b50 2606 int i, j;
2607 enum rtx_code code;
2608 const char *fmt;
752df20e 2609
2610 /* Note: it is incorrect to assume an expression is equivalent to itself
2611 if VALIDATE is nonzero. */
2612 if (x == y && !validate)
2613 return 1;
78d140c9 2614
752df20e 2615 if (x == 0 || y == 0)
2616 return x == y;
2617
2618 code = GET_CODE (x);
2619 if (code != GET_CODE (y))
78d140c9 2620 return 0;
752df20e 2621
2622 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2623 if (GET_MODE (x) != GET_MODE (y))
2624 return 0;
2625
bd1a81f7 2626 /* MEMs refering to different address space are not equivalent. */
2627 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2628 return 0;
2629
752df20e 2630 switch (code)
2631 {
2632 case PC:
2633 case CC0:
752df20e 2634 case CONST_INT:
d618034b 2635 case CONST_DOUBLE:
e397ad8e 2636 case CONST_FIXED:
73f5c1e3 2637 return x == y;
752df20e 2638
2639 case LABEL_REF:
752df20e 2640 return XEXP (x, 0) == XEXP (y, 0);
2641
d1a40e76 2642 case SYMBOL_REF:
2643 return XSTR (x, 0) == XSTR (y, 0);
2644
752df20e 2645 case REG:
78d140c9 2646 if (for_gcse)
2647 return REGNO (x) == REGNO (y);
2648 else
2649 {
2650 unsigned int regno = REGNO (y);
2651 unsigned int i;
a2c6f0b7 2652 unsigned int endregno = END_REGNO (y);
752df20e 2653
78d140c9 2654 /* If the quantities are not the same, the expressions are not
2655 equivalent. If there are and we are not to validate, they
2656 are equivalent. Otherwise, ensure all regs are up-to-date. */
752df20e 2657
78d140c9 2658 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2659 return 0;
2660
2661 if (! validate)
2662 return 1;
2663
2664 for (i = regno; i < endregno; i++)
2665 if (REG_IN_TABLE (i) != REG_TICK (i))
2666 return 0;
752df20e 2667
752df20e 2668 return 1;
78d140c9 2669 }
752df20e 2670
78d140c9 2671 case MEM:
2672 if (for_gcse)
2673 {
78d140c9 2674 /* A volatile mem should not be considered equivalent to any
2675 other. */
2676 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2677 return 0;
2f16183e 2678
2679 /* Can't merge two expressions in different alias sets, since we
2680 can decide that the expression is transparent in a block when
2681 it isn't, due to it being set with the different alias set.
2682
2683 Also, can't merge two expressions with different MEM_ATTRS.
2684 They could e.g. be two different entities allocated into the
2685 same space on the stack (see e.g. PR25130). In that case, the
2686 MEM addresses can be the same, even though the two MEMs are
48e1416a 2687 absolutely not equivalent.
2688
2f16183e 2689 But because really all MEM attributes should be the same for
2690 equivalent MEMs, we just use the invariant that MEMs that have
2691 the same attributes share the same mem_attrs data structure. */
2692 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2693 return 0;
78d140c9 2694 }
2695 break;
752df20e 2696
2697 /* For commutative operations, check both orders. */
2698 case PLUS:
2699 case MULT:
2700 case AND:
2701 case IOR:
2702 case XOR:
2703 case NE:
2704 case EQ:
78d140c9 2705 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2706 validate, for_gcse)
752df20e 2707 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
78d140c9 2708 validate, for_gcse))
752df20e 2709 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
78d140c9 2710 validate, for_gcse)
752df20e 2711 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
78d140c9 2712 validate, for_gcse)));
cb10db9d 2713
d91f2122 2714 case ASM_OPERANDS:
2715 /* We don't use the generic code below because we want to
2716 disregard filename and line numbers. */
2717
2718 /* A volatile asm isn't equivalent to any other. */
2719 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2720 return 0;
2721
2722 if (GET_MODE (x) != GET_MODE (y)
2723 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2724 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2725 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2726 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2727 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2728 return 0;
2729
2730 if (ASM_OPERANDS_INPUT_LENGTH (x))
2731 {
2732 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2733 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2734 ASM_OPERANDS_INPUT (y, i),
78d140c9 2735 validate, for_gcse)
d91f2122 2736 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2737 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2738 return 0;
2739 }
2740
2741 return 1;
2742
0dbd1c74 2743 default:
2744 break;
752df20e 2745 }
2746
2747 /* Compare the elements. If any pair of corresponding elements
78d140c9 2748 fail to match, return 0 for the whole thing. */
752df20e 2749
2750 fmt = GET_RTX_FORMAT (code);
2751 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2752 {
b572011e 2753 switch (fmt[i])
752df20e 2754 {
b572011e 2755 case 'e':
78d140c9 2756 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2757 validate, for_gcse))
752df20e 2758 return 0;
b572011e 2759 break;
2760
2761 case 'E':
752df20e 2762 if (XVECLEN (x, i) != XVECLEN (y, i))
2763 return 0;
2764 for (j = 0; j < XVECLEN (x, i); j++)
2765 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
78d140c9 2766 validate, for_gcse))
752df20e 2767 return 0;
b572011e 2768 break;
2769
2770 case 's':
752df20e 2771 if (strcmp (XSTR (x, i), XSTR (y, i)))
2772 return 0;
b572011e 2773 break;
2774
2775 case 'i':
752df20e 2776 if (XINT (x, i) != XINT (y, i))
2777 return 0;
b572011e 2778 break;
2779
2780 case 'w':
2781 if (XWINT (x, i) != XWINT (y, i))
2782 return 0;
cb10db9d 2783 break;
b572011e 2784
2785 case '0':
a4070a91 2786 case 't':
b572011e 2787 break;
2788
2789 default:
cc636d56 2790 gcc_unreachable ();
752df20e 2791 }
cb10db9d 2792 }
b572011e 2793
752df20e 2794 return 1;
2795}
2796\f
ea0cb7ae 2797/* Return 1 if X has a value that can vary even between two
2798 executions of the program. 0 means X can be compared reliably
2799 against certain constants or near-constants. */
752df20e 2800
52d07779 2801static bool
2802cse_rtx_varies_p (const_rtx x, bool from_alias)
752df20e 2803{
2804 /* We need not check for X and the equivalence class being of the same
2805 mode because if X is equivalent to a constant in some mode, it
2806 doesn't vary in any mode. */
2807
8ad4c111 2808 if (REG_P (x)
a7f3b1c7 2809 && REGNO_QTY_VALID_P (REGNO (x)))
2810 {
2811 int x_q = REG_QTY (REGNO (x));
2812 struct qty_table_elem *x_ent = &qty_table[x_q];
2813
2814 if (GET_MODE (x) == x_ent->mode
2815 && x_ent->const_rtx != NULL_RTX)
2816 return 0;
2817 }
752df20e 2818
ea0cb7ae 2819 if (GET_CODE (x) == PLUS
971ba038 2820 && CONST_INT_P (XEXP (x, 1))
8ad4c111 2821 && REG_P (XEXP (x, 0))
a7f3b1c7 2822 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2823 {
2824 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2825 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2826
2827 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2828 && x0_ent->const_rtx != NULL_RTX)
2829 return 0;
2830 }
752df20e 2831
1260c420 2832 /* This can happen as the result of virtual register instantiation, if
2833 the initial constant is too large to be a valid address. This gives
2834 us a three instruction sequence, load large offset into a register,
2835 load fp minus a constant into a register, then a MEM which is the
2836 sum of the two `constant' registers. */
ea0cb7ae 2837 if (GET_CODE (x) == PLUS
8ad4c111 2838 && REG_P (XEXP (x, 0))
2839 && REG_P (XEXP (x, 1))
ea0cb7ae 2840 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
a7f3b1c7 2841 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2842 {
2843 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2844 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2845 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2846 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2847
2848 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2849 && x0_ent->const_rtx != NULL_RTX
2850 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2851 && x1_ent->const_rtx != NULL_RTX)
2852 return 0;
2853 }
1260c420 2854
05de10c6 2855 return rtx_varies_p (x, from_alias);
752df20e 2856}
2857\f
1cc37766 2858/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2859 the result if necessary. INSN is as for canon_reg. */
2860
2861static void
2862validate_canon_reg (rtx *xloc, rtx insn)
2863{
3072d30e 2864 if (*xloc)
2865 {
d328ebdf 2866 rtx new_rtx = canon_reg (*xloc, insn);
1cc37766 2867
3072d30e 2868 /* If replacing pseudo with hard reg or vice versa, ensure the
2869 insn remains valid. Likewise if the insn has MATCH_DUPs. */
d328ebdf 2870 gcc_assert (insn && new_rtx);
2871 validate_change (insn, xloc, new_rtx, 1);
3072d30e 2872 }
1cc37766 2873}
2874
752df20e 2875/* Canonicalize an expression:
2876 replace each register reference inside it
2877 with the "oldest" equivalent register.
2878
0c0acbaa 2879 If INSN is nonzero validate_change is used to ensure that INSN remains valid
d10cfa8d 2880 after we make our substitution. The calls are made with IN_GROUP nonzero
8d5dd220 2881 so apply_change_group must be called upon the outermost return from this
2882 function (unless INSN is zero). The result of apply_change_group can
2883 generally be discarded since the changes we are making are optional. */
752df20e 2884
2885static rtx
8ec3a57b 2886canon_reg (rtx x, rtx insn)
752df20e 2887{
19cb6b50 2888 int i;
2889 enum rtx_code code;
2890 const char *fmt;
752df20e 2891
2892 if (x == 0)
2893 return x;
2894
2895 code = GET_CODE (x);
2896 switch (code)
2897 {
2898 case PC:
2899 case CC0:
2900 case CONST:
2901 case CONST_INT:
2902 case CONST_DOUBLE:
e397ad8e 2903 case CONST_FIXED:
886cfd4f 2904 case CONST_VECTOR:
752df20e 2905 case SYMBOL_REF:
2906 case LABEL_REF:
2907 case ADDR_VEC:
2908 case ADDR_DIFF_VEC:
2909 return x;
2910
2911 case REG:
2912 {
19cb6b50 2913 int first;
2914 int q;
2915 struct qty_table_elem *ent;
752df20e 2916
2917 /* Never replace a hard reg, because hard regs can appear
2918 in more than one machine mode, and we must preserve the mode
2919 of each occurrence. Also, some hard regs appear in
2920 MEMs that are shared and mustn't be altered. Don't try to
2921 replace any reg that maps to a reg of class NO_REGS. */
2922 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2923 || ! REGNO_QTY_VALID_P (REGNO (x)))
2924 return x;
2925
cb10db9d 2926 q = REG_QTY (REGNO (x));
a7f3b1c7 2927 ent = &qty_table[q];
2928 first = ent->first_reg;
752df20e 2929 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2930 : REGNO_REG_CLASS (first) == NO_REGS ? x
a7f3b1c7 2931 : gen_rtx_REG (ent->mode, first));
752df20e 2932 }
cb10db9d 2933
0dbd1c74 2934 default:
2935 break;
752df20e 2936 }
2937
2938 fmt = GET_RTX_FORMAT (code);
2939 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2940 {
19cb6b50 2941 int j;
752df20e 2942
2943 if (fmt[i] == 'e')
1cc37766 2944 validate_canon_reg (&XEXP (x, i), insn);
752df20e 2945 else if (fmt[i] == 'E')
2946 for (j = 0; j < XVECLEN (x, i); j++)
1cc37766 2947 validate_canon_reg (&XVECEXP (x, i, j), insn);
752df20e 2948 }
2949
2950 return x;
2951}
2952\f
6a8939cc 2953/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2954 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2955 what values are being compared.
9ce37dcf 2956
6a8939cc 2957 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2958 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2959 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2960 compared to produce cc0.
61b1f5a7 2961
6a8939cc 2962 The return value is the comparison operator and is either the code of
2963 A or the code corresponding to the inverse of the comparison. */
752df20e 2964
af21a202 2965static enum rtx_code
8ec3a57b 2966find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2967 enum machine_mode *pmode1, enum machine_mode *pmode2)
752df20e 2968{
af21a202 2969 rtx arg1, arg2;
9ce37dcf 2970
af21a202 2971 arg1 = *parg1, arg2 = *parg2;
752df20e 2972
af21a202 2973 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
752df20e 2974
af21a202 2975 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
61b1f5a7 2976 {
d10cfa8d 2977 /* Set nonzero when we find something of interest. */
af21a202 2978 rtx x = 0;
2979 int reverse_code = 0;
2980 struct table_elt *p = 0;
308a5ff6 2981
af21a202 2982 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2983 On machines with CC0, this is the only case that can occur, since
2984 fold_rtx will return the COMPARE or item being compared with zero
2985 when given CC0. */
308a5ff6 2986
af21a202 2987 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2988 x = arg1;
308a5ff6 2989
af21a202 2990 /* If ARG1 is a comparison operator and CODE is testing for
2991 STORE_FLAG_VALUE, get the inner arguments. */
61b1f5a7 2992
6720e96c 2993 else if (COMPARISON_P (arg1))
752df20e 2994 {
aa870c1b 2995#ifdef FLOAT_STORE_FLAG_VALUE
2996 REAL_VALUE_TYPE fsfv;
2997#endif
2998
af21a202 2999 if (code == NE
3000 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3001 && code == LT && STORE_FLAG_VALUE == -1)
3002#ifdef FLOAT_STORE_FLAG_VALUE
95204692 3003 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
aa870c1b 3004 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3005 REAL_VALUE_NEGATIVE (fsfv)))
752df20e 3006#endif
61b1f5a7 3007 )
af21a202 3008 x = arg1;
3009 else if (code == EQ
3010 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3011 && code == GE && STORE_FLAG_VALUE == -1)
3012#ifdef FLOAT_STORE_FLAG_VALUE
95204692 3013 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
aa870c1b 3014 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3015 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3016#endif
3017 )
3018 x = arg1, reverse_code = 1;
752df20e 3019 }
3020
af21a202 3021 /* ??? We could also check for
752df20e 3022
af21a202 3023 (ne (and (eq (...) (const_int 1))) (const_int 0))
752df20e 3024
af21a202 3025 and related forms, but let's wait until we see them occurring. */
752df20e 3026
af21a202 3027 if (x == 0)
3028 /* Look up ARG1 in the hash table and see if it has an equivalence
3029 that lets us see what is being compared. */
78d140c9 3030 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
cb10db9d 3031 if (p)
e9a91a9e 3032 {
3033 p = p->first_same_value;
3034
3035 /* If what we compare is already known to be constant, that is as
3036 good as it gets.
3037 We need to break the loop in this case, because otherwise we
3038 can have an infinite loop when looking at a reg that is known
3039 to be a constant which is the same as a comparison of a reg
3040 against zero which appears later in the insn stream, which in
3041 turn is constant and the same as the comparison of the first reg
3042 against zero... */
3043 if (p->is_const)
3044 break;
3045 }
752df20e 3046
af21a202 3047 for (; p; p = p->next_same_value)
752df20e 3048 {
af21a202 3049 enum machine_mode inner_mode = GET_MODE (p->exp);
aa870c1b 3050#ifdef FLOAT_STORE_FLAG_VALUE
3051 REAL_VALUE_TYPE fsfv;
3052#endif
752df20e 3053
af21a202 3054 /* If the entry isn't valid, skip it. */
78d140c9 3055 if (! exp_equiv_p (p->exp, p->exp, 1, false))
af21a202 3056 continue;
51356f86 3057
6a8939cc 3058 if (GET_CODE (p->exp) == COMPARE
3059 /* Another possibility is that this machine has a compare insn
3060 that includes the comparison code. In that case, ARG1 would
3061 be equivalent to a comparison operation that would set ARG1 to
3062 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3063 ORIG_CODE is the actual comparison being done; if it is an EQ,
3064 we must reverse ORIG_CODE. On machine with a negative value
3065 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3066 || ((code == NE
3067 || (code == LT
3068 && GET_MODE_CLASS (inner_mode) == MODE_INT
3069 && (GET_MODE_BITSIZE (inner_mode)
3070 <= HOST_BITS_PER_WIDE_INT)
3071 && (STORE_FLAG_VALUE
3072 & ((HOST_WIDE_INT) 1
3073 << (GET_MODE_BITSIZE (inner_mode) - 1))))
af21a202 3074#ifdef FLOAT_STORE_FLAG_VALUE
6a8939cc 3075 || (code == LT
cee7491d 3076 && SCALAR_FLOAT_MODE_P (inner_mode)
aa870c1b 3077 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3078 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3079#endif
6a8939cc 3080 )
6720e96c 3081 && COMPARISON_P (p->exp)))
752df20e 3082 {
af21a202 3083 x = p->exp;
3084 break;
3085 }
3086 else if ((code == EQ
3087 || (code == GE
3088 && GET_MODE_CLASS (inner_mode) == MODE_INT
3089 && (GET_MODE_BITSIZE (inner_mode)
3090 <= HOST_BITS_PER_WIDE_INT)
3091 && (STORE_FLAG_VALUE
3092 & ((HOST_WIDE_INT) 1
3093 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3094#ifdef FLOAT_STORE_FLAG_VALUE
3095 || (code == GE
cee7491d 3096 && SCALAR_FLOAT_MODE_P (inner_mode)
aa870c1b 3097 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3098 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3099#endif
3100 )
6720e96c 3101 && COMPARISON_P (p->exp))
af21a202 3102 {
3103 reverse_code = 1;
3104 x = p->exp;
3105 break;
752df20e 3106 }
3107
805e22b2 3108 /* If this non-trapping address, e.g. fp + constant, the
3109 equivalent is a better operand since it may let us predict
3110 the value of the comparison. */
3111 else if (!rtx_addr_can_trap_p (p->exp))
af21a202 3112 {
3113 arg1 = p->exp;
3114 continue;
3115 }
752df20e 3116 }
752df20e 3117
af21a202 3118 /* If we didn't find a useful equivalence for ARG1, we are done.
3119 Otherwise, set up for the next iteration. */
3120 if (x == 0)
3121 break;
752df20e 3122
6d1304b6 3123 /* If we need to reverse the comparison, make sure that that is
3124 possible -- we can't necessarily infer the value of GE from LT
3125 with floating-point operands. */
af21a202 3126 if (reverse_code)
7da6ea0c 3127 {
3128 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3129 if (reversed == UNKNOWN)
3130 break;
d4c5e26d 3131 else
3132 code = reversed;
7da6ea0c 3133 }
6720e96c 3134 else if (COMPARISON_P (x))
7da6ea0c 3135 code = GET_CODE (x);
3136 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
752df20e 3137 }
3138
af21a202 3139 /* Return our results. Return the modes from before fold_rtx
3140 because fold_rtx might produce const_int, and then it's too late. */
3141 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3142 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3143
3144 return code;
752df20e 3145}
3146\f
42a3a38b 3147/* If X is a nontrivial arithmetic operation on an argument for which
3148 a constant value can be determined, return the result of operating
3149 on that value, as a constant. Otherwise, return X, possibly with
3150 one or more operands changed to a forward-propagated constant.
18b14db6 3151
42a3a38b 3152 If X is a register whose contents are known, we do NOT return
3153 those contents here; equiv_constant is called to perform that task.
3154 For SUBREGs and MEMs, we do that both here and in equiv_constant.
752df20e 3155
3156 INSN is the insn that we may be modifying. If it is 0, make a copy
3157 of X before modifying it. */
3158
3159static rtx
8ec3a57b 3160fold_rtx (rtx x, rtx insn)
752df20e 3161{
19cb6b50 3162 enum rtx_code code;
3163 enum machine_mode mode;
3164 const char *fmt;
3165 int i;
d328ebdf 3166 rtx new_rtx = 0;
42a3a38b 3167 int changed = 0;
752df20e 3168
42a3a38b 3169 /* Operands of X. */
752df20e 3170 rtx folded_arg0;
3171 rtx folded_arg1;
3172
3173 /* Constant equivalents of first three operands of X;
3174 0 when no such equivalent is known. */
3175 rtx const_arg0;
3176 rtx const_arg1;
3177 rtx const_arg2;
3178
3179 /* The mode of the first operand of X. We need this for sign and zero
3180 extends. */
3181 enum machine_mode mode_arg0;
3182
3183 if (x == 0)
3184 return x;
3185
42a3a38b 3186 /* Try to perform some initial simplifications on X. */
752df20e 3187 code = GET_CODE (x);
3188 switch (code)
3189 {
42a3a38b 3190 case MEM:
3191 case SUBREG:
d328ebdf 3192 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3193 return new_rtx;
42a3a38b 3194 return x;
3195
752df20e 3196 case CONST:
3197 case CONST_INT:
3198 case CONST_DOUBLE:
e397ad8e 3199 case CONST_FIXED:
886cfd4f 3200 case CONST_VECTOR:
752df20e 3201 case SYMBOL_REF:
3202 case LABEL_REF:
3203 case REG:
97108156 3204 case PC:
752df20e 3205 /* No use simplifying an EXPR_LIST
3206 since they are used only for lists of args
3207 in a function call's REG_EQUAL note. */
3208 case EXPR_LIST:
3209 return x;
3210
3211#ifdef HAVE_cc0
3212 case CC0:
3213 return prev_insn_cc0;
3214#endif
3215
c97a7837 3216 case ASM_OPERANDS:
d239a9ad 3217 if (insn)
3218 {
3219 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3220 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3221 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3222 }
42a3a38b 3223 return x;
3224
3225#ifdef NO_FUNCTION_CSE
3226 case CALL:
3227 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3228 return x;
c97a7837 3229 break;
42a3a38b 3230#endif
cb10db9d 3231
42a3a38b 3232 /* Anything else goes through the loop below. */
0dbd1c74 3233 default:
3234 break;
752df20e 3235 }
3236
42a3a38b 3237 mode = GET_MODE (x);
752df20e 3238 const_arg0 = 0;
3239 const_arg1 = 0;
3240 const_arg2 = 0;
3241 mode_arg0 = VOIDmode;
3242
3243 /* Try folding our operands.
3244 Then see which ones have constant values known. */
3245
3246 fmt = GET_RTX_FORMAT (code);
3247 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3248 if (fmt[i] == 'e')
3249 {
42a3a38b 3250 rtx folded_arg = XEXP (x, i), const_arg;
3251 enum machine_mode mode_arg = GET_MODE (folded_arg);
06320855 3252
3253 switch (GET_CODE (folded_arg))
3254 {
3255 case MEM:
3256 case REG:
3257 case SUBREG:
3258 const_arg = equiv_constant (folded_arg);
3259 break;
3260
3261 case CONST:
3262 case CONST_INT:
3263 case SYMBOL_REF:
3264 case LABEL_REF:
3265 case CONST_DOUBLE:
e397ad8e 3266 case CONST_FIXED:
06320855 3267 case CONST_VECTOR:
3268 const_arg = folded_arg;
3269 break;
3270
752df20e 3271#ifdef HAVE_cc0
06320855 3272 case CC0:
3273 folded_arg = prev_insn_cc0;
3274 mode_arg = prev_insn_cc0_mode;
3275 const_arg = equiv_constant (folded_arg);
3276 break;
752df20e 3277#endif
06320855 3278
3279 default:
3280 folded_arg = fold_rtx (folded_arg, insn);
3281 const_arg = equiv_constant (folded_arg);
3282 break;
3283 }
752df20e 3284
3285 /* For the first three operands, see if the operand
3286 is constant or equivalent to a constant. */
3287 switch (i)
3288 {
3289 case 0:
3290 folded_arg0 = folded_arg;
3291 const_arg0 = const_arg;
3292 mode_arg0 = mode_arg;
3293 break;
3294 case 1:
3295 folded_arg1 = folded_arg;
3296 const_arg1 = const_arg;
3297 break;
3298 case 2:
3299 const_arg2 = const_arg;
3300 break;
3301 }
3302
42a3a38b 3303 /* Pick the least expensive of the argument and an equivalent constant
3304 argument. */
3305 if (const_arg != 0
3306 && const_arg != folded_arg
3307 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
f35e401c 3308
8f1e01cb 3309 /* It's not safe to substitute the operand of a conversion
3310 operator with a constant, as the conversion's identity
fe24f256 3311 depends upon the mode of its operand. This optimization
8f1e01cb 3312 is handled by the call to simplify_unary_operation. */
42a3a38b 3313 && (GET_RTX_CLASS (code) != RTX_UNARY
3314 || GET_MODE (const_arg) == mode_arg0
3315 || (code != ZERO_EXTEND
3316 && code != SIGN_EXTEND
3317 && code != TRUNCATE
3318 && code != FLOAT_TRUNCATE
3319 && code != FLOAT_EXTEND
3320 && code != FLOAT
3321 && code != FIX
3322 && code != UNSIGNED_FLOAT
3323 && code != UNSIGNED_FIX)))
3324 folded_arg = const_arg;
3325
3326 if (folded_arg == XEXP (x, i))
3327 continue;
752df20e 3328
42a3a38b 3329 if (insn == NULL_RTX && !changed)
3330 x = copy_rtx (x);
3331 changed = 1;
4f34fbd6 3332 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
c08e043f 3333 }
752df20e 3334
42a3a38b 3335 if (changed)
752df20e 3336 {
42a3a38b 3337 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3338 consistent with the order in X. */
3339 if (canonicalize_change_group (insn, x))
752df20e 3340 {
42a3a38b 3341 rtx tem;
3342 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3343 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
752df20e 3344 }
42a3a38b 3345
3346 apply_change_group ();
752df20e 3347 }
3348
3349 /* If X is an arithmetic operation, see if we can simplify it. */
3350
3351 switch (GET_RTX_CLASS (code))
3352 {
6720e96c 3353 case RTX_UNARY:
528b0df8 3354 {
528b0df8 3355 /* We can't simplify extension ops unless we know the
3356 original mode. */
3357 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3358 && mode_arg0 == VOIDmode)
3359 break;
3360
d328ebdf 3361 new_rtx = simplify_unary_operation (code, mode,
528b0df8 3362 const_arg0 ? const_arg0 : folded_arg0,
3363 mode_arg0);
528b0df8 3364 }
752df20e 3365 break;
cb10db9d 3366
6720e96c 3367 case RTX_COMPARE:
3368 case RTX_COMM_COMPARE:
752df20e 3369 /* See what items are actually being compared and set FOLDED_ARG[01]
3370 to those values and CODE to the actual comparison code. If any are
3371 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3372 do anything if both operands are already known to be constant. */
3373
5b2d8298 3374 /* ??? Vector mode comparisons are not supported yet. */
3375 if (VECTOR_MODE_P (mode))
3376 break;
3377
752df20e 3378 if (const_arg0 == 0 || const_arg1 == 0)
3379 {
3380 struct table_elt *p0, *p1;
ecb6ee6d 3381 rtx true_rtx, false_rtx;
5c4c31e3 3382 enum machine_mode mode_arg1;
50cf1c21 3383
95204692 3384 if (SCALAR_FLOAT_MODE_P (mode))
50cf1c21 3385 {
ecb6ee6d 3386#ifdef FLOAT_STORE_FLAG_VALUE
9c811526 3387 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
d4c5e26d 3388 (FLOAT_STORE_FLAG_VALUE (mode), mode));
ecb6ee6d 3389#else
3390 true_rtx = NULL_RTX;
3391#endif
9c811526 3392 false_rtx = CONST0_RTX (mode);
50cf1c21 3393 }
ecb6ee6d 3394 else
3395 {
3396 true_rtx = const_true_rtx;
3397 false_rtx = const0_rtx;
3398 }
752df20e 3399
5c4c31e3 3400 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3401 &mode_arg0, &mode_arg1);
752df20e 3402
5c4c31e3 3403 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3404 what kinds of things are being compared, so we can't do
3405 anything with this comparison. */
752df20e 3406
3407 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3408 break;
3409
58a1adea 3410 const_arg0 = equiv_constant (folded_arg0);
3411 const_arg1 = equiv_constant (folded_arg1);
3412
a92771b8 3413 /* If we do not now have two constants being compared, see
3414 if we can nevertheless deduce some things about the
3415 comparison. */
752df20e 3416 if (const_arg0 == 0 || const_arg1 == 0)
3417 {
9d3874a6 3418 if (const_arg1 != NULL)
3419 {
3420 rtx cheapest_simplification;
3421 int cheapest_cost;
3422 rtx simp_result;
3423 struct table_elt *p;
3424
3425 /* See if we can find an equivalent of folded_arg0
3426 that gets us a cheaper expression, possibly a
3427 constant through simplifications. */
3428 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3429 mode_arg0);
48e1416a 3430
9d3874a6 3431 if (p != NULL)
3432 {
3433 cheapest_simplification = x;
3434 cheapest_cost = COST (x);
3435
3436 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3437 {
3438 int cost;
3439
3440 /* If the entry isn't valid, skip it. */
3441 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3442 continue;
3443
3444 /* Try to simplify using this equivalence. */
3445 simp_result
3446 = simplify_relational_operation (code, mode,
3447 mode_arg0,
3448 p->exp,
3449 const_arg1);
3450
3451 if (simp_result == NULL)
3452 continue;
3453
3454 cost = COST (simp_result);
3455 if (cost < cheapest_cost)
3456 {
3457 cheapest_cost = cost;
3458 cheapest_simplification = simp_result;
3459 }
3460 }
3461
3462 /* If we have a cheaper expression now, use that
3463 and try folding it further, from the top. */
3464 if (cheapest_simplification != x)
045ed337 3465 return fold_rtx (copy_rtx (cheapest_simplification),
3466 insn);
9d3874a6 3467 }
3468 }
3469
03a563f6 3470 /* See if the two operands are the same. */
3471
3bac3cce 3472 if ((REG_P (folded_arg0)
3473 && REG_P (folded_arg1)
3474 && (REG_QTY (REGNO (folded_arg0))
3475 == REG_QTY (REGNO (folded_arg1))))
03a563f6 3476 || ((p0 = lookup (folded_arg0,
78d140c9 3477 SAFE_HASH (folded_arg0, mode_arg0),
3478 mode_arg0))
03a563f6 3479 && (p1 = lookup (folded_arg1,
78d140c9 3480 SAFE_HASH (folded_arg1, mode_arg0),
3481 mode_arg0))
03a563f6 3482 && p0->first_same_value == p1->first_same_value))
3bac3cce 3483 folded_arg1 = folded_arg0;
752df20e 3484
3485 /* If FOLDED_ARG0 is a register, see if the comparison we are
3486 doing now is either the same as we did before or the reverse
3487 (we only check the reverse if not floating-point). */
8ad4c111 3488 else if (REG_P (folded_arg0))
752df20e 3489 {
d1264606 3490 int qty = REG_QTY (REGNO (folded_arg0));
752df20e 3491
a7f3b1c7 3492 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3493 {
3494 struct qty_table_elem *ent = &qty_table[qty];
3495
3496 if ((comparison_dominates_p (ent->comparison_code, code)
a4110d9a 3497 || (! FLOAT_MODE_P (mode_arg0)
3498 && comparison_dominates_p (ent->comparison_code,
3499 reverse_condition (code))))
a7f3b1c7 3500 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3501 || (const_arg1
3502 && rtx_equal_p (ent->comparison_const,
3503 const_arg1))
8ad4c111 3504 || (REG_P (folded_arg1)
a7f3b1c7 3505 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
ecb6ee6d 3506 {
3507 if (comparison_dominates_p (ent->comparison_code, code))
3508 {
3509 if (true_rtx)
3510 return true_rtx;
3511 else
3512 break;
3513 }
3514 else
3515 return false_rtx;
3516 }
a7f3b1c7 3517 }
752df20e 3518 }
3519 }
3520 }
3521
3522 /* If we are comparing against zero, see if the first operand is
3523 equivalent to an IOR with a constant. If so, we may be able to
3524 determine the result of this comparison. */
3bac3cce 3525 if (const_arg1 == const0_rtx && !const_arg0)
752df20e 3526 {
3527 rtx y = lookup_as_function (folded_arg0, IOR);
3528 rtx inner_const;
3529
3530 if (y != 0
3531 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
971ba038 3532 && CONST_INT_P (inner_const)
752df20e 3533 && INTVAL (inner_const) != 0)
3bac3cce 3534 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
752df20e 3535 }
3536
ac503e50 3537 {
3538 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3539 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
d328ebdf 3540 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
ac503e50 3541 }
752df20e 3542 break;
3543
6720e96c 3544 case RTX_BIN_ARITH:
3545 case RTX_COMM_ARITH:
752df20e 3546 switch (code)
3547 {
3548 case PLUS:
3549 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3550 with that LABEL_REF as its second operand. If so, the result is
3551 the first operand of that MINUS. This handles switches with an
3552 ADDR_DIFF_VEC table. */
3553 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3554 {
e6d1f05b 3555 rtx y
3556 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
b74befc5 3557 : lookup_as_function (folded_arg0, MINUS);
752df20e 3558
3559 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3560 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3561 return XEXP (y, 0);
528b0df8 3562
3563 /* Now try for a CONST of a MINUS like the above. */
e6d1f05b 3564 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3565 : lookup_as_function (folded_arg0, CONST))) != 0
528b0df8 3566 && GET_CODE (XEXP (y, 0)) == MINUS
3567 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
b74befc5 3568 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
528b0df8 3569 return XEXP (XEXP (y, 0), 0);
752df20e 3570 }
f7cf73ed 3571
e6d1f05b 3572 /* Likewise if the operands are in the other order. */
3573 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3574 {
3575 rtx y
3576 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
b74befc5 3577 : lookup_as_function (folded_arg1, MINUS);
e6d1f05b 3578
3579 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3580 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3581 return XEXP (y, 0);
3582
3583 /* Now try for a CONST of a MINUS like the above. */
3584 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3585 : lookup_as_function (folded_arg1, CONST))) != 0
3586 && GET_CODE (XEXP (y, 0)) == MINUS
3587 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
b74befc5 3588 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
e6d1f05b 3589 return XEXP (XEXP (y, 0), 0);
3590 }
3591
f7cf73ed 3592 /* If second operand is a register equivalent to a negative
3593 CONST_INT, see if we can find a register equivalent to the
3594 positive constant. Make a MINUS if so. Don't do this for
337bf63c 3595 a non-negative constant since we might then alternate between
3fb1e43b 3596 choosing positive and negative constants. Having the positive
337bf63c 3597 constant previously-used is the more common case. Be sure
3598 the resulting constant is non-negative; if const_arg1 were
3599 the smallest negative number this would overflow: depending
3600 on the mode, this would either just be the same value (and
3601 hence not save anything) or be incorrect. */
971ba038 3602 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
337bf63c 3603 && INTVAL (const_arg1) < 0
aaa2446c 3604 /* This used to test
3605
b74befc5 3606 -INTVAL (const_arg1) >= 0
aaa2446c 3607
3608 But The Sun V5.0 compilers mis-compiled that test. So
3609 instead we test for the problematic value in a more direct
3610 manner and hope the Sun compilers get it correct. */
76d98649 3611 && INTVAL (const_arg1) !=
3612 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
8ad4c111 3613 && REG_P (folded_arg1))
f7cf73ed 3614 {
b74befc5 3615 rtx new_const = GEN_INT (-INTVAL (const_arg1));
f7cf73ed 3616 struct table_elt *p
78d140c9 3617 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
f7cf73ed 3618
3619 if (p)
3620 for (p = p->first_same_value; p; p = p->next_same_value)
8ad4c111 3621 if (REG_P (p->exp))
af21a202 3622 return simplify_gen_binary (MINUS, mode, folded_arg0,
3623 canon_reg (p->exp, NULL_RTX));
f7cf73ed 3624 }
5c4c31e3 3625 goto from_plus;
3626
3627 case MINUS:
3628 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3629 If so, produce (PLUS Z C2-C). */
971ba038 3630 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
5c4c31e3 3631 {
3632 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
971ba038 3633 if (y && CONST_INT_P (XEXP (y, 1)))
a66a39f2 3634 return fold_rtx (plus_constant (copy_rtx (y),
3635 -INTVAL (const_arg1)),
63267a4b 3636 NULL_RTX);
5c4c31e3 3637 }
752df20e 3638
b74befc5 3639 /* Fall through. */
752df20e 3640
5c4c31e3 3641 from_plus:
752df20e 3642 case SMIN: case SMAX: case UMIN: case UMAX:
3643 case IOR: case AND: case XOR:
7a4fa2a1 3644 case MULT:
752df20e 3645 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3646 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3647 is known to be of similar form, we may be able to replace the
3648 operation with a combined operation. This may eliminate the
3649 intermediate operation if every use is simplified in this way.
3650 Note that the similar optimization done by combine.c only works
3651 if the intermediate operation's result has only one reference. */
3652
8ad4c111 3653 if (REG_P (folded_arg0)
971ba038 3654 && const_arg1 && CONST_INT_P (const_arg1))
752df20e 3655 {
3656 int is_shift
3657 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
8f353ea8 3658 rtx y, inner_const, new_const;
6026d749 3659 rtx canon_const_arg1 = const_arg1;
752df20e 3660 enum rtx_code associate_code;
752df20e 3661
0518a465 3662 if (is_shift
3663 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3664 || INTVAL (const_arg1) < 0))
3665 {
3666 if (SHIFT_COUNT_TRUNCATED)
6026d749 3667 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3668 & (GET_MODE_BITSIZE (mode)
3669 - 1));
0518a465 3670 else
3671 break;
3672 }
3673
8f353ea8 3674 y = lookup_as_function (folded_arg0, code);
0518a465 3675 if (y == 0)
3676 break;
0518a465 3677
3678 /* If we have compiled a statement like
3679 "if (x == (x & mask1))", and now are looking at
3680 "x & mask2", we will have a case where the first operand
3681 of Y is the same as our first operand. Unless we detect
3682 this case, an infinite loop will result. */
3683 if (XEXP (y, 0) == folded_arg0)
752df20e 3684 break;
3685
8f353ea8 3686 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
971ba038 3687 if (!inner_const || !CONST_INT_P (inner_const))
8f353ea8 3688 break;
3689
752df20e 3690 /* Don't associate these operations if they are a PLUS with the
3691 same constant and it is a power of two. These might be doable
3692 with a pre- or post-increment. Similarly for two subtracts of
3693 identical powers of two with post decrement. */
3694
9cae6d48 3695 if (code == PLUS && const_arg1 == inner_const
e4e498cf 3696 && ((HAVE_PRE_INCREMENT
3697 && exact_log2 (INTVAL (const_arg1)) >= 0)
3698 || (HAVE_POST_INCREMENT
3699 && exact_log2 (INTVAL (const_arg1)) >= 0)
3700 || (HAVE_PRE_DECREMENT
3701 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3702 || (HAVE_POST_DECREMENT
3703 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
752df20e 3704 break;
3705
e7323ddd 3706 /* ??? Vector mode shifts by scalar
3707 shift operand are not supported yet. */
3708 if (is_shift && VECTOR_MODE_P (mode))
3709 break;
3710
0518a465 3711 if (is_shift
3712 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3713 || INTVAL (inner_const) < 0))
3714 {
3715 if (SHIFT_COUNT_TRUNCATED)
3716 inner_const = GEN_INT (INTVAL (inner_const)
3717 & (GET_MODE_BITSIZE (mode) - 1));
3718 else
3719 break;
3720 }
3721
752df20e 3722 /* Compute the code used to compose the constants. For example,
7a4fa2a1 3723 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
752df20e 3724
7a4fa2a1 3725 associate_code = (is_shift || code == MINUS ? PLUS : code);
752df20e 3726
3727 new_const = simplify_binary_operation (associate_code, mode,
6026d749 3728 canon_const_arg1,
3729 inner_const);
752df20e 3730
3731 if (new_const == 0)
3732 break;
3733
3734 /* If we are associating shift operations, don't let this
94ad8c53 3735 produce a shift of the size of the object or larger.
3736 This could occur when we follow a sign-extend by a right
3737 shift on a machine that does a sign-extend as a pair
3738 of shifts. */
752df20e 3739
0518a465 3740 if (is_shift
971ba038 3741 && CONST_INT_P (new_const)
94ad8c53 3742 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3743 {
3744 /* As an exception, we can turn an ASHIFTRT of this
3745 form into a shift of the number of bits - 1. */
3746 if (code == ASHIFTRT)
3747 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
0518a465 3748 else if (!side_effects_p (XEXP (y, 0)))
3749 return CONST0_RTX (mode);
94ad8c53 3750 else
3751 break;
3752 }
752df20e 3753
3754 y = copy_rtx (XEXP (y, 0));
3755
3756 /* If Y contains our first operand (the most common way this
3757 can happen is if Y is a MEM), we would do into an infinite
3758 loop if we tried to fold it. So don't in that case. */
3759
3760 if (! reg_mentioned_p (folded_arg0, y))
3761 y = fold_rtx (y, insn);
3762
af21a202 3763 return simplify_gen_binary (code, mode, y, new_const);
752df20e 3764 }
0dbd1c74 3765 break;
3766
7a4fa2a1 3767 case DIV: case UDIV:
3768 /* ??? The associative optimization performed immediately above is
3769 also possible for DIV and UDIV using associate_code of MULT.
3770 However, we would need extra code to verify that the
3771 multiplication does not overflow, that is, there is no overflow
3772 in the calculation of new_const. */
3773 break;
3774
0dbd1c74 3775 default:
3776 break;
752df20e 3777 }
3778
d328ebdf 3779 new_rtx = simplify_binary_operation (code, mode,
752df20e 3780 const_arg0 ? const_arg0 : folded_arg0,
3781 const_arg1 ? const_arg1 : folded_arg1);
3782 break;
3783
6720e96c 3784 case RTX_OBJ:
752df20e 3785 /* (lo_sum (high X) X) is simply X. */
3786 if (code == LO_SUM && const_arg0 != 0
3787 && GET_CODE (const_arg0) == HIGH
3788 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3789 return const_arg1;
3790 break;
3791
6720e96c 3792 case RTX_TERNARY:
3793 case RTX_BITFIELD_OPS:
d328ebdf 3794 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
752df20e 3795 const_arg0 ? const_arg0 : folded_arg0,
3796 const_arg1 ? const_arg1 : folded_arg1,
3797 const_arg2 ? const_arg2 : XEXP (x, 2));
3798 break;
dd5ff96d 3799
6720e96c 3800 default:
3801 break;
752df20e 3802 }
3803
d328ebdf 3804 return new_rtx ? new_rtx : x;
752df20e 3805}
3806\f
3807/* Return a constant value currently equivalent to X.
3808 Return 0 if we don't know one. */
3809
3810static rtx
8ec3a57b 3811equiv_constant (rtx x)
752df20e 3812{
8ad4c111 3813 if (REG_P (x)
a7f3b1c7 3814 && REGNO_QTY_VALID_P (REGNO (x)))
3815 {
3816 int x_q = REG_QTY (REGNO (x));
3817 struct qty_table_elem *x_ent = &qty_table[x_q];
3818
3819 if (x_ent->const_rtx)
316f48ea 3820 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
a7f3b1c7 3821 }
752df20e 3822
f2f6be45 3823 if (x == 0 || CONSTANT_P (x))
752df20e 3824 return x;
3825
42a3a38b 3826 if (GET_CODE (x) == SUBREG)
3827 {
5216d9e8 3828 enum machine_mode mode = GET_MODE (x);
3829 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
d328ebdf 3830 rtx new_rtx;
42a3a38b 3831
3832 /* See if we previously assigned a constant value to this SUBREG. */
d328ebdf 3833 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3834 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3835 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3836 return new_rtx;
42a3a38b 3837
5216d9e8 3838 /* If we didn't and if doing so makes sense, see if we previously
3839 assigned a constant value to the enclosing word mode SUBREG. */
3840 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3841 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3842 {
3843 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3844 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3845 {
3846 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3847 new_rtx = lookup_as_function (y, CONST_INT);
3848 if (new_rtx)
3849 return gen_lowpart (mode, new_rtx);
3850 }
3851 }
3852
3853 /* Otherwise see if we already have a constant for the inner REG. */
42a3a38b 3854 if (REG_P (SUBREG_REG (x))
d328ebdf 3855 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
5216d9e8 3856 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
42a3a38b 3857
3858 return 0;
3859 }
3860
3861 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3862 the hash table in case its value was seen before. */
e516eaa9 3863
e16ceb8e 3864 if (MEM_P (x))
e516eaa9 3865 {
3866 struct table_elt *elt;
3867
42a3a38b 3868 x = avoid_constant_pool_reference (x);
e516eaa9 3869 if (CONSTANT_P (x))
3870 return x;
3871
78d140c9 3872 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
e516eaa9 3873 if (elt == 0)
3874 return 0;
3875
3876 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3877 if (elt->is_const && CONSTANT_P (elt->exp))
3878 return elt->exp;
3879 }
3880
752df20e 3881 return 0;
3882}
3883\f
bbe0b6d7 3884/* Given INSN, a jump insn, TAKEN indicates if we are following the
3885 "taken" branch.
752df20e 3886
3887 In certain cases, this can cause us to add an equivalence. For example,
cb10db9d 3888 if we are following the taken case of
8ec3a57b 3889 if (i == 2)
752df20e 3890 we can add the fact that `i' and '2' are now equivalent.
3891
3892 In any case, we can record that this comparison was passed. If the same
3893 comparison is seen later, we will know its value. */
3894
3895static void
bbe0b6d7 3896record_jump_equiv (rtx insn, bool taken)
752df20e 3897{
3898 int cond_known_true;
3899 rtx op0, op1;
b2816317 3900 rtx set;
5c4c31e3 3901 enum machine_mode mode, mode0, mode1;
752df20e 3902 int reversed_nonequality = 0;
3903 enum rtx_code code;
3904
3905 /* Ensure this is the right kind of insn. */
bbe0b6d7 3906 gcc_assert (any_condjump_p (insn));
3907
b2816317 3908 set = pc_set (insn);
752df20e 3909
3910 /* See if this jump condition is known true or false. */
3911 if (taken)
b2816317 3912 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
752df20e 3913 else
b2816317 3914 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
752df20e 3915
3916 /* Get the type of comparison being done and the operands being compared.
3917 If we had to reverse a non-equality condition, record that fact so we
3918 know that it isn't valid for floating-point. */
b2816317 3919 code = GET_CODE (XEXP (SET_SRC (set), 0));
3920 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3921 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
752df20e 3922
5c4c31e3 3923 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
752df20e 3924 if (! cond_known_true)
3925 {
7da6ea0c 3926 code = reversed_comparison_code_parts (code, op0, op1, insn);
a4110d9a 3927
3928 /* Don't remember if we can't find the inverse. */
3929 if (code == UNKNOWN)
3930 return;
752df20e 3931 }
3932
3933 /* The mode is the mode of the non-constant. */
5c4c31e3 3934 mode = mode0;
3935 if (mode1 != VOIDmode)
3936 mode = mode1;
752df20e 3937
3938 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3939}
3940
cfa1a80d 3941/* Yet another form of subreg creation. In this case, we want something in
3942 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3943
3944static rtx
3945record_jump_cond_subreg (enum machine_mode mode, rtx op)
3946{
3947 enum machine_mode op_mode = GET_MODE (op);
3948 if (op_mode == mode || op_mode == VOIDmode)
3949 return op;
3950 return lowpart_subreg (mode, op, op_mode);
3951}
3952
752df20e 3953/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3954 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3955 Make any useful entries we can with that information. Called from
3956 above function and called recursively. */
3957
3958static void
8ec3a57b 3959record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3960 rtx op1, int reversed_nonequality)
752df20e 3961{
952bc06d 3962 unsigned op0_hash, op1_hash;
0af17926 3963 int op0_in_memory, op1_in_memory;
752df20e 3964 struct table_elt *op0_elt, *op1_elt;
3965
3966 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3967 we know that they are also equal in the smaller mode (this is also
3968 true for all smaller modes whether or not there is a SUBREG, but
f5d1f9f9 3969 is not worth testing for with no SUBREG). */
752df20e 3970
3c5cc27f 3971 /* Note that GET_MODE (op0) may not equal MODE. */
752df20e 3972 if (code == EQ && GET_CODE (op0) == SUBREG
3c5cc27f 3973 && (GET_MODE_SIZE (GET_MODE (op0))
3974 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
752df20e 3975 {
3976 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
cfa1a80d 3977 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3978 if (tem)
3979 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3980 reversed_nonequality);
752df20e 3981 }
3982
3983 if (code == EQ && GET_CODE (op1) == SUBREG
3c5cc27f 3984 && (GET_MODE_SIZE (GET_MODE (op1))
3985 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
752df20e 3986 {
3987 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
cfa1a80d 3988 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3989 if (tem)
3990 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3991 reversed_nonequality);
752df20e 3992 }
3993
cb10db9d 3994 /* Similarly, if this is an NE comparison, and either is a SUBREG
752df20e 3995 making a smaller mode, we know the whole thing is also NE. */
3996
3c5cc27f 3997 /* Note that GET_MODE (op0) may not equal MODE;
3998 if we test MODE instead, we can get an infinite recursion
3999 alternating between two modes each wider than MODE. */
4000
752df20e 4001 if (code == NE && GET_CODE (op0) == SUBREG
4002 && subreg_lowpart_p (op0)
3c5cc27f 4003 && (GET_MODE_SIZE (GET_MODE (op0))
4004 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
752df20e 4005 {
4006 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
cfa1a80d 4007 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4008 if (tem)
4009 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4010 reversed_nonequality);
752df20e 4011 }
4012
4013 if (code == NE && GET_CODE (op1) == SUBREG
4014 && subreg_lowpart_p (op1)
3c5cc27f 4015 && (GET_MODE_SIZE (GET_MODE (op1))
4016 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
752df20e 4017 {
4018 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
cfa1a80d 4019 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4020 if (tem)
4021 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4022 reversed_nonequality);
752df20e 4023 }
4024
4025 /* Hash both operands. */
4026
4027 do_not_record = 0;
4028 hash_arg_in_memory = 0;
952bc06d 4029 op0_hash = HASH (op0, mode);
752df20e 4030 op0_in_memory = hash_arg_in_memory;
752df20e 4031
4032 if (do_not_record)
4033 return;
4034
4035 do_not_record = 0;
4036 hash_arg_in_memory = 0;
952bc06d 4037 op1_hash = HASH (op1, mode);
752df20e 4038 op1_in_memory = hash_arg_in_memory;
cb10db9d 4039
752df20e 4040 if (do_not_record)
4041 return;
4042
4043 /* Look up both operands. */
952bc06d 4044 op0_elt = lookup (op0, op0_hash, mode);
4045 op1_elt = lookup (op1, op1_hash, mode);
752df20e 4046
9f8339f2 4047 /* If both operands are already equivalent or if they are not in the
4048 table but are identical, do nothing. */
4049 if ((op0_elt != 0 && op1_elt != 0
4050 && op0_elt->first_same_value == op1_elt->first_same_value)
4051 || op0 == op1 || rtx_equal_p (op0, op1))
4052 return;
4053
752df20e 4054 /* If we aren't setting two things equal all we can do is save this
5b620701 4055 comparison. Similarly if this is floating-point. In the latter
4056 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4057 If we record the equality, we might inadvertently delete code
4058 whose intent was to change -0 to +0. */
4059
c1712420 4060 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
752df20e 4061 {
a7f3b1c7 4062 struct qty_table_elem *ent;
4063 int qty;
4064
752df20e 4065 /* If we reversed a floating-point comparison, if OP0 is not a
4066 register, or if OP1 is neither a register or constant, we can't
4067 do anything. */
4068
8ad4c111 4069 if (!REG_P (op1))
752df20e 4070 op1 = equiv_constant (op1);
4071
c1712420 4072 if ((reversed_nonequality && FLOAT_MODE_P (mode))
8ad4c111 4073 || !REG_P (op0) || op1 == 0)
752df20e 4074 return;
4075
4076 /* Put OP0 in the hash table if it isn't already. This gives it a
4077 new quantity number. */
4078 if (op0_elt == 0)
4079 {
4679ade3 4080 if (insert_regs (op0, NULL, 0))
752df20e 4081 {
4082 rehash_using_reg (op0);
952bc06d 4083 op0_hash = HASH (op0, mode);
a45f1da6 4084
4085 /* If OP0 is contained in OP1, this changes its hash code
4086 as well. Faster to rehash than to check, except
4087 for the simple case of a constant. */
4088 if (! CONSTANT_P (op1))
952bc06d 4089 op1_hash = HASH (op1,mode);
752df20e 4090 }
4091
4679ade3 4092 op0_elt = insert (op0, NULL, op0_hash, mode);
752df20e 4093 op0_elt->in_memory = op0_in_memory;
752df20e 4094 }
4095
a7f3b1c7 4096 qty = REG_QTY (REGNO (op0));
4097 ent = &qty_table[qty];
4098
4099 ent->comparison_code = code;
8ad4c111 4100 if (REG_P (op1))
752df20e 4101 {
95f65c26 4102 /* Look it up again--in case op0 and op1 are the same. */
952bc06d 4103 op1_elt = lookup (op1, op1_hash, mode);
95f65c26 4104
752df20e 4105 /* Put OP1 in the hash table so it gets a new quantity number. */
4106 if (op1_elt == 0)
4107 {
4679ade3 4108 if (insert_regs (op1, NULL, 0))
752df20e 4109 {
4110 rehash_using_reg (op1);
952bc06d 4111 op1_hash = HASH (op1, mode);
752df20e 4112 }
4113
4679ade3 4114 op1_elt = insert (op1, NULL, op1_hash, mode);
752df20e 4115 op1_elt->in_memory = op1_in_memory;
752df20e 4116 }
4117
a7f3b1c7 4118 ent->comparison_const = NULL_RTX;
4119 ent->comparison_qty = REG_QTY (REGNO (op1));
752df20e 4120 }
4121 else
4122 {
a7f3b1c7 4123 ent->comparison_const = op1;
4124 ent->comparison_qty = -1;
752df20e 4125 }
4126
4127 return;
4128 }
4129
56e155ea 4130 /* If either side is still missing an equivalence, make it now,
4131 then merge the equivalences. */
752df20e 4132
752df20e 4133 if (op0_elt == 0)
4134 {
4679ade3 4135 if (insert_regs (op0, NULL, 0))
752df20e 4136 {
4137 rehash_using_reg (op0);
952bc06d 4138 op0_hash = HASH (op0, mode);
752df20e 4139 }
4140
4679ade3 4141 op0_elt = insert (op0, NULL, op0_hash, mode);
752df20e 4142 op0_elt->in_memory = op0_in_memory;
752df20e 4143 }
4144
4145 if (op1_elt == 0)
4146 {
4679ade3 4147 if (insert_regs (op1, NULL, 0))
752df20e 4148 {
4149 rehash_using_reg (op1);
952bc06d 4150 op1_hash = HASH (op1, mode);
752df20e 4151 }
4152
4679ade3 4153 op1_elt = insert (op1, NULL, op1_hash, mode);
752df20e 4154 op1_elt->in_memory = op1_in_memory;
752df20e 4155 }
56e155ea 4156
4157 merge_equiv_classes (op0_elt, op1_elt);
752df20e 4158}
4159\f
4160/* CSE processing for one instruction.
4161 First simplify sources and addresses of all assignments
4162 in the instruction, using previously-computed equivalents values.
4163 Then install the new sources and destinations in the table
1e5b92fa 4164 of available values. */
752df20e 4165
4166/* Data on one SET contained in the instruction. */
4167
4168struct set
4169{
4170 /* The SET rtx itself. */
4171 rtx rtl;
4172 /* The SET_SRC of the rtx (the original value, if it is changing). */
4173 rtx src;
4174 /* The hash-table element for the SET_SRC of the SET. */
4175 struct table_elt *src_elt;
952bc06d 4176 /* Hash value for the SET_SRC. */
4177 unsigned src_hash;
4178 /* Hash value for the SET_DEST. */
4179 unsigned dest_hash;
752df20e 4180 /* The SET_DEST, with SUBREG, etc., stripped. */
4181 rtx inner_dest;
cb10db9d 4182 /* Nonzero if the SET_SRC is in memory. */
752df20e 4183 char src_in_memory;
752df20e 4184 /* Nonzero if the SET_SRC contains something
4185 whose value cannot be predicted and understood. */
4186 char src_volatile;
d8b9732d 4187 /* Original machine mode, in case it becomes a CONST_INT.
4188 The size of this field should match the size of the mode
4189 field of struct rtx_def (see rtl.h). */
4190 ENUM_BITFIELD(machine_mode) mode : 8;
752df20e 4191 /* A constant equivalent for SET_SRC, if any. */
4192 rtx src_const;
952bc06d 4193 /* Hash value of constant equivalent for SET_SRC. */
4194 unsigned src_const_hash;
752df20e 4195 /* Table entry for constant equivalent for SET_SRC, if any. */
4196 struct table_elt *src_const_elt;
977ffed2 4197 /* Table entry for the destination address. */
4198 struct table_elt *dest_addr_elt;
752df20e 4199};
4200
4201static void
1e5b92fa 4202cse_insn (rtx insn)
752df20e 4203{
19cb6b50 4204 rtx x = PATTERN (insn);
4205 int i;
384770d0 4206 rtx tem;
19cb6b50 4207 int n_sets = 0;
752df20e 4208
752df20e 4209 rtx src_eqv = 0;
4210 struct table_elt *src_eqv_elt = 0;
df9f2bb6 4211 int src_eqv_volatile = 0;
4212 int src_eqv_in_memory = 0;
df9f2bb6 4213 unsigned src_eqv_hash = 0;
752df20e 4214
4679ade3 4215 struct set *sets = (struct set *) 0;
752df20e 4216
4217 this_insn = insn;
9fdf0f08 4218#ifdef HAVE_cc0
4219 /* Records what this insn does to set CC0. */
4220 this_insn_cc0 = 0;
4221 this_insn_cc0_mode = VOIDmode;
4222#endif
752df20e 4223
4224 /* Find all the SETs and CLOBBERs in this instruction.
4225 Record all the SETs in the array `set' and count them.
4226 Also determine whether there is a CLOBBER that invalidates
4227 all memory references, or all references at varying addresses. */
4228
6d7dc5b9 4229 if (CALL_P (insn))
b84155cd 4230 {
4231 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
ddaf7ad3 4232 {
4233 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4234 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4235 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4236 }
b84155cd 4237 }
4238
752df20e 4239 if (GET_CODE (x) == SET)
4240 {
65b198c2 4241 sets = XALLOCA (struct set);
752df20e 4242 sets[0].rtl = x;
4243
4244 /* Ignore SETs that are unconditional jumps.
4245 They never need cse processing, so this does not hurt.
4246 The reason is not efficiency but rather
4247 so that we can test at the end for instructions
4248 that have been simplified to unconditional jumps
4249 and not be misled by unchanged instructions
4250 that were unconditional jumps to begin with. */
4251 if (SET_DEST (x) == pc_rtx
4252 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4253 ;
4254
4255 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4256 The hard function value register is used only once, to copy to
4257 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4258 Ensure we invalidate the destination register. On the 80386 no
8d5dd220 4259 other code would invalidate it since it is a fixed_reg.
a92771b8 4260 We need not check the return of apply_change_group; see canon_reg. */
752df20e 4261
4262 else if (GET_CODE (SET_SRC (x)) == CALL)
4263 {
4264 canon_reg (SET_SRC (x), insn);
8b82837b 4265 apply_change_group ();
752df20e 4266 fold_rtx (SET_SRC (x), insn);
fdb25961 4267 invalidate (SET_DEST (x), VOIDmode);
752df20e 4268 }
4269 else
4270 n_sets = 1;
4271 }
4272 else if (GET_CODE (x) == PARALLEL)
4273 {
19cb6b50 4274 int lim = XVECLEN (x, 0);
752df20e 4275
65b198c2 4276 sets = XALLOCAVEC (struct set, lim);
752df20e 4277
4278 /* Find all regs explicitly clobbered in this insn,
4279 and ensure they are not replaced with any other regs
4280 elsewhere in this insn.
4281 When a reg that is clobbered is also used for input,
4282 we should presume that that is for a reason,
4283 and we should not substitute some other register
4284 which is not supposed to be clobbered.
4285 Therefore, this loop cannot be merged into the one below
5202ecf2 4286 because a CALL may precede a CLOBBER and refer to the
752df20e 4287 value clobbered. We must not let a canonicalization do
4288 anything in that case. */
4289 for (i = 0; i < lim; i++)
4290 {
19cb6b50 4291 rtx y = XVECEXP (x, 0, i);
319134e7 4292 if (GET_CODE (y) == CLOBBER)
4293 {
4294 rtx clobbered = XEXP (y, 0);
4295
8ad4c111 4296 if (REG_P (clobbered)
319134e7 4297 || GET_CODE (clobbered) == SUBREG)
fdb25961 4298 invalidate (clobbered, VOIDmode);
319134e7 4299 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4300 || GET_CODE (clobbered) == ZERO_EXTRACT)
fdb25961 4301 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
319134e7 4302 }
752df20e 4303 }
cb10db9d 4304
752df20e 4305 for (i = 0; i < lim; i++)
4306 {
19cb6b50 4307 rtx y = XVECEXP (x, 0, i);
752df20e 4308 if (GET_CODE (y) == SET)
4309 {
8d5dd220 4310 /* As above, we ignore unconditional jumps and call-insns and
4311 ignore the result of apply_change_group. */
752df20e 4312 if (GET_CODE (SET_SRC (y)) == CALL)
4313 {
4314 canon_reg (SET_SRC (y), insn);
8b82837b 4315 apply_change_group ();
752df20e 4316 fold_rtx (SET_SRC (y), insn);
fdb25961 4317 invalidate (SET_DEST (y), VOIDmode);
752df20e 4318 }
4319 else if (SET_DEST (y) == pc_rtx
4320 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4321 ;
4322 else
4323 sets[n_sets++].rtl = y;
4324 }
4325 else if (GET_CODE (y) == CLOBBER)
4326 {
ea0cb7ae 4327 /* If we clobber memory, canon the address.
752df20e 4328 This does nothing when a register is clobbered
4329 because we have already invalidated the reg. */
e16ceb8e 4330 if (MEM_P (XEXP (y, 0)))
3072d30e 4331 canon_reg (XEXP (y, 0), insn);
752df20e 4332 }
4333 else if (GET_CODE (y) == USE
8ad4c111 4334 && ! (REG_P (XEXP (y, 0))
752df20e 4335 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
3072d30e 4336 canon_reg (y, insn);
752df20e 4337 else if (GET_CODE (y) == CALL)
4338 {
8d5dd220 4339 /* The result of apply_change_group can be ignored; see
4340 canon_reg. */
752df20e 4341 canon_reg (y, insn);
8b82837b 4342 apply_change_group ();
752df20e 4343 fold_rtx (y, insn);
4344 }
4345 }
4346 }
4347 else if (GET_CODE (x) == CLOBBER)
4348 {
e16ceb8e 4349 if (MEM_P (XEXP (x, 0)))
3072d30e 4350 canon_reg (XEXP (x, 0), insn);
752df20e 4351 }
4352
4353 /* Canonicalize a USE of a pseudo register or memory location. */
4354 else if (GET_CODE (x) == USE
8ad4c111 4355 && ! (REG_P (XEXP (x, 0))
752df20e 4356 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
3072d30e 4357 canon_reg (XEXP (x, 0), insn);
752df20e 4358 else if (GET_CODE (x) == CALL)
4359 {
8d5dd220 4360 /* The result of apply_change_group can be ignored; see canon_reg. */
752df20e 4361 canon_reg (x, insn);
8b82837b 4362 apply_change_group ();
752df20e 4363 fold_rtx (x, insn);
4364 }
9845d120 4365 else if (DEBUG_INSN_P (insn))
4366 canon_reg (PATTERN (insn), insn);
752df20e 4367
1ca3f140 4368 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4369 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4370 is handled specially for this case, and if it isn't set, then there will
c3418f42 4371 be no equivalence for the destination. */
384770d0 4372 if (n_sets == 1 && REG_NOTES (insn) != 0
4373 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
1ca3f140 4374 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4375 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
24d87432 4376 {
3072d30e 4377 /* The result of apply_change_group can be ignored; see canon_reg. */
4378 canon_reg (XEXP (tem, 0), insn);
4379 apply_change_group ();
4380 src_eqv = fold_rtx (XEXP (tem, 0), insn);
eec33aca 4381 XEXP (tem, 0) = copy_rtx (src_eqv);
3072d30e 4382 df_notes_rescan (insn);
24d87432 4383 }
752df20e 4384
4385 /* Canonicalize sources and addresses of destinations.
4386 We do this in a separate pass to avoid problems when a MATCH_DUP is
4387 present in the insn pattern. In that case, we want to ensure that
4388 we don't break the duplicate nature of the pattern. So we will replace
4389 both operands at the same time. Otherwise, we would fail to find an
4390 equivalent substitution in the loop calling validate_change below.
752df20e 4391
4392 We used to suppress canonicalization of DEST if it appears in SRC,
8b82837b 4393 but we don't do this any more. */
752df20e 4394
4395 for (i = 0; i < n_sets; i++)
4396 {
4397 rtx dest = SET_DEST (sets[i].rtl);
4398 rtx src = SET_SRC (sets[i].rtl);
d328ebdf 4399 rtx new_rtx = canon_reg (src, insn);
752df20e 4400
d328ebdf 4401 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
752df20e 4402
476d094d 4403 if (GET_CODE (dest) == ZERO_EXTRACT)
752df20e 4404 {
4405 validate_change (insn, &XEXP (dest, 1),
8b82837b 4406 canon_reg (XEXP (dest, 1), insn), 1);
752df20e 4407 validate_change (insn, &XEXP (dest, 2),
8b82837b 4408 canon_reg (XEXP (dest, 2), insn), 1);
752df20e 4409 }
4410
476d094d 4411 while (GET_CODE (dest) == SUBREG
752df20e 4412 || GET_CODE (dest) == ZERO_EXTRACT
476d094d 4413 || GET_CODE (dest) == STRICT_LOW_PART)
752df20e 4414 dest = XEXP (dest, 0);
4415
e16ceb8e 4416 if (MEM_P (dest))
752df20e 4417 canon_reg (dest, insn);
4418 }
4419
8b82837b 4420 /* Now that we have done all the replacements, we can apply the change
4421 group and see if they all work. Note that this will cause some
4422 canonicalizations that would have worked individually not to be applied
4423 because some other canonicalization didn't work, but this should not
cb10db9d 4424 occur often.
8d5dd220 4425
4426 The result of apply_change_group can be ignored; see canon_reg. */
8b82837b 4427
4428 apply_change_group ();
4429
752df20e 4430 /* Set sets[i].src_elt to the class each source belongs to.
4431 Detect assignments from or to volatile things
4432 and set set[i] to zero so they will be ignored
4433 in the rest of this function.
4434
4435 Nothing in this loop changes the hash table or the register chains. */
4436
4437 for (i = 0; i < n_sets; i++)
4438 {
19cb6b50 4439 rtx src, dest;
4440 rtx src_folded;
4441 struct table_elt *elt = 0, *p;
752df20e 4442 enum machine_mode mode;
4443 rtx src_eqv_here;
4444 rtx src_const = 0;
4445 rtx src_related = 0;
01c8e4c9 4446 bool src_related_is_const_anchor = false;
752df20e 4447 struct table_elt *src_const_elt = 0;
fb561825 4448 int src_cost = MAX_COST;
4449 int src_eqv_cost = MAX_COST;
4450 int src_folded_cost = MAX_COST;
4451 int src_related_cost = MAX_COST;
4452 int src_elt_cost = MAX_COST;
4453 int src_regcost = MAX_COST;
4454 int src_eqv_regcost = MAX_COST;
4455 int src_folded_regcost = MAX_COST;
4456 int src_related_regcost = MAX_COST;
4457 int src_elt_regcost = MAX_COST;
d10cfa8d 4458 /* Set nonzero if we need to call force_const_mem on with the
752df20e 4459 contents of src_folded before using it. */
4460 int src_folded_force_flag = 0;
4461
4462 dest = SET_DEST (sets[i].rtl);
4463 src = SET_SRC (sets[i].rtl);
4464
4465 /* If SRC is a constant that has no machine mode,
4466 hash it with the destination's machine mode.
4467 This way we can keep different modes separate. */
4468
4469 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4470 sets[i].mode = mode;
4471
4472 if (src_eqv)
4473 {
4474 enum machine_mode eqvmode = mode;
4475 if (GET_CODE (dest) == STRICT_LOW_PART)
4476 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4477 do_not_record = 0;
4478 hash_arg_in_memory = 0;
952bc06d 4479 src_eqv_hash = HASH (src_eqv, eqvmode);
752df20e 4480
4481 /* Find the equivalence class for the equivalent expression. */
4482
4483 if (!do_not_record)
952bc06d 4484 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
752df20e 4485
4486 src_eqv_volatile = do_not_record;
4487 src_eqv_in_memory = hash_arg_in_memory;
752df20e 4488 }
4489
4490 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4491 value of the INNER register, not the destination. So it is not
fd6efe25 4492 a valid substitution for the source. But save it for later. */
752df20e 4493 if (GET_CODE (dest) == STRICT_LOW_PART)
4494 src_eqv_here = 0;
4495 else
4496 src_eqv_here = src_eqv;
4497
4498 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4499 simplified result, which may not necessarily be valid. */
4500 src_folded = fold_rtx (src, insn);
4501
c93674f2 4502#if 0
4503 /* ??? This caused bad code to be generated for the m68k port with -O2.
4504 Suppose src is (CONST_INT -1), and that after truncation src_folded
4505 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4506 At the end we will add src and src_const to the same equivalence
4507 class. We now have 3 and -1 on the same equivalence class. This
4508 causes later instructions to be mis-optimized. */
752df20e 4509 /* If storing a constant in a bitfield, pre-truncate the constant
4510 so we will be able to record it later. */
476d094d 4511 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
752df20e 4512 {
4513 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4514
971ba038 4515 if (CONST_INT_P (src)
4516 && CONST_INT_P (width)
b572011e 4517 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4518 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4519 src_folded
4520 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4521 << INTVAL (width)) - 1));
752df20e 4522 }
c93674f2 4523#endif
752df20e 4524
4525 /* Compute SRC's hash code, and also notice if it
4526 should not be recorded at all. In that case,
4527 prevent any further processing of this assignment. */
4528 do_not_record = 0;
4529 hash_arg_in_memory = 0;
752df20e 4530
4531 sets[i].src = src;
952bc06d 4532 sets[i].src_hash = HASH (src, mode);
752df20e 4533 sets[i].src_volatile = do_not_record;
4534 sets[i].src_in_memory = hash_arg_in_memory;
752df20e 4535
6ea5a450 4536 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
75f84104 4537 a pseudo, do not record SRC. Using SRC as a replacement for
4538 anything else will be incorrect in that situation. Note that
4539 this usually occurs only for stack slots, in which case all the
4540 RTL would be referring to SRC, so we don't lose any optimization
4541 opportunities by not having SRC in the hash table. */
6ea5a450 4542
e16ceb8e 4543 if (MEM_P (src)
75f84104 4544 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
8ad4c111 4545 && REG_P (dest)
75f84104 4546 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
6ea5a450 4547 sets[i].src_volatile = 1;
4548
c538053c 4549#if 0
4550 /* It is no longer clear why we used to do this, but it doesn't
4551 appear to still be needed. So let's try without it since this
4552 code hurts cse'ing widened ops. */
5f3447b0 4553 /* If source is a paradoxical subreg (such as QI treated as an SI),
752df20e 4554 treat it as volatile. It may do the work of an SI in one context
4555 where the extra bits are not being used, but cannot replace an SI
4556 in general. */
4557 if (GET_CODE (src) == SUBREG
4558 && (GET_MODE_SIZE (GET_MODE (src))
4559 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4560 sets[i].src_volatile = 1;
c538053c 4561#endif
752df20e 4562
4563 /* Locate all possible equivalent forms for SRC. Try to replace
4564 SRC in the insn with each cheaper equivalent.
4565
4566 We have the following types of equivalents: SRC itself, a folded
4567 version, a value given in a REG_EQUAL note, or a value related
4568 to a constant.
4569
4570 Each of these equivalents may be part of an additional class
4571 of equivalents (if more than one is in the table, they must be in
4572 the same class; we check for this).
4573
4574 If the source is volatile, we don't do any table lookups.
4575
4576 We note any constant equivalent for possible later use in a
4577 REG_NOTE. */
4578
4579 if (!sets[i].src_volatile)
952bc06d 4580 elt = lookup (src, sets[i].src_hash, mode);
752df20e 4581
4582 sets[i].src_elt = elt;
4583
4584 if (elt && src_eqv_here && src_eqv_elt)
cb10db9d 4585 {
4586 if (elt->first_same_value != src_eqv_elt->first_same_value)
752df20e 4587 {
4588 /* The REG_EQUAL is indicating that two formerly distinct
4589 classes are now equivalent. So merge them. */
4590 merge_equiv_classes (elt, src_eqv_elt);
952bc06d 4591 src_eqv_hash = HASH (src_eqv, elt->mode);
4592 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
752df20e 4593 }
4594
cb10db9d 4595 src_eqv_here = 0;
4596 }
752df20e 4597
4598 else if (src_eqv_elt)
cb10db9d 4599 elt = src_eqv_elt;
752df20e 4600
4601 /* Try to find a constant somewhere and record it in `src_const'.
4602 Record its table element, if any, in `src_const_elt'. Look in
4603 any known equivalences first. (If the constant is not in the
952bc06d 4604 table, also set `sets[i].src_const_hash'). */
752df20e 4605 if (elt)
cb10db9d 4606 for (p = elt->first_same_value; p; p = p->next_same_value)
752df20e 4607 if (p->is_const)
4608 {
4609 src_const = p->exp;
4610 src_const_elt = elt;
4611 break;
4612 }
4613
4614 if (src_const == 0
4615 && (CONSTANT_P (src_folded)
cb10db9d 4616 /* Consider (minus (label_ref L1) (label_ref L2)) as
752df20e 4617 "constant" here so we will record it. This allows us
4618 to fold switch statements when an ADDR_DIFF_VEC is used. */
4619 || (GET_CODE (src_folded) == MINUS
4620 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4621 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4622 src_const = src_folded, src_const_elt = elt;
4623 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4624 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4625
4626 /* If we don't know if the constant is in the table, get its
4627 hash code and look it up. */
4628 if (src_const && src_const_elt == 0)
4629 {
952bc06d 4630 sets[i].src_const_hash = HASH (src_const, mode);
4631 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
752df20e 4632 }
4633
4634 sets[i].src_const = src_const;
4635 sets[i].src_const_elt = src_const_elt;
4636
4637 /* If the constant and our source are both in the table, mark them as
4638 equivalent. Otherwise, if a constant is in the table but the source
4639 isn't, set ELT to it. */
4640 if (src_const_elt && elt
4641 && src_const_elt->first_same_value != elt->first_same_value)
4642 merge_equiv_classes (elt, src_const_elt);
4643 else if (src_const_elt && elt == 0)
4644 elt = src_const_elt;
4645
4646 /* See if there is a register linearly related to a constant
4647 equivalent of SRC. */
4648 if (src_const
4649 && (GET_CODE (src_const) == CONST
4650 || (src_const_elt && src_const_elt->related_value != 0)))
cb10db9d 4651 {
4652 src_related = use_related_value (src_const, src_const_elt);
4653 if (src_related)
4654 {
752df20e 4655 struct table_elt *src_related_elt
cb10db9d 4656 = lookup (src_related, HASH (src_related, mode), mode);
752df20e 4657 if (src_related_elt && elt)
cb10db9d 4658 {
752df20e 4659 if (elt->first_same_value
4660 != src_related_elt->first_same_value)
cb10db9d 4661 /* This can occur when we previously saw a CONST
752df20e 4662 involving a SYMBOL_REF and then see the SYMBOL_REF
4663 twice. Merge the involved classes. */
4664 merge_equiv_classes (elt, src_related_elt);
4665
cb10db9d 4666 src_related = 0;
752df20e 4667 src_related_elt = 0;
cb10db9d 4668 }
4669 else if (src_related_elt && elt == 0)
4670 elt = src_related_elt;
752df20e 4671 }
cb10db9d 4672 }
752df20e 4673
4023cea7 4674 /* See if we have a CONST_INT that is already in a register in a
4675 wider mode. */
4676
971ba038 4677 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4023cea7 4678 && GET_MODE_CLASS (mode) == MODE_INT
4679 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4680 {
4681 enum machine_mode wider_mode;
4682
4683 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1595fd95 4684 wider_mode != VOIDmode
4685 && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4023cea7 4686 && src_related == 0;
4687 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4688 {
4689 struct table_elt *const_elt
4690 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4691
4692 if (const_elt == 0)
4693 continue;
4694
4695 for (const_elt = const_elt->first_same_value;
4696 const_elt; const_elt = const_elt->next_same_value)
8ad4c111 4697 if (REG_P (const_elt->exp))
4023cea7 4698 {
8b172e0e 4699 src_related = gen_lowpart (mode, const_elt->exp);
4023cea7 4700 break;
4701 }
4702 }
4703 }
4704
f9e15121 4705 /* Another possibility is that we have an AND with a constant in
4706 a mode narrower than a word. If so, it might have been generated
4707 as part of an "if" which would narrow the AND. If we already
4708 have done the AND in a wider mode, we can use a SUBREG of that
4709 value. */
4710
4711 if (flag_expensive_optimizations && ! src_related
971ba038 4712 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
f9e15121 4713 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4714 {
4715 enum machine_mode tmode;
941522d6 4716 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
f9e15121 4717
4718 for (tmode = GET_MODE_WIDER_MODE (mode);
4719 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4720 tmode = GET_MODE_WIDER_MODE (tmode))
4721 {
316f48ea 4722 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
f9e15121 4723 struct table_elt *larger_elt;
4724
4725 if (inner)
4726 {
4727 PUT_MODE (new_and, tmode);
4728 XEXP (new_and, 0) = inner;
4729 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4730 if (larger_elt == 0)
4731 continue;
4732
4733 for (larger_elt = larger_elt->first_same_value;
4734 larger_elt; larger_elt = larger_elt->next_same_value)
8ad4c111 4735 if (REG_P (larger_elt->exp))
f9e15121 4736 {
4737 src_related
316f48ea 4738 = gen_lowpart (mode, larger_elt->exp);
f9e15121 4739 break;
4740 }
4741
4742 if (src_related)
4743 break;
4744 }
4745 }
4746 }
c13941f4 4747
4748#ifdef LOAD_EXTEND_OP
4749 /* See if a MEM has already been loaded with a widening operation;
4750 if it has, we can use a subreg of that. Many CISC machines
4751 also have such operations, but this is only likely to be
5aedf60c 4752 beneficial on these machines. */
cb10db9d 4753
b74befc5 4754 if (flag_expensive_optimizations && src_related == 0
c13941f4 4755 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4756 && GET_MODE_CLASS (mode) == MODE_INT
e16ceb8e 4757 && MEM_P (src) && ! do_not_record
21f1e711 4758 && LOAD_EXTEND_OP (mode) != UNKNOWN)
c13941f4 4759 {
89333dfe 4760 struct rtx_def memory_extend_buf;
4761 rtx memory_extend_rtx = &memory_extend_buf;
c13941f4 4762 enum machine_mode tmode;
cb10db9d 4763
c13941f4 4764 /* Set what we are trying to extend and the operation it might
4765 have been extended with. */
89333dfe 4766 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
c13941f4 4767 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4768 XEXP (memory_extend_rtx, 0) = src;
cb10db9d 4769
c13941f4 4770 for (tmode = GET_MODE_WIDER_MODE (mode);
4771 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4772 tmode = GET_MODE_WIDER_MODE (tmode))
4773 {
4774 struct table_elt *larger_elt;
cb10db9d 4775
c13941f4 4776 PUT_MODE (memory_extend_rtx, tmode);
cb10db9d 4777 larger_elt = lookup (memory_extend_rtx,
c13941f4 4778 HASH (memory_extend_rtx, tmode), tmode);
4779 if (larger_elt == 0)
4780 continue;
cb10db9d 4781
c13941f4 4782 for (larger_elt = larger_elt->first_same_value;
4783 larger_elt; larger_elt = larger_elt->next_same_value)
8ad4c111 4784 if (REG_P (larger_elt->exp))
c13941f4 4785 {
8b172e0e 4786 src_related = gen_lowpart (mode, larger_elt->exp);
c13941f4 4787 break;
4788 }
cb10db9d 4789
c13941f4 4790 if (src_related)
4791 break;
4792 }
4793 }
4794#endif /* LOAD_EXTEND_OP */
cb10db9d 4795
01c8e4c9 4796 /* Try to express the constant using a register+offset expression
4797 derived from a constant anchor. */
4798
4799 if (targetm.const_anchor
4800 && !src_related
4801 && src_const
4802 && GET_CODE (src_const) == CONST_INT)
4803 {
4804 src_related = try_const_anchors (src_const, mode);
4805 src_related_is_const_anchor = src_related != NULL_RTX;
4806 }
4807
4808
752df20e 4809 if (src == src_folded)
cb10db9d 4810 src_folded = 0;
752df20e 4811
d10cfa8d 4812 /* At this point, ELT, if nonzero, points to a class of expressions
752df20e 4813 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
d10cfa8d 4814 and SRC_RELATED, if nonzero, each contain additional equivalent
752df20e 4815 expressions. Prune these latter expressions by deleting expressions
4816 already in the equivalence class.
4817
4818 Check for an equivalent identical to the destination. If found,
4819 this is the preferred equivalent since it will likely lead to
4820 elimination of the insn. Indicate this by placing it in
4821 `src_related'. */
4822
cb10db9d 4823 if (elt)
4824 elt = elt->first_same_value;
752df20e 4825 for (p = elt; p; p = p->next_same_value)
cb10db9d 4826 {
752df20e 4827 enum rtx_code code = GET_CODE (p->exp);
4828
4829 /* If the expression is not valid, ignore it. Then we do not
4830 have to check for validity below. In most cases, we can use
4831 `rtx_equal_p', since canonicalization has already been done. */
78d140c9 4832 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
752df20e 4833 continue;
4834
47ac60a3 4835 /* Also skip paradoxical subregs, unless that's what we're
4836 looking for. */
4837 if (code == SUBREG
4838 && (GET_MODE_SIZE (GET_MODE (p->exp))
4839 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4840 && ! (src != 0
4841 && GET_CODE (src) == SUBREG
4842 && GET_MODE (src) == GET_MODE (p->exp)
4843 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4844 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4845 continue;
4846
cb10db9d 4847 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
752df20e 4848 src = 0;
cb10db9d 4849 else if (src_folded && GET_CODE (src_folded) == code
752df20e 4850 && rtx_equal_p (src_folded, p->exp))
4851 src_folded = 0;
cb10db9d 4852 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
752df20e 4853 && rtx_equal_p (src_eqv_here, p->exp))
4854 src_eqv_here = 0;
cb10db9d 4855 else if (src_related && GET_CODE (src_related) == code
752df20e 4856 && rtx_equal_p (src_related, p->exp))
4857 src_related = 0;
4858
4859 /* This is the same as the destination of the insns, we want
4860 to prefer it. Copy it to src_related. The code below will
4861 then give it a negative cost. */
4862 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4863 src_related = dest;
cb10db9d 4864 }
752df20e 4865
4866 /* Find the cheapest valid equivalent, trying all the available
4867 possibilities. Prefer items not in the hash table to ones
4868 that are when they are equal cost. Note that we can never
4869 worsen an insn as the current contents will also succeed.
e2ef73d2 4870 If we find an equivalent identical to the destination, use it as best,
a92771b8 4871 since this insn will probably be eliminated in that case. */
752df20e 4872 if (src)
4873 {
4874 if (rtx_equal_p (src, dest))
589ff9e7 4875 src_cost = src_regcost = -1;
752df20e 4876 else
d27eb4b1 4877 {
4878 src_cost = COST (src);
4879 src_regcost = approx_reg_cost (src);
4880 }
752df20e 4881 }
4882
4883 if (src_eqv_here)
4884 {
4885 if (rtx_equal_p (src_eqv_here, dest))
589ff9e7 4886 src_eqv_cost = src_eqv_regcost = -1;
752df20e 4887 else
d27eb4b1 4888 {
4889 src_eqv_cost = COST (src_eqv_here);
4890 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4891 }
752df20e 4892 }
4893
4894 if (src_folded)
4895 {
4896 if (rtx_equal_p (src_folded, dest))
589ff9e7 4897 src_folded_cost = src_folded_regcost = -1;
752df20e 4898 else
d27eb4b1 4899 {
4900 src_folded_cost = COST (src_folded);
4901 src_folded_regcost = approx_reg_cost (src_folded);
4902 }
752df20e 4903 }
4904
4905 if (src_related)
4906 {
4907 if (rtx_equal_p (src_related, dest))
589ff9e7 4908 src_related_cost = src_related_regcost = -1;
752df20e 4909 else
d27eb4b1 4910 {
4911 src_related_cost = COST (src_related);
4912 src_related_regcost = approx_reg_cost (src_related);
01c8e4c9 4913
4914 /* If a const-anchor is used to synthesize a constant that
4915 normally requires multiple instructions then slightly prefer
4916 it over the original sequence. These instructions are likely
4917 to become redundant now. We can't compare against the cost
4918 of src_eqv_here because, on MIPS for example, multi-insn
4919 constants have zero cost; they are assumed to be hoisted from
4920 loops. */
4921 if (src_related_is_const_anchor
4922 && src_related_cost == src_cost
4923 && src_eqv_here)
4924 src_related_cost--;
d27eb4b1 4925 }
752df20e 4926 }
4927
4928 /* If this was an indirect jump insn, a known label will really be
4929 cheaper even though it looks more expensive. */
4930 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
fb561825 4931 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
cb10db9d 4932
752df20e 4933 /* Terminate loop when replacement made. This must terminate since
4934 the current contents will be tested and will always be valid. */
4935 while (1)
cb10db9d 4936 {
4937 rtx trial;
752df20e 4938
cb10db9d 4939 /* Skip invalid entries. */
8ad4c111 4940 while (elt && !REG_P (elt->exp)
78d140c9 4941 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
cb10db9d 4942 elt = elt->next_same_value;
47ac60a3 4943
4944 /* A paradoxical subreg would be bad here: it'll be the right
4945 size, but later may be adjusted so that the upper bits aren't
4946 what we want. So reject it. */
4947 if (elt != 0
4948 && GET_CODE (elt->exp) == SUBREG
4949 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4950 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4951 /* It is okay, though, if the rtx we're trying to match
4952 will ignore any of the bits we can't predict. */
4953 && ! (src != 0
4954 && GET_CODE (src) == SUBREG
4955 && GET_MODE (src) == GET_MODE (elt->exp)
4956 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4957 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4958 {
4959 elt = elt->next_same_value;
4960 continue;
4961 }
cb10db9d 4962
d4c5e26d 4963 if (elt)
d27eb4b1 4964 {
4965 src_elt_cost = elt->cost;
4966 src_elt_regcost = elt->regcost;
4967 }
752df20e 4968
d4c5e26d 4969 /* Find cheapest and skip it for the next time. For items
752df20e 4970 of equal cost, use this order:
4971 src_folded, src, src_eqv, src_related and hash table entry. */
fb561825 4972 if (src_folded
069eea26 4973 && preferable (src_folded_cost, src_folded_regcost,
4974 src_cost, src_regcost) <= 0
4975 && preferable (src_folded_cost, src_folded_regcost,
4976 src_eqv_cost, src_eqv_regcost) <= 0
4977 && preferable (src_folded_cost, src_folded_regcost,
4978 src_related_cost, src_related_regcost) <= 0
4979 && preferable (src_folded_cost, src_folded_regcost,
4980 src_elt_cost, src_elt_regcost) <= 0)
752df20e 4981 {
589ff9e7 4982 trial = src_folded, src_folded_cost = MAX_COST;
752df20e 4983 if (src_folded_force_flag)
d4a75790 4984 {
4985 rtx forced = force_const_mem (mode, trial);
4986 if (forced)
4987 trial = forced;
4988 }
752df20e 4989 }
fb561825 4990 else if (src
069eea26 4991 && preferable (src_cost, src_regcost,
4992 src_eqv_cost, src_eqv_regcost) <= 0
4993 && preferable (src_cost, src_regcost,
4994 src_related_cost, src_related_regcost) <= 0
4995 && preferable (src_cost, src_regcost,
4996 src_elt_cost, src_elt_regcost) <= 0)
589ff9e7 4997 trial = src, src_cost = MAX_COST;
fb561825 4998 else if (src_eqv_here
069eea26 4999 && preferable (src_eqv_cost, src_eqv_regcost,
5000 src_related_cost, src_related_regcost) <= 0
5001 && preferable (src_eqv_cost, src_eqv_regcost,
5002 src_elt_cost, src_elt_regcost) <= 0)
0806b508 5003 trial = src_eqv_here, src_eqv_cost = MAX_COST;
fb561825 5004 else if (src_related
069eea26 5005 && preferable (src_related_cost, src_related_regcost,
5006 src_elt_cost, src_elt_regcost) <= 0)
0806b508 5007 trial = src_related, src_related_cost = MAX_COST;
cb10db9d 5008 else
752df20e 5009 {
0806b508 5010 trial = elt->exp;
752df20e 5011 elt = elt->next_same_value;
589ff9e7 5012 src_elt_cost = MAX_COST;
752df20e 5013 }
5014
5fe61d21 5015 /* Avoid creation of overlapping memory moves. */
5016 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5017 {
5018 rtx src, dest;
5019
5020 /* BLKmode moves are not handled by cse anyway. */
5021 if (GET_MODE (trial) == BLKmode)
5022 break;
5023
5024 src = canon_rtx (trial);
5025 dest = canon_rtx (SET_DEST (sets[i].rtl));
5026
5027 if (!MEM_P (src) || !MEM_P (dest)
5028 || !nonoverlapping_memrefs_p (src, dest))
5029 break;
5030 }
5031
752df20e 5032 /* We don't normally have an insn matching (set (pc) (pc)), so
5033 check for this separately here. We will delete such an
5034 insn below.
5035
0f48207f 5036 For other cases such as a table jump or conditional jump
5037 where we know the ultimate target, go ahead and replace the
5038 operand. While that may not make a valid insn, we will
5039 reemit the jump below (and also insert any necessary
5040 barriers). */
752df20e 5041 if (n_sets == 1 && dest == pc_rtx
5042 && (trial == pc_rtx
5043 || (GET_CODE (trial) == LABEL_REF
5044 && ! condjump_p (insn))))
5045 {
806351c6 5046 /* Don't substitute non-local labels, this confuses CFG. */
5047 if (GET_CODE (trial) == LABEL_REF
5048 && LABEL_REF_NONLOCAL_P (trial))
5049 continue;
5050
0f48207f 5051 SET_SRC (sets[i].rtl) = trial;
283a6b26 5052 cse_jumps_altered = true;
752df20e 5053 break;
5054 }
cb10db9d 5055
0ab04fbf 5056 /* Reject certain invalid forms of CONST that we create. */
5057 else if (CONSTANT_P (trial)
5058 && GET_CODE (trial) == CONST
5059 /* Reject cases that will cause decode_rtx_const to
5060 die. On the alpha when simplifying a switch, we
5061 get (const (truncate (minus (label_ref)
5062 (label_ref)))). */
5063 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5064 /* Likewise on IA-64, except without the
5065 truncate. */
5066 || (GET_CODE (XEXP (trial, 0)) == MINUS
5067 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5068 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5069 /* Do nothing for this case. */
5070 ;
5071
752df20e 5072 /* Look for a substitution that makes a valid insn. */
ce9e1d34 5073 else if (validate_unshare_change
5074 (insn, &SET_SRC (sets[i].rtl), trial, 0))
e2ef73d2 5075 {
d328ebdf 5076 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
e30d7fb3 5077
8d5dd220 5078 /* The result of apply_change_group can be ignored; see
5079 canon_reg. */
5080
d328ebdf 5081 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
e443ebaf 5082 apply_change_group ();
be22716f 5083
e2ef73d2 5084 break;
5085 }
752df20e 5086
cb10db9d 5087 /* If we previously found constant pool entries for
752df20e 5088 constants and this is a constant, try making a
5089 pool entry. Put it in src_folded unless we already have done
5090 this since that is where it likely came from. */
5091
5092 else if (constant_pool_entries_cost
5093 && CONSTANT_P (trial)
88f6e1a4 5094 && (src_folded == 0
e16ceb8e 5095 || (!MEM_P (src_folded)
88f6e1a4 5096 && ! src_folded_force_flag))
ea0cb7ae 5097 && GET_MODE_CLASS (mode) != MODE_CC
5098 && mode != VOIDmode)
752df20e 5099 {
5100 src_folded_force_flag = 1;
5101 src_folded = trial;
5102 src_folded_cost = constant_pool_entries_cost;
634d45d7 5103 src_folded_regcost = constant_pool_entries_regcost;
752df20e 5104 }
cb10db9d 5105 }
752df20e 5106
5107 src = SET_SRC (sets[i].rtl);
5108
5109 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5110 However, there is an important exception: If both are registers
5111 that are not the head of their equivalence class, replace SET_SRC
5112 with the head of the class. If we do not do this, we will have
5113 both registers live over a portion of the basic block. This way,
5114 their lifetimes will likely abut instead of overlapping. */
8ad4c111 5115 if (REG_P (dest)
a7f3b1c7 5116 && REGNO_QTY_VALID_P (REGNO (dest)))
752df20e 5117 {
a7f3b1c7 5118 int dest_q = REG_QTY (REGNO (dest));
5119 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5120
5121 if (dest_ent->mode == GET_MODE (dest)
5122 && dest_ent->first_reg != REGNO (dest)
8ad4c111 5123 && REG_P (src) && REGNO (src) == REGNO (dest)
a7f3b1c7 5124 /* Don't do this if the original insn had a hard reg as
5125 SET_SRC or SET_DEST. */
8ad4c111 5126 && (!REG_P (sets[i].src)
a7f3b1c7 5127 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
8ad4c111 5128 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
a7f3b1c7 5129 /* We can't call canon_reg here because it won't do anything if
5130 SRC is a hard register. */
05b1716f 5131 {
a7f3b1c7 5132 int src_q = REG_QTY (REGNO (src));
5133 struct qty_table_elem *src_ent = &qty_table[src_q];
5134 int first = src_ent->first_reg;
5135 rtx new_src
5136 = (first >= FIRST_PSEUDO_REGISTER
5137 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5138
5139 /* We must use validate-change even for this, because this
5140 might be a special no-op instruction, suitable only to
5141 tag notes onto. */
5142 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5143 {
5144 src = new_src;
5145 /* If we had a constant that is cheaper than what we are now
5146 setting SRC to, use that constant. We ignored it when we
5147 thought we could make this into a no-op. */
5148 if (src_const && COST (src_const) < COST (src)
cb10db9d 5149 && validate_change (insn, &SET_SRC (sets[i].rtl),
5150 src_const, 0))
a7f3b1c7 5151 src = src_const;
5152 }
05b1716f 5153 }
752df20e 5154 }
5155
5156 /* If we made a change, recompute SRC values. */
5157 if (src != sets[i].src)
cb10db9d 5158 {
cb10db9d 5159 do_not_record = 0;
5160 hash_arg_in_memory = 0;
752df20e 5161 sets[i].src = src;
cb10db9d 5162 sets[i].src_hash = HASH (src, mode);
5163 sets[i].src_volatile = do_not_record;
5164 sets[i].src_in_memory = hash_arg_in_memory;
5165 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5166 }
752df20e 5167
5168 /* If this is a single SET, we are setting a register, and we have an
5169 equivalent constant, we want to add a REG_NOTE. We don't want
5170 to write a REG_EQUAL note for a constant pseudo since verifying that
f9e15121 5171 that pseudo hasn't been eliminated is a pain. Such a note also
cb10db9d 5172 won't help anything.
f5d1f9f9 5173
5174 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5175 which can be created for a reference to a compile time computable
5176 entry in a jump table. */
5177
8ad4c111 5178 if (n_sets == 1 && src_const && REG_P (dest)
5179 && !REG_P (src_const)
f5d1f9f9 5180 && ! (GET_CODE (src_const) == CONST
5181 && GET_CODE (XEXP (src_const, 0)) == MINUS
5182 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5183 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
752df20e 5184 {
4a1ef3f6 5185 /* We only want a REG_EQUAL note if src_const != src. */
5186 if (! rtx_equal_p (src, src_const))
5187 {
5188 /* Make sure that the rtx is not shared. */
5189 src_const = copy_rtx (src_const);
c69ad724 5190
4a1ef3f6 5191 /* Record the actual constant value in a REG_EQUAL note,
5192 making a new one if one does not already exist. */
5193 set_unique_reg_note (insn, REG_EQUAL, src_const);
3072d30e 5194 df_notes_rescan (insn);
4a1ef3f6 5195 }
752df20e 5196 }
5197
5198 /* Now deal with the destination. */
5199 do_not_record = 0;
752df20e 5200
476d094d 5201 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5202 while (GET_CODE (dest) == SUBREG
752df20e 5203 || GET_CODE (dest) == ZERO_EXTRACT
752df20e 5204 || GET_CODE (dest) == STRICT_LOW_PART)
8f4cc641 5205 dest = XEXP (dest, 0);
752df20e 5206
5207 sets[i].inner_dest = dest;
5208
e16ceb8e 5209 if (MEM_P (dest))
752df20e 5210 {
ea0cb7ae 5211#ifdef PUSH_ROUNDING
5212 /* Stack pushes invalidate the stack pointer. */
5213 rtx addr = XEXP (dest, 0);
6720e96c 5214 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
ea0cb7ae 5215 && XEXP (addr, 0) == stack_pointer_rtx)
4c958a22 5216 invalidate (stack_pointer_rtx, VOIDmode);
ea0cb7ae 5217#endif
752df20e 5218 dest = fold_rtx (dest, insn);
752df20e 5219 }
5220
5221 /* Compute the hash code of the destination now,
5222 before the effects of this instruction are recorded,
5223 since the register values used in the address computation
5224 are those before this instruction. */
952bc06d 5225 sets[i].dest_hash = HASH (dest, mode);
752df20e 5226
5227 /* Don't enter a bit-field in the hash table
5228 because the value in it after the store
5229 may not equal what was stored, due to truncation. */
5230
476d094d 5231 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
752df20e 5232 {
5233 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5234
971ba038 5235 if (src_const != 0 && CONST_INT_P (src_const)
5236 && CONST_INT_P (width)
b572011e 5237 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5238 && ! (INTVAL (src_const)
5239 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
752df20e 5240 /* Exception: if the value is constant,
5241 and it won't be truncated, record it. */
5242 ;
5243 else
5244 {
5245 /* This is chosen so that the destination will be invalidated
5246 but no new value will be recorded.
5247 We must invalidate because sometimes constant
5248 values can be recorded for bitfields. */
5249 sets[i].src_elt = 0;
5250 sets[i].src_volatile = 1;
5251 src_eqv = 0;
5252 src_eqv_elt = 0;
5253 }
5254 }
5255
5256 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5257 the insn. */
5258 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5259 {
25999090 5260 /* One less use of the label this insn used to jump to. */
bbe0b6d7 5261 delete_insn_and_edges (insn);
283a6b26 5262 cse_jumps_altered = true;
752df20e 5263 /* No more processing for this set. */
5264 sets[i].rtl = 0;
5265 }
5266
5267 /* If this SET is now setting PC to a label, we know it used to
0f48207f 5268 be a conditional or computed branch. */
9d95b2b0 5269 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5270 && !LABEL_REF_NONLOCAL_P (src))
752df20e 5271 {
0f48207f 5272 /* We reemit the jump in as many cases as possible just in
5273 case the form of an unconditional jump is significantly
5274 different than a computed jump or conditional jump.
5275
5276 If this insn has multiple sets, then reemitting the
5277 jump is nontrivial. So instead we just force rerecognition
5278 and hope for the best. */
5279 if (n_sets == 1)
752df20e 5280 {
d328ebdf 5281 rtx new_rtx, note;
743ce3f8 5282
d328ebdf 5283 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5284 JUMP_LABEL (new_rtx) = XEXP (src, 0);
752df20e 5285 LABEL_NUSES (XEXP (src, 0))++;
9074c68b 5286
5287 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5288 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5289 if (note)
5290 {
5291 XEXP (note, 1) = NULL_RTX;
d328ebdf 5292 REG_NOTES (new_rtx) = note;
9074c68b 5293 }
5294
bbe0b6d7 5295 delete_insn_and_edges (insn);
d328ebdf 5296 insn = new_rtx;
752df20e 5297 }
d578a436 5298 else
d578a436 5299 INSN_CODE (insn) = -1;
752df20e 5300
283a6b26 5301 /* Do not bother deleting any unreachable code, let jump do it. */
5302 cse_jumps_altered = true;
752df20e 5303 sets[i].rtl = 0;
5304 }
5305
8cdd0f84 5306 /* If destination is volatile, invalidate it and then do no further
5307 processing for this assignment. */
752df20e 5308
5309 else if (do_not_record)
8cdd0f84 5310 {
8ad4c111 5311 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
fdb25961 5312 invalidate (dest, VOIDmode);
e16ceb8e 5313 else if (MEM_P (dest))
2046d6d5 5314 invalidate (dest, VOIDmode);
319134e7 5315 else if (GET_CODE (dest) == STRICT_LOW_PART
5316 || GET_CODE (dest) == ZERO_EXTRACT)
fdb25961 5317 invalidate (XEXP (dest, 0), GET_MODE (dest));
8cdd0f84 5318 sets[i].rtl = 0;
5319 }
752df20e 5320
5321 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
952bc06d 5322 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
752df20e 5323
5324#ifdef HAVE_cc0
5325 /* If setting CC0, record what it was set to, or a constant, if it
5326 is equivalent to a constant. If it is being set to a floating-point
5327 value, make a COMPARE with the appropriate constant of 0. If we
5328 don't do this, later code can interpret this as a test against
5329 const0_rtx, which can cause problems if we try to put it into an
5330 insn as a floating-point operand. */
5331 if (dest == cc0_rtx)
5332 {
5333 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5334 this_insn_cc0_mode = mode;
c1712420 5335 if (FLOAT_MODE_P (mode))
941522d6 5336 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5337 CONST0_RTX (mode));
752df20e 5338 }
5339#endif
5340 }
5341
5342 /* Now enter all non-volatile source expressions in the hash table
5343 if they are not already present.
5344 Record their equivalence classes in src_elt.
5345 This way we can insert the corresponding destinations into
5346 the same classes even if the actual sources are no longer in them
5347 (having been invalidated). */
5348
5349 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5350 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5351 {
19cb6b50 5352 struct table_elt *elt;
5353 struct table_elt *classp = sets[0].src_elt;
752df20e 5354 rtx dest = SET_DEST (sets[0].rtl);
5355 enum machine_mode eqvmode = GET_MODE (dest);
5356
5357 if (GET_CODE (dest) == STRICT_LOW_PART)
5358 {
5359 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5360 classp = 0;
5361 }
5362 if (insert_regs (src_eqv, classp, 0))
1b033cc3 5363 {
5364 rehash_using_reg (src_eqv);
5365 src_eqv_hash = HASH (src_eqv, eqvmode);
5366 }
952bc06d 5367 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
752df20e 5368 elt->in_memory = src_eqv_in_memory;
752df20e 5369 src_eqv_elt = elt;
c697ea36 5370
5371 /* Check to see if src_eqv_elt is the same as a set source which
5372 does not yet have an elt, and if so set the elt of the set source
5373 to src_eqv_elt. */
5374 for (i = 0; i < n_sets; i++)
cf541778 5375 if (sets[i].rtl && sets[i].src_elt == 0
5376 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
c697ea36 5377 sets[i].src_elt = src_eqv_elt;
752df20e 5378 }
5379
5380 for (i = 0; i < n_sets; i++)
5381 if (sets[i].rtl && ! sets[i].src_volatile
5382 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5383 {
5384 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5385 {
5386 /* REG_EQUAL in setting a STRICT_LOW_PART
5387 gives an equivalent for the entire destination register,
5388 not just for the subreg being stored in now.
5389 This is a more interesting equivalence, so we arrange later
5390 to treat the entire reg as the destination. */
5391 sets[i].src_elt = src_eqv_elt;
952bc06d 5392 sets[i].src_hash = src_eqv_hash;
752df20e 5393 }
5394 else
5395 {
5396 /* Insert source and constant equivalent into hash table, if not
5397 already present. */
19cb6b50 5398 struct table_elt *classp = src_eqv_elt;
5399 rtx src = sets[i].src;
5400 rtx dest = SET_DEST (sets[i].rtl);
752df20e 5401 enum machine_mode mode
5402 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5403
3c512ee7 5404 /* It's possible that we have a source value known to be
5405 constant but don't have a REG_EQUAL note on the insn.
5406 Lack of a note will mean src_eqv_elt will be NULL. This
5407 can happen where we've generated a SUBREG to access a
5408 CONST_INT that is already in a register in a wider mode.
5409 Ensure that the source expression is put in the proper
5410 constant class. */
5411 if (!classp)
5412 classp = sets[i].src_const_elt;
5413
cf541778 5414 if (sets[i].src_elt == 0)
752df20e 5415 {
1e5b92fa 5416 struct table_elt *elt;
cf541778 5417
1e5b92fa 5418 /* Note that these insert_regs calls cannot remove
5419 any of the src_elt's, because they would have failed to
5420 match if not still valid. */
5421 if (insert_regs (src, classp, 0))
5422 {
5423 rehash_using_reg (src);
5424 sets[i].src_hash = HASH (src, mode);
1b033cc3 5425 }
1e5b92fa 5426 elt = insert (src, classp, sets[i].src_hash, mode);
5427 elt->in_memory = sets[i].src_in_memory;
5428 sets[i].src_elt = classp = elt;
752df20e 5429 }
752df20e 5430 if (sets[i].src_const && sets[i].src_const_elt == 0
5431 && src != sets[i].src_const
5432 && ! rtx_equal_p (sets[i].src_const, src))
5433 sets[i].src_elt = insert (sets[i].src_const, classp,
952bc06d 5434 sets[i].src_const_hash, mode);
752df20e 5435 }
5436 }
5437 else if (sets[i].src_elt == 0)
5438 /* If we did not insert the source into the hash table (e.g., it was
5439 volatile), note the equivalence class for the REG_EQUAL value, if any,
5440 so that the destination goes into that class. */
5441 sets[i].src_elt = src_eqv_elt;
5442
977ffed2 5443 /* Record destination addresses in the hash table. This allows us to
5444 check if they are invalidated by other sets. */
5445 for (i = 0; i < n_sets; i++)
5446 {
5447 if (sets[i].rtl)
5448 {
5449 rtx x = sets[i].inner_dest;
5450 struct table_elt *elt;
5451 enum machine_mode mode;
5452 unsigned hash;
5453
5454 if (MEM_P (x))
5455 {
5456 x = XEXP (x, 0);
5457 mode = GET_MODE (x);
5458 hash = HASH (x, mode);
5459 elt = lookup (x, hash, mode);
5460 if (!elt)
5461 {
5462 if (insert_regs (x, NULL, 0))
5463 {
06320855 5464 rtx dest = SET_DEST (sets[i].rtl);
5465
977ffed2 5466 rehash_using_reg (x);
5467 hash = HASH (x, mode);
06320855 5468 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
977ffed2 5469 }
5470 elt = insert (x, NULL, hash, mode);
5471 }
5472
5473 sets[i].dest_addr_elt = elt;
5474 }
5475 else
5476 sets[i].dest_addr_elt = NULL;
5477 }
5478 }
5479
ea0cb7ae 5480 invalidate_from_clobbers (x);
8b82837b 5481
cb10db9d 5482 /* Some registers are invalidated by subroutine calls. Memory is
8b82837b 5483 invalidated by non-constant calls. */
5484
6d7dc5b9 5485 if (CALL_P (insn))
752df20e 5486 {
9c2a0c05 5487 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
ea0cb7ae 5488 invalidate_memory ();
752df20e 5489 invalidate_for_call ();
5490 }
5491
5492 /* Now invalidate everything set by this instruction.
5493 If a SUBREG or other funny destination is being set,
5494 sets[i].rtl is still nonzero, so here we invalidate the reg
5495 a part of which is being set. */
5496
5497 for (i = 0; i < n_sets; i++)
5498 if (sets[i].rtl)
5499 {
fdb25961 5500 /* We can't use the inner dest, because the mode associated with
5501 a ZERO_EXTRACT is significant. */
19cb6b50 5502 rtx dest = SET_DEST (sets[i].rtl);
752df20e 5503
5504 /* Needed for registers to remove the register from its
5505 previous quantity's chain.
5506 Needed for memory if this is a nonvarying address, unless
5507 we have just done an invalidate_memory that covers even those. */
8ad4c111 5508 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
fdb25961 5509 invalidate (dest, VOIDmode);
e16ceb8e 5510 else if (MEM_P (dest))
2046d6d5 5511 invalidate (dest, VOIDmode);
319134e7 5512 else if (GET_CODE (dest) == STRICT_LOW_PART
5513 || GET_CODE (dest) == ZERO_EXTRACT)
fdb25961 5514 invalidate (XEXP (dest, 0), GET_MODE (dest));
752df20e 5515 }
5516
53d90e4e 5517 /* A volatile ASM invalidates everything. */
6d7dc5b9 5518 if (NONJUMP_INSN_P (insn)
53d90e4e 5519 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5520 && MEM_VOLATILE_P (PATTERN (insn)))
5521 flush_hash_table ();
5522
be22716f 5523 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5524 the regs restored by the longjmp come from a later time
5525 than the setjmp. */
5526 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5527 {
5528 flush_hash_table ();
5529 goto done;
5530 }
5531
752df20e 5532 /* Make sure registers mentioned in destinations
5533 are safe for use in an expression to be inserted.
5534 This removes from the hash table
5535 any invalid entry that refers to one of these registers.
5536
5537 We don't care about the return value from mention_regs because
5538 we are going to hash the SET_DEST values unconditionally. */
5539
5540 for (i = 0; i < n_sets; i++)
e6860d27 5541 {
5542 if (sets[i].rtl)
5543 {
5544 rtx x = SET_DEST (sets[i].rtl);
5545
8ad4c111 5546 if (!REG_P (x))
e6860d27 5547 mention_regs (x);
5548 else
5549 {
5550 /* We used to rely on all references to a register becoming
5551 inaccessible when a register changes to a new quantity,
5552 since that changes the hash code. However, that is not
9c4f3716 5553 safe, since after HASH_SIZE new quantities we get a
e6860d27 5554 hash 'collision' of a register with its own invalid
5555 entries. And since SUBREGs have been changed not to
5556 change their hash code with the hash code of the register,
5557 it wouldn't work any longer at all. So we have to check
5558 for any invalid references lying around now.
5559 This code is similar to the REG case in mention_regs,
5560 but it knows that reg_tick has been incremented, and
5561 it leaves reg_in_table as -1 . */
02e7a332 5562 unsigned int regno = REGNO (x);
a2c6f0b7 5563 unsigned int endregno = END_REGNO (x);
02e7a332 5564 unsigned int i;
e6860d27 5565
5566 for (i = regno; i < endregno; i++)
5567 {
d1264606 5568 if (REG_IN_TABLE (i) >= 0)
e6860d27 5569 {
5570 remove_invalid_refs (i);
d1264606 5571 REG_IN_TABLE (i) = -1;
e6860d27 5572 }
5573 }
5574 }
5575 }
5576 }
752df20e 5577
5578 /* We may have just removed some of the src_elt's from the hash table.
977ffed2 5579 So replace each one with the current head of the same class.
5580 Also check if destination addresses have been removed. */
752df20e 5581
5582 for (i = 0; i < n_sets; i++)
5583 if (sets[i].rtl)
5584 {
977ffed2 5585 if (sets[i].dest_addr_elt
5586 && sets[i].dest_addr_elt->first_same_value == 0)
5587 {
d249588e 5588 /* The elt was removed, which means this destination is not
977ffed2 5589 valid after this instruction. */
5590 sets[i].rtl = NULL_RTX;
5591 }
5592 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
752df20e 5593 /* If elt was removed, find current head of same class,
5594 or 0 if nothing remains of that class. */
5595 {
19cb6b50 5596 struct table_elt *elt = sets[i].src_elt;
752df20e 5597
5598 while (elt && elt->prev_same_value)
5599 elt = elt->prev_same_value;
5600
5601 while (elt && elt->first_same_value == 0)
5602 elt = elt->next_same_value;
5603 sets[i].src_elt = elt ? elt->first_same_value : 0;
5604 }
5605 }
5606
5607 /* Now insert the destinations into their equivalence classes. */
5608
5609 for (i = 0; i < n_sets; i++)
5610 if (sets[i].rtl)
5611 {
19cb6b50 5612 rtx dest = SET_DEST (sets[i].rtl);
19cb6b50 5613 struct table_elt *elt;
752df20e 5614
5615 /* Don't record value if we are not supposed to risk allocating
5616 floating-point values in registers that might be wider than
5617 memory. */
5618 if ((flag_float_store
e16ceb8e 5619 && MEM_P (dest)
c1712420 5620 && FLOAT_MODE_P (GET_MODE (dest)))
6510de05 5621 /* Don't record BLKmode values, because we don't know the
5622 size of it, and can't be sure that other BLKmode values
5623 have the same or smaller size. */
5624 || GET_MODE (dest) == BLKmode
752df20e 5625 /* If we didn't put a REG_EQUAL value or a source into the hash
5626 table, there is no point is recording DEST. */
619142e5 5627 || sets[i].src_elt == 0
5628 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5629 or SIGN_EXTEND, don't record DEST since it can cause
5630 some tracking to be wrong.
5631
5632 ??? Think about this more later. */
5633 || (GET_CODE (dest) == SUBREG
5634 && (GET_MODE_SIZE (GET_MODE (dest))
5635 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5636 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5637 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
752df20e 5638 continue;
5639
5640 /* STRICT_LOW_PART isn't part of the value BEING set,
5641 and neither is the SUBREG inside it.
5642 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5643 if (GET_CODE (dest) == STRICT_LOW_PART)
5644 dest = SUBREG_REG (XEXP (dest, 0));
5645
8ad4c111 5646 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
752df20e 5647 /* Registers must also be inserted into chains for quantities. */
5648 if (insert_regs (dest, sets[i].src_elt, 1))
1b033cc3 5649 {
5650 /* If `insert_regs' changes something, the hash code must be
5651 recalculated. */
5652 rehash_using_reg (dest);
5653 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5654 }
752df20e 5655
e8825bb0 5656 elt = insert (dest, sets[i].src_elt,
5657 sets[i].dest_hash, GET_MODE (dest));
a97275a9 5658
01c8e4c9 5659 /* If this is a constant, insert the constant anchors with the
5660 equivalent register-offset expressions using register DEST. */
5661 if (targetm.const_anchor
5662 && REG_P (dest)
5663 && SCALAR_INT_MODE_P (GET_MODE (dest))
5664 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5665 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5666
e16ceb8e 5667 elt->in_memory = (MEM_P (sets[i].inner_dest)
b04fab2a 5668 && !MEM_READONLY_P (sets[i].inner_dest));
26830081 5669
e516eaa9 5670 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5671 narrower than M2, and both M1 and M2 are the same number of words,
5672 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5673 make that equivalence as well.
752df20e 5674
316f48ea 5675 However, BAR may have equivalences for which gen_lowpart
5676 will produce a simpler value than gen_lowpart applied to
752df20e 5677 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
cb10db9d 5678 BAR's equivalences. If we don't get a simplified form, make
752df20e 5679 the SUBREG. It will not be used in an equivalence, but will
5680 cause two similar assignments to be detected.
5681
5682 Note the loop below will find SUBREG_REG (DEST) since we have
5683 already entered SRC and DEST of the SET in the table. */
5684
5685 if (GET_CODE (dest) == SUBREG
e82e6abc 5686 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5687 / UNITS_PER_WORD)
cb10db9d 5688 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
752df20e 5689 && (GET_MODE_SIZE (GET_MODE (dest))
5690 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5691 && sets[i].src_elt != 0)
5692 {
5693 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5694 struct table_elt *elt, *classp = 0;
5695
5696 for (elt = sets[i].src_elt->first_same_value; elt;
5697 elt = elt->next_same_value)
5698 {
5699 rtx new_src = 0;
952bc06d 5700 unsigned src_hash;
752df20e 5701 struct table_elt *src_elt;
cdc84acd 5702 int byte = 0;
752df20e 5703
5704 /* Ignore invalid entries. */
8ad4c111 5705 if (!REG_P (elt->exp)
78d140c9 5706 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
752df20e 5707 continue;
5708
38b13a9b 5709 /* We may have already been playing subreg games. If the
5710 mode is already correct for the destination, use it. */
5711 if (GET_MODE (elt->exp) == new_mode)
5712 new_src = elt->exp;
5713 else
5714 {
5715 /* Calculate big endian correction for the SUBREG_BYTE.
5716 We have already checked that M1 (GET_MODE (dest))
5717 is not narrower than M2 (new_mode). */
5718 if (BYTES_BIG_ENDIAN)
5719 byte = (GET_MODE_SIZE (GET_MODE (dest))
5720 - GET_MODE_SIZE (new_mode));
5721
5722 new_src = simplify_gen_subreg (new_mode, elt->exp,
5723 GET_MODE (dest), byte);
5724 }
5725
cdc84acd 5726 /* The call to simplify_gen_subreg fails if the value
5727 is VOIDmode, yet we can't do any simplification, e.g.
5728 for EXPR_LISTs denoting function call results.
5729 It is invalid to construct a SUBREG with a VOIDmode
5730 SUBREG_REG, hence a zero new_src means we can't do
5731 this substitution. */
5732 if (! new_src)
5733 continue;
752df20e 5734
5735 src_hash = HASH (new_src, new_mode);
5736 src_elt = lookup (new_src, src_hash, new_mode);
5737
5738 /* Put the new source in the hash table is if isn't
5739 already. */
5740 if (src_elt == 0)
5741 {
5742 if (insert_regs (new_src, classp, 0))
1b033cc3 5743 {
5744 rehash_using_reg (new_src);
5745 src_hash = HASH (new_src, new_mode);
5746 }
752df20e 5747 src_elt = insert (new_src, classp, src_hash, new_mode);
5748 src_elt->in_memory = elt->in_memory;
752df20e 5749 }
5750 else if (classp && classp != src_elt->first_same_value)
cb10db9d 5751 /* Show that two things that we've seen before are
752df20e 5752 actually the same. */
5753 merge_equiv_classes (src_elt, classp);
5754
5755 classp = src_elt->first_same_value;
7720c877 5756 /* Ignore invalid entries. */
5757 while (classp
8ad4c111 5758 && !REG_P (classp->exp)
78d140c9 5759 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
7720c877 5760 classp = classp->next_same_value;
752df20e 5761 }
5762 }
5763 }
5764
01a22203 5765 /* Special handling for (set REG0 REG1) where REG0 is the
5766 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5767 be used in the sequel, so (if easily done) change this insn to
5768 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5769 that computed their value. Then REG1 will become a dead store
5770 and won't cloud the situation for later optimizations.
752df20e 5771
5772 Do not make this change if REG1 is a hard register, because it will
5773 then be used in the sequel and we may be changing a two-operand insn
5774 into a three-operand insn.
5775
1e5b92fa 5776 Also do not do this if we are operating on a copy of INSN. */
752df20e 5777
8ad4c111 5778 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
752df20e 5779 && NEXT_INSN (PREV_INSN (insn)) == insn
8ad4c111 5780 && REG_P (SET_SRC (sets[0].rtl))
752df20e 5781 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
a7f3b1c7 5782 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
752df20e 5783 {
a7f3b1c7 5784 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5785 struct qty_table_elem *src_ent = &qty_table[src_q];
752df20e 5786
1e5b92fa 5787 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
752df20e 5788 {
bb9099b3 5789 /* Scan for the previous nonnote insn, but stop at a basic
5790 block boundary. */
be22716f 5791 rtx prev = insn;
5792 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
bb9099b3 5793 do
5794 {
5795 prev = PREV_INSN (prev);
5796 }
9845d120 5797 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
8ec3a57b 5798
e53826a7 5799 /* Do not swap the registers around if the previous instruction
5800 attaches a REG_EQUIV note to REG1.
5801
5802 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5803 from the pseudo that originally shadowed an incoming argument
5804 to another register. Some uses of REG_EQUIV might rely on it
5805 being attached to REG1 rather than REG2.
5806
5807 This section previously turned the REG_EQUIV into a REG_EQUAL
5808 note. We cannot do that because REG_EQUIV may provide an
457275b6 5809 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
be22716f 5810 if (NONJUMP_INSN_P (prev)
01a22203 5811 && GET_CODE (PATTERN (prev)) == SET
e53826a7 5812 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5813 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
a7f3b1c7 5814 {
5815 rtx dest = SET_DEST (sets[0].rtl);
01a22203 5816 rtx src = SET_SRC (sets[0].rtl);
e53826a7 5817 rtx note;
752df20e 5818
cb10db9d 5819 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5820 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5821 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
a7f3b1c7 5822 apply_change_group ();
752df20e 5823
01a22203 5824 /* If INSN has a REG_EQUAL note, and this note mentions
5825 REG0, then we must delete it, because the value in
5826 REG0 has changed. If the note's value is REG1, we must
5827 also delete it because that is now this insn's dest. */
a7f3b1c7 5828 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
01a22203 5829 if (note != 0
5830 && (reg_mentioned_p (dest, XEXP (note, 0))
5831 || rtx_equal_p (src, XEXP (note, 0))))
a7f3b1c7 5832 remove_note (insn, note);
5833 }
752df20e 5834 }
5835 }
5836
be22716f 5837done:;
752df20e 5838}
5839\f
59241190 5840/* Remove from the hash table all expressions that reference memory. */
155b05dc 5841
752df20e 5842static void
8ec3a57b 5843invalidate_memory (void)
752df20e 5844{
19cb6b50 5845 int i;
5846 struct table_elt *p, *next;
752df20e 5847
9c4f3716 5848 for (i = 0; i < HASH_SIZE; i++)
ea0cb7ae 5849 for (p = table[i]; p; p = next)
5850 {
5851 next = p->next_same_hash;
5852 if (p->in_memory)
5853 remove_from_table (p, i);
5854 }
5855}
5856
752df20e 5857/* Perform invalidation on the basis of everything about an insn
5858 except for invalidating the actual places that are SET in it.
5859 This includes the places CLOBBERed, and anything that might
5860 alias with something that is SET or CLOBBERed.
5861
752df20e 5862 X is the pattern of the insn. */
5863
5864static void
8ec3a57b 5865invalidate_from_clobbers (rtx x)
752df20e 5866{
752df20e 5867 if (GET_CODE (x) == CLOBBER)
5868 {
5869 rtx ref = XEXP (x, 0);
ea0cb7ae 5870 if (ref)
5871 {
8ad4c111 5872 if (REG_P (ref) || GET_CODE (ref) == SUBREG
e16ceb8e 5873 || MEM_P (ref))
ea0cb7ae 5874 invalidate (ref, VOIDmode);
5875 else if (GET_CODE (ref) == STRICT_LOW_PART
5876 || GET_CODE (ref) == ZERO_EXTRACT)
5877 invalidate (XEXP (ref, 0), GET_MODE (ref));
5878 }
752df20e 5879 }
5880 else if (GET_CODE (x) == PARALLEL)
5881 {
19cb6b50 5882 int i;
752df20e 5883 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5884 {
19cb6b50 5885 rtx y = XVECEXP (x, 0, i);
752df20e 5886 if (GET_CODE (y) == CLOBBER)
5887 {
5888 rtx ref = XEXP (y, 0);
8ad4c111 5889 if (REG_P (ref) || GET_CODE (ref) == SUBREG
e16ceb8e 5890 || MEM_P (ref))
ea0cb7ae 5891 invalidate (ref, VOIDmode);
5892 else if (GET_CODE (ref) == STRICT_LOW_PART
5893 || GET_CODE (ref) == ZERO_EXTRACT)
5894 invalidate (XEXP (ref, 0), GET_MODE (ref));
752df20e 5895 }
5896 }
5897 }
5898}
5899\f
5900/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5901 and replace any registers in them with either an equivalent constant
5902 or the canonical form of the register. If we are inside an address,
5903 only do this if the address remains valid.
5904
5905 OBJECT is 0 except when within a MEM in which case it is the MEM.
5906
5907 Return the replacement for X. */
5908
5909static rtx
3072d30e 5910cse_process_notes_1 (rtx x, rtx object, bool *changed)
752df20e 5911{
5912 enum rtx_code code = GET_CODE (x);
d2ca078f 5913 const char *fmt = GET_RTX_FORMAT (code);
752df20e 5914 int i;
5915
5916 switch (code)
5917 {
5918 case CONST_INT:
5919 case CONST:
5920 case SYMBOL_REF:
5921 case LABEL_REF:
5922 case CONST_DOUBLE:
e397ad8e 5923 case CONST_FIXED:
886cfd4f 5924 case CONST_VECTOR:
752df20e 5925 case PC:
5926 case CC0:
5927 case LO_SUM:
5928 return x;
5929
5930 case MEM:
a344307e 5931 validate_change (x, &XEXP (x, 0),
3072d30e 5932 cse_process_notes (XEXP (x, 0), x, changed), 0);
752df20e 5933 return x;
5934
5935 case EXPR_LIST:
5936 case INSN_LIST:
5937 if (REG_NOTE_KIND (x) == REG_EQUAL)
3072d30e 5938 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
752df20e 5939 if (XEXP (x, 1))
3072d30e 5940 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
752df20e 5941 return x;
5942
21c77c5d 5943 case SIGN_EXTEND:
5944 case ZERO_EXTEND:
5afa7a07 5945 case SUBREG:
21c77c5d 5946 {
d328ebdf 5947 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
21c77c5d 5948 /* We don't substitute VOIDmode constants into these rtx,
5949 since they would impede folding. */
d328ebdf 5950 if (GET_MODE (new_rtx) != VOIDmode)
5951 validate_change (object, &XEXP (x, 0), new_rtx, 0);
21c77c5d 5952 return x;
5953 }
5954
752df20e 5955 case REG:
d1264606 5956 i = REG_QTY (REGNO (x));
752df20e 5957
5958 /* Return a constant or a constant register. */
a7f3b1c7 5959 if (REGNO_QTY_VALID_P (REGNO (x)))
752df20e 5960 {
a7f3b1c7 5961 struct qty_table_elem *ent = &qty_table[i];
5962
5963 if (ent->const_rtx != NULL_RTX
5964 && (CONSTANT_P (ent->const_rtx)
8ad4c111 5965 || REG_P (ent->const_rtx)))
a7f3b1c7 5966 {
d328ebdf 5967 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
5968 if (new_rtx)
5969 return copy_rtx (new_rtx);
a7f3b1c7 5970 }
752df20e 5971 }
5972
5973 /* Otherwise, canonicalize this register. */
b572011e 5974 return canon_reg (x, NULL_RTX);
cb10db9d 5975
0dbd1c74 5976 default:
5977 break;
752df20e 5978 }
5979
5980 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5981 if (fmt[i] == 'e')
5982 validate_change (object, &XEXP (x, i),
3072d30e 5983 cse_process_notes (XEXP (x, i), object, changed), 0);
752df20e 5984
5985 return x;
5986}
3072d30e 5987
5988static rtx
5989cse_process_notes (rtx x, rtx object, bool *changed)
5990{
d328ebdf 5991 rtx new_rtx = cse_process_notes_1 (x, object, changed);
5992 if (new_rtx != x)
3072d30e 5993 *changed = true;
d328ebdf 5994 return new_rtx;
3072d30e 5995}
5996
752df20e 5997\f
be22716f 5998/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
752df20e 5999
be22716f 6000 DATA is a pointer to a struct cse_basic_block_data, that is used to
6001 describe the path.
6002 It is filled with a queue of basic blocks, starting with FIRST_BB
6003 and following a trace through the CFG.
48e1416a 6004
be22716f 6005 If all paths starting at FIRST_BB have been followed, or no new path
6006 starting at FIRST_BB can be constructed, this function returns FALSE.
6007 Otherwise, DATA->path is filled and the function returns TRUE indicating
6008 that a path to follow was found.
752df20e 6009
7920eed5 6010 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
be22716f 6011 block in the path will be FIRST_BB. */
752df20e 6012
be22716f 6013static bool
6014cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6015 int follow_jumps)
752df20e 6016{
be22716f 6017 basic_block bb;
6018 edge e;
6019 int path_size;
48e1416a 6020
be22716f 6021 SET_BIT (cse_visited_basic_blocks, first_bb->index);
752df20e 6022
be22716f 6023 /* See if there is a previous path. */
6024 path_size = data->path_size;
6025
6026 /* There is a previous path. Make sure it started with FIRST_BB. */
6027 if (path_size)
6028 gcc_assert (data->path[0].bb == first_bb);
6029
6030 /* There was only one basic block in the last path. Clear the path and
6031 return, so that paths starting at another basic block can be tried. */
6032 if (path_size == 1)
6033 {
6034 path_size = 0;
6035 goto done;
6036 }
6037
6038 /* If the path was empty from the beginning, construct a new path. */
6039 if (path_size == 0)
6040 data->path[path_size++].bb = first_bb;
6041 else
752df20e 6042 {
be22716f 6043 /* Otherwise, path_size must be equal to or greater than 2, because
6044 a previous path exists that is at least two basic blocks long.
6045
6046 Update the previous branch path, if any. If the last branch was
6047 previously along the branch edge, take the fallthrough edge now. */
6048 while (path_size >= 2)
752df20e 6049 {
be22716f 6050 basic_block last_bb_in_path, previous_bb_in_path;
6051 edge e;
6052
6053 --path_size;
6054 last_bb_in_path = data->path[path_size].bb;
6055 previous_bb_in_path = data->path[path_size - 1].bb;
6056
6057 /* If we previously followed a path along the branch edge, try
6058 the fallthru edge now. */
6059 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6060 && any_condjump_p (BB_END (previous_bb_in_path))
6061 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6062 && e == BRANCH_EDGE (previous_bb_in_path))
6063 {
6064 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6065 if (bb != EXIT_BLOCK_PTR
3752d411 6066 && single_pred_p (bb)
6067 /* We used to assert here that we would only see blocks
6068 that we have not visited yet. But we may end up
6069 visiting basic blocks twice if the CFG has changed
6070 in this run of cse_main, because when the CFG changes
6071 the topological sort of the CFG also changes. A basic
6072 blocks that previously had more than two predecessors
6073 may now have a single predecessor, and become part of
6074 a path that starts at another basic block.
6075
6076 We still want to visit each basic block only once, so
6077 halt the path here if we have already visited BB. */
6078 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
be22716f 6079 {
be22716f 6080 SET_BIT (cse_visited_basic_blocks, bb->index);
6081 data->path[path_size++].bb = bb;
6082 break;
6083 }
6084 }
6085
6086 data->path[path_size].bb = NULL;
6087 }
6088
6089 /* If only one block remains in the path, bail. */
6090 if (path_size == 1)
6091 {
6092 path_size = 0;
6093 goto done;
752df20e 6094 }
752df20e 6095 }
6096
be22716f 6097 /* Extend the path if possible. */
6098 if (follow_jumps)
752df20e 6099 {
be22716f 6100 bb = data->path[path_size - 1].bb;
6101 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6102 {
6103 if (single_succ_p (bb))
6104 e = single_succ_edge (bb);
6105 else if (EDGE_COUNT (bb->succs) == 2
6106 && any_condjump_p (BB_END (bb)))
6107 {
6108 /* First try to follow the branch. If that doesn't lead
6109 to a useful path, follow the fallthru edge. */
6110 e = BRANCH_EDGE (bb);
6111 if (!single_pred_p (e->dest))
6112 e = FALLTHRU_EDGE (bb);
6113 }
6114 else
6115 e = NULL;
752df20e 6116
be22716f 6117 if (e && e->dest != EXIT_BLOCK_PTR
3752d411 6118 && single_pred_p (e->dest)
6119 /* Avoid visiting basic blocks twice. The large comment
6120 above explains why this can happen. */
6121 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
be22716f 6122 {
6123 basic_block bb2 = e->dest;
be22716f 6124 SET_BIT (cse_visited_basic_blocks, bb2->index);
6125 data->path[path_size++].bb = bb2;
6126 bb = bb2;
6127 }
6128 else
6129 bb = NULL;
6130 }
6131 }
6132
6133done:
6134 data->path_size = path_size;
6135 return path_size != 0;
6136}
6137\f
6138/* Dump the path in DATA to file F. NSETS is the number of sets
6139 in the path. */
6140
6141static void
6142cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6143{
6144 int path_entry;
6145
6146 fprintf (f, ";; Following path with %d sets: ", nsets);
6147 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6148 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6149 fputc ('\n', dump_file);
6150 fflush (f);
6151}
6152
99013338 6153\f
6154/* Return true if BB has exception handling successor edges. */
6155
6156static bool
6157have_eh_succ_edges (basic_block bb)
6158{
6159 edge e;
6160 edge_iterator ei;
6161
6162 FOR_EACH_EDGE (e, ei, bb->succs)
6163 if (e->flags & EDGE_EH)
6164 return true;
6165
6166 return false;
6167}
6168
be22716f 6169\f
6170/* Scan to the end of the path described by DATA. Return an estimate of
3072d30e 6171 the total number of SETs of all insns in the path. */
be22716f 6172
6173static void
6174cse_prescan_path (struct cse_basic_block_data *data)
6175{
6176 int nsets = 0;
be22716f 6177 int path_size = data->path_size;
6178 int path_entry;
6179
6180 /* Scan to end of each basic block in the path. */
48e1416a 6181 for (path_entry = 0; path_entry < path_size; path_entry++)
be22716f 6182 {
6183 basic_block bb;
6184 rtx insn;
dfcbcd81 6185
be22716f 6186 bb = data->path[path_entry].bb;
752df20e 6187
be22716f 6188 FOR_BB_INSNS (bb, insn)
752df20e 6189 {
be22716f 6190 if (!INSN_P (insn))
6191 continue;
cb10db9d 6192
be22716f 6193 /* A PARALLEL can have lots of SETs in it,
6194 especially if it is really an ASM_OPERANDS. */
6195 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6196 nsets += XVECLEN (PATTERN (insn), 0);
6197 else
6198 nsets += 1;
752df20e 6199 }
be22716f 6200 }
6201
be22716f 6202 data->nsets = nsets;
6203}
6204\f
6205/* Process a single extended basic block described by EBB_DATA. */
752df20e 6206
be22716f 6207static void
6208cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6209{
6210 int path_size = ebb_data->path_size;
6211 int path_entry;
6212 int num_insns = 0;
6213
6214 /* Allocate the space needed by qty_table. */
6215 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6216
6217 new_basic_block ();
deb2741b 6218 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6219 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
be22716f 6220 for (path_entry = 0; path_entry < path_size; path_entry++)
6221 {
6222 basic_block bb;
201f6961 6223 rtx insn;
be22716f 6224
6225 bb = ebb_data->path[path_entry].bb;
b357aba8 6226
6227 /* Invalidate recorded information for eh regs if there is an EH
6228 edge pointing to that bb. */
6229 if (bb_has_eh_pred (bb))
6230 {
ed6e85ae 6231 df_ref *def_rec;
b357aba8 6232
6233 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6234 {
ed6e85ae 6235 df_ref def = *def_rec;
b357aba8 6236 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6237 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6238 }
6239 }
6240
201f6961 6241 FOR_BB_INSNS (bb, insn)
752df20e 6242 {
f529eb25 6243 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
be22716f 6244 /* If we have processed 1,000 insns, flush the hash table to
6245 avoid extreme quadratic behavior. We must not include NOTEs
6246 in the count since there may be more of them when generating
6247 debugging information. If we clear the table at different
6248 times, code generated with -g -O might be different than code
6249 generated with -O but not -g.
6250
6251 FIXME: This is a real kludge and needs to be done some other
6252 way. */
9845d120 6253 if (NONDEBUG_INSN_P (insn)
be22716f 6254 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6255 {
6256 flush_hash_table ();
6257 num_insns = 0;
6258 }
752df20e 6259
be22716f 6260 if (INSN_P (insn))
752df20e 6261 {
be22716f 6262 /* Process notes first so we have all notes in canonical forms
6263 when looking for duplicate operations. */
6264 if (REG_NOTES (insn))
3072d30e 6265 {
6266 bool changed = false;
6267 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6268 NULL_RTX, &changed);
6269 if (changed)
6270 df_notes_rescan (insn);
6271 }
be22716f 6272
1e5b92fa 6273 cse_insn (insn);
be22716f 6274
be22716f 6275 /* If we haven't already found an insn where we added a LABEL_REF,
6276 check this one. */
283a6b26 6277 if (INSN_P (insn) && !recorded_label_ref
be22716f 6278 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6279 (void *) insn))
283a6b26 6280 recorded_label_ref = true;
c6ddfc69 6281
6282#ifdef HAVE_cc0
6283 /* If the previous insn set CC0 and this insn no longer
6284 references CC0, delete the previous insn. Here we use
6285 fact that nothing expects CC0 to be valid over an insn,
6286 which is true until the final pass. */
6287 {
6288 rtx prev_insn, tem;
6289
6290 prev_insn = PREV_INSN (insn);
6291 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6292 && (tem = single_set (prev_insn)) != 0
6293 && SET_DEST (tem) == cc0_rtx
6294 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6295 delete_insn (prev_insn);
6296 }
6297
6298 /* If this insn is not the last insn in the basic block,
6299 it will be PREV_INSN(insn) in the next iteration. If
6300 we recorded any CC0-related information for this insn,
6301 remember it. */
6302 if (insn != BB_END (bb))
6303 {
6304 prev_insn_cc0 = this_insn_cc0;
6305 prev_insn_cc0_mode = this_insn_cc0_mode;
6306 }
6307#endif
be22716f 6308 }
6309 }
752df20e 6310
99013338 6311 /* With non-call exceptions, we are not always able to update
6312 the CFG properly inside cse_insn. So clean up possibly
6313 redundant EH edges here. */
6314 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
283a6b26 6315 cse_cfg_altered |= purge_dead_edges (bb);
99013338 6316
be22716f 6317 /* If we changed a conditional jump, we may have terminated
6318 the path we are following. Check that by verifying that
6319 the edge we would take still exists. If the edge does
6320 not exist anymore, purge the remainder of the path.
6321 Note that this will cause us to return to the caller. */
6322 if (path_entry < path_size - 1)
6323 {
6324 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6325 if (!find_edge (bb, next_bb))
5b58e627 6326 {
6327 do
6328 {
6329 path_size--;
6330
6331 /* If we truncate the path, we must also reset the
6332 visited bit on the remaining blocks in the path,
6333 or we will never visit them at all. */
6334 RESET_BIT (cse_visited_basic_blocks,
6335 ebb_data->path[path_size].bb->index);
6336 ebb_data->path[path_size].bb = NULL;
6337 }
6338 while (path_size - 1 != path_entry);
6339 ebb_data->path_size = path_size;
6340 }
752df20e 6341 }
752df20e 6342
be22716f 6343 /* If this is a conditional jump insn, record any known
6344 equivalences due to the condition being tested. */
6345 insn = BB_END (bb);
6346 if (path_entry < path_size - 1
6347 && JUMP_P (insn)
6348 && single_set (insn)
6349 && any_condjump_p (insn))
6350 {
6351 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6352 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6353 record_jump_equiv (insn, taken);
6354 }
c6ddfc69 6355
6356#ifdef HAVE_cc0
6357 /* Clear the CC0-tracking related insns, they can't provide
6358 useful information across basic block boundaries. */
6359 prev_insn_cc0 = 0;
6360#endif
be22716f 6361 }
752df20e 6362
be22716f 6363 gcc_assert (next_qty <= max_qty);
752df20e 6364
be22716f 6365 free (qty_table);
752df20e 6366}
3072d30e 6367
752df20e 6368\f
752df20e 6369/* Perform cse on the instructions of a function.
6370 F is the first instruction.
6371 NREGS is one plus the highest pseudo-reg number used in the instruction.
6372
283a6b26 6373 Return 2 if jump optimizations should be redone due to simplifications
6374 in conditional jump instructions.
6375 Return 1 if the CFG should be cleaned up because it has been modified.
6376 Return 0 otherwise. */
752df20e 6377
6378int
be22716f 6379cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
752df20e 6380{
be22716f 6381 struct cse_basic_block_data ebb_data;
6382 basic_block bb;
5b58e627 6383 int *rc_order = XNEWVEC (int, last_basic_block);
be22716f 6384 int i, n_blocks;
752df20e 6385
3072d30e 6386 df_set_flags (DF_LR_RUN_DCE);
6387 df_analyze ();
6388 df_set_flags (DF_DEFER_INSN_RESCAN);
6389
6390 reg_scan (get_insns (), max_reg_num ());
3bd20490 6391 init_cse_reg_info (nregs);
6392
be22716f 6393 ebb_data.path = XNEWVEC (struct branch_path,
6394 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
38ccff25 6395
283a6b26 6396 cse_cfg_altered = false;
6397 cse_jumps_altered = false;
6398 recorded_label_ref = false;
752df20e 6399 constant_pool_entries_cost = 0;
634d45d7 6400 constant_pool_entries_regcost = 0;
be22716f 6401 ebb_data.path_size = 0;
6402 ebb_data.nsets = 0;
d263732c 6403 rtl_hooks = cse_rtl_hooks;
752df20e 6404
6405 init_recog ();
ea0cb7ae 6406 init_alias_analysis ();
752df20e 6407
4c36ffe6 6408 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
752df20e 6409
be22716f 6410 /* Set up the table of already visited basic blocks. */
6411 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6412 sbitmap_zero (cse_visited_basic_blocks);
752df20e 6413
99013338 6414 /* Loop over basic blocks in reverse completion order (RPO),
be22716f 6415 excluding the ENTRY and EXIT blocks. */
5b58e627 6416 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
be22716f 6417 i = 0;
6418 while (i < n_blocks)
752df20e 6419 {
99013338 6420 /* Find the first block in the RPO queue that we have not yet
be22716f 6421 processed before. */
6422 do
0dbd1c74 6423 {
5b58e627 6424 bb = BASIC_BLOCK (rc_order[i++]);
0dbd1c74 6425 }
be22716f 6426 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6427 && i < n_blocks);
752df20e 6428
be22716f 6429 /* Find all paths starting with BB, and process them. */
6430 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
752df20e 6431 {
be22716f 6432 /* Pre-scan the path. */
6433 cse_prescan_path (&ebb_data);
752df20e 6434
be22716f 6435 /* If this basic block has no sets, skip it. */
6436 if (ebb_data.nsets == 0)
6437 continue;
752df20e 6438
7920eed5 6439 /* Get a reasonable estimate for the maximum number of qty's
be22716f 6440 needed for this path. For this, we take the number of sets
6441 and multiply that by MAX_RECOG_OPERANDS. */
6442 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
752df20e 6443
be22716f 6444 /* Dump the path we're about to process. */
6445 if (dump_file)
6446 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
541a035f 6447
be22716f 6448 cse_extended_basic_block (&ebb_data);
752df20e 6449 }
752df20e 6450 }
6451
be22716f 6452 /* Clean up. */
6453 end_alias_analysis ();
be22716f 6454 free (reg_eqv_table);
6455 free (ebb_data.path);
6456 sbitmap_free (cse_visited_basic_blocks);
5b58e627 6457 free (rc_order);
be22716f 6458 rtl_hooks = general_rtl_hooks;
ef866782 6459
283a6b26 6460 if (cse_jumps_altered || recorded_label_ref)
6461 return 2;
6462 else if (cse_cfg_altered)
6463 return 1;
6464 else
6465 return 0;
752df20e 6466}
6467\f
19d2fe05 6468/* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6469 which there isn't a REG_LABEL_OPERAND note.
6470 Return one if so. DATA is the insn. */
37b8a8d6 6471
6472static int
8ec3a57b 6473check_for_label_ref (rtx *rtl, void *data)
37b8a8d6 6474{
6475 rtx insn = (rtx) data;
6476
19d2fe05 6477 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6478 note for it, we must rerun jump since it needs to place the note. If
6479 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6480 don't do this since no REG_LABEL_OPERAND will be added. */
37b8a8d6 6481 return (GET_CODE (*rtl) == LABEL_REF
e78ee852 6482 && ! LABEL_REF_NONLOCAL_P (*rtl)
19d2fe05 6483 && (!JUMP_P (insn)
6484 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
e619d7b1 6485 && LABEL_P (XEXP (*rtl, 0))
37b8a8d6 6486 && INSN_UID (XEXP (*rtl, 0)) != 0
19d2fe05 6487 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
37b8a8d6 6488}
6489\f
752df20e 6490/* Count the number of times registers are used (not set) in X.
6491 COUNTS is an array in which we accumulate the count, INCR is how much
e6bf10d8 6492 we count each register usage.
6493
6494 Don't count a usage of DEST, which is the SET_DEST of a SET which
6495 contains X in its SET_SRC. This is because such a SET does not
6496 modify the liveness of DEST.
6497 DEST is set to pc_rtx for a trapping insn, which means that we must count
6498 uses of a SET_DEST regardless because the insn can't be deleted here. */
752df20e 6499
6500static void
e6bf10d8 6501count_reg_usage (rtx x, int *counts, rtx dest, int incr)
752df20e 6502{
b84155cd 6503 enum rtx_code code;
ce32fe65 6504 rtx note;
d2ca078f 6505 const char *fmt;
752df20e 6506 int i, j;
6507
b84155cd 6508 if (x == 0)
6509 return;
6510
6511 switch (code = GET_CODE (x))
752df20e 6512 {
6513 case REG:
e6bf10d8 6514 if (x != dest)
6515 counts[REGNO (x)] += incr;
752df20e 6516 return;
6517
6518 case PC:
6519 case CC0:
6520 case CONST:
6521 case CONST_INT:
6522 case CONST_DOUBLE:
e397ad8e 6523 case CONST_FIXED:
886cfd4f 6524 case CONST_VECTOR:
752df20e 6525 case SYMBOL_REF:
6526 case LABEL_REF:
a51d039e 6527 return;
6528
cb10db9d 6529 case CLOBBER:
a51d039e 6530 /* If we are clobbering a MEM, mark any registers inside the address
6531 as being used. */
e16ceb8e 6532 if (MEM_P (XEXP (x, 0)))
e6bf10d8 6533 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
752df20e 6534 return;
6535
6536 case SET:
6537 /* Unless we are setting a REG, count everything in SET_DEST. */
8ad4c111 6538 if (!REG_P (SET_DEST (x)))
e6bf10d8 6539 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6540 count_reg_usage (SET_SRC (x), counts,
6541 dest ? dest : SET_DEST (x),
6542 incr);
752df20e 6543 return;
6544
9845d120 6545 case DEBUG_INSN:
6546 return;
6547
b84155cd 6548 case CALL_INSN:
752df20e 6549 case INSN:
6550 case JUMP_INSN:
e38def9c 6551 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6552 this fact by setting DEST to pc_rtx. */
6553 if (insn_could_throw_p (x))
e6bf10d8 6554 dest = pc_rtx;
6555 if (code == CALL_INSN)
6556 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6557 count_reg_usage (PATTERN (x), counts, dest, incr);
752df20e 6558
6559 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6560 use them. */
6561
ce32fe65 6562 note = find_reg_equal_equiv_note (x);
6563 if (note)
86178c33 6564 {
6565 rtx eqv = XEXP (note, 0);
6566
6567 if (GET_CODE (eqv) == EXPR_LIST)
6568 /* This REG_EQUAL note describes the result of a function call.
6569 Process all the arguments. */
6570 do
6571 {
e6bf10d8 6572 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
86178c33 6573 eqv = XEXP (eqv, 1);
6574 }
6575 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6576 else
e6bf10d8 6577 count_reg_usage (eqv, counts, dest, incr);
86178c33 6578 }
752df20e 6579 return;
6580
d5f9786f 6581 case EXPR_LIST:
6582 if (REG_NOTE_KIND (x) == REG_EQUAL
6583 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6584 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6585 involving registers in the address. */
6586 || GET_CODE (XEXP (x, 0)) == CLOBBER)
e6bf10d8 6587 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
d5f9786f 6588
e6bf10d8 6589 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
d5f9786f 6590 return;
6591
16d4da86 6592 case ASM_OPERANDS:
e6bf10d8 6593 /* If the asm is volatile, then this insn cannot be deleted,
6594 and so the inputs *must* be live. */
6595 if (MEM_VOLATILE_P (x))
6596 dest = NULL_RTX;
16d4da86 6597 /* Iterate over just the inputs, not the constraints as well. */
6598 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
e6bf10d8 6599 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
16d4da86 6600 return;
6601
752df20e 6602 case INSN_LIST:
cc636d56 6603 gcc_unreachable ();
cb10db9d 6604
0dbd1c74 6605 default:
6606 break;
752df20e 6607 }
6608
6609 fmt = GET_RTX_FORMAT (code);
6610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6611 {
6612 if (fmt[i] == 'e')
e6bf10d8 6613 count_reg_usage (XEXP (x, i), counts, dest, incr);
752df20e 6614 else if (fmt[i] == 'E')
6615 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e6bf10d8 6616 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
752df20e 6617 }
6618}
6619\f
9845d120 6620/* Return true if a register is dead. Can be used in for_each_rtx. */
6621
6622static int
6623is_dead_reg (rtx *loc, void *data)
6624{
6625 rtx x = *loc;
6626 int *counts = (int *)data;
6627
6628 return (REG_P (x)
6629 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6630 && counts[REGNO (x)] == 0);
6631}
6632
6d866f03 6633/* Return true if set is live. */
6634static bool
8ec3a57b 6635set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6636 int *counts)
6d866f03 6637{
6638#ifdef HAVE_cc0
6639 rtx tem;
6640#endif
6641
6642 if (set_noop_p (set))
6643 ;
6644
6645#ifdef HAVE_cc0
6646 else if (GET_CODE (SET_DEST (set)) == CC0
6647 && !side_effects_p (SET_SRC (set))
6648 && ((tem = next_nonnote_insn (insn)) == 0
6649 || !INSN_P (tem)
6650 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6651 return false;
6652#endif
9845d120 6653 else if (!is_dead_reg (&SET_DEST (set), counts)
e8825bb0 6654 || side_effects_p (SET_SRC (set)))
6d866f03 6655 return true;
6656 return false;
6657}
6658
6659/* Return true if insn is live. */
6660
6661static bool
8ec3a57b 6662insn_live_p (rtx insn, int *counts)
6d866f03 6663{
6664 int i;
e38def9c 6665 if (insn_could_throw_p (insn))
8ca56a3b 6666 return true;
6667 else if (GET_CODE (PATTERN (insn)) == SET)
6fc669ae 6668 return set_live_p (PATTERN (insn), insn, counts);
6d866f03 6669 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6fc669ae 6670 {
6671 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6672 {
6673 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6d866f03 6674
6fc669ae 6675 if (GET_CODE (elt) == SET)
6676 {
6677 if (set_live_p (elt, insn, counts))
6678 return true;
6679 }
6680 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6681 return true;
6682 }
6683 return false;
6684 }
9845d120 6685 else if (DEBUG_INSN_P (insn))
6686 {
6687 rtx next;
6688
6689 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6690 if (NOTE_P (next))
6691 continue;
6692 else if (!DEBUG_INSN_P (next))
6693 return true;
6694 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6695 return false;
6696
6697 /* If this debug insn references a dead register, drop the
6698 location expression for now. ??? We could try to find the
6699 def and see if propagation is possible. */
6700 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn), is_dead_reg, counts))
6701 {
6702 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
6703 df_insn_rescan (insn);
6704 }
6705
6706 return true;
6707 }
6d866f03 6708 else
6709 return true;
6710}
6711
752df20e 6712/* Scan all the insns and delete any that are dead; i.e., they store a register
6713 that is never used or they copy a register to itself.
6714
33752533 6715 This is used to remove insns made obviously dead by cse, loop or other
6716 optimizations. It improves the heuristics in loop since it won't try to
6717 move dead invariants out of loops or make givs for dead quantities. The
6718 remaining passes of the compilation are also sped up. */
752df20e 6719
fb20d6fa 6720int
8ec3a57b 6721delete_trivially_dead_insns (rtx insns, int nreg)
752df20e 6722{
b9cf3f63 6723 int *counts;
8b82837b 6724 rtx insn, prev;
2aaf7099 6725 int ndead = 0;
752df20e 6726
fb20d6fa 6727 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
752df20e 6728 /* First count the number of times each register is used. */
4c36ffe6 6729 counts = XCNEWVEC (int, nreg);
4ac6fa85 6730 for (insn = insns; insn; insn = NEXT_INSN (insn))
6731 if (INSN_P (insn))
e6bf10d8 6732 count_reg_usage (insn, counts, NULL_RTX, 1);
752df20e 6733
2aaf7099 6734 /* Go from the last insn to the first and delete insns that only set unused
6735 registers or copy a register to itself. As we delete an insn, remove
6736 usage counts for registers it uses.
af21a202 6737
2aaf7099 6738 The first jump optimization pass may leave a real insn as the last
6739 insn in the function. We must not skip that insn or we may end
6740 up deleting code that is not really dead. */
4ac6fa85 6741 for (insn = get_last_insn (); insn; insn = prev)
2aaf7099 6742 {
6743 int live_insn = 0;
752df20e 6744
4ac6fa85 6745 prev = PREV_INSN (insn);
6746 if (!INSN_P (insn))
6747 continue;
752df20e 6748
1e5b92fa 6749 live_insn = insn_live_p (insn, counts);
752df20e 6750
2aaf7099 6751 /* If this is a dead insn, delete it and show registers in it aren't
6752 being used. */
752df20e 6753
3072d30e 6754 if (! live_insn && dbg_cnt (delete_trivial_dead))
2aaf7099 6755 {
e6bf10d8 6756 count_reg_usage (insn, counts, NULL_RTX, -1);
2aaf7099 6757 delete_insn_and_edges (insn);
6758 ndead++;
6759 }
d4c5e26d 6760 }
b9cf3f63 6761
450d042a 6762 if (dump_file && ndead)
2aaf7099 6763 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6764 ndead);
b9cf3f63 6765 /* Clean up. */
6766 free (counts);
fb20d6fa 6767 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6768 return ndead;
752df20e 6769}
124ac4e4 6770
6771/* This function is called via for_each_rtx. The argument, NEWREG, is
6772 a condition code register with the desired mode. If we are looking
6773 at the same register in a different mode, replace it with
6774 NEWREG. */
6775
6776static int
6777cse_change_cc_mode (rtx *loc, void *data)
6778{
b866694e 6779 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
124ac4e4 6780
6781 if (*loc
8ad4c111 6782 && REG_P (*loc)
b866694e 6783 && REGNO (*loc) == REGNO (args->newreg)
6784 && GET_MODE (*loc) != GET_MODE (args->newreg))
124ac4e4 6785 {
b866694e 6786 validate_change (args->insn, loc, args->newreg, 1);
48e1416a 6787
124ac4e4 6788 return -1;
6789 }
6790 return 0;
6791}
6792
b866694e 6793/* Change the mode of any reference to the register REGNO (NEWREG) to
6794 GET_MODE (NEWREG) in INSN. */
6795
6796static void
6797cse_change_cc_mode_insn (rtx insn, rtx newreg)
6798{
6799 struct change_cc_mode_args args;
6800 int success;
6801
6802 if (!INSN_P (insn))
6803 return;
6804
6805 args.insn = insn;
6806 args.newreg = newreg;
48e1416a 6807
b866694e 6808 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6809 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
48e1416a 6810
b866694e 6811 /* If the following assertion was triggered, there is most probably
6812 something wrong with the cc_modes_compatible back end function.
6813 CC modes only can be considered compatible if the insn - with the mode
6814 replaced by any of the compatible modes - can still be recognized. */
6815 success = apply_change_group ();
6816 gcc_assert (success);
6817}
6818
124ac4e4 6819/* Change the mode of any reference to the register REGNO (NEWREG) to
6820 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
4362e8e0 6821 any instruction which modifies NEWREG. */
124ac4e4 6822
6823static void
6824cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6825{
6826 rtx insn;
6827
6828 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6829 {
6830 if (! INSN_P (insn))
6831 continue;
6832
4362e8e0 6833 if (reg_set_p (newreg, insn))
124ac4e4 6834 return;
6835
b866694e 6836 cse_change_cc_mode_insn (insn, newreg);
124ac4e4 6837 }
6838}
6839
6840/* BB is a basic block which finishes with CC_REG as a condition code
6841 register which is set to CC_SRC. Look through the successors of BB
6842 to find blocks which have a single predecessor (i.e., this one),
6843 and look through those blocks for an assignment to CC_REG which is
6844 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6845 permitted to change the mode of CC_SRC to a compatible mode. This
6846 returns VOIDmode if no equivalent assignments were found.
6847 Otherwise it returns the mode which CC_SRC should wind up with.
650d2134 6848 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6849 but is passed unmodified down to recursive calls in order to prevent
6850 endless recursion.
124ac4e4 6851
6852 The main complexity in this function is handling the mode issues.
6853 We may have more than one duplicate which we can eliminate, and we
6854 try to find a mode which will work for multiple duplicates. */
6855
6856static enum machine_mode
650d2134 6857cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6858 bool can_change_mode)
124ac4e4 6859{
6860 bool found_equiv;
6861 enum machine_mode mode;
6862 unsigned int insn_count;
6863 edge e;
6864 rtx insns[2];
6865 enum machine_mode modes[2];
6866 rtx last_insns[2];
6867 unsigned int i;
6868 rtx newreg;
cd665a06 6869 edge_iterator ei;
124ac4e4 6870
6871 /* We expect to have two successors. Look at both before picking
6872 the final mode for the comparison. If we have more successors
6873 (i.e., some sort of table jump, although that seems unlikely),
6874 then we require all beyond the first two to use the same
6875 mode. */
6876
6877 found_equiv = false;
6878 mode = GET_MODE (cc_src);
6879 insn_count = 0;
cd665a06 6880 FOR_EACH_EDGE (e, ei, bb->succs)
124ac4e4 6881 {
6882 rtx insn;
6883 rtx end;
6884
6885 if (e->flags & EDGE_COMPLEX)
6886 continue;
6887
cd665a06 6888 if (EDGE_COUNT (e->dest->preds) != 1
650d2134 6889 || e->dest == EXIT_BLOCK_PTR
6890 /* Avoid endless recursion on unreachable blocks. */
6891 || e->dest == orig_bb)
124ac4e4 6892 continue;
6893
6894 end = NEXT_INSN (BB_END (e->dest));
6895 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6896 {
6897 rtx set;
6898
6899 if (! INSN_P (insn))
6900 continue;
6901
6902 /* If CC_SRC is modified, we have to stop looking for
6903 something which uses it. */
6904 if (modified_in_p (cc_src, insn))
6905 break;
6906
6907 /* Check whether INSN sets CC_REG to CC_SRC. */
6908 set = single_set (insn);
6909 if (set
8ad4c111 6910 && REG_P (SET_DEST (set))
124ac4e4 6911 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6912 {
6913 bool found;
6914 enum machine_mode set_mode;
6915 enum machine_mode comp_mode;
6916
6917 found = false;
6918 set_mode = GET_MODE (SET_SRC (set));
6919 comp_mode = set_mode;
6920 if (rtx_equal_p (cc_src, SET_SRC (set)))
6921 found = true;
6922 else if (GET_CODE (cc_src) == COMPARE
6923 && GET_CODE (SET_SRC (set)) == COMPARE
960670fc 6924 && mode != set_mode
124ac4e4 6925 && rtx_equal_p (XEXP (cc_src, 0),
6926 XEXP (SET_SRC (set), 0))
6927 && rtx_equal_p (XEXP (cc_src, 1),
6928 XEXP (SET_SRC (set), 1)))
48e1416a 6929
124ac4e4 6930 {
883b2e73 6931 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
124ac4e4 6932 if (comp_mode != VOIDmode
6933 && (can_change_mode || comp_mode == mode))
6934 found = true;
6935 }
6936
6937 if (found)
6938 {
6939 found_equiv = true;
960670fc 6940 if (insn_count < ARRAY_SIZE (insns))
124ac4e4 6941 {
6942 insns[insn_count] = insn;
6943 modes[insn_count] = set_mode;
6944 last_insns[insn_count] = end;
6945 ++insn_count;
6946
960670fc 6947 if (mode != comp_mode)
6948 {
cc636d56 6949 gcc_assert (can_change_mode);
960670fc 6950 mode = comp_mode;
b866694e 6951
6952 /* The modified insn will be re-recognized later. */
960670fc 6953 PUT_MODE (cc_src, mode);
6954 }
124ac4e4 6955 }
6956 else
6957 {
6958 if (set_mode != mode)
960670fc 6959 {
6960 /* We found a matching expression in the
6961 wrong mode, but we don't have room to
6962 store it in the array. Punt. This case
6963 should be rare. */
6964 break;
6965 }
124ac4e4 6966 /* INSN sets CC_REG to a value equal to CC_SRC
6967 with the right mode. We can simply delete
6968 it. */
6969 delete_insn (insn);
6970 }
6971
6972 /* We found an instruction to delete. Keep looking,
6973 in the hopes of finding a three-way jump. */
6974 continue;
6975 }
6976
6977 /* We found an instruction which sets the condition
6978 code, so don't look any farther. */
6979 break;
6980 }
6981
6982 /* If INSN sets CC_REG in some other way, don't look any
6983 farther. */
6984 if (reg_set_p (cc_reg, insn))
6985 break;
6986 }
6987
6988 /* If we fell off the bottom of the block, we can keep looking
6989 through successors. We pass CAN_CHANGE_MODE as false because
6990 we aren't prepared to handle compatibility between the
6991 further blocks and this block. */
6992 if (insn == end)
6993 {
960670fc 6994 enum machine_mode submode;
6995
650d2134 6996 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
960670fc 6997 if (submode != VOIDmode)
6998 {
cc636d56 6999 gcc_assert (submode == mode);
960670fc 7000 found_equiv = true;
7001 can_change_mode = false;
7002 }
124ac4e4 7003 }
7004 }
7005
7006 if (! found_equiv)
7007 return VOIDmode;
7008
7009 /* Now INSN_COUNT is the number of instructions we found which set
7010 CC_REG to a value equivalent to CC_SRC. The instructions are in
7011 INSNS. The modes used by those instructions are in MODES. */
7012
7013 newreg = NULL_RTX;
7014 for (i = 0; i < insn_count; ++i)
7015 {
7016 if (modes[i] != mode)
7017 {
7018 /* We need to change the mode of CC_REG in INSNS[i] and
7019 subsequent instructions. */
7020 if (! newreg)
7021 {
7022 if (GET_MODE (cc_reg) == mode)
7023 newreg = cc_reg;
7024 else
7025 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7026 }
7027 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7028 newreg);
7029 }
7030
8ecc497a 7031 delete_insn_and_edges (insns[i]);
124ac4e4 7032 }
7033
7034 return mode;
7035}
7036
7037/* If we have a fixed condition code register (or two), walk through
7038 the instructions and try to eliminate duplicate assignments. */
7039
66c2c707 7040static void
124ac4e4 7041cse_condition_code_reg (void)
7042{
7043 unsigned int cc_regno_1;
7044 unsigned int cc_regno_2;
7045 rtx cc_reg_1;
7046 rtx cc_reg_2;
7047 basic_block bb;
7048
883b2e73 7049 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
124ac4e4 7050 return;
7051
7052 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7053 if (cc_regno_2 != INVALID_REGNUM)
7054 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7055 else
7056 cc_reg_2 = NULL_RTX;
7057
7058 FOR_EACH_BB (bb)
7059 {
7060 rtx last_insn;
7061 rtx cc_reg;
7062 rtx insn;
7063 rtx cc_src_insn;
7064 rtx cc_src;
7065 enum machine_mode mode;
960670fc 7066 enum machine_mode orig_mode;
124ac4e4 7067
7068 /* Look for blocks which end with a conditional jump based on a
7069 condition code register. Then look for the instruction which
7070 sets the condition code register. Then look through the
7071 successor blocks for instructions which set the condition
7072 code register to the same value. There are other possible
7073 uses of the condition code register, but these are by far the
7074 most common and the ones which we are most likely to be able
7075 to optimize. */
7076
7077 last_insn = BB_END (bb);
6d7dc5b9 7078 if (!JUMP_P (last_insn))
124ac4e4 7079 continue;
7080
7081 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7082 cc_reg = cc_reg_1;
7083 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7084 cc_reg = cc_reg_2;
7085 else
7086 continue;
7087
7088 cc_src_insn = NULL_RTX;
7089 cc_src = NULL_RTX;
7090 for (insn = PREV_INSN (last_insn);
7091 insn && insn != PREV_INSN (BB_HEAD (bb));
7092 insn = PREV_INSN (insn))
7093 {
7094 rtx set;
7095
7096 if (! INSN_P (insn))
7097 continue;
7098 set = single_set (insn);
7099 if (set
8ad4c111 7100 && REG_P (SET_DEST (set))
124ac4e4 7101 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7102 {
7103 cc_src_insn = insn;
7104 cc_src = SET_SRC (set);
7105 break;
7106 }
7107 else if (reg_set_p (cc_reg, insn))
7108 break;
7109 }
7110
7111 if (! cc_src_insn)
7112 continue;
7113
7114 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7115 continue;
7116
7117 /* Now CC_REG is a condition code register used for a
7118 conditional jump at the end of the block, and CC_SRC, in
7119 CC_SRC_INSN, is the value to which that condition code
7120 register is set, and CC_SRC is still meaningful at the end of
7121 the basic block. */
7122
960670fc 7123 orig_mode = GET_MODE (cc_src);
650d2134 7124 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
960670fc 7125 if (mode != VOIDmode)
124ac4e4 7126 {
cc636d56 7127 gcc_assert (mode == GET_MODE (cc_src));
960670fc 7128 if (mode != orig_mode)
4362e8e0 7129 {
7130 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7131
b866694e 7132 cse_change_cc_mode_insn (cc_src_insn, newreg);
4362e8e0 7133
7134 /* Do the same in the following insns that use the
7135 current value of CC_REG within BB. */
7136 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7137 NEXT_INSN (last_insn),
7138 newreg);
7139 }
124ac4e4 7140 }
7141 }
7142}
77fce4cd 7143\f
7144
7145/* Perform common subexpression elimination. Nonzero value from
7146 `cse_main' means that jumps were simplified and some code may now
7147 be unreachable, so do jump optimization again. */
7148static bool
7149gate_handle_cse (void)
7150{
7151 return optimize > 0;
7152}
7153
2a1990e9 7154static unsigned int
77fce4cd 7155rest_of_handle_cse (void)
7156{
7157 int tem;
3072d30e 7158
77fce4cd 7159 if (dump_file)
562d71e8 7160 dump_flow_info (dump_file, dump_flags);
77fce4cd 7161
3f5be5f4 7162 tem = cse_main (get_insns (), max_reg_num ());
77fce4cd 7163
7164 /* If we are not running more CSE passes, then we are no longer
7165 expecting CSE to be run. But always rerun it in a cheap mode. */
7166 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7167
283a6b26 7168 if (tem == 2)
7169 {
7170 timevar_push (TV_JUMP);
7171 rebuild_jump_labels (get_insns ());
7172 cleanup_cfg (0);
7173 timevar_pop (TV_JUMP);
7174 }
7175 else if (tem == 1 || optimize > 1)
3072d30e 7176 cleanup_cfg (0);
be22716f 7177
2a1990e9 7178 return 0;
77fce4cd 7179}
7180
20099e35 7181struct rtl_opt_pass pass_cse =
77fce4cd 7182{
20099e35 7183 {
7184 RTL_PASS,
77fce4cd 7185 "cse1", /* name */
48e1416a 7186 gate_handle_cse, /* gate */
7187 rest_of_handle_cse, /* execute */
77fce4cd 7188 NULL, /* sub */
7189 NULL, /* next */
7190 0, /* static_pass_number */
7191 TV_CSE, /* tv_id */
7192 0, /* properties_required */
7193 0, /* properties_provided */
7194 0, /* properties_destroyed */
7195 0, /* todo_flags_start */
0806b508 7196 TODO_df_finish | TODO_verify_rtl_sharing |
77fce4cd 7197 TODO_dump_func |
be22716f 7198 TODO_ggc_collect |
7199 TODO_verify_flow, /* todo_flags_finish */
20099e35 7200 }
77fce4cd 7201};
7202
7203
7204static bool
7205gate_handle_cse2 (void)
7206{
7207 return optimize > 0 && flag_rerun_cse_after_loop;
7208}
7209
7210/* Run second CSE pass after loop optimizations. */
2a1990e9 7211static unsigned int
77fce4cd 7212rest_of_handle_cse2 (void)
7213{
7214 int tem;
7215
7216 if (dump_file)
562d71e8 7217 dump_flow_info (dump_file, dump_flags);
77fce4cd 7218
3f5be5f4 7219 tem = cse_main (get_insns (), max_reg_num ());
77fce4cd 7220
7221 /* Run a pass to eliminate duplicated assignments to condition code
7222 registers. We have to run this after bypass_jumps, because it
7223 makes it harder for that pass to determine whether a jump can be
7224 bypassed safely. */
7225 cse_condition_code_reg ();
7226
77fce4cd 7227 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7228
283a6b26 7229 if (tem == 2)
77fce4cd 7230 {
7231 timevar_push (TV_JUMP);
7232 rebuild_jump_labels (get_insns ());
3072d30e 7233 cleanup_cfg (0);
77fce4cd 7234 timevar_pop (TV_JUMP);
7235 }
283a6b26 7236 else if (tem == 1)
7237 cleanup_cfg (0);
7238
77fce4cd 7239 cse_not_expected = 1;
2a1990e9 7240 return 0;
77fce4cd 7241}
7242
7243
20099e35 7244struct rtl_opt_pass pass_cse2 =
77fce4cd 7245{
20099e35 7246 {
7247 RTL_PASS,
77fce4cd 7248 "cse2", /* name */
48e1416a 7249 gate_handle_cse2, /* gate */
7250 rest_of_handle_cse2, /* execute */
77fce4cd 7251 NULL, /* sub */
7252 NULL, /* next */
7253 0, /* static_pass_number */
7254 TV_CSE2, /* tv_id */
7255 0, /* properties_required */
7256 0, /* properties_provided */
7257 0, /* properties_destroyed */
7258 0, /* todo_flags_start */
0806b508 7259 TODO_df_finish | TODO_verify_rtl_sharing |
77fce4cd 7260 TODO_dump_func |
be22716f 7261 TODO_ggc_collect |
20099e35 7262 TODO_verify_flow /* todo_flags_finish */
7263 }
77fce4cd 7264};
d743aba2 7265
7266static bool
7267gate_handle_cse_after_global_opts (void)
7268{
7269 return optimize > 0 && flag_rerun_cse_after_global_opts;
7270}
7271
7272/* Run second CSE pass after loop optimizations. */
7273static unsigned int
7274rest_of_handle_cse_after_global_opts (void)
7275{
7276 int save_cfj;
7277 int tem;
7278
7279 /* We only want to do local CSE, so don't follow jumps. */
7280 save_cfj = flag_cse_follow_jumps;
7281 flag_cse_follow_jumps = 0;
7282
7283 rebuild_jump_labels (get_insns ());
7284 tem = cse_main (get_insns (), max_reg_num ());
7285 purge_all_dead_edges ();
7286 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7287
7288 cse_not_expected = !flag_rerun_cse_after_loop;
7289
7290 /* If cse altered any jumps, rerun jump opts to clean things up. */
7291 if (tem == 2)
7292 {
7293 timevar_push (TV_JUMP);
7294 rebuild_jump_labels (get_insns ());
7295 cleanup_cfg (0);
7296 timevar_pop (TV_JUMP);
7297 }
7298 else if (tem == 1)
7299 cleanup_cfg (0);
7300
7301 flag_cse_follow_jumps = save_cfj;
7302 return 0;
7303}
7304
7305struct rtl_opt_pass pass_cse_after_global_opts =
7306{
7307 {
7308 RTL_PASS,
7309 "cse_local", /* name */
48e1416a 7310 gate_handle_cse_after_global_opts, /* gate */
7311 rest_of_handle_cse_after_global_opts, /* execute */
d743aba2 7312 NULL, /* sub */
7313 NULL, /* next */
7314 0, /* static_pass_number */
7315 TV_CSE, /* tv_id */
7316 0, /* properties_required */
7317 0, /* properties_provided */
7318 0, /* properties_destroyed */
7319 0, /* todo_flags_start */
7320 TODO_df_finish | TODO_verify_rtl_sharing |
7321 TODO_dump_func |
7322 TODO_ggc_collect |
7323 TODO_verify_flow /* todo_flags_finish */
7324 }
7325};