]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
remove has_execute
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
752df20e 1/* Common subexpression elimination for GNU compiler.
3aea1f79 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
752df20e 3
f12b58b3 4This file is part of GCC.
752df20e 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
752df20e 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
752df20e 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
752df20e 19
752df20e 20#include "config.h"
405711de 21#include "system.h"
805e22b2 22#include "coretypes.h"
23#include "tm.h"
752df20e 24#include "rtl.h"
7953c610 25#include "tm_p.h"
752df20e 26#include "hard-reg-set.h"
42fe97ed 27#include "regs.h"
d27eb4b1 28#include "basic-block.h"
752df20e 29#include "flags.h"
752df20e 30#include "insn-config.h"
31#include "recog.h"
0a893c29 32#include "function.h"
ad87de1e 33#include "expr.h"
0b205f4c 34#include "diagnostic-core.h"
ebd9163c 35#include "toplev.h"
41843f13 36#include "ggc.h"
65e8d683 37#include "except.h"
fab7adbf 38#include "target.h"
38ccff25 39#include "params.h"
d263732c 40#include "rtlhooks-def.h"
77fce4cd 41#include "tree-pass.h"
3072d30e 42#include "df.h"
43#include "dbgcnt.h"
7d8df2ae 44#include "pointer-set.h"
752df20e 45
46/* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
c863f0f6 52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
752df20e 60
61 We use two data structures to record the equivalent expressions:
a7f3b1c7 62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
752df20e 64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74Registers and "quantity numbers":
cb10db9d 75
752df20e 76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
96d808c2 82 `REG_QTY (N)' records what quantity register N is currently thought
752df20e 83 of as containing.
84
1a5bccce 85 All real quantity numbers are greater than or equal to zero.
96d808c2 86 If register N has not been assigned a quantity, `REG_QTY (N)' will
1a5bccce 87 equal -N - 1, which is always negative.
752df20e 88
1a5bccce 89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
752df20e 91
92 We also maintain a bidirectional chain of registers for each
a7f3b1c7 93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
752df20e 95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
a7f3b1c7 101 REG expressions with qty_table `mode' must be in the hash table for both
752df20e 102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
cb10db9d 108
752df20e 109Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
a7f3b1c7 112 in the appropriate qty_table `const_rtx'. This is in addition to
752df20e 113 putting the constant in the hash table as is usual for non-regs.
114
f9e15121 115 Whether a reg or a constant is preferred is determined by the configuration
752df20e 116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
a7f3b1c7 120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
752df20e 122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
a7f3b1c7 141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
752df20e 142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
96d808c2 174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
752df20e 184
185 Registers themselves are entered in the hash table as well as in
96d808c2 186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
752df20e 188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
cb10db9d 205
a7f3b1c7 206/* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
752df20e 208
209static int max_qty;
210
211/* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214static int next_qty;
215
a7f3b1c7 216/* Per-qty information tracking.
752df20e 217
a7f3b1c7 218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
752df20e 220
a7f3b1c7 221 `mode' contains the machine mode of this quantity.
752df20e 222
a7f3b1c7 223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
752df20e 228
a7f3b1c7 229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
752df20e 240
a7f3b1c7 241struct qty_table_elem
242{
243 rtx const_rtx;
244 rtx const_insn;
245 rtx comparison_const;
246 int comparison_qty;
02e7a332 247 unsigned int first_reg, last_reg;
d8b9732d 248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
a7f3b1c7 252};
752df20e 253
a7f3b1c7 254/* The table of all qtys, indexed by qty number. */
255static struct qty_table_elem *qty_table;
752df20e 256
b866694e 257/* Structure used to pass arguments via for_each_rtx to function
258 cse_change_cc_mode. */
259struct change_cc_mode_args
260{
261 rtx insn;
262 rtx newreg;
263};
264
752df20e 265#ifdef HAVE_cc0
266/* For machines that have a CC0, we do not record its value in the hash
267 table since its use is guaranteed to be the insn immediately following
268 its definition and any other insn is presumed to invalidate it.
269
c6ddfc69 270 Instead, we store below the current and last value assigned to CC0.
271 If it should happen to be a constant, it is stored in preference
272 to the actual assigned value. In case it is a constant, we store
273 the mode in which the constant should be interpreted. */
752df20e 274
c6ddfc69 275static rtx this_insn_cc0, prev_insn_cc0;
276static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
805e22b2 277#endif
752df20e 278
279/* Insn being scanned. */
280
281static rtx this_insn;
f529eb25 282static bool optimize_this_for_speed_p;
752df20e 283
2a384a22 284/* Index by register number, gives the number of the next (or
285 previous) register in the chain of registers sharing the same
752df20e 286 value.
287
288 Or -1 if this register is at the end of the chain.
289
96d808c2 290 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
a7f3b1c7 291
292/* Per-register equivalence chain. */
293struct reg_eqv_elem
294{
295 int next, prev;
296};
752df20e 297
a7f3b1c7 298/* The table of all register equivalence chains. */
299static struct reg_eqv_elem *reg_eqv_table;
752df20e 300
155b05dc 301struct cse_reg_info
302{
3bd20490 303 /* The timestamp at which this register is initialized. */
304 unsigned int timestamp;
9c4f3716 305
306 /* The quantity number of the register's current contents. */
307 int reg_qty;
308
309 /* The number of times the register has been altered in the current
310 basic block. */
311 int reg_tick;
312
d1264606 313 /* The REG_TICK value at which rtx's containing this register are
314 valid in the hash table. If this does not equal the current
315 reg_tick value, such expressions existing in the hash table are
316 invalid. */
317 int reg_in_table;
126fb012 318
319 /* The SUBREG that was set when REG_TICK was last incremented. Set
320 to -1 if the last store was to the whole register, not a subreg. */
70e488ba 321 unsigned int subreg_ticked;
d1264606 322};
752df20e 323
3bd20490 324/* A table of cse_reg_info indexed by register numbers. */
f9413025 325static struct cse_reg_info *cse_reg_info_table;
ac613367 326
3bd20490 327/* The size of the above table. */
328static unsigned int cse_reg_info_table_size;
9c4f3716 329
3bd20490 330/* The index of the first entry that has not been initialized. */
331static unsigned int cse_reg_info_table_first_uninitialized;
752df20e 332
3bd20490 333/* The timestamp at the beginning of the current run of
be22716f 334 cse_extended_basic_block. We increment this variable at the beginning of
335 the current run of cse_extended_basic_block. The timestamp field of a
3bd20490 336 cse_reg_info entry matches the value of this variable if and only
337 if the entry has been initialized during the current run of
be22716f 338 cse_extended_basic_block. */
3bd20490 339static unsigned int cse_reg_info_timestamp;
752df20e 340
cb10db9d 341/* A HARD_REG_SET containing all the hard registers for which there is
752df20e 342 currently a REG expression in the hash table. Note the difference
343 from the above variables, which indicate if the REG is mentioned in some
344 expression in the table. */
345
346static HARD_REG_SET hard_regs_in_table;
347
283a6b26 348/* True if CSE has altered the CFG. */
349static bool cse_cfg_altered;
752df20e 350
283a6b26 351/* True if CSE has altered conditional jump insns in such a way
352 that jump optimization should be redone. */
353static bool cse_jumps_altered;
752df20e 354
283a6b26 355/* True if we put a LABEL_REF into the hash table for an INSN
356 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
357 to put in the note. */
358static bool recorded_label_ref;
26db0da8 359
752df20e 360/* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
363
364static int do_not_record;
365
366/* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
368
369static int hash_arg_in_memory;
370
752df20e 371/* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
374
7cfb9bcf 375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
377
752df20e 378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
380
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
387
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
394
752df20e 395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
400
401 The `cost' field stores the cost of this element's expression.
d27eb4b1 402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
752df20e 404
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
407
408 The `flag' field is used as a temporary during some search routines.
409
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
414
752df20e 415struct table_elt
416{
417 rtx exp;
7cfb9bcf 418 rtx canon_exp;
752df20e 419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
d27eb4b1 426 int regcost;
d8b9732d 427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
752df20e 430 char in_memory;
752df20e 431 char is_const;
432 char flag;
433};
434
752df20e 435/* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
9c4f3716 438#define HASH_SHIFT 5
439#define HASH_SIZE (1 << HASH_SHIFT)
440#define HASH_MASK (HASH_SIZE - 1)
752df20e 441
442/* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
444
445#define HASH(X, M) \
8ad4c111 446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9c4f3716 447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
752df20e 449
78d140c9 450/* Like HASH, but without side-effects. */
451#define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
455
d27eb4b1 456/* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
752df20e 458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
349858d4 460 A reg wins if it is either the frame pointer or designated as fixed. */
752df20e 461#define FIXED_REGNO_P(N) \
b69007e1 462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
4313a67c 463 || fixed_regs[N] || global_regs[N])
752df20e 464
465/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
2e16c7bd 466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
469
5bbaf5ca 470#define CHEAP_REGNO(N) \
9af5ce0c 471 (REGNO_PTR_FRAME_P (N) \
5bbaf5ca 472 || (HARD_REGISTER_NUM_P (N) \
c0191571 473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
752df20e 474
20d892d1 475#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
476#define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
752df20e 477
d1264606 478/* Get the number of times this register has been updated in this
479 basic block. */
480
3bd20490 481#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
d1264606 482
483/* Get the point at which REG was recorded in the table. */
484
3bd20490 485#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
d1264606 486
126fb012 487/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
489
3bd20490 490#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
126fb012 491
d1264606 492/* Get the quantity number for REG. */
493
3bd20490 494#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
d1264606 495
752df20e 496/* Determine if the quantity number for register X represents a valid index
a7f3b1c7 497 into the qty_table. */
752df20e 498
1a5bccce 499#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
752df20e 500
01c8e4c9 501/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
502
503#define CHEAPER(X, Y) \
504 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
505
9c4f3716 506static struct table_elt *table[HASH_SIZE];
752df20e 507
508/* Chain of `struct table_elt's made so far for this function
509 but currently removed from the table. */
510
511static struct table_elt *free_element_chain;
512
752df20e 513/* Set to the cost of a constant pool reference if one was found for a
514 symbolic constant. If this was found, it means we should try to
515 convert constants into constant pool entries if they don't fit in
516 the insn. */
517
518static int constant_pool_entries_cost;
634d45d7 519static int constant_pool_entries_regcost;
752df20e 520
0b09525f 521/* Trace a patch through the CFG. */
522
523struct branch_path
524{
525 /* The basic block for this path entry. */
526 basic_block bb;
527};
528
be22716f 529/* This data describes a block that will be processed by
530 cse_extended_basic_block. */
9def8c3e 531
155b05dc 532struct cse_basic_block_data
533{
9def8c3e 534 /* Total number of SETs in block. */
535 int nsets;
9def8c3e 536 /* Size of current branch path, if any. */
537 int path_size;
be22716f 538 /* Current path, indicating which basic_blocks will be processed. */
0b09525f 539 struct branch_path *path;
9def8c3e 540};
541
3072d30e 542
543/* Pointers to the live in/live out bitmaps for the boundaries of the
544 current EBB. */
545static bitmap cse_ebb_live_in, cse_ebb_live_out;
546
be22716f 547/* A simple bitmap to track which basic blocks have been visited
548 already as part of an already processed extended basic block. */
549static sbitmap cse_visited_basic_blocks;
550
8ec3a57b 551static bool fixed_base_plus_p (rtx x);
20d892d1 552static int notreg_cost (rtx, enum rtx_code, int);
8ec3a57b 553static int approx_reg_cost_1 (rtx *, void *);
554static int approx_reg_cost (rtx);
069eea26 555static int preferable (int, int, int, int);
8ec3a57b 556static void new_basic_block (void);
557static void make_new_qty (unsigned int, enum machine_mode);
558static void make_regs_eqv (unsigned int, unsigned int);
559static void delete_reg_equiv (unsigned int);
560static int mention_regs (rtx);
561static int insert_regs (rtx, struct table_elt *, int);
562static void remove_from_table (struct table_elt *, unsigned);
d2c970fe 563static void remove_pseudo_from_table (rtx, unsigned);
564static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
8ec3a57b 565static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
566static rtx lookup_as_function (rtx, enum rtx_code);
01c8e4c9 567static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
568 enum machine_mode, int, int);
8ec3a57b 569static struct table_elt *insert (rtx, struct table_elt *, unsigned,
570 enum machine_mode);
571static void merge_equiv_classes (struct table_elt *, struct table_elt *);
572static void invalidate (rtx, enum machine_mode);
8ec3a57b 573static void remove_invalid_refs (unsigned int);
574static void remove_invalid_subreg_refs (unsigned int, unsigned int,
575 enum machine_mode);
576static void rehash_using_reg (rtx);
577static void invalidate_memory (void);
578static void invalidate_for_call (void);
579static rtx use_related_value (rtx, struct table_elt *);
78d140c9 580
581static inline unsigned canon_hash (rtx, enum machine_mode);
582static inline unsigned safe_hash (rtx, enum machine_mode);
e1ab7874 583static inline unsigned hash_rtx_string (const char *);
78d140c9 584
8ec3a57b 585static rtx canon_reg (rtx, rtx);
8ec3a57b 586static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
587 enum machine_mode *,
588 enum machine_mode *);
589static rtx fold_rtx (rtx, rtx);
590static rtx equiv_constant (rtx);
bbe0b6d7 591static void record_jump_equiv (rtx, bool);
8ec3a57b 592static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
593 int);
1e5b92fa 594static void cse_insn (rtx);
be22716f 595static void cse_prescan_path (struct cse_basic_block_data *);
8ec3a57b 596static void invalidate_from_clobbers (rtx);
2aca5650 597static void invalidate_from_sets_and_clobbers (rtx);
3072d30e 598static rtx cse_process_notes (rtx, rtx, bool *);
be22716f 599static void cse_extended_basic_block (struct cse_basic_block_data *);
8ec3a57b 600static int check_for_label_ref (rtx *, void *);
601extern void dump_class (struct table_elt*);
3bd20490 602static void get_cse_reg_info_1 (unsigned int regno);
603static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
8ec3a57b 604static int check_dependence (rtx *, void *);
605
606static void flush_hash_table (void);
607static bool insn_live_p (rtx, int *);
608static bool set_live_p (rtx, rtx, int *);
124ac4e4 609static int cse_change_cc_mode (rtx *, void *);
b866694e 610static void cse_change_cc_mode_insn (rtx, rtx);
124ac4e4 611static void cse_change_cc_mode_insns (rtx, rtx, rtx);
650d2134 612static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
613 bool);
752df20e 614\f
d263732c 615
616#undef RTL_HOOKS_GEN_LOWPART
617#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
618
619static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
620\f
ea1760a3 621/* Nonzero if X has the form (PLUS frame-pointer integer). */
805e22b2 622
623static bool
8ec3a57b 624fixed_base_plus_p (rtx x)
805e22b2 625{
626 switch (GET_CODE (x))
627 {
628 case REG:
629 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 return true;
631 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 return true;
805e22b2 633 return false;
634
635 case PLUS:
971ba038 636 if (!CONST_INT_P (XEXP (x, 1)))
805e22b2 637 return false;
638 return fixed_base_plus_p (XEXP (x, 0));
639
805e22b2 640 default:
641 return false;
642 }
643}
644
59241190 645/* Dump the expressions in the equivalence class indicated by CLASSP.
646 This function is used only for debugging. */
d2bb3f9d 647DEBUG_FUNCTION void
8ec3a57b 648dump_class (struct table_elt *classp)
59241190 649{
650 struct table_elt *elt;
651
652 fprintf (stderr, "Equivalence chain for ");
653 print_rtl (stderr, classp->exp);
654 fprintf (stderr, ": \n");
cb10db9d 655
59241190 656 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 {
658 print_rtl (stderr, elt->exp);
659 fprintf (stderr, "\n");
660 }
661}
662
d27eb4b1 663/* Subroutine of approx_reg_cost; called through for_each_rtx. */
37b8a8d6 664
d27eb4b1 665static int
8ec3a57b 666approx_reg_cost_1 (rtx *xp, void *data)
d27eb4b1 667{
668 rtx x = *xp;
65b198c2 669 int *cost_p = (int *) data;
d27eb4b1 670
8ad4c111 671 if (x && REG_P (x))
88bc3f54 672 {
673 unsigned int regno = REGNO (x);
674
675 if (! CHEAP_REGNO (regno))
676 {
677 if (regno < FIRST_PSEUDO_REGISTER)
678 {
ed5527ca 679 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
88bc3f54 680 return 1;
681 *cost_p += 2;
682 }
683 else
684 *cost_p += 1;
685 }
686 }
687
d27eb4b1 688 return 0;
689}
690
691/* Return an estimate of the cost of the registers used in an rtx.
692 This is mostly the number of different REG expressions in the rtx;
3fb1e43b 693 however for some exceptions like fixed registers we use a cost of
589ff9e7 694 0. If any other hard register reference occurs, return MAX_COST. */
d27eb4b1 695
696static int
8ec3a57b 697approx_reg_cost (rtx x)
d27eb4b1 698{
d27eb4b1 699 int cost = 0;
589ff9e7 700
88bc3f54 701 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
702 return MAX_COST;
d27eb4b1 703
88bc3f54 704 return cost;
d27eb4b1 705}
706
707/* Return a negative value if an rtx A, whose costs are given by COST_A
708 and REGCOST_A, is more desirable than an rtx B.
709 Return a positive value if A is less desirable, or 0 if the two are
710 equally good. */
711static int
069eea26 712preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
d27eb4b1 713{
e61c498c 714 /* First, get rid of cases involving expressions that are entirely
589ff9e7 715 unwanted. */
716 if (cost_a != cost_b)
717 {
718 if (cost_a == MAX_COST)
719 return 1;
720 if (cost_b == MAX_COST)
721 return -1;
722 }
723
724 /* Avoid extending lifetimes of hardregs. */
725 if (regcost_a != regcost_b)
726 {
727 if (regcost_a == MAX_COST)
728 return 1;
729 if (regcost_b == MAX_COST)
730 return -1;
731 }
732
733 /* Normal operation costs take precedence. */
d27eb4b1 734 if (cost_a != cost_b)
735 return cost_a - cost_b;
589ff9e7 736 /* Only if these are identical consider effects on register pressure. */
d27eb4b1 737 if (regcost_a != regcost_b)
738 return regcost_a - regcost_b;
739 return 0;
740}
741
de164820 742/* Internal function, to compute cost when X is not a register; called
743 from COST macro to keep it simple. */
744
745static int
20d892d1 746notreg_cost (rtx x, enum rtx_code outer, int opno)
de164820 747{
748 return ((GET_CODE (x) == SUBREG
8ad4c111 749 && REG_P (SUBREG_REG (x))
de164820 750 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
751 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
752 && (GET_MODE_SIZE (GET_MODE (x))
753 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
754 && subreg_lowpart_p (x)
396f2130 755 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
756 GET_MODE (SUBREG_REG (x))))
d27eb4b1 757 ? 0
20d892d1 758 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
de164820 759}
760
cf495191 761\f
3bd20490 762/* Initialize CSE_REG_INFO_TABLE. */
9c4f3716 763
3bd20490 764static void
765init_cse_reg_info (unsigned int nregs)
766{
767 /* Do we need to grow the table? */
768 if (nregs > cse_reg_info_table_size)
d1264606 769 {
3bd20490 770 unsigned int new_size;
771
772 if (cse_reg_info_table_size < 2048)
d1264606 773 {
3bd20490 774 /* Compute a new size that is a power of 2 and no smaller
775 than the large of NREGS and 64. */
776 new_size = (cse_reg_info_table_size
777 ? cse_reg_info_table_size : 64);
778
779 while (new_size < nregs)
780 new_size *= 2;
d1264606 781 }
782 else
926f1f1f 783 {
3bd20490 784 /* If we need a big table, allocate just enough to hold
785 NREGS registers. */
786 new_size = nregs;
926f1f1f 787 }
9c4f3716 788
3bd20490 789 /* Reallocate the table with NEW_SIZE entries. */
dd045aee 790 free (cse_reg_info_table);
4c36ffe6 791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
3bd20490 792 cse_reg_info_table_size = new_size;
bee2651c 793 cse_reg_info_table_first_uninitialized = 0;
3bd20490 794 }
795
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
798 {
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
801
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
d1264606 808
3bd20490 809 cse_reg_info_table_first_uninitialized = nregs;
d1264606 810 }
3bd20490 811}
812
b5ee2efd 813/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
3bd20490 814
815static void
816get_cse_reg_info_1 (unsigned int regno)
817{
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
821
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
827}
828
829/* Find a cse_reg_info entry for REGNO. */
d1264606 830
3bd20490 831static inline struct cse_reg_info *
832get_cse_reg_info (unsigned int regno)
833{
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
835
e02a4f0d 836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
3bd20490 838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
d1264606 840
9c4f3716 841 return p;
d1264606 842}
843
752df20e 844/* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
846
847static void
8ec3a57b 848new_basic_block (void)
752df20e 849{
19cb6b50 850 int i;
752df20e 851
1a5bccce 852 next_qty = 0;
752df20e 853
b5ee2efd 854 /* Invalidate cse_reg_info_table. */
3bd20490 855 cse_reg_info_timestamp++;
752df20e 856
3bd20490 857 /* Clear out hash table state for this pass. */
752df20e 858 CLEAR_HARD_REG_SET (hard_regs_in_table);
859
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
862
9c4f3716 863 for (i = 0; i < HASH_SIZE; i++)
752df20e 864 {
9c4f3716 865 struct table_elt *first;
866
867 first = table[i];
868 if (first != NULL)
752df20e 869 {
9c4f3716 870 struct table_elt *last = first;
871
872 table[i] = NULL;
873
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
876
877 /* Now relink this hash entire chain into
878 the free element list. */
879
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
752df20e 882 }
883 }
884
752df20e 885#ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887#endif
888}
889
a7f3b1c7 890/* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
752df20e 892
893static void
8ec3a57b 894make_new_qty (unsigned int reg, enum machine_mode mode)
752df20e 895{
19cb6b50 896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
752df20e 899
cc636d56 900 gcc_assert (next_qty < max_qty);
752df20e 901
d1264606 902 q = REG_QTY (reg) = next_qty++;
a7f3b1c7 903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
909
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
752df20e 912}
913
914/* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
916
917static void
d328ebdf 918make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
752df20e 919{
02e7a332 920 unsigned int lastr, firstr;
d328ebdf 921 int q = REG_QTY (old_reg);
02e7a332 922 struct qty_table_elem *ent;
a7f3b1c7 923
924 ent = &qty_table[q];
752df20e 925
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
d328ebdf 927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
752df20e 928
d328ebdf 929 REG_QTY (new_reg) = q;
a7f3b1c7 930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
752df20e 932
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
5202ecf2 940 they cannot be used in substitutions or canonicalizations
752df20e 941 either. */
d328ebdf 942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
752df20e 945 && (firstr < FIRST_PSEUDO_REGISTER
d328ebdf 946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
3072d30e 947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
d328ebdf 948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
3072d30e 949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
752df20e 950 {
d328ebdf 951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
752df20e 955 }
956 else
957 {
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
a7f3b1c7 962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
752df20e 963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
d328ebdf 964 && new_reg >= FIRST_PSEUDO_REGISTER)
a7f3b1c7 965 lastr = reg_eqv_table[lastr].prev;
d328ebdf 966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
a7f3b1c7 967 if (reg_eqv_table[lastr].next >= 0)
d328ebdf 968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
752df20e 969 else
d328ebdf 970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
752df20e 973 }
974}
975
976/* Remove REG from its equivalence class. */
977
978static void
8ec3a57b 979delete_reg_equiv (unsigned int reg)
752df20e 980{
19cb6b50 981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
752df20e 984
7046c09e 985 /* If invalid, do nothing. */
1a5bccce 986 if (! REGNO_QTY_VALID_P (reg))
752df20e 987 return;
988
a7f3b1c7 989 ent = &qty_table[q];
990
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
7046c09e 993
752df20e 994 if (n != -1)
a7f3b1c7 995 reg_eqv_table[n].prev = p;
752df20e 996 else
a7f3b1c7 997 ent->last_reg = p;
752df20e 998 if (p != -1)
a7f3b1c7 999 reg_eqv_table[p].next = n;
752df20e 1000 else
a7f3b1c7 1001 ent->first_reg = n;
752df20e 1002
1a5bccce 1003 REG_QTY (reg) = -reg - 1;
752df20e 1004}
1005
1006/* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1008
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1011
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1014
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1017
1018static int
8ec3a57b 1019mention_regs (rtx x)
752df20e 1020{
19cb6b50 1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
752df20e 1025
1026 if (x == 0)
c39100fe 1027 return 0;
752df20e 1028
1029 code = GET_CODE (x);
1030 if (code == REG)
1031 {
02e7a332 1032 unsigned int regno = REGNO (x);
a2c6f0b7 1033 unsigned int endregno = END_REGNO (x);
02e7a332 1034 unsigned int i;
752df20e 1035
1036 for (i = regno; i < endregno; i++)
1037 {
d1264606 1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
752df20e 1039 remove_invalid_refs (i);
1040
d1264606 1041 REG_IN_TABLE (i) = REG_TICK (i);
126fb012 1042 SUBREG_TICKED (i) = -1;
752df20e 1043 }
1044
1045 return 0;
1046 }
1047
e6860d27 1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
8ad4c111 1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
e6860d27 1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1053 {
02e7a332 1054 unsigned int i = REGNO (SUBREG_REG (x));
e6860d27 1055
d1264606 1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
e6860d27 1057 {
126fb012 1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
70e488ba 1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
e6860d27 1065 remove_invalid_refs (i);
1066 else
701e46d0 1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
e6860d27 1068 }
1069
d1264606 1070 REG_IN_TABLE (i) = REG_TICK (i);
70e488ba 1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
e6860d27 1072 return 0;
1073 }
1074
752df20e 1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1079
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1084
6720e96c 1085 if (code == COMPARE || COMPARISON_P (x))
752df20e 1086 {
8ad4c111 1087 if (REG_P (XEXP (x, 0))
752df20e 1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
4679ade3 1089 if (insert_regs (XEXP (x, 0), NULL, 0))
752df20e 1090 {
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1093 }
1094
8ad4c111 1095 if (REG_P (XEXP (x, 1))
752df20e 1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
4679ade3 1097 if (insert_regs (XEXP (x, 1), NULL, 0))
752df20e 1098 {
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1101 }
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1111
1112 return changed;
1113}
1114
1115/* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1121
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1124
1125static int
8ec3a57b 1126insert_regs (rtx x, struct table_elt *classp, int modified)
752df20e 1127{
8ad4c111 1128 if (REG_P (x))
752df20e 1129 {
02e7a332 1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
752df20e 1132
0aee3bb1 1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1135
a7f3b1c7 1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1138 {
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
0aee3bb1 1140
a7f3b1c7 1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1143 }
1144
1145 if (modified || ! qty_valid)
752df20e 1146 {
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
8ad4c111 1151 if (REG_P (classp->exp)
752df20e 1152 && GET_MODE (classp->exp) == GET_MODE (x))
1153 {
412c63b0 1154 unsigned c_regno = REGNO (classp->exp);
1155
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1157
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1160
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1164
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1170
1171 make_regs_eqv (regno, c_regno);
752df20e 1172 return 1;
1173 }
1174
6c1128fe 1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
a7f3b1c7 1188 make_new_qty (regno, GET_MODE (x));
752df20e 1189 return 1;
1190 }
89bbb48f 1191
1192 return 0;
752df20e 1193 }
50cf1c21 1194
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1200
8ad4c111 1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
50cf1c21 1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1203 {
4679ade3 1204 insert_regs (SUBREG_REG (x), NULL, 0);
e6860d27 1205 mention_regs (x);
50cf1c21 1206 return 1;
1207 }
752df20e 1208 else
1209 return mention_regs (x);
1210}
1211\f
01c8e4c9 1212
1213/* Compute upper and lower anchors for CST. Also compute the offset of CST
1214 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1215 CST is equal to an anchor. */
1216
1217static bool
1218compute_const_anchors (rtx cst,
1219 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1220 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1221{
1222 HOST_WIDE_INT n = INTVAL (cst);
1223
1224 *lower_base = n & ~(targetm.const_anchor - 1);
1225 if (*lower_base == n)
1226 return false;
1227
1228 *upper_base =
1229 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1230 *upper_offs = n - *upper_base;
1231 *lower_offs = n - *lower_base;
1232 return true;
1233}
1234
1235/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1236
1237static void
1238insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1239 enum machine_mode mode)
1240{
1241 struct table_elt *elt;
1242 unsigned hash;
1243 rtx anchor_exp;
1244 rtx exp;
1245
1246 anchor_exp = GEN_INT (anchor);
1247 hash = HASH (anchor_exp, mode);
1248 elt = lookup (anchor_exp, hash, mode);
1249 if (!elt)
1250 elt = insert (anchor_exp, NULL, hash, mode);
1251
29c05e22 1252 exp = plus_constant (mode, reg, offs);
01c8e4c9 1253 /* REG has just been inserted and the hash codes recomputed. */
1254 mention_regs (exp);
1255 hash = HASH (exp, mode);
1256
1257 /* Use the cost of the register rather than the whole expression. When
1258 looking up constant anchors we will further offset the corresponding
1259 expression therefore it does not make sense to prefer REGs over
1260 reg-immediate additions. Prefer instead the oldest expression. Also
1261 don't prefer pseudos over hard regs so that we derive constants in
1262 argument registers from other argument registers rather than from the
1263 original pseudo that was used to synthesize the constant. */
1264 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1265}
1266
1267/* The constant CST is equivalent to the register REG. Create
1268 equivalences between the two anchors of CST and the corresponding
1269 register-offset expressions using REG. */
1270
1271static void
1272insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1273{
1274 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1275
1276 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1277 &upper_base, &upper_offs))
1278 return;
1279
1280 /* Ignore anchors of value 0. Constants accessible from zero are
1281 simple. */
1282 if (lower_base != 0)
1283 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1284
1285 if (upper_base != 0)
1286 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1287}
1288
1289/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1290 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1291 valid expression. Return the cheapest and oldest of such expressions. In
1292 *OLD, return how old the resulting expression is compared to the other
1293 equivalent expressions. */
1294
1295static rtx
1296find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1297 unsigned *old)
1298{
1299 struct table_elt *elt;
1300 unsigned idx;
1301 struct table_elt *match_elt;
1302 rtx match;
1303
1304 /* Find the cheapest and *oldest* expression to maximize the chance of
1305 reusing the same pseudo. */
1306
1307 match_elt = NULL;
1308 match = NULL_RTX;
1309 for (elt = anchor_elt->first_same_value, idx = 0;
1310 elt;
1311 elt = elt->next_same_value, idx++)
1312 {
1313 if (match_elt && CHEAPER (match_elt, elt))
1314 return match;
1315
1316 if (REG_P (elt->exp)
1317 || (GET_CODE (elt->exp) == PLUS
1318 && REG_P (XEXP (elt->exp, 0))
1319 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1320 {
1321 rtx x;
1322
1323 /* Ignore expressions that are no longer valid. */
1324 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1325 continue;
1326
29c05e22 1327 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
01c8e4c9 1328 if (REG_P (x)
1329 || (GET_CODE (x) == PLUS
1330 && IN_RANGE (INTVAL (XEXP (x, 1)),
1331 -targetm.const_anchor,
1332 targetm.const_anchor - 1)))
1333 {
1334 match = x;
1335 match_elt = elt;
1336 *old = idx;
1337 }
1338 }
1339 }
1340
1341 return match;
1342}
1343
1344/* Try to express the constant SRC_CONST using a register+offset expression
1345 derived from a constant anchor. Return it if successful or NULL_RTX,
1346 otherwise. */
1347
1348static rtx
1349try_const_anchors (rtx src_const, enum machine_mode mode)
1350{
1351 struct table_elt *lower_elt, *upper_elt;
1352 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1353 rtx lower_anchor_rtx, upper_anchor_rtx;
1354 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1355 unsigned lower_old, upper_old;
1356
211e63b0 1357 /* CONST_INT is used for CC modes, but we should leave those alone. */
1358 if (GET_MODE_CLASS (mode) == MODE_CC)
1359 return NULL_RTX;
1360
1361 gcc_assert (SCALAR_INT_MODE_P (mode));
01c8e4c9 1362 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1363 &upper_base, &upper_offs))
1364 return NULL_RTX;
1365
1366 lower_anchor_rtx = GEN_INT (lower_base);
1367 upper_anchor_rtx = GEN_INT (upper_base);
1368 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1369 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1370
1371 if (lower_elt)
1372 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1373 if (upper_elt)
1374 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1375
1376 if (!lower_exp)
1377 return upper_exp;
1378 if (!upper_exp)
1379 return lower_exp;
1380
1381 /* Return the older expression. */
1382 return (upper_old > lower_old ? upper_exp : lower_exp);
1383}
1384\f
752df20e 1385/* Look in or update the hash table. */
1386
752df20e 1387/* Remove table element ELT from use in the table.
1388 HASH is its hash code, made using the HASH macro.
1389 It's an argument because often that is known in advance
1390 and we save much time not recomputing it. */
1391
1392static void
8ec3a57b 1393remove_from_table (struct table_elt *elt, unsigned int hash)
752df20e 1394{
1395 if (elt == 0)
1396 return;
1397
1398 /* Mark this element as removed. See cse_insn. */
1399 elt->first_same_value = 0;
1400
1401 /* Remove the table element from its equivalence class. */
cb10db9d 1402
752df20e 1403 {
19cb6b50 1404 struct table_elt *prev = elt->prev_same_value;
1405 struct table_elt *next = elt->next_same_value;
752df20e 1406
cb10db9d 1407 if (next)
1408 next->prev_same_value = prev;
752df20e 1409
1410 if (prev)
1411 prev->next_same_value = next;
1412 else
1413 {
19cb6b50 1414 struct table_elt *newfirst = next;
752df20e 1415 while (next)
1416 {
1417 next->first_same_value = newfirst;
1418 next = next->next_same_value;
1419 }
1420 }
1421 }
1422
1423 /* Remove the table element from its hash bucket. */
1424
1425 {
19cb6b50 1426 struct table_elt *prev = elt->prev_same_hash;
1427 struct table_elt *next = elt->next_same_hash;
752df20e 1428
cb10db9d 1429 if (next)
1430 next->prev_same_hash = prev;
752df20e 1431
1432 if (prev)
1433 prev->next_same_hash = next;
1434 else if (table[hash] == elt)
1435 table[hash] = next;
1436 else
1437 {
1438 /* This entry is not in the proper hash bucket. This can happen
1439 when two classes were merged by `merge_equiv_classes'. Search
1440 for the hash bucket that it heads. This happens only very
1441 rarely, so the cost is acceptable. */
9c4f3716 1442 for (hash = 0; hash < HASH_SIZE; hash++)
752df20e 1443 if (table[hash] == elt)
1444 table[hash] = next;
1445 }
1446 }
1447
1448 /* Remove the table element from its related-value circular chain. */
1449
1450 if (elt->related_value != 0 && elt->related_value != elt)
1451 {
19cb6b50 1452 struct table_elt *p = elt->related_value;
02e7a332 1453
752df20e 1454 while (p->related_value != elt)
1455 p = p->related_value;
1456 p->related_value = elt->related_value;
1457 if (p->related_value == p)
1458 p->related_value = 0;
1459 }
1460
9c4f3716 1461 /* Now add it to the free element chain. */
1462 elt->next_same_hash = free_element_chain;
1463 free_element_chain = elt;
752df20e 1464}
1465
d2c970fe 1466/* Same as above, but X is a pseudo-register. */
1467
1468static void
1469remove_pseudo_from_table (rtx x, unsigned int hash)
1470{
1471 struct table_elt *elt;
1472
1473 /* Because a pseudo-register can be referenced in more than one
1474 mode, we might have to remove more than one table entry. */
1475 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1476 remove_from_table (elt, hash);
1477}
1478
752df20e 1479/* Look up X in the hash table and return its table element,
1480 or 0 if X is not in the table.
1481
1482 MODE is the machine-mode of X, or if X is an integer constant
1483 with VOIDmode then MODE is the mode with which X will be used.
1484
1485 Here we are satisfied to find an expression whose tree structure
1486 looks like X. */
1487
1488static struct table_elt *
8ec3a57b 1489lookup (rtx x, unsigned int hash, enum machine_mode mode)
752df20e 1490{
19cb6b50 1491 struct table_elt *p;
752df20e 1492
1493 for (p = table[hash]; p; p = p->next_same_hash)
8ad4c111 1494 if (mode == p->mode && ((x == p->exp && REG_P (x))
78d140c9 1495 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
752df20e 1496 return p;
1497
1498 return 0;
1499}
1500
1501/* Like `lookup' but don't care whether the table element uses invalid regs.
1502 Also ignore discrepancies in the machine mode of a register. */
1503
1504static struct table_elt *
8ec3a57b 1505lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
752df20e 1506{
19cb6b50 1507 struct table_elt *p;
752df20e 1508
8ad4c111 1509 if (REG_P (x))
752df20e 1510 {
02e7a332 1511 unsigned int regno = REGNO (x);
1512
752df20e 1513 /* Don't check the machine mode when comparing registers;
1514 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1515 for (p = table[hash]; p; p = p->next_same_hash)
8ad4c111 1516 if (REG_P (p->exp)
752df20e 1517 && REGNO (p->exp) == regno)
1518 return p;
1519 }
1520 else
1521 {
1522 for (p = table[hash]; p; p = p->next_same_hash)
78d140c9 1523 if (mode == p->mode
1524 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
752df20e 1525 return p;
1526 }
1527
1528 return 0;
1529}
1530
1531/* Look for an expression equivalent to X and with code CODE.
1532 If one is found, return that expression. */
1533
1534static rtx
8ec3a57b 1535lookup_as_function (rtx x, enum rtx_code code)
752df20e 1536{
19cb6b50 1537 struct table_elt *p
78d140c9 1538 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
02e7a332 1539
752df20e 1540 if (p == 0)
1541 return 0;
1542
1543 for (p = p->first_same_value; p; p = p->next_same_value)
02e7a332 1544 if (GET_CODE (p->exp) == code
1545 /* Make sure this is a valid entry in the table. */
78d140c9 1546 && exp_equiv_p (p->exp, p->exp, 1, false))
02e7a332 1547 return p->exp;
cb10db9d 1548
752df20e 1549 return 0;
1550}
1551
01c8e4c9 1552/* Insert X in the hash table, assuming HASH is its hash code and
1553 CLASSP is an element of the class it should go in (or 0 if a new
1554 class should be made). COST is the code of X and reg_cost is the
1555 cost of registers in X. It is inserted at the proper position to
1556 keep the class in the order cheapest first.
752df20e 1557
1558 MODE is the machine-mode of X, or if X is an integer constant
1559 with VOIDmode then MODE is the mode with which X will be used.
1560
1561 For elements of equal cheapness, the most recent one
1562 goes in front, except that the first element in the list
1563 remains first unless a cheaper element is added. The order of
1564 pseudo-registers does not matter, as canon_reg will be called to
5202ecf2 1565 find the cheapest when a register is retrieved from the table.
752df20e 1566
1567 The in_memory field in the hash table element is set to 0.
1568 The caller must set it nonzero if appropriate.
1569
1570 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1571 and if insert_regs returns a nonzero value
1572 you must then recompute its hash code before calling here.
1573
1574 If necessary, update table showing constant values of quantities. */
1575
752df20e 1576static struct table_elt *
01c8e4c9 1577insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1578 enum machine_mode mode, int cost, int reg_cost)
752df20e 1579{
19cb6b50 1580 struct table_elt *elt;
752df20e 1581
1582 /* If X is a register and we haven't made a quantity for it,
1583 something is wrong. */
cc636d56 1584 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
752df20e 1585
1586 /* If X is a hard register, show it is being put in the table. */
8ad4c111 1587 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
a2c6f0b7 1588 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
752df20e 1589
752df20e 1590 /* Put an element for X into the right hash bucket. */
1591
9c4f3716 1592 elt = free_element_chain;
1593 if (elt)
02e7a332 1594 free_element_chain = elt->next_same_hash;
9c4f3716 1595 else
4c36ffe6 1596 elt = XNEW (struct table_elt);
9c4f3716 1597
752df20e 1598 elt->exp = x;
7cfb9bcf 1599 elt->canon_exp = NULL_RTX;
01c8e4c9 1600 elt->cost = cost;
1601 elt->regcost = reg_cost;
752df20e 1602 elt->next_same_value = 0;
1603 elt->prev_same_value = 0;
1604 elt->next_same_hash = table[hash];
1605 elt->prev_same_hash = 0;
1606 elt->related_value = 0;
1607 elt->in_memory = 0;
1608 elt->mode = mode;
b04fab2a 1609 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
752df20e 1610
1611 if (table[hash])
1612 table[hash]->prev_same_hash = elt;
1613 table[hash] = elt;
1614
1615 /* Put it into the proper value-class. */
1616 if (classp)
1617 {
1618 classp = classp->first_same_value;
1619 if (CHEAPER (elt, classp))
2358393e 1620 /* Insert at the head of the class. */
752df20e 1621 {
19cb6b50 1622 struct table_elt *p;
752df20e 1623 elt->next_same_value = classp;
1624 classp->prev_same_value = elt;
1625 elt->first_same_value = elt;
1626
1627 for (p = classp; p; p = p->next_same_value)
1628 p->first_same_value = elt;
1629 }
1630 else
1631 {
1632 /* Insert not at head of the class. */
1633 /* Put it after the last element cheaper than X. */
19cb6b50 1634 struct table_elt *p, *next;
02e7a332 1635
3c802a1e 1636 for (p = classp;
1637 (next = p->next_same_value) && CHEAPER (next, elt);
1638 p = next)
1639 ;
02e7a332 1640
752df20e 1641 /* Put it after P and before NEXT. */
1642 elt->next_same_value = next;
1643 if (next)
1644 next->prev_same_value = elt;
02e7a332 1645
752df20e 1646 elt->prev_same_value = p;
1647 p->next_same_value = elt;
1648 elt->first_same_value = classp;
1649 }
1650 }
1651 else
1652 elt->first_same_value = elt;
1653
1654 /* If this is a constant being set equivalent to a register or a register
1655 being set equivalent to a constant, note the constant equivalence.
1656
1657 If this is a constant, it cannot be equivalent to a different constant,
1658 and a constant is the only thing that can be cheaper than a register. So
1659 we know the register is the head of the class (before the constant was
1660 inserted).
1661
1662 If this is a register that is not already known equivalent to a
1663 constant, we must check the entire class.
1664
1665 If this is a register that is already known equivalent to an insn,
a7f3b1c7 1666 update the qtys `const_insn' to show that `this_insn' is the latest
752df20e 1667 insn making that quantity equivalent to the constant. */
1668
8ad4c111 1669 if (elt->is_const && classp && REG_P (classp->exp)
1670 && !REG_P (x))
752df20e 1671 {
a7f3b1c7 1672 int exp_q = REG_QTY (REGNO (classp->exp));
1673 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1674
316f48ea 1675 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
a7f3b1c7 1676 exp_ent->const_insn = this_insn;
752df20e 1677 }
1678
8ad4c111 1679 else if (REG_P (x)
a7f3b1c7 1680 && classp
1681 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
67123c3e 1682 && ! elt->is_const)
752df20e 1683 {
19cb6b50 1684 struct table_elt *p;
752df20e 1685
1686 for (p = classp; p != 0; p = p->next_same_value)
1687 {
8ad4c111 1688 if (p->is_const && !REG_P (p->exp))
752df20e 1689 {
a7f3b1c7 1690 int x_q = REG_QTY (REGNO (x));
1691 struct qty_table_elem *x_ent = &qty_table[x_q];
1692
02e7a332 1693 x_ent->const_rtx
316f48ea 1694 = gen_lowpart (GET_MODE (x), p->exp);
a7f3b1c7 1695 x_ent->const_insn = this_insn;
752df20e 1696 break;
1697 }
1698 }
1699 }
1700
8ad4c111 1701 else if (REG_P (x)
a7f3b1c7 1702 && qty_table[REG_QTY (REGNO (x))].const_rtx
1703 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1704 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
752df20e 1705
1706 /* If this is a constant with symbolic value,
1707 and it has a term with an explicit integer value,
1708 link it up with related expressions. */
1709 if (GET_CODE (x) == CONST)
1710 {
1711 rtx subexp = get_related_value (x);
952bc06d 1712 unsigned subhash;
752df20e 1713 struct table_elt *subelt, *subelt_prev;
1714
1715 if (subexp != 0)
1716 {
1717 /* Get the integer-free subexpression in the hash table. */
78d140c9 1718 subhash = SAFE_HASH (subexp, mode);
752df20e 1719 subelt = lookup (subexp, subhash, mode);
1720 if (subelt == 0)
4679ade3 1721 subelt = insert (subexp, NULL, subhash, mode);
752df20e 1722 /* Initialize SUBELT's circular chain if it has none. */
1723 if (subelt->related_value == 0)
1724 subelt->related_value = subelt;
1725 /* Find the element in the circular chain that precedes SUBELT. */
1726 subelt_prev = subelt;
1727 while (subelt_prev->related_value != subelt)
1728 subelt_prev = subelt_prev->related_value;
1729 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1730 This way the element that follows SUBELT is the oldest one. */
1731 elt->related_value = subelt_prev->related_value;
1732 subelt_prev->related_value = elt;
1733 }
1734 }
1735
1736 return elt;
1737}
01c8e4c9 1738
1739/* Wrap insert_with_costs by passing the default costs. */
1740
1741static struct table_elt *
1742insert (rtx x, struct table_elt *classp, unsigned int hash,
1743 enum machine_mode mode)
1744{
1745 return
1746 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1747}
1748
752df20e 1749\f
1750/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1751 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1752 the two classes equivalent.
1753
1754 CLASS1 will be the surviving class; CLASS2 should not be used after this
1755 call.
1756
1757 Any invalid entries in CLASS2 will not be copied. */
1758
1759static void
8ec3a57b 1760merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
752df20e 1761{
d328ebdf 1762 struct table_elt *elt, *next, *new_elt;
752df20e 1763
1764 /* Ensure we start with the head of the classes. */
1765 class1 = class1->first_same_value;
1766 class2 = class2->first_same_value;
1767
1768 /* If they were already equal, forget it. */
1769 if (class1 == class2)
1770 return;
1771
1772 for (elt = class2; elt; elt = next)
1773 {
02e7a332 1774 unsigned int hash;
752df20e 1775 rtx exp = elt->exp;
1776 enum machine_mode mode = elt->mode;
1777
1778 next = elt->next_same_value;
1779
1780 /* Remove old entry, make a new one in CLASS1's class.
1781 Don't do this for invalid entries as we cannot find their
a92771b8 1782 hash code (it also isn't necessary). */
78d140c9 1783 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
752df20e 1784 {
b57e33a4 1785 bool need_rehash = false;
1786
752df20e 1787 hash_arg_in_memory = 0;
752df20e 1788 hash = HASH (exp, mode);
cb10db9d 1789
8ad4c111 1790 if (REG_P (exp))
b57e33a4 1791 {
1a5bccce 1792 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
b57e33a4 1793 delete_reg_equiv (REGNO (exp));
1794 }
cb10db9d 1795
d2c970fe 1796 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1797 remove_pseudo_from_table (exp, hash);
1798 else
1799 remove_from_table (elt, hash);
752df20e 1800
b57e33a4 1801 if (insert_regs (exp, class1, 0) || need_rehash)
1b033cc3 1802 {
1803 rehash_using_reg (exp);
1804 hash = HASH (exp, mode);
1805 }
d328ebdf 1806 new_elt = insert (exp, class1, hash, mode);
1807 new_elt->in_memory = hash_arg_in_memory;
752df20e 1808 }
1809 }
1810}
1811\f
53d90e4e 1812/* Flush the entire hash table. */
1813
1814static void
8ec3a57b 1815flush_hash_table (void)
53d90e4e 1816{
1817 int i;
1818 struct table_elt *p;
1819
9c4f3716 1820 for (i = 0; i < HASH_SIZE; i++)
53d90e4e 1821 for (p = table[i]; p; p = table[i])
1822 {
1823 /* Note that invalidate can remove elements
1824 after P in the current hash chain. */
8ad4c111 1825 if (REG_P (p->exp))
4c958a22 1826 invalidate (p->exp, VOIDmode);
53d90e4e 1827 else
1828 remove_from_table (p, i);
1829 }
1830}
155b05dc 1831\f
ddba76b8 1832/* Function called for each rtx to check whether an anti dependence exist. */
02b0feeb 1833struct check_dependence_data
1834{
1835 enum machine_mode mode;
1836 rtx exp;
56bbdce4 1837 rtx addr;
02b0feeb 1838};
37b8a8d6 1839
02b0feeb 1840static int
8ec3a57b 1841check_dependence (rtx *x, void *data)
02b0feeb 1842{
1843 struct check_dependence_data *d = (struct check_dependence_data *) data;
e16ceb8e 1844 if (*x && MEM_P (*x))
cb456db5 1845 return canon_anti_dependence (*x, true, d->exp, d->mode, d->addr);
02b0feeb 1846 else
1847 return 0;
1848}
1849\f
155b05dc 1850/* Remove from the hash table, or mark as invalid, all expressions whose
1851 values could be altered by storing in X. X is a register, a subreg, or
1852 a memory reference with nonvarying address (because, when a memory
1853 reference with a varying address is stored in, all memory references are
1854 removed by invalidate_memory so specific invalidation is superfluous).
1855 FULL_MODE, if not VOIDmode, indicates that this much should be
1856 invalidated instead of just the amount indicated by the mode of X. This
1857 is only used for bitfield stores into memory.
1858
1859 A nonvarying address may be just a register or just a symbol reference,
1860 or it may be either of those plus a numeric offset. */
752df20e 1861
1862static void
8ec3a57b 1863invalidate (rtx x, enum machine_mode full_mode)
752df20e 1864{
19cb6b50 1865 int i;
1866 struct table_elt *p;
56bbdce4 1867 rtx addr;
752df20e 1868
155b05dc 1869 switch (GET_CODE (x))
752df20e 1870 {
155b05dc 1871 case REG:
1872 {
1873 /* If X is a register, dependencies on its contents are recorded
1874 through the qty number mechanism. Just change the qty number of
1875 the register, mark it as invalid for expressions that refer to it,
1876 and remove it itself. */
02e7a332 1877 unsigned int regno = REGNO (x);
1878 unsigned int hash = HASH (x, GET_MODE (x));
752df20e 1879
155b05dc 1880 /* Remove REGNO from any quantity list it might be on and indicate
1881 that its value might have changed. If it is a pseudo, remove its
1882 entry from the hash table.
752df20e 1883
155b05dc 1884 For a hard register, we do the first two actions above for any
1885 additional hard registers corresponding to X. Then, if any of these
1886 registers are in the table, we must remove any REG entries that
1887 overlap these registers. */
752df20e 1888
155b05dc 1889 delete_reg_equiv (regno);
1890 REG_TICK (regno)++;
126fb012 1891 SUBREG_TICKED (regno) = -1;
f356ea3f 1892
155b05dc 1893 if (regno >= FIRST_PSEUDO_REGISTER)
d2c970fe 1894 remove_pseudo_from_table (x, hash);
155b05dc 1895 else
1896 {
1897 HOST_WIDE_INT in_table
1898 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
a2c6f0b7 1899 unsigned int endregno = END_HARD_REGNO (x);
02e7a332 1900 unsigned int tregno, tendregno, rn;
19cb6b50 1901 struct table_elt *p, *next;
752df20e 1902
155b05dc 1903 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
752df20e 1904
02e7a332 1905 for (rn = regno + 1; rn < endregno; rn++)
155b05dc 1906 {
02e7a332 1907 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1908 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1909 delete_reg_equiv (rn);
1910 REG_TICK (rn)++;
126fb012 1911 SUBREG_TICKED (rn) = -1;
155b05dc 1912 }
752df20e 1913
155b05dc 1914 if (in_table)
9c4f3716 1915 for (hash = 0; hash < HASH_SIZE; hash++)
155b05dc 1916 for (p = table[hash]; p; p = next)
1917 {
1918 next = p->next_same_hash;
752df20e 1919
8ad4c111 1920 if (!REG_P (p->exp)
cb10db9d 1921 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1922 continue;
1923
155b05dc 1924 tregno = REGNO (p->exp);
a2c6f0b7 1925 tendregno = END_HARD_REGNO (p->exp);
155b05dc 1926 if (tendregno > regno && tregno < endregno)
1927 remove_from_table (p, hash);
1928 }
1929 }
1930 }
752df20e 1931 return;
752df20e 1932
155b05dc 1933 case SUBREG:
fdb25961 1934 invalidate (SUBREG_REG (x), VOIDmode);
752df20e 1935 return;
6ede8018 1936
155b05dc 1937 case PARALLEL:
cb10db9d 1938 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
6ede8018 1939 invalidate (XVECEXP (x, 0, i), VOIDmode);
1940 return;
6ede8018 1941
155b05dc 1942 case EXPR_LIST:
1943 /* This is part of a disjoint return value; extract the location in
1944 question ignoring the offset. */
6ede8018 1945 invalidate (XEXP (x, 0), VOIDmode);
1946 return;
752df20e 1947
155b05dc 1948 case MEM:
56bbdce4 1949 addr = canon_rtx (get_addr (XEXP (x, 0)));
7cfb9bcf 1950 /* Calculate the canonical version of X here so that
1951 true_dependence doesn't generate new RTL for X on each call. */
1952 x = canon_rtx (x);
1953
155b05dc 1954 /* Remove all hash table elements that refer to overlapping pieces of
1955 memory. */
1956 if (full_mode == VOIDmode)
1957 full_mode = GET_MODE (x);
fdb25961 1958
9c4f3716 1959 for (i = 0; i < HASH_SIZE; i++)
752df20e 1960 {
19cb6b50 1961 struct table_elt *next;
155b05dc 1962
1963 for (p = table[i]; p; p = next)
1964 {
1965 next = p->next_same_hash;
7cfb9bcf 1966 if (p->in_memory)
1967 {
02b0feeb 1968 struct check_dependence_data d;
1969
1970 /* Just canonicalize the expression once;
1971 otherwise each time we call invalidate
1972 true_dependence will canonicalize the
1973 expression again. */
1974 if (!p->canon_exp)
1975 p->canon_exp = canon_rtx (p->exp);
1976 d.exp = x;
56bbdce4 1977 d.addr = addr;
02b0feeb 1978 d.mode = full_mode;
1979 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
7cfb9bcf 1980 remove_from_table (p, i);
7cfb9bcf 1981 }
155b05dc 1982 }
752df20e 1983 }
155b05dc 1984 return;
1985
1986 default:
cc636d56 1987 gcc_unreachable ();
752df20e 1988 }
1989}
155b05dc 1990\f
752df20e 1991/* Remove all expressions that refer to register REGNO,
1992 since they are already invalid, and we are about to
1993 mark that register valid again and don't want the old
1994 expressions to reappear as valid. */
1995
1996static void
8ec3a57b 1997remove_invalid_refs (unsigned int regno)
752df20e 1998{
02e7a332 1999 unsigned int i;
2000 struct table_elt *p, *next;
752df20e 2001
9c4f3716 2002 for (i = 0; i < HASH_SIZE; i++)
752df20e 2003 for (p = table[i]; p; p = next)
2004 {
2005 next = p->next_same_hash;
8ad4c111 2006 if (!REG_P (p->exp)
d4c5e26d 2007 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
752df20e 2008 remove_from_table (p, i);
2009 }
2010}
e6860d27 2011
701e46d0 2012/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2013 and mode MODE. */
e6860d27 2014static void
8ec3a57b 2015remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2016 enum machine_mode mode)
e6860d27 2017{
02e7a332 2018 unsigned int i;
2019 struct table_elt *p, *next;
701e46d0 2020 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
e6860d27 2021
9c4f3716 2022 for (i = 0; i < HASH_SIZE; i++)
e6860d27 2023 for (p = table[i]; p; p = next)
2024 {
701e46d0 2025 rtx exp = p->exp;
e6860d27 2026 next = p->next_same_hash;
cb10db9d 2027
8ad4c111 2028 if (!REG_P (exp)
e6860d27 2029 && (GET_CODE (exp) != SUBREG
8ad4c111 2030 || !REG_P (SUBREG_REG (exp))
e6860d27 2031 || REGNO (SUBREG_REG (exp)) != regno
701e46d0 2032 || (((SUBREG_BYTE (exp)
2033 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2034 && SUBREG_BYTE (exp) <= end))
d4c5e26d 2035 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
e6860d27 2036 remove_from_table (p, i);
2037 }
2038}
752df20e 2039\f
2040/* Recompute the hash codes of any valid entries in the hash table that
2041 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2042
2043 This is called when we make a jump equivalence. */
2044
2045static void
8ec3a57b 2046rehash_using_reg (rtx x)
752df20e 2047{
3c1d7436 2048 unsigned int i;
752df20e 2049 struct table_elt *p, *next;
952bc06d 2050 unsigned hash;
752df20e 2051
2052 if (GET_CODE (x) == SUBREG)
2053 x = SUBREG_REG (x);
2054
2055 /* If X is not a register or if the register is known not to be in any
2056 valid entries in the table, we have no work to do. */
2057
8ad4c111 2058 if (!REG_P (x)
d1264606 2059 || REG_IN_TABLE (REGNO (x)) < 0
2060 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
752df20e 2061 return;
2062
2063 /* Scan all hash chains looking for valid entries that mention X.
b57e33a4 2064 If we find one and it is in the wrong hash chain, move it. */
752df20e 2065
9c4f3716 2066 for (i = 0; i < HASH_SIZE; i++)
752df20e 2067 for (p = table[i]; p; p = next)
2068 {
2069 next = p->next_same_hash;
b57e33a4 2070 if (reg_mentioned_p (x, p->exp)
78d140c9 2071 && exp_equiv_p (p->exp, p->exp, 1, false)
2072 && i != (hash = SAFE_HASH (p->exp, p->mode)))
752df20e 2073 {
2074 if (p->next_same_hash)
2075 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2076
2077 if (p->prev_same_hash)
2078 p->prev_same_hash->next_same_hash = p->next_same_hash;
2079 else
2080 table[i] = p->next_same_hash;
2081
2082 p->next_same_hash = table[hash];
2083 p->prev_same_hash = 0;
2084 if (table[hash])
2085 table[hash]->prev_same_hash = p;
2086 table[hash] = p;
2087 }
2088 }
2089}
2090\f
752df20e 2091/* Remove from the hash table any expression that is a call-clobbered
2092 register. Also update their TICK values. */
2093
2094static void
8ec3a57b 2095invalidate_for_call (void)
752df20e 2096{
02e7a332 2097 unsigned int regno, endregno;
2098 unsigned int i;
952bc06d 2099 unsigned hash;
752df20e 2100 struct table_elt *p, *next;
2101 int in_table = 0;
24ec6636 2102 hard_reg_set_iterator hrsi;
752df20e 2103
2104 /* Go through all the hard registers. For each that is clobbered in
2105 a CALL_INSN, remove the register from quantity chains and update
2106 reg_tick if defined. Also see if any of these registers is currently
2107 in the table. */
24ec6636 2108 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2109 {
2110 delete_reg_equiv (regno);
2111 if (REG_TICK (regno) >= 0)
2112 {
2113 REG_TICK (regno)++;
2114 SUBREG_TICKED (regno) = -1;
2115 }
2116 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2117 }
752df20e 2118
2119 /* In the case where we have no call-clobbered hard registers in the
2120 table, we are done. Otherwise, scan the table and remove any
2121 entry that overlaps a call-clobbered register. */
2122
2123 if (in_table)
9c4f3716 2124 for (hash = 0; hash < HASH_SIZE; hash++)
752df20e 2125 for (p = table[hash]; p; p = next)
2126 {
2127 next = p->next_same_hash;
2128
8ad4c111 2129 if (!REG_P (p->exp)
752df20e 2130 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2131 continue;
2132
2133 regno = REGNO (p->exp);
a2c6f0b7 2134 endregno = END_HARD_REGNO (p->exp);
752df20e 2135
2136 for (i = regno; i < endregno; i++)
2137 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2138 {
2139 remove_from_table (p, hash);
2140 break;
2141 }
2142 }
2143}
2144\f
2145/* Given an expression X of type CONST,
2146 and ELT which is its table entry (or 0 if it
2147 is not in the hash table),
2148 return an alternate expression for X as a register plus integer.
2149 If none can be found, return 0. */
2150
2151static rtx
8ec3a57b 2152use_related_value (rtx x, struct table_elt *elt)
752df20e 2153{
19cb6b50 2154 struct table_elt *relt = 0;
2155 struct table_elt *p, *q;
b572011e 2156 HOST_WIDE_INT offset;
752df20e 2157
2158 /* First, is there anything related known?
2159 If we have a table element, we can tell from that.
2160 Otherwise, must look it up. */
2161
2162 if (elt != 0 && elt->related_value != 0)
2163 relt = elt;
2164 else if (elt == 0 && GET_CODE (x) == CONST)
2165 {
2166 rtx subexp = get_related_value (x);
2167 if (subexp != 0)
2168 relt = lookup (subexp,
78d140c9 2169 SAFE_HASH (subexp, GET_MODE (subexp)),
752df20e 2170 GET_MODE (subexp));
2171 }
2172
2173 if (relt == 0)
2174 return 0;
2175
2176 /* Search all related table entries for one that has an
2177 equivalent register. */
2178
2179 p = relt;
2180 while (1)
2181 {
2182 /* This loop is strange in that it is executed in two different cases.
2183 The first is when X is already in the table. Then it is searching
2184 the RELATED_VALUE list of X's class (RELT). The second case is when
2185 X is not in the table. Then RELT points to a class for the related
2186 value.
2187
2188 Ensure that, whatever case we are in, that we ignore classes that have
2189 the same value as X. */
2190
2191 if (rtx_equal_p (x, p->exp))
2192 q = 0;
2193 else
2194 for (q = p->first_same_value; q; q = q->next_same_value)
8ad4c111 2195 if (REG_P (q->exp))
752df20e 2196 break;
2197
2198 if (q)
2199 break;
2200
2201 p = p->related_value;
2202
2203 /* We went all the way around, so there is nothing to be found.
2204 Alternatively, perhaps RELT was in the table for some other reason
2205 and it has no related values recorded. */
2206 if (p == relt || p == 0)
2207 break;
2208 }
2209
2210 if (q == 0)
2211 return 0;
2212
2213 offset = (get_integer_term (x) - get_integer_term (p->exp));
2214 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
29c05e22 2215 return plus_constant (q->mode, q->exp, offset);
752df20e 2216}
2217\f
e1ab7874 2218
d91f2122 2219/* Hash a string. Just add its bytes up. */
2220static inline unsigned
78d140c9 2221hash_rtx_string (const char *ps)
d91f2122 2222{
2223 unsigned hash = 0;
d4c5e26d 2224 const unsigned char *p = (const unsigned char *) ps;
2225
d91f2122 2226 if (p)
2227 while (*p)
2228 hash += *p++;
2229
2230 return hash;
2231}
2232
48e1416a 2233/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
e1ab7874 2234 When the callback returns true, we continue with the new rtx. */
752df20e 2235
78d140c9 2236unsigned
e1ab7874 2237hash_rtx_cb (const_rtx x, enum machine_mode mode,
2238 int *do_not_record_p, int *hash_arg_in_memory_p,
2239 bool have_reg_qty, hash_rtx_callback_function cb)
752df20e 2240{
19cb6b50 2241 int i, j;
2242 unsigned hash = 0;
2243 enum rtx_code code;
2244 const char *fmt;
e1ab7874 2245 enum machine_mode newmode;
2246 rtx newx;
752df20e 2247
78d140c9 2248 /* Used to turn recursion into iteration. We can't rely on GCC's
2249 tail-recursion elimination since we need to keep accumulating values
2250 in HASH. */
752df20e 2251 repeat:
2252 if (x == 0)
2253 return hash;
2254
e1ab7874 2255 /* Invoke the callback first. */
48e1416a 2256 if (cb != NULL
e1ab7874 2257 && ((*cb) (x, mode, &newx, &newmode)))
2258 {
2259 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2260 hash_arg_in_memory_p, have_reg_qty, cb);
2261 return hash;
2262 }
2263
752df20e 2264 code = GET_CODE (x);
2265 switch (code)
2266 {
2267 case REG:
2268 {
02e7a332 2269 unsigned int regno = REGNO (x);
752df20e 2270
e1ab7874 2271 if (do_not_record_p && !reload_completed)
752df20e 2272 {
78d140c9 2273 /* On some machines, we can't record any non-fixed hard register,
2274 because extending its life will cause reload problems. We
2275 consider ap, fp, sp, gp to be fixed for this purpose.
2276
2277 We also consider CCmode registers to be fixed for this purpose;
2278 failure to do so leads to failure to simplify 0<100 type of
2279 conditionals.
2280
2281 On all machines, we can't record any global registers.
2282 Nor should we record any register that is in a small
24dd0668 2283 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
78d140c9 2284 bool record;
2285
2286 if (regno >= FIRST_PSEUDO_REGISTER)
2287 record = true;
2288 else if (x == frame_pointer_rtx
2289 || x == hard_frame_pointer_rtx
2290 || x == arg_pointer_rtx
2291 || x == stack_pointer_rtx
2292 || x == pic_offset_table_rtx)
2293 record = true;
2294 else if (global_regs[regno])
2295 record = false;
2296 else if (fixed_regs[regno])
2297 record = true;
2298 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2299 record = true;
ed5527ca 2300 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
78d140c9 2301 record = false;
24dd0668 2302 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
78d140c9 2303 record = false;
2304 else
2305 record = true;
2306
2307 if (!record)
2308 {
2309 *do_not_record_p = 1;
2310 return 0;
2311 }
752df20e 2312 }
02e7a332 2313
78d140c9 2314 hash += ((unsigned int) REG << 7);
2315 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
952bc06d 2316 return hash;
752df20e 2317 }
2318
e6860d27 2319 /* We handle SUBREG of a REG specially because the underlying
2320 reg changes its hash value with every value change; we don't
2321 want to have to forget unrelated subregs when one subreg changes. */
2322 case SUBREG:
2323 {
8ad4c111 2324 if (REG_P (SUBREG_REG (x)))
e6860d27 2325 {
78d140c9 2326 hash += (((unsigned int) SUBREG << 7)
701e46d0 2327 + REGNO (SUBREG_REG (x))
2328 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
e6860d27 2329 return hash;
2330 }
2331 break;
2332 }
2333
752df20e 2334 case CONST_INT:
78d140c9 2335 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2336 + (unsigned int) INTVAL (x));
2337 return hash;
752df20e 2338
e913b5cd 2339 case CONST_WIDE_INT:
c4050ce7 2340 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2341 hash += CONST_WIDE_INT_ELT (x, i);
e913b5cd 2342 return hash;
2343
752df20e 2344 case CONST_DOUBLE:
2345 /* This is like the general case, except that it only counts
2346 the integers representing the constant. */
78d140c9 2347 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
e913b5cd 2348 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
78d140c9 2349 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2350 + (unsigned int) CONST_DOUBLE_HIGH (x));
e913b5cd 2351 else
2352 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
752df20e 2353 return hash;
2354
e397ad8e 2355 case CONST_FIXED:
2356 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2357 hash += fixed_hash (CONST_FIXED_VALUE (x));
2358 return hash;
2359
886cfd4f 2360 case CONST_VECTOR:
2361 {
2362 int units;
2363 rtx elt;
2364
2365 units = CONST_VECTOR_NUNITS (x);
2366
2367 for (i = 0; i < units; ++i)
2368 {
2369 elt = CONST_VECTOR_ELT (x, i);
e1ab7874 2370 hash += hash_rtx_cb (elt, GET_MODE (elt),
48e1416a 2371 do_not_record_p, hash_arg_in_memory_p,
e1ab7874 2372 have_reg_qty, cb);
886cfd4f 2373 }
2374
2375 return hash;
2376 }
2377
752df20e 2378 /* Assume there is only one rtx object for any given label. */
2379 case LABEL_REF:
78d140c9 2380 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2381 differences and differences between each stage's debugging dumps. */
2382 hash += (((unsigned int) LABEL_REF << 7)
2383 + CODE_LABEL_NUMBER (XEXP (x, 0)));
952bc06d 2384 return hash;
752df20e 2385
2386 case SYMBOL_REF:
78d140c9 2387 {
2388 /* Don't hash on the symbol's address to avoid bootstrap differences.
2389 Different hash values may cause expressions to be recorded in
2390 different orders and thus different registers to be used in the
2391 final assembler. This also avoids differences in the dump files
2392 between various stages. */
2393 unsigned int h = 0;
2394 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2395
2396 while (*p)
2397 h += (h << 7) + *p++; /* ??? revisit */
2398
2399 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2400 return hash;
2401 }
752df20e 2402
2403 case MEM:
155b05dc 2404 /* We don't record if marked volatile or if BLKmode since we don't
2405 know the size of the move. */
e1ab7874 2406 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
752df20e 2407 {
78d140c9 2408 *do_not_record_p = 1;
752df20e 2409 return 0;
2410 }
78d140c9 2411 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2412 *hash_arg_in_memory_p = 1;
805e22b2 2413
752df20e 2414 /* Now that we have already found this special case,
2415 might as well speed it up as much as possible. */
952bc06d 2416 hash += (unsigned) MEM;
752df20e 2417 x = XEXP (x, 0);
2418 goto repeat;
2419
7002e559 2420 case USE:
2421 /* A USE that mentions non-volatile memory needs special
2422 handling since the MEM may be BLKmode which normally
2423 prevents an entry from being made. Pure calls are
78d140c9 2424 marked by a USE which mentions BLKmode memory.
2425 See calls.c:emit_call_1. */
e16ceb8e 2426 if (MEM_P (XEXP (x, 0))
7002e559 2427 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2428 {
d4c5e26d 2429 hash += (unsigned) USE;
7002e559 2430 x = XEXP (x, 0);
2431
78d140c9 2432 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2433 *hash_arg_in_memory_p = 1;
7002e559 2434
2435 /* Now that we have already found this special case,
2436 might as well speed it up as much as possible. */
2437 hash += (unsigned) MEM;
2438 x = XEXP (x, 0);
2439 goto repeat;
2440 }
2441 break;
2442
752df20e 2443 case PRE_DEC:
2444 case PRE_INC:
2445 case POST_DEC:
2446 case POST_INC:
40988080 2447 case PRE_MODIFY:
2448 case POST_MODIFY:
752df20e 2449 case PC:
2450 case CC0:
2451 case CALL:
2452 case UNSPEC_VOLATILE:
e1ab7874 2453 if (do_not_record_p) {
2454 *do_not_record_p = 1;
2455 return 0;
2456 }
2457 else
2458 return hash;
2459 break;
752df20e 2460
2461 case ASM_OPERANDS:
e1ab7874 2462 if (do_not_record_p && MEM_VOLATILE_P (x))
752df20e 2463 {
78d140c9 2464 *do_not_record_p = 1;
752df20e 2465 return 0;
2466 }
d91f2122 2467 else
2468 {
2469 /* We don't want to take the filename and line into account. */
2470 hash += (unsigned) code + (unsigned) GET_MODE (x)
78d140c9 2471 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2472 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
d91f2122 2473 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2474
2475 if (ASM_OPERANDS_INPUT_LENGTH (x))
2476 {
2477 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2478 {
e1ab7874 2479 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2480 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2481 do_not_record_p, hash_arg_in_memory_p,
2482 have_reg_qty, cb)
78d140c9 2483 + hash_rtx_string
e1ab7874 2484 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
d91f2122 2485 }
2486
78d140c9 2487 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
d91f2122 2488 x = ASM_OPERANDS_INPUT (x, 0);
2489 mode = GET_MODE (x);
2490 goto repeat;
2491 }
2492
2493 return hash;
2494 }
0dbd1c74 2495 break;
cb10db9d 2496
0dbd1c74 2497 default:
2498 break;
752df20e 2499 }
2500
2501 i = GET_RTX_LENGTH (code) - 1;
952bc06d 2502 hash += (unsigned) code + (unsigned) GET_MODE (x);
752df20e 2503 fmt = GET_RTX_FORMAT (code);
2504 for (; i >= 0; i--)
2505 {
cc636d56 2506 switch (fmt[i])
752df20e 2507 {
cc636d56 2508 case 'e':
752df20e 2509 /* If we are about to do the last recursive call
2510 needed at this level, change it into iteration.
2511 This function is called enough to be worth it. */
2512 if (i == 0)
2513 {
78d140c9 2514 x = XEXP (x, i);
752df20e 2515 goto repeat;
2516 }
48e1416a 2517
b9c74b4d 2518 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
e1ab7874 2519 hash_arg_in_memory_p,
2520 have_reg_qty, cb);
cc636d56 2521 break;
78d140c9 2522
cc636d56 2523 case 'E':
2524 for (j = 0; j < XVECLEN (x, i); j++)
b9c74b4d 2525 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
e1ab7874 2526 hash_arg_in_memory_p,
2527 have_reg_qty, cb);
cc636d56 2528 break;
78d140c9 2529
cc636d56 2530 case 's':
2531 hash += hash_rtx_string (XSTR (x, i));
2532 break;
2533
2534 case 'i':
2535 hash += (unsigned int) XINT (x, i);
2536 break;
2537
2538 case '0': case 't':
2539 /* Unused. */
2540 break;
2541
2542 default:
2543 gcc_unreachable ();
2544 }
752df20e 2545 }
78d140c9 2546
752df20e 2547 return hash;
2548}
2549
e1ab7874 2550/* Hash an rtx. We are careful to make sure the value is never negative.
2551 Equivalent registers hash identically.
2552 MODE is used in hashing for CONST_INTs only;
2553 otherwise the mode of X is used.
2554
2555 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2556
2557 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2e444733 2558 a MEM rtx which does not have the MEM_READONLY_P flag set.
e1ab7874 2559
2560 Note that cse_insn knows that the hash code of a MEM expression
2561 is just (int) MEM plus the hash code of the address. */
2562
2563unsigned
2564hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2565 int *hash_arg_in_memory_p, bool have_reg_qty)
2566{
2567 return hash_rtx_cb (x, mode, do_not_record_p,
2568 hash_arg_in_memory_p, have_reg_qty, NULL);
2569}
2570
78d140c9 2571/* Hash an rtx X for cse via hash_rtx.
2572 Stores 1 in do_not_record if any subexpression is volatile.
2573 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2e444733 2574 does not have the MEM_READONLY_P flag set. */
78d140c9 2575
2576static inline unsigned
2577canon_hash (rtx x, enum machine_mode mode)
2578{
2579 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2580}
2581
2582/* Like canon_hash but with no side effects, i.e. do_not_record
2583 and hash_arg_in_memory are not changed. */
752df20e 2584
78d140c9 2585static inline unsigned
8ec3a57b 2586safe_hash (rtx x, enum machine_mode mode)
752df20e 2587{
78d140c9 2588 int dummy_do_not_record;
2589 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
752df20e 2590}
2591\f
2592/* Return 1 iff X and Y would canonicalize into the same thing,
2593 without actually constructing the canonicalization of either one.
2594 If VALIDATE is nonzero,
2595 we assume X is an expression being processed from the rtl
2596 and Y was found in the hash table. We check register refs
2597 in Y for being marked as valid.
2598
78d140c9 2599 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
752df20e 2600
78d140c9 2601int
52d07779 2602exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
752df20e 2603{
19cb6b50 2604 int i, j;
2605 enum rtx_code code;
2606 const char *fmt;
752df20e 2607
2608 /* Note: it is incorrect to assume an expression is equivalent to itself
2609 if VALIDATE is nonzero. */
2610 if (x == y && !validate)
2611 return 1;
78d140c9 2612
752df20e 2613 if (x == 0 || y == 0)
2614 return x == y;
2615
2616 code = GET_CODE (x);
2617 if (code != GET_CODE (y))
78d140c9 2618 return 0;
752df20e 2619
2620 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2621 if (GET_MODE (x) != GET_MODE (y))
2622 return 0;
2623
04ec15fa 2624 /* MEMs referring to different address space are not equivalent. */
bd1a81f7 2625 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2626 return 0;
2627
752df20e 2628 switch (code)
2629 {
2630 case PC:
2631 case CC0:
0349edce 2632 CASE_CONST_UNIQUE:
73f5c1e3 2633 return x == y;
752df20e 2634
2635 case LABEL_REF:
752df20e 2636 return XEXP (x, 0) == XEXP (y, 0);
2637
d1a40e76 2638 case SYMBOL_REF:
2639 return XSTR (x, 0) == XSTR (y, 0);
2640
752df20e 2641 case REG:
78d140c9 2642 if (for_gcse)
2643 return REGNO (x) == REGNO (y);
2644 else
2645 {
2646 unsigned int regno = REGNO (y);
2647 unsigned int i;
a2c6f0b7 2648 unsigned int endregno = END_REGNO (y);
752df20e 2649
78d140c9 2650 /* If the quantities are not the same, the expressions are not
2651 equivalent. If there are and we are not to validate, they
2652 are equivalent. Otherwise, ensure all regs are up-to-date. */
752df20e 2653
78d140c9 2654 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2655 return 0;
2656
2657 if (! validate)
2658 return 1;
2659
2660 for (i = regno; i < endregno; i++)
2661 if (REG_IN_TABLE (i) != REG_TICK (i))
2662 return 0;
752df20e 2663
752df20e 2664 return 1;
78d140c9 2665 }
752df20e 2666
78d140c9 2667 case MEM:
2668 if (for_gcse)
2669 {
78d140c9 2670 /* A volatile mem should not be considered equivalent to any
2671 other. */
2672 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2673 return 0;
a79761ff 2674
2675 /* Can't merge two expressions in different alias sets, since we
2676 can decide that the expression is transparent in a block when
2677 it isn't, due to it being set with the different alias set.
2678
2679 Also, can't merge two expressions with different MEM_ATTRS.
2680 They could e.g. be two different entities allocated into the
2681 same space on the stack (see e.g. PR25130). In that case, the
2682 MEM addresses can be the same, even though the two MEMs are
2683 absolutely not equivalent.
2684
2685 But because really all MEM attributes should be the same for
2686 equivalent MEMs, we just use the invariant that MEMs that have
2687 the same attributes share the same mem_attrs data structure. */
2688 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2689 return 0;
78d140c9 2690 }
2691 break;
752df20e 2692
2693 /* For commutative operations, check both orders. */
2694 case PLUS:
2695 case MULT:
2696 case AND:
2697 case IOR:
2698 case XOR:
2699 case NE:
2700 case EQ:
78d140c9 2701 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2702 validate, for_gcse)
752df20e 2703 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
78d140c9 2704 validate, for_gcse))
752df20e 2705 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
78d140c9 2706 validate, for_gcse)
752df20e 2707 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
78d140c9 2708 validate, for_gcse)));
cb10db9d 2709
d91f2122 2710 case ASM_OPERANDS:
2711 /* We don't use the generic code below because we want to
2712 disregard filename and line numbers. */
2713
2714 /* A volatile asm isn't equivalent to any other. */
2715 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2716 return 0;
2717
2718 if (GET_MODE (x) != GET_MODE (y)
2719 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2720 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2721 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2722 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2723 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2724 return 0;
2725
2726 if (ASM_OPERANDS_INPUT_LENGTH (x))
2727 {
2728 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2729 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2730 ASM_OPERANDS_INPUT (y, i),
78d140c9 2731 validate, for_gcse)
d91f2122 2732 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2733 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2734 return 0;
2735 }
2736
2737 return 1;
2738
0dbd1c74 2739 default:
2740 break;
752df20e 2741 }
2742
2743 /* Compare the elements. If any pair of corresponding elements
78d140c9 2744 fail to match, return 0 for the whole thing. */
752df20e 2745
2746 fmt = GET_RTX_FORMAT (code);
2747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2748 {
b572011e 2749 switch (fmt[i])
752df20e 2750 {
b572011e 2751 case 'e':
78d140c9 2752 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2753 validate, for_gcse))
752df20e 2754 return 0;
b572011e 2755 break;
2756
2757 case 'E':
752df20e 2758 if (XVECLEN (x, i) != XVECLEN (y, i))
2759 return 0;
2760 for (j = 0; j < XVECLEN (x, i); j++)
2761 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
78d140c9 2762 validate, for_gcse))
752df20e 2763 return 0;
b572011e 2764 break;
2765
2766 case 's':
752df20e 2767 if (strcmp (XSTR (x, i), XSTR (y, i)))
2768 return 0;
b572011e 2769 break;
2770
2771 case 'i':
752df20e 2772 if (XINT (x, i) != XINT (y, i))
2773 return 0;
b572011e 2774 break;
2775
2776 case 'w':
2777 if (XWINT (x, i) != XWINT (y, i))
2778 return 0;
cb10db9d 2779 break;
b572011e 2780
2781 case '0':
a4070a91 2782 case 't':
b572011e 2783 break;
2784
2785 default:
cc636d56 2786 gcc_unreachable ();
752df20e 2787 }
cb10db9d 2788 }
b572011e 2789
752df20e 2790 return 1;
2791}
2792\f
1cc37766 2793/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2794 the result if necessary. INSN is as for canon_reg. */
2795
2796static void
2797validate_canon_reg (rtx *xloc, rtx insn)
2798{
3072d30e 2799 if (*xloc)
2800 {
d328ebdf 2801 rtx new_rtx = canon_reg (*xloc, insn);
1cc37766 2802
3072d30e 2803 /* If replacing pseudo with hard reg or vice versa, ensure the
2804 insn remains valid. Likewise if the insn has MATCH_DUPs. */
d328ebdf 2805 gcc_assert (insn && new_rtx);
2806 validate_change (insn, xloc, new_rtx, 1);
3072d30e 2807 }
1cc37766 2808}
2809
752df20e 2810/* Canonicalize an expression:
2811 replace each register reference inside it
2812 with the "oldest" equivalent register.
2813
0c0acbaa 2814 If INSN is nonzero validate_change is used to ensure that INSN remains valid
d10cfa8d 2815 after we make our substitution. The calls are made with IN_GROUP nonzero
8d5dd220 2816 so apply_change_group must be called upon the outermost return from this
2817 function (unless INSN is zero). The result of apply_change_group can
2818 generally be discarded since the changes we are making are optional. */
752df20e 2819
2820static rtx
8ec3a57b 2821canon_reg (rtx x, rtx insn)
752df20e 2822{
19cb6b50 2823 int i;
2824 enum rtx_code code;
2825 const char *fmt;
752df20e 2826
2827 if (x == 0)
2828 return x;
2829
2830 code = GET_CODE (x);
2831 switch (code)
2832 {
2833 case PC:
2834 case CC0:
2835 case CONST:
0349edce 2836 CASE_CONST_ANY:
752df20e 2837 case SYMBOL_REF:
2838 case LABEL_REF:
2839 case ADDR_VEC:
2840 case ADDR_DIFF_VEC:
2841 return x;
2842
2843 case REG:
2844 {
19cb6b50 2845 int first;
2846 int q;
2847 struct qty_table_elem *ent;
752df20e 2848
2849 /* Never replace a hard reg, because hard regs can appear
2850 in more than one machine mode, and we must preserve the mode
2851 of each occurrence. Also, some hard regs appear in
2852 MEMs that are shared and mustn't be altered. Don't try to
2853 replace any reg that maps to a reg of class NO_REGS. */
2854 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2855 || ! REGNO_QTY_VALID_P (REGNO (x)))
2856 return x;
2857
cb10db9d 2858 q = REG_QTY (REGNO (x));
a7f3b1c7 2859 ent = &qty_table[q];
2860 first = ent->first_reg;
752df20e 2861 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2862 : REGNO_REG_CLASS (first) == NO_REGS ? x
a7f3b1c7 2863 : gen_rtx_REG (ent->mode, first));
752df20e 2864 }
cb10db9d 2865
0dbd1c74 2866 default:
2867 break;
752df20e 2868 }
2869
2870 fmt = GET_RTX_FORMAT (code);
2871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2872 {
19cb6b50 2873 int j;
752df20e 2874
2875 if (fmt[i] == 'e')
1cc37766 2876 validate_canon_reg (&XEXP (x, i), insn);
752df20e 2877 else if (fmt[i] == 'E')
2878 for (j = 0; j < XVECLEN (x, i); j++)
1cc37766 2879 validate_canon_reg (&XVECEXP (x, i, j), insn);
752df20e 2880 }
2881
2882 return x;
2883}
2884\f
6a8939cc 2885/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2886 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2887 what values are being compared.
9ce37dcf 2888
6a8939cc 2889 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2890 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2891 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2892 compared to produce cc0.
61b1f5a7 2893
6a8939cc 2894 The return value is the comparison operator and is either the code of
2895 A or the code corresponding to the inverse of the comparison. */
752df20e 2896
af21a202 2897static enum rtx_code
8ec3a57b 2898find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2899 enum machine_mode *pmode1, enum machine_mode *pmode2)
752df20e 2900{
af21a202 2901 rtx arg1, arg2;
7d8df2ae 2902 struct pointer_set_t *visited = NULL;
2903 /* Set nonzero when we find something of interest. */
2904 rtx x = NULL;
9ce37dcf 2905
af21a202 2906 arg1 = *parg1, arg2 = *parg2;
752df20e 2907
af21a202 2908 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
752df20e 2909
af21a202 2910 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
61b1f5a7 2911 {
af21a202 2912 int reverse_code = 0;
2913 struct table_elt *p = 0;
308a5ff6 2914
7d8df2ae 2915 /* Remember state from previous iteration. */
2916 if (x)
2917 {
2918 if (!visited)
2919 visited = pointer_set_create ();
2920 pointer_set_insert (visited, x);
2921 x = 0;
2922 }
2923
af21a202 2924 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2925 On machines with CC0, this is the only case that can occur, since
2926 fold_rtx will return the COMPARE or item being compared with zero
2927 when given CC0. */
308a5ff6 2928
af21a202 2929 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2930 x = arg1;
308a5ff6 2931
af21a202 2932 /* If ARG1 is a comparison operator and CODE is testing for
2933 STORE_FLAG_VALUE, get the inner arguments. */
61b1f5a7 2934
6720e96c 2935 else if (COMPARISON_P (arg1))
752df20e 2936 {
aa870c1b 2937#ifdef FLOAT_STORE_FLAG_VALUE
2938 REAL_VALUE_TYPE fsfv;
2939#endif
2940
af21a202 2941 if (code == NE
2942 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2943 && code == LT && STORE_FLAG_VALUE == -1)
2944#ifdef FLOAT_STORE_FLAG_VALUE
95204692 2945 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
aa870c1b 2946 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2947 REAL_VALUE_NEGATIVE (fsfv)))
752df20e 2948#endif
61b1f5a7 2949 )
af21a202 2950 x = arg1;
2951 else if (code == EQ
2952 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2953 && code == GE && STORE_FLAG_VALUE == -1)
2954#ifdef FLOAT_STORE_FLAG_VALUE
95204692 2955 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
aa870c1b 2956 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2957 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 2958#endif
2959 )
2960 x = arg1, reverse_code = 1;
752df20e 2961 }
2962
af21a202 2963 /* ??? We could also check for
752df20e 2964
af21a202 2965 (ne (and (eq (...) (const_int 1))) (const_int 0))
752df20e 2966
af21a202 2967 and related forms, but let's wait until we see them occurring. */
752df20e 2968
af21a202 2969 if (x == 0)
2970 /* Look up ARG1 in the hash table and see if it has an equivalence
2971 that lets us see what is being compared. */
78d140c9 2972 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
cb10db9d 2973 if (p)
e9a91a9e 2974 {
2975 p = p->first_same_value;
2976
2977 /* If what we compare is already known to be constant, that is as
2978 good as it gets.
2979 We need to break the loop in this case, because otherwise we
2980 can have an infinite loop when looking at a reg that is known
2981 to be a constant which is the same as a comparison of a reg
2982 against zero which appears later in the insn stream, which in
2983 turn is constant and the same as the comparison of the first reg
2984 against zero... */
2985 if (p->is_const)
2986 break;
2987 }
752df20e 2988
af21a202 2989 for (; p; p = p->next_same_value)
752df20e 2990 {
af21a202 2991 enum machine_mode inner_mode = GET_MODE (p->exp);
aa870c1b 2992#ifdef FLOAT_STORE_FLAG_VALUE
2993 REAL_VALUE_TYPE fsfv;
2994#endif
752df20e 2995
af21a202 2996 /* If the entry isn't valid, skip it. */
78d140c9 2997 if (! exp_equiv_p (p->exp, p->exp, 1, false))
af21a202 2998 continue;
51356f86 2999
7d8df2ae 3000 /* If it's a comparison we've used before, skip it. */
3001 if (visited && pointer_set_contains (visited, p->exp))
7a49726a 3002 continue;
3003
6a8939cc 3004 if (GET_CODE (p->exp) == COMPARE
3005 /* Another possibility is that this machine has a compare insn
3006 that includes the comparison code. In that case, ARG1 would
3007 be equivalent to a comparison operation that would set ARG1 to
3008 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3009 ORIG_CODE is the actual comparison being done; if it is an EQ,
3010 we must reverse ORIG_CODE. On machine with a negative value
3011 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3012 || ((code == NE
3013 || (code == LT
f92430e0 3014 && val_signbit_known_set_p (inner_mode,
3015 STORE_FLAG_VALUE))
af21a202 3016#ifdef FLOAT_STORE_FLAG_VALUE
6a8939cc 3017 || (code == LT
cee7491d 3018 && SCALAR_FLOAT_MODE_P (inner_mode)
aa870c1b 3019 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3020 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3021#endif
6a8939cc 3022 )
6720e96c 3023 && COMPARISON_P (p->exp)))
752df20e 3024 {
af21a202 3025 x = p->exp;
3026 break;
3027 }
3028 else if ((code == EQ
3029 || (code == GE
f92430e0 3030 && val_signbit_known_set_p (inner_mode,
3031 STORE_FLAG_VALUE))
af21a202 3032#ifdef FLOAT_STORE_FLAG_VALUE
3033 || (code == GE
cee7491d 3034 && SCALAR_FLOAT_MODE_P (inner_mode)
aa870c1b 3035 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3036 REAL_VALUE_NEGATIVE (fsfv)))
af21a202 3037#endif
3038 )
6720e96c 3039 && COMPARISON_P (p->exp))
af21a202 3040 {
3041 reverse_code = 1;
3042 x = p->exp;
3043 break;
752df20e 3044 }
3045
805e22b2 3046 /* If this non-trapping address, e.g. fp + constant, the
3047 equivalent is a better operand since it may let us predict
3048 the value of the comparison. */
3049 else if (!rtx_addr_can_trap_p (p->exp))
af21a202 3050 {
3051 arg1 = p->exp;
3052 continue;
3053 }
752df20e 3054 }
752df20e 3055
af21a202 3056 /* If we didn't find a useful equivalence for ARG1, we are done.
3057 Otherwise, set up for the next iteration. */
3058 if (x == 0)
3059 break;
752df20e 3060
6d1304b6 3061 /* If we need to reverse the comparison, make sure that that is
3062 possible -- we can't necessarily infer the value of GE from LT
3063 with floating-point operands. */
af21a202 3064 if (reverse_code)
7da6ea0c 3065 {
3066 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3067 if (reversed == UNKNOWN)
3068 break;
d4c5e26d 3069 else
3070 code = reversed;
7da6ea0c 3071 }
6720e96c 3072 else if (COMPARISON_P (x))
7da6ea0c 3073 code = GET_CODE (x);
3074 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
752df20e 3075 }
3076
af21a202 3077 /* Return our results. Return the modes from before fold_rtx
3078 because fold_rtx might produce const_int, and then it's too late. */
3079 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3080 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3081
7d8df2ae 3082 if (visited)
3083 pointer_set_destroy (visited);
af21a202 3084 return code;
752df20e 3085}
3086\f
42a3a38b 3087/* If X is a nontrivial arithmetic operation on an argument for which
3088 a constant value can be determined, return the result of operating
3089 on that value, as a constant. Otherwise, return X, possibly with
3090 one or more operands changed to a forward-propagated constant.
18b14db6 3091
42a3a38b 3092 If X is a register whose contents are known, we do NOT return
3093 those contents here; equiv_constant is called to perform that task.
3094 For SUBREGs and MEMs, we do that both here and in equiv_constant.
752df20e 3095
3096 INSN is the insn that we may be modifying. If it is 0, make a copy
3097 of X before modifying it. */
3098
3099static rtx
8ec3a57b 3100fold_rtx (rtx x, rtx insn)
752df20e 3101{
19cb6b50 3102 enum rtx_code code;
3103 enum machine_mode mode;
3104 const char *fmt;
3105 int i;
d328ebdf 3106 rtx new_rtx = 0;
42a3a38b 3107 int changed = 0;
752df20e 3108
42a3a38b 3109 /* Operands of X. */
752df20e 3110 rtx folded_arg0;
3111 rtx folded_arg1;
3112
3113 /* Constant equivalents of first three operands of X;
3114 0 when no such equivalent is known. */
3115 rtx const_arg0;
3116 rtx const_arg1;
3117 rtx const_arg2;
3118
3119 /* The mode of the first operand of X. We need this for sign and zero
3120 extends. */
3121 enum machine_mode mode_arg0;
3122
3123 if (x == 0)
3124 return x;
3125
42a3a38b 3126 /* Try to perform some initial simplifications on X. */
752df20e 3127 code = GET_CODE (x);
3128 switch (code)
3129 {
42a3a38b 3130 case MEM:
3131 case SUBREG:
d328ebdf 3132 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3133 return new_rtx;
42a3a38b 3134 return x;
3135
752df20e 3136 case CONST:
0349edce 3137 CASE_CONST_ANY:
752df20e 3138 case SYMBOL_REF:
3139 case LABEL_REF:
3140 case REG:
97108156 3141 case PC:
752df20e 3142 /* No use simplifying an EXPR_LIST
3143 since they are used only for lists of args
3144 in a function call's REG_EQUAL note. */
3145 case EXPR_LIST:
3146 return x;
3147
3148#ifdef HAVE_cc0
3149 case CC0:
3150 return prev_insn_cc0;
3151#endif
3152
c97a7837 3153 case ASM_OPERANDS:
d239a9ad 3154 if (insn)
3155 {
3156 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3157 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3158 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3159 }
42a3a38b 3160 return x;
3161
3162#ifdef NO_FUNCTION_CSE
3163 case CALL:
3164 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3165 return x;
c97a7837 3166 break;
42a3a38b 3167#endif
cb10db9d 3168
42a3a38b 3169 /* Anything else goes through the loop below. */
0dbd1c74 3170 default:
3171 break;
752df20e 3172 }
3173
42a3a38b 3174 mode = GET_MODE (x);
752df20e 3175 const_arg0 = 0;
3176 const_arg1 = 0;
3177 const_arg2 = 0;
3178 mode_arg0 = VOIDmode;
3179
3180 /* Try folding our operands.
3181 Then see which ones have constant values known. */
3182
3183 fmt = GET_RTX_FORMAT (code);
3184 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3185 if (fmt[i] == 'e')
3186 {
42a3a38b 3187 rtx folded_arg = XEXP (x, i), const_arg;
3188 enum machine_mode mode_arg = GET_MODE (folded_arg);
06320855 3189
3190 switch (GET_CODE (folded_arg))
3191 {
3192 case MEM:
3193 case REG:
3194 case SUBREG:
3195 const_arg = equiv_constant (folded_arg);
3196 break;
3197
3198 case CONST:
0349edce 3199 CASE_CONST_ANY:
06320855 3200 case SYMBOL_REF:
3201 case LABEL_REF:
06320855 3202 const_arg = folded_arg;
3203 break;
3204
752df20e 3205#ifdef HAVE_cc0
06320855 3206 case CC0:
77cb85b2 3207 /* The cc0-user and cc0-setter may be in different blocks if
3208 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3209 will have been cleared as we exited the block with the
3210 setter.
3211
3212 While we could potentially track cc0 in this case, it just
3213 doesn't seem to be worth it given that cc0 targets are not
3214 terribly common or important these days and trapping math
3215 is rarely used. The combination of those two conditions
3216 necessary to trip this situation is exceedingly rare in the
3217 real world. */
3218 if (!prev_insn_cc0)
3219 {
3220 const_arg = NULL_RTX;
3221 }
3222 else
3223 {
3224 folded_arg = prev_insn_cc0;
3225 mode_arg = prev_insn_cc0_mode;
3226 const_arg = equiv_constant (folded_arg);
3227 }
06320855 3228 break;
752df20e 3229#endif
06320855 3230
3231 default:
3232 folded_arg = fold_rtx (folded_arg, insn);
3233 const_arg = equiv_constant (folded_arg);
3234 break;
3235 }
752df20e 3236
3237 /* For the first three operands, see if the operand
3238 is constant or equivalent to a constant. */
3239 switch (i)
3240 {
3241 case 0:
3242 folded_arg0 = folded_arg;
3243 const_arg0 = const_arg;
3244 mode_arg0 = mode_arg;
3245 break;
3246 case 1:
3247 folded_arg1 = folded_arg;
3248 const_arg1 = const_arg;
3249 break;
3250 case 2:
3251 const_arg2 = const_arg;
3252 break;
3253 }
3254
42a3a38b 3255 /* Pick the least expensive of the argument and an equivalent constant
3256 argument. */
3257 if (const_arg != 0
3258 && const_arg != folded_arg
20d892d1 3259 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
f35e401c 3260
8f1e01cb 3261 /* It's not safe to substitute the operand of a conversion
3262 operator with a constant, as the conversion's identity
fe24f256 3263 depends upon the mode of its operand. This optimization
8f1e01cb 3264 is handled by the call to simplify_unary_operation. */
42a3a38b 3265 && (GET_RTX_CLASS (code) != RTX_UNARY
3266 || GET_MODE (const_arg) == mode_arg0
3267 || (code != ZERO_EXTEND
3268 && code != SIGN_EXTEND
3269 && code != TRUNCATE
3270 && code != FLOAT_TRUNCATE
3271 && code != FLOAT_EXTEND
3272 && code != FLOAT
3273 && code != FIX
3274 && code != UNSIGNED_FLOAT
3275 && code != UNSIGNED_FIX)))
3276 folded_arg = const_arg;
3277
3278 if (folded_arg == XEXP (x, i))
3279 continue;
752df20e 3280
42a3a38b 3281 if (insn == NULL_RTX && !changed)
3282 x = copy_rtx (x);
3283 changed = 1;
4f34fbd6 3284 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
c08e043f 3285 }
752df20e 3286
42a3a38b 3287 if (changed)
752df20e 3288 {
42a3a38b 3289 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3290 consistent with the order in X. */
3291 if (canonicalize_change_group (insn, x))
752df20e 3292 {
42a3a38b 3293 rtx tem;
3294 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3295 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
752df20e 3296 }
42a3a38b 3297
3298 apply_change_group ();
752df20e 3299 }
3300
3301 /* If X is an arithmetic operation, see if we can simplify it. */
3302
3303 switch (GET_RTX_CLASS (code))
3304 {
6720e96c 3305 case RTX_UNARY:
528b0df8 3306 {
528b0df8 3307 /* We can't simplify extension ops unless we know the
3308 original mode. */
3309 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3310 && mode_arg0 == VOIDmode)
3311 break;
3312
d328ebdf 3313 new_rtx = simplify_unary_operation (code, mode,
2bde5b8e 3314 const_arg0 ? const_arg0 : folded_arg0,
3315 mode_arg0);
528b0df8 3316 }
752df20e 3317 break;
cb10db9d 3318
6720e96c 3319 case RTX_COMPARE:
3320 case RTX_COMM_COMPARE:
752df20e 3321 /* See what items are actually being compared and set FOLDED_ARG[01]
3322 to those values and CODE to the actual comparison code. If any are
3323 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3324 do anything if both operands are already known to be constant. */
3325
5b2d8298 3326 /* ??? Vector mode comparisons are not supported yet. */
3327 if (VECTOR_MODE_P (mode))
3328 break;
3329
752df20e 3330 if (const_arg0 == 0 || const_arg1 == 0)
3331 {
3332 struct table_elt *p0, *p1;
ecb6ee6d 3333 rtx true_rtx, false_rtx;
5c4c31e3 3334 enum machine_mode mode_arg1;
50cf1c21 3335
95204692 3336 if (SCALAR_FLOAT_MODE_P (mode))
50cf1c21 3337 {
ecb6ee6d 3338#ifdef FLOAT_STORE_FLAG_VALUE
9c811526 3339 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
d4c5e26d 3340 (FLOAT_STORE_FLAG_VALUE (mode), mode));
ecb6ee6d 3341#else
3342 true_rtx = NULL_RTX;
3343#endif
9c811526 3344 false_rtx = CONST0_RTX (mode);
50cf1c21 3345 }
ecb6ee6d 3346 else
3347 {
3348 true_rtx = const_true_rtx;
3349 false_rtx = const0_rtx;
3350 }
752df20e 3351
5c4c31e3 3352 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3353 &mode_arg0, &mode_arg1);
752df20e 3354
5c4c31e3 3355 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3356 what kinds of things are being compared, so we can't do
3357 anything with this comparison. */
752df20e 3358
3359 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3360 break;
3361
58a1adea 3362 const_arg0 = equiv_constant (folded_arg0);
3363 const_arg1 = equiv_constant (folded_arg1);
3364
a92771b8 3365 /* If we do not now have two constants being compared, see
3366 if we can nevertheless deduce some things about the
3367 comparison. */
752df20e 3368 if (const_arg0 == 0 || const_arg1 == 0)
3369 {
9d3874a6 3370 if (const_arg1 != NULL)
3371 {
3372 rtx cheapest_simplification;
3373 int cheapest_cost;
3374 rtx simp_result;
3375 struct table_elt *p;
3376
3377 /* See if we can find an equivalent of folded_arg0
3378 that gets us a cheaper expression, possibly a
3379 constant through simplifications. */
3380 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3381 mode_arg0);
48e1416a 3382
9d3874a6 3383 if (p != NULL)
3384 {
3385 cheapest_simplification = x;
3386 cheapest_cost = COST (x);
3387
3388 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3389 {
3390 int cost;
3391
3392 /* If the entry isn't valid, skip it. */
3393 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3394 continue;
3395
3396 /* Try to simplify using this equivalence. */
3397 simp_result
3398 = simplify_relational_operation (code, mode,
3399 mode_arg0,
3400 p->exp,
3401 const_arg1);
3402
3403 if (simp_result == NULL)
3404 continue;
3405
3406 cost = COST (simp_result);
3407 if (cost < cheapest_cost)
3408 {
3409 cheapest_cost = cost;
3410 cheapest_simplification = simp_result;
3411 }
3412 }
3413
3414 /* If we have a cheaper expression now, use that
3415 and try folding it further, from the top. */
3416 if (cheapest_simplification != x)
045ed337 3417 return fold_rtx (copy_rtx (cheapest_simplification),
3418 insn);
9d3874a6 3419 }
3420 }
3421
03a563f6 3422 /* See if the two operands are the same. */
3423
3bac3cce 3424 if ((REG_P (folded_arg0)
3425 && REG_P (folded_arg1)
3426 && (REG_QTY (REGNO (folded_arg0))
3427 == REG_QTY (REGNO (folded_arg1))))
03a563f6 3428 || ((p0 = lookup (folded_arg0,
78d140c9 3429 SAFE_HASH (folded_arg0, mode_arg0),
3430 mode_arg0))
03a563f6 3431 && (p1 = lookup (folded_arg1,
78d140c9 3432 SAFE_HASH (folded_arg1, mode_arg0),
3433 mode_arg0))
03a563f6 3434 && p0->first_same_value == p1->first_same_value))
3bac3cce 3435 folded_arg1 = folded_arg0;
752df20e 3436
3437 /* If FOLDED_ARG0 is a register, see if the comparison we are
3438 doing now is either the same as we did before or the reverse
3439 (we only check the reverse if not floating-point). */
8ad4c111 3440 else if (REG_P (folded_arg0))
752df20e 3441 {
d1264606 3442 int qty = REG_QTY (REGNO (folded_arg0));
752df20e 3443
a7f3b1c7 3444 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3445 {
3446 struct qty_table_elem *ent = &qty_table[qty];
3447
3448 if ((comparison_dominates_p (ent->comparison_code, code)
a4110d9a 3449 || (! FLOAT_MODE_P (mode_arg0)
3450 && comparison_dominates_p (ent->comparison_code,
3451 reverse_condition (code))))
a7f3b1c7 3452 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3453 || (const_arg1
3454 && rtx_equal_p (ent->comparison_const,
3455 const_arg1))
8ad4c111 3456 || (REG_P (folded_arg1)
a7f3b1c7 3457 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
ecb6ee6d 3458 {
3459 if (comparison_dominates_p (ent->comparison_code, code))
3460 {
3461 if (true_rtx)
3462 return true_rtx;
3463 else
3464 break;
3465 }
3466 else
3467 return false_rtx;
3468 }
a7f3b1c7 3469 }
752df20e 3470 }
3471 }
3472 }
3473
3474 /* If we are comparing against zero, see if the first operand is
3475 equivalent to an IOR with a constant. If so, we may be able to
3476 determine the result of this comparison. */
3bac3cce 3477 if (const_arg1 == const0_rtx && !const_arg0)
752df20e 3478 {
3479 rtx y = lookup_as_function (folded_arg0, IOR);
3480 rtx inner_const;
3481
3482 if (y != 0
3483 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
971ba038 3484 && CONST_INT_P (inner_const)
752df20e 3485 && INTVAL (inner_const) != 0)
3bac3cce 3486 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
752df20e 3487 }
3488
ac503e50 3489 {
b9b50b55 3490 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3491 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3492 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3493 op0, op1);
ac503e50 3494 }
752df20e 3495 break;
3496
6720e96c 3497 case RTX_BIN_ARITH:
3498 case RTX_COMM_ARITH:
752df20e 3499 switch (code)
3500 {
3501 case PLUS:
3502 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3503 with that LABEL_REF as its second operand. If so, the result is
3504 the first operand of that MINUS. This handles switches with an
3505 ADDR_DIFF_VEC table. */
3506 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3507 {
e6d1f05b 3508 rtx y
3509 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
b74befc5 3510 : lookup_as_function (folded_arg0, MINUS);
752df20e 3511
3512 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3513 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3514 return XEXP (y, 0);
528b0df8 3515
3516 /* Now try for a CONST of a MINUS like the above. */
e6d1f05b 3517 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3518 : lookup_as_function (folded_arg0, CONST))) != 0
528b0df8 3519 && GET_CODE (XEXP (y, 0)) == MINUS
3520 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
b74befc5 3521 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
528b0df8 3522 return XEXP (XEXP (y, 0), 0);
752df20e 3523 }
f7cf73ed 3524
e6d1f05b 3525 /* Likewise if the operands are in the other order. */
3526 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3527 {
3528 rtx y
3529 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
b74befc5 3530 : lookup_as_function (folded_arg1, MINUS);
e6d1f05b 3531
3532 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3533 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3534 return XEXP (y, 0);
3535
3536 /* Now try for a CONST of a MINUS like the above. */
3537 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3538 : lookup_as_function (folded_arg1, CONST))) != 0
3539 && GET_CODE (XEXP (y, 0)) == MINUS
3540 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
b74befc5 3541 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
e6d1f05b 3542 return XEXP (XEXP (y, 0), 0);
3543 }
3544
f7cf73ed 3545 /* If second operand is a register equivalent to a negative
3546 CONST_INT, see if we can find a register equivalent to the
3547 positive constant. Make a MINUS if so. Don't do this for
337bf63c 3548 a non-negative constant since we might then alternate between
3fb1e43b 3549 choosing positive and negative constants. Having the positive
337bf63c 3550 constant previously-used is the more common case. Be sure
3551 the resulting constant is non-negative; if const_arg1 were
3552 the smallest negative number this would overflow: depending
3553 on the mode, this would either just be the same value (and
3554 hence not save anything) or be incorrect. */
971ba038 3555 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
337bf63c 3556 && INTVAL (const_arg1) < 0
aaa2446c 3557 /* This used to test
3558
b74befc5 3559 -INTVAL (const_arg1) >= 0
aaa2446c 3560
3561 But The Sun V5.0 compilers mis-compiled that test. So
3562 instead we test for the problematic value in a more direct
3563 manner and hope the Sun compilers get it correct. */
76d98649 3564 && INTVAL (const_arg1) !=
3565 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
8ad4c111 3566 && REG_P (folded_arg1))
f7cf73ed 3567 {
b74befc5 3568 rtx new_const = GEN_INT (-INTVAL (const_arg1));
f7cf73ed 3569 struct table_elt *p
78d140c9 3570 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
f7cf73ed 3571
3572 if (p)
3573 for (p = p->first_same_value; p; p = p->next_same_value)
8ad4c111 3574 if (REG_P (p->exp))
af21a202 3575 return simplify_gen_binary (MINUS, mode, folded_arg0,
3576 canon_reg (p->exp, NULL_RTX));
f7cf73ed 3577 }
5c4c31e3 3578 goto from_plus;
3579
3580 case MINUS:
3581 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3582 If so, produce (PLUS Z C2-C). */
971ba038 3583 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
5c4c31e3 3584 {
3585 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
971ba038 3586 if (y && CONST_INT_P (XEXP (y, 1)))
29c05e22 3587 return fold_rtx (plus_constant (mode, copy_rtx (y),
a66a39f2 3588 -INTVAL (const_arg1)),
63267a4b 3589 NULL_RTX);
5c4c31e3 3590 }
752df20e 3591
b74befc5 3592 /* Fall through. */
752df20e 3593
5c4c31e3 3594 from_plus:
752df20e 3595 case SMIN: case SMAX: case UMIN: case UMAX:
3596 case IOR: case AND: case XOR:
7a4fa2a1 3597 case MULT:
752df20e 3598 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3599 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3600 is known to be of similar form, we may be able to replace the
3601 operation with a combined operation. This may eliminate the
3602 intermediate operation if every use is simplified in this way.
3603 Note that the similar optimization done by combine.c only works
3604 if the intermediate operation's result has only one reference. */
3605
8ad4c111 3606 if (REG_P (folded_arg0)
971ba038 3607 && const_arg1 && CONST_INT_P (const_arg1))
752df20e 3608 {
3609 int is_shift
3610 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
8f353ea8 3611 rtx y, inner_const, new_const;
6026d749 3612 rtx canon_const_arg1 = const_arg1;
752df20e 3613 enum rtx_code associate_code;
752df20e 3614
0518a465 3615 if (is_shift
ded805e6 3616 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
0518a465 3617 || INTVAL (const_arg1) < 0))
3618 {
3619 if (SHIFT_COUNT_TRUNCATED)
6026d749 3620 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3621 & (GET_MODE_BITSIZE (mode)
3622 - 1));
0518a465 3623 else
3624 break;
3625 }
3626
8f353ea8 3627 y = lookup_as_function (folded_arg0, code);
0518a465 3628 if (y == 0)
3629 break;
0518a465 3630
3631 /* If we have compiled a statement like
3632 "if (x == (x & mask1))", and now are looking at
3633 "x & mask2", we will have a case where the first operand
3634 of Y is the same as our first operand. Unless we detect
3635 this case, an infinite loop will result. */
3636 if (XEXP (y, 0) == folded_arg0)
752df20e 3637 break;
3638
8f353ea8 3639 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
971ba038 3640 if (!inner_const || !CONST_INT_P (inner_const))
8f353ea8 3641 break;
3642
752df20e 3643 /* Don't associate these operations if they are a PLUS with the
3644 same constant and it is a power of two. These might be doable
3645 with a pre- or post-increment. Similarly for two subtracts of
3646 identical powers of two with post decrement. */
3647
9cae6d48 3648 if (code == PLUS && const_arg1 == inner_const
e4e498cf 3649 && ((HAVE_PRE_INCREMENT
3650 && exact_log2 (INTVAL (const_arg1)) >= 0)
3651 || (HAVE_POST_INCREMENT
3652 && exact_log2 (INTVAL (const_arg1)) >= 0)
3653 || (HAVE_PRE_DECREMENT
3654 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3655 || (HAVE_POST_DECREMENT
3656 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
752df20e 3657 break;
3658
e7323ddd 3659 /* ??? Vector mode shifts by scalar
3660 shift operand are not supported yet. */
3661 if (is_shift && VECTOR_MODE_P (mode))
3662 break;
3663
0518a465 3664 if (is_shift
ded805e6 3665 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
0518a465 3666 || INTVAL (inner_const) < 0))
3667 {
3668 if (SHIFT_COUNT_TRUNCATED)
3669 inner_const = GEN_INT (INTVAL (inner_const)
3670 & (GET_MODE_BITSIZE (mode) - 1));
3671 else
3672 break;
3673 }
3674
752df20e 3675 /* Compute the code used to compose the constants. For example,
7a4fa2a1 3676 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
752df20e 3677
7a4fa2a1 3678 associate_code = (is_shift || code == MINUS ? PLUS : code);
752df20e 3679
3680 new_const = simplify_binary_operation (associate_code, mode,
6026d749 3681 canon_const_arg1,
3682 inner_const);
752df20e 3683
3684 if (new_const == 0)
3685 break;
3686
3687 /* If we are associating shift operations, don't let this
94ad8c53 3688 produce a shift of the size of the object or larger.
3689 This could occur when we follow a sign-extend by a right
3690 shift on a machine that does a sign-extend as a pair
3691 of shifts. */
752df20e 3692
0518a465 3693 if (is_shift
971ba038 3694 && CONST_INT_P (new_const)
ded805e6 3695 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
94ad8c53 3696 {
3697 /* As an exception, we can turn an ASHIFTRT of this
3698 form into a shift of the number of bits - 1. */
3699 if (code == ASHIFTRT)
3700 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
0518a465 3701 else if (!side_effects_p (XEXP (y, 0)))
3702 return CONST0_RTX (mode);
94ad8c53 3703 else
3704 break;
3705 }
752df20e 3706
3707 y = copy_rtx (XEXP (y, 0));
3708
3709 /* If Y contains our first operand (the most common way this
3710 can happen is if Y is a MEM), we would do into an infinite
3711 loop if we tried to fold it. So don't in that case. */
3712
3713 if (! reg_mentioned_p (folded_arg0, y))
3714 y = fold_rtx (y, insn);
3715
af21a202 3716 return simplify_gen_binary (code, mode, y, new_const);
752df20e 3717 }
0dbd1c74 3718 break;
3719
7a4fa2a1 3720 case DIV: case UDIV:
3721 /* ??? The associative optimization performed immediately above is
3722 also possible for DIV and UDIV using associate_code of MULT.
3723 However, we would need extra code to verify that the
3724 multiplication does not overflow, that is, there is no overflow
3725 in the calculation of new_const. */
3726 break;
3727
0dbd1c74 3728 default:
3729 break;
752df20e 3730 }
3731
d328ebdf 3732 new_rtx = simplify_binary_operation (code, mode,
752df20e 3733 const_arg0 ? const_arg0 : folded_arg0,
3734 const_arg1 ? const_arg1 : folded_arg1);
3735 break;
3736
6720e96c 3737 case RTX_OBJ:
752df20e 3738 /* (lo_sum (high X) X) is simply X. */
3739 if (code == LO_SUM && const_arg0 != 0
3740 && GET_CODE (const_arg0) == HIGH
3741 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3742 return const_arg1;
3743 break;
3744
6720e96c 3745 case RTX_TERNARY:
3746 case RTX_BITFIELD_OPS:
d328ebdf 3747 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
752df20e 3748 const_arg0 ? const_arg0 : folded_arg0,
3749 const_arg1 ? const_arg1 : folded_arg1,
3750 const_arg2 ? const_arg2 : XEXP (x, 2));
3751 break;
dd5ff96d 3752
6720e96c 3753 default:
3754 break;
752df20e 3755 }
3756
d328ebdf 3757 return new_rtx ? new_rtx : x;
752df20e 3758}
3759\f
3760/* Return a constant value currently equivalent to X.
3761 Return 0 if we don't know one. */
3762
3763static rtx
8ec3a57b 3764equiv_constant (rtx x)
752df20e 3765{
8ad4c111 3766 if (REG_P (x)
a7f3b1c7 3767 && REGNO_QTY_VALID_P (REGNO (x)))
3768 {
3769 int x_q = REG_QTY (REGNO (x));
3770 struct qty_table_elem *x_ent = &qty_table[x_q];
3771
3772 if (x_ent->const_rtx)
316f48ea 3773 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
a7f3b1c7 3774 }
752df20e 3775
f2f6be45 3776 if (x == 0 || CONSTANT_P (x))
752df20e 3777 return x;
3778
42a3a38b 3779 if (GET_CODE (x) == SUBREG)
3780 {
5216d9e8 3781 enum machine_mode mode = GET_MODE (x);
3782 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
d328ebdf 3783 rtx new_rtx;
42a3a38b 3784
3785 /* See if we previously assigned a constant value to this SUBREG. */
d328ebdf 3786 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
e913b5cd 3787 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
d328ebdf 3788 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3789 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3790 return new_rtx;
42a3a38b 3791
5216d9e8 3792 /* If we didn't and if doing so makes sense, see if we previously
3793 assigned a constant value to the enclosing word mode SUBREG. */
3794 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3795 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3796 {
3797 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3798 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3799 {
3800 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3801 new_rtx = lookup_as_function (y, CONST_INT);
3802 if (new_rtx)
3803 return gen_lowpart (mode, new_rtx);
3804 }
3805 }
3806
3a966565 3807 /* Otherwise see if we already have a constant for the inner REG,
3808 and if that is enough to calculate an equivalent constant for
3809 the subreg. Note that the upper bits of paradoxical subregs
3810 are undefined, so they cannot be said to equal anything. */
42a3a38b 3811 if (REG_P (SUBREG_REG (x))
3a966565 3812 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
d328ebdf 3813 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
5216d9e8 3814 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
42a3a38b 3815
3816 return 0;
3817 }
3818
3819 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3820 the hash table in case its value was seen before. */
e516eaa9 3821
e16ceb8e 3822 if (MEM_P (x))
e516eaa9 3823 {
3824 struct table_elt *elt;
3825
42a3a38b 3826 x = avoid_constant_pool_reference (x);
e516eaa9 3827 if (CONSTANT_P (x))
3828 return x;
3829
78d140c9 3830 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
e516eaa9 3831 if (elt == 0)
3832 return 0;
3833
3834 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3835 if (elt->is_const && CONSTANT_P (elt->exp))
3836 return elt->exp;
3837 }
3838
752df20e 3839 return 0;
3840}
3841\f
bbe0b6d7 3842/* Given INSN, a jump insn, TAKEN indicates if we are following the
3843 "taken" branch.
752df20e 3844
3845 In certain cases, this can cause us to add an equivalence. For example,
cb10db9d 3846 if we are following the taken case of
8ec3a57b 3847 if (i == 2)
752df20e 3848 we can add the fact that `i' and '2' are now equivalent.
3849
3850 In any case, we can record that this comparison was passed. If the same
3851 comparison is seen later, we will know its value. */
3852
3853static void
bbe0b6d7 3854record_jump_equiv (rtx insn, bool taken)
752df20e 3855{
3856 int cond_known_true;
3857 rtx op0, op1;
b2816317 3858 rtx set;
5c4c31e3 3859 enum machine_mode mode, mode0, mode1;
752df20e 3860 int reversed_nonequality = 0;
3861 enum rtx_code code;
3862
3863 /* Ensure this is the right kind of insn. */
bbe0b6d7 3864 gcc_assert (any_condjump_p (insn));
3865
b2816317 3866 set = pc_set (insn);
752df20e 3867
3868 /* See if this jump condition is known true or false. */
3869 if (taken)
b2816317 3870 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
752df20e 3871 else
b2816317 3872 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
752df20e 3873
3874 /* Get the type of comparison being done and the operands being compared.
3875 If we had to reverse a non-equality condition, record that fact so we
3876 know that it isn't valid for floating-point. */
b2816317 3877 code = GET_CODE (XEXP (SET_SRC (set), 0));
3878 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3879 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
752df20e 3880
5c4c31e3 3881 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
752df20e 3882 if (! cond_known_true)
3883 {
7da6ea0c 3884 code = reversed_comparison_code_parts (code, op0, op1, insn);
a4110d9a 3885
3886 /* Don't remember if we can't find the inverse. */
3887 if (code == UNKNOWN)
3888 return;
752df20e 3889 }
3890
3891 /* The mode is the mode of the non-constant. */
5c4c31e3 3892 mode = mode0;
3893 if (mode1 != VOIDmode)
3894 mode = mode1;
752df20e 3895
3896 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3897}
3898
cfa1a80d 3899/* Yet another form of subreg creation. In this case, we want something in
3900 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3901
3902static rtx
3903record_jump_cond_subreg (enum machine_mode mode, rtx op)
3904{
3905 enum machine_mode op_mode = GET_MODE (op);
3906 if (op_mode == mode || op_mode == VOIDmode)
3907 return op;
3908 return lowpart_subreg (mode, op, op_mode);
3909}
3910
752df20e 3911/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3912 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3913 Make any useful entries we can with that information. Called from
3914 above function and called recursively. */
3915
3916static void
8ec3a57b 3917record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3918 rtx op1, int reversed_nonequality)
752df20e 3919{
952bc06d 3920 unsigned op0_hash, op1_hash;
0af17926 3921 int op0_in_memory, op1_in_memory;
752df20e 3922 struct table_elt *op0_elt, *op1_elt;
3923
3924 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3925 we know that they are also equal in the smaller mode (this is also
3926 true for all smaller modes whether or not there is a SUBREG, but
f5d1f9f9 3927 is not worth testing for with no SUBREG). */
752df20e 3928
3c5cc27f 3929 /* Note that GET_MODE (op0) may not equal MODE. */
b537bfdb 3930 if (code == EQ && paradoxical_subreg_p (op0))
752df20e 3931 {
3932 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
cfa1a80d 3933 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3934 if (tem)
3935 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3936 reversed_nonequality);
752df20e 3937 }
3938
b537bfdb 3939 if (code == EQ && paradoxical_subreg_p (op1))
752df20e 3940 {
3941 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
cfa1a80d 3942 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3943 if (tem)
3944 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3945 reversed_nonequality);
752df20e 3946 }
3947
cb10db9d 3948 /* Similarly, if this is an NE comparison, and either is a SUBREG
752df20e 3949 making a smaller mode, we know the whole thing is also NE. */
3950
3c5cc27f 3951 /* Note that GET_MODE (op0) may not equal MODE;
3952 if we test MODE instead, we can get an infinite recursion
3953 alternating between two modes each wider than MODE. */
3954
752df20e 3955 if (code == NE && GET_CODE (op0) == SUBREG
3956 && subreg_lowpart_p (op0)
3c5cc27f 3957 && (GET_MODE_SIZE (GET_MODE (op0))
3958 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
752df20e 3959 {
3960 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
cfa1a80d 3961 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3962 if (tem)
3963 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3964 reversed_nonequality);
752df20e 3965 }
3966
3967 if (code == NE && GET_CODE (op1) == SUBREG
3968 && subreg_lowpart_p (op1)
3c5cc27f 3969 && (GET_MODE_SIZE (GET_MODE (op1))
3970 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
752df20e 3971 {
3972 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
cfa1a80d 3973 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3974 if (tem)
3975 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3976 reversed_nonequality);
752df20e 3977 }
3978
3979 /* Hash both operands. */
3980
3981 do_not_record = 0;
3982 hash_arg_in_memory = 0;
952bc06d 3983 op0_hash = HASH (op0, mode);
752df20e 3984 op0_in_memory = hash_arg_in_memory;
752df20e 3985
3986 if (do_not_record)
3987 return;
3988
3989 do_not_record = 0;
3990 hash_arg_in_memory = 0;
952bc06d 3991 op1_hash = HASH (op1, mode);
752df20e 3992 op1_in_memory = hash_arg_in_memory;
cb10db9d 3993
752df20e 3994 if (do_not_record)
3995 return;
3996
3997 /* Look up both operands. */
952bc06d 3998 op0_elt = lookup (op0, op0_hash, mode);
3999 op1_elt = lookup (op1, op1_hash, mode);
752df20e 4000
9f8339f2 4001 /* If both operands are already equivalent or if they are not in the
4002 table but are identical, do nothing. */
4003 if ((op0_elt != 0 && op1_elt != 0
4004 && op0_elt->first_same_value == op1_elt->first_same_value)
4005 || op0 == op1 || rtx_equal_p (op0, op1))
4006 return;
4007
752df20e 4008 /* If we aren't setting two things equal all we can do is save this
5b620701 4009 comparison. Similarly if this is floating-point. In the latter
4010 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4011 If we record the equality, we might inadvertently delete code
4012 whose intent was to change -0 to +0. */
4013
c1712420 4014 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
752df20e 4015 {
a7f3b1c7 4016 struct qty_table_elem *ent;
4017 int qty;
4018
752df20e 4019 /* If we reversed a floating-point comparison, if OP0 is not a
4020 register, or if OP1 is neither a register or constant, we can't
4021 do anything. */
4022
8ad4c111 4023 if (!REG_P (op1))
752df20e 4024 op1 = equiv_constant (op1);
4025
c1712420 4026 if ((reversed_nonequality && FLOAT_MODE_P (mode))
8ad4c111 4027 || !REG_P (op0) || op1 == 0)
752df20e 4028 return;
4029
4030 /* Put OP0 in the hash table if it isn't already. This gives it a
4031 new quantity number. */
4032 if (op0_elt == 0)
4033 {
4679ade3 4034 if (insert_regs (op0, NULL, 0))
752df20e 4035 {
4036 rehash_using_reg (op0);
952bc06d 4037 op0_hash = HASH (op0, mode);
a45f1da6 4038
4039 /* If OP0 is contained in OP1, this changes its hash code
4040 as well. Faster to rehash than to check, except
4041 for the simple case of a constant. */
4042 if (! CONSTANT_P (op1))
952bc06d 4043 op1_hash = HASH (op1,mode);
752df20e 4044 }
4045
4679ade3 4046 op0_elt = insert (op0, NULL, op0_hash, mode);
752df20e 4047 op0_elt->in_memory = op0_in_memory;
752df20e 4048 }
4049
a7f3b1c7 4050 qty = REG_QTY (REGNO (op0));
4051 ent = &qty_table[qty];
4052
4053 ent->comparison_code = code;
8ad4c111 4054 if (REG_P (op1))
752df20e 4055 {
95f65c26 4056 /* Look it up again--in case op0 and op1 are the same. */
952bc06d 4057 op1_elt = lookup (op1, op1_hash, mode);
95f65c26 4058
752df20e 4059 /* Put OP1 in the hash table so it gets a new quantity number. */
4060 if (op1_elt == 0)
4061 {
4679ade3 4062 if (insert_regs (op1, NULL, 0))
752df20e 4063 {
4064 rehash_using_reg (op1);
952bc06d 4065 op1_hash = HASH (op1, mode);
752df20e 4066 }
4067
4679ade3 4068 op1_elt = insert (op1, NULL, op1_hash, mode);
752df20e 4069 op1_elt->in_memory = op1_in_memory;
752df20e 4070 }
4071
a7f3b1c7 4072 ent->comparison_const = NULL_RTX;
4073 ent->comparison_qty = REG_QTY (REGNO (op1));
752df20e 4074 }
4075 else
4076 {
a7f3b1c7 4077 ent->comparison_const = op1;
4078 ent->comparison_qty = -1;
752df20e 4079 }
4080
4081 return;
4082 }
4083
56e155ea 4084 /* If either side is still missing an equivalence, make it now,
4085 then merge the equivalences. */
752df20e 4086
752df20e 4087 if (op0_elt == 0)
4088 {
4679ade3 4089 if (insert_regs (op0, NULL, 0))
752df20e 4090 {
4091 rehash_using_reg (op0);
952bc06d 4092 op0_hash = HASH (op0, mode);
752df20e 4093 }
4094
4679ade3 4095 op0_elt = insert (op0, NULL, op0_hash, mode);
752df20e 4096 op0_elt->in_memory = op0_in_memory;
752df20e 4097 }
4098
4099 if (op1_elt == 0)
4100 {
4679ade3 4101 if (insert_regs (op1, NULL, 0))
752df20e 4102 {
4103 rehash_using_reg (op1);
952bc06d 4104 op1_hash = HASH (op1, mode);
752df20e 4105 }
4106
4679ade3 4107 op1_elt = insert (op1, NULL, op1_hash, mode);
752df20e 4108 op1_elt->in_memory = op1_in_memory;
752df20e 4109 }
56e155ea 4110
4111 merge_equiv_classes (op0_elt, op1_elt);
752df20e 4112}
4113\f
4114/* CSE processing for one instruction.
2aca5650 4115
4116 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4117 but the few that "leak through" are cleaned up by cse_insn, and complex
4118 addressing modes are often formed here.
4119
4120 The main function is cse_insn, and between here and that function
4121 a couple of helper functions is defined to keep the size of cse_insn
4122 within reasonable proportions.
4123
4124 Data is shared between the main and helper functions via STRUCT SET,
4125 that contains all data related for every set in the instruction that
4126 is being processed.
4127
4128 Note that cse_main processes all sets in the instruction. Most
4129 passes in GCC only process simple SET insns or single_set insns, but
4130 CSE processes insns with multiple sets as well. */
752df20e 4131
4132/* Data on one SET contained in the instruction. */
4133
4134struct set
4135{
4136 /* The SET rtx itself. */
4137 rtx rtl;
4138 /* The SET_SRC of the rtx (the original value, if it is changing). */
4139 rtx src;
4140 /* The hash-table element for the SET_SRC of the SET. */
4141 struct table_elt *src_elt;
952bc06d 4142 /* Hash value for the SET_SRC. */
4143 unsigned src_hash;
4144 /* Hash value for the SET_DEST. */
4145 unsigned dest_hash;
752df20e 4146 /* The SET_DEST, with SUBREG, etc., stripped. */
4147 rtx inner_dest;
cb10db9d 4148 /* Nonzero if the SET_SRC is in memory. */
752df20e 4149 char src_in_memory;
752df20e 4150 /* Nonzero if the SET_SRC contains something
4151 whose value cannot be predicted and understood. */
4152 char src_volatile;
d8b9732d 4153 /* Original machine mode, in case it becomes a CONST_INT.
4154 The size of this field should match the size of the mode
4155 field of struct rtx_def (see rtl.h). */
4156 ENUM_BITFIELD(machine_mode) mode : 8;
752df20e 4157 /* A constant equivalent for SET_SRC, if any. */
4158 rtx src_const;
952bc06d 4159 /* Hash value of constant equivalent for SET_SRC. */
4160 unsigned src_const_hash;
752df20e 4161 /* Table entry for constant equivalent for SET_SRC, if any. */
4162 struct table_elt *src_const_elt;
977ffed2 4163 /* Table entry for the destination address. */
4164 struct table_elt *dest_addr_elt;
752df20e 4165};
2aca5650 4166\f
4167/* Special handling for (set REG0 REG1) where REG0 is the
4168 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4169 be used in the sequel, so (if easily done) change this insn to
4170 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4171 that computed their value. Then REG1 will become a dead store
4172 and won't cloud the situation for later optimizations.
4173
4174 Do not make this change if REG1 is a hard register, because it will
4175 then be used in the sequel and we may be changing a two-operand insn
4176 into a three-operand insn.
4177
4178 This is the last transformation that cse_insn will try to do. */
752df20e 4179
4180static void
2aca5650 4181try_back_substitute_reg (rtx set, rtx insn)
752df20e 4182{
2aca5650 4183 rtx dest = SET_DEST (set);
4184 rtx src = SET_SRC (set);
752df20e 4185
2aca5650 4186 if (REG_P (dest)
4187 && REG_P (src) && ! HARD_REGISTER_P (src)
4188 && REGNO_QTY_VALID_P (REGNO (src)))
4189 {
4190 int src_q = REG_QTY (REGNO (src));
4191 struct qty_table_elem *src_ent = &qty_table[src_q];
752df20e 4192
2aca5650 4193 if (src_ent->first_reg == REGNO (dest))
4194 {
4195 /* Scan for the previous nonnote insn, but stop at a basic
4196 block boundary. */
4197 rtx prev = insn;
4198 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4199 do
4200 {
4201 prev = PREV_INSN (prev);
4202 }
4203 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
752df20e 4204
2aca5650 4205 /* Do not swap the registers around if the previous instruction
4206 attaches a REG_EQUIV note to REG1.
752df20e 4207
2aca5650 4208 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4209 from the pseudo that originally shadowed an incoming argument
4210 to another register. Some uses of REG_EQUIV might rely on it
4211 being attached to REG1 rather than REG2.
752df20e 4212
2aca5650 4213 This section previously turned the REG_EQUIV into a REG_EQUAL
4214 note. We cannot do that because REG_EQUIV may provide an
4215 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4216 if (NONJUMP_INSN_P (prev)
4217 && GET_CODE (PATTERN (prev)) == SET
4218 && SET_DEST (PATTERN (prev)) == src
4219 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4220 {
4221 rtx note;
4222
4223 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4224 validate_change (insn, &SET_DEST (set), src, 1);
4225 validate_change (insn, &SET_SRC (set), dest, 1);
4226 apply_change_group ();
4227
4228 /* If INSN has a REG_EQUAL note, and this note mentions
4229 REG0, then we must delete it, because the value in
4230 REG0 has changed. If the note's value is REG1, we must
4231 also delete it because that is now this insn's dest. */
4232 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4233 if (note != 0
4234 && (reg_mentioned_p (dest, XEXP (note, 0))
4235 || rtx_equal_p (src, XEXP (note, 0))))
4236 remove_note (insn, note);
4237 }
ddaf7ad3 4238 }
b84155cd 4239 }
2aca5650 4240}
4241\f
4242/* Record all the SETs in this instruction into SETS_PTR,
4243 and return the number of recorded sets. */
4244static int
4245find_sets_in_insn (rtx insn, struct set **psets)
4246{
4247 struct set *sets = *psets;
4248 int n_sets = 0;
4249 rtx x = PATTERN (insn);
b84155cd 4250
752df20e 4251 if (GET_CODE (x) == SET)
4252 {
752df20e 4253 /* Ignore SETs that are unconditional jumps.
4254 They never need cse processing, so this does not hurt.
4255 The reason is not efficiency but rather
4256 so that we can test at the end for instructions
4257 that have been simplified to unconditional jumps
4258 and not be misled by unchanged instructions
4259 that were unconditional jumps to begin with. */
4260 if (SET_DEST (x) == pc_rtx
4261 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4262 ;
752df20e 4263 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4264 The hard function value register is used only once, to copy to
2aca5650 4265 someplace else, so it isn't worth cse'ing. */
752df20e 4266 else if (GET_CODE (SET_SRC (x)) == CALL)
2aca5650 4267 ;
752df20e 4268 else
2aca5650 4269 sets[n_sets++].rtl = x;
752df20e 4270 }
4271 else if (GET_CODE (x) == PARALLEL)
4272 {
2aca5650 4273 int i, lim = XVECLEN (x, 0);
cb10db9d 4274
2aca5650 4275 /* Go over the epressions of the PARALLEL in forward order, to
4276 put them in the same order in the SETS array. */
752df20e 4277 for (i = 0; i < lim; i++)
4278 {
19cb6b50 4279 rtx y = XVECEXP (x, 0, i);
752df20e 4280 if (GET_CODE (y) == SET)
4281 {
8d5dd220 4282 /* As above, we ignore unconditional jumps and call-insns and
4283 ignore the result of apply_change_group. */
2aca5650 4284 if (SET_DEST (y) == pc_rtx
4285 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4286 ;
4287 else if (GET_CODE (SET_SRC (y)) == CALL)
752df20e 4288 ;
4289 else
4290 sets[n_sets++].rtl = y;
4291 }
752df20e 4292 }
4293 }
2aca5650 4294
4295 return n_sets;
4296}
4297\f
4298/* Where possible, substitute every register reference in the N_SETS
4299 number of SETS in INSN with the the canonical register.
4300
4301 Register canonicalization propagatest the earliest register (i.e.
4302 one that is set before INSN) with the same value. This is a very
4303 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4304 to RTL. For instance, a CONST for an address is usually expanded
4305 multiple times to loads into different registers, thus creating many
4306 subexpressions of the form:
4307
4308 (set (reg1) (some_const))
4309 (set (mem (... reg1 ...) (thing)))
4310 (set (reg2) (some_const))
4311 (set (mem (... reg2 ...) (thing)))
4312
4313 After canonicalizing, the code takes the following form:
4314
4315 (set (reg1) (some_const))
4316 (set (mem (... reg1 ...) (thing)))
4317 (set (reg2) (some_const))
4318 (set (mem (... reg1 ...) (thing)))
4319
4320 The set to reg2 is now trivially dead, and the memory reference (or
4321 address, or whatever) may be a candidate for further CSEing.
4322
4323 In this function, the result of apply_change_group can be ignored;
4324 see canon_reg. */
4325
4326static void
4327canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4328{
4329 struct set *sets = *psets;
4330 rtx tem;
4331 rtx x = PATTERN (insn);
4332 int i;
4333
4334 if (CALL_P (insn))
4335 {
4336 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
c8010b80 4337 if (GET_CODE (XEXP (tem, 0)) != SET)
4338 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
2aca5650 4339 }
4340
4341 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4342 {
4343 canon_reg (SET_SRC (x), insn);
4344 apply_change_group ();
4345 fold_rtx (SET_SRC (x), insn);
4346 }
752df20e 4347 else if (GET_CODE (x) == CLOBBER)
4348 {
2aca5650 4349 /* If we clobber memory, canon the address.
4350 This does nothing when a register is clobbered
4351 because we have already invalidated the reg. */
e16ceb8e 4352 if (MEM_P (XEXP (x, 0)))
3072d30e 4353 canon_reg (XEXP (x, 0), insn);
752df20e 4354 }
752df20e 4355 else if (GET_CODE (x) == USE
8ad4c111 4356 && ! (REG_P (XEXP (x, 0))
752df20e 4357 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
2aca5650 4358 /* Canonicalize a USE of a pseudo register or memory location. */
e126ac03 4359 canon_reg (x, insn);
4360 else if (GET_CODE (x) == ASM_OPERANDS)
4361 {
4362 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4363 {
4364 rtx input = ASM_OPERANDS_INPUT (x, i);
4365 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4366 {
4367 input = canon_reg (input, insn);
4368 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4369 }
4370 }
4371 }
752df20e 4372 else if (GET_CODE (x) == CALL)
4373 {
4374 canon_reg (x, insn);
8b82837b 4375 apply_change_group ();
752df20e 4376 fold_rtx (x, insn);
4377 }
9845d120 4378 else if (DEBUG_INSN_P (insn))
4379 canon_reg (PATTERN (insn), insn);
2aca5650 4380 else if (GET_CODE (x) == PARALLEL)
4381 {
4382 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4383 {
4384 rtx y = XVECEXP (x, 0, i);
4385 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4386 {
4387 canon_reg (SET_SRC (y), insn);
4388 apply_change_group ();
4389 fold_rtx (SET_SRC (y), insn);
4390 }
4391 else if (GET_CODE (y) == CLOBBER)
4392 {
4393 if (MEM_P (XEXP (y, 0)))
4394 canon_reg (XEXP (y, 0), insn);
4395 }
4396 else if (GET_CODE (y) == USE
4397 && ! (REG_P (XEXP (y, 0))
4398 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4399 canon_reg (y, insn);
4400 else if (GET_CODE (y) == CALL)
4401 {
4402 canon_reg (y, insn);
4403 apply_change_group ();
4404 fold_rtx (y, insn);
4405 }
4406 }
4407 }
752df20e 4408
384770d0 4409 if (n_sets == 1 && REG_NOTES (insn) != 0
2aca5650 4410 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
24d87432 4411 {
2aca5650 4412 /* We potentially will process this insn many times. Therefore,
4413 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4414 unique set in INSN.
4415
4416 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4417 because cse_insn handles those specially. */
4418 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4419 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4420 remove_note (insn, tem);
4421 else
4422 {
4423 canon_reg (XEXP (tem, 0), insn);
4424 apply_change_group ();
4425 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4426 df_notes_rescan (insn);
4427 }
24d87432 4428 }
752df20e 4429
4430 /* Canonicalize sources and addresses of destinations.
4431 We do this in a separate pass to avoid problems when a MATCH_DUP is
4432 present in the insn pattern. In that case, we want to ensure that
4433 we don't break the duplicate nature of the pattern. So we will replace
4434 both operands at the same time. Otherwise, we would fail to find an
4435 equivalent substitution in the loop calling validate_change below.
752df20e 4436
4437 We used to suppress canonicalization of DEST if it appears in SRC,
8b82837b 4438 but we don't do this any more. */
752df20e 4439
4440 for (i = 0; i < n_sets; i++)
4441 {
4442 rtx dest = SET_DEST (sets[i].rtl);
4443 rtx src = SET_SRC (sets[i].rtl);
d328ebdf 4444 rtx new_rtx = canon_reg (src, insn);
752df20e 4445
d328ebdf 4446 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
752df20e 4447
476d094d 4448 if (GET_CODE (dest) == ZERO_EXTRACT)
752df20e 4449 {
4450 validate_change (insn, &XEXP (dest, 1),
8b82837b 4451 canon_reg (XEXP (dest, 1), insn), 1);
752df20e 4452 validate_change (insn, &XEXP (dest, 2),
8b82837b 4453 canon_reg (XEXP (dest, 2), insn), 1);
752df20e 4454 }
4455
476d094d 4456 while (GET_CODE (dest) == SUBREG
752df20e 4457 || GET_CODE (dest) == ZERO_EXTRACT
476d094d 4458 || GET_CODE (dest) == STRICT_LOW_PART)
752df20e 4459 dest = XEXP (dest, 0);
4460
e16ceb8e 4461 if (MEM_P (dest))
752df20e 4462 canon_reg (dest, insn);
4463 }
4464
8b82837b 4465 /* Now that we have done all the replacements, we can apply the change
4466 group and see if they all work. Note that this will cause some
4467 canonicalizations that would have worked individually not to be applied
4468 because some other canonicalization didn't work, but this should not
cb10db9d 4469 occur often.
8d5dd220 4470
4471 The result of apply_change_group can be ignored; see canon_reg. */
8b82837b 4472
4473 apply_change_group ();
2aca5650 4474}
4475\f
4476/* Main function of CSE.
4477 First simplify sources and addresses of all assignments
4478 in the instruction, using previously-computed equivalents values.
4479 Then install the new sources and destinations in the table
4480 of available values. */
4481
4482static void
4483cse_insn (rtx insn)
4484{
4485 rtx x = PATTERN (insn);
4486 int i;
4487 rtx tem;
4488 int n_sets = 0;
4489
4490 rtx src_eqv = 0;
4491 struct table_elt *src_eqv_elt = 0;
4492 int src_eqv_volatile = 0;
4493 int src_eqv_in_memory = 0;
4494 unsigned src_eqv_hash = 0;
4495
4496 struct set *sets = (struct set *) 0;
4497
4498 if (GET_CODE (x) == SET)
4499 sets = XALLOCA (struct set);
4500 else if (GET_CODE (x) == PARALLEL)
4501 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4502
4503 this_insn = insn;
4504#ifdef HAVE_cc0
4505 /* Records what this insn does to set CC0. */
4506 this_insn_cc0 = 0;
4507 this_insn_cc0_mode = VOIDmode;
4508#endif
4509
4510 /* Find all regs explicitly clobbered in this insn,
4511 to ensure they are not replaced with any other regs
4512 elsewhere in this insn. */
4513 invalidate_from_sets_and_clobbers (insn);
4514
4515 /* Record all the SETs in this instruction. */
4516 n_sets = find_sets_in_insn (insn, &sets);
4517
4518 /* Substitute the canonical register where possible. */
4519 canonicalize_insn (insn, &sets, n_sets);
4520
4521 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4522 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4523 is necessary because SRC_EQV is handled specially for this case, and if
4524 it isn't set, then there will be no equivalence for the destination. */
4525 if (n_sets == 1 && REG_NOTES (insn) != 0
4526 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4527 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4528 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4529 src_eqv = copy_rtx (XEXP (tem, 0));
8b82837b 4530
752df20e 4531 /* Set sets[i].src_elt to the class each source belongs to.
4532 Detect assignments from or to volatile things
4533 and set set[i] to zero so they will be ignored
4534 in the rest of this function.
4535
4536 Nothing in this loop changes the hash table or the register chains. */
4537
4538 for (i = 0; i < n_sets; i++)
4539 {
a49d9163 4540 bool repeat = false;
19cb6b50 4541 rtx src, dest;
4542 rtx src_folded;
4543 struct table_elt *elt = 0, *p;
752df20e 4544 enum machine_mode mode;
4545 rtx src_eqv_here;
4546 rtx src_const = 0;
4547 rtx src_related = 0;
01c8e4c9 4548 bool src_related_is_const_anchor = false;
752df20e 4549 struct table_elt *src_const_elt = 0;
fb561825 4550 int src_cost = MAX_COST;
4551 int src_eqv_cost = MAX_COST;
4552 int src_folded_cost = MAX_COST;
4553 int src_related_cost = MAX_COST;
4554 int src_elt_cost = MAX_COST;
4555 int src_regcost = MAX_COST;
4556 int src_eqv_regcost = MAX_COST;
4557 int src_folded_regcost = MAX_COST;
4558 int src_related_regcost = MAX_COST;
4559 int src_elt_regcost = MAX_COST;
d10cfa8d 4560 /* Set nonzero if we need to call force_const_mem on with the
752df20e 4561 contents of src_folded before using it. */
4562 int src_folded_force_flag = 0;
4563
4564 dest = SET_DEST (sets[i].rtl);
4565 src = SET_SRC (sets[i].rtl);
4566
4567 /* If SRC is a constant that has no machine mode,
4568 hash it with the destination's machine mode.
4569 This way we can keep different modes separate. */
4570
4571 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4572 sets[i].mode = mode;
4573
4574 if (src_eqv)
4575 {
4576 enum machine_mode eqvmode = mode;
4577 if (GET_CODE (dest) == STRICT_LOW_PART)
4578 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4579 do_not_record = 0;
4580 hash_arg_in_memory = 0;
952bc06d 4581 src_eqv_hash = HASH (src_eqv, eqvmode);
752df20e 4582
4583 /* Find the equivalence class for the equivalent expression. */
4584
4585 if (!do_not_record)
952bc06d 4586 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
752df20e 4587
4588 src_eqv_volatile = do_not_record;
4589 src_eqv_in_memory = hash_arg_in_memory;
752df20e 4590 }
4591
4592 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4593 value of the INNER register, not the destination. So it is not
fd6efe25 4594 a valid substitution for the source. But save it for later. */
752df20e 4595 if (GET_CODE (dest) == STRICT_LOW_PART)
4596 src_eqv_here = 0;
4597 else
4598 src_eqv_here = src_eqv;
4599
4600 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4601 simplified result, which may not necessarily be valid. */
4602 src_folded = fold_rtx (src, insn);
4603
c93674f2 4604#if 0
4605 /* ??? This caused bad code to be generated for the m68k port with -O2.
4606 Suppose src is (CONST_INT -1), and that after truncation src_folded
4607 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4608 At the end we will add src and src_const to the same equivalence
4609 class. We now have 3 and -1 on the same equivalence class. This
4610 causes later instructions to be mis-optimized. */
752df20e 4611 /* If storing a constant in a bitfield, pre-truncate the constant
4612 so we will be able to record it later. */
476d094d 4613 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
752df20e 4614 {
4615 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4616
971ba038 4617 if (CONST_INT_P (src)
4618 && CONST_INT_P (width)
b572011e 4619 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4620 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4621 src_folded
4622 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4623 << INTVAL (width)) - 1));
752df20e 4624 }
c93674f2 4625#endif
752df20e 4626
4627 /* Compute SRC's hash code, and also notice if it
4628 should not be recorded at all. In that case,
4629 prevent any further processing of this assignment. */
4630 do_not_record = 0;
4631 hash_arg_in_memory = 0;
752df20e 4632
4633 sets[i].src = src;
952bc06d 4634 sets[i].src_hash = HASH (src, mode);
752df20e 4635 sets[i].src_volatile = do_not_record;
4636 sets[i].src_in_memory = hash_arg_in_memory;
752df20e 4637
6ea5a450 4638 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
75f84104 4639 a pseudo, do not record SRC. Using SRC as a replacement for
4640 anything else will be incorrect in that situation. Note that
4641 this usually occurs only for stack slots, in which case all the
4642 RTL would be referring to SRC, so we don't lose any optimization
4643 opportunities by not having SRC in the hash table. */
6ea5a450 4644
e16ceb8e 4645 if (MEM_P (src)
75f84104 4646 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
8ad4c111 4647 && REG_P (dest)
75f84104 4648 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
6ea5a450 4649 sets[i].src_volatile = 1;
4650
f3f18244 4651 /* Also do not record result of a non-volatile inline asm with
4652 more than one result or with clobbers, we do not want CSE to
4653 break the inline asm apart. */
4654 else if (GET_CODE (src) == ASM_OPERANDS
4655 && GET_CODE (x) == PARALLEL)
4656 sets[i].src_volatile = 1;
4657
c538053c 4658#if 0
4659 /* It is no longer clear why we used to do this, but it doesn't
4660 appear to still be needed. So let's try without it since this
4661 code hurts cse'ing widened ops. */
5f3447b0 4662 /* If source is a paradoxical subreg (such as QI treated as an SI),
752df20e 4663 treat it as volatile. It may do the work of an SI in one context
4664 where the extra bits are not being used, but cannot replace an SI
4665 in general. */
b537bfdb 4666 if (paradoxical_subreg_p (src))
752df20e 4667 sets[i].src_volatile = 1;
c538053c 4668#endif
752df20e 4669
4670 /* Locate all possible equivalent forms for SRC. Try to replace
4671 SRC in the insn with each cheaper equivalent.
4672
4673 We have the following types of equivalents: SRC itself, a folded
4674 version, a value given in a REG_EQUAL note, or a value related
4675 to a constant.
4676
4677 Each of these equivalents may be part of an additional class
4678 of equivalents (if more than one is in the table, they must be in
4679 the same class; we check for this).
4680
4681 If the source is volatile, we don't do any table lookups.
4682
4683 We note any constant equivalent for possible later use in a
4684 REG_NOTE. */
4685
4686 if (!sets[i].src_volatile)
952bc06d 4687 elt = lookup (src, sets[i].src_hash, mode);
752df20e 4688
4689 sets[i].src_elt = elt;
4690
4691 if (elt && src_eqv_here && src_eqv_elt)
cb10db9d 4692 {
4693 if (elt->first_same_value != src_eqv_elt->first_same_value)
752df20e 4694 {
4695 /* The REG_EQUAL is indicating that two formerly distinct
4696 classes are now equivalent. So merge them. */
4697 merge_equiv_classes (elt, src_eqv_elt);
952bc06d 4698 src_eqv_hash = HASH (src_eqv, elt->mode);
4699 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
752df20e 4700 }
4701
cb10db9d 4702 src_eqv_here = 0;
4703 }
752df20e 4704
4705 else if (src_eqv_elt)
cb10db9d 4706 elt = src_eqv_elt;
752df20e 4707
4708 /* Try to find a constant somewhere and record it in `src_const'.
4709 Record its table element, if any, in `src_const_elt'. Look in
4710 any known equivalences first. (If the constant is not in the
952bc06d 4711 table, also set `sets[i].src_const_hash'). */
752df20e 4712 if (elt)
cb10db9d 4713 for (p = elt->first_same_value; p; p = p->next_same_value)
752df20e 4714 if (p->is_const)
4715 {
4716 src_const = p->exp;
4717 src_const_elt = elt;
4718 break;
4719 }
4720
4721 if (src_const == 0
4722 && (CONSTANT_P (src_folded)
cb10db9d 4723 /* Consider (minus (label_ref L1) (label_ref L2)) as
752df20e 4724 "constant" here so we will record it. This allows us
4725 to fold switch statements when an ADDR_DIFF_VEC is used. */
4726 || (GET_CODE (src_folded) == MINUS
4727 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4728 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4729 src_const = src_folded, src_const_elt = elt;
4730 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4731 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4732
4733 /* If we don't know if the constant is in the table, get its
4734 hash code and look it up. */
4735 if (src_const && src_const_elt == 0)
4736 {
952bc06d 4737 sets[i].src_const_hash = HASH (src_const, mode);
4738 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
752df20e 4739 }
4740
4741 sets[i].src_const = src_const;
4742 sets[i].src_const_elt = src_const_elt;
4743
4744 /* If the constant and our source are both in the table, mark them as
4745 equivalent. Otherwise, if a constant is in the table but the source
4746 isn't, set ELT to it. */
4747 if (src_const_elt && elt
4748 && src_const_elt->first_same_value != elt->first_same_value)
4749 merge_equiv_classes (elt, src_const_elt);
4750 else if (src_const_elt && elt == 0)
4751 elt = src_const_elt;
4752
4753 /* See if there is a register linearly related to a constant
4754 equivalent of SRC. */
4755 if (src_const
4756 && (GET_CODE (src_const) == CONST
4757 || (src_const_elt && src_const_elt->related_value != 0)))
cb10db9d 4758 {
4759 src_related = use_related_value (src_const, src_const_elt);
4760 if (src_related)
4761 {
752df20e 4762 struct table_elt *src_related_elt
cb10db9d 4763 = lookup (src_related, HASH (src_related, mode), mode);
752df20e 4764 if (src_related_elt && elt)
cb10db9d 4765 {
752df20e 4766 if (elt->first_same_value
4767 != src_related_elt->first_same_value)
cb10db9d 4768 /* This can occur when we previously saw a CONST
752df20e 4769 involving a SYMBOL_REF and then see the SYMBOL_REF
4770 twice. Merge the involved classes. */
4771 merge_equiv_classes (elt, src_related_elt);
4772
cb10db9d 4773 src_related = 0;
752df20e 4774 src_related_elt = 0;
cb10db9d 4775 }
4776 else if (src_related_elt && elt == 0)
4777 elt = src_related_elt;
752df20e 4778 }
cb10db9d 4779 }
752df20e 4780
4023cea7 4781 /* See if we have a CONST_INT that is already in a register in a
4782 wider mode. */
4783
971ba038 4784 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4023cea7 4785 && GET_MODE_CLASS (mode) == MODE_INT
ded805e6 4786 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4023cea7 4787 {
4788 enum machine_mode wider_mode;
4789
4790 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1595fd95 4791 wider_mode != VOIDmode
ded805e6 4792 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4023cea7 4793 && src_related == 0;
4794 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4795 {
4796 struct table_elt *const_elt
4797 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4798
4799 if (const_elt == 0)
4800 continue;
4801
4802 for (const_elt = const_elt->first_same_value;
4803 const_elt; const_elt = const_elt->next_same_value)
8ad4c111 4804 if (REG_P (const_elt->exp))
4023cea7 4805 {
8b172e0e 4806 src_related = gen_lowpart (mode, const_elt->exp);
4023cea7 4807 break;
4808 }
4809 }
4810 }
4811
f9e15121 4812 /* Another possibility is that we have an AND with a constant in
4813 a mode narrower than a word. If so, it might have been generated
4814 as part of an "if" which would narrow the AND. If we already
4815 have done the AND in a wider mode, we can use a SUBREG of that
4816 value. */
4817
4818 if (flag_expensive_optimizations && ! src_related
971ba038 4819 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
f9e15121 4820 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4821 {
4822 enum machine_mode tmode;
941522d6 4823 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
f9e15121 4824
4825 for (tmode = GET_MODE_WIDER_MODE (mode);
4826 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4827 tmode = GET_MODE_WIDER_MODE (tmode))
4828 {
316f48ea 4829 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
f9e15121 4830 struct table_elt *larger_elt;
4831
4832 if (inner)
4833 {
4834 PUT_MODE (new_and, tmode);
4835 XEXP (new_and, 0) = inner;
4836 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4837 if (larger_elt == 0)
4838 continue;
4839
4840 for (larger_elt = larger_elt->first_same_value;
4841 larger_elt; larger_elt = larger_elt->next_same_value)
8ad4c111 4842 if (REG_P (larger_elt->exp))
f9e15121 4843 {
4844 src_related
316f48ea 4845 = gen_lowpart (mode, larger_elt->exp);
f9e15121 4846 break;
4847 }
4848
4849 if (src_related)
4850 break;
4851 }
4852 }
4853 }
c13941f4 4854
4855#ifdef LOAD_EXTEND_OP
4856 /* See if a MEM has already been loaded with a widening operation;
4857 if it has, we can use a subreg of that. Many CISC machines
4858 also have such operations, but this is only likely to be
5aedf60c 4859 beneficial on these machines. */
cb10db9d 4860
b74befc5 4861 if (flag_expensive_optimizations && src_related == 0
c13941f4 4862 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4863 && GET_MODE_CLASS (mode) == MODE_INT
e16ceb8e 4864 && MEM_P (src) && ! do_not_record
21f1e711 4865 && LOAD_EXTEND_OP (mode) != UNKNOWN)
c13941f4 4866 {
89333dfe 4867 struct rtx_def memory_extend_buf;
4868 rtx memory_extend_rtx = &memory_extend_buf;
c13941f4 4869 enum machine_mode tmode;
cb10db9d 4870
c13941f4 4871 /* Set what we are trying to extend and the operation it might
4872 have been extended with. */
9af5ce0c 4873 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
c13941f4 4874 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4875 XEXP (memory_extend_rtx, 0) = src;
cb10db9d 4876
c13941f4 4877 for (tmode = GET_MODE_WIDER_MODE (mode);
4878 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4879 tmode = GET_MODE_WIDER_MODE (tmode))
4880 {
4881 struct table_elt *larger_elt;
cb10db9d 4882
c13941f4 4883 PUT_MODE (memory_extend_rtx, tmode);
cb10db9d 4884 larger_elt = lookup (memory_extend_rtx,
c13941f4 4885 HASH (memory_extend_rtx, tmode), tmode);
4886 if (larger_elt == 0)
4887 continue;
cb10db9d 4888
c13941f4 4889 for (larger_elt = larger_elt->first_same_value;
4890 larger_elt; larger_elt = larger_elt->next_same_value)
8ad4c111 4891 if (REG_P (larger_elt->exp))
c13941f4 4892 {
8b172e0e 4893 src_related = gen_lowpart (mode, larger_elt->exp);
c13941f4 4894 break;
4895 }
cb10db9d 4896
c13941f4 4897 if (src_related)
4898 break;
4899 }
4900 }
4901#endif /* LOAD_EXTEND_OP */
cb10db9d 4902
01c8e4c9 4903 /* Try to express the constant using a register+offset expression
4904 derived from a constant anchor. */
4905
4906 if (targetm.const_anchor
4907 && !src_related
4908 && src_const
4909 && GET_CODE (src_const) == CONST_INT)
4910 {
4911 src_related = try_const_anchors (src_const, mode);
4912 src_related_is_const_anchor = src_related != NULL_RTX;
4913 }
4914
4915
752df20e 4916 if (src == src_folded)
cb10db9d 4917 src_folded = 0;
752df20e 4918
d10cfa8d 4919 /* At this point, ELT, if nonzero, points to a class of expressions
752df20e 4920 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
d10cfa8d 4921 and SRC_RELATED, if nonzero, each contain additional equivalent
752df20e 4922 expressions. Prune these latter expressions by deleting expressions
4923 already in the equivalence class.
4924
4925 Check for an equivalent identical to the destination. If found,
4926 this is the preferred equivalent since it will likely lead to
4927 elimination of the insn. Indicate this by placing it in
4928 `src_related'. */
4929
cb10db9d 4930 if (elt)
4931 elt = elt->first_same_value;
752df20e 4932 for (p = elt; p; p = p->next_same_value)
cb10db9d 4933 {
752df20e 4934 enum rtx_code code = GET_CODE (p->exp);
4935
4936 /* If the expression is not valid, ignore it. Then we do not
4937 have to check for validity below. In most cases, we can use
4938 `rtx_equal_p', since canonicalization has already been done. */
78d140c9 4939 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
752df20e 4940 continue;
4941
47ac60a3 4942 /* Also skip paradoxical subregs, unless that's what we're
4943 looking for. */
b537bfdb 4944 if (paradoxical_subreg_p (p->exp)
47ac60a3 4945 && ! (src != 0
4946 && GET_CODE (src) == SUBREG
4947 && GET_MODE (src) == GET_MODE (p->exp)
4948 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4949 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4950 continue;
4951
cb10db9d 4952 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
752df20e 4953 src = 0;
cb10db9d 4954 else if (src_folded && GET_CODE (src_folded) == code
752df20e 4955 && rtx_equal_p (src_folded, p->exp))
4956 src_folded = 0;
cb10db9d 4957 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
752df20e 4958 && rtx_equal_p (src_eqv_here, p->exp))
4959 src_eqv_here = 0;
cb10db9d 4960 else if (src_related && GET_CODE (src_related) == code
752df20e 4961 && rtx_equal_p (src_related, p->exp))
4962 src_related = 0;
4963
4964 /* This is the same as the destination of the insns, we want
4965 to prefer it. Copy it to src_related. The code below will
4966 then give it a negative cost. */
4967 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4968 src_related = dest;
cb10db9d 4969 }
752df20e 4970
4971 /* Find the cheapest valid equivalent, trying all the available
4972 possibilities. Prefer items not in the hash table to ones
4973 that are when they are equal cost. Note that we can never
4974 worsen an insn as the current contents will also succeed.
e2ef73d2 4975 If we find an equivalent identical to the destination, use it as best,
a92771b8 4976 since this insn will probably be eliminated in that case. */
752df20e 4977 if (src)
4978 {
4979 if (rtx_equal_p (src, dest))
589ff9e7 4980 src_cost = src_regcost = -1;
752df20e 4981 else
d27eb4b1 4982 {
4983 src_cost = COST (src);
4984 src_regcost = approx_reg_cost (src);
4985 }
752df20e 4986 }
4987
4988 if (src_eqv_here)
4989 {
4990 if (rtx_equal_p (src_eqv_here, dest))
589ff9e7 4991 src_eqv_cost = src_eqv_regcost = -1;
752df20e 4992 else
d27eb4b1 4993 {
4994 src_eqv_cost = COST (src_eqv_here);
4995 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4996 }
752df20e 4997 }
4998
4999 if (src_folded)
5000 {
5001 if (rtx_equal_p (src_folded, dest))
589ff9e7 5002 src_folded_cost = src_folded_regcost = -1;
752df20e 5003 else
d27eb4b1 5004 {
5005 src_folded_cost = COST (src_folded);
5006 src_folded_regcost = approx_reg_cost (src_folded);
5007 }
752df20e 5008 }
5009
5010 if (src_related)
5011 {
5012 if (rtx_equal_p (src_related, dest))
589ff9e7 5013 src_related_cost = src_related_regcost = -1;
752df20e 5014 else
d27eb4b1 5015 {
5016 src_related_cost = COST (src_related);
5017 src_related_regcost = approx_reg_cost (src_related);
01c8e4c9 5018
5019 /* If a const-anchor is used to synthesize a constant that
5020 normally requires multiple instructions then slightly prefer
5021 it over the original sequence. These instructions are likely
5022 to become redundant now. We can't compare against the cost
5023 of src_eqv_here because, on MIPS for example, multi-insn
5024 constants have zero cost; they are assumed to be hoisted from
5025 loops. */
5026 if (src_related_is_const_anchor
5027 && src_related_cost == src_cost
5028 && src_eqv_here)
5029 src_related_cost--;
d27eb4b1 5030 }
752df20e 5031 }
5032
5033 /* If this was an indirect jump insn, a known label will really be
5034 cheaper even though it looks more expensive. */
5035 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
fb561825 5036 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
cb10db9d 5037
752df20e 5038 /* Terminate loop when replacement made. This must terminate since
5039 the current contents will be tested and will always be valid. */
5040 while (1)
cb10db9d 5041 {
5042 rtx trial;
752df20e 5043
cb10db9d 5044 /* Skip invalid entries. */
8ad4c111 5045 while (elt && !REG_P (elt->exp)
78d140c9 5046 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
cb10db9d 5047 elt = elt->next_same_value;
47ac60a3 5048
5049 /* A paradoxical subreg would be bad here: it'll be the right
5050 size, but later may be adjusted so that the upper bits aren't
5051 what we want. So reject it. */
5052 if (elt != 0
b537bfdb 5053 && paradoxical_subreg_p (elt->exp)
47ac60a3 5054 /* It is okay, though, if the rtx we're trying to match
5055 will ignore any of the bits we can't predict. */
5056 && ! (src != 0
5057 && GET_CODE (src) == SUBREG
5058 && GET_MODE (src) == GET_MODE (elt->exp)
5059 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5060 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5061 {
5062 elt = elt->next_same_value;
5063 continue;
5064 }
cb10db9d 5065
d4c5e26d 5066 if (elt)
d27eb4b1 5067 {
5068 src_elt_cost = elt->cost;
5069 src_elt_regcost = elt->regcost;
5070 }
752df20e 5071
d4c5e26d 5072 /* Find cheapest and skip it for the next time. For items
752df20e 5073 of equal cost, use this order:
5074 src_folded, src, src_eqv, src_related and hash table entry. */
fb561825 5075 if (src_folded
069eea26 5076 && preferable (src_folded_cost, src_folded_regcost,
5077 src_cost, src_regcost) <= 0
5078 && preferable (src_folded_cost, src_folded_regcost,
5079 src_eqv_cost, src_eqv_regcost) <= 0
5080 && preferable (src_folded_cost, src_folded_regcost,
5081 src_related_cost, src_related_regcost) <= 0
5082 && preferable (src_folded_cost, src_folded_regcost,
5083 src_elt_cost, src_elt_regcost) <= 0)
752df20e 5084 {
589ff9e7 5085 trial = src_folded, src_folded_cost = MAX_COST;
752df20e 5086 if (src_folded_force_flag)
d4a75790 5087 {
5088 rtx forced = force_const_mem (mode, trial);
5089 if (forced)
5090 trial = forced;
5091 }
752df20e 5092 }
fb561825 5093 else if (src
069eea26 5094 && preferable (src_cost, src_regcost,
5095 src_eqv_cost, src_eqv_regcost) <= 0
5096 && preferable (src_cost, src_regcost,
5097 src_related_cost, src_related_regcost) <= 0
5098 && preferable (src_cost, src_regcost,
5099 src_elt_cost, src_elt_regcost) <= 0)
589ff9e7 5100 trial = src, src_cost = MAX_COST;
fb561825 5101 else if (src_eqv_here
069eea26 5102 && preferable (src_eqv_cost, src_eqv_regcost,
5103 src_related_cost, src_related_regcost) <= 0
5104 && preferable (src_eqv_cost, src_eqv_regcost,
5105 src_elt_cost, src_elt_regcost) <= 0)
0806b508 5106 trial = src_eqv_here, src_eqv_cost = MAX_COST;
fb561825 5107 else if (src_related
069eea26 5108 && preferable (src_related_cost, src_related_regcost,
5109 src_elt_cost, src_elt_regcost) <= 0)
0806b508 5110 trial = src_related, src_related_cost = MAX_COST;
cb10db9d 5111 else
752df20e 5112 {
0806b508 5113 trial = elt->exp;
752df20e 5114 elt = elt->next_same_value;
589ff9e7 5115 src_elt_cost = MAX_COST;
752df20e 5116 }
5117
5fe61d21 5118 /* Avoid creation of overlapping memory moves. */
5119 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5120 {
5121 rtx src, dest;
5122
5123 /* BLKmode moves are not handled by cse anyway. */
5124 if (GET_MODE (trial) == BLKmode)
5125 break;
5126
5127 src = canon_rtx (trial);
5128 dest = canon_rtx (SET_DEST (sets[i].rtl));
5129
5130 if (!MEM_P (src) || !MEM_P (dest)
a84256aa 5131 || !nonoverlapping_memrefs_p (src, dest, false))
5fe61d21 5132 break;
5133 }
5134
a49d9163 5135 /* Try to optimize
5136 (set (reg:M N) (const_int A))
5137 (set (reg:M2 O) (const_int B))
5138 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5139 (reg:M2 O)). */
5140 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5141 && CONST_INT_P (trial)
5142 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5143 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5144 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
ded805e6 5145 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
a49d9163 5146 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5147 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5148 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5149 <= HOST_BITS_PER_WIDE_INT))
5150 {
5151 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5152 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5153 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5154 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5155 struct table_elt *dest_elt
5156 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5157 rtx dest_cst = NULL;
5158
5159 if (dest_elt)
5160 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5161 if (p->is_const && CONST_INT_P (p->exp))
5162 {
5163 dest_cst = p->exp;
5164 break;
5165 }
5166 if (dest_cst)
5167 {
5168 HOST_WIDE_INT val = INTVAL (dest_cst);
5169 HOST_WIDE_INT mask;
5170 unsigned int shift;
5171 if (BITS_BIG_ENDIAN)
ded805e6 5172 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
a49d9163 5173 - INTVAL (pos) - INTVAL (width);
5174 else
5175 shift = INTVAL (pos);
5176 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5177 mask = ~(HOST_WIDE_INT) 0;
5178 else
5179 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5180 val &= ~(mask << shift);
5181 val |= (INTVAL (trial) & mask) << shift;
5182 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5183 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5184 dest_reg, 1);
5185 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5186 GEN_INT (val), 1);
5187 if (apply_change_group ())
5188 {
5189 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5190 if (note)
5191 {
5192 remove_note (insn, note);
5193 df_notes_rescan (insn);
5194 }
5195 src_eqv = NULL_RTX;
5196 src_eqv_elt = NULL;
5197 src_eqv_volatile = 0;
5198 src_eqv_in_memory = 0;
5199 src_eqv_hash = 0;
5200 repeat = true;
5201 break;
5202 }
5203 }
5204 }
5205
752df20e 5206 /* We don't normally have an insn matching (set (pc) (pc)), so
5207 check for this separately here. We will delete such an
5208 insn below.
5209
0f48207f 5210 For other cases such as a table jump or conditional jump
5211 where we know the ultimate target, go ahead and replace the
5212 operand. While that may not make a valid insn, we will
5213 reemit the jump below (and also insert any necessary
5214 barriers). */
752df20e 5215 if (n_sets == 1 && dest == pc_rtx
5216 && (trial == pc_rtx
5217 || (GET_CODE (trial) == LABEL_REF
5218 && ! condjump_p (insn))))
5219 {
806351c6 5220 /* Don't substitute non-local labels, this confuses CFG. */
5221 if (GET_CODE (trial) == LABEL_REF
5222 && LABEL_REF_NONLOCAL_P (trial))
5223 continue;
5224
0f48207f 5225 SET_SRC (sets[i].rtl) = trial;
283a6b26 5226 cse_jumps_altered = true;
752df20e 5227 break;
5228 }
cb10db9d 5229
0ab04fbf 5230 /* Reject certain invalid forms of CONST that we create. */
5231 else if (CONSTANT_P (trial)
5232 && GET_CODE (trial) == CONST
5233 /* Reject cases that will cause decode_rtx_const to
5234 die. On the alpha when simplifying a switch, we
5235 get (const (truncate (minus (label_ref)
5236 (label_ref)))). */
5237 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5238 /* Likewise on IA-64, except without the
5239 truncate. */
5240 || (GET_CODE (XEXP (trial, 0)) == MINUS
5241 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5242 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5243 /* Do nothing for this case. */
5244 ;
5245
752df20e 5246 /* Look for a substitution that makes a valid insn. */
ce9e1d34 5247 else if (validate_unshare_change
5248 (insn, &SET_SRC (sets[i].rtl), trial, 0))
e2ef73d2 5249 {
d328ebdf 5250 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
e30d7fb3 5251
8d5dd220 5252 /* The result of apply_change_group can be ignored; see
5253 canon_reg. */
5254
d328ebdf 5255 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
e443ebaf 5256 apply_change_group ();
be22716f 5257
e2ef73d2 5258 break;
5259 }
752df20e 5260
cb10db9d 5261 /* If we previously found constant pool entries for
752df20e 5262 constants and this is a constant, try making a
5263 pool entry. Put it in src_folded unless we already have done
5264 this since that is where it likely came from. */
5265
5266 else if (constant_pool_entries_cost
5267 && CONSTANT_P (trial)
88f6e1a4 5268 && (src_folded == 0
e16ceb8e 5269 || (!MEM_P (src_folded)
88f6e1a4 5270 && ! src_folded_force_flag))
ea0cb7ae 5271 && GET_MODE_CLASS (mode) != MODE_CC
5272 && mode != VOIDmode)
752df20e 5273 {
5274 src_folded_force_flag = 1;
5275 src_folded = trial;
5276 src_folded_cost = constant_pool_entries_cost;
634d45d7 5277 src_folded_regcost = constant_pool_entries_regcost;
752df20e 5278 }
cb10db9d 5279 }
752df20e 5280
a49d9163 5281 /* If we changed the insn too much, handle this set from scratch. */
5282 if (repeat)
5283 {
5284 i--;
5285 continue;
5286 }
5287
752df20e 5288 src = SET_SRC (sets[i].rtl);
5289
5290 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5291 However, there is an important exception: If both are registers
5292 that are not the head of their equivalence class, replace SET_SRC
5293 with the head of the class. If we do not do this, we will have
5294 both registers live over a portion of the basic block. This way,
5295 their lifetimes will likely abut instead of overlapping. */
8ad4c111 5296 if (REG_P (dest)
a7f3b1c7 5297 && REGNO_QTY_VALID_P (REGNO (dest)))
752df20e 5298 {
a7f3b1c7 5299 int dest_q = REG_QTY (REGNO (dest));
5300 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5301
5302 if (dest_ent->mode == GET_MODE (dest)
5303 && dest_ent->first_reg != REGNO (dest)
8ad4c111 5304 && REG_P (src) && REGNO (src) == REGNO (dest)
a7f3b1c7 5305 /* Don't do this if the original insn had a hard reg as
5306 SET_SRC or SET_DEST. */
8ad4c111 5307 && (!REG_P (sets[i].src)
a7f3b1c7 5308 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
8ad4c111 5309 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
a7f3b1c7 5310 /* We can't call canon_reg here because it won't do anything if
5311 SRC is a hard register. */
05b1716f 5312 {
a7f3b1c7 5313 int src_q = REG_QTY (REGNO (src));
5314 struct qty_table_elem *src_ent = &qty_table[src_q];
5315 int first = src_ent->first_reg;
5316 rtx new_src
5317 = (first >= FIRST_PSEUDO_REGISTER
5318 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5319
5320 /* We must use validate-change even for this, because this
5321 might be a special no-op instruction, suitable only to
5322 tag notes onto. */
5323 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5324 {
5325 src = new_src;
5326 /* If we had a constant that is cheaper than what we are now
5327 setting SRC to, use that constant. We ignored it when we
5328 thought we could make this into a no-op. */
5329 if (src_const && COST (src_const) < COST (src)
cb10db9d 5330 && validate_change (insn, &SET_SRC (sets[i].rtl),
5331 src_const, 0))
a7f3b1c7 5332 src = src_const;
5333 }
05b1716f 5334 }
752df20e 5335 }
5336
5337 /* If we made a change, recompute SRC values. */
5338 if (src != sets[i].src)
cb10db9d 5339 {
cb10db9d 5340 do_not_record = 0;
5341 hash_arg_in_memory = 0;
752df20e 5342 sets[i].src = src;
cb10db9d 5343 sets[i].src_hash = HASH (src, mode);
5344 sets[i].src_volatile = do_not_record;
5345 sets[i].src_in_memory = hash_arg_in_memory;
5346 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5347 }
752df20e 5348
5349 /* If this is a single SET, we are setting a register, and we have an
a24ec999 5350 equivalent constant, we want to add a REG_EQUAL note if the constant
5351 is different from the source. We don't want to do it for a constant
5352 pseudo since verifying that this pseudo hasn't been eliminated is a
5353 pain; moreover such a note won't help anything.
f5d1f9f9 5354
5355 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5356 which can be created for a reference to a compile time computable
5357 entry in a jump table. */
a24ec999 5358 if (n_sets == 1
5359 && REG_P (dest)
5360 && src_const
8ad4c111 5361 && !REG_P (src_const)
a24ec999 5362 && !(GET_CODE (src_const) == SUBREG
5363 && REG_P (SUBREG_REG (src_const)))
5364 && !(GET_CODE (src_const) == CONST
5365 && GET_CODE (XEXP (src_const, 0)) == MINUS
5366 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5367 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5368 && !rtx_equal_p (src, src_const))
752df20e 5369 {
a24ec999 5370 /* Make sure that the rtx is not shared. */
5371 src_const = copy_rtx (src_const);
c69ad724 5372
a24ec999 5373 /* Record the actual constant value in a REG_EQUAL note,
5374 making a new one if one does not already exist. */
5375 set_unique_reg_note (insn, REG_EQUAL, src_const);
5376 df_notes_rescan (insn);
752df20e 5377 }
5378
5379 /* Now deal with the destination. */
5380 do_not_record = 0;
752df20e 5381
476d094d 5382 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5383 while (GET_CODE (dest) == SUBREG
752df20e 5384 || GET_CODE (dest) == ZERO_EXTRACT
752df20e 5385 || GET_CODE (dest) == STRICT_LOW_PART)
8f4cc641 5386 dest = XEXP (dest, 0);
752df20e 5387
5388 sets[i].inner_dest = dest;
5389
e16ceb8e 5390 if (MEM_P (dest))
752df20e 5391 {
ea0cb7ae 5392#ifdef PUSH_ROUNDING
5393 /* Stack pushes invalidate the stack pointer. */
5394 rtx addr = XEXP (dest, 0);
6720e96c 5395 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
ea0cb7ae 5396 && XEXP (addr, 0) == stack_pointer_rtx)
4c958a22 5397 invalidate (stack_pointer_rtx, VOIDmode);
ea0cb7ae 5398#endif
752df20e 5399 dest = fold_rtx (dest, insn);
752df20e 5400 }
5401
5402 /* Compute the hash code of the destination now,
5403 before the effects of this instruction are recorded,
5404 since the register values used in the address computation
5405 are those before this instruction. */
952bc06d 5406 sets[i].dest_hash = HASH (dest, mode);
752df20e 5407
5408 /* Don't enter a bit-field in the hash table
5409 because the value in it after the store
5410 may not equal what was stored, due to truncation. */
5411
476d094d 5412 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
752df20e 5413 {
5414 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5415
971ba038 5416 if (src_const != 0 && CONST_INT_P (src_const)
5417 && CONST_INT_P (width)
b572011e 5418 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5419 && ! (INTVAL (src_const)
561f0ec8 5420 & (HOST_WIDE_INT_M1U << INTVAL (width))))
752df20e 5421 /* Exception: if the value is constant,
5422 and it won't be truncated, record it. */
5423 ;
5424 else
5425 {
5426 /* This is chosen so that the destination will be invalidated
5427 but no new value will be recorded.
5428 We must invalidate because sometimes constant
5429 values can be recorded for bitfields. */
5430 sets[i].src_elt = 0;
5431 sets[i].src_volatile = 1;
5432 src_eqv = 0;
5433 src_eqv_elt = 0;
5434 }
5435 }
5436
5437 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5438 the insn. */
5439 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5440 {
25999090 5441 /* One less use of the label this insn used to jump to. */
bbe0b6d7 5442 delete_insn_and_edges (insn);
283a6b26 5443 cse_jumps_altered = true;
752df20e 5444 /* No more processing for this set. */
5445 sets[i].rtl = 0;
5446 }
5447
5448 /* If this SET is now setting PC to a label, we know it used to
0f48207f 5449 be a conditional or computed branch. */
9d95b2b0 5450 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5451 && !LABEL_REF_NONLOCAL_P (src))
752df20e 5452 {
0f48207f 5453 /* We reemit the jump in as many cases as possible just in
5454 case the form of an unconditional jump is significantly
5455 different than a computed jump or conditional jump.
5456
5457 If this insn has multiple sets, then reemitting the
5458 jump is nontrivial. So instead we just force rerecognition
5459 and hope for the best. */
5460 if (n_sets == 1)
752df20e 5461 {
d328ebdf 5462 rtx new_rtx, note;
743ce3f8 5463
d328ebdf 5464 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5465 JUMP_LABEL (new_rtx) = XEXP (src, 0);
752df20e 5466 LABEL_NUSES (XEXP (src, 0))++;
9074c68b 5467
5468 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5469 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5470 if (note)
5471 {
5472 XEXP (note, 1) = NULL_RTX;
d328ebdf 5473 REG_NOTES (new_rtx) = note;
9074c68b 5474 }
5475
bbe0b6d7 5476 delete_insn_and_edges (insn);
d328ebdf 5477 insn = new_rtx;
752df20e 5478 }
d578a436 5479 else
d578a436 5480 INSN_CODE (insn) = -1;
752df20e 5481
283a6b26 5482 /* Do not bother deleting any unreachable code, let jump do it. */
5483 cse_jumps_altered = true;
752df20e 5484 sets[i].rtl = 0;
5485 }
5486
8cdd0f84 5487 /* If destination is volatile, invalidate it and then do no further
5488 processing for this assignment. */
752df20e 5489
5490 else if (do_not_record)
8cdd0f84 5491 {
8ad4c111 5492 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
fdb25961 5493 invalidate (dest, VOIDmode);
e16ceb8e 5494 else if (MEM_P (dest))
2046d6d5 5495 invalidate (dest, VOIDmode);
319134e7 5496 else if (GET_CODE (dest) == STRICT_LOW_PART
5497 || GET_CODE (dest) == ZERO_EXTRACT)
fdb25961 5498 invalidate (XEXP (dest, 0), GET_MODE (dest));
8cdd0f84 5499 sets[i].rtl = 0;
5500 }
752df20e 5501
5502 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
952bc06d 5503 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
752df20e 5504
5505#ifdef HAVE_cc0
5506 /* If setting CC0, record what it was set to, or a constant, if it
5507 is equivalent to a constant. If it is being set to a floating-point
5508 value, make a COMPARE with the appropriate constant of 0. If we
5509 don't do this, later code can interpret this as a test against
5510 const0_rtx, which can cause problems if we try to put it into an
5511 insn as a floating-point operand. */
5512 if (dest == cc0_rtx)
5513 {
5514 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5515 this_insn_cc0_mode = mode;
c1712420 5516 if (FLOAT_MODE_P (mode))
941522d6 5517 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5518 CONST0_RTX (mode));
752df20e 5519 }
5520#endif
5521 }
5522
5523 /* Now enter all non-volatile source expressions in the hash table
5524 if they are not already present.
5525 Record their equivalence classes in src_elt.
5526 This way we can insert the corresponding destinations into
5527 the same classes even if the actual sources are no longer in them
5528 (having been invalidated). */
5529
5530 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5531 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5532 {
19cb6b50 5533 struct table_elt *elt;
5534 struct table_elt *classp = sets[0].src_elt;
752df20e 5535 rtx dest = SET_DEST (sets[0].rtl);
5536 enum machine_mode eqvmode = GET_MODE (dest);
5537
5538 if (GET_CODE (dest) == STRICT_LOW_PART)
5539 {
5540 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5541 classp = 0;
5542 }
5543 if (insert_regs (src_eqv, classp, 0))
1b033cc3 5544 {
5545 rehash_using_reg (src_eqv);
5546 src_eqv_hash = HASH (src_eqv, eqvmode);
5547 }
952bc06d 5548 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
752df20e 5549 elt->in_memory = src_eqv_in_memory;
752df20e 5550 src_eqv_elt = elt;
c697ea36 5551
5552 /* Check to see if src_eqv_elt is the same as a set source which
5553 does not yet have an elt, and if so set the elt of the set source
5554 to src_eqv_elt. */
5555 for (i = 0; i < n_sets; i++)
cf541778 5556 if (sets[i].rtl && sets[i].src_elt == 0
5557 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
c697ea36 5558 sets[i].src_elt = src_eqv_elt;
752df20e 5559 }
5560
5561 for (i = 0; i < n_sets; i++)
5562 if (sets[i].rtl && ! sets[i].src_volatile
5563 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5564 {
5565 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5566 {
5567 /* REG_EQUAL in setting a STRICT_LOW_PART
5568 gives an equivalent for the entire destination register,
5569 not just for the subreg being stored in now.
5570 This is a more interesting equivalence, so we arrange later
5571 to treat the entire reg as the destination. */
5572 sets[i].src_elt = src_eqv_elt;
952bc06d 5573 sets[i].src_hash = src_eqv_hash;
752df20e 5574 }
5575 else
5576 {
5577 /* Insert source and constant equivalent into hash table, if not
5578 already present. */
19cb6b50 5579 struct table_elt *classp = src_eqv_elt;
5580 rtx src = sets[i].src;
5581 rtx dest = SET_DEST (sets[i].rtl);
752df20e 5582 enum machine_mode mode
5583 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5584
3c512ee7 5585 /* It's possible that we have a source value known to be
5586 constant but don't have a REG_EQUAL note on the insn.
5587 Lack of a note will mean src_eqv_elt will be NULL. This
5588 can happen where we've generated a SUBREG to access a
5589 CONST_INT that is already in a register in a wider mode.
5590 Ensure that the source expression is put in the proper
5591 constant class. */
5592 if (!classp)
5593 classp = sets[i].src_const_elt;
5594
cf541778 5595 if (sets[i].src_elt == 0)
752df20e 5596 {
1e5b92fa 5597 struct table_elt *elt;
cf541778 5598
1e5b92fa 5599 /* Note that these insert_regs calls cannot remove
5600 any of the src_elt's, because they would have failed to
5601 match if not still valid. */
5602 if (insert_regs (src, classp, 0))
5603 {
5604 rehash_using_reg (src);
5605 sets[i].src_hash = HASH (src, mode);
1b033cc3 5606 }
1e5b92fa 5607 elt = insert (src, classp, sets[i].src_hash, mode);
5608 elt->in_memory = sets[i].src_in_memory;
5609 sets[i].src_elt = classp = elt;
752df20e 5610 }
752df20e 5611 if (sets[i].src_const && sets[i].src_const_elt == 0
5612 && src != sets[i].src_const
5613 && ! rtx_equal_p (sets[i].src_const, src))
5614 sets[i].src_elt = insert (sets[i].src_const, classp,
952bc06d 5615 sets[i].src_const_hash, mode);
752df20e 5616 }
5617 }
5618 else if (sets[i].src_elt == 0)
5619 /* If we did not insert the source into the hash table (e.g., it was
5620 volatile), note the equivalence class for the REG_EQUAL value, if any,
5621 so that the destination goes into that class. */
5622 sets[i].src_elt = src_eqv_elt;
5623
977ffed2 5624 /* Record destination addresses in the hash table. This allows us to
5625 check if they are invalidated by other sets. */
5626 for (i = 0; i < n_sets; i++)
5627 {
5628 if (sets[i].rtl)
5629 {
5630 rtx x = sets[i].inner_dest;
5631 struct table_elt *elt;
5632 enum machine_mode mode;
5633 unsigned hash;
5634
5635 if (MEM_P (x))
5636 {
5637 x = XEXP (x, 0);
5638 mode = GET_MODE (x);
5639 hash = HASH (x, mode);
5640 elt = lookup (x, hash, mode);
5641 if (!elt)
5642 {
5643 if (insert_regs (x, NULL, 0))
5644 {
06320855 5645 rtx dest = SET_DEST (sets[i].rtl);
5646
977ffed2 5647 rehash_using_reg (x);
5648 hash = HASH (x, mode);
06320855 5649 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
977ffed2 5650 }
5651 elt = insert (x, NULL, hash, mode);
5652 }
5653
5654 sets[i].dest_addr_elt = elt;
5655 }
5656 else
5657 sets[i].dest_addr_elt = NULL;
5658 }
5659 }
5660
2aca5650 5661 invalidate_from_clobbers (insn);
8b82837b 5662
cb10db9d 5663 /* Some registers are invalidated by subroutine calls. Memory is
8b82837b 5664 invalidated by non-constant calls. */
5665
6d7dc5b9 5666 if (CALL_P (insn))
752df20e 5667 {
9c2a0c05 5668 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
ea0cb7ae 5669 invalidate_memory ();
752df20e 5670 invalidate_for_call ();
5671 }
5672
5673 /* Now invalidate everything set by this instruction.
5674 If a SUBREG or other funny destination is being set,
5675 sets[i].rtl is still nonzero, so here we invalidate the reg
5676 a part of which is being set. */
5677
5678 for (i = 0; i < n_sets; i++)
5679 if (sets[i].rtl)
5680 {
fdb25961 5681 /* We can't use the inner dest, because the mode associated with
5682 a ZERO_EXTRACT is significant. */
19cb6b50 5683 rtx dest = SET_DEST (sets[i].rtl);
752df20e 5684
5685 /* Needed for registers to remove the register from its
5686 previous quantity's chain.
5687 Needed for memory if this is a nonvarying address, unless
5688 we have just done an invalidate_memory that covers even those. */
8ad4c111 5689 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
fdb25961 5690 invalidate (dest, VOIDmode);
e16ceb8e 5691 else if (MEM_P (dest))
2046d6d5 5692 invalidate (dest, VOIDmode);
319134e7 5693 else if (GET_CODE (dest) == STRICT_LOW_PART
5694 || GET_CODE (dest) == ZERO_EXTRACT)
fdb25961 5695 invalidate (XEXP (dest, 0), GET_MODE (dest));
752df20e 5696 }
5697
be22716f 5698 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5699 the regs restored by the longjmp come from a later time
5700 than the setjmp. */
5701 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5702 {
5703 flush_hash_table ();
5704 goto done;
5705 }
5706
752df20e 5707 /* Make sure registers mentioned in destinations
5708 are safe for use in an expression to be inserted.
5709 This removes from the hash table
5710 any invalid entry that refers to one of these registers.
5711
5712 We don't care about the return value from mention_regs because
5713 we are going to hash the SET_DEST values unconditionally. */
5714
5715 for (i = 0; i < n_sets; i++)
e6860d27 5716 {
5717 if (sets[i].rtl)
5718 {
5719 rtx x = SET_DEST (sets[i].rtl);
5720
8ad4c111 5721 if (!REG_P (x))
e6860d27 5722 mention_regs (x);
5723 else
5724 {
5725 /* We used to rely on all references to a register becoming
5726 inaccessible when a register changes to a new quantity,
5727 since that changes the hash code. However, that is not
9c4f3716 5728 safe, since after HASH_SIZE new quantities we get a
e6860d27 5729 hash 'collision' of a register with its own invalid
5730 entries. And since SUBREGs have been changed not to
5731 change their hash code with the hash code of the register,
5732 it wouldn't work any longer at all. So we have to check
5733 for any invalid references lying around now.
5734 This code is similar to the REG case in mention_regs,
5735 but it knows that reg_tick has been incremented, and
5736 it leaves reg_in_table as -1 . */
02e7a332 5737 unsigned int regno = REGNO (x);
a2c6f0b7 5738 unsigned int endregno = END_REGNO (x);
02e7a332 5739 unsigned int i;
e6860d27 5740
5741 for (i = regno; i < endregno; i++)
5742 {
d1264606 5743 if (REG_IN_TABLE (i) >= 0)
e6860d27 5744 {
5745 remove_invalid_refs (i);
d1264606 5746 REG_IN_TABLE (i) = -1;
e6860d27 5747 }
5748 }
5749 }
5750 }
5751 }
752df20e 5752
5753 /* We may have just removed some of the src_elt's from the hash table.
977ffed2 5754 So replace each one with the current head of the same class.
5755 Also check if destination addresses have been removed. */
752df20e 5756
5757 for (i = 0; i < n_sets; i++)
5758 if (sets[i].rtl)
5759 {
977ffed2 5760 if (sets[i].dest_addr_elt
5761 && sets[i].dest_addr_elt->first_same_value == 0)
5762 {
d249588e 5763 /* The elt was removed, which means this destination is not
977ffed2 5764 valid after this instruction. */
5765 sets[i].rtl = NULL_RTX;
5766 }
5767 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
752df20e 5768 /* If elt was removed, find current head of same class,
5769 or 0 if nothing remains of that class. */
5770 {
19cb6b50 5771 struct table_elt *elt = sets[i].src_elt;
752df20e 5772
5773 while (elt && elt->prev_same_value)
5774 elt = elt->prev_same_value;
5775
5776 while (elt && elt->first_same_value == 0)
5777 elt = elt->next_same_value;
5778 sets[i].src_elt = elt ? elt->first_same_value : 0;
5779 }
5780 }
5781
5782 /* Now insert the destinations into their equivalence classes. */
5783
5784 for (i = 0; i < n_sets; i++)
5785 if (sets[i].rtl)
5786 {
19cb6b50 5787 rtx dest = SET_DEST (sets[i].rtl);
19cb6b50 5788 struct table_elt *elt;
752df20e 5789
5790 /* Don't record value if we are not supposed to risk allocating
5791 floating-point values in registers that might be wider than
5792 memory. */
5793 if ((flag_float_store
e16ceb8e 5794 && MEM_P (dest)
c1712420 5795 && FLOAT_MODE_P (GET_MODE (dest)))
6510de05 5796 /* Don't record BLKmode values, because we don't know the
5797 size of it, and can't be sure that other BLKmode values
5798 have the same or smaller size. */
5799 || GET_MODE (dest) == BLKmode
752df20e 5800 /* If we didn't put a REG_EQUAL value or a source into the hash
5801 table, there is no point is recording DEST. */
619142e5 5802 || sets[i].src_elt == 0
5803 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5804 or SIGN_EXTEND, don't record DEST since it can cause
5805 some tracking to be wrong.
5806
5807 ??? Think about this more later. */
b537bfdb 5808 || (paradoxical_subreg_p (dest)
619142e5 5809 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5810 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
752df20e 5811 continue;
5812
5813 /* STRICT_LOW_PART isn't part of the value BEING set,
5814 and neither is the SUBREG inside it.
5815 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5816 if (GET_CODE (dest) == STRICT_LOW_PART)
5817 dest = SUBREG_REG (XEXP (dest, 0));
5818
8ad4c111 5819 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
752df20e 5820 /* Registers must also be inserted into chains for quantities. */
5821 if (insert_regs (dest, sets[i].src_elt, 1))
1b033cc3 5822 {
5823 /* If `insert_regs' changes something, the hash code must be
5824 recalculated. */
5825 rehash_using_reg (dest);
5826 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5827 }
752df20e 5828
e8825bb0 5829 elt = insert (dest, sets[i].src_elt,
5830 sets[i].dest_hash, GET_MODE (dest));
a97275a9 5831
01c8e4c9 5832 /* If this is a constant, insert the constant anchors with the
5833 equivalent register-offset expressions using register DEST. */
5834 if (targetm.const_anchor
5835 && REG_P (dest)
5836 && SCALAR_INT_MODE_P (GET_MODE (dest))
5837 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5838 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5839
e16ceb8e 5840 elt->in_memory = (MEM_P (sets[i].inner_dest)
b04fab2a 5841 && !MEM_READONLY_P (sets[i].inner_dest));
26830081 5842
e516eaa9 5843 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5844 narrower than M2, and both M1 and M2 are the same number of words,
5845 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5846 make that equivalence as well.
752df20e 5847
316f48ea 5848 However, BAR may have equivalences for which gen_lowpart
5849 will produce a simpler value than gen_lowpart applied to
752df20e 5850 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
cb10db9d 5851 BAR's equivalences. If we don't get a simplified form, make
752df20e 5852 the SUBREG. It will not be used in an equivalence, but will
5853 cause two similar assignments to be detected.
5854
5855 Note the loop below will find SUBREG_REG (DEST) since we have
5856 already entered SRC and DEST of the SET in the table. */
5857
5858 if (GET_CODE (dest) == SUBREG
e82e6abc 5859 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5860 / UNITS_PER_WORD)
cb10db9d 5861 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
752df20e 5862 && (GET_MODE_SIZE (GET_MODE (dest))
5863 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5864 && sets[i].src_elt != 0)
5865 {
5866 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5867 struct table_elt *elt, *classp = 0;
5868
5869 for (elt = sets[i].src_elt->first_same_value; elt;
5870 elt = elt->next_same_value)
5871 {
5872 rtx new_src = 0;
952bc06d 5873 unsigned src_hash;
752df20e 5874 struct table_elt *src_elt;
cdc84acd 5875 int byte = 0;
752df20e 5876
5877 /* Ignore invalid entries. */
8ad4c111 5878 if (!REG_P (elt->exp)
78d140c9 5879 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
752df20e 5880 continue;
5881
38b13a9b 5882 /* We may have already been playing subreg games. If the
5883 mode is already correct for the destination, use it. */
5884 if (GET_MODE (elt->exp) == new_mode)
5885 new_src = elt->exp;
5886 else
5887 {
5888 /* Calculate big endian correction for the SUBREG_BYTE.
5889 We have already checked that M1 (GET_MODE (dest))
5890 is not narrower than M2 (new_mode). */
5891 if (BYTES_BIG_ENDIAN)
5892 byte = (GET_MODE_SIZE (GET_MODE (dest))
5893 - GET_MODE_SIZE (new_mode));
5894
5895 new_src = simplify_gen_subreg (new_mode, elt->exp,
5896 GET_MODE (dest), byte);
5897 }
5898
cdc84acd 5899 /* The call to simplify_gen_subreg fails if the value
5900 is VOIDmode, yet we can't do any simplification, e.g.
5901 for EXPR_LISTs denoting function call results.
5902 It is invalid to construct a SUBREG with a VOIDmode
5903 SUBREG_REG, hence a zero new_src means we can't do
5904 this substitution. */
5905 if (! new_src)
5906 continue;
752df20e 5907
5908 src_hash = HASH (new_src, new_mode);
5909 src_elt = lookup (new_src, src_hash, new_mode);
5910
5911 /* Put the new source in the hash table is if isn't
5912 already. */
5913 if (src_elt == 0)
5914 {
5915 if (insert_regs (new_src, classp, 0))
1b033cc3 5916 {
5917 rehash_using_reg (new_src);
5918 src_hash = HASH (new_src, new_mode);
5919 }
752df20e 5920 src_elt = insert (new_src, classp, src_hash, new_mode);
5921 src_elt->in_memory = elt->in_memory;
752df20e 5922 }
5923 else if (classp && classp != src_elt->first_same_value)
cb10db9d 5924 /* Show that two things that we've seen before are
752df20e 5925 actually the same. */
5926 merge_equiv_classes (src_elt, classp);
5927
5928 classp = src_elt->first_same_value;
7720c877 5929 /* Ignore invalid entries. */
5930 while (classp
8ad4c111 5931 && !REG_P (classp->exp)
78d140c9 5932 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
7720c877 5933 classp = classp->next_same_value;
752df20e 5934 }
5935 }
5936 }
5937
01a22203 5938 /* Special handling for (set REG0 REG1) where REG0 is the
5939 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5940 be used in the sequel, so (if easily done) change this insn to
5941 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5942 that computed their value. Then REG1 will become a dead store
5943 and won't cloud the situation for later optimizations.
752df20e 5944
5945 Do not make this change if REG1 is a hard register, because it will
5946 then be used in the sequel and we may be changing a two-operand insn
5947 into a three-operand insn.
5948
1e5b92fa 5949 Also do not do this if we are operating on a copy of INSN. */
752df20e 5950
2aca5650 5951 if (n_sets == 1 && sets[0].rtl)
5952 try_back_substitute_reg (sets[0].rtl, insn);
752df20e 5953
be22716f 5954done:;
752df20e 5955}
5956\f
59241190 5957/* Remove from the hash table all expressions that reference memory. */
155b05dc 5958
752df20e 5959static void
8ec3a57b 5960invalidate_memory (void)
752df20e 5961{
19cb6b50 5962 int i;
5963 struct table_elt *p, *next;
752df20e 5964
9c4f3716 5965 for (i = 0; i < HASH_SIZE; i++)
ea0cb7ae 5966 for (p = table[i]; p; p = next)
5967 {
5968 next = p->next_same_hash;
5969 if (p->in_memory)
5970 remove_from_table (p, i);
5971 }
5972}
5973
2aca5650 5974/* Perform invalidation on the basis of everything about INSN,
752df20e 5975 except for invalidating the actual places that are SET in it.
5976 This includes the places CLOBBERed, and anything that might
2aca5650 5977 alias with something that is SET or CLOBBERed. */
752df20e 5978
5979static void
2aca5650 5980invalidate_from_clobbers (rtx insn)
752df20e 5981{
2aca5650 5982 rtx x = PATTERN (insn);
5983
752df20e 5984 if (GET_CODE (x) == CLOBBER)
5985 {
5986 rtx ref = XEXP (x, 0);
ea0cb7ae 5987 if (ref)
5988 {
8ad4c111 5989 if (REG_P (ref) || GET_CODE (ref) == SUBREG
e16ceb8e 5990 || MEM_P (ref))
ea0cb7ae 5991 invalidate (ref, VOIDmode);
5992 else if (GET_CODE (ref) == STRICT_LOW_PART
5993 || GET_CODE (ref) == ZERO_EXTRACT)
5994 invalidate (XEXP (ref, 0), GET_MODE (ref));
5995 }
752df20e 5996 }
5997 else if (GET_CODE (x) == PARALLEL)
5998 {
19cb6b50 5999 int i;
752df20e 6000 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6001 {
19cb6b50 6002 rtx y = XVECEXP (x, 0, i);
752df20e 6003 if (GET_CODE (y) == CLOBBER)
6004 {
6005 rtx ref = XEXP (y, 0);
8ad4c111 6006 if (REG_P (ref) || GET_CODE (ref) == SUBREG
e16ceb8e 6007 || MEM_P (ref))
ea0cb7ae 6008 invalidate (ref, VOIDmode);
6009 else if (GET_CODE (ref) == STRICT_LOW_PART
6010 || GET_CODE (ref) == ZERO_EXTRACT)
6011 invalidate (XEXP (ref, 0), GET_MODE (ref));
752df20e 6012 }
6013 }
6014 }
6015}
6016\f
2aca5650 6017/* Perform invalidation on the basis of everything about INSN.
6018 This includes the places CLOBBERed, and anything that might
6019 alias with something that is SET or CLOBBERed. */
6020
6021static void
6022invalidate_from_sets_and_clobbers (rtx insn)
6023{
6024 rtx tem;
6025 rtx x = PATTERN (insn);
6026
6027 if (CALL_P (insn))
6028 {
6029 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6030 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6031 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6032 }
6033
6034 /* Ensure we invalidate the destination register of a CALL insn.
6035 This is necessary for machines where this register is a fixed_reg,
6036 because no other code would invalidate it. */
6037 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6038 invalidate (SET_DEST (x), VOIDmode);
6039
6040 else if (GET_CODE (x) == PARALLEL)
6041 {
6042 int i;
6043
6044 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6045 {
6046 rtx y = XVECEXP (x, 0, i);
6047 if (GET_CODE (y) == CLOBBER)
6048 {
6049 rtx clobbered = XEXP (y, 0);
6050
6051 if (REG_P (clobbered)
6052 || GET_CODE (clobbered) == SUBREG)
6053 invalidate (clobbered, VOIDmode);
6054 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6055 || GET_CODE (clobbered) == ZERO_EXTRACT)
6056 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6057 }
6058 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6059 invalidate (SET_DEST (y), VOIDmode);
6060 }
6061 }
6062}
6063\f
752df20e 6064/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6065 and replace any registers in them with either an equivalent constant
6066 or the canonical form of the register. If we are inside an address,
6067 only do this if the address remains valid.
6068
6069 OBJECT is 0 except when within a MEM in which case it is the MEM.
6070
6071 Return the replacement for X. */
6072
6073static rtx
3072d30e 6074cse_process_notes_1 (rtx x, rtx object, bool *changed)
752df20e 6075{
6076 enum rtx_code code = GET_CODE (x);
d2ca078f 6077 const char *fmt = GET_RTX_FORMAT (code);
752df20e 6078 int i;
6079
6080 switch (code)
6081 {
752df20e 6082 case CONST:
6083 case SYMBOL_REF:
6084 case LABEL_REF:
0349edce 6085 CASE_CONST_ANY:
752df20e 6086 case PC:
6087 case CC0:
6088 case LO_SUM:
6089 return x;
6090
6091 case MEM:
a344307e 6092 validate_change (x, &XEXP (x, 0),
3072d30e 6093 cse_process_notes (XEXP (x, 0), x, changed), 0);
752df20e 6094 return x;
6095
6096 case EXPR_LIST:
752df20e 6097 if (REG_NOTE_KIND (x) == REG_EQUAL)
3072d30e 6098 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
9eb946de 6099 /* Fall through. */
6100
6101 case INSN_LIST:
6102 case INT_LIST:
752df20e 6103 if (XEXP (x, 1))
3072d30e 6104 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
752df20e 6105 return x;
6106
21c77c5d 6107 case SIGN_EXTEND:
6108 case ZERO_EXTEND:
5afa7a07 6109 case SUBREG:
21c77c5d 6110 {
d328ebdf 6111 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
21c77c5d 6112 /* We don't substitute VOIDmode constants into these rtx,
6113 since they would impede folding. */
d328ebdf 6114 if (GET_MODE (new_rtx) != VOIDmode)
6115 validate_change (object, &XEXP (x, 0), new_rtx, 0);
21c77c5d 6116 return x;
6117 }
6118
d733203b 6119 case UNSIGNED_FLOAT:
6120 {
6121 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6122 /* We don't substitute negative VOIDmode constants into these rtx,
6123 since they would impede folding. */
6124 if (GET_MODE (new_rtx) != VOIDmode
6125 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6126 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6127 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6128 return x;
6129 }
6130
752df20e 6131 case REG:
d1264606 6132 i = REG_QTY (REGNO (x));
752df20e 6133
6134 /* Return a constant or a constant register. */
a7f3b1c7 6135 if (REGNO_QTY_VALID_P (REGNO (x)))
752df20e 6136 {
a7f3b1c7 6137 struct qty_table_elem *ent = &qty_table[i];
6138
6139 if (ent->const_rtx != NULL_RTX
6140 && (CONSTANT_P (ent->const_rtx)
8ad4c111 6141 || REG_P (ent->const_rtx)))
a7f3b1c7 6142 {
d328ebdf 6143 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6144 if (new_rtx)
6145 return copy_rtx (new_rtx);
a7f3b1c7 6146 }
752df20e 6147 }
6148
6149 /* Otherwise, canonicalize this register. */
b572011e 6150 return canon_reg (x, NULL_RTX);
cb10db9d 6151
0dbd1c74 6152 default:
6153 break;
752df20e 6154 }
6155
6156 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6157 if (fmt[i] == 'e')
6158 validate_change (object, &XEXP (x, i),
3072d30e 6159 cse_process_notes (XEXP (x, i), object, changed), 0);
752df20e 6160
6161 return x;
6162}
3072d30e 6163
6164static rtx
6165cse_process_notes (rtx x, rtx object, bool *changed)
6166{
d328ebdf 6167 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6168 if (new_rtx != x)
3072d30e 6169 *changed = true;
d328ebdf 6170 return new_rtx;
3072d30e 6171}
6172
752df20e 6173\f
be22716f 6174/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
752df20e 6175
be22716f 6176 DATA is a pointer to a struct cse_basic_block_data, that is used to
6177 describe the path.
6178 It is filled with a queue of basic blocks, starting with FIRST_BB
6179 and following a trace through the CFG.
48e1416a 6180
be22716f 6181 If all paths starting at FIRST_BB have been followed, or no new path
6182 starting at FIRST_BB can be constructed, this function returns FALSE.
6183 Otherwise, DATA->path is filled and the function returns TRUE indicating
6184 that a path to follow was found.
752df20e 6185
7920eed5 6186 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
be22716f 6187 block in the path will be FIRST_BB. */
752df20e 6188
be22716f 6189static bool
6190cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6191 int follow_jumps)
752df20e 6192{
be22716f 6193 basic_block bb;
6194 edge e;
6195 int path_size;
48e1416a 6196
08b7917c 6197 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
752df20e 6198
be22716f 6199 /* See if there is a previous path. */
6200 path_size = data->path_size;
6201
6202 /* There is a previous path. Make sure it started with FIRST_BB. */
6203 if (path_size)
6204 gcc_assert (data->path[0].bb == first_bb);
6205
6206 /* There was only one basic block in the last path. Clear the path and
6207 return, so that paths starting at another basic block can be tried. */
6208 if (path_size == 1)
6209 {
6210 path_size = 0;
6211 goto done;
6212 }
6213
6214 /* If the path was empty from the beginning, construct a new path. */
6215 if (path_size == 0)
6216 data->path[path_size++].bb = first_bb;
6217 else
752df20e 6218 {
be22716f 6219 /* Otherwise, path_size must be equal to or greater than 2, because
6220 a previous path exists that is at least two basic blocks long.
6221
6222 Update the previous branch path, if any. If the last branch was
6223 previously along the branch edge, take the fallthrough edge now. */
6224 while (path_size >= 2)
752df20e 6225 {
be22716f 6226 basic_block last_bb_in_path, previous_bb_in_path;
6227 edge e;
6228
6229 --path_size;
6230 last_bb_in_path = data->path[path_size].bb;
6231 previous_bb_in_path = data->path[path_size - 1].bb;
6232
6233 /* If we previously followed a path along the branch edge, try
6234 the fallthru edge now. */
6235 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6236 && any_condjump_p (BB_END (previous_bb_in_path))
6237 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6238 && e == BRANCH_EDGE (previous_bb_in_path))
6239 {
6240 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
34154e27 6241 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
3752d411 6242 && single_pred_p (bb)
6243 /* We used to assert here that we would only see blocks
6244 that we have not visited yet. But we may end up
6245 visiting basic blocks twice if the CFG has changed
6246 in this run of cse_main, because when the CFG changes
6247 the topological sort of the CFG also changes. A basic
6248 blocks that previously had more than two predecessors
6249 may now have a single predecessor, and become part of
6250 a path that starts at another basic block.
6251
6252 We still want to visit each basic block only once, so
6253 halt the path here if we have already visited BB. */
08b7917c 6254 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
be22716f 6255 {
08b7917c 6256 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
be22716f 6257 data->path[path_size++].bb = bb;
6258 break;
6259 }
6260 }
6261
6262 data->path[path_size].bb = NULL;
6263 }
6264
6265 /* If only one block remains in the path, bail. */
6266 if (path_size == 1)
6267 {
6268 path_size = 0;
6269 goto done;
752df20e 6270 }
752df20e 6271 }
6272
be22716f 6273 /* Extend the path if possible. */
6274 if (follow_jumps)
752df20e 6275 {
be22716f 6276 bb = data->path[path_size - 1].bb;
6277 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6278 {
6279 if (single_succ_p (bb))
6280 e = single_succ_edge (bb);
6281 else if (EDGE_COUNT (bb->succs) == 2
6282 && any_condjump_p (BB_END (bb)))
6283 {
6284 /* First try to follow the branch. If that doesn't lead
6285 to a useful path, follow the fallthru edge. */
6286 e = BRANCH_EDGE (bb);
6287 if (!single_pred_p (e->dest))
6288 e = FALLTHRU_EDGE (bb);
6289 }
6290 else
6291 e = NULL;
752df20e 6292
d1ff492e 6293 if (e
4c43a998 6294 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
34154e27 6295 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3752d411 6296 && single_pred_p (e->dest)
6297 /* Avoid visiting basic blocks twice. The large comment
6298 above explains why this can happen. */
08b7917c 6299 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
be22716f 6300 {
6301 basic_block bb2 = e->dest;
08b7917c 6302 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
be22716f 6303 data->path[path_size++].bb = bb2;
6304 bb = bb2;
6305 }
6306 else
6307 bb = NULL;
6308 }
6309 }
6310
6311done:
6312 data->path_size = path_size;
6313 return path_size != 0;
6314}
6315\f
6316/* Dump the path in DATA to file F. NSETS is the number of sets
6317 in the path. */
6318
6319static void
6320cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6321{
6322 int path_entry;
6323
6324 fprintf (f, ";; Following path with %d sets: ", nsets);
6325 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6326 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6327 fputc ('\n', dump_file);
6328 fflush (f);
6329}
6330
99013338 6331\f
6332/* Return true if BB has exception handling successor edges. */
6333
6334static bool
6335have_eh_succ_edges (basic_block bb)
6336{
6337 edge e;
6338 edge_iterator ei;
6339
6340 FOR_EACH_EDGE (e, ei, bb->succs)
6341 if (e->flags & EDGE_EH)
6342 return true;
6343
6344 return false;
6345}
6346
be22716f 6347\f
6348/* Scan to the end of the path described by DATA. Return an estimate of
3072d30e 6349 the total number of SETs of all insns in the path. */
be22716f 6350
6351static void
6352cse_prescan_path (struct cse_basic_block_data *data)
6353{
6354 int nsets = 0;
be22716f 6355 int path_size = data->path_size;
6356 int path_entry;
6357
6358 /* Scan to end of each basic block in the path. */
48e1416a 6359 for (path_entry = 0; path_entry < path_size; path_entry++)
be22716f 6360 {
6361 basic_block bb;
6362 rtx insn;
dfcbcd81 6363
be22716f 6364 bb = data->path[path_entry].bb;
752df20e 6365
be22716f 6366 FOR_BB_INSNS (bb, insn)
752df20e 6367 {
be22716f 6368 if (!INSN_P (insn))
6369 continue;
cb10db9d 6370
be22716f 6371 /* A PARALLEL can have lots of SETs in it,
6372 especially if it is really an ASM_OPERANDS. */
6373 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6374 nsets += XVECLEN (PATTERN (insn), 0);
6375 else
6376 nsets += 1;
752df20e 6377 }
be22716f 6378 }
6379
be22716f 6380 data->nsets = nsets;
6381}
6382\f
6383/* Process a single extended basic block described by EBB_DATA. */
752df20e 6384
be22716f 6385static void
6386cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6387{
6388 int path_size = ebb_data->path_size;
6389 int path_entry;
6390 int num_insns = 0;
6391
6392 /* Allocate the space needed by qty_table. */
6393 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6394
6395 new_basic_block ();
deb2741b 6396 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6397 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
be22716f 6398 for (path_entry = 0; path_entry < path_size; path_entry++)
6399 {
6400 basic_block bb;
201f6961 6401 rtx insn;
be22716f 6402
6403 bb = ebb_data->path[path_entry].bb;
b357aba8 6404
6405 /* Invalidate recorded information for eh regs if there is an EH
6406 edge pointing to that bb. */
6407 if (bb_has_eh_pred (bb))
6408 {
f1c570a6 6409 df_ref def;
b357aba8 6410
f1c570a6 6411 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6412 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6413 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
b357aba8 6414 }
6415
396a4a1d 6416 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
201f6961 6417 FOR_BB_INSNS (bb, insn)
752df20e 6418 {
be22716f 6419 /* If we have processed 1,000 insns, flush the hash table to
6420 avoid extreme quadratic behavior. We must not include NOTEs
6421 in the count since there may be more of them when generating
6422 debugging information. If we clear the table at different
6423 times, code generated with -g -O might be different than code
6424 generated with -O but not -g.
6425
6426 FIXME: This is a real kludge and needs to be done some other
6427 way. */
9845d120 6428 if (NONDEBUG_INSN_P (insn)
be22716f 6429 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6430 {
6431 flush_hash_table ();
6432 num_insns = 0;
6433 }
752df20e 6434
be22716f 6435 if (INSN_P (insn))
752df20e 6436 {
be22716f 6437 /* Process notes first so we have all notes in canonical forms
6438 when looking for duplicate operations. */
6439 if (REG_NOTES (insn))
3072d30e 6440 {
6441 bool changed = false;
6442 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6443 NULL_RTX, &changed);
6444 if (changed)
6445 df_notes_rescan (insn);
6446 }
be22716f 6447
1e5b92fa 6448 cse_insn (insn);
be22716f 6449
be22716f 6450 /* If we haven't already found an insn where we added a LABEL_REF,
6451 check this one. */
283a6b26 6452 if (INSN_P (insn) && !recorded_label_ref
be22716f 6453 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6454 (void *) insn))
283a6b26 6455 recorded_label_ref = true;
c6ddfc69 6456
6457#ifdef HAVE_cc0
5542b661 6458 if (NONDEBUG_INSN_P (insn))
c6ddfc69 6459 {
5542b661 6460 /* If the previous insn sets CC0 and this insn no
6461 longer references CC0, delete the previous insn.
6462 Here we use fact that nothing expects CC0 to be
6463 valid over an insn, which is true until the final
6464 pass. */
6465 rtx prev_insn, tem;
6466
6467 prev_insn = prev_nonnote_nondebug_insn (insn);
6468 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6469 && (tem = single_set (prev_insn)) != NULL_RTX
6470 && SET_DEST (tem) == cc0_rtx
6471 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6472 delete_insn (prev_insn);
6473
6474 /* If this insn is not the last insn in the basic
6475 block, it will be PREV_INSN(insn) in the next
6476 iteration. If we recorded any CC0-related
6477 information for this insn, remember it. */
6478 if (insn != BB_END (bb))
6479 {
6480 prev_insn_cc0 = this_insn_cc0;
6481 prev_insn_cc0_mode = this_insn_cc0_mode;
6482 }
c6ddfc69 6483 }
6484#endif
be22716f 6485 }
6486 }
752df20e 6487
99013338 6488 /* With non-call exceptions, we are not always able to update
6489 the CFG properly inside cse_insn. So clean up possibly
6490 redundant EH edges here. */
cbeb677e 6491 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
283a6b26 6492 cse_cfg_altered |= purge_dead_edges (bb);
99013338 6493
be22716f 6494 /* If we changed a conditional jump, we may have terminated
6495 the path we are following. Check that by verifying that
6496 the edge we would take still exists. If the edge does
6497 not exist anymore, purge the remainder of the path.
6498 Note that this will cause us to return to the caller. */
6499 if (path_entry < path_size - 1)
6500 {
6501 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6502 if (!find_edge (bb, next_bb))
5b58e627 6503 {
6504 do
6505 {
6506 path_size--;
6507
6508 /* If we truncate the path, we must also reset the
6509 visited bit on the remaining blocks in the path,
6510 or we will never visit them at all. */
08b7917c 6511 bitmap_clear_bit (cse_visited_basic_blocks,
5b58e627 6512 ebb_data->path[path_size].bb->index);
6513 ebb_data->path[path_size].bb = NULL;
6514 }
6515 while (path_size - 1 != path_entry);
6516 ebb_data->path_size = path_size;
6517 }
752df20e 6518 }
752df20e 6519
be22716f 6520 /* If this is a conditional jump insn, record any known
6521 equivalences due to the condition being tested. */
6522 insn = BB_END (bb);
6523 if (path_entry < path_size - 1
6524 && JUMP_P (insn)
6525 && single_set (insn)
6526 && any_condjump_p (insn))
6527 {
6528 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6529 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6530 record_jump_equiv (insn, taken);
6531 }
c6ddfc69 6532
6533#ifdef HAVE_cc0
6534 /* Clear the CC0-tracking related insns, they can't provide
6535 useful information across basic block boundaries. */
6536 prev_insn_cc0 = 0;
6537#endif
be22716f 6538 }
752df20e 6539
be22716f 6540 gcc_assert (next_qty <= max_qty);
752df20e 6541
be22716f 6542 free (qty_table);
752df20e 6543}
3072d30e 6544
752df20e 6545\f
752df20e 6546/* Perform cse on the instructions of a function.
6547 F is the first instruction.
6548 NREGS is one plus the highest pseudo-reg number used in the instruction.
6549
283a6b26 6550 Return 2 if jump optimizations should be redone due to simplifications
6551 in conditional jump instructions.
6552 Return 1 if the CFG should be cleaned up because it has been modified.
6553 Return 0 otherwise. */
752df20e 6554
d2bb3f9d 6555static int
be22716f 6556cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
752df20e 6557{
be22716f 6558 struct cse_basic_block_data ebb_data;
6559 basic_block bb;
fe672ac0 6560 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
be22716f 6561 int i, n_blocks;
752df20e 6562
3072d30e 6563 df_set_flags (DF_LR_RUN_DCE);
264adf90 6564 df_note_add_problem ();
3072d30e 6565 df_analyze ();
6566 df_set_flags (DF_DEFER_INSN_RESCAN);
6567
6568 reg_scan (get_insns (), max_reg_num ());
3bd20490 6569 init_cse_reg_info (nregs);
6570
be22716f 6571 ebb_data.path = XNEWVEC (struct branch_path,
6572 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
38ccff25 6573
283a6b26 6574 cse_cfg_altered = false;
6575 cse_jumps_altered = false;
6576 recorded_label_ref = false;
752df20e 6577 constant_pool_entries_cost = 0;
634d45d7 6578 constant_pool_entries_regcost = 0;
be22716f 6579 ebb_data.path_size = 0;
6580 ebb_data.nsets = 0;
d263732c 6581 rtl_hooks = cse_rtl_hooks;
752df20e 6582
6583 init_recog ();
ea0cb7ae 6584 init_alias_analysis ();
752df20e 6585
4c36ffe6 6586 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
752df20e 6587
be22716f 6588 /* Set up the table of already visited basic blocks. */
fe672ac0 6589 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 6590 bitmap_clear (cse_visited_basic_blocks);
752df20e 6591
99013338 6592 /* Loop over basic blocks in reverse completion order (RPO),
be22716f 6593 excluding the ENTRY and EXIT blocks. */
5b58e627 6594 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
be22716f 6595 i = 0;
6596 while (i < n_blocks)
752df20e 6597 {
99013338 6598 /* Find the first block in the RPO queue that we have not yet
be22716f 6599 processed before. */
6600 do
0dbd1c74 6601 {
f5a6b05f 6602 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
0dbd1c74 6603 }
08b7917c 6604 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
be22716f 6605 && i < n_blocks);
752df20e 6606
be22716f 6607 /* Find all paths starting with BB, and process them. */
6608 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
752df20e 6609 {
be22716f 6610 /* Pre-scan the path. */
6611 cse_prescan_path (&ebb_data);
752df20e 6612
be22716f 6613 /* If this basic block has no sets, skip it. */
6614 if (ebb_data.nsets == 0)
6615 continue;
752df20e 6616
7920eed5 6617 /* Get a reasonable estimate for the maximum number of qty's
be22716f 6618 needed for this path. For this, we take the number of sets
6619 and multiply that by MAX_RECOG_OPERANDS. */
6620 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
752df20e 6621
be22716f 6622 /* Dump the path we're about to process. */
6623 if (dump_file)
6624 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
541a035f 6625
be22716f 6626 cse_extended_basic_block (&ebb_data);
752df20e 6627 }
752df20e 6628 }
6629
be22716f 6630 /* Clean up. */
6631 end_alias_analysis ();
be22716f 6632 free (reg_eqv_table);
6633 free (ebb_data.path);
6634 sbitmap_free (cse_visited_basic_blocks);
5b58e627 6635 free (rc_order);
be22716f 6636 rtl_hooks = general_rtl_hooks;
ef866782 6637
283a6b26 6638 if (cse_jumps_altered || recorded_label_ref)
6639 return 2;
6640 else if (cse_cfg_altered)
6641 return 1;
6642 else
6643 return 0;
752df20e 6644}
6645\f
19d2fe05 6646/* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6647 which there isn't a REG_LABEL_OPERAND note.
6648 Return one if so. DATA is the insn. */
37b8a8d6 6649
6650static int
8ec3a57b 6651check_for_label_ref (rtx *rtl, void *data)
37b8a8d6 6652{
6653 rtx insn = (rtx) data;
6654
19d2fe05 6655 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6656 note for it, we must rerun jump since it needs to place the note. If
6657 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6658 don't do this since no REG_LABEL_OPERAND will be added. */
37b8a8d6 6659 return (GET_CODE (*rtl) == LABEL_REF
e78ee852 6660 && ! LABEL_REF_NONLOCAL_P (*rtl)
19d2fe05 6661 && (!JUMP_P (insn)
6662 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
e619d7b1 6663 && LABEL_P (XEXP (*rtl, 0))
37b8a8d6 6664 && INSN_UID (XEXP (*rtl, 0)) != 0
19d2fe05 6665 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
37b8a8d6 6666}
6667\f
752df20e 6668/* Count the number of times registers are used (not set) in X.
6669 COUNTS is an array in which we accumulate the count, INCR is how much
e6bf10d8 6670 we count each register usage.
6671
6672 Don't count a usage of DEST, which is the SET_DEST of a SET which
6673 contains X in its SET_SRC. This is because such a SET does not
6674 modify the liveness of DEST.
46313beb 6675 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6676 We must then count uses of a SET_DEST regardless, because the insn can't be
6677 deleted here. */
752df20e 6678
6679static void
e6bf10d8 6680count_reg_usage (rtx x, int *counts, rtx dest, int incr)
752df20e 6681{
b84155cd 6682 enum rtx_code code;
ce32fe65 6683 rtx note;
d2ca078f 6684 const char *fmt;
752df20e 6685 int i, j;
6686
b84155cd 6687 if (x == 0)
6688 return;
6689
6690 switch (code = GET_CODE (x))
752df20e 6691 {
6692 case REG:
e6bf10d8 6693 if (x != dest)
6694 counts[REGNO (x)] += incr;
752df20e 6695 return;
6696
6697 case PC:
6698 case CC0:
6699 case CONST:
0349edce 6700 CASE_CONST_ANY:
752df20e 6701 case SYMBOL_REF:
6702 case LABEL_REF:
a51d039e 6703 return;
6704
cb10db9d 6705 case CLOBBER:
a51d039e 6706 /* If we are clobbering a MEM, mark any registers inside the address
6707 as being used. */
e16ceb8e 6708 if (MEM_P (XEXP (x, 0)))
e6bf10d8 6709 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
752df20e 6710 return;
6711
6712 case SET:
6713 /* Unless we are setting a REG, count everything in SET_DEST. */
8ad4c111 6714 if (!REG_P (SET_DEST (x)))
e6bf10d8 6715 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6716 count_reg_usage (SET_SRC (x), counts,
6717 dest ? dest : SET_DEST (x),
6718 incr);
752df20e 6719 return;
6720
9845d120 6721 case DEBUG_INSN:
6722 return;
6723
b84155cd 6724 case CALL_INSN:
752df20e 6725 case INSN:
6726 case JUMP_INSN:
bc0dfc8d 6727 /* We expect dest to be NULL_RTX here. If the insn may throw,
46313beb 6728 or if it cannot be deleted due to side-effects, mark this fact
6729 by setting DEST to pc_rtx. */
bc0dfc8d 6730 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6731 || side_effects_p (PATTERN (x)))
e6bf10d8 6732 dest = pc_rtx;
6733 if (code == CALL_INSN)
6734 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6735 count_reg_usage (PATTERN (x), counts, dest, incr);
752df20e 6736
6737 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6738 use them. */
6739
ce32fe65 6740 note = find_reg_equal_equiv_note (x);
6741 if (note)
86178c33 6742 {
6743 rtx eqv = XEXP (note, 0);
6744
6745 if (GET_CODE (eqv) == EXPR_LIST)
6746 /* This REG_EQUAL note describes the result of a function call.
6747 Process all the arguments. */
6748 do
6749 {
e6bf10d8 6750 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
86178c33 6751 eqv = XEXP (eqv, 1);
6752 }
6753 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6754 else
e6bf10d8 6755 count_reg_usage (eqv, counts, dest, incr);
86178c33 6756 }
752df20e 6757 return;
6758
d5f9786f 6759 case EXPR_LIST:
6760 if (REG_NOTE_KIND (x) == REG_EQUAL
6761 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6762 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6763 involving registers in the address. */
6764 || GET_CODE (XEXP (x, 0)) == CLOBBER)
e6bf10d8 6765 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
d5f9786f 6766
e6bf10d8 6767 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
d5f9786f 6768 return;
6769
16d4da86 6770 case ASM_OPERANDS:
16d4da86 6771 /* Iterate over just the inputs, not the constraints as well. */
6772 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
e6bf10d8 6773 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
16d4da86 6774 return;
6775
752df20e 6776 case INSN_LIST:
b3578ae7 6777 case INT_LIST:
cc636d56 6778 gcc_unreachable ();
cb10db9d 6779
0dbd1c74 6780 default:
6781 break;
752df20e 6782 }
6783
6784 fmt = GET_RTX_FORMAT (code);
6785 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6786 {
6787 if (fmt[i] == 'e')
e6bf10d8 6788 count_reg_usage (XEXP (x, i), counts, dest, incr);
752df20e 6789 else if (fmt[i] == 'E')
6790 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e6bf10d8 6791 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
752df20e 6792 }
6793}
6794\f
a52dfddb 6795/* Return true if X is a dead register. */
9845d120 6796
a52dfddb 6797static inline int
6798is_dead_reg (rtx x, int *counts)
9845d120 6799{
9845d120 6800 return (REG_P (x)
6801 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6802 && counts[REGNO (x)] == 0);
6803}
6804
6d866f03 6805/* Return true if set is live. */
6806static bool
8ec3a57b 6807set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6808 int *counts)
6d866f03 6809{
6810#ifdef HAVE_cc0
6811 rtx tem;
6812#endif
6813
6814 if (set_noop_p (set))
6815 ;
6816
6817#ifdef HAVE_cc0
6818 else if (GET_CODE (SET_DEST (set)) == CC0
6819 && !side_effects_p (SET_SRC (set))
5542b661 6820 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6d866f03 6821 || !INSN_P (tem)
6822 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6823 return false;
6824#endif
a52dfddb 6825 else if (!is_dead_reg (SET_DEST (set), counts)
e8825bb0 6826 || side_effects_p (SET_SRC (set)))
6d866f03 6827 return true;
6828 return false;
6829}
6830
6831/* Return true if insn is live. */
6832
6833static bool
8ec3a57b 6834insn_live_p (rtx insn, int *counts)
6d866f03 6835{
6836 int i;
bc0dfc8d 6837 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
8ca56a3b 6838 return true;
6839 else if (GET_CODE (PATTERN (insn)) == SET)
6fc669ae 6840 return set_live_p (PATTERN (insn), insn, counts);
6d866f03 6841 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6fc669ae 6842 {
6843 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6844 {
6845 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6d866f03 6846
6fc669ae 6847 if (GET_CODE (elt) == SET)
6848 {
6849 if (set_live_p (elt, insn, counts))
6850 return true;
6851 }
6852 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6853 return true;
6854 }
6855 return false;
6856 }
9845d120 6857 else if (DEBUG_INSN_P (insn))
6858 {
6859 rtx next;
6860
6861 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6862 if (NOTE_P (next))
6863 continue;
6864 else if (!DEBUG_INSN_P (next))
6865 return true;
6866 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6867 return false;
6868
9845d120 6869 return true;
6870 }
6d866f03 6871 else
6872 return true;
6873}
6874
a52dfddb 6875/* Count the number of stores into pseudo. Callback for note_stores. */
6876
6877static void
6878count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6879{
6880 int *counts = (int *) data;
6881 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6882 counts[REGNO (x)]++;
6883}
6884
6885struct dead_debug_insn_data
6886{
6887 int *counts;
6888 rtx *replacements;
6889 bool seen_repl;
6890};
6891
6892/* Return if a DEBUG_INSN needs to be reset because some dead
6893 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6894
6895static int
6896is_dead_debug_insn (rtx *loc, void *data)
6897{
6898 rtx x = *loc;
6899 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6900
6901 if (is_dead_reg (x, ddid->counts))
6902 {
6903 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6904 ddid->seen_repl = true;
6905 else
6906 return 1;
6907 }
6908 return 0;
6909}
6910
6911/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6912 Callback for simplify_replace_fn_rtx. */
6913
6914static rtx
6915replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6916{
6917 rtx *replacements = (rtx *) data;
6918
6919 if (REG_P (x)
6920 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6921 && replacements[REGNO (x)] != NULL_RTX)
6922 {
6923 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6924 return replacements[REGNO (x)];
6925 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6926 GET_MODE (replacements[REGNO (x)]));
6927 }
6928 return NULL_RTX;
6929}
6930
752df20e 6931/* Scan all the insns and delete any that are dead; i.e., they store a register
6932 that is never used or they copy a register to itself.
6933
33752533 6934 This is used to remove insns made obviously dead by cse, loop or other
6935 optimizations. It improves the heuristics in loop since it won't try to
6936 move dead invariants out of loops or make givs for dead quantities. The
6937 remaining passes of the compilation are also sped up. */
752df20e 6938
fb20d6fa 6939int
8ec3a57b 6940delete_trivially_dead_insns (rtx insns, int nreg)
752df20e 6941{
b9cf3f63 6942 int *counts;
8b82837b 6943 rtx insn, prev;
a52dfddb 6944 rtx *replacements = NULL;
2aaf7099 6945 int ndead = 0;
752df20e 6946
fb20d6fa 6947 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
752df20e 6948 /* First count the number of times each register is used. */
a52dfddb 6949 if (MAY_HAVE_DEBUG_INSNS)
6950 {
6951 counts = XCNEWVEC (int, nreg * 3);
6952 for (insn = insns; insn; insn = NEXT_INSN (insn))
6953 if (DEBUG_INSN_P (insn))
6954 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6955 NULL_RTX, 1);
6956 else if (INSN_P (insn))
6957 {
6958 count_reg_usage (insn, counts, NULL_RTX, 1);
6959 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6960 }
6961 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6962 First one counts how many times each pseudo is used outside
6963 of debug insns, second counts how many times each pseudo is
6964 used in debug insns and third counts how many times a pseudo
6965 is stored. */
6966 }
6967 else
6968 {
6969 counts = XCNEWVEC (int, nreg);
6970 for (insn = insns; insn; insn = NEXT_INSN (insn))
6971 if (INSN_P (insn))
6972 count_reg_usage (insn, counts, NULL_RTX, 1);
6973 /* If no debug insns can be present, COUNTS is just an array
6974 which counts how many times each pseudo is used. */
6975 }
2aaf7099 6976 /* Go from the last insn to the first and delete insns that only set unused
6977 registers or copy a register to itself. As we delete an insn, remove
6978 usage counts for registers it uses.
af21a202 6979
2aaf7099 6980 The first jump optimization pass may leave a real insn as the last
6981 insn in the function. We must not skip that insn or we may end
a52dfddb 6982 up deleting code that is not really dead.
6983
6984 If some otherwise unused register is only used in DEBUG_INSNs,
6985 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6986 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6987 has been created for the unused register, replace it with
6988 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
4ac6fa85 6989 for (insn = get_last_insn (); insn; insn = prev)
2aaf7099 6990 {
6991 int live_insn = 0;
752df20e 6992
4ac6fa85 6993 prev = PREV_INSN (insn);
6994 if (!INSN_P (insn))
6995 continue;
752df20e 6996
1e5b92fa 6997 live_insn = insn_live_p (insn, counts);
752df20e 6998
2aaf7099 6999 /* If this is a dead insn, delete it and show registers in it aren't
7000 being used. */
752df20e 7001
3072d30e 7002 if (! live_insn && dbg_cnt (delete_trivial_dead))
2aaf7099 7003 {
a52dfddb 7004 if (DEBUG_INSN_P (insn))
7005 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7006 NULL_RTX, -1);
7007 else
7008 {
7009 rtx set;
7010 if (MAY_HAVE_DEBUG_INSNS
7011 && (set = single_set (insn)) != NULL_RTX
7012 && is_dead_reg (SET_DEST (set), counts)
7013 /* Used at least once in some DEBUG_INSN. */
7014 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7015 /* And set exactly once. */
7016 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7017 && !side_effects_p (SET_SRC (set))
7018 && asm_noperands (PATTERN (insn)) < 0)
7019 {
7020 rtx dval, bind;
7021
7022 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7023 dval = make_debug_expr_from_rtl (SET_DEST (set));
7024
7025 /* Emit a debug bind insn before the insn in which
7026 reg dies. */
7027 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7028 DEBUG_EXPR_TREE_DECL (dval),
7029 SET_SRC (set),
7030 VAR_INIT_STATUS_INITIALIZED);
7031 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
7032
7033 bind = emit_debug_insn_before (bind, insn);
7034 df_insn_rescan (bind);
7035
7036 if (replacements == NULL)
7037 replacements = XCNEWVEC (rtx, nreg);
7038 replacements[REGNO (SET_DEST (set))] = dval;
7039 }
7040
7041 count_reg_usage (insn, counts, NULL_RTX, -1);
7042 ndead++;
7043 }
2aaf7099 7044 delete_insn_and_edges (insn);
2aaf7099 7045 }
d4c5e26d 7046 }
b9cf3f63 7047
a52dfddb 7048 if (MAY_HAVE_DEBUG_INSNS)
7049 {
7050 struct dead_debug_insn_data ddid;
7051 ddid.counts = counts;
7052 ddid.replacements = replacements;
7053 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7054 if (DEBUG_INSN_P (insn))
7055 {
7056 /* If this debug insn references a dead register that wasn't replaced
7057 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7058 ddid.seen_repl = false;
7059 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7060 is_dead_debug_insn, &ddid))
7061 {
7062 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7063 df_insn_rescan (insn);
7064 }
7065 else if (ddid.seen_repl)
7066 {
7067 INSN_VAR_LOCATION_LOC (insn)
7068 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7069 NULL_RTX, replace_dead_reg,
7070 replacements);
7071 df_insn_rescan (insn);
7072 }
7073 }
dd045aee 7074 free (replacements);
a52dfddb 7075 }
7076
450d042a 7077 if (dump_file && ndead)
2aaf7099 7078 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7079 ndead);
b9cf3f63 7080 /* Clean up. */
7081 free (counts);
fb20d6fa 7082 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7083 return ndead;
752df20e 7084}
124ac4e4 7085
7086/* This function is called via for_each_rtx. The argument, NEWREG, is
7087 a condition code register with the desired mode. If we are looking
7088 at the same register in a different mode, replace it with
7089 NEWREG. */
7090
7091static int
7092cse_change_cc_mode (rtx *loc, void *data)
7093{
b866694e 7094 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
124ac4e4 7095
7096 if (*loc
8ad4c111 7097 && REG_P (*loc)
b866694e 7098 && REGNO (*loc) == REGNO (args->newreg)
7099 && GET_MODE (*loc) != GET_MODE (args->newreg))
124ac4e4 7100 {
b866694e 7101 validate_change (args->insn, loc, args->newreg, 1);
48e1416a 7102
124ac4e4 7103 return -1;
7104 }
7105 return 0;
7106}
7107
b866694e 7108/* Change the mode of any reference to the register REGNO (NEWREG) to
7109 GET_MODE (NEWREG) in INSN. */
7110
7111static void
7112cse_change_cc_mode_insn (rtx insn, rtx newreg)
7113{
7114 struct change_cc_mode_args args;
7115 int success;
7116
7117 if (!INSN_P (insn))
7118 return;
7119
7120 args.insn = insn;
7121 args.newreg = newreg;
48e1416a 7122
b866694e 7123 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7124 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
48e1416a 7125
b866694e 7126 /* If the following assertion was triggered, there is most probably
7127 something wrong with the cc_modes_compatible back end function.
7128 CC modes only can be considered compatible if the insn - with the mode
7129 replaced by any of the compatible modes - can still be recognized. */
7130 success = apply_change_group ();
7131 gcc_assert (success);
7132}
7133
124ac4e4 7134/* Change the mode of any reference to the register REGNO (NEWREG) to
7135 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
4362e8e0 7136 any instruction which modifies NEWREG. */
124ac4e4 7137
7138static void
7139cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7140{
7141 rtx insn;
7142
7143 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7144 {
7145 if (! INSN_P (insn))
7146 continue;
7147
4362e8e0 7148 if (reg_set_p (newreg, insn))
124ac4e4 7149 return;
7150
b866694e 7151 cse_change_cc_mode_insn (insn, newreg);
124ac4e4 7152 }
7153}
7154
7155/* BB is a basic block which finishes with CC_REG as a condition code
7156 register which is set to CC_SRC. Look through the successors of BB
7157 to find blocks which have a single predecessor (i.e., this one),
7158 and look through those blocks for an assignment to CC_REG which is
7159 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7160 permitted to change the mode of CC_SRC to a compatible mode. This
7161 returns VOIDmode if no equivalent assignments were found.
7162 Otherwise it returns the mode which CC_SRC should wind up with.
650d2134 7163 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7164 but is passed unmodified down to recursive calls in order to prevent
7165 endless recursion.
124ac4e4 7166
7167 The main complexity in this function is handling the mode issues.
7168 We may have more than one duplicate which we can eliminate, and we
7169 try to find a mode which will work for multiple duplicates. */
7170
7171static enum machine_mode
650d2134 7172cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7173 bool can_change_mode)
124ac4e4 7174{
7175 bool found_equiv;
7176 enum machine_mode mode;
7177 unsigned int insn_count;
7178 edge e;
7179 rtx insns[2];
7180 enum machine_mode modes[2];
7181 rtx last_insns[2];
7182 unsigned int i;
7183 rtx newreg;
cd665a06 7184 edge_iterator ei;
124ac4e4 7185
7186 /* We expect to have two successors. Look at both before picking
7187 the final mode for the comparison. If we have more successors
7188 (i.e., some sort of table jump, although that seems unlikely),
7189 then we require all beyond the first two to use the same
7190 mode. */
7191
7192 found_equiv = false;
7193 mode = GET_MODE (cc_src);
7194 insn_count = 0;
cd665a06 7195 FOR_EACH_EDGE (e, ei, bb->succs)
124ac4e4 7196 {
7197 rtx insn;
7198 rtx end;
7199
7200 if (e->flags & EDGE_COMPLEX)
7201 continue;
7202
cd665a06 7203 if (EDGE_COUNT (e->dest->preds) != 1
34154e27 7204 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
650d2134 7205 /* Avoid endless recursion on unreachable blocks. */
7206 || e->dest == orig_bb)
124ac4e4 7207 continue;
7208
7209 end = NEXT_INSN (BB_END (e->dest));
7210 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7211 {
7212 rtx set;
7213
7214 if (! INSN_P (insn))
7215 continue;
7216
7217 /* If CC_SRC is modified, we have to stop looking for
7218 something which uses it. */
7219 if (modified_in_p (cc_src, insn))
7220 break;
7221
7222 /* Check whether INSN sets CC_REG to CC_SRC. */
7223 set = single_set (insn);
7224 if (set
8ad4c111 7225 && REG_P (SET_DEST (set))
124ac4e4 7226 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7227 {
7228 bool found;
7229 enum machine_mode set_mode;
7230 enum machine_mode comp_mode;
7231
7232 found = false;
7233 set_mode = GET_MODE (SET_SRC (set));
7234 comp_mode = set_mode;
7235 if (rtx_equal_p (cc_src, SET_SRC (set)))
7236 found = true;
7237 else if (GET_CODE (cc_src) == COMPARE
7238 && GET_CODE (SET_SRC (set)) == COMPARE
960670fc 7239 && mode != set_mode
124ac4e4 7240 && rtx_equal_p (XEXP (cc_src, 0),
7241 XEXP (SET_SRC (set), 0))
7242 && rtx_equal_p (XEXP (cc_src, 1),
7243 XEXP (SET_SRC (set), 1)))
48e1416a 7244
124ac4e4 7245 {
883b2e73 7246 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
124ac4e4 7247 if (comp_mode != VOIDmode
7248 && (can_change_mode || comp_mode == mode))
7249 found = true;
7250 }
7251
7252 if (found)
7253 {
7254 found_equiv = true;
960670fc 7255 if (insn_count < ARRAY_SIZE (insns))
124ac4e4 7256 {
7257 insns[insn_count] = insn;
7258 modes[insn_count] = set_mode;
7259 last_insns[insn_count] = end;
7260 ++insn_count;
7261
960670fc 7262 if (mode != comp_mode)
7263 {
cc636d56 7264 gcc_assert (can_change_mode);
960670fc 7265 mode = comp_mode;
b866694e 7266
7267 /* The modified insn will be re-recognized later. */
960670fc 7268 PUT_MODE (cc_src, mode);
7269 }
124ac4e4 7270 }
7271 else
7272 {
7273 if (set_mode != mode)
960670fc 7274 {
7275 /* We found a matching expression in the
7276 wrong mode, but we don't have room to
7277 store it in the array. Punt. This case
7278 should be rare. */
7279 break;
7280 }
124ac4e4 7281 /* INSN sets CC_REG to a value equal to CC_SRC
7282 with the right mode. We can simply delete
7283 it. */
7284 delete_insn (insn);
7285 }
7286
7287 /* We found an instruction to delete. Keep looking,
7288 in the hopes of finding a three-way jump. */
7289 continue;
7290 }
7291
7292 /* We found an instruction which sets the condition
7293 code, so don't look any farther. */
7294 break;
7295 }
7296
7297 /* If INSN sets CC_REG in some other way, don't look any
7298 farther. */
7299 if (reg_set_p (cc_reg, insn))
7300 break;
7301 }
7302
7303 /* If we fell off the bottom of the block, we can keep looking
7304 through successors. We pass CAN_CHANGE_MODE as false because
7305 we aren't prepared to handle compatibility between the
7306 further blocks and this block. */
7307 if (insn == end)
7308 {
960670fc 7309 enum machine_mode submode;
7310
650d2134 7311 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
960670fc 7312 if (submode != VOIDmode)
7313 {
cc636d56 7314 gcc_assert (submode == mode);
960670fc 7315 found_equiv = true;
7316 can_change_mode = false;
7317 }
124ac4e4 7318 }
7319 }
7320
7321 if (! found_equiv)
7322 return VOIDmode;
7323
7324 /* Now INSN_COUNT is the number of instructions we found which set
7325 CC_REG to a value equivalent to CC_SRC. The instructions are in
7326 INSNS. The modes used by those instructions are in MODES. */
7327
7328 newreg = NULL_RTX;
7329 for (i = 0; i < insn_count; ++i)
7330 {
7331 if (modes[i] != mode)
7332 {
7333 /* We need to change the mode of CC_REG in INSNS[i] and
7334 subsequent instructions. */
7335 if (! newreg)
7336 {
7337 if (GET_MODE (cc_reg) == mode)
7338 newreg = cc_reg;
7339 else
7340 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7341 }
7342 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7343 newreg);
7344 }
7345
8ecc497a 7346 delete_insn_and_edges (insns[i]);
124ac4e4 7347 }
7348
7349 return mode;
7350}
7351
7352/* If we have a fixed condition code register (or two), walk through
7353 the instructions and try to eliminate duplicate assignments. */
7354
66c2c707 7355static void
124ac4e4 7356cse_condition_code_reg (void)
7357{
7358 unsigned int cc_regno_1;
7359 unsigned int cc_regno_2;
7360 rtx cc_reg_1;
7361 rtx cc_reg_2;
7362 basic_block bb;
7363
883b2e73 7364 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
124ac4e4 7365 return;
7366
7367 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7368 if (cc_regno_2 != INVALID_REGNUM)
7369 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7370 else
7371 cc_reg_2 = NULL_RTX;
7372
fc00614f 7373 FOR_EACH_BB_FN (bb, cfun)
124ac4e4 7374 {
7375 rtx last_insn;
7376 rtx cc_reg;
7377 rtx insn;
7378 rtx cc_src_insn;
7379 rtx cc_src;
7380 enum machine_mode mode;
960670fc 7381 enum machine_mode orig_mode;
124ac4e4 7382
7383 /* Look for blocks which end with a conditional jump based on a
7384 condition code register. Then look for the instruction which
7385 sets the condition code register. Then look through the
7386 successor blocks for instructions which set the condition
7387 code register to the same value. There are other possible
7388 uses of the condition code register, but these are by far the
7389 most common and the ones which we are most likely to be able
7390 to optimize. */
7391
7392 last_insn = BB_END (bb);
6d7dc5b9 7393 if (!JUMP_P (last_insn))
124ac4e4 7394 continue;
7395
7396 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7397 cc_reg = cc_reg_1;
7398 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7399 cc_reg = cc_reg_2;
7400 else
7401 continue;
7402
7403 cc_src_insn = NULL_RTX;
7404 cc_src = NULL_RTX;
7405 for (insn = PREV_INSN (last_insn);
7406 insn && insn != PREV_INSN (BB_HEAD (bb));
7407 insn = PREV_INSN (insn))
7408 {
7409 rtx set;
7410
7411 if (! INSN_P (insn))
7412 continue;
7413 set = single_set (insn);
7414 if (set
8ad4c111 7415 && REG_P (SET_DEST (set))
124ac4e4 7416 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7417 {
7418 cc_src_insn = insn;
7419 cc_src = SET_SRC (set);
7420 break;
7421 }
7422 else if (reg_set_p (cc_reg, insn))
7423 break;
7424 }
7425
7426 if (! cc_src_insn)
7427 continue;
7428
7429 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7430 continue;
7431
7432 /* Now CC_REG is a condition code register used for a
7433 conditional jump at the end of the block, and CC_SRC, in
7434 CC_SRC_INSN, is the value to which that condition code
7435 register is set, and CC_SRC is still meaningful at the end of
7436 the basic block. */
7437
960670fc 7438 orig_mode = GET_MODE (cc_src);
650d2134 7439 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
960670fc 7440 if (mode != VOIDmode)
124ac4e4 7441 {
cc636d56 7442 gcc_assert (mode == GET_MODE (cc_src));
960670fc 7443 if (mode != orig_mode)
4362e8e0 7444 {
7445 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7446
b866694e 7447 cse_change_cc_mode_insn (cc_src_insn, newreg);
4362e8e0 7448
7449 /* Do the same in the following insns that use the
7450 current value of CC_REG within BB. */
7451 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7452 NEXT_INSN (last_insn),
7453 newreg);
7454 }
124ac4e4 7455 }
7456 }
7457}
77fce4cd 7458\f
7459
7460/* Perform common subexpression elimination. Nonzero value from
7461 `cse_main' means that jumps were simplified and some code may now
7462 be unreachable, so do jump optimization again. */
2a1990e9 7463static unsigned int
77fce4cd 7464rest_of_handle_cse (void)
7465{
7466 int tem;
3072d30e 7467
77fce4cd 7468 if (dump_file)
562d71e8 7469 dump_flow_info (dump_file, dump_flags);
77fce4cd 7470
3f5be5f4 7471 tem = cse_main (get_insns (), max_reg_num ());
77fce4cd 7472
7473 /* If we are not running more CSE passes, then we are no longer
7474 expecting CSE to be run. But always rerun it in a cheap mode. */
7475 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7476
283a6b26 7477 if (tem == 2)
7478 {
7479 timevar_push (TV_JUMP);
7480 rebuild_jump_labels (get_insns ());
79f958cb 7481 cleanup_cfg (CLEANUP_CFG_CHANGED);
283a6b26 7482 timevar_pop (TV_JUMP);
7483 }
7484 else if (tem == 1 || optimize > 1)
3072d30e 7485 cleanup_cfg (0);
be22716f 7486
2a1990e9 7487 return 0;
77fce4cd 7488}
7489
cbe8bda8 7490namespace {
7491
7492const pass_data pass_data_cse =
77fce4cd 7493{
cbe8bda8 7494 RTL_PASS, /* type */
7495 "cse1", /* name */
7496 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 7497 TV_CSE, /* tv_id */
7498 0, /* properties_required */
7499 0, /* properties_provided */
7500 0, /* properties_destroyed */
7501 0, /* todo_flags_start */
8b88439e 7502 TODO_df_finish, /* todo_flags_finish */
77fce4cd 7503};
7504
cbe8bda8 7505class pass_cse : public rtl_opt_pass
7506{
7507public:
9af5ce0c 7508 pass_cse (gcc::context *ctxt)
7509 : rtl_opt_pass (pass_data_cse, ctxt)
cbe8bda8 7510 {}
7511
7512 /* opt_pass methods: */
31315c24 7513 virtual bool gate (function *) { return optimize > 0; }
65b0537f 7514 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
cbe8bda8 7515
7516}; // class pass_cse
7517
7518} // anon namespace
7519
7520rtl_opt_pass *
7521make_pass_cse (gcc::context *ctxt)
7522{
7523 return new pass_cse (ctxt);
7524}
7525
77fce4cd 7526
77fce4cd 7527/* Run second CSE pass after loop optimizations. */
2a1990e9 7528static unsigned int
77fce4cd 7529rest_of_handle_cse2 (void)
7530{
7531 int tem;
7532
7533 if (dump_file)
562d71e8 7534 dump_flow_info (dump_file, dump_flags);
77fce4cd 7535
3f5be5f4 7536 tem = cse_main (get_insns (), max_reg_num ());
77fce4cd 7537
7538 /* Run a pass to eliminate duplicated assignments to condition code
7539 registers. We have to run this after bypass_jumps, because it
7540 makes it harder for that pass to determine whether a jump can be
7541 bypassed safely. */
7542 cse_condition_code_reg ();
7543
77fce4cd 7544 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7545
283a6b26 7546 if (tem == 2)
77fce4cd 7547 {
7548 timevar_push (TV_JUMP);
7549 rebuild_jump_labels (get_insns ());
79f958cb 7550 cleanup_cfg (CLEANUP_CFG_CHANGED);
77fce4cd 7551 timevar_pop (TV_JUMP);
7552 }
283a6b26 7553 else if (tem == 1)
7554 cleanup_cfg (0);
7555
77fce4cd 7556 cse_not_expected = 1;
2a1990e9 7557 return 0;
77fce4cd 7558}
7559
7560
cbe8bda8 7561namespace {
7562
7563const pass_data pass_data_cse2 =
77fce4cd 7564{
cbe8bda8 7565 RTL_PASS, /* type */
7566 "cse2", /* name */
7567 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 7568 TV_CSE2, /* tv_id */
7569 0, /* properties_required */
7570 0, /* properties_provided */
7571 0, /* properties_destroyed */
7572 0, /* todo_flags_start */
8b88439e 7573 TODO_df_finish, /* todo_flags_finish */
77fce4cd 7574};
d743aba2 7575
cbe8bda8 7576class pass_cse2 : public rtl_opt_pass
7577{
7578public:
9af5ce0c 7579 pass_cse2 (gcc::context *ctxt)
7580 : rtl_opt_pass (pass_data_cse2, ctxt)
cbe8bda8 7581 {}
7582
7583 /* opt_pass methods: */
31315c24 7584 virtual bool gate (function *)
7585 {
7586 return optimize > 0 && flag_rerun_cse_after_loop;
7587 }
7588
65b0537f 7589 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
cbe8bda8 7590
7591}; // class pass_cse2
7592
7593} // anon namespace
7594
7595rtl_opt_pass *
7596make_pass_cse2 (gcc::context *ctxt)
7597{
7598 return new pass_cse2 (ctxt);
7599}
7600
d743aba2 7601/* Run second CSE pass after loop optimizations. */
7602static unsigned int
7603rest_of_handle_cse_after_global_opts (void)
7604{
7605 int save_cfj;
7606 int tem;
7607
7608 /* We only want to do local CSE, so don't follow jumps. */
7609 save_cfj = flag_cse_follow_jumps;
7610 flag_cse_follow_jumps = 0;
7611
7612 rebuild_jump_labels (get_insns ());
7613 tem = cse_main (get_insns (), max_reg_num ());
7614 purge_all_dead_edges ();
7615 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7616
7617 cse_not_expected = !flag_rerun_cse_after_loop;
7618
7619 /* If cse altered any jumps, rerun jump opts to clean things up. */
7620 if (tem == 2)
7621 {
7622 timevar_push (TV_JUMP);
7623 rebuild_jump_labels (get_insns ());
79f958cb 7624 cleanup_cfg (CLEANUP_CFG_CHANGED);
d743aba2 7625 timevar_pop (TV_JUMP);
7626 }
7627 else if (tem == 1)
7628 cleanup_cfg (0);
7629
7630 flag_cse_follow_jumps = save_cfj;
7631 return 0;
7632}
7633
cbe8bda8 7634namespace {
7635
7636const pass_data pass_data_cse_after_global_opts =
d743aba2 7637{
cbe8bda8 7638 RTL_PASS, /* type */
7639 "cse_local", /* name */
7640 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 7641 TV_CSE, /* tv_id */
7642 0, /* properties_required */
7643 0, /* properties_provided */
7644 0, /* properties_destroyed */
7645 0, /* todo_flags_start */
8b88439e 7646 TODO_df_finish, /* todo_flags_finish */
d743aba2 7647};
cbe8bda8 7648
7649class pass_cse_after_global_opts : public rtl_opt_pass
7650{
7651public:
9af5ce0c 7652 pass_cse_after_global_opts (gcc::context *ctxt)
7653 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
cbe8bda8 7654 {}
7655
7656 /* opt_pass methods: */
31315c24 7657 virtual bool gate (function *)
7658 {
7659 return optimize > 0 && flag_rerun_cse_after_global_opts;
7660 }
7661
65b0537f 7662 virtual unsigned int execute (function *)
7663 {
7664 return rest_of_handle_cse_after_global_opts ();
7665 }
cbe8bda8 7666
7667}; // class pass_cse_after_global_opts
7668
7669} // anon namespace
7670
7671rtl_opt_pass *
7672make_pass_cse_after_global_opts (gcc::context *ctxt)
7673{
7674 return new pass_cse_after_global_opts (ctxt);
7675}