]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
tree-into-ssa.c (ssa_rewrite_initialize_block): Do not register definitions of SSA_NA...
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
5e7b4e25 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
ad616de1 3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
7afe21cc 4
1322177d 5This file is part of GCC.
7afe21cc 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
7afe21cc 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
7afe21cc
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
7afe21cc 21
7afe21cc 22#include "config.h"
670ee920
KG
23/* stdio.h must precede rtl.h for FFS. */
24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
7afe21cc 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
7afe21cc 29#include "hard-reg-set.h"
7932a3db 30#include "regs.h"
630c79be 31#include "basic-block.h"
7afe21cc
RK
32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
49ad7cfa 36#include "function.h"
956d6950 37#include "expr.h"
50b2596f
KG
38#include "toplev.h"
39#include "output.h"
1497faf6 40#include "ggc.h"
3dec4024 41#include "timevar.h"
26771da7 42#include "except.h"
3c50106f 43#include "target.h"
9bf8cfbf 44#include "params.h"
2f93eea8 45#include "rtlhooks-def.h"
7afe21cc
RK
46
47/* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
61
62 We use two data structures to record the equivalent expressions:
1bb98cec
DM
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75Registers and "quantity numbers":
278a83b2 76
7afe21cc
RK
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `reg_qty' records what quantity a register is currently thought
84 of as containing.
85
08a69267
RS
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, reg_qty[N] will
88 equal -N - 1, which is always negative.
7afe21cc 89
08a69267
RS
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
7afe21cc
RK
92
93 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
1bb98cec 102 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
278a83b2 109
7afe21cc
RK
110Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
1bb98cec 113 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
114 putting the constant in the hash table as is usual for non-regs.
115
d45cf215 116 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
7afe21cc
RK
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
1bb98cec 142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
175 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
176 reg_tick[i] is incremented whenever a value is stored in register i.
177 reg_in_table[i] holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value reg_tick[i] had
179 when the references were entered. If we want to enter a reference
180 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
181 Until we want to enter a new entry, the mere fact that the two vectors
182 don't match makes the entries be ignored if anyone tries to match them.
183
184 Registers themselves are entered in the hash table as well as in
185 the equivalent-register chains. However, the vectors `reg_tick'
186 and `reg_in_table' do not apply to expressions which are simple
187 register references. These expressions are removed from the table
188 immediately when they become invalid, and this can be done even if
189 we do not immediately search for all the expressions that refer to
190 the register.
191
192 A CLOBBER rtx in an instruction invalidates its operand for further
193 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
194 invalidates everything that resides in memory.
195
196Related expressions:
197
198 Constant expressions that differ only by an additive integer
199 are called related. When a constant expression is put in
200 the table, the related expression with no constant term
201 is also entered. These are made to point at each other
202 so that it is possible to find out if there exists any
203 register equivalent to an expression related to a given expression. */
278a83b2 204
1bb98cec
DM
205/* Length of qty_table vector. We know in advance we will not need
206 a quantity number this big. */
7afe21cc
RK
207
208static int max_qty;
209
210/* Next quantity number to be allocated.
211 This is 1 + the largest number needed so far. */
212
213static int next_qty;
214
1bb98cec 215/* Per-qty information tracking.
7afe21cc 216
1bb98cec
DM
217 `first_reg' and `last_reg' track the head and tail of the
218 chain of registers which currently contain this quantity.
7afe21cc 219
1bb98cec 220 `mode' contains the machine mode of this quantity.
7afe21cc 221
1bb98cec
DM
222 `const_rtx' holds the rtx of the constant value of this
223 quantity, if known. A summations of the frame/arg pointer
224 and a constant can also be entered here. When this holds
225 a known value, `const_insn' is the insn which stored the
226 constant value.
7afe21cc 227
1bb98cec
DM
228 `comparison_{code,const,qty}' are used to track when a
229 comparison between a quantity and some constant or register has
230 been passed. In such a case, we know the results of the comparison
231 in case we see it again. These members record a comparison that
232 is known to be true. `comparison_code' holds the rtx code of such
233 a comparison, else it is set to UNKNOWN and the other two
234 comparison members are undefined. `comparison_const' holds
235 the constant being compared against, or zero if the comparison
236 is not against a constant. `comparison_qty' holds the quantity
237 being compared against when the result is known. If the comparison
238 is not with a register, `comparison_qty' is -1. */
7afe21cc 239
1bb98cec
DM
240struct qty_table_elem
241{
242 rtx const_rtx;
243 rtx const_insn;
244 rtx comparison_const;
245 int comparison_qty;
770ae6cc 246 unsigned int first_reg, last_reg;
496324d0
DN
247 /* The sizes of these fields should match the sizes of the
248 code and mode fields of struct rtx_def (see rtl.h). */
249 ENUM_BITFIELD(rtx_code) comparison_code : 16;
250 ENUM_BITFIELD(machine_mode) mode : 8;
1bb98cec 251};
7afe21cc 252
1bb98cec
DM
253/* The table of all qtys, indexed by qty number. */
254static struct qty_table_elem *qty_table;
7afe21cc 255
fc188d37
AK
256/* Structure used to pass arguments via for_each_rtx to function
257 cse_change_cc_mode. */
258struct change_cc_mode_args
259{
260 rtx insn;
261 rtx newreg;
262};
263
7afe21cc
RK
264#ifdef HAVE_cc0
265/* For machines that have a CC0, we do not record its value in the hash
266 table since its use is guaranteed to be the insn immediately following
267 its definition and any other insn is presumed to invalidate it.
268
269 Instead, we store below the value last assigned to CC0. If it should
270 happen to be a constant, it is stored in preference to the actual
271 assigned value. In case it is a constant, we store the mode in which
272 the constant should be interpreted. */
273
274static rtx prev_insn_cc0;
275static enum machine_mode prev_insn_cc0_mode;
7afe21cc
RK
276
277/* Previous actual insn. 0 if at first insn of basic block. */
278
279static rtx prev_insn;
4977bab6 280#endif
7afe21cc
RK
281
282/* Insn being scanned. */
283
284static rtx this_insn;
285
71d306d1
DE
286/* Index by register number, gives the number of the next (or
287 previous) register in the chain of registers sharing the same
7afe21cc
RK
288 value.
289
290 Or -1 if this register is at the end of the chain.
291
1bb98cec
DM
292 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
293
294/* Per-register equivalence chain. */
295struct reg_eqv_elem
296{
297 int next, prev;
298};
7afe21cc 299
1bb98cec
DM
300/* The table of all register equivalence chains. */
301static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 302
14a774a9
RK
303struct cse_reg_info
304{
9b1549b8
DM
305 /* Next in hash chain. */
306 struct cse_reg_info *hash_next;
c1edba58
VM
307
308 /* The next cse_reg_info structure in the free or used list. */
14a774a9 309 struct cse_reg_info *next;
30f72379 310
9b1549b8 311 /* Search key */
770ae6cc 312 unsigned int regno;
9b1549b8
DM
313
314 /* The quantity number of the register's current contents. */
315 int reg_qty;
316
317 /* The number of times the register has been altered in the current
318 basic block. */
319 int reg_tick;
320
30f72379
MM
321 /* The REG_TICK value at which rtx's containing this register are
322 valid in the hash table. If this does not equal the current
323 reg_tick value, such expressions existing in the hash table are
324 invalid. */
325 int reg_in_table;
46081bb3
SH
326
327 /* The SUBREG that was set when REG_TICK was last incremented. Set
328 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 329 unsigned int subreg_ticked;
30f72379 330};
7afe21cc 331
30f72379
MM
332/* A free list of cse_reg_info entries. */
333static struct cse_reg_info *cse_reg_info_free_list;
7afe21cc 334
c1edba58
VM
335/* A used list of cse_reg_info entries. */
336static struct cse_reg_info *cse_reg_info_used_list;
337static struct cse_reg_info *cse_reg_info_used_list_end;
338
30f72379 339/* A mapping from registers to cse_reg_info data structures. */
9b1549b8
DM
340#define REGHASH_SHIFT 7
341#define REGHASH_SIZE (1 << REGHASH_SHIFT)
342#define REGHASH_MASK (REGHASH_SIZE - 1)
343static struct cse_reg_info *reg_hash[REGHASH_SIZE];
344
345#define REGHASH_FN(REGNO) \
346 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
7afe21cc 347
30f72379
MM
348/* The last lookup we did into the cse_reg_info_tree. This allows us
349 to cache repeated lookups. */
770ae6cc 350static unsigned int cached_regno;
30f72379 351static struct cse_reg_info *cached_cse_reg_info;
7afe21cc 352
278a83b2 353/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
354 currently a REG expression in the hash table. Note the difference
355 from the above variables, which indicate if the REG is mentioned in some
356 expression in the table. */
357
358static HARD_REG_SET hard_regs_in_table;
359
7afe21cc
RK
360/* CUID of insn that starts the basic block currently being cse-processed. */
361
362static int cse_basic_block_start;
363
364/* CUID of insn that ends the basic block currently being cse-processed. */
365
366static int cse_basic_block_end;
367
368/* Vector mapping INSN_UIDs to cuids.
d45cf215 369 The cuids are like uids but increase monotonically always.
7afe21cc
RK
370 We use them to see whether a reg is used outside a given basic block. */
371
906c4e36 372static int *uid_cuid;
7afe21cc 373
164c8956
RK
374/* Highest UID in UID_CUID. */
375static int max_uid;
376
7afe21cc
RK
377/* Get the cuid of an insn. */
378
379#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
380
4eadede7
ZW
381/* Nonzero if this pass has made changes, and therefore it's
382 worthwhile to run the garbage collector. */
383
384static int cse_altered;
385
7afe21cc
RK
386/* Nonzero if cse has altered conditional jump insns
387 in such a way that jump optimization should be redone. */
388
389static int cse_jumps_altered;
390
f85cc4cb
RK
391/* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
392 REG_LABEL, we have to rerun jump after CSE to put in the note. */
a5dfb4ee
RK
393static int recorded_label_ref;
394
7afe21cc
RK
395/* canon_hash stores 1 in do_not_record
396 if it notices a reference to CC0, PC, or some other volatile
397 subexpression. */
398
399static int do_not_record;
400
401/* canon_hash stores 1 in hash_arg_in_memory
402 if it notices a reference to memory within the expression being hashed. */
403
404static int hash_arg_in_memory;
405
7afe21cc
RK
406/* The hash table contains buckets which are chains of `struct table_elt's,
407 each recording one expression's information.
408 That expression is in the `exp' field.
409
db048faf
MM
410 The canon_exp field contains a canonical (from the point of view of
411 alias analysis) version of the `exp' field.
412
7afe21cc
RK
413 Those elements with the same hash code are chained in both directions
414 through the `next_same_hash' and `prev_same_hash' fields.
415
416 Each set of expressions with equivalent values
417 are on a two-way chain through the `next_same_value'
418 and `prev_same_value' fields, and all point with
419 the `first_same_value' field at the first element in
420 that chain. The chain is in order of increasing cost.
421 Each element's cost value is in its `cost' field.
422
423 The `in_memory' field is nonzero for elements that
424 involve any reference to memory. These elements are removed
425 whenever a write is done to an unidentified location in memory.
426 To be safe, we assume that a memory address is unidentified unless
427 the address is either a symbol constant or a constant plus
428 the frame pointer or argument pointer.
429
7afe21cc
RK
430 The `related_value' field is used to connect related expressions
431 (that differ by adding an integer).
432 The related expressions are chained in a circular fashion.
433 `related_value' is zero for expressions for which this
434 chain is not useful.
435
436 The `cost' field stores the cost of this element's expression.
630c79be
BS
437 The `regcost' field stores the value returned by approx_reg_cost for
438 this element's expression.
7afe21cc
RK
439
440 The `is_const' flag is set if the element is a constant (including
441 a fixed address).
442
443 The `flag' field is used as a temporary during some search routines.
444
445 The `mode' field is usually the same as GET_MODE (`exp'), but
446 if `exp' is a CONST_INT and has no machine mode then the `mode'
447 field is the mode it was being used as. Each constant is
448 recorded separately for each mode it is used with. */
449
7afe21cc
RK
450struct table_elt
451{
452 rtx exp;
db048faf 453 rtx canon_exp;
7afe21cc
RK
454 struct table_elt *next_same_hash;
455 struct table_elt *prev_same_hash;
456 struct table_elt *next_same_value;
457 struct table_elt *prev_same_value;
458 struct table_elt *first_same_value;
459 struct table_elt *related_value;
460 int cost;
630c79be 461 int regcost;
496324d0
DN
462 /* The size of this field should match the size
463 of the mode field of struct rtx_def (see rtl.h). */
464 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc 465 char in_memory;
7afe21cc
RK
466 char is_const;
467 char flag;
468};
469
7afe21cc
RK
470/* We don't want a lot of buckets, because we rarely have very many
471 things stored in the hash table, and a lot of buckets slows
472 down a lot of loops that happen frequently. */
9b1549b8
DM
473#define HASH_SHIFT 5
474#define HASH_SIZE (1 << HASH_SHIFT)
475#define HASH_MASK (HASH_SIZE - 1)
7afe21cc
RK
476
477/* Compute hash code of X in mode M. Special-case case where X is a pseudo
478 register (hard registers may require `do_not_record' to be set). */
479
480#define HASH(X, M) \
f8cfc6aa 481 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9b1549b8
DM
482 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
483 : canon_hash (X, M)) & HASH_MASK)
7afe21cc 484
0516f6fe
SB
485/* Like HASH, but without side-effects. */
486#define SAFE_HASH(X, M) \
487 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
488 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
489 : safe_hash (X, M)) & HASH_MASK)
490
630c79be
BS
491/* Determine whether register number N is considered a fixed register for the
492 purpose of approximating register costs.
7afe21cc
RK
493 It is desirable to replace other regs with fixed regs, to reduce need for
494 non-fixed hard regs.
553687c9 495 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 496#define FIXED_REGNO_P(N) \
8bc169f2 497 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 498 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
499
500/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
501 hard registers and pointers into the frame are the cheapest with a cost
502 of 0. Next come pseudos with a cost of one and other hard registers with
503 a cost of 2. Aside from these special cases, call `rtx_cost'. */
504
d67fb775
SB
505#define CHEAP_REGNO(N) \
506 (REGNO_PTR_FRAME_P(N) \
507 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 508 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 509
f8cfc6aa
JQ
510#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
511#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
7afe21cc 512
30f72379
MM
513/* Get the info associated with register N. */
514
7080f735 515#define GET_CSE_REG_INFO(N) \
30f72379
MM
516 (((N) == cached_regno && cached_cse_reg_info) \
517 ? cached_cse_reg_info : get_cse_reg_info ((N)))
518
519/* Get the number of times this register has been updated in this
520 basic block. */
521
c1edba58 522#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
30f72379
MM
523
524/* Get the point at which REG was recorded in the table. */
525
526#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
527
46081bb3
SH
528/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
529 SUBREG). */
530
531#define SUBREG_TICKED(N) ((GET_CSE_REG_INFO (N))->subreg_ticked)
532
30f72379
MM
533/* Get the quantity number for REG. */
534
535#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
536
7afe21cc 537/* Determine if the quantity number for register X represents a valid index
1bb98cec 538 into the qty_table. */
7afe21cc 539
08a69267 540#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 541
9b1549b8 542static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
543
544/* Chain of `struct table_elt's made so far for this function
545 but currently removed from the table. */
546
547static struct table_elt *free_element_chain;
548
549/* Number of `struct table_elt' structures made so far for this function. */
550
551static int n_elements_made;
552
553/* Maximum value `n_elements_made' has had so far in this compilation
554 for functions previously processed. */
555
556static int max_elements_made;
557
7afe21cc
RK
558/* Set to the cost of a constant pool reference if one was found for a
559 symbolic constant. If this was found, it means we should try to
560 convert constants into constant pool entries if they don't fit in
561 the insn. */
562
563static int constant_pool_entries_cost;
dd0ba281 564static int constant_pool_entries_regcost;
7afe21cc 565
6cd4575e
RK
566/* This data describes a block that will be processed by cse_basic_block. */
567
14a774a9
RK
568struct cse_basic_block_data
569{
6cd4575e
RK
570 /* Lowest CUID value of insns in block. */
571 int low_cuid;
572 /* Highest CUID value of insns in block. */
573 int high_cuid;
574 /* Total number of SETs in block. */
575 int nsets;
576 /* Last insn in the block. */
577 rtx last;
578 /* Size of current branch path, if any. */
579 int path_size;
580 /* Current branch path, indicating which branches will be taken. */
14a774a9
RK
581 struct branch_path
582 {
583 /* The branch insn. */
584 rtx branch;
585 /* Whether it should be taken or not. AROUND is the same as taken
586 except that it is used when the destination label is not preceded
6cd4575e 587 by a BARRIER. */
6de9cd9a 588 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
9bf8cfbf 589 } *path;
6cd4575e
RK
590};
591
7080f735
AJ
592static bool fixed_base_plus_p (rtx x);
593static int notreg_cost (rtx, enum rtx_code);
594static int approx_reg_cost_1 (rtx *, void *);
595static int approx_reg_cost (rtx);
56ae04af 596static int preferable (int, int, int, int);
7080f735
AJ
597static void new_basic_block (void);
598static void make_new_qty (unsigned int, enum machine_mode);
599static void make_regs_eqv (unsigned int, unsigned int);
600static void delete_reg_equiv (unsigned int);
601static int mention_regs (rtx);
602static int insert_regs (rtx, struct table_elt *, int);
603static void remove_from_table (struct table_elt *, unsigned);
604static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
605static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
606static rtx lookup_as_function (rtx, enum rtx_code);
607static struct table_elt *insert (rtx, struct table_elt *, unsigned,
608 enum machine_mode);
609static void merge_equiv_classes (struct table_elt *, struct table_elt *);
610static void invalidate (rtx, enum machine_mode);
611static int cse_rtx_varies_p (rtx, int);
612static void remove_invalid_refs (unsigned int);
613static void remove_invalid_subreg_refs (unsigned int, unsigned int,
614 enum machine_mode);
615static void rehash_using_reg (rtx);
616static void invalidate_memory (void);
617static void invalidate_for_call (void);
618static rtx use_related_value (rtx, struct table_elt *);
0516f6fe
SB
619
620static inline unsigned canon_hash (rtx, enum machine_mode);
621static inline unsigned safe_hash (rtx, enum machine_mode);
622static unsigned hash_rtx_string (const char *);
623
7080f735
AJ
624static rtx canon_reg (rtx, rtx);
625static void find_best_addr (rtx, rtx *, enum machine_mode);
626static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
627 enum machine_mode *,
628 enum machine_mode *);
629static rtx fold_rtx (rtx, rtx);
630static rtx equiv_constant (rtx);
631static void record_jump_equiv (rtx, int);
632static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
633 int);
634static void cse_insn (rtx, rtx);
86caf04d 635static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
5affca01 636 int, int);
7080f735
AJ
637static int addr_affects_sp_p (rtx);
638static void invalidate_from_clobbers (rtx);
639static rtx cse_process_notes (rtx, rtx);
7080f735
AJ
640static void invalidate_skipped_set (rtx, rtx, void *);
641static void invalidate_skipped_block (rtx);
5affca01 642static rtx cse_basic_block (rtx, rtx, struct branch_path *);
9ab81df2 643static void count_reg_usage (rtx, int *, int);
7080f735
AJ
644static int check_for_label_ref (rtx *, void *);
645extern void dump_class (struct table_elt*);
646static struct cse_reg_info * get_cse_reg_info (unsigned int);
647static int check_dependence (rtx *, void *);
648
649static void flush_hash_table (void);
650static bool insn_live_p (rtx, int *);
651static bool set_live_p (rtx, rtx, int *);
652static bool dead_libcall_p (rtx, int *);
e129d93a 653static int cse_change_cc_mode (rtx *, void *);
fc188d37 654static void cse_change_cc_mode_insn (rtx, rtx);
e129d93a
ILT
655static void cse_change_cc_mode_insns (rtx, rtx, rtx);
656static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
7afe21cc 657\f
2f93eea8
PB
658
659#undef RTL_HOOKS_GEN_LOWPART
660#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
661
662static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
663\f
4977bab6
ZW
664/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
665 virtual regs here because the simplify_*_operation routines are called
666 by integrate.c, which is called before virtual register instantiation. */
667
668static bool
7080f735 669fixed_base_plus_p (rtx x)
4977bab6
ZW
670{
671 switch (GET_CODE (x))
672 {
673 case REG:
674 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
675 return true;
676 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
677 return true;
678 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
679 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
680 return true;
681 return false;
682
683 case PLUS:
684 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
685 return false;
686 return fixed_base_plus_p (XEXP (x, 0));
687
4977bab6
ZW
688 default:
689 return false;
690 }
691}
692
a4c6502a
MM
693/* Dump the expressions in the equivalence class indicated by CLASSP.
694 This function is used only for debugging. */
a0153051 695void
7080f735 696dump_class (struct table_elt *classp)
a4c6502a
MM
697{
698 struct table_elt *elt;
699
700 fprintf (stderr, "Equivalence chain for ");
701 print_rtl (stderr, classp->exp);
702 fprintf (stderr, ": \n");
278a83b2 703
a4c6502a
MM
704 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
705 {
706 print_rtl (stderr, elt->exp);
707 fprintf (stderr, "\n");
708 }
709}
710
630c79be 711/* Subroutine of approx_reg_cost; called through for_each_rtx. */
be8ac49a 712
630c79be 713static int
7080f735 714approx_reg_cost_1 (rtx *xp, void *data)
630c79be
BS
715{
716 rtx x = *xp;
c863f8c2 717 int *cost_p = data;
630c79be 718
f8cfc6aa 719 if (x && REG_P (x))
c863f8c2
DM
720 {
721 unsigned int regno = REGNO (x);
722
723 if (! CHEAP_REGNO (regno))
724 {
725 if (regno < FIRST_PSEUDO_REGISTER)
726 {
727 if (SMALL_REGISTER_CLASSES)
728 return 1;
729 *cost_p += 2;
730 }
731 else
732 *cost_p += 1;
733 }
734 }
735
630c79be
BS
736 return 0;
737}
738
739/* Return an estimate of the cost of the registers used in an rtx.
740 This is mostly the number of different REG expressions in the rtx;
a1f300c0 741 however for some exceptions like fixed registers we use a cost of
f1c1dfc3 742 0. If any other hard register reference occurs, return MAX_COST. */
630c79be
BS
743
744static int
7080f735 745approx_reg_cost (rtx x)
630c79be 746{
630c79be 747 int cost = 0;
f1c1dfc3 748
c863f8c2
DM
749 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
750 return MAX_COST;
630c79be 751
c863f8c2 752 return cost;
630c79be
BS
753}
754
b7ca416f 755/* Returns a canonical version of X for the address, from the point of view,
6668f6a7
KH
756 that all multiplications are represented as MULT instead of the multiply
757 by a power of 2 being represented as ASHIFT. */
b7ca416f
AP
758
759static rtx
760canon_for_address (rtx x)
761{
762 enum rtx_code code;
763 enum machine_mode mode;
764 rtx new = 0;
765 int i;
766 const char *fmt;
767
768 if (!x)
769 return x;
770
771 code = GET_CODE (x);
772 mode = GET_MODE (x);
773
774 switch (code)
775 {
776 case ASHIFT:
777 if (GET_CODE (XEXP (x, 1)) == CONST_INT
778 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
779 && INTVAL (XEXP (x, 1)) >= 0)
780 {
781 new = canon_for_address (XEXP (x, 0));
782 new = gen_rtx_MULT (mode, new,
783 gen_int_mode ((HOST_WIDE_INT) 1
784 << INTVAL (XEXP (x, 1)),
785 mode));
786 }
787 break;
788 default:
789 break;
790
791 }
792 if (new)
793 return new;
794
795 /* Now recursively process each operand of this operation. */
796 fmt = GET_RTX_FORMAT (code);
797 for (i = 0; i < GET_RTX_LENGTH (code); i++)
798 if (fmt[i] == 'e')
799 {
800 new = canon_for_address (XEXP (x, i));
801 XEXP (x, i) = new;
802 }
803 return x;
804}
805
630c79be
BS
806/* Return a negative value if an rtx A, whose costs are given by COST_A
807 and REGCOST_A, is more desirable than an rtx B.
808 Return a positive value if A is less desirable, or 0 if the two are
809 equally good. */
810static int
56ae04af 811preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 812{
423adbb9 813 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
814 unwanted. */
815 if (cost_a != cost_b)
816 {
817 if (cost_a == MAX_COST)
818 return 1;
819 if (cost_b == MAX_COST)
820 return -1;
821 }
822
823 /* Avoid extending lifetimes of hardregs. */
824 if (regcost_a != regcost_b)
825 {
826 if (regcost_a == MAX_COST)
827 return 1;
828 if (regcost_b == MAX_COST)
829 return -1;
830 }
831
832 /* Normal operation costs take precedence. */
630c79be
BS
833 if (cost_a != cost_b)
834 return cost_a - cost_b;
f1c1dfc3 835 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
836 if (regcost_a != regcost_b)
837 return regcost_a - regcost_b;
838 return 0;
839}
840
954a5693
RK
841/* Internal function, to compute cost when X is not a register; called
842 from COST macro to keep it simple. */
843
844static int
7080f735 845notreg_cost (rtx x, enum rtx_code outer)
954a5693
RK
846{
847 return ((GET_CODE (x) == SUBREG
f8cfc6aa 848 && REG_P (SUBREG_REG (x))
954a5693
RK
849 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
850 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
851 && (GET_MODE_SIZE (GET_MODE (x))
852 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
853 && subreg_lowpart_p (x)
854 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
855 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
630c79be 856 ? 0
f2fa288f 857 : rtx_cost (x, outer) * 2);
954a5693
RK
858}
859
01329426 860\f
30f72379 861static struct cse_reg_info *
7080f735 862get_cse_reg_info (unsigned int regno)
30f72379 863{
9b1549b8
DM
864 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
865 struct cse_reg_info *p;
866
278a83b2 867 for (p = *hash_head; p != NULL; p = p->hash_next)
9b1549b8
DM
868 if (p->regno == regno)
869 break;
870
871 if (p == NULL)
30f72379
MM
872 {
873 /* Get a new cse_reg_info structure. */
9b1549b8 874 if (cse_reg_info_free_list)
30f72379 875 {
9b1549b8
DM
876 p = cse_reg_info_free_list;
877 cse_reg_info_free_list = p->next;
30f72379
MM
878 }
879 else
703ad42b 880 p = xmalloc (sizeof (struct cse_reg_info));
9b1549b8
DM
881
882 /* Insert into hash table. */
883 p->hash_next = *hash_head;
884 *hash_head = p;
30f72379
MM
885
886 /* Initialize it. */
9b1549b8
DM
887 p->reg_tick = 1;
888 p->reg_in_table = -1;
46081bb3 889 p->subreg_ticked = -1;
08a69267 890 p->reg_qty = -regno - 1;
9b1549b8
DM
891 p->regno = regno;
892 p->next = cse_reg_info_used_list;
893 cse_reg_info_used_list = p;
c1edba58 894 if (!cse_reg_info_used_list_end)
9b1549b8 895 cse_reg_info_used_list_end = p;
30f72379
MM
896 }
897
898 /* Cache this lookup; we tend to be looking up information about the
899 same register several times in a row. */
900 cached_regno = regno;
9b1549b8 901 cached_cse_reg_info = p;
30f72379 902
9b1549b8 903 return p;
30f72379
MM
904}
905
7afe21cc
RK
906/* Clear the hash table and initialize each register with its own quantity,
907 for a new basic block. */
908
909static void
7080f735 910new_basic_block (void)
7afe21cc 911{
b3694847 912 int i;
7afe21cc 913
08a69267 914 next_qty = 0;
7afe21cc 915
9b1549b8
DM
916 /* Clear out hash table state for this pass. */
917
703ad42b 918 memset (reg_hash, 0, sizeof reg_hash);
9b1549b8
DM
919
920 if (cse_reg_info_used_list)
30f72379 921 {
9b1549b8
DM
922 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
923 cse_reg_info_free_list = cse_reg_info_used_list;
924 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
30f72379 925 }
9b1549b8 926 cached_cse_reg_info = 0;
7afe21cc 927
7afe21cc
RK
928 CLEAR_HARD_REG_SET (hard_regs_in_table);
929
930 /* The per-quantity values used to be initialized here, but it is
931 much faster to initialize each as it is made in `make_new_qty'. */
932
9b1549b8 933 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 934 {
9b1549b8
DM
935 struct table_elt *first;
936
937 first = table[i];
938 if (first != NULL)
7afe21cc 939 {
9b1549b8
DM
940 struct table_elt *last = first;
941
942 table[i] = NULL;
943
944 while (last->next_same_hash != NULL)
945 last = last->next_same_hash;
946
947 /* Now relink this hash entire chain into
948 the free element list. */
949
950 last->next_same_hash = free_element_chain;
951 free_element_chain = first;
7afe21cc
RK
952 }
953 }
954
7afe21cc 955#ifdef HAVE_cc0
4977bab6 956 prev_insn = 0;
7afe21cc
RK
957 prev_insn_cc0 = 0;
958#endif
959}
960
1bb98cec
DM
961/* Say that register REG contains a quantity in mode MODE not in any
962 register before and initialize that quantity. */
7afe21cc
RK
963
964static void
7080f735 965make_new_qty (unsigned int reg, enum machine_mode mode)
7afe21cc 966{
b3694847
SS
967 int q;
968 struct qty_table_elem *ent;
969 struct reg_eqv_elem *eqv;
7afe21cc 970
341c100f 971 gcc_assert (next_qty < max_qty);
7afe21cc 972
30f72379 973 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
974 ent = &qty_table[q];
975 ent->first_reg = reg;
976 ent->last_reg = reg;
977 ent->mode = mode;
978 ent->const_rtx = ent->const_insn = NULL_RTX;
979 ent->comparison_code = UNKNOWN;
980
981 eqv = &reg_eqv_table[reg];
982 eqv->next = eqv->prev = -1;
7afe21cc
RK
983}
984
985/* Make reg NEW equivalent to reg OLD.
986 OLD is not changing; NEW is. */
987
988static void
7080f735 989make_regs_eqv (unsigned int new, unsigned int old)
7afe21cc 990{
770ae6cc
RK
991 unsigned int lastr, firstr;
992 int q = REG_QTY (old);
993 struct qty_table_elem *ent;
1bb98cec
DM
994
995 ent = &qty_table[q];
7afe21cc
RK
996
997 /* Nothing should become eqv until it has a "non-invalid" qty number. */
341c100f 998 gcc_assert (REGNO_QTY_VALID_P (old));
7afe21cc 999
30f72379 1000 REG_QTY (new) = q;
1bb98cec
DM
1001 firstr = ent->first_reg;
1002 lastr = ent->last_reg;
7afe21cc
RK
1003
1004 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1005 hard regs. Among pseudos, if NEW will live longer than any other reg
1006 of the same qty, and that is beyond the current basic block,
1007 make it the new canonical replacement for this qty. */
1008 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1009 /* Certain fixed registers might be of the class NO_REGS. This means
1010 that not only can they not be allocated by the compiler, but
830a38ee 1011 they cannot be used in substitutions or canonicalizations
7afe21cc
RK
1012 either. */
1013 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1014 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1015 || (new >= FIRST_PSEUDO_REGISTER
1016 && (firstr < FIRST_PSEUDO_REGISTER
b1f21e0a
MM
1017 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1018 || (uid_cuid[REGNO_FIRST_UID (new)]
7afe21cc 1019 < cse_basic_block_start))
b1f21e0a
MM
1020 && (uid_cuid[REGNO_LAST_UID (new)]
1021 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
7afe21cc 1022 {
1bb98cec
DM
1023 reg_eqv_table[firstr].prev = new;
1024 reg_eqv_table[new].next = firstr;
1025 reg_eqv_table[new].prev = -1;
1026 ent->first_reg = new;
7afe21cc
RK
1027 }
1028 else
1029 {
1030 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1031 Otherwise, insert before any non-fixed hard regs that are at the
1032 end. Registers of class NO_REGS cannot be used as an
1033 equivalent for anything. */
1bb98cec 1034 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc
RK
1035 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1036 && new >= FIRST_PSEUDO_REGISTER)
1bb98cec
DM
1037 lastr = reg_eqv_table[lastr].prev;
1038 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1039 if (reg_eqv_table[lastr].next >= 0)
1040 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
7afe21cc 1041 else
1bb98cec
DM
1042 qty_table[q].last_reg = new;
1043 reg_eqv_table[lastr].next = new;
1044 reg_eqv_table[new].prev = lastr;
7afe21cc
RK
1045 }
1046}
1047
1048/* Remove REG from its equivalence class. */
1049
1050static void
7080f735 1051delete_reg_equiv (unsigned int reg)
7afe21cc 1052{
b3694847
SS
1053 struct qty_table_elem *ent;
1054 int q = REG_QTY (reg);
1055 int p, n;
7afe21cc 1056
a4e262bc 1057 /* If invalid, do nothing. */
08a69267 1058 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
1059 return;
1060
1bb98cec
DM
1061 ent = &qty_table[q];
1062
1063 p = reg_eqv_table[reg].prev;
1064 n = reg_eqv_table[reg].next;
a4e262bc 1065
7afe21cc 1066 if (n != -1)
1bb98cec 1067 reg_eqv_table[n].prev = p;
7afe21cc 1068 else
1bb98cec 1069 ent->last_reg = p;
7afe21cc 1070 if (p != -1)
1bb98cec 1071 reg_eqv_table[p].next = n;
7afe21cc 1072 else
1bb98cec 1073 ent->first_reg = n;
7afe21cc 1074
08a69267 1075 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
1076}
1077
1078/* Remove any invalid expressions from the hash table
1079 that refer to any of the registers contained in expression X.
1080
1081 Make sure that newly inserted references to those registers
1082 as subexpressions will be considered valid.
1083
1084 mention_regs is not called when a register itself
1085 is being stored in the table.
1086
1087 Return 1 if we have done something that may have changed the hash code
1088 of X. */
1089
1090static int
7080f735 1091mention_regs (rtx x)
7afe21cc 1092{
b3694847
SS
1093 enum rtx_code code;
1094 int i, j;
1095 const char *fmt;
1096 int changed = 0;
7afe21cc
RK
1097
1098 if (x == 0)
e5f6a288 1099 return 0;
7afe21cc
RK
1100
1101 code = GET_CODE (x);
1102 if (code == REG)
1103 {
770ae6cc
RK
1104 unsigned int regno = REGNO (x);
1105 unsigned int endregno
7afe21cc 1106 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6 1107 : hard_regno_nregs[regno][GET_MODE (x)]);
770ae6cc 1108 unsigned int i;
7afe21cc
RK
1109
1110 for (i = regno; i < endregno; i++)
1111 {
30f72379 1112 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1113 remove_invalid_refs (i);
1114
30f72379 1115 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 1116 SUBREG_TICKED (i) = -1;
7afe21cc
RK
1117 }
1118
1119 return 0;
1120 }
1121
34c73909
R
1122 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1123 pseudo if they don't use overlapping words. We handle only pseudos
1124 here for simplicity. */
f8cfc6aa 1125 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1126 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1127 {
770ae6cc 1128 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1129
30f72379 1130 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1131 {
46081bb3
SH
1132 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1133 the last store to this register really stored into this
1134 subreg, then remove the memory of this subreg.
1135 Otherwise, remove any memory of the entire register and
1136 all its subregs from the table. */
1137 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1138 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1139 remove_invalid_refs (i);
1140 else
ddef6bc7 1141 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1142 }
1143
30f72379 1144 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1145 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
34c73909
R
1146 return 0;
1147 }
1148
7afe21cc
RK
1149 /* If X is a comparison or a COMPARE and either operand is a register
1150 that does not have a quantity, give it one. This is so that a later
1151 call to record_jump_equiv won't cause X to be assigned a different
1152 hash code and not found in the table after that call.
1153
1154 It is not necessary to do this here, since rehash_using_reg can
1155 fix up the table later, but doing this here eliminates the need to
1156 call that expensive function in the most common case where the only
1157 use of the register is in the comparison. */
1158
ec8e098d 1159 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1160 {
f8cfc6aa 1161 if (REG_P (XEXP (x, 0))
7afe21cc 1162 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
9714cf43 1163 if (insert_regs (XEXP (x, 0), NULL, 0))
7afe21cc
RK
1164 {
1165 rehash_using_reg (XEXP (x, 0));
1166 changed = 1;
1167 }
1168
f8cfc6aa 1169 if (REG_P (XEXP (x, 1))
7afe21cc 1170 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
9714cf43 1171 if (insert_regs (XEXP (x, 1), NULL, 0))
7afe21cc
RK
1172 {
1173 rehash_using_reg (XEXP (x, 1));
1174 changed = 1;
1175 }
1176 }
1177
1178 fmt = GET_RTX_FORMAT (code);
1179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1180 if (fmt[i] == 'e')
1181 changed |= mention_regs (XEXP (x, i));
1182 else if (fmt[i] == 'E')
1183 for (j = 0; j < XVECLEN (x, i); j++)
1184 changed |= mention_regs (XVECEXP (x, i, j));
1185
1186 return changed;
1187}
1188
1189/* Update the register quantities for inserting X into the hash table
1190 with a value equivalent to CLASSP.
1191 (If the class does not contain a REG, it is irrelevant.)
1192 If MODIFIED is nonzero, X is a destination; it is being modified.
1193 Note that delete_reg_equiv should be called on a register
1194 before insert_regs is done on that register with MODIFIED != 0.
1195
1196 Nonzero value means that elements of reg_qty have changed
1197 so X's hash code may be different. */
1198
1199static int
7080f735 1200insert_regs (rtx x, struct table_elt *classp, int modified)
7afe21cc 1201{
f8cfc6aa 1202 if (REG_P (x))
7afe21cc 1203 {
770ae6cc
RK
1204 unsigned int regno = REGNO (x);
1205 int qty_valid;
7afe21cc 1206
1ff0c00d
RK
1207 /* If REGNO is in the equivalence table already but is of the
1208 wrong mode for that equivalence, don't do anything here. */
1209
1bb98cec
DM
1210 qty_valid = REGNO_QTY_VALID_P (regno);
1211 if (qty_valid)
1212 {
1213 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1214
1bb98cec
DM
1215 if (ent->mode != GET_MODE (x))
1216 return 0;
1217 }
1218
1219 if (modified || ! qty_valid)
7afe21cc
RK
1220 {
1221 if (classp)
1222 for (classp = classp->first_same_value;
1223 classp != 0;
1224 classp = classp->next_same_value)
f8cfc6aa 1225 if (REG_P (classp->exp)
7afe21cc
RK
1226 && GET_MODE (classp->exp) == GET_MODE (x))
1227 {
1228 make_regs_eqv (regno, REGNO (classp->exp));
1229 return 1;
1230 }
1231
d9f20424
R
1232 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1233 than REG_IN_TABLE to find out if there was only a single preceding
1234 invalidation - for the SUBREG - or another one, which would be
1235 for the full register. However, if we find here that REG_TICK
1236 indicates that the register is invalid, it means that it has
1237 been invalidated in a separate operation. The SUBREG might be used
1238 now (then this is a recursive call), or we might use the full REG
1239 now and a SUBREG of it later. So bump up REG_TICK so that
1240 mention_regs will do the right thing. */
1241 if (! modified
1242 && REG_IN_TABLE (regno) >= 0
1243 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1244 REG_TICK (regno)++;
1bb98cec 1245 make_new_qty (regno, GET_MODE (x));
7afe21cc
RK
1246 return 1;
1247 }
cdf4112f
TG
1248
1249 return 0;
7afe21cc 1250 }
c610adec
RK
1251
1252 /* If X is a SUBREG, we will likely be inserting the inner register in the
1253 table. If that register doesn't have an assigned quantity number at
1254 this point but does later, the insertion that we will be doing now will
1255 not be accessible because its hash code will have changed. So assign
1256 a quantity number now. */
1257
f8cfc6aa 1258 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1259 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1260 {
9714cf43 1261 insert_regs (SUBREG_REG (x), NULL, 0);
34c73909 1262 mention_regs (x);
c610adec
RK
1263 return 1;
1264 }
7afe21cc
RK
1265 else
1266 return mention_regs (x);
1267}
1268\f
1269/* Look in or update the hash table. */
1270
7afe21cc
RK
1271/* Remove table element ELT from use in the table.
1272 HASH is its hash code, made using the HASH macro.
1273 It's an argument because often that is known in advance
1274 and we save much time not recomputing it. */
1275
1276static void
7080f735 1277remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1278{
1279 if (elt == 0)
1280 return;
1281
1282 /* Mark this element as removed. See cse_insn. */
1283 elt->first_same_value = 0;
1284
1285 /* Remove the table element from its equivalence class. */
278a83b2 1286
7afe21cc 1287 {
b3694847
SS
1288 struct table_elt *prev = elt->prev_same_value;
1289 struct table_elt *next = elt->next_same_value;
7afe21cc 1290
278a83b2
KH
1291 if (next)
1292 next->prev_same_value = prev;
7afe21cc
RK
1293
1294 if (prev)
1295 prev->next_same_value = next;
1296 else
1297 {
b3694847 1298 struct table_elt *newfirst = next;
7afe21cc
RK
1299 while (next)
1300 {
1301 next->first_same_value = newfirst;
1302 next = next->next_same_value;
1303 }
1304 }
1305 }
1306
1307 /* Remove the table element from its hash bucket. */
1308
1309 {
b3694847
SS
1310 struct table_elt *prev = elt->prev_same_hash;
1311 struct table_elt *next = elt->next_same_hash;
7afe21cc 1312
278a83b2
KH
1313 if (next)
1314 next->prev_same_hash = prev;
7afe21cc
RK
1315
1316 if (prev)
1317 prev->next_same_hash = next;
1318 else if (table[hash] == elt)
1319 table[hash] = next;
1320 else
1321 {
1322 /* This entry is not in the proper hash bucket. This can happen
1323 when two classes were merged by `merge_equiv_classes'. Search
1324 for the hash bucket that it heads. This happens only very
1325 rarely, so the cost is acceptable. */
9b1549b8 1326 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1327 if (table[hash] == elt)
1328 table[hash] = next;
1329 }
1330 }
1331
1332 /* Remove the table element from its related-value circular chain. */
1333
1334 if (elt->related_value != 0 && elt->related_value != elt)
1335 {
b3694847 1336 struct table_elt *p = elt->related_value;
770ae6cc 1337
7afe21cc
RK
1338 while (p->related_value != elt)
1339 p = p->related_value;
1340 p->related_value = elt->related_value;
1341 if (p->related_value == p)
1342 p->related_value = 0;
1343 }
1344
9b1549b8
DM
1345 /* Now add it to the free element chain. */
1346 elt->next_same_hash = free_element_chain;
1347 free_element_chain = elt;
7afe21cc
RK
1348}
1349
1350/* Look up X in the hash table and return its table element,
1351 or 0 if X is not in the table.
1352
1353 MODE is the machine-mode of X, or if X is an integer constant
1354 with VOIDmode then MODE is the mode with which X will be used.
1355
1356 Here we are satisfied to find an expression whose tree structure
1357 looks like X. */
1358
1359static struct table_elt *
7080f735 1360lookup (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1361{
b3694847 1362 struct table_elt *p;
7afe21cc
RK
1363
1364 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1365 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1366 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1367 return p;
1368
1369 return 0;
1370}
1371
1372/* Like `lookup' but don't care whether the table element uses invalid regs.
1373 Also ignore discrepancies in the machine mode of a register. */
1374
1375static struct table_elt *
7080f735 1376lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1377{
b3694847 1378 struct table_elt *p;
7afe21cc 1379
f8cfc6aa 1380 if (REG_P (x))
7afe21cc 1381 {
770ae6cc
RK
1382 unsigned int regno = REGNO (x);
1383
7afe21cc
RK
1384 /* Don't check the machine mode when comparing registers;
1385 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1386 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1387 if (REG_P (p->exp)
7afe21cc
RK
1388 && REGNO (p->exp) == regno)
1389 return p;
1390 }
1391 else
1392 {
1393 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1394 if (mode == p->mode
1395 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1396 return p;
1397 }
1398
1399 return 0;
1400}
1401
1402/* Look for an expression equivalent to X and with code CODE.
1403 If one is found, return that expression. */
1404
1405static rtx
7080f735 1406lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1407{
b3694847 1408 struct table_elt *p
0516f6fe 1409 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1410
34c73909
R
1411 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1412 long as we are narrowing. So if we looked in vain for a mode narrower
1413 than word_mode before, look for word_mode now. */
1414 if (p == 0 && code == CONST_INT
1415 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1416 {
1417 x = copy_rtx (x);
1418 PUT_MODE (x, word_mode);
0516f6fe 1419 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
34c73909
R
1420 }
1421
7afe21cc
RK
1422 if (p == 0)
1423 return 0;
1424
1425 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1426 if (GET_CODE (p->exp) == code
1427 /* Make sure this is a valid entry in the table. */
0516f6fe 1428 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1429 return p->exp;
278a83b2 1430
7afe21cc
RK
1431 return 0;
1432}
1433
1434/* Insert X in the hash table, assuming HASH is its hash code
1435 and CLASSP is an element of the class it should go in
1436 (or 0 if a new class should be made).
1437 It is inserted at the proper position to keep the class in
1438 the order cheapest first.
1439
1440 MODE is the machine-mode of X, or if X is an integer constant
1441 with VOIDmode then MODE is the mode with which X will be used.
1442
1443 For elements of equal cheapness, the most recent one
1444 goes in front, except that the first element in the list
1445 remains first unless a cheaper element is added. The order of
1446 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1447 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1448
1449 The in_memory field in the hash table element is set to 0.
1450 The caller must set it nonzero if appropriate.
1451
1452 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1453 and if insert_regs returns a nonzero value
1454 you must then recompute its hash code before calling here.
1455
1456 If necessary, update table showing constant values of quantities. */
1457
630c79be 1458#define CHEAPER(X, Y) \
56ae04af 1459 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
7afe21cc
RK
1460
1461static struct table_elt *
7080f735 1462insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
7afe21cc 1463{
b3694847 1464 struct table_elt *elt;
7afe21cc
RK
1465
1466 /* If X is a register and we haven't made a quantity for it,
1467 something is wrong. */
341c100f 1468 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1469
1470 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1471 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7afe21cc 1472 {
770ae6cc 1473 unsigned int regno = REGNO (x);
66fd46b6 1474 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 1475 unsigned int i;
7afe21cc
RK
1476
1477 for (i = regno; i < endregno; i++)
770ae6cc 1478 SET_HARD_REG_BIT (hard_regs_in_table, i);
7afe21cc
RK
1479 }
1480
7afe21cc
RK
1481 /* Put an element for X into the right hash bucket. */
1482
9b1549b8
DM
1483 elt = free_element_chain;
1484 if (elt)
770ae6cc 1485 free_element_chain = elt->next_same_hash;
9b1549b8
DM
1486 else
1487 {
1488 n_elements_made++;
703ad42b 1489 elt = xmalloc (sizeof (struct table_elt));
9b1549b8
DM
1490 }
1491
7afe21cc 1492 elt->exp = x;
db048faf 1493 elt->canon_exp = NULL_RTX;
7afe21cc 1494 elt->cost = COST (x);
630c79be 1495 elt->regcost = approx_reg_cost (x);
7afe21cc
RK
1496 elt->next_same_value = 0;
1497 elt->prev_same_value = 0;
1498 elt->next_same_hash = table[hash];
1499 elt->prev_same_hash = 0;
1500 elt->related_value = 0;
1501 elt->in_memory = 0;
1502 elt->mode = mode;
389fdba0 1503 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1504
1505 if (table[hash])
1506 table[hash]->prev_same_hash = elt;
1507 table[hash] = elt;
1508
1509 /* Put it into the proper value-class. */
1510 if (classp)
1511 {
1512 classp = classp->first_same_value;
1513 if (CHEAPER (elt, classp))
f9da5064 1514 /* Insert at the head of the class. */
7afe21cc 1515 {
b3694847 1516 struct table_elt *p;
7afe21cc
RK
1517 elt->next_same_value = classp;
1518 classp->prev_same_value = elt;
1519 elt->first_same_value = elt;
1520
1521 for (p = classp; p; p = p->next_same_value)
1522 p->first_same_value = elt;
1523 }
1524 else
1525 {
1526 /* Insert not at head of the class. */
1527 /* Put it after the last element cheaper than X. */
b3694847 1528 struct table_elt *p, *next;
770ae6cc 1529
7afe21cc
RK
1530 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1531 p = next);
770ae6cc 1532
7afe21cc
RK
1533 /* Put it after P and before NEXT. */
1534 elt->next_same_value = next;
1535 if (next)
1536 next->prev_same_value = elt;
770ae6cc 1537
7afe21cc
RK
1538 elt->prev_same_value = p;
1539 p->next_same_value = elt;
1540 elt->first_same_value = classp;
1541 }
1542 }
1543 else
1544 elt->first_same_value = elt;
1545
1546 /* If this is a constant being set equivalent to a register or a register
1547 being set equivalent to a constant, note the constant equivalence.
1548
1549 If this is a constant, it cannot be equivalent to a different constant,
1550 and a constant is the only thing that can be cheaper than a register. So
1551 we know the register is the head of the class (before the constant was
1552 inserted).
1553
1554 If this is a register that is not already known equivalent to a
1555 constant, we must check the entire class.
1556
1557 If this is a register that is already known equivalent to an insn,
1bb98cec 1558 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1559 insn making that quantity equivalent to the constant. */
1560
f8cfc6aa
JQ
1561 if (elt->is_const && classp && REG_P (classp->exp)
1562 && !REG_P (x))
7afe21cc 1563 {
1bb98cec
DM
1564 int exp_q = REG_QTY (REGNO (classp->exp));
1565 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1566
4de249d9 1567 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1568 exp_ent->const_insn = this_insn;
7afe21cc
RK
1569 }
1570
f8cfc6aa 1571 else if (REG_P (x)
1bb98cec
DM
1572 && classp
1573 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1574 && ! elt->is_const)
7afe21cc 1575 {
b3694847 1576 struct table_elt *p;
7afe21cc
RK
1577
1578 for (p = classp; p != 0; p = p->next_same_value)
1579 {
f8cfc6aa 1580 if (p->is_const && !REG_P (p->exp))
7afe21cc 1581 {
1bb98cec
DM
1582 int x_q = REG_QTY (REGNO (x));
1583 struct qty_table_elem *x_ent = &qty_table[x_q];
1584
770ae6cc 1585 x_ent->const_rtx
4de249d9 1586 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1587 x_ent->const_insn = this_insn;
7afe21cc
RK
1588 break;
1589 }
1590 }
1591 }
1592
f8cfc6aa 1593 else if (REG_P (x)
1bb98cec
DM
1594 && qty_table[REG_QTY (REGNO (x))].const_rtx
1595 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1596 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1597
1598 /* If this is a constant with symbolic value,
1599 and it has a term with an explicit integer value,
1600 link it up with related expressions. */
1601 if (GET_CODE (x) == CONST)
1602 {
1603 rtx subexp = get_related_value (x);
2197a88a 1604 unsigned subhash;
7afe21cc
RK
1605 struct table_elt *subelt, *subelt_prev;
1606
1607 if (subexp != 0)
1608 {
1609 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1610 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1611 subelt = lookup (subexp, subhash, mode);
1612 if (subelt == 0)
9714cf43 1613 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1614 /* Initialize SUBELT's circular chain if it has none. */
1615 if (subelt->related_value == 0)
1616 subelt->related_value = subelt;
1617 /* Find the element in the circular chain that precedes SUBELT. */
1618 subelt_prev = subelt;
1619 while (subelt_prev->related_value != subelt)
1620 subelt_prev = subelt_prev->related_value;
1621 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1622 This way the element that follows SUBELT is the oldest one. */
1623 elt->related_value = subelt_prev->related_value;
1624 subelt_prev->related_value = elt;
1625 }
1626 }
1627
1628 return elt;
1629}
1630\f
1631/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1632 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1633 the two classes equivalent.
1634
1635 CLASS1 will be the surviving class; CLASS2 should not be used after this
1636 call.
1637
1638 Any invalid entries in CLASS2 will not be copied. */
1639
1640static void
7080f735 1641merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc
RK
1642{
1643 struct table_elt *elt, *next, *new;
1644
1645 /* Ensure we start with the head of the classes. */
1646 class1 = class1->first_same_value;
1647 class2 = class2->first_same_value;
1648
1649 /* If they were already equal, forget it. */
1650 if (class1 == class2)
1651 return;
1652
1653 for (elt = class2; elt; elt = next)
1654 {
770ae6cc 1655 unsigned int hash;
7afe21cc
RK
1656 rtx exp = elt->exp;
1657 enum machine_mode mode = elt->mode;
1658
1659 next = elt->next_same_value;
1660
1661 /* Remove old entry, make a new one in CLASS1's class.
1662 Don't do this for invalid entries as we cannot find their
0f41302f 1663 hash code (it also isn't necessary). */
0516f6fe 1664 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1665 {
a90fc8e0
RH
1666 bool need_rehash = false;
1667
7afe21cc 1668 hash_arg_in_memory = 0;
7afe21cc 1669 hash = HASH (exp, mode);
278a83b2 1670
f8cfc6aa 1671 if (REG_P (exp))
a90fc8e0 1672 {
08a69267 1673 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1674 delete_reg_equiv (REGNO (exp));
1675 }
278a83b2 1676
7afe21cc
RK
1677 remove_from_table (elt, hash);
1678
a90fc8e0 1679 if (insert_regs (exp, class1, 0) || need_rehash)
8ae2b8f6
JW
1680 {
1681 rehash_using_reg (exp);
1682 hash = HASH (exp, mode);
1683 }
7afe21cc
RK
1684 new = insert (exp, class1, hash, mode);
1685 new->in_memory = hash_arg_in_memory;
7afe21cc
RK
1686 }
1687 }
1688}
1689\f
01e752d3
JL
1690/* Flush the entire hash table. */
1691
1692static void
7080f735 1693flush_hash_table (void)
01e752d3
JL
1694{
1695 int i;
1696 struct table_elt *p;
1697
9b1549b8 1698 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1699 for (p = table[i]; p; p = table[i])
1700 {
1701 /* Note that invalidate can remove elements
1702 after P in the current hash chain. */
f8cfc6aa 1703 if (REG_P (p->exp))
01e752d3
JL
1704 invalidate (p->exp, p->mode);
1705 else
1706 remove_from_table (p, i);
1707 }
1708}
14a774a9 1709\f
2ce6dc2f
JH
1710/* Function called for each rtx to check whether true dependence exist. */
1711struct check_dependence_data
1712{
1713 enum machine_mode mode;
1714 rtx exp;
9ddb66ca 1715 rtx addr;
2ce6dc2f 1716};
be8ac49a 1717
2ce6dc2f 1718static int
7080f735 1719check_dependence (rtx *x, void *data)
2ce6dc2f
JH
1720{
1721 struct check_dependence_data *d = (struct check_dependence_data *) data;
3c0cb5de 1722 if (*x && MEM_P (*x))
9ddb66ca
JH
1723 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1724 cse_rtx_varies_p);
2ce6dc2f
JH
1725 else
1726 return 0;
1727}
1728\f
14a774a9
RK
1729/* Remove from the hash table, or mark as invalid, all expressions whose
1730 values could be altered by storing in X. X is a register, a subreg, or
1731 a memory reference with nonvarying address (because, when a memory
1732 reference with a varying address is stored in, all memory references are
1733 removed by invalidate_memory so specific invalidation is superfluous).
1734 FULL_MODE, if not VOIDmode, indicates that this much should be
1735 invalidated instead of just the amount indicated by the mode of X. This
1736 is only used for bitfield stores into memory.
1737
1738 A nonvarying address may be just a register or just a symbol reference,
1739 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1740
1741static void
7080f735 1742invalidate (rtx x, enum machine_mode full_mode)
7afe21cc 1743{
b3694847
SS
1744 int i;
1745 struct table_elt *p;
9ddb66ca 1746 rtx addr;
7afe21cc 1747
14a774a9 1748 switch (GET_CODE (x))
7afe21cc 1749 {
14a774a9
RK
1750 case REG:
1751 {
1752 /* If X is a register, dependencies on its contents are recorded
1753 through the qty number mechanism. Just change the qty number of
1754 the register, mark it as invalid for expressions that refer to it,
1755 and remove it itself. */
770ae6cc
RK
1756 unsigned int regno = REGNO (x);
1757 unsigned int hash = HASH (x, GET_MODE (x));
7afe21cc 1758
14a774a9
RK
1759 /* Remove REGNO from any quantity list it might be on and indicate
1760 that its value might have changed. If it is a pseudo, remove its
1761 entry from the hash table.
7afe21cc 1762
14a774a9
RK
1763 For a hard register, we do the first two actions above for any
1764 additional hard registers corresponding to X. Then, if any of these
1765 registers are in the table, we must remove any REG entries that
1766 overlap these registers. */
7afe21cc 1767
14a774a9
RK
1768 delete_reg_equiv (regno);
1769 REG_TICK (regno)++;
46081bb3 1770 SUBREG_TICKED (regno) = -1;
85e4d983 1771
14a774a9
RK
1772 if (regno >= FIRST_PSEUDO_REGISTER)
1773 {
1774 /* Because a register can be referenced in more than one mode,
1775 we might have to remove more than one table entry. */
1776 struct table_elt *elt;
85e4d983 1777
14a774a9
RK
1778 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1779 remove_from_table (elt, hash);
1780 }
1781 else
1782 {
1783 HOST_WIDE_INT in_table
1784 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
770ae6cc 1785 unsigned int endregno
66fd46b6 1786 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 1787 unsigned int tregno, tendregno, rn;
b3694847 1788 struct table_elt *p, *next;
7afe21cc 1789
14a774a9 1790 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc 1791
770ae6cc 1792 for (rn = regno + 1; rn < endregno; rn++)
14a774a9 1793 {
770ae6cc
RK
1794 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1795 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1796 delete_reg_equiv (rn);
1797 REG_TICK (rn)++;
46081bb3 1798 SUBREG_TICKED (rn) = -1;
14a774a9 1799 }
7afe21cc 1800
14a774a9 1801 if (in_table)
9b1549b8 1802 for (hash = 0; hash < HASH_SIZE; hash++)
14a774a9
RK
1803 for (p = table[hash]; p; p = next)
1804 {
1805 next = p->next_same_hash;
7afe21cc 1806
f8cfc6aa 1807 if (!REG_P (p->exp)
278a83b2
KH
1808 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1809 continue;
1810
14a774a9
RK
1811 tregno = REGNO (p->exp);
1812 tendregno
66fd46b6 1813 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
14a774a9
RK
1814 if (tendregno > regno && tregno < endregno)
1815 remove_from_table (p, hash);
1816 }
1817 }
1818 }
7afe21cc 1819 return;
7afe21cc 1820
14a774a9 1821 case SUBREG:
bb4034b3 1822 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1823 return;
aac5cc16 1824
14a774a9 1825 case PARALLEL:
278a83b2 1826 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1827 invalidate (XVECEXP (x, 0, i), VOIDmode);
1828 return;
aac5cc16 1829
14a774a9
RK
1830 case EXPR_LIST:
1831 /* This is part of a disjoint return value; extract the location in
1832 question ignoring the offset. */
aac5cc16
RH
1833 invalidate (XEXP (x, 0), VOIDmode);
1834 return;
7afe21cc 1835
14a774a9 1836 case MEM:
9ddb66ca 1837 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1838 /* Calculate the canonical version of X here so that
1839 true_dependence doesn't generate new RTL for X on each call. */
1840 x = canon_rtx (x);
1841
14a774a9
RK
1842 /* Remove all hash table elements that refer to overlapping pieces of
1843 memory. */
1844 if (full_mode == VOIDmode)
1845 full_mode = GET_MODE (x);
bb4034b3 1846
9b1549b8 1847 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1848 {
b3694847 1849 struct table_elt *next;
14a774a9
RK
1850
1851 for (p = table[i]; p; p = next)
1852 {
1853 next = p->next_same_hash;
db048faf
MM
1854 if (p->in_memory)
1855 {
2ce6dc2f
JH
1856 struct check_dependence_data d;
1857
1858 /* Just canonicalize the expression once;
1859 otherwise each time we call invalidate
1860 true_dependence will canonicalize the
1861 expression again. */
1862 if (!p->canon_exp)
1863 p->canon_exp = canon_rtx (p->exp);
1864 d.exp = x;
9ddb66ca 1865 d.addr = addr;
2ce6dc2f
JH
1866 d.mode = full_mode;
1867 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
db048faf 1868 remove_from_table (p, i);
db048faf 1869 }
14a774a9 1870 }
7afe21cc 1871 }
14a774a9
RK
1872 return;
1873
1874 default:
341c100f 1875 gcc_unreachable ();
7afe21cc
RK
1876 }
1877}
14a774a9 1878\f
7afe21cc
RK
1879/* Remove all expressions that refer to register REGNO,
1880 since they are already invalid, and we are about to
1881 mark that register valid again and don't want the old
1882 expressions to reappear as valid. */
1883
1884static void
7080f735 1885remove_invalid_refs (unsigned int regno)
7afe21cc 1886{
770ae6cc
RK
1887 unsigned int i;
1888 struct table_elt *p, *next;
7afe21cc 1889
9b1549b8 1890 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1891 for (p = table[i]; p; p = next)
1892 {
1893 next = p->next_same_hash;
f8cfc6aa 1894 if (!REG_P (p->exp)
68252e27 1895 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
7afe21cc
RK
1896 remove_from_table (p, i);
1897 }
1898}
34c73909 1899
ddef6bc7
JJ
1900/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1901 and mode MODE. */
34c73909 1902static void
7080f735
AJ
1903remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1904 enum machine_mode mode)
34c73909 1905{
770ae6cc
RK
1906 unsigned int i;
1907 struct table_elt *p, *next;
ddef6bc7 1908 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
34c73909 1909
9b1549b8 1910 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
1911 for (p = table[i]; p; p = next)
1912 {
ddef6bc7 1913 rtx exp = p->exp;
34c73909 1914 next = p->next_same_hash;
278a83b2 1915
f8cfc6aa 1916 if (!REG_P (exp)
34c73909 1917 && (GET_CODE (exp) != SUBREG
f8cfc6aa 1918 || !REG_P (SUBREG_REG (exp))
34c73909 1919 || REGNO (SUBREG_REG (exp)) != regno
ddef6bc7
JJ
1920 || (((SUBREG_BYTE (exp)
1921 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1922 && SUBREG_BYTE (exp) <= end))
68252e27 1923 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
34c73909
R
1924 remove_from_table (p, i);
1925 }
1926}
7afe21cc
RK
1927\f
1928/* Recompute the hash codes of any valid entries in the hash table that
1929 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1930
1931 This is called when we make a jump equivalence. */
1932
1933static void
7080f735 1934rehash_using_reg (rtx x)
7afe21cc 1935{
973838fd 1936 unsigned int i;
7afe21cc 1937 struct table_elt *p, *next;
2197a88a 1938 unsigned hash;
7afe21cc
RK
1939
1940 if (GET_CODE (x) == SUBREG)
1941 x = SUBREG_REG (x);
1942
1943 /* If X is not a register or if the register is known not to be in any
1944 valid entries in the table, we have no work to do. */
1945
f8cfc6aa 1946 if (!REG_P (x)
30f72379
MM
1947 || REG_IN_TABLE (REGNO (x)) < 0
1948 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
1949 return;
1950
1951 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 1952 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 1953
9b1549b8 1954 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1955 for (p = table[i]; p; p = next)
1956 {
1957 next = p->next_same_hash;
a90fc8e0 1958 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
1959 && exp_equiv_p (p->exp, p->exp, 1, false)
1960 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
1961 {
1962 if (p->next_same_hash)
1963 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1964
1965 if (p->prev_same_hash)
1966 p->prev_same_hash->next_same_hash = p->next_same_hash;
1967 else
1968 table[i] = p->next_same_hash;
1969
1970 p->next_same_hash = table[hash];
1971 p->prev_same_hash = 0;
1972 if (table[hash])
1973 table[hash]->prev_same_hash = p;
1974 table[hash] = p;
1975 }
1976 }
1977}
1978\f
7afe21cc
RK
1979/* Remove from the hash table any expression that is a call-clobbered
1980 register. Also update their TICK values. */
1981
1982static void
7080f735 1983invalidate_for_call (void)
7afe21cc 1984{
770ae6cc
RK
1985 unsigned int regno, endregno;
1986 unsigned int i;
2197a88a 1987 unsigned hash;
7afe21cc
RK
1988 struct table_elt *p, *next;
1989 int in_table = 0;
1990
1991 /* Go through all the hard registers. For each that is clobbered in
1992 a CALL_INSN, remove the register from quantity chains and update
1993 reg_tick if defined. Also see if any of these registers is currently
1994 in the table. */
1995
1996 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1997 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1998 {
1999 delete_reg_equiv (regno);
30f72379 2000 if (REG_TICK (regno) >= 0)
46081bb3
SH
2001 {
2002 REG_TICK (regno)++;
2003 SUBREG_TICKED (regno) = -1;
2004 }
7afe21cc 2005
0e227018 2006 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
7afe21cc
RK
2007 }
2008
2009 /* In the case where we have no call-clobbered hard registers in the
2010 table, we are done. Otherwise, scan the table and remove any
2011 entry that overlaps a call-clobbered register. */
2012
2013 if (in_table)
9b1549b8 2014 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
2015 for (p = table[hash]; p; p = next)
2016 {
2017 next = p->next_same_hash;
2018
f8cfc6aa 2019 if (!REG_P (p->exp)
7afe21cc
RK
2020 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2021 continue;
2022
2023 regno = REGNO (p->exp);
66fd46b6 2024 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
7afe21cc
RK
2025
2026 for (i = regno; i < endregno; i++)
2027 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2028 {
2029 remove_from_table (p, hash);
2030 break;
2031 }
2032 }
2033}
2034\f
2035/* Given an expression X of type CONST,
2036 and ELT which is its table entry (or 0 if it
2037 is not in the hash table),
2038 return an alternate expression for X as a register plus integer.
2039 If none can be found, return 0. */
2040
2041static rtx
7080f735 2042use_related_value (rtx x, struct table_elt *elt)
7afe21cc 2043{
b3694847
SS
2044 struct table_elt *relt = 0;
2045 struct table_elt *p, *q;
906c4e36 2046 HOST_WIDE_INT offset;
7afe21cc
RK
2047
2048 /* First, is there anything related known?
2049 If we have a table element, we can tell from that.
2050 Otherwise, must look it up. */
2051
2052 if (elt != 0 && elt->related_value != 0)
2053 relt = elt;
2054 else if (elt == 0 && GET_CODE (x) == CONST)
2055 {
2056 rtx subexp = get_related_value (x);
2057 if (subexp != 0)
2058 relt = lookup (subexp,
0516f6fe 2059 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
2060 GET_MODE (subexp));
2061 }
2062
2063 if (relt == 0)
2064 return 0;
2065
2066 /* Search all related table entries for one that has an
2067 equivalent register. */
2068
2069 p = relt;
2070 while (1)
2071 {
2072 /* This loop is strange in that it is executed in two different cases.
2073 The first is when X is already in the table. Then it is searching
2074 the RELATED_VALUE list of X's class (RELT). The second case is when
2075 X is not in the table. Then RELT points to a class for the related
2076 value.
2077
2078 Ensure that, whatever case we are in, that we ignore classes that have
2079 the same value as X. */
2080
2081 if (rtx_equal_p (x, p->exp))
2082 q = 0;
2083 else
2084 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2085 if (REG_P (q->exp))
7afe21cc
RK
2086 break;
2087
2088 if (q)
2089 break;
2090
2091 p = p->related_value;
2092
2093 /* We went all the way around, so there is nothing to be found.
2094 Alternatively, perhaps RELT was in the table for some other reason
2095 and it has no related values recorded. */
2096 if (p == relt || p == 0)
2097 break;
2098 }
2099
2100 if (q == 0)
2101 return 0;
2102
2103 offset = (get_integer_term (x) - get_integer_term (p->exp));
2104 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2105 return plus_constant (q->exp, offset);
2106}
2107\f
6462bb43
AO
2108/* Hash a string. Just add its bytes up. */
2109static inline unsigned
0516f6fe 2110hash_rtx_string (const char *ps)
6462bb43
AO
2111{
2112 unsigned hash = 0;
68252e27
KH
2113 const unsigned char *p = (const unsigned char *) ps;
2114
6462bb43
AO
2115 if (p)
2116 while (*p)
2117 hash += *p++;
2118
2119 return hash;
2120}
2121
7afe21cc
RK
2122/* Hash an rtx. We are careful to make sure the value is never negative.
2123 Equivalent registers hash identically.
2124 MODE is used in hashing for CONST_INTs only;
2125 otherwise the mode of X is used.
2126
0516f6fe 2127 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
7afe21cc 2128
0516f6fe
SB
2129 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2130 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
7afe21cc
RK
2131
2132 Note that cse_insn knows that the hash code of a MEM expression
2133 is just (int) MEM plus the hash code of the address. */
2134
0516f6fe
SB
2135unsigned
2136hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2137 int *hash_arg_in_memory_p, bool have_reg_qty)
7afe21cc 2138{
b3694847
SS
2139 int i, j;
2140 unsigned hash = 0;
2141 enum rtx_code code;
2142 const char *fmt;
7afe21cc 2143
0516f6fe
SB
2144 /* Used to turn recursion into iteration. We can't rely on GCC's
2145 tail-recursion elimination since we need to keep accumulating values
2146 in HASH. */
7afe21cc
RK
2147 repeat:
2148 if (x == 0)
2149 return hash;
2150
2151 code = GET_CODE (x);
2152 switch (code)
2153 {
2154 case REG:
2155 {
770ae6cc 2156 unsigned int regno = REGNO (x);
7afe21cc 2157
0516f6fe 2158 if (!reload_completed)
7afe21cc 2159 {
0516f6fe
SB
2160 /* On some machines, we can't record any non-fixed hard register,
2161 because extending its life will cause reload problems. We
2162 consider ap, fp, sp, gp to be fixed for this purpose.
2163
2164 We also consider CCmode registers to be fixed for this purpose;
2165 failure to do so leads to failure to simplify 0<100 type of
2166 conditionals.
2167
2168 On all machines, we can't record any global registers.
2169 Nor should we record any register that is in a small
2170 class, as defined by CLASS_LIKELY_SPILLED_P. */
2171 bool record;
2172
2173 if (regno >= FIRST_PSEUDO_REGISTER)
2174 record = true;
2175 else if (x == frame_pointer_rtx
2176 || x == hard_frame_pointer_rtx
2177 || x == arg_pointer_rtx
2178 || x == stack_pointer_rtx
2179 || x == pic_offset_table_rtx)
2180 record = true;
2181 else if (global_regs[regno])
2182 record = false;
2183 else if (fixed_regs[regno])
2184 record = true;
2185 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2186 record = true;
2187 else if (SMALL_REGISTER_CLASSES)
2188 record = false;
2189 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2190 record = false;
2191 else
2192 record = true;
2193
2194 if (!record)
2195 {
2196 *do_not_record_p = 1;
2197 return 0;
2198 }
7afe21cc 2199 }
770ae6cc 2200
0516f6fe
SB
2201 hash += ((unsigned int) REG << 7);
2202 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2203 return hash;
7afe21cc
RK
2204 }
2205
34c73909
R
2206 /* We handle SUBREG of a REG specially because the underlying
2207 reg changes its hash value with every value change; we don't
2208 want to have to forget unrelated subregs when one subreg changes. */
2209 case SUBREG:
2210 {
f8cfc6aa 2211 if (REG_P (SUBREG_REG (x)))
34c73909 2212 {
0516f6fe 2213 hash += (((unsigned int) SUBREG << 7)
ddef6bc7
JJ
2214 + REGNO (SUBREG_REG (x))
2215 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
34c73909
R
2216 return hash;
2217 }
2218 break;
2219 }
2220
7afe21cc 2221 case CONST_INT:
0516f6fe
SB
2222 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2223 + (unsigned int) INTVAL (x));
2224 return hash;
7afe21cc
RK
2225
2226 case CONST_DOUBLE:
2227 /* This is like the general case, except that it only counts
2228 the integers representing the constant. */
0516f6fe 2229 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
969c8517 2230 if (GET_MODE (x) != VOIDmode)
46b33600 2231 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
969c8517 2232 else
0516f6fe
SB
2233 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2234 + (unsigned int) CONST_DOUBLE_HIGH (x));
7afe21cc
RK
2235 return hash;
2236
69ef87e2
AH
2237 case CONST_VECTOR:
2238 {
2239 int units;
2240 rtx elt;
2241
2242 units = CONST_VECTOR_NUNITS (x);
2243
2244 for (i = 0; i < units; ++i)
2245 {
2246 elt = CONST_VECTOR_ELT (x, i);
0516f6fe
SB
2247 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2248 hash_arg_in_memory_p, have_reg_qty);
69ef87e2
AH
2249 }
2250
2251 return hash;
2252 }
2253
7afe21cc
RK
2254 /* Assume there is only one rtx object for any given label. */
2255 case LABEL_REF:
0516f6fe
SB
2256 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2257 differences and differences between each stage's debugging dumps. */
2258 hash += (((unsigned int) LABEL_REF << 7)
2259 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2197a88a 2260 return hash;
7afe21cc
RK
2261
2262 case SYMBOL_REF:
0516f6fe
SB
2263 {
2264 /* Don't hash on the symbol's address to avoid bootstrap differences.
2265 Different hash values may cause expressions to be recorded in
2266 different orders and thus different registers to be used in the
2267 final assembler. This also avoids differences in the dump files
2268 between various stages. */
2269 unsigned int h = 0;
2270 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2271
2272 while (*p)
2273 h += (h << 7) + *p++; /* ??? revisit */
2274
2275 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2276 return hash;
2277 }
7afe21cc
RK
2278
2279 case MEM:
14a774a9
RK
2280 /* We don't record if marked volatile or if BLKmode since we don't
2281 know the size of the move. */
2282 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
7afe21cc 2283 {
0516f6fe 2284 *do_not_record_p = 1;
7afe21cc
RK
2285 return 0;
2286 }
0516f6fe
SB
2287 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2288 *hash_arg_in_memory_p = 1;
4977bab6 2289
7afe21cc
RK
2290 /* Now that we have already found this special case,
2291 might as well speed it up as much as possible. */
2197a88a 2292 hash += (unsigned) MEM;
7afe21cc
RK
2293 x = XEXP (x, 0);
2294 goto repeat;
2295
bb07060a
JW
2296 case USE:
2297 /* A USE that mentions non-volatile memory needs special
2298 handling since the MEM may be BLKmode which normally
2299 prevents an entry from being made. Pure calls are
0516f6fe
SB
2300 marked by a USE which mentions BLKmode memory.
2301 See calls.c:emit_call_1. */
3c0cb5de 2302 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2303 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2304 {
68252e27 2305 hash += (unsigned) USE;
bb07060a
JW
2306 x = XEXP (x, 0);
2307
0516f6fe
SB
2308 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2309 *hash_arg_in_memory_p = 1;
bb07060a
JW
2310
2311 /* Now that we have already found this special case,
2312 might as well speed it up as much as possible. */
2313 hash += (unsigned) MEM;
2314 x = XEXP (x, 0);
2315 goto repeat;
2316 }
2317 break;
2318
7afe21cc
RK
2319 case PRE_DEC:
2320 case PRE_INC:
2321 case POST_DEC:
2322 case POST_INC:
4b983fdc
RH
2323 case PRE_MODIFY:
2324 case POST_MODIFY:
7afe21cc
RK
2325 case PC:
2326 case CC0:
2327 case CALL:
2328 case UNSPEC_VOLATILE:
0516f6fe 2329 *do_not_record_p = 1;
7afe21cc
RK
2330 return 0;
2331
2332 case ASM_OPERANDS:
2333 if (MEM_VOLATILE_P (x))
2334 {
0516f6fe 2335 *do_not_record_p = 1;
7afe21cc
RK
2336 return 0;
2337 }
6462bb43
AO
2338 else
2339 {
2340 /* We don't want to take the filename and line into account. */
2341 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2342 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2343 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2344 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2345
2346 if (ASM_OPERANDS_INPUT_LENGTH (x))
2347 {
2348 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2349 {
0516f6fe
SB
2350 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2351 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2352 do_not_record_p, hash_arg_in_memory_p,
2353 have_reg_qty)
2354 + hash_rtx_string
2355 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2356 }
2357
0516f6fe 2358 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2359 x = ASM_OPERANDS_INPUT (x, 0);
2360 mode = GET_MODE (x);
2361 goto repeat;
2362 }
2363
2364 return hash;
2365 }
e9a25f70 2366 break;
278a83b2 2367
e9a25f70
JL
2368 default:
2369 break;
7afe21cc
RK
2370 }
2371
2372 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2373 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2374 fmt = GET_RTX_FORMAT (code);
2375 for (; i >= 0; i--)
2376 {
341c100f 2377 switch (fmt[i])
7afe21cc 2378 {
341c100f 2379 case 'e':
7afe21cc
RK
2380 /* If we are about to do the last recursive call
2381 needed at this level, change it into iteration.
2382 This function is called enough to be worth it. */
2383 if (i == 0)
2384 {
0516f6fe 2385 x = XEXP (x, i);
7afe21cc
RK
2386 goto repeat;
2387 }
0516f6fe
SB
2388
2389 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2390 hash_arg_in_memory_p, have_reg_qty);
341c100f 2391 break;
0516f6fe 2392
341c100f
NS
2393 case 'E':
2394 for (j = 0; j < XVECLEN (x, i); j++)
0516f6fe
SB
2395 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2396 hash_arg_in_memory_p, have_reg_qty);
341c100f 2397 break;
0516f6fe 2398
341c100f
NS
2399 case 's':
2400 hash += hash_rtx_string (XSTR (x, i));
2401 break;
2402
2403 case 'i':
2404 hash += (unsigned int) XINT (x, i);
2405 break;
2406
2407 case '0': case 't':
2408 /* Unused. */
2409 break;
2410
2411 default:
2412 gcc_unreachable ();
2413 }
7afe21cc 2414 }
0516f6fe 2415
7afe21cc
RK
2416 return hash;
2417}
2418
0516f6fe
SB
2419/* Hash an rtx X for cse via hash_rtx.
2420 Stores 1 in do_not_record if any subexpression is volatile.
2421 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2422 does not have the RTX_UNCHANGING_P bit set. */
2423
2424static inline unsigned
2425canon_hash (rtx x, enum machine_mode mode)
2426{
2427 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2428}
2429
2430/* Like canon_hash but with no side effects, i.e. do_not_record
2431 and hash_arg_in_memory are not changed. */
7afe21cc 2432
0516f6fe 2433static inline unsigned
7080f735 2434safe_hash (rtx x, enum machine_mode mode)
7afe21cc 2435{
0516f6fe
SB
2436 int dummy_do_not_record;
2437 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2438}
2439\f
2440/* Return 1 iff X and Y would canonicalize into the same thing,
2441 without actually constructing the canonicalization of either one.
2442 If VALIDATE is nonzero,
2443 we assume X is an expression being processed from the rtl
2444 and Y was found in the hash table. We check register refs
2445 in Y for being marked as valid.
2446
0516f6fe 2447 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2448
0516f6fe
SB
2449int
2450exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
7afe21cc 2451{
b3694847
SS
2452 int i, j;
2453 enum rtx_code code;
2454 const char *fmt;
7afe21cc
RK
2455
2456 /* Note: it is incorrect to assume an expression is equivalent to itself
2457 if VALIDATE is nonzero. */
2458 if (x == y && !validate)
2459 return 1;
0516f6fe 2460
7afe21cc
RK
2461 if (x == 0 || y == 0)
2462 return x == y;
2463
2464 code = GET_CODE (x);
2465 if (code != GET_CODE (y))
0516f6fe 2466 return 0;
7afe21cc
RK
2467
2468 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2469 if (GET_MODE (x) != GET_MODE (y))
2470 return 0;
2471
2472 switch (code)
2473 {
2474 case PC:
2475 case CC0:
7afe21cc 2476 case CONST_INT:
c13e8210 2477 return x == y;
7afe21cc
RK
2478
2479 case LABEL_REF:
7afe21cc
RK
2480 return XEXP (x, 0) == XEXP (y, 0);
2481
f54d4924
RK
2482 case SYMBOL_REF:
2483 return XSTR (x, 0) == XSTR (y, 0);
2484
7afe21cc 2485 case REG:
0516f6fe
SB
2486 if (for_gcse)
2487 return REGNO (x) == REGNO (y);
2488 else
2489 {
2490 unsigned int regno = REGNO (y);
2491 unsigned int i;
2492 unsigned int endregno
2493 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2494 : hard_regno_nregs[regno][GET_MODE (y)]);
7afe21cc 2495
0516f6fe
SB
2496 /* If the quantities are not the same, the expressions are not
2497 equivalent. If there are and we are not to validate, they
2498 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2499
0516f6fe
SB
2500 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2501 return 0;
2502
2503 if (! validate)
2504 return 1;
2505
2506 for (i = regno; i < endregno; i++)
2507 if (REG_IN_TABLE (i) != REG_TICK (i))
2508 return 0;
7afe21cc 2509
7afe21cc 2510 return 1;
0516f6fe 2511 }
7afe21cc 2512
0516f6fe
SB
2513 case MEM:
2514 if (for_gcse)
2515 {
2516 /* Can't merge two expressions in different alias sets, since we
2517 can decide that the expression is transparent in a block when
2518 it isn't, due to it being set with the different alias set. */
2519 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
7afe21cc
RK
2520 return 0;
2521
0516f6fe
SB
2522 /* A volatile mem should not be considered equivalent to any
2523 other. */
2524 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2525 return 0;
2526 }
2527 break;
7afe21cc
RK
2528
2529 /* For commutative operations, check both orders. */
2530 case PLUS:
2531 case MULT:
2532 case AND:
2533 case IOR:
2534 case XOR:
2535 case NE:
2536 case EQ:
0516f6fe
SB
2537 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2538 validate, for_gcse)
7afe21cc 2539 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2540 validate, for_gcse))
7afe21cc 2541 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2542 validate, for_gcse)
7afe21cc 2543 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2544 validate, for_gcse)));
278a83b2 2545
6462bb43
AO
2546 case ASM_OPERANDS:
2547 /* We don't use the generic code below because we want to
2548 disregard filename and line numbers. */
2549
2550 /* A volatile asm isn't equivalent to any other. */
2551 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2552 return 0;
2553
2554 if (GET_MODE (x) != GET_MODE (y)
2555 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2556 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2557 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2558 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2559 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2560 return 0;
2561
2562 if (ASM_OPERANDS_INPUT_LENGTH (x))
2563 {
2564 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2565 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2566 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2567 validate, for_gcse)
6462bb43
AO
2568 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2569 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2570 return 0;
2571 }
2572
2573 return 1;
2574
e9a25f70
JL
2575 default:
2576 break;
7afe21cc
RK
2577 }
2578
2579 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2580 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2581
2582 fmt = GET_RTX_FORMAT (code);
2583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2584 {
906c4e36 2585 switch (fmt[i])
7afe21cc 2586 {
906c4e36 2587 case 'e':
0516f6fe
SB
2588 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2589 validate, for_gcse))
7afe21cc 2590 return 0;
906c4e36
RK
2591 break;
2592
2593 case 'E':
7afe21cc
RK
2594 if (XVECLEN (x, i) != XVECLEN (y, i))
2595 return 0;
2596 for (j = 0; j < XVECLEN (x, i); j++)
2597 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2598 validate, for_gcse))
7afe21cc 2599 return 0;
906c4e36
RK
2600 break;
2601
2602 case 's':
7afe21cc
RK
2603 if (strcmp (XSTR (x, i), XSTR (y, i)))
2604 return 0;
906c4e36
RK
2605 break;
2606
2607 case 'i':
7afe21cc
RK
2608 if (XINT (x, i) != XINT (y, i))
2609 return 0;
906c4e36
RK
2610 break;
2611
2612 case 'w':
2613 if (XWINT (x, i) != XWINT (y, i))
2614 return 0;
278a83b2 2615 break;
906c4e36
RK
2616
2617 case '0':
8f985ec4 2618 case 't':
906c4e36
RK
2619 break;
2620
2621 default:
341c100f 2622 gcc_unreachable ();
7afe21cc 2623 }
278a83b2 2624 }
906c4e36 2625
7afe21cc
RK
2626 return 1;
2627}
2628\f
9ae8ffe7
JL
2629/* Return 1 if X has a value that can vary even between two
2630 executions of the program. 0 means X can be compared reliably
2631 against certain constants or near-constants. */
7afe21cc
RK
2632
2633static int
7080f735 2634cse_rtx_varies_p (rtx x, int from_alias)
7afe21cc
RK
2635{
2636 /* We need not check for X and the equivalence class being of the same
2637 mode because if X is equivalent to a constant in some mode, it
2638 doesn't vary in any mode. */
2639
f8cfc6aa 2640 if (REG_P (x)
1bb98cec
DM
2641 && REGNO_QTY_VALID_P (REGNO (x)))
2642 {
2643 int x_q = REG_QTY (REGNO (x));
2644 struct qty_table_elem *x_ent = &qty_table[x_q];
2645
2646 if (GET_MODE (x) == x_ent->mode
2647 && x_ent->const_rtx != NULL_RTX)
2648 return 0;
2649 }
7afe21cc 2650
9ae8ffe7
JL
2651 if (GET_CODE (x) == PLUS
2652 && GET_CODE (XEXP (x, 1)) == CONST_INT
f8cfc6aa 2653 && REG_P (XEXP (x, 0))
1bb98cec
DM
2654 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2655 {
2656 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2657 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2658
2659 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2660 && x0_ent->const_rtx != NULL_RTX)
2661 return 0;
2662 }
7afe21cc 2663
9c6b0bae
RK
2664 /* This can happen as the result of virtual register instantiation, if
2665 the initial constant is too large to be a valid address. This gives
2666 us a three instruction sequence, load large offset into a register,
2667 load fp minus a constant into a register, then a MEM which is the
2668 sum of the two `constant' registers. */
9ae8ffe7 2669 if (GET_CODE (x) == PLUS
f8cfc6aa
JQ
2670 && REG_P (XEXP (x, 0))
2671 && REG_P (XEXP (x, 1))
9ae8ffe7 2672 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
1bb98cec
DM
2673 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2674 {
2675 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2676 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2677 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2678 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2679
2680 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2681 && x0_ent->const_rtx != NULL_RTX
2682 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2683 && x1_ent->const_rtx != NULL_RTX)
2684 return 0;
2685 }
9c6b0bae 2686
2be28ee2 2687 return rtx_varies_p (x, from_alias);
7afe21cc
RK
2688}
2689\f
eef3c949
RS
2690/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2691 the result if necessary. INSN is as for canon_reg. */
2692
2693static void
2694validate_canon_reg (rtx *xloc, rtx insn)
2695{
2696 rtx new = canon_reg (*xloc, insn);
2697 int insn_code;
2698
2699 /* If replacing pseudo with hard reg or vice versa, ensure the
2700 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2701 if (insn != 0 && new != 0
2702 && REG_P (new) && REG_P (*xloc)
2703 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2704 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2705 || GET_MODE (new) != GET_MODE (*xloc)
2706 || (insn_code = recog_memoized (insn)) < 0
2707 || insn_data[insn_code].n_dups > 0))
2708 validate_change (insn, xloc, new, 1);
2709 else
2710 *xloc = new;
2711}
2712
7afe21cc
RK
2713/* Canonicalize an expression:
2714 replace each register reference inside it
2715 with the "oldest" equivalent register.
2716
da7d8304 2717 If INSN is nonzero and we are replacing a pseudo with a hard register
7722328e 2718 or vice versa, validate_change is used to ensure that INSN remains valid
da7d8304 2719 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2720 so apply_change_group must be called upon the outermost return from this
2721 function (unless INSN is zero). The result of apply_change_group can
2722 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2723
2724static rtx
7080f735 2725canon_reg (rtx x, rtx insn)
7afe21cc 2726{
b3694847
SS
2727 int i;
2728 enum rtx_code code;
2729 const char *fmt;
7afe21cc
RK
2730
2731 if (x == 0)
2732 return x;
2733
2734 code = GET_CODE (x);
2735 switch (code)
2736 {
2737 case PC:
2738 case CC0:
2739 case CONST:
2740 case CONST_INT:
2741 case CONST_DOUBLE:
69ef87e2 2742 case CONST_VECTOR:
7afe21cc
RK
2743 case SYMBOL_REF:
2744 case LABEL_REF:
2745 case ADDR_VEC:
2746 case ADDR_DIFF_VEC:
2747 return x;
2748
2749 case REG:
2750 {
b3694847
SS
2751 int first;
2752 int q;
2753 struct qty_table_elem *ent;
7afe21cc
RK
2754
2755 /* Never replace a hard reg, because hard regs can appear
2756 in more than one machine mode, and we must preserve the mode
2757 of each occurrence. Also, some hard regs appear in
2758 MEMs that are shared and mustn't be altered. Don't try to
2759 replace any reg that maps to a reg of class NO_REGS. */
2760 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2761 || ! REGNO_QTY_VALID_P (REGNO (x)))
2762 return x;
2763
278a83b2 2764 q = REG_QTY (REGNO (x));
1bb98cec
DM
2765 ent = &qty_table[q];
2766 first = ent->first_reg;
7afe21cc
RK
2767 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2768 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2769 : gen_rtx_REG (ent->mode, first));
7afe21cc 2770 }
278a83b2 2771
e9a25f70
JL
2772 default:
2773 break;
7afe21cc
RK
2774 }
2775
2776 fmt = GET_RTX_FORMAT (code);
2777 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2778 {
b3694847 2779 int j;
7afe21cc
RK
2780
2781 if (fmt[i] == 'e')
eef3c949 2782 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2783 else if (fmt[i] == 'E')
2784 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2785 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2786 }
2787
2788 return x;
2789}
2790\f
a2cabb29 2791/* LOC is a location within INSN that is an operand address (the contents of
7afe21cc
RK
2792 a MEM). Find the best equivalent address to use that is valid for this
2793 insn.
2794
2795 On most CISC machines, complicated address modes are costly, and rtx_cost
2796 is a good approximation for that cost. However, most RISC machines have
2797 only a few (usually only one) memory reference formats. If an address is
2798 valid at all, it is often just as cheap as any other address. Hence, for
e37135f7
RH
2799 RISC machines, we use `address_cost' to compare the costs of various
2800 addresses. For two addresses of equal cost, choose the one with the
2801 highest `rtx_cost' value as that has the potential of eliminating the
2802 most insns. For equal costs, we choose the first in the equivalence
2803 class. Note that we ignore the fact that pseudo registers are cheaper than
2804 hard registers here because we would also prefer the pseudo registers. */
7afe21cc 2805
6cd4575e 2806static void
7080f735 2807find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
7afe21cc 2808{
7a87758d 2809 struct table_elt *elt;
7afe21cc 2810 rtx addr = *loc;
7a87758d 2811 struct table_elt *p;
7afe21cc
RK
2812 int found_better = 1;
2813 int save_do_not_record = do_not_record;
2814 int save_hash_arg_in_memory = hash_arg_in_memory;
7afe21cc
RK
2815 int addr_volatile;
2816 int regno;
2197a88a 2817 unsigned hash;
7afe21cc
RK
2818
2819 /* Do not try to replace constant addresses or addresses of local and
2820 argument slots. These MEM expressions are made only once and inserted
2821 in many instructions, as well as being used to control symbol table
2822 output. It is not safe to clobber them.
2823
2824 There are some uncommon cases where the address is already in a register
2825 for some reason, but we cannot take advantage of that because we have
2826 no easy way to unshare the MEM. In addition, looking up all stack
2827 addresses is costly. */
2828 if ((GET_CODE (addr) == PLUS
f8cfc6aa 2829 && REG_P (XEXP (addr, 0))
7afe21cc
RK
2830 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2831 && (regno = REGNO (XEXP (addr, 0)),
8bc169f2
DE
2832 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2833 || regno == ARG_POINTER_REGNUM))
f8cfc6aa 2834 || (REG_P (addr)
8bc169f2
DE
2835 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2836 || regno == HARD_FRAME_POINTER_REGNUM
2837 || regno == ARG_POINTER_REGNUM))
7afe21cc
RK
2838 || CONSTANT_ADDRESS_P (addr))
2839 return;
2840
2841 /* If this address is not simply a register, try to fold it. This will
2842 sometimes simplify the expression. Many simplifications
2843 will not be valid, but some, usually applying the associative rule, will
2844 be valid and produce better code. */
f8cfc6aa 2845 if (!REG_P (addr))
8c87f107
RK
2846 {
2847 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
630c79be
BS
2848 int addr_folded_cost = address_cost (folded, mode);
2849 int addr_cost = address_cost (addr, mode);
2850
2851 if ((addr_folded_cost < addr_cost
2852 || (addr_folded_cost == addr_cost
2853 /* ??? The rtx_cost comparison is left over from an older
2854 version of this code. It is probably no longer helpful. */
2855 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2856 || approx_reg_cost (folded) < approx_reg_cost (addr))))
8c87f107
RK
2857 && validate_change (insn, loc, folded, 0))
2858 addr = folded;
2859 }
278a83b2 2860
42495ca0
RK
2861 /* If this address is not in the hash table, we can't look for equivalences
2862 of the whole address. Also, ignore if volatile. */
2863
7afe21cc 2864 do_not_record = 0;
2197a88a 2865 hash = HASH (addr, Pmode);
7afe21cc
RK
2866 addr_volatile = do_not_record;
2867 do_not_record = save_do_not_record;
2868 hash_arg_in_memory = save_hash_arg_in_memory;
7afe21cc
RK
2869
2870 if (addr_volatile)
2871 return;
2872
2197a88a 2873 elt = lookup (addr, hash, Pmode);
7afe21cc 2874
42495ca0
RK
2875 if (elt)
2876 {
2877 /* We need to find the best (under the criteria documented above) entry
2878 in the class that is valid. We use the `flag' field to indicate
2879 choices that were invalid and iterate until we can't find a better
2880 one that hasn't already been tried. */
7afe21cc 2881
42495ca0
RK
2882 for (p = elt->first_same_value; p; p = p->next_same_value)
2883 p->flag = 0;
7afe21cc 2884
42495ca0
RK
2885 while (found_better)
2886 {
01329426 2887 int best_addr_cost = address_cost (*loc, mode);
42495ca0 2888 int best_rtx_cost = (elt->cost + 1) >> 1;
01329426 2889 int exp_cost;
278a83b2 2890 struct table_elt *best_elt = elt;
42495ca0
RK
2891
2892 found_better = 0;
2893 for (p = elt->first_same_value; p; p = p->next_same_value)
2f541799 2894 if (! p->flag)
42495ca0 2895 {
f8cfc6aa 2896 if ((REG_P (p->exp)
0516f6fe 2897 || exp_equiv_p (p->exp, p->exp, 1, false))
01329426
JH
2898 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2899 || (exp_cost == best_addr_cost
05bd3d41 2900 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2f541799
MM
2901 {
2902 found_better = 1;
01329426 2903 best_addr_cost = exp_cost;
2f541799
MM
2904 best_rtx_cost = (p->cost + 1) >> 1;
2905 best_elt = p;
2906 }
42495ca0 2907 }
7afe21cc 2908
42495ca0
RK
2909 if (found_better)
2910 {
2911 if (validate_change (insn, loc,
906c4e36
RK
2912 canon_reg (copy_rtx (best_elt->exp),
2913 NULL_RTX), 0))
42495ca0
RK
2914 return;
2915 else
2916 best_elt->flag = 1;
2917 }
2918 }
2919 }
7afe21cc 2920
42495ca0
RK
2921 /* If the address is a binary operation with the first operand a register
2922 and the second a constant, do the same as above, but looking for
2923 equivalences of the register. Then try to simplify before checking for
2924 the best address to use. This catches a few cases: First is when we
2925 have REG+const and the register is another REG+const. We can often merge
2926 the constants and eliminate one insn and one register. It may also be
2927 that a machine has a cheap REG+REG+const. Finally, this improves the
2928 code on the Alpha for unaligned byte stores. */
2929
2930 if (flag_expensive_optimizations
ec8e098d 2931 && ARITHMETIC_P (*loc)
f8cfc6aa 2932 && REG_P (XEXP (*loc, 0)))
7afe21cc 2933 {
7b9c108f 2934 rtx op1 = XEXP (*loc, 1);
42495ca0
RK
2935
2936 do_not_record = 0;
2197a88a 2937 hash = HASH (XEXP (*loc, 0), Pmode);
42495ca0
RK
2938 do_not_record = save_do_not_record;
2939 hash_arg_in_memory = save_hash_arg_in_memory;
42495ca0 2940
2197a88a 2941 elt = lookup (XEXP (*loc, 0), hash, Pmode);
42495ca0
RK
2942 if (elt == 0)
2943 return;
2944
2945 /* We need to find the best (under the criteria documented above) entry
2946 in the class that is valid. We use the `flag' field to indicate
2947 choices that were invalid and iterate until we can't find a better
2948 one that hasn't already been tried. */
7afe21cc 2949
7afe21cc 2950 for (p = elt->first_same_value; p; p = p->next_same_value)
42495ca0 2951 p->flag = 0;
7afe21cc 2952
42495ca0 2953 while (found_better)
7afe21cc 2954 {
01329426 2955 int best_addr_cost = address_cost (*loc, mode);
42495ca0 2956 int best_rtx_cost = (COST (*loc) + 1) >> 1;
278a83b2 2957 struct table_elt *best_elt = elt;
42495ca0 2958 rtx best_rtx = *loc;
f6516aee
JW
2959 int count;
2960
2961 /* This is at worst case an O(n^2) algorithm, so limit our search
2962 to the first 32 elements on the list. This avoids trouble
2963 compiling code with very long basic blocks that can easily
0cedb36c
JL
2964 call simplify_gen_binary so many times that we run out of
2965 memory. */
96b0e481 2966
0cedb36c
JL
2967 found_better = 0;
2968 for (p = elt->first_same_value, count = 0;
2969 p && count < 32;
2970 p = p->next_same_value, count++)
2971 if (! p->flag
f8cfc6aa 2972 && (REG_P (p->exp)
0516f6fe 2973 || exp_equiv_p (p->exp, p->exp, 1, false)))
0cedb36c
JL
2974 {
2975 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
7b9c108f 2976 p->exp, op1);
01329426 2977 int new_cost;
b7ca416f
AP
2978
2979 /* Get the canonical version of the address so we can accept
2980 more. */
2981 new = canon_for_address (new);
2982
01329426 2983 new_cost = address_cost (new, mode);
96b0e481 2984
01329426
JH
2985 if (new_cost < best_addr_cost
2986 || (new_cost == best_addr_cost
2987 && (COST (new) + 1) >> 1 > best_rtx_cost))
0cedb36c
JL
2988 {
2989 found_better = 1;
01329426 2990 best_addr_cost = new_cost;
0cedb36c
JL
2991 best_rtx_cost = (COST (new) + 1) >> 1;
2992 best_elt = p;
2993 best_rtx = new;
2994 }
2995 }
96b0e481 2996
0cedb36c
JL
2997 if (found_better)
2998 {
2999 if (validate_change (insn, loc,
3000 canon_reg (copy_rtx (best_rtx),
3001 NULL_RTX), 0))
3002 return;
3003 else
3004 best_elt->flag = 1;
3005 }
3006 }
3007 }
96b0e481
RK
3008}
3009\f
bca05d20
RK
3010/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3011 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3012 what values are being compared.
1a87eea2 3013
bca05d20
RK
3014 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3015 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3016 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3017 compared to produce cc0.
a432f20d 3018
bca05d20
RK
3019 The return value is the comparison operator and is either the code of
3020 A or the code corresponding to the inverse of the comparison. */
7afe21cc 3021
0cedb36c 3022static enum rtx_code
7080f735
AJ
3023find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3024 enum machine_mode *pmode1, enum machine_mode *pmode2)
7afe21cc 3025{
0cedb36c 3026 rtx arg1, arg2;
1a87eea2 3027
0cedb36c 3028 arg1 = *parg1, arg2 = *parg2;
7afe21cc 3029
0cedb36c 3030 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 3031
0cedb36c 3032 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 3033 {
da7d8304 3034 /* Set nonzero when we find something of interest. */
0cedb36c
JL
3035 rtx x = 0;
3036 int reverse_code = 0;
3037 struct table_elt *p = 0;
6076248a 3038
0cedb36c
JL
3039 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3040 On machines with CC0, this is the only case that can occur, since
3041 fold_rtx will return the COMPARE or item being compared with zero
3042 when given CC0. */
6076248a 3043
0cedb36c
JL
3044 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3045 x = arg1;
6076248a 3046
0cedb36c
JL
3047 /* If ARG1 is a comparison operator and CODE is testing for
3048 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 3049
ec8e098d 3050 else if (COMPARISON_P (arg1))
7afe21cc 3051 {
efdc7e19
RH
3052#ifdef FLOAT_STORE_FLAG_VALUE
3053 REAL_VALUE_TYPE fsfv;
3054#endif
3055
0cedb36c
JL
3056 if (code == NE
3057 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3058 && code == LT && STORE_FLAG_VALUE == -1)
3059#ifdef FLOAT_STORE_FLAG_VALUE
3060 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
efdc7e19
RH
3061 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3062 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 3063#endif
a432f20d 3064 )
0cedb36c
JL
3065 x = arg1;
3066 else if (code == EQ
3067 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3068 && code == GE && STORE_FLAG_VALUE == -1)
3069#ifdef FLOAT_STORE_FLAG_VALUE
3070 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
efdc7e19
RH
3071 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3072 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3073#endif
3074 )
3075 x = arg1, reverse_code = 1;
7afe21cc
RK
3076 }
3077
0cedb36c 3078 /* ??? We could also check for
7afe21cc 3079
0cedb36c 3080 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 3081
0cedb36c 3082 and related forms, but let's wait until we see them occurring. */
7afe21cc 3083
0cedb36c
JL
3084 if (x == 0)
3085 /* Look up ARG1 in the hash table and see if it has an equivalence
3086 that lets us see what is being compared. */
0516f6fe 3087 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 3088 if (p)
8b03b984
R
3089 {
3090 p = p->first_same_value;
3091
3092 /* If what we compare is already known to be constant, that is as
3093 good as it gets.
3094 We need to break the loop in this case, because otherwise we
3095 can have an infinite loop when looking at a reg that is known
3096 to be a constant which is the same as a comparison of a reg
3097 against zero which appears later in the insn stream, which in
3098 turn is constant and the same as the comparison of the first reg
3099 against zero... */
3100 if (p->is_const)
3101 break;
3102 }
7afe21cc 3103
0cedb36c 3104 for (; p; p = p->next_same_value)
7afe21cc 3105 {
0cedb36c 3106 enum machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
3107#ifdef FLOAT_STORE_FLAG_VALUE
3108 REAL_VALUE_TYPE fsfv;
3109#endif
7afe21cc 3110
0cedb36c 3111 /* If the entry isn't valid, skip it. */
0516f6fe 3112 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 3113 continue;
f76b9db2 3114
bca05d20
RK
3115 if (GET_CODE (p->exp) == COMPARE
3116 /* Another possibility is that this machine has a compare insn
3117 that includes the comparison code. In that case, ARG1 would
3118 be equivalent to a comparison operation that would set ARG1 to
3119 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3120 ORIG_CODE is the actual comparison being done; if it is an EQ,
3121 we must reverse ORIG_CODE. On machine with a negative value
3122 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3123 || ((code == NE
3124 || (code == LT
3125 && GET_MODE_CLASS (inner_mode) == MODE_INT
3126 && (GET_MODE_BITSIZE (inner_mode)
3127 <= HOST_BITS_PER_WIDE_INT)
3128 && (STORE_FLAG_VALUE
3129 & ((HOST_WIDE_INT) 1
3130 << (GET_MODE_BITSIZE (inner_mode) - 1))))
0cedb36c 3131#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20
RK
3132 || (code == LT
3133 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
efdc7e19
RH
3134 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3135 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 3136#endif
bca05d20 3137 )
ec8e098d 3138 && COMPARISON_P (p->exp)))
7afe21cc 3139 {
0cedb36c
JL
3140 x = p->exp;
3141 break;
3142 }
3143 else if ((code == EQ
3144 || (code == GE
3145 && GET_MODE_CLASS (inner_mode) == MODE_INT
3146 && (GET_MODE_BITSIZE (inner_mode)
3147 <= HOST_BITS_PER_WIDE_INT)
3148 && (STORE_FLAG_VALUE
3149 & ((HOST_WIDE_INT) 1
3150 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3151#ifdef FLOAT_STORE_FLAG_VALUE
3152 || (code == GE
3153 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
efdc7e19
RH
3154 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3155 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3156#endif
3157 )
ec8e098d 3158 && COMPARISON_P (p->exp))
0cedb36c
JL
3159 {
3160 reverse_code = 1;
3161 x = p->exp;
3162 break;
7afe21cc
RK
3163 }
3164
4977bab6
ZW
3165 /* If this non-trapping address, e.g. fp + constant, the
3166 equivalent is a better operand since it may let us predict
3167 the value of the comparison. */
3168 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
3169 {
3170 arg1 = p->exp;
3171 continue;
3172 }
7afe21cc 3173 }
7afe21cc 3174
0cedb36c
JL
3175 /* If we didn't find a useful equivalence for ARG1, we are done.
3176 Otherwise, set up for the next iteration. */
3177 if (x == 0)
3178 break;
7afe21cc 3179
78192b09
RH
3180 /* If we need to reverse the comparison, make sure that that is
3181 possible -- we can't necessarily infer the value of GE from LT
3182 with floating-point operands. */
0cedb36c 3183 if (reverse_code)
261efdef
JH
3184 {
3185 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3186 if (reversed == UNKNOWN)
3187 break;
68252e27
KH
3188 else
3189 code = reversed;
261efdef 3190 }
ec8e098d 3191 else if (COMPARISON_P (x))
261efdef
JH
3192 code = GET_CODE (x);
3193 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
3194 }
3195
0cedb36c
JL
3196 /* Return our results. Return the modes from before fold_rtx
3197 because fold_rtx might produce const_int, and then it's too late. */
3198 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3199 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3200
3201 return code;
7afe21cc
RK
3202}
3203\f
3204/* If X is a nontrivial arithmetic operation on an argument
3205 for which a constant value can be determined, return
3206 the result of operating on that value, as a constant.
3207 Otherwise, return X, possibly with one or more operands
3208 modified by recursive calls to this function.
3209
e7bb59fa
RK
3210 If X is a register whose contents are known, we do NOT
3211 return those contents here. equiv_constant is called to
3212 perform that task.
7afe21cc
RK
3213
3214 INSN is the insn that we may be modifying. If it is 0, make a copy
3215 of X before modifying it. */
3216
3217static rtx
7080f735 3218fold_rtx (rtx x, rtx insn)
7afe21cc 3219{
b3694847
SS
3220 enum rtx_code code;
3221 enum machine_mode mode;
3222 const char *fmt;
3223 int i;
7afe21cc
RK
3224 rtx new = 0;
3225 int copied = 0;
3226 int must_swap = 0;
3227
3228 /* Folded equivalents of first two operands of X. */
3229 rtx folded_arg0;
3230 rtx folded_arg1;
3231
3232 /* Constant equivalents of first three operands of X;
3233 0 when no such equivalent is known. */
3234 rtx const_arg0;
3235 rtx const_arg1;
3236 rtx const_arg2;
3237
3238 /* The mode of the first operand of X. We need this for sign and zero
3239 extends. */
3240 enum machine_mode mode_arg0;
3241
3242 if (x == 0)
3243 return x;
3244
3245 mode = GET_MODE (x);
3246 code = GET_CODE (x);
3247 switch (code)
3248 {
3249 case CONST:
3250 case CONST_INT:
3251 case CONST_DOUBLE:
69ef87e2 3252 case CONST_VECTOR:
7afe21cc
RK
3253 case SYMBOL_REF:
3254 case LABEL_REF:
3255 case REG:
3256 /* No use simplifying an EXPR_LIST
3257 since they are used only for lists of args
3258 in a function call's REG_EQUAL note. */
3259 case EXPR_LIST:
3260 return x;
3261
3262#ifdef HAVE_cc0
3263 case CC0:
3264 return prev_insn_cc0;
3265#endif
3266
3267 case PC:
3268 /* If the next insn is a CODE_LABEL followed by a jump table,
3269 PC's value is a LABEL_REF pointing to that label. That
8aeea6e6 3270 lets us fold switch statements on the VAX. */
e1233a7d
RH
3271 {
3272 rtx next;
7c2aa9d7 3273 if (insn && tablejump_p (insn, &next, NULL))
e1233a7d
RH
3274 return gen_rtx_LABEL_REF (Pmode, next);
3275 }
7afe21cc
RK
3276 break;
3277
3278 case SUBREG:
c610adec
RK
3279 /* See if we previously assigned a constant value to this SUBREG. */
3280 if ((new = lookup_as_function (x, CONST_INT)) != 0
3281 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
7afe21cc
RK
3282 return new;
3283
4b980e20
RK
3284 /* If this is a paradoxical SUBREG, we have no idea what value the
3285 extra bits would have. However, if the operand is equivalent
3286 to a SUBREG whose operand is the same as our mode, and all the
3287 modes are within a word, we can just use the inner operand
31c85c78
RK
3288 because these SUBREGs just say how to treat the register.
3289
3290 Similarly if we find an integer constant. */
4b980e20 3291
e5f6a288 3292 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4b980e20
RK
3293 {
3294 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3295 struct table_elt *elt;
3296
3297 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3298 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3299 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3300 imode)) != 0)
ddc356e8 3301 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
31c85c78
RK
3302 {
3303 if (CONSTANT_P (elt->exp)
3304 && GET_MODE (elt->exp) == VOIDmode)
3305 return elt->exp;
3306
4b980e20
RK
3307 if (GET_CODE (elt->exp) == SUBREG
3308 && GET_MODE (SUBREG_REG (elt->exp)) == mode
0516f6fe 3309 && exp_equiv_p (elt->exp, elt->exp, 1, false))
4b980e20 3310 return copy_rtx (SUBREG_REG (elt->exp));
1bb98cec 3311 }
4b980e20
RK
3312
3313 return x;
3314 }
e5f6a288 3315
7afe21cc
RK
3316 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3317 We might be able to if the SUBREG is extracting a single word in an
3318 integral mode or extracting the low part. */
3319
3320 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3321 const_arg0 = equiv_constant (folded_arg0);
3322 if (const_arg0)
3323 folded_arg0 = const_arg0;
3324
3325 if (folded_arg0 != SUBREG_REG (x))
3326 {
949c5d62
JH
3327 new = simplify_subreg (mode, folded_arg0,
3328 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7afe21cc
RK
3329 if (new)
3330 return new;
3331 }
e5f6a288 3332
f8cfc6aa 3333 if (REG_P (folded_arg0)
4c442790 3334 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
e5f6a288
RK
3335 {
3336 struct table_elt *elt;
3337
e5f6a288
RK
3338 elt = lookup (folded_arg0,
3339 HASH (folded_arg0, GET_MODE (folded_arg0)),
3340 GET_MODE (folded_arg0));
3341
3342 if (elt)
3343 elt = elt->first_same_value;
3344
4c442790
PB
3345 if (subreg_lowpart_p (x))
3346 /* If this is a narrowing SUBREG and our operand is a REG, see
3347 if we can find an equivalence for REG that is an arithmetic
3348 operation in a wider mode where both operands are paradoxical
3349 SUBREGs from objects of our result mode. In that case, we
3350 couldn-t report an equivalent value for that operation, since we
3351 don't know what the extra bits will be. But we can find an
3352 equivalence for this SUBREG by folding that operation in the
3353 narrow mode. This allows us to fold arithmetic in narrow modes
3354 when the machine only supports word-sized arithmetic.
3355
3356 Also look for a case where we have a SUBREG whose operand
3357 is the same as our result. If both modes are smaller
3358 than a word, we are simply interpreting a register in
3359 different modes and we can use the inner value. */
3360
3361 for (; elt; elt = elt->next_same_value)
3362 {
3363 enum rtx_code eltcode = GET_CODE (elt->exp);
3364
3365 /* Just check for unary and binary operations. */
ec8e098d
PB
3366 if (UNARY_P (elt->exp)
3367 && eltcode != SIGN_EXTEND
3368 && eltcode != ZERO_EXTEND
4c442790
PB
3369 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3370 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3371 && (GET_MODE_CLASS (mode)
3372 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3373 {
3374 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
e5f6a288 3375
f8cfc6aa 3376 if (!REG_P (op0) && ! CONSTANT_P (op0))
4c442790 3377 op0 = fold_rtx (op0, NULL_RTX);
e5f6a288 3378
e5f6a288 3379 op0 = equiv_constant (op0);
4c442790
PB
3380 if (op0)
3381 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3382 op0, mode);
3383 }
ec8e098d 3384 else if (ARITHMETIC_P (elt->exp)
4c442790
PB
3385 && eltcode != DIV && eltcode != MOD
3386 && eltcode != UDIV && eltcode != UMOD
3387 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3388 && eltcode != ROTATE && eltcode != ROTATERT
3389 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3390 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3391 == mode))
3392 || CONSTANT_P (XEXP (elt->exp, 0)))
3393 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3394 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3395 == mode))
3396 || CONSTANT_P (XEXP (elt->exp, 1))))
3397 {
3398 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3399 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3400
f8cfc6aa 3401 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
4c442790
PB
3402 op0 = fold_rtx (op0, NULL_RTX);
3403
3404 if (op0)
3405 op0 = equiv_constant (op0);
3406
f8cfc6aa 3407 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
4c442790
PB
3408 op1 = fold_rtx (op1, NULL_RTX);
3409
3410 if (op1)
3411 op1 = equiv_constant (op1);
3412
3413 /* If we are looking for the low SImode part of
3414 (ashift:DI c (const_int 32)), it doesn't work
3415 to compute that in SImode, because a 32-bit shift
3416 in SImode is unpredictable. We know the value is 0. */
3417 if (op0 && op1
3418 && GET_CODE (elt->exp) == ASHIFT
3419 && GET_CODE (op1) == CONST_INT
3420 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3421 {
3422 if (INTVAL (op1)
3423 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3424 /* If the count fits in the inner mode's width,
3425 but exceeds the outer mode's width,
3426 the value will get truncated to 0
3427 by the subreg. */
3428 new = CONST0_RTX (mode);
3429 else
3430 /* If the count exceeds even the inner mode's width,
76fb0b60 3431 don't fold this expression. */
4c442790
PB
3432 new = 0;
3433 }
3434 else if (op0 && op1)
3435 new = simplify_binary_operation (GET_CODE (elt->exp), mode, op0, op1);
3436 }
e5f6a288 3437
4c442790
PB
3438 else if (GET_CODE (elt->exp) == SUBREG
3439 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3440 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3441 <= UNITS_PER_WORD)
0516f6fe 3442 && exp_equiv_p (elt->exp, elt->exp, 1, false))
4c442790 3443 new = copy_rtx (SUBREG_REG (elt->exp));
4b980e20 3444
4c442790
PB
3445 if (new)
3446 return new;
3447 }
3448 else
3449 /* A SUBREG resulting from a zero extension may fold to zero if
3450 it extracts higher bits than the ZERO_EXTEND's source bits.
3451 FIXME: if combine tried to, er, combine these instructions,
3452 this transformation may be moved to simplify_subreg. */
3453 for (; elt; elt = elt->next_same_value)
3454 {
3455 if (GET_CODE (elt->exp) == ZERO_EXTEND
3456 && subreg_lsb (x)
3457 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3458 return CONST0_RTX (mode);
3459 }
e5f6a288
RK
3460 }
3461
7afe21cc
RK
3462 return x;
3463
3464 case NOT:
3465 case NEG:
3466 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3467 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3468 new = lookup_as_function (XEXP (x, 0), code);
3469 if (new)
3470 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3471 break;
13c9910f 3472
7afe21cc
RK
3473 case MEM:
3474 /* If we are not actually processing an insn, don't try to find the
3475 best address. Not only don't we care, but we could modify the
3476 MEM in an invalid way since we have no insn to validate against. */
3477 if (insn != 0)
01329426 3478 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
7afe21cc
RK
3479
3480 {
3481 /* Even if we don't fold in the insn itself,
3482 we can safely do so here, in hopes of getting a constant. */
906c4e36 3483 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
7afe21cc 3484 rtx base = 0;
906c4e36 3485 HOST_WIDE_INT offset = 0;
7afe21cc 3486
f8cfc6aa 3487 if (REG_P (addr)
1bb98cec
DM
3488 && REGNO_QTY_VALID_P (REGNO (addr)))
3489 {
3490 int addr_q = REG_QTY (REGNO (addr));
3491 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3492
3493 if (GET_MODE (addr) == addr_ent->mode
3494 && addr_ent->const_rtx != NULL_RTX)
3495 addr = addr_ent->const_rtx;
3496 }
7afe21cc
RK
3497
3498 /* If address is constant, split it into a base and integer offset. */
3499 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3500 base = addr;
3501 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3502 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3503 {
3504 base = XEXP (XEXP (addr, 0), 0);
3505 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3506 }
3507 else if (GET_CODE (addr) == LO_SUM
3508 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3509 base = XEXP (addr, 1);
3510
3511 /* If this is a constant pool reference, we can fold it into its
3512 constant to allow better value tracking. */
3513 if (base && GET_CODE (base) == SYMBOL_REF
3514 && CONSTANT_POOL_ADDRESS_P (base))
3515 {
3516 rtx constant = get_pool_constant (base);
3517 enum machine_mode const_mode = get_pool_mode (base);
3518 rtx new;
3519
3520 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
dd0ba281
RS
3521 {
3522 constant_pool_entries_cost = COST (constant);
3523 constant_pool_entries_regcost = approx_reg_cost (constant);
3524 }
7afe21cc
RK
3525
3526 /* If we are loading the full constant, we have an equivalence. */
3527 if (offset == 0 && mode == const_mode)
3528 return constant;
3529
9faa82d8 3530 /* If this actually isn't a constant (weird!), we can't do
7afe21cc
RK
3531 anything. Otherwise, handle the two most common cases:
3532 extracting a word from a multi-word constant, and extracting
3533 the low-order bits. Other cases don't seem common enough to
3534 worry about. */
3535 if (! CONSTANT_P (constant))
3536 return x;
3537
3538 if (GET_MODE_CLASS (mode) == MODE_INT
3539 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3540 && offset % UNITS_PER_WORD == 0
3541 && (new = operand_subword (constant,
3542 offset / UNITS_PER_WORD,
3543 0, const_mode)) != 0)
3544 return new;
3545
3546 if (((BYTES_BIG_ENDIAN
3547 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3548 || (! BYTES_BIG_ENDIAN && offset == 0))
4de249d9 3549 && (new = gen_lowpart (mode, constant)) != 0)
7afe21cc
RK
3550 return new;
3551 }
3552
3553 /* If this is a reference to a label at a known position in a jump
3554 table, we also know its value. */
3555 if (base && GET_CODE (base) == LABEL_REF)
3556 {
3557 rtx label = XEXP (base, 0);
3558 rtx table_insn = NEXT_INSN (label);
278a83b2 3559
4b4bf941 3560 if (table_insn && JUMP_P (table_insn)
7afe21cc
RK
3561 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3562 {
3563 rtx table = PATTERN (table_insn);
3564
3565 if (offset >= 0
3566 && (offset / GET_MODE_SIZE (GET_MODE (table))
3567 < XVECLEN (table, 0)))
3568 return XVECEXP (table, 0,
3569 offset / GET_MODE_SIZE (GET_MODE (table)));
3570 }
4b4bf941 3571 if (table_insn && JUMP_P (table_insn)
7afe21cc
RK
3572 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3573 {
3574 rtx table = PATTERN (table_insn);
3575
3576 if (offset >= 0
3577 && (offset / GET_MODE_SIZE (GET_MODE (table))
3578 < XVECLEN (table, 1)))
3579 {
3580 offset /= GET_MODE_SIZE (GET_MODE (table));
38a448ca
RH
3581 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3582 XEXP (table, 0));
7afe21cc
RK
3583
3584 if (GET_MODE (table) != Pmode)
38a448ca 3585 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
7afe21cc 3586
278a83b2 3587 /* Indicate this is a constant. This isn't a
67a37737
RK
3588 valid form of CONST, but it will only be used
3589 to fold the next insns and then discarded, so
ac7ef8d5
FS
3590 it should be safe.
3591
3592 Note this expression must be explicitly discarded,
3593 by cse_insn, else it may end up in a REG_EQUAL note
3594 and "escape" to cause problems elsewhere. */
38a448ca 3595 return gen_rtx_CONST (GET_MODE (new), new);
7afe21cc
RK
3596 }
3597 }
3598 }
3599
3600 return x;
3601 }
9255709c 3602
a5e5cf67
RH
3603#ifdef NO_FUNCTION_CSE
3604 case CALL:
3605 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3606 return x;
3607 break;
3608#endif
3609
9255709c 3610 case ASM_OPERANDS:
6462bb43
AO
3611 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3612 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3613 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
9255709c 3614 break;
278a83b2 3615
e9a25f70
JL
3616 default:
3617 break;
7afe21cc
RK
3618 }
3619
3620 const_arg0 = 0;
3621 const_arg1 = 0;
3622 const_arg2 = 0;
3623 mode_arg0 = VOIDmode;
3624
3625 /* Try folding our operands.
3626 Then see which ones have constant values known. */
3627
3628 fmt = GET_RTX_FORMAT (code);
3629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3630 if (fmt[i] == 'e')
3631 {
3632 rtx arg = XEXP (x, i);
3633 rtx folded_arg = arg, const_arg = 0;
3634 enum machine_mode mode_arg = GET_MODE (arg);
3635 rtx cheap_arg, expensive_arg;
3636 rtx replacements[2];
3637 int j;
5b437e0f 3638 int old_cost = COST_IN (XEXP (x, i), code);
7afe21cc
RK
3639
3640 /* Most arguments are cheap, so handle them specially. */
3641 switch (GET_CODE (arg))
3642 {
3643 case REG:
3644 /* This is the same as calling equiv_constant; it is duplicated
3645 here for speed. */
1bb98cec
DM
3646 if (REGNO_QTY_VALID_P (REGNO (arg)))
3647 {
3648 int arg_q = REG_QTY (REGNO (arg));
3649 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3650
3651 if (arg_ent->const_rtx != NULL_RTX
f8cfc6aa 3652 && !REG_P (arg_ent->const_rtx)
1bb98cec
DM
3653 && GET_CODE (arg_ent->const_rtx) != PLUS)
3654 const_arg
4de249d9 3655 = gen_lowpart (GET_MODE (arg),
1bb98cec
DM
3656 arg_ent->const_rtx);
3657 }
7afe21cc
RK
3658 break;
3659
3660 case CONST:
3661 case CONST_INT:
3662 case SYMBOL_REF:
3663 case LABEL_REF:
3664 case CONST_DOUBLE:
69ef87e2 3665 case CONST_VECTOR:
7afe21cc
RK
3666 const_arg = arg;
3667 break;
3668
3669#ifdef HAVE_cc0
3670 case CC0:
3671 folded_arg = prev_insn_cc0;
3672 mode_arg = prev_insn_cc0_mode;
3673 const_arg = equiv_constant (folded_arg);
3674 break;
3675#endif
3676
3677 default:
3678 folded_arg = fold_rtx (arg, insn);
3679 const_arg = equiv_constant (folded_arg);
3680 }
3681
3682 /* For the first three operands, see if the operand
3683 is constant or equivalent to a constant. */
3684 switch (i)
3685 {
3686 case 0:
3687 folded_arg0 = folded_arg;
3688 const_arg0 = const_arg;
3689 mode_arg0 = mode_arg;
3690 break;
3691 case 1:
3692 folded_arg1 = folded_arg;
3693 const_arg1 = const_arg;
3694 break;
3695 case 2:
3696 const_arg2 = const_arg;
3697 break;
3698 }
3699
3700 /* Pick the least expensive of the folded argument and an
3701 equivalent constant argument. */
3702 if (const_arg == 0 || const_arg == folded_arg
f2fa288f 3703 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
7afe21cc
RK
3704 cheap_arg = folded_arg, expensive_arg = const_arg;
3705 else
3706 cheap_arg = const_arg, expensive_arg = folded_arg;
3707
3708 /* Try to replace the operand with the cheapest of the two
3709 possibilities. If it doesn't work and this is either of the first
3710 two operands of a commutative operation, try swapping them.
3711 If THAT fails, try the more expensive, provided it is cheaper
3712 than what is already there. */
3713
3714 if (cheap_arg == XEXP (x, i))
3715 continue;
3716
3717 if (insn == 0 && ! copied)
3718 {
3719 x = copy_rtx (x);
3720 copied = 1;
3721 }
3722
f2fa288f
RH
3723 /* Order the replacements from cheapest to most expensive. */
3724 replacements[0] = cheap_arg;
3725 replacements[1] = expensive_arg;
3726
68252e27 3727 for (j = 0; j < 2 && replacements[j]; j++)
7afe21cc 3728 {
f2fa288f
RH
3729 int new_cost = COST_IN (replacements[j], code);
3730
3731 /* Stop if what existed before was cheaper. Prefer constants
3732 in the case of a tie. */
3733 if (new_cost > old_cost
3734 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3735 break;
3736
8cce3d04
RS
3737 /* It's not safe to substitute the operand of a conversion
3738 operator with a constant, as the conversion's identity
3739 depends upon the mode of it's operand. This optimization
3740 is handled by the call to simplify_unary_operation. */
3741 if (GET_RTX_CLASS (code) == RTX_UNARY
3742 && GET_MODE (replacements[j]) != mode_arg0
3743 && (code == ZERO_EXTEND
3744 || code == SIGN_EXTEND
3745 || code == TRUNCATE
3746 || code == FLOAT_TRUNCATE
3747 || code == FLOAT_EXTEND
3748 || code == FLOAT
3749 || code == FIX
3750 || code == UNSIGNED_FLOAT
3751 || code == UNSIGNED_FIX))
3752 continue;
3753
7afe21cc
RK
3754 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3755 break;
3756
ec8e098d
PB
3757 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3758 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
7afe21cc
RK
3759 {
3760 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3761 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3762
3763 if (apply_change_group ())
3764 {
3765 /* Swap them back to be invalid so that this loop can
3766 continue and flag them to be swapped back later. */
3767 rtx tem;
3768
3769 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3770 XEXP (x, 1) = tem;
3771 must_swap = 1;
3772 break;
3773 }
3774 }
3775 }
3776 }
3777
2d8b0f3a
JL
3778 else
3779 {
3780 if (fmt[i] == 'E')
3781 /* Don't try to fold inside of a vector of expressions.
3782 Doing nothing is harmless. */
e49a1d2e 3783 {;}
2d8b0f3a 3784 }
7afe21cc
RK
3785
3786 /* If a commutative operation, place a constant integer as the second
3787 operand unless the first operand is also a constant integer. Otherwise,
3788 place any constant second unless the first operand is also a constant. */
3789
ec8e098d 3790 if (COMMUTATIVE_P (x))
7afe21cc 3791 {
c715abdd
RS
3792 if (must_swap
3793 || swap_commutative_operands_p (const_arg0 ? const_arg0
3794 : XEXP (x, 0),
3795 const_arg1 ? const_arg1
3796 : XEXP (x, 1)))
7afe21cc 3797 {
b3694847 3798 rtx tem = XEXP (x, 0);
7afe21cc
RK
3799
3800 if (insn == 0 && ! copied)
3801 {
3802 x = copy_rtx (x);
3803 copied = 1;
3804 }
3805
3806 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3807 validate_change (insn, &XEXP (x, 1), tem, 1);
3808 if (apply_change_group ())
3809 {
3810 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3811 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3812 }
3813 }
3814 }
3815
3816 /* If X is an arithmetic operation, see if we can simplify it. */
3817
3818 switch (GET_RTX_CLASS (code))
3819 {
ec8e098d 3820 case RTX_UNARY:
67a37737
RK
3821 {
3822 int is_const = 0;
3823
3824 /* We can't simplify extension ops unless we know the
3825 original mode. */
3826 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3827 && mode_arg0 == VOIDmode)
3828 break;
3829
3830 /* If we had a CONST, strip it off and put it back later if we
3831 fold. */
3832 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3833 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3834
3835 new = simplify_unary_operation (code, mode,
3836 const_arg0 ? const_arg0 : folded_arg0,
3837 mode_arg0);
ec666d23
JH
3838 /* NEG of PLUS could be converted into MINUS, but that causes
3839 expressions of the form
3840 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3841 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3842 FIXME: those ports should be fixed. */
3843 if (new != 0 && is_const
3844 && GET_CODE (new) == PLUS
3845 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3846 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3847 && GET_CODE (XEXP (new, 1)) == CONST_INT)
38a448ca 3848 new = gen_rtx_CONST (mode, new);
67a37737 3849 }
7afe21cc 3850 break;
278a83b2 3851
ec8e098d
PB
3852 case RTX_COMPARE:
3853 case RTX_COMM_COMPARE:
7afe21cc
RK
3854 /* See what items are actually being compared and set FOLDED_ARG[01]
3855 to those values and CODE to the actual comparison code. If any are
3856 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3857 do anything if both operands are already known to be constant. */
3858
21e5076a
UB
3859 /* ??? Vector mode comparisons are not supported yet. */
3860 if (VECTOR_MODE_P (mode))
3861 break;
3862
7afe21cc
RK
3863 if (const_arg0 == 0 || const_arg1 == 0)
3864 {
3865 struct table_elt *p0, *p1;
d6edb99e 3866 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
13c9910f 3867 enum machine_mode mode_arg1;
c610adec
RK
3868
3869#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 3870 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 3871 {
d6edb99e 3872 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
68252e27 3873 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 3874 false_rtx = CONST0_RTX (mode);
c610adec
RK
3875 }
3876#endif
7afe21cc 3877
13c9910f
RS
3878 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3879 &mode_arg0, &mode_arg1);
7afe21cc 3880
13c9910f
RS
3881 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3882 what kinds of things are being compared, so we can't do
3883 anything with this comparison. */
7afe21cc
RK
3884
3885 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3886 break;
3887
75335440
KH
3888 const_arg0 = equiv_constant (folded_arg0);
3889 const_arg1 = equiv_constant (folded_arg1);
3890
0f41302f
MS
3891 /* If we do not now have two constants being compared, see
3892 if we can nevertheless deduce some things about the
3893 comparison. */
7afe21cc
RK
3894 if (const_arg0 == 0 || const_arg1 == 0)
3895 {
4977bab6
ZW
3896 /* Some addresses are known to be nonzero. We don't know
3897 their sign, but equality comparisons are known. */
7afe21cc 3898 if (const_arg1 == const0_rtx
4977bab6 3899 && nonzero_address_p (folded_arg0))
7afe21cc
RK
3900 {
3901 if (code == EQ)
d6edb99e 3902 return false_rtx;
7afe21cc 3903 else if (code == NE)
d6edb99e 3904 return true_rtx;
7afe21cc
RK
3905 }
3906
fd13313f
JH
3907 /* See if the two operands are the same. */
3908
3909 if (folded_arg0 == folded_arg1
f8cfc6aa
JQ
3910 || (REG_P (folded_arg0)
3911 && REG_P (folded_arg1)
fd13313f
JH
3912 && (REG_QTY (REGNO (folded_arg0))
3913 == REG_QTY (REGNO (folded_arg1))))
3914 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3915 SAFE_HASH (folded_arg0, mode_arg0),
3916 mode_arg0))
fd13313f 3917 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3918 SAFE_HASH (folded_arg1, mode_arg0),
3919 mode_arg0))
fd13313f
JH
3920 && p0->first_same_value == p1->first_same_value))
3921 {
71925bc0
RS
3922 /* Sadly two equal NaNs are not equivalent. */
3923 if (!HONOR_NANS (mode_arg0))
3924 return ((code == EQ || code == LE || code == GE
3925 || code == LEU || code == GEU || code == UNEQ
3926 || code == UNLE || code == UNGE
3927 || code == ORDERED)
3928 ? true_rtx : false_rtx);
3929 /* Take care for the FP compares we can resolve. */
3930 if (code == UNEQ || code == UNLE || code == UNGE)
3931 return true_rtx;
3932 if (code == LTGT || code == LT || code == GT)
3933 return false_rtx;
fd13313f 3934 }
7afe21cc
RK
3935
3936 /* If FOLDED_ARG0 is a register, see if the comparison we are
3937 doing now is either the same as we did before or the reverse
3938 (we only check the reverse if not floating-point). */
f8cfc6aa 3939 else if (REG_P (folded_arg0))
7afe21cc 3940 {
30f72379 3941 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 3942
1bb98cec
DM
3943 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3944 {
3945 struct qty_table_elem *ent = &qty_table[qty];
3946
3947 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
3948 || (! FLOAT_MODE_P (mode_arg0)
3949 && comparison_dominates_p (ent->comparison_code,
3950 reverse_condition (code))))
1bb98cec
DM
3951 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3952 || (const_arg1
3953 && rtx_equal_p (ent->comparison_const,
3954 const_arg1))
f8cfc6aa 3955 || (REG_P (folded_arg1)
1bb98cec
DM
3956 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3957 return (comparison_dominates_p (ent->comparison_code, code)
d6edb99e 3958 ? true_rtx : false_rtx);
1bb98cec 3959 }
7afe21cc
RK
3960 }
3961 }
3962 }
3963
3964 /* If we are comparing against zero, see if the first operand is
3965 equivalent to an IOR with a constant. If so, we may be able to
3966 determine the result of this comparison. */
3967
3968 if (const_arg1 == const0_rtx)
3969 {
3970 rtx y = lookup_as_function (folded_arg0, IOR);
3971 rtx inner_const;
3972
3973 if (y != 0
3974 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3975 && GET_CODE (inner_const) == CONST_INT
3976 && INTVAL (inner_const) != 0)
3977 {
3978 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
906c4e36
RK
3979 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3980 && (INTVAL (inner_const)
3981 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
d6edb99e 3982 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
c610adec
RK
3983
3984#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 3985 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 3986 {
d6edb99e 3987 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
12530dbe 3988 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 3989 false_rtx = CONST0_RTX (mode);
c610adec
RK
3990 }
3991#endif
7afe21cc
RK
3992
3993 switch (code)
3994 {
3995 case EQ:
d6edb99e 3996 return false_rtx;
7afe21cc 3997 case NE:
d6edb99e 3998 return true_rtx;
7afe21cc
RK
3999 case LT: case LE:
4000 if (has_sign)
d6edb99e 4001 return true_rtx;
7afe21cc
RK
4002 break;
4003 case GT: case GE:
4004 if (has_sign)
d6edb99e 4005 return false_rtx;
7afe21cc 4006 break;
e9a25f70
JL
4007 default:
4008 break;
7afe21cc
RK
4009 }
4010 }
4011 }
4012
c6fb08ad
PB
4013 {
4014 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4015 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4016 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4017 }
7afe21cc
RK
4018 break;
4019
ec8e098d
PB
4020 case RTX_BIN_ARITH:
4021 case RTX_COMM_ARITH:
7afe21cc
RK
4022 switch (code)
4023 {
4024 case PLUS:
4025 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4026 with that LABEL_REF as its second operand. If so, the result is
4027 the first operand of that MINUS. This handles switches with an
4028 ADDR_DIFF_VEC table. */
4029 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4030 {
e650cbda
RK
4031 rtx y
4032 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 4033 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
4034
4035 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4036 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4037 return XEXP (y, 0);
67a37737
RK
4038
4039 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
4040 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4041 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
4042 && GET_CODE (XEXP (y, 0)) == MINUS
4043 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 4044 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
67a37737 4045 return XEXP (XEXP (y, 0), 0);
7afe21cc 4046 }
c2cc0778 4047
e650cbda
RK
4048 /* Likewise if the operands are in the other order. */
4049 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4050 {
4051 rtx y
4052 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 4053 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
4054
4055 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4056 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4057 return XEXP (y, 0);
4058
4059 /* Now try for a CONST of a MINUS like the above. */
4060 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4061 : lookup_as_function (folded_arg1, CONST))) != 0
4062 && GET_CODE (XEXP (y, 0)) == MINUS
4063 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 4064 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
e650cbda
RK
4065 return XEXP (XEXP (y, 0), 0);
4066 }
4067
c2cc0778
RK
4068 /* If second operand is a register equivalent to a negative
4069 CONST_INT, see if we can find a register equivalent to the
4070 positive constant. Make a MINUS if so. Don't do this for
5d595063 4071 a non-negative constant since we might then alternate between
a1f300c0 4072 choosing positive and negative constants. Having the positive
5d595063
RK
4073 constant previously-used is the more common case. Be sure
4074 the resulting constant is non-negative; if const_arg1 were
4075 the smallest negative number this would overflow: depending
4076 on the mode, this would either just be the same value (and
4077 hence not save anything) or be incorrect. */
4078 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4079 && INTVAL (const_arg1) < 0
4741f6ad
JL
4080 /* This used to test
4081
ddc356e8 4082 -INTVAL (const_arg1) >= 0
4741f6ad
JL
4083
4084 But The Sun V5.0 compilers mis-compiled that test. So
4085 instead we test for the problematic value in a more direct
4086 manner and hope the Sun compilers get it correct. */
5c45a8ac
KG
4087 && INTVAL (const_arg1) !=
4088 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 4089 && REG_P (folded_arg1))
c2cc0778 4090 {
ddc356e8 4091 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 4092 struct table_elt *p
0516f6fe 4093 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
4094
4095 if (p)
4096 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 4097 if (REG_P (p->exp))
0cedb36c
JL
4098 return simplify_gen_binary (MINUS, mode, folded_arg0,
4099 canon_reg (p->exp, NULL_RTX));
c2cc0778 4100 }
13c9910f
RS
4101 goto from_plus;
4102
4103 case MINUS:
4104 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4105 If so, produce (PLUS Z C2-C). */
4106 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4107 {
4108 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4109 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
f3becefd
RK
4110 return fold_rtx (plus_constant (copy_rtx (y),
4111 -INTVAL (const_arg1)),
a3b5c94a 4112 NULL_RTX);
13c9910f 4113 }
7afe21cc 4114
ddc356e8 4115 /* Fall through. */
7afe21cc 4116
13c9910f 4117 from_plus:
7afe21cc
RK
4118 case SMIN: case SMAX: case UMIN: case UMAX:
4119 case IOR: case AND: case XOR:
f930bfd0 4120 case MULT:
7afe21cc
RK
4121 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4122 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4123 is known to be of similar form, we may be able to replace the
4124 operation with a combined operation. This may eliminate the
4125 intermediate operation if every use is simplified in this way.
4126 Note that the similar optimization done by combine.c only works
4127 if the intermediate operation's result has only one reference. */
4128
f8cfc6aa 4129 if (REG_P (folded_arg0)
7afe21cc
RK
4130 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4131 {
4132 int is_shift
4133 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4134 rtx y = lookup_as_function (folded_arg0, code);
4135 rtx inner_const;
4136 enum rtx_code associate_code;
4137 rtx new_const;
4138
4139 if (y == 0
4140 || 0 == (inner_const
4141 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4142 || GET_CODE (inner_const) != CONST_INT
4143 /* If we have compiled a statement like
4144 "if (x == (x & mask1))", and now are looking at
4145 "x & mask2", we will have a case where the first operand
4146 of Y is the same as our first operand. Unless we detect
4147 this case, an infinite loop will result. */
4148 || XEXP (y, 0) == folded_arg0)
4149 break;
4150
4151 /* Don't associate these operations if they are a PLUS with the
4152 same constant and it is a power of two. These might be doable
4153 with a pre- or post-increment. Similarly for two subtracts of
4154 identical powers of two with post decrement. */
4155
213d5fbc 4156 if (code == PLUS && const_arg1 == inner_const
940da324
JL
4157 && ((HAVE_PRE_INCREMENT
4158 && exact_log2 (INTVAL (const_arg1)) >= 0)
4159 || (HAVE_POST_INCREMENT
4160 && exact_log2 (INTVAL (const_arg1)) >= 0)
4161 || (HAVE_PRE_DECREMENT
4162 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4163 || (HAVE_POST_DECREMENT
4164 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
7afe21cc
RK
4165 break;
4166
4167 /* Compute the code used to compose the constants. For example,
f930bfd0 4168 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 4169
f930bfd0 4170 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
4171
4172 new_const = simplify_binary_operation (associate_code, mode,
4173 const_arg1, inner_const);
4174
4175 if (new_const == 0)
4176 break;
4177
4178 /* If we are associating shift operations, don't let this
4908e508
RS
4179 produce a shift of the size of the object or larger.
4180 This could occur when we follow a sign-extend by a right
4181 shift on a machine that does a sign-extend as a pair
4182 of shifts. */
7afe21cc
RK
4183
4184 if (is_shift && GET_CODE (new_const) == CONST_INT
4908e508
RS
4185 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4186 {
4187 /* As an exception, we can turn an ASHIFTRT of this
4188 form into a shift of the number of bits - 1. */
4189 if (code == ASHIFTRT)
4190 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4191 else
4192 break;
4193 }
7afe21cc
RK
4194
4195 y = copy_rtx (XEXP (y, 0));
4196
4197 /* If Y contains our first operand (the most common way this
4198 can happen is if Y is a MEM), we would do into an infinite
4199 loop if we tried to fold it. So don't in that case. */
4200
4201 if (! reg_mentioned_p (folded_arg0, y))
4202 y = fold_rtx (y, insn);
4203
0cedb36c 4204 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 4205 }
e9a25f70
JL
4206 break;
4207
f930bfd0
JW
4208 case DIV: case UDIV:
4209 /* ??? The associative optimization performed immediately above is
4210 also possible for DIV and UDIV using associate_code of MULT.
4211 However, we would need extra code to verify that the
4212 multiplication does not overflow, that is, there is no overflow
4213 in the calculation of new_const. */
4214 break;
4215
e9a25f70
JL
4216 default:
4217 break;
7afe21cc
RK
4218 }
4219
4220 new = simplify_binary_operation (code, mode,
4221 const_arg0 ? const_arg0 : folded_arg0,
4222 const_arg1 ? const_arg1 : folded_arg1);
4223 break;
4224
ec8e098d 4225 case RTX_OBJ:
7afe21cc
RK
4226 /* (lo_sum (high X) X) is simply X. */
4227 if (code == LO_SUM && const_arg0 != 0
4228 && GET_CODE (const_arg0) == HIGH
4229 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4230 return const_arg1;
4231 break;
4232
ec8e098d
PB
4233 case RTX_TERNARY:
4234 case RTX_BITFIELD_OPS:
7afe21cc
RK
4235 new = simplify_ternary_operation (code, mode, mode_arg0,
4236 const_arg0 ? const_arg0 : folded_arg0,
4237 const_arg1 ? const_arg1 : folded_arg1,
4238 const_arg2 ? const_arg2 : XEXP (x, 2));
4239 break;
ee5332b8 4240
ec8e098d
PB
4241 default:
4242 break;
7afe21cc
RK
4243 }
4244
4245 return new ? new : x;
4246}
4247\f
4248/* Return a constant value currently equivalent to X.
4249 Return 0 if we don't know one. */
4250
4251static rtx
7080f735 4252equiv_constant (rtx x)
7afe21cc 4253{
f8cfc6aa 4254 if (REG_P (x)
1bb98cec
DM
4255 && REGNO_QTY_VALID_P (REGNO (x)))
4256 {
4257 int x_q = REG_QTY (REGNO (x));
4258 struct qty_table_elem *x_ent = &qty_table[x_q];
4259
4260 if (x_ent->const_rtx)
4de249d9 4261 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 4262 }
7afe21cc 4263
2ce5e1b4 4264 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
4265 return x;
4266
fc3ffe83
RK
4267 /* If X is a MEM, try to fold it outside the context of any insn to see if
4268 it might be equivalent to a constant. That handles the case where it
4269 is a constant-pool reference. Then try to look it up in the hash table
4270 in case it is something whose value we have seen before. */
4271
3c0cb5de 4272 if (MEM_P (x))
fc3ffe83
RK
4273 {
4274 struct table_elt *elt;
4275
906c4e36 4276 x = fold_rtx (x, NULL_RTX);
fc3ffe83
RK
4277 if (CONSTANT_P (x))
4278 return x;
4279
0516f6fe 4280 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
4281 if (elt == 0)
4282 return 0;
4283
4284 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4285 if (elt->is_const && CONSTANT_P (elt->exp))
4286 return elt->exp;
4287 }
4288
7afe21cc
RK
4289 return 0;
4290}
4291\f
4292/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4293 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4294 least-significant part of X.
278a83b2 4295 MODE specifies how big a part of X to return.
7afe21cc
RK
4296
4297 If the requested operation cannot be done, 0 is returned.
4298
4de249d9 4299 This is similar to gen_lowpart_general in emit-rtl.c. */
7afe21cc
RK
4300
4301rtx
7080f735 4302gen_lowpart_if_possible (enum machine_mode mode, rtx x)
7afe21cc
RK
4303{
4304 rtx result = gen_lowpart_common (mode, x);
4305
4306 if (result)
4307 return result;
3c0cb5de 4308 else if (MEM_P (x))
7afe21cc
RK
4309 {
4310 /* This is the only other case we handle. */
b3694847 4311 int offset = 0;
7afe21cc
RK
4312 rtx new;
4313
f76b9db2
ILT
4314 if (WORDS_BIG_ENDIAN)
4315 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4316 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4317 if (BYTES_BIG_ENDIAN)
f1ec5147
RK
4318 /* Adjust the address so that the address-after-the-data is
4319 unchanged. */
4320 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4321 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4322
4323 new = adjust_address_nv (x, mode, offset);
7afe21cc
RK
4324 if (! memory_address_p (mode, XEXP (new, 0)))
4325 return 0;
f1ec5147 4326
7afe21cc
RK
4327 return new;
4328 }
4329 else
4330 return 0;
4331}
4332\f
6de9cd9a 4333/* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
7afe21cc
RK
4334 branch. It will be zero if not.
4335
4336 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 4337 if we are following the taken case of
7080f735 4338 if (i == 2)
7afe21cc
RK
4339 we can add the fact that `i' and '2' are now equivalent.
4340
4341 In any case, we can record that this comparison was passed. If the same
4342 comparison is seen later, we will know its value. */
4343
4344static void
7080f735 4345record_jump_equiv (rtx insn, int taken)
7afe21cc
RK
4346{
4347 int cond_known_true;
4348 rtx op0, op1;
7f1c097d 4349 rtx set;
13c9910f 4350 enum machine_mode mode, mode0, mode1;
7afe21cc
RK
4351 int reversed_nonequality = 0;
4352 enum rtx_code code;
4353
4354 /* Ensure this is the right kind of insn. */
7f1c097d 4355 if (! any_condjump_p (insn))
7afe21cc 4356 return;
7f1c097d 4357 set = pc_set (insn);
7afe21cc
RK
4358
4359 /* See if this jump condition is known true or false. */
4360 if (taken)
7f1c097d 4361 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 4362 else
7f1c097d 4363 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
4364
4365 /* Get the type of comparison being done and the operands being compared.
4366 If we had to reverse a non-equality condition, record that fact so we
4367 know that it isn't valid for floating-point. */
7f1c097d
JH
4368 code = GET_CODE (XEXP (SET_SRC (set), 0));
4369 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4370 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 4371
13c9910f 4372 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
4373 if (! cond_known_true)
4374 {
261efdef 4375 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
4376
4377 /* Don't remember if we can't find the inverse. */
4378 if (code == UNKNOWN)
4379 return;
7afe21cc
RK
4380 }
4381
4382 /* The mode is the mode of the non-constant. */
13c9910f
RS
4383 mode = mode0;
4384 if (mode1 != VOIDmode)
4385 mode = mode1;
7afe21cc
RK
4386
4387 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4388}
4389
794693c0
RH
4390/* Yet another form of subreg creation. In this case, we want something in
4391 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4392
4393static rtx
4394record_jump_cond_subreg (enum machine_mode mode, rtx op)
4395{
4396 enum machine_mode op_mode = GET_MODE (op);
4397 if (op_mode == mode || op_mode == VOIDmode)
4398 return op;
4399 return lowpart_subreg (mode, op, op_mode);
4400}
4401
7afe21cc
RK
4402/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4403 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4404 Make any useful entries we can with that information. Called from
4405 above function and called recursively. */
4406
4407static void
7080f735
AJ
4408record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4409 rtx op1, int reversed_nonequality)
7afe21cc 4410{
2197a88a 4411 unsigned op0_hash, op1_hash;
e428d738 4412 int op0_in_memory, op1_in_memory;
7afe21cc
RK
4413 struct table_elt *op0_elt, *op1_elt;
4414
4415 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4416 we know that they are also equal in the smaller mode (this is also
4417 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 4418 is not worth testing for with no SUBREG). */
7afe21cc 4419
2e794ee8 4420 /* Note that GET_MODE (op0) may not equal MODE. */
7afe21cc 4421 if (code == EQ && GET_CODE (op0) == SUBREG
2e794ee8
RS
4422 && (GET_MODE_SIZE (GET_MODE (op0))
4423 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
4424 {
4425 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
4426 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4427 if (tem)
4428 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4429 reversed_nonequality);
7afe21cc
RK
4430 }
4431
4432 if (code == EQ && GET_CODE (op1) == SUBREG
2e794ee8
RS
4433 && (GET_MODE_SIZE (GET_MODE (op1))
4434 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
4435 {
4436 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
4437 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4438 if (tem)
4439 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4440 reversed_nonequality);
7afe21cc
RK
4441 }
4442
278a83b2 4443 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
4444 making a smaller mode, we know the whole thing is also NE. */
4445
2e794ee8
RS
4446 /* Note that GET_MODE (op0) may not equal MODE;
4447 if we test MODE instead, we can get an infinite recursion
4448 alternating between two modes each wider than MODE. */
4449
7afe21cc
RK
4450 if (code == NE && GET_CODE (op0) == SUBREG
4451 && subreg_lowpart_p (op0)
2e794ee8
RS
4452 && (GET_MODE_SIZE (GET_MODE (op0))
4453 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
4454 {
4455 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
4456 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4457 if (tem)
4458 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4459 reversed_nonequality);
7afe21cc
RK
4460 }
4461
4462 if (code == NE && GET_CODE (op1) == SUBREG
4463 && subreg_lowpart_p (op1)
2e794ee8
RS
4464 && (GET_MODE_SIZE (GET_MODE (op1))
4465 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
4466 {
4467 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
4468 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4469 if (tem)
4470 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4471 reversed_nonequality);
7afe21cc
RK
4472 }
4473
4474 /* Hash both operands. */
4475
4476 do_not_record = 0;
4477 hash_arg_in_memory = 0;
2197a88a 4478 op0_hash = HASH (op0, mode);
7afe21cc 4479 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
4480
4481 if (do_not_record)
4482 return;
4483
4484 do_not_record = 0;
4485 hash_arg_in_memory = 0;
2197a88a 4486 op1_hash = HASH (op1, mode);
7afe21cc 4487 op1_in_memory = hash_arg_in_memory;
278a83b2 4488
7afe21cc
RK
4489 if (do_not_record)
4490 return;
4491
4492 /* Look up both operands. */
2197a88a
RK
4493 op0_elt = lookup (op0, op0_hash, mode);
4494 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 4495
af3869c1
RK
4496 /* If both operands are already equivalent or if they are not in the
4497 table but are identical, do nothing. */
4498 if ((op0_elt != 0 && op1_elt != 0
4499 && op0_elt->first_same_value == op1_elt->first_same_value)
4500 || op0 == op1 || rtx_equal_p (op0, op1))
4501 return;
4502
7afe21cc 4503 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
4504 comparison. Similarly if this is floating-point. In the latter
4505 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4506 If we record the equality, we might inadvertently delete code
4507 whose intent was to change -0 to +0. */
4508
cbf6a543 4509 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 4510 {
1bb98cec
DM
4511 struct qty_table_elem *ent;
4512 int qty;
4513
7afe21cc
RK
4514 /* If we reversed a floating-point comparison, if OP0 is not a
4515 register, or if OP1 is neither a register or constant, we can't
4516 do anything. */
4517
f8cfc6aa 4518 if (!REG_P (op1))
7afe21cc
RK
4519 op1 = equiv_constant (op1);
4520
cbf6a543 4521 if ((reversed_nonequality && FLOAT_MODE_P (mode))
f8cfc6aa 4522 || !REG_P (op0) || op1 == 0)
7afe21cc
RK
4523 return;
4524
4525 /* Put OP0 in the hash table if it isn't already. This gives it a
4526 new quantity number. */
4527 if (op0_elt == 0)
4528 {
9714cf43 4529 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4530 {
4531 rehash_using_reg (op0);
2197a88a 4532 op0_hash = HASH (op0, mode);
2bb81c86
RK
4533
4534 /* If OP0 is contained in OP1, this changes its hash code
4535 as well. Faster to rehash than to check, except
4536 for the simple case of a constant. */
4537 if (! CONSTANT_P (op1))
2197a88a 4538 op1_hash = HASH (op1,mode);
7afe21cc
RK
4539 }
4540
9714cf43 4541 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4542 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4543 }
4544
1bb98cec
DM
4545 qty = REG_QTY (REGNO (op0));
4546 ent = &qty_table[qty];
4547
4548 ent->comparison_code = code;
f8cfc6aa 4549 if (REG_P (op1))
7afe21cc 4550 {
5d5ea909 4551 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 4552 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 4553
7afe21cc
RK
4554 /* Put OP1 in the hash table so it gets a new quantity number. */
4555 if (op1_elt == 0)
4556 {
9714cf43 4557 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4558 {
4559 rehash_using_reg (op1);
2197a88a 4560 op1_hash = HASH (op1, mode);
7afe21cc
RK
4561 }
4562
9714cf43 4563 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4564 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
4565 }
4566
1bb98cec
DM
4567 ent->comparison_const = NULL_RTX;
4568 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
4569 }
4570 else
4571 {
1bb98cec
DM
4572 ent->comparison_const = op1;
4573 ent->comparison_qty = -1;
7afe21cc
RK
4574 }
4575
4576 return;
4577 }
4578
eb5ad42a
RS
4579 /* If either side is still missing an equivalence, make it now,
4580 then merge the equivalences. */
7afe21cc 4581
7afe21cc
RK
4582 if (op0_elt == 0)
4583 {
9714cf43 4584 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4585 {
4586 rehash_using_reg (op0);
2197a88a 4587 op0_hash = HASH (op0, mode);
7afe21cc
RK
4588 }
4589
9714cf43 4590 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4591 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4592 }
4593
4594 if (op1_elt == 0)
4595 {
9714cf43 4596 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4597 {
4598 rehash_using_reg (op1);
2197a88a 4599 op1_hash = HASH (op1, mode);
7afe21cc
RK
4600 }
4601
9714cf43 4602 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4603 op1_elt->in_memory = op1_in_memory;
7afe21cc 4604 }
eb5ad42a
RS
4605
4606 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
4607}
4608\f
4609/* CSE processing for one instruction.
4610 First simplify sources and addresses of all assignments
4611 in the instruction, using previously-computed equivalents values.
4612 Then install the new sources and destinations in the table
278a83b2 4613 of available values.
7afe21cc 4614
1ed0205e
VM
4615 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4616 the insn. It means that INSN is inside libcall block. In this
ddc356e8 4617 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
7afe21cc
RK
4618
4619/* Data on one SET contained in the instruction. */
4620
4621struct set
4622{
4623 /* The SET rtx itself. */
4624 rtx rtl;
4625 /* The SET_SRC of the rtx (the original value, if it is changing). */
4626 rtx src;
4627 /* The hash-table element for the SET_SRC of the SET. */
4628 struct table_elt *src_elt;
2197a88a
RK
4629 /* Hash value for the SET_SRC. */
4630 unsigned src_hash;
4631 /* Hash value for the SET_DEST. */
4632 unsigned dest_hash;
7afe21cc
RK
4633 /* The SET_DEST, with SUBREG, etc., stripped. */
4634 rtx inner_dest;
278a83b2 4635 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 4636 char src_in_memory;
7afe21cc
RK
4637 /* Nonzero if the SET_SRC contains something
4638 whose value cannot be predicted and understood. */
4639 char src_volatile;
496324d0
DN
4640 /* Original machine mode, in case it becomes a CONST_INT.
4641 The size of this field should match the size of the mode
4642 field of struct rtx_def (see rtl.h). */
4643 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc
RK
4644 /* A constant equivalent for SET_SRC, if any. */
4645 rtx src_const;
47841d1b
JJ
4646 /* Original SET_SRC value used for libcall notes. */
4647 rtx orig_src;
2197a88a
RK
4648 /* Hash value of constant equivalent for SET_SRC. */
4649 unsigned src_const_hash;
7afe21cc
RK
4650 /* Table entry for constant equivalent for SET_SRC, if any. */
4651 struct table_elt *src_const_elt;
4652};
4653
4654static void
7080f735 4655cse_insn (rtx insn, rtx libcall_insn)
7afe21cc 4656{
b3694847
SS
4657 rtx x = PATTERN (insn);
4658 int i;
92f9aa51 4659 rtx tem;
b3694847 4660 int n_sets = 0;
7afe21cc 4661
2d8b0f3a 4662#ifdef HAVE_cc0
7afe21cc
RK
4663 /* Records what this insn does to set CC0. */
4664 rtx this_insn_cc0 = 0;
135d84b8 4665 enum machine_mode this_insn_cc0_mode = VOIDmode;
2d8b0f3a 4666#endif
7afe21cc
RK
4667
4668 rtx src_eqv = 0;
4669 struct table_elt *src_eqv_elt = 0;
6a651371
KG
4670 int src_eqv_volatile = 0;
4671 int src_eqv_in_memory = 0;
6a651371 4672 unsigned src_eqv_hash = 0;
7afe21cc 4673
9714cf43 4674 struct set *sets = (struct set *) 0;
7afe21cc
RK
4675
4676 this_insn = insn;
7afe21cc
RK
4677
4678 /* Find all the SETs and CLOBBERs in this instruction.
4679 Record all the SETs in the array `set' and count them.
4680 Also determine whether there is a CLOBBER that invalidates
4681 all memory references, or all references at varying addresses. */
4682
4b4bf941 4683 if (CALL_P (insn))
f1e7c95f
RK
4684 {
4685 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
f474c6f8
AO
4686 {
4687 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4688 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4689 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4690 }
f1e7c95f
RK
4691 }
4692
7afe21cc
RK
4693 if (GET_CODE (x) == SET)
4694 {
703ad42b 4695 sets = alloca (sizeof (struct set));
7afe21cc
RK
4696 sets[0].rtl = x;
4697
4698 /* Ignore SETs that are unconditional jumps.
4699 They never need cse processing, so this does not hurt.
4700 The reason is not efficiency but rather
4701 so that we can test at the end for instructions
4702 that have been simplified to unconditional jumps
4703 and not be misled by unchanged instructions
4704 that were unconditional jumps to begin with. */
4705 if (SET_DEST (x) == pc_rtx
4706 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4707 ;
4708
4709 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4710 The hard function value register is used only once, to copy to
4711 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4712 Ensure we invalidate the destination register. On the 80386 no
7722328e 4713 other code would invalidate it since it is a fixed_reg.
0f41302f 4714 We need not check the return of apply_change_group; see canon_reg. */
7afe21cc
RK
4715
4716 else if (GET_CODE (SET_SRC (x)) == CALL)
4717 {
4718 canon_reg (SET_SRC (x), insn);
77fa0940 4719 apply_change_group ();
7afe21cc 4720 fold_rtx (SET_SRC (x), insn);
bb4034b3 4721 invalidate (SET_DEST (x), VOIDmode);
7afe21cc
RK
4722 }
4723 else
4724 n_sets = 1;
4725 }
4726 else if (GET_CODE (x) == PARALLEL)
4727 {
b3694847 4728 int lim = XVECLEN (x, 0);
7afe21cc 4729
703ad42b 4730 sets = alloca (lim * sizeof (struct set));
7afe21cc
RK
4731
4732 /* Find all regs explicitly clobbered in this insn,
4733 and ensure they are not replaced with any other regs
4734 elsewhere in this insn.
4735 When a reg that is clobbered is also used for input,
4736 we should presume that that is for a reason,
4737 and we should not substitute some other register
4738 which is not supposed to be clobbered.
4739 Therefore, this loop cannot be merged into the one below
830a38ee 4740 because a CALL may precede a CLOBBER and refer to the
7afe21cc
RK
4741 value clobbered. We must not let a canonicalization do
4742 anything in that case. */
4743 for (i = 0; i < lim; i++)
4744 {
b3694847 4745 rtx y = XVECEXP (x, 0, i);
2708da92
RS
4746 if (GET_CODE (y) == CLOBBER)
4747 {
4748 rtx clobbered = XEXP (y, 0);
4749
f8cfc6aa 4750 if (REG_P (clobbered)
2708da92 4751 || GET_CODE (clobbered) == SUBREG)
bb4034b3 4752 invalidate (clobbered, VOIDmode);
2708da92
RS
4753 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4754 || GET_CODE (clobbered) == ZERO_EXTRACT)
bb4034b3 4755 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
2708da92 4756 }
7afe21cc 4757 }
278a83b2 4758
7afe21cc
RK
4759 for (i = 0; i < lim; i++)
4760 {
b3694847 4761 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4762 if (GET_CODE (y) == SET)
4763 {
7722328e
RK
4764 /* As above, we ignore unconditional jumps and call-insns and
4765 ignore the result of apply_change_group. */
7afe21cc
RK
4766 if (GET_CODE (SET_SRC (y)) == CALL)
4767 {
4768 canon_reg (SET_SRC (y), insn);
77fa0940 4769 apply_change_group ();
7afe21cc 4770 fold_rtx (SET_SRC (y), insn);
bb4034b3 4771 invalidate (SET_DEST (y), VOIDmode);
7afe21cc
RK
4772 }
4773 else if (SET_DEST (y) == pc_rtx
4774 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4775 ;
4776 else
4777 sets[n_sets++].rtl = y;
4778 }
4779 else if (GET_CODE (y) == CLOBBER)
4780 {
9ae8ffe7 4781 /* If we clobber memory, canon the address.
7afe21cc
RK
4782 This does nothing when a register is clobbered
4783 because we have already invalidated the reg. */
3c0cb5de 4784 if (MEM_P (XEXP (y, 0)))
9ae8ffe7 4785 canon_reg (XEXP (y, 0), NULL_RTX);
7afe21cc
RK
4786 }
4787 else if (GET_CODE (y) == USE
f8cfc6aa 4788 && ! (REG_P (XEXP (y, 0))
7afe21cc 4789 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 4790 canon_reg (y, NULL_RTX);
7afe21cc
RK
4791 else if (GET_CODE (y) == CALL)
4792 {
7722328e
RK
4793 /* The result of apply_change_group can be ignored; see
4794 canon_reg. */
7afe21cc 4795 canon_reg (y, insn);
77fa0940 4796 apply_change_group ();
7afe21cc
RK
4797 fold_rtx (y, insn);
4798 }
4799 }
4800 }
4801 else if (GET_CODE (x) == CLOBBER)
4802 {
3c0cb5de 4803 if (MEM_P (XEXP (x, 0)))
9ae8ffe7 4804 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
4805 }
4806
4807 /* Canonicalize a USE of a pseudo register or memory location. */
4808 else if (GET_CODE (x) == USE
f8cfc6aa 4809 && ! (REG_P (XEXP (x, 0))
7afe21cc 4810 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 4811 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
4812 else if (GET_CODE (x) == CALL)
4813 {
7722328e 4814 /* The result of apply_change_group can be ignored; see canon_reg. */
7afe21cc 4815 canon_reg (x, insn);
77fa0940 4816 apply_change_group ();
7afe21cc
RK
4817 fold_rtx (x, insn);
4818 }
4819
7b3ab05e
JW
4820 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4821 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4822 is handled specially for this case, and if it isn't set, then there will
9faa82d8 4823 be no equivalence for the destination. */
92f9aa51
RK
4824 if (n_sets == 1 && REG_NOTES (insn) != 0
4825 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
7b3ab05e
JW
4826 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4827 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
7b668f9e
JJ
4828 {
4829 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4830 XEXP (tem, 0) = src_eqv;
4831 }
7afe21cc
RK
4832
4833 /* Canonicalize sources and addresses of destinations.
4834 We do this in a separate pass to avoid problems when a MATCH_DUP is
4835 present in the insn pattern. In that case, we want to ensure that
4836 we don't break the duplicate nature of the pattern. So we will replace
4837 both operands at the same time. Otherwise, we would fail to find an
4838 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4839
4840 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4841 but we don't do this any more. */
7afe21cc
RK
4842
4843 for (i = 0; i < n_sets; i++)
4844 {
4845 rtx dest = SET_DEST (sets[i].rtl);
4846 rtx src = SET_SRC (sets[i].rtl);
4847 rtx new = canon_reg (src, insn);
58873255 4848 int insn_code;
7afe21cc 4849
47841d1b 4850 sets[i].orig_src = src;
f8cfc6aa 4851 if ((REG_P (new) && REG_P (src)
77fa0940
RK
4852 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4853 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
58873255 4854 || (insn_code = recog_memoized (insn)) < 0
a995e389 4855 || insn_data[insn_code].n_dups > 0)
77fa0940 4856 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
7afe21cc
RK
4857 else
4858 SET_SRC (sets[i].rtl) = new;
4859
46d096a3 4860 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4861 {
4862 validate_change (insn, &XEXP (dest, 1),
77fa0940 4863 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4864 validate_change (insn, &XEXP (dest, 2),
77fa0940 4865 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4866 }
4867
46d096a3 4868 while (GET_CODE (dest) == SUBREG
7afe21cc 4869 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4870 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4871 dest = XEXP (dest, 0);
4872
3c0cb5de 4873 if (MEM_P (dest))
7afe21cc
RK
4874 canon_reg (dest, insn);
4875 }
4876
77fa0940
RK
4877 /* Now that we have done all the replacements, we can apply the change
4878 group and see if they all work. Note that this will cause some
4879 canonicalizations that would have worked individually not to be applied
4880 because some other canonicalization didn't work, but this should not
278a83b2 4881 occur often.
7722328e
RK
4882
4883 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4884
4885 apply_change_group ();
4886
7afe21cc
RK
4887 /* Set sets[i].src_elt to the class each source belongs to.
4888 Detect assignments from or to volatile things
4889 and set set[i] to zero so they will be ignored
4890 in the rest of this function.
4891
4892 Nothing in this loop changes the hash table or the register chains. */
4893
4894 for (i = 0; i < n_sets; i++)
4895 {
b3694847
SS
4896 rtx src, dest;
4897 rtx src_folded;
4898 struct table_elt *elt = 0, *p;
7afe21cc
RK
4899 enum machine_mode mode;
4900 rtx src_eqv_here;
4901 rtx src_const = 0;
4902 rtx src_related = 0;
4903 struct table_elt *src_const_elt = 0;
99a9c946
GS
4904 int src_cost = MAX_COST;
4905 int src_eqv_cost = MAX_COST;
4906 int src_folded_cost = MAX_COST;
4907 int src_related_cost = MAX_COST;
4908 int src_elt_cost = MAX_COST;
4909 int src_regcost = MAX_COST;
4910 int src_eqv_regcost = MAX_COST;
4911 int src_folded_regcost = MAX_COST;
4912 int src_related_regcost = MAX_COST;
4913 int src_elt_regcost = MAX_COST;
da7d8304 4914 /* Set nonzero if we need to call force_const_mem on with the
7afe21cc
RK
4915 contents of src_folded before using it. */
4916 int src_folded_force_flag = 0;
4917
4918 dest = SET_DEST (sets[i].rtl);
4919 src = SET_SRC (sets[i].rtl);
4920
4921 /* If SRC is a constant that has no machine mode,
4922 hash it with the destination's machine mode.
4923 This way we can keep different modes separate. */
4924
4925 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4926 sets[i].mode = mode;
4927
4928 if (src_eqv)
4929 {
4930 enum machine_mode eqvmode = mode;
4931 if (GET_CODE (dest) == STRICT_LOW_PART)
4932 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4933 do_not_record = 0;
4934 hash_arg_in_memory = 0;
2197a88a 4935 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4936
4937 /* Find the equivalence class for the equivalent expression. */
4938
4939 if (!do_not_record)
2197a88a 4940 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4941
4942 src_eqv_volatile = do_not_record;
4943 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4944 }
4945
4946 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4947 value of the INNER register, not the destination. So it is not
3826a3da 4948 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4949 if (GET_CODE (dest) == STRICT_LOW_PART)
4950 src_eqv_here = 0;
4951 else
4952 src_eqv_here = src_eqv;
4953
4954 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4955 simplified result, which may not necessarily be valid. */
4956 src_folded = fold_rtx (src, insn);
4957
e6a125a0
RK
4958#if 0
4959 /* ??? This caused bad code to be generated for the m68k port with -O2.
4960 Suppose src is (CONST_INT -1), and that after truncation src_folded
4961 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4962 At the end we will add src and src_const to the same equivalence
4963 class. We now have 3 and -1 on the same equivalence class. This
4964 causes later instructions to be mis-optimized. */
7afe21cc
RK
4965 /* If storing a constant in a bitfield, pre-truncate the constant
4966 so we will be able to record it later. */
46d096a3 4967 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4968 {
4969 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4970
4971 if (GET_CODE (src) == CONST_INT
4972 && GET_CODE (width) == CONST_INT
906c4e36
RK
4973 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4974 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4975 src_folded
4976 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4977 << INTVAL (width)) - 1));
7afe21cc 4978 }
e6a125a0 4979#endif
7afe21cc
RK
4980
4981 /* Compute SRC's hash code, and also notice if it
4982 should not be recorded at all. In that case,
4983 prevent any further processing of this assignment. */
4984 do_not_record = 0;
4985 hash_arg_in_memory = 0;
7afe21cc
RK
4986
4987 sets[i].src = src;
2197a88a 4988 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
4989 sets[i].src_volatile = do_not_record;
4990 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 4991
50196afa 4992 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
4993 a pseudo, do not record SRC. Using SRC as a replacement for
4994 anything else will be incorrect in that situation. Note that
4995 this usually occurs only for stack slots, in which case all the
4996 RTL would be referring to SRC, so we don't lose any optimization
4997 opportunities by not having SRC in the hash table. */
50196afa 4998
3c0cb5de 4999 if (MEM_P (src)
43e72072 5000 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 5001 && REG_P (dest)
43e72072 5002 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
5003 sets[i].src_volatile = 1;
5004
0dadecf6
RK
5005#if 0
5006 /* It is no longer clear why we used to do this, but it doesn't
5007 appear to still be needed. So let's try without it since this
5008 code hurts cse'ing widened ops. */
9a5a17f3 5009 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
5010 treat it as volatile. It may do the work of an SI in one context
5011 where the extra bits are not being used, but cannot replace an SI
5012 in general. */
5013 if (GET_CODE (src) == SUBREG
5014 && (GET_MODE_SIZE (GET_MODE (src))
5015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5016 sets[i].src_volatile = 1;
0dadecf6 5017#endif
7afe21cc
RK
5018
5019 /* Locate all possible equivalent forms for SRC. Try to replace
5020 SRC in the insn with each cheaper equivalent.
5021
5022 We have the following types of equivalents: SRC itself, a folded
5023 version, a value given in a REG_EQUAL note, or a value related
5024 to a constant.
5025
5026 Each of these equivalents may be part of an additional class
5027 of equivalents (if more than one is in the table, they must be in
5028 the same class; we check for this).
5029
5030 If the source is volatile, we don't do any table lookups.
5031
5032 We note any constant equivalent for possible later use in a
5033 REG_NOTE. */
5034
5035 if (!sets[i].src_volatile)
2197a88a 5036 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
5037
5038 sets[i].src_elt = elt;
5039
5040 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
5041 {
5042 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
5043 {
5044 /* The REG_EQUAL is indicating that two formerly distinct
5045 classes are now equivalent. So merge them. */
5046 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
5047 src_eqv_hash = HASH (src_eqv, elt->mode);
5048 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
5049 }
5050
278a83b2
KH
5051 src_eqv_here = 0;
5052 }
7afe21cc
RK
5053
5054 else if (src_eqv_elt)
278a83b2 5055 elt = src_eqv_elt;
7afe21cc
RK
5056
5057 /* Try to find a constant somewhere and record it in `src_const'.
5058 Record its table element, if any, in `src_const_elt'. Look in
5059 any known equivalences first. (If the constant is not in the
2197a88a 5060 table, also set `sets[i].src_const_hash'). */
7afe21cc 5061 if (elt)
278a83b2 5062 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
5063 if (p->is_const)
5064 {
5065 src_const = p->exp;
5066 src_const_elt = elt;
5067 break;
5068 }
5069
5070 if (src_const == 0
5071 && (CONSTANT_P (src_folded)
278a83b2 5072 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
5073 "constant" here so we will record it. This allows us
5074 to fold switch statements when an ADDR_DIFF_VEC is used. */
5075 || (GET_CODE (src_folded) == MINUS
5076 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5077 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5078 src_const = src_folded, src_const_elt = elt;
5079 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5080 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5081
5082 /* If we don't know if the constant is in the table, get its
5083 hash code and look it up. */
5084 if (src_const && src_const_elt == 0)
5085 {
2197a88a
RK
5086 sets[i].src_const_hash = HASH (src_const, mode);
5087 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
5088 }
5089
5090 sets[i].src_const = src_const;
5091 sets[i].src_const_elt = src_const_elt;
5092
5093 /* If the constant and our source are both in the table, mark them as
5094 equivalent. Otherwise, if a constant is in the table but the source
5095 isn't, set ELT to it. */
5096 if (src_const_elt && elt
5097 && src_const_elt->first_same_value != elt->first_same_value)
5098 merge_equiv_classes (elt, src_const_elt);
5099 else if (src_const_elt && elt == 0)
5100 elt = src_const_elt;
5101
5102 /* See if there is a register linearly related to a constant
5103 equivalent of SRC. */
5104 if (src_const
5105 && (GET_CODE (src_const) == CONST
5106 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
5107 {
5108 src_related = use_related_value (src_const, src_const_elt);
5109 if (src_related)
5110 {
7afe21cc 5111 struct table_elt *src_related_elt
278a83b2 5112 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 5113 if (src_related_elt && elt)
278a83b2 5114 {
7afe21cc
RK
5115 if (elt->first_same_value
5116 != src_related_elt->first_same_value)
278a83b2 5117 /* This can occur when we previously saw a CONST
7afe21cc
RK
5118 involving a SYMBOL_REF and then see the SYMBOL_REF
5119 twice. Merge the involved classes. */
5120 merge_equiv_classes (elt, src_related_elt);
5121
278a83b2 5122 src_related = 0;
7afe21cc 5123 src_related_elt = 0;
278a83b2
KH
5124 }
5125 else if (src_related_elt && elt == 0)
5126 elt = src_related_elt;
7afe21cc 5127 }
278a83b2 5128 }
7afe21cc 5129
e4600702
RK
5130 /* See if we have a CONST_INT that is already in a register in a
5131 wider mode. */
5132
5133 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5134 && GET_MODE_CLASS (mode) == MODE_INT
5135 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5136 {
5137 enum machine_mode wider_mode;
5138
5139 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5140 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5141 && src_related == 0;
5142 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5143 {
5144 struct table_elt *const_elt
5145 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5146
5147 if (const_elt == 0)
5148 continue;
5149
5150 for (const_elt = const_elt->first_same_value;
5151 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 5152 if (REG_P (const_elt->exp))
e4600702 5153 {
4de249d9 5154 src_related = gen_lowpart (mode,
e4600702
RK
5155 const_elt->exp);
5156 break;
5157 }
5158 }
5159 }
5160
d45cf215
RS
5161 /* Another possibility is that we have an AND with a constant in
5162 a mode narrower than a word. If so, it might have been generated
5163 as part of an "if" which would narrow the AND. If we already
5164 have done the AND in a wider mode, we can use a SUBREG of that
5165 value. */
5166
5167 if (flag_expensive_optimizations && ! src_related
5168 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5169 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5170 {
5171 enum machine_mode tmode;
38a448ca 5172 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215
RS
5173
5174 for (tmode = GET_MODE_WIDER_MODE (mode);
5175 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5176 tmode = GET_MODE_WIDER_MODE (tmode))
5177 {
4de249d9 5178 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
5179 struct table_elt *larger_elt;
5180
5181 if (inner)
5182 {
5183 PUT_MODE (new_and, tmode);
5184 XEXP (new_and, 0) = inner;
5185 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5186 if (larger_elt == 0)
5187 continue;
5188
5189 for (larger_elt = larger_elt->first_same_value;
5190 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 5191 if (REG_P (larger_elt->exp))
d45cf215
RS
5192 {
5193 src_related
4de249d9 5194 = gen_lowpart (mode, larger_elt->exp);
d45cf215
RS
5195 break;
5196 }
5197
5198 if (src_related)
5199 break;
5200 }
5201 }
5202 }
7bac1be0
RK
5203
5204#ifdef LOAD_EXTEND_OP
5205 /* See if a MEM has already been loaded with a widening operation;
5206 if it has, we can use a subreg of that. Many CISC machines
5207 also have such operations, but this is only likely to be
71cc389b 5208 beneficial on these machines. */
278a83b2 5209
ddc356e8 5210 if (flag_expensive_optimizations && src_related == 0
7bac1be0
RK
5211 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5212 && GET_MODE_CLASS (mode) == MODE_INT
3c0cb5de 5213 && MEM_P (src) && ! do_not_record
f822d252 5214 && LOAD_EXTEND_OP (mode) != UNKNOWN)
7bac1be0 5215 {
9d80ef7c
RH
5216 struct rtx_def memory_extend_buf;
5217 rtx memory_extend_rtx = &memory_extend_buf;
7bac1be0 5218 enum machine_mode tmode;
278a83b2 5219
7bac1be0
RK
5220 /* Set what we are trying to extend and the operation it might
5221 have been extended with. */
9d80ef7c 5222 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
7bac1be0
RK
5223 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5224 XEXP (memory_extend_rtx, 0) = src;
278a83b2 5225
7bac1be0
RK
5226 for (tmode = GET_MODE_WIDER_MODE (mode);
5227 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5228 tmode = GET_MODE_WIDER_MODE (tmode))
5229 {
5230 struct table_elt *larger_elt;
278a83b2 5231
7bac1be0 5232 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 5233 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
5234 HASH (memory_extend_rtx, tmode), tmode);
5235 if (larger_elt == 0)
5236 continue;
278a83b2 5237
7bac1be0
RK
5238 for (larger_elt = larger_elt->first_same_value;
5239 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 5240 if (REG_P (larger_elt->exp))
7bac1be0 5241 {
4de249d9 5242 src_related = gen_lowpart (mode,
7bac1be0
RK
5243 larger_elt->exp);
5244 break;
5245 }
278a83b2 5246
7bac1be0
RK
5247 if (src_related)
5248 break;
5249 }
5250 }
5251#endif /* LOAD_EXTEND_OP */
278a83b2 5252
7afe21cc 5253 if (src == src_folded)
278a83b2 5254 src_folded = 0;
7afe21cc 5255
da7d8304 5256 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 5257 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 5258 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
5259 expressions. Prune these latter expressions by deleting expressions
5260 already in the equivalence class.
5261
5262 Check for an equivalent identical to the destination. If found,
5263 this is the preferred equivalent since it will likely lead to
5264 elimination of the insn. Indicate this by placing it in
5265 `src_related'. */
5266
278a83b2
KH
5267 if (elt)
5268 elt = elt->first_same_value;
7afe21cc 5269 for (p = elt; p; p = p->next_same_value)
278a83b2 5270 {
7afe21cc
RK
5271 enum rtx_code code = GET_CODE (p->exp);
5272
5273 /* If the expression is not valid, ignore it. Then we do not
5274 have to check for validity below. In most cases, we can use
5275 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 5276 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
5277 continue;
5278
5a03c8c4
RK
5279 /* Also skip paradoxical subregs, unless that's what we're
5280 looking for. */
5281 if (code == SUBREG
5282 && (GET_MODE_SIZE (GET_MODE (p->exp))
5283 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5284 && ! (src != 0
5285 && GET_CODE (src) == SUBREG
5286 && GET_MODE (src) == GET_MODE (p->exp)
5287 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5288 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5289 continue;
5290
278a83b2 5291 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 5292 src = 0;
278a83b2 5293 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
5294 && rtx_equal_p (src_folded, p->exp))
5295 src_folded = 0;
278a83b2 5296 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
5297 && rtx_equal_p (src_eqv_here, p->exp))
5298 src_eqv_here = 0;
278a83b2 5299 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
5300 && rtx_equal_p (src_related, p->exp))
5301 src_related = 0;
5302
5303 /* This is the same as the destination of the insns, we want
5304 to prefer it. Copy it to src_related. The code below will
5305 then give it a negative cost. */
5306 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5307 src_related = dest;
278a83b2 5308 }
7afe21cc
RK
5309
5310 /* Find the cheapest valid equivalent, trying all the available
5311 possibilities. Prefer items not in the hash table to ones
5312 that are when they are equal cost. Note that we can never
5313 worsen an insn as the current contents will also succeed.
05c33dd8 5314 If we find an equivalent identical to the destination, use it as best,
0f41302f 5315 since this insn will probably be eliminated in that case. */
7afe21cc
RK
5316 if (src)
5317 {
5318 if (rtx_equal_p (src, dest))
f1c1dfc3 5319 src_cost = src_regcost = -1;
7afe21cc 5320 else
630c79be
BS
5321 {
5322 src_cost = COST (src);
5323 src_regcost = approx_reg_cost (src);
5324 }
7afe21cc
RK
5325 }
5326
5327 if (src_eqv_here)
5328 {
5329 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 5330 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 5331 else
630c79be
BS
5332 {
5333 src_eqv_cost = COST (src_eqv_here);
5334 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5335 }
7afe21cc
RK
5336 }
5337
5338 if (src_folded)
5339 {
5340 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 5341 src_folded_cost = src_folded_regcost = -1;
7afe21cc 5342 else
630c79be
BS
5343 {
5344 src_folded_cost = COST (src_folded);
5345 src_folded_regcost = approx_reg_cost (src_folded);
5346 }
7afe21cc
RK
5347 }
5348
5349 if (src_related)
5350 {
5351 if (rtx_equal_p (src_related, dest))
f1c1dfc3 5352 src_related_cost = src_related_regcost = -1;
7afe21cc 5353 else
630c79be
BS
5354 {
5355 src_related_cost = COST (src_related);
5356 src_related_regcost = approx_reg_cost (src_related);
5357 }
7afe21cc
RK
5358 }
5359
5360 /* If this was an indirect jump insn, a known label will really be
5361 cheaper even though it looks more expensive. */
5362 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 5363 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 5364
7afe21cc
RK
5365 /* Terminate loop when replacement made. This must terminate since
5366 the current contents will be tested and will always be valid. */
5367 while (1)
278a83b2
KH
5368 {
5369 rtx trial;
7afe21cc 5370
278a83b2 5371 /* Skip invalid entries. */
f8cfc6aa 5372 while (elt && !REG_P (elt->exp)
0516f6fe 5373 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 5374 elt = elt->next_same_value;
5a03c8c4
RK
5375
5376 /* A paradoxical subreg would be bad here: it'll be the right
5377 size, but later may be adjusted so that the upper bits aren't
5378 what we want. So reject it. */
5379 if (elt != 0
5380 && GET_CODE (elt->exp) == SUBREG
5381 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5382 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5383 /* It is okay, though, if the rtx we're trying to match
5384 will ignore any of the bits we can't predict. */
5385 && ! (src != 0
5386 && GET_CODE (src) == SUBREG
5387 && GET_MODE (src) == GET_MODE (elt->exp)
5388 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5389 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5390 {
5391 elt = elt->next_same_value;
5392 continue;
5393 }
278a83b2 5394
68252e27 5395 if (elt)
630c79be
BS
5396 {
5397 src_elt_cost = elt->cost;
5398 src_elt_regcost = elt->regcost;
5399 }
7afe21cc 5400
68252e27 5401 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
5402 of equal cost, use this order:
5403 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 5404 if (src_folded
56ae04af
KH
5405 && preferable (src_folded_cost, src_folded_regcost,
5406 src_cost, src_regcost) <= 0
5407 && preferable (src_folded_cost, src_folded_regcost,
5408 src_eqv_cost, src_eqv_regcost) <= 0
5409 && preferable (src_folded_cost, src_folded_regcost,
5410 src_related_cost, src_related_regcost) <= 0
5411 && preferable (src_folded_cost, src_folded_regcost,
5412 src_elt_cost, src_elt_regcost) <= 0)
7afe21cc 5413 {
f1c1dfc3 5414 trial = src_folded, src_folded_cost = MAX_COST;
7afe21cc 5415 if (src_folded_force_flag)
9d8de1de
EB
5416 {
5417 rtx forced = force_const_mem (mode, trial);
5418 if (forced)
5419 trial = forced;
5420 }
7afe21cc 5421 }
99a9c946 5422 else if (src
56ae04af
KH
5423 && preferable (src_cost, src_regcost,
5424 src_eqv_cost, src_eqv_regcost) <= 0
5425 && preferable (src_cost, src_regcost,
5426 src_related_cost, src_related_regcost) <= 0
5427 && preferable (src_cost, src_regcost,
5428 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5429 trial = src, src_cost = MAX_COST;
99a9c946 5430 else if (src_eqv_here
56ae04af
KH
5431 && preferable (src_eqv_cost, src_eqv_regcost,
5432 src_related_cost, src_related_regcost) <= 0
5433 && preferable (src_eqv_cost, src_eqv_regcost,
5434 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5435 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
99a9c946 5436 else if (src_related
56ae04af
KH
5437 && preferable (src_related_cost, src_related_regcost,
5438 src_elt_cost, src_elt_regcost) <= 0)
68252e27 5439 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
278a83b2 5440 else
7afe21cc 5441 {
05c33dd8 5442 trial = copy_rtx (elt->exp);
7afe21cc 5443 elt = elt->next_same_value;
f1c1dfc3 5444 src_elt_cost = MAX_COST;
7afe21cc
RK
5445 }
5446
5447 /* We don't normally have an insn matching (set (pc) (pc)), so
5448 check for this separately here. We will delete such an
5449 insn below.
5450
d466c016
JL
5451 For other cases such as a table jump or conditional jump
5452 where we know the ultimate target, go ahead and replace the
5453 operand. While that may not make a valid insn, we will
5454 reemit the jump below (and also insert any necessary
5455 barriers). */
7afe21cc
RK
5456 if (n_sets == 1 && dest == pc_rtx
5457 && (trial == pc_rtx
5458 || (GET_CODE (trial) == LABEL_REF
5459 && ! condjump_p (insn))))
5460 {
2f39b6ca
UW
5461 /* Don't substitute non-local labels, this confuses CFG. */
5462 if (GET_CODE (trial) == LABEL_REF
5463 && LABEL_REF_NONLOCAL_P (trial))
5464 continue;
5465
d466c016 5466 SET_SRC (sets[i].rtl) = trial;
602c4c0d 5467 cse_jumps_altered = 1;
7afe21cc
RK
5468 break;
5469 }
278a83b2 5470
7afe21cc 5471 /* Look for a substitution that makes a valid insn. */
ddc356e8 5472 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
05c33dd8 5473 {
dbaff908
RS
5474 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5475
7bd8b2a8
JL
5476 /* If we just made a substitution inside a libcall, then we
5477 need to make the same substitution in any notes attached
5478 to the RETVAL insn. */
1ed0205e 5479 if (libcall_insn
f8cfc6aa 5480 && (REG_P (sets[i].orig_src)
47841d1b 5481 || GET_CODE (sets[i].orig_src) == SUBREG
3c0cb5de 5482 || MEM_P (sets[i].orig_src)))
d8b7ec41
RS
5483 {
5484 rtx note = find_reg_equal_equiv_note (libcall_insn);
5485 if (note != 0)
5486 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5487 sets[i].orig_src,
5488 copy_rtx (new));
5489 }
7bd8b2a8 5490
7722328e
RK
5491 /* The result of apply_change_group can be ignored; see
5492 canon_reg. */
5493
dbaff908 5494 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
6702af89 5495 apply_change_group ();
05c33dd8
RK
5496 break;
5497 }
7afe21cc 5498
278a83b2 5499 /* If we previously found constant pool entries for
7afe21cc
RK
5500 constants and this is a constant, try making a
5501 pool entry. Put it in src_folded unless we already have done
5502 this since that is where it likely came from. */
5503
5504 else if (constant_pool_entries_cost
5505 && CONSTANT_P (trial)
d51ff7cb
JW
5506 /* Reject cases that will abort in decode_rtx_const.
5507 On the alpha when simplifying a switch, we get
5508 (const (truncate (minus (label_ref) (label_ref)))). */
1bbd065b
RK
5509 && ! (GET_CODE (trial) == CONST
5510 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
d51ff7cb
JW
5511 /* Likewise on IA-64, except without the truncate. */
5512 && ! (GET_CODE (trial) == CONST
5513 && GET_CODE (XEXP (trial, 0)) == MINUS
5514 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5515 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
1bbd065b 5516 && (src_folded == 0
3c0cb5de 5517 || (!MEM_P (src_folded)
1bbd065b 5518 && ! src_folded_force_flag))
9ae8ffe7
JL
5519 && GET_MODE_CLASS (mode) != MODE_CC
5520 && mode != VOIDmode)
7afe21cc
RK
5521 {
5522 src_folded_force_flag = 1;
5523 src_folded = trial;
5524 src_folded_cost = constant_pool_entries_cost;
dd0ba281 5525 src_folded_regcost = constant_pool_entries_regcost;
7afe21cc 5526 }
278a83b2 5527 }
7afe21cc
RK
5528
5529 src = SET_SRC (sets[i].rtl);
5530
5531 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5532 However, there is an important exception: If both are registers
5533 that are not the head of their equivalence class, replace SET_SRC
5534 with the head of the class. If we do not do this, we will have
5535 both registers live over a portion of the basic block. This way,
5536 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 5537 if (REG_P (dest)
1bb98cec 5538 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 5539 {
1bb98cec
DM
5540 int dest_q = REG_QTY (REGNO (dest));
5541 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5542
5543 if (dest_ent->mode == GET_MODE (dest)
5544 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 5545 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
5546 /* Don't do this if the original insn had a hard reg as
5547 SET_SRC or SET_DEST. */
f8cfc6aa 5548 && (!REG_P (sets[i].src)
1bb98cec 5549 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 5550 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
5551 /* We can't call canon_reg here because it won't do anything if
5552 SRC is a hard register. */
759bd8b7 5553 {
1bb98cec
DM
5554 int src_q = REG_QTY (REGNO (src));
5555 struct qty_table_elem *src_ent = &qty_table[src_q];
5556 int first = src_ent->first_reg;
5557 rtx new_src
5558 = (first >= FIRST_PSEUDO_REGISTER
5559 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5560
5561 /* We must use validate-change even for this, because this
5562 might be a special no-op instruction, suitable only to
5563 tag notes onto. */
5564 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5565 {
5566 src = new_src;
5567 /* If we had a constant that is cheaper than what we are now
5568 setting SRC to, use that constant. We ignored it when we
5569 thought we could make this into a no-op. */
5570 if (src_const && COST (src_const) < COST (src)
278a83b2
KH
5571 && validate_change (insn, &SET_SRC (sets[i].rtl),
5572 src_const, 0))
1bb98cec
DM
5573 src = src_const;
5574 }
759bd8b7 5575 }
7afe21cc
RK
5576 }
5577
5578 /* If we made a change, recompute SRC values. */
5579 if (src != sets[i].src)
278a83b2 5580 {
4eadede7 5581 cse_altered = 1;
278a83b2
KH
5582 do_not_record = 0;
5583 hash_arg_in_memory = 0;
7afe21cc 5584 sets[i].src = src;
278a83b2
KH
5585 sets[i].src_hash = HASH (src, mode);
5586 sets[i].src_volatile = do_not_record;
5587 sets[i].src_in_memory = hash_arg_in_memory;
5588 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5589 }
7afe21cc
RK
5590
5591 /* If this is a single SET, we are setting a register, and we have an
5592 equivalent constant, we want to add a REG_NOTE. We don't want
5593 to write a REG_EQUAL note for a constant pseudo since verifying that
d45cf215 5594 that pseudo hasn't been eliminated is a pain. Such a note also
278a83b2 5595 won't help anything.
ac7ef8d5
FS
5596
5597 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5598 which can be created for a reference to a compile time computable
5599 entry in a jump table. */
5600
f8cfc6aa
JQ
5601 if (n_sets == 1 && src_const && REG_P (dest)
5602 && !REG_P (src_const)
ac7ef8d5
FS
5603 && ! (GET_CODE (src_const) == CONST
5604 && GET_CODE (XEXP (src_const, 0)) == MINUS
5605 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5606 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
7afe21cc 5607 {
a77b7e32
RS
5608 /* We only want a REG_EQUAL note if src_const != src. */
5609 if (! rtx_equal_p (src, src_const))
5610 {
5611 /* Make sure that the rtx is not shared. */
5612 src_const = copy_rtx (src_const);
51e2a951 5613
a77b7e32
RS
5614 /* Record the actual constant value in a REG_EQUAL note,
5615 making a new one if one does not already exist. */
5616 set_unique_reg_note (insn, REG_EQUAL, src_const);
5617 }
7afe21cc
RK
5618 }
5619
5620 /* Now deal with the destination. */
5621 do_not_record = 0;
7afe21cc 5622
46d096a3
SB
5623 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5624 while (GET_CODE (dest) == SUBREG
7afe21cc 5625 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 5626 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 5627 dest = XEXP (dest, 0);
7afe21cc
RK
5628
5629 sets[i].inner_dest = dest;
5630
3c0cb5de 5631 if (MEM_P (dest))
7afe21cc 5632 {
9ae8ffe7
JL
5633#ifdef PUSH_ROUNDING
5634 /* Stack pushes invalidate the stack pointer. */
5635 rtx addr = XEXP (dest, 0);
ec8e098d 5636 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7
JL
5637 && XEXP (addr, 0) == stack_pointer_rtx)
5638 invalidate (stack_pointer_rtx, Pmode);
5639#endif
7afe21cc 5640 dest = fold_rtx (dest, insn);
7afe21cc
RK
5641 }
5642
5643 /* Compute the hash code of the destination now,
5644 before the effects of this instruction are recorded,
5645 since the register values used in the address computation
5646 are those before this instruction. */
2197a88a 5647 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
5648
5649 /* Don't enter a bit-field in the hash table
5650 because the value in it after the store
5651 may not equal what was stored, due to truncation. */
5652
46d096a3 5653 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
5654 {
5655 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5656
5657 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5658 && GET_CODE (width) == CONST_INT
906c4e36
RK
5659 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5660 && ! (INTVAL (src_const)
5661 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
7afe21cc
RK
5662 /* Exception: if the value is constant,
5663 and it won't be truncated, record it. */
5664 ;
5665 else
5666 {
5667 /* This is chosen so that the destination will be invalidated
5668 but no new value will be recorded.
5669 We must invalidate because sometimes constant
5670 values can be recorded for bitfields. */
5671 sets[i].src_elt = 0;
5672 sets[i].src_volatile = 1;
5673 src_eqv = 0;
5674 src_eqv_elt = 0;
5675 }
5676 }
5677
5678 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5679 the insn. */
5680 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5681 {
ef178af3 5682 /* One less use of the label this insn used to jump to. */
49ce134f 5683 delete_insn (insn);
7afe21cc 5684 cse_jumps_altered = 1;
7afe21cc
RK
5685 /* No more processing for this set. */
5686 sets[i].rtl = 0;
5687 }
5688
5689 /* If this SET is now setting PC to a label, we know it used to
d466c016 5690 be a conditional or computed branch. */
8f235343
JH
5691 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5692 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5693 {
8fb1e50e
GS
5694 /* Now emit a BARRIER after the unconditional jump. */
5695 if (NEXT_INSN (insn) == 0
4b4bf941 5696 || !BARRIER_P (NEXT_INSN (insn)))
8fb1e50e
GS
5697 emit_barrier_after (insn);
5698
d466c016
JL
5699 /* We reemit the jump in as many cases as possible just in
5700 case the form of an unconditional jump is significantly
5701 different than a computed jump or conditional jump.
5702
5703 If this insn has multiple sets, then reemitting the
5704 jump is nontrivial. So instead we just force rerecognition
5705 and hope for the best. */
5706 if (n_sets == 1)
7afe21cc 5707 {
9dcb4381 5708 rtx new, note;
8fb1e50e 5709
9dcb4381 5710 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
7afe21cc
RK
5711 JUMP_LABEL (new) = XEXP (src, 0);
5712 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5713
5714 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5715 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5716 if (note)
5717 {
5718 XEXP (note, 1) = NULL_RTX;
5719 REG_NOTES (new) = note;
5720 }
5721
38c1593d 5722 delete_insn (insn);
7afe21cc 5723 insn = new;
8fb1e50e
GS
5724
5725 /* Now emit a BARRIER after the unconditional jump. */
5726 if (NEXT_INSN (insn) == 0
4b4bf941 5727 || !BARRIER_P (NEXT_INSN (insn)))
8fb1e50e 5728 emit_barrier_after (insn);
7afe21cc 5729 }
31dcf83f 5730 else
31dcf83f 5731 INSN_CODE (insn) = -1;
7afe21cc 5732
8fb1e50e
GS
5733 /* Do not bother deleting any unreachable code,
5734 let jump/flow do that. */
7afe21cc
RK
5735
5736 cse_jumps_altered = 1;
5737 sets[i].rtl = 0;
5738 }
5739
c2a47e48
RK
5740 /* If destination is volatile, invalidate it and then do no further
5741 processing for this assignment. */
7afe21cc
RK
5742
5743 else if (do_not_record)
c2a47e48 5744 {
f8cfc6aa 5745 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5746 invalidate (dest, VOIDmode);
3c0cb5de 5747 else if (MEM_P (dest))
32fab725 5748 invalidate (dest, VOIDmode);
2708da92
RS
5749 else if (GET_CODE (dest) == STRICT_LOW_PART
5750 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5751 invalidate (XEXP (dest, 0), GET_MODE (dest));
c2a47e48
RK
5752 sets[i].rtl = 0;
5753 }
7afe21cc
RK
5754
5755 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2197a88a 5756 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
7afe21cc
RK
5757
5758#ifdef HAVE_cc0
5759 /* If setting CC0, record what it was set to, or a constant, if it
5760 is equivalent to a constant. If it is being set to a floating-point
5761 value, make a COMPARE with the appropriate constant of 0. If we
5762 don't do this, later code can interpret this as a test against
5763 const0_rtx, which can cause problems if we try to put it into an
5764 insn as a floating-point operand. */
5765 if (dest == cc0_rtx)
5766 {
5767 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5768 this_insn_cc0_mode = mode;
cbf6a543 5769 if (FLOAT_MODE_P (mode))
38a448ca
RH
5770 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5771 CONST0_RTX (mode));
7afe21cc
RK
5772 }
5773#endif
5774 }
5775
5776 /* Now enter all non-volatile source expressions in the hash table
5777 if they are not already present.
5778 Record their equivalence classes in src_elt.
5779 This way we can insert the corresponding destinations into
5780 the same classes even if the actual sources are no longer in them
5781 (having been invalidated). */
5782
5783 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5784 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5785 {
b3694847
SS
5786 struct table_elt *elt;
5787 struct table_elt *classp = sets[0].src_elt;
7afe21cc
RK
5788 rtx dest = SET_DEST (sets[0].rtl);
5789 enum machine_mode eqvmode = GET_MODE (dest);
5790
5791 if (GET_CODE (dest) == STRICT_LOW_PART)
5792 {
5793 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5794 classp = 0;
5795 }
5796 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
5797 {
5798 rehash_using_reg (src_eqv);
5799 src_eqv_hash = HASH (src_eqv, eqvmode);
5800 }
2197a88a 5801 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5802 elt->in_memory = src_eqv_in_memory;
7afe21cc 5803 src_eqv_elt = elt;
f7911249
JW
5804
5805 /* Check to see if src_eqv_elt is the same as a set source which
5806 does not yet have an elt, and if so set the elt of the set source
5807 to src_eqv_elt. */
5808 for (i = 0; i < n_sets; i++)
26132f71
JW
5809 if (sets[i].rtl && sets[i].src_elt == 0
5810 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5811 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5812 }
5813
5814 for (i = 0; i < n_sets; i++)
5815 if (sets[i].rtl && ! sets[i].src_volatile
5816 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5817 {
5818 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5819 {
5820 /* REG_EQUAL in setting a STRICT_LOW_PART
5821 gives an equivalent for the entire destination register,
5822 not just for the subreg being stored in now.
5823 This is a more interesting equivalence, so we arrange later
5824 to treat the entire reg as the destination. */
5825 sets[i].src_elt = src_eqv_elt;
2197a88a 5826 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5827 }
5828 else
5829 {
5830 /* Insert source and constant equivalent into hash table, if not
5831 already present. */
b3694847
SS
5832 struct table_elt *classp = src_eqv_elt;
5833 rtx src = sets[i].src;
5834 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5835 enum machine_mode mode
5836 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5837
1fcc57f1
AM
5838 /* It's possible that we have a source value known to be
5839 constant but don't have a REG_EQUAL note on the insn.
5840 Lack of a note will mean src_eqv_elt will be NULL. This
5841 can happen where we've generated a SUBREG to access a
5842 CONST_INT that is already in a register in a wider mode.
5843 Ensure that the source expression is put in the proper
5844 constant class. */
5845 if (!classp)
5846 classp = sets[i].src_const_elt;
5847
26132f71 5848 if (sets[i].src_elt == 0)
7afe21cc 5849 {
26132f71
JW
5850 /* Don't put a hard register source into the table if this is
5851 the last insn of a libcall. In this case, we only need
5852 to put src_eqv_elt in src_elt. */
db4a8254 5853 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
8ae2b8f6 5854 {
b3694847 5855 struct table_elt *elt;
26132f71
JW
5856
5857 /* Note that these insert_regs calls cannot remove
5858 any of the src_elt's, because they would have failed to
5859 match if not still valid. */
5860 if (insert_regs (src, classp, 0))
5861 {
5862 rehash_using_reg (src);
5863 sets[i].src_hash = HASH (src, mode);
5864 }
5865 elt = insert (src, classp, sets[i].src_hash, mode);
5866 elt->in_memory = sets[i].src_in_memory;
26132f71 5867 sets[i].src_elt = classp = elt;
8ae2b8f6 5868 }
26132f71
JW
5869 else
5870 sets[i].src_elt = classp;
7afe21cc 5871 }
7afe21cc
RK
5872 if (sets[i].src_const && sets[i].src_const_elt == 0
5873 && src != sets[i].src_const
5874 && ! rtx_equal_p (sets[i].src_const, src))
5875 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5876 sets[i].src_const_hash, mode);
7afe21cc
RK
5877 }
5878 }
5879 else if (sets[i].src_elt == 0)
5880 /* If we did not insert the source into the hash table (e.g., it was
5881 volatile), note the equivalence class for the REG_EQUAL value, if any,
5882 so that the destination goes into that class. */
5883 sets[i].src_elt = src_eqv_elt;
5884
9ae8ffe7 5885 invalidate_from_clobbers (x);
77fa0940 5886
278a83b2 5887 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5888 invalidated by non-constant calls. */
5889
4b4bf941 5890 if (CALL_P (insn))
7afe21cc 5891 {
24a28584 5892 if (! CONST_OR_PURE_CALL_P (insn))
9ae8ffe7 5893 invalidate_memory ();
7afe21cc
RK
5894 invalidate_for_call ();
5895 }
5896
5897 /* Now invalidate everything set by this instruction.
5898 If a SUBREG or other funny destination is being set,
5899 sets[i].rtl is still nonzero, so here we invalidate the reg
5900 a part of which is being set. */
5901
5902 for (i = 0; i < n_sets; i++)
5903 if (sets[i].rtl)
5904 {
bb4034b3
JW
5905 /* We can't use the inner dest, because the mode associated with
5906 a ZERO_EXTRACT is significant. */
b3694847 5907 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5908
5909 /* Needed for registers to remove the register from its
5910 previous quantity's chain.
5911 Needed for memory if this is a nonvarying address, unless
5912 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5913 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5914 invalidate (dest, VOIDmode);
3c0cb5de 5915 else if (MEM_P (dest))
32fab725 5916 invalidate (dest, VOIDmode);
2708da92
RS
5917 else if (GET_CODE (dest) == STRICT_LOW_PART
5918 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5919 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5920 }
5921
01e752d3 5922 /* A volatile ASM invalidates everything. */
4b4bf941 5923 if (NONJUMP_INSN_P (insn)
01e752d3
JL
5924 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5925 && MEM_VOLATILE_P (PATTERN (insn)))
5926 flush_hash_table ();
5927
7afe21cc
RK
5928 /* Make sure registers mentioned in destinations
5929 are safe for use in an expression to be inserted.
5930 This removes from the hash table
5931 any invalid entry that refers to one of these registers.
5932
5933 We don't care about the return value from mention_regs because
5934 we are going to hash the SET_DEST values unconditionally. */
5935
5936 for (i = 0; i < n_sets; i++)
34c73909
R
5937 {
5938 if (sets[i].rtl)
5939 {
5940 rtx x = SET_DEST (sets[i].rtl);
5941
f8cfc6aa 5942 if (!REG_P (x))
34c73909
R
5943 mention_regs (x);
5944 else
5945 {
5946 /* We used to rely on all references to a register becoming
5947 inaccessible when a register changes to a new quantity,
5948 since that changes the hash code. However, that is not
9b1549b8 5949 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5950 hash 'collision' of a register with its own invalid
5951 entries. And since SUBREGs have been changed not to
5952 change their hash code with the hash code of the register,
5953 it wouldn't work any longer at all. So we have to check
5954 for any invalid references lying around now.
5955 This code is similar to the REG case in mention_regs,
5956 but it knows that reg_tick has been incremented, and
5957 it leaves reg_in_table as -1 . */
770ae6cc
RK
5958 unsigned int regno = REGNO (x);
5959 unsigned int endregno
34c73909 5960 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6 5961 : hard_regno_nregs[regno][GET_MODE (x)]);
770ae6cc 5962 unsigned int i;
34c73909
R
5963
5964 for (i = regno; i < endregno; i++)
5965 {
30f72379 5966 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5967 {
5968 remove_invalid_refs (i);
30f72379 5969 REG_IN_TABLE (i) = -1;
34c73909
R
5970 }
5971 }
5972 }
5973 }
5974 }
7afe21cc
RK
5975
5976 /* We may have just removed some of the src_elt's from the hash table.
5977 So replace each one with the current head of the same class. */
5978
5979 for (i = 0; i < n_sets; i++)
5980 if (sets[i].rtl)
5981 {
5982 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5983 /* If elt was removed, find current head of same class,
5984 or 0 if nothing remains of that class. */
5985 {
b3694847 5986 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
5987
5988 while (elt && elt->prev_same_value)
5989 elt = elt->prev_same_value;
5990
5991 while (elt && elt->first_same_value == 0)
5992 elt = elt->next_same_value;
5993 sets[i].src_elt = elt ? elt->first_same_value : 0;
5994 }
5995 }
5996
5997 /* Now insert the destinations into their equivalence classes. */
5998
5999 for (i = 0; i < n_sets; i++)
6000 if (sets[i].rtl)
6001 {
b3694847 6002 rtx dest = SET_DEST (sets[i].rtl);
b3694847 6003 struct table_elt *elt;
7afe21cc
RK
6004
6005 /* Don't record value if we are not supposed to risk allocating
6006 floating-point values in registers that might be wider than
6007 memory. */
6008 if ((flag_float_store
3c0cb5de 6009 && MEM_P (dest)
cbf6a543 6010 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
6011 /* Don't record BLKmode values, because we don't know the
6012 size of it, and can't be sure that other BLKmode values
6013 have the same or smaller size. */
6014 || GET_MODE (dest) == BLKmode
7afe21cc
RK
6015 /* Don't record values of destinations set inside a libcall block
6016 since we might delete the libcall. Things should have been set
6017 up so we won't want to reuse such a value, but we play it safe
6018 here. */
7bd8b2a8 6019 || libcall_insn
7afe21cc
RK
6020 /* If we didn't put a REG_EQUAL value or a source into the hash
6021 table, there is no point is recording DEST. */
1a8e9a8e
RK
6022 || sets[i].src_elt == 0
6023 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6024 or SIGN_EXTEND, don't record DEST since it can cause
6025 some tracking to be wrong.
6026
6027 ??? Think about this more later. */
6028 || (GET_CODE (dest) == SUBREG
6029 && (GET_MODE_SIZE (GET_MODE (dest))
6030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6031 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6032 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7afe21cc
RK
6033 continue;
6034
6035 /* STRICT_LOW_PART isn't part of the value BEING set,
6036 and neither is the SUBREG inside it.
6037 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6038 if (GET_CODE (dest) == STRICT_LOW_PART)
6039 dest = SUBREG_REG (XEXP (dest, 0));
6040
f8cfc6aa 6041 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc
RK
6042 /* Registers must also be inserted into chains for quantities. */
6043 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
6044 {
6045 /* If `insert_regs' changes something, the hash code must be
6046 recalculated. */
6047 rehash_using_reg (dest);
6048 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6049 }
7afe21cc 6050
8fff4fc1
RH
6051 elt = insert (dest, sets[i].src_elt,
6052 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 6053
3c0cb5de 6054 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 6055 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 6056
fc3ffe83
RK
6057 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6058 narrower than M2, and both M1 and M2 are the same number of words,
6059 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6060 make that equivalence as well.
7afe21cc 6061
4de249d9
PB
6062 However, BAR may have equivalences for which gen_lowpart
6063 will produce a simpler value than gen_lowpart applied to
7afe21cc 6064 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 6065 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
6066 the SUBREG. It will not be used in an equivalence, but will
6067 cause two similar assignments to be detected.
6068
6069 Note the loop below will find SUBREG_REG (DEST) since we have
6070 already entered SRC and DEST of the SET in the table. */
6071
6072 if (GET_CODE (dest) == SUBREG
6cdbaec4
RK
6073 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6074 / UNITS_PER_WORD)
278a83b2 6075 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
7afe21cc
RK
6076 && (GET_MODE_SIZE (GET_MODE (dest))
6077 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6078 && sets[i].src_elt != 0)
6079 {
6080 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6081 struct table_elt *elt, *classp = 0;
6082
6083 for (elt = sets[i].src_elt->first_same_value; elt;
6084 elt = elt->next_same_value)
6085 {
6086 rtx new_src = 0;
2197a88a 6087 unsigned src_hash;
7afe21cc 6088 struct table_elt *src_elt;
ff27a429 6089 int byte = 0;
7afe21cc
RK
6090
6091 /* Ignore invalid entries. */
f8cfc6aa 6092 if (!REG_P (elt->exp)
0516f6fe 6093 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
6094 continue;
6095
9beb7d20
RH
6096 /* We may have already been playing subreg games. If the
6097 mode is already correct for the destination, use it. */
6098 if (GET_MODE (elt->exp) == new_mode)
6099 new_src = elt->exp;
6100 else
6101 {
6102 /* Calculate big endian correction for the SUBREG_BYTE.
6103 We have already checked that M1 (GET_MODE (dest))
6104 is not narrower than M2 (new_mode). */
6105 if (BYTES_BIG_ENDIAN)
6106 byte = (GET_MODE_SIZE (GET_MODE (dest))
6107 - GET_MODE_SIZE (new_mode));
6108
6109 new_src = simplify_gen_subreg (new_mode, elt->exp,
6110 GET_MODE (dest), byte);
6111 }
6112
ff27a429
R
6113 /* The call to simplify_gen_subreg fails if the value
6114 is VOIDmode, yet we can't do any simplification, e.g.
6115 for EXPR_LISTs denoting function call results.
6116 It is invalid to construct a SUBREG with a VOIDmode
6117 SUBREG_REG, hence a zero new_src means we can't do
6118 this substitution. */
6119 if (! new_src)
6120 continue;
7afe21cc
RK
6121
6122 src_hash = HASH (new_src, new_mode);
6123 src_elt = lookup (new_src, src_hash, new_mode);
6124
6125 /* Put the new source in the hash table is if isn't
6126 already. */
6127 if (src_elt == 0)
6128 {
6129 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
6130 {
6131 rehash_using_reg (new_src);
6132 src_hash = HASH (new_src, new_mode);
6133 }
7afe21cc
RK
6134 src_elt = insert (new_src, classp, src_hash, new_mode);
6135 src_elt->in_memory = elt->in_memory;
7afe21cc
RK
6136 }
6137 else if (classp && classp != src_elt->first_same_value)
278a83b2 6138 /* Show that two things that we've seen before are
7afe21cc
RK
6139 actually the same. */
6140 merge_equiv_classes (src_elt, classp);
6141
6142 classp = src_elt->first_same_value;
da932f04
JL
6143 /* Ignore invalid entries. */
6144 while (classp
f8cfc6aa 6145 && !REG_P (classp->exp)
0516f6fe 6146 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 6147 classp = classp->next_same_value;
7afe21cc
RK
6148 }
6149 }
6150 }
6151
403e25d0
RK
6152 /* Special handling for (set REG0 REG1) where REG0 is the
6153 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6154 be used in the sequel, so (if easily done) change this insn to
6155 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6156 that computed their value. Then REG1 will become a dead store
6157 and won't cloud the situation for later optimizations.
7afe21cc
RK
6158
6159 Do not make this change if REG1 is a hard register, because it will
6160 then be used in the sequel and we may be changing a two-operand insn
6161 into a three-operand insn.
6162
50270076
R
6163 Also do not do this if we are operating on a copy of INSN.
6164
6165 Also don't do this if INSN ends a libcall; this would cause an unrelated
6166 register to be set in the middle of a libcall, and we then get bad code
6167 if the libcall is deleted. */
7afe21cc 6168
f8cfc6aa 6169 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
7afe21cc 6170 && NEXT_INSN (PREV_INSN (insn)) == insn
f8cfc6aa 6171 && REG_P (SET_SRC (sets[0].rtl))
7afe21cc 6172 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
1bb98cec 6173 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
7afe21cc 6174 {
1bb98cec
DM
6175 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6176 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 6177
1bb98cec
DM
6178 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6179 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
7afe21cc 6180 {
3e25353e
AH
6181 rtx prev = insn;
6182 /* Scan for the previous nonnote insn, but stop at a basic
6183 block boundary. */
6184 do
6185 {
6186 prev = PREV_INSN (prev);
6187 }
4b4bf941 6188 while (prev && NOTE_P (prev)
3e25353e 6189 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
7080f735 6190
58ecb5e2
RS
6191 /* Do not swap the registers around if the previous instruction
6192 attaches a REG_EQUIV note to REG1.
6193
6194 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6195 from the pseudo that originally shadowed an incoming argument
6196 to another register. Some uses of REG_EQUIV might rely on it
6197 being attached to REG1 rather than REG2.
6198
6199 This section previously turned the REG_EQUIV into a REG_EQUAL
6200 note. We cannot do that because REG_EQUIV may provide an
4912a07c 6201 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
58ecb5e2 6202
4b4bf941 6203 if (prev != 0 && NONJUMP_INSN_P (prev)
403e25d0 6204 && GET_CODE (PATTERN (prev)) == SET
58ecb5e2
RS
6205 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6206 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
1bb98cec
DM
6207 {
6208 rtx dest = SET_DEST (sets[0].rtl);
403e25d0 6209 rtx src = SET_SRC (sets[0].rtl);
58ecb5e2 6210 rtx note;
7afe21cc 6211
278a83b2
KH
6212 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6213 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6214 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
1bb98cec 6215 apply_change_group ();
7afe21cc 6216
403e25d0
RK
6217 /* If INSN has a REG_EQUAL note, and this note mentions
6218 REG0, then we must delete it, because the value in
6219 REG0 has changed. If the note's value is REG1, we must
6220 also delete it because that is now this insn's dest. */
1bb98cec 6221 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
403e25d0
RK
6222 if (note != 0
6223 && (reg_mentioned_p (dest, XEXP (note, 0))
6224 || rtx_equal_p (src, XEXP (note, 0))))
1bb98cec
DM
6225 remove_note (insn, note);
6226 }
7afe21cc
RK
6227 }
6228 }
6229
6230 /* If this is a conditional jump insn, record any known equivalences due to
6231 the condition being tested. */
6232
4b4bf941 6233 if (JUMP_P (insn)
7afe21cc
RK
6234 && n_sets == 1 && GET_CODE (x) == SET
6235 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6236 record_jump_equiv (insn, 0);
6237
6238#ifdef HAVE_cc0
6239 /* If the previous insn set CC0 and this insn no longer references CC0,
6240 delete the previous insn. Here we use the fact that nothing expects CC0
6241 to be valid over an insn, which is true until the final pass. */
4b4bf941 6242 if (prev_insn && NONJUMP_INSN_P (prev_insn)
7afe21cc
RK
6243 && (tem = single_set (prev_insn)) != 0
6244 && SET_DEST (tem) == cc0_rtx
6245 && ! reg_mentioned_p (cc0_rtx, x))
6dee7384 6246 delete_insn (prev_insn);
7afe21cc
RK
6247
6248 prev_insn_cc0 = this_insn_cc0;
6249 prev_insn_cc0_mode = this_insn_cc0_mode;
7afe21cc 6250 prev_insn = insn;
4977bab6 6251#endif
7afe21cc
RK
6252}
6253\f
a4c6502a 6254/* Remove from the hash table all expressions that reference memory. */
14a774a9 6255
7afe21cc 6256static void
7080f735 6257invalidate_memory (void)
7afe21cc 6258{
b3694847
SS
6259 int i;
6260 struct table_elt *p, *next;
7afe21cc 6261
9b1549b8 6262 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
6263 for (p = table[i]; p; p = next)
6264 {
6265 next = p->next_same_hash;
6266 if (p->in_memory)
6267 remove_from_table (p, i);
6268 }
6269}
6270
14a774a9
RK
6271/* If ADDR is an address that implicitly affects the stack pointer, return
6272 1 and update the register tables to show the effect. Else, return 0. */
6273
9ae8ffe7 6274static int
7080f735 6275addr_affects_sp_p (rtx addr)
9ae8ffe7 6276{
ec8e098d 6277 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
f8cfc6aa 6278 && REG_P (XEXP (addr, 0))
9ae8ffe7 6279 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
7afe21cc 6280 {
30f72379 6281 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
46081bb3
SH
6282 {
6283 REG_TICK (STACK_POINTER_REGNUM)++;
6284 /* Is it possible to use a subreg of SP? */
6285 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6286 }
9ae8ffe7
JL
6287
6288 /* This should be *very* rare. */
6289 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6290 invalidate (stack_pointer_rtx, VOIDmode);
14a774a9 6291
9ae8ffe7 6292 return 1;
7afe21cc 6293 }
14a774a9 6294
9ae8ffe7 6295 return 0;
7afe21cc
RK
6296}
6297
6298/* Perform invalidation on the basis of everything about an insn
6299 except for invalidating the actual places that are SET in it.
6300 This includes the places CLOBBERed, and anything that might
6301 alias with something that is SET or CLOBBERed.
6302
7afe21cc
RK
6303 X is the pattern of the insn. */
6304
6305static void
7080f735 6306invalidate_from_clobbers (rtx x)
7afe21cc 6307{
7afe21cc
RK
6308 if (GET_CODE (x) == CLOBBER)
6309 {
6310 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
6311 if (ref)
6312 {
f8cfc6aa 6313 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6314 || MEM_P (ref))
9ae8ffe7
JL
6315 invalidate (ref, VOIDmode);
6316 else if (GET_CODE (ref) == STRICT_LOW_PART
6317 || GET_CODE (ref) == ZERO_EXTRACT)
6318 invalidate (XEXP (ref, 0), GET_MODE (ref));
6319 }
7afe21cc
RK
6320 }
6321 else if (GET_CODE (x) == PARALLEL)
6322 {
b3694847 6323 int i;
7afe21cc
RK
6324 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6325 {
b3694847 6326 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
6327 if (GET_CODE (y) == CLOBBER)
6328 {
6329 rtx ref = XEXP (y, 0);
f8cfc6aa 6330 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6331 || MEM_P (ref))
9ae8ffe7
JL
6332 invalidate (ref, VOIDmode);
6333 else if (GET_CODE (ref) == STRICT_LOW_PART
6334 || GET_CODE (ref) == ZERO_EXTRACT)
6335 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
6336 }
6337 }
6338 }
6339}
6340\f
6341/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6342 and replace any registers in them with either an equivalent constant
6343 or the canonical form of the register. If we are inside an address,
6344 only do this if the address remains valid.
6345
6346 OBJECT is 0 except when within a MEM in which case it is the MEM.
6347
6348 Return the replacement for X. */
6349
6350static rtx
7080f735 6351cse_process_notes (rtx x, rtx object)
7afe21cc
RK
6352{
6353 enum rtx_code code = GET_CODE (x);
6f7d635c 6354 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
6355 int i;
6356
6357 switch (code)
6358 {
6359 case CONST_INT:
6360 case CONST:
6361 case SYMBOL_REF:
6362 case LABEL_REF:
6363 case CONST_DOUBLE:
69ef87e2 6364 case CONST_VECTOR:
7afe21cc
RK
6365 case PC:
6366 case CC0:
6367 case LO_SUM:
6368 return x;
6369
6370 case MEM:
c96208fa
DC
6371 validate_change (x, &XEXP (x, 0),
6372 cse_process_notes (XEXP (x, 0), x), 0);
7afe21cc
RK
6373 return x;
6374
6375 case EXPR_LIST:
6376 case INSN_LIST:
6377 if (REG_NOTE_KIND (x) == REG_EQUAL)
906c4e36 6378 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
7afe21cc 6379 if (XEXP (x, 1))
906c4e36 6380 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
7afe21cc
RK
6381 return x;
6382
e4890d45
RS
6383 case SIGN_EXTEND:
6384 case ZERO_EXTEND:
0b0ee36c 6385 case SUBREG:
e4890d45
RS
6386 {
6387 rtx new = cse_process_notes (XEXP (x, 0), object);
6388 /* We don't substitute VOIDmode constants into these rtx,
6389 since they would impede folding. */
6390 if (GET_MODE (new) != VOIDmode)
6391 validate_change (object, &XEXP (x, 0), new, 0);
6392 return x;
6393 }
6394
7afe21cc 6395 case REG:
30f72379 6396 i = REG_QTY (REGNO (x));
7afe21cc
RK
6397
6398 /* Return a constant or a constant register. */
1bb98cec 6399 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 6400 {
1bb98cec
DM
6401 struct qty_table_elem *ent = &qty_table[i];
6402
6403 if (ent->const_rtx != NULL_RTX
6404 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 6405 || REG_P (ent->const_rtx)))
1bb98cec 6406 {
4de249d9 6407 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
1bb98cec
DM
6408 if (new)
6409 return new;
6410 }
7afe21cc
RK
6411 }
6412
6413 /* Otherwise, canonicalize this register. */
906c4e36 6414 return canon_reg (x, NULL_RTX);
278a83b2 6415
e9a25f70
JL
6416 default:
6417 break;
7afe21cc
RK
6418 }
6419
6420 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6421 if (fmt[i] == 'e')
6422 validate_change (object, &XEXP (x, i),
7fe34fdf 6423 cse_process_notes (XEXP (x, i), object), 0);
7afe21cc
RK
6424
6425 return x;
6426}
6427\f
8b3686ed
RK
6428/* Process one SET of an insn that was skipped. We ignore CLOBBERs
6429 since they are done elsewhere. This function is called via note_stores. */
6430
6431static void
7080f735 6432invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
8b3686ed 6433{
9ae8ffe7
JL
6434 enum rtx_code code = GET_CODE (dest);
6435
6436 if (code == MEM
ddc356e8 6437 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
9ae8ffe7
JL
6438 /* There are times when an address can appear varying and be a PLUS
6439 during this scan when it would be a fixed address were we to know
6440 the proper equivalences. So invalidate all memory if there is
6441 a BLKmode or nonscalar memory reference or a reference to a
6442 variable address. */
6443 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
2be28ee2 6444 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
9ae8ffe7
JL
6445 {
6446 invalidate_memory ();
6447 return;
6448 }
ffcf6393 6449
f47c02fa 6450 if (GET_CODE (set) == CLOBBER
8beccec8 6451 || CC0_P (dest)
f47c02fa
RK
6452 || dest == pc_rtx)
6453 return;
6454
9ae8ffe7 6455 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
bb4034b3 6456 invalidate (XEXP (dest, 0), GET_MODE (dest));
9ae8ffe7
JL
6457 else if (code == REG || code == SUBREG || code == MEM)
6458 invalidate (dest, VOIDmode);
8b3686ed
RK
6459}
6460
6461/* Invalidate all insns from START up to the end of the function or the
6462 next label. This called when we wish to CSE around a block that is
6463 conditionally executed. */
6464
6465static void
7080f735 6466invalidate_skipped_block (rtx start)
8b3686ed
RK
6467{
6468 rtx insn;
8b3686ed 6469
4b4bf941 6470 for (insn = start; insn && !LABEL_P (insn);
8b3686ed
RK
6471 insn = NEXT_INSN (insn))
6472 {
2c3c49de 6473 if (! INSN_P (insn))
8b3686ed
RK
6474 continue;
6475
4b4bf941 6476 if (CALL_P (insn))
8b3686ed 6477 {
24a28584 6478 if (! CONST_OR_PURE_CALL_P (insn))
9ae8ffe7 6479 invalidate_memory ();
8b3686ed 6480 invalidate_for_call ();
8b3686ed
RK
6481 }
6482
97577254 6483 invalidate_from_clobbers (PATTERN (insn));
84832317 6484 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
8b3686ed
RK
6485 }
6486}
6487\f
7afe21cc
RK
6488/* Find the end of INSN's basic block and return its range,
6489 the total number of SETs in all the insns of the block, the last insn of the
6490 block, and the branch path.
6491
da7d8304 6492 The branch path indicates which branches should be followed. If a nonzero
7afe21cc
RK
6493 path size is specified, the block should be rescanned and a different set
6494 of branches will be taken. The branch path is only used if
da7d8304 6495 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
7afe21cc
RK
6496
6497 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6498 used to describe the block. It is filled in with the information about
6499 the current block. The incoming structure's branch path, if any, is used
6500 to construct the output branch path. */
6501
86caf04d 6502static void
7080f735 6503cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
5affca01 6504 int follow_jumps, int skip_blocks)
7afe21cc
RK
6505{
6506 rtx p = insn, q;
6507 int nsets = 0;
6508 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
2c3c49de 6509 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
7afe21cc
RK
6510 int path_size = data->path_size;
6511 int path_entry = 0;
6512 int i;
6513
6514 /* Update the previous branch path, if any. If the last branch was
6de9cd9a
DN
6515 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6516 If it was previously PATH_NOT_TAKEN,
7afe21cc 6517 shorten the path by one and look at the previous branch. We know that
da7d8304 6518 at least one branch must have been taken if PATH_SIZE is nonzero. */
7afe21cc
RK
6519 while (path_size > 0)
6520 {
6de9cd9a 6521 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
7afe21cc 6522 {
6de9cd9a 6523 data->path[path_size - 1].status = PATH_NOT_TAKEN;
7afe21cc
RK
6524 break;
6525 }
6526 else
6527 path_size--;
6528 }
6529
16b702cd
MM
6530 /* If the first instruction is marked with QImode, that means we've
6531 already processed this block. Our caller will look at DATA->LAST
6532 to figure out where to go next. We want to return the next block
6533 in the instruction stream, not some branched-to block somewhere
6534 else. We accomplish this by pretending our called forbid us to
6535 follow jumps, or skip blocks. */
6536 if (GET_MODE (insn) == QImode)
6537 follow_jumps = skip_blocks = 0;
6538
7afe21cc 6539 /* Scan to end of this basic block. */
4b4bf941 6540 while (p && !LABEL_P (p))
7afe21cc 6541 {
8aeea6e6 6542 /* Don't cse over a call to setjmp; on some machines (eg VAX)
7afe21cc
RK
6543 the regs restored by the longjmp come from
6544 a later time than the setjmp. */
4b4bf941 6545 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
570a98eb 6546 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
7afe21cc
RK
6547 break;
6548
6549 /* A PARALLEL can have lots of SETs in it,
6550 especially if it is really an ASM_OPERANDS. */
2c3c49de 6551 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
7afe21cc 6552 nsets += XVECLEN (PATTERN (p), 0);
4b4bf941 6553 else if (!NOTE_P (p))
7afe21cc 6554 nsets += 1;
278a83b2 6555
164c8956
RK
6556 /* Ignore insns made by CSE; they cannot affect the boundaries of
6557 the basic block. */
6558
6559 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
8b3686ed 6560 high_cuid = INSN_CUID (p);
164c8956
RK
6561 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6562 low_cuid = INSN_CUID (p);
7afe21cc
RK
6563
6564 /* See if this insn is in our branch path. If it is and we are to
6565 take it, do so. */
6566 if (path_entry < path_size && data->path[path_entry].branch == p)
6567 {
6de9cd9a 6568 if (data->path[path_entry].status != PATH_NOT_TAKEN)
7afe21cc 6569 p = JUMP_LABEL (p);
278a83b2 6570
7afe21cc
RK
6571 /* Point to next entry in path, if any. */
6572 path_entry++;
6573 }
6574
6575 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6576 was specified, we haven't reached our maximum path length, there are
6577 insns following the target of the jump, this is the only use of the
8b3686ed
RK
6578 jump label, and the target label is preceded by a BARRIER.
6579
6580 Alternatively, we can follow the jump if it branches around a
6581 block of code and there are no other branches into the block.
6582 In this case invalidate_skipped_block will be called to invalidate any
6583 registers set in the block when following the jump. */
6584
9bf8cfbf 6585 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
4b4bf941 6586 && JUMP_P (p)
278a83b2 6587 && GET_CODE (PATTERN (p)) == SET
7afe21cc 6588 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
85c3ba60 6589 && JUMP_LABEL (p) != 0
7afe21cc
RK
6590 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6591 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6592 {
6593 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
4b4bf941 6594 if ((!NOTE_P (q)
278a83b2 6595 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
4b4bf941 6596 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
570a98eb 6597 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
4b4bf941 6598 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
7afe21cc
RK
6599 break;
6600
6601 /* If we ran into a BARRIER, this code is an extension of the
6602 basic block when the branch is taken. */
4b4bf941 6603 if (follow_jumps && q != 0 && BARRIER_P (q))
7afe21cc
RK
6604 {
6605 /* Don't allow ourself to keep walking around an
6606 always-executed loop. */
fc3ffe83
RK
6607 if (next_real_insn (q) == next)
6608 {
6609 p = NEXT_INSN (p);
6610 continue;
6611 }
7afe21cc
RK
6612
6613 /* Similarly, don't put a branch in our path more than once. */
6614 for (i = 0; i < path_entry; i++)
6615 if (data->path[i].branch == p)
6616 break;
6617
6618 if (i != path_entry)
6619 break;
6620
6621 data->path[path_entry].branch = p;
6de9cd9a 6622 data->path[path_entry++].status = PATH_TAKEN;
7afe21cc
RK
6623
6624 /* This branch now ends our path. It was possible that we
6625 didn't see this branch the last time around (when the
6626 insn in front of the target was a JUMP_INSN that was
6627 turned into a no-op). */
6628 path_size = path_entry;
6629
6630 p = JUMP_LABEL (p);
6631 /* Mark block so we won't scan it again later. */
6632 PUT_MODE (NEXT_INSN (p), QImode);
6633 }
8b3686ed 6634 /* Detect a branch around a block of code. */
4b4bf941 6635 else if (skip_blocks && q != 0 && !LABEL_P (q))
8b3686ed 6636 {
b3694847 6637 rtx tmp;
8b3686ed 6638
fc3ffe83
RK
6639 if (next_real_insn (q) == next)
6640 {
6641 p = NEXT_INSN (p);
6642 continue;
6643 }
8b3686ed
RK
6644
6645 for (i = 0; i < path_entry; i++)
6646 if (data->path[i].branch == p)
6647 break;
6648
6649 if (i != path_entry)
6650 break;
6651
6652 /* This is no_labels_between_p (p, q) with an added check for
6653 reaching the end of a function (in case Q precedes P). */
6654 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
4b4bf941 6655 if (LABEL_P (tmp))
8b3686ed 6656 break;
278a83b2 6657
8b3686ed
RK
6658 if (tmp == q)
6659 {
6660 data->path[path_entry].branch = p;
6de9cd9a 6661 data->path[path_entry++].status = PATH_AROUND;
8b3686ed
RK
6662
6663 path_size = path_entry;
6664
6665 p = JUMP_LABEL (p);
6666 /* Mark block so we won't scan it again later. */
6667 PUT_MODE (NEXT_INSN (p), QImode);
6668 }
6669 }
7afe21cc 6670 }
7afe21cc
RK
6671 p = NEXT_INSN (p);
6672 }
6673
6674 data->low_cuid = low_cuid;
6675 data->high_cuid = high_cuid;
6676 data->nsets = nsets;
6677 data->last = p;
6678
6679 /* If all jumps in the path are not taken, set our path length to zero
6680 so a rescan won't be done. */
6681 for (i = path_size - 1; i >= 0; i--)
6de9cd9a 6682 if (data->path[i].status != PATH_NOT_TAKEN)
7afe21cc
RK
6683 break;
6684
6685 if (i == -1)
6686 data->path_size = 0;
6687 else
6688 data->path_size = path_size;
6689
6690 /* End the current branch path. */
6691 data->path[path_size].branch = 0;
6692}
6693\f
7afe21cc
RK
6694/* Perform cse on the instructions of a function.
6695 F is the first instruction.
6696 NREGS is one plus the highest pseudo-reg number used in the instruction.
6697
7afe21cc
RK
6698 Returns 1 if jump_optimize should be redone due to simplifications
6699 in conditional jump instructions. */
6700
6701int
5affca01 6702cse_main (rtx f, int nregs, FILE *file)
7afe21cc
RK
6703{
6704 struct cse_basic_block_data val;
b3694847
SS
6705 rtx insn = f;
6706 int i;
7afe21cc 6707
9bf8cfbf
ZD
6708 val.path = xmalloc (sizeof (struct branch_path)
6709 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6710
7afe21cc 6711 cse_jumps_altered = 0;
a5dfb4ee 6712 recorded_label_ref = 0;
7afe21cc 6713 constant_pool_entries_cost = 0;
dd0ba281 6714 constant_pool_entries_regcost = 0;
7afe21cc 6715 val.path_size = 0;
2f93eea8 6716 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6717
6718 init_recog ();
9ae8ffe7 6719 init_alias_analysis ();
7afe21cc 6720
703ad42b 6721 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
7afe21cc 6722
1f8f4a0b
MM
6723 /* Reset the counter indicating how many elements have been made
6724 thus far. */
7afe21cc
RK
6725 n_elements_made = 0;
6726
6727 /* Find the largest uid. */
6728
164c8956 6729 max_uid = get_max_uid ();
703ad42b 6730 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
7afe21cc
RK
6731
6732 /* Compute the mapping from uids to cuids.
6733 CUIDs are numbers assigned to insns, like uids,
6734 except that cuids increase monotonically through the code.
6735 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6736 between two insns is not affected by -g. */
6737
6738 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6739 {
4b4bf941 6740 if (!NOTE_P (insn)
7afe21cc
RK
6741 || NOTE_LINE_NUMBER (insn) < 0)
6742 INSN_CUID (insn) = ++i;
6743 else
6744 /* Give a line number note the same cuid as preceding insn. */
6745 INSN_CUID (insn) = i;
6746 }
6747
7afe21cc
RK
6748 /* Loop over basic blocks.
6749 Compute the maximum number of qty's needed for each basic block
6750 (which is 2 for each SET). */
6751 insn = f;
6752 while (insn)
6753 {
4eadede7 6754 cse_altered = 0;
5affca01 6755 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
8b3686ed 6756 flag_cse_skip_blocks);
7afe21cc
RK
6757
6758 /* If this basic block was already processed or has no sets, skip it. */
6759 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6760 {
6761 PUT_MODE (insn, VOIDmode);
6762 insn = (val.last ? NEXT_INSN (val.last) : 0);
6763 val.path_size = 0;
6764 continue;
6765 }
6766
6767 cse_basic_block_start = val.low_cuid;
6768 cse_basic_block_end = val.high_cuid;
6769 max_qty = val.nsets * 2;
278a83b2 6770
7afe21cc 6771 if (file)
ab87f8c8 6772 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7afe21cc
RK
6773 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6774 val.nsets);
6775
6776 /* Make MAX_QTY bigger to give us room to optimize
6777 past the end of this basic block, if that should prove useful. */
6778 if (max_qty < 500)
6779 max_qty = 500;
6780
7afe21cc
RK
6781 /* If this basic block is being extended by following certain jumps,
6782 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6783 Otherwise, we start after this basic block. */
6784 if (val.path_size > 0)
5affca01 6785 cse_basic_block (insn, val.last, val.path);
7afe21cc
RK
6786 else
6787 {
6788 int old_cse_jumps_altered = cse_jumps_altered;
6789 rtx temp;
6790
6791 /* When cse changes a conditional jump to an unconditional
6792 jump, we want to reprocess the block, since it will give
6793 us a new branch path to investigate. */
6794 cse_jumps_altered = 0;
5affca01 6795 temp = cse_basic_block (insn, val.last, val.path);
8b3686ed
RK
6796 if (cse_jumps_altered == 0
6797 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7afe21cc
RK
6798 insn = temp;
6799
6800 cse_jumps_altered |= old_cse_jumps_altered;
6801 }
6802
1f8f4a0b 6803 if (cse_altered)
1497faf6
RH
6804 ggc_collect ();
6805
7afe21cc
RK
6806#ifdef USE_C_ALLOCA
6807 alloca (0);
6808#endif
6809 }
6810
7afe21cc
RK
6811 if (max_elements_made < n_elements_made)
6812 max_elements_made = n_elements_made;
6813
e05e2395
MM
6814 /* Clean up. */
6815 end_alias_analysis ();
75c6bd46 6816 free (uid_cuid);
1bb98cec 6817 free (reg_eqv_table);
9bf8cfbf 6818 free (val.path);
2f93eea8 6819 rtl_hooks = general_rtl_hooks;
e05e2395 6820
a5dfb4ee 6821 return cse_jumps_altered || recorded_label_ref;
7afe21cc
RK
6822}
6823
6824/* Process a single basic block. FROM and TO and the limits of the basic
6825 block. NEXT_BRANCH points to the branch path when following jumps or
75473b02 6826 a null path when not following jumps. */
7afe21cc
RK
6827
6828static rtx
5affca01 6829cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
7afe21cc 6830{
b3694847 6831 rtx insn;
7afe21cc 6832 int to_usage = 0;
7bd8b2a8 6833 rtx libcall_insn = NULL_RTX;
e9a25f70 6834 int num_insns = 0;
26d107db 6835 int no_conflict = 0;
7afe21cc 6836
08a69267
RS
6837 /* Allocate the space needed by qty_table. */
6838 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
7afe21cc
RK
6839
6840 new_basic_block ();
6841
6842 /* TO might be a label. If so, protect it from being deleted. */
4b4bf941 6843 if (to != 0 && LABEL_P (to))
7afe21cc
RK
6844 ++LABEL_NUSES (to);
6845
6846 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6847 {
b3694847 6848 enum rtx_code code = GET_CODE (insn);
e9a25f70 6849
1d22a2c1
MM
6850 /* If we have processed 1,000 insns, flush the hash table to
6851 avoid extreme quadratic behavior. We must not include NOTEs
c13e8210 6852 in the count since there may be more of them when generating
1d22a2c1
MM
6853 debugging information. If we clear the table at different
6854 times, code generated with -g -O might be different than code
6855 generated with -O but not -g.
e9a25f70
JL
6856
6857 ??? This is a real kludge and needs to be done some other way.
6858 Perhaps for 2.9. */
1d22a2c1 6859 if (code != NOTE && num_insns++ > 1000)
e9a25f70 6860 {
01e752d3 6861 flush_hash_table ();
e9a25f70
JL
6862 num_insns = 0;
6863 }
7afe21cc
RK
6864
6865 /* See if this is a branch that is part of the path. If so, and it is
6866 to be taken, do so. */
6867 if (next_branch->branch == insn)
6868 {
8b3686ed 6869 enum taken status = next_branch++->status;
6de9cd9a 6870 if (status != PATH_NOT_TAKEN)
7afe21cc 6871 {
6de9cd9a 6872 if (status == PATH_TAKEN)
8b3686ed
RK
6873 record_jump_equiv (insn, 1);
6874 else
6875 invalidate_skipped_block (NEXT_INSN (insn));
6876
7afe21cc
RK
6877 /* Set the last insn as the jump insn; it doesn't affect cc0.
6878 Then follow this branch. */
6879#ifdef HAVE_cc0
6880 prev_insn_cc0 = 0;
7afe21cc 6881 prev_insn = insn;
4977bab6 6882#endif
7afe21cc
RK
6883 insn = JUMP_LABEL (insn);
6884 continue;
6885 }
6886 }
278a83b2 6887
7afe21cc
RK
6888 if (GET_MODE (insn) == QImode)
6889 PUT_MODE (insn, VOIDmode);
6890
ec8e098d 6891 if (GET_RTX_CLASS (code) == RTX_INSN)
7afe21cc 6892 {
7bd8b2a8
JL
6893 rtx p;
6894
7afe21cc
RK
6895 /* Process notes first so we have all notes in canonical forms when
6896 looking for duplicate operations. */
6897
6898 if (REG_NOTES (insn))
906c4e36 6899 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7afe21cc
RK
6900
6901 /* Track when we are inside in LIBCALL block. Inside such a block,
6902 we do not want to record destinations. The last insn of a
6903 LIBCALL block is not considered to be part of the block, since
830a38ee 6904 its destination is the result of the block and hence should be
7afe21cc
RK
6905 recorded. */
6906
efc9bd41
RK
6907 if (REG_NOTES (insn) != 0)
6908 {
6909 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6910 libcall_insn = XEXP (p, 0);
6911 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
26d107db
KK
6912 {
6913 /* Keep libcall_insn for the last SET insn of a no-conflict
6914 block to prevent changing the destination. */
6915 if (! no_conflict)
6916 libcall_insn = 0;
6917 else
6918 no_conflict = -1;
6919 }
6920 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6921 no_conflict = 1;
efc9bd41 6922 }
7afe21cc 6923
7bd8b2a8 6924 cse_insn (insn, libcall_insn);
f85cc4cb 6925
26d107db
KK
6926 if (no_conflict == -1)
6927 {
6928 libcall_insn = 0;
6929 no_conflict = 0;
6930 }
6931
be8ac49a
RK
6932 /* If we haven't already found an insn where we added a LABEL_REF,
6933 check this one. */
4b4bf941 6934 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
be8ac49a
RK
6935 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6936 (void *) insn))
f85cc4cb 6937 recorded_label_ref = 1;
7afe21cc
RK
6938 }
6939
6940 /* If INSN is now an unconditional jump, skip to the end of our
6941 basic block by pretending that we just did the last insn in the
6942 basic block. If we are jumping to the end of our block, show
6943 that we can have one usage of TO. */
6944
7f1c097d 6945 if (any_uncondjump_p (insn))
7afe21cc
RK
6946 {
6947 if (to == 0)
fa0933ba 6948 {
08a69267 6949 free (qty_table);
fa0933ba
JL
6950 return 0;
6951 }
7afe21cc
RK
6952
6953 if (JUMP_LABEL (insn) == to)
6954 to_usage = 1;
6955
6a5293dc
RS
6956 /* Maybe TO was deleted because the jump is unconditional.
6957 If so, there is nothing left in this basic block. */
6958 /* ??? Perhaps it would be smarter to set TO
278a83b2 6959 to whatever follows this insn,
6a5293dc
RS
6960 and pretend the basic block had always ended here. */
6961 if (INSN_DELETED_P (to))
6962 break;
6963
7afe21cc
RK
6964 insn = PREV_INSN (to);
6965 }
6966
6967 /* See if it is ok to keep on going past the label
6968 which used to end our basic block. Remember that we incremented
d45cf215 6969 the count of that label, so we decrement it here. If we made
7afe21cc
RK
6970 a jump unconditional, TO_USAGE will be one; in that case, we don't
6971 want to count the use in that jump. */
6972
6973 if (to != 0 && NEXT_INSN (insn) == to
4b4bf941 6974 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7afe21cc
RK
6975 {
6976 struct cse_basic_block_data val;
146135d6 6977 rtx prev;
7afe21cc
RK
6978
6979 insn = NEXT_INSN (to);
6980
146135d6
RK
6981 /* If TO was the last insn in the function, we are done. */
6982 if (insn == 0)
fa0933ba 6983 {
08a69267 6984 free (qty_table);
fa0933ba
JL
6985 return 0;
6986 }
7afe21cc 6987
146135d6
RK
6988 /* If TO was preceded by a BARRIER we are done with this block
6989 because it has no continuation. */
6990 prev = prev_nonnote_insn (to);
4b4bf941 6991 if (prev && BARRIER_P (prev))
fa0933ba 6992 {
08a69267 6993 free (qty_table);
fa0933ba
JL
6994 return insn;
6995 }
146135d6
RK
6996
6997 /* Find the end of the following block. Note that we won't be
6998 following branches in this case. */
7afe21cc
RK
6999 to_usage = 0;
7000 val.path_size = 0;
9bf8cfbf
ZD
7001 val.path = xmalloc (sizeof (struct branch_path)
7002 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
5affca01 7003 cse_end_of_basic_block (insn, &val, 0, 0);
9bf8cfbf 7004 free (val.path);
7afe21cc
RK
7005
7006 /* If the tables we allocated have enough space left
7007 to handle all the SETs in the next basic block,
7008 continue through it. Otherwise, return,
7009 and that block will be scanned individually. */
7010 if (val.nsets * 2 + next_qty > max_qty)
7011 break;
7012
7013 cse_basic_block_start = val.low_cuid;
7014 cse_basic_block_end = val.high_cuid;
7015 to = val.last;
7016
7017 /* Prevent TO from being deleted if it is a label. */
4b4bf941 7018 if (to != 0 && LABEL_P (to))
7afe21cc
RK
7019 ++LABEL_NUSES (to);
7020
7021 /* Back up so we process the first insn in the extension. */
7022 insn = PREV_INSN (insn);
7023 }
7024 }
7025
341c100f 7026 gcc_assert (next_qty <= max_qty);
7afe21cc 7027
08a69267 7028 free (qty_table);
75c6bd46 7029
7afe21cc
RK
7030 return to ? NEXT_INSN (to) : 0;
7031}
7032\f
be8ac49a 7033/* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
45c23566 7034 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
be8ac49a
RK
7035
7036static int
7080f735 7037check_for_label_ref (rtx *rtl, void *data)
be8ac49a
RK
7038{
7039 rtx insn = (rtx) data;
7040
7041 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7042 we must rerun jump since it needs to place the note. If this is a
7043 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
ec5c56db 7044 since no REG_LABEL will be added. */
be8ac49a 7045 return (GET_CODE (*rtl) == LABEL_REF
45c23566 7046 && ! LABEL_REF_NONLOCAL_P (*rtl)
4838c5ee 7047 && LABEL_P (XEXP (*rtl, 0))
be8ac49a
RK
7048 && INSN_UID (XEXP (*rtl, 0)) != 0
7049 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7050}
7051\f
7afe21cc
RK
7052/* Count the number of times registers are used (not set) in X.
7053 COUNTS is an array in which we accumulate the count, INCR is how much
9ab81df2 7054 we count each register usage. */
7afe21cc
RK
7055
7056static void
9ab81df2 7057count_reg_usage (rtx x, int *counts, int incr)
7afe21cc 7058{
f1e7c95f 7059 enum rtx_code code;
b17d5d7c 7060 rtx note;
6f7d635c 7061 const char *fmt;
7afe21cc
RK
7062 int i, j;
7063
f1e7c95f
RK
7064 if (x == 0)
7065 return;
7066
7067 switch (code = GET_CODE (x))
7afe21cc
RK
7068 {
7069 case REG:
9ab81df2 7070 counts[REGNO (x)] += incr;
7afe21cc
RK
7071 return;
7072
7073 case PC:
7074 case CC0:
7075 case CONST:
7076 case CONST_INT:
7077 case CONST_DOUBLE:
69ef87e2 7078 case CONST_VECTOR:
7afe21cc
RK
7079 case SYMBOL_REF:
7080 case LABEL_REF:
02e39abc
JL
7081 return;
7082
278a83b2 7083 case CLOBBER:
02e39abc
JL
7084 /* If we are clobbering a MEM, mark any registers inside the address
7085 as being used. */
3c0cb5de 7086 if (MEM_P (XEXP (x, 0)))
9ab81df2 7087 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7afe21cc
RK
7088 return;
7089
7090 case SET:
7091 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 7092 if (!REG_P (SET_DEST (x)))
9ab81df2
JDA
7093 count_reg_usage (SET_DEST (x), counts, incr);
7094 count_reg_usage (SET_SRC (x), counts, incr);
7afe21cc
RK
7095 return;
7096
f1e7c95f 7097 case CALL_INSN:
9ab81df2 7098 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
ddc356e8 7099 /* Fall through. */
f1e7c95f 7100
7afe21cc
RK
7101 case INSN:
7102 case JUMP_INSN:
9ab81df2 7103 count_reg_usage (PATTERN (x), counts, incr);
7afe21cc
RK
7104
7105 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7106 use them. */
7107
b17d5d7c
ZD
7108 note = find_reg_equal_equiv_note (x);
7109 if (note)
839844be
R
7110 {
7111 rtx eqv = XEXP (note, 0);
7112
7113 if (GET_CODE (eqv) == EXPR_LIST)
7114 /* This REG_EQUAL note describes the result of a function call.
7115 Process all the arguments. */
7116 do
7117 {
9ab81df2 7118 count_reg_usage (XEXP (eqv, 0), counts, incr);
839844be
R
7119 eqv = XEXP (eqv, 1);
7120 }
7121 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7122 else
9ab81df2 7123 count_reg_usage (eqv, counts, incr);
839844be 7124 }
7afe21cc
RK
7125 return;
7126
ee960939
OH
7127 case EXPR_LIST:
7128 if (REG_NOTE_KIND (x) == REG_EQUAL
7129 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7130 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7131 involving registers in the address. */
7132 || GET_CODE (XEXP (x, 0)) == CLOBBER)
9ab81df2 7133 count_reg_usage (XEXP (x, 0), counts, incr);
ee960939 7134
9ab81df2 7135 count_reg_usage (XEXP (x, 1), counts, incr);
ee960939
OH
7136 return;
7137
a6c14a64 7138 case ASM_OPERANDS:
a6c14a64
RH
7139 /* Iterate over just the inputs, not the constraints as well. */
7140 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
9ab81df2 7141 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
a6c14a64
RH
7142 return;
7143
7afe21cc 7144 case INSN_LIST:
341c100f 7145 gcc_unreachable ();
278a83b2 7146
e9a25f70
JL
7147 default:
7148 break;
7afe21cc
RK
7149 }
7150
7151 fmt = GET_RTX_FORMAT (code);
7152 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7153 {
7154 if (fmt[i] == 'e')
9ab81df2 7155 count_reg_usage (XEXP (x, i), counts, incr);
7afe21cc
RK
7156 else if (fmt[i] == 'E')
7157 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9ab81df2 7158 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7afe21cc
RK
7159 }
7160}
7161\f
4793dca1
JH
7162/* Return true if set is live. */
7163static bool
7080f735
AJ
7164set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7165 int *counts)
4793dca1
JH
7166{
7167#ifdef HAVE_cc0
7168 rtx tem;
7169#endif
7170
7171 if (set_noop_p (set))
7172 ;
7173
7174#ifdef HAVE_cc0
7175 else if (GET_CODE (SET_DEST (set)) == CC0
7176 && !side_effects_p (SET_SRC (set))
7177 && ((tem = next_nonnote_insn (insn)) == 0
7178 || !INSN_P (tem)
7179 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7180 return false;
7181#endif
f8cfc6aa 7182 else if (!REG_P (SET_DEST (set))
4793dca1
JH
7183 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7184 || counts[REGNO (SET_DEST (set))] != 0
8fff4fc1 7185 || side_effects_p (SET_SRC (set)))
4793dca1
JH
7186 return true;
7187 return false;
7188}
7189
7190/* Return true if insn is live. */
7191
7192static bool
7080f735 7193insn_live_p (rtx insn, int *counts)
4793dca1
JH
7194{
7195 int i;
a3745024 7196 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
a646f6cc
AH
7197 return true;
7198 else if (GET_CODE (PATTERN (insn)) == SET)
0021de69 7199 return set_live_p (PATTERN (insn), insn, counts);
4793dca1 7200 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
7201 {
7202 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7203 {
7204 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 7205
0021de69
DB
7206 if (GET_CODE (elt) == SET)
7207 {
7208 if (set_live_p (elt, insn, counts))
7209 return true;
7210 }
7211 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7212 return true;
7213 }
7214 return false;
7215 }
4793dca1
JH
7216 else
7217 return true;
7218}
7219
7220/* Return true if libcall is dead as a whole. */
7221
7222static bool
7080f735 7223dead_libcall_p (rtx insn, int *counts)
4793dca1 7224{
0c19a26f
RS
7225 rtx note, set, new;
7226
4793dca1
JH
7227 /* See if there's a REG_EQUAL note on this insn and try to
7228 replace the source with the REG_EQUAL expression.
7229
7230 We assume that insns with REG_RETVALs can only be reg->reg
7231 copies at this point. */
7232 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
0c19a26f
RS
7233 if (!note)
7234 return false;
7235
7236 set = single_set (insn);
7237 if (!set)
7238 return false;
4793dca1 7239
0c19a26f
RS
7240 new = simplify_rtx (XEXP (note, 0));
7241 if (!new)
7242 new = XEXP (note, 0);
4793dca1 7243
0c19a26f 7244 /* While changing insn, we must update the counts accordingly. */
9ab81df2 7245 count_reg_usage (insn, counts, -1);
1e150f2c 7246
0c19a26f
RS
7247 if (validate_change (insn, &SET_SRC (set), new, 0))
7248 {
9ab81df2 7249 count_reg_usage (insn, counts, 1);
0c19a26f
RS
7250 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7251 remove_note (insn, note);
7252 return true;
7253 }
7254
7255 if (CONSTANT_P (new))
7256 {
7257 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7258 if (new && validate_change (insn, &SET_SRC (set), new, 0))
4793dca1 7259 {
9ab81df2 7260 count_reg_usage (insn, counts, 1);
4793dca1 7261 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
1e150f2c 7262 remove_note (insn, note);
4793dca1
JH
7263 return true;
7264 }
7265 }
7080f735 7266
9ab81df2 7267 count_reg_usage (insn, counts, 1);
4793dca1
JH
7268 return false;
7269}
7270
7afe21cc
RK
7271/* Scan all the insns and delete any that are dead; i.e., they store a register
7272 that is never used or they copy a register to itself.
7273
c6a26dc4
JL
7274 This is used to remove insns made obviously dead by cse, loop or other
7275 optimizations. It improves the heuristics in loop since it won't try to
7276 move dead invariants out of loops or make givs for dead quantities. The
7277 remaining passes of the compilation are also sped up. */
7afe21cc 7278
3dec4024 7279int
7080f735 7280delete_trivially_dead_insns (rtx insns, int nreg)
7afe21cc 7281{
4da896b2 7282 int *counts;
77fa0940 7283 rtx insn, prev;
614bb5d4 7284 int in_libcall = 0, dead_libcall = 0;
3dec4024 7285 int ndead = 0, nlastdead, niterations = 0;
7afe21cc 7286
3dec4024 7287 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 7288 /* First count the number of times each register is used. */
703ad42b 7289 counts = xcalloc (nreg, sizeof (int));
7afe21cc 7290 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
9ab81df2 7291 count_reg_usage (insn, counts, 1);
7afe21cc 7292
3dec4024
JH
7293 do
7294 {
7295 nlastdead = ndead;
7296 niterations++;
7297 /* Go from the last insn to the first and delete insns that only set unused
7298 registers or copy a register to itself. As we delete an insn, remove
7299 usage counts for registers it uses.
7300
7301 The first jump optimization pass may leave a real insn as the last
7302 insn in the function. We must not skip that insn or we may end
7303 up deleting code that is not really dead. */
7304 insn = get_last_insn ();
7305 if (! INSN_P (insn))
7306 insn = prev_real_insn (insn);
0cedb36c 7307
3dec4024 7308 for (; insn; insn = prev)
7afe21cc 7309 {
4793dca1 7310 int live_insn = 0;
7afe21cc 7311
3dec4024 7312 prev = prev_real_insn (insn);
7afe21cc 7313
4793dca1
JH
7314 /* Don't delete any insns that are part of a libcall block unless
7315 we can delete the whole libcall block.
7afe21cc 7316
4793dca1
JH
7317 Flow or loop might get confused if we did that. Remember
7318 that we are scanning backwards. */
7319 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7320 {
7321 in_libcall = 1;
dc42616f 7322 live_insn = 1;
1e150f2c 7323 dead_libcall = dead_libcall_p (insn, counts);
4793dca1
JH
7324 }
7325 else if (in_libcall)
7326 live_insn = ! dead_libcall;
7327 else
7328 live_insn = insn_live_p (insn, counts);
7afe21cc 7329
4793dca1
JH
7330 /* If this is a dead insn, delete it and show registers in it aren't
7331 being used. */
7afe21cc 7332
4793dca1
JH
7333 if (! live_insn)
7334 {
9ab81df2 7335 count_reg_usage (insn, counts, -1);
3dec4024
JH
7336 delete_insn_and_edges (insn);
7337 ndead++;
4793dca1 7338 }
e4890d45 7339
4793dca1
JH
7340 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7341 {
7342 in_libcall = 0;
7343 dead_libcall = 0;
7344 }
614bb5d4 7345 }
68252e27
KH
7346 }
7347 while (ndead != nlastdead);
4da896b2 7348
c263766c
RH
7349 if (dump_file && ndead)
7350 fprintf (dump_file, "Deleted %i trivially dead insns; %i iterations\n",
3dec4024 7351 ndead, niterations);
4da896b2
MM
7352 /* Clean up. */
7353 free (counts);
3dec4024
JH
7354 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7355 return ndead;
7afe21cc 7356}
e129d93a
ILT
7357
7358/* This function is called via for_each_rtx. The argument, NEWREG, is
7359 a condition code register with the desired mode. If we are looking
7360 at the same register in a different mode, replace it with
7361 NEWREG. */
7362
7363static int
7364cse_change_cc_mode (rtx *loc, void *data)
7365{
fc188d37 7366 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
e129d93a
ILT
7367
7368 if (*loc
f8cfc6aa 7369 && REG_P (*loc)
fc188d37
AK
7370 && REGNO (*loc) == REGNO (args->newreg)
7371 && GET_MODE (*loc) != GET_MODE (args->newreg))
e129d93a 7372 {
fc188d37
AK
7373 validate_change (args->insn, loc, args->newreg, 1);
7374
e129d93a
ILT
7375 return -1;
7376 }
7377 return 0;
7378}
7379
fc188d37
AK
7380/* Change the mode of any reference to the register REGNO (NEWREG) to
7381 GET_MODE (NEWREG) in INSN. */
7382
7383static void
7384cse_change_cc_mode_insn (rtx insn, rtx newreg)
7385{
7386 struct change_cc_mode_args args;
7387 int success;
7388
7389 if (!INSN_P (insn))
7390 return;
7391
7392 args.insn = insn;
7393 args.newreg = newreg;
7394
7395 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7396 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7397
7398 /* If the following assertion was triggered, there is most probably
7399 something wrong with the cc_modes_compatible back end function.
7400 CC modes only can be considered compatible if the insn - with the mode
7401 replaced by any of the compatible modes - can still be recognized. */
7402 success = apply_change_group ();
7403 gcc_assert (success);
7404}
7405
e129d93a
ILT
7406/* Change the mode of any reference to the register REGNO (NEWREG) to
7407 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 7408 any instruction which modifies NEWREG. */
e129d93a
ILT
7409
7410static void
7411cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7412{
7413 rtx insn;
7414
7415 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7416 {
7417 if (! INSN_P (insn))
7418 continue;
7419
2e802a6f 7420 if (reg_set_p (newreg, insn))
e129d93a
ILT
7421 return;
7422
fc188d37 7423 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
7424 }
7425}
7426
7427/* BB is a basic block which finishes with CC_REG as a condition code
7428 register which is set to CC_SRC. Look through the successors of BB
7429 to find blocks which have a single predecessor (i.e., this one),
7430 and look through those blocks for an assignment to CC_REG which is
7431 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7432 permitted to change the mode of CC_SRC to a compatible mode. This
7433 returns VOIDmode if no equivalent assignments were found.
7434 Otherwise it returns the mode which CC_SRC should wind up with.
7435
7436 The main complexity in this function is handling the mode issues.
7437 We may have more than one duplicate which we can eliminate, and we
7438 try to find a mode which will work for multiple duplicates. */
7439
7440static enum machine_mode
7441cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7442{
7443 bool found_equiv;
7444 enum machine_mode mode;
7445 unsigned int insn_count;
7446 edge e;
7447 rtx insns[2];
7448 enum machine_mode modes[2];
7449 rtx last_insns[2];
7450 unsigned int i;
7451 rtx newreg;
628f6a4e 7452 edge_iterator ei;
e129d93a
ILT
7453
7454 /* We expect to have two successors. Look at both before picking
7455 the final mode for the comparison. If we have more successors
7456 (i.e., some sort of table jump, although that seems unlikely),
7457 then we require all beyond the first two to use the same
7458 mode. */
7459
7460 found_equiv = false;
7461 mode = GET_MODE (cc_src);
7462 insn_count = 0;
628f6a4e 7463 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a
ILT
7464 {
7465 rtx insn;
7466 rtx end;
7467
7468 if (e->flags & EDGE_COMPLEX)
7469 continue;
7470
628f6a4e 7471 if (EDGE_COUNT (e->dest->preds) != 1
e129d93a
ILT
7472 || e->dest == EXIT_BLOCK_PTR)
7473 continue;
7474
7475 end = NEXT_INSN (BB_END (e->dest));
7476 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7477 {
7478 rtx set;
7479
7480 if (! INSN_P (insn))
7481 continue;
7482
7483 /* If CC_SRC is modified, we have to stop looking for
7484 something which uses it. */
7485 if (modified_in_p (cc_src, insn))
7486 break;
7487
7488 /* Check whether INSN sets CC_REG to CC_SRC. */
7489 set = single_set (insn);
7490 if (set
f8cfc6aa 7491 && REG_P (SET_DEST (set))
e129d93a
ILT
7492 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7493 {
7494 bool found;
7495 enum machine_mode set_mode;
7496 enum machine_mode comp_mode;
7497
7498 found = false;
7499 set_mode = GET_MODE (SET_SRC (set));
7500 comp_mode = set_mode;
7501 if (rtx_equal_p (cc_src, SET_SRC (set)))
7502 found = true;
7503 else if (GET_CODE (cc_src) == COMPARE
7504 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 7505 && mode != set_mode
e129d93a
ILT
7506 && rtx_equal_p (XEXP (cc_src, 0),
7507 XEXP (SET_SRC (set), 0))
7508 && rtx_equal_p (XEXP (cc_src, 1),
7509 XEXP (SET_SRC (set), 1)))
7510
7511 {
5fd9b178 7512 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
7513 if (comp_mode != VOIDmode
7514 && (can_change_mode || comp_mode == mode))
7515 found = true;
7516 }
7517
7518 if (found)
7519 {
7520 found_equiv = true;
1f44254c 7521 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
7522 {
7523 insns[insn_count] = insn;
7524 modes[insn_count] = set_mode;
7525 last_insns[insn_count] = end;
7526 ++insn_count;
7527
1f44254c
ILT
7528 if (mode != comp_mode)
7529 {
341c100f 7530 gcc_assert (can_change_mode);
1f44254c 7531 mode = comp_mode;
fc188d37
AK
7532
7533 /* The modified insn will be re-recognized later. */
1f44254c
ILT
7534 PUT_MODE (cc_src, mode);
7535 }
e129d93a
ILT
7536 }
7537 else
7538 {
7539 if (set_mode != mode)
1f44254c
ILT
7540 {
7541 /* We found a matching expression in the
7542 wrong mode, but we don't have room to
7543 store it in the array. Punt. This case
7544 should be rare. */
7545 break;
7546 }
e129d93a
ILT
7547 /* INSN sets CC_REG to a value equal to CC_SRC
7548 with the right mode. We can simply delete
7549 it. */
7550 delete_insn (insn);
7551 }
7552
7553 /* We found an instruction to delete. Keep looking,
7554 in the hopes of finding a three-way jump. */
7555 continue;
7556 }
7557
7558 /* We found an instruction which sets the condition
7559 code, so don't look any farther. */
7560 break;
7561 }
7562
7563 /* If INSN sets CC_REG in some other way, don't look any
7564 farther. */
7565 if (reg_set_p (cc_reg, insn))
7566 break;
7567 }
7568
7569 /* If we fell off the bottom of the block, we can keep looking
7570 through successors. We pass CAN_CHANGE_MODE as false because
7571 we aren't prepared to handle compatibility between the
7572 further blocks and this block. */
7573 if (insn == end)
7574 {
1f44254c
ILT
7575 enum machine_mode submode;
7576
7577 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7578 if (submode != VOIDmode)
7579 {
341c100f 7580 gcc_assert (submode == mode);
1f44254c
ILT
7581 found_equiv = true;
7582 can_change_mode = false;
7583 }
e129d93a
ILT
7584 }
7585 }
7586
7587 if (! found_equiv)
7588 return VOIDmode;
7589
7590 /* Now INSN_COUNT is the number of instructions we found which set
7591 CC_REG to a value equivalent to CC_SRC. The instructions are in
7592 INSNS. The modes used by those instructions are in MODES. */
7593
7594 newreg = NULL_RTX;
7595 for (i = 0; i < insn_count; ++i)
7596 {
7597 if (modes[i] != mode)
7598 {
7599 /* We need to change the mode of CC_REG in INSNS[i] and
7600 subsequent instructions. */
7601 if (! newreg)
7602 {
7603 if (GET_MODE (cc_reg) == mode)
7604 newreg = cc_reg;
7605 else
7606 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7607 }
7608 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7609 newreg);
7610 }
7611
7612 delete_insn (insns[i]);
7613 }
7614
7615 return mode;
7616}
7617
7618/* If we have a fixed condition code register (or two), walk through
7619 the instructions and try to eliminate duplicate assignments. */
7620
7621void
7622cse_condition_code_reg (void)
7623{
7624 unsigned int cc_regno_1;
7625 unsigned int cc_regno_2;
7626 rtx cc_reg_1;
7627 rtx cc_reg_2;
7628 basic_block bb;
7629
5fd9b178 7630 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
7631 return;
7632
7633 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7634 if (cc_regno_2 != INVALID_REGNUM)
7635 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7636 else
7637 cc_reg_2 = NULL_RTX;
7638
7639 FOR_EACH_BB (bb)
7640 {
7641 rtx last_insn;
7642 rtx cc_reg;
7643 rtx insn;
7644 rtx cc_src_insn;
7645 rtx cc_src;
7646 enum machine_mode mode;
1f44254c 7647 enum machine_mode orig_mode;
e129d93a
ILT
7648
7649 /* Look for blocks which end with a conditional jump based on a
7650 condition code register. Then look for the instruction which
7651 sets the condition code register. Then look through the
7652 successor blocks for instructions which set the condition
7653 code register to the same value. There are other possible
7654 uses of the condition code register, but these are by far the
7655 most common and the ones which we are most likely to be able
7656 to optimize. */
7657
7658 last_insn = BB_END (bb);
4b4bf941 7659 if (!JUMP_P (last_insn))
e129d93a
ILT
7660 continue;
7661
7662 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7663 cc_reg = cc_reg_1;
7664 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7665 cc_reg = cc_reg_2;
7666 else
7667 continue;
7668
7669 cc_src_insn = NULL_RTX;
7670 cc_src = NULL_RTX;
7671 for (insn = PREV_INSN (last_insn);
7672 insn && insn != PREV_INSN (BB_HEAD (bb));
7673 insn = PREV_INSN (insn))
7674 {
7675 rtx set;
7676
7677 if (! INSN_P (insn))
7678 continue;
7679 set = single_set (insn);
7680 if (set
f8cfc6aa 7681 && REG_P (SET_DEST (set))
e129d93a
ILT
7682 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7683 {
7684 cc_src_insn = insn;
7685 cc_src = SET_SRC (set);
7686 break;
7687 }
7688 else if (reg_set_p (cc_reg, insn))
7689 break;
7690 }
7691
7692 if (! cc_src_insn)
7693 continue;
7694
7695 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7696 continue;
7697
7698 /* Now CC_REG is a condition code register used for a
7699 conditional jump at the end of the block, and CC_SRC, in
7700 CC_SRC_INSN, is the value to which that condition code
7701 register is set, and CC_SRC is still meaningful at the end of
7702 the basic block. */
7703
1f44254c 7704 orig_mode = GET_MODE (cc_src);
e129d93a 7705 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
1f44254c 7706 if (mode != VOIDmode)
e129d93a 7707 {
341c100f 7708 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 7709 if (mode != orig_mode)
2e802a6f
KH
7710 {
7711 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7712
fc188d37 7713 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
7714
7715 /* Do the same in the following insns that use the
7716 current value of CC_REG within BB. */
7717 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7718 NEXT_INSN (last_insn),
7719 newreg);
7720 }
e129d93a
ILT
7721 }
7722 }
7723}