]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
all.cc, [...]: Only include <ext/codecvt_specializations.h> and <ext/enc_filebuf...
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
5e7b4e25 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
7e7e28c7
AO
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
7afe21cc 5
1322177d 6This file is part of GCC.
7afe21cc 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
7afe21cc 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
7afe21cc
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
7afe21cc 21
7afe21cc 22#include "config.h"
670ee920
KG
23/* stdio.h must precede rtl.h for FFS. */
24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
7afe21cc 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
7afe21cc 29#include "hard-reg-set.h"
7932a3db 30#include "regs.h"
630c79be 31#include "basic-block.h"
7afe21cc
RK
32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
49ad7cfa 36#include "function.h"
956d6950 37#include "expr.h"
50b2596f
KG
38#include "toplev.h"
39#include "output.h"
1497faf6 40#include "ggc.h"
3dec4024 41#include "timevar.h"
26771da7 42#include "except.h"
3c50106f 43#include "target.h"
9bf8cfbf 44#include "params.h"
2f93eea8 45#include "rtlhooks-def.h"
ef330312 46#include "tree-pass.h"
6fb5fa3c
DB
47#include "df.h"
48#include "dbgcnt.h"
7afe21cc
RK
49
50/* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
54
55 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
60
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
64
65 We use two data structures to record the equivalent expressions:
1bb98cec
DM
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
68
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
77
78Registers and "quantity numbers":
278a83b2 79
7afe21cc
RK
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
459281be 86 `REG_QTY (N)' records what quantity register N is currently thought
7afe21cc
RK
87 of as containing.
88
08a69267 89 All real quantity numbers are greater than or equal to zero.
459281be 90 If register N has not been assigned a quantity, `REG_QTY (N)' will
08a69267 91 equal -N - 1, which is always negative.
7afe21cc 92
08a69267
RS
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
7afe21cc
RK
95
96 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
99
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
103
104 If two registers have the same quantity number, it must be true that
1bb98cec 105 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
106 registers and must be in the same class.
107
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
278a83b2 112
7afe21cc
RK
113Constants and quantity numbers
114
115 When a quantity has a known constant value, that value is stored
1bb98cec 116 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
117 putting the constant in the hash table as is usual for non-regs.
118
d45cf215 119 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
122
123 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
7afe21cc
RK
126
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
132
133Other expressions:
134
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
140
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
143
144 Register references in an expression are canonicalized before hashing
1bb98cec 145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
148
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
152
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
157
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
165
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
169
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
177
459281be
KH
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
7afe21cc
RK
188
189 Registers themselves are entered in the hash table as well as in
459281be
KH
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
7afe21cc
RK
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
196
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
200
201Related expressions:
202
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
278a83b2 209
1bb98cec
DM
210/* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
7afe21cc
RK
212
213static int max_qty;
214
215/* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
217
218static int next_qty;
219
1bb98cec 220/* Per-qty information tracking.
7afe21cc 221
1bb98cec
DM
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
7afe21cc 224
1bb98cec 225 `mode' contains the machine mode of this quantity.
7afe21cc 226
1bb98cec
DM
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
7afe21cc 232
1bb98cec
DM
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
7afe21cc 244
1bb98cec
DM
245struct qty_table_elem
246{
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
770ae6cc 251 unsigned int first_reg, last_reg;
496324d0
DN
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
1bb98cec 256};
7afe21cc 257
1bb98cec
DM
258/* The table of all qtys, indexed by qty number. */
259static struct qty_table_elem *qty_table;
7afe21cc 260
fc188d37
AK
261/* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263struct change_cc_mode_args
264{
265 rtx insn;
266 rtx newreg;
267};
268
7afe21cc
RK
269#ifdef HAVE_cc0
270/* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
273
96fb470d
SB
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
7afe21cc 278
96fb470d
SB
279static rtx this_insn_cc0, prev_insn_cc0;
280static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
4977bab6 281#endif
7afe21cc
RK
282
283/* Insn being scanned. */
284
285static rtx this_insn;
286
71d306d1
DE
287/* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
7afe21cc
RK
289 value.
290
291 Or -1 if this register is at the end of the chain.
292
459281be 293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
1bb98cec
DM
294
295/* Per-register equivalence chain. */
296struct reg_eqv_elem
297{
298 int next, prev;
299};
7afe21cc 300
1bb98cec
DM
301/* The table of all register equivalence chains. */
302static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 303
14a774a9
RK
304struct cse_reg_info
305{
bc5e3b54
KH
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
9b1549b8
DM
308
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
311
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
315
30f72379
MM
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
46081bb3
SH
321
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 324 unsigned int subreg_ticked;
30f72379 325};
7afe21cc 326
bc5e3b54 327/* A table of cse_reg_info indexed by register numbers. */
f00822b2 328static struct cse_reg_info *cse_reg_info_table;
c1edba58 329
bc5e3b54
KH
330/* The size of the above table. */
331static unsigned int cse_reg_info_table_size;
9b1549b8 332
bc5e3b54
KH
333/* The index of the first entry that has not been initialized. */
334static unsigned int cse_reg_info_table_first_uninitialized;
7afe21cc 335
bc5e3b54 336/* The timestamp at the beginning of the current run of
932ad4d9
SB
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
bc5e3b54
KH
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
932ad4d9 341 cse_extended_basic_block. */
bc5e3b54 342static unsigned int cse_reg_info_timestamp;
7afe21cc 343
278a83b2 344/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
348
349static HARD_REG_SET hard_regs_in_table;
350
2aac3a01
EB
351/* True if CSE has altered the CFG. */
352static bool cse_cfg_altered;
7afe21cc 353
2aac3a01
EB
354/* True if CSE has altered conditional jump insns in such a way
355 that jump optimization should be redone. */
356static bool cse_jumps_altered;
7afe21cc 357
2aac3a01
EB
358/* True if we put a LABEL_REF into the hash table for an INSN
359 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
360 to put in the note. */
361static bool recorded_label_ref;
a5dfb4ee 362
7afe21cc
RK
363/* canon_hash stores 1 in do_not_record
364 if it notices a reference to CC0, PC, or some other volatile
365 subexpression. */
366
367static int do_not_record;
368
369/* canon_hash stores 1 in hash_arg_in_memory
370 if it notices a reference to memory within the expression being hashed. */
371
372static int hash_arg_in_memory;
373
7afe21cc
RK
374/* The hash table contains buckets which are chains of `struct table_elt's,
375 each recording one expression's information.
376 That expression is in the `exp' field.
377
db048faf
MM
378 The canon_exp field contains a canonical (from the point of view of
379 alias analysis) version of the `exp' field.
380
7afe21cc
RK
381 Those elements with the same hash code are chained in both directions
382 through the `next_same_hash' and `prev_same_hash' fields.
383
384 Each set of expressions with equivalent values
385 are on a two-way chain through the `next_same_value'
386 and `prev_same_value' fields, and all point with
387 the `first_same_value' field at the first element in
388 that chain. The chain is in order of increasing cost.
389 Each element's cost value is in its `cost' field.
390
391 The `in_memory' field is nonzero for elements that
392 involve any reference to memory. These elements are removed
393 whenever a write is done to an unidentified location in memory.
394 To be safe, we assume that a memory address is unidentified unless
395 the address is either a symbol constant or a constant plus
396 the frame pointer or argument pointer.
397
7afe21cc
RK
398 The `related_value' field is used to connect related expressions
399 (that differ by adding an integer).
400 The related expressions are chained in a circular fashion.
401 `related_value' is zero for expressions for which this
402 chain is not useful.
403
404 The `cost' field stores the cost of this element's expression.
630c79be
BS
405 The `regcost' field stores the value returned by approx_reg_cost for
406 this element's expression.
7afe21cc
RK
407
408 The `is_const' flag is set if the element is a constant (including
409 a fixed address).
410
411 The `flag' field is used as a temporary during some search routines.
412
413 The `mode' field is usually the same as GET_MODE (`exp'), but
414 if `exp' is a CONST_INT and has no machine mode then the `mode'
415 field is the mode it was being used as. Each constant is
416 recorded separately for each mode it is used with. */
417
7afe21cc
RK
418struct table_elt
419{
420 rtx exp;
db048faf 421 rtx canon_exp;
7afe21cc
RK
422 struct table_elt *next_same_hash;
423 struct table_elt *prev_same_hash;
424 struct table_elt *next_same_value;
425 struct table_elt *prev_same_value;
426 struct table_elt *first_same_value;
427 struct table_elt *related_value;
428 int cost;
630c79be 429 int regcost;
496324d0
DN
430 /* The size of this field should match the size
431 of the mode field of struct rtx_def (see rtl.h). */
432 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc 433 char in_memory;
7afe21cc
RK
434 char is_const;
435 char flag;
436};
437
7afe21cc
RK
438/* We don't want a lot of buckets, because we rarely have very many
439 things stored in the hash table, and a lot of buckets slows
440 down a lot of loops that happen frequently. */
9b1549b8
DM
441#define HASH_SHIFT 5
442#define HASH_SIZE (1 << HASH_SHIFT)
443#define HASH_MASK (HASH_SIZE - 1)
7afe21cc
RK
444
445/* Compute hash code of X in mode M. Special-case case where X is a pseudo
446 register (hard registers may require `do_not_record' to be set). */
447
448#define HASH(X, M) \
f8cfc6aa 449 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9b1549b8
DM
450 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
451 : canon_hash (X, M)) & HASH_MASK)
7afe21cc 452
0516f6fe
SB
453/* Like HASH, but without side-effects. */
454#define SAFE_HASH(X, M) \
455 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
456 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
457 : safe_hash (X, M)) & HASH_MASK)
458
630c79be
BS
459/* Determine whether register number N is considered a fixed register for the
460 purpose of approximating register costs.
7afe21cc
RK
461 It is desirable to replace other regs with fixed regs, to reduce need for
462 non-fixed hard regs.
553687c9 463 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 464#define FIXED_REGNO_P(N) \
8bc169f2 465 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 466 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
467
468/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
469 hard registers and pointers into the frame are the cheapest with a cost
470 of 0. Next come pseudos with a cost of one and other hard registers with
471 a cost of 2. Aside from these special cases, call `rtx_cost'. */
472
d67fb775
SB
473#define CHEAP_REGNO(N) \
474 (REGNO_PTR_FRAME_P(N) \
475 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 476 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 477
f8cfc6aa
JQ
478#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
479#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
7afe21cc 480
30f72379
MM
481/* Get the number of times this register has been updated in this
482 basic block. */
483
bc5e3b54 484#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
30f72379
MM
485
486/* Get the point at which REG was recorded in the table. */
487
bc5e3b54 488#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
30f72379 489
46081bb3
SH
490/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
491 SUBREG). */
492
bc5e3b54 493#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
46081bb3 494
30f72379
MM
495/* Get the quantity number for REG. */
496
bc5e3b54 497#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
30f72379 498
7afe21cc 499/* Determine if the quantity number for register X represents a valid index
1bb98cec 500 into the qty_table. */
7afe21cc 501
08a69267 502#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 503
9b1549b8 504static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
505
506/* Chain of `struct table_elt's made so far for this function
507 but currently removed from the table. */
508
509static struct table_elt *free_element_chain;
510
7afe21cc
RK
511/* Set to the cost of a constant pool reference if one was found for a
512 symbolic constant. If this was found, it means we should try to
513 convert constants into constant pool entries if they don't fit in
514 the insn. */
515
516static int constant_pool_entries_cost;
dd0ba281 517static int constant_pool_entries_regcost;
7afe21cc 518
932ad4d9
SB
519/* This data describes a block that will be processed by
520 cse_extended_basic_block. */
6cd4575e 521
14a774a9
RK
522struct cse_basic_block_data
523{
6cd4575e
RK
524 /* Total number of SETs in block. */
525 int nsets;
6cd4575e
RK
526 /* Size of current branch path, if any. */
527 int path_size;
932ad4d9 528 /* Current path, indicating which basic_blocks will be processed. */
14a774a9
RK
529 struct branch_path
530 {
932ad4d9
SB
531 /* The basic block for this path entry. */
532 basic_block bb;
9bf8cfbf 533 } *path;
6cd4575e
RK
534};
535
6fb5fa3c
DB
536
537/* Pointers to the live in/live out bitmaps for the boundaries of the
538 current EBB. */
539static bitmap cse_ebb_live_in, cse_ebb_live_out;
540
932ad4d9
SB
541/* A simple bitmap to track which basic blocks have been visited
542 already as part of an already processed extended basic block. */
543static sbitmap cse_visited_basic_blocks;
544
7080f735
AJ
545static bool fixed_base_plus_p (rtx x);
546static int notreg_cost (rtx, enum rtx_code);
547static int approx_reg_cost_1 (rtx *, void *);
548static int approx_reg_cost (rtx);
56ae04af 549static int preferable (int, int, int, int);
7080f735
AJ
550static void new_basic_block (void);
551static void make_new_qty (unsigned int, enum machine_mode);
552static void make_regs_eqv (unsigned int, unsigned int);
553static void delete_reg_equiv (unsigned int);
554static int mention_regs (rtx);
555static int insert_regs (rtx, struct table_elt *, int);
556static void remove_from_table (struct table_elt *, unsigned);
d556d181
EB
557static void remove_pseudo_from_table (rtx, unsigned);
558static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
7080f735
AJ
559static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
560static rtx lookup_as_function (rtx, enum rtx_code);
561static struct table_elt *insert (rtx, struct table_elt *, unsigned,
562 enum machine_mode);
563static void merge_equiv_classes (struct table_elt *, struct table_elt *);
564static void invalidate (rtx, enum machine_mode);
4f588890 565static bool cse_rtx_varies_p (const_rtx, bool);
7080f735
AJ
566static void remove_invalid_refs (unsigned int);
567static void remove_invalid_subreg_refs (unsigned int, unsigned int,
568 enum machine_mode);
569static void rehash_using_reg (rtx);
570static void invalidate_memory (void);
571static void invalidate_for_call (void);
572static rtx use_related_value (rtx, struct table_elt *);
0516f6fe
SB
573
574static inline unsigned canon_hash (rtx, enum machine_mode);
575static inline unsigned safe_hash (rtx, enum machine_mode);
576static unsigned hash_rtx_string (const char *);
577
7080f735 578static rtx canon_reg (rtx, rtx);
7080f735
AJ
579static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
580 enum machine_mode *,
581 enum machine_mode *);
582static rtx fold_rtx (rtx, rtx);
583static rtx equiv_constant (rtx);
0129d079 584static void record_jump_equiv (rtx, bool);
7080f735
AJ
585static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
586 int);
587static void cse_insn (rtx, rtx);
932ad4d9 588static void cse_prescan_path (struct cse_basic_block_data *);
7080f735 589static void invalidate_from_clobbers (rtx);
6fb5fa3c 590static rtx cse_process_notes (rtx, rtx, bool *);
932ad4d9 591static void cse_extended_basic_block (struct cse_basic_block_data *);
b92ba6ff 592static void count_reg_usage (rtx, int *, rtx, int);
7080f735
AJ
593static int check_for_label_ref (rtx *, void *);
594extern void dump_class (struct table_elt*);
bc5e3b54
KH
595static void get_cse_reg_info_1 (unsigned int regno);
596static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
7080f735
AJ
597static int check_dependence (rtx *, void *);
598
599static void flush_hash_table (void);
600static bool insn_live_p (rtx, int *);
601static bool set_live_p (rtx, rtx, int *);
602static bool dead_libcall_p (rtx, int *);
e129d93a 603static int cse_change_cc_mode (rtx *, void *);
fc188d37 604static void cse_change_cc_mode_insn (rtx, rtx);
e129d93a
ILT
605static void cse_change_cc_mode_insns (rtx, rtx, rtx);
606static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
7afe21cc 607\f
2f93eea8
PB
608
609#undef RTL_HOOKS_GEN_LOWPART
610#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
611
612static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
613\f
4977bab6
ZW
614/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
615 virtual regs here because the simplify_*_operation routines are called
616 by integrate.c, which is called before virtual register instantiation. */
617
618static bool
7080f735 619fixed_base_plus_p (rtx x)
4977bab6
ZW
620{
621 switch (GET_CODE (x))
622 {
623 case REG:
624 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
625 return true;
626 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
627 return true;
628 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
629 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
630 return true;
631 return false;
632
633 case PLUS:
634 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
635 return false;
636 return fixed_base_plus_p (XEXP (x, 0));
637
4977bab6
ZW
638 default:
639 return false;
640 }
641}
642
a4c6502a
MM
643/* Dump the expressions in the equivalence class indicated by CLASSP.
644 This function is used only for debugging. */
a0153051 645void
7080f735 646dump_class (struct table_elt *classp)
a4c6502a
MM
647{
648 struct table_elt *elt;
649
650 fprintf (stderr, "Equivalence chain for ");
651 print_rtl (stderr, classp->exp);
652 fprintf (stderr, ": \n");
278a83b2 653
a4c6502a
MM
654 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
655 {
656 print_rtl (stderr, elt->exp);
657 fprintf (stderr, "\n");
658 }
659}
660
630c79be 661/* Subroutine of approx_reg_cost; called through for_each_rtx. */
be8ac49a 662
630c79be 663static int
7080f735 664approx_reg_cost_1 (rtx *xp, void *data)
630c79be
BS
665{
666 rtx x = *xp;
c863f8c2 667 int *cost_p = data;
630c79be 668
f8cfc6aa 669 if (x && REG_P (x))
c863f8c2
DM
670 {
671 unsigned int regno = REGNO (x);
672
673 if (! CHEAP_REGNO (regno))
674 {
675 if (regno < FIRST_PSEUDO_REGISTER)
676 {
677 if (SMALL_REGISTER_CLASSES)
678 return 1;
679 *cost_p += 2;
680 }
681 else
682 *cost_p += 1;
683 }
684 }
685
630c79be
BS
686 return 0;
687}
688
689/* Return an estimate of the cost of the registers used in an rtx.
690 This is mostly the number of different REG expressions in the rtx;
a1f300c0 691 however for some exceptions like fixed registers we use a cost of
f1c1dfc3 692 0. If any other hard register reference occurs, return MAX_COST. */
630c79be
BS
693
694static int
7080f735 695approx_reg_cost (rtx x)
630c79be 696{
630c79be 697 int cost = 0;
f1c1dfc3 698
c863f8c2
DM
699 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
700 return MAX_COST;
630c79be 701
c863f8c2 702 return cost;
630c79be
BS
703}
704
705/* Return a negative value if an rtx A, whose costs are given by COST_A
706 and REGCOST_A, is more desirable than an rtx B.
707 Return a positive value if A is less desirable, or 0 if the two are
708 equally good. */
709static int
56ae04af 710preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 711{
423adbb9 712 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
713 unwanted. */
714 if (cost_a != cost_b)
715 {
716 if (cost_a == MAX_COST)
717 return 1;
718 if (cost_b == MAX_COST)
719 return -1;
720 }
721
722 /* Avoid extending lifetimes of hardregs. */
723 if (regcost_a != regcost_b)
724 {
725 if (regcost_a == MAX_COST)
726 return 1;
727 if (regcost_b == MAX_COST)
728 return -1;
729 }
730
731 /* Normal operation costs take precedence. */
630c79be
BS
732 if (cost_a != cost_b)
733 return cost_a - cost_b;
f1c1dfc3 734 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
735 if (regcost_a != regcost_b)
736 return regcost_a - regcost_b;
737 return 0;
738}
739
954a5693
RK
740/* Internal function, to compute cost when X is not a register; called
741 from COST macro to keep it simple. */
742
743static int
7080f735 744notreg_cost (rtx x, enum rtx_code outer)
954a5693
RK
745{
746 return ((GET_CODE (x) == SUBREG
f8cfc6aa 747 && REG_P (SUBREG_REG (x))
954a5693
RK
748 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
749 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
750 && (GET_MODE_SIZE (GET_MODE (x))
751 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
752 && subreg_lowpart_p (x)
753 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
754 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
630c79be 755 ? 0
f2fa288f 756 : rtx_cost (x, outer) * 2);
954a5693
RK
757}
758
01329426 759\f
bc5e3b54 760/* Initialize CSE_REG_INFO_TABLE. */
9b1549b8 761
bc5e3b54
KH
762static void
763init_cse_reg_info (unsigned int nregs)
764{
765 /* Do we need to grow the table? */
766 if (nregs > cse_reg_info_table_size)
30f72379 767 {
bc5e3b54
KH
768 unsigned int new_size;
769
770 if (cse_reg_info_table_size < 2048)
30f72379 771 {
bc5e3b54
KH
772 /* Compute a new size that is a power of 2 and no smaller
773 than the large of NREGS and 64. */
774 new_size = (cse_reg_info_table_size
775 ? cse_reg_info_table_size : 64);
776
777 while (new_size < nregs)
778 new_size *= 2;
30f72379
MM
779 }
780 else
1590d0d4 781 {
bc5e3b54
KH
782 /* If we need a big table, allocate just enough to hold
783 NREGS registers. */
784 new_size = nregs;
1590d0d4 785 }
9b1549b8 786
bc5e3b54 787 /* Reallocate the table with NEW_SIZE entries. */
a811c672
KH
788 if (cse_reg_info_table)
789 free (cse_reg_info_table);
5ed6ace5 790 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
bc5e3b54 791 cse_reg_info_table_size = new_size;
a811c672 792 cse_reg_info_table_first_uninitialized = 0;
bc5e3b54
KH
793 }
794
795 /* Do we have all of the first NREGS entries initialized? */
796 if (cse_reg_info_table_first_uninitialized < nregs)
797 {
798 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
799 unsigned int i;
800
801 /* Put the old timestamp on newly allocated entries so that they
802 will all be considered out of date. We do not touch those
803 entries beyond the first NREGS entries to be nice to the
804 virtual memory. */
805 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
806 cse_reg_info_table[i].timestamp = old_timestamp;
30f72379 807
bc5e3b54 808 cse_reg_info_table_first_uninitialized = nregs;
30f72379 809 }
bc5e3b54
KH
810}
811
a52aff23 812/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
bc5e3b54
KH
813
814static void
815get_cse_reg_info_1 (unsigned int regno)
816{
817 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
818 entry will be considered to have been initialized. */
819 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
820
821 /* Initialize the rest of the entry. */
822 cse_reg_info_table[regno].reg_tick = 1;
823 cse_reg_info_table[regno].reg_in_table = -1;
824 cse_reg_info_table[regno].subreg_ticked = -1;
825 cse_reg_info_table[regno].reg_qty = -regno - 1;
826}
827
828/* Find a cse_reg_info entry for REGNO. */
30f72379 829
bc5e3b54
KH
830static inline struct cse_reg_info *
831get_cse_reg_info (unsigned int regno)
832{
833 struct cse_reg_info *p = &cse_reg_info_table[regno];
834
782c0a3e
KH
835 /* If this entry has not been initialized, go ahead and initialize
836 it. */
bc5e3b54
KH
837 if (p->timestamp != cse_reg_info_timestamp)
838 get_cse_reg_info_1 (regno);
30f72379 839
9b1549b8 840 return p;
30f72379
MM
841}
842
7afe21cc
RK
843/* Clear the hash table and initialize each register with its own quantity,
844 for a new basic block. */
845
846static void
7080f735 847new_basic_block (void)
7afe21cc 848{
b3694847 849 int i;
7afe21cc 850
08a69267 851 next_qty = 0;
7afe21cc 852
a52aff23 853 /* Invalidate cse_reg_info_table. */
bc5e3b54 854 cse_reg_info_timestamp++;
7afe21cc 855
bc5e3b54 856 /* Clear out hash table state for this pass. */
7afe21cc
RK
857 CLEAR_HARD_REG_SET (hard_regs_in_table);
858
859 /* The per-quantity values used to be initialized here, but it is
860 much faster to initialize each as it is made in `make_new_qty'. */
861
9b1549b8 862 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 863 {
9b1549b8
DM
864 struct table_elt *first;
865
866 first = table[i];
867 if (first != NULL)
7afe21cc 868 {
9b1549b8
DM
869 struct table_elt *last = first;
870
871 table[i] = NULL;
872
873 while (last->next_same_hash != NULL)
874 last = last->next_same_hash;
875
876 /* Now relink this hash entire chain into
877 the free element list. */
878
879 last->next_same_hash = free_element_chain;
880 free_element_chain = first;
7afe21cc
RK
881 }
882 }
883
7afe21cc
RK
884#ifdef HAVE_cc0
885 prev_insn_cc0 = 0;
886#endif
887}
888
1bb98cec
DM
889/* Say that register REG contains a quantity in mode MODE not in any
890 register before and initialize that quantity. */
7afe21cc
RK
891
892static void
7080f735 893make_new_qty (unsigned int reg, enum machine_mode mode)
7afe21cc 894{
b3694847
SS
895 int q;
896 struct qty_table_elem *ent;
897 struct reg_eqv_elem *eqv;
7afe21cc 898
341c100f 899 gcc_assert (next_qty < max_qty);
7afe21cc 900
30f72379 901 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
902 ent = &qty_table[q];
903 ent->first_reg = reg;
904 ent->last_reg = reg;
905 ent->mode = mode;
906 ent->const_rtx = ent->const_insn = NULL_RTX;
907 ent->comparison_code = UNKNOWN;
908
909 eqv = &reg_eqv_table[reg];
910 eqv->next = eqv->prev = -1;
7afe21cc
RK
911}
912
913/* Make reg NEW equivalent to reg OLD.
914 OLD is not changing; NEW is. */
915
916static void
7080f735 917make_regs_eqv (unsigned int new, unsigned int old)
7afe21cc 918{
770ae6cc
RK
919 unsigned int lastr, firstr;
920 int q = REG_QTY (old);
921 struct qty_table_elem *ent;
1bb98cec
DM
922
923 ent = &qty_table[q];
7afe21cc
RK
924
925 /* Nothing should become eqv until it has a "non-invalid" qty number. */
341c100f 926 gcc_assert (REGNO_QTY_VALID_P (old));
7afe21cc 927
30f72379 928 REG_QTY (new) = q;
1bb98cec
DM
929 firstr = ent->first_reg;
930 lastr = ent->last_reg;
7afe21cc
RK
931
932 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
933 hard regs. Among pseudos, if NEW will live longer than any other reg
934 of the same qty, and that is beyond the current basic block,
935 make it the new canonical replacement for this qty. */
936 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
937 /* Certain fixed registers might be of the class NO_REGS. This means
938 that not only can they not be allocated by the compiler, but
830a38ee 939 they cannot be used in substitutions or canonicalizations
7afe21cc
RK
940 either. */
941 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
942 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
943 || (new >= FIRST_PSEUDO_REGISTER
944 && (firstr < FIRST_PSEUDO_REGISTER
6fb5fa3c
DB
945 || (bitmap_bit_p (cse_ebb_live_out, new)
946 && !bitmap_bit_p (cse_ebb_live_out, firstr))
947 || (bitmap_bit_p (cse_ebb_live_in, new)
948 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
7afe21cc 949 {
1bb98cec
DM
950 reg_eqv_table[firstr].prev = new;
951 reg_eqv_table[new].next = firstr;
952 reg_eqv_table[new].prev = -1;
953 ent->first_reg = new;
7afe21cc
RK
954 }
955 else
956 {
957 /* If NEW is a hard reg (known to be non-fixed), insert at end.
958 Otherwise, insert before any non-fixed hard regs that are at the
959 end. Registers of class NO_REGS cannot be used as an
960 equivalent for anything. */
1bb98cec 961 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc
RK
962 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
963 && new >= FIRST_PSEUDO_REGISTER)
1bb98cec
DM
964 lastr = reg_eqv_table[lastr].prev;
965 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
966 if (reg_eqv_table[lastr].next >= 0)
967 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
7afe21cc 968 else
1bb98cec
DM
969 qty_table[q].last_reg = new;
970 reg_eqv_table[lastr].next = new;
971 reg_eqv_table[new].prev = lastr;
7afe21cc
RK
972 }
973}
974
975/* Remove REG from its equivalence class. */
976
977static void
7080f735 978delete_reg_equiv (unsigned int reg)
7afe21cc 979{
b3694847
SS
980 struct qty_table_elem *ent;
981 int q = REG_QTY (reg);
982 int p, n;
7afe21cc 983
a4e262bc 984 /* If invalid, do nothing. */
08a69267 985 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
986 return;
987
1bb98cec
DM
988 ent = &qty_table[q];
989
990 p = reg_eqv_table[reg].prev;
991 n = reg_eqv_table[reg].next;
a4e262bc 992
7afe21cc 993 if (n != -1)
1bb98cec 994 reg_eqv_table[n].prev = p;
7afe21cc 995 else
1bb98cec 996 ent->last_reg = p;
7afe21cc 997 if (p != -1)
1bb98cec 998 reg_eqv_table[p].next = n;
7afe21cc 999 else
1bb98cec 1000 ent->first_reg = n;
7afe21cc 1001
08a69267 1002 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
1003}
1004
1005/* Remove any invalid expressions from the hash table
1006 that refer to any of the registers contained in expression X.
1007
1008 Make sure that newly inserted references to those registers
1009 as subexpressions will be considered valid.
1010
1011 mention_regs is not called when a register itself
1012 is being stored in the table.
1013
1014 Return 1 if we have done something that may have changed the hash code
1015 of X. */
1016
1017static int
7080f735 1018mention_regs (rtx x)
7afe21cc 1019{
b3694847
SS
1020 enum rtx_code code;
1021 int i, j;
1022 const char *fmt;
1023 int changed = 0;
7afe21cc
RK
1024
1025 if (x == 0)
e5f6a288 1026 return 0;
7afe21cc
RK
1027
1028 code = GET_CODE (x);
1029 if (code == REG)
1030 {
770ae6cc 1031 unsigned int regno = REGNO (x);
09e18274 1032 unsigned int endregno = END_REGNO (x);
770ae6cc 1033 unsigned int i;
7afe21cc
RK
1034
1035 for (i = regno; i < endregno; i++)
1036 {
30f72379 1037 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1038 remove_invalid_refs (i);
1039
30f72379 1040 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 1041 SUBREG_TICKED (i) = -1;
7afe21cc
RK
1042 }
1043
1044 return 0;
1045 }
1046
34c73909
R
1047 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1048 pseudo if they don't use overlapping words. We handle only pseudos
1049 here for simplicity. */
f8cfc6aa 1050 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1051 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1052 {
770ae6cc 1053 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1054
30f72379 1055 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1056 {
46081bb3
SH
1057 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1058 the last store to this register really stored into this
1059 subreg, then remove the memory of this subreg.
1060 Otherwise, remove any memory of the entire register and
1061 all its subregs from the table. */
1062 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1063 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1064 remove_invalid_refs (i);
1065 else
ddef6bc7 1066 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1067 }
1068
30f72379 1069 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1070 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
34c73909
R
1071 return 0;
1072 }
1073
7afe21cc
RK
1074 /* If X is a comparison or a COMPARE and either operand is a register
1075 that does not have a quantity, give it one. This is so that a later
1076 call to record_jump_equiv won't cause X to be assigned a different
1077 hash code and not found in the table after that call.
1078
1079 It is not necessary to do this here, since rehash_using_reg can
1080 fix up the table later, but doing this here eliminates the need to
1081 call that expensive function in the most common case where the only
1082 use of the register is in the comparison. */
1083
ec8e098d 1084 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1085 {
f8cfc6aa 1086 if (REG_P (XEXP (x, 0))
7afe21cc 1087 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
9714cf43 1088 if (insert_regs (XEXP (x, 0), NULL, 0))
7afe21cc
RK
1089 {
1090 rehash_using_reg (XEXP (x, 0));
1091 changed = 1;
1092 }
1093
f8cfc6aa 1094 if (REG_P (XEXP (x, 1))
7afe21cc 1095 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
9714cf43 1096 if (insert_regs (XEXP (x, 1), NULL, 0))
7afe21cc
RK
1097 {
1098 rehash_using_reg (XEXP (x, 1));
1099 changed = 1;
1100 }
1101 }
1102
1103 fmt = GET_RTX_FORMAT (code);
1104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1105 if (fmt[i] == 'e')
1106 changed |= mention_regs (XEXP (x, i));
1107 else if (fmt[i] == 'E')
1108 for (j = 0; j < XVECLEN (x, i); j++)
1109 changed |= mention_regs (XVECEXP (x, i, j));
1110
1111 return changed;
1112}
1113
1114/* Update the register quantities for inserting X into the hash table
1115 with a value equivalent to CLASSP.
1116 (If the class does not contain a REG, it is irrelevant.)
1117 If MODIFIED is nonzero, X is a destination; it is being modified.
1118 Note that delete_reg_equiv should be called on a register
1119 before insert_regs is done on that register with MODIFIED != 0.
1120
1121 Nonzero value means that elements of reg_qty have changed
1122 so X's hash code may be different. */
1123
1124static int
7080f735 1125insert_regs (rtx x, struct table_elt *classp, int modified)
7afe21cc 1126{
f8cfc6aa 1127 if (REG_P (x))
7afe21cc 1128 {
770ae6cc
RK
1129 unsigned int regno = REGNO (x);
1130 int qty_valid;
7afe21cc 1131
1ff0c00d
RK
1132 /* If REGNO is in the equivalence table already but is of the
1133 wrong mode for that equivalence, don't do anything here. */
1134
1bb98cec
DM
1135 qty_valid = REGNO_QTY_VALID_P (regno);
1136 if (qty_valid)
1137 {
1138 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1139
1bb98cec
DM
1140 if (ent->mode != GET_MODE (x))
1141 return 0;
1142 }
1143
1144 if (modified || ! qty_valid)
7afe21cc
RK
1145 {
1146 if (classp)
1147 for (classp = classp->first_same_value;
1148 classp != 0;
1149 classp = classp->next_same_value)
f8cfc6aa 1150 if (REG_P (classp->exp)
7afe21cc
RK
1151 && GET_MODE (classp->exp) == GET_MODE (x))
1152 {
cd928652
ZD
1153 unsigned c_regno = REGNO (classp->exp);
1154
1155 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1156
1157 /* Suppose that 5 is hard reg and 100 and 101 are
1158 pseudos. Consider
1159
1160 (set (reg:si 100) (reg:si 5))
1161 (set (reg:si 5) (reg:si 100))
1162 (set (reg:di 101) (reg:di 5))
1163
1164 We would now set REG_QTY (101) = REG_QTY (5), but the
1165 entry for 5 is in SImode. When we use this later in
1166 copy propagation, we get the register in wrong mode. */
1167 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1168 continue;
1169
1170 make_regs_eqv (regno, c_regno);
7afe21cc
RK
1171 return 1;
1172 }
1173
d9f20424
R
1174 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1175 than REG_IN_TABLE to find out if there was only a single preceding
1176 invalidation - for the SUBREG - or another one, which would be
1177 for the full register. However, if we find here that REG_TICK
1178 indicates that the register is invalid, it means that it has
1179 been invalidated in a separate operation. The SUBREG might be used
1180 now (then this is a recursive call), or we might use the full REG
1181 now and a SUBREG of it later. So bump up REG_TICK so that
1182 mention_regs will do the right thing. */
1183 if (! modified
1184 && REG_IN_TABLE (regno) >= 0
1185 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1186 REG_TICK (regno)++;
1bb98cec 1187 make_new_qty (regno, GET_MODE (x));
7afe21cc
RK
1188 return 1;
1189 }
cdf4112f
TG
1190
1191 return 0;
7afe21cc 1192 }
c610adec
RK
1193
1194 /* If X is a SUBREG, we will likely be inserting the inner register in the
1195 table. If that register doesn't have an assigned quantity number at
1196 this point but does later, the insertion that we will be doing now will
1197 not be accessible because its hash code will have changed. So assign
1198 a quantity number now. */
1199
f8cfc6aa 1200 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1201 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1202 {
9714cf43 1203 insert_regs (SUBREG_REG (x), NULL, 0);
34c73909 1204 mention_regs (x);
c610adec
RK
1205 return 1;
1206 }
7afe21cc
RK
1207 else
1208 return mention_regs (x);
1209}
1210\f
1211/* Look in or update the hash table. */
1212
7afe21cc
RK
1213/* Remove table element ELT from use in the table.
1214 HASH is its hash code, made using the HASH macro.
1215 It's an argument because often that is known in advance
1216 and we save much time not recomputing it. */
1217
1218static void
7080f735 1219remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1220{
1221 if (elt == 0)
1222 return;
1223
1224 /* Mark this element as removed. See cse_insn. */
1225 elt->first_same_value = 0;
1226
1227 /* Remove the table element from its equivalence class. */
278a83b2 1228
7afe21cc 1229 {
b3694847
SS
1230 struct table_elt *prev = elt->prev_same_value;
1231 struct table_elt *next = elt->next_same_value;
7afe21cc 1232
278a83b2
KH
1233 if (next)
1234 next->prev_same_value = prev;
7afe21cc
RK
1235
1236 if (prev)
1237 prev->next_same_value = next;
1238 else
1239 {
b3694847 1240 struct table_elt *newfirst = next;
7afe21cc
RK
1241 while (next)
1242 {
1243 next->first_same_value = newfirst;
1244 next = next->next_same_value;
1245 }
1246 }
1247 }
1248
1249 /* Remove the table element from its hash bucket. */
1250
1251 {
b3694847
SS
1252 struct table_elt *prev = elt->prev_same_hash;
1253 struct table_elt *next = elt->next_same_hash;
7afe21cc 1254
278a83b2
KH
1255 if (next)
1256 next->prev_same_hash = prev;
7afe21cc
RK
1257
1258 if (prev)
1259 prev->next_same_hash = next;
1260 else if (table[hash] == elt)
1261 table[hash] = next;
1262 else
1263 {
1264 /* This entry is not in the proper hash bucket. This can happen
1265 when two classes were merged by `merge_equiv_classes'. Search
1266 for the hash bucket that it heads. This happens only very
1267 rarely, so the cost is acceptable. */
9b1549b8 1268 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1269 if (table[hash] == elt)
1270 table[hash] = next;
1271 }
1272 }
1273
1274 /* Remove the table element from its related-value circular chain. */
1275
1276 if (elt->related_value != 0 && elt->related_value != elt)
1277 {
b3694847 1278 struct table_elt *p = elt->related_value;
770ae6cc 1279
7afe21cc
RK
1280 while (p->related_value != elt)
1281 p = p->related_value;
1282 p->related_value = elt->related_value;
1283 if (p->related_value == p)
1284 p->related_value = 0;
1285 }
1286
9b1549b8
DM
1287 /* Now add it to the free element chain. */
1288 elt->next_same_hash = free_element_chain;
1289 free_element_chain = elt;
7afe21cc
RK
1290}
1291
d556d181
EB
1292/* Same as above, but X is a pseudo-register. */
1293
1294static void
1295remove_pseudo_from_table (rtx x, unsigned int hash)
1296{
1297 struct table_elt *elt;
1298
1299 /* Because a pseudo-register can be referenced in more than one
1300 mode, we might have to remove more than one table entry. */
1301 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1302 remove_from_table (elt, hash);
1303}
1304
7afe21cc
RK
1305/* Look up X in the hash table and return its table element,
1306 or 0 if X is not in the table.
1307
1308 MODE is the machine-mode of X, or if X is an integer constant
1309 with VOIDmode then MODE is the mode with which X will be used.
1310
1311 Here we are satisfied to find an expression whose tree structure
1312 looks like X. */
1313
1314static struct table_elt *
7080f735 1315lookup (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1316{
b3694847 1317 struct table_elt *p;
7afe21cc
RK
1318
1319 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1320 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1321 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1322 return p;
1323
1324 return 0;
1325}
1326
1327/* Like `lookup' but don't care whether the table element uses invalid regs.
1328 Also ignore discrepancies in the machine mode of a register. */
1329
1330static struct table_elt *
7080f735 1331lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1332{
b3694847 1333 struct table_elt *p;
7afe21cc 1334
f8cfc6aa 1335 if (REG_P (x))
7afe21cc 1336 {
770ae6cc
RK
1337 unsigned int regno = REGNO (x);
1338
7afe21cc
RK
1339 /* Don't check the machine mode when comparing registers;
1340 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1341 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1342 if (REG_P (p->exp)
7afe21cc
RK
1343 && REGNO (p->exp) == regno)
1344 return p;
1345 }
1346 else
1347 {
1348 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1349 if (mode == p->mode
1350 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1351 return p;
1352 }
1353
1354 return 0;
1355}
1356
1357/* Look for an expression equivalent to X and with code CODE.
1358 If one is found, return that expression. */
1359
1360static rtx
7080f735 1361lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1362{
b3694847 1363 struct table_elt *p
0516f6fe 1364 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1365
34c73909
R
1366 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1367 long as we are narrowing. So if we looked in vain for a mode narrower
1368 than word_mode before, look for word_mode now. */
1369 if (p == 0 && code == CONST_INT
1370 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1371 {
1372 x = copy_rtx (x);
1373 PUT_MODE (x, word_mode);
0516f6fe 1374 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
34c73909
R
1375 }
1376
7afe21cc
RK
1377 if (p == 0)
1378 return 0;
1379
1380 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1381 if (GET_CODE (p->exp) == code
1382 /* Make sure this is a valid entry in the table. */
0516f6fe 1383 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1384 return p->exp;
278a83b2 1385
7afe21cc
RK
1386 return 0;
1387}
1388
1389/* Insert X in the hash table, assuming HASH is its hash code
1390 and CLASSP is an element of the class it should go in
1391 (or 0 if a new class should be made).
1392 It is inserted at the proper position to keep the class in
1393 the order cheapest first.
1394
1395 MODE is the machine-mode of X, or if X is an integer constant
1396 with VOIDmode then MODE is the mode with which X will be used.
1397
1398 For elements of equal cheapness, the most recent one
1399 goes in front, except that the first element in the list
1400 remains first unless a cheaper element is added. The order of
1401 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1402 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1403
1404 The in_memory field in the hash table element is set to 0.
1405 The caller must set it nonzero if appropriate.
1406
1407 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1408 and if insert_regs returns a nonzero value
1409 you must then recompute its hash code before calling here.
1410
1411 If necessary, update table showing constant values of quantities. */
1412
630c79be 1413#define CHEAPER(X, Y) \
56ae04af 1414 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
7afe21cc
RK
1415
1416static struct table_elt *
7080f735 1417insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
7afe21cc 1418{
b3694847 1419 struct table_elt *elt;
7afe21cc
RK
1420
1421 /* If X is a register and we haven't made a quantity for it,
1422 something is wrong. */
341c100f 1423 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1424
1425 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1426 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
09e18274 1427 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
7afe21cc 1428
7afe21cc
RK
1429 /* Put an element for X into the right hash bucket. */
1430
9b1549b8
DM
1431 elt = free_element_chain;
1432 if (elt)
770ae6cc 1433 free_element_chain = elt->next_same_hash;
9b1549b8 1434 else
5ed6ace5 1435 elt = XNEW (struct table_elt);
9b1549b8 1436
7afe21cc 1437 elt->exp = x;
db048faf 1438 elt->canon_exp = NULL_RTX;
7afe21cc 1439 elt->cost = COST (x);
630c79be 1440 elt->regcost = approx_reg_cost (x);
7afe21cc
RK
1441 elt->next_same_value = 0;
1442 elt->prev_same_value = 0;
1443 elt->next_same_hash = table[hash];
1444 elt->prev_same_hash = 0;
1445 elt->related_value = 0;
1446 elt->in_memory = 0;
1447 elt->mode = mode;
389fdba0 1448 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1449
1450 if (table[hash])
1451 table[hash]->prev_same_hash = elt;
1452 table[hash] = elt;
1453
1454 /* Put it into the proper value-class. */
1455 if (classp)
1456 {
1457 classp = classp->first_same_value;
1458 if (CHEAPER (elt, classp))
f9da5064 1459 /* Insert at the head of the class. */
7afe21cc 1460 {
b3694847 1461 struct table_elt *p;
7afe21cc
RK
1462 elt->next_same_value = classp;
1463 classp->prev_same_value = elt;
1464 elt->first_same_value = elt;
1465
1466 for (p = classp; p; p = p->next_same_value)
1467 p->first_same_value = elt;
1468 }
1469 else
1470 {
1471 /* Insert not at head of the class. */
1472 /* Put it after the last element cheaper than X. */
b3694847 1473 struct table_elt *p, *next;
770ae6cc 1474
7afe21cc
RK
1475 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1476 p = next);
770ae6cc 1477
7afe21cc
RK
1478 /* Put it after P and before NEXT. */
1479 elt->next_same_value = next;
1480 if (next)
1481 next->prev_same_value = elt;
770ae6cc 1482
7afe21cc
RK
1483 elt->prev_same_value = p;
1484 p->next_same_value = elt;
1485 elt->first_same_value = classp;
1486 }
1487 }
1488 else
1489 elt->first_same_value = elt;
1490
1491 /* If this is a constant being set equivalent to a register or a register
1492 being set equivalent to a constant, note the constant equivalence.
1493
1494 If this is a constant, it cannot be equivalent to a different constant,
1495 and a constant is the only thing that can be cheaper than a register. So
1496 we know the register is the head of the class (before the constant was
1497 inserted).
1498
1499 If this is a register that is not already known equivalent to a
1500 constant, we must check the entire class.
1501
1502 If this is a register that is already known equivalent to an insn,
1bb98cec 1503 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1504 insn making that quantity equivalent to the constant. */
1505
f8cfc6aa
JQ
1506 if (elt->is_const && classp && REG_P (classp->exp)
1507 && !REG_P (x))
7afe21cc 1508 {
1bb98cec
DM
1509 int exp_q = REG_QTY (REGNO (classp->exp));
1510 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1511
4de249d9 1512 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1513 exp_ent->const_insn = this_insn;
7afe21cc
RK
1514 }
1515
f8cfc6aa 1516 else if (REG_P (x)
1bb98cec
DM
1517 && classp
1518 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1519 && ! elt->is_const)
7afe21cc 1520 {
b3694847 1521 struct table_elt *p;
7afe21cc
RK
1522
1523 for (p = classp; p != 0; p = p->next_same_value)
1524 {
f8cfc6aa 1525 if (p->is_const && !REG_P (p->exp))
7afe21cc 1526 {
1bb98cec
DM
1527 int x_q = REG_QTY (REGNO (x));
1528 struct qty_table_elem *x_ent = &qty_table[x_q];
1529
770ae6cc 1530 x_ent->const_rtx
4de249d9 1531 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1532 x_ent->const_insn = this_insn;
7afe21cc
RK
1533 break;
1534 }
1535 }
1536 }
1537
f8cfc6aa 1538 else if (REG_P (x)
1bb98cec
DM
1539 && qty_table[REG_QTY (REGNO (x))].const_rtx
1540 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1541 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1542
1543 /* If this is a constant with symbolic value,
1544 and it has a term with an explicit integer value,
1545 link it up with related expressions. */
1546 if (GET_CODE (x) == CONST)
1547 {
1548 rtx subexp = get_related_value (x);
2197a88a 1549 unsigned subhash;
7afe21cc
RK
1550 struct table_elt *subelt, *subelt_prev;
1551
1552 if (subexp != 0)
1553 {
1554 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1555 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1556 subelt = lookup (subexp, subhash, mode);
1557 if (subelt == 0)
9714cf43 1558 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1559 /* Initialize SUBELT's circular chain if it has none. */
1560 if (subelt->related_value == 0)
1561 subelt->related_value = subelt;
1562 /* Find the element in the circular chain that precedes SUBELT. */
1563 subelt_prev = subelt;
1564 while (subelt_prev->related_value != subelt)
1565 subelt_prev = subelt_prev->related_value;
1566 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1567 This way the element that follows SUBELT is the oldest one. */
1568 elt->related_value = subelt_prev->related_value;
1569 subelt_prev->related_value = elt;
1570 }
1571 }
1572
1573 return elt;
1574}
1575\f
1576/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1577 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1578 the two classes equivalent.
1579
1580 CLASS1 will be the surviving class; CLASS2 should not be used after this
1581 call.
1582
1583 Any invalid entries in CLASS2 will not be copied. */
1584
1585static void
7080f735 1586merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc
RK
1587{
1588 struct table_elt *elt, *next, *new;
1589
1590 /* Ensure we start with the head of the classes. */
1591 class1 = class1->first_same_value;
1592 class2 = class2->first_same_value;
1593
1594 /* If they were already equal, forget it. */
1595 if (class1 == class2)
1596 return;
1597
1598 for (elt = class2; elt; elt = next)
1599 {
770ae6cc 1600 unsigned int hash;
7afe21cc
RK
1601 rtx exp = elt->exp;
1602 enum machine_mode mode = elt->mode;
1603
1604 next = elt->next_same_value;
1605
1606 /* Remove old entry, make a new one in CLASS1's class.
1607 Don't do this for invalid entries as we cannot find their
0f41302f 1608 hash code (it also isn't necessary). */
0516f6fe 1609 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1610 {
a90fc8e0
RH
1611 bool need_rehash = false;
1612
7afe21cc 1613 hash_arg_in_memory = 0;
7afe21cc 1614 hash = HASH (exp, mode);
278a83b2 1615
f8cfc6aa 1616 if (REG_P (exp))
a90fc8e0 1617 {
08a69267 1618 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1619 delete_reg_equiv (REGNO (exp));
1620 }
278a83b2 1621
d556d181
EB
1622 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1623 remove_pseudo_from_table (exp, hash);
1624 else
1625 remove_from_table (elt, hash);
7afe21cc 1626
a90fc8e0 1627 if (insert_regs (exp, class1, 0) || need_rehash)
8ae2b8f6
JW
1628 {
1629 rehash_using_reg (exp);
1630 hash = HASH (exp, mode);
1631 }
7afe21cc
RK
1632 new = insert (exp, class1, hash, mode);
1633 new->in_memory = hash_arg_in_memory;
7afe21cc
RK
1634 }
1635 }
1636}
1637\f
01e752d3
JL
1638/* Flush the entire hash table. */
1639
1640static void
7080f735 1641flush_hash_table (void)
01e752d3
JL
1642{
1643 int i;
1644 struct table_elt *p;
1645
9b1549b8 1646 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1647 for (p = table[i]; p; p = table[i])
1648 {
1649 /* Note that invalidate can remove elements
1650 after P in the current hash chain. */
f8cfc6aa 1651 if (REG_P (p->exp))
524e3576 1652 invalidate (p->exp, VOIDmode);
01e752d3
JL
1653 else
1654 remove_from_table (p, i);
1655 }
1656}
14a774a9 1657\f
2ce6dc2f
JH
1658/* Function called for each rtx to check whether true dependence exist. */
1659struct check_dependence_data
1660{
1661 enum machine_mode mode;
1662 rtx exp;
9ddb66ca 1663 rtx addr;
2ce6dc2f 1664};
be8ac49a 1665
2ce6dc2f 1666static int
7080f735 1667check_dependence (rtx *x, void *data)
2ce6dc2f
JH
1668{
1669 struct check_dependence_data *d = (struct check_dependence_data *) data;
3c0cb5de 1670 if (*x && MEM_P (*x))
9ddb66ca
JH
1671 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1672 cse_rtx_varies_p);
2ce6dc2f
JH
1673 else
1674 return 0;
1675}
1676\f
14a774a9
RK
1677/* Remove from the hash table, or mark as invalid, all expressions whose
1678 values could be altered by storing in X. X is a register, a subreg, or
1679 a memory reference with nonvarying address (because, when a memory
1680 reference with a varying address is stored in, all memory references are
1681 removed by invalidate_memory so specific invalidation is superfluous).
1682 FULL_MODE, if not VOIDmode, indicates that this much should be
1683 invalidated instead of just the amount indicated by the mode of X. This
1684 is only used for bitfield stores into memory.
1685
1686 A nonvarying address may be just a register or just a symbol reference,
1687 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1688
1689static void
7080f735 1690invalidate (rtx x, enum machine_mode full_mode)
7afe21cc 1691{
b3694847
SS
1692 int i;
1693 struct table_elt *p;
9ddb66ca 1694 rtx addr;
7afe21cc 1695
14a774a9 1696 switch (GET_CODE (x))
7afe21cc 1697 {
14a774a9
RK
1698 case REG:
1699 {
1700 /* If X is a register, dependencies on its contents are recorded
1701 through the qty number mechanism. Just change the qty number of
1702 the register, mark it as invalid for expressions that refer to it,
1703 and remove it itself. */
770ae6cc
RK
1704 unsigned int regno = REGNO (x);
1705 unsigned int hash = HASH (x, GET_MODE (x));
7afe21cc 1706
14a774a9
RK
1707 /* Remove REGNO from any quantity list it might be on and indicate
1708 that its value might have changed. If it is a pseudo, remove its
1709 entry from the hash table.
7afe21cc 1710
14a774a9
RK
1711 For a hard register, we do the first two actions above for any
1712 additional hard registers corresponding to X. Then, if any of these
1713 registers are in the table, we must remove any REG entries that
1714 overlap these registers. */
7afe21cc 1715
14a774a9
RK
1716 delete_reg_equiv (regno);
1717 REG_TICK (regno)++;
46081bb3 1718 SUBREG_TICKED (regno) = -1;
85e4d983 1719
14a774a9 1720 if (regno >= FIRST_PSEUDO_REGISTER)
d556d181 1721 remove_pseudo_from_table (x, hash);
14a774a9
RK
1722 else
1723 {
1724 HOST_WIDE_INT in_table
1725 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
09e18274 1726 unsigned int endregno = END_HARD_REGNO (x);
770ae6cc 1727 unsigned int tregno, tendregno, rn;
b3694847 1728 struct table_elt *p, *next;
7afe21cc 1729
14a774a9 1730 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc 1731
770ae6cc 1732 for (rn = regno + 1; rn < endregno; rn++)
14a774a9 1733 {
770ae6cc
RK
1734 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1735 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1736 delete_reg_equiv (rn);
1737 REG_TICK (rn)++;
46081bb3 1738 SUBREG_TICKED (rn) = -1;
14a774a9 1739 }
7afe21cc 1740
14a774a9 1741 if (in_table)
9b1549b8 1742 for (hash = 0; hash < HASH_SIZE; hash++)
14a774a9
RK
1743 for (p = table[hash]; p; p = next)
1744 {
1745 next = p->next_same_hash;
7afe21cc 1746
f8cfc6aa 1747 if (!REG_P (p->exp)
278a83b2
KH
1748 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1749 continue;
1750
14a774a9 1751 tregno = REGNO (p->exp);
09e18274 1752 tendregno = END_HARD_REGNO (p->exp);
14a774a9
RK
1753 if (tendregno > regno && tregno < endregno)
1754 remove_from_table (p, hash);
1755 }
1756 }
1757 }
7afe21cc 1758 return;
7afe21cc 1759
14a774a9 1760 case SUBREG:
bb4034b3 1761 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1762 return;
aac5cc16 1763
14a774a9 1764 case PARALLEL:
278a83b2 1765 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1766 invalidate (XVECEXP (x, 0, i), VOIDmode);
1767 return;
aac5cc16 1768
14a774a9
RK
1769 case EXPR_LIST:
1770 /* This is part of a disjoint return value; extract the location in
1771 question ignoring the offset. */
aac5cc16
RH
1772 invalidate (XEXP (x, 0), VOIDmode);
1773 return;
7afe21cc 1774
14a774a9 1775 case MEM:
9ddb66ca 1776 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1777 /* Calculate the canonical version of X here so that
1778 true_dependence doesn't generate new RTL for X on each call. */
1779 x = canon_rtx (x);
1780
14a774a9
RK
1781 /* Remove all hash table elements that refer to overlapping pieces of
1782 memory. */
1783 if (full_mode == VOIDmode)
1784 full_mode = GET_MODE (x);
bb4034b3 1785
9b1549b8 1786 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1787 {
b3694847 1788 struct table_elt *next;
14a774a9
RK
1789
1790 for (p = table[i]; p; p = next)
1791 {
1792 next = p->next_same_hash;
db048faf
MM
1793 if (p->in_memory)
1794 {
2ce6dc2f
JH
1795 struct check_dependence_data d;
1796
1797 /* Just canonicalize the expression once;
1798 otherwise each time we call invalidate
1799 true_dependence will canonicalize the
1800 expression again. */
1801 if (!p->canon_exp)
1802 p->canon_exp = canon_rtx (p->exp);
1803 d.exp = x;
9ddb66ca 1804 d.addr = addr;
2ce6dc2f
JH
1805 d.mode = full_mode;
1806 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
db048faf 1807 remove_from_table (p, i);
db048faf 1808 }
14a774a9 1809 }
7afe21cc 1810 }
14a774a9
RK
1811 return;
1812
1813 default:
341c100f 1814 gcc_unreachable ();
7afe21cc
RK
1815 }
1816}
14a774a9 1817\f
7afe21cc
RK
1818/* Remove all expressions that refer to register REGNO,
1819 since they are already invalid, and we are about to
1820 mark that register valid again and don't want the old
1821 expressions to reappear as valid. */
1822
1823static void
7080f735 1824remove_invalid_refs (unsigned int regno)
7afe21cc 1825{
770ae6cc
RK
1826 unsigned int i;
1827 struct table_elt *p, *next;
7afe21cc 1828
9b1549b8 1829 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1830 for (p = table[i]; p; p = next)
1831 {
1832 next = p->next_same_hash;
f8cfc6aa 1833 if (!REG_P (p->exp)
68252e27 1834 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
7afe21cc
RK
1835 remove_from_table (p, i);
1836 }
1837}
34c73909 1838
ddef6bc7
JJ
1839/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1840 and mode MODE. */
34c73909 1841static void
7080f735
AJ
1842remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1843 enum machine_mode mode)
34c73909 1844{
770ae6cc
RK
1845 unsigned int i;
1846 struct table_elt *p, *next;
ddef6bc7 1847 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
34c73909 1848
9b1549b8 1849 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
1850 for (p = table[i]; p; p = next)
1851 {
ddef6bc7 1852 rtx exp = p->exp;
34c73909 1853 next = p->next_same_hash;
278a83b2 1854
f8cfc6aa 1855 if (!REG_P (exp)
34c73909 1856 && (GET_CODE (exp) != SUBREG
f8cfc6aa 1857 || !REG_P (SUBREG_REG (exp))
34c73909 1858 || REGNO (SUBREG_REG (exp)) != regno
ddef6bc7
JJ
1859 || (((SUBREG_BYTE (exp)
1860 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1861 && SUBREG_BYTE (exp) <= end))
68252e27 1862 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
34c73909
R
1863 remove_from_table (p, i);
1864 }
1865}
7afe21cc
RK
1866\f
1867/* Recompute the hash codes of any valid entries in the hash table that
1868 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1869
1870 This is called when we make a jump equivalence. */
1871
1872static void
7080f735 1873rehash_using_reg (rtx x)
7afe21cc 1874{
973838fd 1875 unsigned int i;
7afe21cc 1876 struct table_elt *p, *next;
2197a88a 1877 unsigned hash;
7afe21cc
RK
1878
1879 if (GET_CODE (x) == SUBREG)
1880 x = SUBREG_REG (x);
1881
1882 /* If X is not a register or if the register is known not to be in any
1883 valid entries in the table, we have no work to do. */
1884
f8cfc6aa 1885 if (!REG_P (x)
30f72379
MM
1886 || REG_IN_TABLE (REGNO (x)) < 0
1887 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
1888 return;
1889
1890 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 1891 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 1892
9b1549b8 1893 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1894 for (p = table[i]; p; p = next)
1895 {
1896 next = p->next_same_hash;
a90fc8e0 1897 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
1898 && exp_equiv_p (p->exp, p->exp, 1, false)
1899 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
1900 {
1901 if (p->next_same_hash)
1902 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1903
1904 if (p->prev_same_hash)
1905 p->prev_same_hash->next_same_hash = p->next_same_hash;
1906 else
1907 table[i] = p->next_same_hash;
1908
1909 p->next_same_hash = table[hash];
1910 p->prev_same_hash = 0;
1911 if (table[hash])
1912 table[hash]->prev_same_hash = p;
1913 table[hash] = p;
1914 }
1915 }
1916}
1917\f
7afe21cc
RK
1918/* Remove from the hash table any expression that is a call-clobbered
1919 register. Also update their TICK values. */
1920
1921static void
7080f735 1922invalidate_for_call (void)
7afe21cc 1923{
770ae6cc
RK
1924 unsigned int regno, endregno;
1925 unsigned int i;
2197a88a 1926 unsigned hash;
7afe21cc
RK
1927 struct table_elt *p, *next;
1928 int in_table = 0;
1929
1930 /* Go through all the hard registers. For each that is clobbered in
1931 a CALL_INSN, remove the register from quantity chains and update
1932 reg_tick if defined. Also see if any of these registers is currently
1933 in the table. */
1934
1935 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1936 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1937 {
1938 delete_reg_equiv (regno);
30f72379 1939 if (REG_TICK (regno) >= 0)
46081bb3
SH
1940 {
1941 REG_TICK (regno)++;
1942 SUBREG_TICKED (regno) = -1;
1943 }
7afe21cc 1944
0e227018 1945 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
7afe21cc
RK
1946 }
1947
1948 /* In the case where we have no call-clobbered hard registers in the
1949 table, we are done. Otherwise, scan the table and remove any
1950 entry that overlaps a call-clobbered register. */
1951
1952 if (in_table)
9b1549b8 1953 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1954 for (p = table[hash]; p; p = next)
1955 {
1956 next = p->next_same_hash;
1957
f8cfc6aa 1958 if (!REG_P (p->exp)
7afe21cc
RK
1959 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1960 continue;
1961
1962 regno = REGNO (p->exp);
09e18274 1963 endregno = END_HARD_REGNO (p->exp);
7afe21cc
RK
1964
1965 for (i = regno; i < endregno; i++)
1966 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1967 {
1968 remove_from_table (p, hash);
1969 break;
1970 }
1971 }
1972}
1973\f
1974/* Given an expression X of type CONST,
1975 and ELT which is its table entry (or 0 if it
1976 is not in the hash table),
1977 return an alternate expression for X as a register plus integer.
1978 If none can be found, return 0. */
1979
1980static rtx
7080f735 1981use_related_value (rtx x, struct table_elt *elt)
7afe21cc 1982{
b3694847
SS
1983 struct table_elt *relt = 0;
1984 struct table_elt *p, *q;
906c4e36 1985 HOST_WIDE_INT offset;
7afe21cc
RK
1986
1987 /* First, is there anything related known?
1988 If we have a table element, we can tell from that.
1989 Otherwise, must look it up. */
1990
1991 if (elt != 0 && elt->related_value != 0)
1992 relt = elt;
1993 else if (elt == 0 && GET_CODE (x) == CONST)
1994 {
1995 rtx subexp = get_related_value (x);
1996 if (subexp != 0)
1997 relt = lookup (subexp,
0516f6fe 1998 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
1999 GET_MODE (subexp));
2000 }
2001
2002 if (relt == 0)
2003 return 0;
2004
2005 /* Search all related table entries for one that has an
2006 equivalent register. */
2007
2008 p = relt;
2009 while (1)
2010 {
2011 /* This loop is strange in that it is executed in two different cases.
2012 The first is when X is already in the table. Then it is searching
2013 the RELATED_VALUE list of X's class (RELT). The second case is when
2014 X is not in the table. Then RELT points to a class for the related
2015 value.
2016
2017 Ensure that, whatever case we are in, that we ignore classes that have
2018 the same value as X. */
2019
2020 if (rtx_equal_p (x, p->exp))
2021 q = 0;
2022 else
2023 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2024 if (REG_P (q->exp))
7afe21cc
RK
2025 break;
2026
2027 if (q)
2028 break;
2029
2030 p = p->related_value;
2031
2032 /* We went all the way around, so there is nothing to be found.
2033 Alternatively, perhaps RELT was in the table for some other reason
2034 and it has no related values recorded. */
2035 if (p == relt || p == 0)
2036 break;
2037 }
2038
2039 if (q == 0)
2040 return 0;
2041
2042 offset = (get_integer_term (x) - get_integer_term (p->exp));
2043 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2044 return plus_constant (q->exp, offset);
2045}
2046\f
6462bb43
AO
2047/* Hash a string. Just add its bytes up. */
2048static inline unsigned
0516f6fe 2049hash_rtx_string (const char *ps)
6462bb43
AO
2050{
2051 unsigned hash = 0;
68252e27
KH
2052 const unsigned char *p = (const unsigned char *) ps;
2053
6462bb43
AO
2054 if (p)
2055 while (*p)
2056 hash += *p++;
2057
2058 return hash;
2059}
2060
7afe21cc
RK
2061/* Hash an rtx. We are careful to make sure the value is never negative.
2062 Equivalent registers hash identically.
2063 MODE is used in hashing for CONST_INTs only;
2064 otherwise the mode of X is used.
2065
0516f6fe 2066 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
7afe21cc 2067
0516f6fe
SB
2068 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2069 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
7afe21cc
RK
2070
2071 Note that cse_insn knows that the hash code of a MEM expression
2072 is just (int) MEM plus the hash code of the address. */
2073
0516f6fe 2074unsigned
4f588890 2075hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
0516f6fe 2076 int *hash_arg_in_memory_p, bool have_reg_qty)
7afe21cc 2077{
b3694847
SS
2078 int i, j;
2079 unsigned hash = 0;
2080 enum rtx_code code;
2081 const char *fmt;
7afe21cc 2082
0516f6fe
SB
2083 /* Used to turn recursion into iteration. We can't rely on GCC's
2084 tail-recursion elimination since we need to keep accumulating values
2085 in HASH. */
7afe21cc
RK
2086 repeat:
2087 if (x == 0)
2088 return hash;
2089
2090 code = GET_CODE (x);
2091 switch (code)
2092 {
2093 case REG:
2094 {
770ae6cc 2095 unsigned int regno = REGNO (x);
7afe21cc 2096
0516f6fe 2097 if (!reload_completed)
7afe21cc 2098 {
0516f6fe
SB
2099 /* On some machines, we can't record any non-fixed hard register,
2100 because extending its life will cause reload problems. We
2101 consider ap, fp, sp, gp to be fixed for this purpose.
2102
2103 We also consider CCmode registers to be fixed for this purpose;
2104 failure to do so leads to failure to simplify 0<100 type of
2105 conditionals.
2106
2107 On all machines, we can't record any global registers.
2108 Nor should we record any register that is in a small
2109 class, as defined by CLASS_LIKELY_SPILLED_P. */
2110 bool record;
2111
2112 if (regno >= FIRST_PSEUDO_REGISTER)
2113 record = true;
2114 else if (x == frame_pointer_rtx
2115 || x == hard_frame_pointer_rtx
2116 || x == arg_pointer_rtx
2117 || x == stack_pointer_rtx
2118 || x == pic_offset_table_rtx)
2119 record = true;
2120 else if (global_regs[regno])
2121 record = false;
2122 else if (fixed_regs[regno])
2123 record = true;
2124 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2125 record = true;
2126 else if (SMALL_REGISTER_CLASSES)
2127 record = false;
2128 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2129 record = false;
2130 else
2131 record = true;
2132
2133 if (!record)
2134 {
2135 *do_not_record_p = 1;
2136 return 0;
2137 }
7afe21cc 2138 }
770ae6cc 2139
0516f6fe
SB
2140 hash += ((unsigned int) REG << 7);
2141 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2142 return hash;
7afe21cc
RK
2143 }
2144
34c73909
R
2145 /* We handle SUBREG of a REG specially because the underlying
2146 reg changes its hash value with every value change; we don't
2147 want to have to forget unrelated subregs when one subreg changes. */
2148 case SUBREG:
2149 {
f8cfc6aa 2150 if (REG_P (SUBREG_REG (x)))
34c73909 2151 {
0516f6fe 2152 hash += (((unsigned int) SUBREG << 7)
ddef6bc7
JJ
2153 + REGNO (SUBREG_REG (x))
2154 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
34c73909
R
2155 return hash;
2156 }
2157 break;
2158 }
2159
7afe21cc 2160 case CONST_INT:
0516f6fe
SB
2161 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2162 + (unsigned int) INTVAL (x));
2163 return hash;
7afe21cc
RK
2164
2165 case CONST_DOUBLE:
2166 /* This is like the general case, except that it only counts
2167 the integers representing the constant. */
0516f6fe 2168 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
969c8517 2169 if (GET_MODE (x) != VOIDmode)
46b33600 2170 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
969c8517 2171 else
0516f6fe
SB
2172 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2173 + (unsigned int) CONST_DOUBLE_HIGH (x));
7afe21cc
RK
2174 return hash;
2175
091a3ac7
CF
2176 case CONST_FIXED:
2177 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2178 hash += fixed_hash (CONST_FIXED_VALUE (x));
2179 return hash;
2180
69ef87e2
AH
2181 case CONST_VECTOR:
2182 {
2183 int units;
2184 rtx elt;
2185
2186 units = CONST_VECTOR_NUNITS (x);
2187
2188 for (i = 0; i < units; ++i)
2189 {
2190 elt = CONST_VECTOR_ELT (x, i);
0516f6fe
SB
2191 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2192 hash_arg_in_memory_p, have_reg_qty);
69ef87e2
AH
2193 }
2194
2195 return hash;
2196 }
2197
7afe21cc
RK
2198 /* Assume there is only one rtx object for any given label. */
2199 case LABEL_REF:
0516f6fe
SB
2200 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2201 differences and differences between each stage's debugging dumps. */
2202 hash += (((unsigned int) LABEL_REF << 7)
2203 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2197a88a 2204 return hash;
7afe21cc
RK
2205
2206 case SYMBOL_REF:
0516f6fe
SB
2207 {
2208 /* Don't hash on the symbol's address to avoid bootstrap differences.
2209 Different hash values may cause expressions to be recorded in
2210 different orders and thus different registers to be used in the
2211 final assembler. This also avoids differences in the dump files
2212 between various stages. */
2213 unsigned int h = 0;
2214 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2215
2216 while (*p)
2217 h += (h << 7) + *p++; /* ??? revisit */
2218
2219 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2220 return hash;
2221 }
7afe21cc
RK
2222
2223 case MEM:
14a774a9
RK
2224 /* We don't record if marked volatile or if BLKmode since we don't
2225 know the size of the move. */
2226 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
7afe21cc 2227 {
0516f6fe 2228 *do_not_record_p = 1;
7afe21cc
RK
2229 return 0;
2230 }
0516f6fe
SB
2231 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2232 *hash_arg_in_memory_p = 1;
4977bab6 2233
7afe21cc
RK
2234 /* Now that we have already found this special case,
2235 might as well speed it up as much as possible. */
2197a88a 2236 hash += (unsigned) MEM;
7afe21cc
RK
2237 x = XEXP (x, 0);
2238 goto repeat;
2239
bb07060a
JW
2240 case USE:
2241 /* A USE that mentions non-volatile memory needs special
2242 handling since the MEM may be BLKmode which normally
2243 prevents an entry from being made. Pure calls are
0516f6fe
SB
2244 marked by a USE which mentions BLKmode memory.
2245 See calls.c:emit_call_1. */
3c0cb5de 2246 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2247 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2248 {
68252e27 2249 hash += (unsigned) USE;
bb07060a
JW
2250 x = XEXP (x, 0);
2251
0516f6fe
SB
2252 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2253 *hash_arg_in_memory_p = 1;
bb07060a
JW
2254
2255 /* Now that we have already found this special case,
2256 might as well speed it up as much as possible. */
2257 hash += (unsigned) MEM;
2258 x = XEXP (x, 0);
2259 goto repeat;
2260 }
2261 break;
2262
7afe21cc
RK
2263 case PRE_DEC:
2264 case PRE_INC:
2265 case POST_DEC:
2266 case POST_INC:
4b983fdc
RH
2267 case PRE_MODIFY:
2268 case POST_MODIFY:
7afe21cc
RK
2269 case PC:
2270 case CC0:
2271 case CALL:
2272 case UNSPEC_VOLATILE:
0516f6fe 2273 *do_not_record_p = 1;
7afe21cc
RK
2274 return 0;
2275
2276 case ASM_OPERANDS:
2277 if (MEM_VOLATILE_P (x))
2278 {
0516f6fe 2279 *do_not_record_p = 1;
7afe21cc
RK
2280 return 0;
2281 }
6462bb43
AO
2282 else
2283 {
2284 /* We don't want to take the filename and line into account. */
2285 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2286 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2287 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2288 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2289
2290 if (ASM_OPERANDS_INPUT_LENGTH (x))
2291 {
2292 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2293 {
0516f6fe
SB
2294 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2295 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2296 do_not_record_p, hash_arg_in_memory_p,
2297 have_reg_qty)
2298 + hash_rtx_string
2299 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2300 }
2301
0516f6fe 2302 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2303 x = ASM_OPERANDS_INPUT (x, 0);
2304 mode = GET_MODE (x);
2305 goto repeat;
2306 }
2307
2308 return hash;
2309 }
e9a25f70 2310 break;
278a83b2 2311
e9a25f70
JL
2312 default:
2313 break;
7afe21cc
RK
2314 }
2315
2316 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2317 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2318 fmt = GET_RTX_FORMAT (code);
2319 for (; i >= 0; i--)
2320 {
341c100f 2321 switch (fmt[i])
7afe21cc 2322 {
341c100f 2323 case 'e':
7afe21cc
RK
2324 /* If we are about to do the last recursive call
2325 needed at this level, change it into iteration.
2326 This function is called enough to be worth it. */
2327 if (i == 0)
2328 {
0516f6fe 2329 x = XEXP (x, i);
7afe21cc
RK
2330 goto repeat;
2331 }
0516f6fe
SB
2332
2333 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2334 hash_arg_in_memory_p, have_reg_qty);
341c100f 2335 break;
0516f6fe 2336
341c100f
NS
2337 case 'E':
2338 for (j = 0; j < XVECLEN (x, i); j++)
0516f6fe
SB
2339 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2340 hash_arg_in_memory_p, have_reg_qty);
341c100f 2341 break;
0516f6fe 2342
341c100f
NS
2343 case 's':
2344 hash += hash_rtx_string (XSTR (x, i));
2345 break;
2346
2347 case 'i':
2348 hash += (unsigned int) XINT (x, i);
2349 break;
2350
2351 case '0': case 't':
2352 /* Unused. */
2353 break;
2354
2355 default:
2356 gcc_unreachable ();
2357 }
7afe21cc 2358 }
0516f6fe 2359
7afe21cc
RK
2360 return hash;
2361}
2362
0516f6fe
SB
2363/* Hash an rtx X for cse via hash_rtx.
2364 Stores 1 in do_not_record if any subexpression is volatile.
2365 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2366 does not have the RTX_UNCHANGING_P bit set. */
2367
2368static inline unsigned
2369canon_hash (rtx x, enum machine_mode mode)
2370{
2371 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2372}
2373
2374/* Like canon_hash but with no side effects, i.e. do_not_record
2375 and hash_arg_in_memory are not changed. */
7afe21cc 2376
0516f6fe 2377static inline unsigned
7080f735 2378safe_hash (rtx x, enum machine_mode mode)
7afe21cc 2379{
0516f6fe
SB
2380 int dummy_do_not_record;
2381 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2382}
2383\f
2384/* Return 1 iff X and Y would canonicalize into the same thing,
2385 without actually constructing the canonicalization of either one.
2386 If VALIDATE is nonzero,
2387 we assume X is an expression being processed from the rtl
2388 and Y was found in the hash table. We check register refs
2389 in Y for being marked as valid.
2390
0516f6fe 2391 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2392
0516f6fe 2393int
4f588890 2394exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
7afe21cc 2395{
b3694847
SS
2396 int i, j;
2397 enum rtx_code code;
2398 const char *fmt;
7afe21cc
RK
2399
2400 /* Note: it is incorrect to assume an expression is equivalent to itself
2401 if VALIDATE is nonzero. */
2402 if (x == y && !validate)
2403 return 1;
0516f6fe 2404
7afe21cc
RK
2405 if (x == 0 || y == 0)
2406 return x == y;
2407
2408 code = GET_CODE (x);
2409 if (code != GET_CODE (y))
0516f6fe 2410 return 0;
7afe21cc
RK
2411
2412 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2413 if (GET_MODE (x) != GET_MODE (y))
2414 return 0;
2415
2416 switch (code)
2417 {
2418 case PC:
2419 case CC0:
7afe21cc 2420 case CONST_INT:
37cf6116 2421 case CONST_DOUBLE:
091a3ac7 2422 case CONST_FIXED:
c13e8210 2423 return x == y;
7afe21cc
RK
2424
2425 case LABEL_REF:
7afe21cc
RK
2426 return XEXP (x, 0) == XEXP (y, 0);
2427
f54d4924
RK
2428 case SYMBOL_REF:
2429 return XSTR (x, 0) == XSTR (y, 0);
2430
7afe21cc 2431 case REG:
0516f6fe
SB
2432 if (for_gcse)
2433 return REGNO (x) == REGNO (y);
2434 else
2435 {
2436 unsigned int regno = REGNO (y);
2437 unsigned int i;
09e18274 2438 unsigned int endregno = END_REGNO (y);
7afe21cc 2439
0516f6fe
SB
2440 /* If the quantities are not the same, the expressions are not
2441 equivalent. If there are and we are not to validate, they
2442 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2443
0516f6fe
SB
2444 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2445 return 0;
2446
2447 if (! validate)
2448 return 1;
2449
2450 for (i = regno; i < endregno; i++)
2451 if (REG_IN_TABLE (i) != REG_TICK (i))
2452 return 0;
7afe21cc 2453
7afe21cc 2454 return 1;
0516f6fe 2455 }
7afe21cc 2456
0516f6fe
SB
2457 case MEM:
2458 if (for_gcse)
2459 {
0516f6fe
SB
2460 /* A volatile mem should not be considered equivalent to any
2461 other. */
2462 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2463 return 0;
78b76d08
SB
2464
2465 /* Can't merge two expressions in different alias sets, since we
2466 can decide that the expression is transparent in a block when
2467 it isn't, due to it being set with the different alias set.
2468
2469 Also, can't merge two expressions with different MEM_ATTRS.
2470 They could e.g. be two different entities allocated into the
2471 same space on the stack (see e.g. PR25130). In that case, the
2472 MEM addresses can be the same, even though the two MEMs are
2473 absolutely not equivalent.
2474
2475 But because really all MEM attributes should be the same for
2476 equivalent MEMs, we just use the invariant that MEMs that have
2477 the same attributes share the same mem_attrs data structure. */
2478 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2479 return 0;
0516f6fe
SB
2480 }
2481 break;
7afe21cc
RK
2482
2483 /* For commutative operations, check both orders. */
2484 case PLUS:
2485 case MULT:
2486 case AND:
2487 case IOR:
2488 case XOR:
2489 case NE:
2490 case EQ:
0516f6fe
SB
2491 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2492 validate, for_gcse)
7afe21cc 2493 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2494 validate, for_gcse))
7afe21cc 2495 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2496 validate, for_gcse)
7afe21cc 2497 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2498 validate, for_gcse)));
278a83b2 2499
6462bb43
AO
2500 case ASM_OPERANDS:
2501 /* We don't use the generic code below because we want to
2502 disregard filename and line numbers. */
2503
2504 /* A volatile asm isn't equivalent to any other. */
2505 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2506 return 0;
2507
2508 if (GET_MODE (x) != GET_MODE (y)
2509 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2510 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2511 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2512 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2513 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2514 return 0;
2515
2516 if (ASM_OPERANDS_INPUT_LENGTH (x))
2517 {
2518 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2519 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2520 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2521 validate, for_gcse)
6462bb43
AO
2522 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2523 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2524 return 0;
2525 }
2526
2527 return 1;
2528
e9a25f70
JL
2529 default:
2530 break;
7afe21cc
RK
2531 }
2532
2533 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2534 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2535
2536 fmt = GET_RTX_FORMAT (code);
2537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2538 {
906c4e36 2539 switch (fmt[i])
7afe21cc 2540 {
906c4e36 2541 case 'e':
0516f6fe
SB
2542 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2543 validate, for_gcse))
7afe21cc 2544 return 0;
906c4e36
RK
2545 break;
2546
2547 case 'E':
7afe21cc
RK
2548 if (XVECLEN (x, i) != XVECLEN (y, i))
2549 return 0;
2550 for (j = 0; j < XVECLEN (x, i); j++)
2551 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2552 validate, for_gcse))
7afe21cc 2553 return 0;
906c4e36
RK
2554 break;
2555
2556 case 's':
7afe21cc
RK
2557 if (strcmp (XSTR (x, i), XSTR (y, i)))
2558 return 0;
906c4e36
RK
2559 break;
2560
2561 case 'i':
7afe21cc
RK
2562 if (XINT (x, i) != XINT (y, i))
2563 return 0;
906c4e36
RK
2564 break;
2565
2566 case 'w':
2567 if (XWINT (x, i) != XWINT (y, i))
2568 return 0;
278a83b2 2569 break;
906c4e36
RK
2570
2571 case '0':
8f985ec4 2572 case 't':
906c4e36
RK
2573 break;
2574
2575 default:
341c100f 2576 gcc_unreachable ();
7afe21cc 2577 }
278a83b2 2578 }
906c4e36 2579
7afe21cc
RK
2580 return 1;
2581}
2582\f
9ae8ffe7
JL
2583/* Return 1 if X has a value that can vary even between two
2584 executions of the program. 0 means X can be compared reliably
2585 against certain constants or near-constants. */
7afe21cc 2586
4f588890
KG
2587static bool
2588cse_rtx_varies_p (const_rtx x, bool from_alias)
7afe21cc
RK
2589{
2590 /* We need not check for X and the equivalence class being of the same
2591 mode because if X is equivalent to a constant in some mode, it
2592 doesn't vary in any mode. */
2593
f8cfc6aa 2594 if (REG_P (x)
1bb98cec
DM
2595 && REGNO_QTY_VALID_P (REGNO (x)))
2596 {
2597 int x_q = REG_QTY (REGNO (x));
2598 struct qty_table_elem *x_ent = &qty_table[x_q];
2599
2600 if (GET_MODE (x) == x_ent->mode
2601 && x_ent->const_rtx != NULL_RTX)
2602 return 0;
2603 }
7afe21cc 2604
9ae8ffe7
JL
2605 if (GET_CODE (x) == PLUS
2606 && GET_CODE (XEXP (x, 1)) == CONST_INT
f8cfc6aa 2607 && REG_P (XEXP (x, 0))
1bb98cec
DM
2608 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2609 {
2610 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2611 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2612
2613 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2614 && x0_ent->const_rtx != NULL_RTX)
2615 return 0;
2616 }
7afe21cc 2617
9c6b0bae
RK
2618 /* This can happen as the result of virtual register instantiation, if
2619 the initial constant is too large to be a valid address. This gives
2620 us a three instruction sequence, load large offset into a register,
2621 load fp minus a constant into a register, then a MEM which is the
2622 sum of the two `constant' registers. */
9ae8ffe7 2623 if (GET_CODE (x) == PLUS
f8cfc6aa
JQ
2624 && REG_P (XEXP (x, 0))
2625 && REG_P (XEXP (x, 1))
9ae8ffe7 2626 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
1bb98cec
DM
2627 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2628 {
2629 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2630 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2631 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2632 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2633
2634 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2635 && x0_ent->const_rtx != NULL_RTX
2636 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2637 && x1_ent->const_rtx != NULL_RTX)
2638 return 0;
2639 }
9c6b0bae 2640
2be28ee2 2641 return rtx_varies_p (x, from_alias);
7afe21cc
RK
2642}
2643\f
eef3c949
RS
2644/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2645 the result if necessary. INSN is as for canon_reg. */
2646
2647static void
2648validate_canon_reg (rtx *xloc, rtx insn)
2649{
6fb5fa3c
DB
2650 if (*xloc)
2651 {
2652 rtx new = canon_reg (*xloc, insn);
eef3c949 2653
6fb5fa3c
DB
2654 /* If replacing pseudo with hard reg or vice versa, ensure the
2655 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2656 gcc_assert (insn && new);
2657 validate_change (insn, xloc, new, 1);
2658 }
eef3c949
RS
2659}
2660
7afe21cc
RK
2661/* Canonicalize an expression:
2662 replace each register reference inside it
2663 with the "oldest" equivalent register.
2664
67e0a632 2665 If INSN is nonzero validate_change is used to ensure that INSN remains valid
da7d8304 2666 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2667 so apply_change_group must be called upon the outermost return from this
2668 function (unless INSN is zero). The result of apply_change_group can
2669 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2670
2671static rtx
7080f735 2672canon_reg (rtx x, rtx insn)
7afe21cc 2673{
b3694847
SS
2674 int i;
2675 enum rtx_code code;
2676 const char *fmt;
7afe21cc
RK
2677
2678 if (x == 0)
2679 return x;
2680
2681 code = GET_CODE (x);
2682 switch (code)
2683 {
2684 case PC:
2685 case CC0:
2686 case CONST:
2687 case CONST_INT:
2688 case CONST_DOUBLE:
091a3ac7 2689 case CONST_FIXED:
69ef87e2 2690 case CONST_VECTOR:
7afe21cc
RK
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 case ADDR_VEC:
2694 case ADDR_DIFF_VEC:
2695 return x;
2696
2697 case REG:
2698 {
b3694847
SS
2699 int first;
2700 int q;
2701 struct qty_table_elem *ent;
7afe21cc
RK
2702
2703 /* Never replace a hard reg, because hard regs can appear
2704 in more than one machine mode, and we must preserve the mode
2705 of each occurrence. Also, some hard regs appear in
2706 MEMs that are shared and mustn't be altered. Don't try to
2707 replace any reg that maps to a reg of class NO_REGS. */
2708 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2709 || ! REGNO_QTY_VALID_P (REGNO (x)))
2710 return x;
2711
278a83b2 2712 q = REG_QTY (REGNO (x));
1bb98cec
DM
2713 ent = &qty_table[q];
2714 first = ent->first_reg;
7afe21cc
RK
2715 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2716 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2717 : gen_rtx_REG (ent->mode, first));
7afe21cc 2718 }
278a83b2 2719
e9a25f70
JL
2720 default:
2721 break;
7afe21cc
RK
2722 }
2723
2724 fmt = GET_RTX_FORMAT (code);
2725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2726 {
b3694847 2727 int j;
7afe21cc
RK
2728
2729 if (fmt[i] == 'e')
eef3c949 2730 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2731 else if (fmt[i] == 'E')
2732 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2733 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2734 }
2735
2736 return x;
2737}
2738\f
bca05d20
RK
2739/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2740 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2741 what values are being compared.
1a87eea2 2742
bca05d20
RK
2743 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2744 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2745 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2746 compared to produce cc0.
a432f20d 2747
bca05d20
RK
2748 The return value is the comparison operator and is either the code of
2749 A or the code corresponding to the inverse of the comparison. */
7afe21cc 2750
0cedb36c 2751static enum rtx_code
7080f735
AJ
2752find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2753 enum machine_mode *pmode1, enum machine_mode *pmode2)
7afe21cc 2754{
0cedb36c 2755 rtx arg1, arg2;
1a87eea2 2756
0cedb36c 2757 arg1 = *parg1, arg2 = *parg2;
7afe21cc 2758
0cedb36c 2759 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 2760
0cedb36c 2761 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 2762 {
da7d8304 2763 /* Set nonzero when we find something of interest. */
0cedb36c
JL
2764 rtx x = 0;
2765 int reverse_code = 0;
2766 struct table_elt *p = 0;
6076248a 2767
0cedb36c
JL
2768 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2769 On machines with CC0, this is the only case that can occur, since
2770 fold_rtx will return the COMPARE or item being compared with zero
2771 when given CC0. */
6076248a 2772
0cedb36c
JL
2773 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2774 x = arg1;
6076248a 2775
0cedb36c
JL
2776 /* If ARG1 is a comparison operator and CODE is testing for
2777 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 2778
ec8e098d 2779 else if (COMPARISON_P (arg1))
7afe21cc 2780 {
efdc7e19
RH
2781#ifdef FLOAT_STORE_FLAG_VALUE
2782 REAL_VALUE_TYPE fsfv;
2783#endif
2784
0cedb36c
JL
2785 if (code == NE
2786 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2787 && code == LT && STORE_FLAG_VALUE == -1)
2788#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2789 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2790 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2791 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 2792#endif
a432f20d 2793 )
0cedb36c
JL
2794 x = arg1;
2795 else if (code == EQ
2796 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2797 && code == GE && STORE_FLAG_VALUE == -1)
2798#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2799 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2800 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2801 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
2802#endif
2803 )
2804 x = arg1, reverse_code = 1;
7afe21cc
RK
2805 }
2806
0cedb36c 2807 /* ??? We could also check for
7afe21cc 2808
0cedb36c 2809 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 2810
0cedb36c 2811 and related forms, but let's wait until we see them occurring. */
7afe21cc 2812
0cedb36c
JL
2813 if (x == 0)
2814 /* Look up ARG1 in the hash table and see if it has an equivalence
2815 that lets us see what is being compared. */
0516f6fe 2816 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 2817 if (p)
8b03b984
R
2818 {
2819 p = p->first_same_value;
2820
2821 /* If what we compare is already known to be constant, that is as
2822 good as it gets.
2823 We need to break the loop in this case, because otherwise we
2824 can have an infinite loop when looking at a reg that is known
2825 to be a constant which is the same as a comparison of a reg
2826 against zero which appears later in the insn stream, which in
2827 turn is constant and the same as the comparison of the first reg
2828 against zero... */
2829 if (p->is_const)
2830 break;
2831 }
7afe21cc 2832
0cedb36c 2833 for (; p; p = p->next_same_value)
7afe21cc 2834 {
0cedb36c 2835 enum machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
2836#ifdef FLOAT_STORE_FLAG_VALUE
2837 REAL_VALUE_TYPE fsfv;
2838#endif
7afe21cc 2839
0cedb36c 2840 /* If the entry isn't valid, skip it. */
0516f6fe 2841 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 2842 continue;
f76b9db2 2843
bca05d20
RK
2844 if (GET_CODE (p->exp) == COMPARE
2845 /* Another possibility is that this machine has a compare insn
2846 that includes the comparison code. In that case, ARG1 would
2847 be equivalent to a comparison operation that would set ARG1 to
2848 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2849 ORIG_CODE is the actual comparison being done; if it is an EQ,
2850 we must reverse ORIG_CODE. On machine with a negative value
2851 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2852 || ((code == NE
2853 || (code == LT
2854 && GET_MODE_CLASS (inner_mode) == MODE_INT
2855 && (GET_MODE_BITSIZE (inner_mode)
2856 <= HOST_BITS_PER_WIDE_INT)
2857 && (STORE_FLAG_VALUE
2858 & ((HOST_WIDE_INT) 1
2859 << (GET_MODE_BITSIZE (inner_mode) - 1))))
0cedb36c 2860#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20 2861 || (code == LT
3d8bf70f 2862 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
2863 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2864 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 2865#endif
bca05d20 2866 )
ec8e098d 2867 && COMPARISON_P (p->exp)))
7afe21cc 2868 {
0cedb36c
JL
2869 x = p->exp;
2870 break;
2871 }
2872 else if ((code == EQ
2873 || (code == GE
2874 && GET_MODE_CLASS (inner_mode) == MODE_INT
2875 && (GET_MODE_BITSIZE (inner_mode)
2876 <= HOST_BITS_PER_WIDE_INT)
2877 && (STORE_FLAG_VALUE
2878 & ((HOST_WIDE_INT) 1
2879 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2880#ifdef FLOAT_STORE_FLAG_VALUE
2881 || (code == GE
3d8bf70f 2882 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
2883 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2884 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
2885#endif
2886 )
ec8e098d 2887 && COMPARISON_P (p->exp))
0cedb36c
JL
2888 {
2889 reverse_code = 1;
2890 x = p->exp;
2891 break;
7afe21cc
RK
2892 }
2893
4977bab6
ZW
2894 /* If this non-trapping address, e.g. fp + constant, the
2895 equivalent is a better operand since it may let us predict
2896 the value of the comparison. */
2897 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
2898 {
2899 arg1 = p->exp;
2900 continue;
2901 }
7afe21cc 2902 }
7afe21cc 2903
0cedb36c
JL
2904 /* If we didn't find a useful equivalence for ARG1, we are done.
2905 Otherwise, set up for the next iteration. */
2906 if (x == 0)
2907 break;
7afe21cc 2908
78192b09
RH
2909 /* If we need to reverse the comparison, make sure that that is
2910 possible -- we can't necessarily infer the value of GE from LT
2911 with floating-point operands. */
0cedb36c 2912 if (reverse_code)
261efdef
JH
2913 {
2914 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2915 if (reversed == UNKNOWN)
2916 break;
68252e27
KH
2917 else
2918 code = reversed;
261efdef 2919 }
ec8e098d 2920 else if (COMPARISON_P (x))
261efdef
JH
2921 code = GET_CODE (x);
2922 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
2923 }
2924
0cedb36c
JL
2925 /* Return our results. Return the modes from before fold_rtx
2926 because fold_rtx might produce const_int, and then it's too late. */
2927 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2928 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2929
2930 return code;
7afe21cc
RK
2931}
2932\f
a52b023a
PB
2933/* If X is a nontrivial arithmetic operation on an argument for which
2934 a constant value can be determined, return the result of operating
2935 on that value, as a constant. Otherwise, return X, possibly with
2936 one or more operands changed to a forward-propagated constant.
25910ca4 2937
a52b023a
PB
2938 If X is a register whose contents are known, we do NOT return
2939 those contents here; equiv_constant is called to perform that task.
2940 For SUBREGs and MEMs, we do that both here and in equiv_constant.
7afe21cc
RK
2941
2942 INSN is the insn that we may be modifying. If it is 0, make a copy
2943 of X before modifying it. */
2944
2945static rtx
7080f735 2946fold_rtx (rtx x, rtx insn)
7afe21cc 2947{
b3694847
SS
2948 enum rtx_code code;
2949 enum machine_mode mode;
2950 const char *fmt;
2951 int i;
7afe21cc 2952 rtx new = 0;
a52b023a 2953 int changed = 0;
7afe21cc 2954
a52b023a 2955 /* Operands of X. */
7afe21cc
RK
2956 rtx folded_arg0;
2957 rtx folded_arg1;
2958
2959 /* Constant equivalents of first three operands of X;
2960 0 when no such equivalent is known. */
2961 rtx const_arg0;
2962 rtx const_arg1;
2963 rtx const_arg2;
2964
2965 /* The mode of the first operand of X. We need this for sign and zero
2966 extends. */
2967 enum machine_mode mode_arg0;
2968
2969 if (x == 0)
2970 return x;
2971
a52b023a 2972 /* Try to perform some initial simplifications on X. */
7afe21cc
RK
2973 code = GET_CODE (x);
2974 switch (code)
2975 {
a52b023a
PB
2976 case MEM:
2977 case SUBREG:
2978 if ((new = equiv_constant (x)) != NULL_RTX)
2979 return new;
2980 return x;
2981
7afe21cc
RK
2982 case CONST:
2983 case CONST_INT:
2984 case CONST_DOUBLE:
091a3ac7 2985 case CONST_FIXED:
69ef87e2 2986 case CONST_VECTOR:
7afe21cc
RK
2987 case SYMBOL_REF:
2988 case LABEL_REF:
2989 case REG:
01aa1d43 2990 case PC:
7afe21cc
RK
2991 /* No use simplifying an EXPR_LIST
2992 since they are used only for lists of args
2993 in a function call's REG_EQUAL note. */
2994 case EXPR_LIST:
2995 return x;
2996
2997#ifdef HAVE_cc0
2998 case CC0:
2999 return prev_insn_cc0;
3000#endif
3001
9255709c 3002 case ASM_OPERANDS:
6c667859
AB
3003 if (insn)
3004 {
3005 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3006 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3007 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3008 }
a52b023a
PB
3009 return x;
3010
3011#ifdef NO_FUNCTION_CSE
3012 case CALL:
3013 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3014 return x;
9255709c 3015 break;
a52b023a 3016#endif
278a83b2 3017
a52b023a 3018 /* Anything else goes through the loop below. */
e9a25f70
JL
3019 default:
3020 break;
7afe21cc
RK
3021 }
3022
a52b023a 3023 mode = GET_MODE (x);
7afe21cc
RK
3024 const_arg0 = 0;
3025 const_arg1 = 0;
3026 const_arg2 = 0;
3027 mode_arg0 = VOIDmode;
3028
3029 /* Try folding our operands.
3030 Then see which ones have constant values known. */
3031
3032 fmt = GET_RTX_FORMAT (code);
3033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3034 if (fmt[i] == 'e')
3035 {
a52b023a
PB
3036 rtx folded_arg = XEXP (x, i), const_arg;
3037 enum machine_mode mode_arg = GET_MODE (folded_arg);
7e7e28c7
AO
3038
3039 switch (GET_CODE (folded_arg))
3040 {
3041 case MEM:
3042 case REG:
3043 case SUBREG:
3044 const_arg = equiv_constant (folded_arg);
3045 break;
3046
3047 case CONST:
3048 case CONST_INT:
3049 case SYMBOL_REF:
3050 case LABEL_REF:
3051 case CONST_DOUBLE:
091a3ac7 3052 case CONST_FIXED:
7e7e28c7
AO
3053 case CONST_VECTOR:
3054 const_arg = folded_arg;
3055 break;
3056
7afe21cc 3057#ifdef HAVE_cc0
7e7e28c7
AO
3058 case CC0:
3059 folded_arg = prev_insn_cc0;
3060 mode_arg = prev_insn_cc0_mode;
3061 const_arg = equiv_constant (folded_arg);
3062 break;
7afe21cc 3063#endif
7e7e28c7
AO
3064
3065 default:
3066 folded_arg = fold_rtx (folded_arg, insn);
3067 const_arg = equiv_constant (folded_arg);
3068 break;
3069 }
7afe21cc
RK
3070
3071 /* For the first three operands, see if the operand
3072 is constant or equivalent to a constant. */
3073 switch (i)
3074 {
3075 case 0:
3076 folded_arg0 = folded_arg;
3077 const_arg0 = const_arg;
3078 mode_arg0 = mode_arg;
3079 break;
3080 case 1:
3081 folded_arg1 = folded_arg;
3082 const_arg1 = const_arg;
3083 break;
3084 case 2:
3085 const_arg2 = const_arg;
3086 break;
3087 }
3088
a52b023a
PB
3089 /* Pick the least expensive of the argument and an equivalent constant
3090 argument. */
3091 if (const_arg != 0
3092 && const_arg != folded_arg
3093 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
f2fa288f 3094
8cce3d04
RS
3095 /* It's not safe to substitute the operand of a conversion
3096 operator with a constant, as the conversion's identity
f652d14b 3097 depends upon the mode of its operand. This optimization
8cce3d04 3098 is handled by the call to simplify_unary_operation. */
a52b023a
PB
3099 && (GET_RTX_CLASS (code) != RTX_UNARY
3100 || GET_MODE (const_arg) == mode_arg0
3101 || (code != ZERO_EXTEND
3102 && code != SIGN_EXTEND
3103 && code != TRUNCATE
3104 && code != FLOAT_TRUNCATE
3105 && code != FLOAT_EXTEND
3106 && code != FLOAT
3107 && code != FIX
3108 && code != UNSIGNED_FLOAT
3109 && code != UNSIGNED_FIX)))
3110 folded_arg = const_arg;
3111
3112 if (folded_arg == XEXP (x, i))
3113 continue;
7afe21cc 3114
a52b023a
PB
3115 if (insn == NULL_RTX && !changed)
3116 x = copy_rtx (x);
3117 changed = 1;
b8b89e7c 3118 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
2d8b0f3a 3119 }
7afe21cc 3120
a52b023a 3121 if (changed)
7afe21cc 3122 {
a52b023a
PB
3123 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3124 consistent with the order in X. */
3125 if (canonicalize_change_group (insn, x))
7afe21cc 3126 {
a52b023a
PB
3127 rtx tem;
3128 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3129 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
7afe21cc 3130 }
a52b023a
PB
3131
3132 apply_change_group ();
7afe21cc
RK
3133 }
3134
3135 /* If X is an arithmetic operation, see if we can simplify it. */
3136
3137 switch (GET_RTX_CLASS (code))
3138 {
ec8e098d 3139 case RTX_UNARY:
67a37737
RK
3140 {
3141 int is_const = 0;
3142
3143 /* We can't simplify extension ops unless we know the
3144 original mode. */
3145 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3146 && mode_arg0 == VOIDmode)
3147 break;
3148
3149 /* If we had a CONST, strip it off and put it back later if we
3150 fold. */
3151 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3152 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3153
3154 new = simplify_unary_operation (code, mode,
3155 const_arg0 ? const_arg0 : folded_arg0,
3156 mode_arg0);
ec666d23
JH
3157 /* NEG of PLUS could be converted into MINUS, but that causes
3158 expressions of the form
3159 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3160 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3161 FIXME: those ports should be fixed. */
3162 if (new != 0 && is_const
3163 && GET_CODE (new) == PLUS
3164 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3165 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3166 && GET_CODE (XEXP (new, 1)) == CONST_INT)
38a448ca 3167 new = gen_rtx_CONST (mode, new);
67a37737 3168 }
7afe21cc 3169 break;
278a83b2 3170
ec8e098d
PB
3171 case RTX_COMPARE:
3172 case RTX_COMM_COMPARE:
7afe21cc
RK
3173 /* See what items are actually being compared and set FOLDED_ARG[01]
3174 to those values and CODE to the actual comparison code. If any are
3175 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3176 do anything if both operands are already known to be constant. */
3177
21e5076a
UB
3178 /* ??? Vector mode comparisons are not supported yet. */
3179 if (VECTOR_MODE_P (mode))
3180 break;
3181
7afe21cc
RK
3182 if (const_arg0 == 0 || const_arg1 == 0)
3183 {
3184 struct table_elt *p0, *p1;
d6edb99e 3185 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
13c9910f 3186 enum machine_mode mode_arg1;
c610adec
RK
3187
3188#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 3189 if (SCALAR_FLOAT_MODE_P (mode))
c610adec 3190 {
d6edb99e 3191 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
68252e27 3192 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 3193 false_rtx = CONST0_RTX (mode);
c610adec
RK
3194 }
3195#endif
7afe21cc 3196
13c9910f
RS
3197 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3198 &mode_arg0, &mode_arg1);
7afe21cc 3199
13c9910f
RS
3200 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3201 what kinds of things are being compared, so we can't do
3202 anything with this comparison. */
7afe21cc
RK
3203
3204 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3205 break;
3206
75335440
KH
3207 const_arg0 = equiv_constant (folded_arg0);
3208 const_arg1 = equiv_constant (folded_arg1);
3209
0f41302f
MS
3210 /* If we do not now have two constants being compared, see
3211 if we can nevertheless deduce some things about the
3212 comparison. */
7afe21cc
RK
3213 if (const_arg0 == 0 || const_arg1 == 0)
3214 {
08678f51
HPN
3215 if (const_arg1 != NULL)
3216 {
3217 rtx cheapest_simplification;
3218 int cheapest_cost;
3219 rtx simp_result;
3220 struct table_elt *p;
3221
3222 /* See if we can find an equivalent of folded_arg0
3223 that gets us a cheaper expression, possibly a
3224 constant through simplifications. */
3225 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3226 mode_arg0);
3227
3228 if (p != NULL)
3229 {
3230 cheapest_simplification = x;
3231 cheapest_cost = COST (x);
3232
3233 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3234 {
3235 int cost;
3236
3237 /* If the entry isn't valid, skip it. */
3238 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3239 continue;
3240
3241 /* Try to simplify using this equivalence. */
3242 simp_result
3243 = simplify_relational_operation (code, mode,
3244 mode_arg0,
3245 p->exp,
3246 const_arg1);
3247
3248 if (simp_result == NULL)
3249 continue;
3250
3251 cost = COST (simp_result);
3252 if (cost < cheapest_cost)
3253 {
3254 cheapest_cost = cost;
3255 cheapest_simplification = simp_result;
3256 }
3257 }
3258
3259 /* If we have a cheaper expression now, use that
3260 and try folding it further, from the top. */
3261 if (cheapest_simplification != x)
7903b3e5
JH
3262 return fold_rtx (copy_rtx (cheapest_simplification),
3263 insn);
08678f51
HPN
3264 }
3265 }
3266
fd13313f
JH
3267 /* See if the two operands are the same. */
3268
39641489
PB
3269 if ((REG_P (folded_arg0)
3270 && REG_P (folded_arg1)
3271 && (REG_QTY (REGNO (folded_arg0))
3272 == REG_QTY (REGNO (folded_arg1))))
fd13313f 3273 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3274 SAFE_HASH (folded_arg0, mode_arg0),
3275 mode_arg0))
fd13313f 3276 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3277 SAFE_HASH (folded_arg1, mode_arg0),
3278 mode_arg0))
fd13313f 3279 && p0->first_same_value == p1->first_same_value))
39641489 3280 folded_arg1 = folded_arg0;
7afe21cc
RK
3281
3282 /* If FOLDED_ARG0 is a register, see if the comparison we are
3283 doing now is either the same as we did before or the reverse
3284 (we only check the reverse if not floating-point). */
f8cfc6aa 3285 else if (REG_P (folded_arg0))
7afe21cc 3286 {
30f72379 3287 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 3288
1bb98cec
DM
3289 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3290 {
3291 struct qty_table_elem *ent = &qty_table[qty];
3292
3293 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
3294 || (! FLOAT_MODE_P (mode_arg0)
3295 && comparison_dominates_p (ent->comparison_code,
3296 reverse_condition (code))))
1bb98cec
DM
3297 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3298 || (const_arg1
3299 && rtx_equal_p (ent->comparison_const,
3300 const_arg1))
f8cfc6aa 3301 || (REG_P (folded_arg1)
1bb98cec
DM
3302 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3303 return (comparison_dominates_p (ent->comparison_code, code)
d6edb99e 3304 ? true_rtx : false_rtx);
1bb98cec 3305 }
7afe21cc
RK
3306 }
3307 }
3308 }
3309
3310 /* If we are comparing against zero, see if the first operand is
3311 equivalent to an IOR with a constant. If so, we may be able to
3312 determine the result of this comparison. */
39641489 3313 if (const_arg1 == const0_rtx && !const_arg0)
7afe21cc
RK
3314 {
3315 rtx y = lookup_as_function (folded_arg0, IOR);
3316 rtx inner_const;
3317
3318 if (y != 0
3319 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3320 && GET_CODE (inner_const) == CONST_INT
3321 && INTVAL (inner_const) != 0)
39641489 3322 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
7afe21cc
RK
3323 }
3324
c6fb08ad
PB
3325 {
3326 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3327 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3328 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3329 }
7afe21cc
RK
3330 break;
3331
ec8e098d
PB
3332 case RTX_BIN_ARITH:
3333 case RTX_COMM_ARITH:
7afe21cc
RK
3334 switch (code)
3335 {
3336 case PLUS:
3337 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3338 with that LABEL_REF as its second operand. If so, the result is
3339 the first operand of that MINUS. This handles switches with an
3340 ADDR_DIFF_VEC table. */
3341 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3342 {
e650cbda
RK
3343 rtx y
3344 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 3345 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
3346
3347 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3348 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3349 return XEXP (y, 0);
67a37737
RK
3350
3351 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
3352 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3353 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
3354 && GET_CODE (XEXP (y, 0)) == MINUS
3355 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 3356 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
67a37737 3357 return XEXP (XEXP (y, 0), 0);
7afe21cc 3358 }
c2cc0778 3359
e650cbda
RK
3360 /* Likewise if the operands are in the other order. */
3361 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3362 {
3363 rtx y
3364 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 3365 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
3366
3367 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3368 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3369 return XEXP (y, 0);
3370
3371 /* Now try for a CONST of a MINUS like the above. */
3372 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3373 : lookup_as_function (folded_arg1, CONST))) != 0
3374 && GET_CODE (XEXP (y, 0)) == MINUS
3375 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 3376 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
e650cbda
RK
3377 return XEXP (XEXP (y, 0), 0);
3378 }
3379
c2cc0778
RK
3380 /* If second operand is a register equivalent to a negative
3381 CONST_INT, see if we can find a register equivalent to the
3382 positive constant. Make a MINUS if so. Don't do this for
5d595063 3383 a non-negative constant since we might then alternate between
a1f300c0 3384 choosing positive and negative constants. Having the positive
5d595063
RK
3385 constant previously-used is the more common case. Be sure
3386 the resulting constant is non-negative; if const_arg1 were
3387 the smallest negative number this would overflow: depending
3388 on the mode, this would either just be the same value (and
3389 hence not save anything) or be incorrect. */
3390 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3391 && INTVAL (const_arg1) < 0
4741f6ad
JL
3392 /* This used to test
3393
ddc356e8 3394 -INTVAL (const_arg1) >= 0
4741f6ad
JL
3395
3396 But The Sun V5.0 compilers mis-compiled that test. So
3397 instead we test for the problematic value in a more direct
3398 manner and hope the Sun compilers get it correct. */
5c45a8ac
KG
3399 && INTVAL (const_arg1) !=
3400 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 3401 && REG_P (folded_arg1))
c2cc0778 3402 {
ddc356e8 3403 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 3404 struct table_elt *p
0516f6fe 3405 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
3406
3407 if (p)
3408 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 3409 if (REG_P (p->exp))
0cedb36c
JL
3410 return simplify_gen_binary (MINUS, mode, folded_arg0,
3411 canon_reg (p->exp, NULL_RTX));
c2cc0778 3412 }
13c9910f
RS
3413 goto from_plus;
3414
3415 case MINUS:
3416 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3417 If so, produce (PLUS Z C2-C). */
3418 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3419 {
3420 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3421 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
f3becefd
RK
3422 return fold_rtx (plus_constant (copy_rtx (y),
3423 -INTVAL (const_arg1)),
a3b5c94a 3424 NULL_RTX);
13c9910f 3425 }
7afe21cc 3426
ddc356e8 3427 /* Fall through. */
7afe21cc 3428
13c9910f 3429 from_plus:
7afe21cc
RK
3430 case SMIN: case SMAX: case UMIN: case UMAX:
3431 case IOR: case AND: case XOR:
f930bfd0 3432 case MULT:
7afe21cc
RK
3433 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3434 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3435 is known to be of similar form, we may be able to replace the
3436 operation with a combined operation. This may eliminate the
3437 intermediate operation if every use is simplified in this way.
3438 Note that the similar optimization done by combine.c only works
3439 if the intermediate operation's result has only one reference. */
3440
f8cfc6aa 3441 if (REG_P (folded_arg0)
7afe21cc
RK
3442 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3443 {
3444 int is_shift
3445 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5bb51e1d 3446 rtx y, inner_const, new_const;
7afe21cc 3447 enum rtx_code associate_code;
7afe21cc 3448
824a4527
JDA
3449 if (is_shift
3450 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3451 || INTVAL (const_arg1) < 0))
3452 {
3453 if (SHIFT_COUNT_TRUNCATED)
3454 const_arg1 = GEN_INT (INTVAL (const_arg1)
3455 & (GET_MODE_BITSIZE (mode) - 1));
3456 else
3457 break;
3458 }
3459
5bb51e1d 3460 y = lookup_as_function (folded_arg0, code);
824a4527
JDA
3461 if (y == 0)
3462 break;
824a4527
JDA
3463
3464 /* If we have compiled a statement like
3465 "if (x == (x & mask1))", and now are looking at
3466 "x & mask2", we will have a case where the first operand
3467 of Y is the same as our first operand. Unless we detect
3468 this case, an infinite loop will result. */
3469 if (XEXP (y, 0) == folded_arg0)
7afe21cc
RK
3470 break;
3471
5bb51e1d
EB
3472 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3473 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3474 break;
3475
7afe21cc
RK
3476 /* Don't associate these operations if they are a PLUS with the
3477 same constant and it is a power of two. These might be doable
3478 with a pre- or post-increment. Similarly for two subtracts of
3479 identical powers of two with post decrement. */
3480
213d5fbc 3481 if (code == PLUS && const_arg1 == inner_const
940da324
JL
3482 && ((HAVE_PRE_INCREMENT
3483 && exact_log2 (INTVAL (const_arg1)) >= 0)
3484 || (HAVE_POST_INCREMENT
3485 && exact_log2 (INTVAL (const_arg1)) >= 0)
3486 || (HAVE_PRE_DECREMENT
3487 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3488 || (HAVE_POST_DECREMENT
3489 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
7afe21cc
RK
3490 break;
3491
824a4527
JDA
3492 if (is_shift
3493 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3494 || INTVAL (inner_const) < 0))
3495 {
3496 if (SHIFT_COUNT_TRUNCATED)
3497 inner_const = GEN_INT (INTVAL (inner_const)
3498 & (GET_MODE_BITSIZE (mode) - 1));
3499 else
3500 break;
3501 }
3502
7afe21cc 3503 /* Compute the code used to compose the constants. For example,
f930bfd0 3504 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 3505
f930bfd0 3506 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
3507
3508 new_const = simplify_binary_operation (associate_code, mode,
3509 const_arg1, inner_const);
3510
3511 if (new_const == 0)
3512 break;
3513
3514 /* If we are associating shift operations, don't let this
4908e508
RS
3515 produce a shift of the size of the object or larger.
3516 This could occur when we follow a sign-extend by a right
3517 shift on a machine that does a sign-extend as a pair
3518 of shifts. */
7afe21cc 3519
824a4527
JDA
3520 if (is_shift
3521 && GET_CODE (new_const) == CONST_INT
4908e508
RS
3522 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3523 {
3524 /* As an exception, we can turn an ASHIFTRT of this
3525 form into a shift of the number of bits - 1. */
3526 if (code == ASHIFTRT)
3527 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
824a4527
JDA
3528 else if (!side_effects_p (XEXP (y, 0)))
3529 return CONST0_RTX (mode);
4908e508
RS
3530 else
3531 break;
3532 }
7afe21cc
RK
3533
3534 y = copy_rtx (XEXP (y, 0));
3535
3536 /* If Y contains our first operand (the most common way this
3537 can happen is if Y is a MEM), we would do into an infinite
3538 loop if we tried to fold it. So don't in that case. */
3539
3540 if (! reg_mentioned_p (folded_arg0, y))
3541 y = fold_rtx (y, insn);
3542
0cedb36c 3543 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 3544 }
e9a25f70
JL
3545 break;
3546
f930bfd0
JW
3547 case DIV: case UDIV:
3548 /* ??? The associative optimization performed immediately above is
3549 also possible for DIV and UDIV using associate_code of MULT.
3550 However, we would need extra code to verify that the
3551 multiplication does not overflow, that is, there is no overflow
3552 in the calculation of new_const. */
3553 break;
3554
e9a25f70
JL
3555 default:
3556 break;
7afe21cc
RK
3557 }
3558
3559 new = simplify_binary_operation (code, mode,
3560 const_arg0 ? const_arg0 : folded_arg0,
3561 const_arg1 ? const_arg1 : folded_arg1);
3562 break;
3563
ec8e098d 3564 case RTX_OBJ:
7afe21cc
RK
3565 /* (lo_sum (high X) X) is simply X. */
3566 if (code == LO_SUM && const_arg0 != 0
3567 && GET_CODE (const_arg0) == HIGH
3568 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3569 return const_arg1;
3570 break;
3571
ec8e098d
PB
3572 case RTX_TERNARY:
3573 case RTX_BITFIELD_OPS:
7afe21cc
RK
3574 new = simplify_ternary_operation (code, mode, mode_arg0,
3575 const_arg0 ? const_arg0 : folded_arg0,
3576 const_arg1 ? const_arg1 : folded_arg1,
3577 const_arg2 ? const_arg2 : XEXP (x, 2));
3578 break;
ee5332b8 3579
ec8e098d
PB
3580 default:
3581 break;
7afe21cc
RK
3582 }
3583
3584 return new ? new : x;
3585}
3586\f
3587/* Return a constant value currently equivalent to X.
3588 Return 0 if we don't know one. */
3589
3590static rtx
7080f735 3591equiv_constant (rtx x)
7afe21cc 3592{
f8cfc6aa 3593 if (REG_P (x)
1bb98cec
DM
3594 && REGNO_QTY_VALID_P (REGNO (x)))
3595 {
3596 int x_q = REG_QTY (REGNO (x));
3597 struct qty_table_elem *x_ent = &qty_table[x_q];
3598
3599 if (x_ent->const_rtx)
4de249d9 3600 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 3601 }
7afe21cc 3602
2ce5e1b4 3603 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
3604 return x;
3605
a52b023a
PB
3606 if (GET_CODE (x) == SUBREG)
3607 {
3608 rtx new;
3609
3610 /* See if we previously assigned a constant value to this SUBREG. */
3611 if ((new = lookup_as_function (x, CONST_INT)) != 0
091a3ac7
CF
3612 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0
3613 || (new = lookup_as_function (x, CONST_FIXED)) != 0)
a52b023a
PB
3614 return new;
3615
3616 if (REG_P (SUBREG_REG (x))
3617 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3618 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3619 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3620
3621 return 0;
3622 }
3623
3624 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3625 the hash table in case its value was seen before. */
fc3ffe83 3626
3c0cb5de 3627 if (MEM_P (x))
fc3ffe83
RK
3628 {
3629 struct table_elt *elt;
3630
a52b023a 3631 x = avoid_constant_pool_reference (x);
fc3ffe83
RK
3632 if (CONSTANT_P (x))
3633 return x;
3634
0516f6fe 3635 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
3636 if (elt == 0)
3637 return 0;
3638
3639 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3640 if (elt->is_const && CONSTANT_P (elt->exp))
3641 return elt->exp;
3642 }
3643
7afe21cc
RK
3644 return 0;
3645}
3646\f
0129d079
SB
3647/* Given INSN, a jump insn, TAKEN indicates if we are following the
3648 "taken" branch.
7afe21cc
RK
3649
3650 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 3651 if we are following the taken case of
7080f735 3652 if (i == 2)
7afe21cc
RK
3653 we can add the fact that `i' and '2' are now equivalent.
3654
3655 In any case, we can record that this comparison was passed. If the same
3656 comparison is seen later, we will know its value. */
3657
3658static void
0129d079 3659record_jump_equiv (rtx insn, bool taken)
7afe21cc
RK
3660{
3661 int cond_known_true;
3662 rtx op0, op1;
7f1c097d 3663 rtx set;
13c9910f 3664 enum machine_mode mode, mode0, mode1;
7afe21cc
RK
3665 int reversed_nonequality = 0;
3666 enum rtx_code code;
3667
3668 /* Ensure this is the right kind of insn. */
0129d079
SB
3669 gcc_assert (any_condjump_p (insn));
3670
7f1c097d 3671 set = pc_set (insn);
7afe21cc
RK
3672
3673 /* See if this jump condition is known true or false. */
3674 if (taken)
7f1c097d 3675 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 3676 else
7f1c097d 3677 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
3678
3679 /* Get the type of comparison being done and the operands being compared.
3680 If we had to reverse a non-equality condition, record that fact so we
3681 know that it isn't valid for floating-point. */
7f1c097d
JH
3682 code = GET_CODE (XEXP (SET_SRC (set), 0));
3683 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3684 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 3685
13c9910f 3686 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
3687 if (! cond_known_true)
3688 {
261efdef 3689 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
3690
3691 /* Don't remember if we can't find the inverse. */
3692 if (code == UNKNOWN)
3693 return;
7afe21cc
RK
3694 }
3695
3696 /* The mode is the mode of the non-constant. */
13c9910f
RS
3697 mode = mode0;
3698 if (mode1 != VOIDmode)
3699 mode = mode1;
7afe21cc
RK
3700
3701 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3702}
3703
794693c0
RH
3704/* Yet another form of subreg creation. In this case, we want something in
3705 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3706
3707static rtx
3708record_jump_cond_subreg (enum machine_mode mode, rtx op)
3709{
3710 enum machine_mode op_mode = GET_MODE (op);
3711 if (op_mode == mode || op_mode == VOIDmode)
3712 return op;
3713 return lowpart_subreg (mode, op, op_mode);
3714}
3715
7afe21cc
RK
3716/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3717 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3718 Make any useful entries we can with that information. Called from
3719 above function and called recursively. */
3720
3721static void
7080f735
AJ
3722record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3723 rtx op1, int reversed_nonequality)
7afe21cc 3724{
2197a88a 3725 unsigned op0_hash, op1_hash;
e428d738 3726 int op0_in_memory, op1_in_memory;
7afe21cc
RK
3727 struct table_elt *op0_elt, *op1_elt;
3728
3729 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3730 we know that they are also equal in the smaller mode (this is also
3731 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 3732 is not worth testing for with no SUBREG). */
7afe21cc 3733
2e794ee8 3734 /* Note that GET_MODE (op0) may not equal MODE. */
7afe21cc 3735 if (code == EQ && GET_CODE (op0) == SUBREG
2e794ee8
RS
3736 && (GET_MODE_SIZE (GET_MODE (op0))
3737 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
3738 {
3739 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3740 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3741 if (tem)
3742 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3743 reversed_nonequality);
7afe21cc
RK
3744 }
3745
3746 if (code == EQ && GET_CODE (op1) == SUBREG
2e794ee8
RS
3747 && (GET_MODE_SIZE (GET_MODE (op1))
3748 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
3749 {
3750 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3751 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3752 if (tem)
3753 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3754 reversed_nonequality);
7afe21cc
RK
3755 }
3756
278a83b2 3757 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
3758 making a smaller mode, we know the whole thing is also NE. */
3759
2e794ee8
RS
3760 /* Note that GET_MODE (op0) may not equal MODE;
3761 if we test MODE instead, we can get an infinite recursion
3762 alternating between two modes each wider than MODE. */
3763
7afe21cc
RK
3764 if (code == NE && GET_CODE (op0) == SUBREG
3765 && subreg_lowpart_p (op0)
2e794ee8
RS
3766 && (GET_MODE_SIZE (GET_MODE (op0))
3767 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
3768 {
3769 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3770 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3771 if (tem)
3772 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3773 reversed_nonequality);
7afe21cc
RK
3774 }
3775
3776 if (code == NE && GET_CODE (op1) == SUBREG
3777 && subreg_lowpart_p (op1)
2e794ee8
RS
3778 && (GET_MODE_SIZE (GET_MODE (op1))
3779 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
3780 {
3781 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3782 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3783 if (tem)
3784 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3785 reversed_nonequality);
7afe21cc
RK
3786 }
3787
3788 /* Hash both operands. */
3789
3790 do_not_record = 0;
3791 hash_arg_in_memory = 0;
2197a88a 3792 op0_hash = HASH (op0, mode);
7afe21cc 3793 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
3794
3795 if (do_not_record)
3796 return;
3797
3798 do_not_record = 0;
3799 hash_arg_in_memory = 0;
2197a88a 3800 op1_hash = HASH (op1, mode);
7afe21cc 3801 op1_in_memory = hash_arg_in_memory;
278a83b2 3802
7afe21cc
RK
3803 if (do_not_record)
3804 return;
3805
3806 /* Look up both operands. */
2197a88a
RK
3807 op0_elt = lookup (op0, op0_hash, mode);
3808 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 3809
af3869c1
RK
3810 /* If both operands are already equivalent or if they are not in the
3811 table but are identical, do nothing. */
3812 if ((op0_elt != 0 && op1_elt != 0
3813 && op0_elt->first_same_value == op1_elt->first_same_value)
3814 || op0 == op1 || rtx_equal_p (op0, op1))
3815 return;
3816
7afe21cc 3817 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
3818 comparison. Similarly if this is floating-point. In the latter
3819 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3820 If we record the equality, we might inadvertently delete code
3821 whose intent was to change -0 to +0. */
3822
cbf6a543 3823 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 3824 {
1bb98cec
DM
3825 struct qty_table_elem *ent;
3826 int qty;
3827
7afe21cc
RK
3828 /* If we reversed a floating-point comparison, if OP0 is not a
3829 register, or if OP1 is neither a register or constant, we can't
3830 do anything. */
3831
f8cfc6aa 3832 if (!REG_P (op1))
7afe21cc
RK
3833 op1 = equiv_constant (op1);
3834
cbf6a543 3835 if ((reversed_nonequality && FLOAT_MODE_P (mode))
f8cfc6aa 3836 || !REG_P (op0) || op1 == 0)
7afe21cc
RK
3837 return;
3838
3839 /* Put OP0 in the hash table if it isn't already. This gives it a
3840 new quantity number. */
3841 if (op0_elt == 0)
3842 {
9714cf43 3843 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
3844 {
3845 rehash_using_reg (op0);
2197a88a 3846 op0_hash = HASH (op0, mode);
2bb81c86
RK
3847
3848 /* If OP0 is contained in OP1, this changes its hash code
3849 as well. Faster to rehash than to check, except
3850 for the simple case of a constant. */
3851 if (! CONSTANT_P (op1))
2197a88a 3852 op1_hash = HASH (op1,mode);
7afe21cc
RK
3853 }
3854
9714cf43 3855 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 3856 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
3857 }
3858
1bb98cec
DM
3859 qty = REG_QTY (REGNO (op0));
3860 ent = &qty_table[qty];
3861
3862 ent->comparison_code = code;
f8cfc6aa 3863 if (REG_P (op1))
7afe21cc 3864 {
5d5ea909 3865 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 3866 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 3867
7afe21cc
RK
3868 /* Put OP1 in the hash table so it gets a new quantity number. */
3869 if (op1_elt == 0)
3870 {
9714cf43 3871 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
3872 {
3873 rehash_using_reg (op1);
2197a88a 3874 op1_hash = HASH (op1, mode);
7afe21cc
RK
3875 }
3876
9714cf43 3877 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 3878 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
3879 }
3880
1bb98cec
DM
3881 ent->comparison_const = NULL_RTX;
3882 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
3883 }
3884 else
3885 {
1bb98cec
DM
3886 ent->comparison_const = op1;
3887 ent->comparison_qty = -1;
7afe21cc
RK
3888 }
3889
3890 return;
3891 }
3892
eb5ad42a
RS
3893 /* If either side is still missing an equivalence, make it now,
3894 then merge the equivalences. */
7afe21cc 3895
7afe21cc
RK
3896 if (op0_elt == 0)
3897 {
9714cf43 3898 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
3899 {
3900 rehash_using_reg (op0);
2197a88a 3901 op0_hash = HASH (op0, mode);
7afe21cc
RK
3902 }
3903
9714cf43 3904 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 3905 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
3906 }
3907
3908 if (op1_elt == 0)
3909 {
9714cf43 3910 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
3911 {
3912 rehash_using_reg (op1);
2197a88a 3913 op1_hash = HASH (op1, mode);
7afe21cc
RK
3914 }
3915
9714cf43 3916 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 3917 op1_elt->in_memory = op1_in_memory;
7afe21cc 3918 }
eb5ad42a
RS
3919
3920 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
3921}
3922\f
3923/* CSE processing for one instruction.
3924 First simplify sources and addresses of all assignments
3925 in the instruction, using previously-computed equivalents values.
3926 Then install the new sources and destinations in the table
278a83b2 3927 of available values.
7afe21cc 3928
1ed0205e
VM
3929 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3930 the insn. It means that INSN is inside libcall block. In this
ddc356e8 3931 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
7afe21cc
RK
3932
3933/* Data on one SET contained in the instruction. */
3934
3935struct set
3936{
3937 /* The SET rtx itself. */
3938 rtx rtl;
3939 /* The SET_SRC of the rtx (the original value, if it is changing). */
3940 rtx src;
3941 /* The hash-table element for the SET_SRC of the SET. */
3942 struct table_elt *src_elt;
2197a88a
RK
3943 /* Hash value for the SET_SRC. */
3944 unsigned src_hash;
3945 /* Hash value for the SET_DEST. */
3946 unsigned dest_hash;
7afe21cc
RK
3947 /* The SET_DEST, with SUBREG, etc., stripped. */
3948 rtx inner_dest;
278a83b2 3949 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 3950 char src_in_memory;
7afe21cc
RK
3951 /* Nonzero if the SET_SRC contains something
3952 whose value cannot be predicted and understood. */
3953 char src_volatile;
496324d0
DN
3954 /* Original machine mode, in case it becomes a CONST_INT.
3955 The size of this field should match the size of the mode
3956 field of struct rtx_def (see rtl.h). */
3957 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc
RK
3958 /* A constant equivalent for SET_SRC, if any. */
3959 rtx src_const;
47841d1b
JJ
3960 /* Original SET_SRC value used for libcall notes. */
3961 rtx orig_src;
2197a88a
RK
3962 /* Hash value of constant equivalent for SET_SRC. */
3963 unsigned src_const_hash;
7afe21cc
RK
3964 /* Table entry for constant equivalent for SET_SRC, if any. */
3965 struct table_elt *src_const_elt;
05c433f3
PB
3966 /* Table entry for the destination address. */
3967 struct table_elt *dest_addr_elt;
7afe21cc
RK
3968};
3969
3970static void
7080f735 3971cse_insn (rtx insn, rtx libcall_insn)
7afe21cc 3972{
b3694847
SS
3973 rtx x = PATTERN (insn);
3974 int i;
92f9aa51 3975 rtx tem;
b3694847 3976 int n_sets = 0;
7afe21cc 3977
7afe21cc
RK
3978 rtx src_eqv = 0;
3979 struct table_elt *src_eqv_elt = 0;
6a651371
KG
3980 int src_eqv_volatile = 0;
3981 int src_eqv_in_memory = 0;
6a651371 3982 unsigned src_eqv_hash = 0;
7afe21cc 3983
9714cf43 3984 struct set *sets = (struct set *) 0;
7afe21cc
RK
3985
3986 this_insn = insn;
192232e2
RS
3987#ifdef HAVE_cc0
3988 /* Records what this insn does to set CC0. */
3989 this_insn_cc0 = 0;
3990 this_insn_cc0_mode = VOIDmode;
3991#endif
7afe21cc
RK
3992
3993 /* Find all the SETs and CLOBBERs in this instruction.
3994 Record all the SETs in the array `set' and count them.
3995 Also determine whether there is a CLOBBER that invalidates
3996 all memory references, or all references at varying addresses. */
3997
4b4bf941 3998 if (CALL_P (insn))
f1e7c95f
RK
3999 {
4000 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
f474c6f8
AO
4001 {
4002 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4003 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4004 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4005 }
f1e7c95f
RK
4006 }
4007
7afe21cc
RK
4008 if (GET_CODE (x) == SET)
4009 {
703ad42b 4010 sets = alloca (sizeof (struct set));
7afe21cc
RK
4011 sets[0].rtl = x;
4012
4013 /* Ignore SETs that are unconditional jumps.
4014 They never need cse processing, so this does not hurt.
4015 The reason is not efficiency but rather
4016 so that we can test at the end for instructions
4017 that have been simplified to unconditional jumps
4018 and not be misled by unchanged instructions
4019 that were unconditional jumps to begin with. */
4020 if (SET_DEST (x) == pc_rtx
4021 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4022 ;
4023
4024 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4025 The hard function value register is used only once, to copy to
4026 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4027 Ensure we invalidate the destination register. On the 80386 no
7722328e 4028 other code would invalidate it since it is a fixed_reg.
0f41302f 4029 We need not check the return of apply_change_group; see canon_reg. */
7afe21cc
RK
4030
4031 else if (GET_CODE (SET_SRC (x)) == CALL)
4032 {
4033 canon_reg (SET_SRC (x), insn);
77fa0940 4034 apply_change_group ();
7afe21cc 4035 fold_rtx (SET_SRC (x), insn);
bb4034b3 4036 invalidate (SET_DEST (x), VOIDmode);
7afe21cc
RK
4037 }
4038 else
4039 n_sets = 1;
4040 }
4041 else if (GET_CODE (x) == PARALLEL)
4042 {
b3694847 4043 int lim = XVECLEN (x, 0);
7afe21cc 4044
703ad42b 4045 sets = alloca (lim * sizeof (struct set));
7afe21cc
RK
4046
4047 /* Find all regs explicitly clobbered in this insn,
4048 and ensure they are not replaced with any other regs
4049 elsewhere in this insn.
4050 When a reg that is clobbered is also used for input,
4051 we should presume that that is for a reason,
4052 and we should not substitute some other register
4053 which is not supposed to be clobbered.
4054 Therefore, this loop cannot be merged into the one below
830a38ee 4055 because a CALL may precede a CLOBBER and refer to the
7afe21cc
RK
4056 value clobbered. We must not let a canonicalization do
4057 anything in that case. */
4058 for (i = 0; i < lim; i++)
4059 {
b3694847 4060 rtx y = XVECEXP (x, 0, i);
2708da92
RS
4061 if (GET_CODE (y) == CLOBBER)
4062 {
4063 rtx clobbered = XEXP (y, 0);
4064
f8cfc6aa 4065 if (REG_P (clobbered)
2708da92 4066 || GET_CODE (clobbered) == SUBREG)
bb4034b3 4067 invalidate (clobbered, VOIDmode);
2708da92
RS
4068 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4069 || GET_CODE (clobbered) == ZERO_EXTRACT)
bb4034b3 4070 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
2708da92 4071 }
7afe21cc 4072 }
278a83b2 4073
7afe21cc
RK
4074 for (i = 0; i < lim; i++)
4075 {
b3694847 4076 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4077 if (GET_CODE (y) == SET)
4078 {
7722328e
RK
4079 /* As above, we ignore unconditional jumps and call-insns and
4080 ignore the result of apply_change_group. */
7afe21cc
RK
4081 if (GET_CODE (SET_SRC (y)) == CALL)
4082 {
4083 canon_reg (SET_SRC (y), insn);
77fa0940 4084 apply_change_group ();
7afe21cc 4085 fold_rtx (SET_SRC (y), insn);
bb4034b3 4086 invalidate (SET_DEST (y), VOIDmode);
7afe21cc
RK
4087 }
4088 else if (SET_DEST (y) == pc_rtx
4089 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4090 ;
4091 else
4092 sets[n_sets++].rtl = y;
4093 }
4094 else if (GET_CODE (y) == CLOBBER)
4095 {
9ae8ffe7 4096 /* If we clobber memory, canon the address.
7afe21cc
RK
4097 This does nothing when a register is clobbered
4098 because we have already invalidated the reg. */
3c0cb5de 4099 if (MEM_P (XEXP (y, 0)))
6fb5fa3c 4100 canon_reg (XEXP (y, 0), insn);
7afe21cc
RK
4101 }
4102 else if (GET_CODE (y) == USE
f8cfc6aa 4103 && ! (REG_P (XEXP (y, 0))
7afe21cc 4104 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
6fb5fa3c 4105 canon_reg (y, insn);
7afe21cc
RK
4106 else if (GET_CODE (y) == CALL)
4107 {
7722328e
RK
4108 /* The result of apply_change_group can be ignored; see
4109 canon_reg. */
7afe21cc 4110 canon_reg (y, insn);
77fa0940 4111 apply_change_group ();
7afe21cc
RK
4112 fold_rtx (y, insn);
4113 }
4114 }
4115 }
4116 else if (GET_CODE (x) == CLOBBER)
4117 {
3c0cb5de 4118 if (MEM_P (XEXP (x, 0)))
6fb5fa3c 4119 canon_reg (XEXP (x, 0), insn);
7afe21cc
RK
4120 }
4121
4122 /* Canonicalize a USE of a pseudo register or memory location. */
4123 else if (GET_CODE (x) == USE
f8cfc6aa 4124 && ! (REG_P (XEXP (x, 0))
7afe21cc 4125 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
6fb5fa3c 4126 canon_reg (XEXP (x, 0), insn);
7afe21cc
RK
4127 else if (GET_CODE (x) == CALL)
4128 {
7722328e 4129 /* The result of apply_change_group can be ignored; see canon_reg. */
7afe21cc 4130 canon_reg (x, insn);
77fa0940 4131 apply_change_group ();
7afe21cc
RK
4132 fold_rtx (x, insn);
4133 }
4134
7b3ab05e
JW
4135 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4136 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4137 is handled specially for this case, and if it isn't set, then there will
9faa82d8 4138 be no equivalence for the destination. */
92f9aa51
RK
4139 if (n_sets == 1 && REG_NOTES (insn) != 0
4140 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
7b3ab05e
JW
4141 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4142 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
7b668f9e 4143 {
6fb5fa3c
DB
4144 /* The result of apply_change_group can be ignored; see canon_reg. */
4145 canon_reg (XEXP (tem, 0), insn);
4146 apply_change_group ();
4147 src_eqv = fold_rtx (XEXP (tem, 0), insn);
acff8040 4148 XEXP (tem, 0) = copy_rtx (src_eqv);
6fb5fa3c 4149 df_notes_rescan (insn);
7b668f9e 4150 }
7afe21cc
RK
4151
4152 /* Canonicalize sources and addresses of destinations.
4153 We do this in a separate pass to avoid problems when a MATCH_DUP is
4154 present in the insn pattern. In that case, we want to ensure that
4155 we don't break the duplicate nature of the pattern. So we will replace
4156 both operands at the same time. Otherwise, we would fail to find an
4157 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4158
4159 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4160 but we don't do this any more. */
7afe21cc
RK
4161
4162 for (i = 0; i < n_sets; i++)
4163 {
4164 rtx dest = SET_DEST (sets[i].rtl);
4165 rtx src = SET_SRC (sets[i].rtl);
4166 rtx new = canon_reg (src, insn);
4167
47841d1b 4168 sets[i].orig_src = src;
67e0a632 4169 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
7afe21cc 4170
46d096a3 4171 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4172 {
4173 validate_change (insn, &XEXP (dest, 1),
77fa0940 4174 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4175 validate_change (insn, &XEXP (dest, 2),
77fa0940 4176 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4177 }
4178
46d096a3 4179 while (GET_CODE (dest) == SUBREG
7afe21cc 4180 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4181 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4182 dest = XEXP (dest, 0);
4183
3c0cb5de 4184 if (MEM_P (dest))
7afe21cc
RK
4185 canon_reg (dest, insn);
4186 }
4187
77fa0940
RK
4188 /* Now that we have done all the replacements, we can apply the change
4189 group and see if they all work. Note that this will cause some
4190 canonicalizations that would have worked individually not to be applied
4191 because some other canonicalization didn't work, but this should not
278a83b2 4192 occur often.
7722328e
RK
4193
4194 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4195
4196 apply_change_group ();
4197
7afe21cc
RK
4198 /* Set sets[i].src_elt to the class each source belongs to.
4199 Detect assignments from or to volatile things
4200 and set set[i] to zero so they will be ignored
4201 in the rest of this function.
4202
4203 Nothing in this loop changes the hash table or the register chains. */
4204
4205 for (i = 0; i < n_sets; i++)
4206 {
b3694847
SS
4207 rtx src, dest;
4208 rtx src_folded;
4209 struct table_elt *elt = 0, *p;
7afe21cc
RK
4210 enum machine_mode mode;
4211 rtx src_eqv_here;
4212 rtx src_const = 0;
4213 rtx src_related = 0;
4214 struct table_elt *src_const_elt = 0;
99a9c946
GS
4215 int src_cost = MAX_COST;
4216 int src_eqv_cost = MAX_COST;
4217 int src_folded_cost = MAX_COST;
4218 int src_related_cost = MAX_COST;
4219 int src_elt_cost = MAX_COST;
4220 int src_regcost = MAX_COST;
4221 int src_eqv_regcost = MAX_COST;
4222 int src_folded_regcost = MAX_COST;
4223 int src_related_regcost = MAX_COST;
4224 int src_elt_regcost = MAX_COST;
da7d8304 4225 /* Set nonzero if we need to call force_const_mem on with the
7afe21cc
RK
4226 contents of src_folded before using it. */
4227 int src_folded_force_flag = 0;
4228
4229 dest = SET_DEST (sets[i].rtl);
4230 src = SET_SRC (sets[i].rtl);
4231
4232 /* If SRC is a constant that has no machine mode,
4233 hash it with the destination's machine mode.
4234 This way we can keep different modes separate. */
4235
4236 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4237 sets[i].mode = mode;
4238
4239 if (src_eqv)
4240 {
4241 enum machine_mode eqvmode = mode;
4242 if (GET_CODE (dest) == STRICT_LOW_PART)
4243 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4244 do_not_record = 0;
4245 hash_arg_in_memory = 0;
2197a88a 4246 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4247
4248 /* Find the equivalence class for the equivalent expression. */
4249
4250 if (!do_not_record)
2197a88a 4251 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4252
4253 src_eqv_volatile = do_not_record;
4254 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4255 }
4256
4257 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4258 value of the INNER register, not the destination. So it is not
3826a3da 4259 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4260 if (GET_CODE (dest) == STRICT_LOW_PART)
4261 src_eqv_here = 0;
4262 else
4263 src_eqv_here = src_eqv;
4264
4265 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4266 simplified result, which may not necessarily be valid. */
4267 src_folded = fold_rtx (src, insn);
4268
e6a125a0
RK
4269#if 0
4270 /* ??? This caused bad code to be generated for the m68k port with -O2.
4271 Suppose src is (CONST_INT -1), and that after truncation src_folded
4272 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4273 At the end we will add src and src_const to the same equivalence
4274 class. We now have 3 and -1 on the same equivalence class. This
4275 causes later instructions to be mis-optimized. */
7afe21cc
RK
4276 /* If storing a constant in a bitfield, pre-truncate the constant
4277 so we will be able to record it later. */
46d096a3 4278 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4279 {
4280 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4281
4282 if (GET_CODE (src) == CONST_INT
4283 && GET_CODE (width) == CONST_INT
906c4e36
RK
4284 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4285 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4286 src_folded
4287 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4288 << INTVAL (width)) - 1));
7afe21cc 4289 }
e6a125a0 4290#endif
7afe21cc
RK
4291
4292 /* Compute SRC's hash code, and also notice if it
4293 should not be recorded at all. In that case,
4294 prevent any further processing of this assignment. */
4295 do_not_record = 0;
4296 hash_arg_in_memory = 0;
7afe21cc
RK
4297
4298 sets[i].src = src;
2197a88a 4299 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
4300 sets[i].src_volatile = do_not_record;
4301 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 4302
50196afa 4303 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
4304 a pseudo, do not record SRC. Using SRC as a replacement for
4305 anything else will be incorrect in that situation. Note that
4306 this usually occurs only for stack slots, in which case all the
4307 RTL would be referring to SRC, so we don't lose any optimization
4308 opportunities by not having SRC in the hash table. */
50196afa 4309
3c0cb5de 4310 if (MEM_P (src)
43e72072 4311 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 4312 && REG_P (dest)
43e72072 4313 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
4314 sets[i].src_volatile = 1;
4315
0dadecf6
RK
4316#if 0
4317 /* It is no longer clear why we used to do this, but it doesn't
4318 appear to still be needed. So let's try without it since this
4319 code hurts cse'ing widened ops. */
9a5a17f3 4320 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
4321 treat it as volatile. It may do the work of an SI in one context
4322 where the extra bits are not being used, but cannot replace an SI
4323 in general. */
4324 if (GET_CODE (src) == SUBREG
4325 && (GET_MODE_SIZE (GET_MODE (src))
4326 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4327 sets[i].src_volatile = 1;
0dadecf6 4328#endif
7afe21cc
RK
4329
4330 /* Locate all possible equivalent forms for SRC. Try to replace
4331 SRC in the insn with each cheaper equivalent.
4332
4333 We have the following types of equivalents: SRC itself, a folded
4334 version, a value given in a REG_EQUAL note, or a value related
4335 to a constant.
4336
4337 Each of these equivalents may be part of an additional class
4338 of equivalents (if more than one is in the table, they must be in
4339 the same class; we check for this).
4340
4341 If the source is volatile, we don't do any table lookups.
4342
4343 We note any constant equivalent for possible later use in a
4344 REG_NOTE. */
4345
4346 if (!sets[i].src_volatile)
2197a88a 4347 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
4348
4349 sets[i].src_elt = elt;
4350
4351 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
4352 {
4353 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
4354 {
4355 /* The REG_EQUAL is indicating that two formerly distinct
4356 classes are now equivalent. So merge them. */
4357 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
4358 src_eqv_hash = HASH (src_eqv, elt->mode);
4359 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
4360 }
4361
278a83b2
KH
4362 src_eqv_here = 0;
4363 }
7afe21cc
RK
4364
4365 else if (src_eqv_elt)
278a83b2 4366 elt = src_eqv_elt;
7afe21cc
RK
4367
4368 /* Try to find a constant somewhere and record it in `src_const'.
4369 Record its table element, if any, in `src_const_elt'. Look in
4370 any known equivalences first. (If the constant is not in the
2197a88a 4371 table, also set `sets[i].src_const_hash'). */
7afe21cc 4372 if (elt)
278a83b2 4373 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
4374 if (p->is_const)
4375 {
4376 src_const = p->exp;
4377 src_const_elt = elt;
4378 break;
4379 }
4380
4381 if (src_const == 0
4382 && (CONSTANT_P (src_folded)
278a83b2 4383 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
4384 "constant" here so we will record it. This allows us
4385 to fold switch statements when an ADDR_DIFF_VEC is used. */
4386 || (GET_CODE (src_folded) == MINUS
4387 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4388 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4389 src_const = src_folded, src_const_elt = elt;
4390 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4391 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4392
4393 /* If we don't know if the constant is in the table, get its
4394 hash code and look it up. */
4395 if (src_const && src_const_elt == 0)
4396 {
2197a88a
RK
4397 sets[i].src_const_hash = HASH (src_const, mode);
4398 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
4399 }
4400
4401 sets[i].src_const = src_const;
4402 sets[i].src_const_elt = src_const_elt;
4403
4404 /* If the constant and our source are both in the table, mark them as
4405 equivalent. Otherwise, if a constant is in the table but the source
4406 isn't, set ELT to it. */
4407 if (src_const_elt && elt
4408 && src_const_elt->first_same_value != elt->first_same_value)
4409 merge_equiv_classes (elt, src_const_elt);
4410 else if (src_const_elt && elt == 0)
4411 elt = src_const_elt;
4412
4413 /* See if there is a register linearly related to a constant
4414 equivalent of SRC. */
4415 if (src_const
4416 && (GET_CODE (src_const) == CONST
4417 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
4418 {
4419 src_related = use_related_value (src_const, src_const_elt);
4420 if (src_related)
4421 {
7afe21cc 4422 struct table_elt *src_related_elt
278a83b2 4423 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 4424 if (src_related_elt && elt)
278a83b2 4425 {
7afe21cc
RK
4426 if (elt->first_same_value
4427 != src_related_elt->first_same_value)
278a83b2 4428 /* This can occur when we previously saw a CONST
7afe21cc
RK
4429 involving a SYMBOL_REF and then see the SYMBOL_REF
4430 twice. Merge the involved classes. */
4431 merge_equiv_classes (elt, src_related_elt);
4432
278a83b2 4433 src_related = 0;
7afe21cc 4434 src_related_elt = 0;
278a83b2
KH
4435 }
4436 else if (src_related_elt && elt == 0)
4437 elt = src_related_elt;
7afe21cc 4438 }
278a83b2 4439 }
7afe21cc 4440
e4600702
RK
4441 /* See if we have a CONST_INT that is already in a register in a
4442 wider mode. */
4443
4444 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4445 && GET_MODE_CLASS (mode) == MODE_INT
4446 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4447 {
4448 enum machine_mode wider_mode;
4449
4450 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4451 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4452 && src_related == 0;
4453 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4454 {
4455 struct table_elt *const_elt
4456 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4457
4458 if (const_elt == 0)
4459 continue;
4460
4461 for (const_elt = const_elt->first_same_value;
4462 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 4463 if (REG_P (const_elt->exp))
e4600702 4464 {
73ca11ed 4465 src_related = gen_lowpart (mode, const_elt->exp);
e4600702
RK
4466 break;
4467 }
4468 }
4469 }
4470
d45cf215
RS
4471 /* Another possibility is that we have an AND with a constant in
4472 a mode narrower than a word. If so, it might have been generated
4473 as part of an "if" which would narrow the AND. If we already
4474 have done the AND in a wider mode, we can use a SUBREG of that
4475 value. */
4476
4477 if (flag_expensive_optimizations && ! src_related
4478 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4479 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4480 {
4481 enum machine_mode tmode;
38a448ca 4482 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215
RS
4483
4484 for (tmode = GET_MODE_WIDER_MODE (mode);
4485 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4486 tmode = GET_MODE_WIDER_MODE (tmode))
4487 {
4de249d9 4488 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
4489 struct table_elt *larger_elt;
4490
4491 if (inner)
4492 {
4493 PUT_MODE (new_and, tmode);
4494 XEXP (new_and, 0) = inner;
4495 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4496 if (larger_elt == 0)
4497 continue;
4498
4499 for (larger_elt = larger_elt->first_same_value;
4500 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4501 if (REG_P (larger_elt->exp))
d45cf215
RS
4502 {
4503 src_related
4de249d9 4504 = gen_lowpart (mode, larger_elt->exp);
d45cf215
RS
4505 break;
4506 }
4507
4508 if (src_related)
4509 break;
4510 }
4511 }
4512 }
7bac1be0
RK
4513
4514#ifdef LOAD_EXTEND_OP
4515 /* See if a MEM has already been loaded with a widening operation;
4516 if it has, we can use a subreg of that. Many CISC machines
4517 also have such operations, but this is only likely to be
71cc389b 4518 beneficial on these machines. */
278a83b2 4519
ddc356e8 4520 if (flag_expensive_optimizations && src_related == 0
7bac1be0
RK
4521 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4522 && GET_MODE_CLASS (mode) == MODE_INT
3c0cb5de 4523 && MEM_P (src) && ! do_not_record
f822d252 4524 && LOAD_EXTEND_OP (mode) != UNKNOWN)
7bac1be0 4525 {
9d80ef7c
RH
4526 struct rtx_def memory_extend_buf;
4527 rtx memory_extend_rtx = &memory_extend_buf;
7bac1be0 4528 enum machine_mode tmode;
278a83b2 4529
7bac1be0
RK
4530 /* Set what we are trying to extend and the operation it might
4531 have been extended with. */
9d80ef7c 4532 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
7bac1be0
RK
4533 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4534 XEXP (memory_extend_rtx, 0) = src;
278a83b2 4535
7bac1be0
RK
4536 for (tmode = GET_MODE_WIDER_MODE (mode);
4537 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4538 tmode = GET_MODE_WIDER_MODE (tmode))
4539 {
4540 struct table_elt *larger_elt;
278a83b2 4541
7bac1be0 4542 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 4543 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
4544 HASH (memory_extend_rtx, tmode), tmode);
4545 if (larger_elt == 0)
4546 continue;
278a83b2 4547
7bac1be0
RK
4548 for (larger_elt = larger_elt->first_same_value;
4549 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4550 if (REG_P (larger_elt->exp))
7bac1be0 4551 {
73ca11ed 4552 src_related = gen_lowpart (mode, larger_elt->exp);
7bac1be0
RK
4553 break;
4554 }
278a83b2 4555
7bac1be0
RK
4556 if (src_related)
4557 break;
4558 }
4559 }
4560#endif /* LOAD_EXTEND_OP */
278a83b2 4561
7afe21cc 4562 if (src == src_folded)
278a83b2 4563 src_folded = 0;
7afe21cc 4564
da7d8304 4565 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 4566 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 4567 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
4568 expressions. Prune these latter expressions by deleting expressions
4569 already in the equivalence class.
4570
4571 Check for an equivalent identical to the destination. If found,
4572 this is the preferred equivalent since it will likely lead to
4573 elimination of the insn. Indicate this by placing it in
4574 `src_related'. */
4575
278a83b2
KH
4576 if (elt)
4577 elt = elt->first_same_value;
7afe21cc 4578 for (p = elt; p; p = p->next_same_value)
278a83b2 4579 {
7afe21cc
RK
4580 enum rtx_code code = GET_CODE (p->exp);
4581
4582 /* If the expression is not valid, ignore it. Then we do not
4583 have to check for validity below. In most cases, we can use
4584 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 4585 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
4586 continue;
4587
5a03c8c4
RK
4588 /* Also skip paradoxical subregs, unless that's what we're
4589 looking for. */
4590 if (code == SUBREG
4591 && (GET_MODE_SIZE (GET_MODE (p->exp))
4592 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4593 && ! (src != 0
4594 && GET_CODE (src) == SUBREG
4595 && GET_MODE (src) == GET_MODE (p->exp)
4596 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4597 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4598 continue;
4599
278a83b2 4600 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 4601 src = 0;
278a83b2 4602 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
4603 && rtx_equal_p (src_folded, p->exp))
4604 src_folded = 0;
278a83b2 4605 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
4606 && rtx_equal_p (src_eqv_here, p->exp))
4607 src_eqv_here = 0;
278a83b2 4608 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
4609 && rtx_equal_p (src_related, p->exp))
4610 src_related = 0;
4611
4612 /* This is the same as the destination of the insns, we want
4613 to prefer it. Copy it to src_related. The code below will
4614 then give it a negative cost. */
4615 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4616 src_related = dest;
278a83b2 4617 }
7afe21cc
RK
4618
4619 /* Find the cheapest valid equivalent, trying all the available
4620 possibilities. Prefer items not in the hash table to ones
4621 that are when they are equal cost. Note that we can never
4622 worsen an insn as the current contents will also succeed.
05c33dd8 4623 If we find an equivalent identical to the destination, use it as best,
0f41302f 4624 since this insn will probably be eliminated in that case. */
7afe21cc
RK
4625 if (src)
4626 {
4627 if (rtx_equal_p (src, dest))
f1c1dfc3 4628 src_cost = src_regcost = -1;
7afe21cc 4629 else
630c79be
BS
4630 {
4631 src_cost = COST (src);
4632 src_regcost = approx_reg_cost (src);
4633 }
7afe21cc
RK
4634 }
4635
4636 if (src_eqv_here)
4637 {
4638 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 4639 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 4640 else
630c79be
BS
4641 {
4642 src_eqv_cost = COST (src_eqv_here);
4643 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4644 }
7afe21cc
RK
4645 }
4646
4647 if (src_folded)
4648 {
4649 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 4650 src_folded_cost = src_folded_regcost = -1;
7afe21cc 4651 else
630c79be
BS
4652 {
4653 src_folded_cost = COST (src_folded);
4654 src_folded_regcost = approx_reg_cost (src_folded);
4655 }
7afe21cc
RK
4656 }
4657
4658 if (src_related)
4659 {
4660 if (rtx_equal_p (src_related, dest))
f1c1dfc3 4661 src_related_cost = src_related_regcost = -1;
7afe21cc 4662 else
630c79be
BS
4663 {
4664 src_related_cost = COST (src_related);
4665 src_related_regcost = approx_reg_cost (src_related);
4666 }
7afe21cc
RK
4667 }
4668
4669 /* If this was an indirect jump insn, a known label will really be
4670 cheaper even though it looks more expensive. */
4671 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 4672 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 4673
7afe21cc
RK
4674 /* Terminate loop when replacement made. This must terminate since
4675 the current contents will be tested and will always be valid. */
4676 while (1)
278a83b2
KH
4677 {
4678 rtx trial;
7afe21cc 4679
278a83b2 4680 /* Skip invalid entries. */
f8cfc6aa 4681 while (elt && !REG_P (elt->exp)
0516f6fe 4682 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 4683 elt = elt->next_same_value;
5a03c8c4
RK
4684
4685 /* A paradoxical subreg would be bad here: it'll be the right
4686 size, but later may be adjusted so that the upper bits aren't
4687 what we want. So reject it. */
4688 if (elt != 0
4689 && GET_CODE (elt->exp) == SUBREG
4690 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4691 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4692 /* It is okay, though, if the rtx we're trying to match
4693 will ignore any of the bits we can't predict. */
4694 && ! (src != 0
4695 && GET_CODE (src) == SUBREG
4696 && GET_MODE (src) == GET_MODE (elt->exp)
4697 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4698 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4699 {
4700 elt = elt->next_same_value;
4701 continue;
4702 }
278a83b2 4703
68252e27 4704 if (elt)
630c79be
BS
4705 {
4706 src_elt_cost = elt->cost;
4707 src_elt_regcost = elt->regcost;
4708 }
7afe21cc 4709
68252e27 4710 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
4711 of equal cost, use this order:
4712 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 4713 if (src_folded
56ae04af
KH
4714 && preferable (src_folded_cost, src_folded_regcost,
4715 src_cost, src_regcost) <= 0
4716 && preferable (src_folded_cost, src_folded_regcost,
4717 src_eqv_cost, src_eqv_regcost) <= 0
4718 && preferable (src_folded_cost, src_folded_regcost,
4719 src_related_cost, src_related_regcost) <= 0
4720 && preferable (src_folded_cost, src_folded_regcost,
4721 src_elt_cost, src_elt_regcost) <= 0)
7afe21cc 4722 {
f1c1dfc3 4723 trial = src_folded, src_folded_cost = MAX_COST;
7afe21cc 4724 if (src_folded_force_flag)
9d8de1de
EB
4725 {
4726 rtx forced = force_const_mem (mode, trial);
4727 if (forced)
4728 trial = forced;
4729 }
7afe21cc 4730 }
99a9c946 4731 else if (src
56ae04af
KH
4732 && preferable (src_cost, src_regcost,
4733 src_eqv_cost, src_eqv_regcost) <= 0
4734 && preferable (src_cost, src_regcost,
4735 src_related_cost, src_related_regcost) <= 0
4736 && preferable (src_cost, src_regcost,
4737 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 4738 trial = src, src_cost = MAX_COST;
99a9c946 4739 else if (src_eqv_here
56ae04af
KH
4740 && preferable (src_eqv_cost, src_eqv_regcost,
4741 src_related_cost, src_related_regcost) <= 0
4742 && preferable (src_eqv_cost, src_eqv_regcost,
4743 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 4744 trial = src_eqv_here, src_eqv_cost = MAX_COST;
99a9c946 4745 else if (src_related
56ae04af
KH
4746 && preferable (src_related_cost, src_related_regcost,
4747 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 4748 trial = src_related, src_related_cost = MAX_COST;
278a83b2 4749 else
7afe21cc 4750 {
a36b8a1e 4751 trial = elt->exp;
7afe21cc 4752 elt = elt->next_same_value;
f1c1dfc3 4753 src_elt_cost = MAX_COST;
7afe21cc
RK
4754 }
4755
2e4e39f6
AK
4756 /* Avoid creation of overlapping memory moves. */
4757 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
4758 {
4759 rtx src, dest;
4760
4761 /* BLKmode moves are not handled by cse anyway. */
4762 if (GET_MODE (trial) == BLKmode)
4763 break;
4764
4765 src = canon_rtx (trial);
4766 dest = canon_rtx (SET_DEST (sets[i].rtl));
4767
4768 if (!MEM_P (src) || !MEM_P (dest)
4769 || !nonoverlapping_memrefs_p (src, dest))
4770 break;
4771 }
4772
7afe21cc
RK
4773 /* We don't normally have an insn matching (set (pc) (pc)), so
4774 check for this separately here. We will delete such an
4775 insn below.
4776
d466c016
JL
4777 For other cases such as a table jump or conditional jump
4778 where we know the ultimate target, go ahead and replace the
4779 operand. While that may not make a valid insn, we will
4780 reemit the jump below (and also insert any necessary
4781 barriers). */
7afe21cc
RK
4782 if (n_sets == 1 && dest == pc_rtx
4783 && (trial == pc_rtx
4784 || (GET_CODE (trial) == LABEL_REF
4785 && ! condjump_p (insn))))
4786 {
2f39b6ca
UW
4787 /* Don't substitute non-local labels, this confuses CFG. */
4788 if (GET_CODE (trial) == LABEL_REF
4789 && LABEL_REF_NONLOCAL_P (trial))
4790 continue;
4791
d466c016 4792 SET_SRC (sets[i].rtl) = trial;
2aac3a01 4793 cse_jumps_altered = true;
7afe21cc
RK
4794 break;
4795 }
278a83b2 4796
1ef6855c
KH
4797 /* Reject certain invalid forms of CONST that we create. */
4798 else if (CONSTANT_P (trial)
4799 && GET_CODE (trial) == CONST
4800 /* Reject cases that will cause decode_rtx_const to
4801 die. On the alpha when simplifying a switch, we
4802 get (const (truncate (minus (label_ref)
4803 (label_ref)))). */
4804 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4805 /* Likewise on IA-64, except without the
4806 truncate. */
4807 || (GET_CODE (XEXP (trial, 0)) == MINUS
4808 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4809 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4810 /* Do nothing for this case. */
4811 ;
4812
7afe21cc 4813 /* Look for a substitution that makes a valid insn. */
d241cd48
JH
4814 else if (validate_unshare_change
4815 (insn, &SET_SRC (sets[i].rtl), trial, 0))
05c33dd8 4816 {
dbaff908
RS
4817 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4818
7bd8b2a8
JL
4819 /* If we just made a substitution inside a libcall, then we
4820 need to make the same substitution in any notes attached
4821 to the RETVAL insn. */
1ed0205e 4822 if (libcall_insn
f8cfc6aa 4823 && (REG_P (sets[i].orig_src)
47841d1b 4824 || GET_CODE (sets[i].orig_src) == SUBREG
3c0cb5de 4825 || MEM_P (sets[i].orig_src)))
d8b7ec41
RS
4826 {
4827 rtx note = find_reg_equal_equiv_note (libcall_insn);
4828 if (note != 0)
4829 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4830 sets[i].orig_src,
4831 copy_rtx (new));
6fb5fa3c 4832 df_notes_rescan (libcall_insn);
d8b7ec41 4833 }
7bd8b2a8 4834
7722328e
RK
4835 /* The result of apply_change_group can be ignored; see
4836 canon_reg. */
4837
dbaff908 4838 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
6702af89 4839 apply_change_group ();
932ad4d9 4840
05c33dd8
RK
4841 break;
4842 }
7afe21cc 4843
278a83b2 4844 /* If we previously found constant pool entries for
7afe21cc
RK
4845 constants and this is a constant, try making a
4846 pool entry. Put it in src_folded unless we already have done
4847 this since that is where it likely came from. */
4848
4849 else if (constant_pool_entries_cost
4850 && CONSTANT_P (trial)
1bbd065b 4851 && (src_folded == 0
3c0cb5de 4852 || (!MEM_P (src_folded)
1bbd065b 4853 && ! src_folded_force_flag))
9ae8ffe7
JL
4854 && GET_MODE_CLASS (mode) != MODE_CC
4855 && mode != VOIDmode)
7afe21cc
RK
4856 {
4857 src_folded_force_flag = 1;
4858 src_folded = trial;
4859 src_folded_cost = constant_pool_entries_cost;
dd0ba281 4860 src_folded_regcost = constant_pool_entries_regcost;
7afe21cc 4861 }
278a83b2 4862 }
7afe21cc
RK
4863
4864 src = SET_SRC (sets[i].rtl);
4865
4866 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4867 However, there is an important exception: If both are registers
4868 that are not the head of their equivalence class, replace SET_SRC
4869 with the head of the class. If we do not do this, we will have
4870 both registers live over a portion of the basic block. This way,
4871 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 4872 if (REG_P (dest)
1bb98cec 4873 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 4874 {
1bb98cec
DM
4875 int dest_q = REG_QTY (REGNO (dest));
4876 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4877
4878 if (dest_ent->mode == GET_MODE (dest)
4879 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 4880 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
4881 /* Don't do this if the original insn had a hard reg as
4882 SET_SRC or SET_DEST. */
f8cfc6aa 4883 && (!REG_P (sets[i].src)
1bb98cec 4884 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 4885 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
4886 /* We can't call canon_reg here because it won't do anything if
4887 SRC is a hard register. */
759bd8b7 4888 {
1bb98cec
DM
4889 int src_q = REG_QTY (REGNO (src));
4890 struct qty_table_elem *src_ent = &qty_table[src_q];
4891 int first = src_ent->first_reg;
4892 rtx new_src
4893 = (first >= FIRST_PSEUDO_REGISTER
4894 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4895
4896 /* We must use validate-change even for this, because this
4897 might be a special no-op instruction, suitable only to
4898 tag notes onto. */
4899 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4900 {
4901 src = new_src;
4902 /* If we had a constant that is cheaper than what we are now
4903 setting SRC to, use that constant. We ignored it when we
4904 thought we could make this into a no-op. */
4905 if (src_const && COST (src_const) < COST (src)
278a83b2
KH
4906 && validate_change (insn, &SET_SRC (sets[i].rtl),
4907 src_const, 0))
1bb98cec
DM
4908 src = src_const;
4909 }
759bd8b7 4910 }
7afe21cc
RK
4911 }
4912
4913 /* If we made a change, recompute SRC values. */
4914 if (src != sets[i].src)
278a83b2 4915 {
278a83b2
KH
4916 do_not_record = 0;
4917 hash_arg_in_memory = 0;
7afe21cc 4918 sets[i].src = src;
278a83b2
KH
4919 sets[i].src_hash = HASH (src, mode);
4920 sets[i].src_volatile = do_not_record;
4921 sets[i].src_in_memory = hash_arg_in_memory;
4922 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4923 }
7afe21cc
RK
4924
4925 /* If this is a single SET, we are setting a register, and we have an
4926 equivalent constant, we want to add a REG_NOTE. We don't want
4927 to write a REG_EQUAL note for a constant pseudo since verifying that
d45cf215 4928 that pseudo hasn't been eliminated is a pain. Such a note also
278a83b2 4929 won't help anything.
ac7ef8d5
FS
4930
4931 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4932 which can be created for a reference to a compile time computable
4933 entry in a jump table. */
4934
f8cfc6aa
JQ
4935 if (n_sets == 1 && src_const && REG_P (dest)
4936 && !REG_P (src_const)
ac7ef8d5
FS
4937 && ! (GET_CODE (src_const) == CONST
4938 && GET_CODE (XEXP (src_const, 0)) == MINUS
4939 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4940 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
7afe21cc 4941 {
a77b7e32
RS
4942 /* We only want a REG_EQUAL note if src_const != src. */
4943 if (! rtx_equal_p (src, src_const))
4944 {
4945 /* Make sure that the rtx is not shared. */
4946 src_const = copy_rtx (src_const);
51e2a951 4947
a77b7e32
RS
4948 /* Record the actual constant value in a REG_EQUAL note,
4949 making a new one if one does not already exist. */
4950 set_unique_reg_note (insn, REG_EQUAL, src_const);
6fb5fa3c 4951 df_notes_rescan (insn);
a77b7e32 4952 }
7afe21cc
RK
4953 }
4954
4955 /* Now deal with the destination. */
4956 do_not_record = 0;
7afe21cc 4957
46d096a3
SB
4958 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4959 while (GET_CODE (dest) == SUBREG
7afe21cc 4960 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 4961 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 4962 dest = XEXP (dest, 0);
7afe21cc
RK
4963
4964 sets[i].inner_dest = dest;
4965
3c0cb5de 4966 if (MEM_P (dest))
7afe21cc 4967 {
9ae8ffe7
JL
4968#ifdef PUSH_ROUNDING
4969 /* Stack pushes invalidate the stack pointer. */
4970 rtx addr = XEXP (dest, 0);
ec8e098d 4971 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7 4972 && XEXP (addr, 0) == stack_pointer_rtx)
524e3576 4973 invalidate (stack_pointer_rtx, VOIDmode);
9ae8ffe7 4974#endif
7afe21cc 4975 dest = fold_rtx (dest, insn);
7afe21cc
RK
4976 }
4977
4978 /* Compute the hash code of the destination now,
4979 before the effects of this instruction are recorded,
4980 since the register values used in the address computation
4981 are those before this instruction. */
2197a88a 4982 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
4983
4984 /* Don't enter a bit-field in the hash table
4985 because the value in it after the store
4986 may not equal what was stored, due to truncation. */
4987
46d096a3 4988 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4989 {
4990 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4991
4992 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
4993 && GET_CODE (width) == CONST_INT
906c4e36
RK
4994 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4995 && ! (INTVAL (src_const)
4996 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
7afe21cc
RK
4997 /* Exception: if the value is constant,
4998 and it won't be truncated, record it. */
4999 ;
5000 else
5001 {
5002 /* This is chosen so that the destination will be invalidated
5003 but no new value will be recorded.
5004 We must invalidate because sometimes constant
5005 values can be recorded for bitfields. */
5006 sets[i].src_elt = 0;
5007 sets[i].src_volatile = 1;
5008 src_eqv = 0;
5009 src_eqv_elt = 0;
5010 }
5011 }
5012
5013 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5014 the insn. */
5015 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5016 {
ef178af3 5017 /* One less use of the label this insn used to jump to. */
0129d079 5018 delete_insn_and_edges (insn);
2aac3a01 5019 cse_jumps_altered = true;
7afe21cc
RK
5020 /* No more processing for this set. */
5021 sets[i].rtl = 0;
5022 }
5023
5024 /* If this SET is now setting PC to a label, we know it used to
d466c016 5025 be a conditional or computed branch. */
8f235343
JH
5026 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5027 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5028 {
d466c016
JL
5029 /* We reemit the jump in as many cases as possible just in
5030 case the form of an unconditional jump is significantly
5031 different than a computed jump or conditional jump.
5032
5033 If this insn has multiple sets, then reemitting the
5034 jump is nontrivial. So instead we just force rerecognition
5035 and hope for the best. */
5036 if (n_sets == 1)
7afe21cc 5037 {
9dcb4381 5038 rtx new, note;
8fb1e50e 5039
0129d079 5040 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
7afe21cc
RK
5041 JUMP_LABEL (new) = XEXP (src, 0);
5042 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5043
5044 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5045 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5046 if (note)
5047 {
5048 XEXP (note, 1) = NULL_RTX;
5049 REG_NOTES (new) = note;
5050 }
5051
0129d079 5052 delete_insn_and_edges (insn);
7afe21cc
RK
5053 insn = new;
5054 }
31dcf83f 5055 else
31dcf83f 5056 INSN_CODE (insn) = -1;
7afe21cc 5057
2aac3a01
EB
5058 /* Do not bother deleting any unreachable code, let jump do it. */
5059 cse_jumps_altered = true;
7afe21cc
RK
5060 sets[i].rtl = 0;
5061 }
5062
c2a47e48
RK
5063 /* If destination is volatile, invalidate it and then do no further
5064 processing for this assignment. */
7afe21cc
RK
5065
5066 else if (do_not_record)
c2a47e48 5067 {
f8cfc6aa 5068 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5069 invalidate (dest, VOIDmode);
3c0cb5de 5070 else if (MEM_P (dest))
32fab725 5071 invalidate (dest, VOIDmode);
2708da92
RS
5072 else if (GET_CODE (dest) == STRICT_LOW_PART
5073 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5074 invalidate (XEXP (dest, 0), GET_MODE (dest));
c2a47e48
RK
5075 sets[i].rtl = 0;
5076 }
7afe21cc
RK
5077
5078 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2197a88a 5079 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
7afe21cc
RK
5080
5081#ifdef HAVE_cc0
5082 /* If setting CC0, record what it was set to, or a constant, if it
5083 is equivalent to a constant. If it is being set to a floating-point
5084 value, make a COMPARE with the appropriate constant of 0. If we
5085 don't do this, later code can interpret this as a test against
5086 const0_rtx, which can cause problems if we try to put it into an
5087 insn as a floating-point operand. */
5088 if (dest == cc0_rtx)
5089 {
5090 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5091 this_insn_cc0_mode = mode;
cbf6a543 5092 if (FLOAT_MODE_P (mode))
38a448ca
RH
5093 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5094 CONST0_RTX (mode));
7afe21cc
RK
5095 }
5096#endif
5097 }
5098
5099 /* Now enter all non-volatile source expressions in the hash table
5100 if they are not already present.
5101 Record their equivalence classes in src_elt.
5102 This way we can insert the corresponding destinations into
5103 the same classes even if the actual sources are no longer in them
5104 (having been invalidated). */
5105
5106 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5107 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5108 {
b3694847
SS
5109 struct table_elt *elt;
5110 struct table_elt *classp = sets[0].src_elt;
7afe21cc
RK
5111 rtx dest = SET_DEST (sets[0].rtl);
5112 enum machine_mode eqvmode = GET_MODE (dest);
5113
5114 if (GET_CODE (dest) == STRICT_LOW_PART)
5115 {
5116 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5117 classp = 0;
5118 }
5119 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
5120 {
5121 rehash_using_reg (src_eqv);
5122 src_eqv_hash = HASH (src_eqv, eqvmode);
5123 }
2197a88a 5124 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5125 elt->in_memory = src_eqv_in_memory;
7afe21cc 5126 src_eqv_elt = elt;
f7911249
JW
5127
5128 /* Check to see if src_eqv_elt is the same as a set source which
5129 does not yet have an elt, and if so set the elt of the set source
5130 to src_eqv_elt. */
5131 for (i = 0; i < n_sets; i++)
26132f71
JW
5132 if (sets[i].rtl && sets[i].src_elt == 0
5133 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5134 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5135 }
5136
5137 for (i = 0; i < n_sets; i++)
5138 if (sets[i].rtl && ! sets[i].src_volatile
5139 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5140 {
5141 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5142 {
5143 /* REG_EQUAL in setting a STRICT_LOW_PART
5144 gives an equivalent for the entire destination register,
5145 not just for the subreg being stored in now.
5146 This is a more interesting equivalence, so we arrange later
5147 to treat the entire reg as the destination. */
5148 sets[i].src_elt = src_eqv_elt;
2197a88a 5149 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5150 }
5151 else
5152 {
5153 /* Insert source and constant equivalent into hash table, if not
5154 already present. */
b3694847
SS
5155 struct table_elt *classp = src_eqv_elt;
5156 rtx src = sets[i].src;
5157 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5158 enum machine_mode mode
5159 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5160
1fcc57f1
AM
5161 /* It's possible that we have a source value known to be
5162 constant but don't have a REG_EQUAL note on the insn.
5163 Lack of a note will mean src_eqv_elt will be NULL. This
5164 can happen where we've generated a SUBREG to access a
5165 CONST_INT that is already in a register in a wider mode.
5166 Ensure that the source expression is put in the proper
5167 constant class. */
5168 if (!classp)
5169 classp = sets[i].src_const_elt;
5170
26132f71 5171 if (sets[i].src_elt == 0)
7afe21cc 5172 {
26132f71
JW
5173 /* Don't put a hard register source into the table if this is
5174 the last insn of a libcall. In this case, we only need
5175 to put src_eqv_elt in src_elt. */
db4a8254 5176 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
8ae2b8f6 5177 {
b3694847 5178 struct table_elt *elt;
26132f71
JW
5179
5180 /* Note that these insert_regs calls cannot remove
5181 any of the src_elt's, because they would have failed to
5182 match if not still valid. */
5183 if (insert_regs (src, classp, 0))
5184 {
5185 rehash_using_reg (src);
5186 sets[i].src_hash = HASH (src, mode);
5187 }
5188 elt = insert (src, classp, sets[i].src_hash, mode);
5189 elt->in_memory = sets[i].src_in_memory;
26132f71 5190 sets[i].src_elt = classp = elt;
8ae2b8f6 5191 }
26132f71
JW
5192 else
5193 sets[i].src_elt = classp;
7afe21cc 5194 }
7afe21cc
RK
5195 if (sets[i].src_const && sets[i].src_const_elt == 0
5196 && src != sets[i].src_const
5197 && ! rtx_equal_p (sets[i].src_const, src))
5198 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5199 sets[i].src_const_hash, mode);
7afe21cc
RK
5200 }
5201 }
5202 else if (sets[i].src_elt == 0)
5203 /* If we did not insert the source into the hash table (e.g., it was
5204 volatile), note the equivalence class for the REG_EQUAL value, if any,
5205 so that the destination goes into that class. */
5206 sets[i].src_elt = src_eqv_elt;
5207
05c433f3
PB
5208 /* Record destination addresses in the hash table. This allows us to
5209 check if they are invalidated by other sets. */
5210 for (i = 0; i < n_sets; i++)
5211 {
5212 if (sets[i].rtl)
5213 {
5214 rtx x = sets[i].inner_dest;
5215 struct table_elt *elt;
5216 enum machine_mode mode;
5217 unsigned hash;
5218
5219 if (MEM_P (x))
5220 {
5221 x = XEXP (x, 0);
5222 mode = GET_MODE (x);
5223 hash = HASH (x, mode);
5224 elt = lookup (x, hash, mode);
5225 if (!elt)
5226 {
5227 if (insert_regs (x, NULL, 0))
5228 {
7e7e28c7
AO
5229 rtx dest = SET_DEST (sets[i].rtl);
5230
05c433f3
PB
5231 rehash_using_reg (x);
5232 hash = HASH (x, mode);
7e7e28c7 5233 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
05c433f3
PB
5234 }
5235 elt = insert (x, NULL, hash, mode);
5236 }
5237
5238 sets[i].dest_addr_elt = elt;
5239 }
5240 else
5241 sets[i].dest_addr_elt = NULL;
5242 }
5243 }
5244
9ae8ffe7 5245 invalidate_from_clobbers (x);
77fa0940 5246
278a83b2 5247 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5248 invalidated by non-constant calls. */
5249
4b4bf941 5250 if (CALL_P (insn))
7afe21cc 5251 {
becfd6e5 5252 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
9ae8ffe7 5253 invalidate_memory ();
7afe21cc
RK
5254 invalidate_for_call ();
5255 }
5256
5257 /* Now invalidate everything set by this instruction.
5258 If a SUBREG or other funny destination is being set,
5259 sets[i].rtl is still nonzero, so here we invalidate the reg
5260 a part of which is being set. */
5261
5262 for (i = 0; i < n_sets; i++)
5263 if (sets[i].rtl)
5264 {
bb4034b3
JW
5265 /* We can't use the inner dest, because the mode associated with
5266 a ZERO_EXTRACT is significant. */
b3694847 5267 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5268
5269 /* Needed for registers to remove the register from its
5270 previous quantity's chain.
5271 Needed for memory if this is a nonvarying address, unless
5272 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5273 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5274 invalidate (dest, VOIDmode);
3c0cb5de 5275 else if (MEM_P (dest))
32fab725 5276 invalidate (dest, VOIDmode);
2708da92
RS
5277 else if (GET_CODE (dest) == STRICT_LOW_PART
5278 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5279 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5280 }
5281
01e752d3 5282 /* A volatile ASM invalidates everything. */
4b4bf941 5283 if (NONJUMP_INSN_P (insn)
01e752d3
JL
5284 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5285 && MEM_VOLATILE_P (PATTERN (insn)))
5286 flush_hash_table ();
5287
932ad4d9
SB
5288 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5289 the regs restored by the longjmp come from a later time
5290 than the setjmp. */
5291 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5292 {
5293 flush_hash_table ();
5294 goto done;
5295 }
5296
7afe21cc
RK
5297 /* Make sure registers mentioned in destinations
5298 are safe for use in an expression to be inserted.
5299 This removes from the hash table
5300 any invalid entry that refers to one of these registers.
5301
5302 We don't care about the return value from mention_regs because
5303 we are going to hash the SET_DEST values unconditionally. */
5304
5305 for (i = 0; i < n_sets; i++)
34c73909
R
5306 {
5307 if (sets[i].rtl)
5308 {
5309 rtx x = SET_DEST (sets[i].rtl);
5310
f8cfc6aa 5311 if (!REG_P (x))
34c73909
R
5312 mention_regs (x);
5313 else
5314 {
5315 /* We used to rely on all references to a register becoming
5316 inaccessible when a register changes to a new quantity,
5317 since that changes the hash code. However, that is not
9b1549b8 5318 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5319 hash 'collision' of a register with its own invalid
5320 entries. And since SUBREGs have been changed not to
5321 change their hash code with the hash code of the register,
5322 it wouldn't work any longer at all. So we have to check
5323 for any invalid references lying around now.
5324 This code is similar to the REG case in mention_regs,
5325 but it knows that reg_tick has been incremented, and
5326 it leaves reg_in_table as -1 . */
770ae6cc 5327 unsigned int regno = REGNO (x);
09e18274 5328 unsigned int endregno = END_REGNO (x);
770ae6cc 5329 unsigned int i;
34c73909
R
5330
5331 for (i = regno; i < endregno; i++)
5332 {
30f72379 5333 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5334 {
5335 remove_invalid_refs (i);
30f72379 5336 REG_IN_TABLE (i) = -1;
34c73909
R
5337 }
5338 }
5339 }
5340 }
5341 }
7afe21cc
RK
5342
5343 /* We may have just removed some of the src_elt's from the hash table.
05c433f3
PB
5344 So replace each one with the current head of the same class.
5345 Also check if destination addresses have been removed. */
7afe21cc
RK
5346
5347 for (i = 0; i < n_sets; i++)
5348 if (sets[i].rtl)
5349 {
05c433f3
PB
5350 if (sets[i].dest_addr_elt
5351 && sets[i].dest_addr_elt->first_same_value == 0)
5352 {
e67b81d1 5353 /* The elt was removed, which means this destination is not
05c433f3
PB
5354 valid after this instruction. */
5355 sets[i].rtl = NULL_RTX;
5356 }
5357 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
7afe21cc
RK
5358 /* If elt was removed, find current head of same class,
5359 or 0 if nothing remains of that class. */
5360 {
b3694847 5361 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
5362
5363 while (elt && elt->prev_same_value)
5364 elt = elt->prev_same_value;
5365
5366 while (elt && elt->first_same_value == 0)
5367 elt = elt->next_same_value;
5368 sets[i].src_elt = elt ? elt->first_same_value : 0;
5369 }
5370 }
5371
5372 /* Now insert the destinations into their equivalence classes. */
5373
5374 for (i = 0; i < n_sets; i++)
5375 if (sets[i].rtl)
5376 {
b3694847 5377 rtx dest = SET_DEST (sets[i].rtl);
b3694847 5378 struct table_elt *elt;
7afe21cc
RK
5379
5380 /* Don't record value if we are not supposed to risk allocating
5381 floating-point values in registers that might be wider than
5382 memory. */
5383 if ((flag_float_store
3c0cb5de 5384 && MEM_P (dest)
cbf6a543 5385 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
5386 /* Don't record BLKmode values, because we don't know the
5387 size of it, and can't be sure that other BLKmode values
5388 have the same or smaller size. */
5389 || GET_MODE (dest) == BLKmode
7afe21cc
RK
5390 /* Don't record values of destinations set inside a libcall block
5391 since we might delete the libcall. Things should have been set
5392 up so we won't want to reuse such a value, but we play it safe
5393 here. */
7bd8b2a8 5394 || libcall_insn
7afe21cc
RK
5395 /* If we didn't put a REG_EQUAL value or a source into the hash
5396 table, there is no point is recording DEST. */
1a8e9a8e
RK
5397 || sets[i].src_elt == 0
5398 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5399 or SIGN_EXTEND, don't record DEST since it can cause
5400 some tracking to be wrong.
5401
5402 ??? Think about this more later. */
5403 || (GET_CODE (dest) == SUBREG
5404 && (GET_MODE_SIZE (GET_MODE (dest))
5405 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5406 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5407 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7afe21cc
RK
5408 continue;
5409
5410 /* STRICT_LOW_PART isn't part of the value BEING set,
5411 and neither is the SUBREG inside it.
5412 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5413 if (GET_CODE (dest) == STRICT_LOW_PART)
5414 dest = SUBREG_REG (XEXP (dest, 0));
5415
f8cfc6aa 5416 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc
RK
5417 /* Registers must also be inserted into chains for quantities. */
5418 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
5419 {
5420 /* If `insert_regs' changes something, the hash code must be
5421 recalculated. */
5422 rehash_using_reg (dest);
5423 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5424 }
7afe21cc 5425
8fff4fc1
RH
5426 elt = insert (dest, sets[i].src_elt,
5427 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 5428
3c0cb5de 5429 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 5430 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 5431
fc3ffe83
RK
5432 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5433 narrower than M2, and both M1 and M2 are the same number of words,
5434 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5435 make that equivalence as well.
7afe21cc 5436
4de249d9
PB
5437 However, BAR may have equivalences for which gen_lowpart
5438 will produce a simpler value than gen_lowpart applied to
7afe21cc 5439 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 5440 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
5441 the SUBREG. It will not be used in an equivalence, but will
5442 cause two similar assignments to be detected.
5443
5444 Note the loop below will find SUBREG_REG (DEST) since we have
5445 already entered SRC and DEST of the SET in the table. */
5446
5447 if (GET_CODE (dest) == SUBREG
6cdbaec4
RK
5448 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5449 / UNITS_PER_WORD)
278a83b2 5450 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
7afe21cc
RK
5451 && (GET_MODE_SIZE (GET_MODE (dest))
5452 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5453 && sets[i].src_elt != 0)
5454 {
5455 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5456 struct table_elt *elt, *classp = 0;
5457
5458 for (elt = sets[i].src_elt->first_same_value; elt;
5459 elt = elt->next_same_value)
5460 {
5461 rtx new_src = 0;
2197a88a 5462 unsigned src_hash;
7afe21cc 5463 struct table_elt *src_elt;
ff27a429 5464 int byte = 0;
7afe21cc
RK
5465
5466 /* Ignore invalid entries. */
f8cfc6aa 5467 if (!REG_P (elt->exp)
0516f6fe 5468 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
5469 continue;
5470
9beb7d20
RH
5471 /* We may have already been playing subreg games. If the
5472 mode is already correct for the destination, use it. */
5473 if (GET_MODE (elt->exp) == new_mode)
5474 new_src = elt->exp;
5475 else
5476 {
5477 /* Calculate big endian correction for the SUBREG_BYTE.
5478 We have already checked that M1 (GET_MODE (dest))
5479 is not narrower than M2 (new_mode). */
5480 if (BYTES_BIG_ENDIAN)
5481 byte = (GET_MODE_SIZE (GET_MODE (dest))
5482 - GET_MODE_SIZE (new_mode));
5483
5484 new_src = simplify_gen_subreg (new_mode, elt->exp,
5485 GET_MODE (dest), byte);
5486 }
5487
ff27a429
R
5488 /* The call to simplify_gen_subreg fails if the value
5489 is VOIDmode, yet we can't do any simplification, e.g.
5490 for EXPR_LISTs denoting function call results.
5491 It is invalid to construct a SUBREG with a VOIDmode
5492 SUBREG_REG, hence a zero new_src means we can't do
5493 this substitution. */
5494 if (! new_src)
5495 continue;
7afe21cc
RK
5496
5497 src_hash = HASH (new_src, new_mode);
5498 src_elt = lookup (new_src, src_hash, new_mode);
5499
5500 /* Put the new source in the hash table is if isn't
5501 already. */
5502 if (src_elt == 0)
5503 {
5504 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
5505 {
5506 rehash_using_reg (new_src);
5507 src_hash = HASH (new_src, new_mode);
5508 }
7afe21cc
RK
5509 src_elt = insert (new_src, classp, src_hash, new_mode);
5510 src_elt->in_memory = elt->in_memory;
7afe21cc
RK
5511 }
5512 else if (classp && classp != src_elt->first_same_value)
278a83b2 5513 /* Show that two things that we've seen before are
7afe21cc
RK
5514 actually the same. */
5515 merge_equiv_classes (src_elt, classp);
5516
5517 classp = src_elt->first_same_value;
da932f04
JL
5518 /* Ignore invalid entries. */
5519 while (classp
f8cfc6aa 5520 && !REG_P (classp->exp)
0516f6fe 5521 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 5522 classp = classp->next_same_value;
7afe21cc
RK
5523 }
5524 }
5525 }
5526
403e25d0
RK
5527 /* Special handling for (set REG0 REG1) where REG0 is the
5528 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5529 be used in the sequel, so (if easily done) change this insn to
5530 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5531 that computed their value. Then REG1 will become a dead store
5532 and won't cloud the situation for later optimizations.
7afe21cc
RK
5533
5534 Do not make this change if REG1 is a hard register, because it will
5535 then be used in the sequel and we may be changing a two-operand insn
5536 into a three-operand insn.
5537
50270076
R
5538 Also do not do this if we are operating on a copy of INSN.
5539
5540 Also don't do this if INSN ends a libcall; this would cause an unrelated
5541 register to be set in the middle of a libcall, and we then get bad code
5542 if the libcall is deleted. */
7afe21cc 5543
f8cfc6aa 5544 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
7afe21cc 5545 && NEXT_INSN (PREV_INSN (insn)) == insn
f8cfc6aa 5546 && REG_P (SET_SRC (sets[0].rtl))
7afe21cc 5547 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
1bb98cec 5548 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
7afe21cc 5549 {
1bb98cec
DM
5550 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5551 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 5552
1bb98cec
DM
5553 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5554 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
7afe21cc 5555 {
3e25353e
AH
5556 /* Scan for the previous nonnote insn, but stop at a basic
5557 block boundary. */
932ad4d9
SB
5558 rtx prev = insn;
5559 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
3e25353e
AH
5560 do
5561 {
5562 prev = PREV_INSN (prev);
5563 }
932ad4d9 5564 while (prev != bb_head && NOTE_P (prev));
7080f735 5565
58ecb5e2
RS
5566 /* Do not swap the registers around if the previous instruction
5567 attaches a REG_EQUIV note to REG1.
5568
5569 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5570 from the pseudo that originally shadowed an incoming argument
5571 to another register. Some uses of REG_EQUIV might rely on it
5572 being attached to REG1 rather than REG2.
5573
5574 This section previously turned the REG_EQUIV into a REG_EQUAL
5575 note. We cannot do that because REG_EQUIV may provide an
4912a07c 5576 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
932ad4d9 5577 if (NONJUMP_INSN_P (prev)
403e25d0 5578 && GET_CODE (PATTERN (prev)) == SET
58ecb5e2
RS
5579 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5580 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
1bb98cec
DM
5581 {
5582 rtx dest = SET_DEST (sets[0].rtl);
403e25d0 5583 rtx src = SET_SRC (sets[0].rtl);
58ecb5e2 5584 rtx note;
7afe21cc 5585
278a83b2
KH
5586 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5587 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5588 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
1bb98cec 5589 apply_change_group ();
7afe21cc 5590
403e25d0
RK
5591 /* If INSN has a REG_EQUAL note, and this note mentions
5592 REG0, then we must delete it, because the value in
5593 REG0 has changed. If the note's value is REG1, we must
5594 also delete it because that is now this insn's dest. */
1bb98cec 5595 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
403e25d0
RK
5596 if (note != 0
5597 && (reg_mentioned_p (dest, XEXP (note, 0))
5598 || rtx_equal_p (src, XEXP (note, 0))))
1bb98cec
DM
5599 remove_note (insn, note);
5600 }
7afe21cc
RK
5601 }
5602 }
5603
932ad4d9 5604done:;
7afe21cc
RK
5605}
5606\f
a4c6502a 5607/* Remove from the hash table all expressions that reference memory. */
14a774a9 5608
7afe21cc 5609static void
7080f735 5610invalidate_memory (void)
7afe21cc 5611{
b3694847
SS
5612 int i;
5613 struct table_elt *p, *next;
7afe21cc 5614
9b1549b8 5615 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
5616 for (p = table[i]; p; p = next)
5617 {
5618 next = p->next_same_hash;
5619 if (p->in_memory)
5620 remove_from_table (p, i);
5621 }
5622}
5623
7afe21cc
RK
5624/* Perform invalidation on the basis of everything about an insn
5625 except for invalidating the actual places that are SET in it.
5626 This includes the places CLOBBERed, and anything that might
5627 alias with something that is SET or CLOBBERed.
5628
7afe21cc
RK
5629 X is the pattern of the insn. */
5630
5631static void
7080f735 5632invalidate_from_clobbers (rtx x)
7afe21cc 5633{
7afe21cc
RK
5634 if (GET_CODE (x) == CLOBBER)
5635 {
5636 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
5637 if (ref)
5638 {
f8cfc6aa 5639 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 5640 || MEM_P (ref))
9ae8ffe7
JL
5641 invalidate (ref, VOIDmode);
5642 else if (GET_CODE (ref) == STRICT_LOW_PART
5643 || GET_CODE (ref) == ZERO_EXTRACT)
5644 invalidate (XEXP (ref, 0), GET_MODE (ref));
5645 }
7afe21cc
RK
5646 }
5647 else if (GET_CODE (x) == PARALLEL)
5648 {
b3694847 5649 int i;
7afe21cc
RK
5650 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5651 {
b3694847 5652 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
5653 if (GET_CODE (y) == CLOBBER)
5654 {
5655 rtx ref = XEXP (y, 0);
f8cfc6aa 5656 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 5657 || MEM_P (ref))
9ae8ffe7
JL
5658 invalidate (ref, VOIDmode);
5659 else if (GET_CODE (ref) == STRICT_LOW_PART
5660 || GET_CODE (ref) == ZERO_EXTRACT)
5661 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
5662 }
5663 }
5664 }
5665}
5666\f
5667/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5668 and replace any registers in them with either an equivalent constant
5669 or the canonical form of the register. If we are inside an address,
5670 only do this if the address remains valid.
5671
5672 OBJECT is 0 except when within a MEM in which case it is the MEM.
5673
5674 Return the replacement for X. */
5675
5676static rtx
6fb5fa3c 5677cse_process_notes_1 (rtx x, rtx object, bool *changed)
7afe21cc
RK
5678{
5679 enum rtx_code code = GET_CODE (x);
6f7d635c 5680 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
5681 int i;
5682
5683 switch (code)
5684 {
5685 case CONST_INT:
5686 case CONST:
5687 case SYMBOL_REF:
5688 case LABEL_REF:
5689 case CONST_DOUBLE:
091a3ac7 5690 case CONST_FIXED:
69ef87e2 5691 case CONST_VECTOR:
7afe21cc
RK
5692 case PC:
5693 case CC0:
5694 case LO_SUM:
5695 return x;
5696
5697 case MEM:
c96208fa 5698 validate_change (x, &XEXP (x, 0),
6fb5fa3c 5699 cse_process_notes (XEXP (x, 0), x, changed), 0);
7afe21cc
RK
5700 return x;
5701
5702 case EXPR_LIST:
5703 case INSN_LIST:
5704 if (REG_NOTE_KIND (x) == REG_EQUAL)
6fb5fa3c 5705 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
7afe21cc 5706 if (XEXP (x, 1))
6fb5fa3c 5707 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
7afe21cc
RK
5708 return x;
5709
e4890d45
RS
5710 case SIGN_EXTEND:
5711 case ZERO_EXTEND:
0b0ee36c 5712 case SUBREG:
e4890d45 5713 {
6fb5fa3c 5714 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
e4890d45
RS
5715 /* We don't substitute VOIDmode constants into these rtx,
5716 since they would impede folding. */
5717 if (GET_MODE (new) != VOIDmode)
5718 validate_change (object, &XEXP (x, 0), new, 0);
5719 return x;
5720 }
5721
7afe21cc 5722 case REG:
30f72379 5723 i = REG_QTY (REGNO (x));
7afe21cc
RK
5724
5725 /* Return a constant or a constant register. */
1bb98cec 5726 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 5727 {
1bb98cec
DM
5728 struct qty_table_elem *ent = &qty_table[i];
5729
5730 if (ent->const_rtx != NULL_RTX
5731 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 5732 || REG_P (ent->const_rtx)))
1bb98cec 5733 {
4de249d9 5734 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
1bb98cec 5735 if (new)
3e916873 5736 return copy_rtx (new);
1bb98cec 5737 }
7afe21cc
RK
5738 }
5739
5740 /* Otherwise, canonicalize this register. */
906c4e36 5741 return canon_reg (x, NULL_RTX);
278a83b2 5742
e9a25f70
JL
5743 default:
5744 break;
7afe21cc
RK
5745 }
5746
5747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5748 if (fmt[i] == 'e')
5749 validate_change (object, &XEXP (x, i),
6fb5fa3c 5750 cse_process_notes (XEXP (x, i), object, changed), 0);
7afe21cc
RK
5751
5752 return x;
5753}
6fb5fa3c
DB
5754
5755static rtx
5756cse_process_notes (rtx x, rtx object, bool *changed)
5757{
5758 rtx new = cse_process_notes_1 (x, object, changed);
5759 if (new != x)
5760 *changed = true;
5761 return new;
5762}
5763
7afe21cc 5764\f
932ad4d9 5765/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
7afe21cc 5766
932ad4d9
SB
5767 DATA is a pointer to a struct cse_basic_block_data, that is used to
5768 describe the path.
5769 It is filled with a queue of basic blocks, starting with FIRST_BB
5770 and following a trace through the CFG.
5771
5772 If all paths starting at FIRST_BB have been followed, or no new path
5773 starting at FIRST_BB can be constructed, this function returns FALSE.
5774 Otherwise, DATA->path is filled and the function returns TRUE indicating
5775 that a path to follow was found.
7afe21cc 5776
2e226e66 5777 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
932ad4d9 5778 block in the path will be FIRST_BB. */
7afe21cc 5779
932ad4d9
SB
5780static bool
5781cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5782 int follow_jumps)
7afe21cc 5783{
932ad4d9
SB
5784 basic_block bb;
5785 edge e;
5786 int path_size;
5787
5788 SET_BIT (cse_visited_basic_blocks, first_bb->index);
7afe21cc 5789
932ad4d9
SB
5790 /* See if there is a previous path. */
5791 path_size = data->path_size;
5792
5793 /* There is a previous path. Make sure it started with FIRST_BB. */
5794 if (path_size)
5795 gcc_assert (data->path[0].bb == first_bb);
5796
5797 /* There was only one basic block in the last path. Clear the path and
5798 return, so that paths starting at another basic block can be tried. */
5799 if (path_size == 1)
5800 {
5801 path_size = 0;
5802 goto done;
5803 }
5804
5805 /* If the path was empty from the beginning, construct a new path. */
5806 if (path_size == 0)
5807 data->path[path_size++].bb = first_bb;
5808 else
7afe21cc 5809 {
932ad4d9
SB
5810 /* Otherwise, path_size must be equal to or greater than 2, because
5811 a previous path exists that is at least two basic blocks long.
5812
5813 Update the previous branch path, if any. If the last branch was
5814 previously along the branch edge, take the fallthrough edge now. */
5815 while (path_size >= 2)
7afe21cc 5816 {
932ad4d9
SB
5817 basic_block last_bb_in_path, previous_bb_in_path;
5818 edge e;
5819
5820 --path_size;
5821 last_bb_in_path = data->path[path_size].bb;
5822 previous_bb_in_path = data->path[path_size - 1].bb;
5823
5824 /* If we previously followed a path along the branch edge, try
5825 the fallthru edge now. */
5826 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5827 && any_condjump_p (BB_END (previous_bb_in_path))
5828 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5829 && e == BRANCH_EDGE (previous_bb_in_path))
5830 {
5831 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5832 if (bb != EXIT_BLOCK_PTR
481e0a49
AO
5833 && single_pred_p (bb)
5834 /* We used to assert here that we would only see blocks
5835 that we have not visited yet. But we may end up
5836 visiting basic blocks twice if the CFG has changed
5837 in this run of cse_main, because when the CFG changes
5838 the topological sort of the CFG also changes. A basic
5839 blocks that previously had more than two predecessors
5840 may now have a single predecessor, and become part of
5841 a path that starts at another basic block.
5842
5843 We still want to visit each basic block only once, so
5844 halt the path here if we have already visited BB. */
5845 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
932ad4d9 5846 {
932ad4d9
SB
5847 SET_BIT (cse_visited_basic_blocks, bb->index);
5848 data->path[path_size++].bb = bb;
5849 break;
5850 }
5851 }
5852
5853 data->path[path_size].bb = NULL;
5854 }
5855
5856 /* If only one block remains in the path, bail. */
5857 if (path_size == 1)
5858 {
5859 path_size = 0;
5860 goto done;
7afe21cc 5861 }
7afe21cc
RK
5862 }
5863
932ad4d9
SB
5864 /* Extend the path if possible. */
5865 if (follow_jumps)
7afe21cc 5866 {
932ad4d9
SB
5867 bb = data->path[path_size - 1].bb;
5868 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5869 {
5870 if (single_succ_p (bb))
5871 e = single_succ_edge (bb);
5872 else if (EDGE_COUNT (bb->succs) == 2
5873 && any_condjump_p (BB_END (bb)))
5874 {
5875 /* First try to follow the branch. If that doesn't lead
5876 to a useful path, follow the fallthru edge. */
5877 e = BRANCH_EDGE (bb);
5878 if (!single_pred_p (e->dest))
5879 e = FALLTHRU_EDGE (bb);
5880 }
5881 else
5882 e = NULL;
7afe21cc 5883
932ad4d9 5884 if (e && e->dest != EXIT_BLOCK_PTR
481e0a49
AO
5885 && single_pred_p (e->dest)
5886 /* Avoid visiting basic blocks twice. The large comment
5887 above explains why this can happen. */
5888 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
932ad4d9
SB
5889 {
5890 basic_block bb2 = e->dest;
932ad4d9
SB
5891 SET_BIT (cse_visited_basic_blocks, bb2->index);
5892 data->path[path_size++].bb = bb2;
5893 bb = bb2;
5894 }
5895 else
5896 bb = NULL;
5897 }
5898 }
5899
5900done:
5901 data->path_size = path_size;
5902 return path_size != 0;
5903}
5904\f
5905/* Dump the path in DATA to file F. NSETS is the number of sets
5906 in the path. */
5907
5908static void
5909cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5910{
5911 int path_entry;
5912
5913 fprintf (f, ";; Following path with %d sets: ", nsets);
5914 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5915 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5916 fputc ('\n', dump_file);
5917 fflush (f);
5918}
5919
a7582f7c
SB
5920\f
5921/* Return true if BB has exception handling successor edges. */
5922
5923static bool
5924have_eh_succ_edges (basic_block bb)
5925{
5926 edge e;
5927 edge_iterator ei;
5928
5929 FOR_EACH_EDGE (e, ei, bb->succs)
5930 if (e->flags & EDGE_EH)
5931 return true;
5932
5933 return false;
5934}
5935
932ad4d9
SB
5936\f
5937/* Scan to the end of the path described by DATA. Return an estimate of
6fb5fa3c 5938 the total number of SETs of all insns in the path. */
932ad4d9
SB
5939
5940static void
5941cse_prescan_path (struct cse_basic_block_data *data)
5942{
5943 int nsets = 0;
932ad4d9
SB
5944 int path_size = data->path_size;
5945 int path_entry;
5946
5947 /* Scan to end of each basic block in the path. */
5948 for (path_entry = 0; path_entry < path_size; path_entry++)
5949 {
5950 basic_block bb;
5951 rtx insn;
164c8956 5952
932ad4d9 5953 bb = data->path[path_entry].bb;
7afe21cc 5954
932ad4d9 5955 FOR_BB_INSNS (bb, insn)
7afe21cc 5956 {
932ad4d9
SB
5957 if (!INSN_P (insn))
5958 continue;
278a83b2 5959
932ad4d9
SB
5960 /* A PARALLEL can have lots of SETs in it,
5961 especially if it is really an ASM_OPERANDS. */
5962 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5963 nsets += XVECLEN (PATTERN (insn), 0);
5964 else
5965 nsets += 1;
7afe21cc 5966 }
932ad4d9
SB
5967 }
5968
932ad4d9
SB
5969 data->nsets = nsets;
5970}
5971\f
5972/* Process a single extended basic block described by EBB_DATA. */
7afe21cc 5973
932ad4d9
SB
5974static void
5975cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5976{
5977 int path_size = ebb_data->path_size;
5978 int path_entry;
5979 int num_insns = 0;
5980
5981 /* Allocate the space needed by qty_table. */
5982 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5983
5984 new_basic_block ();
89a95777
KZ
5985 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5986 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
932ad4d9
SB
5987 for (path_entry = 0; path_entry < path_size; path_entry++)
5988 {
5989 basic_block bb;
ba4807a0 5990 rtx insn;
932ad4d9
SB
5991 rtx libcall_insn = NULL_RTX;
5992 int no_conflict = 0;
5993
5994 bb = ebb_data->path[path_entry].bb;
e186ff69
AK
5995
5996 /* Invalidate recorded information for eh regs if there is an EH
5997 edge pointing to that bb. */
5998 if (bb_has_eh_pred (bb))
5999 {
6000 struct df_ref **def_rec;
6001
6002 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6003 {
6004 struct df_ref *def = *def_rec;
6005 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6006 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6007 }
6008 }
6009
ba4807a0 6010 FOR_BB_INSNS (bb, insn)
7afe21cc 6011 {
932ad4d9
SB
6012 /* If we have processed 1,000 insns, flush the hash table to
6013 avoid extreme quadratic behavior. We must not include NOTEs
6014 in the count since there may be more of them when generating
6015 debugging information. If we clear the table at different
6016 times, code generated with -g -O might be different than code
6017 generated with -O but not -g.
6018
6019 FIXME: This is a real kludge and needs to be done some other
6020 way. */
6021 if (INSN_P (insn)
6022 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6023 {
6024 flush_hash_table ();
6025 num_insns = 0;
6026 }
7afe21cc 6027
932ad4d9 6028 if (INSN_P (insn))
7afe21cc 6029 {
932ad4d9
SB
6030 /* Process notes first so we have all notes in canonical forms
6031 when looking for duplicate operations. */
6032 if (REG_NOTES (insn))
6fb5fa3c
DB
6033 {
6034 bool changed = false;
6035 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6036 NULL_RTX, &changed);
6037 if (changed)
6038 df_notes_rescan (insn);
6039 }
932ad4d9
SB
6040
6041 /* Track when we are inside in LIBCALL block. Inside such
6042 a block we do not want to record destinations. The last
6043 insn of a LIBCALL block is not considered to be part of
6044 the block, since its destination is the result of the
6045 block and hence should be recorded. */
6046 if (REG_NOTES (insn) != 0)
fc3ffe83 6047 {
932ad4d9
SB
6048 rtx p;
6049
6050 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6051 libcall_insn = XEXP (p, 0);
6052 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6053 {
6054 /* Keep libcall_insn for the last SET insn of
6055 a no-conflict block to prevent changing the
6056 destination. */
6057 if (!no_conflict)
6058 libcall_insn = NULL_RTX;
6059 else
6060 no_conflict = -1;
6061 }
fc3ffe83 6062 }
7afe21cc 6063
932ad4d9 6064 cse_insn (insn, libcall_insn);
7afe21cc 6065
932ad4d9
SB
6066 /* If we kept libcall_insn for a no-conflict bock,
6067 clear it here. */
6068 if (no_conflict == -1)
6069 {
6070 libcall_insn = NULL_RTX;
6071 no_conflict = 0;
6072 }
6073
6074 /* If we haven't already found an insn where we added a LABEL_REF,
6075 check this one. */
2aac3a01 6076 if (INSN_P (insn) && !recorded_label_ref
932ad4d9
SB
6077 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6078 (void *) insn))
2aac3a01 6079 recorded_label_ref = true;
96fb470d
SB
6080
6081#ifdef HAVE_cc0
6082 /* If the previous insn set CC0 and this insn no longer
6083 references CC0, delete the previous insn. Here we use
6084 fact that nothing expects CC0 to be valid over an insn,
6085 which is true until the final pass. */
6086 {
6087 rtx prev_insn, tem;
6088
6089 prev_insn = PREV_INSN (insn);
6090 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6091 && (tem = single_set (prev_insn)) != 0
6092 && SET_DEST (tem) == cc0_rtx
6093 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6094 delete_insn (prev_insn);
6095 }
6096
6097 /* If this insn is not the last insn in the basic block,
6098 it will be PREV_INSN(insn) in the next iteration. If
6099 we recorded any CC0-related information for this insn,
6100 remember it. */
6101 if (insn != BB_END (bb))
6102 {
6103 prev_insn_cc0 = this_insn_cc0;
6104 prev_insn_cc0_mode = this_insn_cc0_mode;
6105 }
6106#endif
932ad4d9
SB
6107 }
6108 }
7afe21cc 6109
932ad4d9
SB
6110 /* Make sure that libcalls don't span multiple basic blocks. */
6111 gcc_assert (libcall_insn == NULL_RTX);
7afe21cc 6112
a7582f7c
SB
6113 /* With non-call exceptions, we are not always able to update
6114 the CFG properly inside cse_insn. So clean up possibly
6115 redundant EH edges here. */
6116 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
2aac3a01 6117 cse_cfg_altered |= purge_dead_edges (bb);
a7582f7c 6118
932ad4d9
SB
6119 /* If we changed a conditional jump, we may have terminated
6120 the path we are following. Check that by verifying that
6121 the edge we would take still exists. If the edge does
6122 not exist anymore, purge the remainder of the path.
6123 Note that this will cause us to return to the caller. */
6124 if (path_entry < path_size - 1)
6125 {
6126 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6127 if (!find_edge (bb, next_bb))
27511c65
SB
6128 {
6129 do
6130 {
6131 path_size--;
6132
6133 /* If we truncate the path, we must also reset the
6134 visited bit on the remaining blocks in the path,
6135 or we will never visit them at all. */
6136 RESET_BIT (cse_visited_basic_blocks,
6137 ebb_data->path[path_size].bb->index);
6138 ebb_data->path[path_size].bb = NULL;
6139 }
6140 while (path_size - 1 != path_entry);
6141 ebb_data->path_size = path_size;
6142 }
7afe21cc 6143 }
7afe21cc 6144
932ad4d9
SB
6145 /* If this is a conditional jump insn, record any known
6146 equivalences due to the condition being tested. */
6147 insn = BB_END (bb);
6148 if (path_entry < path_size - 1
6149 && JUMP_P (insn)
6150 && single_set (insn)
6151 && any_condjump_p (insn))
6152 {
6153 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6154 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6155 record_jump_equiv (insn, taken);
6156 }
96fb470d
SB
6157
6158#ifdef HAVE_cc0
6159 /* Clear the CC0-tracking related insns, they can't provide
6160 useful information across basic block boundaries. */
6161 prev_insn_cc0 = 0;
6162#endif
932ad4d9 6163 }
7afe21cc 6164
932ad4d9 6165 gcc_assert (next_qty <= max_qty);
7afe21cc 6166
932ad4d9 6167 free (qty_table);
7afe21cc 6168}
6fb5fa3c 6169
7afe21cc 6170\f
7afe21cc
RK
6171/* Perform cse on the instructions of a function.
6172 F is the first instruction.
6173 NREGS is one plus the highest pseudo-reg number used in the instruction.
6174
2aac3a01
EB
6175 Return 2 if jump optimizations should be redone due to simplifications
6176 in conditional jump instructions.
6177 Return 1 if the CFG should be cleaned up because it has been modified.
6178 Return 0 otherwise. */
7afe21cc
RK
6179
6180int
932ad4d9 6181cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
7afe21cc 6182{
932ad4d9
SB
6183 struct cse_basic_block_data ebb_data;
6184 basic_block bb;
27511c65 6185 int *rc_order = XNEWVEC (int, last_basic_block);
932ad4d9 6186 int i, n_blocks;
7afe21cc 6187
6fb5fa3c
DB
6188 df_set_flags (DF_LR_RUN_DCE);
6189 df_analyze ();
6190 df_set_flags (DF_DEFER_INSN_RESCAN);
6191
6192 reg_scan (get_insns (), max_reg_num ());
bc5e3b54
KH
6193 init_cse_reg_info (nregs);
6194
932ad4d9
SB
6195 ebb_data.path = XNEWVEC (struct branch_path,
6196 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
9bf8cfbf 6197
2aac3a01
EB
6198 cse_cfg_altered = false;
6199 cse_jumps_altered = false;
6200 recorded_label_ref = false;
7afe21cc 6201 constant_pool_entries_cost = 0;
dd0ba281 6202 constant_pool_entries_regcost = 0;
932ad4d9
SB
6203 ebb_data.path_size = 0;
6204 ebb_data.nsets = 0;
2f93eea8 6205 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6206
6207 init_recog ();
9ae8ffe7 6208 init_alias_analysis ();
7afe21cc 6209
5ed6ace5 6210 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
7afe21cc 6211
932ad4d9
SB
6212 /* Set up the table of already visited basic blocks. */
6213 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6214 sbitmap_zero (cse_visited_basic_blocks);
7afe21cc 6215
a7582f7c 6216 /* Loop over basic blocks in reverse completion order (RPO),
932ad4d9 6217 excluding the ENTRY and EXIT blocks. */
27511c65 6218 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
932ad4d9
SB
6219 i = 0;
6220 while (i < n_blocks)
7afe21cc 6221 {
a7582f7c 6222 /* Find the first block in the RPO queue that we have not yet
932ad4d9
SB
6223 processed before. */
6224 do
e9a25f70 6225 {
27511c65 6226 bb = BASIC_BLOCK (rc_order[i++]);
e9a25f70 6227 }
932ad4d9
SB
6228 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6229 && i < n_blocks);
7afe21cc 6230
932ad4d9
SB
6231 /* Find all paths starting with BB, and process them. */
6232 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
7afe21cc 6233 {
932ad4d9
SB
6234 /* Pre-scan the path. */
6235 cse_prescan_path (&ebb_data);
7afe21cc 6236
932ad4d9
SB
6237 /* If this basic block has no sets, skip it. */
6238 if (ebb_data.nsets == 0)
6239 continue;
7afe21cc 6240
2e226e66 6241 /* Get a reasonable estimate for the maximum number of qty's
932ad4d9
SB
6242 needed for this path. For this, we take the number of sets
6243 and multiply that by MAX_RECOG_OPERANDS. */
6244 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
7afe21cc 6245
932ad4d9
SB
6246 /* Dump the path we're about to process. */
6247 if (dump_file)
6248 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6a5293dc 6249
932ad4d9 6250 cse_extended_basic_block (&ebb_data);
7afe21cc 6251 }
7afe21cc
RK
6252 }
6253
932ad4d9
SB
6254 /* Clean up. */
6255 end_alias_analysis ();
932ad4d9
SB
6256 free (reg_eqv_table);
6257 free (ebb_data.path);
6258 sbitmap_free (cse_visited_basic_blocks);
27511c65 6259 free (rc_order);
932ad4d9 6260 rtl_hooks = general_rtl_hooks;
75c6bd46 6261
2aac3a01
EB
6262 if (cse_jumps_altered || recorded_label_ref)
6263 return 2;
6264 else if (cse_cfg_altered)
6265 return 1;
6266 else
6267 return 0;
7afe21cc
RK
6268}
6269\f
cf7c4aa6
HPN
6270/* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6271 which there isn't a REG_LABEL_OPERAND note.
6272 Return one if so. DATA is the insn. */
be8ac49a
RK
6273
6274static int
7080f735 6275check_for_label_ref (rtx *rtl, void *data)
be8ac49a
RK
6276{
6277 rtx insn = (rtx) data;
6278
cf7c4aa6
HPN
6279 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6280 note for it, we must rerun jump since it needs to place the note. If
6281 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6282 don't do this since no REG_LABEL_OPERAND will be added. */
be8ac49a 6283 return (GET_CODE (*rtl) == LABEL_REF
45c23566 6284 && ! LABEL_REF_NONLOCAL_P (*rtl)
cf7c4aa6
HPN
6285 && (!JUMP_P (insn)
6286 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
4838c5ee 6287 && LABEL_P (XEXP (*rtl, 0))
be8ac49a 6288 && INSN_UID (XEXP (*rtl, 0)) != 0
cf7c4aa6 6289 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
be8ac49a
RK
6290}
6291\f
7afe21cc
RK
6292/* Count the number of times registers are used (not set) in X.
6293 COUNTS is an array in which we accumulate the count, INCR is how much
b92ba6ff
R
6294 we count each register usage.
6295
6296 Don't count a usage of DEST, which is the SET_DEST of a SET which
6297 contains X in its SET_SRC. This is because such a SET does not
6298 modify the liveness of DEST.
6299 DEST is set to pc_rtx for a trapping insn, which means that we must count
6300 uses of a SET_DEST regardless because the insn can't be deleted here. */
7afe21cc
RK
6301
6302static void
b92ba6ff 6303count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7afe21cc 6304{
f1e7c95f 6305 enum rtx_code code;
b17d5d7c 6306 rtx note;
6f7d635c 6307 const char *fmt;
7afe21cc
RK
6308 int i, j;
6309
f1e7c95f
RK
6310 if (x == 0)
6311 return;
6312
6313 switch (code = GET_CODE (x))
7afe21cc
RK
6314 {
6315 case REG:
b92ba6ff
R
6316 if (x != dest)
6317 counts[REGNO (x)] += incr;
7afe21cc
RK
6318 return;
6319
6320 case PC:
6321 case CC0:
6322 case CONST:
6323 case CONST_INT:
6324 case CONST_DOUBLE:
091a3ac7 6325 case CONST_FIXED:
69ef87e2 6326 case CONST_VECTOR:
7afe21cc
RK
6327 case SYMBOL_REF:
6328 case LABEL_REF:
02e39abc
JL
6329 return;
6330
278a83b2 6331 case CLOBBER:
02e39abc
JL
6332 /* If we are clobbering a MEM, mark any registers inside the address
6333 as being used. */
3c0cb5de 6334 if (MEM_P (XEXP (x, 0)))
b92ba6ff 6335 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7afe21cc
RK
6336 return;
6337
6338 case SET:
6339 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 6340 if (!REG_P (SET_DEST (x)))
b92ba6ff
R
6341 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6342 count_reg_usage (SET_SRC (x), counts,
6343 dest ? dest : SET_DEST (x),
6344 incr);
7afe21cc
RK
6345 return;
6346
f1e7c95f 6347 case CALL_INSN:
7afe21cc
RK
6348 case INSN:
6349 case JUMP_INSN:
b92ba6ff
R
6350 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6351 this fact by setting DEST to pc_rtx. */
6352 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6353 dest = pc_rtx;
6354 if (code == CALL_INSN)
6355 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6356 count_reg_usage (PATTERN (x), counts, dest, incr);
7afe21cc
RK
6357
6358 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6359 use them. */
6360
b17d5d7c
ZD
6361 note = find_reg_equal_equiv_note (x);
6362 if (note)
839844be
R
6363 {
6364 rtx eqv = XEXP (note, 0);
6365
6366 if (GET_CODE (eqv) == EXPR_LIST)
6367 /* This REG_EQUAL note describes the result of a function call.
6368 Process all the arguments. */
6369 do
6370 {
b92ba6ff 6371 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
839844be
R
6372 eqv = XEXP (eqv, 1);
6373 }
6374 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6375 else
b92ba6ff 6376 count_reg_usage (eqv, counts, dest, incr);
839844be 6377 }
7afe21cc
RK
6378 return;
6379
ee960939
OH
6380 case EXPR_LIST:
6381 if (REG_NOTE_KIND (x) == REG_EQUAL
6382 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6383 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6384 involving registers in the address. */
6385 || GET_CODE (XEXP (x, 0)) == CLOBBER)
b92ba6ff 6386 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
ee960939 6387
b92ba6ff 6388 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
ee960939
OH
6389 return;
6390
a6c14a64 6391 case ASM_OPERANDS:
b92ba6ff
R
6392 /* If the asm is volatile, then this insn cannot be deleted,
6393 and so the inputs *must* be live. */
6394 if (MEM_VOLATILE_P (x))
6395 dest = NULL_RTX;
a6c14a64
RH
6396 /* Iterate over just the inputs, not the constraints as well. */
6397 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
b92ba6ff 6398 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
a6c14a64
RH
6399 return;
6400
7afe21cc 6401 case INSN_LIST:
341c100f 6402 gcc_unreachable ();
278a83b2 6403
e9a25f70
JL
6404 default:
6405 break;
7afe21cc
RK
6406 }
6407
6408 fmt = GET_RTX_FORMAT (code);
6409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6410 {
6411 if (fmt[i] == 'e')
b92ba6ff 6412 count_reg_usage (XEXP (x, i), counts, dest, incr);
7afe21cc
RK
6413 else if (fmt[i] == 'E')
6414 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
b92ba6ff 6415 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7afe21cc
RK
6416 }
6417}
6418\f
4793dca1
JH
6419/* Return true if set is live. */
6420static bool
7080f735
AJ
6421set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6422 int *counts)
4793dca1
JH
6423{
6424#ifdef HAVE_cc0
6425 rtx tem;
6426#endif
6427
6428 if (set_noop_p (set))
6429 ;
6430
6431#ifdef HAVE_cc0
6432 else if (GET_CODE (SET_DEST (set)) == CC0
6433 && !side_effects_p (SET_SRC (set))
6434 && ((tem = next_nonnote_insn (insn)) == 0
6435 || !INSN_P (tem)
6436 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6437 return false;
6438#endif
f8cfc6aa 6439 else if (!REG_P (SET_DEST (set))
4793dca1
JH
6440 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6441 || counts[REGNO (SET_DEST (set))] != 0
8fff4fc1 6442 || side_effects_p (SET_SRC (set)))
4793dca1
JH
6443 return true;
6444 return false;
6445}
6446
6447/* Return true if insn is live. */
6448
6449static bool
7080f735 6450insn_live_p (rtx insn, int *counts)
4793dca1
JH
6451{
6452 int i;
a3745024 6453 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
a646f6cc
AH
6454 return true;
6455 else if (GET_CODE (PATTERN (insn)) == SET)
0021de69 6456 return set_live_p (PATTERN (insn), insn, counts);
4793dca1 6457 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
6458 {
6459 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6460 {
6461 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 6462
0021de69
DB
6463 if (GET_CODE (elt) == SET)
6464 {
6465 if (set_live_p (elt, insn, counts))
6466 return true;
6467 }
6468 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6469 return true;
6470 }
6471 return false;
6472 }
4793dca1
JH
6473 else
6474 return true;
6475}
6476
6477/* Return true if libcall is dead as a whole. */
6478
6479static bool
7080f735 6480dead_libcall_p (rtx insn, int *counts)
4793dca1 6481{
0c19a26f
RS
6482 rtx note, set, new;
6483
4793dca1
JH
6484 /* See if there's a REG_EQUAL note on this insn and try to
6485 replace the source with the REG_EQUAL expression.
6486
6487 We assume that insns with REG_RETVALs can only be reg->reg
6488 copies at this point. */
6489 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
0c19a26f
RS
6490 if (!note)
6491 return false;
6492
6493 set = single_set (insn);
6494 if (!set)
6495 return false;
4793dca1 6496
0c19a26f
RS
6497 new = simplify_rtx (XEXP (note, 0));
6498 if (!new)
6499 new = XEXP (note, 0);
4793dca1 6500
0c19a26f 6501 /* While changing insn, we must update the counts accordingly. */
b92ba6ff 6502 count_reg_usage (insn, counts, NULL_RTX, -1);
1e150f2c 6503
0c19a26f
RS
6504 if (validate_change (insn, &SET_SRC (set), new, 0))
6505 {
b92ba6ff 6506 count_reg_usage (insn, counts, NULL_RTX, 1);
0c19a26f
RS
6507 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6508 remove_note (insn, note);
6509 return true;
6510 }
6511
6512 if (CONSTANT_P (new))
6513 {
6514 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6515 if (new && validate_change (insn, &SET_SRC (set), new, 0))
4793dca1 6516 {
b92ba6ff 6517 count_reg_usage (insn, counts, NULL_RTX, 1);
4793dca1 6518 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
1e150f2c 6519 remove_note (insn, note);
4793dca1
JH
6520 return true;
6521 }
6522 }
7080f735 6523
b92ba6ff 6524 count_reg_usage (insn, counts, NULL_RTX, 1);
4793dca1
JH
6525 return false;
6526}
6527
7afe21cc
RK
6528/* Scan all the insns and delete any that are dead; i.e., they store a register
6529 that is never used or they copy a register to itself.
6530
c6a26dc4
JL
6531 This is used to remove insns made obviously dead by cse, loop or other
6532 optimizations. It improves the heuristics in loop since it won't try to
6533 move dead invariants out of loops or make givs for dead quantities. The
6534 remaining passes of the compilation are also sped up. */
7afe21cc 6535
3dec4024 6536int
7080f735 6537delete_trivially_dead_insns (rtx insns, int nreg)
7afe21cc 6538{
4da896b2 6539 int *counts;
77fa0940 6540 rtx insn, prev;
614bb5d4 6541 int in_libcall = 0, dead_libcall = 0;
65e9fa10 6542 int ndead = 0;
7afe21cc 6543
3dec4024 6544 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 6545 /* First count the number of times each register is used. */
5ed6ace5 6546 counts = XCNEWVEC (int, nreg);
03ce14db
KH
6547 for (insn = insns; insn; insn = NEXT_INSN (insn))
6548 if (INSN_P (insn))
b92ba6ff 6549 count_reg_usage (insn, counts, NULL_RTX, 1);
7afe21cc 6550
65e9fa10
KH
6551 /* Go from the last insn to the first and delete insns that only set unused
6552 registers or copy a register to itself. As we delete an insn, remove
6553 usage counts for registers it uses.
0cedb36c 6554
65e9fa10
KH
6555 The first jump optimization pass may leave a real insn as the last
6556 insn in the function. We must not skip that insn or we may end
6557 up deleting code that is not really dead. */
03ce14db 6558 for (insn = get_last_insn (); insn; insn = prev)
65e9fa10
KH
6559 {
6560 int live_insn = 0;
7afe21cc 6561
03ce14db
KH
6562 prev = PREV_INSN (insn);
6563 if (!INSN_P (insn))
6564 continue;
7afe21cc 6565
65e9fa10
KH
6566 /* Don't delete any insns that are part of a libcall block unless
6567 we can delete the whole libcall block.
6568
6569 Flow or loop might get confused if we did that. Remember
6570 that we are scanning backwards. */
6571 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6572 {
6573 in_libcall = 1;
6574 live_insn = 1;
6575 dead_libcall = dead_libcall_p (insn, counts);
6576 }
6577 else if (in_libcall)
6578 live_insn = ! dead_libcall;
6579 else
6580 live_insn = insn_live_p (insn, counts);
7afe21cc 6581
65e9fa10
KH
6582 /* If this is a dead insn, delete it and show registers in it aren't
6583 being used. */
7afe21cc 6584
6fb5fa3c 6585 if (! live_insn && dbg_cnt (delete_trivial_dead))
65e9fa10 6586 {
b92ba6ff 6587 count_reg_usage (insn, counts, NULL_RTX, -1);
65e9fa10
KH
6588 delete_insn_and_edges (insn);
6589 ndead++;
6590 }
e4890d45 6591
2b5936fd 6592 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
65e9fa10
KH
6593 {
6594 in_libcall = 0;
6595 dead_libcall = 0;
614bb5d4 6596 }
68252e27 6597 }
4da896b2 6598
c263766c 6599 if (dump_file && ndead)
65e9fa10
KH
6600 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6601 ndead);
4da896b2
MM
6602 /* Clean up. */
6603 free (counts);
3dec4024
JH
6604 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6605 return ndead;
7afe21cc 6606}
e129d93a
ILT
6607
6608/* This function is called via for_each_rtx. The argument, NEWREG, is
6609 a condition code register with the desired mode. If we are looking
6610 at the same register in a different mode, replace it with
6611 NEWREG. */
6612
6613static int
6614cse_change_cc_mode (rtx *loc, void *data)
6615{
fc188d37 6616 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
e129d93a
ILT
6617
6618 if (*loc
f8cfc6aa 6619 && REG_P (*loc)
fc188d37
AK
6620 && REGNO (*loc) == REGNO (args->newreg)
6621 && GET_MODE (*loc) != GET_MODE (args->newreg))
e129d93a 6622 {
fc188d37
AK
6623 validate_change (args->insn, loc, args->newreg, 1);
6624
e129d93a
ILT
6625 return -1;
6626 }
6627 return 0;
6628}
6629
fc188d37
AK
6630/* Change the mode of any reference to the register REGNO (NEWREG) to
6631 GET_MODE (NEWREG) in INSN. */
6632
6633static void
6634cse_change_cc_mode_insn (rtx insn, rtx newreg)
6635{
6636 struct change_cc_mode_args args;
6637 int success;
6638
6639 if (!INSN_P (insn))
6640 return;
6641
6642 args.insn = insn;
6643 args.newreg = newreg;
6644
6645 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6646 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6647
6648 /* If the following assertion was triggered, there is most probably
6649 something wrong with the cc_modes_compatible back end function.
6650 CC modes only can be considered compatible if the insn - with the mode
6651 replaced by any of the compatible modes - can still be recognized. */
6652 success = apply_change_group ();
6653 gcc_assert (success);
6654}
6655
e129d93a
ILT
6656/* Change the mode of any reference to the register REGNO (NEWREG) to
6657 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 6658 any instruction which modifies NEWREG. */
e129d93a
ILT
6659
6660static void
6661cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6662{
6663 rtx insn;
6664
6665 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6666 {
6667 if (! INSN_P (insn))
6668 continue;
6669
2e802a6f 6670 if (reg_set_p (newreg, insn))
e129d93a
ILT
6671 return;
6672
fc188d37 6673 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
6674 }
6675}
6676
6677/* BB is a basic block which finishes with CC_REG as a condition code
6678 register which is set to CC_SRC. Look through the successors of BB
6679 to find blocks which have a single predecessor (i.e., this one),
6680 and look through those blocks for an assignment to CC_REG which is
6681 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6682 permitted to change the mode of CC_SRC to a compatible mode. This
6683 returns VOIDmode if no equivalent assignments were found.
6684 Otherwise it returns the mode which CC_SRC should wind up with.
6685
6686 The main complexity in this function is handling the mode issues.
6687 We may have more than one duplicate which we can eliminate, and we
6688 try to find a mode which will work for multiple duplicates. */
6689
6690static enum machine_mode
6691cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6692{
6693 bool found_equiv;
6694 enum machine_mode mode;
6695 unsigned int insn_count;
6696 edge e;
6697 rtx insns[2];
6698 enum machine_mode modes[2];
6699 rtx last_insns[2];
6700 unsigned int i;
6701 rtx newreg;
628f6a4e 6702 edge_iterator ei;
e129d93a
ILT
6703
6704 /* We expect to have two successors. Look at both before picking
6705 the final mode for the comparison. If we have more successors
6706 (i.e., some sort of table jump, although that seems unlikely),
6707 then we require all beyond the first two to use the same
6708 mode. */
6709
6710 found_equiv = false;
6711 mode = GET_MODE (cc_src);
6712 insn_count = 0;
628f6a4e 6713 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a
ILT
6714 {
6715 rtx insn;
6716 rtx end;
6717
6718 if (e->flags & EDGE_COMPLEX)
6719 continue;
6720
628f6a4e 6721 if (EDGE_COUNT (e->dest->preds) != 1
e129d93a
ILT
6722 || e->dest == EXIT_BLOCK_PTR)
6723 continue;
6724
6725 end = NEXT_INSN (BB_END (e->dest));
6726 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6727 {
6728 rtx set;
6729
6730 if (! INSN_P (insn))
6731 continue;
6732
6733 /* If CC_SRC is modified, we have to stop looking for
6734 something which uses it. */
6735 if (modified_in_p (cc_src, insn))
6736 break;
6737
6738 /* Check whether INSN sets CC_REG to CC_SRC. */
6739 set = single_set (insn);
6740 if (set
f8cfc6aa 6741 && REG_P (SET_DEST (set))
e129d93a
ILT
6742 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6743 {
6744 bool found;
6745 enum machine_mode set_mode;
6746 enum machine_mode comp_mode;
6747
6748 found = false;
6749 set_mode = GET_MODE (SET_SRC (set));
6750 comp_mode = set_mode;
6751 if (rtx_equal_p (cc_src, SET_SRC (set)))
6752 found = true;
6753 else if (GET_CODE (cc_src) == COMPARE
6754 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 6755 && mode != set_mode
e129d93a
ILT
6756 && rtx_equal_p (XEXP (cc_src, 0),
6757 XEXP (SET_SRC (set), 0))
6758 && rtx_equal_p (XEXP (cc_src, 1),
6759 XEXP (SET_SRC (set), 1)))
6760
6761 {
5fd9b178 6762 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
6763 if (comp_mode != VOIDmode
6764 && (can_change_mode || comp_mode == mode))
6765 found = true;
6766 }
6767
6768 if (found)
6769 {
6770 found_equiv = true;
1f44254c 6771 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
6772 {
6773 insns[insn_count] = insn;
6774 modes[insn_count] = set_mode;
6775 last_insns[insn_count] = end;
6776 ++insn_count;
6777
1f44254c
ILT
6778 if (mode != comp_mode)
6779 {
341c100f 6780 gcc_assert (can_change_mode);
1f44254c 6781 mode = comp_mode;
fc188d37
AK
6782
6783 /* The modified insn will be re-recognized later. */
1f44254c
ILT
6784 PUT_MODE (cc_src, mode);
6785 }
e129d93a
ILT
6786 }
6787 else
6788 {
6789 if (set_mode != mode)
1f44254c
ILT
6790 {
6791 /* We found a matching expression in the
6792 wrong mode, but we don't have room to
6793 store it in the array. Punt. This case
6794 should be rare. */
6795 break;
6796 }
e129d93a
ILT
6797 /* INSN sets CC_REG to a value equal to CC_SRC
6798 with the right mode. We can simply delete
6799 it. */
6800 delete_insn (insn);
6801 }
6802
6803 /* We found an instruction to delete. Keep looking,
6804 in the hopes of finding a three-way jump. */
6805 continue;
6806 }
6807
6808 /* We found an instruction which sets the condition
6809 code, so don't look any farther. */
6810 break;
6811 }
6812
6813 /* If INSN sets CC_REG in some other way, don't look any
6814 farther. */
6815 if (reg_set_p (cc_reg, insn))
6816 break;
6817 }
6818
6819 /* If we fell off the bottom of the block, we can keep looking
6820 through successors. We pass CAN_CHANGE_MODE as false because
6821 we aren't prepared to handle compatibility between the
6822 further blocks and this block. */
6823 if (insn == end)
6824 {
1f44254c
ILT
6825 enum machine_mode submode;
6826
6827 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6828 if (submode != VOIDmode)
6829 {
341c100f 6830 gcc_assert (submode == mode);
1f44254c
ILT
6831 found_equiv = true;
6832 can_change_mode = false;
6833 }
e129d93a
ILT
6834 }
6835 }
6836
6837 if (! found_equiv)
6838 return VOIDmode;
6839
6840 /* Now INSN_COUNT is the number of instructions we found which set
6841 CC_REG to a value equivalent to CC_SRC. The instructions are in
6842 INSNS. The modes used by those instructions are in MODES. */
6843
6844 newreg = NULL_RTX;
6845 for (i = 0; i < insn_count; ++i)
6846 {
6847 if (modes[i] != mode)
6848 {
6849 /* We need to change the mode of CC_REG in INSNS[i] and
6850 subsequent instructions. */
6851 if (! newreg)
6852 {
6853 if (GET_MODE (cc_reg) == mode)
6854 newreg = cc_reg;
6855 else
6856 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6857 }
6858 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6859 newreg);
6860 }
6861
0beb3d66 6862 delete_insn_and_edges (insns[i]);
e129d93a
ILT
6863 }
6864
6865 return mode;
6866}
6867
6868/* If we have a fixed condition code register (or two), walk through
6869 the instructions and try to eliminate duplicate assignments. */
6870
cab2264d 6871static void
e129d93a
ILT
6872cse_condition_code_reg (void)
6873{
6874 unsigned int cc_regno_1;
6875 unsigned int cc_regno_2;
6876 rtx cc_reg_1;
6877 rtx cc_reg_2;
6878 basic_block bb;
6879
5fd9b178 6880 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
6881 return;
6882
6883 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6884 if (cc_regno_2 != INVALID_REGNUM)
6885 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6886 else
6887 cc_reg_2 = NULL_RTX;
6888
6889 FOR_EACH_BB (bb)
6890 {
6891 rtx last_insn;
6892 rtx cc_reg;
6893 rtx insn;
6894 rtx cc_src_insn;
6895 rtx cc_src;
6896 enum machine_mode mode;
1f44254c 6897 enum machine_mode orig_mode;
e129d93a
ILT
6898
6899 /* Look for blocks which end with a conditional jump based on a
6900 condition code register. Then look for the instruction which
6901 sets the condition code register. Then look through the
6902 successor blocks for instructions which set the condition
6903 code register to the same value. There are other possible
6904 uses of the condition code register, but these are by far the
6905 most common and the ones which we are most likely to be able
6906 to optimize. */
6907
6908 last_insn = BB_END (bb);
4b4bf941 6909 if (!JUMP_P (last_insn))
e129d93a
ILT
6910 continue;
6911
6912 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6913 cc_reg = cc_reg_1;
6914 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6915 cc_reg = cc_reg_2;
6916 else
6917 continue;
6918
6919 cc_src_insn = NULL_RTX;
6920 cc_src = NULL_RTX;
6921 for (insn = PREV_INSN (last_insn);
6922 insn && insn != PREV_INSN (BB_HEAD (bb));
6923 insn = PREV_INSN (insn))
6924 {
6925 rtx set;
6926
6927 if (! INSN_P (insn))
6928 continue;
6929 set = single_set (insn);
6930 if (set
f8cfc6aa 6931 && REG_P (SET_DEST (set))
e129d93a
ILT
6932 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6933 {
6934 cc_src_insn = insn;
6935 cc_src = SET_SRC (set);
6936 break;
6937 }
6938 else if (reg_set_p (cc_reg, insn))
6939 break;
6940 }
6941
6942 if (! cc_src_insn)
6943 continue;
6944
6945 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6946 continue;
6947
6948 /* Now CC_REG is a condition code register used for a
6949 conditional jump at the end of the block, and CC_SRC, in
6950 CC_SRC_INSN, is the value to which that condition code
6951 register is set, and CC_SRC is still meaningful at the end of
6952 the basic block. */
6953
1f44254c 6954 orig_mode = GET_MODE (cc_src);
e129d93a 6955 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
1f44254c 6956 if (mode != VOIDmode)
e129d93a 6957 {
341c100f 6958 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 6959 if (mode != orig_mode)
2e802a6f
KH
6960 {
6961 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6962
fc188d37 6963 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
6964
6965 /* Do the same in the following insns that use the
6966 current value of CC_REG within BB. */
6967 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6968 NEXT_INSN (last_insn),
6969 newreg);
6970 }
e129d93a
ILT
6971 }
6972 }
6973}
ef330312
PB
6974\f
6975
6976/* Perform common subexpression elimination. Nonzero value from
6977 `cse_main' means that jumps were simplified and some code may now
6978 be unreachable, so do jump optimization again. */
6979static bool
6980gate_handle_cse (void)
6981{
6982 return optimize > 0;
6983}
6984
c2924966 6985static unsigned int
ef330312
PB
6986rest_of_handle_cse (void)
6987{
6988 int tem;
6fb5fa3c 6989
ef330312 6990 if (dump_file)
5b4fdb20 6991 dump_flow_info (dump_file, dump_flags);
ef330312 6992
10d22567 6993 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
6994
6995 /* If we are not running more CSE passes, then we are no longer
6996 expecting CSE to be run. But always rerun it in a cheap mode. */
6997 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6998
2aac3a01
EB
6999 if (tem == 2)
7000 {
7001 timevar_push (TV_JUMP);
7002 rebuild_jump_labels (get_insns ());
7003 cleanup_cfg (0);
7004 timevar_pop (TV_JUMP);
7005 }
7006 else if (tem == 1 || optimize > 1)
6fb5fa3c 7007 cleanup_cfg (0);
932ad4d9 7008
c2924966 7009 return 0;
ef330312
PB
7010}
7011
8ddbbcae 7012struct rtl_opt_pass pass_cse =
ef330312 7013{
8ddbbcae
JH
7014 {
7015 RTL_PASS,
ef330312
PB
7016 "cse1", /* name */
7017 gate_handle_cse, /* gate */
7018 rest_of_handle_cse, /* execute */
7019 NULL, /* sub */
7020 NULL, /* next */
7021 0, /* static_pass_number */
7022 TV_CSE, /* tv_id */
7023 0, /* properties_required */
7024 0, /* properties_provided */
7025 0, /* properties_destroyed */
7026 0, /* todo_flags_start */
a36b8a1e 7027 TODO_df_finish | TODO_verify_rtl_sharing |
ef330312 7028 TODO_dump_func |
932ad4d9
SB
7029 TODO_ggc_collect |
7030 TODO_verify_flow, /* todo_flags_finish */
8ddbbcae 7031 }
ef330312
PB
7032};
7033
7034
7035static bool
7036gate_handle_cse2 (void)
7037{
7038 return optimize > 0 && flag_rerun_cse_after_loop;
7039}
7040
7041/* Run second CSE pass after loop optimizations. */
c2924966 7042static unsigned int
ef330312
PB
7043rest_of_handle_cse2 (void)
7044{
7045 int tem;
7046
7047 if (dump_file)
5b4fdb20 7048 dump_flow_info (dump_file, dump_flags);
ef330312 7049
10d22567 7050 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7051
7052 /* Run a pass to eliminate duplicated assignments to condition code
7053 registers. We have to run this after bypass_jumps, because it
7054 makes it harder for that pass to determine whether a jump can be
7055 bypassed safely. */
7056 cse_condition_code_reg ();
7057
ef330312
PB
7058 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7059
2aac3a01 7060 if (tem == 2)
ef330312
PB
7061 {
7062 timevar_push (TV_JUMP);
7063 rebuild_jump_labels (get_insns ());
6fb5fa3c 7064 cleanup_cfg (0);
ef330312
PB
7065 timevar_pop (TV_JUMP);
7066 }
2aac3a01
EB
7067 else if (tem == 1)
7068 cleanup_cfg (0);
7069
ef330312 7070 cse_not_expected = 1;
c2924966 7071 return 0;
ef330312
PB
7072}
7073
7074
8ddbbcae 7075struct rtl_opt_pass pass_cse2 =
ef330312 7076{
8ddbbcae
JH
7077 {
7078 RTL_PASS,
ef330312
PB
7079 "cse2", /* name */
7080 gate_handle_cse2, /* gate */
7081 rest_of_handle_cse2, /* execute */
7082 NULL, /* sub */
7083 NULL, /* next */
7084 0, /* static_pass_number */
7085 TV_CSE2, /* tv_id */
7086 0, /* properties_required */
7087 0, /* properties_provided */
7088 0, /* properties_destroyed */
7089 0, /* todo_flags_start */
a36b8a1e 7090 TODO_df_finish | TODO_verify_rtl_sharing |
ef330312 7091 TODO_dump_func |
932ad4d9 7092 TODO_ggc_collect |
8ddbbcae
JH
7093 TODO_verify_flow /* todo_flags_finish */
7094 }
ef330312
PB
7095};
7096