]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
* gcse.c: Remove an obsolete comment.
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
5e7b4e25 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
ad616de1 3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
7afe21cc 4
1322177d 5This file is part of GCC.
7afe21cc 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
7afe21cc 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
7afe21cc
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
7afe21cc 21
7afe21cc 22#include "config.h"
670ee920
KG
23/* stdio.h must precede rtl.h for FFS. */
24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
7afe21cc 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
7afe21cc 29#include "hard-reg-set.h"
7932a3db 30#include "regs.h"
630c79be 31#include "basic-block.h"
7afe21cc
RK
32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
49ad7cfa 36#include "function.h"
956d6950 37#include "expr.h"
50b2596f
KG
38#include "toplev.h"
39#include "output.h"
1497faf6 40#include "ggc.h"
3dec4024 41#include "timevar.h"
26771da7 42#include "except.h"
3c50106f 43#include "target.h"
9bf8cfbf 44#include "params.h"
2f93eea8 45#include "rtlhooks-def.h"
7afe21cc
RK
46
47/* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
61
62 We use two data structures to record the equivalent expressions:
1bb98cec
DM
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75Registers and "quantity numbers":
278a83b2 76
7afe21cc
RK
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
459281be 83 `REG_QTY (N)' records what quantity register N is currently thought
7afe21cc
RK
84 of as containing.
85
08a69267 86 All real quantity numbers are greater than or equal to zero.
459281be 87 If register N has not been assigned a quantity, `REG_QTY (N)' will
08a69267 88 equal -N - 1, which is always negative.
7afe21cc 89
08a69267
RS
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
7afe21cc
RK
92
93 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
1bb98cec 102 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
278a83b2 109
7afe21cc
RK
110Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
1bb98cec 113 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
114 putting the constant in the hash table as is usual for non-regs.
115
d45cf215 116 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
7afe21cc
RK
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
1bb98cec 142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
459281be
KH
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
7afe21cc
RK
185
186 Registers themselves are entered in the hash table as well as in
459281be
KH
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
7afe21cc
RK
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
193
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
197
198Related expressions:
199
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
278a83b2 206
1bb98cec
DM
207/* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
7afe21cc
RK
209
210static int max_qty;
211
212/* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
214
215static int next_qty;
216
1bb98cec 217/* Per-qty information tracking.
7afe21cc 218
1bb98cec
DM
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
7afe21cc 221
1bb98cec 222 `mode' contains the machine mode of this quantity.
7afe21cc 223
1bb98cec
DM
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
7afe21cc 229
1bb98cec
DM
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
7afe21cc 241
1bb98cec
DM
242struct qty_table_elem
243{
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
770ae6cc 248 unsigned int first_reg, last_reg;
496324d0
DN
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
1bb98cec 253};
7afe21cc 254
1bb98cec
DM
255/* The table of all qtys, indexed by qty number. */
256static struct qty_table_elem *qty_table;
7afe21cc 257
fc188d37
AK
258/* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260struct change_cc_mode_args
261{
262 rtx insn;
263 rtx newreg;
264};
265
7afe21cc
RK
266#ifdef HAVE_cc0
267/* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
270
271 Instead, we store below the value last assigned to CC0. If it should
272 happen to be a constant, it is stored in preference to the actual
273 assigned value. In case it is a constant, we store the mode in which
274 the constant should be interpreted. */
275
276static rtx prev_insn_cc0;
277static enum machine_mode prev_insn_cc0_mode;
7afe21cc
RK
278
279/* Previous actual insn. 0 if at first insn of basic block. */
280
281static rtx prev_insn;
4977bab6 282#endif
7afe21cc
RK
283
284/* Insn being scanned. */
285
286static rtx this_insn;
287
71d306d1
DE
288/* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
7afe21cc
RK
290 value.
291
292 Or -1 if this register is at the end of the chain.
293
459281be 294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
1bb98cec
DM
295
296/* Per-register equivalence chain. */
297struct reg_eqv_elem
298{
299 int next, prev;
300};
7afe21cc 301
1bb98cec
DM
302/* The table of all register equivalence chains. */
303static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 304
14a774a9
RK
305struct cse_reg_info
306{
bc5e3b54
KH
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
9b1549b8
DM
309
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
312
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
316
30f72379
MM
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
46081bb3
SH
322
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 325 unsigned int subreg_ticked;
30f72379 326};
7afe21cc 327
bc5e3b54
KH
328/* A table of cse_reg_info indexed by register numbers. */
329struct cse_reg_info *cse_reg_info_table;
c1edba58 330
bc5e3b54
KH
331/* The size of the above table. */
332static unsigned int cse_reg_info_table_size;
9b1549b8 333
bc5e3b54
KH
334/* The index of the first entry that has not been initialized. */
335static unsigned int cse_reg_info_table_first_uninitialized;
7afe21cc 336
bc5e3b54 337/* The timestamp at the beginning of the current run of
0388d40a 338 cse_basic_block. We increment this variable at the beginning of
bc5e3b54
KH
339 the current run of cse_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_basic_block. */
343static unsigned int cse_reg_info_timestamp;
7afe21cc 344
278a83b2 345/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
349
350static HARD_REG_SET hard_regs_in_table;
351
7afe21cc
RK
352/* CUID of insn that starts the basic block currently being cse-processed. */
353
354static int cse_basic_block_start;
355
356/* CUID of insn that ends the basic block currently being cse-processed. */
357
358static int cse_basic_block_end;
359
360/* Vector mapping INSN_UIDs to cuids.
d45cf215 361 The cuids are like uids but increase monotonically always.
7afe21cc
RK
362 We use them to see whether a reg is used outside a given basic block. */
363
906c4e36 364static int *uid_cuid;
7afe21cc 365
164c8956
RK
366/* Highest UID in UID_CUID. */
367static int max_uid;
368
7afe21cc
RK
369/* Get the cuid of an insn. */
370
371#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
372
4eadede7
ZW
373/* Nonzero if this pass has made changes, and therefore it's
374 worthwhile to run the garbage collector. */
375
376static int cse_altered;
377
7afe21cc
RK
378/* Nonzero if cse has altered conditional jump insns
379 in such a way that jump optimization should be redone. */
380
381static int cse_jumps_altered;
382
f85cc4cb
RK
383/* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
384 REG_LABEL, we have to rerun jump after CSE to put in the note. */
a5dfb4ee
RK
385static int recorded_label_ref;
386
7afe21cc
RK
387/* canon_hash stores 1 in do_not_record
388 if it notices a reference to CC0, PC, or some other volatile
389 subexpression. */
390
391static int do_not_record;
392
393/* canon_hash stores 1 in hash_arg_in_memory
394 if it notices a reference to memory within the expression being hashed. */
395
396static int hash_arg_in_memory;
397
7afe21cc
RK
398/* The hash table contains buckets which are chains of `struct table_elt's,
399 each recording one expression's information.
400 That expression is in the `exp' field.
401
db048faf
MM
402 The canon_exp field contains a canonical (from the point of view of
403 alias analysis) version of the `exp' field.
404
7afe21cc
RK
405 Those elements with the same hash code are chained in both directions
406 through the `next_same_hash' and `prev_same_hash' fields.
407
408 Each set of expressions with equivalent values
409 are on a two-way chain through the `next_same_value'
410 and `prev_same_value' fields, and all point with
411 the `first_same_value' field at the first element in
412 that chain. The chain is in order of increasing cost.
413 Each element's cost value is in its `cost' field.
414
415 The `in_memory' field is nonzero for elements that
416 involve any reference to memory. These elements are removed
417 whenever a write is done to an unidentified location in memory.
418 To be safe, we assume that a memory address is unidentified unless
419 the address is either a symbol constant or a constant plus
420 the frame pointer or argument pointer.
421
7afe21cc
RK
422 The `related_value' field is used to connect related expressions
423 (that differ by adding an integer).
424 The related expressions are chained in a circular fashion.
425 `related_value' is zero for expressions for which this
426 chain is not useful.
427
428 The `cost' field stores the cost of this element's expression.
630c79be
BS
429 The `regcost' field stores the value returned by approx_reg_cost for
430 this element's expression.
7afe21cc
RK
431
432 The `is_const' flag is set if the element is a constant (including
433 a fixed address).
434
435 The `flag' field is used as a temporary during some search routines.
436
437 The `mode' field is usually the same as GET_MODE (`exp'), but
438 if `exp' is a CONST_INT and has no machine mode then the `mode'
439 field is the mode it was being used as. Each constant is
440 recorded separately for each mode it is used with. */
441
7afe21cc
RK
442struct table_elt
443{
444 rtx exp;
db048faf 445 rtx canon_exp;
7afe21cc
RK
446 struct table_elt *next_same_hash;
447 struct table_elt *prev_same_hash;
448 struct table_elt *next_same_value;
449 struct table_elt *prev_same_value;
450 struct table_elt *first_same_value;
451 struct table_elt *related_value;
452 int cost;
630c79be 453 int regcost;
496324d0
DN
454 /* The size of this field should match the size
455 of the mode field of struct rtx_def (see rtl.h). */
456 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc 457 char in_memory;
7afe21cc
RK
458 char is_const;
459 char flag;
460};
461
7afe21cc
RK
462/* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
9b1549b8
DM
465#define HASH_SHIFT 5
466#define HASH_SIZE (1 << HASH_SHIFT)
467#define HASH_MASK (HASH_SIZE - 1)
7afe21cc
RK
468
469/* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
471
472#define HASH(X, M) \
f8cfc6aa 473 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9b1549b8
DM
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
7afe21cc 476
0516f6fe
SB
477/* Like HASH, but without side-effects. */
478#define SAFE_HASH(X, M) \
479 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
480 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
481 : safe_hash (X, M)) & HASH_MASK)
482
630c79be
BS
483/* Determine whether register number N is considered a fixed register for the
484 purpose of approximating register costs.
7afe21cc
RK
485 It is desirable to replace other regs with fixed regs, to reduce need for
486 non-fixed hard regs.
553687c9 487 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 488#define FIXED_REGNO_P(N) \
8bc169f2 489 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 490 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
491
492/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
493 hard registers and pointers into the frame are the cheapest with a cost
494 of 0. Next come pseudos with a cost of one and other hard registers with
495 a cost of 2. Aside from these special cases, call `rtx_cost'. */
496
d67fb775
SB
497#define CHEAP_REGNO(N) \
498 (REGNO_PTR_FRAME_P(N) \
499 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 500 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 501
f8cfc6aa
JQ
502#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
503#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
7afe21cc 504
30f72379
MM
505/* Get the number of times this register has been updated in this
506 basic block. */
507
bc5e3b54 508#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
30f72379
MM
509
510/* Get the point at which REG was recorded in the table. */
511
bc5e3b54 512#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
30f72379 513
46081bb3
SH
514/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
515 SUBREG). */
516
bc5e3b54 517#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
46081bb3 518
30f72379
MM
519/* Get the quantity number for REG. */
520
bc5e3b54 521#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
30f72379 522
7afe21cc 523/* Determine if the quantity number for register X represents a valid index
1bb98cec 524 into the qty_table. */
7afe21cc 525
08a69267 526#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 527
9b1549b8 528static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
529
530/* Chain of `struct table_elt's made so far for this function
531 but currently removed from the table. */
532
533static struct table_elt *free_element_chain;
534
7afe21cc
RK
535/* Set to the cost of a constant pool reference if one was found for a
536 symbolic constant. If this was found, it means we should try to
537 convert constants into constant pool entries if they don't fit in
538 the insn. */
539
540static int constant_pool_entries_cost;
dd0ba281 541static int constant_pool_entries_regcost;
7afe21cc 542
6cd4575e
RK
543/* This data describes a block that will be processed by cse_basic_block. */
544
14a774a9
RK
545struct cse_basic_block_data
546{
6cd4575e
RK
547 /* Lowest CUID value of insns in block. */
548 int low_cuid;
549 /* Highest CUID value of insns in block. */
550 int high_cuid;
551 /* Total number of SETs in block. */
552 int nsets;
553 /* Last insn in the block. */
554 rtx last;
555 /* Size of current branch path, if any. */
556 int path_size;
557 /* Current branch path, indicating which branches will be taken. */
14a774a9
RK
558 struct branch_path
559 {
560 /* The branch insn. */
561 rtx branch;
562 /* Whether it should be taken or not. AROUND is the same as taken
563 except that it is used when the destination label is not preceded
6cd4575e 564 by a BARRIER. */
6de9cd9a 565 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
9bf8cfbf 566 } *path;
6cd4575e
RK
567};
568
7080f735
AJ
569static bool fixed_base_plus_p (rtx x);
570static int notreg_cost (rtx, enum rtx_code);
571static int approx_reg_cost_1 (rtx *, void *);
572static int approx_reg_cost (rtx);
56ae04af 573static int preferable (int, int, int, int);
7080f735
AJ
574static void new_basic_block (void);
575static void make_new_qty (unsigned int, enum machine_mode);
576static void make_regs_eqv (unsigned int, unsigned int);
577static void delete_reg_equiv (unsigned int);
578static int mention_regs (rtx);
579static int insert_regs (rtx, struct table_elt *, int);
580static void remove_from_table (struct table_elt *, unsigned);
581static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
582static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
583static rtx lookup_as_function (rtx, enum rtx_code);
584static struct table_elt *insert (rtx, struct table_elt *, unsigned,
585 enum machine_mode);
586static void merge_equiv_classes (struct table_elt *, struct table_elt *);
587static void invalidate (rtx, enum machine_mode);
588static int cse_rtx_varies_p (rtx, int);
589static void remove_invalid_refs (unsigned int);
590static void remove_invalid_subreg_refs (unsigned int, unsigned int,
591 enum machine_mode);
592static void rehash_using_reg (rtx);
593static void invalidate_memory (void);
594static void invalidate_for_call (void);
595static rtx use_related_value (rtx, struct table_elt *);
0516f6fe
SB
596
597static inline unsigned canon_hash (rtx, enum machine_mode);
598static inline unsigned safe_hash (rtx, enum machine_mode);
599static unsigned hash_rtx_string (const char *);
600
7080f735
AJ
601static rtx canon_reg (rtx, rtx);
602static void find_best_addr (rtx, rtx *, enum machine_mode);
603static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
604 enum machine_mode *,
605 enum machine_mode *);
606static rtx fold_rtx (rtx, rtx);
607static rtx equiv_constant (rtx);
608static void record_jump_equiv (rtx, int);
609static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
610 int);
611static void cse_insn (rtx, rtx);
86caf04d 612static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
5affca01 613 int, int);
7080f735
AJ
614static int addr_affects_sp_p (rtx);
615static void invalidate_from_clobbers (rtx);
616static rtx cse_process_notes (rtx, rtx);
7080f735
AJ
617static void invalidate_skipped_set (rtx, rtx, void *);
618static void invalidate_skipped_block (rtx);
5affca01 619static rtx cse_basic_block (rtx, rtx, struct branch_path *);
9ab81df2 620static void count_reg_usage (rtx, int *, int);
7080f735
AJ
621static int check_for_label_ref (rtx *, void *);
622extern void dump_class (struct table_elt*);
bc5e3b54
KH
623static void get_cse_reg_info_1 (unsigned int regno);
624static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
7080f735
AJ
625static int check_dependence (rtx *, void *);
626
627static void flush_hash_table (void);
628static bool insn_live_p (rtx, int *);
629static bool set_live_p (rtx, rtx, int *);
630static bool dead_libcall_p (rtx, int *);
e129d93a 631static int cse_change_cc_mode (rtx *, void *);
fc188d37 632static void cse_change_cc_mode_insn (rtx, rtx);
e129d93a
ILT
633static void cse_change_cc_mode_insns (rtx, rtx, rtx);
634static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
7afe21cc 635\f
2f93eea8
PB
636
637#undef RTL_HOOKS_GEN_LOWPART
638#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
639
640static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
641\f
4977bab6
ZW
642/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
643 virtual regs here because the simplify_*_operation routines are called
644 by integrate.c, which is called before virtual register instantiation. */
645
646static bool
7080f735 647fixed_base_plus_p (rtx x)
4977bab6
ZW
648{
649 switch (GET_CODE (x))
650 {
651 case REG:
652 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
653 return true;
654 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
655 return true;
656 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
657 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
658 return true;
659 return false;
660
661 case PLUS:
662 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
663 return false;
664 return fixed_base_plus_p (XEXP (x, 0));
665
4977bab6
ZW
666 default:
667 return false;
668 }
669}
670
a4c6502a
MM
671/* Dump the expressions in the equivalence class indicated by CLASSP.
672 This function is used only for debugging. */
a0153051 673void
7080f735 674dump_class (struct table_elt *classp)
a4c6502a
MM
675{
676 struct table_elt *elt;
677
678 fprintf (stderr, "Equivalence chain for ");
679 print_rtl (stderr, classp->exp);
680 fprintf (stderr, ": \n");
278a83b2 681
a4c6502a
MM
682 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
683 {
684 print_rtl (stderr, elt->exp);
685 fprintf (stderr, "\n");
686 }
687}
688
630c79be 689/* Subroutine of approx_reg_cost; called through for_each_rtx. */
be8ac49a 690
630c79be 691static int
7080f735 692approx_reg_cost_1 (rtx *xp, void *data)
630c79be
BS
693{
694 rtx x = *xp;
c863f8c2 695 int *cost_p = data;
630c79be 696
f8cfc6aa 697 if (x && REG_P (x))
c863f8c2
DM
698 {
699 unsigned int regno = REGNO (x);
700
701 if (! CHEAP_REGNO (regno))
702 {
703 if (regno < FIRST_PSEUDO_REGISTER)
704 {
705 if (SMALL_REGISTER_CLASSES)
706 return 1;
707 *cost_p += 2;
708 }
709 else
710 *cost_p += 1;
711 }
712 }
713
630c79be
BS
714 return 0;
715}
716
717/* Return an estimate of the cost of the registers used in an rtx.
718 This is mostly the number of different REG expressions in the rtx;
a1f300c0 719 however for some exceptions like fixed registers we use a cost of
f1c1dfc3 720 0. If any other hard register reference occurs, return MAX_COST. */
630c79be
BS
721
722static int
7080f735 723approx_reg_cost (rtx x)
630c79be 724{
630c79be 725 int cost = 0;
f1c1dfc3 726
c863f8c2
DM
727 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
728 return MAX_COST;
630c79be 729
c863f8c2 730 return cost;
630c79be
BS
731}
732
b7ca416f 733/* Returns a canonical version of X for the address, from the point of view,
6668f6a7
KH
734 that all multiplications are represented as MULT instead of the multiply
735 by a power of 2 being represented as ASHIFT. */
b7ca416f
AP
736
737static rtx
738canon_for_address (rtx x)
739{
740 enum rtx_code code;
741 enum machine_mode mode;
742 rtx new = 0;
743 int i;
744 const char *fmt;
745
746 if (!x)
747 return x;
748
749 code = GET_CODE (x);
750 mode = GET_MODE (x);
751
752 switch (code)
753 {
754 case ASHIFT:
755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
756 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
757 && INTVAL (XEXP (x, 1)) >= 0)
758 {
759 new = canon_for_address (XEXP (x, 0));
760 new = gen_rtx_MULT (mode, new,
761 gen_int_mode ((HOST_WIDE_INT) 1
762 << INTVAL (XEXP (x, 1)),
763 mode));
764 }
765 break;
766 default:
767 break;
768
769 }
770 if (new)
771 return new;
772
773 /* Now recursively process each operand of this operation. */
774 fmt = GET_RTX_FORMAT (code);
775 for (i = 0; i < GET_RTX_LENGTH (code); i++)
776 if (fmt[i] == 'e')
777 {
778 new = canon_for_address (XEXP (x, i));
779 XEXP (x, i) = new;
780 }
781 return x;
782}
783
630c79be
BS
784/* Return a negative value if an rtx A, whose costs are given by COST_A
785 and REGCOST_A, is more desirable than an rtx B.
786 Return a positive value if A is less desirable, or 0 if the two are
787 equally good. */
788static int
56ae04af 789preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 790{
423adbb9 791 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
792 unwanted. */
793 if (cost_a != cost_b)
794 {
795 if (cost_a == MAX_COST)
796 return 1;
797 if (cost_b == MAX_COST)
798 return -1;
799 }
800
801 /* Avoid extending lifetimes of hardregs. */
802 if (regcost_a != regcost_b)
803 {
804 if (regcost_a == MAX_COST)
805 return 1;
806 if (regcost_b == MAX_COST)
807 return -1;
808 }
809
810 /* Normal operation costs take precedence. */
630c79be
BS
811 if (cost_a != cost_b)
812 return cost_a - cost_b;
f1c1dfc3 813 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
814 if (regcost_a != regcost_b)
815 return regcost_a - regcost_b;
816 return 0;
817}
818
954a5693
RK
819/* Internal function, to compute cost when X is not a register; called
820 from COST macro to keep it simple. */
821
822static int
7080f735 823notreg_cost (rtx x, enum rtx_code outer)
954a5693
RK
824{
825 return ((GET_CODE (x) == SUBREG
f8cfc6aa 826 && REG_P (SUBREG_REG (x))
954a5693
RK
827 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
828 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
829 && (GET_MODE_SIZE (GET_MODE (x))
830 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
831 && subreg_lowpart_p (x)
832 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
833 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
630c79be 834 ? 0
f2fa288f 835 : rtx_cost (x, outer) * 2);
954a5693
RK
836}
837
01329426 838\f
bc5e3b54 839/* Initialize CSE_REG_INFO_TABLE. */
9b1549b8 840
bc5e3b54
KH
841static void
842init_cse_reg_info (unsigned int nregs)
843{
844 /* Do we need to grow the table? */
845 if (nregs > cse_reg_info_table_size)
30f72379 846 {
bc5e3b54
KH
847 unsigned int new_size;
848
849 if (cse_reg_info_table_size < 2048)
30f72379 850 {
bc5e3b54
KH
851 /* Compute a new size that is a power of 2 and no smaller
852 than the large of NREGS and 64. */
853 new_size = (cse_reg_info_table_size
854 ? cse_reg_info_table_size : 64);
855
856 while (new_size < nregs)
857 new_size *= 2;
30f72379
MM
858 }
859 else
1590d0d4 860 {
bc5e3b54
KH
861 /* If we need a big table, allocate just enough to hold
862 NREGS registers. */
863 new_size = nregs;
1590d0d4 864 }
9b1549b8 865
bc5e3b54
KH
866 /* Reallocate the table with NEW_SIZE entries. */
867 cse_reg_info_table = xrealloc (cse_reg_info_table,
868 (sizeof (struct cse_reg_info)
869 * new_size));
870 cse_reg_info_table_size = new_size;
871 }
872
873 /* Do we have all of the first NREGS entries initialized? */
874 if (cse_reg_info_table_first_uninitialized < nregs)
875 {
876 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
877 unsigned int i;
878
879 /* Put the old timestamp on newly allocated entries so that they
880 will all be considered out of date. We do not touch those
881 entries beyond the first NREGS entries to be nice to the
882 virtual memory. */
883 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
884 cse_reg_info_table[i].timestamp = old_timestamp;
30f72379 885
bc5e3b54 886 cse_reg_info_table_first_uninitialized = nregs;
30f72379 887 }
bc5e3b54
KH
888}
889
a52aff23 890/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
bc5e3b54
KH
891
892static void
893get_cse_reg_info_1 (unsigned int regno)
894{
895 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
896 entry will be considered to have been initialized. */
897 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
898
899 /* Initialize the rest of the entry. */
900 cse_reg_info_table[regno].reg_tick = 1;
901 cse_reg_info_table[regno].reg_in_table = -1;
902 cse_reg_info_table[regno].subreg_ticked = -1;
903 cse_reg_info_table[regno].reg_qty = -regno - 1;
904}
905
906/* Find a cse_reg_info entry for REGNO. */
30f72379 907
bc5e3b54
KH
908static inline struct cse_reg_info *
909get_cse_reg_info (unsigned int regno)
910{
911 struct cse_reg_info *p = &cse_reg_info_table[regno];
912
782c0a3e
KH
913 /* If this entry has not been initialized, go ahead and initialize
914 it. */
bc5e3b54
KH
915 if (p->timestamp != cse_reg_info_timestamp)
916 get_cse_reg_info_1 (regno);
30f72379 917
9b1549b8 918 return p;
30f72379
MM
919}
920
7afe21cc
RK
921/* Clear the hash table and initialize each register with its own quantity,
922 for a new basic block. */
923
924static void
7080f735 925new_basic_block (void)
7afe21cc 926{
b3694847 927 int i;
7afe21cc 928
08a69267 929 next_qty = 0;
7afe21cc 930
a52aff23 931 /* Invalidate cse_reg_info_table. */
bc5e3b54 932 cse_reg_info_timestamp++;
7afe21cc 933
bc5e3b54 934 /* Clear out hash table state for this pass. */
7afe21cc
RK
935 CLEAR_HARD_REG_SET (hard_regs_in_table);
936
937 /* The per-quantity values used to be initialized here, but it is
938 much faster to initialize each as it is made in `make_new_qty'. */
939
9b1549b8 940 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 941 {
9b1549b8
DM
942 struct table_elt *first;
943
944 first = table[i];
945 if (first != NULL)
7afe21cc 946 {
9b1549b8
DM
947 struct table_elt *last = first;
948
949 table[i] = NULL;
950
951 while (last->next_same_hash != NULL)
952 last = last->next_same_hash;
953
954 /* Now relink this hash entire chain into
955 the free element list. */
956
957 last->next_same_hash = free_element_chain;
958 free_element_chain = first;
7afe21cc
RK
959 }
960 }
961
7afe21cc 962#ifdef HAVE_cc0
4977bab6 963 prev_insn = 0;
7afe21cc
RK
964 prev_insn_cc0 = 0;
965#endif
966}
967
1bb98cec
DM
968/* Say that register REG contains a quantity in mode MODE not in any
969 register before and initialize that quantity. */
7afe21cc
RK
970
971static void
7080f735 972make_new_qty (unsigned int reg, enum machine_mode mode)
7afe21cc 973{
b3694847
SS
974 int q;
975 struct qty_table_elem *ent;
976 struct reg_eqv_elem *eqv;
7afe21cc 977
341c100f 978 gcc_assert (next_qty < max_qty);
7afe21cc 979
30f72379 980 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
981 ent = &qty_table[q];
982 ent->first_reg = reg;
983 ent->last_reg = reg;
984 ent->mode = mode;
985 ent->const_rtx = ent->const_insn = NULL_RTX;
986 ent->comparison_code = UNKNOWN;
987
988 eqv = &reg_eqv_table[reg];
989 eqv->next = eqv->prev = -1;
7afe21cc
RK
990}
991
992/* Make reg NEW equivalent to reg OLD.
993 OLD is not changing; NEW is. */
994
995static void
7080f735 996make_regs_eqv (unsigned int new, unsigned int old)
7afe21cc 997{
770ae6cc
RK
998 unsigned int lastr, firstr;
999 int q = REG_QTY (old);
1000 struct qty_table_elem *ent;
1bb98cec
DM
1001
1002 ent = &qty_table[q];
7afe21cc
RK
1003
1004 /* Nothing should become eqv until it has a "non-invalid" qty number. */
341c100f 1005 gcc_assert (REGNO_QTY_VALID_P (old));
7afe21cc 1006
30f72379 1007 REG_QTY (new) = q;
1bb98cec
DM
1008 firstr = ent->first_reg;
1009 lastr = ent->last_reg;
7afe21cc
RK
1010
1011 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1012 hard regs. Among pseudos, if NEW will live longer than any other reg
1013 of the same qty, and that is beyond the current basic block,
1014 make it the new canonical replacement for this qty. */
1015 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1016 /* Certain fixed registers might be of the class NO_REGS. This means
1017 that not only can they not be allocated by the compiler, but
830a38ee 1018 they cannot be used in substitutions or canonicalizations
7afe21cc
RK
1019 either. */
1020 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1021 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1022 || (new >= FIRST_PSEUDO_REGISTER
1023 && (firstr < FIRST_PSEUDO_REGISTER
b1f21e0a
MM
1024 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1025 || (uid_cuid[REGNO_FIRST_UID (new)]
7afe21cc 1026 < cse_basic_block_start))
b1f21e0a
MM
1027 && (uid_cuid[REGNO_LAST_UID (new)]
1028 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
7afe21cc 1029 {
1bb98cec
DM
1030 reg_eqv_table[firstr].prev = new;
1031 reg_eqv_table[new].next = firstr;
1032 reg_eqv_table[new].prev = -1;
1033 ent->first_reg = new;
7afe21cc
RK
1034 }
1035 else
1036 {
1037 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1038 Otherwise, insert before any non-fixed hard regs that are at the
1039 end. Registers of class NO_REGS cannot be used as an
1040 equivalent for anything. */
1bb98cec 1041 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc
RK
1042 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1043 && new >= FIRST_PSEUDO_REGISTER)
1bb98cec
DM
1044 lastr = reg_eqv_table[lastr].prev;
1045 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1046 if (reg_eqv_table[lastr].next >= 0)
1047 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
7afe21cc 1048 else
1bb98cec
DM
1049 qty_table[q].last_reg = new;
1050 reg_eqv_table[lastr].next = new;
1051 reg_eqv_table[new].prev = lastr;
7afe21cc
RK
1052 }
1053}
1054
1055/* Remove REG from its equivalence class. */
1056
1057static void
7080f735 1058delete_reg_equiv (unsigned int reg)
7afe21cc 1059{
b3694847
SS
1060 struct qty_table_elem *ent;
1061 int q = REG_QTY (reg);
1062 int p, n;
7afe21cc 1063
a4e262bc 1064 /* If invalid, do nothing. */
08a69267 1065 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
1066 return;
1067
1bb98cec
DM
1068 ent = &qty_table[q];
1069
1070 p = reg_eqv_table[reg].prev;
1071 n = reg_eqv_table[reg].next;
a4e262bc 1072
7afe21cc 1073 if (n != -1)
1bb98cec 1074 reg_eqv_table[n].prev = p;
7afe21cc 1075 else
1bb98cec 1076 ent->last_reg = p;
7afe21cc 1077 if (p != -1)
1bb98cec 1078 reg_eqv_table[p].next = n;
7afe21cc 1079 else
1bb98cec 1080 ent->first_reg = n;
7afe21cc 1081
08a69267 1082 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
1083}
1084
1085/* Remove any invalid expressions from the hash table
1086 that refer to any of the registers contained in expression X.
1087
1088 Make sure that newly inserted references to those registers
1089 as subexpressions will be considered valid.
1090
1091 mention_regs is not called when a register itself
1092 is being stored in the table.
1093
1094 Return 1 if we have done something that may have changed the hash code
1095 of X. */
1096
1097static int
7080f735 1098mention_regs (rtx x)
7afe21cc 1099{
b3694847
SS
1100 enum rtx_code code;
1101 int i, j;
1102 const char *fmt;
1103 int changed = 0;
7afe21cc
RK
1104
1105 if (x == 0)
e5f6a288 1106 return 0;
7afe21cc
RK
1107
1108 code = GET_CODE (x);
1109 if (code == REG)
1110 {
770ae6cc
RK
1111 unsigned int regno = REGNO (x);
1112 unsigned int endregno
7afe21cc 1113 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6 1114 : hard_regno_nregs[regno][GET_MODE (x)]);
770ae6cc 1115 unsigned int i;
7afe21cc
RK
1116
1117 for (i = regno; i < endregno; i++)
1118 {
30f72379 1119 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1120 remove_invalid_refs (i);
1121
30f72379 1122 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 1123 SUBREG_TICKED (i) = -1;
7afe21cc
RK
1124 }
1125
1126 return 0;
1127 }
1128
34c73909
R
1129 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1130 pseudo if they don't use overlapping words. We handle only pseudos
1131 here for simplicity. */
f8cfc6aa 1132 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1133 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1134 {
770ae6cc 1135 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1136
30f72379 1137 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1138 {
46081bb3
SH
1139 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1140 the last store to this register really stored into this
1141 subreg, then remove the memory of this subreg.
1142 Otherwise, remove any memory of the entire register and
1143 all its subregs from the table. */
1144 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1145 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1146 remove_invalid_refs (i);
1147 else
ddef6bc7 1148 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1149 }
1150
30f72379 1151 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1152 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
34c73909
R
1153 return 0;
1154 }
1155
7afe21cc
RK
1156 /* If X is a comparison or a COMPARE and either operand is a register
1157 that does not have a quantity, give it one. This is so that a later
1158 call to record_jump_equiv won't cause X to be assigned a different
1159 hash code and not found in the table after that call.
1160
1161 It is not necessary to do this here, since rehash_using_reg can
1162 fix up the table later, but doing this here eliminates the need to
1163 call that expensive function in the most common case where the only
1164 use of the register is in the comparison. */
1165
ec8e098d 1166 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1167 {
f8cfc6aa 1168 if (REG_P (XEXP (x, 0))
7afe21cc 1169 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
9714cf43 1170 if (insert_regs (XEXP (x, 0), NULL, 0))
7afe21cc
RK
1171 {
1172 rehash_using_reg (XEXP (x, 0));
1173 changed = 1;
1174 }
1175
f8cfc6aa 1176 if (REG_P (XEXP (x, 1))
7afe21cc 1177 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
9714cf43 1178 if (insert_regs (XEXP (x, 1), NULL, 0))
7afe21cc
RK
1179 {
1180 rehash_using_reg (XEXP (x, 1));
1181 changed = 1;
1182 }
1183 }
1184
1185 fmt = GET_RTX_FORMAT (code);
1186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1187 if (fmt[i] == 'e')
1188 changed |= mention_regs (XEXP (x, i));
1189 else if (fmt[i] == 'E')
1190 for (j = 0; j < XVECLEN (x, i); j++)
1191 changed |= mention_regs (XVECEXP (x, i, j));
1192
1193 return changed;
1194}
1195
1196/* Update the register quantities for inserting X into the hash table
1197 with a value equivalent to CLASSP.
1198 (If the class does not contain a REG, it is irrelevant.)
1199 If MODIFIED is nonzero, X is a destination; it is being modified.
1200 Note that delete_reg_equiv should be called on a register
1201 before insert_regs is done on that register with MODIFIED != 0.
1202
1203 Nonzero value means that elements of reg_qty have changed
1204 so X's hash code may be different. */
1205
1206static int
7080f735 1207insert_regs (rtx x, struct table_elt *classp, int modified)
7afe21cc 1208{
f8cfc6aa 1209 if (REG_P (x))
7afe21cc 1210 {
770ae6cc
RK
1211 unsigned int regno = REGNO (x);
1212 int qty_valid;
7afe21cc 1213
1ff0c00d
RK
1214 /* If REGNO is in the equivalence table already but is of the
1215 wrong mode for that equivalence, don't do anything here. */
1216
1bb98cec
DM
1217 qty_valid = REGNO_QTY_VALID_P (regno);
1218 if (qty_valid)
1219 {
1220 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1221
1bb98cec
DM
1222 if (ent->mode != GET_MODE (x))
1223 return 0;
1224 }
1225
1226 if (modified || ! qty_valid)
7afe21cc
RK
1227 {
1228 if (classp)
1229 for (classp = classp->first_same_value;
1230 classp != 0;
1231 classp = classp->next_same_value)
f8cfc6aa 1232 if (REG_P (classp->exp)
7afe21cc
RK
1233 && GET_MODE (classp->exp) == GET_MODE (x))
1234 {
1235 make_regs_eqv (regno, REGNO (classp->exp));
1236 return 1;
1237 }
1238
d9f20424
R
1239 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1240 than REG_IN_TABLE to find out if there was only a single preceding
1241 invalidation - for the SUBREG - or another one, which would be
1242 for the full register. However, if we find here that REG_TICK
1243 indicates that the register is invalid, it means that it has
1244 been invalidated in a separate operation. The SUBREG might be used
1245 now (then this is a recursive call), or we might use the full REG
1246 now and a SUBREG of it later. So bump up REG_TICK so that
1247 mention_regs will do the right thing. */
1248 if (! modified
1249 && REG_IN_TABLE (regno) >= 0
1250 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1251 REG_TICK (regno)++;
1bb98cec 1252 make_new_qty (regno, GET_MODE (x));
7afe21cc
RK
1253 return 1;
1254 }
cdf4112f
TG
1255
1256 return 0;
7afe21cc 1257 }
c610adec
RK
1258
1259 /* If X is a SUBREG, we will likely be inserting the inner register in the
1260 table. If that register doesn't have an assigned quantity number at
1261 this point but does later, the insertion that we will be doing now will
1262 not be accessible because its hash code will have changed. So assign
1263 a quantity number now. */
1264
f8cfc6aa 1265 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1266 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1267 {
9714cf43 1268 insert_regs (SUBREG_REG (x), NULL, 0);
34c73909 1269 mention_regs (x);
c610adec
RK
1270 return 1;
1271 }
7afe21cc
RK
1272 else
1273 return mention_regs (x);
1274}
1275\f
1276/* Look in or update the hash table. */
1277
7afe21cc
RK
1278/* Remove table element ELT from use in the table.
1279 HASH is its hash code, made using the HASH macro.
1280 It's an argument because often that is known in advance
1281 and we save much time not recomputing it. */
1282
1283static void
7080f735 1284remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1285{
1286 if (elt == 0)
1287 return;
1288
1289 /* Mark this element as removed. See cse_insn. */
1290 elt->first_same_value = 0;
1291
1292 /* Remove the table element from its equivalence class. */
278a83b2 1293
7afe21cc 1294 {
b3694847
SS
1295 struct table_elt *prev = elt->prev_same_value;
1296 struct table_elt *next = elt->next_same_value;
7afe21cc 1297
278a83b2
KH
1298 if (next)
1299 next->prev_same_value = prev;
7afe21cc
RK
1300
1301 if (prev)
1302 prev->next_same_value = next;
1303 else
1304 {
b3694847 1305 struct table_elt *newfirst = next;
7afe21cc
RK
1306 while (next)
1307 {
1308 next->first_same_value = newfirst;
1309 next = next->next_same_value;
1310 }
1311 }
1312 }
1313
1314 /* Remove the table element from its hash bucket. */
1315
1316 {
b3694847
SS
1317 struct table_elt *prev = elt->prev_same_hash;
1318 struct table_elt *next = elt->next_same_hash;
7afe21cc 1319
278a83b2
KH
1320 if (next)
1321 next->prev_same_hash = prev;
7afe21cc
RK
1322
1323 if (prev)
1324 prev->next_same_hash = next;
1325 else if (table[hash] == elt)
1326 table[hash] = next;
1327 else
1328 {
1329 /* This entry is not in the proper hash bucket. This can happen
1330 when two classes were merged by `merge_equiv_classes'. Search
1331 for the hash bucket that it heads. This happens only very
1332 rarely, so the cost is acceptable. */
9b1549b8 1333 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1334 if (table[hash] == elt)
1335 table[hash] = next;
1336 }
1337 }
1338
1339 /* Remove the table element from its related-value circular chain. */
1340
1341 if (elt->related_value != 0 && elt->related_value != elt)
1342 {
b3694847 1343 struct table_elt *p = elt->related_value;
770ae6cc 1344
7afe21cc
RK
1345 while (p->related_value != elt)
1346 p = p->related_value;
1347 p->related_value = elt->related_value;
1348 if (p->related_value == p)
1349 p->related_value = 0;
1350 }
1351
9b1549b8
DM
1352 /* Now add it to the free element chain. */
1353 elt->next_same_hash = free_element_chain;
1354 free_element_chain = elt;
7afe21cc
RK
1355}
1356
1357/* Look up X in the hash table and return its table element,
1358 or 0 if X is not in the table.
1359
1360 MODE is the machine-mode of X, or if X is an integer constant
1361 with VOIDmode then MODE is the mode with which X will be used.
1362
1363 Here we are satisfied to find an expression whose tree structure
1364 looks like X. */
1365
1366static struct table_elt *
7080f735 1367lookup (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1368{
b3694847 1369 struct table_elt *p;
7afe21cc
RK
1370
1371 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1372 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1373 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1374 return p;
1375
1376 return 0;
1377}
1378
1379/* Like `lookup' but don't care whether the table element uses invalid regs.
1380 Also ignore discrepancies in the machine mode of a register. */
1381
1382static struct table_elt *
7080f735 1383lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
7afe21cc 1384{
b3694847 1385 struct table_elt *p;
7afe21cc 1386
f8cfc6aa 1387 if (REG_P (x))
7afe21cc 1388 {
770ae6cc
RK
1389 unsigned int regno = REGNO (x);
1390
7afe21cc
RK
1391 /* Don't check the machine mode when comparing registers;
1392 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1393 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1394 if (REG_P (p->exp)
7afe21cc
RK
1395 && REGNO (p->exp) == regno)
1396 return p;
1397 }
1398 else
1399 {
1400 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1401 if (mode == p->mode
1402 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1403 return p;
1404 }
1405
1406 return 0;
1407}
1408
1409/* Look for an expression equivalent to X and with code CODE.
1410 If one is found, return that expression. */
1411
1412static rtx
7080f735 1413lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1414{
b3694847 1415 struct table_elt *p
0516f6fe 1416 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1417
34c73909
R
1418 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1419 long as we are narrowing. So if we looked in vain for a mode narrower
1420 than word_mode before, look for word_mode now. */
1421 if (p == 0 && code == CONST_INT
1422 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1423 {
1424 x = copy_rtx (x);
1425 PUT_MODE (x, word_mode);
0516f6fe 1426 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
34c73909
R
1427 }
1428
7afe21cc
RK
1429 if (p == 0)
1430 return 0;
1431
1432 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1433 if (GET_CODE (p->exp) == code
1434 /* Make sure this is a valid entry in the table. */
0516f6fe 1435 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1436 return p->exp;
278a83b2 1437
7afe21cc
RK
1438 return 0;
1439}
1440
1441/* Insert X in the hash table, assuming HASH is its hash code
1442 and CLASSP is an element of the class it should go in
1443 (or 0 if a new class should be made).
1444 It is inserted at the proper position to keep the class in
1445 the order cheapest first.
1446
1447 MODE is the machine-mode of X, or if X is an integer constant
1448 with VOIDmode then MODE is the mode with which X will be used.
1449
1450 For elements of equal cheapness, the most recent one
1451 goes in front, except that the first element in the list
1452 remains first unless a cheaper element is added. The order of
1453 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1454 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1455
1456 The in_memory field in the hash table element is set to 0.
1457 The caller must set it nonzero if appropriate.
1458
1459 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1460 and if insert_regs returns a nonzero value
1461 you must then recompute its hash code before calling here.
1462
1463 If necessary, update table showing constant values of quantities. */
1464
630c79be 1465#define CHEAPER(X, Y) \
56ae04af 1466 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
7afe21cc
RK
1467
1468static struct table_elt *
7080f735 1469insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
7afe21cc 1470{
b3694847 1471 struct table_elt *elt;
7afe21cc
RK
1472
1473 /* If X is a register and we haven't made a quantity for it,
1474 something is wrong. */
341c100f 1475 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1476
1477 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1478 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7afe21cc 1479 {
770ae6cc 1480 unsigned int regno = REGNO (x);
66fd46b6 1481 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 1482 unsigned int i;
7afe21cc
RK
1483
1484 for (i = regno; i < endregno; i++)
770ae6cc 1485 SET_HARD_REG_BIT (hard_regs_in_table, i);
7afe21cc
RK
1486 }
1487
7afe21cc
RK
1488 /* Put an element for X into the right hash bucket. */
1489
9b1549b8
DM
1490 elt = free_element_chain;
1491 if (elt)
770ae6cc 1492 free_element_chain = elt->next_same_hash;
9b1549b8 1493 else
26af0046 1494 elt = xmalloc (sizeof (struct table_elt));
9b1549b8 1495
7afe21cc 1496 elt->exp = x;
db048faf 1497 elt->canon_exp = NULL_RTX;
7afe21cc 1498 elt->cost = COST (x);
630c79be 1499 elt->regcost = approx_reg_cost (x);
7afe21cc
RK
1500 elt->next_same_value = 0;
1501 elt->prev_same_value = 0;
1502 elt->next_same_hash = table[hash];
1503 elt->prev_same_hash = 0;
1504 elt->related_value = 0;
1505 elt->in_memory = 0;
1506 elt->mode = mode;
389fdba0 1507 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1508
1509 if (table[hash])
1510 table[hash]->prev_same_hash = elt;
1511 table[hash] = elt;
1512
1513 /* Put it into the proper value-class. */
1514 if (classp)
1515 {
1516 classp = classp->first_same_value;
1517 if (CHEAPER (elt, classp))
f9da5064 1518 /* Insert at the head of the class. */
7afe21cc 1519 {
b3694847 1520 struct table_elt *p;
7afe21cc
RK
1521 elt->next_same_value = classp;
1522 classp->prev_same_value = elt;
1523 elt->first_same_value = elt;
1524
1525 for (p = classp; p; p = p->next_same_value)
1526 p->first_same_value = elt;
1527 }
1528 else
1529 {
1530 /* Insert not at head of the class. */
1531 /* Put it after the last element cheaper than X. */
b3694847 1532 struct table_elt *p, *next;
770ae6cc 1533
7afe21cc
RK
1534 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1535 p = next);
770ae6cc 1536
7afe21cc
RK
1537 /* Put it after P and before NEXT. */
1538 elt->next_same_value = next;
1539 if (next)
1540 next->prev_same_value = elt;
770ae6cc 1541
7afe21cc
RK
1542 elt->prev_same_value = p;
1543 p->next_same_value = elt;
1544 elt->first_same_value = classp;
1545 }
1546 }
1547 else
1548 elt->first_same_value = elt;
1549
1550 /* If this is a constant being set equivalent to a register or a register
1551 being set equivalent to a constant, note the constant equivalence.
1552
1553 If this is a constant, it cannot be equivalent to a different constant,
1554 and a constant is the only thing that can be cheaper than a register. So
1555 we know the register is the head of the class (before the constant was
1556 inserted).
1557
1558 If this is a register that is not already known equivalent to a
1559 constant, we must check the entire class.
1560
1561 If this is a register that is already known equivalent to an insn,
1bb98cec 1562 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1563 insn making that quantity equivalent to the constant. */
1564
f8cfc6aa
JQ
1565 if (elt->is_const && classp && REG_P (classp->exp)
1566 && !REG_P (x))
7afe21cc 1567 {
1bb98cec
DM
1568 int exp_q = REG_QTY (REGNO (classp->exp));
1569 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1570
4de249d9 1571 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1572 exp_ent->const_insn = this_insn;
7afe21cc
RK
1573 }
1574
f8cfc6aa 1575 else if (REG_P (x)
1bb98cec
DM
1576 && classp
1577 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1578 && ! elt->is_const)
7afe21cc 1579 {
b3694847 1580 struct table_elt *p;
7afe21cc
RK
1581
1582 for (p = classp; p != 0; p = p->next_same_value)
1583 {
f8cfc6aa 1584 if (p->is_const && !REG_P (p->exp))
7afe21cc 1585 {
1bb98cec
DM
1586 int x_q = REG_QTY (REGNO (x));
1587 struct qty_table_elem *x_ent = &qty_table[x_q];
1588
770ae6cc 1589 x_ent->const_rtx
4de249d9 1590 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1591 x_ent->const_insn = this_insn;
7afe21cc
RK
1592 break;
1593 }
1594 }
1595 }
1596
f8cfc6aa 1597 else if (REG_P (x)
1bb98cec
DM
1598 && qty_table[REG_QTY (REGNO (x))].const_rtx
1599 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1600 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1601
1602 /* If this is a constant with symbolic value,
1603 and it has a term with an explicit integer value,
1604 link it up with related expressions. */
1605 if (GET_CODE (x) == CONST)
1606 {
1607 rtx subexp = get_related_value (x);
2197a88a 1608 unsigned subhash;
7afe21cc
RK
1609 struct table_elt *subelt, *subelt_prev;
1610
1611 if (subexp != 0)
1612 {
1613 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1614 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1615 subelt = lookup (subexp, subhash, mode);
1616 if (subelt == 0)
9714cf43 1617 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1618 /* Initialize SUBELT's circular chain if it has none. */
1619 if (subelt->related_value == 0)
1620 subelt->related_value = subelt;
1621 /* Find the element in the circular chain that precedes SUBELT. */
1622 subelt_prev = subelt;
1623 while (subelt_prev->related_value != subelt)
1624 subelt_prev = subelt_prev->related_value;
1625 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1626 This way the element that follows SUBELT is the oldest one. */
1627 elt->related_value = subelt_prev->related_value;
1628 subelt_prev->related_value = elt;
1629 }
1630 }
1631
1632 return elt;
1633}
1634\f
1635/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1636 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1637 the two classes equivalent.
1638
1639 CLASS1 will be the surviving class; CLASS2 should not be used after this
1640 call.
1641
1642 Any invalid entries in CLASS2 will not be copied. */
1643
1644static void
7080f735 1645merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc
RK
1646{
1647 struct table_elt *elt, *next, *new;
1648
1649 /* Ensure we start with the head of the classes. */
1650 class1 = class1->first_same_value;
1651 class2 = class2->first_same_value;
1652
1653 /* If they were already equal, forget it. */
1654 if (class1 == class2)
1655 return;
1656
1657 for (elt = class2; elt; elt = next)
1658 {
770ae6cc 1659 unsigned int hash;
7afe21cc
RK
1660 rtx exp = elt->exp;
1661 enum machine_mode mode = elt->mode;
1662
1663 next = elt->next_same_value;
1664
1665 /* Remove old entry, make a new one in CLASS1's class.
1666 Don't do this for invalid entries as we cannot find their
0f41302f 1667 hash code (it also isn't necessary). */
0516f6fe 1668 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1669 {
a90fc8e0
RH
1670 bool need_rehash = false;
1671
7afe21cc 1672 hash_arg_in_memory = 0;
7afe21cc 1673 hash = HASH (exp, mode);
278a83b2 1674
f8cfc6aa 1675 if (REG_P (exp))
a90fc8e0 1676 {
08a69267 1677 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1678 delete_reg_equiv (REGNO (exp));
1679 }
278a83b2 1680
7afe21cc
RK
1681 remove_from_table (elt, hash);
1682
a90fc8e0 1683 if (insert_regs (exp, class1, 0) || need_rehash)
8ae2b8f6
JW
1684 {
1685 rehash_using_reg (exp);
1686 hash = HASH (exp, mode);
1687 }
7afe21cc
RK
1688 new = insert (exp, class1, hash, mode);
1689 new->in_memory = hash_arg_in_memory;
7afe21cc
RK
1690 }
1691 }
1692}
1693\f
01e752d3
JL
1694/* Flush the entire hash table. */
1695
1696static void
7080f735 1697flush_hash_table (void)
01e752d3
JL
1698{
1699 int i;
1700 struct table_elt *p;
1701
9b1549b8 1702 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1703 for (p = table[i]; p; p = table[i])
1704 {
1705 /* Note that invalidate can remove elements
1706 after P in the current hash chain. */
f8cfc6aa 1707 if (REG_P (p->exp))
01e752d3
JL
1708 invalidate (p->exp, p->mode);
1709 else
1710 remove_from_table (p, i);
1711 }
1712}
14a774a9 1713\f
2ce6dc2f
JH
1714/* Function called for each rtx to check whether true dependence exist. */
1715struct check_dependence_data
1716{
1717 enum machine_mode mode;
1718 rtx exp;
9ddb66ca 1719 rtx addr;
2ce6dc2f 1720};
be8ac49a 1721
2ce6dc2f 1722static int
7080f735 1723check_dependence (rtx *x, void *data)
2ce6dc2f
JH
1724{
1725 struct check_dependence_data *d = (struct check_dependence_data *) data;
3c0cb5de 1726 if (*x && MEM_P (*x))
9ddb66ca
JH
1727 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1728 cse_rtx_varies_p);
2ce6dc2f
JH
1729 else
1730 return 0;
1731}
1732\f
14a774a9
RK
1733/* Remove from the hash table, or mark as invalid, all expressions whose
1734 values could be altered by storing in X. X is a register, a subreg, or
1735 a memory reference with nonvarying address (because, when a memory
1736 reference with a varying address is stored in, all memory references are
1737 removed by invalidate_memory so specific invalidation is superfluous).
1738 FULL_MODE, if not VOIDmode, indicates that this much should be
1739 invalidated instead of just the amount indicated by the mode of X. This
1740 is only used for bitfield stores into memory.
1741
1742 A nonvarying address may be just a register or just a symbol reference,
1743 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1744
1745static void
7080f735 1746invalidate (rtx x, enum machine_mode full_mode)
7afe21cc 1747{
b3694847
SS
1748 int i;
1749 struct table_elt *p;
9ddb66ca 1750 rtx addr;
7afe21cc 1751
14a774a9 1752 switch (GET_CODE (x))
7afe21cc 1753 {
14a774a9
RK
1754 case REG:
1755 {
1756 /* If X is a register, dependencies on its contents are recorded
1757 through the qty number mechanism. Just change the qty number of
1758 the register, mark it as invalid for expressions that refer to it,
1759 and remove it itself. */
770ae6cc
RK
1760 unsigned int regno = REGNO (x);
1761 unsigned int hash = HASH (x, GET_MODE (x));
7afe21cc 1762
14a774a9
RK
1763 /* Remove REGNO from any quantity list it might be on and indicate
1764 that its value might have changed. If it is a pseudo, remove its
1765 entry from the hash table.
7afe21cc 1766
14a774a9
RK
1767 For a hard register, we do the first two actions above for any
1768 additional hard registers corresponding to X. Then, if any of these
1769 registers are in the table, we must remove any REG entries that
1770 overlap these registers. */
7afe21cc 1771
14a774a9
RK
1772 delete_reg_equiv (regno);
1773 REG_TICK (regno)++;
46081bb3 1774 SUBREG_TICKED (regno) = -1;
85e4d983 1775
14a774a9
RK
1776 if (regno >= FIRST_PSEUDO_REGISTER)
1777 {
1778 /* Because a register can be referenced in more than one mode,
1779 we might have to remove more than one table entry. */
1780 struct table_elt *elt;
85e4d983 1781
14a774a9
RK
1782 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1783 remove_from_table (elt, hash);
1784 }
1785 else
1786 {
1787 HOST_WIDE_INT in_table
1788 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
770ae6cc 1789 unsigned int endregno
66fd46b6 1790 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 1791 unsigned int tregno, tendregno, rn;
b3694847 1792 struct table_elt *p, *next;
7afe21cc 1793
14a774a9 1794 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc 1795
770ae6cc 1796 for (rn = regno + 1; rn < endregno; rn++)
14a774a9 1797 {
770ae6cc
RK
1798 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1799 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1800 delete_reg_equiv (rn);
1801 REG_TICK (rn)++;
46081bb3 1802 SUBREG_TICKED (rn) = -1;
14a774a9 1803 }
7afe21cc 1804
14a774a9 1805 if (in_table)
9b1549b8 1806 for (hash = 0; hash < HASH_SIZE; hash++)
14a774a9
RK
1807 for (p = table[hash]; p; p = next)
1808 {
1809 next = p->next_same_hash;
7afe21cc 1810
f8cfc6aa 1811 if (!REG_P (p->exp)
278a83b2
KH
1812 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1813 continue;
1814
14a774a9
RK
1815 tregno = REGNO (p->exp);
1816 tendregno
66fd46b6 1817 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
14a774a9
RK
1818 if (tendregno > regno && tregno < endregno)
1819 remove_from_table (p, hash);
1820 }
1821 }
1822 }
7afe21cc 1823 return;
7afe21cc 1824
14a774a9 1825 case SUBREG:
bb4034b3 1826 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1827 return;
aac5cc16 1828
14a774a9 1829 case PARALLEL:
278a83b2 1830 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1831 invalidate (XVECEXP (x, 0, i), VOIDmode);
1832 return;
aac5cc16 1833
14a774a9
RK
1834 case EXPR_LIST:
1835 /* This is part of a disjoint return value; extract the location in
1836 question ignoring the offset. */
aac5cc16
RH
1837 invalidate (XEXP (x, 0), VOIDmode);
1838 return;
7afe21cc 1839
14a774a9 1840 case MEM:
9ddb66ca 1841 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1842 /* Calculate the canonical version of X here so that
1843 true_dependence doesn't generate new RTL for X on each call. */
1844 x = canon_rtx (x);
1845
14a774a9
RK
1846 /* Remove all hash table elements that refer to overlapping pieces of
1847 memory. */
1848 if (full_mode == VOIDmode)
1849 full_mode = GET_MODE (x);
bb4034b3 1850
9b1549b8 1851 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1852 {
b3694847 1853 struct table_elt *next;
14a774a9
RK
1854
1855 for (p = table[i]; p; p = next)
1856 {
1857 next = p->next_same_hash;
db048faf
MM
1858 if (p->in_memory)
1859 {
2ce6dc2f
JH
1860 struct check_dependence_data d;
1861
1862 /* Just canonicalize the expression once;
1863 otherwise each time we call invalidate
1864 true_dependence will canonicalize the
1865 expression again. */
1866 if (!p->canon_exp)
1867 p->canon_exp = canon_rtx (p->exp);
1868 d.exp = x;
9ddb66ca 1869 d.addr = addr;
2ce6dc2f
JH
1870 d.mode = full_mode;
1871 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
db048faf 1872 remove_from_table (p, i);
db048faf 1873 }
14a774a9 1874 }
7afe21cc 1875 }
14a774a9
RK
1876 return;
1877
1878 default:
341c100f 1879 gcc_unreachable ();
7afe21cc
RK
1880 }
1881}
14a774a9 1882\f
7afe21cc
RK
1883/* Remove all expressions that refer to register REGNO,
1884 since they are already invalid, and we are about to
1885 mark that register valid again and don't want the old
1886 expressions to reappear as valid. */
1887
1888static void
7080f735 1889remove_invalid_refs (unsigned int regno)
7afe21cc 1890{
770ae6cc
RK
1891 unsigned int i;
1892 struct table_elt *p, *next;
7afe21cc 1893
9b1549b8 1894 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1895 for (p = table[i]; p; p = next)
1896 {
1897 next = p->next_same_hash;
f8cfc6aa 1898 if (!REG_P (p->exp)
68252e27 1899 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
7afe21cc
RK
1900 remove_from_table (p, i);
1901 }
1902}
34c73909 1903
ddef6bc7
JJ
1904/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1905 and mode MODE. */
34c73909 1906static void
7080f735
AJ
1907remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1908 enum machine_mode mode)
34c73909 1909{
770ae6cc
RK
1910 unsigned int i;
1911 struct table_elt *p, *next;
ddef6bc7 1912 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
34c73909 1913
9b1549b8 1914 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
1915 for (p = table[i]; p; p = next)
1916 {
ddef6bc7 1917 rtx exp = p->exp;
34c73909 1918 next = p->next_same_hash;
278a83b2 1919
f8cfc6aa 1920 if (!REG_P (exp)
34c73909 1921 && (GET_CODE (exp) != SUBREG
f8cfc6aa 1922 || !REG_P (SUBREG_REG (exp))
34c73909 1923 || REGNO (SUBREG_REG (exp)) != regno
ddef6bc7
JJ
1924 || (((SUBREG_BYTE (exp)
1925 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1926 && SUBREG_BYTE (exp) <= end))
68252e27 1927 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
34c73909
R
1928 remove_from_table (p, i);
1929 }
1930}
7afe21cc
RK
1931\f
1932/* Recompute the hash codes of any valid entries in the hash table that
1933 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1934
1935 This is called when we make a jump equivalence. */
1936
1937static void
7080f735 1938rehash_using_reg (rtx x)
7afe21cc 1939{
973838fd 1940 unsigned int i;
7afe21cc 1941 struct table_elt *p, *next;
2197a88a 1942 unsigned hash;
7afe21cc
RK
1943
1944 if (GET_CODE (x) == SUBREG)
1945 x = SUBREG_REG (x);
1946
1947 /* If X is not a register or if the register is known not to be in any
1948 valid entries in the table, we have no work to do. */
1949
f8cfc6aa 1950 if (!REG_P (x)
30f72379
MM
1951 || REG_IN_TABLE (REGNO (x)) < 0
1952 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
1953 return;
1954
1955 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 1956 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 1957
9b1549b8 1958 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1959 for (p = table[i]; p; p = next)
1960 {
1961 next = p->next_same_hash;
a90fc8e0 1962 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
1963 && exp_equiv_p (p->exp, p->exp, 1, false)
1964 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
1965 {
1966 if (p->next_same_hash)
1967 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1968
1969 if (p->prev_same_hash)
1970 p->prev_same_hash->next_same_hash = p->next_same_hash;
1971 else
1972 table[i] = p->next_same_hash;
1973
1974 p->next_same_hash = table[hash];
1975 p->prev_same_hash = 0;
1976 if (table[hash])
1977 table[hash]->prev_same_hash = p;
1978 table[hash] = p;
1979 }
1980 }
1981}
1982\f
7afe21cc
RK
1983/* Remove from the hash table any expression that is a call-clobbered
1984 register. Also update their TICK values. */
1985
1986static void
7080f735 1987invalidate_for_call (void)
7afe21cc 1988{
770ae6cc
RK
1989 unsigned int regno, endregno;
1990 unsigned int i;
2197a88a 1991 unsigned hash;
7afe21cc
RK
1992 struct table_elt *p, *next;
1993 int in_table = 0;
1994
1995 /* Go through all the hard registers. For each that is clobbered in
1996 a CALL_INSN, remove the register from quantity chains and update
1997 reg_tick if defined. Also see if any of these registers is currently
1998 in the table. */
1999
2000 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2001 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2002 {
2003 delete_reg_equiv (regno);
30f72379 2004 if (REG_TICK (regno) >= 0)
46081bb3
SH
2005 {
2006 REG_TICK (regno)++;
2007 SUBREG_TICKED (regno) = -1;
2008 }
7afe21cc 2009
0e227018 2010 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
7afe21cc
RK
2011 }
2012
2013 /* In the case where we have no call-clobbered hard registers in the
2014 table, we are done. Otherwise, scan the table and remove any
2015 entry that overlaps a call-clobbered register. */
2016
2017 if (in_table)
9b1549b8 2018 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
2019 for (p = table[hash]; p; p = next)
2020 {
2021 next = p->next_same_hash;
2022
f8cfc6aa 2023 if (!REG_P (p->exp)
7afe21cc
RK
2024 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2025 continue;
2026
2027 regno = REGNO (p->exp);
66fd46b6 2028 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
7afe21cc
RK
2029
2030 for (i = regno; i < endregno; i++)
2031 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2032 {
2033 remove_from_table (p, hash);
2034 break;
2035 }
2036 }
2037}
2038\f
2039/* Given an expression X of type CONST,
2040 and ELT which is its table entry (or 0 if it
2041 is not in the hash table),
2042 return an alternate expression for X as a register plus integer.
2043 If none can be found, return 0. */
2044
2045static rtx
7080f735 2046use_related_value (rtx x, struct table_elt *elt)
7afe21cc 2047{
b3694847
SS
2048 struct table_elt *relt = 0;
2049 struct table_elt *p, *q;
906c4e36 2050 HOST_WIDE_INT offset;
7afe21cc
RK
2051
2052 /* First, is there anything related known?
2053 If we have a table element, we can tell from that.
2054 Otherwise, must look it up. */
2055
2056 if (elt != 0 && elt->related_value != 0)
2057 relt = elt;
2058 else if (elt == 0 && GET_CODE (x) == CONST)
2059 {
2060 rtx subexp = get_related_value (x);
2061 if (subexp != 0)
2062 relt = lookup (subexp,
0516f6fe 2063 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
2064 GET_MODE (subexp));
2065 }
2066
2067 if (relt == 0)
2068 return 0;
2069
2070 /* Search all related table entries for one that has an
2071 equivalent register. */
2072
2073 p = relt;
2074 while (1)
2075 {
2076 /* This loop is strange in that it is executed in two different cases.
2077 The first is when X is already in the table. Then it is searching
2078 the RELATED_VALUE list of X's class (RELT). The second case is when
2079 X is not in the table. Then RELT points to a class for the related
2080 value.
2081
2082 Ensure that, whatever case we are in, that we ignore classes that have
2083 the same value as X. */
2084
2085 if (rtx_equal_p (x, p->exp))
2086 q = 0;
2087 else
2088 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2089 if (REG_P (q->exp))
7afe21cc
RK
2090 break;
2091
2092 if (q)
2093 break;
2094
2095 p = p->related_value;
2096
2097 /* We went all the way around, so there is nothing to be found.
2098 Alternatively, perhaps RELT was in the table for some other reason
2099 and it has no related values recorded. */
2100 if (p == relt || p == 0)
2101 break;
2102 }
2103
2104 if (q == 0)
2105 return 0;
2106
2107 offset = (get_integer_term (x) - get_integer_term (p->exp));
2108 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2109 return plus_constant (q->exp, offset);
2110}
2111\f
6462bb43
AO
2112/* Hash a string. Just add its bytes up. */
2113static inline unsigned
0516f6fe 2114hash_rtx_string (const char *ps)
6462bb43
AO
2115{
2116 unsigned hash = 0;
68252e27
KH
2117 const unsigned char *p = (const unsigned char *) ps;
2118
6462bb43
AO
2119 if (p)
2120 while (*p)
2121 hash += *p++;
2122
2123 return hash;
2124}
2125
7afe21cc
RK
2126/* Hash an rtx. We are careful to make sure the value is never negative.
2127 Equivalent registers hash identically.
2128 MODE is used in hashing for CONST_INTs only;
2129 otherwise the mode of X is used.
2130
0516f6fe 2131 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
7afe21cc 2132
0516f6fe
SB
2133 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2134 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
7afe21cc
RK
2135
2136 Note that cse_insn knows that the hash code of a MEM expression
2137 is just (int) MEM plus the hash code of the address. */
2138
0516f6fe
SB
2139unsigned
2140hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2141 int *hash_arg_in_memory_p, bool have_reg_qty)
7afe21cc 2142{
b3694847
SS
2143 int i, j;
2144 unsigned hash = 0;
2145 enum rtx_code code;
2146 const char *fmt;
7afe21cc 2147
0516f6fe
SB
2148 /* Used to turn recursion into iteration. We can't rely on GCC's
2149 tail-recursion elimination since we need to keep accumulating values
2150 in HASH. */
7afe21cc
RK
2151 repeat:
2152 if (x == 0)
2153 return hash;
2154
2155 code = GET_CODE (x);
2156 switch (code)
2157 {
2158 case REG:
2159 {
770ae6cc 2160 unsigned int regno = REGNO (x);
7afe21cc 2161
0516f6fe 2162 if (!reload_completed)
7afe21cc 2163 {
0516f6fe
SB
2164 /* On some machines, we can't record any non-fixed hard register,
2165 because extending its life will cause reload problems. We
2166 consider ap, fp, sp, gp to be fixed for this purpose.
2167
2168 We also consider CCmode registers to be fixed for this purpose;
2169 failure to do so leads to failure to simplify 0<100 type of
2170 conditionals.
2171
2172 On all machines, we can't record any global registers.
2173 Nor should we record any register that is in a small
2174 class, as defined by CLASS_LIKELY_SPILLED_P. */
2175 bool record;
2176
2177 if (regno >= FIRST_PSEUDO_REGISTER)
2178 record = true;
2179 else if (x == frame_pointer_rtx
2180 || x == hard_frame_pointer_rtx
2181 || x == arg_pointer_rtx
2182 || x == stack_pointer_rtx
2183 || x == pic_offset_table_rtx)
2184 record = true;
2185 else if (global_regs[regno])
2186 record = false;
2187 else if (fixed_regs[regno])
2188 record = true;
2189 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2190 record = true;
2191 else if (SMALL_REGISTER_CLASSES)
2192 record = false;
2193 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2194 record = false;
2195 else
2196 record = true;
2197
2198 if (!record)
2199 {
2200 *do_not_record_p = 1;
2201 return 0;
2202 }
7afe21cc 2203 }
770ae6cc 2204
0516f6fe
SB
2205 hash += ((unsigned int) REG << 7);
2206 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2207 return hash;
7afe21cc
RK
2208 }
2209
34c73909
R
2210 /* We handle SUBREG of a REG specially because the underlying
2211 reg changes its hash value with every value change; we don't
2212 want to have to forget unrelated subregs when one subreg changes. */
2213 case SUBREG:
2214 {
f8cfc6aa 2215 if (REG_P (SUBREG_REG (x)))
34c73909 2216 {
0516f6fe 2217 hash += (((unsigned int) SUBREG << 7)
ddef6bc7
JJ
2218 + REGNO (SUBREG_REG (x))
2219 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
34c73909
R
2220 return hash;
2221 }
2222 break;
2223 }
2224
7afe21cc 2225 case CONST_INT:
0516f6fe
SB
2226 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2227 + (unsigned int) INTVAL (x));
2228 return hash;
7afe21cc
RK
2229
2230 case CONST_DOUBLE:
2231 /* This is like the general case, except that it only counts
2232 the integers representing the constant. */
0516f6fe 2233 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
969c8517 2234 if (GET_MODE (x) != VOIDmode)
46b33600 2235 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
969c8517 2236 else
0516f6fe
SB
2237 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2238 + (unsigned int) CONST_DOUBLE_HIGH (x));
7afe21cc
RK
2239 return hash;
2240
69ef87e2
AH
2241 case CONST_VECTOR:
2242 {
2243 int units;
2244 rtx elt;
2245
2246 units = CONST_VECTOR_NUNITS (x);
2247
2248 for (i = 0; i < units; ++i)
2249 {
2250 elt = CONST_VECTOR_ELT (x, i);
0516f6fe
SB
2251 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2252 hash_arg_in_memory_p, have_reg_qty);
69ef87e2
AH
2253 }
2254
2255 return hash;
2256 }
2257
7afe21cc
RK
2258 /* Assume there is only one rtx object for any given label. */
2259 case LABEL_REF:
0516f6fe
SB
2260 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2261 differences and differences between each stage's debugging dumps. */
2262 hash += (((unsigned int) LABEL_REF << 7)
2263 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2197a88a 2264 return hash;
7afe21cc
RK
2265
2266 case SYMBOL_REF:
0516f6fe
SB
2267 {
2268 /* Don't hash on the symbol's address to avoid bootstrap differences.
2269 Different hash values may cause expressions to be recorded in
2270 different orders and thus different registers to be used in the
2271 final assembler. This also avoids differences in the dump files
2272 between various stages. */
2273 unsigned int h = 0;
2274 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2275
2276 while (*p)
2277 h += (h << 7) + *p++; /* ??? revisit */
2278
2279 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2280 return hash;
2281 }
7afe21cc
RK
2282
2283 case MEM:
14a774a9
RK
2284 /* We don't record if marked volatile or if BLKmode since we don't
2285 know the size of the move. */
2286 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
7afe21cc 2287 {
0516f6fe 2288 *do_not_record_p = 1;
7afe21cc
RK
2289 return 0;
2290 }
0516f6fe
SB
2291 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2292 *hash_arg_in_memory_p = 1;
4977bab6 2293
7afe21cc
RK
2294 /* Now that we have already found this special case,
2295 might as well speed it up as much as possible. */
2197a88a 2296 hash += (unsigned) MEM;
7afe21cc
RK
2297 x = XEXP (x, 0);
2298 goto repeat;
2299
bb07060a
JW
2300 case USE:
2301 /* A USE that mentions non-volatile memory needs special
2302 handling since the MEM may be BLKmode which normally
2303 prevents an entry from being made. Pure calls are
0516f6fe
SB
2304 marked by a USE which mentions BLKmode memory.
2305 See calls.c:emit_call_1. */
3c0cb5de 2306 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2307 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2308 {
68252e27 2309 hash += (unsigned) USE;
bb07060a
JW
2310 x = XEXP (x, 0);
2311
0516f6fe
SB
2312 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2313 *hash_arg_in_memory_p = 1;
bb07060a
JW
2314
2315 /* Now that we have already found this special case,
2316 might as well speed it up as much as possible. */
2317 hash += (unsigned) MEM;
2318 x = XEXP (x, 0);
2319 goto repeat;
2320 }
2321 break;
2322
7afe21cc
RK
2323 case PRE_DEC:
2324 case PRE_INC:
2325 case POST_DEC:
2326 case POST_INC:
4b983fdc
RH
2327 case PRE_MODIFY:
2328 case POST_MODIFY:
7afe21cc
RK
2329 case PC:
2330 case CC0:
2331 case CALL:
2332 case UNSPEC_VOLATILE:
0516f6fe 2333 *do_not_record_p = 1;
7afe21cc
RK
2334 return 0;
2335
2336 case ASM_OPERANDS:
2337 if (MEM_VOLATILE_P (x))
2338 {
0516f6fe 2339 *do_not_record_p = 1;
7afe21cc
RK
2340 return 0;
2341 }
6462bb43
AO
2342 else
2343 {
2344 /* We don't want to take the filename and line into account. */
2345 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2346 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2347 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2348 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2349
2350 if (ASM_OPERANDS_INPUT_LENGTH (x))
2351 {
2352 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2353 {
0516f6fe
SB
2354 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2355 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2356 do_not_record_p, hash_arg_in_memory_p,
2357 have_reg_qty)
2358 + hash_rtx_string
2359 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2360 }
2361
0516f6fe 2362 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2363 x = ASM_OPERANDS_INPUT (x, 0);
2364 mode = GET_MODE (x);
2365 goto repeat;
2366 }
2367
2368 return hash;
2369 }
e9a25f70 2370 break;
278a83b2 2371
e9a25f70
JL
2372 default:
2373 break;
7afe21cc
RK
2374 }
2375
2376 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2377 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2378 fmt = GET_RTX_FORMAT (code);
2379 for (; i >= 0; i--)
2380 {
341c100f 2381 switch (fmt[i])
7afe21cc 2382 {
341c100f 2383 case 'e':
7afe21cc
RK
2384 /* If we are about to do the last recursive call
2385 needed at this level, change it into iteration.
2386 This function is called enough to be worth it. */
2387 if (i == 0)
2388 {
0516f6fe 2389 x = XEXP (x, i);
7afe21cc
RK
2390 goto repeat;
2391 }
0516f6fe
SB
2392
2393 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2394 hash_arg_in_memory_p, have_reg_qty);
341c100f 2395 break;
0516f6fe 2396
341c100f
NS
2397 case 'E':
2398 for (j = 0; j < XVECLEN (x, i); j++)
0516f6fe
SB
2399 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2400 hash_arg_in_memory_p, have_reg_qty);
341c100f 2401 break;
0516f6fe 2402
341c100f
NS
2403 case 's':
2404 hash += hash_rtx_string (XSTR (x, i));
2405 break;
2406
2407 case 'i':
2408 hash += (unsigned int) XINT (x, i);
2409 break;
2410
2411 case '0': case 't':
2412 /* Unused. */
2413 break;
2414
2415 default:
2416 gcc_unreachable ();
2417 }
7afe21cc 2418 }
0516f6fe 2419
7afe21cc
RK
2420 return hash;
2421}
2422
0516f6fe
SB
2423/* Hash an rtx X for cse via hash_rtx.
2424 Stores 1 in do_not_record if any subexpression is volatile.
2425 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2426 does not have the RTX_UNCHANGING_P bit set. */
2427
2428static inline unsigned
2429canon_hash (rtx x, enum machine_mode mode)
2430{
2431 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2432}
2433
2434/* Like canon_hash but with no side effects, i.e. do_not_record
2435 and hash_arg_in_memory are not changed. */
7afe21cc 2436
0516f6fe 2437static inline unsigned
7080f735 2438safe_hash (rtx x, enum machine_mode mode)
7afe21cc 2439{
0516f6fe
SB
2440 int dummy_do_not_record;
2441 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2442}
2443\f
2444/* Return 1 iff X and Y would canonicalize into the same thing,
2445 without actually constructing the canonicalization of either one.
2446 If VALIDATE is nonzero,
2447 we assume X is an expression being processed from the rtl
2448 and Y was found in the hash table. We check register refs
2449 in Y for being marked as valid.
2450
0516f6fe 2451 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2452
0516f6fe
SB
2453int
2454exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
7afe21cc 2455{
b3694847
SS
2456 int i, j;
2457 enum rtx_code code;
2458 const char *fmt;
7afe21cc
RK
2459
2460 /* Note: it is incorrect to assume an expression is equivalent to itself
2461 if VALIDATE is nonzero. */
2462 if (x == y && !validate)
2463 return 1;
0516f6fe 2464
7afe21cc
RK
2465 if (x == 0 || y == 0)
2466 return x == y;
2467
2468 code = GET_CODE (x);
2469 if (code != GET_CODE (y))
0516f6fe 2470 return 0;
7afe21cc
RK
2471
2472 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2473 if (GET_MODE (x) != GET_MODE (y))
2474 return 0;
2475
2476 switch (code)
2477 {
2478 case PC:
2479 case CC0:
7afe21cc 2480 case CONST_INT:
c13e8210 2481 return x == y;
7afe21cc
RK
2482
2483 case LABEL_REF:
7afe21cc
RK
2484 return XEXP (x, 0) == XEXP (y, 0);
2485
f54d4924
RK
2486 case SYMBOL_REF:
2487 return XSTR (x, 0) == XSTR (y, 0);
2488
7afe21cc 2489 case REG:
0516f6fe
SB
2490 if (for_gcse)
2491 return REGNO (x) == REGNO (y);
2492 else
2493 {
2494 unsigned int regno = REGNO (y);
2495 unsigned int i;
2496 unsigned int endregno
2497 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2498 : hard_regno_nregs[regno][GET_MODE (y)]);
7afe21cc 2499
0516f6fe
SB
2500 /* If the quantities are not the same, the expressions are not
2501 equivalent. If there are and we are not to validate, they
2502 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2503
0516f6fe
SB
2504 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2505 return 0;
2506
2507 if (! validate)
2508 return 1;
2509
2510 for (i = regno; i < endregno; i++)
2511 if (REG_IN_TABLE (i) != REG_TICK (i))
2512 return 0;
7afe21cc 2513
7afe21cc 2514 return 1;
0516f6fe 2515 }
7afe21cc 2516
0516f6fe
SB
2517 case MEM:
2518 if (for_gcse)
2519 {
2520 /* Can't merge two expressions in different alias sets, since we
2521 can decide that the expression is transparent in a block when
2522 it isn't, due to it being set with the different alias set. */
2523 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
7afe21cc
RK
2524 return 0;
2525
0516f6fe
SB
2526 /* A volatile mem should not be considered equivalent to any
2527 other. */
2528 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2529 return 0;
2530 }
2531 break;
7afe21cc
RK
2532
2533 /* For commutative operations, check both orders. */
2534 case PLUS:
2535 case MULT:
2536 case AND:
2537 case IOR:
2538 case XOR:
2539 case NE:
2540 case EQ:
0516f6fe
SB
2541 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2542 validate, for_gcse)
7afe21cc 2543 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2544 validate, for_gcse))
7afe21cc 2545 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2546 validate, for_gcse)
7afe21cc 2547 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2548 validate, for_gcse)));
278a83b2 2549
6462bb43
AO
2550 case ASM_OPERANDS:
2551 /* We don't use the generic code below because we want to
2552 disregard filename and line numbers. */
2553
2554 /* A volatile asm isn't equivalent to any other. */
2555 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2556 return 0;
2557
2558 if (GET_MODE (x) != GET_MODE (y)
2559 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2560 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2561 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2562 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2563 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2564 return 0;
2565
2566 if (ASM_OPERANDS_INPUT_LENGTH (x))
2567 {
2568 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2569 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2570 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2571 validate, for_gcse)
6462bb43
AO
2572 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2573 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2574 return 0;
2575 }
2576
2577 return 1;
2578
e9a25f70
JL
2579 default:
2580 break;
7afe21cc
RK
2581 }
2582
2583 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2584 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2585
2586 fmt = GET_RTX_FORMAT (code);
2587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2588 {
906c4e36 2589 switch (fmt[i])
7afe21cc 2590 {
906c4e36 2591 case 'e':
0516f6fe
SB
2592 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2593 validate, for_gcse))
7afe21cc 2594 return 0;
906c4e36
RK
2595 break;
2596
2597 case 'E':
7afe21cc
RK
2598 if (XVECLEN (x, i) != XVECLEN (y, i))
2599 return 0;
2600 for (j = 0; j < XVECLEN (x, i); j++)
2601 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2602 validate, for_gcse))
7afe21cc 2603 return 0;
906c4e36
RK
2604 break;
2605
2606 case 's':
7afe21cc
RK
2607 if (strcmp (XSTR (x, i), XSTR (y, i)))
2608 return 0;
906c4e36
RK
2609 break;
2610
2611 case 'i':
7afe21cc
RK
2612 if (XINT (x, i) != XINT (y, i))
2613 return 0;
906c4e36
RK
2614 break;
2615
2616 case 'w':
2617 if (XWINT (x, i) != XWINT (y, i))
2618 return 0;
278a83b2 2619 break;
906c4e36
RK
2620
2621 case '0':
8f985ec4 2622 case 't':
906c4e36
RK
2623 break;
2624
2625 default:
341c100f 2626 gcc_unreachable ();
7afe21cc 2627 }
278a83b2 2628 }
906c4e36 2629
7afe21cc
RK
2630 return 1;
2631}
2632\f
9ae8ffe7
JL
2633/* Return 1 if X has a value that can vary even between two
2634 executions of the program. 0 means X can be compared reliably
2635 against certain constants or near-constants. */
7afe21cc
RK
2636
2637static int
7080f735 2638cse_rtx_varies_p (rtx x, int from_alias)
7afe21cc
RK
2639{
2640 /* We need not check for X and the equivalence class being of the same
2641 mode because if X is equivalent to a constant in some mode, it
2642 doesn't vary in any mode. */
2643
f8cfc6aa 2644 if (REG_P (x)
1bb98cec
DM
2645 && REGNO_QTY_VALID_P (REGNO (x)))
2646 {
2647 int x_q = REG_QTY (REGNO (x));
2648 struct qty_table_elem *x_ent = &qty_table[x_q];
2649
2650 if (GET_MODE (x) == x_ent->mode
2651 && x_ent->const_rtx != NULL_RTX)
2652 return 0;
2653 }
7afe21cc 2654
9ae8ffe7
JL
2655 if (GET_CODE (x) == PLUS
2656 && GET_CODE (XEXP (x, 1)) == CONST_INT
f8cfc6aa 2657 && REG_P (XEXP (x, 0))
1bb98cec
DM
2658 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2659 {
2660 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2661 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2662
2663 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2664 && x0_ent->const_rtx != NULL_RTX)
2665 return 0;
2666 }
7afe21cc 2667
9c6b0bae
RK
2668 /* This can happen as the result of virtual register instantiation, if
2669 the initial constant is too large to be a valid address. This gives
2670 us a three instruction sequence, load large offset into a register,
2671 load fp minus a constant into a register, then a MEM which is the
2672 sum of the two `constant' registers. */
9ae8ffe7 2673 if (GET_CODE (x) == PLUS
f8cfc6aa
JQ
2674 && REG_P (XEXP (x, 0))
2675 && REG_P (XEXP (x, 1))
9ae8ffe7 2676 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
1bb98cec
DM
2677 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2678 {
2679 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2680 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2681 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2682 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2683
2684 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2685 && x0_ent->const_rtx != NULL_RTX
2686 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2687 && x1_ent->const_rtx != NULL_RTX)
2688 return 0;
2689 }
9c6b0bae 2690
2be28ee2 2691 return rtx_varies_p (x, from_alias);
7afe21cc
RK
2692}
2693\f
eef3c949
RS
2694/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2695 the result if necessary. INSN is as for canon_reg. */
2696
2697static void
2698validate_canon_reg (rtx *xloc, rtx insn)
2699{
2700 rtx new = canon_reg (*xloc, insn);
2701 int insn_code;
2702
2703 /* If replacing pseudo with hard reg or vice versa, ensure the
2704 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2705 if (insn != 0 && new != 0
2706 && REG_P (new) && REG_P (*xloc)
2707 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2708 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2709 || GET_MODE (new) != GET_MODE (*xloc)
2710 || (insn_code = recog_memoized (insn)) < 0
2711 || insn_data[insn_code].n_dups > 0))
2712 validate_change (insn, xloc, new, 1);
2713 else
2714 *xloc = new;
2715}
2716
7afe21cc
RK
2717/* Canonicalize an expression:
2718 replace each register reference inside it
2719 with the "oldest" equivalent register.
2720
da7d8304 2721 If INSN is nonzero and we are replacing a pseudo with a hard register
7722328e 2722 or vice versa, validate_change is used to ensure that INSN remains valid
da7d8304 2723 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2724 so apply_change_group must be called upon the outermost return from this
2725 function (unless INSN is zero). The result of apply_change_group can
2726 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2727
2728static rtx
7080f735 2729canon_reg (rtx x, rtx insn)
7afe21cc 2730{
b3694847
SS
2731 int i;
2732 enum rtx_code code;
2733 const char *fmt;
7afe21cc
RK
2734
2735 if (x == 0)
2736 return x;
2737
2738 code = GET_CODE (x);
2739 switch (code)
2740 {
2741 case PC:
2742 case CC0:
2743 case CONST:
2744 case CONST_INT:
2745 case CONST_DOUBLE:
69ef87e2 2746 case CONST_VECTOR:
7afe21cc
RK
2747 case SYMBOL_REF:
2748 case LABEL_REF:
2749 case ADDR_VEC:
2750 case ADDR_DIFF_VEC:
2751 return x;
2752
2753 case REG:
2754 {
b3694847
SS
2755 int first;
2756 int q;
2757 struct qty_table_elem *ent;
7afe21cc
RK
2758
2759 /* Never replace a hard reg, because hard regs can appear
2760 in more than one machine mode, and we must preserve the mode
2761 of each occurrence. Also, some hard regs appear in
2762 MEMs that are shared and mustn't be altered. Don't try to
2763 replace any reg that maps to a reg of class NO_REGS. */
2764 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2765 || ! REGNO_QTY_VALID_P (REGNO (x)))
2766 return x;
2767
278a83b2 2768 q = REG_QTY (REGNO (x));
1bb98cec
DM
2769 ent = &qty_table[q];
2770 first = ent->first_reg;
7afe21cc
RK
2771 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2772 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2773 : gen_rtx_REG (ent->mode, first));
7afe21cc 2774 }
278a83b2 2775
e9a25f70
JL
2776 default:
2777 break;
7afe21cc
RK
2778 }
2779
2780 fmt = GET_RTX_FORMAT (code);
2781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2782 {
b3694847 2783 int j;
7afe21cc
RK
2784
2785 if (fmt[i] == 'e')
eef3c949 2786 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2787 else if (fmt[i] == 'E')
2788 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2789 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2790 }
2791
2792 return x;
2793}
2794\f
a2cabb29 2795/* LOC is a location within INSN that is an operand address (the contents of
7afe21cc
RK
2796 a MEM). Find the best equivalent address to use that is valid for this
2797 insn.
2798
2799 On most CISC machines, complicated address modes are costly, and rtx_cost
2800 is a good approximation for that cost. However, most RISC machines have
2801 only a few (usually only one) memory reference formats. If an address is
2802 valid at all, it is often just as cheap as any other address. Hence, for
e37135f7
RH
2803 RISC machines, we use `address_cost' to compare the costs of various
2804 addresses. For two addresses of equal cost, choose the one with the
2805 highest `rtx_cost' value as that has the potential of eliminating the
2806 most insns. For equal costs, we choose the first in the equivalence
2807 class. Note that we ignore the fact that pseudo registers are cheaper than
2808 hard registers here because we would also prefer the pseudo registers. */
7afe21cc 2809
6cd4575e 2810static void
7080f735 2811find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
7afe21cc 2812{
7a87758d 2813 struct table_elt *elt;
7afe21cc 2814 rtx addr = *loc;
7a87758d 2815 struct table_elt *p;
7afe21cc
RK
2816 int found_better = 1;
2817 int save_do_not_record = do_not_record;
2818 int save_hash_arg_in_memory = hash_arg_in_memory;
7afe21cc
RK
2819 int addr_volatile;
2820 int regno;
2197a88a 2821 unsigned hash;
7afe21cc
RK
2822
2823 /* Do not try to replace constant addresses or addresses of local and
2824 argument slots. These MEM expressions are made only once and inserted
2825 in many instructions, as well as being used to control symbol table
2826 output. It is not safe to clobber them.
2827
2828 There are some uncommon cases where the address is already in a register
2829 for some reason, but we cannot take advantage of that because we have
2830 no easy way to unshare the MEM. In addition, looking up all stack
2831 addresses is costly. */
2832 if ((GET_CODE (addr) == PLUS
f8cfc6aa 2833 && REG_P (XEXP (addr, 0))
7afe21cc
RK
2834 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2835 && (regno = REGNO (XEXP (addr, 0)),
8bc169f2
DE
2836 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2837 || regno == ARG_POINTER_REGNUM))
f8cfc6aa 2838 || (REG_P (addr)
8bc169f2
DE
2839 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2840 || regno == HARD_FRAME_POINTER_REGNUM
2841 || regno == ARG_POINTER_REGNUM))
7afe21cc
RK
2842 || CONSTANT_ADDRESS_P (addr))
2843 return;
2844
2845 /* If this address is not simply a register, try to fold it. This will
2846 sometimes simplify the expression. Many simplifications
2847 will not be valid, but some, usually applying the associative rule, will
2848 be valid and produce better code. */
f8cfc6aa 2849 if (!REG_P (addr))
8c87f107 2850 {
6c667859
AB
2851 rtx folded = fold_rtx (addr, NULL_RTX);
2852 if (folded != addr)
2853 {
2854 int addr_folded_cost = address_cost (folded, mode);
2855 int addr_cost = address_cost (addr, mode);
2856
2857 if ((addr_folded_cost < addr_cost
2858 || (addr_folded_cost == addr_cost
2859 /* ??? The rtx_cost comparison is left over from an older
2860 version of this code. It is probably no longer helpful.*/
2861 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2862 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2863 && validate_change (insn, loc, folded, 0))
2864 addr = folded;
2865 }
8c87f107 2866 }
278a83b2 2867
42495ca0
RK
2868 /* If this address is not in the hash table, we can't look for equivalences
2869 of the whole address. Also, ignore if volatile. */
2870
7afe21cc 2871 do_not_record = 0;
2197a88a 2872 hash = HASH (addr, Pmode);
7afe21cc
RK
2873 addr_volatile = do_not_record;
2874 do_not_record = save_do_not_record;
2875 hash_arg_in_memory = save_hash_arg_in_memory;
7afe21cc
RK
2876
2877 if (addr_volatile)
2878 return;
2879
2197a88a 2880 elt = lookup (addr, hash, Pmode);
7afe21cc 2881
42495ca0
RK
2882 if (elt)
2883 {
2884 /* We need to find the best (under the criteria documented above) entry
2885 in the class that is valid. We use the `flag' field to indicate
2886 choices that were invalid and iterate until we can't find a better
2887 one that hasn't already been tried. */
7afe21cc 2888
42495ca0
RK
2889 for (p = elt->first_same_value; p; p = p->next_same_value)
2890 p->flag = 0;
7afe21cc 2891
42495ca0
RK
2892 while (found_better)
2893 {
01329426 2894 int best_addr_cost = address_cost (*loc, mode);
42495ca0 2895 int best_rtx_cost = (elt->cost + 1) >> 1;
01329426 2896 int exp_cost;
278a83b2 2897 struct table_elt *best_elt = elt;
42495ca0
RK
2898
2899 found_better = 0;
2900 for (p = elt->first_same_value; p; p = p->next_same_value)
2f541799 2901 if (! p->flag)
42495ca0 2902 {
f8cfc6aa 2903 if ((REG_P (p->exp)
0516f6fe 2904 || exp_equiv_p (p->exp, p->exp, 1, false))
01329426
JH
2905 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2906 || (exp_cost == best_addr_cost
05bd3d41 2907 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2f541799
MM
2908 {
2909 found_better = 1;
01329426 2910 best_addr_cost = exp_cost;
2f541799
MM
2911 best_rtx_cost = (p->cost + 1) >> 1;
2912 best_elt = p;
2913 }
42495ca0 2914 }
7afe21cc 2915
42495ca0
RK
2916 if (found_better)
2917 {
2918 if (validate_change (insn, loc,
906c4e36
RK
2919 canon_reg (copy_rtx (best_elt->exp),
2920 NULL_RTX), 0))
42495ca0
RK
2921 return;
2922 else
2923 best_elt->flag = 1;
2924 }
2925 }
2926 }
7afe21cc 2927
42495ca0
RK
2928 /* If the address is a binary operation with the first operand a register
2929 and the second a constant, do the same as above, but looking for
2930 equivalences of the register. Then try to simplify before checking for
2931 the best address to use. This catches a few cases: First is when we
2932 have REG+const and the register is another REG+const. We can often merge
2933 the constants and eliminate one insn and one register. It may also be
2934 that a machine has a cheap REG+REG+const. Finally, this improves the
2935 code on the Alpha for unaligned byte stores. */
2936
2937 if (flag_expensive_optimizations
ec8e098d 2938 && ARITHMETIC_P (*loc)
f8cfc6aa 2939 && REG_P (XEXP (*loc, 0)))
7afe21cc 2940 {
7b9c108f 2941 rtx op1 = XEXP (*loc, 1);
42495ca0
RK
2942
2943 do_not_record = 0;
2197a88a 2944 hash = HASH (XEXP (*loc, 0), Pmode);
42495ca0
RK
2945 do_not_record = save_do_not_record;
2946 hash_arg_in_memory = save_hash_arg_in_memory;
42495ca0 2947
2197a88a 2948 elt = lookup (XEXP (*loc, 0), hash, Pmode);
42495ca0
RK
2949 if (elt == 0)
2950 return;
2951
2952 /* We need to find the best (under the criteria documented above) entry
2953 in the class that is valid. We use the `flag' field to indicate
2954 choices that were invalid and iterate until we can't find a better
2955 one that hasn't already been tried. */
7afe21cc 2956
7afe21cc 2957 for (p = elt->first_same_value; p; p = p->next_same_value)
42495ca0 2958 p->flag = 0;
7afe21cc 2959
42495ca0 2960 while (found_better)
7afe21cc 2961 {
01329426 2962 int best_addr_cost = address_cost (*loc, mode);
42495ca0 2963 int best_rtx_cost = (COST (*loc) + 1) >> 1;
278a83b2 2964 struct table_elt *best_elt = elt;
42495ca0 2965 rtx best_rtx = *loc;
f6516aee
JW
2966 int count;
2967
2968 /* This is at worst case an O(n^2) algorithm, so limit our search
2969 to the first 32 elements on the list. This avoids trouble
2970 compiling code with very long basic blocks that can easily
0cedb36c
JL
2971 call simplify_gen_binary so many times that we run out of
2972 memory. */
96b0e481 2973
0cedb36c
JL
2974 found_better = 0;
2975 for (p = elt->first_same_value, count = 0;
2976 p && count < 32;
2977 p = p->next_same_value, count++)
2978 if (! p->flag
f8cfc6aa 2979 && (REG_P (p->exp)
0516f6fe 2980 || exp_equiv_p (p->exp, p->exp, 1, false)))
0cedb36c
JL
2981 {
2982 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
7b9c108f 2983 p->exp, op1);
01329426 2984 int new_cost;
b7ca416f
AP
2985
2986 /* Get the canonical version of the address so we can accept
2987 more. */
2988 new = canon_for_address (new);
2989
01329426 2990 new_cost = address_cost (new, mode);
96b0e481 2991
01329426
JH
2992 if (new_cost < best_addr_cost
2993 || (new_cost == best_addr_cost
2994 && (COST (new) + 1) >> 1 > best_rtx_cost))
0cedb36c
JL
2995 {
2996 found_better = 1;
01329426 2997 best_addr_cost = new_cost;
0cedb36c
JL
2998 best_rtx_cost = (COST (new) + 1) >> 1;
2999 best_elt = p;
3000 best_rtx = new;
3001 }
3002 }
96b0e481 3003
0cedb36c
JL
3004 if (found_better)
3005 {
3006 if (validate_change (insn, loc,
3007 canon_reg (copy_rtx (best_rtx),
3008 NULL_RTX), 0))
3009 return;
3010 else
3011 best_elt->flag = 1;
3012 }
3013 }
3014 }
96b0e481
RK
3015}
3016\f
bca05d20
RK
3017/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3018 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3019 what values are being compared.
1a87eea2 3020
bca05d20
RK
3021 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3022 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3023 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3024 compared to produce cc0.
a432f20d 3025
bca05d20
RK
3026 The return value is the comparison operator and is either the code of
3027 A or the code corresponding to the inverse of the comparison. */
7afe21cc 3028
0cedb36c 3029static enum rtx_code
7080f735
AJ
3030find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3031 enum machine_mode *pmode1, enum machine_mode *pmode2)
7afe21cc 3032{
0cedb36c 3033 rtx arg1, arg2;
1a87eea2 3034
0cedb36c 3035 arg1 = *parg1, arg2 = *parg2;
7afe21cc 3036
0cedb36c 3037 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 3038
0cedb36c 3039 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 3040 {
da7d8304 3041 /* Set nonzero when we find something of interest. */
0cedb36c
JL
3042 rtx x = 0;
3043 int reverse_code = 0;
3044 struct table_elt *p = 0;
6076248a 3045
0cedb36c
JL
3046 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3047 On machines with CC0, this is the only case that can occur, since
3048 fold_rtx will return the COMPARE or item being compared with zero
3049 when given CC0. */
6076248a 3050
0cedb36c
JL
3051 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3052 x = arg1;
6076248a 3053
0cedb36c
JL
3054 /* If ARG1 is a comparison operator and CODE is testing for
3055 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 3056
ec8e098d 3057 else if (COMPARISON_P (arg1))
7afe21cc 3058 {
efdc7e19
RH
3059#ifdef FLOAT_STORE_FLAG_VALUE
3060 REAL_VALUE_TYPE fsfv;
3061#endif
3062
0cedb36c
JL
3063 if (code == NE
3064 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3065 && code == LT && STORE_FLAG_VALUE == -1)
3066#ifdef FLOAT_STORE_FLAG_VALUE
3067 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
efdc7e19
RH
3068 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3069 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 3070#endif
a432f20d 3071 )
0cedb36c
JL
3072 x = arg1;
3073 else if (code == EQ
3074 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3075 && code == GE && STORE_FLAG_VALUE == -1)
3076#ifdef FLOAT_STORE_FLAG_VALUE
3077 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
efdc7e19
RH
3078 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3079 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3080#endif
3081 )
3082 x = arg1, reverse_code = 1;
7afe21cc
RK
3083 }
3084
0cedb36c 3085 /* ??? We could also check for
7afe21cc 3086
0cedb36c 3087 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 3088
0cedb36c 3089 and related forms, but let's wait until we see them occurring. */
7afe21cc 3090
0cedb36c
JL
3091 if (x == 0)
3092 /* Look up ARG1 in the hash table and see if it has an equivalence
3093 that lets us see what is being compared. */
0516f6fe 3094 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 3095 if (p)
8b03b984
R
3096 {
3097 p = p->first_same_value;
3098
3099 /* If what we compare is already known to be constant, that is as
3100 good as it gets.
3101 We need to break the loop in this case, because otherwise we
3102 can have an infinite loop when looking at a reg that is known
3103 to be a constant which is the same as a comparison of a reg
3104 against zero which appears later in the insn stream, which in
3105 turn is constant and the same as the comparison of the first reg
3106 against zero... */
3107 if (p->is_const)
3108 break;
3109 }
7afe21cc 3110
0cedb36c 3111 for (; p; p = p->next_same_value)
7afe21cc 3112 {
0cedb36c 3113 enum machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
3114#ifdef FLOAT_STORE_FLAG_VALUE
3115 REAL_VALUE_TYPE fsfv;
3116#endif
7afe21cc 3117
0cedb36c 3118 /* If the entry isn't valid, skip it. */
0516f6fe 3119 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 3120 continue;
f76b9db2 3121
bca05d20
RK
3122 if (GET_CODE (p->exp) == COMPARE
3123 /* Another possibility is that this machine has a compare insn
3124 that includes the comparison code. In that case, ARG1 would
3125 be equivalent to a comparison operation that would set ARG1 to
3126 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3127 ORIG_CODE is the actual comparison being done; if it is an EQ,
3128 we must reverse ORIG_CODE. On machine with a negative value
3129 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3130 || ((code == NE
3131 || (code == LT
3132 && GET_MODE_CLASS (inner_mode) == MODE_INT
3133 && (GET_MODE_BITSIZE (inner_mode)
3134 <= HOST_BITS_PER_WIDE_INT)
3135 && (STORE_FLAG_VALUE
3136 & ((HOST_WIDE_INT) 1
3137 << (GET_MODE_BITSIZE (inner_mode) - 1))))
0cedb36c 3138#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20
RK
3139 || (code == LT
3140 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
efdc7e19
RH
3141 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3142 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 3143#endif
bca05d20 3144 )
ec8e098d 3145 && COMPARISON_P (p->exp)))
7afe21cc 3146 {
0cedb36c
JL
3147 x = p->exp;
3148 break;
3149 }
3150 else if ((code == EQ
3151 || (code == GE
3152 && GET_MODE_CLASS (inner_mode) == MODE_INT
3153 && (GET_MODE_BITSIZE (inner_mode)
3154 <= HOST_BITS_PER_WIDE_INT)
3155 && (STORE_FLAG_VALUE
3156 & ((HOST_WIDE_INT) 1
3157 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3158#ifdef FLOAT_STORE_FLAG_VALUE
3159 || (code == GE
3160 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
efdc7e19
RH
3161 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3162 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3163#endif
3164 )
ec8e098d 3165 && COMPARISON_P (p->exp))
0cedb36c
JL
3166 {
3167 reverse_code = 1;
3168 x = p->exp;
3169 break;
7afe21cc
RK
3170 }
3171
4977bab6
ZW
3172 /* If this non-trapping address, e.g. fp + constant, the
3173 equivalent is a better operand since it may let us predict
3174 the value of the comparison. */
3175 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
3176 {
3177 arg1 = p->exp;
3178 continue;
3179 }
7afe21cc 3180 }
7afe21cc 3181
0cedb36c
JL
3182 /* If we didn't find a useful equivalence for ARG1, we are done.
3183 Otherwise, set up for the next iteration. */
3184 if (x == 0)
3185 break;
7afe21cc 3186
78192b09
RH
3187 /* If we need to reverse the comparison, make sure that that is
3188 possible -- we can't necessarily infer the value of GE from LT
3189 with floating-point operands. */
0cedb36c 3190 if (reverse_code)
261efdef
JH
3191 {
3192 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3193 if (reversed == UNKNOWN)
3194 break;
68252e27
KH
3195 else
3196 code = reversed;
261efdef 3197 }
ec8e098d 3198 else if (COMPARISON_P (x))
261efdef
JH
3199 code = GET_CODE (x);
3200 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
3201 }
3202
0cedb36c
JL
3203 /* Return our results. Return the modes from before fold_rtx
3204 because fold_rtx might produce const_int, and then it's too late. */
3205 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3206 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3207
3208 return code;
7afe21cc
RK
3209}
3210\f
3211/* If X is a nontrivial arithmetic operation on an argument
3212 for which a constant value can be determined, return
3213 the result of operating on that value, as a constant.
3214 Otherwise, return X, possibly with one or more operands
3215 modified by recursive calls to this function.
3216
e7bb59fa
RK
3217 If X is a register whose contents are known, we do NOT
3218 return those contents here. equiv_constant is called to
3219 perform that task.
7afe21cc
RK
3220
3221 INSN is the insn that we may be modifying. If it is 0, make a copy
3222 of X before modifying it. */
3223
3224static rtx
7080f735 3225fold_rtx (rtx x, rtx insn)
7afe21cc 3226{
b3694847
SS
3227 enum rtx_code code;
3228 enum machine_mode mode;
3229 const char *fmt;
3230 int i;
7afe21cc
RK
3231 rtx new = 0;
3232 int copied = 0;
3233 int must_swap = 0;
3234
3235 /* Folded equivalents of first two operands of X. */
3236 rtx folded_arg0;
3237 rtx folded_arg1;
3238
3239 /* Constant equivalents of first three operands of X;
3240 0 when no such equivalent is known. */
3241 rtx const_arg0;
3242 rtx const_arg1;
3243 rtx const_arg2;
3244
3245 /* The mode of the first operand of X. We need this for sign and zero
3246 extends. */
3247 enum machine_mode mode_arg0;
3248
3249 if (x == 0)
3250 return x;
3251
3252 mode = GET_MODE (x);
3253 code = GET_CODE (x);
3254 switch (code)
3255 {
3256 case CONST:
3257 case CONST_INT:
3258 case CONST_DOUBLE:
69ef87e2 3259 case CONST_VECTOR:
7afe21cc
RK
3260 case SYMBOL_REF:
3261 case LABEL_REF:
3262 case REG:
01aa1d43 3263 case PC:
7afe21cc
RK
3264 /* No use simplifying an EXPR_LIST
3265 since they are used only for lists of args
3266 in a function call's REG_EQUAL note. */
3267 case EXPR_LIST:
3268 return x;
3269
3270#ifdef HAVE_cc0
3271 case CC0:
3272 return prev_insn_cc0;
3273#endif
3274
7afe21cc 3275 case SUBREG:
c610adec
RK
3276 /* See if we previously assigned a constant value to this SUBREG. */
3277 if ((new = lookup_as_function (x, CONST_INT)) != 0
3278 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
7afe21cc
RK
3279 return new;
3280
4b980e20
RK
3281 /* If this is a paradoxical SUBREG, we have no idea what value the
3282 extra bits would have. However, if the operand is equivalent
3283 to a SUBREG whose operand is the same as our mode, and all the
3284 modes are within a word, we can just use the inner operand
31c85c78
RK
3285 because these SUBREGs just say how to treat the register.
3286
3287 Similarly if we find an integer constant. */
4b980e20 3288
e5f6a288 3289 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4b980e20
RK
3290 {
3291 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3292 struct table_elt *elt;
3293
3294 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3295 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3296 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3297 imode)) != 0)
ddc356e8 3298 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
31c85c78
RK
3299 {
3300 if (CONSTANT_P (elt->exp)
3301 && GET_MODE (elt->exp) == VOIDmode)
3302 return elt->exp;
3303
4b980e20
RK
3304 if (GET_CODE (elt->exp) == SUBREG
3305 && GET_MODE (SUBREG_REG (elt->exp)) == mode
0516f6fe 3306 && exp_equiv_p (elt->exp, elt->exp, 1, false))
4b980e20 3307 return copy_rtx (SUBREG_REG (elt->exp));
1bb98cec 3308 }
4b980e20
RK
3309
3310 return x;
3311 }
e5f6a288 3312
7afe21cc
RK
3313 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3314 We might be able to if the SUBREG is extracting a single word in an
3315 integral mode or extracting the low part. */
3316
3317 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3318 const_arg0 = equiv_constant (folded_arg0);
3319 if (const_arg0)
3320 folded_arg0 = const_arg0;
3321
3322 if (folded_arg0 != SUBREG_REG (x))
3323 {
949c5d62
JH
3324 new = simplify_subreg (mode, folded_arg0,
3325 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7afe21cc
RK
3326 if (new)
3327 return new;
3328 }
e5f6a288 3329
f8cfc6aa 3330 if (REG_P (folded_arg0)
4c442790 3331 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
e5f6a288
RK
3332 {
3333 struct table_elt *elt;
3334
e5f6a288
RK
3335 elt = lookup (folded_arg0,
3336 HASH (folded_arg0, GET_MODE (folded_arg0)),
3337 GET_MODE (folded_arg0));
3338
3339 if (elt)
3340 elt = elt->first_same_value;
3341
4c442790
PB
3342 if (subreg_lowpart_p (x))
3343 /* If this is a narrowing SUBREG and our operand is a REG, see
3344 if we can find an equivalence for REG that is an arithmetic
3345 operation in a wider mode where both operands are paradoxical
3346 SUBREGs from objects of our result mode. In that case, we
3347 couldn-t report an equivalent value for that operation, since we
3348 don't know what the extra bits will be. But we can find an
3349 equivalence for this SUBREG by folding that operation in the
3350 narrow mode. This allows us to fold arithmetic in narrow modes
3351 when the machine only supports word-sized arithmetic.
3352
3353 Also look for a case where we have a SUBREG whose operand
3354 is the same as our result. If both modes are smaller
3355 than a word, we are simply interpreting a register in
3356 different modes and we can use the inner value. */
3357
3358 for (; elt; elt = elt->next_same_value)
3359 {
3360 enum rtx_code eltcode = GET_CODE (elt->exp);
3361
3362 /* Just check for unary and binary operations. */
ec8e098d
PB
3363 if (UNARY_P (elt->exp)
3364 && eltcode != SIGN_EXTEND
3365 && eltcode != ZERO_EXTEND
4c442790
PB
3366 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3367 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3368 && (GET_MODE_CLASS (mode)
3369 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3370 {
3371 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
e5f6a288 3372
f8cfc6aa 3373 if (!REG_P (op0) && ! CONSTANT_P (op0))
4c442790 3374 op0 = fold_rtx (op0, NULL_RTX);
e5f6a288 3375
e5f6a288 3376 op0 = equiv_constant (op0);
4c442790
PB
3377 if (op0)
3378 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3379 op0, mode);
3380 }
ec8e098d 3381 else if (ARITHMETIC_P (elt->exp)
4c442790
PB
3382 && eltcode != DIV && eltcode != MOD
3383 && eltcode != UDIV && eltcode != UMOD
3384 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3385 && eltcode != ROTATE && eltcode != ROTATERT
3386 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3387 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3388 == mode))
3389 || CONSTANT_P (XEXP (elt->exp, 0)))
3390 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3391 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3392 == mode))
3393 || CONSTANT_P (XEXP (elt->exp, 1))))
3394 {
3395 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3396 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3397
f8cfc6aa 3398 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
4c442790
PB
3399 op0 = fold_rtx (op0, NULL_RTX);
3400
3401 if (op0)
3402 op0 = equiv_constant (op0);
3403
f8cfc6aa 3404 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
4c442790
PB
3405 op1 = fold_rtx (op1, NULL_RTX);
3406
3407 if (op1)
3408 op1 = equiv_constant (op1);
3409
3410 /* If we are looking for the low SImode part of
3411 (ashift:DI c (const_int 32)), it doesn't work
3412 to compute that in SImode, because a 32-bit shift
3413 in SImode is unpredictable. We know the value is 0. */
3414 if (op0 && op1
3415 && GET_CODE (elt->exp) == ASHIFT
3416 && GET_CODE (op1) == CONST_INT
3417 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3418 {
3419 if (INTVAL (op1)
3420 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3421 /* If the count fits in the inner mode's width,
3422 but exceeds the outer mode's width,
3423 the value will get truncated to 0
3424 by the subreg. */
3425 new = CONST0_RTX (mode);
3426 else
3427 /* If the count exceeds even the inner mode's width,
76fb0b60 3428 don't fold this expression. */
4c442790
PB
3429 new = 0;
3430 }
3431 else if (op0 && op1)
3432 new = simplify_binary_operation (GET_CODE (elt->exp), mode, op0, op1);
3433 }
e5f6a288 3434
4c442790
PB
3435 else if (GET_CODE (elt->exp) == SUBREG
3436 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3437 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3438 <= UNITS_PER_WORD)
0516f6fe 3439 && exp_equiv_p (elt->exp, elt->exp, 1, false))
4c442790 3440 new = copy_rtx (SUBREG_REG (elt->exp));
4b980e20 3441
4c442790
PB
3442 if (new)
3443 return new;
3444 }
3445 else
3446 /* A SUBREG resulting from a zero extension may fold to zero if
3447 it extracts higher bits than the ZERO_EXTEND's source bits.
3448 FIXME: if combine tried to, er, combine these instructions,
3449 this transformation may be moved to simplify_subreg. */
3450 for (; elt; elt = elt->next_same_value)
3451 {
3452 if (GET_CODE (elt->exp) == ZERO_EXTEND
3453 && subreg_lsb (x)
3454 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3455 return CONST0_RTX (mode);
3456 }
e5f6a288
RK
3457 }
3458
7afe21cc
RK
3459 return x;
3460
3461 case NOT:
3462 case NEG:
3463 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3464 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3465 new = lookup_as_function (XEXP (x, 0), code);
3466 if (new)
3467 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3468 break;
13c9910f 3469
7afe21cc
RK
3470 case MEM:
3471 /* If we are not actually processing an insn, don't try to find the
3472 best address. Not only don't we care, but we could modify the
3473 MEM in an invalid way since we have no insn to validate against. */
3474 if (insn != 0)
01329426 3475 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
7afe21cc
RK
3476
3477 {
3478 /* Even if we don't fold in the insn itself,
3479 we can safely do so here, in hopes of getting a constant. */
906c4e36 3480 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
7afe21cc 3481 rtx base = 0;
906c4e36 3482 HOST_WIDE_INT offset = 0;
7afe21cc 3483
f8cfc6aa 3484 if (REG_P (addr)
1bb98cec
DM
3485 && REGNO_QTY_VALID_P (REGNO (addr)))
3486 {
3487 int addr_q = REG_QTY (REGNO (addr));
3488 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3489
3490 if (GET_MODE (addr) == addr_ent->mode
3491 && addr_ent->const_rtx != NULL_RTX)
3492 addr = addr_ent->const_rtx;
3493 }
7afe21cc
RK
3494
3495 /* If address is constant, split it into a base and integer offset. */
3496 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3497 base = addr;
3498 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3499 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3500 {
3501 base = XEXP (XEXP (addr, 0), 0);
3502 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3503 }
3504 else if (GET_CODE (addr) == LO_SUM
3505 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3506 base = XEXP (addr, 1);
3507
3508 /* If this is a constant pool reference, we can fold it into its
3509 constant to allow better value tracking. */
3510 if (base && GET_CODE (base) == SYMBOL_REF
3511 && CONSTANT_POOL_ADDRESS_P (base))
3512 {
3513 rtx constant = get_pool_constant (base);
3514 enum machine_mode const_mode = get_pool_mode (base);
3515 rtx new;
3516
3517 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
dd0ba281
RS
3518 {
3519 constant_pool_entries_cost = COST (constant);
3520 constant_pool_entries_regcost = approx_reg_cost (constant);
3521 }
7afe21cc
RK
3522
3523 /* If we are loading the full constant, we have an equivalence. */
3524 if (offset == 0 && mode == const_mode)
3525 return constant;
3526
9faa82d8 3527 /* If this actually isn't a constant (weird!), we can't do
7afe21cc
RK
3528 anything. Otherwise, handle the two most common cases:
3529 extracting a word from a multi-word constant, and extracting
3530 the low-order bits. Other cases don't seem common enough to
3531 worry about. */
3532 if (! CONSTANT_P (constant))
3533 return x;
3534
3535 if (GET_MODE_CLASS (mode) == MODE_INT
3536 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3537 && offset % UNITS_PER_WORD == 0
3538 && (new = operand_subword (constant,
3539 offset / UNITS_PER_WORD,
3540 0, const_mode)) != 0)
3541 return new;
3542
3543 if (((BYTES_BIG_ENDIAN
3544 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3545 || (! BYTES_BIG_ENDIAN && offset == 0))
4de249d9 3546 && (new = gen_lowpart (mode, constant)) != 0)
7afe21cc
RK
3547 return new;
3548 }
3549
3550 /* If this is a reference to a label at a known position in a jump
3551 table, we also know its value. */
3552 if (base && GET_CODE (base) == LABEL_REF)
3553 {
3554 rtx label = XEXP (base, 0);
3555 rtx table_insn = NEXT_INSN (label);
278a83b2 3556
4b4bf941 3557 if (table_insn && JUMP_P (table_insn)
7afe21cc
RK
3558 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3559 {
3560 rtx table = PATTERN (table_insn);
3561
3562 if (offset >= 0
3563 && (offset / GET_MODE_SIZE (GET_MODE (table))
3564 < XVECLEN (table, 0)))
3565 return XVECEXP (table, 0,
3566 offset / GET_MODE_SIZE (GET_MODE (table)));
3567 }
4b4bf941 3568 if (table_insn && JUMP_P (table_insn)
7afe21cc
RK
3569 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3570 {
3571 rtx table = PATTERN (table_insn);
3572
3573 if (offset >= 0
3574 && (offset / GET_MODE_SIZE (GET_MODE (table))
3575 < XVECLEN (table, 1)))
3576 {
3577 offset /= GET_MODE_SIZE (GET_MODE (table));
38a448ca
RH
3578 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3579 XEXP (table, 0));
7afe21cc
RK
3580
3581 if (GET_MODE (table) != Pmode)
38a448ca 3582 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
7afe21cc 3583
278a83b2 3584 /* Indicate this is a constant. This isn't a
67a37737
RK
3585 valid form of CONST, but it will only be used
3586 to fold the next insns and then discarded, so
ac7ef8d5
FS
3587 it should be safe.
3588
3589 Note this expression must be explicitly discarded,
3590 by cse_insn, else it may end up in a REG_EQUAL note
3591 and "escape" to cause problems elsewhere. */
38a448ca 3592 return gen_rtx_CONST (GET_MODE (new), new);
7afe21cc
RK
3593 }
3594 }
3595 }
3596
3597 return x;
3598 }
9255709c 3599
a5e5cf67
RH
3600#ifdef NO_FUNCTION_CSE
3601 case CALL:
3602 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3603 return x;
3604 break;
3605#endif
3606
9255709c 3607 case ASM_OPERANDS:
6c667859
AB
3608 if (insn)
3609 {
3610 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3611 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3612 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3613 }
9255709c 3614 break;
278a83b2 3615
e9a25f70
JL
3616 default:
3617 break;
7afe21cc
RK
3618 }
3619
3620 const_arg0 = 0;
3621 const_arg1 = 0;
3622 const_arg2 = 0;
3623 mode_arg0 = VOIDmode;
3624
3625 /* Try folding our operands.
3626 Then see which ones have constant values known. */
3627
3628 fmt = GET_RTX_FORMAT (code);
3629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3630 if (fmt[i] == 'e')
3631 {
3632 rtx arg = XEXP (x, i);
3633 rtx folded_arg = arg, const_arg = 0;
3634 enum machine_mode mode_arg = GET_MODE (arg);
3635 rtx cheap_arg, expensive_arg;
3636 rtx replacements[2];
3637 int j;
5b437e0f 3638 int old_cost = COST_IN (XEXP (x, i), code);
7afe21cc
RK
3639
3640 /* Most arguments are cheap, so handle them specially. */
3641 switch (GET_CODE (arg))
3642 {
3643 case REG:
3644 /* This is the same as calling equiv_constant; it is duplicated
3645 here for speed. */
1bb98cec
DM
3646 if (REGNO_QTY_VALID_P (REGNO (arg)))
3647 {
3648 int arg_q = REG_QTY (REGNO (arg));
3649 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3650
3651 if (arg_ent->const_rtx != NULL_RTX
f8cfc6aa 3652 && !REG_P (arg_ent->const_rtx)
1bb98cec
DM
3653 && GET_CODE (arg_ent->const_rtx) != PLUS)
3654 const_arg
4de249d9 3655 = gen_lowpart (GET_MODE (arg),
1bb98cec
DM
3656 arg_ent->const_rtx);
3657 }
7afe21cc
RK
3658 break;
3659
3660 case CONST:
3661 case CONST_INT:
3662 case SYMBOL_REF:
3663 case LABEL_REF:
3664 case CONST_DOUBLE:
69ef87e2 3665 case CONST_VECTOR:
7afe21cc
RK
3666 const_arg = arg;
3667 break;
3668
3669#ifdef HAVE_cc0
3670 case CC0:
3671 folded_arg = prev_insn_cc0;
3672 mode_arg = prev_insn_cc0_mode;
3673 const_arg = equiv_constant (folded_arg);
3674 break;
3675#endif
3676
3677 default:
3678 folded_arg = fold_rtx (arg, insn);
3679 const_arg = equiv_constant (folded_arg);
3680 }
3681
3682 /* For the first three operands, see if the operand
3683 is constant or equivalent to a constant. */
3684 switch (i)
3685 {
3686 case 0:
3687 folded_arg0 = folded_arg;
3688 const_arg0 = const_arg;
3689 mode_arg0 = mode_arg;
3690 break;
3691 case 1:
3692 folded_arg1 = folded_arg;
3693 const_arg1 = const_arg;
3694 break;
3695 case 2:
3696 const_arg2 = const_arg;
3697 break;
3698 }
3699
3700 /* Pick the least expensive of the folded argument and an
3701 equivalent constant argument. */
3702 if (const_arg == 0 || const_arg == folded_arg
f2fa288f 3703 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
7afe21cc
RK
3704 cheap_arg = folded_arg, expensive_arg = const_arg;
3705 else
3706 cheap_arg = const_arg, expensive_arg = folded_arg;
3707
3708 /* Try to replace the operand with the cheapest of the two
3709 possibilities. If it doesn't work and this is either of the first
3710 two operands of a commutative operation, try swapping them.
3711 If THAT fails, try the more expensive, provided it is cheaper
3712 than what is already there. */
3713
3714 if (cheap_arg == XEXP (x, i))
3715 continue;
3716
3717 if (insn == 0 && ! copied)
3718 {
3719 x = copy_rtx (x);
3720 copied = 1;
3721 }
3722
f2fa288f
RH
3723 /* Order the replacements from cheapest to most expensive. */
3724 replacements[0] = cheap_arg;
3725 replacements[1] = expensive_arg;
3726
68252e27 3727 for (j = 0; j < 2 && replacements[j]; j++)
7afe21cc 3728 {
f2fa288f
RH
3729 int new_cost = COST_IN (replacements[j], code);
3730
3731 /* Stop if what existed before was cheaper. Prefer constants
3732 in the case of a tie. */
3733 if (new_cost > old_cost
3734 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3735 break;
3736
8cce3d04
RS
3737 /* It's not safe to substitute the operand of a conversion
3738 operator with a constant, as the conversion's identity
3739 depends upon the mode of it's operand. This optimization
3740 is handled by the call to simplify_unary_operation. */
3741 if (GET_RTX_CLASS (code) == RTX_UNARY
3742 && GET_MODE (replacements[j]) != mode_arg0
3743 && (code == ZERO_EXTEND
3744 || code == SIGN_EXTEND
3745 || code == TRUNCATE
3746 || code == FLOAT_TRUNCATE
3747 || code == FLOAT_EXTEND
3748 || code == FLOAT
3749 || code == FIX
3750 || code == UNSIGNED_FLOAT
3751 || code == UNSIGNED_FIX))
3752 continue;
3753
7afe21cc
RK
3754 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3755 break;
3756
ec8e098d
PB
3757 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3758 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
7afe21cc
RK
3759 {
3760 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3761 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3762
3763 if (apply_change_group ())
3764 {
3765 /* Swap them back to be invalid so that this loop can
3766 continue and flag them to be swapped back later. */
3767 rtx tem;
3768
3769 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3770 XEXP (x, 1) = tem;
3771 must_swap = 1;
3772 break;
3773 }
3774 }
3775 }
3776 }
3777
2d8b0f3a
JL
3778 else
3779 {
3780 if (fmt[i] == 'E')
3781 /* Don't try to fold inside of a vector of expressions.
3782 Doing nothing is harmless. */
e49a1d2e 3783 {;}
2d8b0f3a 3784 }
7afe21cc
RK
3785
3786 /* If a commutative operation, place a constant integer as the second
3787 operand unless the first operand is also a constant integer. Otherwise,
3788 place any constant second unless the first operand is also a constant. */
3789
ec8e098d 3790 if (COMMUTATIVE_P (x))
7afe21cc 3791 {
c715abdd
RS
3792 if (must_swap
3793 || swap_commutative_operands_p (const_arg0 ? const_arg0
3794 : XEXP (x, 0),
3795 const_arg1 ? const_arg1
3796 : XEXP (x, 1)))
7afe21cc 3797 {
b3694847 3798 rtx tem = XEXP (x, 0);
7afe21cc
RK
3799
3800 if (insn == 0 && ! copied)
3801 {
3802 x = copy_rtx (x);
3803 copied = 1;
3804 }
3805
3806 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3807 validate_change (insn, &XEXP (x, 1), tem, 1);
3808 if (apply_change_group ())
3809 {
3810 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3811 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3812 }
3813 }
3814 }
3815
3816 /* If X is an arithmetic operation, see if we can simplify it. */
3817
3818 switch (GET_RTX_CLASS (code))
3819 {
ec8e098d 3820 case RTX_UNARY:
67a37737
RK
3821 {
3822 int is_const = 0;
3823
3824 /* We can't simplify extension ops unless we know the
3825 original mode. */
3826 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3827 && mode_arg0 == VOIDmode)
3828 break;
3829
3830 /* If we had a CONST, strip it off and put it back later if we
3831 fold. */
3832 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3833 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3834
3835 new = simplify_unary_operation (code, mode,
3836 const_arg0 ? const_arg0 : folded_arg0,
3837 mode_arg0);
ec666d23
JH
3838 /* NEG of PLUS could be converted into MINUS, but that causes
3839 expressions of the form
3840 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3841 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3842 FIXME: those ports should be fixed. */
3843 if (new != 0 && is_const
3844 && GET_CODE (new) == PLUS
3845 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3846 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3847 && GET_CODE (XEXP (new, 1)) == CONST_INT)
38a448ca 3848 new = gen_rtx_CONST (mode, new);
67a37737 3849 }
7afe21cc 3850 break;
278a83b2 3851
ec8e098d
PB
3852 case RTX_COMPARE:
3853 case RTX_COMM_COMPARE:
7afe21cc
RK
3854 /* See what items are actually being compared and set FOLDED_ARG[01]
3855 to those values and CODE to the actual comparison code. If any are
3856 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3857 do anything if both operands are already known to be constant. */
3858
21e5076a
UB
3859 /* ??? Vector mode comparisons are not supported yet. */
3860 if (VECTOR_MODE_P (mode))
3861 break;
3862
7afe21cc
RK
3863 if (const_arg0 == 0 || const_arg1 == 0)
3864 {
3865 struct table_elt *p0, *p1;
d6edb99e 3866 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
13c9910f 3867 enum machine_mode mode_arg1;
c610adec
RK
3868
3869#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 3870 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 3871 {
d6edb99e 3872 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
68252e27 3873 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 3874 false_rtx = CONST0_RTX (mode);
c610adec
RK
3875 }
3876#endif
7afe21cc 3877
13c9910f
RS
3878 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3879 &mode_arg0, &mode_arg1);
7afe21cc 3880
13c9910f
RS
3881 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3882 what kinds of things are being compared, so we can't do
3883 anything with this comparison. */
7afe21cc
RK
3884
3885 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3886 break;
3887
75335440
KH
3888 const_arg0 = equiv_constant (folded_arg0);
3889 const_arg1 = equiv_constant (folded_arg1);
3890
0f41302f
MS
3891 /* If we do not now have two constants being compared, see
3892 if we can nevertheless deduce some things about the
3893 comparison. */
7afe21cc
RK
3894 if (const_arg0 == 0 || const_arg1 == 0)
3895 {
4977bab6
ZW
3896 /* Some addresses are known to be nonzero. We don't know
3897 their sign, but equality comparisons are known. */
7afe21cc 3898 if (const_arg1 == const0_rtx
4977bab6 3899 && nonzero_address_p (folded_arg0))
7afe21cc
RK
3900 {
3901 if (code == EQ)
d6edb99e 3902 return false_rtx;
7afe21cc 3903 else if (code == NE)
d6edb99e 3904 return true_rtx;
7afe21cc
RK
3905 }
3906
fd13313f
JH
3907 /* See if the two operands are the same. */
3908
3909 if (folded_arg0 == folded_arg1
f8cfc6aa
JQ
3910 || (REG_P (folded_arg0)
3911 && REG_P (folded_arg1)
fd13313f
JH
3912 && (REG_QTY (REGNO (folded_arg0))
3913 == REG_QTY (REGNO (folded_arg1))))
3914 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3915 SAFE_HASH (folded_arg0, mode_arg0),
3916 mode_arg0))
fd13313f 3917 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3918 SAFE_HASH (folded_arg1, mode_arg0),
3919 mode_arg0))
fd13313f
JH
3920 && p0->first_same_value == p1->first_same_value))
3921 {
71925bc0
RS
3922 /* Sadly two equal NaNs are not equivalent. */
3923 if (!HONOR_NANS (mode_arg0))
3924 return ((code == EQ || code == LE || code == GE
3925 || code == LEU || code == GEU || code == UNEQ
3926 || code == UNLE || code == UNGE
3927 || code == ORDERED)
3928 ? true_rtx : false_rtx);
3929 /* Take care for the FP compares we can resolve. */
3930 if (code == UNEQ || code == UNLE || code == UNGE)
3931 return true_rtx;
3932 if (code == LTGT || code == LT || code == GT)
3933 return false_rtx;
fd13313f 3934 }
7afe21cc
RK
3935
3936 /* If FOLDED_ARG0 is a register, see if the comparison we are
3937 doing now is either the same as we did before or the reverse
3938 (we only check the reverse if not floating-point). */
f8cfc6aa 3939 else if (REG_P (folded_arg0))
7afe21cc 3940 {
30f72379 3941 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 3942
1bb98cec
DM
3943 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3944 {
3945 struct qty_table_elem *ent = &qty_table[qty];
3946
3947 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
3948 || (! FLOAT_MODE_P (mode_arg0)
3949 && comparison_dominates_p (ent->comparison_code,
3950 reverse_condition (code))))
1bb98cec
DM
3951 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3952 || (const_arg1
3953 && rtx_equal_p (ent->comparison_const,
3954 const_arg1))
f8cfc6aa 3955 || (REG_P (folded_arg1)
1bb98cec
DM
3956 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3957 return (comparison_dominates_p (ent->comparison_code, code)
d6edb99e 3958 ? true_rtx : false_rtx);
1bb98cec 3959 }
7afe21cc
RK
3960 }
3961 }
3962 }
3963
3964 /* If we are comparing against zero, see if the first operand is
3965 equivalent to an IOR with a constant. If so, we may be able to
3966 determine the result of this comparison. */
3967
3968 if (const_arg1 == const0_rtx)
3969 {
3970 rtx y = lookup_as_function (folded_arg0, IOR);
3971 rtx inner_const;
3972
3973 if (y != 0
3974 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3975 && GET_CODE (inner_const) == CONST_INT
3976 && INTVAL (inner_const) != 0)
3977 {
3978 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
906c4e36
RK
3979 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3980 && (INTVAL (inner_const)
3981 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
d6edb99e 3982 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
c610adec
RK
3983
3984#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 3985 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 3986 {
d6edb99e 3987 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
12530dbe 3988 (FLOAT_STORE_FLAG_VALUE (mode), mode));
d6edb99e 3989 false_rtx = CONST0_RTX (mode);
c610adec
RK
3990 }
3991#endif
7afe21cc
RK
3992
3993 switch (code)
3994 {
3995 case EQ:
d6edb99e 3996 return false_rtx;
7afe21cc 3997 case NE:
d6edb99e 3998 return true_rtx;
7afe21cc
RK
3999 case LT: case LE:
4000 if (has_sign)
d6edb99e 4001 return true_rtx;
7afe21cc
RK
4002 break;
4003 case GT: case GE:
4004 if (has_sign)
d6edb99e 4005 return false_rtx;
7afe21cc 4006 break;
e9a25f70
JL
4007 default:
4008 break;
7afe21cc
RK
4009 }
4010 }
4011 }
4012
c6fb08ad
PB
4013 {
4014 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4015 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4016 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4017 }
7afe21cc
RK
4018 break;
4019
ec8e098d
PB
4020 case RTX_BIN_ARITH:
4021 case RTX_COMM_ARITH:
7afe21cc
RK
4022 switch (code)
4023 {
4024 case PLUS:
4025 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4026 with that LABEL_REF as its second operand. If so, the result is
4027 the first operand of that MINUS. This handles switches with an
4028 ADDR_DIFF_VEC table. */
4029 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4030 {
e650cbda
RK
4031 rtx y
4032 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 4033 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
4034
4035 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4036 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4037 return XEXP (y, 0);
67a37737
RK
4038
4039 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
4040 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4041 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
4042 && GET_CODE (XEXP (y, 0)) == MINUS
4043 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 4044 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
67a37737 4045 return XEXP (XEXP (y, 0), 0);
7afe21cc 4046 }
c2cc0778 4047
e650cbda
RK
4048 /* Likewise if the operands are in the other order. */
4049 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4050 {
4051 rtx y
4052 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 4053 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
4054
4055 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4056 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4057 return XEXP (y, 0);
4058
4059 /* Now try for a CONST of a MINUS like the above. */
4060 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4061 : lookup_as_function (folded_arg1, CONST))) != 0
4062 && GET_CODE (XEXP (y, 0)) == MINUS
4063 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
ddc356e8 4064 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
e650cbda
RK
4065 return XEXP (XEXP (y, 0), 0);
4066 }
4067
c2cc0778
RK
4068 /* If second operand is a register equivalent to a negative
4069 CONST_INT, see if we can find a register equivalent to the
4070 positive constant. Make a MINUS if so. Don't do this for
5d595063 4071 a non-negative constant since we might then alternate between
a1f300c0 4072 choosing positive and negative constants. Having the positive
5d595063
RK
4073 constant previously-used is the more common case. Be sure
4074 the resulting constant is non-negative; if const_arg1 were
4075 the smallest negative number this would overflow: depending
4076 on the mode, this would either just be the same value (and
4077 hence not save anything) or be incorrect. */
4078 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4079 && INTVAL (const_arg1) < 0
4741f6ad
JL
4080 /* This used to test
4081
ddc356e8 4082 -INTVAL (const_arg1) >= 0
4741f6ad
JL
4083
4084 But The Sun V5.0 compilers mis-compiled that test. So
4085 instead we test for the problematic value in a more direct
4086 manner and hope the Sun compilers get it correct. */
5c45a8ac
KG
4087 && INTVAL (const_arg1) !=
4088 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 4089 && REG_P (folded_arg1))
c2cc0778 4090 {
ddc356e8 4091 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 4092 struct table_elt *p
0516f6fe 4093 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
4094
4095 if (p)
4096 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 4097 if (REG_P (p->exp))
0cedb36c
JL
4098 return simplify_gen_binary (MINUS, mode, folded_arg0,
4099 canon_reg (p->exp, NULL_RTX));
c2cc0778 4100 }
13c9910f
RS
4101 goto from_plus;
4102
4103 case MINUS:
4104 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4105 If so, produce (PLUS Z C2-C). */
4106 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4107 {
4108 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4109 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
f3becefd
RK
4110 return fold_rtx (plus_constant (copy_rtx (y),
4111 -INTVAL (const_arg1)),
a3b5c94a 4112 NULL_RTX);
13c9910f 4113 }
7afe21cc 4114
ddc356e8 4115 /* Fall through. */
7afe21cc 4116
13c9910f 4117 from_plus:
7afe21cc
RK
4118 case SMIN: case SMAX: case UMIN: case UMAX:
4119 case IOR: case AND: case XOR:
f930bfd0 4120 case MULT:
7afe21cc
RK
4121 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4122 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4123 is known to be of similar form, we may be able to replace the
4124 operation with a combined operation. This may eliminate the
4125 intermediate operation if every use is simplified in this way.
4126 Note that the similar optimization done by combine.c only works
4127 if the intermediate operation's result has only one reference. */
4128
f8cfc6aa 4129 if (REG_P (folded_arg0)
7afe21cc
RK
4130 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4131 {
4132 int is_shift
4133 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4134 rtx y = lookup_as_function (folded_arg0, code);
4135 rtx inner_const;
4136 enum rtx_code associate_code;
4137 rtx new_const;
4138
4139 if (y == 0
4140 || 0 == (inner_const
4141 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4142 || GET_CODE (inner_const) != CONST_INT
4143 /* If we have compiled a statement like
4144 "if (x == (x & mask1))", and now are looking at
4145 "x & mask2", we will have a case where the first operand
4146 of Y is the same as our first operand. Unless we detect
4147 this case, an infinite loop will result. */
4148 || XEXP (y, 0) == folded_arg0)
4149 break;
4150
4151 /* Don't associate these operations if they are a PLUS with the
4152 same constant and it is a power of two. These might be doable
4153 with a pre- or post-increment. Similarly for two subtracts of
4154 identical powers of two with post decrement. */
4155
213d5fbc 4156 if (code == PLUS && const_arg1 == inner_const
940da324
JL
4157 && ((HAVE_PRE_INCREMENT
4158 && exact_log2 (INTVAL (const_arg1)) >= 0)
4159 || (HAVE_POST_INCREMENT
4160 && exact_log2 (INTVAL (const_arg1)) >= 0)
4161 || (HAVE_PRE_DECREMENT
4162 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4163 || (HAVE_POST_DECREMENT
4164 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
7afe21cc
RK
4165 break;
4166
4167 /* Compute the code used to compose the constants. For example,
f930bfd0 4168 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 4169
f930bfd0 4170 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
4171
4172 new_const = simplify_binary_operation (associate_code, mode,
4173 const_arg1, inner_const);
4174
4175 if (new_const == 0)
4176 break;
4177
4178 /* If we are associating shift operations, don't let this
4908e508
RS
4179 produce a shift of the size of the object or larger.
4180 This could occur when we follow a sign-extend by a right
4181 shift on a machine that does a sign-extend as a pair
4182 of shifts. */
7afe21cc
RK
4183
4184 if (is_shift && GET_CODE (new_const) == CONST_INT
4908e508
RS
4185 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4186 {
4187 /* As an exception, we can turn an ASHIFTRT of this
4188 form into a shift of the number of bits - 1. */
4189 if (code == ASHIFTRT)
4190 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4191 else
4192 break;
4193 }
7afe21cc
RK
4194
4195 y = copy_rtx (XEXP (y, 0));
4196
4197 /* If Y contains our first operand (the most common way this
4198 can happen is if Y is a MEM), we would do into an infinite
4199 loop if we tried to fold it. So don't in that case. */
4200
4201 if (! reg_mentioned_p (folded_arg0, y))
4202 y = fold_rtx (y, insn);
4203
0cedb36c 4204 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 4205 }
e9a25f70
JL
4206 break;
4207
f930bfd0
JW
4208 case DIV: case UDIV:
4209 /* ??? The associative optimization performed immediately above is
4210 also possible for DIV and UDIV using associate_code of MULT.
4211 However, we would need extra code to verify that the
4212 multiplication does not overflow, that is, there is no overflow
4213 in the calculation of new_const. */
4214 break;
4215
e9a25f70
JL
4216 default:
4217 break;
7afe21cc
RK
4218 }
4219
4220 new = simplify_binary_operation (code, mode,
4221 const_arg0 ? const_arg0 : folded_arg0,
4222 const_arg1 ? const_arg1 : folded_arg1);
4223 break;
4224
ec8e098d 4225 case RTX_OBJ:
7afe21cc
RK
4226 /* (lo_sum (high X) X) is simply X. */
4227 if (code == LO_SUM && const_arg0 != 0
4228 && GET_CODE (const_arg0) == HIGH
4229 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4230 return const_arg1;
4231 break;
4232
ec8e098d
PB
4233 case RTX_TERNARY:
4234 case RTX_BITFIELD_OPS:
7afe21cc
RK
4235 new = simplify_ternary_operation (code, mode, mode_arg0,
4236 const_arg0 ? const_arg0 : folded_arg0,
4237 const_arg1 ? const_arg1 : folded_arg1,
4238 const_arg2 ? const_arg2 : XEXP (x, 2));
4239 break;
ee5332b8 4240
ec8e098d
PB
4241 default:
4242 break;
7afe21cc
RK
4243 }
4244
4245 return new ? new : x;
4246}
4247\f
4248/* Return a constant value currently equivalent to X.
4249 Return 0 if we don't know one. */
4250
4251static rtx
7080f735 4252equiv_constant (rtx x)
7afe21cc 4253{
f8cfc6aa 4254 if (REG_P (x)
1bb98cec
DM
4255 && REGNO_QTY_VALID_P (REGNO (x)))
4256 {
4257 int x_q = REG_QTY (REGNO (x));
4258 struct qty_table_elem *x_ent = &qty_table[x_q];
4259
4260 if (x_ent->const_rtx)
4de249d9 4261 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 4262 }
7afe21cc 4263
2ce5e1b4 4264 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
4265 return x;
4266
fc3ffe83
RK
4267 /* If X is a MEM, try to fold it outside the context of any insn to see if
4268 it might be equivalent to a constant. That handles the case where it
4269 is a constant-pool reference. Then try to look it up in the hash table
4270 in case it is something whose value we have seen before. */
4271
3c0cb5de 4272 if (MEM_P (x))
fc3ffe83
RK
4273 {
4274 struct table_elt *elt;
4275
906c4e36 4276 x = fold_rtx (x, NULL_RTX);
fc3ffe83
RK
4277 if (CONSTANT_P (x))
4278 return x;
4279
0516f6fe 4280 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
4281 if (elt == 0)
4282 return 0;
4283
4284 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4285 if (elt->is_const && CONSTANT_P (elt->exp))
4286 return elt->exp;
4287 }
4288
7afe21cc
RK
4289 return 0;
4290}
4291\f
4292/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4293 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4294 least-significant part of X.
278a83b2 4295 MODE specifies how big a part of X to return.
7afe21cc
RK
4296
4297 If the requested operation cannot be done, 0 is returned.
4298
4de249d9 4299 This is similar to gen_lowpart_general in emit-rtl.c. */
7afe21cc
RK
4300
4301rtx
7080f735 4302gen_lowpart_if_possible (enum machine_mode mode, rtx x)
7afe21cc
RK
4303{
4304 rtx result = gen_lowpart_common (mode, x);
4305
4306 if (result)
4307 return result;
3c0cb5de 4308 else if (MEM_P (x))
7afe21cc
RK
4309 {
4310 /* This is the only other case we handle. */
b3694847 4311 int offset = 0;
7afe21cc
RK
4312 rtx new;
4313
f76b9db2
ILT
4314 if (WORDS_BIG_ENDIAN)
4315 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4316 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4317 if (BYTES_BIG_ENDIAN)
f1ec5147
RK
4318 /* Adjust the address so that the address-after-the-data is
4319 unchanged. */
4320 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4321 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4322
4323 new = adjust_address_nv (x, mode, offset);
7afe21cc
RK
4324 if (! memory_address_p (mode, XEXP (new, 0)))
4325 return 0;
f1ec5147 4326
7afe21cc
RK
4327 return new;
4328 }
4329 else
4330 return 0;
4331}
4332\f
6de9cd9a 4333/* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
7afe21cc
RK
4334 branch. It will be zero if not.
4335
4336 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 4337 if we are following the taken case of
7080f735 4338 if (i == 2)
7afe21cc
RK
4339 we can add the fact that `i' and '2' are now equivalent.
4340
4341 In any case, we can record that this comparison was passed. If the same
4342 comparison is seen later, we will know its value. */
4343
4344static void
7080f735 4345record_jump_equiv (rtx insn, int taken)
7afe21cc
RK
4346{
4347 int cond_known_true;
4348 rtx op0, op1;
7f1c097d 4349 rtx set;
13c9910f 4350 enum machine_mode mode, mode0, mode1;
7afe21cc
RK
4351 int reversed_nonequality = 0;
4352 enum rtx_code code;
4353
4354 /* Ensure this is the right kind of insn. */
7f1c097d 4355 if (! any_condjump_p (insn))
7afe21cc 4356 return;
7f1c097d 4357 set = pc_set (insn);
7afe21cc
RK
4358
4359 /* See if this jump condition is known true or false. */
4360 if (taken)
7f1c097d 4361 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 4362 else
7f1c097d 4363 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
4364
4365 /* Get the type of comparison being done and the operands being compared.
4366 If we had to reverse a non-equality condition, record that fact so we
4367 know that it isn't valid for floating-point. */
7f1c097d
JH
4368 code = GET_CODE (XEXP (SET_SRC (set), 0));
4369 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4370 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 4371
13c9910f 4372 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
4373 if (! cond_known_true)
4374 {
261efdef 4375 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
4376
4377 /* Don't remember if we can't find the inverse. */
4378 if (code == UNKNOWN)
4379 return;
7afe21cc
RK
4380 }
4381
4382 /* The mode is the mode of the non-constant. */
13c9910f
RS
4383 mode = mode0;
4384 if (mode1 != VOIDmode)
4385 mode = mode1;
7afe21cc
RK
4386
4387 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4388}
4389
794693c0
RH
4390/* Yet another form of subreg creation. In this case, we want something in
4391 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4392
4393static rtx
4394record_jump_cond_subreg (enum machine_mode mode, rtx op)
4395{
4396 enum machine_mode op_mode = GET_MODE (op);
4397 if (op_mode == mode || op_mode == VOIDmode)
4398 return op;
4399 return lowpart_subreg (mode, op, op_mode);
4400}
4401
7afe21cc
RK
4402/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4403 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4404 Make any useful entries we can with that information. Called from
4405 above function and called recursively. */
4406
4407static void
7080f735
AJ
4408record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4409 rtx op1, int reversed_nonequality)
7afe21cc 4410{
2197a88a 4411 unsigned op0_hash, op1_hash;
e428d738 4412 int op0_in_memory, op1_in_memory;
7afe21cc
RK
4413 struct table_elt *op0_elt, *op1_elt;
4414
4415 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4416 we know that they are also equal in the smaller mode (this is also
4417 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 4418 is not worth testing for with no SUBREG). */
7afe21cc 4419
2e794ee8 4420 /* Note that GET_MODE (op0) may not equal MODE. */
7afe21cc 4421 if (code == EQ && GET_CODE (op0) == SUBREG
2e794ee8
RS
4422 && (GET_MODE_SIZE (GET_MODE (op0))
4423 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
4424 {
4425 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
4426 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4427 if (tem)
4428 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4429 reversed_nonequality);
7afe21cc
RK
4430 }
4431
4432 if (code == EQ && GET_CODE (op1) == SUBREG
2e794ee8
RS
4433 && (GET_MODE_SIZE (GET_MODE (op1))
4434 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
4435 {
4436 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
4437 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4438 if (tem)
4439 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4440 reversed_nonequality);
7afe21cc
RK
4441 }
4442
278a83b2 4443 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
4444 making a smaller mode, we know the whole thing is also NE. */
4445
2e794ee8
RS
4446 /* Note that GET_MODE (op0) may not equal MODE;
4447 if we test MODE instead, we can get an infinite recursion
4448 alternating between two modes each wider than MODE. */
4449
7afe21cc
RK
4450 if (code == NE && GET_CODE (op0) == SUBREG
4451 && subreg_lowpart_p (op0)
2e794ee8
RS
4452 && (GET_MODE_SIZE (GET_MODE (op0))
4453 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
4454 {
4455 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
4456 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4457 if (tem)
4458 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4459 reversed_nonequality);
7afe21cc
RK
4460 }
4461
4462 if (code == NE && GET_CODE (op1) == SUBREG
4463 && subreg_lowpart_p (op1)
2e794ee8
RS
4464 && (GET_MODE_SIZE (GET_MODE (op1))
4465 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
4466 {
4467 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
4468 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4469 if (tem)
4470 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4471 reversed_nonequality);
7afe21cc
RK
4472 }
4473
4474 /* Hash both operands. */
4475
4476 do_not_record = 0;
4477 hash_arg_in_memory = 0;
2197a88a 4478 op0_hash = HASH (op0, mode);
7afe21cc 4479 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
4480
4481 if (do_not_record)
4482 return;
4483
4484 do_not_record = 0;
4485 hash_arg_in_memory = 0;
2197a88a 4486 op1_hash = HASH (op1, mode);
7afe21cc 4487 op1_in_memory = hash_arg_in_memory;
278a83b2 4488
7afe21cc
RK
4489 if (do_not_record)
4490 return;
4491
4492 /* Look up both operands. */
2197a88a
RK
4493 op0_elt = lookup (op0, op0_hash, mode);
4494 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 4495
af3869c1
RK
4496 /* If both operands are already equivalent or if they are not in the
4497 table but are identical, do nothing. */
4498 if ((op0_elt != 0 && op1_elt != 0
4499 && op0_elt->first_same_value == op1_elt->first_same_value)
4500 || op0 == op1 || rtx_equal_p (op0, op1))
4501 return;
4502
7afe21cc 4503 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
4504 comparison. Similarly if this is floating-point. In the latter
4505 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4506 If we record the equality, we might inadvertently delete code
4507 whose intent was to change -0 to +0. */
4508
cbf6a543 4509 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 4510 {
1bb98cec
DM
4511 struct qty_table_elem *ent;
4512 int qty;
4513
7afe21cc
RK
4514 /* If we reversed a floating-point comparison, if OP0 is not a
4515 register, or if OP1 is neither a register or constant, we can't
4516 do anything. */
4517
f8cfc6aa 4518 if (!REG_P (op1))
7afe21cc
RK
4519 op1 = equiv_constant (op1);
4520
cbf6a543 4521 if ((reversed_nonequality && FLOAT_MODE_P (mode))
f8cfc6aa 4522 || !REG_P (op0) || op1 == 0)
7afe21cc
RK
4523 return;
4524
4525 /* Put OP0 in the hash table if it isn't already. This gives it a
4526 new quantity number. */
4527 if (op0_elt == 0)
4528 {
9714cf43 4529 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4530 {
4531 rehash_using_reg (op0);
2197a88a 4532 op0_hash = HASH (op0, mode);
2bb81c86
RK
4533
4534 /* If OP0 is contained in OP1, this changes its hash code
4535 as well. Faster to rehash than to check, except
4536 for the simple case of a constant. */
4537 if (! CONSTANT_P (op1))
2197a88a 4538 op1_hash = HASH (op1,mode);
7afe21cc
RK
4539 }
4540
9714cf43 4541 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4542 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4543 }
4544
1bb98cec
DM
4545 qty = REG_QTY (REGNO (op0));
4546 ent = &qty_table[qty];
4547
4548 ent->comparison_code = code;
f8cfc6aa 4549 if (REG_P (op1))
7afe21cc 4550 {
5d5ea909 4551 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 4552 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 4553
7afe21cc
RK
4554 /* Put OP1 in the hash table so it gets a new quantity number. */
4555 if (op1_elt == 0)
4556 {
9714cf43 4557 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4558 {
4559 rehash_using_reg (op1);
2197a88a 4560 op1_hash = HASH (op1, mode);
7afe21cc
RK
4561 }
4562
9714cf43 4563 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4564 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
4565 }
4566
1bb98cec
DM
4567 ent->comparison_const = NULL_RTX;
4568 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
4569 }
4570 else
4571 {
1bb98cec
DM
4572 ent->comparison_const = op1;
4573 ent->comparison_qty = -1;
7afe21cc
RK
4574 }
4575
4576 return;
4577 }
4578
eb5ad42a
RS
4579 /* If either side is still missing an equivalence, make it now,
4580 then merge the equivalences. */
7afe21cc 4581
7afe21cc
RK
4582 if (op0_elt == 0)
4583 {
9714cf43 4584 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4585 {
4586 rehash_using_reg (op0);
2197a88a 4587 op0_hash = HASH (op0, mode);
7afe21cc
RK
4588 }
4589
9714cf43 4590 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4591 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4592 }
4593
4594 if (op1_elt == 0)
4595 {
9714cf43 4596 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4597 {
4598 rehash_using_reg (op1);
2197a88a 4599 op1_hash = HASH (op1, mode);
7afe21cc
RK
4600 }
4601
9714cf43 4602 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4603 op1_elt->in_memory = op1_in_memory;
7afe21cc 4604 }
eb5ad42a
RS
4605
4606 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
4607}
4608\f
4609/* CSE processing for one instruction.
4610 First simplify sources and addresses of all assignments
4611 in the instruction, using previously-computed equivalents values.
4612 Then install the new sources and destinations in the table
278a83b2 4613 of available values.
7afe21cc 4614
1ed0205e
VM
4615 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4616 the insn. It means that INSN is inside libcall block. In this
ddc356e8 4617 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
7afe21cc
RK
4618
4619/* Data on one SET contained in the instruction. */
4620
4621struct set
4622{
4623 /* The SET rtx itself. */
4624 rtx rtl;
4625 /* The SET_SRC of the rtx (the original value, if it is changing). */
4626 rtx src;
4627 /* The hash-table element for the SET_SRC of the SET. */
4628 struct table_elt *src_elt;
2197a88a
RK
4629 /* Hash value for the SET_SRC. */
4630 unsigned src_hash;
4631 /* Hash value for the SET_DEST. */
4632 unsigned dest_hash;
7afe21cc
RK
4633 /* The SET_DEST, with SUBREG, etc., stripped. */
4634 rtx inner_dest;
278a83b2 4635 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 4636 char src_in_memory;
7afe21cc
RK
4637 /* Nonzero if the SET_SRC contains something
4638 whose value cannot be predicted and understood. */
4639 char src_volatile;
496324d0
DN
4640 /* Original machine mode, in case it becomes a CONST_INT.
4641 The size of this field should match the size of the mode
4642 field of struct rtx_def (see rtl.h). */
4643 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc
RK
4644 /* A constant equivalent for SET_SRC, if any. */
4645 rtx src_const;
47841d1b
JJ
4646 /* Original SET_SRC value used for libcall notes. */
4647 rtx orig_src;
2197a88a
RK
4648 /* Hash value of constant equivalent for SET_SRC. */
4649 unsigned src_const_hash;
7afe21cc
RK
4650 /* Table entry for constant equivalent for SET_SRC, if any. */
4651 struct table_elt *src_const_elt;
4652};
4653
4654static void
7080f735 4655cse_insn (rtx insn, rtx libcall_insn)
7afe21cc 4656{
b3694847
SS
4657 rtx x = PATTERN (insn);
4658 int i;
92f9aa51 4659 rtx tem;
b3694847 4660 int n_sets = 0;
7afe21cc 4661
2d8b0f3a 4662#ifdef HAVE_cc0
7afe21cc
RK
4663 /* Records what this insn does to set CC0. */
4664 rtx this_insn_cc0 = 0;
135d84b8 4665 enum machine_mode this_insn_cc0_mode = VOIDmode;
2d8b0f3a 4666#endif
7afe21cc
RK
4667
4668 rtx src_eqv = 0;
4669 struct table_elt *src_eqv_elt = 0;
6a651371
KG
4670 int src_eqv_volatile = 0;
4671 int src_eqv_in_memory = 0;
6a651371 4672 unsigned src_eqv_hash = 0;
7afe21cc 4673
9714cf43 4674 struct set *sets = (struct set *) 0;
7afe21cc
RK
4675
4676 this_insn = insn;
7afe21cc
RK
4677
4678 /* Find all the SETs and CLOBBERs in this instruction.
4679 Record all the SETs in the array `set' and count them.
4680 Also determine whether there is a CLOBBER that invalidates
4681 all memory references, or all references at varying addresses. */
4682
4b4bf941 4683 if (CALL_P (insn))
f1e7c95f
RK
4684 {
4685 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
f474c6f8
AO
4686 {
4687 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4688 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4689 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4690 }
f1e7c95f
RK
4691 }
4692
7afe21cc
RK
4693 if (GET_CODE (x) == SET)
4694 {
703ad42b 4695 sets = alloca (sizeof (struct set));
7afe21cc
RK
4696 sets[0].rtl = x;
4697
4698 /* Ignore SETs that are unconditional jumps.
4699 They never need cse processing, so this does not hurt.
4700 The reason is not efficiency but rather
4701 so that we can test at the end for instructions
4702 that have been simplified to unconditional jumps
4703 and not be misled by unchanged instructions
4704 that were unconditional jumps to begin with. */
4705 if (SET_DEST (x) == pc_rtx
4706 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4707 ;
4708
4709 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4710 The hard function value register is used only once, to copy to
4711 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4712 Ensure we invalidate the destination register. On the 80386 no
7722328e 4713 other code would invalidate it since it is a fixed_reg.
0f41302f 4714 We need not check the return of apply_change_group; see canon_reg. */
7afe21cc
RK
4715
4716 else if (GET_CODE (SET_SRC (x)) == CALL)
4717 {
4718 canon_reg (SET_SRC (x), insn);
77fa0940 4719 apply_change_group ();
7afe21cc 4720 fold_rtx (SET_SRC (x), insn);
bb4034b3 4721 invalidate (SET_DEST (x), VOIDmode);
7afe21cc
RK
4722 }
4723 else
4724 n_sets = 1;
4725 }
4726 else if (GET_CODE (x) == PARALLEL)
4727 {
b3694847 4728 int lim = XVECLEN (x, 0);
7afe21cc 4729
703ad42b 4730 sets = alloca (lim * sizeof (struct set));
7afe21cc
RK
4731
4732 /* Find all regs explicitly clobbered in this insn,
4733 and ensure they are not replaced with any other regs
4734 elsewhere in this insn.
4735 When a reg that is clobbered is also used for input,
4736 we should presume that that is for a reason,
4737 and we should not substitute some other register
4738 which is not supposed to be clobbered.
4739 Therefore, this loop cannot be merged into the one below
830a38ee 4740 because a CALL may precede a CLOBBER and refer to the
7afe21cc
RK
4741 value clobbered. We must not let a canonicalization do
4742 anything in that case. */
4743 for (i = 0; i < lim; i++)
4744 {
b3694847 4745 rtx y = XVECEXP (x, 0, i);
2708da92
RS
4746 if (GET_CODE (y) == CLOBBER)
4747 {
4748 rtx clobbered = XEXP (y, 0);
4749
f8cfc6aa 4750 if (REG_P (clobbered)
2708da92 4751 || GET_CODE (clobbered) == SUBREG)
bb4034b3 4752 invalidate (clobbered, VOIDmode);
2708da92
RS
4753 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4754 || GET_CODE (clobbered) == ZERO_EXTRACT)
bb4034b3 4755 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
2708da92 4756 }
7afe21cc 4757 }
278a83b2 4758
7afe21cc
RK
4759 for (i = 0; i < lim; i++)
4760 {
b3694847 4761 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4762 if (GET_CODE (y) == SET)
4763 {
7722328e
RK
4764 /* As above, we ignore unconditional jumps and call-insns and
4765 ignore the result of apply_change_group. */
7afe21cc
RK
4766 if (GET_CODE (SET_SRC (y)) == CALL)
4767 {
4768 canon_reg (SET_SRC (y), insn);
77fa0940 4769 apply_change_group ();
7afe21cc 4770 fold_rtx (SET_SRC (y), insn);
bb4034b3 4771 invalidate (SET_DEST (y), VOIDmode);
7afe21cc
RK
4772 }
4773 else if (SET_DEST (y) == pc_rtx
4774 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4775 ;
4776 else
4777 sets[n_sets++].rtl = y;
4778 }
4779 else if (GET_CODE (y) == CLOBBER)
4780 {
9ae8ffe7 4781 /* If we clobber memory, canon the address.
7afe21cc
RK
4782 This does nothing when a register is clobbered
4783 because we have already invalidated the reg. */
3c0cb5de 4784 if (MEM_P (XEXP (y, 0)))
9ae8ffe7 4785 canon_reg (XEXP (y, 0), NULL_RTX);
7afe21cc
RK
4786 }
4787 else if (GET_CODE (y) == USE
f8cfc6aa 4788 && ! (REG_P (XEXP (y, 0))
7afe21cc 4789 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 4790 canon_reg (y, NULL_RTX);
7afe21cc
RK
4791 else if (GET_CODE (y) == CALL)
4792 {
7722328e
RK
4793 /* The result of apply_change_group can be ignored; see
4794 canon_reg. */
7afe21cc 4795 canon_reg (y, insn);
77fa0940 4796 apply_change_group ();
7afe21cc
RK
4797 fold_rtx (y, insn);
4798 }
4799 }
4800 }
4801 else if (GET_CODE (x) == CLOBBER)
4802 {
3c0cb5de 4803 if (MEM_P (XEXP (x, 0)))
9ae8ffe7 4804 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
4805 }
4806
4807 /* Canonicalize a USE of a pseudo register or memory location. */
4808 else if (GET_CODE (x) == USE
f8cfc6aa 4809 && ! (REG_P (XEXP (x, 0))
7afe21cc 4810 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 4811 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
4812 else if (GET_CODE (x) == CALL)
4813 {
7722328e 4814 /* The result of apply_change_group can be ignored; see canon_reg. */
7afe21cc 4815 canon_reg (x, insn);
77fa0940 4816 apply_change_group ();
7afe21cc
RK
4817 fold_rtx (x, insn);
4818 }
4819
7b3ab05e
JW
4820 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4821 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4822 is handled specially for this case, and if it isn't set, then there will
9faa82d8 4823 be no equivalence for the destination. */
92f9aa51
RK
4824 if (n_sets == 1 && REG_NOTES (insn) != 0
4825 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
7b3ab05e
JW
4826 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4827 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
7b668f9e
JJ
4828 {
4829 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4830 XEXP (tem, 0) = src_eqv;
4831 }
7afe21cc
RK
4832
4833 /* Canonicalize sources and addresses of destinations.
4834 We do this in a separate pass to avoid problems when a MATCH_DUP is
4835 present in the insn pattern. In that case, we want to ensure that
4836 we don't break the duplicate nature of the pattern. So we will replace
4837 both operands at the same time. Otherwise, we would fail to find an
4838 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4839
4840 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4841 but we don't do this any more. */
7afe21cc
RK
4842
4843 for (i = 0; i < n_sets; i++)
4844 {
4845 rtx dest = SET_DEST (sets[i].rtl);
4846 rtx src = SET_SRC (sets[i].rtl);
4847 rtx new = canon_reg (src, insn);
58873255 4848 int insn_code;
7afe21cc 4849
47841d1b 4850 sets[i].orig_src = src;
f8cfc6aa 4851 if ((REG_P (new) && REG_P (src)
77fa0940
RK
4852 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4853 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
58873255 4854 || (insn_code = recog_memoized (insn)) < 0
a995e389 4855 || insn_data[insn_code].n_dups > 0)
77fa0940 4856 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
7afe21cc
RK
4857 else
4858 SET_SRC (sets[i].rtl) = new;
4859
46d096a3 4860 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4861 {
4862 validate_change (insn, &XEXP (dest, 1),
77fa0940 4863 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4864 validate_change (insn, &XEXP (dest, 2),
77fa0940 4865 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4866 }
4867
46d096a3 4868 while (GET_CODE (dest) == SUBREG
7afe21cc 4869 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4870 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4871 dest = XEXP (dest, 0);
4872
3c0cb5de 4873 if (MEM_P (dest))
7afe21cc
RK
4874 canon_reg (dest, insn);
4875 }
4876
77fa0940
RK
4877 /* Now that we have done all the replacements, we can apply the change
4878 group and see if they all work. Note that this will cause some
4879 canonicalizations that would have worked individually not to be applied
4880 because some other canonicalization didn't work, but this should not
278a83b2 4881 occur often.
7722328e
RK
4882
4883 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4884
4885 apply_change_group ();
4886
7afe21cc
RK
4887 /* Set sets[i].src_elt to the class each source belongs to.
4888 Detect assignments from or to volatile things
4889 and set set[i] to zero so they will be ignored
4890 in the rest of this function.
4891
4892 Nothing in this loop changes the hash table or the register chains. */
4893
4894 for (i = 0; i < n_sets; i++)
4895 {
b3694847
SS
4896 rtx src, dest;
4897 rtx src_folded;
4898 struct table_elt *elt = 0, *p;
7afe21cc
RK
4899 enum machine_mode mode;
4900 rtx src_eqv_here;
4901 rtx src_const = 0;
4902 rtx src_related = 0;
4903 struct table_elt *src_const_elt = 0;
99a9c946
GS
4904 int src_cost = MAX_COST;
4905 int src_eqv_cost = MAX_COST;
4906 int src_folded_cost = MAX_COST;
4907 int src_related_cost = MAX_COST;
4908 int src_elt_cost = MAX_COST;
4909 int src_regcost = MAX_COST;
4910 int src_eqv_regcost = MAX_COST;
4911 int src_folded_regcost = MAX_COST;
4912 int src_related_regcost = MAX_COST;
4913 int src_elt_regcost = MAX_COST;
da7d8304 4914 /* Set nonzero if we need to call force_const_mem on with the
7afe21cc
RK
4915 contents of src_folded before using it. */
4916 int src_folded_force_flag = 0;
4917
4918 dest = SET_DEST (sets[i].rtl);
4919 src = SET_SRC (sets[i].rtl);
4920
4921 /* If SRC is a constant that has no machine mode,
4922 hash it with the destination's machine mode.
4923 This way we can keep different modes separate. */
4924
4925 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4926 sets[i].mode = mode;
4927
4928 if (src_eqv)
4929 {
4930 enum machine_mode eqvmode = mode;
4931 if (GET_CODE (dest) == STRICT_LOW_PART)
4932 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4933 do_not_record = 0;
4934 hash_arg_in_memory = 0;
2197a88a 4935 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4936
4937 /* Find the equivalence class for the equivalent expression. */
4938
4939 if (!do_not_record)
2197a88a 4940 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4941
4942 src_eqv_volatile = do_not_record;
4943 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4944 }
4945
4946 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4947 value of the INNER register, not the destination. So it is not
3826a3da 4948 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4949 if (GET_CODE (dest) == STRICT_LOW_PART)
4950 src_eqv_here = 0;
4951 else
4952 src_eqv_here = src_eqv;
4953
4954 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4955 simplified result, which may not necessarily be valid. */
4956 src_folded = fold_rtx (src, insn);
4957
e6a125a0
RK
4958#if 0
4959 /* ??? This caused bad code to be generated for the m68k port with -O2.
4960 Suppose src is (CONST_INT -1), and that after truncation src_folded
4961 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4962 At the end we will add src and src_const to the same equivalence
4963 class. We now have 3 and -1 on the same equivalence class. This
4964 causes later instructions to be mis-optimized. */
7afe21cc
RK
4965 /* If storing a constant in a bitfield, pre-truncate the constant
4966 so we will be able to record it later. */
46d096a3 4967 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4968 {
4969 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4970
4971 if (GET_CODE (src) == CONST_INT
4972 && GET_CODE (width) == CONST_INT
906c4e36
RK
4973 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4974 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4975 src_folded
4976 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4977 << INTVAL (width)) - 1));
7afe21cc 4978 }
e6a125a0 4979#endif
7afe21cc
RK
4980
4981 /* Compute SRC's hash code, and also notice if it
4982 should not be recorded at all. In that case,
4983 prevent any further processing of this assignment. */
4984 do_not_record = 0;
4985 hash_arg_in_memory = 0;
7afe21cc
RK
4986
4987 sets[i].src = src;
2197a88a 4988 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
4989 sets[i].src_volatile = do_not_record;
4990 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 4991
50196afa 4992 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
4993 a pseudo, do not record SRC. Using SRC as a replacement for
4994 anything else will be incorrect in that situation. Note that
4995 this usually occurs only for stack slots, in which case all the
4996 RTL would be referring to SRC, so we don't lose any optimization
4997 opportunities by not having SRC in the hash table. */
50196afa 4998
3c0cb5de 4999 if (MEM_P (src)
43e72072 5000 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 5001 && REG_P (dest)
43e72072 5002 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
5003 sets[i].src_volatile = 1;
5004
0dadecf6
RK
5005#if 0
5006 /* It is no longer clear why we used to do this, but it doesn't
5007 appear to still be needed. So let's try without it since this
5008 code hurts cse'ing widened ops. */
9a5a17f3 5009 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
5010 treat it as volatile. It may do the work of an SI in one context
5011 where the extra bits are not being used, but cannot replace an SI
5012 in general. */
5013 if (GET_CODE (src) == SUBREG
5014 && (GET_MODE_SIZE (GET_MODE (src))
5015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5016 sets[i].src_volatile = 1;
0dadecf6 5017#endif
7afe21cc
RK
5018
5019 /* Locate all possible equivalent forms for SRC. Try to replace
5020 SRC in the insn with each cheaper equivalent.
5021
5022 We have the following types of equivalents: SRC itself, a folded
5023 version, a value given in a REG_EQUAL note, or a value related
5024 to a constant.
5025
5026 Each of these equivalents may be part of an additional class
5027 of equivalents (if more than one is in the table, they must be in
5028 the same class; we check for this).
5029
5030 If the source is volatile, we don't do any table lookups.
5031
5032 We note any constant equivalent for possible later use in a
5033 REG_NOTE. */
5034
5035 if (!sets[i].src_volatile)
2197a88a 5036 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
5037
5038 sets[i].src_elt = elt;
5039
5040 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
5041 {
5042 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
5043 {
5044 /* The REG_EQUAL is indicating that two formerly distinct
5045 classes are now equivalent. So merge them. */
5046 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
5047 src_eqv_hash = HASH (src_eqv, elt->mode);
5048 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
5049 }
5050
278a83b2
KH
5051 src_eqv_here = 0;
5052 }
7afe21cc
RK
5053
5054 else if (src_eqv_elt)
278a83b2 5055 elt = src_eqv_elt;
7afe21cc
RK
5056
5057 /* Try to find a constant somewhere and record it in `src_const'.
5058 Record its table element, if any, in `src_const_elt'. Look in
5059 any known equivalences first. (If the constant is not in the
2197a88a 5060 table, also set `sets[i].src_const_hash'). */
7afe21cc 5061 if (elt)
278a83b2 5062 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
5063 if (p->is_const)
5064 {
5065 src_const = p->exp;
5066 src_const_elt = elt;
5067 break;
5068 }
5069
5070 if (src_const == 0
5071 && (CONSTANT_P (src_folded)
278a83b2 5072 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
5073 "constant" here so we will record it. This allows us
5074 to fold switch statements when an ADDR_DIFF_VEC is used. */
5075 || (GET_CODE (src_folded) == MINUS
5076 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5077 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5078 src_const = src_folded, src_const_elt = elt;
5079 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5080 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5081
5082 /* If we don't know if the constant is in the table, get its
5083 hash code and look it up. */
5084 if (src_const && src_const_elt == 0)
5085 {
2197a88a
RK
5086 sets[i].src_const_hash = HASH (src_const, mode);
5087 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
5088 }
5089
5090 sets[i].src_const = src_const;
5091 sets[i].src_const_elt = src_const_elt;
5092
5093 /* If the constant and our source are both in the table, mark them as
5094 equivalent. Otherwise, if a constant is in the table but the source
5095 isn't, set ELT to it. */
5096 if (src_const_elt && elt
5097 && src_const_elt->first_same_value != elt->first_same_value)
5098 merge_equiv_classes (elt, src_const_elt);
5099 else if (src_const_elt && elt == 0)
5100 elt = src_const_elt;
5101
5102 /* See if there is a register linearly related to a constant
5103 equivalent of SRC. */
5104 if (src_const
5105 && (GET_CODE (src_const) == CONST
5106 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
5107 {
5108 src_related = use_related_value (src_const, src_const_elt);
5109 if (src_related)
5110 {
7afe21cc 5111 struct table_elt *src_related_elt
278a83b2 5112 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 5113 if (src_related_elt && elt)
278a83b2 5114 {
7afe21cc
RK
5115 if (elt->first_same_value
5116 != src_related_elt->first_same_value)
278a83b2 5117 /* This can occur when we previously saw a CONST
7afe21cc
RK
5118 involving a SYMBOL_REF and then see the SYMBOL_REF
5119 twice. Merge the involved classes. */
5120 merge_equiv_classes (elt, src_related_elt);
5121
278a83b2 5122 src_related = 0;
7afe21cc 5123 src_related_elt = 0;
278a83b2
KH
5124 }
5125 else if (src_related_elt && elt == 0)
5126 elt = src_related_elt;
7afe21cc 5127 }
278a83b2 5128 }
7afe21cc 5129
e4600702
RK
5130 /* See if we have a CONST_INT that is already in a register in a
5131 wider mode. */
5132
5133 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5134 && GET_MODE_CLASS (mode) == MODE_INT
5135 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5136 {
5137 enum machine_mode wider_mode;
5138
5139 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5140 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5141 && src_related == 0;
5142 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5143 {
5144 struct table_elt *const_elt
5145 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5146
5147 if (const_elt == 0)
5148 continue;
5149
5150 for (const_elt = const_elt->first_same_value;
5151 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 5152 if (REG_P (const_elt->exp))
e4600702 5153 {
4de249d9 5154 src_related = gen_lowpart (mode,
e4600702
RK
5155 const_elt->exp);
5156 break;
5157 }
5158 }
5159 }
5160
d45cf215
RS
5161 /* Another possibility is that we have an AND with a constant in
5162 a mode narrower than a word. If so, it might have been generated
5163 as part of an "if" which would narrow the AND. If we already
5164 have done the AND in a wider mode, we can use a SUBREG of that
5165 value. */
5166
5167 if (flag_expensive_optimizations && ! src_related
5168 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5169 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5170 {
5171 enum machine_mode tmode;
38a448ca 5172 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215
RS
5173
5174 for (tmode = GET_MODE_WIDER_MODE (mode);
5175 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5176 tmode = GET_MODE_WIDER_MODE (tmode))
5177 {
4de249d9 5178 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
5179 struct table_elt *larger_elt;
5180
5181 if (inner)
5182 {
5183 PUT_MODE (new_and, tmode);
5184 XEXP (new_and, 0) = inner;
5185 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5186 if (larger_elt == 0)
5187 continue;
5188
5189 for (larger_elt = larger_elt->first_same_value;
5190 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 5191 if (REG_P (larger_elt->exp))
d45cf215
RS
5192 {
5193 src_related
4de249d9 5194 = gen_lowpart (mode, larger_elt->exp);
d45cf215
RS
5195 break;
5196 }
5197
5198 if (src_related)
5199 break;
5200 }
5201 }
5202 }
7bac1be0
RK
5203
5204#ifdef LOAD_EXTEND_OP
5205 /* See if a MEM has already been loaded with a widening operation;
5206 if it has, we can use a subreg of that. Many CISC machines
5207 also have such operations, but this is only likely to be
71cc389b 5208 beneficial on these machines. */
278a83b2 5209
ddc356e8 5210 if (flag_expensive_optimizations && src_related == 0
7bac1be0
RK
5211 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5212 && GET_MODE_CLASS (mode) == MODE_INT
3c0cb5de 5213 && MEM_P (src) && ! do_not_record
f822d252 5214 && LOAD_EXTEND_OP (mode) != UNKNOWN)
7bac1be0 5215 {
9d80ef7c
RH
5216 struct rtx_def memory_extend_buf;
5217 rtx memory_extend_rtx = &memory_extend_buf;
7bac1be0 5218 enum machine_mode tmode;
278a83b2 5219
7bac1be0
RK
5220 /* Set what we are trying to extend and the operation it might
5221 have been extended with. */
9d80ef7c 5222 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
7bac1be0
RK
5223 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5224 XEXP (memory_extend_rtx, 0) = src;
278a83b2 5225
7bac1be0
RK
5226 for (tmode = GET_MODE_WIDER_MODE (mode);
5227 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5228 tmode = GET_MODE_WIDER_MODE (tmode))
5229 {
5230 struct table_elt *larger_elt;
278a83b2 5231
7bac1be0 5232 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 5233 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
5234 HASH (memory_extend_rtx, tmode), tmode);
5235 if (larger_elt == 0)
5236 continue;
278a83b2 5237
7bac1be0
RK
5238 for (larger_elt = larger_elt->first_same_value;
5239 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 5240 if (REG_P (larger_elt->exp))
7bac1be0 5241 {
4de249d9 5242 src_related = gen_lowpart (mode,
7bac1be0
RK
5243 larger_elt->exp);
5244 break;
5245 }
278a83b2 5246
7bac1be0
RK
5247 if (src_related)
5248 break;
5249 }
5250 }
5251#endif /* LOAD_EXTEND_OP */
278a83b2 5252
7afe21cc 5253 if (src == src_folded)
278a83b2 5254 src_folded = 0;
7afe21cc 5255
da7d8304 5256 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 5257 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 5258 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
5259 expressions. Prune these latter expressions by deleting expressions
5260 already in the equivalence class.
5261
5262 Check for an equivalent identical to the destination. If found,
5263 this is the preferred equivalent since it will likely lead to
5264 elimination of the insn. Indicate this by placing it in
5265 `src_related'. */
5266
278a83b2
KH
5267 if (elt)
5268 elt = elt->first_same_value;
7afe21cc 5269 for (p = elt; p; p = p->next_same_value)
278a83b2 5270 {
7afe21cc
RK
5271 enum rtx_code code = GET_CODE (p->exp);
5272
5273 /* If the expression is not valid, ignore it. Then we do not
5274 have to check for validity below. In most cases, we can use
5275 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 5276 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
5277 continue;
5278
5a03c8c4
RK
5279 /* Also skip paradoxical subregs, unless that's what we're
5280 looking for. */
5281 if (code == SUBREG
5282 && (GET_MODE_SIZE (GET_MODE (p->exp))
5283 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5284 && ! (src != 0
5285 && GET_CODE (src) == SUBREG
5286 && GET_MODE (src) == GET_MODE (p->exp)
5287 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5288 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5289 continue;
5290
278a83b2 5291 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 5292 src = 0;
278a83b2 5293 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
5294 && rtx_equal_p (src_folded, p->exp))
5295 src_folded = 0;
278a83b2 5296 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
5297 && rtx_equal_p (src_eqv_here, p->exp))
5298 src_eqv_here = 0;
278a83b2 5299 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
5300 && rtx_equal_p (src_related, p->exp))
5301 src_related = 0;
5302
5303 /* This is the same as the destination of the insns, we want
5304 to prefer it. Copy it to src_related. The code below will
5305 then give it a negative cost. */
5306 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5307 src_related = dest;
278a83b2 5308 }
7afe21cc
RK
5309
5310 /* Find the cheapest valid equivalent, trying all the available
5311 possibilities. Prefer items not in the hash table to ones
5312 that are when they are equal cost. Note that we can never
5313 worsen an insn as the current contents will also succeed.
05c33dd8 5314 If we find an equivalent identical to the destination, use it as best,
0f41302f 5315 since this insn will probably be eliminated in that case. */
7afe21cc
RK
5316 if (src)
5317 {
5318 if (rtx_equal_p (src, dest))
f1c1dfc3 5319 src_cost = src_regcost = -1;
7afe21cc 5320 else
630c79be
BS
5321 {
5322 src_cost = COST (src);
5323 src_regcost = approx_reg_cost (src);
5324 }
7afe21cc
RK
5325 }
5326
5327 if (src_eqv_here)
5328 {
5329 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 5330 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 5331 else
630c79be
BS
5332 {
5333 src_eqv_cost = COST (src_eqv_here);
5334 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5335 }
7afe21cc
RK
5336 }
5337
5338 if (src_folded)
5339 {
5340 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 5341 src_folded_cost = src_folded_regcost = -1;
7afe21cc 5342 else
630c79be
BS
5343 {
5344 src_folded_cost = COST (src_folded);
5345 src_folded_regcost = approx_reg_cost (src_folded);
5346 }
7afe21cc
RK
5347 }
5348
5349 if (src_related)
5350 {
5351 if (rtx_equal_p (src_related, dest))
f1c1dfc3 5352 src_related_cost = src_related_regcost = -1;
7afe21cc 5353 else
630c79be
BS
5354 {
5355 src_related_cost = COST (src_related);
5356 src_related_regcost = approx_reg_cost (src_related);
5357 }
7afe21cc
RK
5358 }
5359
5360 /* If this was an indirect jump insn, a known label will really be
5361 cheaper even though it looks more expensive. */
5362 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 5363 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 5364
7afe21cc
RK
5365 /* Terminate loop when replacement made. This must terminate since
5366 the current contents will be tested and will always be valid. */
5367 while (1)
278a83b2
KH
5368 {
5369 rtx trial;
7afe21cc 5370
278a83b2 5371 /* Skip invalid entries. */
f8cfc6aa 5372 while (elt && !REG_P (elt->exp)
0516f6fe 5373 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 5374 elt = elt->next_same_value;
5a03c8c4
RK
5375
5376 /* A paradoxical subreg would be bad here: it'll be the right
5377 size, but later may be adjusted so that the upper bits aren't
5378 what we want. So reject it. */
5379 if (elt != 0
5380 && GET_CODE (elt->exp) == SUBREG
5381 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5382 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5383 /* It is okay, though, if the rtx we're trying to match
5384 will ignore any of the bits we can't predict. */
5385 && ! (src != 0
5386 && GET_CODE (src) == SUBREG
5387 && GET_MODE (src) == GET_MODE (elt->exp)
5388 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5389 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5390 {
5391 elt = elt->next_same_value;
5392 continue;
5393 }
278a83b2 5394
68252e27 5395 if (elt)
630c79be
BS
5396 {
5397 src_elt_cost = elt->cost;
5398 src_elt_regcost = elt->regcost;
5399 }
7afe21cc 5400
68252e27 5401 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
5402 of equal cost, use this order:
5403 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 5404 if (src_folded
56ae04af
KH
5405 && preferable (src_folded_cost, src_folded_regcost,
5406 src_cost, src_regcost) <= 0
5407 && preferable (src_folded_cost, src_folded_regcost,
5408 src_eqv_cost, src_eqv_regcost) <= 0
5409 && preferable (src_folded_cost, src_folded_regcost,
5410 src_related_cost, src_related_regcost) <= 0
5411 && preferable (src_folded_cost, src_folded_regcost,
5412 src_elt_cost, src_elt_regcost) <= 0)
7afe21cc 5413 {
f1c1dfc3 5414 trial = src_folded, src_folded_cost = MAX_COST;
7afe21cc 5415 if (src_folded_force_flag)
9d8de1de
EB
5416 {
5417 rtx forced = force_const_mem (mode, trial);
5418 if (forced)
5419 trial = forced;
5420 }
7afe21cc 5421 }
99a9c946 5422 else if (src
56ae04af
KH
5423 && preferable (src_cost, src_regcost,
5424 src_eqv_cost, src_eqv_regcost) <= 0
5425 && preferable (src_cost, src_regcost,
5426 src_related_cost, src_related_regcost) <= 0
5427 && preferable (src_cost, src_regcost,
5428 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5429 trial = src, src_cost = MAX_COST;
99a9c946 5430 else if (src_eqv_here
56ae04af
KH
5431 && preferable (src_eqv_cost, src_eqv_regcost,
5432 src_related_cost, src_related_regcost) <= 0
5433 && preferable (src_eqv_cost, src_eqv_regcost,
5434 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5435 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
99a9c946 5436 else if (src_related
56ae04af
KH
5437 && preferable (src_related_cost, src_related_regcost,
5438 src_elt_cost, src_elt_regcost) <= 0)
68252e27 5439 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
278a83b2 5440 else
7afe21cc 5441 {
05c33dd8 5442 trial = copy_rtx (elt->exp);
7afe21cc 5443 elt = elt->next_same_value;
f1c1dfc3 5444 src_elt_cost = MAX_COST;
7afe21cc
RK
5445 }
5446
5447 /* We don't normally have an insn matching (set (pc) (pc)), so
5448 check for this separately here. We will delete such an
5449 insn below.
5450
d466c016
JL
5451 For other cases such as a table jump or conditional jump
5452 where we know the ultimate target, go ahead and replace the
5453 operand. While that may not make a valid insn, we will
5454 reemit the jump below (and also insert any necessary
5455 barriers). */
7afe21cc
RK
5456 if (n_sets == 1 && dest == pc_rtx
5457 && (trial == pc_rtx
5458 || (GET_CODE (trial) == LABEL_REF
5459 && ! condjump_p (insn))))
5460 {
2f39b6ca
UW
5461 /* Don't substitute non-local labels, this confuses CFG. */
5462 if (GET_CODE (trial) == LABEL_REF
5463 && LABEL_REF_NONLOCAL_P (trial))
5464 continue;
5465
d466c016 5466 SET_SRC (sets[i].rtl) = trial;
602c4c0d 5467 cse_jumps_altered = 1;
7afe21cc
RK
5468 break;
5469 }
278a83b2 5470
7afe21cc 5471 /* Look for a substitution that makes a valid insn. */
ddc356e8 5472 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
05c33dd8 5473 {
dbaff908
RS
5474 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5475
7bd8b2a8
JL
5476 /* If we just made a substitution inside a libcall, then we
5477 need to make the same substitution in any notes attached
5478 to the RETVAL insn. */
1ed0205e 5479 if (libcall_insn
f8cfc6aa 5480 && (REG_P (sets[i].orig_src)
47841d1b 5481 || GET_CODE (sets[i].orig_src) == SUBREG
3c0cb5de 5482 || MEM_P (sets[i].orig_src)))
d8b7ec41
RS
5483 {
5484 rtx note = find_reg_equal_equiv_note (libcall_insn);
5485 if (note != 0)
5486 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5487 sets[i].orig_src,
5488 copy_rtx (new));
5489 }
7bd8b2a8 5490
7722328e
RK
5491 /* The result of apply_change_group can be ignored; see
5492 canon_reg. */
5493
dbaff908 5494 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
6702af89 5495 apply_change_group ();
05c33dd8
RK
5496 break;
5497 }
7afe21cc 5498
278a83b2 5499 /* If we previously found constant pool entries for
7afe21cc
RK
5500 constants and this is a constant, try making a
5501 pool entry. Put it in src_folded unless we already have done
5502 this since that is where it likely came from. */
5503
5504 else if (constant_pool_entries_cost
5505 && CONSTANT_P (trial)
d51ff7cb
JW
5506 /* Reject cases that will abort in decode_rtx_const.
5507 On the alpha when simplifying a switch, we get
5508 (const (truncate (minus (label_ref) (label_ref)))). */
1bbd065b
RK
5509 && ! (GET_CODE (trial) == CONST
5510 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
d51ff7cb
JW
5511 /* Likewise on IA-64, except without the truncate. */
5512 && ! (GET_CODE (trial) == CONST
5513 && GET_CODE (XEXP (trial, 0)) == MINUS
5514 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5515 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
1bbd065b 5516 && (src_folded == 0
3c0cb5de 5517 || (!MEM_P (src_folded)
1bbd065b 5518 && ! src_folded_force_flag))
9ae8ffe7
JL
5519 && GET_MODE_CLASS (mode) != MODE_CC
5520 && mode != VOIDmode)
7afe21cc
RK
5521 {
5522 src_folded_force_flag = 1;
5523 src_folded = trial;
5524 src_folded_cost = constant_pool_entries_cost;
dd0ba281 5525 src_folded_regcost = constant_pool_entries_regcost;
7afe21cc 5526 }
278a83b2 5527 }
7afe21cc
RK
5528
5529 src = SET_SRC (sets[i].rtl);
5530
5531 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5532 However, there is an important exception: If both are registers
5533 that are not the head of their equivalence class, replace SET_SRC
5534 with the head of the class. If we do not do this, we will have
5535 both registers live over a portion of the basic block. This way,
5536 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 5537 if (REG_P (dest)
1bb98cec 5538 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 5539 {
1bb98cec
DM
5540 int dest_q = REG_QTY (REGNO (dest));
5541 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5542
5543 if (dest_ent->mode == GET_MODE (dest)
5544 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 5545 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
5546 /* Don't do this if the original insn had a hard reg as
5547 SET_SRC or SET_DEST. */
f8cfc6aa 5548 && (!REG_P (sets[i].src)
1bb98cec 5549 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 5550 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
5551 /* We can't call canon_reg here because it won't do anything if
5552 SRC is a hard register. */
759bd8b7 5553 {
1bb98cec
DM
5554 int src_q = REG_QTY (REGNO (src));
5555 struct qty_table_elem *src_ent = &qty_table[src_q];
5556 int first = src_ent->first_reg;
5557 rtx new_src
5558 = (first >= FIRST_PSEUDO_REGISTER
5559 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5560
5561 /* We must use validate-change even for this, because this
5562 might be a special no-op instruction, suitable only to
5563 tag notes onto. */
5564 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5565 {
5566 src = new_src;
5567 /* If we had a constant that is cheaper than what we are now
5568 setting SRC to, use that constant. We ignored it when we
5569 thought we could make this into a no-op. */
5570 if (src_const && COST (src_const) < COST (src)
278a83b2
KH
5571 && validate_change (insn, &SET_SRC (sets[i].rtl),
5572 src_const, 0))
1bb98cec
DM
5573 src = src_const;
5574 }
759bd8b7 5575 }
7afe21cc
RK
5576 }
5577
5578 /* If we made a change, recompute SRC values. */
5579 if (src != sets[i].src)
278a83b2 5580 {
4eadede7 5581 cse_altered = 1;
278a83b2
KH
5582 do_not_record = 0;
5583 hash_arg_in_memory = 0;
7afe21cc 5584 sets[i].src = src;
278a83b2
KH
5585 sets[i].src_hash = HASH (src, mode);
5586 sets[i].src_volatile = do_not_record;
5587 sets[i].src_in_memory = hash_arg_in_memory;
5588 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5589 }
7afe21cc
RK
5590
5591 /* If this is a single SET, we are setting a register, and we have an
5592 equivalent constant, we want to add a REG_NOTE. We don't want
5593 to write a REG_EQUAL note for a constant pseudo since verifying that
d45cf215 5594 that pseudo hasn't been eliminated is a pain. Such a note also
278a83b2 5595 won't help anything.
ac7ef8d5
FS
5596
5597 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5598 which can be created for a reference to a compile time computable
5599 entry in a jump table. */
5600
f8cfc6aa
JQ
5601 if (n_sets == 1 && src_const && REG_P (dest)
5602 && !REG_P (src_const)
ac7ef8d5
FS
5603 && ! (GET_CODE (src_const) == CONST
5604 && GET_CODE (XEXP (src_const, 0)) == MINUS
5605 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5606 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
7afe21cc 5607 {
a77b7e32
RS
5608 /* We only want a REG_EQUAL note if src_const != src. */
5609 if (! rtx_equal_p (src, src_const))
5610 {
5611 /* Make sure that the rtx is not shared. */
5612 src_const = copy_rtx (src_const);
51e2a951 5613
a77b7e32
RS
5614 /* Record the actual constant value in a REG_EQUAL note,
5615 making a new one if one does not already exist. */
5616 set_unique_reg_note (insn, REG_EQUAL, src_const);
5617 }
7afe21cc
RK
5618 }
5619
5620 /* Now deal with the destination. */
5621 do_not_record = 0;
7afe21cc 5622
46d096a3
SB
5623 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5624 while (GET_CODE (dest) == SUBREG
7afe21cc 5625 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 5626 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 5627 dest = XEXP (dest, 0);
7afe21cc
RK
5628
5629 sets[i].inner_dest = dest;
5630
3c0cb5de 5631 if (MEM_P (dest))
7afe21cc 5632 {
9ae8ffe7
JL
5633#ifdef PUSH_ROUNDING
5634 /* Stack pushes invalidate the stack pointer. */
5635 rtx addr = XEXP (dest, 0);
ec8e098d 5636 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7
JL
5637 && XEXP (addr, 0) == stack_pointer_rtx)
5638 invalidate (stack_pointer_rtx, Pmode);
5639#endif
7afe21cc 5640 dest = fold_rtx (dest, insn);
7afe21cc
RK
5641 }
5642
5643 /* Compute the hash code of the destination now,
5644 before the effects of this instruction are recorded,
5645 since the register values used in the address computation
5646 are those before this instruction. */
2197a88a 5647 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
5648
5649 /* Don't enter a bit-field in the hash table
5650 because the value in it after the store
5651 may not equal what was stored, due to truncation. */
5652
46d096a3 5653 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
5654 {
5655 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5656
5657 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5658 && GET_CODE (width) == CONST_INT
906c4e36
RK
5659 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5660 && ! (INTVAL (src_const)
5661 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
7afe21cc
RK
5662 /* Exception: if the value is constant,
5663 and it won't be truncated, record it. */
5664 ;
5665 else
5666 {
5667 /* This is chosen so that the destination will be invalidated
5668 but no new value will be recorded.
5669 We must invalidate because sometimes constant
5670 values can be recorded for bitfields. */
5671 sets[i].src_elt = 0;
5672 sets[i].src_volatile = 1;
5673 src_eqv = 0;
5674 src_eqv_elt = 0;
5675 }
5676 }
5677
5678 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5679 the insn. */
5680 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5681 {
ef178af3 5682 /* One less use of the label this insn used to jump to. */
49ce134f 5683 delete_insn (insn);
7afe21cc 5684 cse_jumps_altered = 1;
7afe21cc
RK
5685 /* No more processing for this set. */
5686 sets[i].rtl = 0;
5687 }
5688
5689 /* If this SET is now setting PC to a label, we know it used to
d466c016 5690 be a conditional or computed branch. */
8f235343
JH
5691 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5692 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5693 {
8fb1e50e
GS
5694 /* Now emit a BARRIER after the unconditional jump. */
5695 if (NEXT_INSN (insn) == 0
4b4bf941 5696 || !BARRIER_P (NEXT_INSN (insn)))
8fb1e50e
GS
5697 emit_barrier_after (insn);
5698
d466c016
JL
5699 /* We reemit the jump in as many cases as possible just in
5700 case the form of an unconditional jump is significantly
5701 different than a computed jump or conditional jump.
5702
5703 If this insn has multiple sets, then reemitting the
5704 jump is nontrivial. So instead we just force rerecognition
5705 and hope for the best. */
5706 if (n_sets == 1)
7afe21cc 5707 {
9dcb4381 5708 rtx new, note;
8fb1e50e 5709
9dcb4381 5710 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
7afe21cc
RK
5711 JUMP_LABEL (new) = XEXP (src, 0);
5712 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5713
5714 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5715 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5716 if (note)
5717 {
5718 XEXP (note, 1) = NULL_RTX;
5719 REG_NOTES (new) = note;
5720 }
5721
38c1593d 5722 delete_insn (insn);
7afe21cc 5723 insn = new;
8fb1e50e
GS
5724
5725 /* Now emit a BARRIER after the unconditional jump. */
5726 if (NEXT_INSN (insn) == 0
4b4bf941 5727 || !BARRIER_P (NEXT_INSN (insn)))
8fb1e50e 5728 emit_barrier_after (insn);
7afe21cc 5729 }
31dcf83f 5730 else
31dcf83f 5731 INSN_CODE (insn) = -1;
7afe21cc 5732
8fb1e50e
GS
5733 /* Do not bother deleting any unreachable code,
5734 let jump/flow do that. */
7afe21cc
RK
5735
5736 cse_jumps_altered = 1;
5737 sets[i].rtl = 0;
5738 }
5739
c2a47e48
RK
5740 /* If destination is volatile, invalidate it and then do no further
5741 processing for this assignment. */
7afe21cc
RK
5742
5743 else if (do_not_record)
c2a47e48 5744 {
f8cfc6aa 5745 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5746 invalidate (dest, VOIDmode);
3c0cb5de 5747 else if (MEM_P (dest))
32fab725 5748 invalidate (dest, VOIDmode);
2708da92
RS
5749 else if (GET_CODE (dest) == STRICT_LOW_PART
5750 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5751 invalidate (XEXP (dest, 0), GET_MODE (dest));
c2a47e48
RK
5752 sets[i].rtl = 0;
5753 }
7afe21cc
RK
5754
5755 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2197a88a 5756 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
7afe21cc
RK
5757
5758#ifdef HAVE_cc0
5759 /* If setting CC0, record what it was set to, or a constant, if it
5760 is equivalent to a constant. If it is being set to a floating-point
5761 value, make a COMPARE with the appropriate constant of 0. If we
5762 don't do this, later code can interpret this as a test against
5763 const0_rtx, which can cause problems if we try to put it into an
5764 insn as a floating-point operand. */
5765 if (dest == cc0_rtx)
5766 {
5767 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5768 this_insn_cc0_mode = mode;
cbf6a543 5769 if (FLOAT_MODE_P (mode))
38a448ca
RH
5770 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5771 CONST0_RTX (mode));
7afe21cc
RK
5772 }
5773#endif
5774 }
5775
5776 /* Now enter all non-volatile source expressions in the hash table
5777 if they are not already present.
5778 Record their equivalence classes in src_elt.
5779 This way we can insert the corresponding destinations into
5780 the same classes even if the actual sources are no longer in them
5781 (having been invalidated). */
5782
5783 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5784 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5785 {
b3694847
SS
5786 struct table_elt *elt;
5787 struct table_elt *classp = sets[0].src_elt;
7afe21cc
RK
5788 rtx dest = SET_DEST (sets[0].rtl);
5789 enum machine_mode eqvmode = GET_MODE (dest);
5790
5791 if (GET_CODE (dest) == STRICT_LOW_PART)
5792 {
5793 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5794 classp = 0;
5795 }
5796 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
5797 {
5798 rehash_using_reg (src_eqv);
5799 src_eqv_hash = HASH (src_eqv, eqvmode);
5800 }
2197a88a 5801 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5802 elt->in_memory = src_eqv_in_memory;
7afe21cc 5803 src_eqv_elt = elt;
f7911249
JW
5804
5805 /* Check to see if src_eqv_elt is the same as a set source which
5806 does not yet have an elt, and if so set the elt of the set source
5807 to src_eqv_elt. */
5808 for (i = 0; i < n_sets; i++)
26132f71
JW
5809 if (sets[i].rtl && sets[i].src_elt == 0
5810 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5811 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5812 }
5813
5814 for (i = 0; i < n_sets; i++)
5815 if (sets[i].rtl && ! sets[i].src_volatile
5816 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5817 {
5818 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5819 {
5820 /* REG_EQUAL in setting a STRICT_LOW_PART
5821 gives an equivalent for the entire destination register,
5822 not just for the subreg being stored in now.
5823 This is a more interesting equivalence, so we arrange later
5824 to treat the entire reg as the destination. */
5825 sets[i].src_elt = src_eqv_elt;
2197a88a 5826 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5827 }
5828 else
5829 {
5830 /* Insert source and constant equivalent into hash table, if not
5831 already present. */
b3694847
SS
5832 struct table_elt *classp = src_eqv_elt;
5833 rtx src = sets[i].src;
5834 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5835 enum machine_mode mode
5836 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5837
1fcc57f1
AM
5838 /* It's possible that we have a source value known to be
5839 constant but don't have a REG_EQUAL note on the insn.
5840 Lack of a note will mean src_eqv_elt will be NULL. This
5841 can happen where we've generated a SUBREG to access a
5842 CONST_INT that is already in a register in a wider mode.
5843 Ensure that the source expression is put in the proper
5844 constant class. */
5845 if (!classp)
5846 classp = sets[i].src_const_elt;
5847
26132f71 5848 if (sets[i].src_elt == 0)
7afe21cc 5849 {
26132f71
JW
5850 /* Don't put a hard register source into the table if this is
5851 the last insn of a libcall. In this case, we only need
5852 to put src_eqv_elt in src_elt. */
db4a8254 5853 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
8ae2b8f6 5854 {
b3694847 5855 struct table_elt *elt;
26132f71
JW
5856
5857 /* Note that these insert_regs calls cannot remove
5858 any of the src_elt's, because they would have failed to
5859 match if not still valid. */
5860 if (insert_regs (src, classp, 0))
5861 {
5862 rehash_using_reg (src);
5863 sets[i].src_hash = HASH (src, mode);
5864 }
5865 elt = insert (src, classp, sets[i].src_hash, mode);
5866 elt->in_memory = sets[i].src_in_memory;
26132f71 5867 sets[i].src_elt = classp = elt;
8ae2b8f6 5868 }
26132f71
JW
5869 else
5870 sets[i].src_elt = classp;
7afe21cc 5871 }
7afe21cc
RK
5872 if (sets[i].src_const && sets[i].src_const_elt == 0
5873 && src != sets[i].src_const
5874 && ! rtx_equal_p (sets[i].src_const, src))
5875 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5876 sets[i].src_const_hash, mode);
7afe21cc
RK
5877 }
5878 }
5879 else if (sets[i].src_elt == 0)
5880 /* If we did not insert the source into the hash table (e.g., it was
5881 volatile), note the equivalence class for the REG_EQUAL value, if any,
5882 so that the destination goes into that class. */
5883 sets[i].src_elt = src_eqv_elt;
5884
9ae8ffe7 5885 invalidate_from_clobbers (x);
77fa0940 5886
278a83b2 5887 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5888 invalidated by non-constant calls. */
5889
4b4bf941 5890 if (CALL_P (insn))
7afe21cc 5891 {
24a28584 5892 if (! CONST_OR_PURE_CALL_P (insn))
9ae8ffe7 5893 invalidate_memory ();
7afe21cc
RK
5894 invalidate_for_call ();
5895 }
5896
5897 /* Now invalidate everything set by this instruction.
5898 If a SUBREG or other funny destination is being set,
5899 sets[i].rtl is still nonzero, so here we invalidate the reg
5900 a part of which is being set. */
5901
5902 for (i = 0; i < n_sets; i++)
5903 if (sets[i].rtl)
5904 {
bb4034b3
JW
5905 /* We can't use the inner dest, because the mode associated with
5906 a ZERO_EXTRACT is significant. */
b3694847 5907 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5908
5909 /* Needed for registers to remove the register from its
5910 previous quantity's chain.
5911 Needed for memory if this is a nonvarying address, unless
5912 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5913 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5914 invalidate (dest, VOIDmode);
3c0cb5de 5915 else if (MEM_P (dest))
32fab725 5916 invalidate (dest, VOIDmode);
2708da92
RS
5917 else if (GET_CODE (dest) == STRICT_LOW_PART
5918 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5919 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5920 }
5921
01e752d3 5922 /* A volatile ASM invalidates everything. */
4b4bf941 5923 if (NONJUMP_INSN_P (insn)
01e752d3
JL
5924 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5925 && MEM_VOLATILE_P (PATTERN (insn)))
5926 flush_hash_table ();
5927
7afe21cc
RK
5928 /* Make sure registers mentioned in destinations
5929 are safe for use in an expression to be inserted.
5930 This removes from the hash table
5931 any invalid entry that refers to one of these registers.
5932
5933 We don't care about the return value from mention_regs because
5934 we are going to hash the SET_DEST values unconditionally. */
5935
5936 for (i = 0; i < n_sets; i++)
34c73909
R
5937 {
5938 if (sets[i].rtl)
5939 {
5940 rtx x = SET_DEST (sets[i].rtl);
5941
f8cfc6aa 5942 if (!REG_P (x))
34c73909
R
5943 mention_regs (x);
5944 else
5945 {
5946 /* We used to rely on all references to a register becoming
5947 inaccessible when a register changes to a new quantity,
5948 since that changes the hash code. However, that is not
9b1549b8 5949 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5950 hash 'collision' of a register with its own invalid
5951 entries. And since SUBREGs have been changed not to
5952 change their hash code with the hash code of the register,
5953 it wouldn't work any longer at all. So we have to check
5954 for any invalid references lying around now.
5955 This code is similar to the REG case in mention_regs,
5956 but it knows that reg_tick has been incremented, and
5957 it leaves reg_in_table as -1 . */
770ae6cc
RK
5958 unsigned int regno = REGNO (x);
5959 unsigned int endregno
34c73909 5960 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6 5961 : hard_regno_nregs[regno][GET_MODE (x)]);
770ae6cc 5962 unsigned int i;
34c73909
R
5963
5964 for (i = regno; i < endregno; i++)
5965 {
30f72379 5966 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5967 {
5968 remove_invalid_refs (i);
30f72379 5969 REG_IN_TABLE (i) = -1;
34c73909
R
5970 }
5971 }
5972 }
5973 }
5974 }
7afe21cc
RK
5975
5976 /* We may have just removed some of the src_elt's from the hash table.
5977 So replace each one with the current head of the same class. */
5978
5979 for (i = 0; i < n_sets; i++)
5980 if (sets[i].rtl)
5981 {
5982 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5983 /* If elt was removed, find current head of same class,
5984 or 0 if nothing remains of that class. */
5985 {
b3694847 5986 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
5987
5988 while (elt && elt->prev_same_value)
5989 elt = elt->prev_same_value;
5990
5991 while (elt && elt->first_same_value == 0)
5992 elt = elt->next_same_value;
5993 sets[i].src_elt = elt ? elt->first_same_value : 0;
5994 }
5995 }
5996
5997 /* Now insert the destinations into their equivalence classes. */
5998
5999 for (i = 0; i < n_sets; i++)
6000 if (sets[i].rtl)
6001 {
b3694847 6002 rtx dest = SET_DEST (sets[i].rtl);
b3694847 6003 struct table_elt *elt;
7afe21cc
RK
6004
6005 /* Don't record value if we are not supposed to risk allocating
6006 floating-point values in registers that might be wider than
6007 memory. */
6008 if ((flag_float_store
3c0cb5de 6009 && MEM_P (dest)
cbf6a543 6010 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
6011 /* Don't record BLKmode values, because we don't know the
6012 size of it, and can't be sure that other BLKmode values
6013 have the same or smaller size. */
6014 || GET_MODE (dest) == BLKmode
7afe21cc
RK
6015 /* Don't record values of destinations set inside a libcall block
6016 since we might delete the libcall. Things should have been set
6017 up so we won't want to reuse such a value, but we play it safe
6018 here. */
7bd8b2a8 6019 || libcall_insn
7afe21cc
RK
6020 /* If we didn't put a REG_EQUAL value or a source into the hash
6021 table, there is no point is recording DEST. */
1a8e9a8e
RK
6022 || sets[i].src_elt == 0
6023 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6024 or SIGN_EXTEND, don't record DEST since it can cause
6025 some tracking to be wrong.
6026
6027 ??? Think about this more later. */
6028 || (GET_CODE (dest) == SUBREG
6029 && (GET_MODE_SIZE (GET_MODE (dest))
6030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6031 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6032 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7afe21cc
RK
6033 continue;
6034
6035 /* STRICT_LOW_PART isn't part of the value BEING set,
6036 and neither is the SUBREG inside it.
6037 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6038 if (GET_CODE (dest) == STRICT_LOW_PART)
6039 dest = SUBREG_REG (XEXP (dest, 0));
6040
f8cfc6aa 6041 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc
RK
6042 /* Registers must also be inserted into chains for quantities. */
6043 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
6044 {
6045 /* If `insert_regs' changes something, the hash code must be
6046 recalculated. */
6047 rehash_using_reg (dest);
6048 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6049 }
7afe21cc 6050
8fff4fc1
RH
6051 elt = insert (dest, sets[i].src_elt,
6052 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 6053
3c0cb5de 6054 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 6055 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 6056
fc3ffe83
RK
6057 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6058 narrower than M2, and both M1 and M2 are the same number of words,
6059 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6060 make that equivalence as well.
7afe21cc 6061
4de249d9
PB
6062 However, BAR may have equivalences for which gen_lowpart
6063 will produce a simpler value than gen_lowpart applied to
7afe21cc 6064 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 6065 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
6066 the SUBREG. It will not be used in an equivalence, but will
6067 cause two similar assignments to be detected.
6068
6069 Note the loop below will find SUBREG_REG (DEST) since we have
6070 already entered SRC and DEST of the SET in the table. */
6071
6072 if (GET_CODE (dest) == SUBREG
6cdbaec4
RK
6073 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6074 / UNITS_PER_WORD)
278a83b2 6075 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
7afe21cc
RK
6076 && (GET_MODE_SIZE (GET_MODE (dest))
6077 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6078 && sets[i].src_elt != 0)
6079 {
6080 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6081 struct table_elt *elt, *classp = 0;
6082
6083 for (elt = sets[i].src_elt->first_same_value; elt;
6084 elt = elt->next_same_value)
6085 {
6086 rtx new_src = 0;
2197a88a 6087 unsigned src_hash;
7afe21cc 6088 struct table_elt *src_elt;
ff27a429 6089 int byte = 0;
7afe21cc
RK
6090
6091 /* Ignore invalid entries. */
f8cfc6aa 6092 if (!REG_P (elt->exp)
0516f6fe 6093 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
6094 continue;
6095
9beb7d20
RH
6096 /* We may have already been playing subreg games. If the
6097 mode is already correct for the destination, use it. */
6098 if (GET_MODE (elt->exp) == new_mode)
6099 new_src = elt->exp;
6100 else
6101 {
6102 /* Calculate big endian correction for the SUBREG_BYTE.
6103 We have already checked that M1 (GET_MODE (dest))
6104 is not narrower than M2 (new_mode). */
6105 if (BYTES_BIG_ENDIAN)
6106 byte = (GET_MODE_SIZE (GET_MODE (dest))
6107 - GET_MODE_SIZE (new_mode));
6108
6109 new_src = simplify_gen_subreg (new_mode, elt->exp,
6110 GET_MODE (dest), byte);
6111 }
6112
ff27a429
R
6113 /* The call to simplify_gen_subreg fails if the value
6114 is VOIDmode, yet we can't do any simplification, e.g.
6115 for EXPR_LISTs denoting function call results.
6116 It is invalid to construct a SUBREG with a VOIDmode
6117 SUBREG_REG, hence a zero new_src means we can't do
6118 this substitution. */
6119 if (! new_src)
6120 continue;
7afe21cc
RK
6121
6122 src_hash = HASH (new_src, new_mode);
6123 src_elt = lookup (new_src, src_hash, new_mode);
6124
6125 /* Put the new source in the hash table is if isn't
6126 already. */
6127 if (src_elt == 0)
6128 {
6129 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
6130 {
6131 rehash_using_reg (new_src);
6132 src_hash = HASH (new_src, new_mode);
6133 }
7afe21cc
RK
6134 src_elt = insert (new_src, classp, src_hash, new_mode);
6135 src_elt->in_memory = elt->in_memory;
7afe21cc
RK
6136 }
6137 else if (classp && classp != src_elt->first_same_value)
278a83b2 6138 /* Show that two things that we've seen before are
7afe21cc
RK
6139 actually the same. */
6140 merge_equiv_classes (src_elt, classp);
6141
6142 classp = src_elt->first_same_value;
da932f04
JL
6143 /* Ignore invalid entries. */
6144 while (classp
f8cfc6aa 6145 && !REG_P (classp->exp)
0516f6fe 6146 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 6147 classp = classp->next_same_value;
7afe21cc
RK
6148 }
6149 }
6150 }
6151
403e25d0
RK
6152 /* Special handling for (set REG0 REG1) where REG0 is the
6153 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6154 be used in the sequel, so (if easily done) change this insn to
6155 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6156 that computed their value. Then REG1 will become a dead store
6157 and won't cloud the situation for later optimizations.
7afe21cc
RK
6158
6159 Do not make this change if REG1 is a hard register, because it will
6160 then be used in the sequel and we may be changing a two-operand insn
6161 into a three-operand insn.
6162
50270076
R
6163 Also do not do this if we are operating on a copy of INSN.
6164
6165 Also don't do this if INSN ends a libcall; this would cause an unrelated
6166 register to be set in the middle of a libcall, and we then get bad code
6167 if the libcall is deleted. */
7afe21cc 6168
f8cfc6aa 6169 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
7afe21cc 6170 && NEXT_INSN (PREV_INSN (insn)) == insn
f8cfc6aa 6171 && REG_P (SET_SRC (sets[0].rtl))
7afe21cc 6172 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
1bb98cec 6173 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
7afe21cc 6174 {
1bb98cec
DM
6175 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6176 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 6177
1bb98cec
DM
6178 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6179 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
7afe21cc 6180 {
3e25353e
AH
6181 rtx prev = insn;
6182 /* Scan for the previous nonnote insn, but stop at a basic
6183 block boundary. */
6184 do
6185 {
6186 prev = PREV_INSN (prev);
6187 }
4b4bf941 6188 while (prev && NOTE_P (prev)
3e25353e 6189 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
7080f735 6190
58ecb5e2
RS
6191 /* Do not swap the registers around if the previous instruction
6192 attaches a REG_EQUIV note to REG1.
6193
6194 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6195 from the pseudo that originally shadowed an incoming argument
6196 to another register. Some uses of REG_EQUIV might rely on it
6197 being attached to REG1 rather than REG2.
6198
6199 This section previously turned the REG_EQUIV into a REG_EQUAL
6200 note. We cannot do that because REG_EQUIV may provide an
4912a07c 6201 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
58ecb5e2 6202
4b4bf941 6203 if (prev != 0 && NONJUMP_INSN_P (prev)
403e25d0 6204 && GET_CODE (PATTERN (prev)) == SET
58ecb5e2
RS
6205 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6206 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
1bb98cec
DM
6207 {
6208 rtx dest = SET_DEST (sets[0].rtl);
403e25d0 6209 rtx src = SET_SRC (sets[0].rtl);
58ecb5e2 6210 rtx note;
7afe21cc 6211
278a83b2
KH
6212 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6213 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6214 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
1bb98cec 6215 apply_change_group ();
7afe21cc 6216
403e25d0
RK
6217 /* If INSN has a REG_EQUAL note, and this note mentions
6218 REG0, then we must delete it, because the value in
6219 REG0 has changed. If the note's value is REG1, we must
6220 also delete it because that is now this insn's dest. */
1bb98cec 6221 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
403e25d0
RK
6222 if (note != 0
6223 && (reg_mentioned_p (dest, XEXP (note, 0))
6224 || rtx_equal_p (src, XEXP (note, 0))))
1bb98cec
DM
6225 remove_note (insn, note);
6226 }
7afe21cc
RK
6227 }
6228 }
6229
6230 /* If this is a conditional jump insn, record any known equivalences due to
6231 the condition being tested. */
6232
4b4bf941 6233 if (JUMP_P (insn)
7afe21cc
RK
6234 && n_sets == 1 && GET_CODE (x) == SET
6235 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6236 record_jump_equiv (insn, 0);
6237
6238#ifdef HAVE_cc0
6239 /* If the previous insn set CC0 and this insn no longer references CC0,
6240 delete the previous insn. Here we use the fact that nothing expects CC0
6241 to be valid over an insn, which is true until the final pass. */
4b4bf941 6242 if (prev_insn && NONJUMP_INSN_P (prev_insn)
7afe21cc
RK
6243 && (tem = single_set (prev_insn)) != 0
6244 && SET_DEST (tem) == cc0_rtx
6245 && ! reg_mentioned_p (cc0_rtx, x))
6dee7384 6246 delete_insn (prev_insn);
7afe21cc
RK
6247
6248 prev_insn_cc0 = this_insn_cc0;
6249 prev_insn_cc0_mode = this_insn_cc0_mode;
7afe21cc 6250 prev_insn = insn;
4977bab6 6251#endif
7afe21cc
RK
6252}
6253\f
a4c6502a 6254/* Remove from the hash table all expressions that reference memory. */
14a774a9 6255
7afe21cc 6256static void
7080f735 6257invalidate_memory (void)
7afe21cc 6258{
b3694847
SS
6259 int i;
6260 struct table_elt *p, *next;
7afe21cc 6261
9b1549b8 6262 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
6263 for (p = table[i]; p; p = next)
6264 {
6265 next = p->next_same_hash;
6266 if (p->in_memory)
6267 remove_from_table (p, i);
6268 }
6269}
6270
14a774a9
RK
6271/* If ADDR is an address that implicitly affects the stack pointer, return
6272 1 and update the register tables to show the effect. Else, return 0. */
6273
9ae8ffe7 6274static int
7080f735 6275addr_affects_sp_p (rtx addr)
9ae8ffe7 6276{
ec8e098d 6277 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
f8cfc6aa 6278 && REG_P (XEXP (addr, 0))
9ae8ffe7 6279 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
7afe21cc 6280 {
30f72379 6281 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
46081bb3
SH
6282 {
6283 REG_TICK (STACK_POINTER_REGNUM)++;
6284 /* Is it possible to use a subreg of SP? */
6285 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6286 }
9ae8ffe7
JL
6287
6288 /* This should be *very* rare. */
6289 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6290 invalidate (stack_pointer_rtx, VOIDmode);
14a774a9 6291
9ae8ffe7 6292 return 1;
7afe21cc 6293 }
14a774a9 6294
9ae8ffe7 6295 return 0;
7afe21cc
RK
6296}
6297
6298/* Perform invalidation on the basis of everything about an insn
6299 except for invalidating the actual places that are SET in it.
6300 This includes the places CLOBBERed, and anything that might
6301 alias with something that is SET or CLOBBERed.
6302
7afe21cc
RK
6303 X is the pattern of the insn. */
6304
6305static void
7080f735 6306invalidate_from_clobbers (rtx x)
7afe21cc 6307{
7afe21cc
RK
6308 if (GET_CODE (x) == CLOBBER)
6309 {
6310 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
6311 if (ref)
6312 {
f8cfc6aa 6313 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6314 || MEM_P (ref))
9ae8ffe7
JL
6315 invalidate (ref, VOIDmode);
6316 else if (GET_CODE (ref) == STRICT_LOW_PART
6317 || GET_CODE (ref) == ZERO_EXTRACT)
6318 invalidate (XEXP (ref, 0), GET_MODE (ref));
6319 }
7afe21cc
RK
6320 }
6321 else if (GET_CODE (x) == PARALLEL)
6322 {
b3694847 6323 int i;
7afe21cc
RK
6324 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6325 {
b3694847 6326 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
6327 if (GET_CODE (y) == CLOBBER)
6328 {
6329 rtx ref = XEXP (y, 0);
f8cfc6aa 6330 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6331 || MEM_P (ref))
9ae8ffe7
JL
6332 invalidate (ref, VOIDmode);
6333 else if (GET_CODE (ref) == STRICT_LOW_PART
6334 || GET_CODE (ref) == ZERO_EXTRACT)
6335 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
6336 }
6337 }
6338 }
6339}
6340\f
6341/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6342 and replace any registers in them with either an equivalent constant
6343 or the canonical form of the register. If we are inside an address,
6344 only do this if the address remains valid.
6345
6346 OBJECT is 0 except when within a MEM in which case it is the MEM.
6347
6348 Return the replacement for X. */
6349
6350static rtx
7080f735 6351cse_process_notes (rtx x, rtx object)
7afe21cc
RK
6352{
6353 enum rtx_code code = GET_CODE (x);
6f7d635c 6354 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
6355 int i;
6356
6357 switch (code)
6358 {
6359 case CONST_INT:
6360 case CONST:
6361 case SYMBOL_REF:
6362 case LABEL_REF:
6363 case CONST_DOUBLE:
69ef87e2 6364 case CONST_VECTOR:
7afe21cc
RK
6365 case PC:
6366 case CC0:
6367 case LO_SUM:
6368 return x;
6369
6370 case MEM:
c96208fa
DC
6371 validate_change (x, &XEXP (x, 0),
6372 cse_process_notes (XEXP (x, 0), x), 0);
7afe21cc
RK
6373 return x;
6374
6375 case EXPR_LIST:
6376 case INSN_LIST:
6377 if (REG_NOTE_KIND (x) == REG_EQUAL)
906c4e36 6378 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
7afe21cc 6379 if (XEXP (x, 1))
906c4e36 6380 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
7afe21cc
RK
6381 return x;
6382
e4890d45
RS
6383 case SIGN_EXTEND:
6384 case ZERO_EXTEND:
0b0ee36c 6385 case SUBREG:
e4890d45
RS
6386 {
6387 rtx new = cse_process_notes (XEXP (x, 0), object);
6388 /* We don't substitute VOIDmode constants into these rtx,
6389 since they would impede folding. */
6390 if (GET_MODE (new) != VOIDmode)
6391 validate_change (object, &XEXP (x, 0), new, 0);
6392 return x;
6393 }
6394
7afe21cc 6395 case REG:
30f72379 6396 i = REG_QTY (REGNO (x));
7afe21cc
RK
6397
6398 /* Return a constant or a constant register. */
1bb98cec 6399 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 6400 {
1bb98cec
DM
6401 struct qty_table_elem *ent = &qty_table[i];
6402
6403 if (ent->const_rtx != NULL_RTX
6404 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 6405 || REG_P (ent->const_rtx)))
1bb98cec 6406 {
4de249d9 6407 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
1bb98cec
DM
6408 if (new)
6409 return new;
6410 }
7afe21cc
RK
6411 }
6412
6413 /* Otherwise, canonicalize this register. */
906c4e36 6414 return canon_reg (x, NULL_RTX);
278a83b2 6415
e9a25f70
JL
6416 default:
6417 break;
7afe21cc
RK
6418 }
6419
6420 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6421 if (fmt[i] == 'e')
6422 validate_change (object, &XEXP (x, i),
7fe34fdf 6423 cse_process_notes (XEXP (x, i), object), 0);
7afe21cc
RK
6424
6425 return x;
6426}
6427\f
8b3686ed
RK
6428/* Process one SET of an insn that was skipped. We ignore CLOBBERs
6429 since they are done elsewhere. This function is called via note_stores. */
6430
6431static void
7080f735 6432invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
8b3686ed 6433{
9ae8ffe7
JL
6434 enum rtx_code code = GET_CODE (dest);
6435
6436 if (code == MEM
ddc356e8 6437 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
9ae8ffe7
JL
6438 /* There are times when an address can appear varying and be a PLUS
6439 during this scan when it would be a fixed address were we to know
6440 the proper equivalences. So invalidate all memory if there is
6441 a BLKmode or nonscalar memory reference or a reference to a
6442 variable address. */
6443 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
2be28ee2 6444 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
9ae8ffe7
JL
6445 {
6446 invalidate_memory ();
6447 return;
6448 }
ffcf6393 6449
f47c02fa 6450 if (GET_CODE (set) == CLOBBER
8beccec8 6451 || CC0_P (dest)
f47c02fa
RK
6452 || dest == pc_rtx)
6453 return;
6454
9ae8ffe7 6455 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
bb4034b3 6456 invalidate (XEXP (dest, 0), GET_MODE (dest));
9ae8ffe7
JL
6457 else if (code == REG || code == SUBREG || code == MEM)
6458 invalidate (dest, VOIDmode);
8b3686ed
RK
6459}
6460
6461/* Invalidate all insns from START up to the end of the function or the
6462 next label. This called when we wish to CSE around a block that is
6463 conditionally executed. */
6464
6465static void
7080f735 6466invalidate_skipped_block (rtx start)
8b3686ed
RK
6467{
6468 rtx insn;
8b3686ed 6469
4b4bf941 6470 for (insn = start; insn && !LABEL_P (insn);
8b3686ed
RK
6471 insn = NEXT_INSN (insn))
6472 {
2c3c49de 6473 if (! INSN_P (insn))
8b3686ed
RK
6474 continue;
6475
4b4bf941 6476 if (CALL_P (insn))
8b3686ed 6477 {
24a28584 6478 if (! CONST_OR_PURE_CALL_P (insn))
9ae8ffe7 6479 invalidate_memory ();
8b3686ed 6480 invalidate_for_call ();
8b3686ed
RK
6481 }
6482
97577254 6483 invalidate_from_clobbers (PATTERN (insn));
84832317 6484 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
8b3686ed
RK
6485 }
6486}
6487\f
7afe21cc
RK
6488/* Find the end of INSN's basic block and return its range,
6489 the total number of SETs in all the insns of the block, the last insn of the
6490 block, and the branch path.
6491
da7d8304 6492 The branch path indicates which branches should be followed. If a nonzero
7afe21cc
RK
6493 path size is specified, the block should be rescanned and a different set
6494 of branches will be taken. The branch path is only used if
da7d8304 6495 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
7afe21cc
RK
6496
6497 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6498 used to describe the block. It is filled in with the information about
6499 the current block. The incoming structure's branch path, if any, is used
6500 to construct the output branch path. */
6501
86caf04d 6502static void
7080f735 6503cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
5affca01 6504 int follow_jumps, int skip_blocks)
7afe21cc
RK
6505{
6506 rtx p = insn, q;
6507 int nsets = 0;
6508 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
2c3c49de 6509 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
7afe21cc
RK
6510 int path_size = data->path_size;
6511 int path_entry = 0;
6512 int i;
6513
6514 /* Update the previous branch path, if any. If the last branch was
6de9cd9a
DN
6515 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6516 If it was previously PATH_NOT_TAKEN,
7afe21cc 6517 shorten the path by one and look at the previous branch. We know that
da7d8304 6518 at least one branch must have been taken if PATH_SIZE is nonzero. */
7afe21cc
RK
6519 while (path_size > 0)
6520 {
6de9cd9a 6521 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
7afe21cc 6522 {
6de9cd9a 6523 data->path[path_size - 1].status = PATH_NOT_TAKEN;
7afe21cc
RK
6524 break;
6525 }
6526 else
6527 path_size--;
6528 }
6529
16b702cd
MM
6530 /* If the first instruction is marked with QImode, that means we've
6531 already processed this block. Our caller will look at DATA->LAST
6532 to figure out where to go next. We want to return the next block
6533 in the instruction stream, not some branched-to block somewhere
6534 else. We accomplish this by pretending our called forbid us to
6535 follow jumps, or skip blocks. */
6536 if (GET_MODE (insn) == QImode)
6537 follow_jumps = skip_blocks = 0;
6538
7afe21cc 6539 /* Scan to end of this basic block. */
4b4bf941 6540 while (p && !LABEL_P (p))
7afe21cc 6541 {
8aeea6e6 6542 /* Don't cse over a call to setjmp; on some machines (eg VAX)
7afe21cc
RK
6543 the regs restored by the longjmp come from
6544 a later time than the setjmp. */
4b4bf941 6545 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
570a98eb 6546 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
7afe21cc
RK
6547 break;
6548
6549 /* A PARALLEL can have lots of SETs in it,
6550 especially if it is really an ASM_OPERANDS. */
2c3c49de 6551 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
7afe21cc 6552 nsets += XVECLEN (PATTERN (p), 0);
4b4bf941 6553 else if (!NOTE_P (p))
7afe21cc 6554 nsets += 1;
278a83b2 6555
164c8956
RK
6556 /* Ignore insns made by CSE; they cannot affect the boundaries of
6557 the basic block. */
6558
6559 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
8b3686ed 6560 high_cuid = INSN_CUID (p);
164c8956
RK
6561 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6562 low_cuid = INSN_CUID (p);
7afe21cc
RK
6563
6564 /* See if this insn is in our branch path. If it is and we are to
6565 take it, do so. */
6566 if (path_entry < path_size && data->path[path_entry].branch == p)
6567 {
6de9cd9a 6568 if (data->path[path_entry].status != PATH_NOT_TAKEN)
7afe21cc 6569 p = JUMP_LABEL (p);
278a83b2 6570
7afe21cc
RK
6571 /* Point to next entry in path, if any. */
6572 path_entry++;
6573 }
6574
6575 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6576 was specified, we haven't reached our maximum path length, there are
6577 insns following the target of the jump, this is the only use of the
8b3686ed
RK
6578 jump label, and the target label is preceded by a BARRIER.
6579
6580 Alternatively, we can follow the jump if it branches around a
6581 block of code and there are no other branches into the block.
6582 In this case invalidate_skipped_block will be called to invalidate any
6583 registers set in the block when following the jump. */
6584
9bf8cfbf 6585 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
4b4bf941 6586 && JUMP_P (p)
278a83b2 6587 && GET_CODE (PATTERN (p)) == SET
7afe21cc 6588 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
85c3ba60 6589 && JUMP_LABEL (p) != 0
7afe21cc
RK
6590 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6591 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6592 {
6593 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
4b4bf941 6594 if ((!NOTE_P (q)
278a83b2 6595 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
4b4bf941 6596 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
570a98eb 6597 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
4b4bf941 6598 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
7afe21cc
RK
6599 break;
6600
6601 /* If we ran into a BARRIER, this code is an extension of the
6602 basic block when the branch is taken. */
4b4bf941 6603 if (follow_jumps && q != 0 && BARRIER_P (q))
7afe21cc
RK
6604 {
6605 /* Don't allow ourself to keep walking around an
6606 always-executed loop. */
fc3ffe83
RK
6607 if (next_real_insn (q) == next)
6608 {
6609 p = NEXT_INSN (p);
6610 continue;
6611 }
7afe21cc
RK
6612
6613 /* Similarly, don't put a branch in our path more than once. */
6614 for (i = 0; i < path_entry; i++)
6615 if (data->path[i].branch == p)
6616 break;
6617
6618 if (i != path_entry)
6619 break;
6620
6621 data->path[path_entry].branch = p;
6de9cd9a 6622 data->path[path_entry++].status = PATH_TAKEN;
7afe21cc
RK
6623
6624 /* This branch now ends our path. It was possible that we
6625 didn't see this branch the last time around (when the
6626 insn in front of the target was a JUMP_INSN that was
6627 turned into a no-op). */
6628 path_size = path_entry;
6629
6630 p = JUMP_LABEL (p);
6631 /* Mark block so we won't scan it again later. */
6632 PUT_MODE (NEXT_INSN (p), QImode);
6633 }
8b3686ed 6634 /* Detect a branch around a block of code. */
4b4bf941 6635 else if (skip_blocks && q != 0 && !LABEL_P (q))
8b3686ed 6636 {
b3694847 6637 rtx tmp;
8b3686ed 6638
fc3ffe83
RK
6639 if (next_real_insn (q) == next)
6640 {
6641 p = NEXT_INSN (p);
6642 continue;
6643 }
8b3686ed
RK
6644
6645 for (i = 0; i < path_entry; i++)
6646 if (data->path[i].branch == p)
6647 break;
6648
6649 if (i != path_entry)
6650 break;
6651
6652 /* This is no_labels_between_p (p, q) with an added check for
6653 reaching the end of a function (in case Q precedes P). */
6654 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
4b4bf941 6655 if (LABEL_P (tmp))
8b3686ed 6656 break;
278a83b2 6657
8b3686ed
RK
6658 if (tmp == q)
6659 {
6660 data->path[path_entry].branch = p;
6de9cd9a 6661 data->path[path_entry++].status = PATH_AROUND;
8b3686ed
RK
6662
6663 path_size = path_entry;
6664
6665 p = JUMP_LABEL (p);
6666 /* Mark block so we won't scan it again later. */
6667 PUT_MODE (NEXT_INSN (p), QImode);
6668 }
6669 }
7afe21cc 6670 }
7afe21cc
RK
6671 p = NEXT_INSN (p);
6672 }
6673
6674 data->low_cuid = low_cuid;
6675 data->high_cuid = high_cuid;
6676 data->nsets = nsets;
6677 data->last = p;
6678
6679 /* If all jumps in the path are not taken, set our path length to zero
6680 so a rescan won't be done. */
6681 for (i = path_size - 1; i >= 0; i--)
6de9cd9a 6682 if (data->path[i].status != PATH_NOT_TAKEN)
7afe21cc
RK
6683 break;
6684
6685 if (i == -1)
6686 data->path_size = 0;
6687 else
6688 data->path_size = path_size;
6689
6690 /* End the current branch path. */
6691 data->path[path_size].branch = 0;
6692}
6693\f
7afe21cc
RK
6694/* Perform cse on the instructions of a function.
6695 F is the first instruction.
6696 NREGS is one plus the highest pseudo-reg number used in the instruction.
6697
7afe21cc
RK
6698 Returns 1 if jump_optimize should be redone due to simplifications
6699 in conditional jump instructions. */
6700
6701int
5affca01 6702cse_main (rtx f, int nregs, FILE *file)
7afe21cc
RK
6703{
6704 struct cse_basic_block_data val;
b3694847
SS
6705 rtx insn = f;
6706 int i;
7afe21cc 6707
bc5e3b54
KH
6708 init_cse_reg_info (nregs);
6709
9bf8cfbf
ZD
6710 val.path = xmalloc (sizeof (struct branch_path)
6711 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6712
7afe21cc 6713 cse_jumps_altered = 0;
a5dfb4ee 6714 recorded_label_ref = 0;
7afe21cc 6715 constant_pool_entries_cost = 0;
dd0ba281 6716 constant_pool_entries_regcost = 0;
7afe21cc 6717 val.path_size = 0;
2f93eea8 6718 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6719
6720 init_recog ();
9ae8ffe7 6721 init_alias_analysis ();
7afe21cc 6722
703ad42b 6723 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
7afe21cc 6724
7afe21cc
RK
6725 /* Find the largest uid. */
6726
164c8956 6727 max_uid = get_max_uid ();
703ad42b 6728 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
7afe21cc
RK
6729
6730 /* Compute the mapping from uids to cuids.
6731 CUIDs are numbers assigned to insns, like uids,
6732 except that cuids increase monotonically through the code.
6733 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6734 between two insns is not affected by -g. */
6735
6736 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6737 {
4b4bf941 6738 if (!NOTE_P (insn)
7afe21cc
RK
6739 || NOTE_LINE_NUMBER (insn) < 0)
6740 INSN_CUID (insn) = ++i;
6741 else
6742 /* Give a line number note the same cuid as preceding insn. */
6743 INSN_CUID (insn) = i;
6744 }
6745
7afe21cc
RK
6746 /* Loop over basic blocks.
6747 Compute the maximum number of qty's needed for each basic block
6748 (which is 2 for each SET). */
6749 insn = f;
6750 while (insn)
6751 {
4eadede7 6752 cse_altered = 0;
5affca01 6753 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
8b3686ed 6754 flag_cse_skip_blocks);
7afe21cc
RK
6755
6756 /* If this basic block was already processed or has no sets, skip it. */
6757 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6758 {
6759 PUT_MODE (insn, VOIDmode);
6760 insn = (val.last ? NEXT_INSN (val.last) : 0);
6761 val.path_size = 0;
6762 continue;
6763 }
6764
6765 cse_basic_block_start = val.low_cuid;
6766 cse_basic_block_end = val.high_cuid;
6767 max_qty = val.nsets * 2;
278a83b2 6768
7afe21cc 6769 if (file)
ab87f8c8 6770 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7afe21cc
RK
6771 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6772 val.nsets);
6773
6774 /* Make MAX_QTY bigger to give us room to optimize
6775 past the end of this basic block, if that should prove useful. */
6776 if (max_qty < 500)
6777 max_qty = 500;
6778
7afe21cc
RK
6779 /* If this basic block is being extended by following certain jumps,
6780 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6781 Otherwise, we start after this basic block. */
6782 if (val.path_size > 0)
5affca01 6783 cse_basic_block (insn, val.last, val.path);
7afe21cc
RK
6784 else
6785 {
6786 int old_cse_jumps_altered = cse_jumps_altered;
6787 rtx temp;
6788
6789 /* When cse changes a conditional jump to an unconditional
6790 jump, we want to reprocess the block, since it will give
6791 us a new branch path to investigate. */
6792 cse_jumps_altered = 0;
5affca01 6793 temp = cse_basic_block (insn, val.last, val.path);
8b3686ed
RK
6794 if (cse_jumps_altered == 0
6795 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7afe21cc
RK
6796 insn = temp;
6797
6798 cse_jumps_altered |= old_cse_jumps_altered;
6799 }
6800
1f8f4a0b 6801 if (cse_altered)
1497faf6
RH
6802 ggc_collect ();
6803
7afe21cc
RK
6804#ifdef USE_C_ALLOCA
6805 alloca (0);
6806#endif
6807 }
6808
e05e2395
MM
6809 /* Clean up. */
6810 end_alias_analysis ();
75c6bd46 6811 free (uid_cuid);
1bb98cec 6812 free (reg_eqv_table);
9bf8cfbf 6813 free (val.path);
2f93eea8 6814 rtl_hooks = general_rtl_hooks;
e05e2395 6815
a5dfb4ee 6816 return cse_jumps_altered || recorded_label_ref;
7afe21cc
RK
6817}
6818
6819/* Process a single basic block. FROM and TO and the limits of the basic
6820 block. NEXT_BRANCH points to the branch path when following jumps or
75473b02 6821 a null path when not following jumps. */
7afe21cc
RK
6822
6823static rtx
5affca01 6824cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
7afe21cc 6825{
b3694847 6826 rtx insn;
7afe21cc 6827 int to_usage = 0;
7bd8b2a8 6828 rtx libcall_insn = NULL_RTX;
e9a25f70 6829 int num_insns = 0;
26d107db 6830 int no_conflict = 0;
7afe21cc 6831
08a69267
RS
6832 /* Allocate the space needed by qty_table. */
6833 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
7afe21cc
RK
6834
6835 new_basic_block ();
6836
6837 /* TO might be a label. If so, protect it from being deleted. */
4b4bf941 6838 if (to != 0 && LABEL_P (to))
7afe21cc
RK
6839 ++LABEL_NUSES (to);
6840
6841 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6842 {
b3694847 6843 enum rtx_code code = GET_CODE (insn);
e9a25f70 6844
1d22a2c1
MM
6845 /* If we have processed 1,000 insns, flush the hash table to
6846 avoid extreme quadratic behavior. We must not include NOTEs
c13e8210 6847 in the count since there may be more of them when generating
1d22a2c1
MM
6848 debugging information. If we clear the table at different
6849 times, code generated with -g -O might be different than code
6850 generated with -O but not -g.
e9a25f70
JL
6851
6852 ??? This is a real kludge and needs to be done some other way.
6853 Perhaps for 2.9. */
1d22a2c1 6854 if (code != NOTE && num_insns++ > 1000)
e9a25f70 6855 {
01e752d3 6856 flush_hash_table ();
e9a25f70
JL
6857 num_insns = 0;
6858 }
7afe21cc
RK
6859
6860 /* See if this is a branch that is part of the path. If so, and it is
6861 to be taken, do so. */
6862 if (next_branch->branch == insn)
6863 {
8b3686ed 6864 enum taken status = next_branch++->status;
6de9cd9a 6865 if (status != PATH_NOT_TAKEN)
7afe21cc 6866 {
6de9cd9a 6867 if (status == PATH_TAKEN)
8b3686ed
RK
6868 record_jump_equiv (insn, 1);
6869 else
6870 invalidate_skipped_block (NEXT_INSN (insn));
6871
7afe21cc
RK
6872 /* Set the last insn as the jump insn; it doesn't affect cc0.
6873 Then follow this branch. */
6874#ifdef HAVE_cc0
6875 prev_insn_cc0 = 0;
7afe21cc 6876 prev_insn = insn;
4977bab6 6877#endif
7afe21cc
RK
6878 insn = JUMP_LABEL (insn);
6879 continue;
6880 }
6881 }
278a83b2 6882
7afe21cc
RK
6883 if (GET_MODE (insn) == QImode)
6884 PUT_MODE (insn, VOIDmode);
6885
ec8e098d 6886 if (GET_RTX_CLASS (code) == RTX_INSN)
7afe21cc 6887 {
7bd8b2a8
JL
6888 rtx p;
6889
7afe21cc
RK
6890 /* Process notes first so we have all notes in canonical forms when
6891 looking for duplicate operations. */
6892
6893 if (REG_NOTES (insn))
906c4e36 6894 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7afe21cc
RK
6895
6896 /* Track when we are inside in LIBCALL block. Inside such a block,
6897 we do not want to record destinations. The last insn of a
6898 LIBCALL block is not considered to be part of the block, since
830a38ee 6899 its destination is the result of the block and hence should be
7afe21cc
RK
6900 recorded. */
6901
efc9bd41
RK
6902 if (REG_NOTES (insn) != 0)
6903 {
6904 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6905 libcall_insn = XEXP (p, 0);
6906 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
26d107db
KK
6907 {
6908 /* Keep libcall_insn for the last SET insn of a no-conflict
6909 block to prevent changing the destination. */
6910 if (! no_conflict)
6911 libcall_insn = 0;
6912 else
6913 no_conflict = -1;
6914 }
6915 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6916 no_conflict = 1;
efc9bd41 6917 }
7afe21cc 6918
7bd8b2a8 6919 cse_insn (insn, libcall_insn);
f85cc4cb 6920
26d107db
KK
6921 if (no_conflict == -1)
6922 {
6923 libcall_insn = 0;
6924 no_conflict = 0;
6925 }
6926
be8ac49a
RK
6927 /* If we haven't already found an insn where we added a LABEL_REF,
6928 check this one. */
4b4bf941 6929 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
be8ac49a
RK
6930 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6931 (void *) insn))
f85cc4cb 6932 recorded_label_ref = 1;
7afe21cc
RK
6933 }
6934
6935 /* If INSN is now an unconditional jump, skip to the end of our
6936 basic block by pretending that we just did the last insn in the
6937 basic block. If we are jumping to the end of our block, show
6938 that we can have one usage of TO. */
6939
7f1c097d 6940 if (any_uncondjump_p (insn))
7afe21cc
RK
6941 {
6942 if (to == 0)
fa0933ba 6943 {
08a69267 6944 free (qty_table);
fa0933ba
JL
6945 return 0;
6946 }
7afe21cc
RK
6947
6948 if (JUMP_LABEL (insn) == to)
6949 to_usage = 1;
6950
6a5293dc
RS
6951 /* Maybe TO was deleted because the jump is unconditional.
6952 If so, there is nothing left in this basic block. */
6953 /* ??? Perhaps it would be smarter to set TO
278a83b2 6954 to whatever follows this insn,
6a5293dc
RS
6955 and pretend the basic block had always ended here. */
6956 if (INSN_DELETED_P (to))
6957 break;
6958
7afe21cc
RK
6959 insn = PREV_INSN (to);
6960 }
6961
6962 /* See if it is ok to keep on going past the label
6963 which used to end our basic block. Remember that we incremented
d45cf215 6964 the count of that label, so we decrement it here. If we made
7afe21cc
RK
6965 a jump unconditional, TO_USAGE will be one; in that case, we don't
6966 want to count the use in that jump. */
6967
6968 if (to != 0 && NEXT_INSN (insn) == to
4b4bf941 6969 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7afe21cc
RK
6970 {
6971 struct cse_basic_block_data val;
146135d6 6972 rtx prev;
7afe21cc
RK
6973
6974 insn = NEXT_INSN (to);
6975
146135d6
RK
6976 /* If TO was the last insn in the function, we are done. */
6977 if (insn == 0)
fa0933ba 6978 {
08a69267 6979 free (qty_table);
fa0933ba
JL
6980 return 0;
6981 }
7afe21cc 6982
146135d6
RK
6983 /* If TO was preceded by a BARRIER we are done with this block
6984 because it has no continuation. */
6985 prev = prev_nonnote_insn (to);
4b4bf941 6986 if (prev && BARRIER_P (prev))
fa0933ba 6987 {
08a69267 6988 free (qty_table);
fa0933ba
JL
6989 return insn;
6990 }
146135d6
RK
6991
6992 /* Find the end of the following block. Note that we won't be
6993 following branches in this case. */
7afe21cc
RK
6994 to_usage = 0;
6995 val.path_size = 0;
9bf8cfbf
ZD
6996 val.path = xmalloc (sizeof (struct branch_path)
6997 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
5affca01 6998 cse_end_of_basic_block (insn, &val, 0, 0);
9bf8cfbf 6999 free (val.path);
7afe21cc
RK
7000
7001 /* If the tables we allocated have enough space left
7002 to handle all the SETs in the next basic block,
7003 continue through it. Otherwise, return,
7004 and that block will be scanned individually. */
7005 if (val.nsets * 2 + next_qty > max_qty)
7006 break;
7007
7008 cse_basic_block_start = val.low_cuid;
7009 cse_basic_block_end = val.high_cuid;
7010 to = val.last;
7011
7012 /* Prevent TO from being deleted if it is a label. */
4b4bf941 7013 if (to != 0 && LABEL_P (to))
7afe21cc
RK
7014 ++LABEL_NUSES (to);
7015
7016 /* Back up so we process the first insn in the extension. */
7017 insn = PREV_INSN (insn);
7018 }
7019 }
7020
341c100f 7021 gcc_assert (next_qty <= max_qty);
7afe21cc 7022
08a69267 7023 free (qty_table);
75c6bd46 7024
7afe21cc
RK
7025 return to ? NEXT_INSN (to) : 0;
7026}
7027\f
be8ac49a 7028/* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
45c23566 7029 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
be8ac49a
RK
7030
7031static int
7080f735 7032check_for_label_ref (rtx *rtl, void *data)
be8ac49a
RK
7033{
7034 rtx insn = (rtx) data;
7035
7036 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7037 we must rerun jump since it needs to place the note. If this is a
7038 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
ec5c56db 7039 since no REG_LABEL will be added. */
be8ac49a 7040 return (GET_CODE (*rtl) == LABEL_REF
45c23566 7041 && ! LABEL_REF_NONLOCAL_P (*rtl)
4838c5ee 7042 && LABEL_P (XEXP (*rtl, 0))
be8ac49a
RK
7043 && INSN_UID (XEXP (*rtl, 0)) != 0
7044 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7045}
7046\f
7afe21cc
RK
7047/* Count the number of times registers are used (not set) in X.
7048 COUNTS is an array in which we accumulate the count, INCR is how much
9ab81df2 7049 we count each register usage. */
7afe21cc
RK
7050
7051static void
9ab81df2 7052count_reg_usage (rtx x, int *counts, int incr)
7afe21cc 7053{
f1e7c95f 7054 enum rtx_code code;
b17d5d7c 7055 rtx note;
6f7d635c 7056 const char *fmt;
7afe21cc
RK
7057 int i, j;
7058
f1e7c95f
RK
7059 if (x == 0)
7060 return;
7061
7062 switch (code = GET_CODE (x))
7afe21cc
RK
7063 {
7064 case REG:
9ab81df2 7065 counts[REGNO (x)] += incr;
7afe21cc
RK
7066 return;
7067
7068 case PC:
7069 case CC0:
7070 case CONST:
7071 case CONST_INT:
7072 case CONST_DOUBLE:
69ef87e2 7073 case CONST_VECTOR:
7afe21cc
RK
7074 case SYMBOL_REF:
7075 case LABEL_REF:
02e39abc
JL
7076 return;
7077
278a83b2 7078 case CLOBBER:
02e39abc
JL
7079 /* If we are clobbering a MEM, mark any registers inside the address
7080 as being used. */
3c0cb5de 7081 if (MEM_P (XEXP (x, 0)))
9ab81df2 7082 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7afe21cc
RK
7083 return;
7084
7085 case SET:
7086 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 7087 if (!REG_P (SET_DEST (x)))
9ab81df2
JDA
7088 count_reg_usage (SET_DEST (x), counts, incr);
7089 count_reg_usage (SET_SRC (x), counts, incr);
7afe21cc
RK
7090 return;
7091
f1e7c95f 7092 case CALL_INSN:
9ab81df2 7093 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
ddc356e8 7094 /* Fall through. */
f1e7c95f 7095
7afe21cc
RK
7096 case INSN:
7097 case JUMP_INSN:
9ab81df2 7098 count_reg_usage (PATTERN (x), counts, incr);
7afe21cc
RK
7099
7100 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7101 use them. */
7102
b17d5d7c
ZD
7103 note = find_reg_equal_equiv_note (x);
7104 if (note)
839844be
R
7105 {
7106 rtx eqv = XEXP (note, 0);
7107
7108 if (GET_CODE (eqv) == EXPR_LIST)
7109 /* This REG_EQUAL note describes the result of a function call.
7110 Process all the arguments. */
7111 do
7112 {
9ab81df2 7113 count_reg_usage (XEXP (eqv, 0), counts, incr);
839844be
R
7114 eqv = XEXP (eqv, 1);
7115 }
7116 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7117 else
9ab81df2 7118 count_reg_usage (eqv, counts, incr);
839844be 7119 }
7afe21cc
RK
7120 return;
7121
ee960939
OH
7122 case EXPR_LIST:
7123 if (REG_NOTE_KIND (x) == REG_EQUAL
7124 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7125 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7126 involving registers in the address. */
7127 || GET_CODE (XEXP (x, 0)) == CLOBBER)
9ab81df2 7128 count_reg_usage (XEXP (x, 0), counts, incr);
ee960939 7129
9ab81df2 7130 count_reg_usage (XEXP (x, 1), counts, incr);
ee960939
OH
7131 return;
7132
a6c14a64 7133 case ASM_OPERANDS:
a6c14a64
RH
7134 /* Iterate over just the inputs, not the constraints as well. */
7135 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
9ab81df2 7136 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
a6c14a64
RH
7137 return;
7138
7afe21cc 7139 case INSN_LIST:
341c100f 7140 gcc_unreachable ();
278a83b2 7141
e9a25f70
JL
7142 default:
7143 break;
7afe21cc
RK
7144 }
7145
7146 fmt = GET_RTX_FORMAT (code);
7147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7148 {
7149 if (fmt[i] == 'e')
9ab81df2 7150 count_reg_usage (XEXP (x, i), counts, incr);
7afe21cc
RK
7151 else if (fmt[i] == 'E')
7152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9ab81df2 7153 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7afe21cc
RK
7154 }
7155}
7156\f
4793dca1
JH
7157/* Return true if set is live. */
7158static bool
7080f735
AJ
7159set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7160 int *counts)
4793dca1
JH
7161{
7162#ifdef HAVE_cc0
7163 rtx tem;
7164#endif
7165
7166 if (set_noop_p (set))
7167 ;
7168
7169#ifdef HAVE_cc0
7170 else if (GET_CODE (SET_DEST (set)) == CC0
7171 && !side_effects_p (SET_SRC (set))
7172 && ((tem = next_nonnote_insn (insn)) == 0
7173 || !INSN_P (tem)
7174 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7175 return false;
7176#endif
f8cfc6aa 7177 else if (!REG_P (SET_DEST (set))
4793dca1
JH
7178 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7179 || counts[REGNO (SET_DEST (set))] != 0
8fff4fc1 7180 || side_effects_p (SET_SRC (set)))
4793dca1
JH
7181 return true;
7182 return false;
7183}
7184
7185/* Return true if insn is live. */
7186
7187static bool
7080f735 7188insn_live_p (rtx insn, int *counts)
4793dca1
JH
7189{
7190 int i;
a3745024 7191 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
a646f6cc
AH
7192 return true;
7193 else if (GET_CODE (PATTERN (insn)) == SET)
0021de69 7194 return set_live_p (PATTERN (insn), insn, counts);
4793dca1 7195 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
7196 {
7197 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7198 {
7199 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 7200
0021de69
DB
7201 if (GET_CODE (elt) == SET)
7202 {
7203 if (set_live_p (elt, insn, counts))
7204 return true;
7205 }
7206 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7207 return true;
7208 }
7209 return false;
7210 }
4793dca1
JH
7211 else
7212 return true;
7213}
7214
7215/* Return true if libcall is dead as a whole. */
7216
7217static bool
7080f735 7218dead_libcall_p (rtx insn, int *counts)
4793dca1 7219{
0c19a26f
RS
7220 rtx note, set, new;
7221
4793dca1
JH
7222 /* See if there's a REG_EQUAL note on this insn and try to
7223 replace the source with the REG_EQUAL expression.
7224
7225 We assume that insns with REG_RETVALs can only be reg->reg
7226 copies at this point. */
7227 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
0c19a26f
RS
7228 if (!note)
7229 return false;
7230
7231 set = single_set (insn);
7232 if (!set)
7233 return false;
4793dca1 7234
0c19a26f
RS
7235 new = simplify_rtx (XEXP (note, 0));
7236 if (!new)
7237 new = XEXP (note, 0);
4793dca1 7238
0c19a26f 7239 /* While changing insn, we must update the counts accordingly. */
9ab81df2 7240 count_reg_usage (insn, counts, -1);
1e150f2c 7241
0c19a26f
RS
7242 if (validate_change (insn, &SET_SRC (set), new, 0))
7243 {
9ab81df2 7244 count_reg_usage (insn, counts, 1);
0c19a26f
RS
7245 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7246 remove_note (insn, note);
7247 return true;
7248 }
7249
7250 if (CONSTANT_P (new))
7251 {
7252 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7253 if (new && validate_change (insn, &SET_SRC (set), new, 0))
4793dca1 7254 {
9ab81df2 7255 count_reg_usage (insn, counts, 1);
4793dca1 7256 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
1e150f2c 7257 remove_note (insn, note);
4793dca1
JH
7258 return true;
7259 }
7260 }
7080f735 7261
9ab81df2 7262 count_reg_usage (insn, counts, 1);
4793dca1
JH
7263 return false;
7264}
7265
7afe21cc
RK
7266/* Scan all the insns and delete any that are dead; i.e., they store a register
7267 that is never used or they copy a register to itself.
7268
c6a26dc4
JL
7269 This is used to remove insns made obviously dead by cse, loop or other
7270 optimizations. It improves the heuristics in loop since it won't try to
7271 move dead invariants out of loops or make givs for dead quantities. The
7272 remaining passes of the compilation are also sped up. */
7afe21cc 7273
3dec4024 7274int
7080f735 7275delete_trivially_dead_insns (rtx insns, int nreg)
7afe21cc 7276{
4da896b2 7277 int *counts;
77fa0940 7278 rtx insn, prev;
614bb5d4 7279 int in_libcall = 0, dead_libcall = 0;
65e9fa10 7280 int ndead = 0;
7afe21cc 7281
3dec4024 7282 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 7283 /* First count the number of times each register is used. */
703ad42b 7284 counts = xcalloc (nreg, sizeof (int));
7afe21cc 7285 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
9ab81df2 7286 count_reg_usage (insn, counts, 1);
7afe21cc 7287
65e9fa10
KH
7288 /* Go from the last insn to the first and delete insns that only set unused
7289 registers or copy a register to itself. As we delete an insn, remove
7290 usage counts for registers it uses.
0cedb36c 7291
65e9fa10
KH
7292 The first jump optimization pass may leave a real insn as the last
7293 insn in the function. We must not skip that insn or we may end
7294 up deleting code that is not really dead. */
7295 insn = get_last_insn ();
7296 if (! INSN_P (insn))
7297 insn = prev_real_insn (insn);
7afe21cc 7298
65e9fa10
KH
7299 for (; insn; insn = prev)
7300 {
7301 int live_insn = 0;
7afe21cc 7302
65e9fa10 7303 prev = prev_real_insn (insn);
7afe21cc 7304
65e9fa10
KH
7305 /* Don't delete any insns that are part of a libcall block unless
7306 we can delete the whole libcall block.
7307
7308 Flow or loop might get confused if we did that. Remember
7309 that we are scanning backwards. */
7310 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7311 {
7312 in_libcall = 1;
7313 live_insn = 1;
7314 dead_libcall = dead_libcall_p (insn, counts);
7315 }
7316 else if (in_libcall)
7317 live_insn = ! dead_libcall;
7318 else
7319 live_insn = insn_live_p (insn, counts);
7afe21cc 7320
65e9fa10
KH
7321 /* If this is a dead insn, delete it and show registers in it aren't
7322 being used. */
7afe21cc 7323
65e9fa10
KH
7324 if (! live_insn)
7325 {
7326 count_reg_usage (insn, counts, -1);
7327 delete_insn_and_edges (insn);
7328 ndead++;
7329 }
e4890d45 7330
65e9fa10
KH
7331 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7332 {
7333 in_libcall = 0;
7334 dead_libcall = 0;
614bb5d4 7335 }
68252e27 7336 }
4da896b2 7337
c263766c 7338 if (dump_file && ndead)
65e9fa10
KH
7339 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7340 ndead);
4da896b2
MM
7341 /* Clean up. */
7342 free (counts);
3dec4024
JH
7343 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7344 return ndead;
7afe21cc 7345}
e129d93a
ILT
7346
7347/* This function is called via for_each_rtx. The argument, NEWREG, is
7348 a condition code register with the desired mode. If we are looking
7349 at the same register in a different mode, replace it with
7350 NEWREG. */
7351
7352static int
7353cse_change_cc_mode (rtx *loc, void *data)
7354{
fc188d37 7355 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
e129d93a
ILT
7356
7357 if (*loc
f8cfc6aa 7358 && REG_P (*loc)
fc188d37
AK
7359 && REGNO (*loc) == REGNO (args->newreg)
7360 && GET_MODE (*loc) != GET_MODE (args->newreg))
e129d93a 7361 {
fc188d37
AK
7362 validate_change (args->insn, loc, args->newreg, 1);
7363
e129d93a
ILT
7364 return -1;
7365 }
7366 return 0;
7367}
7368
fc188d37
AK
7369/* Change the mode of any reference to the register REGNO (NEWREG) to
7370 GET_MODE (NEWREG) in INSN. */
7371
7372static void
7373cse_change_cc_mode_insn (rtx insn, rtx newreg)
7374{
7375 struct change_cc_mode_args args;
7376 int success;
7377
7378 if (!INSN_P (insn))
7379 return;
7380
7381 args.insn = insn;
7382 args.newreg = newreg;
7383
7384 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7385 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7386
7387 /* If the following assertion was triggered, there is most probably
7388 something wrong with the cc_modes_compatible back end function.
7389 CC modes only can be considered compatible if the insn - with the mode
7390 replaced by any of the compatible modes - can still be recognized. */
7391 success = apply_change_group ();
7392 gcc_assert (success);
7393}
7394
e129d93a
ILT
7395/* Change the mode of any reference to the register REGNO (NEWREG) to
7396 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 7397 any instruction which modifies NEWREG. */
e129d93a
ILT
7398
7399static void
7400cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7401{
7402 rtx insn;
7403
7404 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7405 {
7406 if (! INSN_P (insn))
7407 continue;
7408
2e802a6f 7409 if (reg_set_p (newreg, insn))
e129d93a
ILT
7410 return;
7411
fc188d37 7412 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
7413 }
7414}
7415
7416/* BB is a basic block which finishes with CC_REG as a condition code
7417 register which is set to CC_SRC. Look through the successors of BB
7418 to find blocks which have a single predecessor (i.e., this one),
7419 and look through those blocks for an assignment to CC_REG which is
7420 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7421 permitted to change the mode of CC_SRC to a compatible mode. This
7422 returns VOIDmode if no equivalent assignments were found.
7423 Otherwise it returns the mode which CC_SRC should wind up with.
7424
7425 The main complexity in this function is handling the mode issues.
7426 We may have more than one duplicate which we can eliminate, and we
7427 try to find a mode which will work for multiple duplicates. */
7428
7429static enum machine_mode
7430cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7431{
7432 bool found_equiv;
7433 enum machine_mode mode;
7434 unsigned int insn_count;
7435 edge e;
7436 rtx insns[2];
7437 enum machine_mode modes[2];
7438 rtx last_insns[2];
7439 unsigned int i;
7440 rtx newreg;
628f6a4e 7441 edge_iterator ei;
e129d93a
ILT
7442
7443 /* We expect to have two successors. Look at both before picking
7444 the final mode for the comparison. If we have more successors
7445 (i.e., some sort of table jump, although that seems unlikely),
7446 then we require all beyond the first two to use the same
7447 mode. */
7448
7449 found_equiv = false;
7450 mode = GET_MODE (cc_src);
7451 insn_count = 0;
628f6a4e 7452 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a
ILT
7453 {
7454 rtx insn;
7455 rtx end;
7456
7457 if (e->flags & EDGE_COMPLEX)
7458 continue;
7459
628f6a4e 7460 if (EDGE_COUNT (e->dest->preds) != 1
e129d93a
ILT
7461 || e->dest == EXIT_BLOCK_PTR)
7462 continue;
7463
7464 end = NEXT_INSN (BB_END (e->dest));
7465 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7466 {
7467 rtx set;
7468
7469 if (! INSN_P (insn))
7470 continue;
7471
7472 /* If CC_SRC is modified, we have to stop looking for
7473 something which uses it. */
7474 if (modified_in_p (cc_src, insn))
7475 break;
7476
7477 /* Check whether INSN sets CC_REG to CC_SRC. */
7478 set = single_set (insn);
7479 if (set
f8cfc6aa 7480 && REG_P (SET_DEST (set))
e129d93a
ILT
7481 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7482 {
7483 bool found;
7484 enum machine_mode set_mode;
7485 enum machine_mode comp_mode;
7486
7487 found = false;
7488 set_mode = GET_MODE (SET_SRC (set));
7489 comp_mode = set_mode;
7490 if (rtx_equal_p (cc_src, SET_SRC (set)))
7491 found = true;
7492 else if (GET_CODE (cc_src) == COMPARE
7493 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 7494 && mode != set_mode
e129d93a
ILT
7495 && rtx_equal_p (XEXP (cc_src, 0),
7496 XEXP (SET_SRC (set), 0))
7497 && rtx_equal_p (XEXP (cc_src, 1),
7498 XEXP (SET_SRC (set), 1)))
7499
7500 {
5fd9b178 7501 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
7502 if (comp_mode != VOIDmode
7503 && (can_change_mode || comp_mode == mode))
7504 found = true;
7505 }
7506
7507 if (found)
7508 {
7509 found_equiv = true;
1f44254c 7510 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
7511 {
7512 insns[insn_count] = insn;
7513 modes[insn_count] = set_mode;
7514 last_insns[insn_count] = end;
7515 ++insn_count;
7516
1f44254c
ILT
7517 if (mode != comp_mode)
7518 {
341c100f 7519 gcc_assert (can_change_mode);
1f44254c 7520 mode = comp_mode;
fc188d37
AK
7521
7522 /* The modified insn will be re-recognized later. */
1f44254c
ILT
7523 PUT_MODE (cc_src, mode);
7524 }
e129d93a
ILT
7525 }
7526 else
7527 {
7528 if (set_mode != mode)
1f44254c
ILT
7529 {
7530 /* We found a matching expression in the
7531 wrong mode, but we don't have room to
7532 store it in the array. Punt. This case
7533 should be rare. */
7534 break;
7535 }
e129d93a
ILT
7536 /* INSN sets CC_REG to a value equal to CC_SRC
7537 with the right mode. We can simply delete
7538 it. */
7539 delete_insn (insn);
7540 }
7541
7542 /* We found an instruction to delete. Keep looking,
7543 in the hopes of finding a three-way jump. */
7544 continue;
7545 }
7546
7547 /* We found an instruction which sets the condition
7548 code, so don't look any farther. */
7549 break;
7550 }
7551
7552 /* If INSN sets CC_REG in some other way, don't look any
7553 farther. */
7554 if (reg_set_p (cc_reg, insn))
7555 break;
7556 }
7557
7558 /* If we fell off the bottom of the block, we can keep looking
7559 through successors. We pass CAN_CHANGE_MODE as false because
7560 we aren't prepared to handle compatibility between the
7561 further blocks and this block. */
7562 if (insn == end)
7563 {
1f44254c
ILT
7564 enum machine_mode submode;
7565
7566 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7567 if (submode != VOIDmode)
7568 {
341c100f 7569 gcc_assert (submode == mode);
1f44254c
ILT
7570 found_equiv = true;
7571 can_change_mode = false;
7572 }
e129d93a
ILT
7573 }
7574 }
7575
7576 if (! found_equiv)
7577 return VOIDmode;
7578
7579 /* Now INSN_COUNT is the number of instructions we found which set
7580 CC_REG to a value equivalent to CC_SRC. The instructions are in
7581 INSNS. The modes used by those instructions are in MODES. */
7582
7583 newreg = NULL_RTX;
7584 for (i = 0; i < insn_count; ++i)
7585 {
7586 if (modes[i] != mode)
7587 {
7588 /* We need to change the mode of CC_REG in INSNS[i] and
7589 subsequent instructions. */
7590 if (! newreg)
7591 {
7592 if (GET_MODE (cc_reg) == mode)
7593 newreg = cc_reg;
7594 else
7595 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7596 }
7597 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7598 newreg);
7599 }
7600
7601 delete_insn (insns[i]);
7602 }
7603
7604 return mode;
7605}
7606
7607/* If we have a fixed condition code register (or two), walk through
7608 the instructions and try to eliminate duplicate assignments. */
7609
7610void
7611cse_condition_code_reg (void)
7612{
7613 unsigned int cc_regno_1;
7614 unsigned int cc_regno_2;
7615 rtx cc_reg_1;
7616 rtx cc_reg_2;
7617 basic_block bb;
7618
5fd9b178 7619 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
7620 return;
7621
7622 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7623 if (cc_regno_2 != INVALID_REGNUM)
7624 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7625 else
7626 cc_reg_2 = NULL_RTX;
7627
7628 FOR_EACH_BB (bb)
7629 {
7630 rtx last_insn;
7631 rtx cc_reg;
7632 rtx insn;
7633 rtx cc_src_insn;
7634 rtx cc_src;
7635 enum machine_mode mode;
1f44254c 7636 enum machine_mode orig_mode;
e129d93a
ILT
7637
7638 /* Look for blocks which end with a conditional jump based on a
7639 condition code register. Then look for the instruction which
7640 sets the condition code register. Then look through the
7641 successor blocks for instructions which set the condition
7642 code register to the same value. There are other possible
7643 uses of the condition code register, but these are by far the
7644 most common and the ones which we are most likely to be able
7645 to optimize. */
7646
7647 last_insn = BB_END (bb);
4b4bf941 7648 if (!JUMP_P (last_insn))
e129d93a
ILT
7649 continue;
7650
7651 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7652 cc_reg = cc_reg_1;
7653 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7654 cc_reg = cc_reg_2;
7655 else
7656 continue;
7657
7658 cc_src_insn = NULL_RTX;
7659 cc_src = NULL_RTX;
7660 for (insn = PREV_INSN (last_insn);
7661 insn && insn != PREV_INSN (BB_HEAD (bb));
7662 insn = PREV_INSN (insn))
7663 {
7664 rtx set;
7665
7666 if (! INSN_P (insn))
7667 continue;
7668 set = single_set (insn);
7669 if (set
f8cfc6aa 7670 && REG_P (SET_DEST (set))
e129d93a
ILT
7671 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7672 {
7673 cc_src_insn = insn;
7674 cc_src = SET_SRC (set);
7675 break;
7676 }
7677 else if (reg_set_p (cc_reg, insn))
7678 break;
7679 }
7680
7681 if (! cc_src_insn)
7682 continue;
7683
7684 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7685 continue;
7686
7687 /* Now CC_REG is a condition code register used for a
7688 conditional jump at the end of the block, and CC_SRC, in
7689 CC_SRC_INSN, is the value to which that condition code
7690 register is set, and CC_SRC is still meaningful at the end of
7691 the basic block. */
7692
1f44254c 7693 orig_mode = GET_MODE (cc_src);
e129d93a 7694 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
1f44254c 7695 if (mode != VOIDmode)
e129d93a 7696 {
341c100f 7697 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 7698 if (mode != orig_mode)
2e802a6f
KH
7699 {
7700 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7701
fc188d37 7702 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
7703
7704 /* Do the same in the following insns that use the
7705 current value of CC_REG within BB. */
7706 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7707 NEXT_INSN (last_insn),
7708 newreg);
7709 }
e129d93a
ILT
7710 }
7711 }
7712}