]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
Replace insn_foo with insn_data.foo.
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
747215f1 2 Copyright (C) 1987, 88, 89, 92-7, 1998, 1999 Free Software Foundation, Inc.
7afe21cc
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
7afe21cc
RK
20
21
22#include "config.h"
670ee920
KG
23/* stdio.h must precede rtl.h for FFS. */
24#include "system.h"
50b2596f 25#include <setjmp.h>
9c3b4c8b 26
7afe21cc
RK
27#include "rtl.h"
28#include "regs.h"
29#include "hard-reg-set.h"
30#include "flags.h"
31#include "real.h"
32#include "insn-config.h"
33#include "recog.h"
49ad7cfa 34#include "function.h"
956d6950 35#include "expr.h"
50b2596f
KG
36#include "toplev.h"
37#include "output.h"
30f72379 38#include "splay-tree.h"
1497faf6 39#include "ggc.h"
7afe21cc
RK
40
41/* The basic idea of common subexpression elimination is to go
42 through the code, keeping a record of expressions that would
43 have the same value at the current scan point, and replacing
44 expressions encountered with the cheapest equivalent expression.
45
46 It is too complicated to keep track of the different possibilities
47 when control paths merge; so, at each label, we forget all that is
48 known and start fresh. This can be described as processing each
49 basic block separately. Note, however, that these are not quite
50 the same as the basic blocks found by a later pass and used for
51 data flow analysis and register packing. We do not need to start fresh
52 after a conditional jump instruction if there is no label there.
53
54 We use two data structures to record the equivalent expressions:
55 a hash table for most expressions, and several vectors together
56 with "quantity numbers" to record equivalent (pseudo) registers.
57
58 The use of the special data structure for registers is desirable
59 because it is faster. It is possible because registers references
60 contain a fairly small number, the register number, taken from
61 a contiguously allocated series, and two register references are
62 identical if they have the same number. General expressions
63 do not have any such thing, so the only way to retrieve the
64 information recorded on an expression other than a register
65 is to keep it in a hash table.
66
67Registers and "quantity numbers":
68
69 At the start of each basic block, all of the (hardware and pseudo)
70 registers used in the function are given distinct quantity
71 numbers to indicate their contents. During scan, when the code
72 copies one register into another, we copy the quantity number.
73 When a register is loaded in any other way, we allocate a new
74 quantity number to describe the value generated by this operation.
75 `reg_qty' records what quantity a register is currently thought
76 of as containing.
77
78 All real quantity numbers are greater than or equal to `max_reg'.
79 If register N has not been assigned a quantity, reg_qty[N] will equal N.
80
81 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
82 variables should be referenced with an index below `max_reg'.
83
84 We also maintain a bidirectional chain of registers for each
85 quantity number. `qty_first_reg', `qty_last_reg',
86 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
87
88 The first register in a chain is the one whose lifespan is least local.
89 Among equals, it is the one that was seen first.
90 We replace any equivalent register with that one.
91
92 If two registers have the same quantity number, it must be true that
93 REG expressions with `qty_mode' must be in the hash table for both
94 registers and must be in the same class.
95
96 The converse is not true. Since hard registers may be referenced in
97 any mode, two REG expressions might be equivalent in the hash table
98 but not have the same quantity number if the quantity number of one
99 of the registers is not the same mode as those expressions.
100
101Constants and quantity numbers
102
103 When a quantity has a known constant value, that value is stored
104 in the appropriate element of qty_const. This is in addition to
105 putting the constant in the hash table as is usual for non-regs.
106
d45cf215 107 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
108 macro CONST_COSTS and will often depend on the constant value. In any
109 event, expressions containing constants can be simplified, by fold_rtx.
110
111 When a quantity has a known nearly constant value (such as an address
112 of a stack slot), that value is stored in the appropriate element
113 of qty_const.
114
115 Integer constants don't have a machine mode. However, cse
116 determines the intended machine mode from the destination
117 of the instruction that moves the constant. The machine mode
118 is recorded in the hash table along with the actual RTL
119 constant expression so that different modes are kept separate.
120
121Other expressions:
122
123 To record known equivalences among expressions in general
124 we use a hash table called `table'. It has a fixed number of buckets
125 that contain chains of `struct table_elt' elements for expressions.
126 These chains connect the elements whose expressions have the same
127 hash codes.
128
129 Other chains through the same elements connect the elements which
130 currently have equivalent values.
131
132 Register references in an expression are canonicalized before hashing
133 the expression. This is done using `reg_qty' and `qty_first_reg'.
134 The hash code of a register reference is computed using the quantity
135 number, not the register number.
136
137 When the value of an expression changes, it is necessary to remove from the
138 hash table not just that expression but all expressions whose values
139 could be different as a result.
140
141 1. If the value changing is in memory, except in special cases
142 ANYTHING referring to memory could be changed. That is because
143 nobody knows where a pointer does not point.
144 The function `invalidate_memory' removes what is necessary.
145
146 The special cases are when the address is constant or is
147 a constant plus a fixed register such as the frame pointer
148 or a static chain pointer. When such addresses are stored in,
149 we can tell exactly which other such addresses must be invalidated
150 due to overlap. `invalidate' does this.
151 All expressions that refer to non-constant
152 memory addresses are also invalidated. `invalidate_memory' does this.
153
154 2. If the value changing is a register, all expressions
155 containing references to that register, and only those,
156 must be removed.
157
158 Because searching the entire hash table for expressions that contain
159 a register is very slow, we try to figure out when it isn't necessary.
160 Precisely, this is necessary only when expressions have been
161 entered in the hash table using this register, and then the value has
162 changed, and then another expression wants to be added to refer to
163 the register's new value. This sequence of circumstances is rare
164 within any one basic block.
165
166 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
167 reg_tick[i] is incremented whenever a value is stored in register i.
168 reg_in_table[i] holds -1 if no references to register i have been
169 entered in the table; otherwise, it contains the value reg_tick[i] had
170 when the references were entered. If we want to enter a reference
171 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
172 Until we want to enter a new entry, the mere fact that the two vectors
173 don't match makes the entries be ignored if anyone tries to match them.
174
175 Registers themselves are entered in the hash table as well as in
176 the equivalent-register chains. However, the vectors `reg_tick'
177 and `reg_in_table' do not apply to expressions which are simple
178 register references. These expressions are removed from the table
179 immediately when they become invalid, and this can be done even if
180 we do not immediately search for all the expressions that refer to
181 the register.
182
183 A CLOBBER rtx in an instruction invalidates its operand for further
184 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
185 invalidates everything that resides in memory.
186
187Related expressions:
188
189 Constant expressions that differ only by an additive integer
190 are called related. When a constant expression is put in
191 the table, the related expression with no constant term
192 is also entered. These are made to point at each other
193 so that it is possible to find out if there exists any
194 register equivalent to an expression related to a given expression. */
195
196/* One plus largest register number used in this function. */
197
198static int max_reg;
199
556c714b
JW
200/* One plus largest instruction UID used in this function at time of
201 cse_main call. */
202
203static int max_insn_uid;
204
7afe21cc
RK
205/* Length of vectors indexed by quantity number.
206 We know in advance we will not need a quantity number this big. */
207
208static int max_qty;
209
210/* Next quantity number to be allocated.
211 This is 1 + the largest number needed so far. */
212
213static int next_qty;
214
71d306d1 215/* Indexed by quantity number, gives the first (or last) register
7afe21cc
RK
216 in the chain of registers that currently contain this quantity. */
217
218static int *qty_first_reg;
219static int *qty_last_reg;
220
221/* Index by quantity number, gives the mode of the quantity. */
222
223static enum machine_mode *qty_mode;
224
225/* Indexed by quantity number, gives the rtx of the constant value of the
226 quantity, or zero if it does not have a known value.
227 A sum of the frame pointer (or arg pointer) plus a constant
228 can also be entered here. */
229
230static rtx *qty_const;
231
232/* Indexed by qty number, gives the insn that stored the constant value
233 recorded in `qty_const'. */
234
235static rtx *qty_const_insn;
236
237/* The next three variables are used to track when a comparison between a
238 quantity and some constant or register has been passed. In that case, we
239 know the results of the comparison in case we see it again. These variables
240 record a comparison that is known to be true. */
241
242/* Indexed by qty number, gives the rtx code of a comparison with a known
243 result involving this quantity. If none, it is UNKNOWN. */
244static enum rtx_code *qty_comparison_code;
245
246/* Indexed by qty number, gives the constant being compared against in a
247 comparison of known result. If no such comparison, it is undefined.
248 If the comparison is not with a constant, it is zero. */
249
250static rtx *qty_comparison_const;
251
252/* Indexed by qty number, gives the quantity being compared against in a
253 comparison of known result. If no such comparison, if it undefined.
254 If the comparison is not with a register, it is -1. */
255
256static int *qty_comparison_qty;
257
258#ifdef HAVE_cc0
259/* For machines that have a CC0, we do not record its value in the hash
260 table since its use is guaranteed to be the insn immediately following
261 its definition and any other insn is presumed to invalidate it.
262
263 Instead, we store below the value last assigned to CC0. If it should
264 happen to be a constant, it is stored in preference to the actual
265 assigned value. In case it is a constant, we store the mode in which
266 the constant should be interpreted. */
267
268static rtx prev_insn_cc0;
269static enum machine_mode prev_insn_cc0_mode;
270#endif
271
272/* Previous actual insn. 0 if at first insn of basic block. */
273
274static rtx prev_insn;
275
276/* Insn being scanned. */
277
278static rtx this_insn;
279
71d306d1
DE
280/* Index by register number, gives the number of the next (or
281 previous) register in the chain of registers sharing the same
7afe21cc
RK
282 value.
283
284 Or -1 if this register is at the end of the chain.
285
286 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
287
288static int *reg_next_eqv;
289static int *reg_prev_eqv;
290
30f72379
MM
291struct cse_reg_info {
292 union {
293 /* The number of times the register has been altered in the current
294 basic block. */
295 int reg_tick;
296
297 /* The next cse_reg_info structure in the free list. */
298 struct cse_reg_info* next;
299 } variant;
300
301 /* The REG_TICK value at which rtx's containing this register are
302 valid in the hash table. If this does not equal the current
303 reg_tick value, such expressions existing in the hash table are
304 invalid. */
305 int reg_in_table;
306
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
309};
7afe21cc 310
30f72379
MM
311/* A free list of cse_reg_info entries. */
312static struct cse_reg_info *cse_reg_info_free_list;
7afe21cc 313
30f72379
MM
314/* A mapping from registers to cse_reg_info data structures. */
315static splay_tree cse_reg_info_tree;
7afe21cc 316
30f72379
MM
317/* The last lookup we did into the cse_reg_info_tree. This allows us
318 to cache repeated lookups. */
319static int cached_regno;
320static struct cse_reg_info *cached_cse_reg_info;
7afe21cc
RK
321
322/* A HARD_REG_SET containing all the hard registers for which there is
323 currently a REG expression in the hash table. Note the difference
324 from the above variables, which indicate if the REG is mentioned in some
325 expression in the table. */
326
327static HARD_REG_SET hard_regs_in_table;
328
329/* A HARD_REG_SET containing all the hard registers that are invalidated
330 by a CALL_INSN. */
331
332static HARD_REG_SET regs_invalidated_by_call;
333
7afe21cc
RK
334/* CUID of insn that starts the basic block currently being cse-processed. */
335
336static int cse_basic_block_start;
337
338/* CUID of insn that ends the basic block currently being cse-processed. */
339
340static int cse_basic_block_end;
341
342/* Vector mapping INSN_UIDs to cuids.
d45cf215 343 The cuids are like uids but increase monotonically always.
7afe21cc
RK
344 We use them to see whether a reg is used outside a given basic block. */
345
906c4e36 346static int *uid_cuid;
7afe21cc 347
164c8956
RK
348/* Highest UID in UID_CUID. */
349static int max_uid;
350
7afe21cc
RK
351/* Get the cuid of an insn. */
352
353#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
354
355/* Nonzero if cse has altered conditional jump insns
356 in such a way that jump optimization should be redone. */
357
358static int cse_jumps_altered;
359
a5dfb4ee
RK
360/* Nonzero if we put a LABEL_REF into the hash table. Since we may have put
361 it into an INSN without a REG_LABEL, we have to rerun jump after CSE
362 to put in the note. */
363static int recorded_label_ref;
364
7afe21cc
RK
365/* canon_hash stores 1 in do_not_record
366 if it notices a reference to CC0, PC, or some other volatile
367 subexpression. */
368
369static int do_not_record;
370
7bac1be0
RK
371#ifdef LOAD_EXTEND_OP
372
373/* Scratch rtl used when looking for load-extended copy of a MEM. */
374static rtx memory_extend_rtx;
375#endif
376
7afe21cc
RK
377/* canon_hash stores 1 in hash_arg_in_memory
378 if it notices a reference to memory within the expression being hashed. */
379
380static int hash_arg_in_memory;
381
382/* canon_hash stores 1 in hash_arg_in_struct
383 if it notices a reference to memory that's part of a structure. */
384
385static int hash_arg_in_struct;
386
387/* The hash table contains buckets which are chains of `struct table_elt's,
388 each recording one expression's information.
389 That expression is in the `exp' field.
390
391 Those elements with the same hash code are chained in both directions
392 through the `next_same_hash' and `prev_same_hash' fields.
393
394 Each set of expressions with equivalent values
395 are on a two-way chain through the `next_same_value'
396 and `prev_same_value' fields, and all point with
397 the `first_same_value' field at the first element in
398 that chain. The chain is in order of increasing cost.
399 Each element's cost value is in its `cost' field.
400
401 The `in_memory' field is nonzero for elements that
402 involve any reference to memory. These elements are removed
403 whenever a write is done to an unidentified location in memory.
404 To be safe, we assume that a memory address is unidentified unless
405 the address is either a symbol constant or a constant plus
406 the frame pointer or argument pointer.
407
408 The `in_struct' field is nonzero for elements that
409 involve any reference to memory inside a structure or array.
410
411 The `related_value' field is used to connect related expressions
412 (that differ by adding an integer).
413 The related expressions are chained in a circular fashion.
414 `related_value' is zero for expressions for which this
415 chain is not useful.
416
417 The `cost' field stores the cost of this element's expression.
418
419 The `is_const' flag is set if the element is a constant (including
420 a fixed address).
421
422 The `flag' field is used as a temporary during some search routines.
423
424 The `mode' field is usually the same as GET_MODE (`exp'), but
425 if `exp' is a CONST_INT and has no machine mode then the `mode'
426 field is the mode it was being used as. Each constant is
427 recorded separately for each mode it is used with. */
428
429
430struct table_elt
431{
432 rtx exp;
433 struct table_elt *next_same_hash;
434 struct table_elt *prev_same_hash;
435 struct table_elt *next_same_value;
436 struct table_elt *prev_same_value;
437 struct table_elt *first_same_value;
438 struct table_elt *related_value;
439 int cost;
440 enum machine_mode mode;
441 char in_memory;
442 char in_struct;
443 char is_const;
444 char flag;
445};
446
7afe21cc
RK
447/* We don't want a lot of buckets, because we rarely have very many
448 things stored in the hash table, and a lot of buckets slows
449 down a lot of loops that happen frequently. */
450#define NBUCKETS 31
451
452/* Compute hash code of X in mode M. Special-case case where X is a pseudo
453 register (hard registers may require `do_not_record' to be set). */
454
455#define HASH(X, M) \
456 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
30f72379 457 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) % NBUCKETS \
7afe21cc
RK
458 : canon_hash (X, M) % NBUCKETS)
459
460/* Determine whether register number N is considered a fixed register for CSE.
461 It is desirable to replace other regs with fixed regs, to reduce need for
462 non-fixed hard regs.
463 A reg wins if it is either the frame pointer or designated as fixed,
464 but not if it is an overlapping register. */
465#ifdef OVERLAPPING_REGNO_P
466#define FIXED_REGNO_P(N) \
8bc169f2 467 (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 468 || fixed_regs[N] || global_regs[N]) \
7afe21cc
RK
469 && ! OVERLAPPING_REGNO_P ((N)))
470#else
471#define FIXED_REGNO_P(N) \
8bc169f2 472 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 473 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
474#endif
475
476/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
477 hard registers and pointers into the frame are the cheapest with a cost
478 of 0. Next come pseudos with a cost of one and other hard registers with
479 a cost of 2. Aside from these special cases, call `rtx_cost'. */
480
6ab832bc 481#define CHEAP_REGNO(N) \
8bc169f2
DE
482 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
483 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
484 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
485 || ((N) < FIRST_PSEUDO_REGISTER \
e7bb59fa 486 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 487
6ab832bc
RK
488/* A register is cheap if it is a user variable assigned to the register
489 or if its register number always corresponds to a cheap register. */
490
491#define CHEAP_REG(N) \
492 ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER) \
493 || CHEAP_REGNO (REGNO (N)))
494
38734e55
ILT
495#define COST(X) \
496 (GET_CODE (X) == REG \
497 ? (CHEAP_REG (X) ? 0 \
498 : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
499 : 2) \
954a5693 500 : notreg_cost(X))
7afe21cc 501
30f72379
MM
502/* Get the info associated with register N. */
503
504#define GET_CSE_REG_INFO(N) \
505 (((N) == cached_regno && cached_cse_reg_info) \
506 ? cached_cse_reg_info : get_cse_reg_info ((N)))
507
508/* Get the number of times this register has been updated in this
509 basic block. */
510
511#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->variant.reg_tick)
512
513/* Get the point at which REG was recorded in the table. */
514
515#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
516
517/* Get the quantity number for REG. */
518
519#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
520
7afe21cc
RK
521/* Determine if the quantity number for register X represents a valid index
522 into the `qty_...' variables. */
523
30f72379 524#define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (N))
7afe21cc 525
2f541799
MM
526#ifdef ADDRESS_COST
527/* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
528 during CSE, such nodes are present. Using an ADDRESSOF node which
529 refers to the address of a REG is a good thing because we can then
530 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
531#define CSE_ADDRESS_COST(RTX) \
532 ((GET_CODE (RTX) == ADDRESSOF && REG_P (XEXP ((RTX), 0))) \
533 ? -1 : ADDRESS_COST(RTX))
534#endif
535
7afe21cc
RK
536static struct table_elt *table[NBUCKETS];
537
538/* Chain of `struct table_elt's made so far for this function
539 but currently removed from the table. */
540
541static struct table_elt *free_element_chain;
542
543/* Number of `struct table_elt' structures made so far for this function. */
544
545static int n_elements_made;
546
547/* Maximum value `n_elements_made' has had so far in this compilation
548 for functions previously processed. */
549
550static int max_elements_made;
551
552/* Surviving equivalence class when two equivalence classes are merged
553 by recording the effects of a jump in the last insn. Zero if the
554 last insn was not a conditional jump. */
555
556static struct table_elt *last_jump_equiv_class;
557
558/* Set to the cost of a constant pool reference if one was found for a
559 symbolic constant. If this was found, it means we should try to
560 convert constants into constant pool entries if they don't fit in
561 the insn. */
562
563static int constant_pool_entries_cost;
564
6cd4575e
RK
565/* Define maximum length of a branch path. */
566
567#define PATHLENGTH 10
568
569/* This data describes a block that will be processed by cse_basic_block. */
570
571struct cse_basic_block_data {
572 /* Lowest CUID value of insns in block. */
573 int low_cuid;
574 /* Highest CUID value of insns in block. */
575 int high_cuid;
576 /* Total number of SETs in block. */
577 int nsets;
578 /* Last insn in the block. */
579 rtx last;
580 /* Size of current branch path, if any. */
581 int path_size;
582 /* Current branch path, indicating which branches will be taken. */
583 struct branch_path {
0f41302f 584 /* The branch insn. */
6cd4575e
RK
585 rtx branch;
586 /* Whether it should be taken or not. AROUND is the same as taken
587 except that it is used when the destination label is not preceded
588 by a BARRIER. */
589 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
590 } path[PATHLENGTH];
591};
592
7afe21cc
RK
593/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
594 virtual regs here because the simplify_*_operation routines are called
595 by integrate.c, which is called before virtual register instantiation. */
596
597#define FIXED_BASE_PLUS_P(X) \
8bc169f2
DE
598 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
599 || (X) == arg_pointer_rtx \
7afe21cc
RK
600 || (X) == virtual_stack_vars_rtx \
601 || (X) == virtual_incoming_args_rtx \
602 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
603 && (XEXP (X, 0) == frame_pointer_rtx \
8bc169f2 604 || XEXP (X, 0) == hard_frame_pointer_rtx \
7afe21cc
RK
605 || XEXP (X, 0) == arg_pointer_rtx \
606 || XEXP (X, 0) == virtual_stack_vars_rtx \
e9a25f70
JL
607 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
608 || GET_CODE (X) == ADDRESSOF)
7afe21cc 609
6f90e075
JW
610/* Similar, but also allows reference to the stack pointer.
611
612 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
613 arg_pointer_rtx by itself is nonzero, because on at least one machine,
614 the i960, the arg pointer is zero when it is unused. */
7afe21cc
RK
615
616#define NONZERO_BASE_PLUS_P(X) \
8bc169f2 617 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
6f90e075
JW
618 || (X) == virtual_stack_vars_rtx \
619 || (X) == virtual_incoming_args_rtx \
620 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
621 && (XEXP (X, 0) == frame_pointer_rtx \
8bc169f2 622 || XEXP (X, 0) == hard_frame_pointer_rtx \
6f90e075
JW
623 || XEXP (X, 0) == arg_pointer_rtx \
624 || XEXP (X, 0) == virtual_stack_vars_rtx \
625 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
7afe21cc
RK
626 || (X) == stack_pointer_rtx \
627 || (X) == virtual_stack_dynamic_rtx \
628 || (X) == virtual_outgoing_args_rtx \
629 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
630 && (XEXP (X, 0) == stack_pointer_rtx \
631 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
e9a25f70
JL
632 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
633 || GET_CODE (X) == ADDRESSOF)
7afe21cc 634
954a5693 635static int notreg_cost PROTO((rtx));
6cd4575e
RK
636static void new_basic_block PROTO((void));
637static void make_new_qty PROTO((int));
638static void make_regs_eqv PROTO((int, int));
639static void delete_reg_equiv PROTO((int));
640static int mention_regs PROTO((rtx));
641static int insert_regs PROTO((rtx, struct table_elt *, int));
642static void free_element PROTO((struct table_elt *));
2197a88a 643static void remove_from_table PROTO((struct table_elt *, unsigned));
6cd4575e 644static struct table_elt *get_element PROTO((void));
2197a88a
RK
645static struct table_elt *lookup PROTO((rtx, unsigned, enum machine_mode)),
646 *lookup_for_remove PROTO((rtx, unsigned, enum machine_mode));
6cd4575e 647static rtx lookup_as_function PROTO((rtx, enum rtx_code));
2197a88a 648static struct table_elt *insert PROTO((rtx, struct table_elt *, unsigned,
6cd4575e
RK
649 enum machine_mode));
650static void merge_equiv_classes PROTO((struct table_elt *,
651 struct table_elt *));
68c1e173 652static void invalidate PROTO((rtx, enum machine_mode));
9ae8ffe7 653static int cse_rtx_varies_p PROTO((rtx));
6cd4575e 654static void remove_invalid_refs PROTO((int));
34c73909 655static void remove_invalid_subreg_refs PROTO((int, int, enum machine_mode));
6cd4575e 656static void rehash_using_reg PROTO((rtx));
9ae8ffe7 657static void invalidate_memory PROTO((void));
6cd4575e
RK
658static void invalidate_for_call PROTO((void));
659static rtx use_related_value PROTO((rtx, struct table_elt *));
2197a88a
RK
660static unsigned canon_hash PROTO((rtx, enum machine_mode));
661static unsigned safe_hash PROTO((rtx, enum machine_mode));
6cd4575e 662static int exp_equiv_p PROTO((rtx, rtx, int, int));
f451db89 663static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
6500fb43
RK
664 HOST_WIDE_INT *,
665 HOST_WIDE_INT *));
6cd4575e 666static int refers_to_p PROTO((rtx, rtx));
6cd4575e
RK
667static rtx canon_reg PROTO((rtx, rtx));
668static void find_best_addr PROTO((rtx, rtx *));
669static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
670 enum machine_mode *,
671 enum machine_mode *));
96b0e481
RK
672static rtx cse_gen_binary PROTO((enum rtx_code, enum machine_mode,
673 rtx, rtx));
674static rtx simplify_plus_minus PROTO((enum rtx_code, enum machine_mode,
675 rtx, rtx));
6cd4575e
RK
676static rtx fold_rtx PROTO((rtx, rtx));
677static rtx equiv_constant PROTO((rtx));
678static void record_jump_equiv PROTO((rtx, int));
679static void record_jump_cond PROTO((enum rtx_code, enum machine_mode,
680 rtx, rtx, int));
7bd8b2a8 681static void cse_insn PROTO((rtx, rtx));
9ae8ffe7
JL
682static int note_mem_written PROTO((rtx));
683static void invalidate_from_clobbers PROTO((rtx));
6cd4575e
RK
684static rtx cse_process_notes PROTO((rtx, rtx));
685static void cse_around_loop PROTO((rtx));
686static void invalidate_skipped_set PROTO((rtx, rtx));
687static void invalidate_skipped_block PROTO((rtx));
688static void cse_check_loop_start PROTO((rtx, rtx));
689static void cse_set_around_loop PROTO((rtx, rtx, rtx));
690static rtx cse_basic_block PROTO((rtx, rtx, struct branch_path *, int));
79644f06 691static void count_reg_usage PROTO((rtx, int *, rtx, int));
a0153051 692extern void dump_class PROTO((struct table_elt*));
1a87eea2 693static void check_fold_consts PROTO((PTR));
30f72379
MM
694static struct cse_reg_info* get_cse_reg_info PROTO((int));
695static void free_cse_reg_info PROTO((splay_tree_value));
01e752d3 696static void flush_hash_table PROTO((void));
7afe21cc 697\f
a4c6502a
MM
698/* Dump the expressions in the equivalence class indicated by CLASSP.
699 This function is used only for debugging. */
a0153051 700void
a4c6502a
MM
701dump_class (classp)
702 struct table_elt *classp;
703{
704 struct table_elt *elt;
705
706 fprintf (stderr, "Equivalence chain for ");
707 print_rtl (stderr, classp->exp);
708 fprintf (stderr, ": \n");
709
710 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
711 {
712 print_rtl (stderr, elt->exp);
713 fprintf (stderr, "\n");
714 }
715}
716
7afe21cc
RK
717/* Return an estimate of the cost of computing rtx X.
718 One use is in cse, to decide which expression to keep in the hash table.
719 Another is in rtl generation, to pick the cheapest way to multiply.
720 Other uses like the latter are expected in the future. */
721
954a5693
RK
722/* Internal function, to compute cost when X is not a register; called
723 from COST macro to keep it simple. */
724
725static int
726notreg_cost (x)
727 rtx x;
728{
729 return ((GET_CODE (x) == SUBREG
730 && GET_CODE (SUBREG_REG (x)) == REG
731 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
732 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
733 && (GET_MODE_SIZE (GET_MODE (x))
734 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
735 && subreg_lowpart_p (x)
736 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
737 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
738 ? (CHEAP_REG (SUBREG_REG (x)) ? 0
739 : (REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER ? 1
740 : 2))
741 : rtx_cost (x, SET) * 2);
742}
743
7afe21cc
RK
744/* Return the right cost to give to an operation
745 to make the cost of the corresponding register-to-register instruction
746 N times that of a fast register-to-register instruction. */
747
748#define COSTS_N_INSNS(N) ((N) * 4 - 2)
749
750int
e5f6a288 751rtx_cost (x, outer_code)
7afe21cc 752 rtx x;
79c9824e 753 enum rtx_code outer_code ATTRIBUTE_UNUSED;
7afe21cc
RK
754{
755 register int i, j;
756 register enum rtx_code code;
6f7d635c 757 register const char *fmt;
7afe21cc
RK
758 register int total;
759
760 if (x == 0)
761 return 0;
762
763 /* Compute the default costs of certain things.
764 Note that RTX_COSTS can override the defaults. */
765
766 code = GET_CODE (x);
767 switch (code)
768 {
769 case MULT:
770 /* Count multiplication by 2**n as a shift,
771 because if we are considering it, we would output it as a shift. */
772 if (GET_CODE (XEXP (x, 1)) == CONST_INT
773 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
774 total = 2;
775 else
776 total = COSTS_N_INSNS (5);
777 break;
778 case DIV:
779 case UDIV:
780 case MOD:
781 case UMOD:
782 total = COSTS_N_INSNS (7);
783 break;
784 case USE:
785 /* Used in loop.c and combine.c as a marker. */
786 total = 0;
787 break;
538b78e7
RS
788 case ASM_OPERANDS:
789 /* We don't want these to be used in substitutions because
790 we have no way of validating the resulting insn. So assign
791 anything containing an ASM_OPERANDS a very high cost. */
792 total = 1000;
793 break;
7afe21cc
RK
794 default:
795 total = 2;
796 }
797
798 switch (code)
799 {
800 case REG:
6ab832bc 801 return ! CHEAP_REG (x);
ac07e066 802
7afe21cc 803 case SUBREG:
fc3ffe83
RK
804 /* If we can't tie these modes, make this expensive. The larger
805 the mode, the more expensive it is. */
806 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
807 return COSTS_N_INSNS (2
808 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
7afe21cc
RK
809 return 2;
810#ifdef RTX_COSTS
e5f6a288 811 RTX_COSTS (x, code, outer_code);
7afe21cc 812#endif
47a0b68f 813#ifdef CONST_COSTS
e5f6a288 814 CONST_COSTS (x, code, outer_code);
47a0b68f 815#endif
8625fab5
KG
816
817 default:
818#ifdef DEFAULT_RTX_COSTS
819 DEFAULT_RTX_COSTS(x, code, outer_code);
820#endif
821 break;
7afe21cc
RK
822 }
823
824 /* Sum the costs of the sub-rtx's, plus cost of this operation,
825 which is already in total. */
826
827 fmt = GET_RTX_FORMAT (code);
828 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
829 if (fmt[i] == 'e')
e5f6a288 830 total += rtx_cost (XEXP (x, i), code);
7afe21cc
RK
831 else if (fmt[i] == 'E')
832 for (j = 0; j < XVECLEN (x, i); j++)
e5f6a288 833 total += rtx_cost (XVECEXP (x, i, j), code);
7afe21cc
RK
834
835 return total;
836}
837\f
30f72379
MM
838static struct cse_reg_info *
839get_cse_reg_info (regno)
840 int regno;
841{
842 struct cse_reg_info *cri;
843 splay_tree_node n;
844
845 /* See if we already have this entry. */
846 n = splay_tree_lookup (cse_reg_info_tree,
847 (splay_tree_key) regno);
848 if (n)
849 cri = (struct cse_reg_info *) (n->value);
850 else
851 {
852 /* Get a new cse_reg_info structure. */
853 if (cse_reg_info_free_list)
854 {
855 cri = cse_reg_info_free_list;
856 cse_reg_info_free_list = cri->variant.next;
857 }
858 else
859 cri = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
860
861 /* Initialize it. */
862 cri->variant.reg_tick = 0;
863 cri->reg_in_table = -1;
864 cri->reg_qty = regno;
865
866 splay_tree_insert (cse_reg_info_tree,
867 (splay_tree_key) regno,
868 (splay_tree_value) cri);
869 }
870
871 /* Cache this lookup; we tend to be looking up information about the
872 same register several times in a row. */
873 cached_regno = regno;
874 cached_cse_reg_info = cri;
875
876 return cri;
877}
878
879static void
880free_cse_reg_info (v)
881 splay_tree_value v;
882{
883 struct cse_reg_info *cri = (struct cse_reg_info *) v;
884
885 cri->variant.next = cse_reg_info_free_list;
886 cse_reg_info_free_list = cri;
887}
888
7afe21cc
RK
889/* Clear the hash table and initialize each register with its own quantity,
890 for a new basic block. */
891
892static void
893new_basic_block ()
894{
895 register int i;
896
897 next_qty = max_reg;
898
30f72379
MM
899 if (cse_reg_info_tree)
900 {
901 splay_tree_delete (cse_reg_info_tree);
902 cached_cse_reg_info = 0;
903 }
904
905 cse_reg_info_tree = splay_tree_new (splay_tree_compare_ints, 0,
906 free_cse_reg_info);
7afe21cc 907
7afe21cc
RK
908 CLEAR_HARD_REG_SET (hard_regs_in_table);
909
910 /* The per-quantity values used to be initialized here, but it is
911 much faster to initialize each as it is made in `make_new_qty'. */
912
913 for (i = 0; i < NBUCKETS; i++)
914 {
915 register struct table_elt *this, *next;
916 for (this = table[i]; this; this = next)
917 {
918 next = this->next_same_hash;
919 free_element (this);
920 }
921 }
922
4c9a05bc 923 bzero ((char *) table, sizeof table);
7afe21cc
RK
924
925 prev_insn = 0;
926
927#ifdef HAVE_cc0
928 prev_insn_cc0 = 0;
929#endif
930}
931
932/* Say that register REG contains a quantity not in any register before
933 and initialize that quantity. */
934
935static void
936make_new_qty (reg)
937 register int reg;
938{
939 register int q;
940
941 if (next_qty >= max_qty)
942 abort ();
943
30f72379 944 q = REG_QTY (reg) = next_qty++;
7afe21cc
RK
945 qty_first_reg[q] = reg;
946 qty_last_reg[q] = reg;
947 qty_const[q] = qty_const_insn[q] = 0;
948 qty_comparison_code[q] = UNKNOWN;
949
950 reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
951}
952
953/* Make reg NEW equivalent to reg OLD.
954 OLD is not changing; NEW is. */
955
956static void
957make_regs_eqv (new, old)
958 register int new, old;
959{
960 register int lastr, firstr;
30f72379 961 register int q = REG_QTY (old);
7afe21cc
RK
962
963 /* Nothing should become eqv until it has a "non-invalid" qty number. */
964 if (! REGNO_QTY_VALID_P (old))
965 abort ();
966
30f72379 967 REG_QTY (new) = q;
7afe21cc
RK
968 firstr = qty_first_reg[q];
969 lastr = qty_last_reg[q];
970
971 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
972 hard regs. Among pseudos, if NEW will live longer than any other reg
973 of the same qty, and that is beyond the current basic block,
974 make it the new canonical replacement for this qty. */
975 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
976 /* Certain fixed registers might be of the class NO_REGS. This means
977 that not only can they not be allocated by the compiler, but
830a38ee 978 they cannot be used in substitutions or canonicalizations
7afe21cc
RK
979 either. */
980 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
981 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
982 || (new >= FIRST_PSEUDO_REGISTER
983 && (firstr < FIRST_PSEUDO_REGISTER
b1f21e0a
MM
984 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
985 || (uid_cuid[REGNO_FIRST_UID (new)]
7afe21cc 986 < cse_basic_block_start))
b1f21e0a
MM
987 && (uid_cuid[REGNO_LAST_UID (new)]
988 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
7afe21cc
RK
989 {
990 reg_prev_eqv[firstr] = new;
991 reg_next_eqv[new] = firstr;
992 reg_prev_eqv[new] = -1;
993 qty_first_reg[q] = new;
994 }
995 else
996 {
997 /* If NEW is a hard reg (known to be non-fixed), insert at end.
998 Otherwise, insert before any non-fixed hard regs that are at the
999 end. Registers of class NO_REGS cannot be used as an
1000 equivalent for anything. */
1001 while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
1002 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1003 && new >= FIRST_PSEUDO_REGISTER)
1004 lastr = reg_prev_eqv[lastr];
1005 reg_next_eqv[new] = reg_next_eqv[lastr];
1006 if (reg_next_eqv[lastr] >= 0)
1007 reg_prev_eqv[reg_next_eqv[lastr]] = new;
1008 else
1009 qty_last_reg[q] = new;
1010 reg_next_eqv[lastr] = new;
1011 reg_prev_eqv[new] = lastr;
1012 }
1013}
1014
1015/* Remove REG from its equivalence class. */
1016
1017static void
1018delete_reg_equiv (reg)
1019 register int reg;
1020{
30f72379 1021 register int q = REG_QTY (reg);
a4e262bc 1022 register int p, n;
7afe21cc 1023
a4e262bc 1024 /* If invalid, do nothing. */
7afe21cc
RK
1025 if (q == reg)
1026 return;
1027
a4e262bc
RK
1028 p = reg_prev_eqv[reg];
1029 n = reg_next_eqv[reg];
1030
7afe21cc
RK
1031 if (n != -1)
1032 reg_prev_eqv[n] = p;
1033 else
1034 qty_last_reg[q] = p;
1035 if (p != -1)
1036 reg_next_eqv[p] = n;
1037 else
1038 qty_first_reg[q] = n;
1039
30f72379 1040 REG_QTY (reg) = reg;
7afe21cc
RK
1041}
1042
1043/* Remove any invalid expressions from the hash table
1044 that refer to any of the registers contained in expression X.
1045
1046 Make sure that newly inserted references to those registers
1047 as subexpressions will be considered valid.
1048
1049 mention_regs is not called when a register itself
1050 is being stored in the table.
1051
1052 Return 1 if we have done something that may have changed the hash code
1053 of X. */
1054
1055static int
1056mention_regs (x)
1057 rtx x;
1058{
1059 register enum rtx_code code;
1060 register int i, j;
6f7d635c 1061 register const char *fmt;
7afe21cc
RK
1062 register int changed = 0;
1063
1064 if (x == 0)
e5f6a288 1065 return 0;
7afe21cc
RK
1066
1067 code = GET_CODE (x);
1068 if (code == REG)
1069 {
1070 register int regno = REGNO (x);
1071 register int endregno
1072 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1073 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1074 int i;
1075
1076 for (i = regno; i < endregno; i++)
1077 {
30f72379 1078 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1079 remove_invalid_refs (i);
1080
30f72379 1081 REG_IN_TABLE (i) = REG_TICK (i);
7afe21cc
RK
1082 }
1083
1084 return 0;
1085 }
1086
34c73909
R
1087 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1088 pseudo if they don't use overlapping words. We handle only pseudos
1089 here for simplicity. */
1090 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1091 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1092 {
1093 int i = REGNO (SUBREG_REG (x));
1094
30f72379 1095 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909
R
1096 {
1097 /* If reg_tick has been incremented more than once since
1098 reg_in_table was last set, that means that the entire
1099 register has been set before, so discard anything memorized
1100 for the entrire register, including all SUBREG expressions. */
30f72379 1101 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
34c73909
R
1102 remove_invalid_refs (i);
1103 else
1104 remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
1105 }
1106
30f72379 1107 REG_IN_TABLE (i) = REG_TICK (i);
34c73909
R
1108 return 0;
1109 }
1110
7afe21cc
RK
1111 /* If X is a comparison or a COMPARE and either operand is a register
1112 that does not have a quantity, give it one. This is so that a later
1113 call to record_jump_equiv won't cause X to be assigned a different
1114 hash code and not found in the table after that call.
1115
1116 It is not necessary to do this here, since rehash_using_reg can
1117 fix up the table later, but doing this here eliminates the need to
1118 call that expensive function in the most common case where the only
1119 use of the register is in the comparison. */
1120
1121 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1122 {
1123 if (GET_CODE (XEXP (x, 0)) == REG
1124 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
906c4e36 1125 if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
7afe21cc
RK
1126 {
1127 rehash_using_reg (XEXP (x, 0));
1128 changed = 1;
1129 }
1130
1131 if (GET_CODE (XEXP (x, 1)) == REG
1132 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
906c4e36 1133 if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
7afe21cc
RK
1134 {
1135 rehash_using_reg (XEXP (x, 1));
1136 changed = 1;
1137 }
1138 }
1139
1140 fmt = GET_RTX_FORMAT (code);
1141 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1142 if (fmt[i] == 'e')
1143 changed |= mention_regs (XEXP (x, i));
1144 else if (fmt[i] == 'E')
1145 for (j = 0; j < XVECLEN (x, i); j++)
1146 changed |= mention_regs (XVECEXP (x, i, j));
1147
1148 return changed;
1149}
1150
1151/* Update the register quantities for inserting X into the hash table
1152 with a value equivalent to CLASSP.
1153 (If the class does not contain a REG, it is irrelevant.)
1154 If MODIFIED is nonzero, X is a destination; it is being modified.
1155 Note that delete_reg_equiv should be called on a register
1156 before insert_regs is done on that register with MODIFIED != 0.
1157
1158 Nonzero value means that elements of reg_qty have changed
1159 so X's hash code may be different. */
1160
1161static int
1162insert_regs (x, classp, modified)
1163 rtx x;
1164 struct table_elt *classp;
1165 int modified;
1166{
1167 if (GET_CODE (x) == REG)
1168 {
1169 register int regno = REGNO (x);
1170
1ff0c00d
RK
1171 /* If REGNO is in the equivalence table already but is of the
1172 wrong mode for that equivalence, don't do anything here. */
1173
1174 if (REGNO_QTY_VALID_P (regno)
30f72379 1175 && qty_mode[REG_QTY (regno)] != GET_MODE (x))
1ff0c00d
RK
1176 return 0;
1177
1178 if (modified || ! REGNO_QTY_VALID_P (regno))
7afe21cc
RK
1179 {
1180 if (classp)
1181 for (classp = classp->first_same_value;
1182 classp != 0;
1183 classp = classp->next_same_value)
1184 if (GET_CODE (classp->exp) == REG
1185 && GET_MODE (classp->exp) == GET_MODE (x))
1186 {
1187 make_regs_eqv (regno, REGNO (classp->exp));
1188 return 1;
1189 }
1190
1191 make_new_qty (regno);
30f72379 1192 qty_mode[REG_QTY (regno)] = GET_MODE (x);
7afe21cc
RK
1193 return 1;
1194 }
cdf4112f
TG
1195
1196 return 0;
7afe21cc 1197 }
c610adec
RK
1198
1199 /* If X is a SUBREG, we will likely be inserting the inner register in the
1200 table. If that register doesn't have an assigned quantity number at
1201 this point but does later, the insertion that we will be doing now will
1202 not be accessible because its hash code will have changed. So assign
1203 a quantity number now. */
1204
1205 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1206 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1207 {
34c73909
R
1208 int regno = REGNO (SUBREG_REG (x));
1209
906c4e36 1210 insert_regs (SUBREG_REG (x), NULL_PTR, 0);
34c73909
R
1211 /* Mention_regs checks if REG_TICK is exactly one larger than
1212 REG_IN_TABLE to find out if there was only a single preceding
1213 invalidation - for the SUBREG - or another one, which would be
1214 for the full register. Since we don't invalidate the SUBREG
1215 here first, we might have to bump up REG_TICK so that mention_regs
1216 will do the right thing. */
30f72379
MM
1217 if (REG_IN_TABLE (regno) >= 0
1218 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1219 REG_TICK (regno)++;
34c73909 1220 mention_regs (x);
c610adec
RK
1221 return 1;
1222 }
7afe21cc
RK
1223 else
1224 return mention_regs (x);
1225}
1226\f
1227/* Look in or update the hash table. */
1228
1229/* Put the element ELT on the list of free elements. */
1230
1231static void
1232free_element (elt)
1233 struct table_elt *elt;
1234{
1235 elt->next_same_hash = free_element_chain;
1236 free_element_chain = elt;
1237}
1238
1239/* Return an element that is free for use. */
1240
1241static struct table_elt *
1242get_element ()
1243{
1244 struct table_elt *elt = free_element_chain;
1245 if (elt)
1246 {
1247 free_element_chain = elt->next_same_hash;
1248 return elt;
1249 }
1250 n_elements_made++;
1251 return (struct table_elt *) oballoc (sizeof (struct table_elt));
1252}
1253
1254/* Remove table element ELT from use in the table.
1255 HASH is its hash code, made using the HASH macro.
1256 It's an argument because often that is known in advance
1257 and we save much time not recomputing it. */
1258
1259static void
1260remove_from_table (elt, hash)
1261 register struct table_elt *elt;
2197a88a 1262 unsigned hash;
7afe21cc
RK
1263{
1264 if (elt == 0)
1265 return;
1266
1267 /* Mark this element as removed. See cse_insn. */
1268 elt->first_same_value = 0;
1269
1270 /* Remove the table element from its equivalence class. */
1271
1272 {
1273 register struct table_elt *prev = elt->prev_same_value;
1274 register struct table_elt *next = elt->next_same_value;
1275
1276 if (next) next->prev_same_value = prev;
1277
1278 if (prev)
1279 prev->next_same_value = next;
1280 else
1281 {
1282 register struct table_elt *newfirst = next;
1283 while (next)
1284 {
1285 next->first_same_value = newfirst;
1286 next = next->next_same_value;
1287 }
1288 }
1289 }
1290
1291 /* Remove the table element from its hash bucket. */
1292
1293 {
1294 register struct table_elt *prev = elt->prev_same_hash;
1295 register struct table_elt *next = elt->next_same_hash;
1296
1297 if (next) next->prev_same_hash = prev;
1298
1299 if (prev)
1300 prev->next_same_hash = next;
1301 else if (table[hash] == elt)
1302 table[hash] = next;
1303 else
1304 {
1305 /* This entry is not in the proper hash bucket. This can happen
1306 when two classes were merged by `merge_equiv_classes'. Search
1307 for the hash bucket that it heads. This happens only very
1308 rarely, so the cost is acceptable. */
1309 for (hash = 0; hash < NBUCKETS; hash++)
1310 if (table[hash] == elt)
1311 table[hash] = next;
1312 }
1313 }
1314
1315 /* Remove the table element from its related-value circular chain. */
1316
1317 if (elt->related_value != 0 && elt->related_value != elt)
1318 {
1319 register struct table_elt *p = elt->related_value;
1320 while (p->related_value != elt)
1321 p = p->related_value;
1322 p->related_value = elt->related_value;
1323 if (p->related_value == p)
1324 p->related_value = 0;
1325 }
1326
1327 free_element (elt);
1328}
1329
1330/* Look up X in the hash table and return its table element,
1331 or 0 if X is not in the table.
1332
1333 MODE is the machine-mode of X, or if X is an integer constant
1334 with VOIDmode then MODE is the mode with which X will be used.
1335
1336 Here we are satisfied to find an expression whose tree structure
1337 looks like X. */
1338
1339static struct table_elt *
1340lookup (x, hash, mode)
1341 rtx x;
2197a88a 1342 unsigned hash;
7afe21cc
RK
1343 enum machine_mode mode;
1344{
1345 register struct table_elt *p;
1346
1347 for (p = table[hash]; p; p = p->next_same_hash)
1348 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1349 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1350 return p;
1351
1352 return 0;
1353}
1354
1355/* Like `lookup' but don't care whether the table element uses invalid regs.
1356 Also ignore discrepancies in the machine mode of a register. */
1357
1358static struct table_elt *
1359lookup_for_remove (x, hash, mode)
1360 rtx x;
2197a88a 1361 unsigned hash;
7afe21cc
RK
1362 enum machine_mode mode;
1363{
1364 register struct table_elt *p;
1365
1366 if (GET_CODE (x) == REG)
1367 {
1368 int regno = REGNO (x);
1369 /* Don't check the machine mode when comparing registers;
1370 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1371 for (p = table[hash]; p; p = p->next_same_hash)
1372 if (GET_CODE (p->exp) == REG
1373 && REGNO (p->exp) == regno)
1374 return p;
1375 }
1376 else
1377 {
1378 for (p = table[hash]; p; p = p->next_same_hash)
1379 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1380 return p;
1381 }
1382
1383 return 0;
1384}
1385
1386/* Look for an expression equivalent to X and with code CODE.
1387 If one is found, return that expression. */
1388
1389static rtx
1390lookup_as_function (x, code)
1391 rtx x;
1392 enum rtx_code code;
1393{
1394 register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
1395 GET_MODE (x));
34c73909
R
1396 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1397 long as we are narrowing. So if we looked in vain for a mode narrower
1398 than word_mode before, look for word_mode now. */
1399 if (p == 0 && code == CONST_INT
1400 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1401 {
1402 x = copy_rtx (x);
1403 PUT_MODE (x, word_mode);
1404 p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS, word_mode);
1405 }
1406
7afe21cc
RK
1407 if (p == 0)
1408 return 0;
1409
1410 for (p = p->first_same_value; p; p = p->next_same_value)
1411 {
1412 if (GET_CODE (p->exp) == code
1413 /* Make sure this is a valid entry in the table. */
1414 && exp_equiv_p (p->exp, p->exp, 1, 0))
1415 return p->exp;
1416 }
1417
1418 return 0;
1419}
1420
1421/* Insert X in the hash table, assuming HASH is its hash code
1422 and CLASSP is an element of the class it should go in
1423 (or 0 if a new class should be made).
1424 It is inserted at the proper position to keep the class in
1425 the order cheapest first.
1426
1427 MODE is the machine-mode of X, or if X is an integer constant
1428 with VOIDmode then MODE is the mode with which X will be used.
1429
1430 For elements of equal cheapness, the most recent one
1431 goes in front, except that the first element in the list
1432 remains first unless a cheaper element is added. The order of
1433 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1434 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1435
1436 The in_memory field in the hash table element is set to 0.
1437 The caller must set it nonzero if appropriate.
1438
1439 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1440 and if insert_regs returns a nonzero value
1441 you must then recompute its hash code before calling here.
1442
1443 If necessary, update table showing constant values of quantities. */
1444
1445#define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1446
1447static struct table_elt *
1448insert (x, classp, hash, mode)
1449 register rtx x;
1450 register struct table_elt *classp;
2197a88a 1451 unsigned hash;
7afe21cc
RK
1452 enum machine_mode mode;
1453{
1454 register struct table_elt *elt;
1455
1456 /* If X is a register and we haven't made a quantity for it,
1457 something is wrong. */
1458 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1459 abort ();
1460
1461 /* If X is a hard register, show it is being put in the table. */
1462 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1463 {
1464 int regno = REGNO (x);
1465 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1466 int i;
1467
1468 for (i = regno; i < endregno; i++)
1469 SET_HARD_REG_BIT (hard_regs_in_table, i);
1470 }
1471
a5dfb4ee 1472 /* If X is a label, show we recorded it. */
970c9ace
RK
1473 if (GET_CODE (x) == LABEL_REF
1474 || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
1475 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
a5dfb4ee 1476 recorded_label_ref = 1;
7afe21cc
RK
1477
1478 /* Put an element for X into the right hash bucket. */
1479
1480 elt = get_element ();
1481 elt->exp = x;
1482 elt->cost = COST (x);
1483 elt->next_same_value = 0;
1484 elt->prev_same_value = 0;
1485 elt->next_same_hash = table[hash];
1486 elt->prev_same_hash = 0;
1487 elt->related_value = 0;
1488 elt->in_memory = 0;
1489 elt->mode = mode;
1490 elt->is_const = (CONSTANT_P (x)
1491 /* GNU C++ takes advantage of this for `this'
1492 (and other const values). */
1493 || (RTX_UNCHANGING_P (x)
1494 && GET_CODE (x) == REG
1495 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1496 || FIXED_BASE_PLUS_P (x));
1497
1498 if (table[hash])
1499 table[hash]->prev_same_hash = elt;
1500 table[hash] = elt;
1501
1502 /* Put it into the proper value-class. */
1503 if (classp)
1504 {
1505 classp = classp->first_same_value;
1506 if (CHEAPER (elt, classp))
1507 /* Insert at the head of the class */
1508 {
1509 register struct table_elt *p;
1510 elt->next_same_value = classp;
1511 classp->prev_same_value = elt;
1512 elt->first_same_value = elt;
1513
1514 for (p = classp; p; p = p->next_same_value)
1515 p->first_same_value = elt;
1516 }
1517 else
1518 {
1519 /* Insert not at head of the class. */
1520 /* Put it after the last element cheaper than X. */
1521 register struct table_elt *p, *next;
1522 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1523 p = next);
1524 /* Put it after P and before NEXT. */
1525 elt->next_same_value = next;
1526 if (next)
1527 next->prev_same_value = elt;
1528 elt->prev_same_value = p;
1529 p->next_same_value = elt;
1530 elt->first_same_value = classp;
1531 }
1532 }
1533 else
1534 elt->first_same_value = elt;
1535
1536 /* If this is a constant being set equivalent to a register or a register
1537 being set equivalent to a constant, note the constant equivalence.
1538
1539 If this is a constant, it cannot be equivalent to a different constant,
1540 and a constant is the only thing that can be cheaper than a register. So
1541 we know the register is the head of the class (before the constant was
1542 inserted).
1543
1544 If this is a register that is not already known equivalent to a
1545 constant, we must check the entire class.
1546
1547 If this is a register that is already known equivalent to an insn,
1548 update `qty_const_insn' to show that `this_insn' is the latest
1549 insn making that quantity equivalent to the constant. */
1550
f353588a
RK
1551 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1552 && GET_CODE (x) != REG)
7afe21cc 1553 {
30f72379
MM
1554 qty_const[REG_QTY (REGNO (classp->exp))]
1555 = gen_lowpart_if_possible (qty_mode[REG_QTY (REGNO (classp->exp))], x);
1556 qty_const_insn[REG_QTY (REGNO (classp->exp))] = this_insn;
7afe21cc
RK
1557 }
1558
30f72379 1559 else if (GET_CODE (x) == REG && classp && ! qty_const[REG_QTY (REGNO (x))]
f353588a 1560 && ! elt->is_const)
7afe21cc
RK
1561 {
1562 register struct table_elt *p;
1563
1564 for (p = classp; p != 0; p = p->next_same_value)
1565 {
f353588a 1566 if (p->is_const && GET_CODE (p->exp) != REG)
7afe21cc 1567 {
30f72379 1568 qty_const[REG_QTY (REGNO (x))]
7afe21cc 1569 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
30f72379 1570 qty_const_insn[REG_QTY (REGNO (x))] = this_insn;
7afe21cc
RK
1571 break;
1572 }
1573 }
1574 }
1575
30f72379
MM
1576 else if (GET_CODE (x) == REG && qty_const[REG_QTY (REGNO (x))]
1577 && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))])
1578 qty_const_insn[REG_QTY (REGNO (x))] = this_insn;
7afe21cc
RK
1579
1580 /* If this is a constant with symbolic value,
1581 and it has a term with an explicit integer value,
1582 link it up with related expressions. */
1583 if (GET_CODE (x) == CONST)
1584 {
1585 rtx subexp = get_related_value (x);
2197a88a 1586 unsigned subhash;
7afe21cc
RK
1587 struct table_elt *subelt, *subelt_prev;
1588
1589 if (subexp != 0)
1590 {
1591 /* Get the integer-free subexpression in the hash table. */
1592 subhash = safe_hash (subexp, mode) % NBUCKETS;
1593 subelt = lookup (subexp, subhash, mode);
1594 if (subelt == 0)
906c4e36 1595 subelt = insert (subexp, NULL_PTR, subhash, mode);
7afe21cc
RK
1596 /* Initialize SUBELT's circular chain if it has none. */
1597 if (subelt->related_value == 0)
1598 subelt->related_value = subelt;
1599 /* Find the element in the circular chain that precedes SUBELT. */
1600 subelt_prev = subelt;
1601 while (subelt_prev->related_value != subelt)
1602 subelt_prev = subelt_prev->related_value;
1603 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1604 This way the element that follows SUBELT is the oldest one. */
1605 elt->related_value = subelt_prev->related_value;
1606 subelt_prev->related_value = elt;
1607 }
1608 }
1609
1610 return elt;
1611}
1612\f
1613/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1614 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1615 the two classes equivalent.
1616
1617 CLASS1 will be the surviving class; CLASS2 should not be used after this
1618 call.
1619
1620 Any invalid entries in CLASS2 will not be copied. */
1621
1622static void
1623merge_equiv_classes (class1, class2)
1624 struct table_elt *class1, *class2;
1625{
1626 struct table_elt *elt, *next, *new;
1627
1628 /* Ensure we start with the head of the classes. */
1629 class1 = class1->first_same_value;
1630 class2 = class2->first_same_value;
1631
1632 /* If they were already equal, forget it. */
1633 if (class1 == class2)
1634 return;
1635
1636 for (elt = class2; elt; elt = next)
1637 {
2197a88a 1638 unsigned hash;
7afe21cc
RK
1639 rtx exp = elt->exp;
1640 enum machine_mode mode = elt->mode;
1641
1642 next = elt->next_same_value;
1643
1644 /* Remove old entry, make a new one in CLASS1's class.
1645 Don't do this for invalid entries as we cannot find their
0f41302f 1646 hash code (it also isn't necessary). */
7afe21cc
RK
1647 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1648 {
1649 hash_arg_in_memory = 0;
1650 hash_arg_in_struct = 0;
1651 hash = HASH (exp, mode);
1652
1653 if (GET_CODE (exp) == REG)
1654 delete_reg_equiv (REGNO (exp));
1655
1656 remove_from_table (elt, hash);
1657
1658 if (insert_regs (exp, class1, 0))
8ae2b8f6
JW
1659 {
1660 rehash_using_reg (exp);
1661 hash = HASH (exp, mode);
1662 }
7afe21cc
RK
1663 new = insert (exp, class1, hash, mode);
1664 new->in_memory = hash_arg_in_memory;
1665 new->in_struct = hash_arg_in_struct;
1666 }
1667 }
1668}
1669\f
01e752d3
JL
1670
1671/* Flush the entire hash table. */
1672
1673static void
1674flush_hash_table ()
1675{
1676 int i;
1677 struct table_elt *p;
1678
1679 for (i = 0; i < NBUCKETS; i++)
1680 for (p = table[i]; p; p = table[i])
1681 {
1682 /* Note that invalidate can remove elements
1683 after P in the current hash chain. */
1684 if (GET_CODE (p->exp) == REG)
1685 invalidate (p->exp, p->mode);
1686 else
1687 remove_from_table (p, i);
1688 }
1689}
1690
1691
7afe21cc
RK
1692/* Remove from the hash table, or mark as invalid,
1693 all expressions whose values could be altered by storing in X.
1694 X is a register, a subreg, or a memory reference with nonvarying address
1695 (because, when a memory reference with a varying address is stored in,
1696 all memory references are removed by invalidate_memory
1697 so specific invalidation is superfluous).
bb4034b3
JW
1698 FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
1699 instead of just the amount indicated by the mode of X. This is only used
1700 for bitfield stores into memory.
7afe21cc
RK
1701
1702 A nonvarying address may be just a register or just
1703 a symbol reference, or it may be either of those plus
1704 a numeric offset. */
1705
1706static void
bb4034b3 1707invalidate (x, full_mode)
7afe21cc 1708 rtx x;
bb4034b3 1709 enum machine_mode full_mode;
7afe21cc
RK
1710{
1711 register int i;
1712 register struct table_elt *p;
7afe21cc
RK
1713
1714 /* If X is a register, dependencies on its contents
1715 are recorded through the qty number mechanism.
1716 Just change the qty number of the register,
1717 mark it as invalid for expressions that refer to it,
1718 and remove it itself. */
1719
1720 if (GET_CODE (x) == REG)
1721 {
1722 register int regno = REGNO (x);
2197a88a 1723 register unsigned hash = HASH (x, GET_MODE (x));
7afe21cc
RK
1724
1725 /* Remove REGNO from any quantity list it might be on and indicate
9ec36da5 1726 that its value might have changed. If it is a pseudo, remove its
7afe21cc
RK
1727 entry from the hash table.
1728
1729 For a hard register, we do the first two actions above for any
1730 additional hard registers corresponding to X. Then, if any of these
1731 registers are in the table, we must remove any REG entries that
1732 overlap these registers. */
1733
1734 delete_reg_equiv (regno);
30f72379 1735 REG_TICK (regno)++;
7afe21cc
RK
1736
1737 if (regno >= FIRST_PSEUDO_REGISTER)
85e4d983
RK
1738 {
1739 /* Because a register can be referenced in more than one mode,
1740 we might have to remove more than one table entry. */
1741
1742 struct table_elt *elt;
1743
2d8b0f3a 1744 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
85e4d983
RK
1745 remove_from_table (elt, hash);
1746 }
7afe21cc
RK
1747 else
1748 {
54b1de55
RK
1749 HOST_WIDE_INT in_table
1750 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc
RK
1751 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1752 int tregno, tendregno;
1753 register struct table_elt *p, *next;
1754
1755 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1756
1757 for (i = regno + 1; i < endregno; i++)
1758 {
1759 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
1760 CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
1761 delete_reg_equiv (i);
30f72379 1762 REG_TICK (i)++;
7afe21cc
RK
1763 }
1764
1765 if (in_table)
1766 for (hash = 0; hash < NBUCKETS; hash++)
1767 for (p = table[hash]; p; p = next)
1768 {
1769 next = p->next_same_hash;
1770
1771 if (GET_CODE (p->exp) != REG
1772 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1773 continue;
1774
1775 tregno = REGNO (p->exp);
1776 tendregno
1777 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1778 if (tendregno > regno && tregno < endregno)
925be47c 1779 remove_from_table (p, hash);
7afe21cc
RK
1780 }
1781 }
1782
1783 return;
1784 }
1785
1786 if (GET_CODE (x) == SUBREG)
1787 {
1788 if (GET_CODE (SUBREG_REG (x)) != REG)
1789 abort ();
bb4034b3 1790 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc
RK
1791 return;
1792 }
1793
aac5cc16
RH
1794 /* If X is a parallel, invalidate all of its elements. */
1795
1796 if (GET_CODE (x) == PARALLEL)
1797 {
1798 for (i = XVECLEN (x, 0) - 1; i >= 0 ; --i)
1799 invalidate (XVECEXP (x, 0, i), VOIDmode);
1800 return;
1801 }
1802
1803 /* If X is an expr_list, this is part of a disjoint return value;
1804 extract the location in question ignoring the offset. */
1805
1806 if (GET_CODE (x) == EXPR_LIST)
1807 {
1808 invalidate (XEXP (x, 0), VOIDmode);
1809 return;
1810 }
1811
7afe21cc
RK
1812 /* X is not a register; it must be a memory reference with
1813 a nonvarying address. Remove all hash table elements
1814 that refer to overlapping pieces of memory. */
1815
1816 if (GET_CODE (x) != MEM)
1817 abort ();
7afe21cc 1818
bb4034b3
JW
1819 if (full_mode == VOIDmode)
1820 full_mode = GET_MODE (x);
1821
7afe21cc
RK
1822 for (i = 0; i < NBUCKETS; i++)
1823 {
1824 register struct table_elt *next;
1825 for (p = table[i]; p; p = next)
1826 {
1827 next = p->next_same_hash;
9ae8ffe7
JL
1828 /* Invalidate ASM_OPERANDS which reference memory (this is easier
1829 than checking all the aliases). */
1830 if (p->in_memory
1831 && (GET_CODE (p->exp) != MEM
1832 || true_dependence (x, full_mode, p->exp, cse_rtx_varies_p)))
7afe21cc
RK
1833 remove_from_table (p, i);
1834 }
1835 }
1836}
1837
1838/* Remove all expressions that refer to register REGNO,
1839 since they are already invalid, and we are about to
1840 mark that register valid again and don't want the old
1841 expressions to reappear as valid. */
1842
1843static void
1844remove_invalid_refs (regno)
1845 int regno;
1846{
1847 register int i;
1848 register struct table_elt *p, *next;
1849
1850 for (i = 0; i < NBUCKETS; i++)
1851 for (p = table[i]; p; p = next)
1852 {
1853 next = p->next_same_hash;
1854 if (GET_CODE (p->exp) != REG
906c4e36 1855 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
7afe21cc
RK
1856 remove_from_table (p, i);
1857 }
1858}
34c73909
R
1859
1860/* Likewise for a subreg with subreg_reg WORD and mode MODE. */
1861static void
1862remove_invalid_subreg_refs (regno, word, mode)
1863 int regno;
1864 int word;
1865 enum machine_mode mode;
1866{
1867 register int i;
1868 register struct table_elt *p, *next;
1869 int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;
1870
1871 for (i = 0; i < NBUCKETS; i++)
1872 for (p = table[i]; p; p = next)
1873 {
1874 rtx exp;
1875 next = p->next_same_hash;
1876
1877 exp = p->exp;
1878 if (GET_CODE (p->exp) != REG
1879 && (GET_CODE (exp) != SUBREG
1880 || GET_CODE (SUBREG_REG (exp)) != REG
1881 || REGNO (SUBREG_REG (exp)) != regno
1882 || (((SUBREG_WORD (exp)
1883 + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
1884 >= word)
1885 && SUBREG_WORD (exp) <= end))
1886 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1887 remove_from_table (p, i);
1888 }
1889}
7afe21cc
RK
1890\f
1891/* Recompute the hash codes of any valid entries in the hash table that
1892 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1893
1894 This is called when we make a jump equivalence. */
1895
1896static void
1897rehash_using_reg (x)
1898 rtx x;
1899{
973838fd 1900 unsigned int i;
7afe21cc 1901 struct table_elt *p, *next;
2197a88a 1902 unsigned hash;
7afe21cc
RK
1903
1904 if (GET_CODE (x) == SUBREG)
1905 x = SUBREG_REG (x);
1906
1907 /* If X is not a register or if the register is known not to be in any
1908 valid entries in the table, we have no work to do. */
1909
1910 if (GET_CODE (x) != REG
30f72379
MM
1911 || REG_IN_TABLE (REGNO (x)) < 0
1912 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
1913 return;
1914
1915 /* Scan all hash chains looking for valid entries that mention X.
1916 If we find one and it is in the wrong hash chain, move it. We can skip
1917 objects that are registers, since they are handled specially. */
1918
1919 for (i = 0; i < NBUCKETS; i++)
1920 for (p = table[i]; p; p = next)
1921 {
1922 next = p->next_same_hash;
1923 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
538b78e7 1924 && exp_equiv_p (p->exp, p->exp, 1, 0)
7afe21cc
RK
1925 && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
1926 {
1927 if (p->next_same_hash)
1928 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1929
1930 if (p->prev_same_hash)
1931 p->prev_same_hash->next_same_hash = p->next_same_hash;
1932 else
1933 table[i] = p->next_same_hash;
1934
1935 p->next_same_hash = table[hash];
1936 p->prev_same_hash = 0;
1937 if (table[hash])
1938 table[hash]->prev_same_hash = p;
1939 table[hash] = p;
1940 }
1941 }
1942}
1943\f
7afe21cc
RK
1944/* Remove from the hash table any expression that is a call-clobbered
1945 register. Also update their TICK values. */
1946
1947static void
1948invalidate_for_call ()
1949{
1950 int regno, endregno;
1951 int i;
2197a88a 1952 unsigned hash;
7afe21cc
RK
1953 struct table_elt *p, *next;
1954 int in_table = 0;
1955
1956 /* Go through all the hard registers. For each that is clobbered in
1957 a CALL_INSN, remove the register from quantity chains and update
1958 reg_tick if defined. Also see if any of these registers is currently
1959 in the table. */
1960
1961 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1962 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1963 {
1964 delete_reg_equiv (regno);
30f72379
MM
1965 if (REG_TICK (regno) >= 0)
1966 REG_TICK (regno)++;
7afe21cc 1967
0e227018 1968 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
7afe21cc
RK
1969 }
1970
1971 /* In the case where we have no call-clobbered hard registers in the
1972 table, we are done. Otherwise, scan the table and remove any
1973 entry that overlaps a call-clobbered register. */
1974
1975 if (in_table)
1976 for (hash = 0; hash < NBUCKETS; hash++)
1977 for (p = table[hash]; p; p = next)
1978 {
1979 next = p->next_same_hash;
1980
9ae8ffe7
JL
1981 if (p->in_memory)
1982 {
1983 remove_from_table (p, hash);
1984 continue;
1985 }
1986
7afe21cc
RK
1987 if (GET_CODE (p->exp) != REG
1988 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1989 continue;
1990
1991 regno = REGNO (p->exp);
1992 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
1993
1994 for (i = regno; i < endregno; i++)
1995 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1996 {
1997 remove_from_table (p, hash);
1998 break;
1999 }
2000 }
2001}
2002\f
2003/* Given an expression X of type CONST,
2004 and ELT which is its table entry (or 0 if it
2005 is not in the hash table),
2006 return an alternate expression for X as a register plus integer.
2007 If none can be found, return 0. */
2008
2009static rtx
2010use_related_value (x, elt)
2011 rtx x;
2012 struct table_elt *elt;
2013{
2014 register struct table_elt *relt = 0;
2015 register struct table_elt *p, *q;
906c4e36 2016 HOST_WIDE_INT offset;
7afe21cc
RK
2017
2018 /* First, is there anything related known?
2019 If we have a table element, we can tell from that.
2020 Otherwise, must look it up. */
2021
2022 if (elt != 0 && elt->related_value != 0)
2023 relt = elt;
2024 else if (elt == 0 && GET_CODE (x) == CONST)
2025 {
2026 rtx subexp = get_related_value (x);
2027 if (subexp != 0)
2028 relt = lookup (subexp,
2029 safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
2030 GET_MODE (subexp));
2031 }
2032
2033 if (relt == 0)
2034 return 0;
2035
2036 /* Search all related table entries for one that has an
2037 equivalent register. */
2038
2039 p = relt;
2040 while (1)
2041 {
2042 /* This loop is strange in that it is executed in two different cases.
2043 The first is when X is already in the table. Then it is searching
2044 the RELATED_VALUE list of X's class (RELT). The second case is when
2045 X is not in the table. Then RELT points to a class for the related
2046 value.
2047
2048 Ensure that, whatever case we are in, that we ignore classes that have
2049 the same value as X. */
2050
2051 if (rtx_equal_p (x, p->exp))
2052 q = 0;
2053 else
2054 for (q = p->first_same_value; q; q = q->next_same_value)
2055 if (GET_CODE (q->exp) == REG)
2056 break;
2057
2058 if (q)
2059 break;
2060
2061 p = p->related_value;
2062
2063 /* We went all the way around, so there is nothing to be found.
2064 Alternatively, perhaps RELT was in the table for some other reason
2065 and it has no related values recorded. */
2066 if (p == relt || p == 0)
2067 break;
2068 }
2069
2070 if (q == 0)
2071 return 0;
2072
2073 offset = (get_integer_term (x) - get_integer_term (p->exp));
2074 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2075 return plus_constant (q->exp, offset);
2076}
2077\f
2078/* Hash an rtx. We are careful to make sure the value is never negative.
2079 Equivalent registers hash identically.
2080 MODE is used in hashing for CONST_INTs only;
2081 otherwise the mode of X is used.
2082
2083 Store 1 in do_not_record if any subexpression is volatile.
2084
2085 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2086 which does not have the RTX_UNCHANGING_P bit set.
2087 In this case, also store 1 in hash_arg_in_struct
2088 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
2089
2090 Note that cse_insn knows that the hash code of a MEM expression
2091 is just (int) MEM plus the hash code of the address. */
2092
2197a88a 2093static unsigned
7afe21cc
RK
2094canon_hash (x, mode)
2095 rtx x;
2096 enum machine_mode mode;
2097{
2098 register int i, j;
2197a88a 2099 register unsigned hash = 0;
7afe21cc 2100 register enum rtx_code code;
6f7d635c 2101 register const char *fmt;
7afe21cc
RK
2102
2103 /* repeat is used to turn tail-recursion into iteration. */
2104 repeat:
2105 if (x == 0)
2106 return hash;
2107
2108 code = GET_CODE (x);
2109 switch (code)
2110 {
2111 case REG:
2112 {
2113 register int regno = REGNO (x);
2114
2115 /* On some machines, we can't record any non-fixed hard register,
2116 because extending its life will cause reload problems. We
9a794e50
RH
2117 consider ap, fp, and sp to be fixed for this purpose.
2118
2119 We also consider CCmode registers to be fixed for this purpose;
2120 failure to do so leads to failure to simplify 0<100 type of
2121 conditionals.
2122
0f41302f 2123 On all machines, we can't record any global registers. */
7afe21cc
RK
2124
2125 if (regno < FIRST_PSEUDO_REGISTER
2126 && (global_regs[regno]
f95182a4
ILT
2127 || (SMALL_REGISTER_CLASSES
2128 && ! fixed_regs[regno]
7afe21cc 2129 && regno != FRAME_POINTER_REGNUM
8bc169f2 2130 && regno != HARD_FRAME_POINTER_REGNUM
7afe21cc 2131 && regno != ARG_POINTER_REGNUM
9a794e50
RH
2132 && regno != STACK_POINTER_REGNUM
2133 && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
7afe21cc
RK
2134 {
2135 do_not_record = 1;
2136 return 0;
2137 }
30f72379 2138 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2197a88a 2139 return hash;
7afe21cc
RK
2140 }
2141
34c73909
R
2142 /* We handle SUBREG of a REG specially because the underlying
2143 reg changes its hash value with every value change; we don't
2144 want to have to forget unrelated subregs when one subreg changes. */
2145 case SUBREG:
2146 {
2147 if (GET_CODE (SUBREG_REG (x)) == REG)
2148 {
2149 hash += (((unsigned) SUBREG << 7)
2150 + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
2151 return hash;
2152 }
2153 break;
2154 }
2155
7afe21cc 2156 case CONST_INT:
2197a88a
RK
2157 {
2158 unsigned HOST_WIDE_INT tem = INTVAL (x);
2159 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2160 return hash;
2161 }
7afe21cc
RK
2162
2163 case CONST_DOUBLE:
2164 /* This is like the general case, except that it only counts
2165 the integers representing the constant. */
2197a88a 2166 hash += (unsigned) code + (unsigned) GET_MODE (x);
969c8517
RK
2167 if (GET_MODE (x) != VOIDmode)
2168 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2169 {
ef178af3 2170 unsigned HOST_WIDE_INT tem = XWINT (x, i);
969c8517
RK
2171 hash += tem;
2172 }
2173 else
2174 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2175 + (unsigned) CONST_DOUBLE_HIGH (x));
7afe21cc
RK
2176 return hash;
2177
2178 /* Assume there is only one rtx object for any given label. */
2179 case LABEL_REF:
3c543775 2180 hash
7bcac048 2181 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2197a88a 2182 return hash;
7afe21cc
RK
2183
2184 case SYMBOL_REF:
3c543775 2185 hash
7bcac048 2186 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2197a88a 2187 return hash;
7afe21cc
RK
2188
2189 case MEM:
2190 if (MEM_VOLATILE_P (x))
2191 {
2192 do_not_record = 1;
2193 return 0;
2194 }
9ad91d71 2195 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
7afe21cc
RK
2196 {
2197 hash_arg_in_memory = 1;
2198 if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
2199 }
2200 /* Now that we have already found this special case,
2201 might as well speed it up as much as possible. */
2197a88a 2202 hash += (unsigned) MEM;
7afe21cc
RK
2203 x = XEXP (x, 0);
2204 goto repeat;
2205
2206 case PRE_DEC:
2207 case PRE_INC:
2208 case POST_DEC:
2209 case POST_INC:
2210 case PC:
2211 case CC0:
2212 case CALL:
2213 case UNSPEC_VOLATILE:
2214 do_not_record = 1;
2215 return 0;
2216
2217 case ASM_OPERANDS:
2218 if (MEM_VOLATILE_P (x))
2219 {
2220 do_not_record = 1;
2221 return 0;
2222 }
e9a25f70
JL
2223 break;
2224
2225 default:
2226 break;
7afe21cc
RK
2227 }
2228
2229 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2230 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2231 fmt = GET_RTX_FORMAT (code);
2232 for (; i >= 0; i--)
2233 {
2234 if (fmt[i] == 'e')
2235 {
2236 rtx tem = XEXP (x, i);
7afe21cc
RK
2237
2238 /* If we are about to do the last recursive call
2239 needed at this level, change it into iteration.
2240 This function is called enough to be worth it. */
2241 if (i == 0)
2242 {
2243 x = tem;
2244 goto repeat;
2245 }
2246 hash += canon_hash (tem, 0);
2247 }
2248 else if (fmt[i] == 'E')
2249 for (j = 0; j < XVECLEN (x, i); j++)
2250 hash += canon_hash (XVECEXP (x, i, j), 0);
2251 else if (fmt[i] == 's')
2252 {
2197a88a 2253 register unsigned char *p = (unsigned char *) XSTR (x, i);
7afe21cc
RK
2254 if (p)
2255 while (*p)
2197a88a 2256 hash += *p++;
7afe21cc
RK
2257 }
2258 else if (fmt[i] == 'i')
2259 {
2197a88a
RK
2260 register unsigned tem = XINT (x, i);
2261 hash += tem;
7afe21cc 2262 }
8f985ec4 2263 else if (fmt[i] == '0' || fmt[i] == 't')
e9a25f70 2264 /* unused */;
7afe21cc
RK
2265 else
2266 abort ();
2267 }
2268 return hash;
2269}
2270
2271/* Like canon_hash but with no side effects. */
2272
2197a88a 2273static unsigned
7afe21cc
RK
2274safe_hash (x, mode)
2275 rtx x;
2276 enum machine_mode mode;
2277{
2278 int save_do_not_record = do_not_record;
2279 int save_hash_arg_in_memory = hash_arg_in_memory;
2280 int save_hash_arg_in_struct = hash_arg_in_struct;
2197a88a 2281 unsigned hash = canon_hash (x, mode);
7afe21cc
RK
2282 hash_arg_in_memory = save_hash_arg_in_memory;
2283 hash_arg_in_struct = save_hash_arg_in_struct;
2284 do_not_record = save_do_not_record;
2285 return hash;
2286}
2287\f
2288/* Return 1 iff X and Y would canonicalize into the same thing,
2289 without actually constructing the canonicalization of either one.
2290 If VALIDATE is nonzero,
2291 we assume X is an expression being processed from the rtl
2292 and Y was found in the hash table. We check register refs
2293 in Y for being marked as valid.
2294
2295 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2296 that is known to be in the register. Ordinarily, we don't allow them
2297 to match, because letting them match would cause unpredictable results
2298 in all the places that search a hash table chain for an equivalent
2299 for a given value. A possible equivalent that has different structure
2300 has its hash code computed from different data. Whether the hash code
38e01259 2301 is the same as that of the given value is pure luck. */
7afe21cc
RK
2302
2303static int
2304exp_equiv_p (x, y, validate, equal_values)
2305 rtx x, y;
2306 int validate;
2307 int equal_values;
2308{
906c4e36 2309 register int i, j;
7afe21cc 2310 register enum rtx_code code;
6f7d635c 2311 register const char *fmt;
7afe21cc
RK
2312
2313 /* Note: it is incorrect to assume an expression is equivalent to itself
2314 if VALIDATE is nonzero. */
2315 if (x == y && !validate)
2316 return 1;
2317 if (x == 0 || y == 0)
2318 return x == y;
2319
2320 code = GET_CODE (x);
2321 if (code != GET_CODE (y))
2322 {
2323 if (!equal_values)
2324 return 0;
2325
2326 /* If X is a constant and Y is a register or vice versa, they may be
2327 equivalent. We only have to validate if Y is a register. */
2328 if (CONSTANT_P (x) && GET_CODE (y) == REG
2329 && REGNO_QTY_VALID_P (REGNO (y))
30f72379
MM
2330 && GET_MODE (y) == qty_mode[REG_QTY (REGNO (y))]
2331 && rtx_equal_p (x, qty_const[REG_QTY (REGNO (y))])
2332 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
7afe21cc
RK
2333 return 1;
2334
2335 if (CONSTANT_P (y) && code == REG
2336 && REGNO_QTY_VALID_P (REGNO (x))
30f72379
MM
2337 && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))]
2338 && rtx_equal_p (y, qty_const[REG_QTY (REGNO (x))]))
7afe21cc
RK
2339 return 1;
2340
2341 return 0;
2342 }
2343
2344 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2345 if (GET_MODE (x) != GET_MODE (y))
2346 return 0;
2347
2348 switch (code)
2349 {
2350 case PC:
2351 case CC0:
2352 return x == y;
2353
2354 case CONST_INT:
58c8c593 2355 return INTVAL (x) == INTVAL (y);
7afe21cc
RK
2356
2357 case LABEL_REF:
7afe21cc
RK
2358 return XEXP (x, 0) == XEXP (y, 0);
2359
f54d4924
RK
2360 case SYMBOL_REF:
2361 return XSTR (x, 0) == XSTR (y, 0);
2362
7afe21cc
RK
2363 case REG:
2364 {
2365 int regno = REGNO (y);
2366 int endregno
2367 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2368 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2369 int i;
2370
2371 /* If the quantities are not the same, the expressions are not
2372 equivalent. If there are and we are not to validate, they
2373 are equivalent. Otherwise, ensure all regs are up-to-date. */
2374
30f72379 2375 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
7afe21cc
RK
2376 return 0;
2377
2378 if (! validate)
2379 return 1;
2380
2381 for (i = regno; i < endregno; i++)
30f72379 2382 if (REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
2383 return 0;
2384
2385 return 1;
2386 }
2387
2388 /* For commutative operations, check both orders. */
2389 case PLUS:
2390 case MULT:
2391 case AND:
2392 case IOR:
2393 case XOR:
2394 case NE:
2395 case EQ:
2396 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2397 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2398 validate, equal_values))
2399 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2400 validate, equal_values)
2401 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2402 validate, equal_values)));
e9a25f70
JL
2403
2404 default:
2405 break;
7afe21cc
RK
2406 }
2407
2408 /* Compare the elements. If any pair of corresponding elements
2409 fail to match, return 0 for the whole things. */
2410
2411 fmt = GET_RTX_FORMAT (code);
2412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2413 {
906c4e36 2414 switch (fmt[i])
7afe21cc 2415 {
906c4e36 2416 case 'e':
7afe21cc
RK
2417 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2418 return 0;
906c4e36
RK
2419 break;
2420
2421 case 'E':
7afe21cc
RK
2422 if (XVECLEN (x, i) != XVECLEN (y, i))
2423 return 0;
2424 for (j = 0; j < XVECLEN (x, i); j++)
2425 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2426 validate, equal_values))
2427 return 0;
906c4e36
RK
2428 break;
2429
2430 case 's':
7afe21cc
RK
2431 if (strcmp (XSTR (x, i), XSTR (y, i)))
2432 return 0;
906c4e36
RK
2433 break;
2434
2435 case 'i':
7afe21cc
RK
2436 if (XINT (x, i) != XINT (y, i))
2437 return 0;
906c4e36
RK
2438 break;
2439
2440 case 'w':
2441 if (XWINT (x, i) != XWINT (y, i))
2442 return 0;
2443 break;
2444
2445 case '0':
8f985ec4 2446 case 't':
906c4e36
RK
2447 break;
2448
2449 default:
2450 abort ();
7afe21cc 2451 }
906c4e36
RK
2452 }
2453
7afe21cc
RK
2454 return 1;
2455}
2456\f
2457/* Return 1 iff any subexpression of X matches Y.
2458 Here we do not require that X or Y be valid (for registers referred to)
2459 for being in the hash table. */
2460
6cd4575e 2461static int
7afe21cc
RK
2462refers_to_p (x, y)
2463 rtx x, y;
2464{
2465 register int i;
2466 register enum rtx_code code;
6f7d635c 2467 register const char *fmt;
7afe21cc
RK
2468
2469 repeat:
2470 if (x == y)
2471 return 1;
2472 if (x == 0 || y == 0)
2473 return 0;
2474
2475 code = GET_CODE (x);
2476 /* If X as a whole has the same code as Y, they may match.
2477 If so, return 1. */
2478 if (code == GET_CODE (y))
2479 {
2480 if (exp_equiv_p (x, y, 0, 1))
2481 return 1;
2482 }
2483
2484 /* X does not match, so try its subexpressions. */
2485
2486 fmt = GET_RTX_FORMAT (code);
2487 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2488 if (fmt[i] == 'e')
2489 {
2490 if (i == 0)
2491 {
2492 x = XEXP (x, 0);
2493 goto repeat;
2494 }
2495 else
2496 if (refers_to_p (XEXP (x, i), y))
2497 return 1;
2498 }
2499 else if (fmt[i] == 'E')
2500 {
2501 int j;
2502 for (j = 0; j < XVECLEN (x, i); j++)
2503 if (refers_to_p (XVECEXP (x, i, j), y))
2504 return 1;
2505 }
2506
2507 return 0;
2508}
2509\f
f451db89
JL
2510/* Given ADDR and SIZE (a memory address, and the size of the memory reference),
2511 set PBASE, PSTART, and PEND which correspond to the base of the address,
2512 the starting offset, and ending offset respectively.
2513
bb4034b3 2514 ADDR is known to be a nonvarying address. */
f451db89 2515
bb4034b3
JW
2516/* ??? Despite what the comments say, this function is in fact frequently
2517 passed varying addresses. This does not appear to cause any problems. */
f451db89
JL
2518
2519static void
2520set_nonvarying_address_components (addr, size, pbase, pstart, pend)
2521 rtx addr;
2522 int size;
2523 rtx *pbase;
6500fb43 2524 HOST_WIDE_INT *pstart, *pend;
f451db89
JL
2525{
2526 rtx base;
c85663b1 2527 HOST_WIDE_INT start, end;
f451db89
JL
2528
2529 base = addr;
2530 start = 0;
2531 end = 0;
2532
e5e809f4
JL
2533 if (flag_pic && GET_CODE (base) == PLUS
2534 && XEXP (base, 0) == pic_offset_table_rtx)
2535 base = XEXP (base, 1);
2536
f451db89
JL
2537 /* Registers with nonvarying addresses usually have constant equivalents;
2538 but the frame pointer register is also possible. */
2539 if (GET_CODE (base) == REG
2540 && qty_const != 0
2541 && REGNO_QTY_VALID_P (REGNO (base))
30f72379
MM
2542 && qty_mode[REG_QTY (REGNO (base))] == GET_MODE (base)
2543 && qty_const[REG_QTY (REGNO (base))] != 0)
2544 base = qty_const[REG_QTY (REGNO (base))];
f451db89
JL
2545 else if (GET_CODE (base) == PLUS
2546 && GET_CODE (XEXP (base, 1)) == CONST_INT
2547 && GET_CODE (XEXP (base, 0)) == REG
2548 && qty_const != 0
2549 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
30f72379 2550 && (qty_mode[REG_QTY (REGNO (XEXP (base, 0)))]
f451db89 2551 == GET_MODE (XEXP (base, 0)))
30f72379 2552 && qty_const[REG_QTY (REGNO (XEXP (base, 0)))])
f451db89
JL
2553 {
2554 start = INTVAL (XEXP (base, 1));
30f72379 2555 base = qty_const[REG_QTY (REGNO (XEXP (base, 0)))];
f451db89 2556 }
9c6b0bae 2557 /* This can happen as the result of virtual register instantiation,
abc95ed3 2558 if the initial offset is too large to be a valid address. */
9c6b0bae
RK
2559 else if (GET_CODE (base) == PLUS
2560 && GET_CODE (XEXP (base, 0)) == REG
2561 && GET_CODE (XEXP (base, 1)) == REG
2562 && qty_const != 0
2563 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
30f72379 2564 && (qty_mode[REG_QTY (REGNO (XEXP (base, 0)))]
9c6b0bae 2565 == GET_MODE (XEXP (base, 0)))
30f72379 2566 && qty_const[REG_QTY (REGNO (XEXP (base, 0)))]
9c6b0bae 2567 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 1)))
30f72379 2568 && (qty_mode[REG_QTY (REGNO (XEXP (base, 1)))]
9c6b0bae 2569 == GET_MODE (XEXP (base, 1)))
30f72379 2570 && qty_const[REG_QTY (REGNO (XEXP (base, 1)))])
9c6b0bae 2571 {
30f72379
MM
2572 rtx tem = qty_const[REG_QTY (REGNO (XEXP (base, 1)))];
2573 base = qty_const[REG_QTY (REGNO (XEXP (base, 0)))];
9c6b0bae
RK
2574
2575 /* One of the two values must be a constant. */
2576 if (GET_CODE (base) != CONST_INT)
2577 {
2578 if (GET_CODE (tem) != CONST_INT)
2579 abort ();
2580 start = INTVAL (tem);
2581 }
2582 else
2583 {
2584 start = INTVAL (base);
2585 base = tem;
2586 }
2587 }
f451db89 2588
c85663b1
RK
2589 /* Handle everything that we can find inside an address that has been
2590 viewed as constant. */
f451db89 2591
c85663b1 2592 while (1)
f451db89 2593 {
c85663b1
RK
2594 /* If no part of this switch does a "continue", the code outside
2595 will exit this loop. */
2596
2597 switch (GET_CODE (base))
2598 {
2599 case LO_SUM:
2600 /* By definition, operand1 of a LO_SUM is the associated constant
2601 address. Use the associated constant address as the base
2602 instead. */
2603 base = XEXP (base, 1);
2604 continue;
2605
2606 case CONST:
2607 /* Strip off CONST. */
2608 base = XEXP (base, 0);
2609 continue;
2610
2611 case PLUS:
2612 if (GET_CODE (XEXP (base, 1)) == CONST_INT)
2613 {
2614 start += INTVAL (XEXP (base, 1));
2615 base = XEXP (base, 0);
2616 continue;
2617 }
2618 break;
2619
2620 case AND:
2621 /* Handle the case of an AND which is the negative of a power of
2622 two. This is used to represent unaligned memory operations. */
2623 if (GET_CODE (XEXP (base, 1)) == CONST_INT
2624 && exact_log2 (- INTVAL (XEXP (base, 1))) > 0)
2625 {
2626 set_nonvarying_address_components (XEXP (base, 0), size,
2627 pbase, pstart, pend);
2628
2629 /* Assume the worst misalignment. START is affected, but not
2630 END, so compensate but adjusting SIZE. Don't lose any
2631 constant we already had. */
2632
2633 size = *pend - *pstart - INTVAL (XEXP (base, 1)) - 1;
89046535
RK
2634 start += *pstart + INTVAL (XEXP (base, 1)) + 1;
2635 end += *pend;
c85663b1
RK
2636 base = *pbase;
2637 }
2638 break;
e9a25f70
JL
2639
2640 default:
2641 break;
c85663b1
RK
2642 }
2643
2644 break;
f451db89
JL
2645 }
2646
336d6f0a
RK
2647 if (GET_CODE (base) == CONST_INT)
2648 {
2649 start += INTVAL (base);
2650 base = const0_rtx;
2651 }
2652
f451db89
JL
2653 end = start + size;
2654
2655 /* Set the return values. */
2656 *pbase = base;
2657 *pstart = start;
2658 *pend = end;
2659}
2660
9ae8ffe7
JL
2661/* Return 1 if X has a value that can vary even between two
2662 executions of the program. 0 means X can be compared reliably
2663 against certain constants or near-constants. */
7afe21cc
RK
2664
2665static int
9ae8ffe7
JL
2666cse_rtx_varies_p (x)
2667 register rtx x;
7afe21cc
RK
2668{
2669 /* We need not check for X and the equivalence class being of the same
2670 mode because if X is equivalent to a constant in some mode, it
2671 doesn't vary in any mode. */
2672
9ae8ffe7
JL
2673 if (GET_CODE (x) == REG
2674 && REGNO_QTY_VALID_P (REGNO (x))
30f72379
MM
2675 && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))]
2676 && qty_const[REG_QTY (REGNO (x))] != 0)
7afe21cc
RK
2677 return 0;
2678
9ae8ffe7
JL
2679 if (GET_CODE (x) == PLUS
2680 && GET_CODE (XEXP (x, 1)) == CONST_INT
2681 && GET_CODE (XEXP (x, 0)) == REG
2682 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2683 && (GET_MODE (XEXP (x, 0))
30f72379
MM
2684 == qty_mode[REG_QTY (REGNO (XEXP (x, 0)))])
2685 && qty_const[REG_QTY (REGNO (XEXP (x, 0)))])
7afe21cc
RK
2686 return 0;
2687
9c6b0bae
RK
2688 /* This can happen as the result of virtual register instantiation, if
2689 the initial constant is too large to be a valid address. This gives
2690 us a three instruction sequence, load large offset into a register,
2691 load fp minus a constant into a register, then a MEM which is the
2692 sum of the two `constant' registers. */
9ae8ffe7
JL
2693 if (GET_CODE (x) == PLUS
2694 && GET_CODE (XEXP (x, 0)) == REG
2695 && GET_CODE (XEXP (x, 1)) == REG
2696 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2697 && (GET_MODE (XEXP (x, 0))
30f72379
MM
2698 == qty_mode[REG_QTY (REGNO (XEXP (x, 0)))])
2699 && qty_const[REG_QTY (REGNO (XEXP (x, 0)))]
9ae8ffe7
JL
2700 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))
2701 && (GET_MODE (XEXP (x, 1))
30f72379
MM
2702 == qty_mode[REG_QTY (REGNO (XEXP (x, 1)))])
2703 && qty_const[REG_QTY (REGNO (XEXP (x, 1)))])
9c6b0bae
RK
2704 return 0;
2705
9ae8ffe7 2706 return rtx_varies_p (x);
7afe21cc
RK
2707}
2708\f
2709/* Canonicalize an expression:
2710 replace each register reference inside it
2711 with the "oldest" equivalent register.
2712
2713 If INSN is non-zero and we are replacing a pseudo with a hard register
7722328e
RK
2714 or vice versa, validate_change is used to ensure that INSN remains valid
2715 after we make our substitution. The calls are made with IN_GROUP non-zero
2716 so apply_change_group must be called upon the outermost return from this
2717 function (unless INSN is zero). The result of apply_change_group can
2718 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2719
2720static rtx
2721canon_reg (x, insn)
2722 rtx x;
2723 rtx insn;
2724{
2725 register int i;
2726 register enum rtx_code code;
6f7d635c 2727 register const char *fmt;
7afe21cc
RK
2728
2729 if (x == 0)
2730 return x;
2731
2732 code = GET_CODE (x);
2733 switch (code)
2734 {
2735 case PC:
2736 case CC0:
2737 case CONST:
2738 case CONST_INT:
2739 case CONST_DOUBLE:
2740 case SYMBOL_REF:
2741 case LABEL_REF:
2742 case ADDR_VEC:
2743 case ADDR_DIFF_VEC:
2744 return x;
2745
2746 case REG:
2747 {
2748 register int first;
2749
2750 /* Never replace a hard reg, because hard regs can appear
2751 in more than one machine mode, and we must preserve the mode
2752 of each occurrence. Also, some hard regs appear in
2753 MEMs that are shared and mustn't be altered. Don't try to
2754 replace any reg that maps to a reg of class NO_REGS. */
2755 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2756 || ! REGNO_QTY_VALID_P (REGNO (x)))
2757 return x;
2758
30f72379 2759 first = qty_first_reg[REG_QTY (REGNO (x))];
7afe21cc
RK
2760 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2761 : REGNO_REG_CLASS (first) == NO_REGS ? x
30f72379 2762 : gen_rtx_REG (qty_mode[REG_QTY (REGNO (x))], first));
7afe21cc 2763 }
e9a25f70
JL
2764
2765 default:
2766 break;
7afe21cc
RK
2767 }
2768
2769 fmt = GET_RTX_FORMAT (code);
2770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2771 {
2772 register int j;
2773
2774 if (fmt[i] == 'e')
2775 {
2776 rtx new = canon_reg (XEXP (x, i), insn);
58873255 2777 int insn_code;
7afe21cc
RK
2778
2779 /* If replacing pseudo with hard reg or vice versa, ensure the
178c39f6 2780 insn remains valid. Likewise if the insn has MATCH_DUPs. */
aee9dc31
RS
2781 if (insn != 0 && new != 0
2782 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
178c39f6
RK
2783 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2784 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
58873255 2785 || (insn_code = recog_memoized (insn)) < 0
a995e389 2786 || insn_data[insn_code].n_dups > 0))
77fa0940 2787 validate_change (insn, &XEXP (x, i), new, 1);
7afe21cc
RK
2788 else
2789 XEXP (x, i) = new;
2790 }
2791 else if (fmt[i] == 'E')
2792 for (j = 0; j < XVECLEN (x, i); j++)
2793 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2794 }
2795
2796 return x;
2797}
2798\f
a2cabb29 2799/* LOC is a location within INSN that is an operand address (the contents of
7afe21cc
RK
2800 a MEM). Find the best equivalent address to use that is valid for this
2801 insn.
2802
2803 On most CISC machines, complicated address modes are costly, and rtx_cost
2804 is a good approximation for that cost. However, most RISC machines have
2805 only a few (usually only one) memory reference formats. If an address is
2806 valid at all, it is often just as cheap as any other address. Hence, for
2807 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2808 costs of various addresses. For two addresses of equal cost, choose the one
2809 with the highest `rtx_cost' value as that has the potential of eliminating
2810 the most insns. For equal costs, we choose the first in the equivalence
2811 class. Note that we ignore the fact that pseudo registers are cheaper
2812 than hard registers here because we would also prefer the pseudo registers.
2813 */
2814
6cd4575e 2815static void
7afe21cc
RK
2816find_best_addr (insn, loc)
2817 rtx insn;
2818 rtx *loc;
2819{
7a87758d 2820 struct table_elt *elt;
7afe21cc 2821 rtx addr = *loc;
7a87758d
AS
2822#ifdef ADDRESS_COST
2823 struct table_elt *p;
7afe21cc 2824 int found_better = 1;
7a87758d 2825#endif
7afe21cc
RK
2826 int save_do_not_record = do_not_record;
2827 int save_hash_arg_in_memory = hash_arg_in_memory;
2828 int save_hash_arg_in_struct = hash_arg_in_struct;
7afe21cc
RK
2829 int addr_volatile;
2830 int regno;
2197a88a 2831 unsigned hash;
7afe21cc
RK
2832
2833 /* Do not try to replace constant addresses or addresses of local and
2834 argument slots. These MEM expressions are made only once and inserted
2835 in many instructions, as well as being used to control symbol table
2836 output. It is not safe to clobber them.
2837
2838 There are some uncommon cases where the address is already in a register
2839 for some reason, but we cannot take advantage of that because we have
2840 no easy way to unshare the MEM. In addition, looking up all stack
2841 addresses is costly. */
2842 if ((GET_CODE (addr) == PLUS
2843 && GET_CODE (XEXP (addr, 0)) == REG
2844 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2845 && (regno = REGNO (XEXP (addr, 0)),
8bc169f2
DE
2846 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2847 || regno == ARG_POINTER_REGNUM))
7afe21cc 2848 || (GET_CODE (addr) == REG
8bc169f2
DE
2849 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2850 || regno == HARD_FRAME_POINTER_REGNUM
2851 || regno == ARG_POINTER_REGNUM))
e9a25f70 2852 || GET_CODE (addr) == ADDRESSOF
7afe21cc
RK
2853 || CONSTANT_ADDRESS_P (addr))
2854 return;
2855
2856 /* If this address is not simply a register, try to fold it. This will
2857 sometimes simplify the expression. Many simplifications
2858 will not be valid, but some, usually applying the associative rule, will
2859 be valid and produce better code. */
8c87f107
RK
2860 if (GET_CODE (addr) != REG)
2861 {
2862 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2863
2864 if (1
2865#ifdef ADDRESS_COST
2f541799
MM
2866 && (CSE_ADDRESS_COST (folded) < CSE_ADDRESS_COST (addr)
2867 || (CSE_ADDRESS_COST (folded) == CSE_ADDRESS_COST (addr)
9a252d29 2868 && rtx_cost (folded, MEM) > rtx_cost (addr, MEM)))
8c87f107 2869#else
9a252d29 2870 && rtx_cost (folded, MEM) < rtx_cost (addr, MEM)
8c87f107
RK
2871#endif
2872 && validate_change (insn, loc, folded, 0))
2873 addr = folded;
2874 }
7afe21cc 2875
42495ca0
RK
2876 /* If this address is not in the hash table, we can't look for equivalences
2877 of the whole address. Also, ignore if volatile. */
2878
7afe21cc 2879 do_not_record = 0;
2197a88a 2880 hash = HASH (addr, Pmode);
7afe21cc
RK
2881 addr_volatile = do_not_record;
2882 do_not_record = save_do_not_record;
2883 hash_arg_in_memory = save_hash_arg_in_memory;
2884 hash_arg_in_struct = save_hash_arg_in_struct;
2885
2886 if (addr_volatile)
2887 return;
2888
2197a88a 2889 elt = lookup (addr, hash, Pmode);
7afe21cc 2890
7afe21cc 2891#ifndef ADDRESS_COST
42495ca0
RK
2892 if (elt)
2893 {
2d8b0f3a 2894 int our_cost = elt->cost;
42495ca0
RK
2895
2896 /* Find the lowest cost below ours that works. */
2897 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2898 if (elt->cost < our_cost
2899 && (GET_CODE (elt->exp) == REG
2900 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2901 && validate_change (insn, loc,
906c4e36 2902 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
42495ca0
RK
2903 return;
2904 }
2905#else
7afe21cc 2906
42495ca0
RK
2907 if (elt)
2908 {
2909 /* We need to find the best (under the criteria documented above) entry
2910 in the class that is valid. We use the `flag' field to indicate
2911 choices that were invalid and iterate until we can't find a better
2912 one that hasn't already been tried. */
7afe21cc 2913
42495ca0
RK
2914 for (p = elt->first_same_value; p; p = p->next_same_value)
2915 p->flag = 0;
7afe21cc 2916
42495ca0
RK
2917 while (found_better)
2918 {
2f541799 2919 int best_addr_cost = CSE_ADDRESS_COST (*loc);
42495ca0
RK
2920 int best_rtx_cost = (elt->cost + 1) >> 1;
2921 struct table_elt *best_elt = elt;
2922
2923 found_better = 0;
2924 for (p = elt->first_same_value; p; p = p->next_same_value)
2f541799 2925 if (! p->flag)
42495ca0 2926 {
2f541799
MM
2927 if ((GET_CODE (p->exp) == REG
2928 || exp_equiv_p (p->exp, p->exp, 1, 0))
2929 && (CSE_ADDRESS_COST (p->exp) < best_addr_cost
2930 || (CSE_ADDRESS_COST (p->exp) == best_addr_cost
2931 && (p->cost + 1) >> 1 > best_rtx_cost)))
2932 {
2933 found_better = 1;
2934 best_addr_cost = CSE_ADDRESS_COST (p->exp);
2935 best_rtx_cost = (p->cost + 1) >> 1;
2936 best_elt = p;
2937 }
42495ca0 2938 }
7afe21cc 2939
42495ca0
RK
2940 if (found_better)
2941 {
2942 if (validate_change (insn, loc,
906c4e36
RK
2943 canon_reg (copy_rtx (best_elt->exp),
2944 NULL_RTX), 0))
42495ca0
RK
2945 return;
2946 else
2947 best_elt->flag = 1;
2948 }
2949 }
2950 }
7afe21cc 2951
42495ca0
RK
2952 /* If the address is a binary operation with the first operand a register
2953 and the second a constant, do the same as above, but looking for
2954 equivalences of the register. Then try to simplify before checking for
2955 the best address to use. This catches a few cases: First is when we
2956 have REG+const and the register is another REG+const. We can often merge
2957 the constants and eliminate one insn and one register. It may also be
2958 that a machine has a cheap REG+REG+const. Finally, this improves the
2959 code on the Alpha for unaligned byte stores. */
2960
2961 if (flag_expensive_optimizations
2962 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
2963 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
2964 && GET_CODE (XEXP (*loc, 0)) == REG
2965 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
7afe21cc 2966 {
42495ca0
RK
2967 rtx c = XEXP (*loc, 1);
2968
2969 do_not_record = 0;
2197a88a 2970 hash = HASH (XEXP (*loc, 0), Pmode);
42495ca0
RK
2971 do_not_record = save_do_not_record;
2972 hash_arg_in_memory = save_hash_arg_in_memory;
2973 hash_arg_in_struct = save_hash_arg_in_struct;
2974
2197a88a 2975 elt = lookup (XEXP (*loc, 0), hash, Pmode);
42495ca0
RK
2976 if (elt == 0)
2977 return;
2978
2979 /* We need to find the best (under the criteria documented above) entry
2980 in the class that is valid. We use the `flag' field to indicate
2981 choices that were invalid and iterate until we can't find a better
2982 one that hasn't already been tried. */
7afe21cc 2983
7afe21cc 2984 for (p = elt->first_same_value; p; p = p->next_same_value)
42495ca0 2985 p->flag = 0;
7afe21cc 2986
42495ca0 2987 while (found_better)
7afe21cc 2988 {
2f541799 2989 int best_addr_cost = CSE_ADDRESS_COST (*loc);
42495ca0
RK
2990 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2991 struct table_elt *best_elt = elt;
2992 rtx best_rtx = *loc;
f6516aee
JW
2993 int count;
2994
2995 /* This is at worst case an O(n^2) algorithm, so limit our search
2996 to the first 32 elements on the list. This avoids trouble
2997 compiling code with very long basic blocks that can easily
2998 call cse_gen_binary so many times that we run out of memory. */
42495ca0
RK
2999
3000 found_better = 0;
f6516aee
JW
3001 for (p = elt->first_same_value, count = 0;
3002 p && count < 32;
3003 p = p->next_same_value, count++)
42495ca0
RK
3004 if (! p->flag
3005 && (GET_CODE (p->exp) == REG
3006 || exp_equiv_p (p->exp, p->exp, 1, 0)))
3007 {
96b0e481 3008 rtx new = cse_gen_binary (GET_CODE (*loc), Pmode, p->exp, c);
42495ca0 3009
2f541799
MM
3010 if ((CSE_ADDRESS_COST (new) < best_addr_cost
3011 || (CSE_ADDRESS_COST (new) == best_addr_cost
42495ca0
RK
3012 && (COST (new) + 1) >> 1 > best_rtx_cost)))
3013 {
3014 found_better = 1;
2f541799 3015 best_addr_cost = CSE_ADDRESS_COST (new);
42495ca0
RK
3016 best_rtx_cost = (COST (new) + 1) >> 1;
3017 best_elt = p;
3018 best_rtx = new;
3019 }
3020 }
3021
3022 if (found_better)
3023 {
3024 if (validate_change (insn, loc,
906c4e36
RK
3025 canon_reg (copy_rtx (best_rtx),
3026 NULL_RTX), 0))
42495ca0
RK
3027 return;
3028 else
3029 best_elt->flag = 1;
3030 }
7afe21cc
RK
3031 }
3032 }
3033#endif
3034}
3035\f
3036/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3037 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3038 what values are being compared.
3039
3040 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3041 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3042 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3043 compared to produce cc0.
3044
3045 The return value is the comparison operator and is either the code of
3046 A or the code corresponding to the inverse of the comparison. */
3047
3048static enum rtx_code
13c9910f 3049find_comparison_args (code, parg1, parg2, pmode1, pmode2)
7afe21cc
RK
3050 enum rtx_code code;
3051 rtx *parg1, *parg2;
13c9910f 3052 enum machine_mode *pmode1, *pmode2;
7afe21cc
RK
3053{
3054 rtx arg1, arg2;
3055
3056 arg1 = *parg1, arg2 = *parg2;
3057
3058 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3059
b2796a4b 3060 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
7afe21cc
RK
3061 {
3062 /* Set non-zero when we find something of interest. */
3063 rtx x = 0;
3064 int reverse_code = 0;
3065 struct table_elt *p = 0;
3066
3067 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3068 On machines with CC0, this is the only case that can occur, since
3069 fold_rtx will return the COMPARE or item being compared with zero
3070 when given CC0. */
3071
3072 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3073 x = arg1;
3074
3075 /* If ARG1 is a comparison operator and CODE is testing for
3076 STORE_FLAG_VALUE, get the inner arguments. */
3077
3078 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
3079 {
c610adec
RK
3080 if (code == NE
3081 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3082 && code == LT && STORE_FLAG_VALUE == -1)
3083#ifdef FLOAT_STORE_FLAG_VALUE
3084 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3085 && FLOAT_STORE_FLAG_VALUE < 0)
3086#endif
3087 )
7afe21cc 3088 x = arg1;
c610adec
RK
3089 else if (code == EQ
3090 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3091 && code == GE && STORE_FLAG_VALUE == -1)
3092#ifdef FLOAT_STORE_FLAG_VALUE
3093 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3094 && FLOAT_STORE_FLAG_VALUE < 0)
3095#endif
3096 )
7afe21cc
RK
3097 x = arg1, reverse_code = 1;
3098 }
3099
3100 /* ??? We could also check for
3101
3102 (ne (and (eq (...) (const_int 1))) (const_int 0))
3103
3104 and related forms, but let's wait until we see them occurring. */
3105
3106 if (x == 0)
3107 /* Look up ARG1 in the hash table and see if it has an equivalence
3108 that lets us see what is being compared. */
3109 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
3110 GET_MODE (arg1));
3111 if (p) p = p->first_same_value;
3112
3113 for (; p; p = p->next_same_value)
3114 {
3115 enum machine_mode inner_mode = GET_MODE (p->exp);
3116
3117 /* If the entry isn't valid, skip it. */
3118 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
3119 continue;
3120
3121 if (GET_CODE (p->exp) == COMPARE
3122 /* Another possibility is that this machine has a compare insn
3123 that includes the comparison code. In that case, ARG1 would
3124 be equivalent to a comparison operation that would set ARG1 to
3125 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3126 ORIG_CODE is the actual comparison being done; if it is an EQ,
3127 we must reverse ORIG_CODE. On machine with a negative value
3128 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3129 || ((code == NE
3130 || (code == LT
c610adec 3131 && GET_MODE_CLASS (inner_mode) == MODE_INT
906c4e36
RK
3132 && (GET_MODE_BITSIZE (inner_mode)
3133 <= HOST_BITS_PER_WIDE_INT)
7afe21cc 3134 && (STORE_FLAG_VALUE
906c4e36
RK
3135 & ((HOST_WIDE_INT) 1
3136 << (GET_MODE_BITSIZE (inner_mode) - 1))))
c610adec
RK
3137#ifdef FLOAT_STORE_FLAG_VALUE
3138 || (code == LT
3139 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3140 && FLOAT_STORE_FLAG_VALUE < 0)
3141#endif
3142 )
7afe21cc
RK
3143 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
3144 {
3145 x = p->exp;
3146 break;
3147 }
3148 else if ((code == EQ
3149 || (code == GE
c610adec 3150 && GET_MODE_CLASS (inner_mode) == MODE_INT
906c4e36
RK
3151 && (GET_MODE_BITSIZE (inner_mode)
3152 <= HOST_BITS_PER_WIDE_INT)
7afe21cc 3153 && (STORE_FLAG_VALUE
906c4e36
RK
3154 & ((HOST_WIDE_INT) 1
3155 << (GET_MODE_BITSIZE (inner_mode) - 1))))
c610adec
RK
3156#ifdef FLOAT_STORE_FLAG_VALUE
3157 || (code == GE
3158 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3159 && FLOAT_STORE_FLAG_VALUE < 0)
3160#endif
3161 )
7afe21cc
RK
3162 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
3163 {
3164 reverse_code = 1;
3165 x = p->exp;
3166 break;
3167 }
3168
3169 /* If this is fp + constant, the equivalent is a better operand since
3170 it may let us predict the value of the comparison. */
3171 else if (NONZERO_BASE_PLUS_P (p->exp))
3172 {
3173 arg1 = p->exp;
3174 continue;
3175 }
3176 }
3177
3178 /* If we didn't find a useful equivalence for ARG1, we are done.
3179 Otherwise, set up for the next iteration. */
3180 if (x == 0)
3181 break;
3182
3183 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3184 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3185 code = GET_CODE (x);
3186
3187 if (reverse_code)
3188 code = reverse_condition (code);
3189 }
3190
13c9910f
RS
3191 /* Return our results. Return the modes from before fold_rtx
3192 because fold_rtx might produce const_int, and then it's too late. */
3193 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
7afe21cc
RK
3194 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3195
3196 return code;
3197}
3198\f
3199/* Try to simplify a unary operation CODE whose output mode is to be
3200 MODE with input operand OP whose mode was originally OP_MODE.
3201 Return zero if no simplification can be made. */
3202
3203rtx
3204simplify_unary_operation (code, mode, op, op_mode)
3205 enum rtx_code code;
3206 enum machine_mode mode;
3207 rtx op;
3208 enum machine_mode op_mode;
3209{
3210 register int width = GET_MODE_BITSIZE (mode);
3211
3212 /* The order of these tests is critical so that, for example, we don't
3213 check the wrong mode (input vs. output) for a conversion operation,
3214 such as FIX. At some point, this should be simplified. */
3215
62c0ea12 3216#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
7afe21cc 3217
62c0ea12
RK
3218 if (code == FLOAT && GET_MODE (op) == VOIDmode
3219 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
7afe21cc 3220 {
62c0ea12 3221 HOST_WIDE_INT hv, lv;
7afe21cc
RK
3222 REAL_VALUE_TYPE d;
3223
62c0ea12
RK
3224 if (GET_CODE (op) == CONST_INT)
3225 lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
3226 else
7ac4a266 3227 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
7afe21cc
RK
3228
3229#ifdef REAL_ARITHMETIC
2ebcccf3 3230 REAL_VALUE_FROM_INT (d, lv, hv, mode);
7afe21cc 3231#else
62c0ea12 3232 if (hv < 0)
7afe21cc 3233 {
62c0ea12 3234 d = (double) (~ hv);
906c4e36
RK
3235 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
3236 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
62c0ea12 3237 d += (double) (unsigned HOST_WIDE_INT) (~ lv);
7afe21cc
RK
3238 d = (- d - 1.0);
3239 }
3240 else
3241 {
62c0ea12 3242 d = (double) hv;
906c4e36
RK
3243 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
3244 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
62c0ea12 3245 d += (double) (unsigned HOST_WIDE_INT) lv;
7afe21cc
RK
3246 }
3247#endif /* REAL_ARITHMETIC */
940fd0b5 3248 d = real_value_truncate (mode, d);
7afe21cc
RK
3249 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3250 }
62c0ea12
RK
3251 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
3252 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
7afe21cc 3253 {
62c0ea12 3254 HOST_WIDE_INT hv, lv;
7afe21cc
RK
3255 REAL_VALUE_TYPE d;
3256
62c0ea12
RK
3257 if (GET_CODE (op) == CONST_INT)
3258 lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
3259 else
7ac4a266 3260 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
62c0ea12 3261
a9c6464d
RK
3262 if (op_mode == VOIDmode)
3263 {
3264 /* We don't know how to interpret negative-looking numbers in
3265 this case, so don't try to fold those. */
3266 if (hv < 0)
3267 return 0;
3268 }
3269 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
62c0ea12
RK
3270 ;
3271 else
3272 hv = 0, lv &= GET_MODE_MASK (op_mode);
3273
7afe21cc 3274#ifdef REAL_ARITHMETIC
2ebcccf3 3275 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
7afe21cc 3276#else
62c0ea12 3277
138cec59 3278 d = (double) (unsigned HOST_WIDE_INT) hv;
906c4e36
RK
3279 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
3280 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
62c0ea12 3281 d += (double) (unsigned HOST_WIDE_INT) lv;
7afe21cc 3282#endif /* REAL_ARITHMETIC */
940fd0b5 3283 d = real_value_truncate (mode, d);
7afe21cc
RK
3284 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3285 }
3286#endif
3287
f89e32e9
RK
3288 if (GET_CODE (op) == CONST_INT
3289 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
7afe21cc 3290 {
906c4e36
RK
3291 register HOST_WIDE_INT arg0 = INTVAL (op);
3292 register HOST_WIDE_INT val;
7afe21cc
RK
3293
3294 switch (code)
3295 {
3296 case NOT:
3297 val = ~ arg0;
3298 break;
3299
3300 case NEG:
3301 val = - arg0;
3302 break;
3303
3304 case ABS:
3305 val = (arg0 >= 0 ? arg0 : - arg0);
3306 break;
3307
3308 case FFS:
3309 /* Don't use ffs here. Instead, get low order bit and then its
3310 number. If arg0 is zero, this will return 0, as desired. */
3311 arg0 &= GET_MODE_MASK (mode);
3312 val = exact_log2 (arg0 & (- arg0)) + 1;
3313 break;
3314
3315 case TRUNCATE:
3316 val = arg0;
3317 break;
3318
3319 case ZERO_EXTEND:
3320 if (op_mode == VOIDmode)
3321 op_mode = mode;
82a5e898 3322 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
d80e9fd7
RS
3323 {
3324 /* If we were really extending the mode,
3325 we would have to distinguish between zero-extension
3326 and sign-extension. */
3327 if (width != GET_MODE_BITSIZE (op_mode))
3328 abort ();
3329 val = arg0;
3330 }
82a5e898
CH
3331 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
3332 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
7afe21cc
RK
3333 else
3334 return 0;
3335 break;
3336
3337 case SIGN_EXTEND:
3338 if (op_mode == VOIDmode)
3339 op_mode = mode;
82a5e898 3340 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
d80e9fd7
RS
3341 {
3342 /* If we were really extending the mode,
3343 we would have to distinguish between zero-extension
3344 and sign-extension. */
3345 if (width != GET_MODE_BITSIZE (op_mode))
3346 abort ();
3347 val = arg0;
3348 }
f12564b4 3349 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
7afe21cc 3350 {
82a5e898
CH
3351 val
3352 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
3353 if (val
3354 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
3355 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
7afe21cc
RK
3356 }
3357 else
3358 return 0;
3359 break;
3360
d45cf215
RS
3361 case SQRT:
3362 return 0;
3363
7afe21cc
RK
3364 default:
3365 abort ();
3366 }
3367
7e4ce834 3368 val = trunc_int_for_mode (val, mode);
737e7965 3369
906c4e36 3370 return GEN_INT (val);
7afe21cc
RK
3371 }
3372
3373 /* We can do some operations on integer CONST_DOUBLEs. Also allow
0f41302f 3374 for a DImode operation on a CONST_INT. */
8e0ac43b 3375 else if (GET_MODE (op) == VOIDmode && width <= HOST_BITS_PER_INT * 2
7afe21cc
RK
3376 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
3377 {
906c4e36 3378 HOST_WIDE_INT l1, h1, lv, hv;
7afe21cc
RK
3379
3380 if (GET_CODE (op) == CONST_DOUBLE)
3381 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
3382 else
3383 l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;
3384
3385 switch (code)
3386 {
3387 case NOT:
3388 lv = ~ l1;
3389 hv = ~ h1;
3390 break;
3391
3392 case NEG:
3393 neg_double (l1, h1, &lv, &hv);
3394 break;
3395
3396 case ABS:
3397 if (h1 < 0)
3398 neg_double (l1, h1, &lv, &hv);
3399 else
3400 lv = l1, hv = h1;
3401 break;
3402
3403 case FFS:
3404 hv = 0;
3405 if (l1 == 0)
906c4e36 3406 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
7afe21cc
RK
3407 else
3408 lv = exact_log2 (l1 & (-l1)) + 1;
3409 break;
3410
3411 case TRUNCATE:
8e0ac43b 3412 /* This is just a change-of-mode, so do nothing. */
d50d63c0 3413 lv = l1, hv = h1;
7afe21cc
RK
3414 break;
3415
f72aed24
RS
3416 case ZERO_EXTEND:
3417 if (op_mode == VOIDmode
906c4e36 3418 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
f72aed24
RS
3419 return 0;
3420
3421 hv = 0;
3422 lv = l1 & GET_MODE_MASK (op_mode);
3423 break;
3424
3425 case SIGN_EXTEND:
3426 if (op_mode == VOIDmode
906c4e36 3427 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
f72aed24
RS
3428 return 0;
3429 else
3430 {
3431 lv = l1 & GET_MODE_MASK (op_mode);
906c4e36
RK
3432 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
3433 && (lv & ((HOST_WIDE_INT) 1
3434 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
3435 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
f72aed24 3436
906c4e36 3437 hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
f72aed24
RS
3438 }
3439 break;
3440
d45cf215
RS
3441 case SQRT:
3442 return 0;
3443
7afe21cc
RK
3444 default:
3445 return 0;
3446 }
3447
3448 return immed_double_const (lv, hv, mode);
3449 }
3450
3451#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3452 else if (GET_CODE (op) == CONST_DOUBLE
3453 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3454 {
3455 REAL_VALUE_TYPE d;
3456 jmp_buf handler;
3457 rtx x;
3458
3459 if (setjmp (handler))
3460 /* There used to be a warning here, but that is inadvisable.
3461 People may want to cause traps, and the natural way
3462 to do it should not get a warning. */
3463 return 0;
3464
3465 set_float_handler (handler);
3466
3467 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3468
3469 switch (code)
3470 {
3471 case NEG:
3472 d = REAL_VALUE_NEGATE (d);
3473 break;
3474
3475 case ABS:
8b3686ed 3476 if (REAL_VALUE_NEGATIVE (d))
7afe21cc
RK
3477 d = REAL_VALUE_NEGATE (d);
3478 break;
3479
3480 case FLOAT_TRUNCATE:
d3159aee 3481 d = real_value_truncate (mode, d);
7afe21cc
RK
3482 break;
3483
3484 case FLOAT_EXTEND:
3485 /* All this does is change the mode. */
3486 break;
3487
3488 case FIX:
d3159aee 3489 d = REAL_VALUE_RNDZINT (d);
7afe21cc
RK
3490 break;
3491
3492 case UNSIGNED_FIX:
d3159aee 3493 d = REAL_VALUE_UNSIGNED_RNDZINT (d);
7afe21cc
RK
3494 break;
3495
d45cf215
RS
3496 case SQRT:
3497 return 0;
3498
7afe21cc
RK
3499 default:
3500 abort ();
3501 }
3502
560c94a2 3503 x = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
906c4e36 3504 set_float_handler (NULL_PTR);
7afe21cc
RK
3505 return x;
3506 }
8e0ac43b
RK
3507
3508 else if (GET_CODE (op) == CONST_DOUBLE
3509 && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
3510 && GET_MODE_CLASS (mode) == MODE_INT
906c4e36 3511 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
7afe21cc
RK
3512 {
3513 REAL_VALUE_TYPE d;
3514 jmp_buf handler;
906c4e36 3515 HOST_WIDE_INT val;
7afe21cc
RK
3516
3517 if (setjmp (handler))
3518 return 0;
3519
3520 set_float_handler (handler);
3521
3522 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3523
3524 switch (code)
3525 {
3526 case FIX:
3527 val = REAL_VALUE_FIX (d);
3528 break;
3529
3530 case UNSIGNED_FIX:
3531 val = REAL_VALUE_UNSIGNED_FIX (d);
3532 break;
3533
3534 default:
3535 abort ();
3536 }
3537
906c4e36 3538 set_float_handler (NULL_PTR);
7afe21cc 3539
7e4ce834 3540 val = trunc_int_for_mode (val, mode);
ad89d6f6 3541
906c4e36 3542 return GEN_INT (val);
7afe21cc
RK
3543 }
3544#endif
a6acbe15
RS
3545 /* This was formerly used only for non-IEEE float.
3546 eggert@twinsun.com says it is safe for IEEE also. */
3547 else
7afe21cc
RK
3548 {
3549 /* There are some simplifications we can do even if the operands
a6acbe15 3550 aren't constant. */
7afe21cc
RK
3551 switch (code)
3552 {
3553 case NEG:
3554 case NOT:
3555 /* (not (not X)) == X, similarly for NEG. */
3556 if (GET_CODE (op) == code)
3557 return XEXP (op, 0);
3558 break;
3559
3560 case SIGN_EXTEND:
3561 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3562 becomes just the MINUS if its mode is MODE. This allows
3563 folding switch statements on machines using casesi (such as
3564 the Vax). */
3565 if (GET_CODE (op) == TRUNCATE
3566 && GET_MODE (XEXP (op, 0)) == mode
3567 && GET_CODE (XEXP (op, 0)) == MINUS
3568 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
3569 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
3570 return XEXP (op, 0);
cceb347c
RK
3571
3572#ifdef POINTERS_EXTEND_UNSIGNED
3573 if (! POINTERS_EXTEND_UNSIGNED
3574 && mode == Pmode && GET_MODE (op) == ptr_mode
3575 && CONSTANT_P (op))
3576 return convert_memory_address (Pmode, op);
3577#endif
3578 break;
3579
3580#ifdef POINTERS_EXTEND_UNSIGNED
3581 case ZERO_EXTEND:
3582 if (POINTERS_EXTEND_UNSIGNED
3583 && mode == Pmode && GET_MODE (op) == ptr_mode
3584 && CONSTANT_P (op))
3585 return convert_memory_address (Pmode, op);
7afe21cc 3586 break;
cceb347c 3587#endif
e9a25f70
JL
3588
3589 default:
3590 break;
7afe21cc
RK
3591 }
3592
3593 return 0;
3594 }
7afe21cc
RK
3595}
3596\f
3597/* Simplify a binary operation CODE with result mode MODE, operating on OP0
3598 and OP1. Return 0 if no simplification is possible.
3599
3600 Don't use this for relational operations such as EQ or LT.
3601 Use simplify_relational_operation instead. */
3602
3603rtx
3604simplify_binary_operation (code, mode, op0, op1)
3605 enum rtx_code code;
3606 enum machine_mode mode;
3607 rtx op0, op1;
3608{
906c4e36
RK
3609 register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
3610 HOST_WIDE_INT val;
7afe21cc 3611 int width = GET_MODE_BITSIZE (mode);
96b0e481 3612 rtx tem;
7afe21cc
RK
3613
3614 /* Relational operations don't work here. We must know the mode
3615 of the operands in order to do the comparison correctly.
3616 Assuming a full word can give incorrect results.
3617 Consider comparing 128 with -128 in QImode. */
3618
3619 if (GET_RTX_CLASS (code) == '<')
3620 abort ();
3621
3622#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3623 if (GET_MODE_CLASS (mode) == MODE_FLOAT
3624 && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
3625 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3626 {
3627 REAL_VALUE_TYPE f0, f1, value;
3628 jmp_buf handler;
3629
3630 if (setjmp (handler))
3631 return 0;
3632
3633 set_float_handler (handler);
3634
3635 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3636 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
5352b11a
RS
3637 f0 = real_value_truncate (mode, f0);
3638 f1 = real_value_truncate (mode, f1);
7afe21cc
RK
3639
3640#ifdef REAL_ARITHMETIC
956d6950
JL
3641#ifndef REAL_INFINITY
3642 if (code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
3643 return 0;
3644#endif
d3159aee 3645 REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
7afe21cc
RK
3646#else
3647 switch (code)
3648 {
3649 case PLUS:
3650 value = f0 + f1;
3651 break;
3652 case MINUS:
3653 value = f0 - f1;
3654 break;
3655 case MULT:
3656 value = f0 * f1;
3657 break;
3658 case DIV:
3659#ifndef REAL_INFINITY
3660 if (f1 == 0)
21d12b80 3661 return 0;
7afe21cc
RK
3662#endif
3663 value = f0 / f1;
3664 break;
3665 case SMIN:
3666 value = MIN (f0, f1);
3667 break;
3668 case SMAX:
3669 value = MAX (f0, f1);
3670 break;
3671 default:
3672 abort ();
3673 }
3674#endif
3675
5352b11a 3676 value = real_value_truncate (mode, value);
831522a4 3677 set_float_handler (NULL_PTR);
560c94a2 3678 return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
7afe21cc 3679 }
6076248a 3680#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
7afe21cc
RK
3681
3682 /* We can fold some multi-word operations. */
6076248a 3683 if (GET_MODE_CLASS (mode) == MODE_INT
33085906 3684 && width == HOST_BITS_PER_WIDE_INT * 2
fe873240 3685 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
6076248a 3686 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
7afe21cc 3687 {
906c4e36 3688 HOST_WIDE_INT l1, l2, h1, h2, lv, hv;
7afe21cc 3689
fe873240
RK
3690 if (GET_CODE (op0) == CONST_DOUBLE)
3691 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
3692 else
3693 l1 = INTVAL (op0), h1 = l1 < 0 ? -1 : 0;
7afe21cc
RK
3694
3695 if (GET_CODE (op1) == CONST_DOUBLE)
3696 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
3697 else
3698 l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;
3699
3700 switch (code)
3701 {
3702 case MINUS:
3703 /* A - B == A + (-B). */
3704 neg_double (l2, h2, &lv, &hv);
3705 l2 = lv, h2 = hv;
3706
0f41302f 3707 /* .. fall through ... */
7afe21cc
RK
3708
3709 case PLUS:
3710 add_double (l1, h1, l2, h2, &lv, &hv);
3711 break;
3712
3713 case MULT:
3714 mul_double (l1, h1, l2, h2, &lv, &hv);
3715 break;
3716
3717 case DIV: case MOD: case UDIV: case UMOD:
3718 /* We'd need to include tree.h to do this and it doesn't seem worth
3719 it. */
3720 return 0;
3721
3722 case AND:
3723 lv = l1 & l2, hv = h1 & h2;
3724 break;
3725
3726 case IOR:
3727 lv = l1 | l2, hv = h1 | h2;
3728 break;
3729
3730 case XOR:
3731 lv = l1 ^ l2, hv = h1 ^ h2;
3732 break;
3733
3734 case SMIN:
906c4e36
RK
3735 if (h1 < h2
3736 || (h1 == h2
3737 && ((unsigned HOST_WIDE_INT) l1
3738 < (unsigned HOST_WIDE_INT) l2)))
7afe21cc
RK
3739 lv = l1, hv = h1;
3740 else
3741 lv = l2, hv = h2;
3742 break;
3743
3744 case SMAX:
906c4e36
RK
3745 if (h1 > h2
3746 || (h1 == h2
3747 && ((unsigned HOST_WIDE_INT) l1
3748 > (unsigned HOST_WIDE_INT) l2)))
7afe21cc
RK
3749 lv = l1, hv = h1;
3750 else
3751 lv = l2, hv = h2;
3752 break;
3753
3754 case UMIN:
906c4e36
RK
3755 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
3756 || (h1 == h2
3757 && ((unsigned HOST_WIDE_INT) l1
3758 < (unsigned HOST_WIDE_INT) l2)))
7afe21cc
RK
3759 lv = l1, hv = h1;
3760 else
3761 lv = l2, hv = h2;
3762 break;
3763
3764 case UMAX:
906c4e36
RK
3765 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
3766 || (h1 == h2
3767 && ((unsigned HOST_WIDE_INT) l1
3768 > (unsigned HOST_WIDE_INT) l2)))
7afe21cc
RK
3769 lv = l1, hv = h1;
3770 else
3771 lv = l2, hv = h2;
3772 break;
3773
3774 case LSHIFTRT: case ASHIFTRT:
45620ed4 3775 case ASHIFT:
7afe21cc
RK
3776 case ROTATE: case ROTATERT:
3777#ifdef SHIFT_COUNT_TRUNCATED
85c0a556
RK
3778 if (SHIFT_COUNT_TRUNCATED)
3779 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
7afe21cc
RK
3780#endif
3781
3782 if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
3783 return 0;
3784
3785 if (code == LSHIFTRT || code == ASHIFTRT)
3786 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3787 code == ASHIFTRT);
45620ed4
RK
3788 else if (code == ASHIFT)
3789 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
7afe21cc
RK
3790 else if (code == ROTATE)
3791 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3792 else /* code == ROTATERT */
3793 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3794 break;
3795
3796 default:
3797 return 0;
3798 }
3799
3800 return immed_double_const (lv, hv, mode);
3801 }
7afe21cc
RK
3802
3803 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
906c4e36 3804 || width > HOST_BITS_PER_WIDE_INT || width == 0)
7afe21cc
RK
3805 {
3806 /* Even if we can't compute a constant result,
3807 there are some cases worth simplifying. */
3808
3809 switch (code)
3810 {
3811 case PLUS:
3812 /* In IEEE floating point, x+0 is not the same as x. Similarly
3813 for the other optimizations below. */
3814 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
a83afb65 3815 && FLOAT_MODE_P (mode) && ! flag_fast_math)
7afe21cc
RK
3816 break;
3817
3818 if (op1 == CONST0_RTX (mode))
3819 return op0;
3820
7afe21cc
RK
3821 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3822 if (GET_CODE (op0) == NEG)
96b0e481 3823 return cse_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
7afe21cc 3824 else if (GET_CODE (op1) == NEG)
96b0e481 3825 return cse_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
7afe21cc 3826
96b0e481
RK
3827 /* Handle both-operands-constant cases. We can only add
3828 CONST_INTs to constants since the sum of relocatable symbols
fe873240
RK
3829 can't be handled by most assemblers. Don't add CONST_INT
3830 to CONST_INT since overflow won't be computed properly if wider
3831 than HOST_BITS_PER_WIDE_INT. */
7afe21cc 3832
fe873240
RK
3833 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
3834 && GET_CODE (op1) == CONST_INT)
96b0e481 3835 return plus_constant (op0, INTVAL (op1));
fe873240
RK
3836 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
3837 && GET_CODE (op0) == CONST_INT)
96b0e481 3838 return plus_constant (op1, INTVAL (op0));
7afe21cc 3839
30d69925
RK
3840 /* See if this is something like X * C - X or vice versa or
3841 if the multiplication is written as a shift. If so, we can
3842 distribute and make a new multiply, shift, or maybe just
3843 have X (if C is 2 in the example above). But don't make
3844 real multiply if we didn't have one before. */
3845
3846 if (! FLOAT_MODE_P (mode))
3847 {
3848 HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
3849 rtx lhs = op0, rhs = op1;
3850 int had_mult = 0;
3851
3852 if (GET_CODE (lhs) == NEG)
3853 coeff0 = -1, lhs = XEXP (lhs, 0);
3854 else if (GET_CODE (lhs) == MULT
3855 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
3856 {
3857 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
3858 had_mult = 1;
3859 }
3860 else if (GET_CODE (lhs) == ASHIFT
3861 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
3862 && INTVAL (XEXP (lhs, 1)) >= 0
3863 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
3864 {
3865 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
3866 lhs = XEXP (lhs, 0);
3867 }
3868
3869 if (GET_CODE (rhs) == NEG)
3870 coeff1 = -1, rhs = XEXP (rhs, 0);
3871 else if (GET_CODE (rhs) == MULT
3872 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
3873 {
3874 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
3875 had_mult = 1;
3876 }
3877 else if (GET_CODE (rhs) == ASHIFT
3878 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
3879 && INTVAL (XEXP (rhs, 1)) >= 0
3880 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
3881 {
3882 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
3883 rhs = XEXP (rhs, 0);
3884 }
3885
3886 if (rtx_equal_p (lhs, rhs))
3887 {
3888 tem = cse_gen_binary (MULT, mode, lhs,
3889 GEN_INT (coeff0 + coeff1));
3890 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
3891 }
3892 }
3893
96b0e481
RK
3894 /* If one of the operands is a PLUS or a MINUS, see if we can
3895 simplify this by the associative law.
3896 Don't use the associative law for floating point.
3897 The inaccuracy makes it nonassociative,
3898 and subtle programs can break if operations are associated. */
7afe21cc 3899
cbf6a543 3900 if (INTEGRAL_MODE_P (mode)
96b0e481
RK
3901 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
3902 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
3903 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
3904 return tem;
7afe21cc
RK
3905 break;
3906
3907 case COMPARE:
3908#ifdef HAVE_cc0
3909 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3910 using cc0, in which case we want to leave it as a COMPARE
3911 so we can distinguish it from a register-register-copy.
3912
3913 In IEEE floating point, x-0 is not the same as x. */
3914
3915 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
a83afb65 3916 || ! FLOAT_MODE_P (mode) || flag_fast_math)
7afe21cc
RK
3917 && op1 == CONST0_RTX (mode))
3918 return op0;
3919#else
3920 /* Do nothing here. */
3921#endif
3922 break;
3923
3924 case MINUS:
21648b45
RK
3925 /* None of these optimizations can be done for IEEE
3926 floating point. */
3927 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
a83afb65 3928 && FLOAT_MODE_P (mode) && ! flag_fast_math)
21648b45
RK
3929 break;
3930
a83afb65
RK
3931 /* We can't assume x-x is 0 even with non-IEEE floating point,
3932 but since it is zero except in very strange circumstances, we
3933 will treat it as zero with -ffast-math. */
7afe21cc
RK
3934 if (rtx_equal_p (op0, op1)
3935 && ! side_effects_p (op0)
a83afb65
RK
3936 && (! FLOAT_MODE_P (mode) || flag_fast_math))
3937 return CONST0_RTX (mode);
7afe21cc
RK
3938
3939 /* Change subtraction from zero into negation. */
3940 if (op0 == CONST0_RTX (mode))
38a448ca 3941 return gen_rtx_NEG (mode, op1);
7afe21cc 3942
96b0e481
RK
3943 /* (-1 - a) is ~a. */
3944 if (op0 == constm1_rtx)
38a448ca 3945 return gen_rtx_NOT (mode, op1);
96b0e481 3946
7afe21cc
RK
3947 /* Subtracting 0 has no effect. */
3948 if (op1 == CONST0_RTX (mode))
3949 return op0;
3950
30d69925
RK
3951 /* See if this is something like X * C - X or vice versa or
3952 if the multiplication is written as a shift. If so, we can
3953 distribute and make a new multiply, shift, or maybe just
3954 have X (if C is 2 in the example above). But don't make
3955 real multiply if we didn't have one before. */
3956
3957 if (! FLOAT_MODE_P (mode))
3958 {
3959 HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
3960 rtx lhs = op0, rhs = op1;
3961 int had_mult = 0;
3962
3963 if (GET_CODE (lhs) == NEG)
3964 coeff0 = -1, lhs = XEXP (lhs, 0);
3965 else if (GET_CODE (lhs) == MULT
3966 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
3967 {
3968 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
3969 had_mult = 1;
3970 }
3971 else if (GET_CODE (lhs) == ASHIFT
3972 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
3973 && INTVAL (XEXP (lhs, 1)) >= 0
3974 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
3975 {
3976 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
3977 lhs = XEXP (lhs, 0);
3978 }
3979
3980 if (GET_CODE (rhs) == NEG)
3981 coeff1 = - 1, rhs = XEXP (rhs, 0);
3982 else if (GET_CODE (rhs) == MULT
3983 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
3984 {
3985 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
3986 had_mult = 1;
3987 }
3988 else if (GET_CODE (rhs) == ASHIFT
3989 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
3990 && INTVAL (XEXP (rhs, 1)) >= 0
3991 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
3992 {
3993 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
3994 rhs = XEXP (rhs, 0);
3995 }
3996
3997 if (rtx_equal_p (lhs, rhs))
3998 {
3999 tem = cse_gen_binary (MULT, mode, lhs,
4000 GEN_INT (coeff0 - coeff1));
4001 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
4002 }
4003 }
4004
7afe21cc
RK
4005 /* (a - (-b)) -> (a + b). */
4006 if (GET_CODE (op1) == NEG)
96b0e481 4007 return cse_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
7afe21cc 4008
96b0e481
RK
4009 /* If one of the operands is a PLUS or a MINUS, see if we can
4010 simplify this by the associative law.
4011 Don't use the associative law for floating point.
7afe21cc
RK
4012 The inaccuracy makes it nonassociative,
4013 and subtle programs can break if operations are associated. */
7afe21cc 4014
cbf6a543 4015 if (INTEGRAL_MODE_P (mode)
96b0e481
RK
4016 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
4017 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
4018 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
4019 return tem;
7afe21cc
RK
4020
4021 /* Don't let a relocatable value get a negative coeff. */
b5a09c41 4022 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
7afe21cc 4023 return plus_constant (op0, - INTVAL (op1));
29d72c4b
TG
4024
4025 /* (x - (x & y)) -> (x & ~y) */
4026 if (GET_CODE (op1) == AND)
4027 {
4028 if (rtx_equal_p (op0, XEXP (op1, 0)))
c5c76735
JL
4029 return cse_gen_binary (AND, mode, op0,
4030 gen_rtx_NOT (mode, XEXP (op1, 1)));
29d72c4b 4031 if (rtx_equal_p (op0, XEXP (op1, 1)))
c5c76735
JL
4032 return cse_gen_binary (AND, mode, op0,
4033 gen_rtx_NOT (mode, XEXP (op1, 0)));
29d72c4b 4034 }
7afe21cc
RK
4035 break;
4036
4037 case MULT:
4038 if (op1 == constm1_rtx)
4039 {
96b0e481 4040 tem = simplify_unary_operation (NEG, mode, op0, mode);
7afe21cc 4041
38a448ca 4042 return tem ? tem : gen_rtx_NEG (mode, op0);
7afe21cc
RK
4043 }
4044
4045 /* In IEEE floating point, x*0 is not always 0. */
4046 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
a83afb65 4047 || ! FLOAT_MODE_P (mode) || flag_fast_math)
7afe21cc
RK
4048 && op1 == CONST0_RTX (mode)
4049 && ! side_effects_p (op0))
4050 return op1;
4051
4052 /* In IEEE floating point, x*1 is not equivalent to x for nans.
4053 However, ANSI says we can drop signals,
4054 so we can do this anyway. */
4055 if (op1 == CONST1_RTX (mode))
4056 return op0;
4057
c407b802
RK
4058 /* Convert multiply by constant power of two into shift unless
4059 we are still generating RTL. This test is a kludge. */
7afe21cc 4060 if (GET_CODE (op1) == CONST_INT
c407b802 4061 && (val = exact_log2 (INTVAL (op1))) >= 0
2d917903
JW
4062 /* If the mode is larger than the host word size, and the
4063 uppermost bit is set, then this isn't a power of two due
4064 to implicit sign extension. */
4065 && (width <= HOST_BITS_PER_WIDE_INT
4066 || val != HOST_BITS_PER_WIDE_INT - 1)
c407b802 4067 && ! rtx_equal_function_value_matters)
38a448ca 4068 return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
7afe21cc
RK
4069
4070 if (GET_CODE (op1) == CONST_DOUBLE
4071 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
4072 {
4073 REAL_VALUE_TYPE d;
5a3d4bef
RK
4074 jmp_buf handler;
4075 int op1is2, op1ism1;
4076
4077 if (setjmp (handler))
4078 return 0;
4079
4080 set_float_handler (handler);
7afe21cc 4081 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
5a3d4bef
RK
4082 op1is2 = REAL_VALUES_EQUAL (d, dconst2);
4083 op1ism1 = REAL_VALUES_EQUAL (d, dconstm1);
4084 set_float_handler (NULL_PTR);
7afe21cc
RK
4085
4086 /* x*2 is x+x and x*(-1) is -x */
5a3d4bef 4087 if (op1is2 && GET_MODE (op0) == mode)
38a448ca 4088 return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
7afe21cc 4089
5a3d4bef 4090 else if (op1ism1 && GET_MODE (op0) == mode)
38a448ca 4091 return gen_rtx_NEG (mode, op0);
7afe21cc
RK
4092 }
4093 break;
4094
4095 case IOR:
4096 if (op1 == const0_rtx)
4097 return op0;
4098 if (GET_CODE (op1) == CONST_INT
4099 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
4100 return op1;
4101 if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4102 return op0;
4103 /* A | (~A) -> -1 */
4104 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
4105 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
31dcf83f 4106 && ! side_effects_p (op0)
8e7e5365 4107 && GET_MODE_CLASS (mode) != MODE_CC)
7afe21cc
RK
4108 return constm1_rtx;
4109 break;
4110
4111 case XOR:
4112 if (op1 == const0_rtx)
4113 return op0;
4114 if (GET_CODE (op1) == CONST_INT
4115 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
38a448ca 4116 return gen_rtx_NOT (mode, op0);
31dcf83f 4117 if (op0 == op1 && ! side_effects_p (op0)
8e7e5365 4118 && GET_MODE_CLASS (mode) != MODE_CC)
7afe21cc
RK
4119 return const0_rtx;
4120 break;
4121
4122 case AND:
4123 if (op1 == const0_rtx && ! side_effects_p (op0))
4124 return const0_rtx;
4125 if (GET_CODE (op1) == CONST_INT
4126 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
4127 return op0;
31dcf83f 4128 if (op0 == op1 && ! side_effects_p (op0)
8e7e5365 4129 && GET_MODE_CLASS (mode) != MODE_CC)
7afe21cc
RK
4130 return op0;
4131 /* A & (~A) -> 0 */
4132 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
4133 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
709ab4fc 4134 && ! side_effects_p (op0)
8e7e5365 4135 && GET_MODE_CLASS (mode) != MODE_CC)
7afe21cc
RK
4136 return const0_rtx;
4137 break;
4138
4139 case UDIV:
4140 /* Convert divide by power of two into shift (divide by 1 handled
4141 below). */
4142 if (GET_CODE (op1) == CONST_INT
4143 && (arg1 = exact_log2 (INTVAL (op1))) > 0)
38a448ca 4144 return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
7afe21cc 4145
0f41302f 4146 /* ... fall through ... */
7afe21cc
RK
4147
4148 case DIV:
4149 if (op1 == CONST1_RTX (mode))
4150 return op0;
e7a522ba
RS
4151
4152 /* In IEEE floating point, 0/x is not always 0. */
4153 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
a83afb65 4154 || ! FLOAT_MODE_P (mode) || flag_fast_math)
e7a522ba
RS
4155 && op0 == CONST0_RTX (mode)
4156 && ! side_effects_p (op1))
7afe21cc 4157 return op0;
e7a522ba 4158
7afe21cc 4159#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
a83afb65
RK
4160 /* Change division by a constant into multiplication. Only do
4161 this with -ffast-math until an expert says it is safe in
4162 general. */
7afe21cc
RK
4163 else if (GET_CODE (op1) == CONST_DOUBLE
4164 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
a83afb65
RK
4165 && op1 != CONST0_RTX (mode)
4166 && flag_fast_math)
7afe21cc
RK
4167 {
4168 REAL_VALUE_TYPE d;
4169 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
a83afb65
RK
4170
4171 if (! REAL_VALUES_EQUAL (d, dconst0))
4172 {
7afe21cc 4173#if defined (REAL_ARITHMETIC)
a83afb65 4174 REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
38a448ca
RH
4175 return gen_rtx_MULT (mode, op0,
4176 CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
7afe21cc 4177#else
c5c76735
JL
4178 return
4179 gen_rtx_MULT (mode, op0,
4180 CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
7afe21cc 4181#endif
a83afb65
RK
4182 }
4183 }
7afe21cc
RK
4184#endif
4185 break;
4186
4187 case UMOD:
4188 /* Handle modulus by power of two (mod with 1 handled below). */
4189 if (GET_CODE (op1) == CONST_INT
4190 && exact_log2 (INTVAL (op1)) > 0)
38a448ca 4191 return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
7afe21cc 4192
0f41302f 4193 /* ... fall through ... */
7afe21cc
RK
4194
4195 case MOD:
4196 if ((op0 == const0_rtx || op1 == const1_rtx)
4197 && ! side_effects_p (op0) && ! side_effects_p (op1))
4198 return const0_rtx;
4199 break;
4200
4201 case ROTATERT:
4202 case ROTATE:
4203 /* Rotating ~0 always results in ~0. */
906c4e36 4204 if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
6a651371 4205 && (unsigned HOST_WIDE_INT) INTVAL (op0) == GET_MODE_MASK (mode)
7afe21cc
RK
4206 && ! side_effects_p (op1))
4207 return op0;
4208
0f41302f 4209 /* ... fall through ... */
7afe21cc 4210
7afe21cc
RK
4211 case ASHIFT:
4212 case ASHIFTRT:
4213 case LSHIFTRT:
4214 if (op1 == const0_rtx)
4215 return op0;
4216 if (op0 == const0_rtx && ! side_effects_p (op1))
4217 return op0;
4218 break;
4219
4220 case SMIN:
906c4e36
RK
4221 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
4222 && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
7afe21cc
RK
4223 && ! side_effects_p (op0))
4224 return op1;
4225 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4226 return op0;
4227 break;
4228
4229 case SMAX:
906c4e36 4230 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
6a651371 4231 && ((unsigned HOST_WIDE_INT) INTVAL (op1)
dbbe6445 4232 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
7afe21cc
RK
4233 && ! side_effects_p (op0))
4234 return op1;
4235 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4236 return op0;
4237 break;
4238
4239 case UMIN:
4240 if (op1 == const0_rtx && ! side_effects_p (op0))
4241 return op1;
4242 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4243 return op0;
4244 break;
4245
4246 case UMAX:
4247 if (op1 == constm1_rtx && ! side_effects_p (op0))
4248 return op1;
4249 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4250 return op0;
4251 break;
4252
4253 default:
4254 abort ();
4255 }
4256
4257 return 0;
4258 }
4259
4260 /* Get the integer argument values in two forms:
4261 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4262
4263 arg0 = INTVAL (op0);
4264 arg1 = INTVAL (op1);
4265
906c4e36 4266 if (width < HOST_BITS_PER_WIDE_INT)
7afe21cc 4267 {
906c4e36
RK
4268 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
4269 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
7afe21cc
RK
4270
4271 arg0s = arg0;
906c4e36
RK
4272 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4273 arg0s |= ((HOST_WIDE_INT) (-1) << width);
7afe21cc
RK
4274
4275 arg1s = arg1;
906c4e36
RK
4276 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4277 arg1s |= ((HOST_WIDE_INT) (-1) << width);
7afe21cc
RK
4278 }
4279 else
4280 {
4281 arg0s = arg0;
4282 arg1s = arg1;
4283 }
4284
4285 /* Compute the value of the arithmetic. */
4286
4287 switch (code)
4288 {
4289 case PLUS:
538b78e7 4290 val = arg0s + arg1s;
7afe21cc
RK
4291 break;
4292
4293 case MINUS:
538b78e7 4294 val = arg0s - arg1s;
7afe21cc
RK
4295 break;
4296
4297 case MULT:
4298 val = arg0s * arg1s;
4299 break;
4300
4301 case DIV:
4302 if (arg1s == 0)
4303 return 0;
4304 val = arg0s / arg1s;
4305 break;
4306
4307 case MOD:
4308 if (arg1s == 0)
4309 return 0;
4310 val = arg0s % arg1s;
4311 break;
4312
4313 case UDIV:
4314 if (arg1 == 0)
4315 return 0;
906c4e36 4316 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
7afe21cc
RK
4317 break;
4318
4319 case UMOD:
4320 if (arg1 == 0)
4321 return 0;
906c4e36 4322 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
7afe21cc
RK
4323 break;
4324
4325 case AND:
4326 val = arg0 & arg1;
4327 break;
4328
4329 case IOR:
4330 val = arg0 | arg1;
4331 break;
4332
4333 case XOR:
4334 val = arg0 ^ arg1;
4335 break;
4336
4337 case LSHIFTRT:
4338 /* If shift count is undefined, don't fold it; let the machine do
4339 what it wants. But truncate it if the machine will do that. */
4340 if (arg1 < 0)
4341 return 0;
4342
4343#ifdef SHIFT_COUNT_TRUNCATED
85c0a556 4344 if (SHIFT_COUNT_TRUNCATED)
4d61f8c5 4345 arg1 %= width;
7afe21cc
RK
4346#endif
4347
906c4e36 4348 val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
7afe21cc
RK
4349 break;
4350
4351 case ASHIFT:
7afe21cc
RK
4352 if (arg1 < 0)
4353 return 0;
4354
4355#ifdef SHIFT_COUNT_TRUNCATED
85c0a556 4356 if (SHIFT_COUNT_TRUNCATED)
4d61f8c5 4357 arg1 %= width;
7afe21cc
RK
4358#endif
4359
906c4e36 4360 val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
7afe21cc
RK
4361 break;
4362
4363 case ASHIFTRT:
4364 if (arg1 < 0)
4365 return 0;
4366
4367#ifdef SHIFT_COUNT_TRUNCATED
85c0a556 4368 if (SHIFT_COUNT_TRUNCATED)
4d61f8c5 4369 arg1 %= width;
7afe21cc
RK
4370#endif
4371
7afe21cc 4372 val = arg0s >> arg1;
2166571b
RS
4373
4374 /* Bootstrap compiler may not have sign extended the right shift.
4375 Manually extend the sign to insure bootstrap cc matches gcc. */
4376 if (arg0s < 0 && arg1 > 0)
4377 val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
4378
7afe21cc
RK
4379 break;
4380
4381 case ROTATERT:
4382 if (arg1 < 0)
4383 return 0;
4384
4385 arg1 %= width;
906c4e36
RK
4386 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
4387 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
7afe21cc
RK
4388 break;
4389
4390 case ROTATE:
4391 if (arg1 < 0)
4392 return 0;
4393
4394 arg1 %= width;
906c4e36
RK
4395 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
4396 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
7afe21cc
RK
4397 break;
4398
4399 case COMPARE:
4400 /* Do nothing here. */
4401 return 0;
4402
830a38ee
RS
4403 case SMIN:
4404 val = arg0s <= arg1s ? arg0s : arg1s;
4405 break;
4406
4407 case UMIN:
906c4e36
RK
4408 val = ((unsigned HOST_WIDE_INT) arg0
4409 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
830a38ee
RS
4410 break;
4411
4412 case SMAX:
4413 val = arg0s > arg1s ? arg0s : arg1s;
4414 break;
4415
4416 case UMAX:
906c4e36
RK
4417 val = ((unsigned HOST_WIDE_INT) arg0
4418 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
830a38ee
RS
4419 break;
4420
7afe21cc
RK
4421 default:
4422 abort ();
4423 }
4424
7e4ce834 4425 val = trunc_int_for_mode (val, mode);
ad89d6f6 4426
906c4e36 4427 return GEN_INT (val);
7afe21cc
RK
4428}
4429\f
96b0e481
RK
4430/* Simplify a PLUS or MINUS, at least one of whose operands may be another
4431 PLUS or MINUS.
4432
4433 Rather than test for specific case, we do this by a brute-force method
4434 and do all possible simplifications until no more changes occur. Then
4435 we rebuild the operation. */
4436
4437static rtx
4438simplify_plus_minus (code, mode, op0, op1)
4439 enum rtx_code code;
4440 enum machine_mode mode;
4441 rtx op0, op1;
4442{
4443 rtx ops[8];
4444 int negs[8];
4445 rtx result, tem;
fb5c8ce6 4446 int n_ops = 2, input_ops = 2, input_consts = 0, n_consts = 0;
96b0e481 4447 int first = 1, negate = 0, changed;
fb5c8ce6 4448 int i, j;
96b0e481 4449
4c9a05bc 4450 bzero ((char *) ops, sizeof ops);
96b0e481
RK
4451
4452 /* Set up the two operands and then expand them until nothing has been
4453 changed. If we run out of room in our array, give up; this should
4454 almost never happen. */
4455
4456 ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);
4457
4458 changed = 1;
4459 while (changed)
4460 {
4461 changed = 0;
4462
4463 for (i = 0; i < n_ops; i++)
4464 switch (GET_CODE (ops[i]))
4465 {
4466 case PLUS:
4467 case MINUS:
4468 if (n_ops == 7)
4469 return 0;
4470
4471 ops[n_ops] = XEXP (ops[i], 1);
4472 negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
4473 ops[i] = XEXP (ops[i], 0);
b7d9299b 4474 input_ops++;
96b0e481
RK
4475 changed = 1;
4476 break;
4477
4478 case NEG:
4479 ops[i] = XEXP (ops[i], 0);
4480 negs[i] = ! negs[i];
4481 changed = 1;
4482 break;
4483
4484 case CONST:
4485 ops[i] = XEXP (ops[i], 0);
fb5c8ce6 4486 input_consts++;
96b0e481
RK
4487 changed = 1;
4488 break;
4489
4490 case NOT:
4491 /* ~a -> (-a - 1) */
4492 if (n_ops != 7)
4493 {
4494 ops[n_ops] = constm1_rtx;
5931019b 4495 negs[n_ops++] = negs[i];
96b0e481
RK
4496 ops[i] = XEXP (ops[i], 0);
4497 negs[i] = ! negs[i];
4498 changed = 1;
4499 }
4500 break;
4501
4502 case CONST_INT:
4503 if (negs[i])
4504 ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
4505 break;
e9a25f70
JL
4506
4507 default:
4508 break;
96b0e481
RK
4509 }
4510 }
4511
4512 /* If we only have two operands, we can't do anything. */
4513 if (n_ops <= 2)
4514 return 0;
4515
4516 /* Now simplify each pair of operands until nothing changes. The first
4517 time through just simplify constants against each other. */
4518
4519 changed = 1;
4520 while (changed)
4521 {
4522 changed = first;
4523
4524 for (i = 0; i < n_ops - 1; i++)
4525 for (j = i + 1; j < n_ops; j++)
4526 if (ops[i] != 0 && ops[j] != 0
4527 && (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
4528 {
4529 rtx lhs = ops[i], rhs = ops[j];
4530 enum rtx_code ncode = PLUS;
4531
4532 if (negs[i] && ! negs[j])
4533 lhs = ops[j], rhs = ops[i], ncode = MINUS;
4534 else if (! negs[i] && negs[j])
4535 ncode = MINUS;
4536
4537 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
b7d9299b 4538 if (tem)
96b0e481
RK
4539 {
4540 ops[i] = tem, ops[j] = 0;
4541 negs[i] = negs[i] && negs[j];
4542 if (GET_CODE (tem) == NEG)
4543 ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];
4544
4545 if (GET_CODE (ops[i]) == CONST_INT && negs[i])
4546 ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
4547 changed = 1;
4548 }
4549 }
4550
4551 first = 0;
4552 }
4553
4554 /* Pack all the operands to the lower-numbered entries and give up if
91a60f37 4555 we didn't reduce the number of operands we had. Make sure we
fb5c8ce6
RK
4556 count a CONST as two operands. If we have the same number of
4557 operands, but have made more CONSTs than we had, this is also
4558 an improvement, so accept it. */
91a60f37 4559
fb5c8ce6 4560 for (i = 0, j = 0; j < n_ops; j++)
96b0e481 4561 if (ops[j] != 0)
91a60f37
RK
4562 {
4563 ops[i] = ops[j], negs[i++] = negs[j];
4564 if (GET_CODE (ops[j]) == CONST)
fb5c8ce6 4565 n_consts++;
91a60f37 4566 }
96b0e481 4567
fb5c8ce6
RK
4568 if (i + n_consts > input_ops
4569 || (i + n_consts == input_ops && n_consts <= input_consts))
96b0e481
RK
4570 return 0;
4571
4572 n_ops = i;
4573
4574 /* If we have a CONST_INT, put it last. */
4575 for (i = 0; i < n_ops - 1; i++)
4576 if (GET_CODE (ops[i]) == CONST_INT)
4577 {
4578 tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
4579 j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
4580 }
4581
4582 /* Put a non-negated operand first. If there aren't any, make all
4583 operands positive and negate the whole thing later. */
4584 for (i = 0; i < n_ops && negs[i]; i++)
4585 ;
4586
4587 if (i == n_ops)
4588 {
4589 for (i = 0; i < n_ops; i++)
4590 negs[i] = 0;
4591 negate = 1;
4592 }
4593 else if (i != 0)
4594 {
4595 tem = ops[0], ops[0] = ops[i], ops[i] = tem;
4596 j = negs[0], negs[0] = negs[i], negs[i] = j;
4597 }
4598
4599 /* Now make the result by performing the requested operations. */
4600 result = ops[0];
4601 for (i = 1; i < n_ops; i++)
4602 result = cse_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);
4603
38a448ca 4604 return negate ? gen_rtx_NEG (mode, result) : result;
96b0e481
RK
4605}
4606\f
4607/* Make a binary operation by properly ordering the operands and
4608 seeing if the expression folds. */
4609
4610static rtx
4611cse_gen_binary (code, mode, op0, op1)
4612 enum rtx_code code;
4613 enum machine_mode mode;
4614 rtx op0, op1;
4615{
4616 rtx tem;
4617
4618 /* Put complex operands first and constants second if commutative. */
4619 if (GET_RTX_CLASS (code) == 'c'
4620 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
4621 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
4622 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
4623 || (GET_CODE (op0) == SUBREG
4624 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
4625 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
4626 tem = op0, op0 = op1, op1 = tem;
4627
4628 /* If this simplifies, do it. */
4629 tem = simplify_binary_operation (code, mode, op0, op1);
4630
4631 if (tem)
4632 return tem;
4633
4634 /* Handle addition and subtraction of CONST_INT specially. Otherwise,
4635 just form the operation. */
4636
4637 if (code == PLUS && GET_CODE (op1) == CONST_INT
4638 && GET_MODE (op0) != VOIDmode)
4639 return plus_constant (op0, INTVAL (op1));
4640 else if (code == MINUS && GET_CODE (op1) == CONST_INT
4641 && GET_MODE (op0) != VOIDmode)
4642 return plus_constant (op0, - INTVAL (op1));
4643 else
38a448ca 4644 return gen_rtx_fmt_ee (code, mode, op0, op1);
96b0e481
RK
4645}
4646\f
1a87eea2
KG
4647struct cfc_args
4648{
4649 /* Input */
4650 rtx op0, op1;
4651 /* Output */
4652 int equal, op0lt, op1lt;
4653};
4654
4655static void
4656check_fold_consts (data)
4657 PTR data;
4658{
4659 struct cfc_args * args = (struct cfc_args *) data;
4660 REAL_VALUE_TYPE d0, d1;
4661
4662 REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
4663 REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
4664 args->equal = REAL_VALUES_EQUAL (d0, d1);
4665 args->op0lt = REAL_VALUES_LESS (d0, d1);
4666 args->op1lt = REAL_VALUES_LESS (d1, d0);
4667}
4668
7afe21cc 4669/* Like simplify_binary_operation except used for relational operators.
a432f20d
RK
4670 MODE is the mode of the operands, not that of the result. If MODE
4671 is VOIDmode, both operands must also be VOIDmode and we compare the
4672 operands in "infinite precision".
4673
4674 If no simplification is possible, this function returns zero. Otherwise,
4675 it returns either const_true_rtx or const0_rtx. */
7afe21cc
RK
4676
4677rtx
4678simplify_relational_operation (code, mode, op0, op1)
4679 enum rtx_code code;
4680 enum machine_mode mode;
4681 rtx op0, op1;
4682{
a432f20d
RK
4683 int equal, op0lt, op0ltu, op1lt, op1ltu;
4684 rtx tem;
7afe21cc
RK
4685
4686 /* If op0 is a compare, extract the comparison arguments from it. */
4687 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4688 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4689
28bad1cb
RK
4690 /* We can't simplify MODE_CC values since we don't know what the
4691 actual comparison is. */
4692 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
4693#ifdef HAVE_cc0
4694 || op0 == cc0_rtx
4695#endif
4696 )
31dcf83f
RS
4697 return 0;
4698
a432f20d
RK
4699 /* For integer comparisons of A and B maybe we can simplify A - B and can
4700 then simplify a comparison of that with zero. If A and B are both either
4701 a register or a CONST_INT, this can't help; testing for these cases will
4702 prevent infinite recursion here and speed things up.
4703
c27b5c62
JW
4704 If CODE is an unsigned comparison, then we can never do this optimization,
4705 because it gives an incorrect result if the subtraction wraps around zero.
4706 ANSI C defines unsigned operations such that they never overflow, and
4707 thus such cases can not be ignored. */
a432f20d
RK
4708
4709 if (INTEGRAL_MODE_P (mode) && op1 != const0_rtx
4710 && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == CONST_INT)
4711 && (GET_CODE (op1) == REG || GET_CODE (op1) == CONST_INT))
4712 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
c27b5c62 4713 && code != GTU && code != GEU && code != LTU && code != LEU)
a432f20d
RK
4714 return simplify_relational_operation (signed_condition (code),
4715 mode, tem, const0_rtx);
4716
4717 /* For non-IEEE floating-point, if the two operands are equal, we know the
4718 result. */
4719 if (rtx_equal_p (op0, op1)
4720 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4721 || ! FLOAT_MODE_P (GET_MODE (op0)) || flag_fast_math))
4722 equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
4723
4724 /* If the operands are floating-point constants, see if we can fold
4725 the result. */
6076248a 4726#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
a432f20d
RK
4727 else if (GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
4728 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
4729 {
1a87eea2
KG
4730 struct cfc_args args;
4731
4732 /* Setup input for check_fold_consts() */
4733 args.op0 = op0;
4734 args.op1 = op1;
a432f20d 4735
1a87eea2
KG
4736 if (do_float_handler(check_fold_consts, (PTR) &args) == 0)
4737 /* We got an exception from check_fold_consts() */
a432f20d 4738 return 0;
7afe21cc 4739
1a87eea2
KG
4740 /* Receive output from check_fold_consts() */
4741 equal = args.equal;
4742 op0lt = op0ltu = args.op0lt;
4743 op1lt = op1ltu = args.op1lt;
a432f20d
RK
4744 }
4745#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
7afe21cc 4746
a432f20d
RK
4747 /* Otherwise, see if the operands are both integers. */
4748 else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
4749 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
4750 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
4751 {
4752 int width = GET_MODE_BITSIZE (mode);
64812ded
RK
4753 HOST_WIDE_INT l0s, h0s, l1s, h1s;
4754 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
7afe21cc 4755
a432f20d
RK
4756 /* Get the two words comprising each integer constant. */
4757 if (GET_CODE (op0) == CONST_DOUBLE)
4758 {
4759 l0u = l0s = CONST_DOUBLE_LOW (op0);
4760 h0u = h0s = CONST_DOUBLE_HIGH (op0);
7afe21cc 4761 }
a432f20d 4762 else
6076248a 4763 {
a432f20d 4764 l0u = l0s = INTVAL (op0);
cb3bb2a7 4765 h0u = h0s = l0s < 0 ? -1 : 0;
a432f20d 4766 }
6076248a 4767
a432f20d
RK
4768 if (GET_CODE (op1) == CONST_DOUBLE)
4769 {
4770 l1u = l1s = CONST_DOUBLE_LOW (op1);
4771 h1u = h1s = CONST_DOUBLE_HIGH (op1);
4772 }
4773 else
4774 {
4775 l1u = l1s = INTVAL (op1);
cb3bb2a7 4776 h1u = h1s = l1s < 0 ? -1 : 0;
a432f20d
RK
4777 }
4778
4779 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4780 we have to sign or zero-extend the values. */
4781 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
4782 h0u = h1u = 0, h0s = l0s < 0 ? -1 : 0, h1s = l1s < 0 ? -1 : 0;
6076248a 4783
a432f20d
RK
4784 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
4785 {
4786 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
4787 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
6076248a 4788
a432f20d
RK
4789 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4790 l0s |= ((HOST_WIDE_INT) (-1) << width);
6076248a 4791
a432f20d
RK
4792 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4793 l1s |= ((HOST_WIDE_INT) (-1) << width);
6076248a
RK
4794 }
4795
a432f20d
RK
4796 equal = (h0u == h1u && l0u == l1u);
4797 op0lt = (h0s < h1s || (h0s == h1s && l0s < l1s));
4798 op1lt = (h1s < h0s || (h1s == h0s && l1s < l0s));
4799 op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
4800 op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
4801 }
4802
4803 /* Otherwise, there are some code-specific tests we can make. */
4804 else
4805 {
7afe21cc
RK
4806 switch (code)
4807 {
4808 case EQ:
a432f20d
RK
4809 /* References to the frame plus a constant or labels cannot
4810 be zero, but a SYMBOL_REF can due to #pragma weak. */
4811 if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
4812 || GET_CODE (op0) == LABEL_REF)
1a7c818b 4813#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
a432f20d
RK
4814 /* On some machines, the ap reg can be 0 sometimes. */
4815 && op0 != arg_pointer_rtx
7afe21cc 4816#endif
a432f20d
RK
4817 )
4818 return const0_rtx;
4819 break;
7afe21cc
RK
4820
4821 case NE:
a432f20d
RK
4822 if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
4823 || GET_CODE (op0) == LABEL_REF)
1a7c818b 4824#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
a432f20d 4825 && op0 != arg_pointer_rtx
7afe21cc 4826#endif
a432f20d 4827 )
7afe21cc
RK
4828 return const_true_rtx;
4829 break;
4830
4831 case GEU:
a432f20d
RK
4832 /* Unsigned values are never negative. */
4833 if (op1 == const0_rtx)
7afe21cc
RK
4834 return const_true_rtx;
4835 break;
4836
4837 case LTU:
a432f20d 4838 if (op1 == const0_rtx)
7afe21cc
RK
4839 return const0_rtx;
4840 break;
4841
4842 case LEU:
4843 /* Unsigned values are never greater than the largest
4844 unsigned value. */
4845 if (GET_CODE (op1) == CONST_INT
6a651371 4846 && (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
a432f20d
RK
4847 && INTEGRAL_MODE_P (mode))
4848 return const_true_rtx;
7afe21cc
RK
4849 break;
4850
4851 case GTU:
4852 if (GET_CODE (op1) == CONST_INT
6a651371 4853 && (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
cbf6a543 4854 && INTEGRAL_MODE_P (mode))
7afe21cc
RK
4855 return const0_rtx;
4856 break;
e9a25f70
JL
4857
4858 default:
4859 break;
7afe21cc
RK
4860 }
4861
4862 return 0;
4863 }
4864
a432f20d
RK
4865 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
4866 as appropriate. */
7afe21cc
RK
4867 switch (code)
4868 {
7afe21cc 4869 case EQ:
a432f20d
RK
4870 return equal ? const_true_rtx : const0_rtx;
4871 case NE:
4872 return ! equal ? const_true_rtx : const0_rtx;
7afe21cc 4873 case LT:
a432f20d 4874 return op0lt ? const_true_rtx : const0_rtx;
7afe21cc 4875 case GT:
a432f20d 4876 return op1lt ? const_true_rtx : const0_rtx;
7afe21cc 4877 case LTU:
a432f20d 4878 return op0ltu ? const_true_rtx : const0_rtx;
7afe21cc 4879 case GTU:
a432f20d
RK
4880 return op1ltu ? const_true_rtx : const0_rtx;
4881 case LE:
4882 return equal || op0lt ? const_true_rtx : const0_rtx;
4883 case GE:
4884 return equal || op1lt ? const_true_rtx : const0_rtx;
4885 case LEU:
4886 return equal || op0ltu ? const_true_rtx : const0_rtx;
4887 case GEU:
4888 return equal || op1ltu ? const_true_rtx : const0_rtx;
e9a25f70
JL
4889 default:
4890 abort ();
7afe21cc 4891 }
7afe21cc
RK
4892}
4893\f
4894/* Simplify CODE, an operation with result mode MODE and three operands,
4895 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4896 a constant. Return 0 if no simplifications is possible. */
4897
4898rtx
4899simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
4900 enum rtx_code code;
4901 enum machine_mode mode, op0_mode;
4902 rtx op0, op1, op2;
4903{
4904 int width = GET_MODE_BITSIZE (mode);
4905
4906 /* VOIDmode means "infinite" precision. */
4907 if (width == 0)
906c4e36 4908 width = HOST_BITS_PER_WIDE_INT;
7afe21cc
RK
4909
4910 switch (code)
4911 {
4912 case SIGN_EXTRACT:
4913 case ZERO_EXTRACT:
4914 if (GET_CODE (op0) == CONST_INT
4915 && GET_CODE (op1) == CONST_INT
4916 && GET_CODE (op2) == CONST_INT
4917 && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
906c4e36 4918 && width <= HOST_BITS_PER_WIDE_INT)
7afe21cc
RK
4919 {
4920 /* Extracting a bit-field from a constant */
906c4e36 4921 HOST_WIDE_INT val = INTVAL (op0);
7afe21cc 4922
f76b9db2
ILT
4923 if (BITS_BIG_ENDIAN)
4924 val >>= (GET_MODE_BITSIZE (op0_mode)
4925 - INTVAL (op2) - INTVAL (op1));
4926 else
4927 val >>= INTVAL (op2);
4928
906c4e36 4929 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
7afe21cc
RK
4930 {
4931 /* First zero-extend. */
906c4e36 4932 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
7afe21cc 4933 /* If desired, propagate sign bit. */
906c4e36
RK
4934 if (code == SIGN_EXTRACT
4935 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4936 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
7afe21cc
RK
4937 }
4938
4939 /* Clear the bits that don't belong in our mode,
4940 unless they and our sign bit are all one.
4941 So we get either a reasonable negative value or a reasonable
4942 unsigned value for this mode. */
906c4e36
RK
4943 if (width < HOST_BITS_PER_WIDE_INT
4944 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4945 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4946 val &= ((HOST_WIDE_INT) 1 << width) - 1;
7afe21cc 4947
906c4e36 4948 return GEN_INT (val);
7afe21cc
RK
4949 }
4950 break;
4951
4952 case IF_THEN_ELSE:
4953 if (GET_CODE (op0) == CONST_INT)
4954 return op0 != const0_rtx ? op1 : op2;
3bf1b082
JW
4955
4956 /* Convert a == b ? b : a to "a". */
4957 if (GET_CODE (op0) == NE && ! side_effects_p (op0)
4958 && rtx_equal_p (XEXP (op0, 0), op1)
4959 && rtx_equal_p (XEXP (op0, 1), op2))
4960 return op1;
4961 else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
4962 && rtx_equal_p (XEXP (op0, 1), op1)
4963 && rtx_equal_p (XEXP (op0, 0), op2))
4964 return op2;
e82ad93d 4965 else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
ed1ecb19
JL
4966 {
4967 rtx temp;
4968 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4969 XEXP (op0, 0), XEXP (op0, 1));
4970 /* See if any simplifications were possible. */
4971 if (temp == const0_rtx)
4972 return op2;
4973 else if (temp == const1_rtx)
4974 return op1;
4975 }
7afe21cc
RK
4976 break;
4977
4978 default:
4979 abort ();
4980 }
4981
4982 return 0;
4983}
4984\f
4985/* If X is a nontrivial arithmetic operation on an argument
4986 for which a constant value can be determined, return
4987 the result of operating on that value, as a constant.
4988 Otherwise, return X, possibly with one or more operands
4989 modified by recursive calls to this function.
4990
e7bb59fa
RK
4991 If X is a register whose contents are known, we do NOT
4992 return those contents here. equiv_constant is called to
4993 perform that task.
7afe21cc
RK
4994
4995 INSN is the insn that we may be modifying. If it is 0, make a copy
4996 of X before modifying it. */
4997
4998static rtx
4999fold_rtx (x, insn)
5000 rtx x;
5001 rtx insn;
5002{
5003 register enum rtx_code code;
5004 register enum machine_mode mode;
6f7d635c 5005 register const char *fmt;
906c4e36 5006 register int i;
7afe21cc
RK
5007 rtx new = 0;
5008 int copied = 0;
5009 int must_swap = 0;
5010
5011 /* Folded equivalents of first two operands of X. */
5012 rtx folded_arg0;
5013 rtx folded_arg1;
5014
5015 /* Constant equivalents of first three operands of X;
5016 0 when no such equivalent is known. */
5017 rtx const_arg0;
5018 rtx const_arg1;
5019 rtx const_arg2;
5020
5021 /* The mode of the first operand of X. We need this for sign and zero
5022 extends. */
5023 enum machine_mode mode_arg0;
5024
5025 if (x == 0)
5026 return x;
5027
5028 mode = GET_MODE (x);
5029 code = GET_CODE (x);
5030 switch (code)
5031 {
5032 case CONST:
5033 case CONST_INT:
5034 case CONST_DOUBLE:
5035 case SYMBOL_REF:
5036 case LABEL_REF:
5037 case REG:
5038 /* No use simplifying an EXPR_LIST
5039 since they are used only for lists of args
5040 in a function call's REG_EQUAL note. */
5041 case EXPR_LIST:
956d6950
JL
5042 /* Changing anything inside an ADDRESSOF is incorrect; we don't
5043 want to (e.g.,) make (addressof (const_int 0)) just because
5044 the location is known to be zero. */
5045 case ADDRESSOF:
7afe21cc
RK
5046 return x;
5047
5048#ifdef HAVE_cc0
5049 case CC0:
5050 return prev_insn_cc0;
5051#endif
5052
5053 case PC:
5054 /* If the next insn is a CODE_LABEL followed by a jump table,
5055 PC's value is a LABEL_REF pointing to that label. That
5056 lets us fold switch statements on the Vax. */
5057 if (insn && GET_CODE (insn) == JUMP_INSN)
5058 {
5059 rtx next = next_nonnote_insn (insn);
5060
5061 if (next && GET_CODE (next) == CODE_LABEL
5062 && NEXT_INSN (next) != 0
5063 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
5064 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
5065 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
38a448ca 5066 return gen_rtx_LABEL_REF (Pmode, next);
7afe21cc
RK
5067 }
5068 break;
5069
5070 case SUBREG:
c610adec
RK
5071 /* See if we previously assigned a constant value to this SUBREG. */
5072 if ((new = lookup_as_function (x, CONST_INT)) != 0
5073 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
7afe21cc
RK
5074 return new;
5075
4b980e20
RK
5076 /* If this is a paradoxical SUBREG, we have no idea what value the
5077 extra bits would have. However, if the operand is equivalent
5078 to a SUBREG whose operand is the same as our mode, and all the
5079 modes are within a word, we can just use the inner operand
31c85c78
RK
5080 because these SUBREGs just say how to treat the register.
5081
5082 Similarly if we find an integer constant. */
4b980e20 5083
e5f6a288 5084 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4b980e20
RK
5085 {
5086 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
5087 struct table_elt *elt;
5088
5089 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
5090 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
5091 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
5092 imode)) != 0)
31c85c78
RK
5093 for (elt = elt->first_same_value;
5094 elt; elt = elt->next_same_value)
5095 {
5096 if (CONSTANT_P (elt->exp)
5097 && GET_MODE (elt->exp) == VOIDmode)
5098 return elt->exp;
5099
4b980e20
RK
5100 if (GET_CODE (elt->exp) == SUBREG
5101 && GET_MODE (SUBREG_REG (elt->exp)) == mode
906c4e36 5102 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4b980e20
RK
5103 return copy_rtx (SUBREG_REG (elt->exp));
5104 }
5105
5106 return x;
5107 }
e5f6a288 5108
7afe21cc
RK
5109 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
5110 We might be able to if the SUBREG is extracting a single word in an
5111 integral mode or extracting the low part. */
5112
5113 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
5114 const_arg0 = equiv_constant (folded_arg0);
5115 if (const_arg0)
5116 folded_arg0 = const_arg0;
5117
5118 if (folded_arg0 != SUBREG_REG (x))
5119 {
5120 new = 0;
5121
5122 if (GET_MODE_CLASS (mode) == MODE_INT
5123 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
5124 && GET_MODE (SUBREG_REG (x)) != VOIDmode)
5125 new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
5126 GET_MODE (SUBREG_REG (x)));
5127 if (new == 0 && subreg_lowpart_p (x))
5128 new = gen_lowpart_if_possible (mode, folded_arg0);
5129 if (new)
5130 return new;
5131 }
e5f6a288
RK
5132
5133 /* If this is a narrowing SUBREG and our operand is a REG, see if
858a47b1 5134 we can find an equivalence for REG that is an arithmetic operation
e5f6a288
RK
5135 in a wider mode where both operands are paradoxical SUBREGs
5136 from objects of our result mode. In that case, we couldn't report
5137 an equivalent value for that operation, since we don't know what the
5138 extra bits will be. But we can find an equivalence for this SUBREG
5139 by folding that operation is the narrow mode. This allows us to
5140 fold arithmetic in narrow modes when the machine only supports
4b980e20
RK
5141 word-sized arithmetic.
5142
5143 Also look for a case where we have a SUBREG whose operand is the
5144 same as our result. If both modes are smaller than a word, we
5145 are simply interpreting a register in different modes and we
5146 can use the inner value. */
e5f6a288
RK
5147
5148 if (GET_CODE (folded_arg0) == REG
e8d76a39
RS
5149 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
5150 && subreg_lowpart_p (x))
e5f6a288
RK
5151 {
5152 struct table_elt *elt;
5153
5154 /* We can use HASH here since we know that canon_hash won't be
5155 called. */
5156 elt = lookup (folded_arg0,
5157 HASH (folded_arg0, GET_MODE (folded_arg0)),
5158 GET_MODE (folded_arg0));
5159
5160 if (elt)
5161 elt = elt->first_same_value;
5162
5163 for (; elt; elt = elt->next_same_value)
5164 {
e8d76a39
RS
5165 enum rtx_code eltcode = GET_CODE (elt->exp);
5166
e5f6a288
RK
5167 /* Just check for unary and binary operations. */
5168 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
5169 && GET_CODE (elt->exp) != SIGN_EXTEND
5170 && GET_CODE (elt->exp) != ZERO_EXTEND
5171 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
5172 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
5173 {
5174 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
5175
5176 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
906c4e36 5177 op0 = fold_rtx (op0, NULL_RTX);
e5f6a288
RK
5178
5179 op0 = equiv_constant (op0);
5180 if (op0)
5181 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
5182 op0, mode);
5183 }
5184 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
5185 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
e8d76a39
RS
5186 && eltcode != DIV && eltcode != MOD
5187 && eltcode != UDIV && eltcode != UMOD
5188 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
5189 && eltcode != ROTATE && eltcode != ROTATERT
e5f6a288
RK
5190 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
5191 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
5192 == mode))
5193 || CONSTANT_P (XEXP (elt->exp, 0)))
5194 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
5195 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
5196 == mode))
5197 || CONSTANT_P (XEXP (elt->exp, 1))))
5198 {
5199 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
5200 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
5201
5202 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
906c4e36 5203 op0 = fold_rtx (op0, NULL_RTX);
e5f6a288
RK
5204
5205 if (op0)
5206 op0 = equiv_constant (op0);
5207
5208 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
906c4e36 5209 op1 = fold_rtx (op1, NULL_RTX);
e5f6a288
RK
5210
5211 if (op1)
5212 op1 = equiv_constant (op1);
5213
76fb0b60
RS
5214 /* If we are looking for the low SImode part of
5215 (ashift:DI c (const_int 32)), it doesn't work
5216 to compute that in SImode, because a 32-bit shift
5217 in SImode is unpredictable. We know the value is 0. */
5218 if (op0 && op1
45620ed4 5219 && GET_CODE (elt->exp) == ASHIFT
76fb0b60
RS
5220 && GET_CODE (op1) == CONST_INT
5221 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
5222 {
5223 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
5224
5225 /* If the count fits in the inner mode's width,
5226 but exceeds the outer mode's width,
5227 the value will get truncated to 0
5228 by the subreg. */
5229 new = const0_rtx;
5230 else
5231 /* If the count exceeds even the inner mode's width,
5232 don't fold this expression. */
5233 new = 0;
5234 }
5235 else if (op0 && op1)
e5f6a288
RK
5236 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
5237 op0, op1);
5238 }
5239
4b980e20
RK
5240 else if (GET_CODE (elt->exp) == SUBREG
5241 && GET_MODE (SUBREG_REG (elt->exp)) == mode
5242 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
5243 <= UNITS_PER_WORD)
906c4e36 5244 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4b980e20
RK
5245 new = copy_rtx (SUBREG_REG (elt->exp));
5246
e5f6a288
RK
5247 if (new)
5248 return new;
5249 }
5250 }
5251
7afe21cc
RK
5252 return x;
5253
5254 case NOT:
5255 case NEG:
5256 /* If we have (NOT Y), see if Y is known to be (NOT Z).
5257 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
5258 new = lookup_as_function (XEXP (x, 0), code);
5259 if (new)
5260 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
5261 break;
13c9910f 5262
7afe21cc
RK
5263 case MEM:
5264 /* If we are not actually processing an insn, don't try to find the
5265 best address. Not only don't we care, but we could modify the
5266 MEM in an invalid way since we have no insn to validate against. */
5267 if (insn != 0)
5268 find_best_addr (insn, &XEXP (x, 0));
5269
5270 {
5271 /* Even if we don't fold in the insn itself,
5272 we can safely do so here, in hopes of getting a constant. */
906c4e36 5273 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
7afe21cc 5274 rtx base = 0;
906c4e36 5275 HOST_WIDE_INT offset = 0;
7afe21cc
RK
5276
5277 if (GET_CODE (addr) == REG
5278 && REGNO_QTY_VALID_P (REGNO (addr))
30f72379
MM
5279 && GET_MODE (addr) == qty_mode[REG_QTY (REGNO (addr))]
5280 && qty_const[REG_QTY (REGNO (addr))] != 0)
5281 addr = qty_const[REG_QTY (REGNO (addr))];
7afe21cc
RK
5282
5283 /* If address is constant, split it into a base and integer offset. */
5284 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
5285 base = addr;
5286 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
5287 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
5288 {
5289 base = XEXP (XEXP (addr, 0), 0);
5290 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
5291 }
5292 else if (GET_CODE (addr) == LO_SUM
5293 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
5294 base = XEXP (addr, 1);
e9a25f70 5295 else if (GET_CODE (addr) == ADDRESSOF)
956d6950 5296 return change_address (x, VOIDmode, addr);
7afe21cc
RK
5297
5298 /* If this is a constant pool reference, we can fold it into its
5299 constant to allow better value tracking. */
5300 if (base && GET_CODE (base) == SYMBOL_REF
5301 && CONSTANT_POOL_ADDRESS_P (base))
5302 {
5303 rtx constant = get_pool_constant (base);
5304 enum machine_mode const_mode = get_pool_mode (base);
5305 rtx new;
5306
5307 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
5308 constant_pool_entries_cost = COST (constant);
5309
5310 /* If we are loading the full constant, we have an equivalence. */
5311 if (offset == 0 && mode == const_mode)
5312 return constant;
5313
9faa82d8 5314 /* If this actually isn't a constant (weird!), we can't do
7afe21cc
RK
5315 anything. Otherwise, handle the two most common cases:
5316 extracting a word from a multi-word constant, and extracting
5317 the low-order bits. Other cases don't seem common enough to
5318 worry about. */
5319 if (! CONSTANT_P (constant))
5320 return x;
5321
5322 if (GET_MODE_CLASS (mode) == MODE_INT
5323 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
5324 && offset % UNITS_PER_WORD == 0
5325 && (new = operand_subword (constant,
5326 offset / UNITS_PER_WORD,
5327 0, const_mode)) != 0)
5328 return new;
5329
5330 if (((BYTES_BIG_ENDIAN
5331 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
5332 || (! BYTES_BIG_ENDIAN && offset == 0))
5333 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
5334 return new;
5335 }
5336
5337 /* If this is a reference to a label at a known position in a jump
5338 table, we also know its value. */
5339 if (base && GET_CODE (base) == LABEL_REF)
5340 {
5341 rtx label = XEXP (base, 0);
5342 rtx table_insn = NEXT_INSN (label);
5343
5344 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
5345 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
5346 {
5347 rtx table = PATTERN (table_insn);
5348
5349 if (offset >= 0
5350 && (offset / GET_MODE_SIZE (GET_MODE (table))
5351 < XVECLEN (table, 0)))
5352 return XVECEXP (table, 0,
5353 offset / GET_MODE_SIZE (GET_MODE (table)));
5354 }
5355 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
5356 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
5357 {
5358 rtx table = PATTERN (table_insn);
5359
5360 if (offset >= 0
5361 && (offset / GET_MODE_SIZE (GET_MODE (table))
5362 < XVECLEN (table, 1)))
5363 {
5364 offset /= GET_MODE_SIZE (GET_MODE (table));
38a448ca
RH
5365 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
5366 XEXP (table, 0));
7afe21cc
RK
5367
5368 if (GET_MODE (table) != Pmode)
38a448ca 5369 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
7afe21cc 5370
67a37737
RK
5371 /* Indicate this is a constant. This isn't a
5372 valid form of CONST, but it will only be used
5373 to fold the next insns and then discarded, so
ac7ef8d5
FS
5374 it should be safe.
5375
5376 Note this expression must be explicitly discarded,
5377 by cse_insn, else it may end up in a REG_EQUAL note
5378 and "escape" to cause problems elsewhere. */
38a448ca 5379 return gen_rtx_CONST (GET_MODE (new), new);
7afe21cc
RK
5380 }
5381 }
5382 }
5383
5384 return x;
5385 }
9255709c
RK
5386
5387 case ASM_OPERANDS:
5388 for (i = XVECLEN (x, 3) - 1; i >= 0; i--)
5389 validate_change (insn, &XVECEXP (x, 3, i),
5390 fold_rtx (XVECEXP (x, 3, i), insn), 0);
5391 break;
e9a25f70
JL
5392
5393 default:
5394 break;
7afe21cc
RK
5395 }
5396
5397 const_arg0 = 0;
5398 const_arg1 = 0;
5399 const_arg2 = 0;
5400 mode_arg0 = VOIDmode;
5401
5402 /* Try folding our operands.
5403 Then see which ones have constant values known. */
5404
5405 fmt = GET_RTX_FORMAT (code);
5406 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5407 if (fmt[i] == 'e')
5408 {
5409 rtx arg = XEXP (x, i);
5410 rtx folded_arg = arg, const_arg = 0;
5411 enum machine_mode mode_arg = GET_MODE (arg);
5412 rtx cheap_arg, expensive_arg;
5413 rtx replacements[2];
5414 int j;
5415
5416 /* Most arguments are cheap, so handle them specially. */
5417 switch (GET_CODE (arg))
5418 {
5419 case REG:
5420 /* This is the same as calling equiv_constant; it is duplicated
5421 here for speed. */
5422 if (REGNO_QTY_VALID_P (REGNO (arg))
30f72379
MM
5423 && qty_const[REG_QTY (REGNO (arg))] != 0
5424 && GET_CODE (qty_const[REG_QTY (REGNO (arg))]) != REG
5425 && GET_CODE (qty_const[REG_QTY (REGNO (arg))]) != PLUS)
7afe21cc
RK
5426 const_arg
5427 = gen_lowpart_if_possible (GET_MODE (arg),
30f72379 5428 qty_const[REG_QTY (REGNO (arg))]);
7afe21cc
RK
5429 break;
5430
5431 case CONST:
5432 case CONST_INT:
5433 case SYMBOL_REF:
5434 case LABEL_REF:
5435 case CONST_DOUBLE:
5436 const_arg = arg;
5437 break;
5438
5439#ifdef HAVE_cc0
5440 case CC0:
5441 folded_arg = prev_insn_cc0;
5442 mode_arg = prev_insn_cc0_mode;
5443 const_arg = equiv_constant (folded_arg);
5444 break;
5445#endif
5446
5447 default:
5448 folded_arg = fold_rtx (arg, insn);
5449 const_arg = equiv_constant (folded_arg);
5450 }
5451
5452 /* For the first three operands, see if the operand
5453 is constant or equivalent to a constant. */
5454 switch (i)
5455 {
5456 case 0:
5457 folded_arg0 = folded_arg;
5458 const_arg0 = const_arg;
5459 mode_arg0 = mode_arg;
5460 break;
5461 case 1:
5462 folded_arg1 = folded_arg;
5463 const_arg1 = const_arg;
5464 break;
5465 case 2:
5466 const_arg2 = const_arg;
5467 break;
5468 }
5469
5470 /* Pick the least expensive of the folded argument and an
5471 equivalent constant argument. */
5472 if (const_arg == 0 || const_arg == folded_arg
5473 || COST (const_arg) > COST (folded_arg))
5474 cheap_arg = folded_arg, expensive_arg = const_arg;
5475 else
5476 cheap_arg = const_arg, expensive_arg = folded_arg;
5477
5478 /* Try to replace the operand with the cheapest of the two
5479 possibilities. If it doesn't work and this is either of the first
5480 two operands of a commutative operation, try swapping them.
5481 If THAT fails, try the more expensive, provided it is cheaper
5482 than what is already there. */
5483
5484 if (cheap_arg == XEXP (x, i))
5485 continue;
5486
5487 if (insn == 0 && ! copied)
5488 {
5489 x = copy_rtx (x);
5490 copied = 1;
5491 }
5492
5493 replacements[0] = cheap_arg, replacements[1] = expensive_arg;
5494 for (j = 0;
5495 j < 2 && replacements[j]
5496 && COST (replacements[j]) < COST (XEXP (x, i));
5497 j++)
5498 {
5499 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
5500 break;
5501
5502 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
5503 {
5504 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
5505 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
5506
5507 if (apply_change_group ())
5508 {
5509 /* Swap them back to be invalid so that this loop can
5510 continue and flag them to be swapped back later. */
5511 rtx tem;
5512
5513 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
5514 XEXP (x, 1) = tem;
5515 must_swap = 1;
5516 break;
5517 }
5518 }
5519 }
5520 }
5521
2d8b0f3a
JL
5522 else
5523 {
5524 if (fmt[i] == 'E')
5525 /* Don't try to fold inside of a vector of expressions.
5526 Doing nothing is harmless. */
5527 {;}
5528 }
7afe21cc
RK
5529
5530 /* If a commutative operation, place a constant integer as the second
5531 operand unless the first operand is also a constant integer. Otherwise,
5532 place any constant second unless the first operand is also a constant. */
5533
5534 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
5535 {
5536 if (must_swap || (const_arg0
5537 && (const_arg1 == 0
5538 || (GET_CODE (const_arg0) == CONST_INT
5539 && GET_CODE (const_arg1) != CONST_INT))))
5540 {
5541 register rtx tem = XEXP (x, 0);
5542
5543 if (insn == 0 && ! copied)
5544 {
5545 x = copy_rtx (x);
5546 copied = 1;
5547 }
5548
5549 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
5550 validate_change (insn, &XEXP (x, 1), tem, 1);
5551 if (apply_change_group ())
5552 {
5553 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
5554 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
5555 }
5556 }
5557 }
5558
5559 /* If X is an arithmetic operation, see if we can simplify it. */
5560
5561 switch (GET_RTX_CLASS (code))
5562 {
5563 case '1':
67a37737
RK
5564 {
5565 int is_const = 0;
5566
5567 /* We can't simplify extension ops unless we know the
5568 original mode. */
5569 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
5570 && mode_arg0 == VOIDmode)
5571 break;
5572
5573 /* If we had a CONST, strip it off and put it back later if we
5574 fold. */
5575 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
5576 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
5577
5578 new = simplify_unary_operation (code, mode,
5579 const_arg0 ? const_arg0 : folded_arg0,
5580 mode_arg0);
5581 if (new != 0 && is_const)
38a448ca 5582 new = gen_rtx_CONST (mode, new);
67a37737 5583 }
7afe21cc
RK
5584 break;
5585
5586 case '<':
5587 /* See what items are actually being compared and set FOLDED_ARG[01]
5588 to those values and CODE to the actual comparison code. If any are
5589 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
5590 do anything if both operands are already known to be constant. */
5591
5592 if (const_arg0 == 0 || const_arg1 == 0)
5593 {
5594 struct table_elt *p0, *p1;
c610adec 5595 rtx true = const_true_rtx, false = const0_rtx;
13c9910f 5596 enum machine_mode mode_arg1;
c610adec
RK
5597
5598#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 5599 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 5600 {
560c94a2
RK
5601 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
5602 mode);
c610adec
RK
5603 false = CONST0_RTX (mode);
5604 }
5605#endif
7afe21cc 5606
13c9910f
RS
5607 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
5608 &mode_arg0, &mode_arg1);
7afe21cc
RK
5609 const_arg0 = equiv_constant (folded_arg0);
5610 const_arg1 = equiv_constant (folded_arg1);
5611
13c9910f
RS
5612 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
5613 what kinds of things are being compared, so we can't do
5614 anything with this comparison. */
7afe21cc
RK
5615
5616 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
5617 break;
5618
0f41302f
MS
5619 /* If we do not now have two constants being compared, see
5620 if we can nevertheless deduce some things about the
5621 comparison. */
7afe21cc
RK
5622 if (const_arg0 == 0 || const_arg1 == 0)
5623 {
0f41302f
MS
5624 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
5625 non-explicit constant? These aren't zero, but we
5626 don't know their sign. */
7afe21cc
RK
5627 if (const_arg1 == const0_rtx
5628 && (NONZERO_BASE_PLUS_P (folded_arg0)
5629#if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
5630 come out as 0. */
5631 || GET_CODE (folded_arg0) == SYMBOL_REF
5632#endif
5633 || GET_CODE (folded_arg0) == LABEL_REF
5634 || GET_CODE (folded_arg0) == CONST))
5635 {
5636 if (code == EQ)
c610adec 5637 return false;
7afe21cc 5638 else if (code == NE)
c610adec 5639 return true;
7afe21cc
RK
5640 }
5641
5642 /* See if the two operands are the same. We don't do this
5643 for IEEE floating-point since we can't assume x == x
5644 since x might be a NaN. */
5645
5646 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
a83afb65 5647 || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
7afe21cc
RK
5648 && (folded_arg0 == folded_arg1
5649 || (GET_CODE (folded_arg0) == REG
5650 && GET_CODE (folded_arg1) == REG
30f72379
MM
5651 && (REG_QTY (REGNO (folded_arg0))
5652 == REG_QTY (REGNO (folded_arg1))))
7afe21cc
RK
5653 || ((p0 = lookup (folded_arg0,
5654 (safe_hash (folded_arg0, mode_arg0)
5655 % NBUCKETS), mode_arg0))
5656 && (p1 = lookup (folded_arg1,
5657 (safe_hash (folded_arg1, mode_arg0)
5658 % NBUCKETS), mode_arg0))
5659 && p0->first_same_value == p1->first_same_value)))
5660 return ((code == EQ || code == LE || code == GE
5661 || code == LEU || code == GEU)
c610adec 5662 ? true : false);
7afe21cc
RK
5663
5664 /* If FOLDED_ARG0 is a register, see if the comparison we are
5665 doing now is either the same as we did before or the reverse
5666 (we only check the reverse if not floating-point). */
5667 else if (GET_CODE (folded_arg0) == REG)
5668 {
30f72379 5669 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc
RK
5670
5671 if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
5672 && (comparison_dominates_p (qty_comparison_code[qty], code)
5673 || (comparison_dominates_p (qty_comparison_code[qty],
5674 reverse_condition (code))
cbf6a543 5675 && ! FLOAT_MODE_P (mode_arg0)))
7afe21cc
RK
5676 && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
5677 || (const_arg1
5678 && rtx_equal_p (qty_comparison_const[qty],
5679 const_arg1))
5680 || (GET_CODE (folded_arg1) == REG
30f72379 5681 && (REG_QTY (REGNO (folded_arg1))
7afe21cc
RK
5682 == qty_comparison_qty[qty]))))
5683 return (comparison_dominates_p (qty_comparison_code[qty],
5684 code)
c610adec 5685 ? true : false);
7afe21cc
RK
5686 }
5687 }
5688 }
5689
5690 /* If we are comparing against zero, see if the first operand is
5691 equivalent to an IOR with a constant. If so, we may be able to
5692 determine the result of this comparison. */
5693
5694 if (const_arg1 == const0_rtx)
5695 {
5696 rtx y = lookup_as_function (folded_arg0, IOR);
5697 rtx inner_const;
5698
5699 if (y != 0
5700 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
5701 && GET_CODE (inner_const) == CONST_INT
5702 && INTVAL (inner_const) != 0)
5703 {
5704 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
906c4e36
RK
5705 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
5706 && (INTVAL (inner_const)
5707 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
c610adec
RK
5708 rtx true = const_true_rtx, false = const0_rtx;
5709
5710#ifdef FLOAT_STORE_FLAG_VALUE
c7c955ee 5711 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
c610adec 5712 {
560c94a2
RK
5713 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
5714 mode);
c610adec
RK
5715 false = CONST0_RTX (mode);
5716 }
5717#endif
7afe21cc
RK
5718
5719 switch (code)
5720 {
5721 case EQ:
c610adec 5722 return false;
7afe21cc 5723 case NE:
c610adec 5724 return true;
7afe21cc
RK
5725 case LT: case LE:
5726 if (has_sign)
c610adec 5727 return true;
7afe21cc
RK
5728 break;
5729 case GT: case GE:
5730 if (has_sign)
c610adec 5731 return false;
7afe21cc 5732 break;
e9a25f70
JL
5733 default:
5734 break;
7afe21cc
RK
5735 }
5736 }
5737 }
5738
5739 new = simplify_relational_operation (code, mode_arg0,
5740 const_arg0 ? const_arg0 : folded_arg0,
5741 const_arg1 ? const_arg1 : folded_arg1);
c610adec
RK
5742#ifdef FLOAT_STORE_FLAG_VALUE
5743 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
5744 new = ((new == const0_rtx) ? CONST0_RTX (mode)
560c94a2 5745 : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE, mode));
c610adec 5746#endif
7afe21cc
RK
5747 break;
5748
5749 case '2':
5750 case 'c':
5751 switch (code)
5752 {
5753 case PLUS:
5754 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5755 with that LABEL_REF as its second operand. If so, the result is
5756 the first operand of that MINUS. This handles switches with an
5757 ADDR_DIFF_VEC table. */
5758 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
5759 {
e650cbda
RK
5760 rtx y
5761 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
5762 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
5763
5764 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
5765 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
5766 return XEXP (y, 0);
67a37737
RK
5767
5768 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
5769 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
5770 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
5771 && GET_CODE (XEXP (y, 0)) == MINUS
5772 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
5773 && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
5774 return XEXP (XEXP (y, 0), 0);
7afe21cc 5775 }
c2cc0778 5776
e650cbda
RK
5777 /* Likewise if the operands are in the other order. */
5778 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
5779 {
5780 rtx y
5781 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
5782 : lookup_as_function (folded_arg1, MINUS);
5783
5784 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
5785 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
5786 return XEXP (y, 0);
5787
5788 /* Now try for a CONST of a MINUS like the above. */
5789 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
5790 : lookup_as_function (folded_arg1, CONST))) != 0
5791 && GET_CODE (XEXP (y, 0)) == MINUS
5792 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
5793 && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
5794 return XEXP (XEXP (y, 0), 0);
5795 }
5796
c2cc0778
RK
5797 /* If second operand is a register equivalent to a negative
5798 CONST_INT, see if we can find a register equivalent to the
5799 positive constant. Make a MINUS if so. Don't do this for
5d595063 5800 a non-negative constant since we might then alternate between
c2cc0778 5801 chosing positive and negative constants. Having the positive
5d595063
RK
5802 constant previously-used is the more common case. Be sure
5803 the resulting constant is non-negative; if const_arg1 were
5804 the smallest negative number this would overflow: depending
5805 on the mode, this would either just be the same value (and
5806 hence not save anything) or be incorrect. */
5807 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
5808 && INTVAL (const_arg1) < 0
4741f6ad
JL
5809 /* This used to test
5810
5811 - INTVAL (const_arg1) >= 0
5812
5813 But The Sun V5.0 compilers mis-compiled that test. So
5814 instead we test for the problematic value in a more direct
5815 manner and hope the Sun compilers get it correct. */
5c45a8ac
KG
5816 && INTVAL (const_arg1) !=
5817 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
5d595063 5818 && GET_CODE (folded_arg1) == REG)
c2cc0778
RK
5819 {
5820 rtx new_const = GEN_INT (- INTVAL (const_arg1));
5821 struct table_elt *p
5822 = lookup (new_const, safe_hash (new_const, mode) % NBUCKETS,
5823 mode);
5824
5825 if (p)
5826 for (p = p->first_same_value; p; p = p->next_same_value)
5827 if (GET_CODE (p->exp) == REG)
5828 return cse_gen_binary (MINUS, mode, folded_arg0,
5829 canon_reg (p->exp, NULL_RTX));
5830 }
13c9910f
RS
5831 goto from_plus;
5832
5833 case MINUS:
5834 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
5835 If so, produce (PLUS Z C2-C). */
5836 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
5837 {
5838 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
5839 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
f3becefd
RK
5840 return fold_rtx (plus_constant (copy_rtx (y),
5841 -INTVAL (const_arg1)),
a3b5c94a 5842 NULL_RTX);
13c9910f 5843 }
7afe21cc 5844
0f41302f 5845 /* ... fall through ... */
7afe21cc 5846
13c9910f 5847 from_plus:
7afe21cc
RK
5848 case SMIN: case SMAX: case UMIN: case UMAX:
5849 case IOR: case AND: case XOR:
5850 case MULT: case DIV: case UDIV:
5851 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
5852 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5853 is known to be of similar form, we may be able to replace the
5854 operation with a combined operation. This may eliminate the
5855 intermediate operation if every use is simplified in this way.
5856 Note that the similar optimization done by combine.c only works
5857 if the intermediate operation's result has only one reference. */
5858
5859 if (GET_CODE (folded_arg0) == REG
5860 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
5861 {
5862 int is_shift
5863 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5864 rtx y = lookup_as_function (folded_arg0, code);
5865 rtx inner_const;
5866 enum rtx_code associate_code;
5867 rtx new_const;
5868
5869 if (y == 0
5870 || 0 == (inner_const
5871 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
5872 || GET_CODE (inner_const) != CONST_INT
5873 /* If we have compiled a statement like
5874 "if (x == (x & mask1))", and now are looking at
5875 "x & mask2", we will have a case where the first operand
5876 of Y is the same as our first operand. Unless we detect
5877 this case, an infinite loop will result. */
5878 || XEXP (y, 0) == folded_arg0)
5879 break;
5880
5881 /* Don't associate these operations if they are a PLUS with the
5882 same constant and it is a power of two. These might be doable
5883 with a pre- or post-increment. Similarly for two subtracts of
5884 identical powers of two with post decrement. */
5885
5886 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
940da324
JL
5887 && ((HAVE_PRE_INCREMENT
5888 && exact_log2 (INTVAL (const_arg1)) >= 0)
5889 || (HAVE_POST_INCREMENT
5890 && exact_log2 (INTVAL (const_arg1)) >= 0)
5891 || (HAVE_PRE_DECREMENT
5892 && exact_log2 (- INTVAL (const_arg1)) >= 0)
5893 || (HAVE_POST_DECREMENT
5894 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
7afe21cc
RK
5895 break;
5896
5897 /* Compute the code used to compose the constants. For example,
5898 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5899
5900 associate_code
5901 = (code == MULT || code == DIV || code == UDIV ? MULT
5902 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
5903
5904 new_const = simplify_binary_operation (associate_code, mode,
5905 const_arg1, inner_const);
5906
5907 if (new_const == 0)
5908 break;
5909
5910 /* If we are associating shift operations, don't let this
4908e508
RS
5911 produce a shift of the size of the object or larger.
5912 This could occur when we follow a sign-extend by a right
5913 shift on a machine that does a sign-extend as a pair
5914 of shifts. */
7afe21cc
RK
5915
5916 if (is_shift && GET_CODE (new_const) == CONST_INT
4908e508
RS
5917 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
5918 {
5919 /* As an exception, we can turn an ASHIFTRT of this
5920 form into a shift of the number of bits - 1. */
5921 if (code == ASHIFTRT)
5922 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
5923 else
5924 break;
5925 }
7afe21cc
RK
5926
5927 y = copy_rtx (XEXP (y, 0));
5928
5929 /* If Y contains our first operand (the most common way this
5930 can happen is if Y is a MEM), we would do into an infinite
5931 loop if we tried to fold it. So don't in that case. */
5932
5933 if (! reg_mentioned_p (folded_arg0, y))
5934 y = fold_rtx (y, insn);
5935
96b0e481 5936 return cse_gen_binary (code, mode, y, new_const);
7afe21cc 5937 }
e9a25f70
JL
5938 break;
5939
5940 default:
5941 break;
7afe21cc
RK
5942 }
5943
5944 new = simplify_binary_operation (code, mode,
5945 const_arg0 ? const_arg0 : folded_arg0,
5946 const_arg1 ? const_arg1 : folded_arg1);
5947 break;
5948
5949 case 'o':
5950 /* (lo_sum (high X) X) is simply X. */
5951 if (code == LO_SUM && const_arg0 != 0
5952 && GET_CODE (const_arg0) == HIGH
5953 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
5954 return const_arg1;
5955 break;
5956
5957 case '3':
5958 case 'b':
5959 new = simplify_ternary_operation (code, mode, mode_arg0,
5960 const_arg0 ? const_arg0 : folded_arg0,
5961 const_arg1 ? const_arg1 : folded_arg1,
5962 const_arg2 ? const_arg2 : XEXP (x, 2));
5963 break;
ee5332b8
RH
5964
5965 case 'x':
5966 /* Always eliminate CONSTANT_P_RTX at this stage. */
5967 if (code == CONSTANT_P_RTX)
5968 return (const_arg0 ? const1_rtx : const0_rtx);
5969 break;
7afe21cc
RK
5970 }
5971
5972 return new ? new : x;
5973}
5974\f
5975/* Return a constant value currently equivalent to X.
5976 Return 0 if we don't know one. */
5977
5978static rtx
5979equiv_constant (x)
5980 rtx x;
5981{
5982 if (GET_CODE (x) == REG
5983 && REGNO_QTY_VALID_P (REGNO (x))
30f72379
MM
5984 && qty_const[REG_QTY (REGNO (x))])
5985 x = gen_lowpart_if_possible (GET_MODE (x), qty_const[REG_QTY (REGNO (x))]);
7afe21cc 5986
2ce5e1b4 5987 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
5988 return x;
5989
fc3ffe83
RK
5990 /* If X is a MEM, try to fold it outside the context of any insn to see if
5991 it might be equivalent to a constant. That handles the case where it
5992 is a constant-pool reference. Then try to look it up in the hash table
5993 in case it is something whose value we have seen before. */
5994
5995 if (GET_CODE (x) == MEM)
5996 {
5997 struct table_elt *elt;
5998
906c4e36 5999 x = fold_rtx (x, NULL_RTX);
fc3ffe83
RK
6000 if (CONSTANT_P (x))
6001 return x;
6002
6003 elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
6004 if (elt == 0)
6005 return 0;
6006
6007 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
6008 if (elt->is_const && CONSTANT_P (elt->exp))
6009 return elt->exp;
6010 }
6011
7afe21cc
RK
6012 return 0;
6013}
6014\f
6015/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
6016 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
6017 least-significant part of X.
6018 MODE specifies how big a part of X to return.
6019
6020 If the requested operation cannot be done, 0 is returned.
6021
6022 This is similar to gen_lowpart in emit-rtl.c. */
6023
6024rtx
6025gen_lowpart_if_possible (mode, x)
6026 enum machine_mode mode;
6027 register rtx x;
6028{
6029 rtx result = gen_lowpart_common (mode, x);
6030
6031 if (result)
6032 return result;
6033 else if (GET_CODE (x) == MEM)
6034 {
6035 /* This is the only other case we handle. */
6036 register int offset = 0;
6037 rtx new;
6038
f76b9db2
ILT
6039 if (WORDS_BIG_ENDIAN)
6040 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
6041 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
6042 if (BYTES_BIG_ENDIAN)
6043 /* Adjust the address so that the address-after-the-data is
6044 unchanged. */
6045 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
6046 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
38a448ca 6047 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
7afe21cc
RK
6048 if (! memory_address_p (mode, XEXP (new, 0)))
6049 return 0;
7afe21cc 6050 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
c6df88cb 6051 MEM_COPY_ATTRIBUTES (new, x);
7afe21cc
RK
6052 return new;
6053 }
6054 else
6055 return 0;
6056}
6057\f
6058/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
6059 branch. It will be zero if not.
6060
6061 In certain cases, this can cause us to add an equivalence. For example,
6062 if we are following the taken case of
6063 if (i == 2)
6064 we can add the fact that `i' and '2' are now equivalent.
6065
6066 In any case, we can record that this comparison was passed. If the same
6067 comparison is seen later, we will know its value. */
6068
6069static void
6070record_jump_equiv (insn, taken)
6071 rtx insn;
6072 int taken;
6073{
6074 int cond_known_true;
6075 rtx op0, op1;
13c9910f 6076 enum machine_mode mode, mode0, mode1;
7afe21cc
RK
6077 int reversed_nonequality = 0;
6078 enum rtx_code code;
6079
6080 /* Ensure this is the right kind of insn. */
6081 if (! condjump_p (insn) || simplejump_p (insn))
6082 return;
6083
6084 /* See if this jump condition is known true or false. */
6085 if (taken)
6086 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
6087 else
6088 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);
6089
6090 /* Get the type of comparison being done and the operands being compared.
6091 If we had to reverse a non-equality condition, record that fact so we
6092 know that it isn't valid for floating-point. */
6093 code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
6094 op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
6095 op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);
6096
13c9910f 6097 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
6098 if (! cond_known_true)
6099 {
6100 reversed_nonequality = (code != EQ && code != NE);
6101 code = reverse_condition (code);
6102 }
6103
6104 /* The mode is the mode of the non-constant. */
13c9910f
RS
6105 mode = mode0;
6106 if (mode1 != VOIDmode)
6107 mode = mode1;
7afe21cc
RK
6108
6109 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
6110}
6111
6112/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
6113 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
6114 Make any useful entries we can with that information. Called from
6115 above function and called recursively. */
6116
6117static void
6118record_jump_cond (code, mode, op0, op1, reversed_nonequality)
6119 enum rtx_code code;
6120 enum machine_mode mode;
6121 rtx op0, op1;
6122 int reversed_nonequality;
6123{
2197a88a 6124 unsigned op0_hash, op1_hash;
7afe21cc
RK
6125 int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
6126 struct table_elt *op0_elt, *op1_elt;
6127
6128 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
6129 we know that they are also equal in the smaller mode (this is also
6130 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 6131 is not worth testing for with no SUBREG). */
7afe21cc 6132
2e794ee8 6133 /* Note that GET_MODE (op0) may not equal MODE. */
7afe21cc 6134 if (code == EQ && GET_CODE (op0) == SUBREG
2e794ee8
RS
6135 && (GET_MODE_SIZE (GET_MODE (op0))
6136 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
6137 {
6138 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
6139 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
6140
6141 record_jump_cond (code, mode, SUBREG_REG (op0),
38a448ca 6142 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
7afe21cc
RK
6143 reversed_nonequality);
6144 }
6145
6146 if (code == EQ && GET_CODE (op1) == SUBREG
2e794ee8
RS
6147 && (GET_MODE_SIZE (GET_MODE (op1))
6148 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
6149 {
6150 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
6151 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
6152
6153 record_jump_cond (code, mode, SUBREG_REG (op1),
38a448ca 6154 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
7afe21cc
RK
6155 reversed_nonequality);
6156 }
6157
6158 /* Similarly, if this is an NE comparison, and either is a SUBREG
6159 making a smaller mode, we know the whole thing is also NE. */
6160
2e794ee8
RS
6161 /* Note that GET_MODE (op0) may not equal MODE;
6162 if we test MODE instead, we can get an infinite recursion
6163 alternating between two modes each wider than MODE. */
6164
7afe21cc
RK
6165 if (code == NE && GET_CODE (op0) == SUBREG
6166 && subreg_lowpart_p (op0)
2e794ee8
RS
6167 && (GET_MODE_SIZE (GET_MODE (op0))
6168 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc
RK
6169 {
6170 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
6171 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
6172
6173 record_jump_cond (code, mode, SUBREG_REG (op0),
38a448ca 6174 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
7afe21cc
RK
6175 reversed_nonequality);
6176 }
6177
6178 if (code == NE && GET_CODE (op1) == SUBREG
6179 && subreg_lowpart_p (op1)
2e794ee8
RS
6180 && (GET_MODE_SIZE (GET_MODE (op1))
6181 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc
RK
6182 {
6183 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
6184 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
6185
6186 record_jump_cond (code, mode, SUBREG_REG (op1),
38a448ca 6187 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
7afe21cc
RK
6188 reversed_nonequality);
6189 }
6190
6191 /* Hash both operands. */
6192
6193 do_not_record = 0;
6194 hash_arg_in_memory = 0;
6195 hash_arg_in_struct = 0;
2197a88a 6196 op0_hash = HASH (op0, mode);
7afe21cc
RK
6197 op0_in_memory = hash_arg_in_memory;
6198 op0_in_struct = hash_arg_in_struct;
6199
6200 if (do_not_record)
6201 return;
6202
6203 do_not_record = 0;
6204 hash_arg_in_memory = 0;
6205 hash_arg_in_struct = 0;
2197a88a 6206 op1_hash = HASH (op1, mode);
7afe21cc
RK
6207 op1_in_memory = hash_arg_in_memory;
6208 op1_in_struct = hash_arg_in_struct;
6209
6210 if (do_not_record)
6211 return;
6212
6213 /* Look up both operands. */
2197a88a
RK
6214 op0_elt = lookup (op0, op0_hash, mode);
6215 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 6216
af3869c1
RK
6217 /* If both operands are already equivalent or if they are not in the
6218 table but are identical, do nothing. */
6219 if ((op0_elt != 0 && op1_elt != 0
6220 && op0_elt->first_same_value == op1_elt->first_same_value)
6221 || op0 == op1 || rtx_equal_p (op0, op1))
6222 return;
6223
7afe21cc 6224 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
6225 comparison. Similarly if this is floating-point. In the latter
6226 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
6227 If we record the equality, we might inadvertently delete code
6228 whose intent was to change -0 to +0. */
6229
cbf6a543 6230 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc
RK
6231 {
6232 /* If we reversed a floating-point comparison, if OP0 is not a
6233 register, or if OP1 is neither a register or constant, we can't
6234 do anything. */
6235
6236 if (GET_CODE (op1) != REG)
6237 op1 = equiv_constant (op1);
6238
cbf6a543 6239 if ((reversed_nonequality && FLOAT_MODE_P (mode))
7afe21cc
RK
6240 || GET_CODE (op0) != REG || op1 == 0)
6241 return;
6242
6243 /* Put OP0 in the hash table if it isn't already. This gives it a
6244 new quantity number. */
6245 if (op0_elt == 0)
6246 {
906c4e36 6247 if (insert_regs (op0, NULL_PTR, 0))
7afe21cc
RK
6248 {
6249 rehash_using_reg (op0);
2197a88a 6250 op0_hash = HASH (op0, mode);
2bb81c86
RK
6251
6252 /* If OP0 is contained in OP1, this changes its hash code
6253 as well. Faster to rehash than to check, except
6254 for the simple case of a constant. */
6255 if (! CONSTANT_P (op1))
2197a88a 6256 op1_hash = HASH (op1,mode);
7afe21cc
RK
6257 }
6258
2197a88a 6259 op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
7afe21cc
RK
6260 op0_elt->in_memory = op0_in_memory;
6261 op0_elt->in_struct = op0_in_struct;
6262 }
6263
30f72379 6264 qty_comparison_code[REG_QTY (REGNO (op0))] = code;
7afe21cc
RK
6265 if (GET_CODE (op1) == REG)
6266 {
5d5ea909 6267 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 6268 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 6269
7afe21cc
RK
6270 /* Put OP1 in the hash table so it gets a new quantity number. */
6271 if (op1_elt == 0)
6272 {
906c4e36 6273 if (insert_regs (op1, NULL_PTR, 0))
7afe21cc
RK
6274 {
6275 rehash_using_reg (op1);
2197a88a 6276 op1_hash = HASH (op1, mode);
7afe21cc
RK
6277 }
6278
2197a88a 6279 op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
7afe21cc
RK
6280 op1_elt->in_memory = op1_in_memory;
6281 op1_elt->in_struct = op1_in_struct;
6282 }
6283
30f72379
MM
6284 qty_comparison_qty[REG_QTY (REGNO (op0))] = REG_QTY (REGNO (op1));
6285 qty_comparison_const[REG_QTY (REGNO (op0))] = 0;
7afe21cc
RK
6286 }
6287 else
6288 {
30f72379
MM
6289 qty_comparison_qty[REG_QTY (REGNO (op0))] = -1;
6290 qty_comparison_const[REG_QTY (REGNO (op0))] = op1;
7afe21cc
RK
6291 }
6292
6293 return;
6294 }
6295
eb5ad42a
RS
6296 /* If either side is still missing an equivalence, make it now,
6297 then merge the equivalences. */
7afe21cc 6298
7afe21cc
RK
6299 if (op0_elt == 0)
6300 {
eb5ad42a 6301 if (insert_regs (op0, NULL_PTR, 0))
7afe21cc
RK
6302 {
6303 rehash_using_reg (op0);
2197a88a 6304 op0_hash = HASH (op0, mode);
7afe21cc
RK
6305 }
6306
2197a88a 6307 op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
7afe21cc
RK
6308 op0_elt->in_memory = op0_in_memory;
6309 op0_elt->in_struct = op0_in_struct;
7afe21cc
RK
6310 }
6311
6312 if (op1_elt == 0)
6313 {
eb5ad42a 6314 if (insert_regs (op1, NULL_PTR, 0))
7afe21cc
RK
6315 {
6316 rehash_using_reg (op1);
2197a88a 6317 op1_hash = HASH (op1, mode);
7afe21cc
RK
6318 }
6319
2197a88a 6320 op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
7afe21cc
RK
6321 op1_elt->in_memory = op1_in_memory;
6322 op1_elt->in_struct = op1_in_struct;
7afe21cc 6323 }
eb5ad42a
RS
6324
6325 merge_equiv_classes (op0_elt, op1_elt);
6326 last_jump_equiv_class = op0_elt;
7afe21cc
RK
6327}
6328\f
6329/* CSE processing for one instruction.
6330 First simplify sources and addresses of all assignments
6331 in the instruction, using previously-computed equivalents values.
6332 Then install the new sources and destinations in the table
6333 of available values.
6334
1ed0205e
VM
6335 If LIBCALL_INSN is nonzero, don't record any equivalence made in
6336 the insn. It means that INSN is inside libcall block. In this
6337 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
7afe21cc
RK
6338
6339/* Data on one SET contained in the instruction. */
6340
6341struct set
6342{
6343 /* The SET rtx itself. */
6344 rtx rtl;
6345 /* The SET_SRC of the rtx (the original value, if it is changing). */
6346 rtx src;
6347 /* The hash-table element for the SET_SRC of the SET. */
6348 struct table_elt *src_elt;
2197a88a
RK
6349 /* Hash value for the SET_SRC. */
6350 unsigned src_hash;
6351 /* Hash value for the SET_DEST. */
6352 unsigned dest_hash;
7afe21cc
RK
6353 /* The SET_DEST, with SUBREG, etc., stripped. */
6354 rtx inner_dest;
6355 /* Place where the pointer to the INNER_DEST was found. */
6356 rtx *inner_dest_loc;
6357 /* Nonzero if the SET_SRC is in memory. */
6358 char src_in_memory;
6359 /* Nonzero if the SET_SRC is in a structure. */
6360 char src_in_struct;
6361 /* Nonzero if the SET_SRC contains something
6362 whose value cannot be predicted and understood. */
6363 char src_volatile;
6364 /* Original machine mode, in case it becomes a CONST_INT. */
6365 enum machine_mode mode;
6366 /* A constant equivalent for SET_SRC, if any. */
6367 rtx src_const;
2197a88a
RK
6368 /* Hash value of constant equivalent for SET_SRC. */
6369 unsigned src_const_hash;
7afe21cc
RK
6370 /* Table entry for constant equivalent for SET_SRC, if any. */
6371 struct table_elt *src_const_elt;
6372};
6373
6374static void
7bd8b2a8 6375cse_insn (insn, libcall_insn)
7afe21cc 6376 rtx insn;
7bd8b2a8 6377 rtx libcall_insn;
7afe21cc
RK
6378{
6379 register rtx x = PATTERN (insn);
7afe21cc 6380 register int i;
92f9aa51 6381 rtx tem;
7afe21cc
RK
6382 register int n_sets = 0;
6383
2d8b0f3a 6384#ifdef HAVE_cc0
7afe21cc
RK
6385 /* Records what this insn does to set CC0. */
6386 rtx this_insn_cc0 = 0;
135d84b8 6387 enum machine_mode this_insn_cc0_mode = VOIDmode;
2d8b0f3a 6388#endif
7afe21cc
RK
6389
6390 rtx src_eqv = 0;
6391 struct table_elt *src_eqv_elt = 0;
6a651371
KG
6392 int src_eqv_volatile = 0;
6393 int src_eqv_in_memory = 0;
6394 int src_eqv_in_struct = 0;
6395 unsigned src_eqv_hash = 0;
7afe21cc 6396
6a651371 6397 struct set *sets = NULL_PTR;
7afe21cc
RK
6398
6399 this_insn = insn;
7afe21cc
RK
6400
6401 /* Find all the SETs and CLOBBERs in this instruction.
6402 Record all the SETs in the array `set' and count them.
6403 Also determine whether there is a CLOBBER that invalidates
6404 all memory references, or all references at varying addresses. */
6405
f1e7c95f
RK
6406 if (GET_CODE (insn) == CALL_INSN)
6407 {
6408 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6409 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
bb4034b3 6410 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
f1e7c95f
RK
6411 }
6412
7afe21cc
RK
6413 if (GET_CODE (x) == SET)
6414 {
6415 sets = (struct set *) alloca (sizeof (struct set));
6416 sets[0].rtl = x;
6417
6418 /* Ignore SETs that are unconditional jumps.
6419 They never need cse processing, so this does not hurt.
6420 The reason is not efficiency but rather
6421 so that we can test at the end for instructions
6422 that have been simplified to unconditional jumps
6423 and not be misled by unchanged instructions
6424 that were unconditional jumps to begin with. */
6425 if (SET_DEST (x) == pc_rtx
6426 && GET_CODE (SET_SRC (x)) == LABEL_REF)
6427 ;
6428
6429 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
6430 The hard function value register is used only once, to copy to
6431 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
6432 Ensure we invalidate the destination register. On the 80386 no
7722328e 6433 other code would invalidate it since it is a fixed_reg.
0f41302f 6434 We need not check the return of apply_change_group; see canon_reg. */
7afe21cc
RK
6435
6436 else if (GET_CODE (SET_SRC (x)) == CALL)
6437 {
6438 canon_reg (SET_SRC (x), insn);
77fa0940 6439 apply_change_group ();
7afe21cc 6440 fold_rtx (SET_SRC (x), insn);
bb4034b3 6441 invalidate (SET_DEST (x), VOIDmode);
7afe21cc
RK
6442 }
6443 else
6444 n_sets = 1;
6445 }
6446 else if (GET_CODE (x) == PARALLEL)
6447 {
6448 register int lim = XVECLEN (x, 0);
6449
6450 sets = (struct set *) alloca (lim * sizeof (struct set));
6451
6452 /* Find all regs explicitly clobbered in this insn,
6453 and ensure they are not replaced with any other regs
6454 elsewhere in this insn.
6455 When a reg that is clobbered is also used for input,
6456 we should presume that that is for a reason,
6457 and we should not substitute some other register
6458 which is not supposed to be clobbered.
6459 Therefore, this loop cannot be merged into the one below
830a38ee 6460 because a CALL may precede a CLOBBER and refer to the
7afe21cc
RK
6461 value clobbered. We must not let a canonicalization do
6462 anything in that case. */
6463 for (i = 0; i < lim; i++)
6464 {
6465 register rtx y = XVECEXP (x, 0, i);
2708da92
RS
6466 if (GET_CODE (y) == CLOBBER)
6467 {
6468 rtx clobbered = XEXP (y, 0);
6469
6470 if (GET_CODE (clobbered) == REG
6471 || GET_CODE (clobbered) == SUBREG)
bb4034b3 6472 invalidate (clobbered, VOIDmode);
2708da92
RS
6473 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6474 || GET_CODE (clobbered) == ZERO_EXTRACT)
bb4034b3 6475 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
2708da92 6476 }
7afe21cc
RK
6477 }
6478
6479 for (i = 0; i < lim; i++)
6480 {
6481 register rtx y = XVECEXP (x, 0, i);
6482 if (GET_CODE (y) == SET)
6483 {
7722328e
RK
6484 /* As above, we ignore unconditional jumps and call-insns and
6485 ignore the result of apply_change_group. */
7afe21cc
RK
6486 if (GET_CODE (SET_SRC (y)) == CALL)
6487 {
6488 canon_reg (SET_SRC (y), insn);
77fa0940 6489 apply_change_group ();
7afe21cc 6490 fold_rtx (SET_SRC (y), insn);
bb4034b3 6491 invalidate (SET_DEST (y), VOIDmode);
7afe21cc
RK
6492 }
6493 else if (SET_DEST (y) == pc_rtx
6494 && GET_CODE (SET_SRC (y)) == LABEL_REF)
6495 ;
6496 else
6497 sets[n_sets++].rtl = y;
6498 }
6499 else if (GET_CODE (y) == CLOBBER)
6500 {
9ae8ffe7 6501 /* If we clobber memory, canon the address.
7afe21cc
RK
6502 This does nothing when a register is clobbered
6503 because we have already invalidated the reg. */
6504 if (GET_CODE (XEXP (y, 0)) == MEM)
9ae8ffe7 6505 canon_reg (XEXP (y, 0), NULL_RTX);
7afe21cc
RK
6506 }
6507 else if (GET_CODE (y) == USE
6508 && ! (GET_CODE (XEXP (y, 0)) == REG
6509 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 6510 canon_reg (y, NULL_RTX);
7afe21cc
RK
6511 else if (GET_CODE (y) == CALL)
6512 {
7722328e
RK
6513 /* The result of apply_change_group can be ignored; see
6514 canon_reg. */
7afe21cc 6515 canon_reg (y, insn);
77fa0940 6516 apply_change_group ();
7afe21cc
RK
6517 fold_rtx (y, insn);
6518 }
6519 }
6520 }
6521 else if (GET_CODE (x) == CLOBBER)
6522 {
6523 if (GET_CODE (XEXP (x, 0)) == MEM)
9ae8ffe7 6524 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
6525 }
6526
6527 /* Canonicalize a USE of a pseudo register or memory location. */
6528 else if (GET_CODE (x) == USE
6529 && ! (GET_CODE (XEXP (x, 0)) == REG
6530 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
906c4e36 6531 canon_reg (XEXP (x, 0), NULL_RTX);
7afe21cc
RK
6532 else if (GET_CODE (x) == CALL)
6533 {
7722328e 6534 /* The result of apply_change_group can be ignored; see canon_reg. */
7afe21cc 6535 canon_reg (x, insn);
77fa0940 6536 apply_change_group ();
7afe21cc
RK
6537 fold_rtx (x, insn);
6538 }
6539
7b3ab05e
JW
6540 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
6541 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
6542 is handled specially for this case, and if it isn't set, then there will
9faa82d8 6543 be no equivalence for the destination. */
92f9aa51
RK
6544 if (n_sets == 1 && REG_NOTES (insn) != 0
6545 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
7b3ab05e
JW
6546 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
6547 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
92f9aa51 6548 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
7afe21cc
RK
6549
6550 /* Canonicalize sources and addresses of destinations.
6551 We do this in a separate pass to avoid problems when a MATCH_DUP is
6552 present in the insn pattern. In that case, we want to ensure that
6553 we don't break the duplicate nature of the pattern. So we will replace
6554 both operands at the same time. Otherwise, we would fail to find an
6555 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
6556
6557 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 6558 but we don't do this any more. */
7afe21cc
RK
6559
6560 for (i = 0; i < n_sets; i++)
6561 {
6562 rtx dest = SET_DEST (sets[i].rtl);
6563 rtx src = SET_SRC (sets[i].rtl);
6564 rtx new = canon_reg (src, insn);
58873255 6565 int insn_code;
7afe21cc 6566
77fa0940
RK
6567 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
6568 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
6569 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
58873255 6570 || (insn_code = recog_memoized (insn)) < 0
a995e389 6571 || insn_data[insn_code].n_dups > 0)
77fa0940 6572 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
7afe21cc
RK
6573 else
6574 SET_SRC (sets[i].rtl) = new;
6575
6576 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
6577 {
6578 validate_change (insn, &XEXP (dest, 1),
77fa0940 6579 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 6580 validate_change (insn, &XEXP (dest, 2),
77fa0940 6581 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
6582 }
6583
6584 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
6585 || GET_CODE (dest) == ZERO_EXTRACT
6586 || GET_CODE (dest) == SIGN_EXTRACT)
6587 dest = XEXP (dest, 0);
6588
6589 if (GET_CODE (dest) == MEM)
6590 canon_reg (dest, insn);
6591 }
6592
77fa0940
RK
6593 /* Now that we have done all the replacements, we can apply the change
6594 group and see if they all work. Note that this will cause some
6595 canonicalizations that would have worked individually not to be applied
6596 because some other canonicalization didn't work, but this should not
7722328e
RK
6597 occur often.
6598
6599 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
6600
6601 apply_change_group ();
6602
7afe21cc
RK
6603 /* Set sets[i].src_elt to the class each source belongs to.
6604 Detect assignments from or to volatile things
6605 and set set[i] to zero so they will be ignored
6606 in the rest of this function.
6607
6608 Nothing in this loop changes the hash table or the register chains. */
6609
6610 for (i = 0; i < n_sets; i++)
6611 {
6612 register rtx src, dest;
6613 register rtx src_folded;
6614 register struct table_elt *elt = 0, *p;
6615 enum machine_mode mode;
6616 rtx src_eqv_here;
6617 rtx src_const = 0;
6618 rtx src_related = 0;
6619 struct table_elt *src_const_elt = 0;
6620 int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
6621 int src_related_cost = 10000, src_elt_cost = 10000;
6622 /* Set non-zero if we need to call force_const_mem on with the
6623 contents of src_folded before using it. */
6624 int src_folded_force_flag = 0;
6625
6626 dest = SET_DEST (sets[i].rtl);
6627 src = SET_SRC (sets[i].rtl);
6628
6629 /* If SRC is a constant that has no machine mode,
6630 hash it with the destination's machine mode.
6631 This way we can keep different modes separate. */
6632
6633 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
6634 sets[i].mode = mode;
6635
6636 if (src_eqv)
6637 {
6638 enum machine_mode eqvmode = mode;
6639 if (GET_CODE (dest) == STRICT_LOW_PART)
6640 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
6641 do_not_record = 0;
6642 hash_arg_in_memory = 0;
6643 hash_arg_in_struct = 0;
6644 src_eqv = fold_rtx (src_eqv, insn);
2197a88a 6645 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
6646
6647 /* Find the equivalence class for the equivalent expression. */
6648
6649 if (!do_not_record)
2197a88a 6650 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
6651
6652 src_eqv_volatile = do_not_record;
6653 src_eqv_in_memory = hash_arg_in_memory;
6654 src_eqv_in_struct = hash_arg_in_struct;
6655 }
6656
6657 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
6658 value of the INNER register, not the destination. So it is not
3826a3da 6659 a valid substitution for the source. But save it for later. */
7afe21cc
RK
6660 if (GET_CODE (dest) == STRICT_LOW_PART)
6661 src_eqv_here = 0;
6662 else
6663 src_eqv_here = src_eqv;
6664
6665 /* Simplify and foldable subexpressions in SRC. Then get the fully-
6666 simplified result, which may not necessarily be valid. */
6667 src_folded = fold_rtx (src, insn);
6668
e6a125a0
RK
6669#if 0
6670 /* ??? This caused bad code to be generated for the m68k port with -O2.
6671 Suppose src is (CONST_INT -1), and that after truncation src_folded
6672 is (CONST_INT 3). Suppose src_folded is then used for src_const.
6673 At the end we will add src and src_const to the same equivalence
6674 class. We now have 3 and -1 on the same equivalence class. This
6675 causes later instructions to be mis-optimized. */
7afe21cc
RK
6676 /* If storing a constant in a bitfield, pre-truncate the constant
6677 so we will be able to record it later. */
6678 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
6679 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
6680 {
6681 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
6682
6683 if (GET_CODE (src) == CONST_INT
6684 && GET_CODE (width) == CONST_INT
906c4e36
RK
6685 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
6686 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
6687 src_folded
6688 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
6689 << INTVAL (width)) - 1));
7afe21cc 6690 }
e6a125a0 6691#endif
7afe21cc
RK
6692
6693 /* Compute SRC's hash code, and also notice if it
6694 should not be recorded at all. In that case,
6695 prevent any further processing of this assignment. */
6696 do_not_record = 0;
6697 hash_arg_in_memory = 0;
6698 hash_arg_in_struct = 0;
6699
6700 sets[i].src = src;
2197a88a 6701 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
6702 sets[i].src_volatile = do_not_record;
6703 sets[i].src_in_memory = hash_arg_in_memory;
6704 sets[i].src_in_struct = hash_arg_in_struct;
6705
50196afa
RK
6706 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
6707 a pseudo that is set more than once, do not record SRC. Using
6708 SRC as a replacement for anything else will be incorrect in that
6709 situation. Note that this usually occurs only for stack slots,
956d6950 6710 in which case all the RTL would be referring to SRC, so we don't
50196afa
RK
6711 lose any optimization opportunities by not having SRC in the
6712 hash table. */
6713
6714 if (GET_CODE (src) == MEM
6715 && find_reg_note (insn, REG_EQUIV, src) != 0
6716 && GET_CODE (dest) == REG
6717 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
b1f21e0a 6718 && REG_N_SETS (REGNO (dest)) != 1)
50196afa
RK
6719 sets[i].src_volatile = 1;
6720
0dadecf6
RK
6721#if 0
6722 /* It is no longer clear why we used to do this, but it doesn't
6723 appear to still be needed. So let's try without it since this
6724 code hurts cse'ing widened ops. */
7afe21cc
RK
6725 /* If source is a perverse subreg (such as QI treated as an SI),
6726 treat it as volatile. It may do the work of an SI in one context
6727 where the extra bits are not being used, but cannot replace an SI
6728 in general. */
6729 if (GET_CODE (src) == SUBREG
6730 && (GET_MODE_SIZE (GET_MODE (src))
6731 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6732 sets[i].src_volatile = 1;
0dadecf6 6733#endif
7afe21cc
RK
6734
6735 /* Locate all possible equivalent forms for SRC. Try to replace
6736 SRC in the insn with each cheaper equivalent.
6737
6738 We have the following types of equivalents: SRC itself, a folded
6739 version, a value given in a REG_EQUAL note, or a value related
6740 to a constant.
6741
6742 Each of these equivalents may be part of an additional class
6743 of equivalents (if more than one is in the table, they must be in
6744 the same class; we check for this).
6745
6746 If the source is volatile, we don't do any table lookups.
6747
6748 We note any constant equivalent for possible later use in a
6749 REG_NOTE. */
6750
6751 if (!sets[i].src_volatile)
2197a88a 6752 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
6753
6754 sets[i].src_elt = elt;
6755
6756 if (elt && src_eqv_here && src_eqv_elt)
6757 {
6758 if (elt->first_same_value != src_eqv_elt->first_same_value)
6759 {
6760 /* The REG_EQUAL is indicating that two formerly distinct
6761 classes are now equivalent. So merge them. */
6762 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
6763 src_eqv_hash = HASH (src_eqv, elt->mode);
6764 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
6765 }
6766
6767 src_eqv_here = 0;
6768 }
6769
6770 else if (src_eqv_elt)
6771 elt = src_eqv_elt;
6772
6773 /* Try to find a constant somewhere and record it in `src_const'.
6774 Record its table element, if any, in `src_const_elt'. Look in
6775 any known equivalences first. (If the constant is not in the
2197a88a 6776 table, also set `sets[i].src_const_hash'). */
7afe21cc
RK
6777 if (elt)
6778 for (p = elt->first_same_value; p; p = p->next_same_value)
6779 if (p->is_const)
6780 {
6781 src_const = p->exp;
6782 src_const_elt = elt;
6783 break;
6784 }
6785
6786 if (src_const == 0
6787 && (CONSTANT_P (src_folded)
6788 /* Consider (minus (label_ref L1) (label_ref L2)) as
6789 "constant" here so we will record it. This allows us
6790 to fold switch statements when an ADDR_DIFF_VEC is used. */
6791 || (GET_CODE (src_folded) == MINUS
6792 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
6793 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
6794 src_const = src_folded, src_const_elt = elt;
6795 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
6796 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
6797
6798 /* If we don't know if the constant is in the table, get its
6799 hash code and look it up. */
6800 if (src_const && src_const_elt == 0)
6801 {
2197a88a
RK
6802 sets[i].src_const_hash = HASH (src_const, mode);
6803 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
6804 }
6805
6806 sets[i].src_const = src_const;
6807 sets[i].src_const_elt = src_const_elt;
6808
6809 /* If the constant and our source are both in the table, mark them as
6810 equivalent. Otherwise, if a constant is in the table but the source
6811 isn't, set ELT to it. */
6812 if (src_const_elt && elt
6813 && src_const_elt->first_same_value != elt->first_same_value)
6814 merge_equiv_classes (elt, src_const_elt);
6815 else if (src_const_elt && elt == 0)
6816 elt = src_const_elt;
6817
6818 /* See if there is a register linearly related to a constant
6819 equivalent of SRC. */
6820 if (src_const
6821 && (GET_CODE (src_const) == CONST
6822 || (src_const_elt && src_const_elt->related_value != 0)))
6823 {
6824 src_related = use_related_value (src_const, src_const_elt);
6825 if (src_related)
6826 {
6827 struct table_elt *src_related_elt
6828 = lookup (src_related, HASH (src_related, mode), mode);
6829 if (src_related_elt && elt)
6830 {
6831 if (elt->first_same_value
6832 != src_related_elt->first_same_value)
6833 /* This can occur when we previously saw a CONST
6834 involving a SYMBOL_REF and then see the SYMBOL_REF
6835 twice. Merge the involved classes. */
6836 merge_equiv_classes (elt, src_related_elt);
6837
6838 src_related = 0;
6839 src_related_elt = 0;
6840 }
6841 else if (src_related_elt && elt == 0)
6842 elt = src_related_elt;
6843 }
6844 }
6845
e4600702
RK
6846 /* See if we have a CONST_INT that is already in a register in a
6847 wider mode. */
6848
6849 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
6850 && GET_MODE_CLASS (mode) == MODE_INT
6851 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
6852 {
6853 enum machine_mode wider_mode;
6854
6855 for (wider_mode = GET_MODE_WIDER_MODE (mode);
6856 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
6857 && src_related == 0;
6858 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
6859 {
6860 struct table_elt *const_elt
6861 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
6862
6863 if (const_elt == 0)
6864 continue;
6865
6866 for (const_elt = const_elt->first_same_value;
6867 const_elt; const_elt = const_elt->next_same_value)
6868 if (GET_CODE (const_elt->exp) == REG)
6869 {
6870 src_related = gen_lowpart_if_possible (mode,
6871 const_elt->exp);
6872 break;
6873 }
6874 }
6875 }
6876
d45cf215
RS
6877 /* Another possibility is that we have an AND with a constant in
6878 a mode narrower than a word. If so, it might have been generated
6879 as part of an "if" which would narrow the AND. If we already
6880 have done the AND in a wider mode, we can use a SUBREG of that
6881 value. */
6882
6883 if (flag_expensive_optimizations && ! src_related
6884 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
6885 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
6886 {
6887 enum machine_mode tmode;
38a448ca 6888 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215
RS
6889
6890 for (tmode = GET_MODE_WIDER_MODE (mode);
6891 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
6892 tmode = GET_MODE_WIDER_MODE (tmode))
6893 {
6894 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
6895 struct table_elt *larger_elt;
6896
6897 if (inner)
6898 {
6899 PUT_MODE (new_and, tmode);
6900 XEXP (new_and, 0) = inner;
6901 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
6902 if (larger_elt == 0)
6903 continue;
6904
6905 for (larger_elt = larger_elt->first_same_value;
6906 larger_elt; larger_elt = larger_elt->next_same_value)
6907 if (GET_CODE (larger_elt->exp) == REG)
6908 {
6909 src_related
6910 = gen_lowpart_if_possible (mode, larger_elt->exp);
6911 break;
6912 }
6913
6914 if (src_related)
6915 break;
6916 }
6917 }
6918 }
7bac1be0
RK
6919
6920#ifdef LOAD_EXTEND_OP
6921 /* See if a MEM has already been loaded with a widening operation;
6922 if it has, we can use a subreg of that. Many CISC machines
6923 also have such operations, but this is only likely to be
6924 beneficial these machines. */
6925
6926 if (flag_expensive_optimizations && src_related == 0
6927 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
6928 && GET_MODE_CLASS (mode) == MODE_INT
6929 && GET_CODE (src) == MEM && ! do_not_record
6930 && LOAD_EXTEND_OP (mode) != NIL)
6931 {
6932 enum machine_mode tmode;
6933
6934 /* Set what we are trying to extend and the operation it might
6935 have been extended with. */
6936 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
6937 XEXP (memory_extend_rtx, 0) = src;
6938
6939 for (tmode = GET_MODE_WIDER_MODE (mode);
6940 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
6941 tmode = GET_MODE_WIDER_MODE (tmode))
6942 {
6943 struct table_elt *larger_elt;
6944
6945 PUT_MODE (memory_extend_rtx, tmode);
6946 larger_elt = lookup (memory_extend_rtx,
6947 HASH (memory_extend_rtx, tmode), tmode);
6948 if (larger_elt == 0)
6949 continue;
6950
6951 for (larger_elt = larger_elt->first_same_value;
6952 larger_elt; larger_elt = larger_elt->next_same_value)
6953 if (GET_CODE (larger_elt->exp) == REG)
6954 {
6955 src_related = gen_lowpart_if_possible (mode,
6956 larger_elt->exp);
6957 break;
6958 }
6959
6960 if (src_related)
6961 break;
6962 }
6963 }
6964#endif /* LOAD_EXTEND_OP */
6965
7afe21cc
RK
6966 if (src == src_folded)
6967 src_folded = 0;
6968
6969 /* At this point, ELT, if non-zero, points to a class of expressions
6970 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6971 and SRC_RELATED, if non-zero, each contain additional equivalent
6972 expressions. Prune these latter expressions by deleting expressions
6973 already in the equivalence class.
6974
6975 Check for an equivalent identical to the destination. If found,
6976 this is the preferred equivalent since it will likely lead to
6977 elimination of the insn. Indicate this by placing it in
6978 `src_related'. */
6979
6980 if (elt) elt = elt->first_same_value;
6981 for (p = elt; p; p = p->next_same_value)
6982 {
6983 enum rtx_code code = GET_CODE (p->exp);
6984
6985 /* If the expression is not valid, ignore it. Then we do not
6986 have to check for validity below. In most cases, we can use
6987 `rtx_equal_p', since canonicalization has already been done. */
6988 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
6989 continue;
6990
5a03c8c4
RK
6991 /* Also skip paradoxical subregs, unless that's what we're
6992 looking for. */
6993 if (code == SUBREG
6994 && (GET_MODE_SIZE (GET_MODE (p->exp))
6995 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
6996 && ! (src != 0
6997 && GET_CODE (src) == SUBREG
6998 && GET_MODE (src) == GET_MODE (p->exp)
6999 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
7000 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
7001 continue;
7002
7afe21cc
RK
7003 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7004 src = 0;
7005 else if (src_folded && GET_CODE (src_folded) == code
7006 && rtx_equal_p (src_folded, p->exp))
7007 src_folded = 0;
7008 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7009 && rtx_equal_p (src_eqv_here, p->exp))
7010 src_eqv_here = 0;
7011 else if (src_related && GET_CODE (src_related) == code
7012 && rtx_equal_p (src_related, p->exp))
7013 src_related = 0;
7014
7015 /* This is the same as the destination of the insns, we want
7016 to prefer it. Copy it to src_related. The code below will
7017 then give it a negative cost. */
7018 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
7019 src_related = dest;
7020
7021 }
7022
7023 /* Find the cheapest valid equivalent, trying all the available
7024 possibilities. Prefer items not in the hash table to ones
7025 that are when they are equal cost. Note that we can never
7026 worsen an insn as the current contents will also succeed.
05c33dd8 7027 If we find an equivalent identical to the destination, use it as best,
0f41302f 7028 since this insn will probably be eliminated in that case. */
7afe21cc
RK
7029 if (src)
7030 {
7031 if (rtx_equal_p (src, dest))
7032 src_cost = -1;
7033 else
7034 src_cost = COST (src);
7035 }
7036
7037 if (src_eqv_here)
7038 {
7039 if (rtx_equal_p (src_eqv_here, dest))
7040 src_eqv_cost = -1;
7041 else
7042 src_eqv_cost = COST (src_eqv_here);
7043 }
7044
7045 if (src_folded)
7046 {
7047 if (rtx_equal_p (src_folded, dest))
7048 src_folded_cost = -1;
7049 else
7050 src_folded_cost = COST (src_folded);
7051 }
7052
7053 if (src_related)
7054 {
7055 if (rtx_equal_p (src_related, dest))
7056 src_related_cost = -1;
7057 else
7058 src_related_cost = COST (src_related);
7059 }
7060
7061 /* If this was an indirect jump insn, a known label will really be
7062 cheaper even though it looks more expensive. */
7063 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
7064 src_folded = src_const, src_folded_cost = -1;
7065
7066 /* Terminate loop when replacement made. This must terminate since
7067 the current contents will be tested and will always be valid. */
7068 while (1)
7069 {
7bd8b2a8 7070 rtx trial, old_src;
7afe21cc
RK
7071
7072 /* Skip invalid entries. */
7073 while (elt && GET_CODE (elt->exp) != REG
7074 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
7075 elt = elt->next_same_value;
5a03c8c4
RK
7076
7077 /* A paradoxical subreg would be bad here: it'll be the right
7078 size, but later may be adjusted so that the upper bits aren't
7079 what we want. So reject it. */
7080 if (elt != 0
7081 && GET_CODE (elt->exp) == SUBREG
7082 && (GET_MODE_SIZE (GET_MODE (elt->exp))
7083 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
7084 /* It is okay, though, if the rtx we're trying to match
7085 will ignore any of the bits we can't predict. */
7086 && ! (src != 0
7087 && GET_CODE (src) == SUBREG
7088 && GET_MODE (src) == GET_MODE (elt->exp)
7089 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
7090 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
7091 {
7092 elt = elt->next_same_value;
7093 continue;
7094 }
7afe21cc
RK
7095
7096 if (elt) src_elt_cost = elt->cost;
7097
7098 /* Find cheapest and skip it for the next time. For items
7099 of equal cost, use this order:
7100 src_folded, src, src_eqv, src_related and hash table entry. */
7101 if (src_folded_cost <= src_cost
7102 && src_folded_cost <= src_eqv_cost
7103 && src_folded_cost <= src_related_cost
7104 && src_folded_cost <= src_elt_cost)
7105 {
7106 trial = src_folded, src_folded_cost = 10000;
7107 if (src_folded_force_flag)
7108 trial = force_const_mem (mode, trial);
7109 }
7110 else if (src_cost <= src_eqv_cost
7111 && src_cost <= src_related_cost
7112 && src_cost <= src_elt_cost)
7113 trial = src, src_cost = 10000;
7114 else if (src_eqv_cost <= src_related_cost
7115 && src_eqv_cost <= src_elt_cost)
0af62b41 7116 trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
7afe21cc 7117 else if (src_related_cost <= src_elt_cost)
0af62b41 7118 trial = copy_rtx (src_related), src_related_cost = 10000;
7afe21cc
RK
7119 else
7120 {
05c33dd8 7121 trial = copy_rtx (elt->exp);
7afe21cc
RK
7122 elt = elt->next_same_value;
7123 src_elt_cost = 10000;
7124 }
7125
7126 /* We don't normally have an insn matching (set (pc) (pc)), so
7127 check for this separately here. We will delete such an
7128 insn below.
7129
7130 Tablejump insns contain a USE of the table, so simply replacing
7131 the operand with the constant won't match. This is simply an
7132 unconditional branch, however, and is therefore valid. Just
7133 insert the substitution here and we will delete and re-emit
7134 the insn later. */
7135
7bd8b2a8
JL
7136 /* Keep track of the original SET_SRC so that we can fix notes
7137 on libcall instructions. */
7138 old_src = SET_SRC (sets[i].rtl);
7139
7afe21cc
RK
7140 if (n_sets == 1 && dest == pc_rtx
7141 && (trial == pc_rtx
7142 || (GET_CODE (trial) == LABEL_REF
7143 && ! condjump_p (insn))))
7144 {
7145 /* If TRIAL is a label in front of a jump table, we are
7146 really falling through the switch (this is how casesi
7147 insns work), so we must branch around the table. */
7148 if (GET_CODE (trial) == CODE_LABEL
7149 && NEXT_INSN (trial) != 0
7150 && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
7151 && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
7152 || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))
7153
38a448ca 7154 trial = gen_rtx_LABEL_REF (Pmode, get_label_after (trial));
7afe21cc
RK
7155
7156 SET_SRC (sets[i].rtl) = trial;
44333223 7157 cse_jumps_altered = 1;
7afe21cc
RK
7158 break;
7159 }
7160
7161 /* Look for a substitution that makes a valid insn. */
7162 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
05c33dd8 7163 {
7bd8b2a8
JL
7164 /* If we just made a substitution inside a libcall, then we
7165 need to make the same substitution in any notes attached
7166 to the RETVAL insn. */
1ed0205e
VM
7167 if (libcall_insn
7168 && (GET_CODE (old_src) == REG
7169 || GET_CODE (old_src) == SUBREG
7170 || GET_CODE (old_src) == MEM))
7bd8b2a8
JL
7171 replace_rtx (REG_NOTES (libcall_insn), old_src,
7172 canon_reg (SET_SRC (sets[i].rtl), insn));
7173
7722328e
RK
7174 /* The result of apply_change_group can be ignored; see
7175 canon_reg. */
7176
7177 validate_change (insn, &SET_SRC (sets[i].rtl),
7178 canon_reg (SET_SRC (sets[i].rtl), insn),
7179 1);
6702af89 7180 apply_change_group ();
05c33dd8
RK
7181 break;
7182 }
7afe21cc
RK
7183
7184 /* If we previously found constant pool entries for
7185 constants and this is a constant, try making a
7186 pool entry. Put it in src_folded unless we already have done
7187 this since that is where it likely came from. */
7188
7189 else if (constant_pool_entries_cost
7190 && CONSTANT_P (trial)
1bbd065b
RK
7191 && ! (GET_CODE (trial) == CONST
7192 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
7193 && (src_folded == 0
7194 || (GET_CODE (src_folded) != MEM
7195 && ! src_folded_force_flag))
9ae8ffe7
JL
7196 && GET_MODE_CLASS (mode) != MODE_CC
7197 && mode != VOIDmode)
7afe21cc
RK
7198 {
7199 src_folded_force_flag = 1;
7200 src_folded = trial;
7201 src_folded_cost = constant_pool_entries_cost;
7202 }
7203 }
7204
7205 src = SET_SRC (sets[i].rtl);
7206
7207 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
7208 However, there is an important exception: If both are registers
7209 that are not the head of their equivalence class, replace SET_SRC
7210 with the head of the class. If we do not do this, we will have
7211 both registers live over a portion of the basic block. This way,
7212 their lifetimes will likely abut instead of overlapping. */
7213 if (GET_CODE (dest) == REG
7214 && REGNO_QTY_VALID_P (REGNO (dest))
30f72379
MM
7215 && qty_mode[REG_QTY (REGNO (dest))] == GET_MODE (dest)
7216 && qty_first_reg[REG_QTY (REGNO (dest))] != REGNO (dest)
7afe21cc
RK
7217 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
7218 /* Don't do this if the original insn had a hard reg as
c5c76735 7219 SET_SRC or SET_DEST. */
7afe21cc 7220 && (GET_CODE (sets[i].src) != REG
c5c76735
JL
7221 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
7222 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
7afe21cc
RK
7223 /* We can't call canon_reg here because it won't do anything if
7224 SRC is a hard register. */
7225 {
30f72379 7226 int first = qty_first_reg[REG_QTY (REGNO (src))];
759bd8b7
R
7227 rtx new_src
7228 = (first >= FIRST_PSEUDO_REGISTER
7229 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
7230
7231 /* We must use validate-change even for this, because this
7232 might be a special no-op instruction, suitable only to
7233 tag notes onto. */
7234 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
7235 {
7236 src = new_src;
7237 /* If we had a constant that is cheaper than what we are now
7238 setting SRC to, use that constant. We ignored it when we
7239 thought we could make this into a no-op. */
7240 if (src_const && COST (src_const) < COST (src)
7241 && validate_change (insn, &SET_SRC (sets[i].rtl), src_const,
7242 0))
7243 src = src_const;
7244 }
7afe21cc
RK
7245 }
7246
7247 /* If we made a change, recompute SRC values. */
7248 if (src != sets[i].src)
7249 {
7250 do_not_record = 0;
7251 hash_arg_in_memory = 0;
7252 hash_arg_in_struct = 0;
7253 sets[i].src = src;
2197a88a 7254 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
7255 sets[i].src_volatile = do_not_record;
7256 sets[i].src_in_memory = hash_arg_in_memory;
7257 sets[i].src_in_struct = hash_arg_in_struct;
2197a88a 7258 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
7259 }
7260
7261 /* If this is a single SET, we are setting a register, and we have an
7262 equivalent constant, we want to add a REG_NOTE. We don't want
7263 to write a REG_EQUAL note for a constant pseudo since verifying that
d45cf215 7264 that pseudo hasn't been eliminated is a pain. Such a note also
ac7ef8d5
FS
7265 won't help anything.
7266
7267 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
7268 which can be created for a reference to a compile time computable
7269 entry in a jump table. */
7270
7afe21cc 7271 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
ac7ef8d5
FS
7272 && GET_CODE (src_const) != REG
7273 && ! (GET_CODE (src_const) == CONST
7274 && GET_CODE (XEXP (src_const, 0)) == MINUS
7275 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
7276 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
7afe21cc 7277 {
92f9aa51 7278 tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7afe21cc 7279
51e2a951
AS
7280 /* Make sure that the rtx is not shared with any other insn. */
7281 src_const = copy_rtx (src_const);
7282
7afe21cc
RK
7283 /* Record the actual constant value in a REG_EQUAL note, making
7284 a new one if one does not already exist. */
7285 if (tem)
7286 XEXP (tem, 0) = src_const;
7287 else
38a448ca
RH
7288 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
7289 src_const, REG_NOTES (insn));
7afe21cc
RK
7290
7291 /* If storing a constant value in a register that
7292 previously held the constant value 0,
7293 record this fact with a REG_WAS_0 note on this insn.
7294
7295 Note that the *register* is required to have previously held 0,
7296 not just any register in the quantity and we must point to the
7297 insn that set that register to zero.
7298
7299 Rather than track each register individually, we just see if
7300 the last set for this quantity was for this register. */
7301
7302 if (REGNO_QTY_VALID_P (REGNO (dest))
30f72379 7303 && qty_const[REG_QTY (REGNO (dest))] == const0_rtx)
7afe21cc
RK
7304 {
7305 /* See if we previously had a REG_WAS_0 note. */
906c4e36 7306 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
30f72379 7307 rtx const_insn = qty_const_insn[REG_QTY (REGNO (dest))];
7afe21cc
RK
7308
7309 if ((tem = single_set (const_insn)) != 0
7310 && rtx_equal_p (SET_DEST (tem), dest))
7311 {
7312 if (note)
7313 XEXP (note, 0) = const_insn;
7314 else
c5c76735
JL
7315 REG_NOTES (insn)
7316 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
7317 REG_NOTES (insn));
7afe21cc
RK
7318 }
7319 }
7320 }
7321
7322 /* Now deal with the destination. */
7323 do_not_record = 0;
7324 sets[i].inner_dest_loc = &SET_DEST (sets[0].rtl);
7325
7326 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
7327 to the MEM or REG within it. */
7328 while (GET_CODE (dest) == SIGN_EXTRACT
7329 || GET_CODE (dest) == ZERO_EXTRACT
7330 || GET_CODE (dest) == SUBREG
7331 || GET_CODE (dest) == STRICT_LOW_PART)
7332 {
7333 sets[i].inner_dest_loc = &XEXP (dest, 0);
7334 dest = XEXP (dest, 0);
7335 }
7336
7337 sets[i].inner_dest = dest;
7338
7339 if (GET_CODE (dest) == MEM)
7340 {
9ae8ffe7
JL
7341#ifdef PUSH_ROUNDING
7342 /* Stack pushes invalidate the stack pointer. */
7343 rtx addr = XEXP (dest, 0);
7344 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
7345 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
7346 && XEXP (addr, 0) == stack_pointer_rtx)
7347 invalidate (stack_pointer_rtx, Pmode);
7348#endif
7afe21cc 7349 dest = fold_rtx (dest, insn);
7afe21cc
RK
7350 }
7351
7352 /* Compute the hash code of the destination now,
7353 before the effects of this instruction are recorded,
7354 since the register values used in the address computation
7355 are those before this instruction. */
2197a88a 7356 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
7357
7358 /* Don't enter a bit-field in the hash table
7359 because the value in it after the store
7360 may not equal what was stored, due to truncation. */
7361
7362 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
7363 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
7364 {
7365 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
7366
7367 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
7368 && GET_CODE (width) == CONST_INT
906c4e36
RK
7369 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
7370 && ! (INTVAL (src_const)
7371 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
7afe21cc
RK
7372 /* Exception: if the value is constant,
7373 and it won't be truncated, record it. */
7374 ;
7375 else
7376 {
7377 /* This is chosen so that the destination will be invalidated
7378 but no new value will be recorded.
7379 We must invalidate because sometimes constant
7380 values can be recorded for bitfields. */
7381 sets[i].src_elt = 0;
7382 sets[i].src_volatile = 1;
7383 src_eqv = 0;
7384 src_eqv_elt = 0;
7385 }
7386 }
7387
7388 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
7389 the insn. */
7390 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
7391 {
ef178af3
ZW
7392 /* One less use of the label this insn used to jump to. */
7393 if (JUMP_LABEL (insn) != 0)
7394 --LABEL_NUSES (JUMP_LABEL (insn));
7afe21cc
RK
7395 PUT_CODE (insn, NOTE);
7396 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7397 NOTE_SOURCE_FILE (insn) = 0;
7398 cse_jumps_altered = 1;
7afe21cc
RK
7399 /* No more processing for this set. */
7400 sets[i].rtl = 0;
7401 }
7402
7403 /* If this SET is now setting PC to a label, we know it used to
7404 be a conditional or computed branch. So we see if we can follow
7405 it. If it was a computed branch, delete it and re-emit. */
7406 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
7407 {
7408 rtx p;
7409
7410 /* If this is not in the format for a simple branch and
7411 we are the only SET in it, re-emit it. */
7412 if (! simplejump_p (insn) && n_sets == 1)
7413 {
7414 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
7415 JUMP_LABEL (new) = XEXP (src, 0);
7416 LABEL_NUSES (XEXP (src, 0))++;
7417 delete_insn (insn);
7418 insn = new;
7419 }
31dcf83f
RS
7420 else
7421 /* Otherwise, force rerecognition, since it probably had
7422 a different pattern before.
7423 This shouldn't really be necessary, since whatever
7424 changed the source value above should have done this.
7425 Until the right place is found, might as well do this here. */
7426 INSN_CODE (insn) = -1;
7afe21cc
RK
7427
7428 /* Now that we've converted this jump to an unconditional jump,
7429 there is dead code after it. Delete the dead code until we
7430 reach a BARRIER, the end of the function, or a label. Do
7431 not delete NOTEs except for NOTE_INSN_DELETED since later
7432 phases assume these notes are retained. */
7433
312f6255
GK
7434 never_reached_warning (insn);
7435
7afe21cc
RK
7436 p = insn;
7437
7438 while (NEXT_INSN (p) != 0
7439 && GET_CODE (NEXT_INSN (p)) != BARRIER
7440 && GET_CODE (NEXT_INSN (p)) != CODE_LABEL)
7441 {
eec9ef57
JL
7442 /* Note, we must update P with the return value from
7443 delete_insn, otherwise we could get an infinite loop
7444 if NEXT_INSN (p) had INSN_DELETED_P set. */
7afe21cc
RK
7445 if (GET_CODE (NEXT_INSN (p)) != NOTE
7446 || NOTE_LINE_NUMBER (NEXT_INSN (p)) == NOTE_INSN_DELETED)
778e0677 7447 p = PREV_INSN (delete_insn (NEXT_INSN (p)));
7afe21cc
RK
7448 else
7449 p = NEXT_INSN (p);
7450 }
7451
7452 /* If we don't have a BARRIER immediately after INSN, put one there.
7453 Much code assumes that there are no NOTEs between a JUMP_INSN and
7454 BARRIER. */
7455
7456 if (NEXT_INSN (insn) == 0
7457 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
783e5bca 7458 emit_barrier_before (NEXT_INSN (insn));
7afe21cc
RK
7459
7460 /* We might have two BARRIERs separated by notes. Delete the second
7461 one if so. */
7462
538b78e7
RS
7463 if (p != insn && NEXT_INSN (p) != 0
7464 && GET_CODE (NEXT_INSN (p)) == BARRIER)
7afe21cc
RK
7465 delete_insn (NEXT_INSN (p));
7466
7467 cse_jumps_altered = 1;
7468 sets[i].rtl = 0;
7469 }
7470
c2a47e48
RK
7471 /* If destination is volatile, invalidate it and then do no further
7472 processing for this assignment. */
7afe21cc
RK
7473
7474 else if (do_not_record)
c2a47e48
RK
7475 {
7476 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
7477 || GET_CODE (dest) == MEM)
bb4034b3 7478 invalidate (dest, VOIDmode);
2708da92
RS
7479 else if (GET_CODE (dest) == STRICT_LOW_PART
7480 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 7481 invalidate (XEXP (dest, 0), GET_MODE (dest));
c2a47e48
RK
7482 sets[i].rtl = 0;
7483 }
7afe21cc
RK
7484
7485 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2197a88a 7486 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
7afe21cc
RK
7487
7488#ifdef HAVE_cc0
7489 /* If setting CC0, record what it was set to, or a constant, if it
7490 is equivalent to a constant. If it is being set to a floating-point
7491 value, make a COMPARE with the appropriate constant of 0. If we
7492 don't do this, later code can interpret this as a test against
7493 const0_rtx, which can cause problems if we try to put it into an
7494 insn as a floating-point operand. */
7495 if (dest == cc0_rtx)
7496 {
7497 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
7498 this_insn_cc0_mode = mode;
cbf6a543 7499 if (FLOAT_MODE_P (mode))
38a448ca
RH
7500 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
7501 CONST0_RTX (mode));
7afe21cc
RK
7502 }
7503#endif
7504 }
7505
7506 /* Now enter all non-volatile source expressions in the hash table
7507 if they are not already present.
7508 Record their equivalence classes in src_elt.
7509 This way we can insert the corresponding destinations into
7510 the same classes even if the actual sources are no longer in them
7511 (having been invalidated). */
7512
7513 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
7514 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
7515 {
7516 register struct table_elt *elt;
7517 register struct table_elt *classp = sets[0].src_elt;
7518 rtx dest = SET_DEST (sets[0].rtl);
7519 enum machine_mode eqvmode = GET_MODE (dest);
7520
7521 if (GET_CODE (dest) == STRICT_LOW_PART)
7522 {
7523 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
7524 classp = 0;
7525 }
7526 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
7527 {
7528 rehash_using_reg (src_eqv);
7529 src_eqv_hash = HASH (src_eqv, eqvmode);
7530 }
2197a88a 7531 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc
RK
7532 elt->in_memory = src_eqv_in_memory;
7533 elt->in_struct = src_eqv_in_struct;
7534 src_eqv_elt = elt;
f7911249
JW
7535
7536 /* Check to see if src_eqv_elt is the same as a set source which
7537 does not yet have an elt, and if so set the elt of the set source
7538 to src_eqv_elt. */
7539 for (i = 0; i < n_sets; i++)
7540 if (sets[i].rtl && sets[i].src_elt == 0
7541 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
7542 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
7543 }
7544
7545 for (i = 0; i < n_sets; i++)
7546 if (sets[i].rtl && ! sets[i].src_volatile
7547 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
7548 {
7549 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
7550 {
7551 /* REG_EQUAL in setting a STRICT_LOW_PART
7552 gives an equivalent for the entire destination register,
7553 not just for the subreg being stored in now.
7554 This is a more interesting equivalence, so we arrange later
7555 to treat the entire reg as the destination. */
7556 sets[i].src_elt = src_eqv_elt;
2197a88a 7557 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
7558 }
7559 else
7560 {
7561 /* Insert source and constant equivalent into hash table, if not
7562 already present. */
7563 register struct table_elt *classp = src_eqv_elt;
7564 register rtx src = sets[i].src;
7565 register rtx dest = SET_DEST (sets[i].rtl);
7566 enum machine_mode mode
7567 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
7568
15c68354
R
7569 /* Don't put a hard register source into the table if this is
7570 the last insn of a libcall. */
7571 if (sets[i].src_elt == 0
7572 && (GET_CODE (src) != REG
7573 || REGNO (src) >= FIRST_PSEUDO_REGISTER
7574 || ! find_reg_note (insn, REG_RETVAL, NULL_RTX)))
7afe21cc
RK
7575 {
7576 register struct table_elt *elt;
7577
7578 /* Note that these insert_regs calls cannot remove
7579 any of the src_elt's, because they would have failed to
7580 match if not still valid. */
7581 if (insert_regs (src, classp, 0))
8ae2b8f6
JW
7582 {
7583 rehash_using_reg (src);
7584 sets[i].src_hash = HASH (src, mode);
7585 }
2197a88a 7586 elt = insert (src, classp, sets[i].src_hash, mode);
7afe21cc
RK
7587 elt->in_memory = sets[i].src_in_memory;
7588 elt->in_struct = sets[i].src_in_struct;
7589 sets[i].src_elt = classp = elt;
7590 }
7591
7592 if (sets[i].src_const && sets[i].src_const_elt == 0
7593 && src != sets[i].src_const
7594 && ! rtx_equal_p (sets[i].src_const, src))
7595 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 7596 sets[i].src_const_hash, mode);
7afe21cc
RK
7597 }
7598 }
7599 else if (sets[i].src_elt == 0)
7600 /* If we did not insert the source into the hash table (e.g., it was
7601 volatile), note the equivalence class for the REG_EQUAL value, if any,
7602 so that the destination goes into that class. */
7603 sets[i].src_elt = src_eqv_elt;
7604
9ae8ffe7 7605 invalidate_from_clobbers (x);
77fa0940
RK
7606
7607 /* Some registers are invalidated by subroutine calls. Memory is
7608 invalidated by non-constant calls. */
7609
7afe21cc
RK
7610 if (GET_CODE (insn) == CALL_INSN)
7611 {
77fa0940 7612 if (! CONST_CALL_P (insn))
9ae8ffe7 7613 invalidate_memory ();
7afe21cc
RK
7614 invalidate_for_call ();
7615 }
7616
7617 /* Now invalidate everything set by this instruction.
7618 If a SUBREG or other funny destination is being set,
7619 sets[i].rtl is still nonzero, so here we invalidate the reg
7620 a part of which is being set. */
7621
7622 for (i = 0; i < n_sets; i++)
7623 if (sets[i].rtl)
7624 {
bb4034b3
JW
7625 /* We can't use the inner dest, because the mode associated with
7626 a ZERO_EXTRACT is significant. */
7627 register rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
7628
7629 /* Needed for registers to remove the register from its
7630 previous quantity's chain.
7631 Needed for memory if this is a nonvarying address, unless
7632 we have just done an invalidate_memory that covers even those. */
7633 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
9ae8ffe7 7634 || GET_CODE (dest) == MEM)
bb4034b3 7635 invalidate (dest, VOIDmode);
2708da92
RS
7636 else if (GET_CODE (dest) == STRICT_LOW_PART
7637 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 7638 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
7639 }
7640
01e752d3
JL
7641 /* A volatile ASM invalidates everything. */
7642 if (GET_CODE (insn) == INSN
7643 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
7644 && MEM_VOLATILE_P (PATTERN (insn)))
7645 flush_hash_table ();
7646
7afe21cc
RK
7647 /* Make sure registers mentioned in destinations
7648 are safe for use in an expression to be inserted.
7649 This removes from the hash table
7650 any invalid entry that refers to one of these registers.
7651
7652 We don't care about the return value from mention_regs because
7653 we are going to hash the SET_DEST values unconditionally. */
7654
7655 for (i = 0; i < n_sets; i++)
34c73909
R
7656 {
7657 if (sets[i].rtl)
7658 {
7659 rtx x = SET_DEST (sets[i].rtl);
7660
7661 if (GET_CODE (x) != REG)
7662 mention_regs (x);
7663 else
7664 {
7665 /* We used to rely on all references to a register becoming
7666 inaccessible when a register changes to a new quantity,
7667 since that changes the hash code. However, that is not
7668 safe, since after NBUCKETS new quantities we get a
7669 hash 'collision' of a register with its own invalid
7670 entries. And since SUBREGs have been changed not to
7671 change their hash code with the hash code of the register,
7672 it wouldn't work any longer at all. So we have to check
7673 for any invalid references lying around now.
7674 This code is similar to the REG case in mention_regs,
7675 but it knows that reg_tick has been incremented, and
7676 it leaves reg_in_table as -1 . */
7677 register int regno = REGNO (x);
7678 register int endregno
7679 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
7680 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
7681 int i;
7682
7683 for (i = regno; i < endregno; i++)
7684 {
30f72379 7685 if (REG_IN_TABLE (i) >= 0)
34c73909
R
7686 {
7687 remove_invalid_refs (i);
30f72379 7688 REG_IN_TABLE (i) = -1;
34c73909
R
7689 }
7690 }
7691 }
7692 }
7693 }
7afe21cc
RK
7694
7695 /* We may have just removed some of the src_elt's from the hash table.
7696 So replace each one with the current head of the same class. */
7697
7698 for (i = 0; i < n_sets; i++)
7699 if (sets[i].rtl)
7700 {
7701 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
7702 /* If elt was removed, find current head of same class,
7703 or 0 if nothing remains of that class. */
7704 {
7705 register struct table_elt *elt = sets[i].src_elt;
7706
7707 while (elt && elt->prev_same_value)
7708 elt = elt->prev_same_value;
7709
7710 while (elt && elt->first_same_value == 0)
7711 elt = elt->next_same_value;
7712 sets[i].src_elt = elt ? elt->first_same_value : 0;
7713 }
7714 }
7715
7716 /* Now insert the destinations into their equivalence classes. */
7717
7718 for (i = 0; i < n_sets; i++)
7719 if (sets[i].rtl)
7720 {
7721 register rtx dest = SET_DEST (sets[i].rtl);
9de2c71a 7722 rtx inner_dest = sets[i].inner_dest;
7afe21cc
RK
7723 register struct table_elt *elt;
7724
7725 /* Don't record value if we are not supposed to risk allocating
7726 floating-point values in registers that might be wider than
7727 memory. */
7728 if ((flag_float_store
7729 && GET_CODE (dest) == MEM
cbf6a543 7730 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
7731 /* Don't record BLKmode values, because we don't know the
7732 size of it, and can't be sure that other BLKmode values
7733 have the same or smaller size. */
7734 || GET_MODE (dest) == BLKmode
7afe21cc
RK
7735 /* Don't record values of destinations set inside a libcall block
7736 since we might delete the libcall. Things should have been set
7737 up so we won't want to reuse such a value, but we play it safe
7738 here. */
7bd8b2a8 7739 || libcall_insn
7afe21cc
RK
7740 /* If we didn't put a REG_EQUAL value or a source into the hash
7741 table, there is no point is recording DEST. */
1a8e9a8e
RK
7742 || sets[i].src_elt == 0
7743 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
7744 or SIGN_EXTEND, don't record DEST since it can cause
7745 some tracking to be wrong.
7746
7747 ??? Think about this more later. */
7748 || (GET_CODE (dest) == SUBREG
7749 && (GET_MODE_SIZE (GET_MODE (dest))
7750 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
7751 && (GET_CODE (sets[i].src) == SIGN_EXTEND
7752 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7afe21cc
RK
7753 continue;
7754
7755 /* STRICT_LOW_PART isn't part of the value BEING set,
7756 and neither is the SUBREG inside it.
7757 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
7758 if (GET_CODE (dest) == STRICT_LOW_PART)
7759 dest = SUBREG_REG (XEXP (dest, 0));
7760
c610adec 7761 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
7afe21cc
RK
7762 /* Registers must also be inserted into chains for quantities. */
7763 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
7764 {
7765 /* If `insert_regs' changes something, the hash code must be
7766 recalculated. */
7767 rehash_using_reg (dest);
7768 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
7769 }
7afe21cc 7770
9de2c71a
MM
7771 if (GET_CODE (inner_dest) == MEM
7772 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
7773 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
7774 that (MEM (ADDRESSOF (X))) is equivalent to Y.
7775 Consider the case in which the address of the MEM is
7776 passed to a function, which alters the MEM. Then, if we
7777 later use Y instead of the MEM we'll miss the update. */
7778 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
7779 else
7780 elt = insert (dest, sets[i].src_elt,
7781 sets[i].dest_hash, GET_MODE (dest));
7782
c256df0b 7783 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
9ad91d71
RK
7784 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
7785 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
7786 0))));
c256df0b 7787
7afe21cc
RK
7788 if (elt->in_memory)
7789 {
7790 /* This implicitly assumes a whole struct
7791 need not have MEM_IN_STRUCT_P.
7792 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
7793 elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
7794 || sets[i].inner_dest != SET_DEST (sets[i].rtl));
7795 }
7796
fc3ffe83
RK
7797 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
7798 narrower than M2, and both M1 and M2 are the same number of words,
7799 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
7800 make that equivalence as well.
7afe21cc
RK
7801
7802 However, BAR may have equivalences for which gen_lowpart_if_possible
7803 will produce a simpler value than gen_lowpart_if_possible applied to
7804 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
7805 BAR's equivalences. If we don't get a simplified form, make
7806 the SUBREG. It will not be used in an equivalence, but will
7807 cause two similar assignments to be detected.
7808
7809 Note the loop below will find SUBREG_REG (DEST) since we have
7810 already entered SRC and DEST of the SET in the table. */
7811
7812 if (GET_CODE (dest) == SUBREG
6cdbaec4
RK
7813 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
7814 / UNITS_PER_WORD)
7815 == (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
7afe21cc
RK
7816 && (GET_MODE_SIZE (GET_MODE (dest))
7817 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
7818 && sets[i].src_elt != 0)
7819 {
7820 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
7821 struct table_elt *elt, *classp = 0;
7822
7823 for (elt = sets[i].src_elt->first_same_value; elt;
7824 elt = elt->next_same_value)
7825 {
7826 rtx new_src = 0;
2197a88a 7827 unsigned src_hash;
7afe21cc
RK
7828 struct table_elt *src_elt;
7829
7830 /* Ignore invalid entries. */
7831 if (GET_CODE (elt->exp) != REG
7832 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
7833 continue;
7834
7835 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
7836 if (new_src == 0)
38a448ca 7837 new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
7afe21cc
RK
7838
7839 src_hash = HASH (new_src, new_mode);
7840 src_elt = lookup (new_src, src_hash, new_mode);
7841
7842 /* Put the new source in the hash table is if isn't
7843 already. */
7844 if (src_elt == 0)
7845 {
7846 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
7847 {
7848 rehash_using_reg (new_src);
7849 src_hash = HASH (new_src, new_mode);
7850 }
7afe21cc
RK
7851 src_elt = insert (new_src, classp, src_hash, new_mode);
7852 src_elt->in_memory = elt->in_memory;
7853 src_elt->in_struct = elt->in_struct;
7854 }
7855 else if (classp && classp != src_elt->first_same_value)
7856 /* Show that two things that we've seen before are
7857 actually the same. */
7858 merge_equiv_classes (src_elt, classp);
7859
7860 classp = src_elt->first_same_value;
da932f04
JL
7861 /* Ignore invalid entries. */
7862 while (classp
7863 && GET_CODE (classp->exp) != REG
7864 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
7865 classp = classp->next_same_value;
7afe21cc
RK
7866 }
7867 }
7868 }
7869
7870 /* Special handling for (set REG0 REG1)
7871 where REG0 is the "cheapest", cheaper than REG1.
7872 After cse, REG1 will probably not be used in the sequel,
7873 so (if easily done) change this insn to (set REG1 REG0) and
7874 replace REG1 with REG0 in the previous insn that computed their value.
7875 Then REG1 will become a dead store and won't cloud the situation
7876 for later optimizations.
7877
7878 Do not make this change if REG1 is a hard register, because it will
7879 then be used in the sequel and we may be changing a two-operand insn
7880 into a three-operand insn.
7881
50270076
R
7882 Also do not do this if we are operating on a copy of INSN.
7883
7884 Also don't do this if INSN ends a libcall; this would cause an unrelated
7885 register to be set in the middle of a libcall, and we then get bad code
7886 if the libcall is deleted. */
7afe21cc
RK
7887
7888 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
7889 && NEXT_INSN (PREV_INSN (insn)) == insn
7890 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
7891 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
7892 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
30f72379 7893 && (qty_first_reg[REG_QTY (REGNO (SET_SRC (sets[0].rtl)))]
50270076
R
7894 == REGNO (SET_DEST (sets[0].rtl)))
7895 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
7afe21cc
RK
7896 {
7897 rtx prev = PREV_INSN (insn);
7898 while (prev && GET_CODE (prev) == NOTE)
7899 prev = PREV_INSN (prev);
7900
7901 if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
7902 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
7903 {
7904 rtx dest = SET_DEST (sets[0].rtl);
906c4e36 7905 rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
7afe21cc
RK
7906
7907 validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
7908 validate_change (insn, & SET_DEST (sets[0].rtl),
7909 SET_SRC (sets[0].rtl), 1);
7910 validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
7911 apply_change_group ();
7912
7913 /* If REG1 was equivalent to a constant, REG0 is not. */
7914 if (note)
7915 PUT_REG_NOTE_KIND (note, REG_EQUAL);
7916
7917 /* If there was a REG_WAS_0 note on PREV, remove it. Move
7918 any REG_WAS_0 note on INSN to PREV. */
906c4e36 7919 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
7afe21cc
RK
7920 if (note)
7921 remove_note (prev, note);
7922
906c4e36 7923 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
7afe21cc
RK
7924 if (note)
7925 {
7926 remove_note (insn, note);
7927 XEXP (note, 1) = REG_NOTES (prev);
7928 REG_NOTES (prev) = note;
7929 }
98369a0f
RK
7930
7931 /* If INSN has a REG_EQUAL note, and this note mentions REG0,
7932 then we must delete it, because the value in REG0 has changed. */
7933 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7934 if (note && reg_mentioned_p (dest, XEXP (note, 0)))
7935 remove_note (insn, note);
7afe21cc
RK
7936 }
7937 }
7938
7939 /* If this is a conditional jump insn, record any known equivalences due to
7940 the condition being tested. */
7941
7942 last_jump_equiv_class = 0;
7943 if (GET_CODE (insn) == JUMP_INSN
7944 && n_sets == 1 && GET_CODE (x) == SET
7945 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
7946 record_jump_equiv (insn, 0);
7947
7948#ifdef HAVE_cc0
7949 /* If the previous insn set CC0 and this insn no longer references CC0,
7950 delete the previous insn. Here we use the fact that nothing expects CC0
7951 to be valid over an insn, which is true until the final pass. */
7952 if (prev_insn && GET_CODE (prev_insn) == INSN
7953 && (tem = single_set (prev_insn)) != 0
7954 && SET_DEST (tem) == cc0_rtx
7955 && ! reg_mentioned_p (cc0_rtx, x))
7956 {
7957 PUT_CODE (prev_insn, NOTE);
7958 NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
7959 NOTE_SOURCE_FILE (prev_insn) = 0;
7960 }
7961
7962 prev_insn_cc0 = this_insn_cc0;
7963 prev_insn_cc0_mode = this_insn_cc0_mode;
7964#endif
7965
7966 prev_insn = insn;
7967}
7968\f
a4c6502a 7969/* Remove from the hash table all expressions that reference memory. */
7afe21cc 7970static void
9ae8ffe7 7971invalidate_memory ()
7afe21cc 7972{
9ae8ffe7
JL
7973 register int i;
7974 register struct table_elt *p, *next;
7afe21cc 7975
9ae8ffe7
JL
7976 for (i = 0; i < NBUCKETS; i++)
7977 for (p = table[i]; p; p = next)
7978 {
7979 next = p->next_same_hash;
7980 if (p->in_memory)
7981 remove_from_table (p, i);
7982 }
7983}
7984
7985/* XXX ??? The name of this function bears little resemblance to
7986 what this function actually does. FIXME. */
7987static int
7988note_mem_written (addr)
7989 register rtx addr;
7990{
7991 /* Pushing or popping the stack invalidates just the stack pointer. */
7992 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
7993 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
7994 && GET_CODE (XEXP (addr, 0)) == REG
7995 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
7afe21cc 7996 {
30f72379
MM
7997 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
7998 REG_TICK (STACK_POINTER_REGNUM)++;
9ae8ffe7
JL
7999
8000 /* This should be *very* rare. */
8001 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
8002 invalidate (stack_pointer_rtx, VOIDmode);
8003 return 1;
7afe21cc 8004 }
9ae8ffe7 8005 return 0;
7afe21cc
RK
8006}
8007
8008/* Perform invalidation on the basis of everything about an insn
8009 except for invalidating the actual places that are SET in it.
8010 This includes the places CLOBBERed, and anything that might
8011 alias with something that is SET or CLOBBERed.
8012
7afe21cc
RK
8013 X is the pattern of the insn. */
8014
8015static void
9ae8ffe7 8016invalidate_from_clobbers (x)
7afe21cc
RK
8017 rtx x;
8018{
7afe21cc
RK
8019 if (GET_CODE (x) == CLOBBER)
8020 {
8021 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
8022 if (ref)
8023 {
8024 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
8025 || GET_CODE (ref) == MEM)
8026 invalidate (ref, VOIDmode);
8027 else if (GET_CODE (ref) == STRICT_LOW_PART
8028 || GET_CODE (ref) == ZERO_EXTRACT)
8029 invalidate (XEXP (ref, 0), GET_MODE (ref));
8030 }
7afe21cc
RK
8031 }
8032 else if (GET_CODE (x) == PARALLEL)
8033 {
8034 register int i;
8035 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8036 {
8037 register rtx y = XVECEXP (x, 0, i);
8038 if (GET_CODE (y) == CLOBBER)
8039 {
8040 rtx ref = XEXP (y, 0);
9ae8ffe7
JL
8041 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
8042 || GET_CODE (ref) == MEM)
8043 invalidate (ref, VOIDmode);
8044 else if (GET_CODE (ref) == STRICT_LOW_PART
8045 || GET_CODE (ref) == ZERO_EXTRACT)
8046 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
8047 }
8048 }
8049 }
8050}
8051\f
8052/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
8053 and replace any registers in them with either an equivalent constant
8054 or the canonical form of the register. If we are inside an address,
8055 only do this if the address remains valid.
8056
8057 OBJECT is 0 except when within a MEM in which case it is the MEM.
8058
8059 Return the replacement for X. */
8060
8061static rtx
8062cse_process_notes (x, object)
8063 rtx x;
8064 rtx object;
8065{
8066 enum rtx_code code = GET_CODE (x);
6f7d635c 8067 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
8068 int i;
8069
8070 switch (code)
8071 {
8072 case CONST_INT:
8073 case CONST:
8074 case SYMBOL_REF:
8075 case LABEL_REF:
8076 case CONST_DOUBLE:
8077 case PC:
8078 case CC0:
8079 case LO_SUM:
8080 return x;
8081
8082 case MEM:
8083 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
8084 return x;
8085
8086 case EXPR_LIST:
8087 case INSN_LIST:
8088 if (REG_NOTE_KIND (x) == REG_EQUAL)
906c4e36 8089 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
7afe21cc 8090 if (XEXP (x, 1))
906c4e36 8091 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
7afe21cc
RK
8092 return x;
8093
e4890d45
RS
8094 case SIGN_EXTEND:
8095 case ZERO_EXTEND:
0b0ee36c 8096 case SUBREG:
e4890d45
RS
8097 {
8098 rtx new = cse_process_notes (XEXP (x, 0), object);
8099 /* We don't substitute VOIDmode constants into these rtx,
8100 since they would impede folding. */
8101 if (GET_MODE (new) != VOIDmode)
8102 validate_change (object, &XEXP (x, 0), new, 0);
8103 return x;
8104 }
8105
7afe21cc 8106 case REG:
30f72379 8107 i = REG_QTY (REGNO (x));
7afe21cc
RK
8108
8109 /* Return a constant or a constant register. */
8110 if (REGNO_QTY_VALID_P (REGNO (x))
8111 && qty_const[i] != 0
8112 && (CONSTANT_P (qty_const[i])
8113 || GET_CODE (qty_const[i]) == REG))
8114 {
8115 rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
8116 if (new)
8117 return new;
8118 }
8119
8120 /* Otherwise, canonicalize this register. */
906c4e36 8121 return canon_reg (x, NULL_RTX);
e9a25f70
JL
8122
8123 default:
8124 break;
7afe21cc
RK
8125 }
8126
8127 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8128 if (fmt[i] == 'e')
8129 validate_change (object, &XEXP (x, i),
7fe34fdf 8130 cse_process_notes (XEXP (x, i), object), 0);
7afe21cc
RK
8131
8132 return x;
8133}
8134\f
8135/* Find common subexpressions between the end test of a loop and the beginning
8136 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
8137
8138 Often we have a loop where an expression in the exit test is used
8139 in the body of the loop. For example "while (*p) *q++ = *p++;".
8140 Because of the way we duplicate the loop exit test in front of the loop,
8141 however, we don't detect that common subexpression. This will be caught
8142 when global cse is implemented, but this is a quite common case.
8143
8144 This function handles the most common cases of these common expressions.
8145 It is called after we have processed the basic block ending with the
8146 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
8147 jumps to a label used only once. */
8148
8149static void
8150cse_around_loop (loop_start)
8151 rtx loop_start;
8152{
8153 rtx insn;
8154 int i;
8155 struct table_elt *p;
8156
8157 /* If the jump at the end of the loop doesn't go to the start, we don't
8158 do anything. */
8159 for (insn = PREV_INSN (loop_start);
8160 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
8161 insn = PREV_INSN (insn))
8162 ;
8163
8164 if (insn == 0
8165 || GET_CODE (insn) != NOTE
8166 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
8167 return;
8168
8169 /* If the last insn of the loop (the end test) was an NE comparison,
8170 we will interpret it as an EQ comparison, since we fell through
f72aed24 8171 the loop. Any equivalences resulting from that comparison are
7afe21cc
RK
8172 therefore not valid and must be invalidated. */
8173 if (last_jump_equiv_class)
8174 for (p = last_jump_equiv_class->first_same_value; p;
8175 p = p->next_same_value)
51723711
KG
8176 {
8177 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
8178 || (GET_CODE (p->exp) == SUBREG
8179 && GET_CODE (SUBREG_REG (p->exp)) == REG))
8180 invalidate (p->exp, VOIDmode);
8181 else if (GET_CODE (p->exp) == STRICT_LOW_PART
8182 || GET_CODE (p->exp) == ZERO_EXTRACT)
8183 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
8184 }
7afe21cc
RK
8185
8186 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
8187 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
8188
8189 The only thing we do with SET_DEST is invalidate entries, so we
8190 can safely process each SET in order. It is slightly less efficient
556c714b
JW
8191 to do so, but we only want to handle the most common cases.
8192
8193 The gen_move_insn call in cse_set_around_loop may create new pseudos.
8194 These pseudos won't have valid entries in any of the tables indexed
8195 by register number, such as reg_qty. We avoid out-of-range array
8196 accesses by not processing any instructions created after cse started. */
7afe21cc
RK
8197
8198 for (insn = NEXT_INSN (loop_start);
8199 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
556c714b 8200 && INSN_UID (insn) < max_insn_uid
7afe21cc
RK
8201 && ! (GET_CODE (insn) == NOTE
8202 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
8203 insn = NEXT_INSN (insn))
8204 {
8205 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8206 && (GET_CODE (PATTERN (insn)) == SET
8207 || GET_CODE (PATTERN (insn)) == CLOBBER))
8208 cse_set_around_loop (PATTERN (insn), insn, loop_start);
8209 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8210 && GET_CODE (PATTERN (insn)) == PARALLEL)
8211 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
8212 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
8213 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
8214 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
8215 loop_start);
8216 }
8217}
8218\f
8b3686ed
RK
8219/* Process one SET of an insn that was skipped. We ignore CLOBBERs
8220 since they are done elsewhere. This function is called via note_stores. */
8221
8222static void
8223invalidate_skipped_set (dest, set)
8224 rtx set;
8225 rtx dest;
8226{
9ae8ffe7
JL
8227 enum rtx_code code = GET_CODE (dest);
8228
8229 if (code == MEM
8230 && ! note_mem_written (dest) /* If this is not a stack push ... */
8231 /* There are times when an address can appear varying and be a PLUS
8232 during this scan when it would be a fixed address were we to know
8233 the proper equivalences. So invalidate all memory if there is
8234 a BLKmode or nonscalar memory reference or a reference to a
8235 variable address. */
8236 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
8237 || cse_rtx_varies_p (XEXP (dest, 0))))
8238 {
8239 invalidate_memory ();
8240 return;
8241 }
ffcf6393 8242
f47c02fa
RK
8243 if (GET_CODE (set) == CLOBBER
8244#ifdef HAVE_cc0
8245 || dest == cc0_rtx
8246#endif
8247 || dest == pc_rtx)
8248 return;
8249
9ae8ffe7 8250 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
bb4034b3 8251 invalidate (XEXP (dest, 0), GET_MODE (dest));
9ae8ffe7
JL
8252 else if (code == REG || code == SUBREG || code == MEM)
8253 invalidate (dest, VOIDmode);
8b3686ed
RK
8254}
8255
8256/* Invalidate all insns from START up to the end of the function or the
8257 next label. This called when we wish to CSE around a block that is
8258 conditionally executed. */
8259
8260static void
8261invalidate_skipped_block (start)
8262 rtx start;
8263{
8264 rtx insn;
8b3686ed
RK
8265
8266 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
8267 insn = NEXT_INSN (insn))
8268 {
8269 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8270 continue;
8271
8b3686ed
RK
8272 if (GET_CODE (insn) == CALL_INSN)
8273 {
9ae8ffe7
JL
8274 if (! CONST_CALL_P (insn))
8275 invalidate_memory ();
8b3686ed 8276 invalidate_for_call ();
8b3686ed
RK
8277 }
8278
97577254 8279 invalidate_from_clobbers (PATTERN (insn));
8b3686ed 8280 note_stores (PATTERN (insn), invalidate_skipped_set);
8b3686ed
RK
8281 }
8282}
8283\f
7afe21cc
RK
8284/* Used for communication between the following two routines; contains a
8285 value to be checked for modification. */
8286
8287static rtx cse_check_loop_start_value;
8288
8289/* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
8290 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
8291
8292static void
8293cse_check_loop_start (x, set)
8294 rtx x;
d6f4ec51 8295 rtx set ATTRIBUTE_UNUSED;
7afe21cc
RK
8296{
8297 if (cse_check_loop_start_value == 0
8298 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
8299 return;
8300
8301 if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
8302 || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
8303 cse_check_loop_start_value = 0;
8304}
8305
8306/* X is a SET or CLOBBER contained in INSN that was found near the start of
8307 a loop that starts with the label at LOOP_START.
8308
8309 If X is a SET, we see if its SET_SRC is currently in our hash table.
8310 If so, we see if it has a value equal to some register used only in the
8311 loop exit code (as marked by jump.c).
8312
8313 If those two conditions are true, we search backwards from the start of
8314 the loop to see if that same value was loaded into a register that still
8315 retains its value at the start of the loop.
8316
8317 If so, we insert an insn after the load to copy the destination of that
8318 load into the equivalent register and (try to) replace our SET_SRC with that
8319 register.
8320
8321 In any event, we invalidate whatever this SET or CLOBBER modifies. */
8322
8323static void
8324cse_set_around_loop (x, insn, loop_start)
8325 rtx x;
8326 rtx insn;
8327 rtx loop_start;
8328{
7afe21cc 8329 struct table_elt *src_elt;
7afe21cc
RK
8330
8331 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
8332 are setting PC or CC0 or whose SET_SRC is already a register. */
8333 if (GET_CODE (x) == SET
8334 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
8335 && GET_CODE (SET_SRC (x)) != REG)
8336 {
8337 src_elt = lookup (SET_SRC (x),
8338 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
8339 GET_MODE (SET_DEST (x)));
8340
8341 if (src_elt)
8342 for (src_elt = src_elt->first_same_value; src_elt;
8343 src_elt = src_elt->next_same_value)
8344 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
8345 && COST (src_elt->exp) < COST (SET_SRC (x)))
8346 {
8347 rtx p, set;
8348
8349 /* Look for an insn in front of LOOP_START that sets
8350 something in the desired mode to SET_SRC (x) before we hit
8351 a label or CALL_INSN. */
8352
8353 for (p = prev_nonnote_insn (loop_start);
8354 p && GET_CODE (p) != CALL_INSN
8355 && GET_CODE (p) != CODE_LABEL;
8356 p = prev_nonnote_insn (p))
8357 if ((set = single_set (p)) != 0
8358 && GET_CODE (SET_DEST (set)) == REG
8359 && GET_MODE (SET_DEST (set)) == src_elt->mode
8360 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
8361 {
8362 /* We now have to ensure that nothing between P
8363 and LOOP_START modified anything referenced in
8364 SET_SRC (x). We know that nothing within the loop
8365 can modify it, or we would have invalidated it in
8366 the hash table. */
8367 rtx q;
8368
8369 cse_check_loop_start_value = SET_SRC (x);
8370 for (q = p; q != loop_start; q = NEXT_INSN (q))
8371 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
8372 note_stores (PATTERN (q), cse_check_loop_start);
8373
8374 /* If nothing was changed and we can replace our
8375 SET_SRC, add an insn after P to copy its destination
8376 to what we will be replacing SET_SRC with. */
8377 if (cse_check_loop_start_value
8378 && validate_change (insn, &SET_SRC (x),
8379 src_elt->exp, 0))
e89d3e6f
R
8380 {
8381 /* If this creates new pseudos, this is unsafe,
8382 because the regno of new pseudo is unsuitable
8383 to index into reg_qty when cse_insn processes
8384 the new insn. Therefore, if a new pseudo was
8385 created, discard this optimization. */
8386 int nregs = max_reg_num ();
8387 rtx move
8388 = gen_move_insn (src_elt->exp, SET_DEST (set));
8389 if (nregs != max_reg_num ())
8390 {
8391 if (! validate_change (insn, &SET_SRC (x),
8392 SET_SRC (set), 0))
8393 abort ();
8394 }
8395 else
8396 emit_insn_after (move, p);
8397 }
7afe21cc
RK
8398 break;
8399 }
8400 }
8401 }
8402
8403 /* Now invalidate anything modified by X. */
9ae8ffe7 8404 note_mem_written (SET_DEST (x));
7afe21cc 8405
9ae8ffe7 8406 /* See comment on similar code in cse_insn for explanation of these tests. */
7afe21cc 8407 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
9ae8ffe7 8408 || GET_CODE (SET_DEST (x)) == MEM)
bb4034b3 8409 invalidate (SET_DEST (x), VOIDmode);
2708da92
RS
8410 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
8411 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
bb4034b3 8412 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
7afe21cc
RK
8413}
8414\f
8415/* Find the end of INSN's basic block and return its range,
8416 the total number of SETs in all the insns of the block, the last insn of the
8417 block, and the branch path.
8418
8419 The branch path indicates which branches should be followed. If a non-zero
8420 path size is specified, the block should be rescanned and a different set
8421 of branches will be taken. The branch path is only used if
8b3686ed 8422 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
7afe21cc
RK
8423
8424 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
8425 used to describe the block. It is filled in with the information about
8426 the current block. The incoming structure's branch path, if any, is used
8427 to construct the output branch path. */
8428
7afe21cc 8429void
8b3686ed 8430cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
7afe21cc
RK
8431 rtx insn;
8432 struct cse_basic_block_data *data;
8433 int follow_jumps;
8434 int after_loop;
8b3686ed 8435 int skip_blocks;
7afe21cc
RK
8436{
8437 rtx p = insn, q;
8438 int nsets = 0;
8439 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
fc3ffe83 8440 rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
7afe21cc
RK
8441 int path_size = data->path_size;
8442 int path_entry = 0;
8443 int i;
8444
8445 /* Update the previous branch path, if any. If the last branch was
8446 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
8447 shorten the path by one and look at the previous branch. We know that
8448 at least one branch must have been taken if PATH_SIZE is non-zero. */
8449 while (path_size > 0)
8450 {
8b3686ed 8451 if (data->path[path_size - 1].status != NOT_TAKEN)
7afe21cc
RK
8452 {
8453 data->path[path_size - 1].status = NOT_TAKEN;
8454 break;
8455 }
8456 else
8457 path_size--;
8458 }
8459
8460 /* Scan to end of this basic block. */
8461 while (p && GET_CODE (p) != CODE_LABEL)
8462 {
8463 /* Don't cse out the end of a loop. This makes a difference
8464 only for the unusual loops that always execute at least once;
8465 all other loops have labels there so we will stop in any case.
8466 Cse'ing out the end of the loop is dangerous because it
8467 might cause an invariant expression inside the loop
8468 to be reused after the end of the loop. This would make it
8469 hard to move the expression out of the loop in loop.c,
8470 especially if it is one of several equivalent expressions
8471 and loop.c would like to eliminate it.
8472
8473 If we are running after loop.c has finished, we can ignore
8474 the NOTE_INSN_LOOP_END. */
8475
8476 if (! after_loop && GET_CODE (p) == NOTE
8477 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
8478 break;
8479
8480 /* Don't cse over a call to setjmp; on some machines (eg vax)
8481 the regs restored by the longjmp come from
8482 a later time than the setjmp. */
8483 if (GET_CODE (p) == NOTE
8484 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
8485 break;
8486
8487 /* A PARALLEL can have lots of SETs in it,
8488 especially if it is really an ASM_OPERANDS. */
8489 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
8490 && GET_CODE (PATTERN (p)) == PARALLEL)
8491 nsets += XVECLEN (PATTERN (p), 0);
8492 else if (GET_CODE (p) != NOTE)
8493 nsets += 1;
8494
164c8956
RK
8495 /* Ignore insns made by CSE; they cannot affect the boundaries of
8496 the basic block. */
8497
8498 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
8b3686ed 8499 high_cuid = INSN_CUID (p);
164c8956
RK
8500 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
8501 low_cuid = INSN_CUID (p);
7afe21cc
RK
8502
8503 /* See if this insn is in our branch path. If it is and we are to
8504 take it, do so. */
8505 if (path_entry < path_size && data->path[path_entry].branch == p)
8506 {
8b3686ed 8507 if (data->path[path_entry].status != NOT_TAKEN)
7afe21cc
RK
8508 p = JUMP_LABEL (p);
8509
8510 /* Point to next entry in path, if any. */
8511 path_entry++;
8512 }
8513
8514 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
8515 was specified, we haven't reached our maximum path length, there are
8516 insns following the target of the jump, this is the only use of the
8b3686ed
RK
8517 jump label, and the target label is preceded by a BARRIER.
8518
8519 Alternatively, we can follow the jump if it branches around a
8520 block of code and there are no other branches into the block.
8521 In this case invalidate_skipped_block will be called to invalidate any
8522 registers set in the block when following the jump. */
8523
8524 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
7afe21cc
RK
8525 && GET_CODE (p) == JUMP_INSN
8526 && GET_CODE (PATTERN (p)) == SET
8527 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
85c3ba60 8528 && JUMP_LABEL (p) != 0
7afe21cc
RK
8529 && LABEL_NUSES (JUMP_LABEL (p)) == 1
8530 && NEXT_INSN (JUMP_LABEL (p)) != 0)
8531 {
8532 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
8533 if ((GET_CODE (q) != NOTE
8534 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
8535 || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
8536 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
8537 break;
8538
8539 /* If we ran into a BARRIER, this code is an extension of the
8540 basic block when the branch is taken. */
8b3686ed 8541 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
7afe21cc
RK
8542 {
8543 /* Don't allow ourself to keep walking around an
8544 always-executed loop. */
fc3ffe83
RK
8545 if (next_real_insn (q) == next)
8546 {
8547 p = NEXT_INSN (p);
8548 continue;
8549 }
7afe21cc
RK
8550
8551 /* Similarly, don't put a branch in our path more than once. */
8552 for (i = 0; i < path_entry; i++)
8553 if (data->path[i].branch == p)
8554 break;
8555
8556 if (i != path_entry)
8557 break;
8558
8559 data->path[path_entry].branch = p;
8560 data->path[path_entry++].status = TAKEN;
8561
8562 /* This branch now ends our path. It was possible that we
8563 didn't see this branch the last time around (when the
8564 insn in front of the target was a JUMP_INSN that was
8565 turned into a no-op). */
8566 path_size = path_entry;
8567
8568 p = JUMP_LABEL (p);
8569 /* Mark block so we won't scan it again later. */
8570 PUT_MODE (NEXT_INSN (p), QImode);
8571 }
8b3686ed
RK
8572 /* Detect a branch around a block of code. */
8573 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
8574 {
8575 register rtx tmp;
8576
fc3ffe83
RK
8577 if (next_real_insn (q) == next)
8578 {
8579 p = NEXT_INSN (p);
8580 continue;
8581 }
8b3686ed
RK
8582
8583 for (i = 0; i < path_entry; i++)
8584 if (data->path[i].branch == p)
8585 break;
8586
8587 if (i != path_entry)
8588 break;
8589
8590 /* This is no_labels_between_p (p, q) with an added check for
8591 reaching the end of a function (in case Q precedes P). */
8592 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
8593 if (GET_CODE (tmp) == CODE_LABEL)
8594 break;
8595
8596 if (tmp == q)
8597 {
8598 data->path[path_entry].branch = p;
8599 data->path[path_entry++].status = AROUND;
8600
8601 path_size = path_entry;
8602
8603 p = JUMP_LABEL (p);
8604 /* Mark block so we won't scan it again later. */
8605 PUT_MODE (NEXT_INSN (p), QImode);
8606 }
8607 }
7afe21cc 8608 }
7afe21cc
RK
8609 p = NEXT_INSN (p);
8610 }
8611
8612 data->low_cuid = low_cuid;
8613 data->high_cuid = high_cuid;
8614 data->nsets = nsets;
8615 data->last = p;
8616
8617 /* If all jumps in the path are not taken, set our path length to zero
8618 so a rescan won't be done. */
8619 for (i = path_size - 1; i >= 0; i--)
8b3686ed 8620 if (data->path[i].status != NOT_TAKEN)
7afe21cc
RK
8621 break;
8622
8623 if (i == -1)
8624 data->path_size = 0;
8625 else
8626 data->path_size = path_size;
8627
8628 /* End the current branch path. */
8629 data->path[path_size].branch = 0;
8630}
8631\f
7afe21cc
RK
8632/* Perform cse on the instructions of a function.
8633 F is the first instruction.
8634 NREGS is one plus the highest pseudo-reg number used in the instruction.
8635
8636 AFTER_LOOP is 1 if this is the cse call done after loop optimization
8637 (only if -frerun-cse-after-loop).
8638
8639 Returns 1 if jump_optimize should be redone due to simplifications
8640 in conditional jump instructions. */
8641
8642int
8643cse_main (f, nregs, after_loop, file)
8644 rtx f;
8645 int nregs;
8646 int after_loop;
8647 FILE *file;
8648{
8649 struct cse_basic_block_data val;
8650 register rtx insn = f;
8651 register int i;
8652
8653 cse_jumps_altered = 0;
a5dfb4ee 8654 recorded_label_ref = 0;
7afe21cc
RK
8655 constant_pool_entries_cost = 0;
8656 val.path_size = 0;
8657
8658 init_recog ();
9ae8ffe7 8659 init_alias_analysis ();
7afe21cc
RK
8660
8661 max_reg = nregs;
8662
556c714b
JW
8663 max_insn_uid = get_max_uid ();
8664
7afe21cc
RK
8665 reg_next_eqv = (int *) alloca (nregs * sizeof (int));
8666 reg_prev_eqv = (int *) alloca (nregs * sizeof (int));
7afe21cc 8667
7bac1be0
RK
8668#ifdef LOAD_EXTEND_OP
8669
8670 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
8671 and change the code and mode as appropriate. */
38a448ca 8672 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7bac1be0
RK
8673#endif
8674
7afe21cc
RK
8675 /* Discard all the free elements of the previous function
8676 since they are allocated in the temporarily obstack. */
4c9a05bc 8677 bzero ((char *) table, sizeof table);
7afe21cc
RK
8678 free_element_chain = 0;
8679 n_elements_made = 0;
8680
8681 /* Find the largest uid. */
8682
164c8956
RK
8683 max_uid = get_max_uid ();
8684 uid_cuid = (int *) alloca ((max_uid + 1) * sizeof (int));
4c9a05bc 8685 bzero ((char *) uid_cuid, (max_uid + 1) * sizeof (int));
7afe21cc
RK
8686
8687 /* Compute the mapping from uids to cuids.
8688 CUIDs are numbers assigned to insns, like uids,
8689 except that cuids increase monotonically through the code.
8690 Don't assign cuids to line-number NOTEs, so that the distance in cuids
8691 between two insns is not affected by -g. */
8692
8693 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
8694 {
8695 if (GET_CODE (insn) != NOTE
8696 || NOTE_LINE_NUMBER (insn) < 0)
8697 INSN_CUID (insn) = ++i;
8698 else
8699 /* Give a line number note the same cuid as preceding insn. */
8700 INSN_CUID (insn) = i;
8701 }
8702
8703 /* Initialize which registers are clobbered by calls. */
8704
8705 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
8706
8707 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8708 if ((call_used_regs[i]
8709 /* Used to check !fixed_regs[i] here, but that isn't safe;
8710 fixed regs are still call-clobbered, and sched can get
8711 confused if they can "live across calls".
8712
8713 The frame pointer is always preserved across calls. The arg
8714 pointer is if it is fixed. The stack pointer usually is, unless
8715 RETURN_POPS_ARGS, in which case an explicit CLOBBER
8716 will be present. If we are generating PIC code, the PIC offset
8717 table register is preserved across calls. */
8718
8719 && i != STACK_POINTER_REGNUM
8720 && i != FRAME_POINTER_REGNUM
8bc169f2
DE
8721#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
8722 && i != HARD_FRAME_POINTER_REGNUM
8723#endif
7afe21cc
RK
8724#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
8725 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
8726#endif
be8fe470 8727#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
7afe21cc
RK
8728 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
8729#endif
8730 )
8731 || global_regs[i])
8732 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
8733
1497faf6
RH
8734 if (ggc_p)
8735 ggc_push_context ();
8736
7afe21cc
RK
8737 /* Loop over basic blocks.
8738 Compute the maximum number of qty's needed for each basic block
8739 (which is 2 for each SET). */
8740 insn = f;
8741 while (insn)
8742 {
8b3686ed
RK
8743 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
8744 flag_cse_skip_blocks);
7afe21cc
RK
8745
8746 /* If this basic block was already processed or has no sets, skip it. */
8747 if (val.nsets == 0 || GET_MODE (insn) == QImode)
8748 {
8749 PUT_MODE (insn, VOIDmode);
8750 insn = (val.last ? NEXT_INSN (val.last) : 0);
8751 val.path_size = 0;
8752 continue;
8753 }
8754
8755 cse_basic_block_start = val.low_cuid;
8756 cse_basic_block_end = val.high_cuid;
8757 max_qty = val.nsets * 2;
8758
8759 if (file)
ab87f8c8 8760 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7afe21cc
RK
8761 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
8762 val.nsets);
8763
8764 /* Make MAX_QTY bigger to give us room to optimize
8765 past the end of this basic block, if that should prove useful. */
8766 if (max_qty < 500)
8767 max_qty = 500;
8768
8769 max_qty += max_reg;
8770
8771 /* If this basic block is being extended by following certain jumps,
8772 (see `cse_end_of_basic_block'), we reprocess the code from the start.
8773 Otherwise, we start after this basic block. */
8774 if (val.path_size > 0)
8775 cse_basic_block (insn, val.last, val.path, 0);
8776 else
8777 {
8778 int old_cse_jumps_altered = cse_jumps_altered;
8779 rtx temp;
8780
8781 /* When cse changes a conditional jump to an unconditional
8782 jump, we want to reprocess the block, since it will give
8783 us a new branch path to investigate. */
8784 cse_jumps_altered = 0;
8785 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
8b3686ed
RK
8786 if (cse_jumps_altered == 0
8787 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7afe21cc
RK
8788 insn = temp;
8789
8790 cse_jumps_altered |= old_cse_jumps_altered;
8791 }
8792
1497faf6
RH
8793 if (ggc_p)
8794 ggc_collect ();
8795
7afe21cc
RK
8796#ifdef USE_C_ALLOCA
8797 alloca (0);
8798#endif
8799 }
8800
1497faf6
RH
8801 if (ggc_p)
8802 ggc_pop_context ();
8803
7afe21cc
RK
8804 /* Tell refers_to_mem_p that qty_const info is not available. */
8805 qty_const = 0;
8806
8807 if (max_elements_made < n_elements_made)
8808 max_elements_made = n_elements_made;
8809
a5dfb4ee 8810 return cse_jumps_altered || recorded_label_ref;
7afe21cc
RK
8811}
8812
8813/* Process a single basic block. FROM and TO and the limits of the basic
8814 block. NEXT_BRANCH points to the branch path when following jumps or
8815 a null path when not following jumps.
8816
8817 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
8818 loop. This is true when we are being called for the last time on a
8819 block and this CSE pass is before loop.c. */
8820
8821static rtx
8822cse_basic_block (from, to, next_branch, around_loop)
8823 register rtx from, to;
8824 struct branch_path *next_branch;
8825 int around_loop;
8826{
8827 register rtx insn;
8828 int to_usage = 0;
7bd8b2a8 8829 rtx libcall_insn = NULL_RTX;
e9a25f70 8830 int num_insns = 0;
7afe21cc
RK
8831
8832 /* Each of these arrays is undefined before max_reg, so only allocate
8833 the space actually needed and adjust the start below. */
8834
8835 qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
8836 qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
c5c76735
JL
8837 qty_mode = (enum machine_mode *) alloca ((max_qty - max_reg)
8838 * sizeof (enum machine_mode));
7afe21cc
RK
8839 qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
8840 qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
8841 qty_comparison_code
8842 = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
8843 qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
8844 qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
8845
8846 qty_first_reg -= max_reg;
8847 qty_last_reg -= max_reg;
8848 qty_mode -= max_reg;
8849 qty_const -= max_reg;
8850 qty_const_insn -= max_reg;
8851 qty_comparison_code -= max_reg;
8852 qty_comparison_qty -= max_reg;
8853 qty_comparison_const -= max_reg;
8854
8855 new_basic_block ();
8856
8857 /* TO might be a label. If so, protect it from being deleted. */
8858 if (to != 0 && GET_CODE (to) == CODE_LABEL)
8859 ++LABEL_NUSES (to);
8860
8861 for (insn = from; insn != to; insn = NEXT_INSN (insn))
8862 {
1d22a2c1 8863 register enum rtx_code code = GET_CODE (insn);
e9a25f70 8864
1d22a2c1
MM
8865 /* If we have processed 1,000 insns, flush the hash table to
8866 avoid extreme quadratic behavior. We must not include NOTEs
8867 in the count since there may be more or them when generating
8868 debugging information. If we clear the table at different
8869 times, code generated with -g -O might be different than code
8870 generated with -O but not -g.
e9a25f70
JL
8871
8872 ??? This is a real kludge and needs to be done some other way.
8873 Perhaps for 2.9. */
1d22a2c1 8874 if (code != NOTE && num_insns++ > 1000)
e9a25f70 8875 {
01e752d3 8876 flush_hash_table ();
e9a25f70
JL
8877 num_insns = 0;
8878 }
7afe21cc
RK
8879
8880 /* See if this is a branch that is part of the path. If so, and it is
8881 to be taken, do so. */
8882 if (next_branch->branch == insn)
8883 {
8b3686ed
RK
8884 enum taken status = next_branch++->status;
8885 if (status != NOT_TAKEN)
7afe21cc 8886 {
8b3686ed
RK
8887 if (status == TAKEN)
8888 record_jump_equiv (insn, 1);
8889 else
8890 invalidate_skipped_block (NEXT_INSN (insn));
8891
7afe21cc
RK
8892 /* Set the last insn as the jump insn; it doesn't affect cc0.
8893 Then follow this branch. */
8894#ifdef HAVE_cc0
8895 prev_insn_cc0 = 0;
8896#endif
8897 prev_insn = insn;
8898 insn = JUMP_LABEL (insn);
8899 continue;
8900 }
8901 }
8902
7afe21cc
RK
8903 if (GET_MODE (insn) == QImode)
8904 PUT_MODE (insn, VOIDmode);
8905
8906 if (GET_RTX_CLASS (code) == 'i')
8907 {
7bd8b2a8
JL
8908 rtx p;
8909
7afe21cc
RK
8910 /* Process notes first so we have all notes in canonical forms when
8911 looking for duplicate operations. */
8912
8913 if (REG_NOTES (insn))
906c4e36 8914 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7afe21cc
RK
8915
8916 /* Track when we are inside in LIBCALL block. Inside such a block,
8917 we do not want to record destinations. The last insn of a
8918 LIBCALL block is not considered to be part of the block, since
830a38ee 8919 its destination is the result of the block and hence should be
7afe21cc
RK
8920 recorded. */
8921
63be02db 8922 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
7bd8b2a8 8923 libcall_insn = XEXP (p, 0);
906c4e36 8924 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7bd8b2a8 8925 libcall_insn = NULL_RTX;
7afe21cc 8926
7bd8b2a8 8927 cse_insn (insn, libcall_insn);
7afe21cc
RK
8928 }
8929
8930 /* If INSN is now an unconditional jump, skip to the end of our
8931 basic block by pretending that we just did the last insn in the
8932 basic block. If we are jumping to the end of our block, show
8933 that we can have one usage of TO. */
8934
8935 if (simplejump_p (insn))
8936 {
8937 if (to == 0)
8938 return 0;
8939
8940 if (JUMP_LABEL (insn) == to)
8941 to_usage = 1;
8942
6a5293dc
RS
8943 /* Maybe TO was deleted because the jump is unconditional.
8944 If so, there is nothing left in this basic block. */
8945 /* ??? Perhaps it would be smarter to set TO
8946 to whatever follows this insn,
8947 and pretend the basic block had always ended here. */
8948 if (INSN_DELETED_P (to))
8949 break;
8950
7afe21cc
RK
8951 insn = PREV_INSN (to);
8952 }
8953
8954 /* See if it is ok to keep on going past the label
8955 which used to end our basic block. Remember that we incremented
d45cf215 8956 the count of that label, so we decrement it here. If we made
7afe21cc
RK
8957 a jump unconditional, TO_USAGE will be one; in that case, we don't
8958 want to count the use in that jump. */
8959
8960 if (to != 0 && NEXT_INSN (insn) == to
8961 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
8962 {
8963 struct cse_basic_block_data val;
146135d6 8964 rtx prev;
7afe21cc
RK
8965
8966 insn = NEXT_INSN (to);
8967
8968 if (LABEL_NUSES (to) == 0)
146135d6 8969 insn = delete_insn (to);
7afe21cc 8970
146135d6
RK
8971 /* If TO was the last insn in the function, we are done. */
8972 if (insn == 0)
7afe21cc
RK
8973 return 0;
8974
146135d6
RK
8975 /* If TO was preceded by a BARRIER we are done with this block
8976 because it has no continuation. */
8977 prev = prev_nonnote_insn (to);
8978 if (prev && GET_CODE (prev) == BARRIER)
8979 return insn;
8980
8981 /* Find the end of the following block. Note that we won't be
8982 following branches in this case. */
7afe21cc
RK
8983 to_usage = 0;
8984 val.path_size = 0;
8b3686ed 8985 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7afe21cc
RK
8986
8987 /* If the tables we allocated have enough space left
8988 to handle all the SETs in the next basic block,
8989 continue through it. Otherwise, return,
8990 and that block will be scanned individually. */
8991 if (val.nsets * 2 + next_qty > max_qty)
8992 break;
8993
8994 cse_basic_block_start = val.low_cuid;
8995 cse_basic_block_end = val.high_cuid;
8996 to = val.last;
8997
8998 /* Prevent TO from being deleted if it is a label. */
8999 if (to != 0 && GET_CODE (to) == CODE_LABEL)
9000 ++LABEL_NUSES (to);
9001
9002 /* Back up so we process the first insn in the extension. */
9003 insn = PREV_INSN (insn);
9004 }
9005 }
9006
9007 if (next_qty > max_qty)
9008 abort ();
9009
9010 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
9011 the previous insn is the only insn that branches to the head of a loop,
9012 we can cse into the loop. Don't do this if we changed the jump
9013 structure of a loop unless we aren't going to be following jumps. */
9014
8b3686ed
RK
9015 if ((cse_jumps_altered == 0
9016 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7afe21cc
RK
9017 && around_loop && to != 0
9018 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
9019 && GET_CODE (PREV_INSN (to)) == JUMP_INSN
9020 && JUMP_LABEL (PREV_INSN (to)) != 0
9021 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
9022 cse_around_loop (JUMP_LABEL (PREV_INSN (to)));
9023
9024 return to ? NEXT_INSN (to) : 0;
9025}
9026\f
9027/* Count the number of times registers are used (not set) in X.
9028 COUNTS is an array in which we accumulate the count, INCR is how much
79644f06
RK
9029 we count each register usage.
9030
9031 Don't count a usage of DEST, which is the SET_DEST of a SET which
9032 contains X in its SET_SRC. This is because such a SET does not
9033 modify the liveness of DEST. */
7afe21cc
RK
9034
9035static void
79644f06 9036count_reg_usage (x, counts, dest, incr)
7afe21cc
RK
9037 rtx x;
9038 int *counts;
79644f06 9039 rtx dest;
7afe21cc
RK
9040 int incr;
9041{
f1e7c95f 9042 enum rtx_code code;
6f7d635c 9043 const char *fmt;
7afe21cc
RK
9044 int i, j;
9045
f1e7c95f
RK
9046 if (x == 0)
9047 return;
9048
9049 switch (code = GET_CODE (x))
7afe21cc
RK
9050 {
9051 case REG:
79644f06
RK
9052 if (x != dest)
9053 counts[REGNO (x)] += incr;
7afe21cc
RK
9054 return;
9055
9056 case PC:
9057 case CC0:
9058 case CONST:
9059 case CONST_INT:
9060 case CONST_DOUBLE:
9061 case SYMBOL_REF:
9062 case LABEL_REF:
02e39abc
JL
9063 return;
9064
9065 case CLOBBER:
9066 /* If we are clobbering a MEM, mark any registers inside the address
9067 as being used. */
9068 if (GET_CODE (XEXP (x, 0)) == MEM)
9069 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7afe21cc
RK
9070 return;
9071
9072 case SET:
9073 /* Unless we are setting a REG, count everything in SET_DEST. */
9074 if (GET_CODE (SET_DEST (x)) != REG)
79644f06 9075 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
9ff08f70
RK
9076
9077 /* If SRC has side-effects, then we can't delete this insn, so the
9078 usage of SET_DEST inside SRC counts.
9079
9080 ??? Strictly-speaking, we might be preserving this insn
9081 because some other SET has side-effects, but that's hard
9082 to do and can't happen now. */
9083 count_reg_usage (SET_SRC (x), counts,
9084 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
9085 incr);
7afe21cc
RK
9086 return;
9087
f1e7c95f
RK
9088 case CALL_INSN:
9089 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
9090
9091 /* ... falls through ... */
7afe21cc
RK
9092 case INSN:
9093 case JUMP_INSN:
79644f06 9094 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
7afe21cc
RK
9095
9096 /* Things used in a REG_EQUAL note aren't dead since loop may try to
9097 use them. */
9098
f1e7c95f 9099 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
7afe21cc
RK
9100 return;
9101
9102 case EXPR_LIST:
9103 case INSN_LIST:
f1e7c95f 9104 if (REG_NOTE_KIND (x) == REG_EQUAL
c6a26dc4 9105 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
79644f06 9106 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
f1e7c95f 9107 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7afe21cc 9108 return;
e9a25f70
JL
9109
9110 default:
9111 break;
7afe21cc
RK
9112 }
9113
9114 fmt = GET_RTX_FORMAT (code);
9115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9116 {
9117 if (fmt[i] == 'e')
79644f06 9118 count_reg_usage (XEXP (x, i), counts, dest, incr);
7afe21cc
RK
9119 else if (fmt[i] == 'E')
9120 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
79644f06 9121 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7afe21cc
RK
9122 }
9123}
9124\f
9125/* Scan all the insns and delete any that are dead; i.e., they store a register
9126 that is never used or they copy a register to itself.
9127
c6a26dc4
JL
9128 This is used to remove insns made obviously dead by cse, loop or other
9129 optimizations. It improves the heuristics in loop since it won't try to
9130 move dead invariants out of loops or make givs for dead quantities. The
9131 remaining passes of the compilation are also sped up. */
7afe21cc
RK
9132
9133void
c6a26dc4 9134delete_trivially_dead_insns (insns, nreg)
7afe21cc
RK
9135 rtx insns;
9136 int nreg;
9137{
9138 int *counts = (int *) alloca (nreg * sizeof (int));
77fa0940 9139 rtx insn, prev;
51723711 9140#ifdef HAVE_cc0
d45cf215 9141 rtx tem;
51723711 9142#endif
7afe21cc 9143 int i;
614bb5d4 9144 int in_libcall = 0, dead_libcall = 0;
7afe21cc
RK
9145
9146 /* First count the number of times each register is used. */
4c9a05bc 9147 bzero ((char *) counts, sizeof (int) * nreg);
7afe21cc 9148 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
79644f06 9149 count_reg_usage (insn, counts, NULL_RTX, 1);
7afe21cc
RK
9150
9151 /* Go from the last insn to the first and delete insns that only set unused
9152 registers or copy a register to itself. As we delete an insn, remove
8d71a510
JL
9153 usage counts for registers it uses.
9154
9155 The first jump optimization pass may leave a real insn as the last
9156 insn in the function. We must not skip that insn or we may end
9157 up deleting code that is not really dead. */
9158 insn = get_last_insn ();
9159 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
9160 insn = prev_real_insn (insn);
9161
9162 for ( ; insn; insn = prev)
7afe21cc
RK
9163 {
9164 int live_insn = 0;
614bb5d4 9165 rtx note;
7afe21cc 9166
77fa0940
RK
9167 prev = prev_real_insn (insn);
9168
614bb5d4
JL
9169 /* Don't delete any insns that are part of a libcall block unless
9170 we can delete the whole libcall block.
9171
77fa0940
RK
9172 Flow or loop might get confused if we did that. Remember
9173 that we are scanning backwards. */
906c4e36 9174 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
614bb5d4
JL
9175 {
9176 in_libcall = 1;
9177 live_insn = 1;
9178 dead_libcall = 0;
e4890d45 9179
614bb5d4
JL
9180 /* See if there's a REG_EQUAL note on this insn and try to
9181 replace the source with the REG_EQUAL expression.
9182
9183 We assume that insns with REG_RETVALs can only be reg->reg
9184 copies at this point. */
9185 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
9186 if (note)
9187 {
9188 rtx set = single_set (insn);
9189 if (set
9190 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
9191 {
9192 remove_note (insn,
9193 find_reg_note (insn, REG_RETVAL, NULL_RTX));
9194 dead_libcall = 1;
9195 }
9196 }
9197 }
9198 else if (in_libcall)
9199 live_insn = ! dead_libcall;
e4890d45 9200 else if (GET_CODE (PATTERN (insn)) == SET)
7afe21cc
RK
9201 {
9202 if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
9203 && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
9204 ;
9205
d45cf215
RS
9206#ifdef HAVE_cc0
9207 else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
9208 && ! side_effects_p (SET_SRC (PATTERN (insn)))
9209 && ((tem = next_nonnote_insn (insn)) == 0
9210 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
9211 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
9212 ;
9213#endif
7afe21cc
RK
9214 else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
9215 || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
9216 || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
61c48fbf
JL
9217 || side_effects_p (SET_SRC (PATTERN (insn)))
9218 /* An ADDRESSOF expression can turn into a use of the
9219 internal arg pointer, so always consider the
9220 internal arg pointer live. If it is truly dead,
9221 flow will delete the initializing insn. */
9222 || (SET_DEST (PATTERN (insn))
9223 == current_function_internal_arg_pointer))
7afe21cc
RK
9224 live_insn = 1;
9225 }
9226 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9227 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9228 {
9229 rtx elt = XVECEXP (PATTERN (insn), 0, i);
9230
9231 if (GET_CODE (elt) == SET)
9232 {
9233 if (GET_CODE (SET_DEST (elt)) == REG
9234 && SET_DEST (elt) == SET_SRC (elt))
9235 ;
9236
d45cf215
RS
9237#ifdef HAVE_cc0
9238 else if (GET_CODE (SET_DEST (elt)) == CC0
9239 && ! side_effects_p (SET_SRC (elt))
9240 && ((tem = next_nonnote_insn (insn)) == 0
9241 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
9242 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
9243 ;
9244#endif
7afe21cc
RK
9245 else if (GET_CODE (SET_DEST (elt)) != REG
9246 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
9247 || counts[REGNO (SET_DEST (elt))] != 0
af37f0dd
JL
9248 || side_effects_p (SET_SRC (elt))
9249 /* An ADDRESSOF expression can turn into a use of the
9250 internal arg pointer, so always consider the
9251 internal arg pointer live. If it is truly dead,
9252 flow will delete the initializing insn. */
9253 || (SET_DEST (elt)
9254 == current_function_internal_arg_pointer))
7afe21cc
RK
9255 live_insn = 1;
9256 }
9257 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
9258 live_insn = 1;
9259 }
9260 else
9261 live_insn = 1;
9262
9263 /* If this is a dead insn, delete it and show registers in it aren't
e4890d45 9264 being used. */
7afe21cc 9265
e4890d45 9266 if (! live_insn)
7afe21cc 9267 {
79644f06 9268 count_reg_usage (insn, counts, NULL_RTX, -1);
77fa0940 9269 delete_insn (insn);
7afe21cc 9270 }
e4890d45 9271
906c4e36 9272 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
614bb5d4
JL
9273 {
9274 in_libcall = 0;
9275 dead_libcall = 0;
9276 }
7afe21cc
RK
9277 }
9278}