]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.c
cse.c: Use HOST_WIDE_INT_M1 instead of ~(HOST_WIDE_INT) 0.
[thirdparty/gcc.git] / gcc / cse.c
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
818ab71a 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
7afe21cc 3
1322177d 4This file is part of GCC.
7afe21cc 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7afe21cc 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7afe21cc
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7afe21cc 19
7afe21cc 20#include "config.h"
670ee920 21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
7afe21cc 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "cfghooks.h"
c7131fb2 28#include "df.h"
6baf1cc8 29#include "tm_p.h"
957060b5 30#include "insn-config.h"
7932a3db 31#include "regs.h"
957060b5
AM
32#include "emit-rtl.h"
33#include "recog.h"
60393bbc
AM
34#include "cfgrtl.h"
35#include "cfganal.h"
36#include "cfgcleanup.h"
36566b39 37#include "alias.h"
50b2596f 38#include "toplev.h"
9bf8cfbf 39#include "params.h"
2f93eea8 40#include "rtlhooks-def.h"
ef330312 41#include "tree-pass.h"
6fb5fa3c 42#include "dbgcnt.h"
e89b312e 43#include "rtl-iter.h"
7afe21cc 44
f1657f05
TS
45#ifndef LOAD_EXTEND_OP
46#define LOAD_EXTEND_OP(M) UNKNOWN
47#endif
48
7afe21cc
RK
49/* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
53
54 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
59
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
63
64 We use two data structures to record the equivalent expressions:
1bb98cec
DM
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
67
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
76
77Registers and "quantity numbers":
278a83b2 78
7afe21cc
RK
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
459281be 85 `REG_QTY (N)' records what quantity register N is currently thought
7afe21cc
RK
86 of as containing.
87
08a69267 88 All real quantity numbers are greater than or equal to zero.
459281be 89 If register N has not been assigned a quantity, `REG_QTY (N)' will
08a69267 90 equal -N - 1, which is always negative.
7afe21cc 91
08a69267
RS
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
7afe21cc
RK
94
95 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
98
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
102
103 If two registers have the same quantity number, it must be true that
1bb98cec 104 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
105 registers and must be in the same class.
106
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
278a83b2 111
7afe21cc
RK
112Constants and quantity numbers
113
114 When a quantity has a known constant value, that value is stored
1bb98cec 115 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
116 putting the constant in the hash table as is usual for non-regs.
117
d45cf215 118 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
121
122 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
7afe21cc
RK
125
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
131
132Other expressions:
133
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
139
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
142
143 Register references in an expression are canonicalized before hashing
1bb98cec 144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
147
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
151
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
156
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
164
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
168
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
176
459281be
KH
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
7afe21cc
RK
187
188 Registers themselves are entered in the hash table as well as in
459281be
KH
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
7afe21cc
RK
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
195
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
199
200Related expressions:
201
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
278a83b2 208
1bb98cec
DM
209/* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
7afe21cc
RK
211
212static int max_qty;
213
214/* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
216
217static int next_qty;
218
1bb98cec 219/* Per-qty information tracking.
7afe21cc 220
1bb98cec
DM
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
7afe21cc 223
1bb98cec 224 `mode' contains the machine mode of this quantity.
7afe21cc 225
1bb98cec
DM
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
7afe21cc 231
1bb98cec
DM
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
7afe21cc 243
1bb98cec
DM
244struct qty_table_elem
245{
246 rtx const_rtx;
20468884 247 rtx_insn *const_insn;
1bb98cec
DM
248 rtx comparison_const;
249 int comparison_qty;
770ae6cc 250 unsigned int first_reg, last_reg;
496324d0
DN
251 /* The sizes of these fields should match the sizes of the
252 code and mode fields of struct rtx_def (see rtl.h). */
253 ENUM_BITFIELD(rtx_code) comparison_code : 16;
254 ENUM_BITFIELD(machine_mode) mode : 8;
1bb98cec 255};
7afe21cc 256
1bb98cec
DM
257/* The table of all qtys, indexed by qty number. */
258static struct qty_table_elem *qty_table;
7afe21cc 259
7afe21cc
RK
260/* For machines that have a CC0, we do not record its value in the hash
261 table since its use is guaranteed to be the insn immediately following
262 its definition and any other insn is presumed to invalidate it.
263
96fb470d
SB
264 Instead, we store below the current and last value assigned to CC0.
265 If it should happen to be a constant, it is stored in preference
266 to the actual assigned value. In case it is a constant, we store
267 the mode in which the constant should be interpreted. */
7afe21cc 268
96fb470d 269static rtx this_insn_cc0, prev_insn_cc0;
ef4bddc2 270static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
7afe21cc
RK
271
272/* Insn being scanned. */
273
20468884 274static rtx_insn *this_insn;
f40751dd 275static bool optimize_this_for_speed_p;
7afe21cc 276
71d306d1
DE
277/* Index by register number, gives the number of the next (or
278 previous) register in the chain of registers sharing the same
7afe21cc
RK
279 value.
280
281 Or -1 if this register is at the end of the chain.
282
459281be 283 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
1bb98cec
DM
284
285/* Per-register equivalence chain. */
286struct reg_eqv_elem
287{
288 int next, prev;
289};
7afe21cc 290
1bb98cec
DM
291/* The table of all register equivalence chains. */
292static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 293
14a774a9
RK
294struct cse_reg_info
295{
bc5e3b54
KH
296 /* The timestamp at which this register is initialized. */
297 unsigned int timestamp;
9b1549b8
DM
298
299 /* The quantity number of the register's current contents. */
300 int reg_qty;
301
302 /* The number of times the register has been altered in the current
303 basic block. */
304 int reg_tick;
305
30f72379
MM
306 /* The REG_TICK value at which rtx's containing this register are
307 valid in the hash table. If this does not equal the current
308 reg_tick value, such expressions existing in the hash table are
309 invalid. */
310 int reg_in_table;
46081bb3
SH
311
312 /* The SUBREG that was set when REG_TICK was last incremented. Set
313 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 314 unsigned int subreg_ticked;
30f72379 315};
7afe21cc 316
bc5e3b54 317/* A table of cse_reg_info indexed by register numbers. */
f00822b2 318static struct cse_reg_info *cse_reg_info_table;
c1edba58 319
bc5e3b54
KH
320/* The size of the above table. */
321static unsigned int cse_reg_info_table_size;
9b1549b8 322
bc5e3b54
KH
323/* The index of the first entry that has not been initialized. */
324static unsigned int cse_reg_info_table_first_uninitialized;
7afe21cc 325
bc5e3b54 326/* The timestamp at the beginning of the current run of
932ad4d9
SB
327 cse_extended_basic_block. We increment this variable at the beginning of
328 the current run of cse_extended_basic_block. The timestamp field of a
bc5e3b54
KH
329 cse_reg_info entry matches the value of this variable if and only
330 if the entry has been initialized during the current run of
932ad4d9 331 cse_extended_basic_block. */
bc5e3b54 332static unsigned int cse_reg_info_timestamp;
7afe21cc 333
278a83b2 334/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
335 currently a REG expression in the hash table. Note the difference
336 from the above variables, which indicate if the REG is mentioned in some
337 expression in the table. */
338
339static HARD_REG_SET hard_regs_in_table;
340
2aac3a01
EB
341/* True if CSE has altered the CFG. */
342static bool cse_cfg_altered;
7afe21cc 343
2aac3a01
EB
344/* True if CSE has altered conditional jump insns in such a way
345 that jump optimization should be redone. */
346static bool cse_jumps_altered;
7afe21cc 347
2aac3a01
EB
348/* True if we put a LABEL_REF into the hash table for an INSN
349 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
350 to put in the note. */
351static bool recorded_label_ref;
a5dfb4ee 352
7afe21cc
RK
353/* canon_hash stores 1 in do_not_record
354 if it notices a reference to CC0, PC, or some other volatile
355 subexpression. */
356
357static int do_not_record;
358
359/* canon_hash stores 1 in hash_arg_in_memory
360 if it notices a reference to memory within the expression being hashed. */
361
362static int hash_arg_in_memory;
363
7afe21cc
RK
364/* The hash table contains buckets which are chains of `struct table_elt's,
365 each recording one expression's information.
366 That expression is in the `exp' field.
367
db048faf
MM
368 The canon_exp field contains a canonical (from the point of view of
369 alias analysis) version of the `exp' field.
370
7afe21cc
RK
371 Those elements with the same hash code are chained in both directions
372 through the `next_same_hash' and `prev_same_hash' fields.
373
374 Each set of expressions with equivalent values
375 are on a two-way chain through the `next_same_value'
376 and `prev_same_value' fields, and all point with
377 the `first_same_value' field at the first element in
378 that chain. The chain is in order of increasing cost.
379 Each element's cost value is in its `cost' field.
380
381 The `in_memory' field is nonzero for elements that
382 involve any reference to memory. These elements are removed
383 whenever a write is done to an unidentified location in memory.
384 To be safe, we assume that a memory address is unidentified unless
385 the address is either a symbol constant or a constant plus
386 the frame pointer or argument pointer.
387
7afe21cc
RK
388 The `related_value' field is used to connect related expressions
389 (that differ by adding an integer).
390 The related expressions are chained in a circular fashion.
391 `related_value' is zero for expressions for which this
392 chain is not useful.
393
394 The `cost' field stores the cost of this element's expression.
630c79be
BS
395 The `regcost' field stores the value returned by approx_reg_cost for
396 this element's expression.
7afe21cc
RK
397
398 The `is_const' flag is set if the element is a constant (including
399 a fixed address).
400
401 The `flag' field is used as a temporary during some search routines.
402
403 The `mode' field is usually the same as GET_MODE (`exp'), but
404 if `exp' is a CONST_INT and has no machine mode then the `mode'
405 field is the mode it was being used as. Each constant is
406 recorded separately for each mode it is used with. */
407
7afe21cc
RK
408struct table_elt
409{
410 rtx exp;
db048faf 411 rtx canon_exp;
7afe21cc
RK
412 struct table_elt *next_same_hash;
413 struct table_elt *prev_same_hash;
414 struct table_elt *next_same_value;
415 struct table_elt *prev_same_value;
416 struct table_elt *first_same_value;
417 struct table_elt *related_value;
418 int cost;
630c79be 419 int regcost;
496324d0
DN
420 /* The size of this field should match the size
421 of the mode field of struct rtx_def (see rtl.h). */
422 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc 423 char in_memory;
7afe21cc
RK
424 char is_const;
425 char flag;
426};
427
7afe21cc
RK
428/* We don't want a lot of buckets, because we rarely have very many
429 things stored in the hash table, and a lot of buckets slows
430 down a lot of loops that happen frequently. */
9b1549b8
DM
431#define HASH_SHIFT 5
432#define HASH_SIZE (1 << HASH_SHIFT)
433#define HASH_MASK (HASH_SIZE - 1)
7afe21cc
RK
434
435/* Compute hash code of X in mode M. Special-case case where X is a pseudo
436 register (hard registers may require `do_not_record' to be set). */
437
438#define HASH(X, M) \
f8cfc6aa 439 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
9b1549b8
DM
440 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
441 : canon_hash (X, M)) & HASH_MASK)
7afe21cc 442
0516f6fe
SB
443/* Like HASH, but without side-effects. */
444#define SAFE_HASH(X, M) \
445 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
446 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
447 : safe_hash (X, M)) & HASH_MASK)
448
630c79be
BS
449/* Determine whether register number N is considered a fixed register for the
450 purpose of approximating register costs.
7afe21cc
RK
451 It is desirable to replace other regs with fixed regs, to reduce need for
452 non-fixed hard regs.
553687c9 453 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 454#define FIXED_REGNO_P(N) \
8bc169f2 455 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 456 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
457
458/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
459 hard registers and pointers into the frame are the cheapest with a cost
460 of 0. Next come pseudos with a cost of one and other hard registers with
461 a cost of 2. Aside from these special cases, call `rtx_cost'. */
462
d67fb775 463#define CHEAP_REGNO(N) \
c3284718 464 (REGNO_PTR_FRAME_P (N) \
d67fb775 465 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 466 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 467
e548c9df
AM
468#define COST(X, MODE) \
469 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
470#define COST_IN(X, MODE, OUTER, OPNO) \
471 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
7afe21cc 472
30f72379
MM
473/* Get the number of times this register has been updated in this
474 basic block. */
475
bc5e3b54 476#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
30f72379
MM
477
478/* Get the point at which REG was recorded in the table. */
479
bc5e3b54 480#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
30f72379 481
46081bb3
SH
482/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
483 SUBREG). */
484
bc5e3b54 485#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
46081bb3 486
30f72379
MM
487/* Get the quantity number for REG. */
488
bc5e3b54 489#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
30f72379 490
7afe21cc 491/* Determine if the quantity number for register X represents a valid index
1bb98cec 492 into the qty_table. */
7afe21cc 493
08a69267 494#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 495
2c5bfdf7
AN
496/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
497
498#define CHEAPER(X, Y) \
499 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
500
9b1549b8 501static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
502
503/* Chain of `struct table_elt's made so far for this function
504 but currently removed from the table. */
505
506static struct table_elt *free_element_chain;
507
7afe21cc
RK
508/* Set to the cost of a constant pool reference if one was found for a
509 symbolic constant. If this was found, it means we should try to
510 convert constants into constant pool entries if they don't fit in
511 the insn. */
512
513static int constant_pool_entries_cost;
dd0ba281 514static int constant_pool_entries_regcost;
7afe21cc 515
24b97832
ILT
516/* Trace a patch through the CFG. */
517
518struct branch_path
519{
520 /* The basic block for this path entry. */
521 basic_block bb;
522};
523
932ad4d9
SB
524/* This data describes a block that will be processed by
525 cse_extended_basic_block. */
6cd4575e 526
14a774a9
RK
527struct cse_basic_block_data
528{
6cd4575e
RK
529 /* Total number of SETs in block. */
530 int nsets;
6cd4575e
RK
531 /* Size of current branch path, if any. */
532 int path_size;
932ad4d9 533 /* Current path, indicating which basic_blocks will be processed. */
24b97832 534 struct branch_path *path;
6cd4575e
RK
535};
536
6fb5fa3c
DB
537
538/* Pointers to the live in/live out bitmaps for the boundaries of the
539 current EBB. */
540static bitmap cse_ebb_live_in, cse_ebb_live_out;
541
932ad4d9
SB
542/* A simple bitmap to track which basic blocks have been visited
543 already as part of an already processed extended basic block. */
544static sbitmap cse_visited_basic_blocks;
545
7080f735 546static bool fixed_base_plus_p (rtx x);
e548c9df 547static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
56ae04af 548static int preferable (int, int, int, int);
7080f735 549static void new_basic_block (void);
ef4bddc2 550static void make_new_qty (unsigned int, machine_mode);
7080f735
AJ
551static void make_regs_eqv (unsigned int, unsigned int);
552static void delete_reg_equiv (unsigned int);
553static int mention_regs (rtx);
554static int insert_regs (rtx, struct table_elt *, int);
555static void remove_from_table (struct table_elt *, unsigned);
d556d181 556static void remove_pseudo_from_table (rtx, unsigned);
ef4bddc2
RS
557static struct table_elt *lookup (rtx, unsigned, machine_mode);
558static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
7080f735 559static rtx lookup_as_function (rtx, enum rtx_code);
2c5bfdf7 560static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
ef4bddc2 561 machine_mode, int, int);
7080f735 562static struct table_elt *insert (rtx, struct table_elt *, unsigned,
ef4bddc2 563 machine_mode);
7080f735 564static void merge_equiv_classes (struct table_elt *, struct table_elt *);
ef4bddc2 565static void invalidate (rtx, machine_mode);
7080f735
AJ
566static void remove_invalid_refs (unsigned int);
567static void remove_invalid_subreg_refs (unsigned int, unsigned int,
ef4bddc2 568 machine_mode);
7080f735
AJ
569static void rehash_using_reg (rtx);
570static void invalidate_memory (void);
571static void invalidate_for_call (void);
572static rtx use_related_value (rtx, struct table_elt *);
0516f6fe 573
ef4bddc2
RS
574static inline unsigned canon_hash (rtx, machine_mode);
575static inline unsigned safe_hash (rtx, machine_mode);
e855c69d 576static inline unsigned hash_rtx_string (const char *);
0516f6fe 577
20468884 578static rtx canon_reg (rtx, rtx_insn *);
7080f735 579static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
ef4bddc2
RS
580 machine_mode *,
581 machine_mode *);
20468884 582static rtx fold_rtx (rtx, rtx_insn *);
7080f735 583static rtx equiv_constant (rtx);
20468884 584static void record_jump_equiv (rtx_insn *, bool);
ef4bddc2 585static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
7080f735 586 int);
20468884 587static void cse_insn (rtx_insn *);
932ad4d9 588static void cse_prescan_path (struct cse_basic_block_data *);
20468884
DM
589static void invalidate_from_clobbers (rtx_insn *);
590static void invalidate_from_sets_and_clobbers (rtx_insn *);
6fb5fa3c 591static rtx cse_process_notes (rtx, rtx, bool *);
932ad4d9 592static void cse_extended_basic_block (struct cse_basic_block_data *);
7080f735 593extern void dump_class (struct table_elt*);
bc5e3b54
KH
594static void get_cse_reg_info_1 (unsigned int regno);
595static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
7080f735
AJ
596
597static void flush_hash_table (void);
20468884
DM
598static bool insn_live_p (rtx_insn *, int *);
599static bool set_live_p (rtx, rtx_insn *, int *);
20468884
DM
600static void cse_change_cc_mode_insn (rtx_insn *, rtx);
601static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
ef4bddc2 602static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
31e9ebaf 603 bool);
7afe21cc 604\f
2f93eea8
PB
605
606#undef RTL_HOOKS_GEN_LOWPART
607#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
608
609static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
610\f
6399c0ab 611/* Nonzero if X has the form (PLUS frame-pointer integer). */
4977bab6
ZW
612
613static bool
7080f735 614fixed_base_plus_p (rtx x)
4977bab6
ZW
615{
616 switch (GET_CODE (x))
617 {
618 case REG:
619 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
620 return true;
621 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
622 return true;
4977bab6
ZW
623 return false;
624
625 case PLUS:
481683e1 626 if (!CONST_INT_P (XEXP (x, 1)))
4977bab6
ZW
627 return false;
628 return fixed_base_plus_p (XEXP (x, 0));
629
4977bab6
ZW
630 default:
631 return false;
632 }
633}
634
a4c6502a
MM
635/* Dump the expressions in the equivalence class indicated by CLASSP.
636 This function is used only for debugging. */
711417cd 637DEBUG_FUNCTION void
7080f735 638dump_class (struct table_elt *classp)
a4c6502a
MM
639{
640 struct table_elt *elt;
641
642 fprintf (stderr, "Equivalence chain for ");
643 print_rtl (stderr, classp->exp);
644 fprintf (stderr, ": \n");
278a83b2 645
a4c6502a
MM
646 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
647 {
648 print_rtl (stderr, elt->exp);
649 fprintf (stderr, "\n");
650 }
651}
652
e89b312e
RS
653/* Return an estimate of the cost of the registers used in an rtx.
654 This is mostly the number of different REG expressions in the rtx;
655 however for some exceptions like fixed registers we use a cost of
656 0. If any other hard register reference occurs, return MAX_COST. */
be8ac49a 657
630c79be 658static int
e89b312e 659approx_reg_cost (const_rtx x)
630c79be 660{
e89b312e
RS
661 int cost = 0;
662 subrtx_iterator::array_type array;
663 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
c863f8c2 664 {
e89b312e
RS
665 const_rtx x = *iter;
666 if (REG_P (x))
c863f8c2 667 {
e89b312e
RS
668 unsigned int regno = REGNO (x);
669 if (!CHEAP_REGNO (regno))
c863f8c2 670 {
e89b312e
RS
671 if (regno < FIRST_PSEUDO_REGISTER)
672 {
673 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
674 return MAX_COST;
675 cost += 2;
676 }
677 else
678 cost += 1;
c863f8c2 679 }
c863f8c2
DM
680 }
681 }
c863f8c2 682 return cost;
630c79be
BS
683}
684
685/* Return a negative value if an rtx A, whose costs are given by COST_A
686 and REGCOST_A, is more desirable than an rtx B.
687 Return a positive value if A is less desirable, or 0 if the two are
688 equally good. */
689static int
56ae04af 690preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 691{
423adbb9 692 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
693 unwanted. */
694 if (cost_a != cost_b)
695 {
696 if (cost_a == MAX_COST)
697 return 1;
698 if (cost_b == MAX_COST)
699 return -1;
700 }
701
702 /* Avoid extending lifetimes of hardregs. */
703 if (regcost_a != regcost_b)
704 {
705 if (regcost_a == MAX_COST)
706 return 1;
707 if (regcost_b == MAX_COST)
708 return -1;
709 }
710
711 /* Normal operation costs take precedence. */
630c79be
BS
712 if (cost_a != cost_b)
713 return cost_a - cost_b;
f1c1dfc3 714 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
715 if (regcost_a != regcost_b)
716 return regcost_a - regcost_b;
717 return 0;
718}
719
954a5693
RK
720/* Internal function, to compute cost when X is not a register; called
721 from COST macro to keep it simple. */
722
723static int
e548c9df 724notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
954a5693
RK
725{
726 return ((GET_CODE (x) == SUBREG
f8cfc6aa 727 && REG_P (SUBREG_REG (x))
e548c9df 728 && GET_MODE_CLASS (mode) == MODE_INT
954a5693 729 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
e548c9df 730 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
954a5693 731 && subreg_lowpart_p (x)
e548c9df 732 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (SUBREG_REG (x))))
630c79be 733 ? 0
e548c9df 734 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
954a5693
RK
735}
736
01329426 737\f
bc5e3b54 738/* Initialize CSE_REG_INFO_TABLE. */
9b1549b8 739
bc5e3b54
KH
740static void
741init_cse_reg_info (unsigned int nregs)
742{
743 /* Do we need to grow the table? */
744 if (nregs > cse_reg_info_table_size)
30f72379 745 {
bc5e3b54
KH
746 unsigned int new_size;
747
748 if (cse_reg_info_table_size < 2048)
30f72379 749 {
bc5e3b54
KH
750 /* Compute a new size that is a power of 2 and no smaller
751 than the large of NREGS and 64. */
752 new_size = (cse_reg_info_table_size
753 ? cse_reg_info_table_size : 64);
754
755 while (new_size < nregs)
756 new_size *= 2;
30f72379
MM
757 }
758 else
1590d0d4 759 {
bc5e3b54
KH
760 /* If we need a big table, allocate just enough to hold
761 NREGS registers. */
762 new_size = nregs;
1590d0d4 763 }
9b1549b8 764
bc5e3b54 765 /* Reallocate the table with NEW_SIZE entries. */
04695783 766 free (cse_reg_info_table);
5ed6ace5 767 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
bc5e3b54 768 cse_reg_info_table_size = new_size;
a811c672 769 cse_reg_info_table_first_uninitialized = 0;
bc5e3b54
KH
770 }
771
772 /* Do we have all of the first NREGS entries initialized? */
773 if (cse_reg_info_table_first_uninitialized < nregs)
774 {
775 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
776 unsigned int i;
777
778 /* Put the old timestamp on newly allocated entries so that they
779 will all be considered out of date. We do not touch those
780 entries beyond the first NREGS entries to be nice to the
781 virtual memory. */
782 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
783 cse_reg_info_table[i].timestamp = old_timestamp;
30f72379 784
bc5e3b54 785 cse_reg_info_table_first_uninitialized = nregs;
30f72379 786 }
bc5e3b54
KH
787}
788
a52aff23 789/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
bc5e3b54
KH
790
791static void
792get_cse_reg_info_1 (unsigned int regno)
793{
794 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
795 entry will be considered to have been initialized. */
796 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
797
798 /* Initialize the rest of the entry. */
799 cse_reg_info_table[regno].reg_tick = 1;
800 cse_reg_info_table[regno].reg_in_table = -1;
801 cse_reg_info_table[regno].subreg_ticked = -1;
802 cse_reg_info_table[regno].reg_qty = -regno - 1;
803}
804
805/* Find a cse_reg_info entry for REGNO. */
30f72379 806
bc5e3b54
KH
807static inline struct cse_reg_info *
808get_cse_reg_info (unsigned int regno)
809{
810 struct cse_reg_info *p = &cse_reg_info_table[regno];
811
782c0a3e
KH
812 /* If this entry has not been initialized, go ahead and initialize
813 it. */
bc5e3b54
KH
814 if (p->timestamp != cse_reg_info_timestamp)
815 get_cse_reg_info_1 (regno);
30f72379 816
9b1549b8 817 return p;
30f72379
MM
818}
819
7afe21cc
RK
820/* Clear the hash table and initialize each register with its own quantity,
821 for a new basic block. */
822
823static void
7080f735 824new_basic_block (void)
7afe21cc 825{
b3694847 826 int i;
7afe21cc 827
08a69267 828 next_qty = 0;
7afe21cc 829
a52aff23 830 /* Invalidate cse_reg_info_table. */
bc5e3b54 831 cse_reg_info_timestamp++;
7afe21cc 832
bc5e3b54 833 /* Clear out hash table state for this pass. */
7afe21cc
RK
834 CLEAR_HARD_REG_SET (hard_regs_in_table);
835
836 /* The per-quantity values used to be initialized here, but it is
837 much faster to initialize each as it is made in `make_new_qty'. */
838
9b1549b8 839 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 840 {
9b1549b8
DM
841 struct table_elt *first;
842
843 first = table[i];
844 if (first != NULL)
7afe21cc 845 {
9b1549b8
DM
846 struct table_elt *last = first;
847
848 table[i] = NULL;
849
850 while (last->next_same_hash != NULL)
851 last = last->next_same_hash;
852
853 /* Now relink this hash entire chain into
854 the free element list. */
855
856 last->next_same_hash = free_element_chain;
857 free_element_chain = first;
7afe21cc
RK
858 }
859 }
860
7afe21cc 861 prev_insn_cc0 = 0;
7afe21cc
RK
862}
863
1bb98cec
DM
864/* Say that register REG contains a quantity in mode MODE not in any
865 register before and initialize that quantity. */
7afe21cc
RK
866
867static void
ef4bddc2 868make_new_qty (unsigned int reg, machine_mode mode)
7afe21cc 869{
b3694847
SS
870 int q;
871 struct qty_table_elem *ent;
872 struct reg_eqv_elem *eqv;
7afe21cc 873
341c100f 874 gcc_assert (next_qty < max_qty);
7afe21cc 875
30f72379 876 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
877 ent = &qty_table[q];
878 ent->first_reg = reg;
879 ent->last_reg = reg;
880 ent->mode = mode;
20468884 881 ent->const_rtx = ent->const_insn = NULL;
1bb98cec
DM
882 ent->comparison_code = UNKNOWN;
883
884 eqv = &reg_eqv_table[reg];
885 eqv->next = eqv->prev = -1;
7afe21cc
RK
886}
887
888/* Make reg NEW equivalent to reg OLD.
889 OLD is not changing; NEW is. */
890
891static void
32e9fa48 892make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
7afe21cc 893{
770ae6cc 894 unsigned int lastr, firstr;
32e9fa48 895 int q = REG_QTY (old_reg);
770ae6cc 896 struct qty_table_elem *ent;
1bb98cec
DM
897
898 ent = &qty_table[q];
7afe21cc
RK
899
900 /* Nothing should become eqv until it has a "non-invalid" qty number. */
32e9fa48 901 gcc_assert (REGNO_QTY_VALID_P (old_reg));
7afe21cc 902
32e9fa48 903 REG_QTY (new_reg) = q;
1bb98cec
DM
904 firstr = ent->first_reg;
905 lastr = ent->last_reg;
7afe21cc
RK
906
907 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
908 hard regs. Among pseudos, if NEW will live longer than any other reg
909 of the same qty, and that is beyond the current basic block,
910 make it the new canonical replacement for this qty. */
911 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
912 /* Certain fixed registers might be of the class NO_REGS. This means
913 that not only can they not be allocated by the compiler, but
830a38ee 914 they cannot be used in substitutions or canonicalizations
7afe21cc 915 either. */
32e9fa48
KG
916 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
917 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
918 || (new_reg >= FIRST_PSEUDO_REGISTER
7afe21cc 919 && (firstr < FIRST_PSEUDO_REGISTER
32e9fa48 920 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
6fb5fa3c 921 && !bitmap_bit_p (cse_ebb_live_out, firstr))
32e9fa48 922 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
6fb5fa3c 923 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
7afe21cc 924 {
32e9fa48
KG
925 reg_eqv_table[firstr].prev = new_reg;
926 reg_eqv_table[new_reg].next = firstr;
927 reg_eqv_table[new_reg].prev = -1;
928 ent->first_reg = new_reg;
7afe21cc
RK
929 }
930 else
931 {
932 /* If NEW is a hard reg (known to be non-fixed), insert at end.
933 Otherwise, insert before any non-fixed hard regs that are at the
934 end. Registers of class NO_REGS cannot be used as an
935 equivalent for anything. */
1bb98cec 936 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc 937 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
32e9fa48 938 && new_reg >= FIRST_PSEUDO_REGISTER)
1bb98cec 939 lastr = reg_eqv_table[lastr].prev;
32e9fa48 940 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
1bb98cec 941 if (reg_eqv_table[lastr].next >= 0)
32e9fa48 942 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
7afe21cc 943 else
32e9fa48
KG
944 qty_table[q].last_reg = new_reg;
945 reg_eqv_table[lastr].next = new_reg;
946 reg_eqv_table[new_reg].prev = lastr;
7afe21cc
RK
947 }
948}
949
950/* Remove REG from its equivalence class. */
951
952static void
7080f735 953delete_reg_equiv (unsigned int reg)
7afe21cc 954{
b3694847
SS
955 struct qty_table_elem *ent;
956 int q = REG_QTY (reg);
957 int p, n;
7afe21cc 958
a4e262bc 959 /* If invalid, do nothing. */
08a69267 960 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
961 return;
962
1bb98cec
DM
963 ent = &qty_table[q];
964
965 p = reg_eqv_table[reg].prev;
966 n = reg_eqv_table[reg].next;
a4e262bc 967
7afe21cc 968 if (n != -1)
1bb98cec 969 reg_eqv_table[n].prev = p;
7afe21cc 970 else
1bb98cec 971 ent->last_reg = p;
7afe21cc 972 if (p != -1)
1bb98cec 973 reg_eqv_table[p].next = n;
7afe21cc 974 else
1bb98cec 975 ent->first_reg = n;
7afe21cc 976
08a69267 977 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
978}
979
980/* Remove any invalid expressions from the hash table
981 that refer to any of the registers contained in expression X.
982
983 Make sure that newly inserted references to those registers
984 as subexpressions will be considered valid.
985
986 mention_regs is not called when a register itself
987 is being stored in the table.
988
989 Return 1 if we have done something that may have changed the hash code
990 of X. */
991
992static int
7080f735 993mention_regs (rtx x)
7afe21cc 994{
b3694847
SS
995 enum rtx_code code;
996 int i, j;
997 const char *fmt;
998 int changed = 0;
7afe21cc
RK
999
1000 if (x == 0)
e5f6a288 1001 return 0;
7afe21cc
RK
1002
1003 code = GET_CODE (x);
1004 if (code == REG)
1005 {
770ae6cc 1006 unsigned int regno = REGNO (x);
09e18274 1007 unsigned int endregno = END_REGNO (x);
770ae6cc 1008 unsigned int i;
7afe21cc
RK
1009
1010 for (i = regno; i < endregno; i++)
1011 {
30f72379 1012 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
1013 remove_invalid_refs (i);
1014
30f72379 1015 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 1016 SUBREG_TICKED (i) = -1;
7afe21cc
RK
1017 }
1018
1019 return 0;
1020 }
1021
34c73909
R
1022 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1023 pseudo if they don't use overlapping words. We handle only pseudos
1024 here for simplicity. */
f8cfc6aa 1025 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1026 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1027 {
770ae6cc 1028 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1029
30f72379 1030 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1031 {
46081bb3
SH
1032 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1033 the last store to this register really stored into this
1034 subreg, then remove the memory of this subreg.
1035 Otherwise, remove any memory of the entire register and
1036 all its subregs from the table. */
1037 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1038 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1039 remove_invalid_refs (i);
1040 else
ddef6bc7 1041 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1042 }
1043
30f72379 1044 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1045 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
34c73909
R
1046 return 0;
1047 }
1048
7afe21cc
RK
1049 /* If X is a comparison or a COMPARE and either operand is a register
1050 that does not have a quantity, give it one. This is so that a later
1051 call to record_jump_equiv won't cause X to be assigned a different
1052 hash code and not found in the table after that call.
1053
1054 It is not necessary to do this here, since rehash_using_reg can
1055 fix up the table later, but doing this here eliminates the need to
1056 call that expensive function in the most common case where the only
1057 use of the register is in the comparison. */
1058
ec8e098d 1059 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1060 {
f8cfc6aa 1061 if (REG_P (XEXP (x, 0))
7afe21cc 1062 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
9714cf43 1063 if (insert_regs (XEXP (x, 0), NULL, 0))
7afe21cc
RK
1064 {
1065 rehash_using_reg (XEXP (x, 0));
1066 changed = 1;
1067 }
1068
f8cfc6aa 1069 if (REG_P (XEXP (x, 1))
7afe21cc 1070 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
9714cf43 1071 if (insert_regs (XEXP (x, 1), NULL, 0))
7afe21cc
RK
1072 {
1073 rehash_using_reg (XEXP (x, 1));
1074 changed = 1;
1075 }
1076 }
1077
1078 fmt = GET_RTX_FORMAT (code);
1079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1080 if (fmt[i] == 'e')
1081 changed |= mention_regs (XEXP (x, i));
1082 else if (fmt[i] == 'E')
1083 for (j = 0; j < XVECLEN (x, i); j++)
1084 changed |= mention_regs (XVECEXP (x, i, j));
1085
1086 return changed;
1087}
1088
1089/* Update the register quantities for inserting X into the hash table
1090 with a value equivalent to CLASSP.
1091 (If the class does not contain a REG, it is irrelevant.)
1092 If MODIFIED is nonzero, X is a destination; it is being modified.
1093 Note that delete_reg_equiv should be called on a register
1094 before insert_regs is done on that register with MODIFIED != 0.
1095
1096 Nonzero value means that elements of reg_qty have changed
1097 so X's hash code may be different. */
1098
1099static int
7080f735 1100insert_regs (rtx x, struct table_elt *classp, int modified)
7afe21cc 1101{
f8cfc6aa 1102 if (REG_P (x))
7afe21cc 1103 {
770ae6cc
RK
1104 unsigned int regno = REGNO (x);
1105 int qty_valid;
7afe21cc 1106
1ff0c00d
RK
1107 /* If REGNO is in the equivalence table already but is of the
1108 wrong mode for that equivalence, don't do anything here. */
1109
1bb98cec
DM
1110 qty_valid = REGNO_QTY_VALID_P (regno);
1111 if (qty_valid)
1112 {
1113 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1114
1bb98cec
DM
1115 if (ent->mode != GET_MODE (x))
1116 return 0;
1117 }
1118
1119 if (modified || ! qty_valid)
7afe21cc
RK
1120 {
1121 if (classp)
1122 for (classp = classp->first_same_value;
1123 classp != 0;
1124 classp = classp->next_same_value)
f8cfc6aa 1125 if (REG_P (classp->exp)
7afe21cc
RK
1126 && GET_MODE (classp->exp) == GET_MODE (x))
1127 {
cd928652
ZD
1128 unsigned c_regno = REGNO (classp->exp);
1129
1130 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1131
1132 /* Suppose that 5 is hard reg and 100 and 101 are
1133 pseudos. Consider
1134
1135 (set (reg:si 100) (reg:si 5))
1136 (set (reg:si 5) (reg:si 100))
1137 (set (reg:di 101) (reg:di 5))
1138
1139 We would now set REG_QTY (101) = REG_QTY (5), but the
1140 entry for 5 is in SImode. When we use this later in
1141 copy propagation, we get the register in wrong mode. */
1142 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1143 continue;
1144
1145 make_regs_eqv (regno, c_regno);
7afe21cc
RK
1146 return 1;
1147 }
1148
d9f20424
R
1149 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1150 than REG_IN_TABLE to find out if there was only a single preceding
1151 invalidation - for the SUBREG - or another one, which would be
1152 for the full register. However, if we find here that REG_TICK
1153 indicates that the register is invalid, it means that it has
1154 been invalidated in a separate operation. The SUBREG might be used
1155 now (then this is a recursive call), or we might use the full REG
1156 now and a SUBREG of it later. So bump up REG_TICK so that
1157 mention_regs will do the right thing. */
1158 if (! modified
1159 && REG_IN_TABLE (regno) >= 0
1160 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1161 REG_TICK (regno)++;
1bb98cec 1162 make_new_qty (regno, GET_MODE (x));
7afe21cc
RK
1163 return 1;
1164 }
cdf4112f
TG
1165
1166 return 0;
7afe21cc 1167 }
c610adec
RK
1168
1169 /* If X is a SUBREG, we will likely be inserting the inner register in the
1170 table. If that register doesn't have an assigned quantity number at
1171 this point but does later, the insertion that we will be doing now will
1172 not be accessible because its hash code will have changed. So assign
1173 a quantity number now. */
1174
f8cfc6aa 1175 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1176 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1177 {
9714cf43 1178 insert_regs (SUBREG_REG (x), NULL, 0);
34c73909 1179 mention_regs (x);
c610adec
RK
1180 return 1;
1181 }
7afe21cc
RK
1182 else
1183 return mention_regs (x);
1184}
1185\f
2c5bfdf7
AN
1186
1187/* Compute upper and lower anchors for CST. Also compute the offset of CST
1188 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1189 CST is equal to an anchor. */
1190
1191static bool
1192compute_const_anchors (rtx cst,
1193 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1194 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1195{
1196 HOST_WIDE_INT n = INTVAL (cst);
1197
1198 *lower_base = n & ~(targetm.const_anchor - 1);
1199 if (*lower_base == n)
1200 return false;
1201
1202 *upper_base =
1203 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1204 *upper_offs = n - *upper_base;
1205 *lower_offs = n - *lower_base;
1206 return true;
1207}
1208
1209/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1210
1211static void
1212insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
ef4bddc2 1213 machine_mode mode)
2c5bfdf7
AN
1214{
1215 struct table_elt *elt;
1216 unsigned hash;
1217 rtx anchor_exp;
1218 rtx exp;
1219
1220 anchor_exp = GEN_INT (anchor);
1221 hash = HASH (anchor_exp, mode);
1222 elt = lookup (anchor_exp, hash, mode);
1223 if (!elt)
1224 elt = insert (anchor_exp, NULL, hash, mode);
1225
0a81f074 1226 exp = plus_constant (mode, reg, offs);
2c5bfdf7
AN
1227 /* REG has just been inserted and the hash codes recomputed. */
1228 mention_regs (exp);
1229 hash = HASH (exp, mode);
1230
1231 /* Use the cost of the register rather than the whole expression. When
1232 looking up constant anchors we will further offset the corresponding
1233 expression therefore it does not make sense to prefer REGs over
1234 reg-immediate additions. Prefer instead the oldest expression. Also
1235 don't prefer pseudos over hard regs so that we derive constants in
1236 argument registers from other argument registers rather than from the
1237 original pseudo that was used to synthesize the constant. */
e548c9df 1238 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
2c5bfdf7
AN
1239}
1240
1241/* The constant CST is equivalent to the register REG. Create
1242 equivalences between the two anchors of CST and the corresponding
1243 register-offset expressions using REG. */
1244
1245static void
ef4bddc2 1246insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
2c5bfdf7
AN
1247{
1248 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1249
1250 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1251 &upper_base, &upper_offs))
1252 return;
1253
1254 /* Ignore anchors of value 0. Constants accessible from zero are
1255 simple. */
1256 if (lower_base != 0)
1257 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1258
1259 if (upper_base != 0)
1260 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1261}
1262
1263/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1264 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1265 valid expression. Return the cheapest and oldest of such expressions. In
1266 *OLD, return how old the resulting expression is compared to the other
1267 equivalent expressions. */
1268
1269static rtx
1270find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1271 unsigned *old)
1272{
1273 struct table_elt *elt;
1274 unsigned idx;
1275 struct table_elt *match_elt;
1276 rtx match;
1277
1278 /* Find the cheapest and *oldest* expression to maximize the chance of
1279 reusing the same pseudo. */
1280
1281 match_elt = NULL;
1282 match = NULL_RTX;
1283 for (elt = anchor_elt->first_same_value, idx = 0;
1284 elt;
1285 elt = elt->next_same_value, idx++)
1286 {
1287 if (match_elt && CHEAPER (match_elt, elt))
1288 return match;
1289
1290 if (REG_P (elt->exp)
1291 || (GET_CODE (elt->exp) == PLUS
1292 && REG_P (XEXP (elt->exp, 0))
1293 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1294 {
1295 rtx x;
1296
1297 /* Ignore expressions that are no longer valid. */
1298 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1299 continue;
1300
0a81f074 1301 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
2c5bfdf7
AN
1302 if (REG_P (x)
1303 || (GET_CODE (x) == PLUS
1304 && IN_RANGE (INTVAL (XEXP (x, 1)),
1305 -targetm.const_anchor,
1306 targetm.const_anchor - 1)))
1307 {
1308 match = x;
1309 match_elt = elt;
1310 *old = idx;
1311 }
1312 }
1313 }
1314
1315 return match;
1316}
1317
1318/* Try to express the constant SRC_CONST using a register+offset expression
1319 derived from a constant anchor. Return it if successful or NULL_RTX,
1320 otherwise. */
1321
1322static rtx
ef4bddc2 1323try_const_anchors (rtx src_const, machine_mode mode)
2c5bfdf7
AN
1324{
1325 struct table_elt *lower_elt, *upper_elt;
1326 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1327 rtx lower_anchor_rtx, upper_anchor_rtx;
1328 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1329 unsigned lower_old, upper_old;
1330
40dbb05c
RS
1331 /* CONST_INT is used for CC modes, but we should leave those alone. */
1332 if (GET_MODE_CLASS (mode) == MODE_CC)
1333 return NULL_RTX;
1334
1335 gcc_assert (SCALAR_INT_MODE_P (mode));
2c5bfdf7
AN
1336 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1337 &upper_base, &upper_offs))
1338 return NULL_RTX;
1339
1340 lower_anchor_rtx = GEN_INT (lower_base);
1341 upper_anchor_rtx = GEN_INT (upper_base);
1342 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1343 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1344
1345 if (lower_elt)
1346 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1347 if (upper_elt)
1348 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1349
1350 if (!lower_exp)
1351 return upper_exp;
1352 if (!upper_exp)
1353 return lower_exp;
1354
1355 /* Return the older expression. */
1356 return (upper_old > lower_old ? upper_exp : lower_exp);
1357}
1358\f
7afe21cc
RK
1359/* Look in or update the hash table. */
1360
7afe21cc
RK
1361/* Remove table element ELT from use in the table.
1362 HASH is its hash code, made using the HASH macro.
1363 It's an argument because often that is known in advance
1364 and we save much time not recomputing it. */
1365
1366static void
7080f735 1367remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1368{
1369 if (elt == 0)
1370 return;
1371
1372 /* Mark this element as removed. See cse_insn. */
1373 elt->first_same_value = 0;
1374
1375 /* Remove the table element from its equivalence class. */
278a83b2 1376
7afe21cc 1377 {
b3694847
SS
1378 struct table_elt *prev = elt->prev_same_value;
1379 struct table_elt *next = elt->next_same_value;
7afe21cc 1380
278a83b2
KH
1381 if (next)
1382 next->prev_same_value = prev;
7afe21cc
RK
1383
1384 if (prev)
1385 prev->next_same_value = next;
1386 else
1387 {
b3694847 1388 struct table_elt *newfirst = next;
7afe21cc
RK
1389 while (next)
1390 {
1391 next->first_same_value = newfirst;
1392 next = next->next_same_value;
1393 }
1394 }
1395 }
1396
1397 /* Remove the table element from its hash bucket. */
1398
1399 {
b3694847
SS
1400 struct table_elt *prev = elt->prev_same_hash;
1401 struct table_elt *next = elt->next_same_hash;
7afe21cc 1402
278a83b2
KH
1403 if (next)
1404 next->prev_same_hash = prev;
7afe21cc
RK
1405
1406 if (prev)
1407 prev->next_same_hash = next;
1408 else if (table[hash] == elt)
1409 table[hash] = next;
1410 else
1411 {
1412 /* This entry is not in the proper hash bucket. This can happen
1413 when two classes were merged by `merge_equiv_classes'. Search
1414 for the hash bucket that it heads. This happens only very
1415 rarely, so the cost is acceptable. */
9b1549b8 1416 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1417 if (table[hash] == elt)
1418 table[hash] = next;
1419 }
1420 }
1421
1422 /* Remove the table element from its related-value circular chain. */
1423
1424 if (elt->related_value != 0 && elt->related_value != elt)
1425 {
b3694847 1426 struct table_elt *p = elt->related_value;
770ae6cc 1427
7afe21cc
RK
1428 while (p->related_value != elt)
1429 p = p->related_value;
1430 p->related_value = elt->related_value;
1431 if (p->related_value == p)
1432 p->related_value = 0;
1433 }
1434
9b1549b8
DM
1435 /* Now add it to the free element chain. */
1436 elt->next_same_hash = free_element_chain;
1437 free_element_chain = elt;
7afe21cc
RK
1438}
1439
d556d181
EB
1440/* Same as above, but X is a pseudo-register. */
1441
1442static void
1443remove_pseudo_from_table (rtx x, unsigned int hash)
1444{
1445 struct table_elt *elt;
1446
1447 /* Because a pseudo-register can be referenced in more than one
1448 mode, we might have to remove more than one table entry. */
1449 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1450 remove_from_table (elt, hash);
1451}
1452
7afe21cc
RK
1453/* Look up X in the hash table and return its table element,
1454 or 0 if X is not in the table.
1455
1456 MODE is the machine-mode of X, or if X is an integer constant
1457 with VOIDmode then MODE is the mode with which X will be used.
1458
1459 Here we are satisfied to find an expression whose tree structure
1460 looks like X. */
1461
1462static struct table_elt *
ef4bddc2 1463lookup (rtx x, unsigned int hash, machine_mode mode)
7afe21cc 1464{
b3694847 1465 struct table_elt *p;
7afe21cc
RK
1466
1467 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1468 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1469 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1470 return p;
1471
1472 return 0;
1473}
1474
1475/* Like `lookup' but don't care whether the table element uses invalid regs.
1476 Also ignore discrepancies in the machine mode of a register. */
1477
1478static struct table_elt *
ef4bddc2 1479lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
7afe21cc 1480{
b3694847 1481 struct table_elt *p;
7afe21cc 1482
f8cfc6aa 1483 if (REG_P (x))
7afe21cc 1484 {
770ae6cc
RK
1485 unsigned int regno = REGNO (x);
1486
7afe21cc
RK
1487 /* Don't check the machine mode when comparing registers;
1488 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1489 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1490 if (REG_P (p->exp)
7afe21cc
RK
1491 && REGNO (p->exp) == regno)
1492 return p;
1493 }
1494 else
1495 {
1496 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1497 if (mode == p->mode
1498 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1499 return p;
1500 }
1501
1502 return 0;
1503}
1504
1505/* Look for an expression equivalent to X and with code CODE.
1506 If one is found, return that expression. */
1507
1508static rtx
7080f735 1509lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1510{
b3694847 1511 struct table_elt *p
0516f6fe 1512 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1513
7afe21cc
RK
1514 if (p == 0)
1515 return 0;
1516
1517 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1518 if (GET_CODE (p->exp) == code
1519 /* Make sure this is a valid entry in the table. */
0516f6fe 1520 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1521 return p->exp;
278a83b2 1522
7afe21cc
RK
1523 return 0;
1524}
1525
2c5bfdf7
AN
1526/* Insert X in the hash table, assuming HASH is its hash code and
1527 CLASSP is an element of the class it should go in (or 0 if a new
1528 class should be made). COST is the code of X and reg_cost is the
1529 cost of registers in X. It is inserted at the proper position to
1530 keep the class in the order cheapest first.
7afe21cc
RK
1531
1532 MODE is the machine-mode of X, or if X is an integer constant
1533 with VOIDmode then MODE is the mode with which X will be used.
1534
1535 For elements of equal cheapness, the most recent one
1536 goes in front, except that the first element in the list
1537 remains first unless a cheaper element is added. The order of
1538 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1539 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1540
1541 The in_memory field in the hash table element is set to 0.
1542 The caller must set it nonzero if appropriate.
1543
1544 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1545 and if insert_regs returns a nonzero value
1546 you must then recompute its hash code before calling here.
1547
1548 If necessary, update table showing constant values of quantities. */
1549
7afe21cc 1550static struct table_elt *
2c5bfdf7 1551insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
ef4bddc2 1552 machine_mode mode, int cost, int reg_cost)
7afe21cc 1553{
b3694847 1554 struct table_elt *elt;
7afe21cc
RK
1555
1556 /* If X is a register and we haven't made a quantity for it,
1557 something is wrong. */
341c100f 1558 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1559
1560 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1561 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
09e18274 1562 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
7afe21cc 1563
7afe21cc
RK
1564 /* Put an element for X into the right hash bucket. */
1565
9b1549b8
DM
1566 elt = free_element_chain;
1567 if (elt)
770ae6cc 1568 free_element_chain = elt->next_same_hash;
9b1549b8 1569 else
5ed6ace5 1570 elt = XNEW (struct table_elt);
9b1549b8 1571
7afe21cc 1572 elt->exp = x;
db048faf 1573 elt->canon_exp = NULL_RTX;
2c5bfdf7
AN
1574 elt->cost = cost;
1575 elt->regcost = reg_cost;
7afe21cc
RK
1576 elt->next_same_value = 0;
1577 elt->prev_same_value = 0;
1578 elt->next_same_hash = table[hash];
1579 elt->prev_same_hash = 0;
1580 elt->related_value = 0;
1581 elt->in_memory = 0;
1582 elt->mode = mode;
389fdba0 1583 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1584
1585 if (table[hash])
1586 table[hash]->prev_same_hash = elt;
1587 table[hash] = elt;
1588
1589 /* Put it into the proper value-class. */
1590 if (classp)
1591 {
1592 classp = classp->first_same_value;
1593 if (CHEAPER (elt, classp))
f9da5064 1594 /* Insert at the head of the class. */
7afe21cc 1595 {
b3694847 1596 struct table_elt *p;
7afe21cc
RK
1597 elt->next_same_value = classp;
1598 classp->prev_same_value = elt;
1599 elt->first_same_value = elt;
1600
1601 for (p = classp; p; p = p->next_same_value)
1602 p->first_same_value = elt;
1603 }
1604 else
1605 {
1606 /* Insert not at head of the class. */
1607 /* Put it after the last element cheaper than X. */
b3694847 1608 struct table_elt *p, *next;
770ae6cc 1609
e84a58ff
EB
1610 for (p = classp;
1611 (next = p->next_same_value) && CHEAPER (next, elt);
1612 p = next)
1613 ;
770ae6cc 1614
7afe21cc
RK
1615 /* Put it after P and before NEXT. */
1616 elt->next_same_value = next;
1617 if (next)
1618 next->prev_same_value = elt;
770ae6cc 1619
7afe21cc
RK
1620 elt->prev_same_value = p;
1621 p->next_same_value = elt;
1622 elt->first_same_value = classp;
1623 }
1624 }
1625 else
1626 elt->first_same_value = elt;
1627
1628 /* If this is a constant being set equivalent to a register or a register
1629 being set equivalent to a constant, note the constant equivalence.
1630
1631 If this is a constant, it cannot be equivalent to a different constant,
1632 and a constant is the only thing that can be cheaper than a register. So
1633 we know the register is the head of the class (before the constant was
1634 inserted).
1635
1636 If this is a register that is not already known equivalent to a
1637 constant, we must check the entire class.
1638
1639 If this is a register that is already known equivalent to an insn,
1bb98cec 1640 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1641 insn making that quantity equivalent to the constant. */
1642
f8cfc6aa
JQ
1643 if (elt->is_const && classp && REG_P (classp->exp)
1644 && !REG_P (x))
7afe21cc 1645 {
1bb98cec
DM
1646 int exp_q = REG_QTY (REGNO (classp->exp));
1647 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1648
4de249d9 1649 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1650 exp_ent->const_insn = this_insn;
7afe21cc
RK
1651 }
1652
f8cfc6aa 1653 else if (REG_P (x)
1bb98cec
DM
1654 && classp
1655 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1656 && ! elt->is_const)
7afe21cc 1657 {
b3694847 1658 struct table_elt *p;
7afe21cc
RK
1659
1660 for (p = classp; p != 0; p = p->next_same_value)
1661 {
f8cfc6aa 1662 if (p->is_const && !REG_P (p->exp))
7afe21cc 1663 {
1bb98cec
DM
1664 int x_q = REG_QTY (REGNO (x));
1665 struct qty_table_elem *x_ent = &qty_table[x_q];
1666
770ae6cc 1667 x_ent->const_rtx
4de249d9 1668 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1669 x_ent->const_insn = this_insn;
7afe21cc
RK
1670 break;
1671 }
1672 }
1673 }
1674
f8cfc6aa 1675 else if (REG_P (x)
1bb98cec
DM
1676 && qty_table[REG_QTY (REGNO (x))].const_rtx
1677 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1678 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1679
1680 /* If this is a constant with symbolic value,
1681 and it has a term with an explicit integer value,
1682 link it up with related expressions. */
1683 if (GET_CODE (x) == CONST)
1684 {
1685 rtx subexp = get_related_value (x);
2197a88a 1686 unsigned subhash;
7afe21cc
RK
1687 struct table_elt *subelt, *subelt_prev;
1688
1689 if (subexp != 0)
1690 {
1691 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1692 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1693 subelt = lookup (subexp, subhash, mode);
1694 if (subelt == 0)
9714cf43 1695 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1696 /* Initialize SUBELT's circular chain if it has none. */
1697 if (subelt->related_value == 0)
1698 subelt->related_value = subelt;
1699 /* Find the element in the circular chain that precedes SUBELT. */
1700 subelt_prev = subelt;
1701 while (subelt_prev->related_value != subelt)
1702 subelt_prev = subelt_prev->related_value;
1703 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1704 This way the element that follows SUBELT is the oldest one. */
1705 elt->related_value = subelt_prev->related_value;
1706 subelt_prev->related_value = elt;
1707 }
1708 }
1709
1710 return elt;
1711}
2c5bfdf7
AN
1712
1713/* Wrap insert_with_costs by passing the default costs. */
1714
1715static struct table_elt *
1716insert (rtx x, struct table_elt *classp, unsigned int hash,
ef4bddc2 1717 machine_mode mode)
2c5bfdf7 1718{
e548c9df
AM
1719 return insert_with_costs (x, classp, hash, mode,
1720 COST (x, mode), approx_reg_cost (x));
2c5bfdf7
AN
1721}
1722
7afe21cc
RK
1723\f
1724/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1725 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1726 the two classes equivalent.
1727
1728 CLASS1 will be the surviving class; CLASS2 should not be used after this
1729 call.
1730
1731 Any invalid entries in CLASS2 will not be copied. */
1732
1733static void
7080f735 1734merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc 1735{
32e9fa48 1736 struct table_elt *elt, *next, *new_elt;
7afe21cc
RK
1737
1738 /* Ensure we start with the head of the classes. */
1739 class1 = class1->first_same_value;
1740 class2 = class2->first_same_value;
1741
1742 /* If they were already equal, forget it. */
1743 if (class1 == class2)
1744 return;
1745
1746 for (elt = class2; elt; elt = next)
1747 {
770ae6cc 1748 unsigned int hash;
7afe21cc 1749 rtx exp = elt->exp;
ef4bddc2 1750 machine_mode mode = elt->mode;
7afe21cc
RK
1751
1752 next = elt->next_same_value;
1753
1754 /* Remove old entry, make a new one in CLASS1's class.
1755 Don't do this for invalid entries as we cannot find their
0f41302f 1756 hash code (it also isn't necessary). */
0516f6fe 1757 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1758 {
a90fc8e0
RH
1759 bool need_rehash = false;
1760
7afe21cc 1761 hash_arg_in_memory = 0;
7afe21cc 1762 hash = HASH (exp, mode);
278a83b2 1763
f8cfc6aa 1764 if (REG_P (exp))
a90fc8e0 1765 {
08a69267 1766 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1767 delete_reg_equiv (REGNO (exp));
1768 }
278a83b2 1769
d556d181
EB
1770 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1771 remove_pseudo_from_table (exp, hash);
1772 else
1773 remove_from_table (elt, hash);
7afe21cc 1774
a90fc8e0 1775 if (insert_regs (exp, class1, 0) || need_rehash)
8ae2b8f6
JW
1776 {
1777 rehash_using_reg (exp);
1778 hash = HASH (exp, mode);
1779 }
32e9fa48
KG
1780 new_elt = insert (exp, class1, hash, mode);
1781 new_elt->in_memory = hash_arg_in_memory;
6c4d60f8
JJ
1782 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1783 new_elt->cost = MAX_COST;
7afe21cc
RK
1784 }
1785 }
1786}
1787\f
01e752d3
JL
1788/* Flush the entire hash table. */
1789
1790static void
7080f735 1791flush_hash_table (void)
01e752d3
JL
1792{
1793 int i;
1794 struct table_elt *p;
1795
9b1549b8 1796 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1797 for (p = table[i]; p; p = table[i])
1798 {
1799 /* Note that invalidate can remove elements
1800 after P in the current hash chain. */
f8cfc6aa 1801 if (REG_P (p->exp))
524e3576 1802 invalidate (p->exp, VOIDmode);
01e752d3
JL
1803 else
1804 remove_from_table (p, i);
1805 }
1806}
14a774a9 1807\f
c992c066
RS
1808/* Check whether an anti dependence exists between X and EXP. MODE and
1809 ADDR are as for canon_anti_dependence. */
be8ac49a 1810
c992c066 1811static bool
ef4bddc2 1812check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
2ce6dc2f 1813{
c992c066
RS
1814 subrtx_iterator::array_type array;
1815 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1816 {
1817 const_rtx x = *iter;
1818 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1819 return true;
1820 }
1821 return false;
2ce6dc2f
JH
1822}
1823\f
14a774a9
RK
1824/* Remove from the hash table, or mark as invalid, all expressions whose
1825 values could be altered by storing in X. X is a register, a subreg, or
1826 a memory reference with nonvarying address (because, when a memory
1827 reference with a varying address is stored in, all memory references are
1828 removed by invalidate_memory so specific invalidation is superfluous).
1829 FULL_MODE, if not VOIDmode, indicates that this much should be
1830 invalidated instead of just the amount indicated by the mode of X. This
1831 is only used for bitfield stores into memory.
1832
1833 A nonvarying address may be just a register or just a symbol reference,
1834 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1835
1836static void
ef4bddc2 1837invalidate (rtx x, machine_mode full_mode)
7afe21cc 1838{
b3694847
SS
1839 int i;
1840 struct table_elt *p;
9ddb66ca 1841 rtx addr;
7afe21cc 1842
14a774a9 1843 switch (GET_CODE (x))
7afe21cc 1844 {
14a774a9
RK
1845 case REG:
1846 {
1847 /* If X is a register, dependencies on its contents are recorded
1848 through the qty number mechanism. Just change the qty number of
1849 the register, mark it as invalid for expressions that refer to it,
1850 and remove it itself. */
770ae6cc
RK
1851 unsigned int regno = REGNO (x);
1852 unsigned int hash = HASH (x, GET_MODE (x));
7afe21cc 1853
14a774a9
RK
1854 /* Remove REGNO from any quantity list it might be on and indicate
1855 that its value might have changed. If it is a pseudo, remove its
1856 entry from the hash table.
7afe21cc 1857
14a774a9
RK
1858 For a hard register, we do the first two actions above for any
1859 additional hard registers corresponding to X. Then, if any of these
1860 registers are in the table, we must remove any REG entries that
1861 overlap these registers. */
7afe21cc 1862
14a774a9
RK
1863 delete_reg_equiv (regno);
1864 REG_TICK (regno)++;
46081bb3 1865 SUBREG_TICKED (regno) = -1;
85e4d983 1866
14a774a9 1867 if (regno >= FIRST_PSEUDO_REGISTER)
d556d181 1868 remove_pseudo_from_table (x, hash);
14a774a9
RK
1869 else
1870 {
1871 HOST_WIDE_INT in_table
1872 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
72d19505 1873 unsigned int endregno = END_REGNO (x);
770ae6cc 1874 unsigned int tregno, tendregno, rn;
b3694847 1875 struct table_elt *p, *next;
7afe21cc 1876
14a774a9 1877 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
7afe21cc 1878
770ae6cc 1879 for (rn = regno + 1; rn < endregno; rn++)
14a774a9 1880 {
770ae6cc
RK
1881 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1882 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1883 delete_reg_equiv (rn);
1884 REG_TICK (rn)++;
46081bb3 1885 SUBREG_TICKED (rn) = -1;
14a774a9 1886 }
7afe21cc 1887
14a774a9 1888 if (in_table)
9b1549b8 1889 for (hash = 0; hash < HASH_SIZE; hash++)
14a774a9
RK
1890 for (p = table[hash]; p; p = next)
1891 {
1892 next = p->next_same_hash;
7afe21cc 1893
f8cfc6aa 1894 if (!REG_P (p->exp)
278a83b2
KH
1895 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1896 continue;
1897
14a774a9 1898 tregno = REGNO (p->exp);
72d19505 1899 tendregno = END_REGNO (p->exp);
14a774a9
RK
1900 if (tendregno > regno && tregno < endregno)
1901 remove_from_table (p, hash);
1902 }
1903 }
1904 }
7afe21cc 1905 return;
7afe21cc 1906
14a774a9 1907 case SUBREG:
bb4034b3 1908 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1909 return;
aac5cc16 1910
14a774a9 1911 case PARALLEL:
278a83b2 1912 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1913 invalidate (XVECEXP (x, 0, i), VOIDmode);
1914 return;
aac5cc16 1915
14a774a9
RK
1916 case EXPR_LIST:
1917 /* This is part of a disjoint return value; extract the location in
1918 question ignoring the offset. */
aac5cc16
RH
1919 invalidate (XEXP (x, 0), VOIDmode);
1920 return;
7afe21cc 1921
14a774a9 1922 case MEM:
9ddb66ca 1923 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1924 /* Calculate the canonical version of X here so that
1925 true_dependence doesn't generate new RTL for X on each call. */
1926 x = canon_rtx (x);
1927
14a774a9
RK
1928 /* Remove all hash table elements that refer to overlapping pieces of
1929 memory. */
1930 if (full_mode == VOIDmode)
1931 full_mode = GET_MODE (x);
bb4034b3 1932
9b1549b8 1933 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1934 {
b3694847 1935 struct table_elt *next;
14a774a9
RK
1936
1937 for (p = table[i]; p; p = next)
1938 {
1939 next = p->next_same_hash;
db048faf
MM
1940 if (p->in_memory)
1941 {
2ce6dc2f
JH
1942 /* Just canonicalize the expression once;
1943 otherwise each time we call invalidate
1944 true_dependence will canonicalize the
1945 expression again. */
1946 if (!p->canon_exp)
1947 p->canon_exp = canon_rtx (p->exp);
c992c066 1948 if (check_dependence (p->canon_exp, x, full_mode, addr))
db048faf 1949 remove_from_table (p, i);
db048faf 1950 }
14a774a9 1951 }
7afe21cc 1952 }
14a774a9
RK
1953 return;
1954
1955 default:
341c100f 1956 gcc_unreachable ();
7afe21cc
RK
1957 }
1958}
2a1d78d8
JJ
1959
1960/* Invalidate DEST. Used when DEST is not going to be added
1961 into the hash table for some reason, e.g. do_not_record
1962 flagged on it. */
1963
1964static void
1965invalidate_dest (rtx dest)
1966{
1967 if (REG_P (dest)
1968 || GET_CODE (dest) == SUBREG
1969 || MEM_P (dest))
1970 invalidate (dest, VOIDmode);
1971 else if (GET_CODE (dest) == STRICT_LOW_PART
1972 || GET_CODE (dest) == ZERO_EXTRACT)
1973 invalidate (XEXP (dest, 0), GET_MODE (dest));
1974}
14a774a9 1975\f
7afe21cc
RK
1976/* Remove all expressions that refer to register REGNO,
1977 since they are already invalid, and we are about to
1978 mark that register valid again and don't want the old
1979 expressions to reappear as valid. */
1980
1981static void
7080f735 1982remove_invalid_refs (unsigned int regno)
7afe21cc 1983{
770ae6cc
RK
1984 unsigned int i;
1985 struct table_elt *p, *next;
7afe21cc 1986
9b1549b8 1987 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1988 for (p = table[i]; p; p = next)
1989 {
1990 next = p->next_same_hash;
c9bd6bcd 1991 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
7afe21cc
RK
1992 remove_from_table (p, i);
1993 }
1994}
34c73909 1995
ddef6bc7
JJ
1996/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1997 and mode MODE. */
34c73909 1998static void
7080f735 1999remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
ef4bddc2 2000 machine_mode mode)
34c73909 2001{
770ae6cc
RK
2002 unsigned int i;
2003 struct table_elt *p, *next;
ddef6bc7 2004 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
34c73909 2005
9b1549b8 2006 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
2007 for (p = table[i]; p; p = next)
2008 {
ddef6bc7 2009 rtx exp = p->exp;
34c73909 2010 next = p->next_same_hash;
278a83b2 2011
f8cfc6aa 2012 if (!REG_P (exp)
34c73909 2013 && (GET_CODE (exp) != SUBREG
f8cfc6aa 2014 || !REG_P (SUBREG_REG (exp))
34c73909 2015 || REGNO (SUBREG_REG (exp)) != regno
ddef6bc7
JJ
2016 || (((SUBREG_BYTE (exp)
2017 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2018 && SUBREG_BYTE (exp) <= end))
c9bd6bcd 2019 && refers_to_regno_p (regno, p->exp))
34c73909
R
2020 remove_from_table (p, i);
2021 }
2022}
7afe21cc
RK
2023\f
2024/* Recompute the hash codes of any valid entries in the hash table that
2025 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2026
2027 This is called when we make a jump equivalence. */
2028
2029static void
7080f735 2030rehash_using_reg (rtx x)
7afe21cc 2031{
973838fd 2032 unsigned int i;
7afe21cc 2033 struct table_elt *p, *next;
2197a88a 2034 unsigned hash;
7afe21cc
RK
2035
2036 if (GET_CODE (x) == SUBREG)
2037 x = SUBREG_REG (x);
2038
2039 /* If X is not a register or if the register is known not to be in any
2040 valid entries in the table, we have no work to do. */
2041
f8cfc6aa 2042 if (!REG_P (x)
30f72379
MM
2043 || REG_IN_TABLE (REGNO (x)) < 0
2044 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
2045 return;
2046
2047 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 2048 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 2049
9b1549b8 2050 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
2051 for (p = table[i]; p; p = next)
2052 {
2053 next = p->next_same_hash;
a90fc8e0 2054 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
2055 && exp_equiv_p (p->exp, p->exp, 1, false)
2056 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
2057 {
2058 if (p->next_same_hash)
2059 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2060
2061 if (p->prev_same_hash)
2062 p->prev_same_hash->next_same_hash = p->next_same_hash;
2063 else
2064 table[i] = p->next_same_hash;
2065
2066 p->next_same_hash = table[hash];
2067 p->prev_same_hash = 0;
2068 if (table[hash])
2069 table[hash]->prev_same_hash = p;
2070 table[hash] = p;
2071 }
2072 }
2073}
2074\f
7afe21cc
RK
2075/* Remove from the hash table any expression that is a call-clobbered
2076 register. Also update their TICK values. */
2077
2078static void
7080f735 2079invalidate_for_call (void)
7afe21cc 2080{
770ae6cc
RK
2081 unsigned int regno, endregno;
2082 unsigned int i;
2197a88a 2083 unsigned hash;
7afe21cc
RK
2084 struct table_elt *p, *next;
2085 int in_table = 0;
c7fb4c7a 2086 hard_reg_set_iterator hrsi;
7afe21cc
RK
2087
2088 /* Go through all the hard registers. For each that is clobbered in
2089 a CALL_INSN, remove the register from quantity chains and update
2090 reg_tick if defined. Also see if any of these registers is currently
2091 in the table. */
c7fb4c7a
SB
2092 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2093 {
2094 delete_reg_equiv (regno);
2095 if (REG_TICK (regno) >= 0)
2096 {
2097 REG_TICK (regno)++;
2098 SUBREG_TICKED (regno) = -1;
2099 }
2100 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2101 }
7afe21cc
RK
2102
2103 /* In the case where we have no call-clobbered hard registers in the
2104 table, we are done. Otherwise, scan the table and remove any
2105 entry that overlaps a call-clobbered register. */
2106
2107 if (in_table)
9b1549b8 2108 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
2109 for (p = table[hash]; p; p = next)
2110 {
2111 next = p->next_same_hash;
2112
f8cfc6aa 2113 if (!REG_P (p->exp)
7afe21cc
RK
2114 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2115 continue;
2116
2117 regno = REGNO (p->exp);
72d19505 2118 endregno = END_REGNO (p->exp);
7afe21cc
RK
2119
2120 for (i = regno; i < endregno; i++)
2121 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2122 {
2123 remove_from_table (p, hash);
2124 break;
2125 }
2126 }
2127}
2128\f
2129/* Given an expression X of type CONST,
2130 and ELT which is its table entry (or 0 if it
2131 is not in the hash table),
2132 return an alternate expression for X as a register plus integer.
2133 If none can be found, return 0. */
2134
2135static rtx
7080f735 2136use_related_value (rtx x, struct table_elt *elt)
7afe21cc 2137{
b3694847
SS
2138 struct table_elt *relt = 0;
2139 struct table_elt *p, *q;
906c4e36 2140 HOST_WIDE_INT offset;
7afe21cc
RK
2141
2142 /* First, is there anything related known?
2143 If we have a table element, we can tell from that.
2144 Otherwise, must look it up. */
2145
2146 if (elt != 0 && elt->related_value != 0)
2147 relt = elt;
2148 else if (elt == 0 && GET_CODE (x) == CONST)
2149 {
2150 rtx subexp = get_related_value (x);
2151 if (subexp != 0)
2152 relt = lookup (subexp,
0516f6fe 2153 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
2154 GET_MODE (subexp));
2155 }
2156
2157 if (relt == 0)
2158 return 0;
2159
2160 /* Search all related table entries for one that has an
2161 equivalent register. */
2162
2163 p = relt;
2164 while (1)
2165 {
2166 /* This loop is strange in that it is executed in two different cases.
2167 The first is when X is already in the table. Then it is searching
2168 the RELATED_VALUE list of X's class (RELT). The second case is when
2169 X is not in the table. Then RELT points to a class for the related
2170 value.
2171
2172 Ensure that, whatever case we are in, that we ignore classes that have
2173 the same value as X. */
2174
2175 if (rtx_equal_p (x, p->exp))
2176 q = 0;
2177 else
2178 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2179 if (REG_P (q->exp))
7afe21cc
RK
2180 break;
2181
2182 if (q)
2183 break;
2184
2185 p = p->related_value;
2186
2187 /* We went all the way around, so there is nothing to be found.
2188 Alternatively, perhaps RELT was in the table for some other reason
2189 and it has no related values recorded. */
2190 if (p == relt || p == 0)
2191 break;
2192 }
2193
2194 if (q == 0)
2195 return 0;
2196
2197 offset = (get_integer_term (x) - get_integer_term (p->exp));
2198 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
0a81f074 2199 return plus_constant (q->mode, q->exp, offset);
7afe21cc
RK
2200}
2201\f
e855c69d 2202
6462bb43
AO
2203/* Hash a string. Just add its bytes up. */
2204static inline unsigned
0516f6fe 2205hash_rtx_string (const char *ps)
6462bb43
AO
2206{
2207 unsigned hash = 0;
68252e27
KH
2208 const unsigned char *p = (const unsigned char *) ps;
2209
6462bb43
AO
2210 if (p)
2211 while (*p)
2212 hash += *p++;
2213
2214 return hash;
2215}
2216
b8698a0f 2217/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
e855c69d 2218 When the callback returns true, we continue with the new rtx. */
7afe21cc 2219
0516f6fe 2220unsigned
ef4bddc2 2221hash_rtx_cb (const_rtx x, machine_mode mode,
e855c69d
AB
2222 int *do_not_record_p, int *hash_arg_in_memory_p,
2223 bool have_reg_qty, hash_rtx_callback_function cb)
7afe21cc 2224{
b3694847
SS
2225 int i, j;
2226 unsigned hash = 0;
2227 enum rtx_code code;
2228 const char *fmt;
ef4bddc2 2229 machine_mode newmode;
e855c69d 2230 rtx newx;
7afe21cc 2231
0516f6fe
SB
2232 /* Used to turn recursion into iteration. We can't rely on GCC's
2233 tail-recursion elimination since we need to keep accumulating values
2234 in HASH. */
7afe21cc
RK
2235 repeat:
2236 if (x == 0)
2237 return hash;
2238
e855c69d 2239 /* Invoke the callback first. */
b8698a0f 2240 if (cb != NULL
e855c69d
AB
2241 && ((*cb) (x, mode, &newx, &newmode)))
2242 {
2243 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2244 hash_arg_in_memory_p, have_reg_qty, cb);
2245 return hash;
2246 }
2247
7afe21cc
RK
2248 code = GET_CODE (x);
2249 switch (code)
2250 {
2251 case REG:
2252 {
770ae6cc 2253 unsigned int regno = REGNO (x);
7afe21cc 2254
e855c69d 2255 if (do_not_record_p && !reload_completed)
7afe21cc 2256 {
0516f6fe
SB
2257 /* On some machines, we can't record any non-fixed hard register,
2258 because extending its life will cause reload problems. We
2259 consider ap, fp, sp, gp to be fixed for this purpose.
2260
2261 We also consider CCmode registers to be fixed for this purpose;
2262 failure to do so leads to failure to simplify 0<100 type of
2263 conditionals.
2264
2265 On all machines, we can't record any global registers.
2266 Nor should we record any register that is in a small
07b8f0a8 2267 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
0516f6fe
SB
2268 bool record;
2269
2270 if (regno >= FIRST_PSEUDO_REGISTER)
2271 record = true;
2272 else if (x == frame_pointer_rtx
2273 || x == hard_frame_pointer_rtx
2274 || x == arg_pointer_rtx
2275 || x == stack_pointer_rtx
2276 || x == pic_offset_table_rtx)
2277 record = true;
2278 else if (global_regs[regno])
2279 record = false;
2280 else if (fixed_regs[regno])
2281 record = true;
2282 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2283 record = true;
42db504c 2284 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
0516f6fe 2285 record = false;
07b8f0a8 2286 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
0516f6fe
SB
2287 record = false;
2288 else
2289 record = true;
2290
2291 if (!record)
2292 {
2293 *do_not_record_p = 1;
2294 return 0;
2295 }
7afe21cc 2296 }
770ae6cc 2297
0516f6fe
SB
2298 hash += ((unsigned int) REG << 7);
2299 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2300 return hash;
7afe21cc
RK
2301 }
2302
34c73909
R
2303 /* We handle SUBREG of a REG specially because the underlying
2304 reg changes its hash value with every value change; we don't
2305 want to have to forget unrelated subregs when one subreg changes. */
2306 case SUBREG:
2307 {
f8cfc6aa 2308 if (REG_P (SUBREG_REG (x)))
34c73909 2309 {
0516f6fe 2310 hash += (((unsigned int) SUBREG << 7)
ddef6bc7
JJ
2311 + REGNO (SUBREG_REG (x))
2312 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
34c73909
R
2313 return hash;
2314 }
2315 break;
2316 }
2317
7afe21cc 2318 case CONST_INT:
0516f6fe
SB
2319 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2320 + (unsigned int) INTVAL (x));
2321 return hash;
7afe21cc 2322
807e902e
KZ
2323 case CONST_WIDE_INT:
2324 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2325 hash += CONST_WIDE_INT_ELT (x, i);
2326 return hash;
2327
7afe21cc
RK
2328 case CONST_DOUBLE:
2329 /* This is like the general case, except that it only counts
2330 the integers representing the constant. */
0516f6fe 2331 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
807e902e 2332 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
0516f6fe
SB
2333 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2334 + (unsigned int) CONST_DOUBLE_HIGH (x));
807e902e
KZ
2335 else
2336 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
7afe21cc
RK
2337 return hash;
2338
091a3ac7
CF
2339 case CONST_FIXED:
2340 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2341 hash += fixed_hash (CONST_FIXED_VALUE (x));
2342 return hash;
2343
69ef87e2
AH
2344 case CONST_VECTOR:
2345 {
2346 int units;
2347 rtx elt;
2348
2349 units = CONST_VECTOR_NUNITS (x);
2350
2351 for (i = 0; i < units; ++i)
2352 {
2353 elt = CONST_VECTOR_ELT (x, i);
e855c69d 2354 hash += hash_rtx_cb (elt, GET_MODE (elt),
b8698a0f 2355 do_not_record_p, hash_arg_in_memory_p,
e855c69d 2356 have_reg_qty, cb);
69ef87e2
AH
2357 }
2358
2359 return hash;
2360 }
2361
7afe21cc
RK
2362 /* Assume there is only one rtx object for any given label. */
2363 case LABEL_REF:
0516f6fe
SB
2364 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2365 differences and differences between each stage's debugging dumps. */
2366 hash += (((unsigned int) LABEL_REF << 7)
a827d9b1 2367 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2197a88a 2368 return hash;
7afe21cc
RK
2369
2370 case SYMBOL_REF:
0516f6fe
SB
2371 {
2372 /* Don't hash on the symbol's address to avoid bootstrap differences.
2373 Different hash values may cause expressions to be recorded in
2374 different orders and thus different registers to be used in the
2375 final assembler. This also avoids differences in the dump files
2376 between various stages. */
2377 unsigned int h = 0;
2378 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2379
2380 while (*p)
2381 h += (h << 7) + *p++; /* ??? revisit */
2382
2383 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2384 return hash;
2385 }
7afe21cc
RK
2386
2387 case MEM:
14a774a9
RK
2388 /* We don't record if marked volatile or if BLKmode since we don't
2389 know the size of the move. */
e855c69d 2390 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
7afe21cc 2391 {
0516f6fe 2392 *do_not_record_p = 1;
7afe21cc
RK
2393 return 0;
2394 }
0516f6fe
SB
2395 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2396 *hash_arg_in_memory_p = 1;
4977bab6 2397
7afe21cc
RK
2398 /* Now that we have already found this special case,
2399 might as well speed it up as much as possible. */
2197a88a 2400 hash += (unsigned) MEM;
7afe21cc
RK
2401 x = XEXP (x, 0);
2402 goto repeat;
2403
bb07060a
JW
2404 case USE:
2405 /* A USE that mentions non-volatile memory needs special
2406 handling since the MEM may be BLKmode which normally
2407 prevents an entry from being made. Pure calls are
0516f6fe
SB
2408 marked by a USE which mentions BLKmode memory.
2409 See calls.c:emit_call_1. */
3c0cb5de 2410 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2411 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2412 {
68252e27 2413 hash += (unsigned) USE;
bb07060a
JW
2414 x = XEXP (x, 0);
2415
0516f6fe
SB
2416 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2417 *hash_arg_in_memory_p = 1;
bb07060a
JW
2418
2419 /* Now that we have already found this special case,
2420 might as well speed it up as much as possible. */
2421 hash += (unsigned) MEM;
2422 x = XEXP (x, 0);
2423 goto repeat;
2424 }
2425 break;
2426
7afe21cc
RK
2427 case PRE_DEC:
2428 case PRE_INC:
2429 case POST_DEC:
2430 case POST_INC:
4b983fdc
RH
2431 case PRE_MODIFY:
2432 case POST_MODIFY:
7afe21cc
RK
2433 case PC:
2434 case CC0:
2435 case CALL:
2436 case UNSPEC_VOLATILE:
e855c69d
AB
2437 if (do_not_record_p) {
2438 *do_not_record_p = 1;
2439 return 0;
2440 }
2441 else
2442 return hash;
2443 break;
7afe21cc
RK
2444
2445 case ASM_OPERANDS:
e855c69d 2446 if (do_not_record_p && MEM_VOLATILE_P (x))
7afe21cc 2447 {
0516f6fe 2448 *do_not_record_p = 1;
7afe21cc
RK
2449 return 0;
2450 }
6462bb43
AO
2451 else
2452 {
2453 /* We don't want to take the filename and line into account. */
2454 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2455 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2456 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2457 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2458
2459 if (ASM_OPERANDS_INPUT_LENGTH (x))
2460 {
2461 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2462 {
e855c69d
AB
2463 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2464 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2465 do_not_record_p, hash_arg_in_memory_p,
2466 have_reg_qty, cb)
0516f6fe 2467 + hash_rtx_string
e855c69d 2468 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2469 }
2470
0516f6fe 2471 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2472 x = ASM_OPERANDS_INPUT (x, 0);
2473 mode = GET_MODE (x);
2474 goto repeat;
2475 }
2476
2477 return hash;
2478 }
e9a25f70 2479 break;
278a83b2 2480
e9a25f70
JL
2481 default:
2482 break;
7afe21cc
RK
2483 }
2484
2485 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2486 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2487 fmt = GET_RTX_FORMAT (code);
2488 for (; i >= 0; i--)
2489 {
341c100f 2490 switch (fmt[i])
7afe21cc 2491 {
341c100f 2492 case 'e':
7afe21cc
RK
2493 /* If we are about to do the last recursive call
2494 needed at this level, change it into iteration.
2495 This function is called enough to be worth it. */
2496 if (i == 0)
2497 {
0516f6fe 2498 x = XEXP (x, i);
7afe21cc
RK
2499 goto repeat;
2500 }
b8698a0f 2501
bbbbb16a 2502 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
e855c69d
AB
2503 hash_arg_in_memory_p,
2504 have_reg_qty, cb);
341c100f 2505 break;
0516f6fe 2506
341c100f
NS
2507 case 'E':
2508 for (j = 0; j < XVECLEN (x, i); j++)
bbbbb16a 2509 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
e855c69d
AB
2510 hash_arg_in_memory_p,
2511 have_reg_qty, cb);
341c100f 2512 break;
0516f6fe 2513
341c100f
NS
2514 case 's':
2515 hash += hash_rtx_string (XSTR (x, i));
2516 break;
2517
2518 case 'i':
2519 hash += (unsigned int) XINT (x, i);
2520 break;
2521
2522 case '0': case 't':
2523 /* Unused. */
2524 break;
2525
2526 default:
2527 gcc_unreachable ();
2528 }
7afe21cc 2529 }
0516f6fe 2530
7afe21cc
RK
2531 return hash;
2532}
2533
e855c69d
AB
2534/* Hash an rtx. We are careful to make sure the value is never negative.
2535 Equivalent registers hash identically.
2536 MODE is used in hashing for CONST_INTs only;
2537 otherwise the mode of X is used.
2538
2539 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2540
2541 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
3e55d79b 2542 a MEM rtx which does not have the MEM_READONLY_P flag set.
e855c69d
AB
2543
2544 Note that cse_insn knows that the hash code of a MEM expression
2545 is just (int) MEM plus the hash code of the address. */
2546
2547unsigned
ef4bddc2 2548hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
e855c69d
AB
2549 int *hash_arg_in_memory_p, bool have_reg_qty)
2550{
2551 return hash_rtx_cb (x, mode, do_not_record_p,
2552 hash_arg_in_memory_p, have_reg_qty, NULL);
2553}
2554
0516f6fe
SB
2555/* Hash an rtx X for cse via hash_rtx.
2556 Stores 1 in do_not_record if any subexpression is volatile.
2557 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
3e55d79b 2558 does not have the MEM_READONLY_P flag set. */
0516f6fe
SB
2559
2560static inline unsigned
ef4bddc2 2561canon_hash (rtx x, machine_mode mode)
0516f6fe
SB
2562{
2563 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2564}
2565
2566/* Like canon_hash but with no side effects, i.e. do_not_record
2567 and hash_arg_in_memory are not changed. */
7afe21cc 2568
0516f6fe 2569static inline unsigned
ef4bddc2 2570safe_hash (rtx x, machine_mode mode)
7afe21cc 2571{
0516f6fe
SB
2572 int dummy_do_not_record;
2573 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2574}
2575\f
2576/* Return 1 iff X and Y would canonicalize into the same thing,
2577 without actually constructing the canonicalization of either one.
2578 If VALIDATE is nonzero,
2579 we assume X is an expression being processed from the rtl
2580 and Y was found in the hash table. We check register refs
2581 in Y for being marked as valid.
2582
0516f6fe 2583 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2584
0516f6fe 2585int
4f588890 2586exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
7afe21cc 2587{
b3694847
SS
2588 int i, j;
2589 enum rtx_code code;
2590 const char *fmt;
7afe21cc
RK
2591
2592 /* Note: it is incorrect to assume an expression is equivalent to itself
2593 if VALIDATE is nonzero. */
2594 if (x == y && !validate)
2595 return 1;
0516f6fe 2596
7afe21cc
RK
2597 if (x == 0 || y == 0)
2598 return x == y;
2599
2600 code = GET_CODE (x);
2601 if (code != GET_CODE (y))
0516f6fe 2602 return 0;
7afe21cc
RK
2603
2604 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2605 if (GET_MODE (x) != GET_MODE (y))
2606 return 0;
2607
5932a4d4 2608 /* MEMs referring to different address space are not equivalent. */
09e881c9
BE
2609 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2610 return 0;
2611
7afe21cc
RK
2612 switch (code)
2613 {
2614 case PC:
2615 case CC0:
d8116890 2616 CASE_CONST_UNIQUE:
c13e8210 2617 return x == y;
7afe21cc
RK
2618
2619 case LABEL_REF:
a827d9b1 2620 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
7afe21cc 2621
f54d4924
RK
2622 case SYMBOL_REF:
2623 return XSTR (x, 0) == XSTR (y, 0);
2624
7afe21cc 2625 case REG:
0516f6fe
SB
2626 if (for_gcse)
2627 return REGNO (x) == REGNO (y);
2628 else
2629 {
2630 unsigned int regno = REGNO (y);
2631 unsigned int i;
09e18274 2632 unsigned int endregno = END_REGNO (y);
7afe21cc 2633
0516f6fe
SB
2634 /* If the quantities are not the same, the expressions are not
2635 equivalent. If there are and we are not to validate, they
2636 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2637
0516f6fe
SB
2638 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2639 return 0;
2640
2641 if (! validate)
2642 return 1;
2643
2644 for (i = regno; i < endregno; i++)
2645 if (REG_IN_TABLE (i) != REG_TICK (i))
2646 return 0;
7afe21cc 2647
7afe21cc 2648 return 1;
0516f6fe 2649 }
7afe21cc 2650
0516f6fe
SB
2651 case MEM:
2652 if (for_gcse)
2653 {
0516f6fe
SB
2654 /* A volatile mem should not be considered equivalent to any
2655 other. */
2656 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2657 return 0;
8a76c4a0
JJ
2658
2659 /* Can't merge two expressions in different alias sets, since we
2660 can decide that the expression is transparent in a block when
2661 it isn't, due to it being set with the different alias set.
2662
2663 Also, can't merge two expressions with different MEM_ATTRS.
2664 They could e.g. be two different entities allocated into the
2665 same space on the stack (see e.g. PR25130). In that case, the
2666 MEM addresses can be the same, even though the two MEMs are
2667 absolutely not equivalent.
2668
2669 But because really all MEM attributes should be the same for
2670 equivalent MEMs, we just use the invariant that MEMs that have
2671 the same attributes share the same mem_attrs data structure. */
96b3c03f 2672 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
8a76c4a0 2673 return 0;
e304caa4
EB
2674
2675 /* If we are handling exceptions, we cannot consider two expressions
2676 with different trapping status as equivalent, because simple_mem
2677 might accept one and reject the other. */
2678 if (cfun->can_throw_non_call_exceptions
2679 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2680 return 0;
0516f6fe
SB
2681 }
2682 break;
7afe21cc
RK
2683
2684 /* For commutative operations, check both orders. */
2685 case PLUS:
2686 case MULT:
2687 case AND:
2688 case IOR:
2689 case XOR:
2690 case NE:
2691 case EQ:
0516f6fe
SB
2692 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2693 validate, for_gcse)
7afe21cc 2694 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2695 validate, for_gcse))
7afe21cc 2696 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2697 validate, for_gcse)
7afe21cc 2698 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2699 validate, for_gcse)));
278a83b2 2700
6462bb43
AO
2701 case ASM_OPERANDS:
2702 /* We don't use the generic code below because we want to
2703 disregard filename and line numbers. */
2704
2705 /* A volatile asm isn't equivalent to any other. */
2706 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2707 return 0;
2708
2709 if (GET_MODE (x) != GET_MODE (y)
2710 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2711 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2712 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2713 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2714 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2715 return 0;
2716
2717 if (ASM_OPERANDS_INPUT_LENGTH (x))
2718 {
2719 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2720 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2721 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2722 validate, for_gcse)
6462bb43
AO
2723 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2724 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2725 return 0;
2726 }
2727
2728 return 1;
2729
e9a25f70
JL
2730 default:
2731 break;
7afe21cc
RK
2732 }
2733
2734 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2735 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2736
2737 fmt = GET_RTX_FORMAT (code);
2738 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2739 {
906c4e36 2740 switch (fmt[i])
7afe21cc 2741 {
906c4e36 2742 case 'e':
0516f6fe
SB
2743 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2744 validate, for_gcse))
7afe21cc 2745 return 0;
906c4e36
RK
2746 break;
2747
2748 case 'E':
7afe21cc
RK
2749 if (XVECLEN (x, i) != XVECLEN (y, i))
2750 return 0;
2751 for (j = 0; j < XVECLEN (x, i); j++)
2752 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2753 validate, for_gcse))
7afe21cc 2754 return 0;
906c4e36
RK
2755 break;
2756
2757 case 's':
7afe21cc
RK
2758 if (strcmp (XSTR (x, i), XSTR (y, i)))
2759 return 0;
906c4e36
RK
2760 break;
2761
2762 case 'i':
7afe21cc
RK
2763 if (XINT (x, i) != XINT (y, i))
2764 return 0;
906c4e36
RK
2765 break;
2766
2767 case 'w':
2768 if (XWINT (x, i) != XWINT (y, i))
2769 return 0;
278a83b2 2770 break;
906c4e36
RK
2771
2772 case '0':
8f985ec4 2773 case 't':
906c4e36
RK
2774 break;
2775
2776 default:
341c100f 2777 gcc_unreachable ();
7afe21cc 2778 }
278a83b2 2779 }
906c4e36 2780
7afe21cc
RK
2781 return 1;
2782}
2783\f
eef3c949
RS
2784/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2785 the result if necessary. INSN is as for canon_reg. */
2786
2787static void
20468884 2788validate_canon_reg (rtx *xloc, rtx_insn *insn)
eef3c949 2789{
6fb5fa3c
DB
2790 if (*xloc)
2791 {
32e9fa48 2792 rtx new_rtx = canon_reg (*xloc, insn);
eef3c949 2793
6fb5fa3c
DB
2794 /* If replacing pseudo with hard reg or vice versa, ensure the
2795 insn remains valid. Likewise if the insn has MATCH_DUPs. */
32e9fa48
KG
2796 gcc_assert (insn && new_rtx);
2797 validate_change (insn, xloc, new_rtx, 1);
6fb5fa3c 2798 }
eef3c949
RS
2799}
2800
7afe21cc
RK
2801/* Canonicalize an expression:
2802 replace each register reference inside it
2803 with the "oldest" equivalent register.
2804
67e0a632 2805 If INSN is nonzero validate_change is used to ensure that INSN remains valid
da7d8304 2806 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2807 so apply_change_group must be called upon the outermost return from this
2808 function (unless INSN is zero). The result of apply_change_group can
2809 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2810
2811static rtx
20468884 2812canon_reg (rtx x, rtx_insn *insn)
7afe21cc 2813{
b3694847
SS
2814 int i;
2815 enum rtx_code code;
2816 const char *fmt;
7afe21cc
RK
2817
2818 if (x == 0)
2819 return x;
2820
2821 code = GET_CODE (x);
2822 switch (code)
2823 {
2824 case PC:
2825 case CC0:
2826 case CONST:
d8116890 2827 CASE_CONST_ANY:
7afe21cc
RK
2828 case SYMBOL_REF:
2829 case LABEL_REF:
2830 case ADDR_VEC:
2831 case ADDR_DIFF_VEC:
2832 return x;
2833
2834 case REG:
2835 {
b3694847
SS
2836 int first;
2837 int q;
2838 struct qty_table_elem *ent;
7afe21cc
RK
2839
2840 /* Never replace a hard reg, because hard regs can appear
2841 in more than one machine mode, and we must preserve the mode
2842 of each occurrence. Also, some hard regs appear in
2843 MEMs that are shared and mustn't be altered. Don't try to
2844 replace any reg that maps to a reg of class NO_REGS. */
2845 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2846 || ! REGNO_QTY_VALID_P (REGNO (x)))
2847 return x;
2848
278a83b2 2849 q = REG_QTY (REGNO (x));
1bb98cec
DM
2850 ent = &qty_table[q];
2851 first = ent->first_reg;
7afe21cc
RK
2852 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2853 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2854 : gen_rtx_REG (ent->mode, first));
7afe21cc 2855 }
278a83b2 2856
e9a25f70
JL
2857 default:
2858 break;
7afe21cc
RK
2859 }
2860
2861 fmt = GET_RTX_FORMAT (code);
2862 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2863 {
b3694847 2864 int j;
7afe21cc
RK
2865
2866 if (fmt[i] == 'e')
eef3c949 2867 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2868 else if (fmt[i] == 'E')
2869 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2870 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2871 }
2872
2873 return x;
2874}
2875\f
bca05d20
RK
2876/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2877 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2878 what values are being compared.
1a87eea2 2879
bca05d20
RK
2880 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2881 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2882 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2883 compared to produce cc0.
a432f20d 2884
bca05d20
RK
2885 The return value is the comparison operator and is either the code of
2886 A or the code corresponding to the inverse of the comparison. */
7afe21cc 2887
0cedb36c 2888static enum rtx_code
7080f735 2889find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
ef4bddc2 2890 machine_mode *pmode1, machine_mode *pmode2)
7afe21cc 2891{
0cedb36c 2892 rtx arg1, arg2;
6e2830c3 2893 hash_set<rtx> *visited = NULL;
27ec0502
AJ
2894 /* Set nonzero when we find something of interest. */
2895 rtx x = NULL;
1a87eea2 2896
0cedb36c 2897 arg1 = *parg1, arg2 = *parg2;
7afe21cc 2898
0cedb36c 2899 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 2900
0cedb36c 2901 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 2902 {
0cedb36c
JL
2903 int reverse_code = 0;
2904 struct table_elt *p = 0;
6076248a 2905
27ec0502
AJ
2906 /* Remember state from previous iteration. */
2907 if (x)
2908 {
2909 if (!visited)
6e2830c3
TS
2910 visited = new hash_set<rtx>;
2911 visited->add (x);
27ec0502
AJ
2912 x = 0;
2913 }
2914
0cedb36c
JL
2915 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2916 On machines with CC0, this is the only case that can occur, since
2917 fold_rtx will return the COMPARE or item being compared with zero
2918 when given CC0. */
6076248a 2919
0cedb36c
JL
2920 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2921 x = arg1;
6076248a 2922
0cedb36c
JL
2923 /* If ARG1 is a comparison operator and CODE is testing for
2924 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 2925
ec8e098d 2926 else if (COMPARISON_P (arg1))
7afe21cc 2927 {
efdc7e19
RH
2928#ifdef FLOAT_STORE_FLAG_VALUE
2929 REAL_VALUE_TYPE fsfv;
2930#endif
2931
0cedb36c
JL
2932 if (code == NE
2933 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2934 && code == LT && STORE_FLAG_VALUE == -1)
2935#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2936 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2937 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2938 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 2939#endif
a432f20d 2940 )
0cedb36c
JL
2941 x = arg1;
2942 else if (code == EQ
2943 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2944 && code == GE && STORE_FLAG_VALUE == -1)
2945#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2946 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2947 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2948 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
2949#endif
2950 )
2951 x = arg1, reverse_code = 1;
7afe21cc
RK
2952 }
2953
0cedb36c 2954 /* ??? We could also check for
7afe21cc 2955
0cedb36c 2956 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 2957
0cedb36c 2958 and related forms, but let's wait until we see them occurring. */
7afe21cc 2959
0cedb36c
JL
2960 if (x == 0)
2961 /* Look up ARG1 in the hash table and see if it has an equivalence
2962 that lets us see what is being compared. */
0516f6fe 2963 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 2964 if (p)
8b03b984
R
2965 {
2966 p = p->first_same_value;
2967
2968 /* If what we compare is already known to be constant, that is as
2969 good as it gets.
2970 We need to break the loop in this case, because otherwise we
2971 can have an infinite loop when looking at a reg that is known
2972 to be a constant which is the same as a comparison of a reg
2973 against zero which appears later in the insn stream, which in
2974 turn is constant and the same as the comparison of the first reg
2975 against zero... */
2976 if (p->is_const)
2977 break;
2978 }
7afe21cc 2979
0cedb36c 2980 for (; p; p = p->next_same_value)
7afe21cc 2981 {
ef4bddc2 2982 machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
2983#ifdef FLOAT_STORE_FLAG_VALUE
2984 REAL_VALUE_TYPE fsfv;
2985#endif
7afe21cc 2986
0cedb36c 2987 /* If the entry isn't valid, skip it. */
0516f6fe 2988 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 2989 continue;
f76b9db2 2990
27ec0502 2991 /* If it's a comparison we've used before, skip it. */
6e2830c3 2992 if (visited && visited->contains (p->exp))
8f1ad6b6
SL
2993 continue;
2994
bca05d20
RK
2995 if (GET_CODE (p->exp) == COMPARE
2996 /* Another possibility is that this machine has a compare insn
2997 that includes the comparison code. In that case, ARG1 would
2998 be equivalent to a comparison operation that would set ARG1 to
2999 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3000 ORIG_CODE is the actual comparison being done; if it is an EQ,
3001 we must reverse ORIG_CODE. On machine with a negative value
3002 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3003 || ((code == NE
3004 || (code == LT
2d0c270f
BS
3005 && val_signbit_known_set_p (inner_mode,
3006 STORE_FLAG_VALUE))
0cedb36c 3007#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20 3008 || (code == LT
3d8bf70f 3009 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
3010 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3011 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 3012#endif
bca05d20 3013 )
ec8e098d 3014 && COMPARISON_P (p->exp)))
7afe21cc 3015 {
0cedb36c
JL
3016 x = p->exp;
3017 break;
3018 }
3019 else if ((code == EQ
3020 || (code == GE
2d0c270f
BS
3021 && val_signbit_known_set_p (inner_mode,
3022 STORE_FLAG_VALUE))
0cedb36c
JL
3023#ifdef FLOAT_STORE_FLAG_VALUE
3024 || (code == GE
3d8bf70f 3025 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
3026 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3027 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3028#endif
3029 )
ec8e098d 3030 && COMPARISON_P (p->exp))
0cedb36c
JL
3031 {
3032 reverse_code = 1;
3033 x = p->exp;
3034 break;
7afe21cc
RK
3035 }
3036
4977bab6
ZW
3037 /* If this non-trapping address, e.g. fp + constant, the
3038 equivalent is a better operand since it may let us predict
3039 the value of the comparison. */
3040 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
3041 {
3042 arg1 = p->exp;
3043 continue;
3044 }
7afe21cc 3045 }
7afe21cc 3046
0cedb36c
JL
3047 /* If we didn't find a useful equivalence for ARG1, we are done.
3048 Otherwise, set up for the next iteration. */
3049 if (x == 0)
3050 break;
7afe21cc 3051
026c3cfd 3052 /* If we need to reverse the comparison, make sure that is
78192b09
RH
3053 possible -- we can't necessarily infer the value of GE from LT
3054 with floating-point operands. */
0cedb36c 3055 if (reverse_code)
261efdef
JH
3056 {
3057 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3058 if (reversed == UNKNOWN)
3059 break;
68252e27
KH
3060 else
3061 code = reversed;
261efdef 3062 }
ec8e098d 3063 else if (COMPARISON_P (x))
261efdef
JH
3064 code = GET_CODE (x);
3065 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
3066 }
3067
0cedb36c
JL
3068 /* Return our results. Return the modes from before fold_rtx
3069 because fold_rtx might produce const_int, and then it's too late. */
3070 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3071 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3072
27ec0502 3073 if (visited)
6e2830c3 3074 delete visited;
0cedb36c 3075 return code;
7afe21cc
RK
3076}
3077\f
a52b023a
PB
3078/* If X is a nontrivial arithmetic operation on an argument for which
3079 a constant value can be determined, return the result of operating
3080 on that value, as a constant. Otherwise, return X, possibly with
3081 one or more operands changed to a forward-propagated constant.
25910ca4 3082
a52b023a
PB
3083 If X is a register whose contents are known, we do NOT return
3084 those contents here; equiv_constant is called to perform that task.
3085 For SUBREGs and MEMs, we do that both here and in equiv_constant.
7afe21cc
RK
3086
3087 INSN is the insn that we may be modifying. If it is 0, make a copy
3088 of X before modifying it. */
3089
3090static rtx
20468884 3091fold_rtx (rtx x, rtx_insn *insn)
7afe21cc 3092{
b3694847 3093 enum rtx_code code;
ef4bddc2 3094 machine_mode mode;
b3694847
SS
3095 const char *fmt;
3096 int i;
32e9fa48 3097 rtx new_rtx = 0;
a52b023a 3098 int changed = 0;
7afe21cc 3099
a52b023a 3100 /* Operands of X. */
e54bd4ab
JJ
3101 /* Workaround -Wmaybe-uninitialized false positive during
3102 profiledbootstrap by initializing them. */
3103 rtx folded_arg0 = NULL_RTX;
3104 rtx folded_arg1 = NULL_RTX;
7afe21cc
RK
3105
3106 /* Constant equivalents of first three operands of X;
3107 0 when no such equivalent is known. */
3108 rtx const_arg0;
3109 rtx const_arg1;
3110 rtx const_arg2;
3111
3112 /* The mode of the first operand of X. We need this for sign and zero
3113 extends. */
ef4bddc2 3114 machine_mode mode_arg0;
7afe21cc
RK
3115
3116 if (x == 0)
3117 return x;
3118
a52b023a 3119 /* Try to perform some initial simplifications on X. */
7afe21cc
RK
3120 code = GET_CODE (x);
3121 switch (code)
3122 {
a52b023a
PB
3123 case MEM:
3124 case SUBREG:
5141ed42
JL
3125 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3126 than it would in other contexts. Basically its mode does not
3127 signify the size of the object read. That information is carried
3128 by size operand. If we happen to have a MEM of the appropriate
3129 mode in our tables with a constant value we could simplify the
3130 extraction incorrectly if we allowed substitution of that value
3131 for the MEM. */
3132 case ZERO_EXTRACT:
3133 case SIGN_EXTRACT:
32e9fa48
KG
3134 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3135 return new_rtx;
a52b023a
PB
3136 return x;
3137
7afe21cc 3138 case CONST:
d8116890 3139 CASE_CONST_ANY:
7afe21cc
RK
3140 case SYMBOL_REF:
3141 case LABEL_REF:
3142 case REG:
01aa1d43 3143 case PC:
7afe21cc
RK
3144 /* No use simplifying an EXPR_LIST
3145 since they are used only for lists of args
3146 in a function call's REG_EQUAL note. */
3147 case EXPR_LIST:
3148 return x;
3149
7afe21cc
RK
3150 case CC0:
3151 return prev_insn_cc0;
7afe21cc 3152
9255709c 3153 case ASM_OPERANDS:
6c667859
AB
3154 if (insn)
3155 {
3156 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3157 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3158 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3159 }
a52b023a
PB
3160 return x;
3161
a52b023a 3162 case CALL:
1e8552c2 3163 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
a52b023a 3164 return x;
9255709c 3165 break;
278a83b2 3166
a52b023a 3167 /* Anything else goes through the loop below. */
e9a25f70
JL
3168 default:
3169 break;
7afe21cc
RK
3170 }
3171
a52b023a 3172 mode = GET_MODE (x);
7afe21cc
RK
3173 const_arg0 = 0;
3174 const_arg1 = 0;
3175 const_arg2 = 0;
3176 mode_arg0 = VOIDmode;
3177
3178 /* Try folding our operands.
3179 Then see which ones have constant values known. */
3180
3181 fmt = GET_RTX_FORMAT (code);
3182 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183 if (fmt[i] == 'e')
3184 {
a52b023a 3185 rtx folded_arg = XEXP (x, i), const_arg;
ef4bddc2 3186 machine_mode mode_arg = GET_MODE (folded_arg);
7e7e28c7
AO
3187
3188 switch (GET_CODE (folded_arg))
3189 {
3190 case MEM:
3191 case REG:
3192 case SUBREG:
3193 const_arg = equiv_constant (folded_arg);
3194 break;
3195
3196 case CONST:
d8116890 3197 CASE_CONST_ANY:
7e7e28c7
AO
3198 case SYMBOL_REF:
3199 case LABEL_REF:
7e7e28c7
AO
3200 const_arg = folded_arg;
3201 break;
3202
7e7e28c7 3203 case CC0:
728acca0
MP
3204 /* The cc0-user and cc0-setter may be in different blocks if
3205 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3206 will have been cleared as we exited the block with the
3207 setter.
3208
3209 While we could potentially track cc0 in this case, it just
3210 doesn't seem to be worth it given that cc0 targets are not
3211 terribly common or important these days and trapping math
3212 is rarely used. The combination of those two conditions
3213 necessary to trip this situation is exceedingly rare in the
3214 real world. */
3215 if (!prev_insn_cc0)
3216 {
3217 const_arg = NULL_RTX;
3218 }
3219 else
3220 {
3221 folded_arg = prev_insn_cc0;
3222 mode_arg = prev_insn_cc0_mode;
3223 const_arg = equiv_constant (folded_arg);
3224 }
7e7e28c7 3225 break;
7e7e28c7
AO
3226
3227 default:
3228 folded_arg = fold_rtx (folded_arg, insn);
3229 const_arg = equiv_constant (folded_arg);
3230 break;
3231 }
7afe21cc
RK
3232
3233 /* For the first three operands, see if the operand
3234 is constant or equivalent to a constant. */
3235 switch (i)
3236 {
3237 case 0:
3238 folded_arg0 = folded_arg;
3239 const_arg0 = const_arg;
3240 mode_arg0 = mode_arg;
3241 break;
3242 case 1:
3243 folded_arg1 = folded_arg;
3244 const_arg1 = const_arg;
3245 break;
3246 case 2:
3247 const_arg2 = const_arg;
3248 break;
3249 }
3250
a52b023a
PB
3251 /* Pick the least expensive of the argument and an equivalent constant
3252 argument. */
3253 if (const_arg != 0
3254 && const_arg != folded_arg
e548c9df
AM
3255 && (COST_IN (const_arg, mode_arg, code, i)
3256 <= COST_IN (folded_arg, mode_arg, code, i))
f2fa288f 3257
8cce3d04
RS
3258 /* It's not safe to substitute the operand of a conversion
3259 operator with a constant, as the conversion's identity
f652d14b 3260 depends upon the mode of its operand. This optimization
8cce3d04 3261 is handled by the call to simplify_unary_operation. */
a52b023a
PB
3262 && (GET_RTX_CLASS (code) != RTX_UNARY
3263 || GET_MODE (const_arg) == mode_arg0
3264 || (code != ZERO_EXTEND
3265 && code != SIGN_EXTEND
3266 && code != TRUNCATE
3267 && code != FLOAT_TRUNCATE
3268 && code != FLOAT_EXTEND
3269 && code != FLOAT
3270 && code != FIX
3271 && code != UNSIGNED_FLOAT
3272 && code != UNSIGNED_FIX)))
3273 folded_arg = const_arg;
3274
3275 if (folded_arg == XEXP (x, i))
3276 continue;
7afe21cc 3277
a52b023a
PB
3278 if (insn == NULL_RTX && !changed)
3279 x = copy_rtx (x);
3280 changed = 1;
b8b89e7c 3281 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
2d8b0f3a 3282 }
7afe21cc 3283
a52b023a 3284 if (changed)
7afe21cc 3285 {
a52b023a
PB
3286 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3287 consistent with the order in X. */
3288 if (canonicalize_change_group (insn, x))
7afe21cc 3289 {
4e1952ab
KT
3290 std::swap (const_arg0, const_arg1);
3291 std::swap (folded_arg0, folded_arg1);
7afe21cc 3292 }
a52b023a
PB
3293
3294 apply_change_group ();
7afe21cc
RK
3295 }
3296
3297 /* If X is an arithmetic operation, see if we can simplify it. */
3298
3299 switch (GET_RTX_CLASS (code))
3300 {
ec8e098d 3301 case RTX_UNARY:
67a37737 3302 {
67a37737
RK
3303 /* We can't simplify extension ops unless we know the
3304 original mode. */
3305 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3306 && mode_arg0 == VOIDmode)
3307 break;
3308
32e9fa48 3309 new_rtx = simplify_unary_operation (code, mode,
696d76a5
MS
3310 const_arg0 ? const_arg0 : folded_arg0,
3311 mode_arg0);
67a37737 3312 }
7afe21cc 3313 break;
278a83b2 3314
ec8e098d
PB
3315 case RTX_COMPARE:
3316 case RTX_COMM_COMPARE:
7afe21cc
RK
3317 /* See what items are actually being compared and set FOLDED_ARG[01]
3318 to those values and CODE to the actual comparison code. If any are
3319 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3320 do anything if both operands are already known to be constant. */
3321
21e5076a
UB
3322 /* ??? Vector mode comparisons are not supported yet. */
3323 if (VECTOR_MODE_P (mode))
3324 break;
3325
7afe21cc
RK
3326 if (const_arg0 == 0 || const_arg1 == 0)
3327 {
3328 struct table_elt *p0, *p1;
9e6a14a4 3329 rtx true_rtx, false_rtx;
ef4bddc2 3330 machine_mode mode_arg1;
c610adec 3331
9b92bf04 3332 if (SCALAR_FLOAT_MODE_P (mode))
c610adec 3333 {
9e6a14a4 3334#ifdef FLOAT_STORE_FLAG_VALUE
555affd7 3335 true_rtx = (const_double_from_real_value
68252e27 3336 (FLOAT_STORE_FLAG_VALUE (mode), mode));
9e6a14a4
L
3337#else
3338 true_rtx = NULL_RTX;
3339#endif
d6edb99e 3340 false_rtx = CONST0_RTX (mode);
c610adec 3341 }
9e6a14a4
L
3342 else
3343 {
3344 true_rtx = const_true_rtx;
3345 false_rtx = const0_rtx;
3346 }
7afe21cc 3347
13c9910f
RS
3348 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3349 &mode_arg0, &mode_arg1);
7afe21cc 3350
13c9910f
RS
3351 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3352 what kinds of things are being compared, so we can't do
3353 anything with this comparison. */
7afe21cc
RK
3354
3355 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3356 break;
3357
75335440
KH
3358 const_arg0 = equiv_constant (folded_arg0);
3359 const_arg1 = equiv_constant (folded_arg1);
3360
0f41302f
MS
3361 /* If we do not now have two constants being compared, see
3362 if we can nevertheless deduce some things about the
3363 comparison. */
7afe21cc
RK
3364 if (const_arg0 == 0 || const_arg1 == 0)
3365 {
08678f51
HPN
3366 if (const_arg1 != NULL)
3367 {
3368 rtx cheapest_simplification;
3369 int cheapest_cost;
3370 rtx simp_result;
3371 struct table_elt *p;
3372
3373 /* See if we can find an equivalent of folded_arg0
3374 that gets us a cheaper expression, possibly a
3375 constant through simplifications. */
3376 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3377 mode_arg0);
b8698a0f 3378
08678f51
HPN
3379 if (p != NULL)
3380 {
3381 cheapest_simplification = x;
e548c9df 3382 cheapest_cost = COST (x, mode);
08678f51
HPN
3383
3384 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3385 {
3386 int cost;
3387
3388 /* If the entry isn't valid, skip it. */
3389 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3390 continue;
3391
3392 /* Try to simplify using this equivalence. */
3393 simp_result
3394 = simplify_relational_operation (code, mode,
3395 mode_arg0,
3396 p->exp,
3397 const_arg1);
3398
3399 if (simp_result == NULL)
3400 continue;
3401
e548c9df 3402 cost = COST (simp_result, mode);
08678f51
HPN
3403 if (cost < cheapest_cost)
3404 {
3405 cheapest_cost = cost;
3406 cheapest_simplification = simp_result;
3407 }
3408 }
3409
3410 /* If we have a cheaper expression now, use that
3411 and try folding it further, from the top. */
3412 if (cheapest_simplification != x)
7903b3e5
JH
3413 return fold_rtx (copy_rtx (cheapest_simplification),
3414 insn);
08678f51
HPN
3415 }
3416 }
3417
fd13313f
JH
3418 /* See if the two operands are the same. */
3419
39641489
PB
3420 if ((REG_P (folded_arg0)
3421 && REG_P (folded_arg1)
3422 && (REG_QTY (REGNO (folded_arg0))
3423 == REG_QTY (REGNO (folded_arg1))))
fd13313f 3424 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3425 SAFE_HASH (folded_arg0, mode_arg0),
3426 mode_arg0))
fd13313f 3427 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3428 SAFE_HASH (folded_arg1, mode_arg0),
3429 mode_arg0))
fd13313f 3430 && p0->first_same_value == p1->first_same_value))
39641489 3431 folded_arg1 = folded_arg0;
7afe21cc
RK
3432
3433 /* If FOLDED_ARG0 is a register, see if the comparison we are
3434 doing now is either the same as we did before or the reverse
3435 (we only check the reverse if not floating-point). */
f8cfc6aa 3436 else if (REG_P (folded_arg0))
7afe21cc 3437 {
30f72379 3438 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 3439
1bb98cec
DM
3440 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3441 {
3442 struct qty_table_elem *ent = &qty_table[qty];
3443
3444 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
3445 || (! FLOAT_MODE_P (mode_arg0)
3446 && comparison_dominates_p (ent->comparison_code,
3447 reverse_condition (code))))
1bb98cec
DM
3448 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3449 || (const_arg1
3450 && rtx_equal_p (ent->comparison_const,
3451 const_arg1))
f8cfc6aa 3452 || (REG_P (folded_arg1)
1bb98cec 3453 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
9e6a14a4
L
3454 {
3455 if (comparison_dominates_p (ent->comparison_code, code))
3456 {
3457 if (true_rtx)
3458 return true_rtx;
3459 else
3460 break;
3461 }
3462 else
3463 return false_rtx;
3464 }
1bb98cec 3465 }
7afe21cc
RK
3466 }
3467 }
3468 }
3469
3470 /* If we are comparing against zero, see if the first operand is
3471 equivalent to an IOR with a constant. If so, we may be able to
3472 determine the result of this comparison. */
39641489 3473 if (const_arg1 == const0_rtx && !const_arg0)
7afe21cc
RK
3474 {
3475 rtx y = lookup_as_function (folded_arg0, IOR);
3476 rtx inner_const;
3477
3478 if (y != 0
3479 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
481683e1 3480 && CONST_INT_P (inner_const)
7afe21cc 3481 && INTVAL (inner_const) != 0)
39641489 3482 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
7afe21cc
RK
3483 }
3484
c6fb08ad 3485 {
bca3cc97
JJ
3486 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3487 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3488 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3489 op0, op1);
c6fb08ad 3490 }
7afe21cc
RK
3491 break;
3492
ec8e098d
PB
3493 case RTX_BIN_ARITH:
3494 case RTX_COMM_ARITH:
7afe21cc
RK
3495 switch (code)
3496 {
3497 case PLUS:
3498 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3499 with that LABEL_REF as its second operand. If so, the result is
3500 the first operand of that MINUS. This handles switches with an
3501 ADDR_DIFF_VEC table. */
3502 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3503 {
e650cbda
RK
3504 rtx y
3505 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 3506 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
3507
3508 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
a827d9b1 3509 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
7afe21cc 3510 return XEXP (y, 0);
67a37737
RK
3511
3512 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
3513 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3514 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
3515 && GET_CODE (XEXP (y, 0)) == MINUS
3516 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
a827d9b1 3517 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
67a37737 3518 return XEXP (XEXP (y, 0), 0);
7afe21cc 3519 }
c2cc0778 3520
e650cbda
RK
3521 /* Likewise if the operands are in the other order. */
3522 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3523 {
3524 rtx y
3525 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 3526 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
3527
3528 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
a827d9b1 3529 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
e650cbda
RK
3530 return XEXP (y, 0);
3531
3532 /* Now try for a CONST of a MINUS like the above. */
3533 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3534 : lookup_as_function (folded_arg1, CONST))) != 0
3535 && GET_CODE (XEXP (y, 0)) == MINUS
3536 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
a827d9b1 3537 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
e650cbda
RK
3538 return XEXP (XEXP (y, 0), 0);
3539 }
3540
c2cc0778
RK
3541 /* If second operand is a register equivalent to a negative
3542 CONST_INT, see if we can find a register equivalent to the
3543 positive constant. Make a MINUS if so. Don't do this for
5d595063 3544 a non-negative constant since we might then alternate between
a1f300c0 3545 choosing positive and negative constants. Having the positive
5d595063
RK
3546 constant previously-used is the more common case. Be sure
3547 the resulting constant is non-negative; if const_arg1 were
3548 the smallest negative number this would overflow: depending
3549 on the mode, this would either just be the same value (and
3550 hence not save anything) or be incorrect. */
481683e1 3551 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
5d595063 3552 && INTVAL (const_arg1) < 0
4741f6ad
JL
3553 /* This used to test
3554
ddc356e8 3555 -INTVAL (const_arg1) >= 0
4741f6ad
JL
3556
3557 But The Sun V5.0 compilers mis-compiled that test. So
3558 instead we test for the problematic value in a more direct
3559 manner and hope the Sun compilers get it correct. */
5c45a8ac 3560 && INTVAL (const_arg1) !=
fecfbfa4 3561 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 3562 && REG_P (folded_arg1))
c2cc0778 3563 {
ddc356e8 3564 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 3565 struct table_elt *p
0516f6fe 3566 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
3567
3568 if (p)
3569 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 3570 if (REG_P (p->exp))
0cedb36c 3571 return simplify_gen_binary (MINUS, mode, folded_arg0,
20468884 3572 canon_reg (p->exp, NULL));
c2cc0778 3573 }
13c9910f
RS
3574 goto from_plus;
3575
3576 case MINUS:
3577 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3578 If so, produce (PLUS Z C2-C). */
481683e1 3579 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
13c9910f
RS
3580 {
3581 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
481683e1 3582 if (y && CONST_INT_P (XEXP (y, 1)))
0a81f074 3583 return fold_rtx (plus_constant (mode, copy_rtx (y),
f3becefd 3584 -INTVAL (const_arg1)),
20468884 3585 NULL);
13c9910f 3586 }
7afe21cc 3587
ddc356e8 3588 /* Fall through. */
7afe21cc 3589
13c9910f 3590 from_plus:
7afe21cc
RK
3591 case SMIN: case SMAX: case UMIN: case UMAX:
3592 case IOR: case AND: case XOR:
f930bfd0 3593 case MULT:
7afe21cc
RK
3594 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3595 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3596 is known to be of similar form, we may be able to replace the
3597 operation with a combined operation. This may eliminate the
3598 intermediate operation if every use is simplified in this way.
3599 Note that the similar optimization done by combine.c only works
3600 if the intermediate operation's result has only one reference. */
3601
f8cfc6aa 3602 if (REG_P (folded_arg0)
481683e1 3603 && const_arg1 && CONST_INT_P (const_arg1))
7afe21cc
RK
3604 {
3605 int is_shift
3606 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5bb51e1d 3607 rtx y, inner_const, new_const;
39b2ac74 3608 rtx canon_const_arg1 = const_arg1;
7afe21cc 3609 enum rtx_code associate_code;
7afe21cc 3610
824a4527 3611 if (is_shift
5511bc5a 3612 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
824a4527
JDA
3613 || INTVAL (const_arg1) < 0))
3614 {
3615 if (SHIFT_COUNT_TRUNCATED)
39b2ac74
JJ
3616 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3617 & (GET_MODE_BITSIZE (mode)
3618 - 1));
824a4527
JDA
3619 else
3620 break;
3621 }
3622
5bb51e1d 3623 y = lookup_as_function (folded_arg0, code);
824a4527
JDA
3624 if (y == 0)
3625 break;
824a4527
JDA
3626
3627 /* If we have compiled a statement like
3628 "if (x == (x & mask1))", and now are looking at
3629 "x & mask2", we will have a case where the first operand
3630 of Y is the same as our first operand. Unless we detect
3631 this case, an infinite loop will result. */
3632 if (XEXP (y, 0) == folded_arg0)
7afe21cc
RK
3633 break;
3634
5bb51e1d 3635 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
481683e1 3636 if (!inner_const || !CONST_INT_P (inner_const))
5bb51e1d
EB
3637 break;
3638
7afe21cc
RK
3639 /* Don't associate these operations if they are a PLUS with the
3640 same constant and it is a power of two. These might be doable
3641 with a pre- or post-increment. Similarly for two subtracts of
3642 identical powers of two with post decrement. */
3643
213d5fbc 3644 if (code == PLUS && const_arg1 == inner_const
940da324
JL
3645 && ((HAVE_PRE_INCREMENT
3646 && exact_log2 (INTVAL (const_arg1)) >= 0)
3647 || (HAVE_POST_INCREMENT
3648 && exact_log2 (INTVAL (const_arg1)) >= 0)
3649 || (HAVE_PRE_DECREMENT
3650 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3651 || (HAVE_POST_DECREMENT
3652 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
7afe21cc
RK
3653 break;
3654
88057dc8
UB
3655 /* ??? Vector mode shifts by scalar
3656 shift operand are not supported yet. */
3657 if (is_shift && VECTOR_MODE_P (mode))
3658 break;
3659
824a4527 3660 if (is_shift
5511bc5a 3661 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
824a4527
JDA
3662 || INTVAL (inner_const) < 0))
3663 {
3664 if (SHIFT_COUNT_TRUNCATED)
3665 inner_const = GEN_INT (INTVAL (inner_const)
3666 & (GET_MODE_BITSIZE (mode) - 1));
3667 else
3668 break;
3669 }
3670
7afe21cc 3671 /* Compute the code used to compose the constants. For example,
f930bfd0 3672 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 3673
f930bfd0 3674 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
3675
3676 new_const = simplify_binary_operation (associate_code, mode,
39b2ac74
JJ
3677 canon_const_arg1,
3678 inner_const);
7afe21cc
RK
3679
3680 if (new_const == 0)
3681 break;
3682
3683 /* If we are associating shift operations, don't let this
4908e508
RS
3684 produce a shift of the size of the object or larger.
3685 This could occur when we follow a sign-extend by a right
3686 shift on a machine that does a sign-extend as a pair
3687 of shifts. */
7afe21cc 3688
824a4527 3689 if (is_shift
481683e1 3690 && CONST_INT_P (new_const)
5511bc5a 3691 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
4908e508
RS
3692 {
3693 /* As an exception, we can turn an ASHIFTRT of this
3694 form into a shift of the number of bits - 1. */
3695 if (code == ASHIFTRT)
3696 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
824a4527
JDA
3697 else if (!side_effects_p (XEXP (y, 0)))
3698 return CONST0_RTX (mode);
4908e508
RS
3699 else
3700 break;
3701 }
7afe21cc
RK
3702
3703 y = copy_rtx (XEXP (y, 0));
3704
3705 /* If Y contains our first operand (the most common way this
3706 can happen is if Y is a MEM), we would do into an infinite
3707 loop if we tried to fold it. So don't in that case. */
3708
3709 if (! reg_mentioned_p (folded_arg0, y))
3710 y = fold_rtx (y, insn);
3711
0cedb36c 3712 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 3713 }
e9a25f70
JL
3714 break;
3715
f930bfd0
JW
3716 case DIV: case UDIV:
3717 /* ??? The associative optimization performed immediately above is
3718 also possible for DIV and UDIV using associate_code of MULT.
3719 However, we would need extra code to verify that the
3720 multiplication does not overflow, that is, there is no overflow
3721 in the calculation of new_const. */
3722 break;
3723
e9a25f70
JL
3724 default:
3725 break;
7afe21cc
RK
3726 }
3727
32e9fa48 3728 new_rtx = simplify_binary_operation (code, mode,
7afe21cc
RK
3729 const_arg0 ? const_arg0 : folded_arg0,
3730 const_arg1 ? const_arg1 : folded_arg1);
3731 break;
3732
ec8e098d 3733 case RTX_OBJ:
7afe21cc
RK
3734 /* (lo_sum (high X) X) is simply X. */
3735 if (code == LO_SUM && const_arg0 != 0
3736 && GET_CODE (const_arg0) == HIGH
3737 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3738 return const_arg1;
3739 break;
3740
ec8e098d
PB
3741 case RTX_TERNARY:
3742 case RTX_BITFIELD_OPS:
32e9fa48 3743 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
7afe21cc
RK
3744 const_arg0 ? const_arg0 : folded_arg0,
3745 const_arg1 ? const_arg1 : folded_arg1,
3746 const_arg2 ? const_arg2 : XEXP (x, 2));
3747 break;
ee5332b8 3748
ec8e098d
PB
3749 default:
3750 break;
7afe21cc
RK
3751 }
3752
32e9fa48 3753 return new_rtx ? new_rtx : x;
7afe21cc
RK
3754}
3755\f
3756/* Return a constant value currently equivalent to X.
3757 Return 0 if we don't know one. */
3758
3759static rtx
7080f735 3760equiv_constant (rtx x)
7afe21cc 3761{
f8cfc6aa 3762 if (REG_P (x)
1bb98cec
DM
3763 && REGNO_QTY_VALID_P (REGNO (x)))
3764 {
3765 int x_q = REG_QTY (REGNO (x));
3766 struct qty_table_elem *x_ent = &qty_table[x_q];
3767
3768 if (x_ent->const_rtx)
4de249d9 3769 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 3770 }
7afe21cc 3771
2ce5e1b4 3772 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
3773 return x;
3774
a52b023a
PB
3775 if (GET_CODE (x) == SUBREG)
3776 {
ef4bddc2
RS
3777 machine_mode mode = GET_MODE (x);
3778 machine_mode imode = GET_MODE (SUBREG_REG (x));
32e9fa48 3779 rtx new_rtx;
a52b023a
PB
3780
3781 /* See if we previously assigned a constant value to this SUBREG. */
32e9fa48 3782 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
807e902e 3783 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
32e9fa48
KG
3784 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3785 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3786 return new_rtx;
a52b023a 3787
f5f8d79d
EB
3788 /* If we didn't and if doing so makes sense, see if we previously
3789 assigned a constant value to the enclosing word mode SUBREG. */
3790 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3791 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3792 {
3793 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3794 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3795 {
3796 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3797 new_rtx = lookup_as_function (y, CONST_INT);
3798 if (new_rtx)
3799 return gen_lowpart (mode, new_rtx);
3800 }
3801 }
3802
7cb6668a
MI
3803 /* Otherwise see if we already have a constant for the inner REG,
3804 and if that is enough to calculate an equivalent constant for
3805 the subreg. Note that the upper bits of paradoxical subregs
3806 are undefined, so they cannot be said to equal anything. */
a52b023a 3807 if (REG_P (SUBREG_REG (x))
7cb6668a 3808 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
32e9fa48 3809 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
f5f8d79d 3810 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
a52b023a
PB
3811
3812 return 0;
3813 }
3814
3815 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3816 the hash table in case its value was seen before. */
fc3ffe83 3817
3c0cb5de 3818 if (MEM_P (x))
fc3ffe83
RK
3819 {
3820 struct table_elt *elt;
3821
a52b023a 3822 x = avoid_constant_pool_reference (x);
fc3ffe83
RK
3823 if (CONSTANT_P (x))
3824 return x;
3825
0516f6fe 3826 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
3827 if (elt == 0)
3828 return 0;
3829
3830 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3831 if (elt->is_const && CONSTANT_P (elt->exp))
3832 return elt->exp;
3833 }
3834
7afe21cc
RK
3835 return 0;
3836}
3837\f
0129d079
SB
3838/* Given INSN, a jump insn, TAKEN indicates if we are following the
3839 "taken" branch.
7afe21cc
RK
3840
3841 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 3842 if we are following the taken case of
7080f735 3843 if (i == 2)
7afe21cc
RK
3844 we can add the fact that `i' and '2' are now equivalent.
3845
3846 In any case, we can record that this comparison was passed. If the same
3847 comparison is seen later, we will know its value. */
3848
3849static void
20468884 3850record_jump_equiv (rtx_insn *insn, bool taken)
7afe21cc
RK
3851{
3852 int cond_known_true;
3853 rtx op0, op1;
7f1c097d 3854 rtx set;
ef4bddc2 3855 machine_mode mode, mode0, mode1;
7afe21cc
RK
3856 int reversed_nonequality = 0;
3857 enum rtx_code code;
3858
3859 /* Ensure this is the right kind of insn. */
0129d079
SB
3860 gcc_assert (any_condjump_p (insn));
3861
7f1c097d 3862 set = pc_set (insn);
7afe21cc
RK
3863
3864 /* See if this jump condition is known true or false. */
3865 if (taken)
7f1c097d 3866 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 3867 else
7f1c097d 3868 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
3869
3870 /* Get the type of comparison being done and the operands being compared.
3871 If we had to reverse a non-equality condition, record that fact so we
3872 know that it isn't valid for floating-point. */
7f1c097d
JH
3873 code = GET_CODE (XEXP (SET_SRC (set), 0));
3874 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3875 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 3876
3f1d32a5
JL
3877 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3878 blocks. When that happens the tracking of the cc0-setter via
3879 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3880 NULL_RTX. In those cases, there's nothing to record. */
3881 if (op0 == NULL_RTX || op1 == NULL_RTX)
3882 return;
3883
13c9910f 3884 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
3885 if (! cond_known_true)
3886 {
261efdef 3887 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
3888
3889 /* Don't remember if we can't find the inverse. */
3890 if (code == UNKNOWN)
3891 return;
7afe21cc
RK
3892 }
3893
3894 /* The mode is the mode of the non-constant. */
13c9910f
RS
3895 mode = mode0;
3896 if (mode1 != VOIDmode)
3897 mode = mode1;
7afe21cc
RK
3898
3899 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3900}
3901
794693c0
RH
3902/* Yet another form of subreg creation. In this case, we want something in
3903 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3904
3905static rtx
ef4bddc2 3906record_jump_cond_subreg (machine_mode mode, rtx op)
794693c0 3907{
ef4bddc2 3908 machine_mode op_mode = GET_MODE (op);
794693c0
RH
3909 if (op_mode == mode || op_mode == VOIDmode)
3910 return op;
3911 return lowpart_subreg (mode, op, op_mode);
3912}
3913
7afe21cc
RK
3914/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3915 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3916 Make any useful entries we can with that information. Called from
3917 above function and called recursively. */
3918
3919static void
ef4bddc2 3920record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
7080f735 3921 rtx op1, int reversed_nonequality)
7afe21cc 3922{
2197a88a 3923 unsigned op0_hash, op1_hash;
e428d738 3924 int op0_in_memory, op1_in_memory;
7afe21cc
RK
3925 struct table_elt *op0_elt, *op1_elt;
3926
3927 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3928 we know that they are also equal in the smaller mode (this is also
3929 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 3930 is not worth testing for with no SUBREG). */
7afe21cc 3931
2e794ee8 3932 /* Note that GET_MODE (op0) may not equal MODE. */
6a4bdc79 3933 if (code == EQ && paradoxical_subreg_p (op0))
7afe21cc 3934 {
ef4bddc2 3935 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3936 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3937 if (tem)
3938 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3939 reversed_nonequality);
7afe21cc
RK
3940 }
3941
6a4bdc79 3942 if (code == EQ && paradoxical_subreg_p (op1))
7afe21cc 3943 {
ef4bddc2 3944 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3945 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3946 if (tem)
3947 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3948 reversed_nonequality);
7afe21cc
RK
3949 }
3950
278a83b2 3951 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
3952 making a smaller mode, we know the whole thing is also NE. */
3953
2e794ee8
RS
3954 /* Note that GET_MODE (op0) may not equal MODE;
3955 if we test MODE instead, we can get an infinite recursion
3956 alternating between two modes each wider than MODE. */
3957
7afe21cc
RK
3958 if (code == NE && GET_CODE (op0) == SUBREG
3959 && subreg_lowpart_p (op0)
2e794ee8
RS
3960 && (GET_MODE_SIZE (GET_MODE (op0))
3961 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
7afe21cc 3962 {
ef4bddc2 3963 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3964 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3965 if (tem)
3966 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3967 reversed_nonequality);
7afe21cc
RK
3968 }
3969
3970 if (code == NE && GET_CODE (op1) == SUBREG
3971 && subreg_lowpart_p (op1)
2e794ee8
RS
3972 && (GET_MODE_SIZE (GET_MODE (op1))
3973 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
7afe21cc 3974 {
ef4bddc2 3975 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3976 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3977 if (tem)
3978 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3979 reversed_nonequality);
7afe21cc
RK
3980 }
3981
3982 /* Hash both operands. */
3983
3984 do_not_record = 0;
3985 hash_arg_in_memory = 0;
2197a88a 3986 op0_hash = HASH (op0, mode);
7afe21cc 3987 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
3988
3989 if (do_not_record)
3990 return;
3991
3992 do_not_record = 0;
3993 hash_arg_in_memory = 0;
2197a88a 3994 op1_hash = HASH (op1, mode);
7afe21cc 3995 op1_in_memory = hash_arg_in_memory;
278a83b2 3996
7afe21cc
RK
3997 if (do_not_record)
3998 return;
3999
4000 /* Look up both operands. */
2197a88a
RK
4001 op0_elt = lookup (op0, op0_hash, mode);
4002 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 4003
af3869c1
RK
4004 /* If both operands are already equivalent or if they are not in the
4005 table but are identical, do nothing. */
4006 if ((op0_elt != 0 && op1_elt != 0
4007 && op0_elt->first_same_value == op1_elt->first_same_value)
4008 || op0 == op1 || rtx_equal_p (op0, op1))
4009 return;
4010
7afe21cc 4011 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
4012 comparison. Similarly if this is floating-point. In the latter
4013 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4014 If we record the equality, we might inadvertently delete code
4015 whose intent was to change -0 to +0. */
4016
cbf6a543 4017 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 4018 {
1bb98cec
DM
4019 struct qty_table_elem *ent;
4020 int qty;
4021
7afe21cc
RK
4022 /* If we reversed a floating-point comparison, if OP0 is not a
4023 register, or if OP1 is neither a register or constant, we can't
4024 do anything. */
4025
f8cfc6aa 4026 if (!REG_P (op1))
7afe21cc
RK
4027 op1 = equiv_constant (op1);
4028
cbf6a543 4029 if ((reversed_nonequality && FLOAT_MODE_P (mode))
f8cfc6aa 4030 || !REG_P (op0) || op1 == 0)
7afe21cc
RK
4031 return;
4032
4033 /* Put OP0 in the hash table if it isn't already. This gives it a
4034 new quantity number. */
4035 if (op0_elt == 0)
4036 {
9714cf43 4037 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4038 {
4039 rehash_using_reg (op0);
2197a88a 4040 op0_hash = HASH (op0, mode);
2bb81c86
RK
4041
4042 /* If OP0 is contained in OP1, this changes its hash code
4043 as well. Faster to rehash than to check, except
4044 for the simple case of a constant. */
4045 if (! CONSTANT_P (op1))
2197a88a 4046 op1_hash = HASH (op1,mode);
7afe21cc
RK
4047 }
4048
9714cf43 4049 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4050 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4051 }
4052
1bb98cec
DM
4053 qty = REG_QTY (REGNO (op0));
4054 ent = &qty_table[qty];
4055
4056 ent->comparison_code = code;
f8cfc6aa 4057 if (REG_P (op1))
7afe21cc 4058 {
5d5ea909 4059 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 4060 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 4061
7afe21cc
RK
4062 /* Put OP1 in the hash table so it gets a new quantity number. */
4063 if (op1_elt == 0)
4064 {
9714cf43 4065 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4066 {
4067 rehash_using_reg (op1);
2197a88a 4068 op1_hash = HASH (op1, mode);
7afe21cc
RK
4069 }
4070
9714cf43 4071 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4072 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
4073 }
4074
1bb98cec
DM
4075 ent->comparison_const = NULL_RTX;
4076 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
4077 }
4078 else
4079 {
1bb98cec
DM
4080 ent->comparison_const = op1;
4081 ent->comparison_qty = -1;
7afe21cc
RK
4082 }
4083
4084 return;
4085 }
4086
eb5ad42a
RS
4087 /* If either side is still missing an equivalence, make it now,
4088 then merge the equivalences. */
7afe21cc 4089
7afe21cc
RK
4090 if (op0_elt == 0)
4091 {
9714cf43 4092 if (insert_regs (op0, NULL, 0))
7afe21cc
RK
4093 {
4094 rehash_using_reg (op0);
2197a88a 4095 op0_hash = HASH (op0, mode);
7afe21cc
RK
4096 }
4097
9714cf43 4098 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4099 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4100 }
4101
4102 if (op1_elt == 0)
4103 {
9714cf43 4104 if (insert_regs (op1, NULL, 0))
7afe21cc
RK
4105 {
4106 rehash_using_reg (op1);
2197a88a 4107 op1_hash = HASH (op1, mode);
7afe21cc
RK
4108 }
4109
9714cf43 4110 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4111 op1_elt->in_memory = op1_in_memory;
7afe21cc 4112 }
eb5ad42a
RS
4113
4114 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
4115}
4116\f
4117/* CSE processing for one instruction.
7b02f4e0
SB
4118
4119 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4120 but the few that "leak through" are cleaned up by cse_insn, and complex
4121 addressing modes are often formed here.
4122
4123 The main function is cse_insn, and between here and that function
4124 a couple of helper functions is defined to keep the size of cse_insn
4125 within reasonable proportions.
4126
4127 Data is shared between the main and helper functions via STRUCT SET,
4128 that contains all data related for every set in the instruction that
4129 is being processed.
4130
4131 Note that cse_main processes all sets in the instruction. Most
4132 passes in GCC only process simple SET insns or single_set insns, but
4133 CSE processes insns with multiple sets as well. */
7afe21cc
RK
4134
4135/* Data on one SET contained in the instruction. */
4136
4137struct set
4138{
4139 /* The SET rtx itself. */
4140 rtx rtl;
4141 /* The SET_SRC of the rtx (the original value, if it is changing). */
4142 rtx src;
4143 /* The hash-table element for the SET_SRC of the SET. */
4144 struct table_elt *src_elt;
2197a88a
RK
4145 /* Hash value for the SET_SRC. */
4146 unsigned src_hash;
4147 /* Hash value for the SET_DEST. */
4148 unsigned dest_hash;
7afe21cc
RK
4149 /* The SET_DEST, with SUBREG, etc., stripped. */
4150 rtx inner_dest;
278a83b2 4151 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 4152 char src_in_memory;
7afe21cc
RK
4153 /* Nonzero if the SET_SRC contains something
4154 whose value cannot be predicted and understood. */
4155 char src_volatile;
496324d0
DN
4156 /* Original machine mode, in case it becomes a CONST_INT.
4157 The size of this field should match the size of the mode
4158 field of struct rtx_def (see rtl.h). */
4159 ENUM_BITFIELD(machine_mode) mode : 8;
7afe21cc
RK
4160 /* A constant equivalent for SET_SRC, if any. */
4161 rtx src_const;
2197a88a
RK
4162 /* Hash value of constant equivalent for SET_SRC. */
4163 unsigned src_const_hash;
7afe21cc
RK
4164 /* Table entry for constant equivalent for SET_SRC, if any. */
4165 struct table_elt *src_const_elt;
05c433f3
PB
4166 /* Table entry for the destination address. */
4167 struct table_elt *dest_addr_elt;
7afe21cc 4168};
7b02f4e0
SB
4169\f
4170/* Special handling for (set REG0 REG1) where REG0 is the
4171 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4172 be used in the sequel, so (if easily done) change this insn to
4173 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4174 that computed their value. Then REG1 will become a dead store
4175 and won't cloud the situation for later optimizations.
4176
4177 Do not make this change if REG1 is a hard register, because it will
4178 then be used in the sequel and we may be changing a two-operand insn
4179 into a three-operand insn.
4180
4181 This is the last transformation that cse_insn will try to do. */
7afe21cc
RK
4182
4183static void
20468884 4184try_back_substitute_reg (rtx set, rtx_insn *insn)
7afe21cc 4185{
7b02f4e0
SB
4186 rtx dest = SET_DEST (set);
4187 rtx src = SET_SRC (set);
7afe21cc 4188
7b02f4e0
SB
4189 if (REG_P (dest)
4190 && REG_P (src) && ! HARD_REGISTER_P (src)
4191 && REGNO_QTY_VALID_P (REGNO (src)))
4192 {
4193 int src_q = REG_QTY (REGNO (src));
4194 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 4195
7b02f4e0
SB
4196 if (src_ent->first_reg == REGNO (dest))
4197 {
4198 /* Scan for the previous nonnote insn, but stop at a basic
4199 block boundary. */
20468884
DM
4200 rtx_insn *prev = insn;
4201 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
7b02f4e0
SB
4202 do
4203 {
4204 prev = PREV_INSN (prev);
4205 }
4206 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
7afe21cc 4207
7b02f4e0
SB
4208 /* Do not swap the registers around if the previous instruction
4209 attaches a REG_EQUIV note to REG1.
7afe21cc 4210
7b02f4e0
SB
4211 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4212 from the pseudo that originally shadowed an incoming argument
4213 to another register. Some uses of REG_EQUIV might rely on it
4214 being attached to REG1 rather than REG2.
7afe21cc 4215
7b02f4e0
SB
4216 This section previously turned the REG_EQUIV into a REG_EQUAL
4217 note. We cannot do that because REG_EQUIV may provide an
4218 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4219 if (NONJUMP_INSN_P (prev)
4220 && GET_CODE (PATTERN (prev)) == SET
4221 && SET_DEST (PATTERN (prev)) == src
4222 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4223 {
4224 rtx note;
4225
4226 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4227 validate_change (insn, &SET_DEST (set), src, 1);
4228 validate_change (insn, &SET_SRC (set), dest, 1);
4229 apply_change_group ();
4230
4231 /* If INSN has a REG_EQUAL note, and this note mentions
4232 REG0, then we must delete it, because the value in
4233 REG0 has changed. If the note's value is REG1, we must
4234 also delete it because that is now this insn's dest. */
4235 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4236 if (note != 0
4237 && (reg_mentioned_p (dest, XEXP (note, 0))
4238 || rtx_equal_p (src, XEXP (note, 0))))
4239 remove_note (insn, note);
4240 }
f474c6f8 4241 }
f1e7c95f 4242 }
7b02f4e0
SB
4243}
4244\f
4245/* Record all the SETs in this instruction into SETS_PTR,
4246 and return the number of recorded sets. */
4247static int
20468884 4248find_sets_in_insn (rtx_insn *insn, struct set **psets)
7b02f4e0
SB
4249{
4250 struct set *sets = *psets;
4251 int n_sets = 0;
4252 rtx x = PATTERN (insn);
f1e7c95f 4253
7afe21cc
RK
4254 if (GET_CODE (x) == SET)
4255 {
7afe21cc
RK
4256 /* Ignore SETs that are unconditional jumps.
4257 They never need cse processing, so this does not hurt.
4258 The reason is not efficiency but rather
4259 so that we can test at the end for instructions
4260 that have been simplified to unconditional jumps
4261 and not be misled by unchanged instructions
4262 that were unconditional jumps to begin with. */
4263 if (SET_DEST (x) == pc_rtx
4264 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4265 ;
7afe21cc
RK
4266 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4267 The hard function value register is used only once, to copy to
7b02f4e0 4268 someplace else, so it isn't worth cse'ing. */
7afe21cc 4269 else if (GET_CODE (SET_SRC (x)) == CALL)
7b02f4e0 4270 ;
7afe21cc 4271 else
7b02f4e0 4272 sets[n_sets++].rtl = x;
7afe21cc
RK
4273 }
4274 else if (GET_CODE (x) == PARALLEL)
4275 {
7b02f4e0 4276 int i, lim = XVECLEN (x, 0);
278a83b2 4277
6c4d60f8 4278 /* Go over the expressions of the PARALLEL in forward order, to
7b02f4e0 4279 put them in the same order in the SETS array. */
7afe21cc
RK
4280 for (i = 0; i < lim; i++)
4281 {
b3694847 4282 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4283 if (GET_CODE (y) == SET)
4284 {
7722328e
RK
4285 /* As above, we ignore unconditional jumps and call-insns and
4286 ignore the result of apply_change_group. */
7b02f4e0
SB
4287 if (SET_DEST (y) == pc_rtx
4288 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4289 ;
4290 else if (GET_CODE (SET_SRC (y)) == CALL)
7afe21cc
RK
4291 ;
4292 else
4293 sets[n_sets++].rtl = y;
4294 }
7afe21cc
RK
4295 }
4296 }
7b02f4e0
SB
4297
4298 return n_sets;
4299}
4300\f
6380a82e
EB
4301/* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4302
4303static void
4304canon_asm_operands (rtx x, rtx_insn *insn)
4305{
4306 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4307 {
4308 rtx input = ASM_OPERANDS_INPUT (x, i);
4309 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4310 {
4311 input = canon_reg (input, insn);
4312 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4313 }
4314 }
4315}
4316
7b02f4e0 4317/* Where possible, substitute every register reference in the N_SETS
026c3cfd 4318 number of SETS in INSN with the canonical register.
7b02f4e0
SB
4319
4320 Register canonicalization propagatest the earliest register (i.e.
4321 one that is set before INSN) with the same value. This is a very
4322 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4323 to RTL. For instance, a CONST for an address is usually expanded
4324 multiple times to loads into different registers, thus creating many
4325 subexpressions of the form:
4326
4327 (set (reg1) (some_const))
4328 (set (mem (... reg1 ...) (thing)))
4329 (set (reg2) (some_const))
4330 (set (mem (... reg2 ...) (thing)))
4331
4332 After canonicalizing, the code takes the following form:
4333
4334 (set (reg1) (some_const))
4335 (set (mem (... reg1 ...) (thing)))
4336 (set (reg2) (some_const))
4337 (set (mem (... reg1 ...) (thing)))
4338
4339 The set to reg2 is now trivially dead, and the memory reference (or
4340 address, or whatever) may be a candidate for further CSEing.
4341
4342 In this function, the result of apply_change_group can be ignored;
4343 see canon_reg. */
4344
4345static void
20468884 4346canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
7b02f4e0
SB
4347{
4348 struct set *sets = *psets;
4349 rtx tem;
4350 rtx x = PATTERN (insn);
4351 int i;
4352
4353 if (CALL_P (insn))
4354 {
4355 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
e384e6b5
BS
4356 if (GET_CODE (XEXP (tem, 0)) != SET)
4357 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
7b02f4e0
SB
4358 }
4359
4360 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4361 {
4362 canon_reg (SET_SRC (x), insn);
4363 apply_change_group ();
4364 fold_rtx (SET_SRC (x), insn);
4365 }
7afe21cc
RK
4366 else if (GET_CODE (x) == CLOBBER)
4367 {
7b02f4e0
SB
4368 /* If we clobber memory, canon the address.
4369 This does nothing when a register is clobbered
4370 because we have already invalidated the reg. */
3c0cb5de 4371 if (MEM_P (XEXP (x, 0)))
6fb5fa3c 4372 canon_reg (XEXP (x, 0), insn);
7afe21cc 4373 }
7afe21cc 4374 else if (GET_CODE (x) == USE
f8cfc6aa 4375 && ! (REG_P (XEXP (x, 0))
7afe21cc 4376 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
7b02f4e0 4377 /* Canonicalize a USE of a pseudo register or memory location. */
b1ba284c
EB
4378 canon_reg (x, insn);
4379 else if (GET_CODE (x) == ASM_OPERANDS)
6380a82e 4380 canon_asm_operands (x, insn);
7afe21cc
RK
4381 else if (GET_CODE (x) == CALL)
4382 {
4383 canon_reg (x, insn);
77fa0940 4384 apply_change_group ();
7afe21cc
RK
4385 fold_rtx (x, insn);
4386 }
b5b8b0ac
AO
4387 else if (DEBUG_INSN_P (insn))
4388 canon_reg (PATTERN (insn), insn);
7b02f4e0
SB
4389 else if (GET_CODE (x) == PARALLEL)
4390 {
4391 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4392 {
4393 rtx y = XVECEXP (x, 0, i);
4394 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4395 {
4396 canon_reg (SET_SRC (y), insn);
4397 apply_change_group ();
4398 fold_rtx (SET_SRC (y), insn);
4399 }
4400 else if (GET_CODE (y) == CLOBBER)
4401 {
4402 if (MEM_P (XEXP (y, 0)))
4403 canon_reg (XEXP (y, 0), insn);
4404 }
4405 else if (GET_CODE (y) == USE
4406 && ! (REG_P (XEXP (y, 0))
4407 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4408 canon_reg (y, insn);
6380a82e
EB
4409 else if (GET_CODE (y) == ASM_OPERANDS)
4410 canon_asm_operands (y, insn);
7b02f4e0
SB
4411 else if (GET_CODE (y) == CALL)
4412 {
4413 canon_reg (y, insn);
4414 apply_change_group ();
4415 fold_rtx (y, insn);
4416 }
4417 }
4418 }
7afe21cc 4419
92f9aa51 4420 if (n_sets == 1 && REG_NOTES (insn) != 0
7b02f4e0 4421 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
7b668f9e 4422 {
7b02f4e0
SB
4423 /* We potentially will process this insn many times. Therefore,
4424 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4425 unique set in INSN.
4426
4427 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4428 because cse_insn handles those specially. */
4429 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4430 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4431 remove_note (insn, tem);
4432 else
4433 {
4434 canon_reg (XEXP (tem, 0), insn);
4435 apply_change_group ();
4436 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4437 df_notes_rescan (insn);
4438 }
7b668f9e 4439 }
7afe21cc
RK
4440
4441 /* Canonicalize sources and addresses of destinations.
4442 We do this in a separate pass to avoid problems when a MATCH_DUP is
4443 present in the insn pattern. In that case, we want to ensure that
4444 we don't break the duplicate nature of the pattern. So we will replace
4445 both operands at the same time. Otherwise, we would fail to find an
4446 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4447
4448 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4449 but we don't do this any more. */
7afe21cc
RK
4450
4451 for (i = 0; i < n_sets; i++)
4452 {
4453 rtx dest = SET_DEST (sets[i].rtl);
4454 rtx src = SET_SRC (sets[i].rtl);
32e9fa48 4455 rtx new_rtx = canon_reg (src, insn);
7afe21cc 4456
32e9fa48 4457 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
7afe21cc 4458
46d096a3 4459 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4460 {
4461 validate_change (insn, &XEXP (dest, 1),
77fa0940 4462 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4463 validate_change (insn, &XEXP (dest, 2),
77fa0940 4464 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4465 }
4466
46d096a3 4467 while (GET_CODE (dest) == SUBREG
7afe21cc 4468 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4469 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4470 dest = XEXP (dest, 0);
4471
3c0cb5de 4472 if (MEM_P (dest))
7afe21cc
RK
4473 canon_reg (dest, insn);
4474 }
4475
77fa0940
RK
4476 /* Now that we have done all the replacements, we can apply the change
4477 group and see if they all work. Note that this will cause some
4478 canonicalizations that would have worked individually not to be applied
4479 because some other canonicalization didn't work, but this should not
278a83b2 4480 occur often.
7722328e
RK
4481
4482 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4483
4484 apply_change_group ();
7b02f4e0
SB
4485}
4486\f
4487/* Main function of CSE.
4488 First simplify sources and addresses of all assignments
4489 in the instruction, using previously-computed equivalents values.
4490 Then install the new sources and destinations in the table
4491 of available values. */
4492
4493static void
20468884 4494cse_insn (rtx_insn *insn)
7b02f4e0
SB
4495{
4496 rtx x = PATTERN (insn);
4497 int i;
4498 rtx tem;
4499 int n_sets = 0;
4500
4501 rtx src_eqv = 0;
4502 struct table_elt *src_eqv_elt = 0;
4503 int src_eqv_volatile = 0;
4504 int src_eqv_in_memory = 0;
4505 unsigned src_eqv_hash = 0;
4506
4507 struct set *sets = (struct set *) 0;
4508
4509 if (GET_CODE (x) == SET)
4510 sets = XALLOCA (struct set);
4511 else if (GET_CODE (x) == PARALLEL)
4512 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4513
4514 this_insn = insn;
7b02f4e0
SB
4515 /* Records what this insn does to set CC0. */
4516 this_insn_cc0 = 0;
4517 this_insn_cc0_mode = VOIDmode;
7b02f4e0
SB
4518
4519 /* Find all regs explicitly clobbered in this insn,
4520 to ensure they are not replaced with any other regs
4521 elsewhere in this insn. */
4522 invalidate_from_sets_and_clobbers (insn);
4523
4524 /* Record all the SETs in this instruction. */
4525 n_sets = find_sets_in_insn (insn, &sets);
4526
4527 /* Substitute the canonical register where possible. */
4528 canonicalize_insn (insn, &sets, n_sets);
4529
4530 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
7f7379f6
KV
4531 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4532 latter condition is necessary because SRC_EQV is handled specially for
4533 this case, and if it isn't set, then there will be no equivalence
4534 for the destination. */
7b02f4e0 4535 if (n_sets == 1 && REG_NOTES (insn) != 0
1e928e07 4536 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
7f7379f6 4537 {
7f7379f6 4538
1e928e07
KV
4539 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4540 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4541 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4542 src_eqv = copy_rtx (XEXP (tem, 0));
7f7379f6
KV
4543 /* If DEST is of the form ZERO_EXTACT, as in:
4544 (set (zero_extract:SI (reg:SI 119)
4545 (const_int 16 [0x10])
4546 (const_int 16 [0x10]))
4547 (const_int 51154 [0xc7d2]))
4548 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4549 point. Note that this is different from SRC_EQV. We can however
4550 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4551 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
fa24123b 4552 && CONST_INT_P (XEXP (tem, 0))
7f7379f6
KV
4553 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4554 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4555 {
4556 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4557 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4558 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
fa24123b 4559 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
7f7379f6
KV
4560 HOST_WIDE_INT mask;
4561 unsigned int shift;
4562 if (BITS_BIG_ENDIAN)
4563 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
4564 - INTVAL (pos) - INTVAL (width);
4565 else
4566 shift = INTVAL (pos);
4567 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
dd4786fe 4568 mask = HOST_WIDE_INT_M1;
7f7379f6 4569 else
fecfbfa4 4570 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
7f7379f6
KV
4571 val = (val >> shift) & mask;
4572 src_eqv = GEN_INT (val);
4573 }
4574 }
77fa0940 4575
7afe21cc
RK
4576 /* Set sets[i].src_elt to the class each source belongs to.
4577 Detect assignments from or to volatile things
4578 and set set[i] to zero so they will be ignored
4579 in the rest of this function.
4580
4581 Nothing in this loop changes the hash table or the register chains. */
4582
4583 for (i = 0; i < n_sets; i++)
4584 {
b4ab701f 4585 bool repeat = false;
dd77684f 4586 bool mem_noop_insn = false;
b3694847
SS
4587 rtx src, dest;
4588 rtx src_folded;
4589 struct table_elt *elt = 0, *p;
ef4bddc2 4590 machine_mode mode;
7afe21cc
RK
4591 rtx src_eqv_here;
4592 rtx src_const = 0;
4593 rtx src_related = 0;
2c5bfdf7 4594 bool src_related_is_const_anchor = false;
7afe21cc 4595 struct table_elt *src_const_elt = 0;
99a9c946
GS
4596 int src_cost = MAX_COST;
4597 int src_eqv_cost = MAX_COST;
4598 int src_folded_cost = MAX_COST;
4599 int src_related_cost = MAX_COST;
4600 int src_elt_cost = MAX_COST;
4601 int src_regcost = MAX_COST;
4602 int src_eqv_regcost = MAX_COST;
4603 int src_folded_regcost = MAX_COST;
4604 int src_related_regcost = MAX_COST;
4605 int src_elt_regcost = MAX_COST;
da7d8304 4606 /* Set nonzero if we need to call force_const_mem on with the
7afe21cc
RK
4607 contents of src_folded before using it. */
4608 int src_folded_force_flag = 0;
4609
4610 dest = SET_DEST (sets[i].rtl);
4611 src = SET_SRC (sets[i].rtl);
4612
4613 /* If SRC is a constant that has no machine mode,
4614 hash it with the destination's machine mode.
4615 This way we can keep different modes separate. */
4616
4617 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4618 sets[i].mode = mode;
4619
4620 if (src_eqv)
4621 {
ef4bddc2 4622 machine_mode eqvmode = mode;
7afe21cc
RK
4623 if (GET_CODE (dest) == STRICT_LOW_PART)
4624 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4625 do_not_record = 0;
4626 hash_arg_in_memory = 0;
2197a88a 4627 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4628
4629 /* Find the equivalence class for the equivalent expression. */
4630
4631 if (!do_not_record)
2197a88a 4632 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4633
4634 src_eqv_volatile = do_not_record;
4635 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4636 }
4637
4638 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4639 value of the INNER register, not the destination. So it is not
3826a3da 4640 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4641 if (GET_CODE (dest) == STRICT_LOW_PART)
4642 src_eqv_here = 0;
4643 else
4644 src_eqv_here = src_eqv;
4645
4646 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4647 simplified result, which may not necessarily be valid. */
625d55af 4648 src_folded = fold_rtx (src, NULL);
7afe21cc 4649
e6a125a0
RK
4650#if 0
4651 /* ??? This caused bad code to be generated for the m68k port with -O2.
4652 Suppose src is (CONST_INT -1), and that after truncation src_folded
4653 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4654 At the end we will add src and src_const to the same equivalence
4655 class. We now have 3 and -1 on the same equivalence class. This
4656 causes later instructions to be mis-optimized. */
7afe21cc
RK
4657 /* If storing a constant in a bitfield, pre-truncate the constant
4658 so we will be able to record it later. */
46d096a3 4659 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4660 {
4661 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4662
481683e1
SZ
4663 if (CONST_INT_P (src)
4664 && CONST_INT_P (width)
906c4e36
RK
4665 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4666 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4667 src_folded
fecfbfa4 4668 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
906c4e36 4669 << INTVAL (width)) - 1));
7afe21cc 4670 }
e6a125a0 4671#endif
7afe21cc
RK
4672
4673 /* Compute SRC's hash code, and also notice if it
4674 should not be recorded at all. In that case,
4675 prevent any further processing of this assignment. */
4676 do_not_record = 0;
4677 hash_arg_in_memory = 0;
7afe21cc
RK
4678
4679 sets[i].src = src;
2197a88a 4680 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
4681 sets[i].src_volatile = do_not_record;
4682 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 4683
50196afa 4684 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
4685 a pseudo, do not record SRC. Using SRC as a replacement for
4686 anything else will be incorrect in that situation. Note that
4687 this usually occurs only for stack slots, in which case all the
4688 RTL would be referring to SRC, so we don't lose any optimization
4689 opportunities by not having SRC in the hash table. */
50196afa 4690
3c0cb5de 4691 if (MEM_P (src)
43e72072 4692 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 4693 && REG_P (dest)
43e72072 4694 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
4695 sets[i].src_volatile = 1;
4696
d8d6ea53
JJ
4697 else if (GET_CODE (src) == ASM_OPERANDS
4698 && GET_CODE (x) == PARALLEL)
6c4d60f8
JJ
4699 {
4700 /* Do not record result of a non-volatile inline asm with
4701 more than one result. */
4702 if (n_sets > 1)
4703 sets[i].src_volatile = 1;
4704
4705 int j, lim = XVECLEN (x, 0);
4706 for (j = 0; j < lim; j++)
4707 {
4708 rtx y = XVECEXP (x, 0, j);
4709 /* And do not record result of a non-volatile inline asm
4710 with "memory" clobber. */
4711 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4712 {
4713 sets[i].src_volatile = 1;
4714 break;
4715 }
4716 }
4717 }
d8d6ea53 4718
0dadecf6
RK
4719#if 0
4720 /* It is no longer clear why we used to do this, but it doesn't
4721 appear to still be needed. So let's try without it since this
4722 code hurts cse'ing widened ops. */
9a5a17f3 4723 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
4724 treat it as volatile. It may do the work of an SI in one context
4725 where the extra bits are not being used, but cannot replace an SI
4726 in general. */
6a4bdc79 4727 if (paradoxical_subreg_p (src))
7afe21cc 4728 sets[i].src_volatile = 1;
0dadecf6 4729#endif
7afe21cc
RK
4730
4731 /* Locate all possible equivalent forms for SRC. Try to replace
4732 SRC in the insn with each cheaper equivalent.
4733
4734 We have the following types of equivalents: SRC itself, a folded
4735 version, a value given in a REG_EQUAL note, or a value related
4736 to a constant.
4737
4738 Each of these equivalents may be part of an additional class
4739 of equivalents (if more than one is in the table, they must be in
4740 the same class; we check for this).
4741
4742 If the source is volatile, we don't do any table lookups.
4743
4744 We note any constant equivalent for possible later use in a
4745 REG_NOTE. */
4746
4747 if (!sets[i].src_volatile)
2197a88a 4748 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
4749
4750 sets[i].src_elt = elt;
4751
4752 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
4753 {
4754 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
4755 {
4756 /* The REG_EQUAL is indicating that two formerly distinct
4757 classes are now equivalent. So merge them. */
4758 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
4759 src_eqv_hash = HASH (src_eqv, elt->mode);
4760 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
4761 }
4762
278a83b2
KH
4763 src_eqv_here = 0;
4764 }
7afe21cc
RK
4765
4766 else if (src_eqv_elt)
278a83b2 4767 elt = src_eqv_elt;
7afe21cc
RK
4768
4769 /* Try to find a constant somewhere and record it in `src_const'.
4770 Record its table element, if any, in `src_const_elt'. Look in
4771 any known equivalences first. (If the constant is not in the
2197a88a 4772 table, also set `sets[i].src_const_hash'). */
7afe21cc 4773 if (elt)
278a83b2 4774 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
4775 if (p->is_const)
4776 {
4777 src_const = p->exp;
4778 src_const_elt = elt;
4779 break;
4780 }
4781
4782 if (src_const == 0
4783 && (CONSTANT_P (src_folded)
278a83b2 4784 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
4785 "constant" here so we will record it. This allows us
4786 to fold switch statements when an ADDR_DIFF_VEC is used. */
4787 || (GET_CODE (src_folded) == MINUS
4788 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4789 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4790 src_const = src_folded, src_const_elt = elt;
4791 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4792 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4793
4794 /* If we don't know if the constant is in the table, get its
4795 hash code and look it up. */
4796 if (src_const && src_const_elt == 0)
4797 {
2197a88a
RK
4798 sets[i].src_const_hash = HASH (src_const, mode);
4799 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
4800 }
4801
4802 sets[i].src_const = src_const;
4803 sets[i].src_const_elt = src_const_elt;
4804
4805 /* If the constant and our source are both in the table, mark them as
4806 equivalent. Otherwise, if a constant is in the table but the source
4807 isn't, set ELT to it. */
4808 if (src_const_elt && elt
4809 && src_const_elt->first_same_value != elt->first_same_value)
4810 merge_equiv_classes (elt, src_const_elt);
4811 else if (src_const_elt && elt == 0)
4812 elt = src_const_elt;
4813
4814 /* See if there is a register linearly related to a constant
4815 equivalent of SRC. */
4816 if (src_const
4817 && (GET_CODE (src_const) == CONST
4818 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
4819 {
4820 src_related = use_related_value (src_const, src_const_elt);
4821 if (src_related)
4822 {
7afe21cc 4823 struct table_elt *src_related_elt
278a83b2 4824 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 4825 if (src_related_elt && elt)
278a83b2 4826 {
7afe21cc
RK
4827 if (elt->first_same_value
4828 != src_related_elt->first_same_value)
278a83b2 4829 /* This can occur when we previously saw a CONST
7afe21cc
RK
4830 involving a SYMBOL_REF and then see the SYMBOL_REF
4831 twice. Merge the involved classes. */
4832 merge_equiv_classes (elt, src_related_elt);
4833
278a83b2 4834 src_related = 0;
7afe21cc 4835 src_related_elt = 0;
278a83b2
KH
4836 }
4837 else if (src_related_elt && elt == 0)
4838 elt = src_related_elt;
7afe21cc 4839 }
278a83b2 4840 }
7afe21cc 4841
e4600702
RK
4842 /* See if we have a CONST_INT that is already in a register in a
4843 wider mode. */
4844
481683e1 4845 if (src_const && src_related == 0 && CONST_INT_P (src_const)
e4600702 4846 && GET_MODE_CLASS (mode) == MODE_INT
5511bc5a 4847 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
e4600702 4848 {
ef4bddc2 4849 machine_mode wider_mode;
e4600702
RK
4850
4851 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1f3ad3f0 4852 wider_mode != VOIDmode
5511bc5a 4853 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
e4600702
RK
4854 && src_related == 0;
4855 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4856 {
4857 struct table_elt *const_elt
4858 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4859
4860 if (const_elt == 0)
4861 continue;
4862
4863 for (const_elt = const_elt->first_same_value;
4864 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 4865 if (REG_P (const_elt->exp))
e4600702 4866 {
73ca11ed 4867 src_related = gen_lowpart (mode, const_elt->exp);
e4600702
RK
4868 break;
4869 }
4870 }
4871 }
4872
d45cf215
RS
4873 /* Another possibility is that we have an AND with a constant in
4874 a mode narrower than a word. If so, it might have been generated
4875 as part of an "if" which would narrow the AND. If we already
4876 have done the AND in a wider mode, we can use a SUBREG of that
4877 value. */
4878
4879 if (flag_expensive_optimizations && ! src_related
481683e1 4880 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
d45cf215
RS
4881 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4882 {
ef4bddc2 4883 machine_mode tmode;
38a448ca 4884 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215
RS
4885
4886 for (tmode = GET_MODE_WIDER_MODE (mode);
4887 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4888 tmode = GET_MODE_WIDER_MODE (tmode))
4889 {
4de249d9 4890 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
4891 struct table_elt *larger_elt;
4892
4893 if (inner)
4894 {
4895 PUT_MODE (new_and, tmode);
4896 XEXP (new_and, 0) = inner;
4897 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4898 if (larger_elt == 0)
4899 continue;
4900
4901 for (larger_elt = larger_elt->first_same_value;
4902 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4903 if (REG_P (larger_elt->exp))
d45cf215
RS
4904 {
4905 src_related
4de249d9 4906 = gen_lowpart (mode, larger_elt->exp);
d45cf215
RS
4907 break;
4908 }
4909
4910 if (src_related)
4911 break;
4912 }
4913 }
4914 }
7bac1be0 4915
7bac1be0
RK
4916 /* See if a MEM has already been loaded with a widening operation;
4917 if it has, we can use a subreg of that. Many CISC machines
4918 also have such operations, but this is only likely to be
71cc389b 4919 beneficial on these machines. */
278a83b2 4920
ddc356e8 4921 if (flag_expensive_optimizations && src_related == 0
7bac1be0
RK
4922 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4923 && GET_MODE_CLASS (mode) == MODE_INT
3c0cb5de 4924 && MEM_P (src) && ! do_not_record
f822d252 4925 && LOAD_EXTEND_OP (mode) != UNKNOWN)
7bac1be0 4926 {
9d80ef7c
RH
4927 struct rtx_def memory_extend_buf;
4928 rtx memory_extend_rtx = &memory_extend_buf;
ef4bddc2 4929 machine_mode tmode;
278a83b2 4930
7bac1be0
RK
4931 /* Set what we are trying to extend and the operation it might
4932 have been extended with. */
c3284718 4933 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
7bac1be0
RK
4934 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4935 XEXP (memory_extend_rtx, 0) = src;
278a83b2 4936
7bac1be0
RK
4937 for (tmode = GET_MODE_WIDER_MODE (mode);
4938 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4939 tmode = GET_MODE_WIDER_MODE (tmode))
4940 {
4941 struct table_elt *larger_elt;
278a83b2 4942
7bac1be0 4943 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 4944 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
4945 HASH (memory_extend_rtx, tmode), tmode);
4946 if (larger_elt == 0)
4947 continue;
278a83b2 4948
7bac1be0
RK
4949 for (larger_elt = larger_elt->first_same_value;
4950 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4951 if (REG_P (larger_elt->exp))
7bac1be0 4952 {
73ca11ed 4953 src_related = gen_lowpart (mode, larger_elt->exp);
7bac1be0
RK
4954 break;
4955 }
278a83b2 4956
7bac1be0
RK
4957 if (src_related)
4958 break;
4959 }
4960 }
278a83b2 4961
2c5bfdf7
AN
4962 /* Try to express the constant using a register+offset expression
4963 derived from a constant anchor. */
4964
4965 if (targetm.const_anchor
4966 && !src_related
4967 && src_const
4968 && GET_CODE (src_const) == CONST_INT)
4969 {
4970 src_related = try_const_anchors (src_const, mode);
4971 src_related_is_const_anchor = src_related != NULL_RTX;
4972 }
4973
4974
7afe21cc 4975 if (src == src_folded)
278a83b2 4976 src_folded = 0;
7afe21cc 4977
da7d8304 4978 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 4979 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 4980 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
4981 expressions. Prune these latter expressions by deleting expressions
4982 already in the equivalence class.
4983
4984 Check for an equivalent identical to the destination. If found,
4985 this is the preferred equivalent since it will likely lead to
4986 elimination of the insn. Indicate this by placing it in
4987 `src_related'. */
4988
278a83b2
KH
4989 if (elt)
4990 elt = elt->first_same_value;
7afe21cc 4991 for (p = elt; p; p = p->next_same_value)
278a83b2 4992 {
7afe21cc
RK
4993 enum rtx_code code = GET_CODE (p->exp);
4994
4995 /* If the expression is not valid, ignore it. Then we do not
4996 have to check for validity below. In most cases, we can use
4997 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 4998 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
4999 continue;
5000
5a03c8c4
RK
5001 /* Also skip paradoxical subregs, unless that's what we're
5002 looking for. */
6a4bdc79 5003 if (paradoxical_subreg_p (p->exp)
5a03c8c4
RK
5004 && ! (src != 0
5005 && GET_CODE (src) == SUBREG
5006 && GET_MODE (src) == GET_MODE (p->exp)
5007 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5008 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5009 continue;
5010
278a83b2 5011 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 5012 src = 0;
278a83b2 5013 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
5014 && rtx_equal_p (src_folded, p->exp))
5015 src_folded = 0;
278a83b2 5016 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
5017 && rtx_equal_p (src_eqv_here, p->exp))
5018 src_eqv_here = 0;
278a83b2 5019 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
5020 && rtx_equal_p (src_related, p->exp))
5021 src_related = 0;
5022
5023 /* This is the same as the destination of the insns, we want
5024 to prefer it. Copy it to src_related. The code below will
5025 then give it a negative cost. */
5026 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5027 src_related = dest;
278a83b2 5028 }
7afe21cc
RK
5029
5030 /* Find the cheapest valid equivalent, trying all the available
5031 possibilities. Prefer items not in the hash table to ones
5032 that are when they are equal cost. Note that we can never
5033 worsen an insn as the current contents will also succeed.
05c33dd8 5034 If we find an equivalent identical to the destination, use it as best,
0f41302f 5035 since this insn will probably be eliminated in that case. */
7afe21cc
RK
5036 if (src)
5037 {
5038 if (rtx_equal_p (src, dest))
f1c1dfc3 5039 src_cost = src_regcost = -1;
7afe21cc 5040 else
630c79be 5041 {
e548c9df 5042 src_cost = COST (src, mode);
630c79be
BS
5043 src_regcost = approx_reg_cost (src);
5044 }
7afe21cc
RK
5045 }
5046
5047 if (src_eqv_here)
5048 {
5049 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 5050 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 5051 else
630c79be 5052 {
e548c9df 5053 src_eqv_cost = COST (src_eqv_here, mode);
630c79be
BS
5054 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5055 }
7afe21cc
RK
5056 }
5057
5058 if (src_folded)
5059 {
5060 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 5061 src_folded_cost = src_folded_regcost = -1;
7afe21cc 5062 else
630c79be 5063 {
e548c9df 5064 src_folded_cost = COST (src_folded, mode);
630c79be
BS
5065 src_folded_regcost = approx_reg_cost (src_folded);
5066 }
7afe21cc
RK
5067 }
5068
5069 if (src_related)
5070 {
5071 if (rtx_equal_p (src_related, dest))
f1c1dfc3 5072 src_related_cost = src_related_regcost = -1;
7afe21cc 5073 else
630c79be 5074 {
e548c9df 5075 src_related_cost = COST (src_related, mode);
630c79be 5076 src_related_regcost = approx_reg_cost (src_related);
2c5bfdf7
AN
5077
5078 /* If a const-anchor is used to synthesize a constant that
5079 normally requires multiple instructions then slightly prefer
5080 it over the original sequence. These instructions are likely
5081 to become redundant now. We can't compare against the cost
5082 of src_eqv_here because, on MIPS for example, multi-insn
5083 constants have zero cost; they are assumed to be hoisted from
5084 loops. */
5085 if (src_related_is_const_anchor
5086 && src_related_cost == src_cost
5087 && src_eqv_here)
5088 src_related_cost--;
630c79be 5089 }
7afe21cc
RK
5090 }
5091
5092 /* If this was an indirect jump insn, a known label will really be
5093 cheaper even though it looks more expensive. */
5094 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 5095 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 5096
7afe21cc
RK
5097 /* Terminate loop when replacement made. This must terminate since
5098 the current contents will be tested and will always be valid. */
5099 while (1)
278a83b2
KH
5100 {
5101 rtx trial;
7afe21cc 5102
278a83b2 5103 /* Skip invalid entries. */
f8cfc6aa 5104 while (elt && !REG_P (elt->exp)
0516f6fe 5105 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 5106 elt = elt->next_same_value;
5a03c8c4
RK
5107
5108 /* A paradoxical subreg would be bad here: it'll be the right
5109 size, but later may be adjusted so that the upper bits aren't
5110 what we want. So reject it. */
5111 if (elt != 0
6a4bdc79 5112 && paradoxical_subreg_p (elt->exp)
5a03c8c4
RK
5113 /* It is okay, though, if the rtx we're trying to match
5114 will ignore any of the bits we can't predict. */
5115 && ! (src != 0
5116 && GET_CODE (src) == SUBREG
5117 && GET_MODE (src) == GET_MODE (elt->exp)
5118 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5119 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5120 {
5121 elt = elt->next_same_value;
5122 continue;
5123 }
278a83b2 5124
68252e27 5125 if (elt)
630c79be
BS
5126 {
5127 src_elt_cost = elt->cost;
5128 src_elt_regcost = elt->regcost;
5129 }
7afe21cc 5130
68252e27 5131 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
5132 of equal cost, use this order:
5133 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 5134 if (src_folded
56ae04af
KH
5135 && preferable (src_folded_cost, src_folded_regcost,
5136 src_cost, src_regcost) <= 0
5137 && preferable (src_folded_cost, src_folded_regcost,
5138 src_eqv_cost, src_eqv_regcost) <= 0
5139 && preferable (src_folded_cost, src_folded_regcost,
5140 src_related_cost, src_related_regcost) <= 0
5141 && preferable (src_folded_cost, src_folded_regcost,
5142 src_elt_cost, src_elt_regcost) <= 0)
7afe21cc 5143 {
f1c1dfc3 5144 trial = src_folded, src_folded_cost = MAX_COST;
7afe21cc 5145 if (src_folded_force_flag)
9d8de1de
EB
5146 {
5147 rtx forced = force_const_mem (mode, trial);
5148 if (forced)
5149 trial = forced;
5150 }
7afe21cc 5151 }
99a9c946 5152 else if (src
56ae04af
KH
5153 && preferable (src_cost, src_regcost,
5154 src_eqv_cost, src_eqv_regcost) <= 0
5155 && preferable (src_cost, src_regcost,
5156 src_related_cost, src_related_regcost) <= 0
5157 && preferable (src_cost, src_regcost,
5158 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5159 trial = src, src_cost = MAX_COST;
99a9c946 5160 else if (src_eqv_here
56ae04af
KH
5161 && preferable (src_eqv_cost, src_eqv_regcost,
5162 src_related_cost, src_related_regcost) <= 0
5163 && preferable (src_eqv_cost, src_eqv_regcost,
5164 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 5165 trial = src_eqv_here, src_eqv_cost = MAX_COST;
99a9c946 5166 else if (src_related
56ae04af
KH
5167 && preferable (src_related_cost, src_related_regcost,
5168 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 5169 trial = src_related, src_related_cost = MAX_COST;
278a83b2 5170 else
7afe21cc 5171 {
a36b8a1e 5172 trial = elt->exp;
7afe21cc 5173 elt = elt->next_same_value;
f1c1dfc3 5174 src_elt_cost = MAX_COST;
7afe21cc
RK
5175 }
5176
2e4e39f6 5177 /* Avoid creation of overlapping memory moves. */
dd77684f 5178 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
2e4e39f6
AK
5179 {
5180 rtx src, dest;
5181
5182 /* BLKmode moves are not handled by cse anyway. */
5183 if (GET_MODE (trial) == BLKmode)
5184 break;
5185
5186 src = canon_rtx (trial);
5187 dest = canon_rtx (SET_DEST (sets[i].rtl));
5188
5189 if (!MEM_P (src) || !MEM_P (dest)
c6ea834c 5190 || !nonoverlapping_memrefs_p (src, dest, false))
2e4e39f6
AK
5191 break;
5192 }
5193
b4ab701f
JJ
5194 /* Try to optimize
5195 (set (reg:M N) (const_int A))
5196 (set (reg:M2 O) (const_int B))
5197 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5198 (reg:M2 O)). */
5199 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5200 && CONST_INT_P (trial)
5201 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5202 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5203 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5511bc5a 5204 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
b4ab701f
JJ
5205 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5206 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5207 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5208 <= HOST_BITS_PER_WIDE_INT))
5209 {
5210 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5211 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5212 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5213 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5214 struct table_elt *dest_elt
5215 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5216 rtx dest_cst = NULL;
5217
5218 if (dest_elt)
5219 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5220 if (p->is_const && CONST_INT_P (p->exp))
5221 {
5222 dest_cst = p->exp;
5223 break;
5224 }
5225 if (dest_cst)
5226 {
5227 HOST_WIDE_INT val = INTVAL (dest_cst);
5228 HOST_WIDE_INT mask;
5229 unsigned int shift;
5230 if (BITS_BIG_ENDIAN)
5511bc5a 5231 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
b4ab701f
JJ
5232 - INTVAL (pos) - INTVAL (width);
5233 else
5234 shift = INTVAL (pos);
5235 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
dd4786fe 5236 mask = HOST_WIDE_INT_M1;
b4ab701f 5237 else
fecfbfa4 5238 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
b4ab701f
JJ
5239 val &= ~(mask << shift);
5240 val |= (INTVAL (trial) & mask) << shift;
5241 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5242 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5243 dest_reg, 1);
5244 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5245 GEN_INT (val), 1);
5246 if (apply_change_group ())
5247 {
5248 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5249 if (note)
5250 {
5251 remove_note (insn, note);
5252 df_notes_rescan (insn);
5253 }
5254 src_eqv = NULL_RTX;
5255 src_eqv_elt = NULL;
5256 src_eqv_volatile = 0;
5257 src_eqv_in_memory = 0;
5258 src_eqv_hash = 0;
5259 repeat = true;
5260 break;
5261 }
5262 }
5263 }
5264
7afe21cc
RK
5265 /* We don't normally have an insn matching (set (pc) (pc)), so
5266 check for this separately here. We will delete such an
5267 insn below.
5268
d466c016
JL
5269 For other cases such as a table jump or conditional jump
5270 where we know the ultimate target, go ahead and replace the
5271 operand. While that may not make a valid insn, we will
5272 reemit the jump below (and also insert any necessary
5273 barriers). */
7afe21cc
RK
5274 if (n_sets == 1 && dest == pc_rtx
5275 && (trial == pc_rtx
5276 || (GET_CODE (trial) == LABEL_REF
5277 && ! condjump_p (insn))))
5278 {
2f39b6ca
UW
5279 /* Don't substitute non-local labels, this confuses CFG. */
5280 if (GET_CODE (trial) == LABEL_REF
5281 && LABEL_REF_NONLOCAL_P (trial))
5282 continue;
5283
d466c016 5284 SET_SRC (sets[i].rtl) = trial;
2aac3a01 5285 cse_jumps_altered = true;
7afe21cc
RK
5286 break;
5287 }
278a83b2 5288
dd77684f
JJ
5289 /* Similarly, lots of targets don't allow no-op
5290 (set (mem x) (mem x)) moves. */
5291 else if (n_sets == 1
5292 && MEM_P (trial)
5293 && MEM_P (dest)
5294 && rtx_equal_p (trial, dest)
5295 && !side_effects_p (dest)
5296 && (cfun->can_delete_dead_exceptions
5297 || insn_nothrow_p (insn)))
5298 {
5299 SET_SRC (sets[i].rtl) = trial;
5300 mem_noop_insn = true;
5301 break;
5302 }
5303
1ef6855c
KH
5304 /* Reject certain invalid forms of CONST that we create. */
5305 else if (CONSTANT_P (trial)
5306 && GET_CODE (trial) == CONST
5307 /* Reject cases that will cause decode_rtx_const to
5308 die. On the alpha when simplifying a switch, we
5309 get (const (truncate (minus (label_ref)
5310 (label_ref)))). */
5311 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5312 /* Likewise on IA-64, except without the
5313 truncate. */
5314 || (GET_CODE (XEXP (trial, 0)) == MINUS
5315 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5316 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5317 /* Do nothing for this case. */
5318 ;
5319
7afe21cc 5320 /* Look for a substitution that makes a valid insn. */
6c4d60f8
JJ
5321 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5322 trial, 0))
05c33dd8 5323 {
32e9fa48 5324 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
dbaff908 5325
7722328e
RK
5326 /* The result of apply_change_group can be ignored; see
5327 canon_reg. */
5328
32e9fa48 5329 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
6702af89 5330 apply_change_group ();
932ad4d9 5331
05c33dd8
RK
5332 break;
5333 }
7afe21cc 5334
278a83b2 5335 /* If we previously found constant pool entries for
7afe21cc
RK
5336 constants and this is a constant, try making a
5337 pool entry. Put it in src_folded unless we already have done
5338 this since that is where it likely came from. */
5339
5340 else if (constant_pool_entries_cost
5341 && CONSTANT_P (trial)
1bbd065b 5342 && (src_folded == 0
3c0cb5de 5343 || (!MEM_P (src_folded)
1bbd065b 5344 && ! src_folded_force_flag))
9ae8ffe7
JL
5345 && GET_MODE_CLASS (mode) != MODE_CC
5346 && mode != VOIDmode)
7afe21cc
RK
5347 {
5348 src_folded_force_flag = 1;
5349 src_folded = trial;
5350 src_folded_cost = constant_pool_entries_cost;
dd0ba281 5351 src_folded_regcost = constant_pool_entries_regcost;
7afe21cc 5352 }
278a83b2 5353 }
7afe21cc 5354
b4ab701f
JJ
5355 /* If we changed the insn too much, handle this set from scratch. */
5356 if (repeat)
5357 {
5358 i--;
5359 continue;
5360 }
5361
7afe21cc
RK
5362 src = SET_SRC (sets[i].rtl);
5363
5364 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5365 However, there is an important exception: If both are registers
5366 that are not the head of their equivalence class, replace SET_SRC
5367 with the head of the class. If we do not do this, we will have
5368 both registers live over a portion of the basic block. This way,
5369 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 5370 if (REG_P (dest)
1bb98cec 5371 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 5372 {
1bb98cec
DM
5373 int dest_q = REG_QTY (REGNO (dest));
5374 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5375
5376 if (dest_ent->mode == GET_MODE (dest)
5377 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 5378 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
5379 /* Don't do this if the original insn had a hard reg as
5380 SET_SRC or SET_DEST. */
f8cfc6aa 5381 && (!REG_P (sets[i].src)
1bb98cec 5382 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 5383 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
5384 /* We can't call canon_reg here because it won't do anything if
5385 SRC is a hard register. */
759bd8b7 5386 {
1bb98cec
DM
5387 int src_q = REG_QTY (REGNO (src));
5388 struct qty_table_elem *src_ent = &qty_table[src_q];
5389 int first = src_ent->first_reg;
5390 rtx new_src
5391 = (first >= FIRST_PSEUDO_REGISTER
5392 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5393
5394 /* We must use validate-change even for this, because this
5395 might be a special no-op instruction, suitable only to
5396 tag notes onto. */
5397 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5398 {
5399 src = new_src;
5400 /* If we had a constant that is cheaper than what we are now
5401 setting SRC to, use that constant. We ignored it when we
5402 thought we could make this into a no-op. */
e548c9df 5403 if (src_const && COST (src_const, mode) < COST (src, mode)
278a83b2
KH
5404 && validate_change (insn, &SET_SRC (sets[i].rtl),
5405 src_const, 0))
1bb98cec
DM
5406 src = src_const;
5407 }
759bd8b7 5408 }
7afe21cc
RK
5409 }
5410
5411 /* If we made a change, recompute SRC values. */
5412 if (src != sets[i].src)
278a83b2 5413 {
278a83b2
KH
5414 do_not_record = 0;
5415 hash_arg_in_memory = 0;
7afe21cc 5416 sets[i].src = src;
278a83b2
KH
5417 sets[i].src_hash = HASH (src, mode);
5418 sets[i].src_volatile = do_not_record;
5419 sets[i].src_in_memory = hash_arg_in_memory;
5420 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5421 }
7afe21cc
RK
5422
5423 /* If this is a single SET, we are setting a register, and we have an
73dd3123
EB
5424 equivalent constant, we want to add a REG_EQUAL note if the constant
5425 is different from the source. We don't want to do it for a constant
5426 pseudo since verifying that this pseudo hasn't been eliminated is a
5427 pain; moreover such a note won't help anything.
ac7ef8d5
FS
5428
5429 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5430 which can be created for a reference to a compile time computable
5431 entry in a jump table. */
73dd3123
EB
5432 if (n_sets == 1
5433 && REG_P (dest)
5434 && src_const
f8cfc6aa 5435 && !REG_P (src_const)
73dd3123
EB
5436 && !(GET_CODE (src_const) == SUBREG
5437 && REG_P (SUBREG_REG (src_const)))
5438 && !(GET_CODE (src_const) == CONST
5439 && GET_CODE (XEXP (src_const, 0)) == MINUS
5440 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5441 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5442 && !rtx_equal_p (src, src_const))
7afe21cc 5443 {
73dd3123
EB
5444 /* Make sure that the rtx is not shared. */
5445 src_const = copy_rtx (src_const);
51e2a951 5446
73dd3123
EB
5447 /* Record the actual constant value in a REG_EQUAL note,
5448 making a new one if one does not already exist. */
5449 set_unique_reg_note (insn, REG_EQUAL, src_const);
5450 df_notes_rescan (insn);
7afe21cc
RK
5451 }
5452
5453 /* Now deal with the destination. */
5454 do_not_record = 0;
7afe21cc 5455
46d096a3
SB
5456 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5457 while (GET_CODE (dest) == SUBREG
7afe21cc 5458 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 5459 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 5460 dest = XEXP (dest, 0);
7afe21cc
RK
5461
5462 sets[i].inner_dest = dest;
5463
3c0cb5de 5464 if (MEM_P (dest))
7afe21cc 5465 {
9ae8ffe7
JL
5466#ifdef PUSH_ROUNDING
5467 /* Stack pushes invalidate the stack pointer. */
5468 rtx addr = XEXP (dest, 0);
ec8e098d 5469 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7 5470 && XEXP (addr, 0) == stack_pointer_rtx)
524e3576 5471 invalidate (stack_pointer_rtx, VOIDmode);
9ae8ffe7 5472#endif
7afe21cc 5473 dest = fold_rtx (dest, insn);
7afe21cc
RK
5474 }
5475
5476 /* Compute the hash code of the destination now,
5477 before the effects of this instruction are recorded,
5478 since the register values used in the address computation
5479 are those before this instruction. */
2197a88a 5480 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
5481
5482 /* Don't enter a bit-field in the hash table
5483 because the value in it after the store
5484 may not equal what was stored, due to truncation. */
5485
46d096a3 5486 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
5487 {
5488 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5489
481683e1
SZ
5490 if (src_const != 0 && CONST_INT_P (src_const)
5491 && CONST_INT_P (width)
906c4e36
RK
5492 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5493 && ! (INTVAL (src_const)
0cadbfaa 5494 & (HOST_WIDE_INT_M1U << INTVAL (width))))
7afe21cc
RK
5495 /* Exception: if the value is constant,
5496 and it won't be truncated, record it. */
5497 ;
5498 else
5499 {
5500 /* This is chosen so that the destination will be invalidated
5501 but no new value will be recorded.
5502 We must invalidate because sometimes constant
5503 values can be recorded for bitfields. */
5504 sets[i].src_elt = 0;
5505 sets[i].src_volatile = 1;
5506 src_eqv = 0;
5507 src_eqv_elt = 0;
5508 }
5509 }
5510
5511 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5512 the insn. */
5513 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5514 {
ef178af3 5515 /* One less use of the label this insn used to jump to. */
98ccd1d7 5516 cse_cfg_altered |= delete_insn_and_edges (insn);
2aac3a01 5517 cse_jumps_altered = true;
7afe21cc
RK
5518 /* No more processing for this set. */
5519 sets[i].rtl = 0;
5520 }
5521
dd77684f
JJ
5522 /* Similarly for no-op MEM moves. */
5523 else if (mem_noop_insn)
5524 {
5525 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5526 cse_cfg_altered = true;
98ccd1d7 5527 cse_cfg_altered |= delete_insn_and_edges (insn);
dd77684f
JJ
5528 /* No more processing for this set. */
5529 sets[i].rtl = 0;
5530 }
5531
7afe21cc 5532 /* If this SET is now setting PC to a label, we know it used to
d466c016 5533 be a conditional or computed branch. */
8f235343
JH
5534 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5535 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5536 {
d466c016
JL
5537 /* We reemit the jump in as many cases as possible just in
5538 case the form of an unconditional jump is significantly
5539 different than a computed jump or conditional jump.
5540
5541 If this insn has multiple sets, then reemitting the
5542 jump is nontrivial. So instead we just force rerecognition
5543 and hope for the best. */
5544 if (n_sets == 1)
7afe21cc 5545 {
e67d1102 5546 rtx_jump_insn *new_rtx;
49506606 5547 rtx note;
8fb1e50e 5548
ec4a505f
RS
5549 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5550 new_rtx = emit_jump_insn_before (seq, insn);
32e9fa48 5551 JUMP_LABEL (new_rtx) = XEXP (src, 0);
7afe21cc 5552 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5553
5554 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5555 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5556 if (note)
5557 {
5558 XEXP (note, 1) = NULL_RTX;
32e9fa48 5559 REG_NOTES (new_rtx) = note;
9dcb4381
RH
5560 }
5561
98ccd1d7 5562 cse_cfg_altered |= delete_insn_and_edges (insn);
49506606 5563 insn = new_rtx;
7afe21cc 5564 }
31dcf83f 5565 else
31dcf83f 5566 INSN_CODE (insn) = -1;
7afe21cc 5567
2aac3a01
EB
5568 /* Do not bother deleting any unreachable code, let jump do it. */
5569 cse_jumps_altered = true;
7afe21cc
RK
5570 sets[i].rtl = 0;
5571 }
5572
c2a47e48
RK
5573 /* If destination is volatile, invalidate it and then do no further
5574 processing for this assignment. */
7afe21cc
RK
5575
5576 else if (do_not_record)
c2a47e48 5577 {
2a1d78d8 5578 invalidate_dest (dest);
c2a47e48
RK
5579 sets[i].rtl = 0;
5580 }
7afe21cc
RK
5581
5582 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2a1d78d8
JJ
5583 {
5584 do_not_record = 0;
5585 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5586 if (do_not_record)
5587 {
5588 invalidate_dest (SET_DEST (sets[i].rtl));
5589 sets[i].rtl = 0;
5590 }
5591 }
7afe21cc 5592
7afe21cc
RK
5593 /* If setting CC0, record what it was set to, or a constant, if it
5594 is equivalent to a constant. If it is being set to a floating-point
5595 value, make a COMPARE with the appropriate constant of 0. If we
5596 don't do this, later code can interpret this as a test against
5597 const0_rtx, which can cause problems if we try to put it into an
5598 insn as a floating-point operand. */
5599 if (dest == cc0_rtx)
5600 {
5601 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5602 this_insn_cc0_mode = mode;
cbf6a543 5603 if (FLOAT_MODE_P (mode))
38a448ca
RH
5604 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5605 CONST0_RTX (mode));
7afe21cc 5606 }
7afe21cc
RK
5607 }
5608
5609 /* Now enter all non-volatile source expressions in the hash table
5610 if they are not already present.
5611 Record their equivalence classes in src_elt.
5612 This way we can insert the corresponding destinations into
5613 the same classes even if the actual sources are no longer in them
5614 (having been invalidated). */
5615
5616 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5617 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5618 {
b3694847
SS
5619 struct table_elt *elt;
5620 struct table_elt *classp = sets[0].src_elt;
7afe21cc 5621 rtx dest = SET_DEST (sets[0].rtl);
ef4bddc2 5622 machine_mode eqvmode = GET_MODE (dest);
7afe21cc
RK
5623
5624 if (GET_CODE (dest) == STRICT_LOW_PART)
5625 {
5626 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5627 classp = 0;
5628 }
5629 if (insert_regs (src_eqv, classp, 0))
8ae2b8f6
JW
5630 {
5631 rehash_using_reg (src_eqv);
5632 src_eqv_hash = HASH (src_eqv, eqvmode);
5633 }
2197a88a 5634 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5635 elt->in_memory = src_eqv_in_memory;
7afe21cc 5636 src_eqv_elt = elt;
f7911249
JW
5637
5638 /* Check to see if src_eqv_elt is the same as a set source which
5639 does not yet have an elt, and if so set the elt of the set source
5640 to src_eqv_elt. */
5641 for (i = 0; i < n_sets; i++)
26132f71
JW
5642 if (sets[i].rtl && sets[i].src_elt == 0
5643 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5644 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5645 }
5646
5647 for (i = 0; i < n_sets; i++)
5648 if (sets[i].rtl && ! sets[i].src_volatile
5649 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5650 {
5651 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5652 {
5653 /* REG_EQUAL in setting a STRICT_LOW_PART
5654 gives an equivalent for the entire destination register,
5655 not just for the subreg being stored in now.
5656 This is a more interesting equivalence, so we arrange later
5657 to treat the entire reg as the destination. */
5658 sets[i].src_elt = src_eqv_elt;
2197a88a 5659 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5660 }
5661 else
5662 {
5663 /* Insert source and constant equivalent into hash table, if not
5664 already present. */
b3694847
SS
5665 struct table_elt *classp = src_eqv_elt;
5666 rtx src = sets[i].src;
5667 rtx dest = SET_DEST (sets[i].rtl);
ef4bddc2 5668 machine_mode mode
7afe21cc
RK
5669 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5670
1fcc57f1
AM
5671 /* It's possible that we have a source value known to be
5672 constant but don't have a REG_EQUAL note on the insn.
5673 Lack of a note will mean src_eqv_elt will be NULL. This
5674 can happen where we've generated a SUBREG to access a
5675 CONST_INT that is already in a register in a wider mode.
5676 Ensure that the source expression is put in the proper
5677 constant class. */
5678 if (!classp)
5679 classp = sets[i].src_const_elt;
5680
26132f71 5681 if (sets[i].src_elt == 0)
7afe21cc 5682 {
4a8cae83 5683 struct table_elt *elt;
26132f71 5684
4a8cae83
SB
5685 /* Note that these insert_regs calls cannot remove
5686 any of the src_elt's, because they would have failed to
5687 match if not still valid. */
5688 if (insert_regs (src, classp, 0))
5689 {
5690 rehash_using_reg (src);
5691 sets[i].src_hash = HASH (src, mode);
8ae2b8f6 5692 }
4a8cae83
SB
5693 elt = insert (src, classp, sets[i].src_hash, mode);
5694 elt->in_memory = sets[i].src_in_memory;
6c4d60f8
JJ
5695 /* If inline asm has any clobbers, ensure we only reuse
5696 existing inline asms and never try to put the ASM_OPERANDS
5697 into an insn that isn't inline asm. */
5698 if (GET_CODE (src) == ASM_OPERANDS
5699 && GET_CODE (x) == PARALLEL)
5700 elt->cost = MAX_COST;
4a8cae83 5701 sets[i].src_elt = classp = elt;
7afe21cc 5702 }
7afe21cc
RK
5703 if (sets[i].src_const && sets[i].src_const_elt == 0
5704 && src != sets[i].src_const
5705 && ! rtx_equal_p (sets[i].src_const, src))
5706 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5707 sets[i].src_const_hash, mode);
7afe21cc
RK
5708 }
5709 }
5710 else if (sets[i].src_elt == 0)
5711 /* If we did not insert the source into the hash table (e.g., it was
5712 volatile), note the equivalence class for the REG_EQUAL value, if any,
5713 so that the destination goes into that class. */
5714 sets[i].src_elt = src_eqv_elt;
5715
05c433f3
PB
5716 /* Record destination addresses in the hash table. This allows us to
5717 check if they are invalidated by other sets. */
5718 for (i = 0; i < n_sets; i++)
5719 {
5720 if (sets[i].rtl)
5721 {
5722 rtx x = sets[i].inner_dest;
5723 struct table_elt *elt;
ef4bddc2 5724 machine_mode mode;
05c433f3
PB
5725 unsigned hash;
5726
5727 if (MEM_P (x))
5728 {
5729 x = XEXP (x, 0);
5730 mode = GET_MODE (x);
5731 hash = HASH (x, mode);
5732 elt = lookup (x, hash, mode);
5733 if (!elt)
5734 {
5735 if (insert_regs (x, NULL, 0))
5736 {
7e7e28c7
AO
5737 rtx dest = SET_DEST (sets[i].rtl);
5738
05c433f3
PB
5739 rehash_using_reg (x);
5740 hash = HASH (x, mode);
7e7e28c7 5741 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
05c433f3
PB
5742 }
5743 elt = insert (x, NULL, hash, mode);
5744 }
5745
5746 sets[i].dest_addr_elt = elt;
5747 }
5748 else
5749 sets[i].dest_addr_elt = NULL;
5750 }
5751 }
5752
7b02f4e0 5753 invalidate_from_clobbers (insn);
77fa0940 5754
278a83b2 5755 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5756 invalidated by non-constant calls. */
5757
4b4bf941 5758 if (CALL_P (insn))
7afe21cc 5759 {
becfd6e5 5760 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
9ae8ffe7 5761 invalidate_memory ();
67c25816
JJ
5762 else
5763 /* For const/pure calls, invalidate any argument slots, because
5764 those are owned by the callee. */
5765 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5766 if (GET_CODE (XEXP (tem, 0)) == USE
5767 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5768 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
7afe21cc
RK
5769 invalidate_for_call ();
5770 }
5771
5772 /* Now invalidate everything set by this instruction.
5773 If a SUBREG or other funny destination is being set,
5774 sets[i].rtl is still nonzero, so here we invalidate the reg
5775 a part of which is being set. */
5776
5777 for (i = 0; i < n_sets; i++)
5778 if (sets[i].rtl)
5779 {
bb4034b3
JW
5780 /* We can't use the inner dest, because the mode associated with
5781 a ZERO_EXTRACT is significant. */
b3694847 5782 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5783
5784 /* Needed for registers to remove the register from its
5785 previous quantity's chain.
5786 Needed for memory if this is a nonvarying address, unless
5787 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5788 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5789 invalidate (dest, VOIDmode);
3c0cb5de 5790 else if (MEM_P (dest))
32fab725 5791 invalidate (dest, VOIDmode);
2708da92
RS
5792 else if (GET_CODE (dest) == STRICT_LOW_PART
5793 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5794 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5795 }
5796
932ad4d9
SB
5797 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5798 the regs restored by the longjmp come from a later time
5799 than the setjmp. */
5800 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5801 {
5802 flush_hash_table ();
5803 goto done;
5804 }
5805
7afe21cc
RK
5806 /* Make sure registers mentioned in destinations
5807 are safe for use in an expression to be inserted.
5808 This removes from the hash table
5809 any invalid entry that refers to one of these registers.
5810
5811 We don't care about the return value from mention_regs because
5812 we are going to hash the SET_DEST values unconditionally. */
5813
5814 for (i = 0; i < n_sets; i++)
34c73909
R
5815 {
5816 if (sets[i].rtl)
5817 {
5818 rtx x = SET_DEST (sets[i].rtl);
5819
f8cfc6aa 5820 if (!REG_P (x))
34c73909
R
5821 mention_regs (x);
5822 else
5823 {
5824 /* We used to rely on all references to a register becoming
5825 inaccessible when a register changes to a new quantity,
5826 since that changes the hash code. However, that is not
9b1549b8 5827 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5828 hash 'collision' of a register with its own invalid
5829 entries. And since SUBREGs have been changed not to
5830 change their hash code with the hash code of the register,
5831 it wouldn't work any longer at all. So we have to check
5832 for any invalid references lying around now.
5833 This code is similar to the REG case in mention_regs,
5834 but it knows that reg_tick has been incremented, and
5835 it leaves reg_in_table as -1 . */
770ae6cc 5836 unsigned int regno = REGNO (x);
09e18274 5837 unsigned int endregno = END_REGNO (x);
770ae6cc 5838 unsigned int i;
34c73909
R
5839
5840 for (i = regno; i < endregno; i++)
5841 {
30f72379 5842 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5843 {
5844 remove_invalid_refs (i);
30f72379 5845 REG_IN_TABLE (i) = -1;
34c73909
R
5846 }
5847 }
5848 }
5849 }
5850 }
7afe21cc
RK
5851
5852 /* We may have just removed some of the src_elt's from the hash table.
05c433f3
PB
5853 So replace each one with the current head of the same class.
5854 Also check if destination addresses have been removed. */
7afe21cc
RK
5855
5856 for (i = 0; i < n_sets; i++)
5857 if (sets[i].rtl)
5858 {
05c433f3
PB
5859 if (sets[i].dest_addr_elt
5860 && sets[i].dest_addr_elt->first_same_value == 0)
5861 {
e67b81d1 5862 /* The elt was removed, which means this destination is not
05c433f3
PB
5863 valid after this instruction. */
5864 sets[i].rtl = NULL_RTX;
5865 }
5866 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
7afe21cc
RK
5867 /* If elt was removed, find current head of same class,
5868 or 0 if nothing remains of that class. */
5869 {
b3694847 5870 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
5871
5872 while (elt && elt->prev_same_value)
5873 elt = elt->prev_same_value;
5874
5875 while (elt && elt->first_same_value == 0)
5876 elt = elt->next_same_value;
5877 sets[i].src_elt = elt ? elt->first_same_value : 0;
5878 }
5879 }
5880
5881 /* Now insert the destinations into their equivalence classes. */
5882
5883 for (i = 0; i < n_sets; i++)
5884 if (sets[i].rtl)
5885 {
b3694847 5886 rtx dest = SET_DEST (sets[i].rtl);
b3694847 5887 struct table_elt *elt;
7afe21cc
RK
5888
5889 /* Don't record value if we are not supposed to risk allocating
5890 floating-point values in registers that might be wider than
5891 memory. */
5892 if ((flag_float_store
3c0cb5de 5893 && MEM_P (dest)
cbf6a543 5894 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
5895 /* Don't record BLKmode values, because we don't know the
5896 size of it, and can't be sure that other BLKmode values
5897 have the same or smaller size. */
5898 || GET_MODE (dest) == BLKmode
7afe21cc
RK
5899 /* If we didn't put a REG_EQUAL value or a source into the hash
5900 table, there is no point is recording DEST. */
1a8e9a8e
RK
5901 || sets[i].src_elt == 0
5902 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5903 or SIGN_EXTEND, don't record DEST since it can cause
5904 some tracking to be wrong.
5905
5906 ??? Think about this more later. */
6a4bdc79 5907 || (paradoxical_subreg_p (dest)
1a8e9a8e
RK
5908 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5909 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7afe21cc
RK
5910 continue;
5911
5912 /* STRICT_LOW_PART isn't part of the value BEING set,
5913 and neither is the SUBREG inside it.
5914 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5915 if (GET_CODE (dest) == STRICT_LOW_PART)
5916 dest = SUBREG_REG (XEXP (dest, 0));
5917
f8cfc6aa 5918 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc
RK
5919 /* Registers must also be inserted into chains for quantities. */
5920 if (insert_regs (dest, sets[i].src_elt, 1))
8ae2b8f6
JW
5921 {
5922 /* If `insert_regs' changes something, the hash code must be
5923 recalculated. */
5924 rehash_using_reg (dest);
5925 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5926 }
7afe21cc 5927
8fff4fc1
RH
5928 elt = insert (dest, sets[i].src_elt,
5929 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 5930
2c5bfdf7
AN
5931 /* If this is a constant, insert the constant anchors with the
5932 equivalent register-offset expressions using register DEST. */
5933 if (targetm.const_anchor
5934 && REG_P (dest)
5935 && SCALAR_INT_MODE_P (GET_MODE (dest))
5936 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5937 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5938
3c0cb5de 5939 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 5940 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 5941
fc3ffe83
RK
5942 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5943 narrower than M2, and both M1 and M2 are the same number of words,
5944 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5945 make that equivalence as well.
7afe21cc 5946
4de249d9
PB
5947 However, BAR may have equivalences for which gen_lowpart
5948 will produce a simpler value than gen_lowpart applied to
7afe21cc 5949 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 5950 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
5951 the SUBREG. It will not be used in an equivalence, but will
5952 cause two similar assignments to be detected.
5953
5954 Note the loop below will find SUBREG_REG (DEST) since we have
5955 already entered SRC and DEST of the SET in the table. */
5956
5957 if (GET_CODE (dest) == SUBREG
6cdbaec4
RK
5958 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5959 / UNITS_PER_WORD)
278a83b2 5960 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
7afe21cc
RK
5961 && (GET_MODE_SIZE (GET_MODE (dest))
5962 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5963 && sets[i].src_elt != 0)
5964 {
ef4bddc2 5965 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
7afe21cc
RK
5966 struct table_elt *elt, *classp = 0;
5967
5968 for (elt = sets[i].src_elt->first_same_value; elt;
5969 elt = elt->next_same_value)
5970 {
5971 rtx new_src = 0;
2197a88a 5972 unsigned src_hash;
7afe21cc 5973 struct table_elt *src_elt;
ff27a429 5974 int byte = 0;
7afe21cc
RK
5975
5976 /* Ignore invalid entries. */
f8cfc6aa 5977 if (!REG_P (elt->exp)
0516f6fe 5978 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
5979 continue;
5980
9beb7d20
RH
5981 /* We may have already been playing subreg games. If the
5982 mode is already correct for the destination, use it. */
5983 if (GET_MODE (elt->exp) == new_mode)
5984 new_src = elt->exp;
5985 else
5986 {
5987 /* Calculate big endian correction for the SUBREG_BYTE.
5988 We have already checked that M1 (GET_MODE (dest))
5989 is not narrower than M2 (new_mode). */
5990 if (BYTES_BIG_ENDIAN)
5991 byte = (GET_MODE_SIZE (GET_MODE (dest))
5992 - GET_MODE_SIZE (new_mode));
5993
5994 new_src = simplify_gen_subreg (new_mode, elt->exp,
5995 GET_MODE (dest), byte);
5996 }
5997
ff27a429
R
5998 /* The call to simplify_gen_subreg fails if the value
5999 is VOIDmode, yet we can't do any simplification, e.g.
6000 for EXPR_LISTs denoting function call results.
6001 It is invalid to construct a SUBREG with a VOIDmode
6002 SUBREG_REG, hence a zero new_src means we can't do
6003 this substitution. */
6004 if (! new_src)
6005 continue;
7afe21cc
RK
6006
6007 src_hash = HASH (new_src, new_mode);
6008 src_elt = lookup (new_src, src_hash, new_mode);
6009
6010 /* Put the new source in the hash table is if isn't
6011 already. */
6012 if (src_elt == 0)
6013 {
6014 if (insert_regs (new_src, classp, 0))
8ae2b8f6
JW
6015 {
6016 rehash_using_reg (new_src);
6017 src_hash = HASH (new_src, new_mode);
6018 }
7afe21cc
RK
6019 src_elt = insert (new_src, classp, src_hash, new_mode);
6020 src_elt->in_memory = elt->in_memory;
6c4d60f8
JJ
6021 if (GET_CODE (new_src) == ASM_OPERANDS
6022 && elt->cost == MAX_COST)
6023 src_elt->cost = MAX_COST;
7afe21cc
RK
6024 }
6025 else if (classp && classp != src_elt->first_same_value)
278a83b2 6026 /* Show that two things that we've seen before are
7afe21cc
RK
6027 actually the same. */
6028 merge_equiv_classes (src_elt, classp);
6029
6030 classp = src_elt->first_same_value;
da932f04
JL
6031 /* Ignore invalid entries. */
6032 while (classp
f8cfc6aa 6033 && !REG_P (classp->exp)
0516f6fe 6034 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 6035 classp = classp->next_same_value;
7afe21cc
RK
6036 }
6037 }
6038 }
6039
403e25d0
RK
6040 /* Special handling for (set REG0 REG1) where REG0 is the
6041 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6042 be used in the sequel, so (if easily done) change this insn to
6043 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6044 that computed their value. Then REG1 will become a dead store
6045 and won't cloud the situation for later optimizations.
7afe21cc
RK
6046
6047 Do not make this change if REG1 is a hard register, because it will
6048 then be used in the sequel and we may be changing a two-operand insn
6049 into a three-operand insn.
6050
4a8cae83 6051 Also do not do this if we are operating on a copy of INSN. */
7afe21cc 6052
7b02f4e0
SB
6053 if (n_sets == 1 && sets[0].rtl)
6054 try_back_substitute_reg (sets[0].rtl, insn);
7afe21cc 6055
932ad4d9 6056done:;
7afe21cc
RK
6057}
6058\f
a4c6502a 6059/* Remove from the hash table all expressions that reference memory. */
14a774a9 6060
7afe21cc 6061static void
7080f735 6062invalidate_memory (void)
7afe21cc 6063{
b3694847
SS
6064 int i;
6065 struct table_elt *p, *next;
7afe21cc 6066
9b1549b8 6067 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
6068 for (p = table[i]; p; p = next)
6069 {
6070 next = p->next_same_hash;
6071 if (p->in_memory)
6072 remove_from_table (p, i);
6073 }
6074}
6075
7b02f4e0 6076/* Perform invalidation on the basis of everything about INSN,
7afe21cc
RK
6077 except for invalidating the actual places that are SET in it.
6078 This includes the places CLOBBERed, and anything that might
7b02f4e0 6079 alias with something that is SET or CLOBBERed. */
7afe21cc
RK
6080
6081static void
20468884 6082invalidate_from_clobbers (rtx_insn *insn)
7afe21cc 6083{
7b02f4e0
SB
6084 rtx x = PATTERN (insn);
6085
7afe21cc
RK
6086 if (GET_CODE (x) == CLOBBER)
6087 {
6088 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
6089 if (ref)
6090 {
f8cfc6aa 6091 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6092 || MEM_P (ref))
9ae8ffe7
JL
6093 invalidate (ref, VOIDmode);
6094 else if (GET_CODE (ref) == STRICT_LOW_PART
6095 || GET_CODE (ref) == ZERO_EXTRACT)
6096 invalidate (XEXP (ref, 0), GET_MODE (ref));
6097 }
7afe21cc
RK
6098 }
6099 else if (GET_CODE (x) == PARALLEL)
6100 {
b3694847 6101 int i;
7afe21cc
RK
6102 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6103 {
b3694847 6104 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
6105 if (GET_CODE (y) == CLOBBER)
6106 {
6107 rtx ref = XEXP (y, 0);
f8cfc6aa 6108 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6109 || MEM_P (ref))
9ae8ffe7
JL
6110 invalidate (ref, VOIDmode);
6111 else if (GET_CODE (ref) == STRICT_LOW_PART
6112 || GET_CODE (ref) == ZERO_EXTRACT)
6113 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
6114 }
6115 }
6116 }
6117}
6118\f
7b02f4e0
SB
6119/* Perform invalidation on the basis of everything about INSN.
6120 This includes the places CLOBBERed, and anything that might
6121 alias with something that is SET or CLOBBERed. */
6122
6123static void
20468884 6124invalidate_from_sets_and_clobbers (rtx_insn *insn)
7b02f4e0
SB
6125{
6126 rtx tem;
6127 rtx x = PATTERN (insn);
6128
6129 if (CALL_P (insn))
6130 {
6131 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6132 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6133 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6134 }
6135
6136 /* Ensure we invalidate the destination register of a CALL insn.
6137 This is necessary for machines where this register is a fixed_reg,
6138 because no other code would invalidate it. */
6139 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6140 invalidate (SET_DEST (x), VOIDmode);
6141
6142 else if (GET_CODE (x) == PARALLEL)
6143 {
6144 int i;
6145
6146 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6147 {
6148 rtx y = XVECEXP (x, 0, i);
6149 if (GET_CODE (y) == CLOBBER)
6150 {
6151 rtx clobbered = XEXP (y, 0);
6152
6153 if (REG_P (clobbered)
6154 || GET_CODE (clobbered) == SUBREG)
6155 invalidate (clobbered, VOIDmode);
6156 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6157 || GET_CODE (clobbered) == ZERO_EXTRACT)
6158 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6159 }
6160 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6161 invalidate (SET_DEST (y), VOIDmode);
6162 }
6163 }
6164}
6165\f
7afe21cc
RK
6166/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6167 and replace any registers in them with either an equivalent constant
6168 or the canonical form of the register. If we are inside an address,
6169 only do this if the address remains valid.
6170
6171 OBJECT is 0 except when within a MEM in which case it is the MEM.
6172
6173 Return the replacement for X. */
6174
6175static rtx
6fb5fa3c 6176cse_process_notes_1 (rtx x, rtx object, bool *changed)
7afe21cc
RK
6177{
6178 enum rtx_code code = GET_CODE (x);
6f7d635c 6179 const char *fmt = GET_RTX_FORMAT (code);
7afe21cc
RK
6180 int i;
6181
6182 switch (code)
6183 {
7afe21cc
RK
6184 case CONST:
6185 case SYMBOL_REF:
6186 case LABEL_REF:
d8116890 6187 CASE_CONST_ANY:
7afe21cc
RK
6188 case PC:
6189 case CC0:
6190 case LO_SUM:
6191 return x;
6192
6193 case MEM:
c96208fa 6194 validate_change (x, &XEXP (x, 0),
6fb5fa3c 6195 cse_process_notes (XEXP (x, 0), x, changed), 0);
7afe21cc
RK
6196 return x;
6197
6198 case EXPR_LIST:
7afe21cc 6199 if (REG_NOTE_KIND (x) == REG_EQUAL)
6fb5fa3c 6200 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
e5af9ddd
RS
6201 /* Fall through. */
6202
6203 case INSN_LIST:
6204 case INT_LIST:
7afe21cc 6205 if (XEXP (x, 1))
6fb5fa3c 6206 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
7afe21cc
RK
6207 return x;
6208
e4890d45
RS
6209 case SIGN_EXTEND:
6210 case ZERO_EXTEND:
0b0ee36c 6211 case SUBREG:
e4890d45 6212 {
32e9fa48 6213 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
e4890d45
RS
6214 /* We don't substitute VOIDmode constants into these rtx,
6215 since they would impede folding. */
32e9fa48
KG
6216 if (GET_MODE (new_rtx) != VOIDmode)
6217 validate_change (object, &XEXP (x, 0), new_rtx, 0);
e4890d45
RS
6218 return x;
6219 }
6220
dfebbdc6
JJ
6221 case UNSIGNED_FLOAT:
6222 {
6223 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6224 /* We don't substitute negative VOIDmode constants into these rtx,
6225 since they would impede folding. */
6226 if (GET_MODE (new_rtx) != VOIDmode
6227 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6228 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6229 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6230 return x;
6231 }
6232
7afe21cc 6233 case REG:
30f72379 6234 i = REG_QTY (REGNO (x));
7afe21cc
RK
6235
6236 /* Return a constant or a constant register. */
1bb98cec 6237 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 6238 {
1bb98cec
DM
6239 struct qty_table_elem *ent = &qty_table[i];
6240
6241 if (ent->const_rtx != NULL_RTX
6242 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 6243 || REG_P (ent->const_rtx)))
1bb98cec 6244 {
32e9fa48
KG
6245 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6246 if (new_rtx)
6247 return copy_rtx (new_rtx);
1bb98cec 6248 }
7afe21cc
RK
6249 }
6250
6251 /* Otherwise, canonicalize this register. */
20468884 6252 return canon_reg (x, NULL);
278a83b2 6253
e9a25f70
JL
6254 default:
6255 break;
7afe21cc
RK
6256 }
6257
6258 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6259 if (fmt[i] == 'e')
6260 validate_change (object, &XEXP (x, i),
6fb5fa3c 6261 cse_process_notes (XEXP (x, i), object, changed), 0);
7afe21cc
RK
6262
6263 return x;
6264}
6fb5fa3c
DB
6265
6266static rtx
6267cse_process_notes (rtx x, rtx object, bool *changed)
6268{
32e9fa48
KG
6269 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6270 if (new_rtx != x)
6fb5fa3c 6271 *changed = true;
32e9fa48 6272 return new_rtx;
6fb5fa3c
DB
6273}
6274
7afe21cc 6275\f
932ad4d9 6276/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
7afe21cc 6277
932ad4d9
SB
6278 DATA is a pointer to a struct cse_basic_block_data, that is used to
6279 describe the path.
6280 It is filled with a queue of basic blocks, starting with FIRST_BB
6281 and following a trace through the CFG.
b8698a0f 6282
932ad4d9
SB
6283 If all paths starting at FIRST_BB have been followed, or no new path
6284 starting at FIRST_BB can be constructed, this function returns FALSE.
6285 Otherwise, DATA->path is filled and the function returns TRUE indicating
6286 that a path to follow was found.
7afe21cc 6287
2e226e66 6288 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
932ad4d9 6289 block in the path will be FIRST_BB. */
7afe21cc 6290
932ad4d9
SB
6291static bool
6292cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6293 int follow_jumps)
7afe21cc 6294{
932ad4d9
SB
6295 basic_block bb;
6296 edge e;
6297 int path_size;
b8698a0f 6298
d7c028c0 6299 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
7afe21cc 6300
932ad4d9
SB
6301 /* See if there is a previous path. */
6302 path_size = data->path_size;
6303
6304 /* There is a previous path. Make sure it started with FIRST_BB. */
6305 if (path_size)
6306 gcc_assert (data->path[0].bb == first_bb);
6307
6308 /* There was only one basic block in the last path. Clear the path and
6309 return, so that paths starting at another basic block can be tried. */
6310 if (path_size == 1)
6311 {
6312 path_size = 0;
6313 goto done;
6314 }
6315
6316 /* If the path was empty from the beginning, construct a new path. */
6317 if (path_size == 0)
6318 data->path[path_size++].bb = first_bb;
6319 else
7afe21cc 6320 {
932ad4d9
SB
6321 /* Otherwise, path_size must be equal to or greater than 2, because
6322 a previous path exists that is at least two basic blocks long.
6323
6324 Update the previous branch path, if any. If the last branch was
6325 previously along the branch edge, take the fallthrough edge now. */
6326 while (path_size >= 2)
7afe21cc 6327 {
932ad4d9
SB
6328 basic_block last_bb_in_path, previous_bb_in_path;
6329 edge e;
6330
6331 --path_size;
6332 last_bb_in_path = data->path[path_size].bb;
6333 previous_bb_in_path = data->path[path_size - 1].bb;
6334
6335 /* If we previously followed a path along the branch edge, try
6336 the fallthru edge now. */
6337 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6338 && any_condjump_p (BB_END (previous_bb_in_path))
6339 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6340 && e == BRANCH_EDGE (previous_bb_in_path))
6341 {
6342 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
fefa31b5 6343 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
481e0a49
AO
6344 && single_pred_p (bb)
6345 /* We used to assert here that we would only see blocks
6346 that we have not visited yet. But we may end up
6347 visiting basic blocks twice if the CFG has changed
6348 in this run of cse_main, because when the CFG changes
6349 the topological sort of the CFG also changes. A basic
6350 blocks that previously had more than two predecessors
6351 may now have a single predecessor, and become part of
6352 a path that starts at another basic block.
6353
6354 We still want to visit each basic block only once, so
6355 halt the path here if we have already visited BB. */
d7c028c0 6356 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
932ad4d9 6357 {
d7c028c0 6358 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
932ad4d9
SB
6359 data->path[path_size++].bb = bb;
6360 break;
6361 }
6362 }
6363
6364 data->path[path_size].bb = NULL;
6365 }
6366
6367 /* If only one block remains in the path, bail. */
6368 if (path_size == 1)
6369 {
6370 path_size = 0;
6371 goto done;
7afe21cc 6372 }
7afe21cc
RK
6373 }
6374
932ad4d9
SB
6375 /* Extend the path if possible. */
6376 if (follow_jumps)
7afe21cc 6377 {
932ad4d9
SB
6378 bb = data->path[path_size - 1].bb;
6379 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6380 {
6381 if (single_succ_p (bb))
6382 e = single_succ_edge (bb);
6383 else if (EDGE_COUNT (bb->succs) == 2
6384 && any_condjump_p (BB_END (bb)))
6385 {
6386 /* First try to follow the branch. If that doesn't lead
6387 to a useful path, follow the fallthru edge. */
6388 e = BRANCH_EDGE (bb);
6389 if (!single_pred_p (e->dest))
6390 e = FALLTHRU_EDGE (bb);
6391 }
6392 else
6393 e = NULL;
7afe21cc 6394
bc6d3f91 6395 if (e
76015c34 6396 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
fefa31b5 6397 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
481e0a49
AO
6398 && single_pred_p (e->dest)
6399 /* Avoid visiting basic blocks twice. The large comment
6400 above explains why this can happen. */
d7c028c0 6401 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
932ad4d9
SB
6402 {
6403 basic_block bb2 = e->dest;
d7c028c0 6404 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
932ad4d9
SB
6405 data->path[path_size++].bb = bb2;
6406 bb = bb2;
6407 }
6408 else
6409 bb = NULL;
6410 }
6411 }
6412
6413done:
6414 data->path_size = path_size;
6415 return path_size != 0;
6416}
6417\f
6418/* Dump the path in DATA to file F. NSETS is the number of sets
6419 in the path. */
6420
6421static void
6422cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6423{
6424 int path_entry;
6425
6426 fprintf (f, ";; Following path with %d sets: ", nsets);
6427 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6428 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6429 fputc ('\n', dump_file);
6430 fflush (f);
6431}
6432
a7582f7c
SB
6433\f
6434/* Return true if BB has exception handling successor edges. */
6435
6436static bool
6437have_eh_succ_edges (basic_block bb)
6438{
6439 edge e;
6440 edge_iterator ei;
6441
6442 FOR_EACH_EDGE (e, ei, bb->succs)
6443 if (e->flags & EDGE_EH)
6444 return true;
6445
6446 return false;
6447}
6448
932ad4d9
SB
6449\f
6450/* Scan to the end of the path described by DATA. Return an estimate of
6fb5fa3c 6451 the total number of SETs of all insns in the path. */
932ad4d9
SB
6452
6453static void
6454cse_prescan_path (struct cse_basic_block_data *data)
6455{
6456 int nsets = 0;
932ad4d9
SB
6457 int path_size = data->path_size;
6458 int path_entry;
6459
6460 /* Scan to end of each basic block in the path. */
b8698a0f 6461 for (path_entry = 0; path_entry < path_size; path_entry++)
932ad4d9
SB
6462 {
6463 basic_block bb;
20468884 6464 rtx_insn *insn;
164c8956 6465
932ad4d9 6466 bb = data->path[path_entry].bb;
7afe21cc 6467
932ad4d9 6468 FOR_BB_INSNS (bb, insn)
7afe21cc 6469 {
932ad4d9
SB
6470 if (!INSN_P (insn))
6471 continue;
278a83b2 6472
932ad4d9
SB
6473 /* A PARALLEL can have lots of SETs in it,
6474 especially if it is really an ASM_OPERANDS. */
6475 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6476 nsets += XVECLEN (PATTERN (insn), 0);
6477 else
6478 nsets += 1;
7afe21cc 6479 }
932ad4d9
SB
6480 }
6481
932ad4d9
SB
6482 data->nsets = nsets;
6483}
6484\f
f0002948
RS
6485/* Return true if the pattern of INSN uses a LABEL_REF for which
6486 there isn't a REG_LABEL_OPERAND note. */
6487
6488static bool
6489check_for_label_ref (rtx_insn *insn)
6490{
6491 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6492 note for it, we must rerun jump since it needs to place the note. If
6493 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6494 don't do this since no REG_LABEL_OPERAND will be added. */
6495 subrtx_iterator::array_type array;
6496 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6497 {
6498 const_rtx x = *iter;
6499 if (GET_CODE (x) == LABEL_REF
6500 && !LABEL_REF_NONLOCAL_P (x)
6501 && (!JUMP_P (insn)
a827d9b1
DM
6502 || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6503 && LABEL_P (LABEL_REF_LABEL (x))
6504 && INSN_UID (LABEL_REF_LABEL (x)) != 0
6505 && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
f0002948
RS
6506 return true;
6507 }
6508 return false;
6509}
6510
932ad4d9 6511/* Process a single extended basic block described by EBB_DATA. */
7afe21cc 6512
932ad4d9
SB
6513static void
6514cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6515{
6516 int path_size = ebb_data->path_size;
6517 int path_entry;
6518 int num_insns = 0;
6519
6520 /* Allocate the space needed by qty_table. */
6521 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6522
6523 new_basic_block ();
89a95777
KZ
6524 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6525 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
932ad4d9
SB
6526 for (path_entry = 0; path_entry < path_size; path_entry++)
6527 {
6528 basic_block bb;
20468884 6529 rtx_insn *insn;
932ad4d9
SB
6530
6531 bb = ebb_data->path[path_entry].bb;
e186ff69
AK
6532
6533 /* Invalidate recorded information for eh regs if there is an EH
6534 edge pointing to that bb. */
6535 if (bb_has_eh_pred (bb))
6536 {
292321a5 6537 df_ref def;
e186ff69 6538
292321a5
RS
6539 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6540 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6541 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
e186ff69
AK
6542 }
6543
9fcb01de 6544 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
ba4807a0 6545 FOR_BB_INSNS (bb, insn)
7afe21cc 6546 {
932ad4d9
SB
6547 /* If we have processed 1,000 insns, flush the hash table to
6548 avoid extreme quadratic behavior. We must not include NOTEs
6549 in the count since there may be more of them when generating
6550 debugging information. If we clear the table at different
6551 times, code generated with -g -O might be different than code
6552 generated with -O but not -g.
6553
6554 FIXME: This is a real kludge and needs to be done some other
6555 way. */
b5b8b0ac 6556 if (NONDEBUG_INSN_P (insn)
932ad4d9
SB
6557 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6558 {
6559 flush_hash_table ();
6560 num_insns = 0;
6561 }
7afe21cc 6562
932ad4d9 6563 if (INSN_P (insn))
7afe21cc 6564 {
932ad4d9
SB
6565 /* Process notes first so we have all notes in canonical forms
6566 when looking for duplicate operations. */
6567 if (REG_NOTES (insn))
6fb5fa3c
DB
6568 {
6569 bool changed = false;
6570 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6571 NULL_RTX, &changed);
6572 if (changed)
6573 df_notes_rescan (insn);
6574 }
932ad4d9 6575
4a8cae83 6576 cse_insn (insn);
932ad4d9 6577
932ad4d9
SB
6578 /* If we haven't already found an insn where we added a LABEL_REF,
6579 check this one. */
2aac3a01 6580 if (INSN_P (insn) && !recorded_label_ref
f0002948 6581 && check_for_label_ref (insn))
2aac3a01 6582 recorded_label_ref = true;
96fb470d 6583
058eb3b0 6584 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
96fb470d 6585 {
5f262d13
AO
6586 /* If the previous insn sets CC0 and this insn no
6587 longer references CC0, delete the previous insn.
6588 Here we use fact that nothing expects CC0 to be
6589 valid over an insn, which is true until the final
6590 pass. */
20468884
DM
6591 rtx_insn *prev_insn;
6592 rtx tem;
5f262d13
AO
6593
6594 prev_insn = prev_nonnote_nondebug_insn (insn);
6595 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6596 && (tem = single_set (prev_insn)) != NULL_RTX
6597 && SET_DEST (tem) == cc0_rtx
6598 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6599 delete_insn (prev_insn);
6600
6601 /* If this insn is not the last insn in the basic
6602 block, it will be PREV_INSN(insn) in the next
6603 iteration. If we recorded any CC0-related
6604 information for this insn, remember it. */
6605 if (insn != BB_END (bb))
6606 {
6607 prev_insn_cc0 = this_insn_cc0;
6608 prev_insn_cc0_mode = this_insn_cc0_mode;
6609 }
96fb470d 6610 }
932ad4d9
SB
6611 }
6612 }
7afe21cc 6613
a7582f7c
SB
6614 /* With non-call exceptions, we are not always able to update
6615 the CFG properly inside cse_insn. So clean up possibly
6616 redundant EH edges here. */
8f4f502f 6617 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
2aac3a01 6618 cse_cfg_altered |= purge_dead_edges (bb);
a7582f7c 6619
932ad4d9
SB
6620 /* If we changed a conditional jump, we may have terminated
6621 the path we are following. Check that by verifying that
6622 the edge we would take still exists. If the edge does
6623 not exist anymore, purge the remainder of the path.
6624 Note that this will cause us to return to the caller. */
6625 if (path_entry < path_size - 1)
6626 {
6627 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6628 if (!find_edge (bb, next_bb))
27511c65
SB
6629 {
6630 do
6631 {
6632 path_size--;
6633
6634 /* If we truncate the path, we must also reset the
6635 visited bit on the remaining blocks in the path,
6636 or we will never visit them at all. */
d7c028c0 6637 bitmap_clear_bit (cse_visited_basic_blocks,
27511c65
SB
6638 ebb_data->path[path_size].bb->index);
6639 ebb_data->path[path_size].bb = NULL;
6640 }
6641 while (path_size - 1 != path_entry);
6642 ebb_data->path_size = path_size;
6643 }
7afe21cc 6644 }
7afe21cc 6645
932ad4d9
SB
6646 /* If this is a conditional jump insn, record any known
6647 equivalences due to the condition being tested. */
6648 insn = BB_END (bb);
6649 if (path_entry < path_size - 1
6650 && JUMP_P (insn)
6651 && single_set (insn)
6652 && any_condjump_p (insn))
6653 {
6654 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6655 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6656 record_jump_equiv (insn, taken);
6657 }
96fb470d 6658
96fb470d
SB
6659 /* Clear the CC0-tracking related insns, they can't provide
6660 useful information across basic block boundaries. */
6661 prev_insn_cc0 = 0;
932ad4d9 6662 }
7afe21cc 6663
932ad4d9 6664 gcc_assert (next_qty <= max_qty);
7afe21cc 6665
932ad4d9 6666 free (qty_table);
7afe21cc 6667}
6fb5fa3c 6668
7afe21cc 6669\f
7afe21cc
RK
6670/* Perform cse on the instructions of a function.
6671 F is the first instruction.
6672 NREGS is one plus the highest pseudo-reg number used in the instruction.
6673
2aac3a01
EB
6674 Return 2 if jump optimizations should be redone due to simplifications
6675 in conditional jump instructions.
6676 Return 1 if the CFG should be cleaned up because it has been modified.
6677 Return 0 otherwise. */
7afe21cc 6678
711417cd 6679static int
20468884 6680cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
7afe21cc 6681{
932ad4d9
SB
6682 struct cse_basic_block_data ebb_data;
6683 basic_block bb;
8b1c6fd7 6684 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
932ad4d9 6685 int i, n_blocks;
7afe21cc 6686
afb72432
IE
6687 /* CSE doesn't use dominane info but can invalidate it in different ways.
6688 For simplicity free dominance info here. */
6689 free_dominance_info (CDI_DOMINATORS);
6690
6fb5fa3c 6691 df_set_flags (DF_LR_RUN_DCE);
dca3da7a 6692 df_note_add_problem ();
6fb5fa3c
DB
6693 df_analyze ();
6694 df_set_flags (DF_DEFER_INSN_RESCAN);
6695
6696 reg_scan (get_insns (), max_reg_num ());
bc5e3b54
KH
6697 init_cse_reg_info (nregs);
6698
932ad4d9
SB
6699 ebb_data.path = XNEWVEC (struct branch_path,
6700 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
9bf8cfbf 6701
2aac3a01
EB
6702 cse_cfg_altered = false;
6703 cse_jumps_altered = false;
6704 recorded_label_ref = false;
7afe21cc 6705 constant_pool_entries_cost = 0;
dd0ba281 6706 constant_pool_entries_regcost = 0;
932ad4d9
SB
6707 ebb_data.path_size = 0;
6708 ebb_data.nsets = 0;
2f93eea8 6709 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6710
6711 init_recog ();
9ae8ffe7 6712 init_alias_analysis ();
7afe21cc 6713
5ed6ace5 6714 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
7afe21cc 6715
932ad4d9 6716 /* Set up the table of already visited basic blocks. */
8b1c6fd7 6717 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 6718 bitmap_clear (cse_visited_basic_blocks);
7afe21cc 6719
a7582f7c 6720 /* Loop over basic blocks in reverse completion order (RPO),
932ad4d9 6721 excluding the ENTRY and EXIT blocks. */
27511c65 6722 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
932ad4d9
SB
6723 i = 0;
6724 while (i < n_blocks)
7afe21cc 6725 {
a7582f7c 6726 /* Find the first block in the RPO queue that we have not yet
932ad4d9
SB
6727 processed before. */
6728 do
e9a25f70 6729 {
06e28de2 6730 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
e9a25f70 6731 }
d7c028c0 6732 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
932ad4d9 6733 && i < n_blocks);
7afe21cc 6734
932ad4d9
SB
6735 /* Find all paths starting with BB, and process them. */
6736 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
7afe21cc 6737 {
932ad4d9
SB
6738 /* Pre-scan the path. */
6739 cse_prescan_path (&ebb_data);
7afe21cc 6740
932ad4d9
SB
6741 /* If this basic block has no sets, skip it. */
6742 if (ebb_data.nsets == 0)
6743 continue;
7afe21cc 6744
2e226e66 6745 /* Get a reasonable estimate for the maximum number of qty's
932ad4d9
SB
6746 needed for this path. For this, we take the number of sets
6747 and multiply that by MAX_RECOG_OPERANDS. */
6748 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
7afe21cc 6749
932ad4d9
SB
6750 /* Dump the path we're about to process. */
6751 if (dump_file)
6752 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6a5293dc 6753
932ad4d9 6754 cse_extended_basic_block (&ebb_data);
7afe21cc 6755 }
7afe21cc
RK
6756 }
6757
932ad4d9
SB
6758 /* Clean up. */
6759 end_alias_analysis ();
932ad4d9
SB
6760 free (reg_eqv_table);
6761 free (ebb_data.path);
6762 sbitmap_free (cse_visited_basic_blocks);
27511c65 6763 free (rc_order);
932ad4d9 6764 rtl_hooks = general_rtl_hooks;
75c6bd46 6765
2aac3a01
EB
6766 if (cse_jumps_altered || recorded_label_ref)
6767 return 2;
6768 else if (cse_cfg_altered)
6769 return 1;
6770 else
6771 return 0;
7afe21cc
RK
6772}
6773\f
6774/* Count the number of times registers are used (not set) in X.
6775 COUNTS is an array in which we accumulate the count, INCR is how much
b92ba6ff
R
6776 we count each register usage.
6777
6778 Don't count a usage of DEST, which is the SET_DEST of a SET which
6779 contains X in its SET_SRC. This is because such a SET does not
6780 modify the liveness of DEST.
34161e98
RS
6781 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6782 We must then count uses of a SET_DEST regardless, because the insn can't be
6783 deleted here. */
7afe21cc
RK
6784
6785static void
b92ba6ff 6786count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7afe21cc 6787{
f1e7c95f 6788 enum rtx_code code;
b17d5d7c 6789 rtx note;
6f7d635c 6790 const char *fmt;
7afe21cc
RK
6791 int i, j;
6792
f1e7c95f
RK
6793 if (x == 0)
6794 return;
6795
6796 switch (code = GET_CODE (x))
7afe21cc
RK
6797 {
6798 case REG:
b92ba6ff
R
6799 if (x != dest)
6800 counts[REGNO (x)] += incr;
7afe21cc
RK
6801 return;
6802
6803 case PC:
6804 case CC0:
6805 case CONST:
d8116890 6806 CASE_CONST_ANY:
7afe21cc
RK
6807 case SYMBOL_REF:
6808 case LABEL_REF:
02e39abc
JL
6809 return;
6810
278a83b2 6811 case CLOBBER:
02e39abc
JL
6812 /* If we are clobbering a MEM, mark any registers inside the address
6813 as being used. */
3c0cb5de 6814 if (MEM_P (XEXP (x, 0)))
b92ba6ff 6815 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7afe21cc
RK
6816 return;
6817
6818 case SET:
6819 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 6820 if (!REG_P (SET_DEST (x)))
b92ba6ff
R
6821 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6822 count_reg_usage (SET_SRC (x), counts,
6823 dest ? dest : SET_DEST (x),
6824 incr);
7afe21cc
RK
6825 return;
6826
b5b8b0ac
AO
6827 case DEBUG_INSN:
6828 return;
6829
f1e7c95f 6830 case CALL_INSN:
7afe21cc
RK
6831 case INSN:
6832 case JUMP_INSN:
2da02156 6833 /* We expect dest to be NULL_RTX here. If the insn may throw,
34161e98
RS
6834 or if it cannot be deleted due to side-effects, mark this fact
6835 by setting DEST to pc_rtx. */
2da02156
EB
6836 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6837 || side_effects_p (PATTERN (x)))
b92ba6ff
R
6838 dest = pc_rtx;
6839 if (code == CALL_INSN)
6840 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6841 count_reg_usage (PATTERN (x), counts, dest, incr);
7afe21cc
RK
6842
6843 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6844 use them. */
6845
b17d5d7c
ZD
6846 note = find_reg_equal_equiv_note (x);
6847 if (note)
839844be
R
6848 {
6849 rtx eqv = XEXP (note, 0);
6850
6851 if (GET_CODE (eqv) == EXPR_LIST)
6852 /* This REG_EQUAL note describes the result of a function call.
6853 Process all the arguments. */
6854 do
6855 {
b92ba6ff 6856 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
839844be
R
6857 eqv = XEXP (eqv, 1);
6858 }
6859 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6860 else
b92ba6ff 6861 count_reg_usage (eqv, counts, dest, incr);
839844be 6862 }
7afe21cc
RK
6863 return;
6864
ee960939
OH
6865 case EXPR_LIST:
6866 if (REG_NOTE_KIND (x) == REG_EQUAL
6867 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6868 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6869 involving registers in the address. */
6870 || GET_CODE (XEXP (x, 0)) == CLOBBER)
b92ba6ff 6871 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
ee960939 6872
b92ba6ff 6873 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
ee960939
OH
6874 return;
6875
a6c14a64 6876 case ASM_OPERANDS:
a6c14a64
RH
6877 /* Iterate over just the inputs, not the constraints as well. */
6878 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
b92ba6ff 6879 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
a6c14a64
RH
6880 return;
6881
7afe21cc 6882 case INSN_LIST:
f91aec98 6883 case INT_LIST:
341c100f 6884 gcc_unreachable ();
278a83b2 6885
e9a25f70
JL
6886 default:
6887 break;
7afe21cc
RK
6888 }
6889
6890 fmt = GET_RTX_FORMAT (code);
6891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6892 {
6893 if (fmt[i] == 'e')
b92ba6ff 6894 count_reg_usage (XEXP (x, i), counts, dest, incr);
7afe21cc
RK
6895 else if (fmt[i] == 'E')
6896 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
b92ba6ff 6897 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7afe21cc
RK
6898 }
6899}
6900\f
6699b754 6901/* Return true if X is a dead register. */
b5b8b0ac 6902
6699b754 6903static inline int
a5b9bc17 6904is_dead_reg (const_rtx x, int *counts)
b5b8b0ac 6905{
b5b8b0ac
AO
6906 return (REG_P (x)
6907 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6908 && counts[REGNO (x)] == 0);
6909}
6910
4793dca1
JH
6911/* Return true if set is live. */
6912static bool
20468884 6913set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7080f735 6914 int *counts)
4793dca1 6915{
e67d1102 6916 rtx_insn *tem;
4793dca1
JH
6917
6918 if (set_noop_p (set))
6919 ;
6920
4793dca1
JH
6921 else if (GET_CODE (SET_DEST (set)) == CC0
6922 && !side_effects_p (SET_SRC (set))
5f262d13 6923 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
4793dca1
JH
6924 || !INSN_P (tem)
6925 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6926 return false;
6699b754 6927 else if (!is_dead_reg (SET_DEST (set), counts)
8fff4fc1 6928 || side_effects_p (SET_SRC (set)))
4793dca1
JH
6929 return true;
6930 return false;
6931}
6932
6933/* Return true if insn is live. */
6934
6935static bool
20468884 6936insn_live_p (rtx_insn *insn, int *counts)
4793dca1
JH
6937{
6938 int i;
2da02156 6939 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
a646f6cc
AH
6940 return true;
6941 else if (GET_CODE (PATTERN (insn)) == SET)
0021de69 6942 return set_live_p (PATTERN (insn), insn, counts);
4793dca1 6943 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
6944 {
6945 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6946 {
6947 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 6948
0021de69
DB
6949 if (GET_CODE (elt) == SET)
6950 {
6951 if (set_live_p (elt, insn, counts))
6952 return true;
6953 }
6954 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6955 return true;
6956 }
6957 return false;
6958 }
b5b8b0ac
AO
6959 else if (DEBUG_INSN_P (insn))
6960 {
20468884 6961 rtx_insn *next;
b5b8b0ac
AO
6962
6963 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6964 if (NOTE_P (next))
6965 continue;
6966 else if (!DEBUG_INSN_P (next))
6967 return true;
6968 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6969 return false;
6970
b5b8b0ac
AO
6971 return true;
6972 }
4793dca1
JH
6973 else
6974 return true;
6975}
6976
6699b754
JJ
6977/* Count the number of stores into pseudo. Callback for note_stores. */
6978
6979static void
6980count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6981{
6982 int *counts = (int *) data;
6983 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6984 counts[REGNO (x)]++;
6985}
6986
a5b9bc17
RS
6987/* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6988 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6989 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6990 Set *SEEN_REPL to true if we see a dead register that does have
6991 a replacement. */
6699b754 6992
a5b9bc17
RS
6993static bool
6994is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6995 bool *seen_repl)
6699b754 6996{
a5b9bc17
RS
6997 subrtx_iterator::array_type array;
6998 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6699b754 6999 {
a5b9bc17
RS
7000 const_rtx x = *iter;
7001 if (is_dead_reg (x, counts))
7002 {
7003 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7004 *seen_repl = true;
7005 else
7006 return true;
7007 }
6699b754 7008 }
a5b9bc17 7009 return false;
6699b754
JJ
7010}
7011
7012/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7013 Callback for simplify_replace_fn_rtx. */
7014
7015static rtx
7016replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7017{
7018 rtx *replacements = (rtx *) data;
7019
7020 if (REG_P (x)
7021 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7022 && replacements[REGNO (x)] != NULL_RTX)
7023 {
7024 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7025 return replacements[REGNO (x)];
7026 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7027 GET_MODE (replacements[REGNO (x)]));
7028 }
7029 return NULL_RTX;
7030}
7031
7afe21cc
RK
7032/* Scan all the insns and delete any that are dead; i.e., they store a register
7033 that is never used or they copy a register to itself.
7034
c6a26dc4
JL
7035 This is used to remove insns made obviously dead by cse, loop or other
7036 optimizations. It improves the heuristics in loop since it won't try to
7037 move dead invariants out of loops or make givs for dead quantities. The
7038 remaining passes of the compilation are also sped up. */
7afe21cc 7039
3dec4024 7040int
169d13f5 7041delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7afe21cc 7042{
4da896b2 7043 int *counts;
169d13f5 7044 rtx_insn *insn, *prev;
6699b754 7045 rtx *replacements = NULL;
65e9fa10 7046 int ndead = 0;
7afe21cc 7047
3dec4024 7048 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 7049 /* First count the number of times each register is used. */
6699b754
JJ
7050 if (MAY_HAVE_DEBUG_INSNS)
7051 {
7052 counts = XCNEWVEC (int, nreg * 3);
7053 for (insn = insns; insn; insn = NEXT_INSN (insn))
7054 if (DEBUG_INSN_P (insn))
7055 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7056 NULL_RTX, 1);
7057 else if (INSN_P (insn))
7058 {
7059 count_reg_usage (insn, counts, NULL_RTX, 1);
7060 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7061 }
7062 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7063 First one counts how many times each pseudo is used outside
7064 of debug insns, second counts how many times each pseudo is
7065 used in debug insns and third counts how many times a pseudo
7066 is stored. */
7067 }
7068 else
7069 {
7070 counts = XCNEWVEC (int, nreg);
7071 for (insn = insns; insn; insn = NEXT_INSN (insn))
7072 if (INSN_P (insn))
7073 count_reg_usage (insn, counts, NULL_RTX, 1);
7074 /* If no debug insns can be present, COUNTS is just an array
7075 which counts how many times each pseudo is used. */
7076 }
56873e13
ES
7077 /* Pseudo PIC register should be considered as used due to possible
7078 new usages generated. */
7079 if (!reload_completed
7080 && pic_offset_table_rtx
7081 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7082 counts[REGNO (pic_offset_table_rtx)]++;
65e9fa10
KH
7083 /* Go from the last insn to the first and delete insns that only set unused
7084 registers or copy a register to itself. As we delete an insn, remove
7085 usage counts for registers it uses.
0cedb36c 7086
65e9fa10
KH
7087 The first jump optimization pass may leave a real insn as the last
7088 insn in the function. We must not skip that insn or we may end
6699b754
JJ
7089 up deleting code that is not really dead.
7090
7091 If some otherwise unused register is only used in DEBUG_INSNs,
7092 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7093 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7094 has been created for the unused register, replace it with
7095 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
03ce14db 7096 for (insn = get_last_insn (); insn; insn = prev)
65e9fa10
KH
7097 {
7098 int live_insn = 0;
7afe21cc 7099
03ce14db
KH
7100 prev = PREV_INSN (insn);
7101 if (!INSN_P (insn))
7102 continue;
7afe21cc 7103
4a8cae83 7104 live_insn = insn_live_p (insn, counts);
7afe21cc 7105
65e9fa10
KH
7106 /* If this is a dead insn, delete it and show registers in it aren't
7107 being used. */
7afe21cc 7108
6fb5fa3c 7109 if (! live_insn && dbg_cnt (delete_trivial_dead))
65e9fa10 7110 {
6699b754
JJ
7111 if (DEBUG_INSN_P (insn))
7112 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7113 NULL_RTX, -1);
7114 else
7115 {
7116 rtx set;
7117 if (MAY_HAVE_DEBUG_INSNS
7118 && (set = single_set (insn)) != NULL_RTX
7119 && is_dead_reg (SET_DEST (set), counts)
7120 /* Used at least once in some DEBUG_INSN. */
7121 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7122 /* And set exactly once. */
7123 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7124 && !side_effects_p (SET_SRC (set))
7125 && asm_noperands (PATTERN (insn)) < 0)
7126 {
b2908ba6
DM
7127 rtx dval, bind_var_loc;
7128 rtx_insn *bind;
6699b754
JJ
7129
7130 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7131 dval = make_debug_expr_from_rtl (SET_DEST (set));
7132
7133 /* Emit a debug bind insn before the insn in which
7134 reg dies. */
b2908ba6
DM
7135 bind_var_loc =
7136 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7137 DEBUG_EXPR_TREE_DECL (dval),
7138 SET_SRC (set),
7139 VAR_INIT_STATUS_INITIALIZED);
7140 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7141
7142 bind = emit_debug_insn_before (bind_var_loc, insn);
6699b754
JJ
7143 df_insn_rescan (bind);
7144
7145 if (replacements == NULL)
7146 replacements = XCNEWVEC (rtx, nreg);
7147 replacements[REGNO (SET_DEST (set))] = dval;
7148 }
7149
7150 count_reg_usage (insn, counts, NULL_RTX, -1);
7151 ndead++;
7152 }
98ccd1d7 7153 cse_cfg_altered |= delete_insn_and_edges (insn);
65e9fa10 7154 }
68252e27 7155 }
4da896b2 7156
6699b754
JJ
7157 if (MAY_HAVE_DEBUG_INSNS)
7158 {
6699b754
JJ
7159 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7160 if (DEBUG_INSN_P (insn))
7161 {
7162 /* If this debug insn references a dead register that wasn't replaced
7163 with an DEBUG_EXPR, reset the DEBUG_INSN. */
a5b9bc17
RS
7164 bool seen_repl = false;
7165 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7166 counts, replacements, &seen_repl))
6699b754
JJ
7167 {
7168 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7169 df_insn_rescan (insn);
7170 }
a5b9bc17 7171 else if (seen_repl)
6699b754
JJ
7172 {
7173 INSN_VAR_LOCATION_LOC (insn)
7174 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7175 NULL_RTX, replace_dead_reg,
7176 replacements);
7177 df_insn_rescan (insn);
7178 }
7179 }
04695783 7180 free (replacements);
6699b754
JJ
7181 }
7182
c263766c 7183 if (dump_file && ndead)
65e9fa10
KH
7184 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7185 ndead);
4da896b2
MM
7186 /* Clean up. */
7187 free (counts);
3dec4024
JH
7188 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7189 return ndead;
7afe21cc 7190}
e129d93a 7191
a9052a40
RS
7192/* If LOC contains references to NEWREG in a different mode, change them
7193 to use NEWREG instead. */
e129d93a 7194
a9052a40
RS
7195static void
7196cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
88bdcd3d 7197 rtx *loc, rtx_insn *insn, rtx newreg)
e129d93a 7198{
a9052a40 7199 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
e129d93a 7200 {
a9052a40
RS
7201 rtx *loc = *iter;
7202 rtx x = *loc;
7203 if (x
7204 && REG_P (x)
7205 && REGNO (x) == REGNO (newreg)
7206 && GET_MODE (x) != GET_MODE (newreg))
7207 {
7208 validate_change (insn, loc, newreg, 1);
7209 iter.skip_subrtxes ();
7210 }
e129d93a 7211 }
e129d93a
ILT
7212}
7213
fc188d37
AK
7214/* Change the mode of any reference to the register REGNO (NEWREG) to
7215 GET_MODE (NEWREG) in INSN. */
7216
7217static void
20468884 7218cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
fc188d37 7219{
fc188d37
AK
7220 int success;
7221
7222 if (!INSN_P (insn))
7223 return;
7224
a9052a40
RS
7225 subrtx_ptr_iterator::array_type array;
7226 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7227 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
b8698a0f 7228
fc188d37
AK
7229 /* If the following assertion was triggered, there is most probably
7230 something wrong with the cc_modes_compatible back end function.
7231 CC modes only can be considered compatible if the insn - with the mode
7232 replaced by any of the compatible modes - can still be recognized. */
7233 success = apply_change_group ();
7234 gcc_assert (success);
7235}
7236
e129d93a
ILT
7237/* Change the mode of any reference to the register REGNO (NEWREG) to
7238 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 7239 any instruction which modifies NEWREG. */
e129d93a
ILT
7240
7241static void
20468884 7242cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
e129d93a 7243{
20468884 7244 rtx_insn *insn;
e129d93a
ILT
7245
7246 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7247 {
7248 if (! INSN_P (insn))
7249 continue;
7250
2e802a6f 7251 if (reg_set_p (newreg, insn))
e129d93a
ILT
7252 return;
7253
fc188d37 7254 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
7255 }
7256}
7257
7258/* BB is a basic block which finishes with CC_REG as a condition code
7259 register which is set to CC_SRC. Look through the successors of BB
7260 to find blocks which have a single predecessor (i.e., this one),
7261 and look through those blocks for an assignment to CC_REG which is
7262 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7263 permitted to change the mode of CC_SRC to a compatible mode. This
7264 returns VOIDmode if no equivalent assignments were found.
7265 Otherwise it returns the mode which CC_SRC should wind up with.
31e9ebaf
JJ
7266 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7267 but is passed unmodified down to recursive calls in order to prevent
7268 endless recursion.
e129d93a
ILT
7269
7270 The main complexity in this function is handling the mode issues.
7271 We may have more than one duplicate which we can eliminate, and we
7272 try to find a mode which will work for multiple duplicates. */
7273
ef4bddc2 7274static machine_mode
31e9ebaf
JJ
7275cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7276 bool can_change_mode)
e129d93a
ILT
7277{
7278 bool found_equiv;
ef4bddc2 7279 machine_mode mode;
e129d93a
ILT
7280 unsigned int insn_count;
7281 edge e;
20468884 7282 rtx_insn *insns[2];
ef4bddc2 7283 machine_mode modes[2];
20468884 7284 rtx_insn *last_insns[2];
e129d93a
ILT
7285 unsigned int i;
7286 rtx newreg;
628f6a4e 7287 edge_iterator ei;
e129d93a
ILT
7288
7289 /* We expect to have two successors. Look at both before picking
7290 the final mode for the comparison. If we have more successors
7291 (i.e., some sort of table jump, although that seems unlikely),
7292 then we require all beyond the first two to use the same
7293 mode. */
7294
7295 found_equiv = false;
7296 mode = GET_MODE (cc_src);
7297 insn_count = 0;
628f6a4e 7298 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a 7299 {
20468884
DM
7300 rtx_insn *insn;
7301 rtx_insn *end;
e129d93a
ILT
7302
7303 if (e->flags & EDGE_COMPLEX)
7304 continue;
7305
628f6a4e 7306 if (EDGE_COUNT (e->dest->preds) != 1
fefa31b5 7307 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
31e9ebaf
JJ
7308 /* Avoid endless recursion on unreachable blocks. */
7309 || e->dest == orig_bb)
e129d93a
ILT
7310 continue;
7311
7312 end = NEXT_INSN (BB_END (e->dest));
7313 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7314 {
7315 rtx set;
7316
7317 if (! INSN_P (insn))
7318 continue;
7319
7320 /* If CC_SRC is modified, we have to stop looking for
7321 something which uses it. */
7322 if (modified_in_p (cc_src, insn))
7323 break;
7324
7325 /* Check whether INSN sets CC_REG to CC_SRC. */
7326 set = single_set (insn);
7327 if (set
f8cfc6aa 7328 && REG_P (SET_DEST (set))
e129d93a
ILT
7329 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7330 {
7331 bool found;
ef4bddc2
RS
7332 machine_mode set_mode;
7333 machine_mode comp_mode;
e129d93a
ILT
7334
7335 found = false;
7336 set_mode = GET_MODE (SET_SRC (set));
7337 comp_mode = set_mode;
7338 if (rtx_equal_p (cc_src, SET_SRC (set)))
7339 found = true;
7340 else if (GET_CODE (cc_src) == COMPARE
7341 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 7342 && mode != set_mode
e129d93a
ILT
7343 && rtx_equal_p (XEXP (cc_src, 0),
7344 XEXP (SET_SRC (set), 0))
7345 && rtx_equal_p (XEXP (cc_src, 1),
7346 XEXP (SET_SRC (set), 1)))
b8698a0f 7347
e129d93a 7348 {
5fd9b178 7349 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
7350 if (comp_mode != VOIDmode
7351 && (can_change_mode || comp_mode == mode))
7352 found = true;
7353 }
7354
7355 if (found)
7356 {
7357 found_equiv = true;
1f44254c 7358 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
7359 {
7360 insns[insn_count] = insn;
7361 modes[insn_count] = set_mode;
7362 last_insns[insn_count] = end;
7363 ++insn_count;
7364
1f44254c
ILT
7365 if (mode != comp_mode)
7366 {
341c100f 7367 gcc_assert (can_change_mode);
1f44254c 7368 mode = comp_mode;
fc188d37
AK
7369
7370 /* The modified insn will be re-recognized later. */
1f44254c
ILT
7371 PUT_MODE (cc_src, mode);
7372 }
e129d93a
ILT
7373 }
7374 else
7375 {
7376 if (set_mode != mode)
1f44254c
ILT
7377 {
7378 /* We found a matching expression in the
7379 wrong mode, but we don't have room to
7380 store it in the array. Punt. This case
7381 should be rare. */
7382 break;
7383 }
e129d93a
ILT
7384 /* INSN sets CC_REG to a value equal to CC_SRC
7385 with the right mode. We can simply delete
7386 it. */
7387 delete_insn (insn);
7388 }
7389
7390 /* We found an instruction to delete. Keep looking,
7391 in the hopes of finding a three-way jump. */
7392 continue;
7393 }
7394
7395 /* We found an instruction which sets the condition
7396 code, so don't look any farther. */
7397 break;
7398 }
7399
7400 /* If INSN sets CC_REG in some other way, don't look any
7401 farther. */
7402 if (reg_set_p (cc_reg, insn))
7403 break;
7404 }
7405
7406 /* If we fell off the bottom of the block, we can keep looking
7407 through successors. We pass CAN_CHANGE_MODE as false because
7408 we aren't prepared to handle compatibility between the
7409 further blocks and this block. */
7410 if (insn == end)
7411 {
ef4bddc2 7412 machine_mode submode;
1f44254c 7413
31e9ebaf 7414 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
1f44254c
ILT
7415 if (submode != VOIDmode)
7416 {
341c100f 7417 gcc_assert (submode == mode);
1f44254c
ILT
7418 found_equiv = true;
7419 can_change_mode = false;
7420 }
e129d93a
ILT
7421 }
7422 }
7423
7424 if (! found_equiv)
7425 return VOIDmode;
7426
7427 /* Now INSN_COUNT is the number of instructions we found which set
7428 CC_REG to a value equivalent to CC_SRC. The instructions are in
7429 INSNS. The modes used by those instructions are in MODES. */
7430
7431 newreg = NULL_RTX;
7432 for (i = 0; i < insn_count; ++i)
7433 {
7434 if (modes[i] != mode)
7435 {
7436 /* We need to change the mode of CC_REG in INSNS[i] and
7437 subsequent instructions. */
7438 if (! newreg)
7439 {
7440 if (GET_MODE (cc_reg) == mode)
7441 newreg = cc_reg;
7442 else
7443 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7444 }
7445 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7446 newreg);
7447 }
7448
98ccd1d7 7449 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
e129d93a
ILT
7450 }
7451
7452 return mode;
7453}
7454
7455/* If we have a fixed condition code register (or two), walk through
7456 the instructions and try to eliminate duplicate assignments. */
7457
cab2264d 7458static void
e129d93a
ILT
7459cse_condition_code_reg (void)
7460{
7461 unsigned int cc_regno_1;
7462 unsigned int cc_regno_2;
7463 rtx cc_reg_1;
7464 rtx cc_reg_2;
7465 basic_block bb;
7466
5fd9b178 7467 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
7468 return;
7469
7470 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7471 if (cc_regno_2 != INVALID_REGNUM)
7472 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7473 else
7474 cc_reg_2 = NULL_RTX;
7475
11cd3bed 7476 FOR_EACH_BB_FN (bb, cfun)
e129d93a 7477 {
20468884 7478 rtx_insn *last_insn;
e129d93a 7479 rtx cc_reg;
20468884
DM
7480 rtx_insn *insn;
7481 rtx_insn *cc_src_insn;
e129d93a 7482 rtx cc_src;
ef4bddc2
RS
7483 machine_mode mode;
7484 machine_mode orig_mode;
e129d93a
ILT
7485
7486 /* Look for blocks which end with a conditional jump based on a
7487 condition code register. Then look for the instruction which
7488 sets the condition code register. Then look through the
7489 successor blocks for instructions which set the condition
7490 code register to the same value. There are other possible
7491 uses of the condition code register, but these are by far the
7492 most common and the ones which we are most likely to be able
7493 to optimize. */
7494
7495 last_insn = BB_END (bb);
4b4bf941 7496 if (!JUMP_P (last_insn))
e129d93a
ILT
7497 continue;
7498
7499 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7500 cc_reg = cc_reg_1;
7501 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7502 cc_reg = cc_reg_2;
7503 else
7504 continue;
7505
20468884 7506 cc_src_insn = NULL;
e129d93a
ILT
7507 cc_src = NULL_RTX;
7508 for (insn = PREV_INSN (last_insn);
7509 insn && insn != PREV_INSN (BB_HEAD (bb));
7510 insn = PREV_INSN (insn))
7511 {
7512 rtx set;
7513
7514 if (! INSN_P (insn))
7515 continue;
7516 set = single_set (insn);
7517 if (set
f8cfc6aa 7518 && REG_P (SET_DEST (set))
e129d93a
ILT
7519 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7520 {
7521 cc_src_insn = insn;
7522 cc_src = SET_SRC (set);
7523 break;
7524 }
7525 else if (reg_set_p (cc_reg, insn))
7526 break;
7527 }
7528
7529 if (! cc_src_insn)
7530 continue;
7531
7532 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7533 continue;
7534
7535 /* Now CC_REG is a condition code register used for a
7536 conditional jump at the end of the block, and CC_SRC, in
7537 CC_SRC_INSN, is the value to which that condition code
7538 register is set, and CC_SRC is still meaningful at the end of
7539 the basic block. */
7540
1f44254c 7541 orig_mode = GET_MODE (cc_src);
31e9ebaf 7542 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
1f44254c 7543 if (mode != VOIDmode)
e129d93a 7544 {
341c100f 7545 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 7546 if (mode != orig_mode)
2e802a6f
KH
7547 {
7548 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7549
fc188d37 7550 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
7551
7552 /* Do the same in the following insns that use the
7553 current value of CC_REG within BB. */
7554 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7555 NEXT_INSN (last_insn),
7556 newreg);
7557 }
e129d93a
ILT
7558 }
7559 }
7560}
ef330312
PB
7561\f
7562
7563/* Perform common subexpression elimination. Nonzero value from
7564 `cse_main' means that jumps were simplified and some code may now
7565 be unreachable, so do jump optimization again. */
c2924966 7566static unsigned int
ef330312
PB
7567rest_of_handle_cse (void)
7568{
7569 int tem;
6fb5fa3c 7570
ef330312 7571 if (dump_file)
5b4fdb20 7572 dump_flow_info (dump_file, dump_flags);
ef330312 7573
10d22567 7574 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7575
7576 /* If we are not running more CSE passes, then we are no longer
7577 expecting CSE to be run. But always rerun it in a cheap mode. */
7578 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7579
2aac3a01
EB
7580 if (tem == 2)
7581 {
7582 timevar_push (TV_JUMP);
7583 rebuild_jump_labels (get_insns ());
da7674f6 7584 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
2aac3a01
EB
7585 timevar_pop (TV_JUMP);
7586 }
7587 else if (tem == 1 || optimize > 1)
da7674f6 7588 cse_cfg_altered |= cleanup_cfg (0);
932ad4d9 7589
c2924966 7590 return 0;
ef330312
PB
7591}
7592
27a4cd48
DM
7593namespace {
7594
7595const pass_data pass_data_cse =
ef330312 7596{
27a4cd48
DM
7597 RTL_PASS, /* type */
7598 "cse1", /* name */
7599 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7600 TV_CSE, /* tv_id */
7601 0, /* properties_required */
7602 0, /* properties_provided */
7603 0, /* properties_destroyed */
7604 0, /* todo_flags_start */
3bea341f 7605 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
7606};
7607
27a4cd48
DM
7608class pass_cse : public rtl_opt_pass
7609{
7610public:
c3284718
RS
7611 pass_cse (gcc::context *ctxt)
7612 : rtl_opt_pass (pass_data_cse, ctxt)
27a4cd48
DM
7613 {}
7614
7615 /* opt_pass methods: */
1a3d085c 7616 virtual bool gate (function *) { return optimize > 0; }
be55bfe6 7617 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
27a4cd48
DM
7618
7619}; // class pass_cse
7620
7621} // anon namespace
7622
7623rtl_opt_pass *
7624make_pass_cse (gcc::context *ctxt)
7625{
7626 return new pass_cse (ctxt);
7627}
7628
ef330312 7629
ef330312 7630/* Run second CSE pass after loop optimizations. */
c2924966 7631static unsigned int
ef330312
PB
7632rest_of_handle_cse2 (void)
7633{
7634 int tem;
7635
7636 if (dump_file)
5b4fdb20 7637 dump_flow_info (dump_file, dump_flags);
ef330312 7638
10d22567 7639 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7640
7641 /* Run a pass to eliminate duplicated assignments to condition code
7642 registers. We have to run this after bypass_jumps, because it
7643 makes it harder for that pass to determine whether a jump can be
7644 bypassed safely. */
7645 cse_condition_code_reg ();
7646
ef330312
PB
7647 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7648
2aac3a01 7649 if (tem == 2)
ef330312
PB
7650 {
7651 timevar_push (TV_JUMP);
7652 rebuild_jump_labels (get_insns ());
da7674f6 7653 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
ef330312
PB
7654 timevar_pop (TV_JUMP);
7655 }
2aac3a01 7656 else if (tem == 1)
da7674f6 7657 cse_cfg_altered |= cleanup_cfg (0);
2aac3a01 7658
ef330312 7659 cse_not_expected = 1;
c2924966 7660 return 0;
ef330312
PB
7661}
7662
7663
27a4cd48
DM
7664namespace {
7665
7666const pass_data pass_data_cse2 =
ef330312 7667{
27a4cd48
DM
7668 RTL_PASS, /* type */
7669 "cse2", /* name */
7670 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7671 TV_CSE2, /* tv_id */
7672 0, /* properties_required */
7673 0, /* properties_provided */
7674 0, /* properties_destroyed */
7675 0, /* todo_flags_start */
3bea341f 7676 TODO_df_finish, /* todo_flags_finish */
ef330312 7677};
5f39ad47 7678
27a4cd48
DM
7679class pass_cse2 : public rtl_opt_pass
7680{
7681public:
c3284718
RS
7682 pass_cse2 (gcc::context *ctxt)
7683 : rtl_opt_pass (pass_data_cse2, ctxt)
27a4cd48
DM
7684 {}
7685
7686 /* opt_pass methods: */
1a3d085c
TS
7687 virtual bool gate (function *)
7688 {
7689 return optimize > 0 && flag_rerun_cse_after_loop;
7690 }
7691
be55bfe6 7692 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
27a4cd48
DM
7693
7694}; // class pass_cse2
7695
7696} // anon namespace
7697
7698rtl_opt_pass *
7699make_pass_cse2 (gcc::context *ctxt)
7700{
7701 return new pass_cse2 (ctxt);
7702}
7703
5f39ad47
SB
7704/* Run second CSE pass after loop optimizations. */
7705static unsigned int
7706rest_of_handle_cse_after_global_opts (void)
7707{
7708 int save_cfj;
7709 int tem;
7710
7711 /* We only want to do local CSE, so don't follow jumps. */
7712 save_cfj = flag_cse_follow_jumps;
7713 flag_cse_follow_jumps = 0;
7714
7715 rebuild_jump_labels (get_insns ());
7716 tem = cse_main (get_insns (), max_reg_num ());
98ccd1d7 7717 cse_cfg_altered |= purge_all_dead_edges ();
5f39ad47
SB
7718 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7719
7720 cse_not_expected = !flag_rerun_cse_after_loop;
7721
7722 /* If cse altered any jumps, rerun jump opts to clean things up. */
7723 if (tem == 2)
7724 {
7725 timevar_push (TV_JUMP);
7726 rebuild_jump_labels (get_insns ());
da7674f6 7727 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
5f39ad47
SB
7728 timevar_pop (TV_JUMP);
7729 }
7730 else if (tem == 1)
da7674f6 7731 cse_cfg_altered |= cleanup_cfg (0);
5f39ad47
SB
7732
7733 flag_cse_follow_jumps = save_cfj;
7734 return 0;
7735}
7736
27a4cd48
DM
7737namespace {
7738
7739const pass_data pass_data_cse_after_global_opts =
5f39ad47 7740{
27a4cd48
DM
7741 RTL_PASS, /* type */
7742 "cse_local", /* name */
7743 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7744 TV_CSE, /* tv_id */
7745 0, /* properties_required */
7746 0, /* properties_provided */
7747 0, /* properties_destroyed */
7748 0, /* todo_flags_start */
3bea341f 7749 TODO_df_finish, /* todo_flags_finish */
5f39ad47 7750};
27a4cd48
DM
7751
7752class pass_cse_after_global_opts : public rtl_opt_pass
7753{
7754public:
c3284718
RS
7755 pass_cse_after_global_opts (gcc::context *ctxt)
7756 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
27a4cd48
DM
7757 {}
7758
7759 /* opt_pass methods: */
1a3d085c
TS
7760 virtual bool gate (function *)
7761 {
7762 return optimize > 0 && flag_rerun_cse_after_global_opts;
7763 }
7764
be55bfe6
TS
7765 virtual unsigned int execute (function *)
7766 {
7767 return rest_of_handle_cse_after_global_opts ();
7768 }
27a4cd48
DM
7769
7770}; // class pass_cse_after_global_opts
7771
7772} // anon namespace
7773
7774rtl_opt_pass *
7775make_pass_cse_after_global_opts (gcc::context *ctxt)
7776{
7777 return new pass_cse_after_global_opts (ctxt);
7778}