]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cse.cc
Fix profile update in tree_transform_and_unroll_loop
[thirdparty/gcc.git] / gcc / cse.cc
CommitLineData
7afe21cc 1/* Common subexpression elimination for GNU compiler.
aeee4812 2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
7afe21cc 3
1322177d 4This file is part of GCC.
7afe21cc 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7afe21cc 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7afe21cc
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7afe21cc 19
7afe21cc 20#include "config.h"
670ee920 21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
7afe21cc 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "cfghooks.h"
c7131fb2 28#include "df.h"
4d0cdd0c 29#include "memmodel.h"
6baf1cc8 30#include "tm_p.h"
957060b5 31#include "insn-config.h"
7932a3db 32#include "regs.h"
957060b5
AM
33#include "emit-rtl.h"
34#include "recog.h"
60393bbc
AM
35#include "cfgrtl.h"
36#include "cfganal.h"
37#include "cfgcleanup.h"
36566b39 38#include "alias.h"
50b2596f 39#include "toplev.h"
2f93eea8 40#include "rtlhooks-def.h"
ef330312 41#include "tree-pass.h"
6fb5fa3c 42#include "dbgcnt.h"
e89b312e 43#include "rtl-iter.h"
311b62ce
RS
44#include "regs.h"
45#include "function-abi.h"
8695bf78 46#include "rtlanal.h"
68b48f3f 47#include "expr.h"
7afe21cc
RK
48
49/* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
53
54 It is too complicated to keep track of the different possibilities
e48a7fbe
JL
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
59
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
7afe21cc
RK
63
64 We use two data structures to record the equivalent expressions:
1bb98cec
DM
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
7afe21cc
RK
67
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
76
77Registers and "quantity numbers":
278a83b2 78
7afe21cc
RK
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
459281be 85 `REG_QTY (N)' records what quantity register N is currently thought
7afe21cc
RK
86 of as containing.
87
08a69267 88 All real quantity numbers are greater than or equal to zero.
459281be 89 If register N has not been assigned a quantity, `REG_QTY (N)' will
08a69267 90 equal -N - 1, which is always negative.
7afe21cc 91
08a69267
RS
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
7afe21cc
RK
94
95 We also maintain a bidirectional chain of registers for each
1bb98cec
DM
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
7afe21cc
RK
98
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
102
103 If two registers have the same quantity number, it must be true that
1bb98cec 104 REG expressions with qty_table `mode' must be in the hash table for both
7afe21cc
RK
105 registers and must be in the same class.
106
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
278a83b2 111
7afe21cc
RK
112Constants and quantity numbers
113
114 When a quantity has a known constant value, that value is stored
1bb98cec 115 in the appropriate qty_table `const_rtx'. This is in addition to
7afe21cc
RK
116 putting the constant in the hash table as is usual for non-regs.
117
d45cf215 118 Whether a reg or a constant is preferred is determined by the configuration
7afe21cc
RK
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
121
122 When a quantity has a known nearly constant value (such as an address
1bb98cec
DM
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
7afe21cc
RK
125
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
131
132Other expressions:
133
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
139
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
142
143 Register references in an expression are canonicalized before hashing
1bb98cec 144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
7afe21cc
RK
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
147
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
151
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
156
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
164
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
168
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
176
459281be
KH
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
7afe21cc
RK
187
188 Registers themselves are entered in the hash table as well as in
459281be
KH
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
7afe21cc
RK
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
195
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
199
200Related expressions:
201
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
278a83b2 208
1bb98cec
DM
209/* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
7afe21cc
RK
211
212static int max_qty;
213
214/* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
216
217static int next_qty;
218
1bb98cec 219/* Per-qty information tracking.
7afe21cc 220
1bb98cec
DM
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
7afe21cc 223
1bb98cec 224 `mode' contains the machine mode of this quantity.
7afe21cc 225
1bb98cec
DM
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
7afe21cc 231
1bb98cec
DM
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
7afe21cc 243
1bb98cec
DM
244struct qty_table_elem
245{
246 rtx const_rtx;
20468884 247 rtx_insn *const_insn;
1bb98cec
DM
248 rtx comparison_const;
249 int comparison_qty;
770ae6cc 250 unsigned int first_reg, last_reg;
b14af304
PL
251 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
252 ENUM_BITFIELD(rtx_code) comparison_code : RTX_CODE_BITSIZE;
1bb98cec 253};
7afe21cc 254
1bb98cec
DM
255/* The table of all qtys, indexed by qty number. */
256static struct qty_table_elem *qty_table;
7afe21cc 257
7afe21cc
RK
258/* Insn being scanned. */
259
20468884 260static rtx_insn *this_insn;
f40751dd 261static bool optimize_this_for_speed_p;
7afe21cc 262
71d306d1
DE
263/* Index by register number, gives the number of the next (or
264 previous) register in the chain of registers sharing the same
7afe21cc
RK
265 value.
266
267 Or -1 if this register is at the end of the chain.
268
459281be 269 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
1bb98cec
DM
270
271/* Per-register equivalence chain. */
272struct reg_eqv_elem
273{
274 int next, prev;
275};
7afe21cc 276
1bb98cec
DM
277/* The table of all register equivalence chains. */
278static struct reg_eqv_elem *reg_eqv_table;
7afe21cc 279
14a774a9
RK
280struct cse_reg_info
281{
bc5e3b54
KH
282 /* The timestamp at which this register is initialized. */
283 unsigned int timestamp;
9b1549b8
DM
284
285 /* The quantity number of the register's current contents. */
286 int reg_qty;
287
288 /* The number of times the register has been altered in the current
289 basic block. */
290 int reg_tick;
291
30f72379
MM
292 /* The REG_TICK value at which rtx's containing this register are
293 valid in the hash table. If this does not equal the current
294 reg_tick value, such expressions existing in the hash table are
295 invalid. */
296 int reg_in_table;
46081bb3
SH
297
298 /* The SUBREG that was set when REG_TICK was last incremented. Set
299 to -1 if the last store was to the whole register, not a subreg. */
5dd78e9a 300 unsigned int subreg_ticked;
30f72379 301};
7afe21cc 302
bc5e3b54 303/* A table of cse_reg_info indexed by register numbers. */
f00822b2 304static struct cse_reg_info *cse_reg_info_table;
c1edba58 305
bc5e3b54
KH
306/* The size of the above table. */
307static unsigned int cse_reg_info_table_size;
9b1549b8 308
bc5e3b54
KH
309/* The index of the first entry that has not been initialized. */
310static unsigned int cse_reg_info_table_first_uninitialized;
7afe21cc 311
bc5e3b54 312/* The timestamp at the beginning of the current run of
932ad4d9
SB
313 cse_extended_basic_block. We increment this variable at the beginning of
314 the current run of cse_extended_basic_block. The timestamp field of a
bc5e3b54
KH
315 cse_reg_info entry matches the value of this variable if and only
316 if the entry has been initialized during the current run of
932ad4d9 317 cse_extended_basic_block. */
bc5e3b54 318static unsigned int cse_reg_info_timestamp;
7afe21cc 319
278a83b2 320/* A HARD_REG_SET containing all the hard registers for which there is
7afe21cc
RK
321 currently a REG expression in the hash table. Note the difference
322 from the above variables, which indicate if the REG is mentioned in some
323 expression in the table. */
324
325static HARD_REG_SET hard_regs_in_table;
326
2aac3a01
EB
327/* True if CSE has altered the CFG. */
328static bool cse_cfg_altered;
7afe21cc 329
2aac3a01
EB
330/* True if CSE has altered conditional jump insns in such a way
331 that jump optimization should be redone. */
332static bool cse_jumps_altered;
7afe21cc 333
2aac3a01
EB
334/* True if we put a LABEL_REF into the hash table for an INSN
335 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
336 to put in the note. */
337static bool recorded_label_ref;
a5dfb4ee 338
bd1cd0d0
SB
339/* canon_hash stores 1 in do_not_record if it notices a reference to PC or
340 some other volatile subexpression. */
7afe21cc
RK
341
342static int do_not_record;
343
344/* canon_hash stores 1 in hash_arg_in_memory
345 if it notices a reference to memory within the expression being hashed. */
346
347static int hash_arg_in_memory;
348
7afe21cc
RK
349/* The hash table contains buckets which are chains of `struct table_elt's,
350 each recording one expression's information.
351 That expression is in the `exp' field.
352
db048faf
MM
353 The canon_exp field contains a canonical (from the point of view of
354 alias analysis) version of the `exp' field.
355
7afe21cc
RK
356 Those elements with the same hash code are chained in both directions
357 through the `next_same_hash' and `prev_same_hash' fields.
358
359 Each set of expressions with equivalent values
360 are on a two-way chain through the `next_same_value'
361 and `prev_same_value' fields, and all point with
362 the `first_same_value' field at the first element in
363 that chain. The chain is in order of increasing cost.
364 Each element's cost value is in its `cost' field.
365
366 The `in_memory' field is nonzero for elements that
367 involve any reference to memory. These elements are removed
368 whenever a write is done to an unidentified location in memory.
369 To be safe, we assume that a memory address is unidentified unless
370 the address is either a symbol constant or a constant plus
371 the frame pointer or argument pointer.
372
7afe21cc
RK
373 The `related_value' field is used to connect related expressions
374 (that differ by adding an integer).
375 The related expressions are chained in a circular fashion.
376 `related_value' is zero for expressions for which this
377 chain is not useful.
378
379 The `cost' field stores the cost of this element's expression.
630c79be
BS
380 The `regcost' field stores the value returned by approx_reg_cost for
381 this element's expression.
7afe21cc
RK
382
383 The `is_const' flag is set if the element is a constant (including
384 a fixed address).
385
386 The `flag' field is used as a temporary during some search routines.
387
388 The `mode' field is usually the same as GET_MODE (`exp'), but
389 if `exp' is a CONST_INT and has no machine mode then the `mode'
390 field is the mode it was being used as. Each constant is
391 recorded separately for each mode it is used with. */
392
7afe21cc
RK
393struct table_elt
394{
395 rtx exp;
db048faf 396 rtx canon_exp;
7afe21cc
RK
397 struct table_elt *next_same_hash;
398 struct table_elt *prev_same_hash;
399 struct table_elt *next_same_value;
400 struct table_elt *prev_same_value;
401 struct table_elt *first_same_value;
402 struct table_elt *related_value;
403 int cost;
630c79be 404 int regcost;
b14af304 405 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
7afe21cc 406 char in_memory;
7afe21cc
RK
407 char is_const;
408 char flag;
409};
410
7afe21cc
RK
411/* We don't want a lot of buckets, because we rarely have very many
412 things stored in the hash table, and a lot of buckets slows
413 down a lot of loops that happen frequently. */
9b1549b8
DM
414#define HASH_SHIFT 5
415#define HASH_SIZE (1 << HASH_SHIFT)
416#define HASH_MASK (HASH_SIZE - 1)
7afe21cc 417
630c79be
BS
418/* Determine whether register number N is considered a fixed register for the
419 purpose of approximating register costs.
7afe21cc
RK
420 It is desirable to replace other regs with fixed regs, to reduce need for
421 non-fixed hard regs.
553687c9 422 A reg wins if it is either the frame pointer or designated as fixed. */
7afe21cc 423#define FIXED_REGNO_P(N) \
8bc169f2 424 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
6ab832bc 425 || fixed_regs[N] || global_regs[N])
7afe21cc
RK
426
427/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
ac07e066
RK
428 hard registers and pointers into the frame are the cheapest with a cost
429 of 0. Next come pseudos with a cost of one and other hard registers with
430 a cost of 2. Aside from these special cases, call `rtx_cost'. */
431
d67fb775 432#define CHEAP_REGNO(N) \
c3284718 433 (REGNO_PTR_FRAME_P (N) \
d67fb775 434 || (HARD_REGISTER_NUM_P (N) \
e7bb59fa 435 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
7afe21cc 436
e548c9df
AM
437#define COST(X, MODE) \
438 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
439#define COST_IN(X, MODE, OUTER, OPNO) \
440 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
7afe21cc 441
30f72379
MM
442/* Get the number of times this register has been updated in this
443 basic block. */
444
bc5e3b54 445#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
30f72379
MM
446
447/* Get the point at which REG was recorded in the table. */
448
bc5e3b54 449#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
30f72379 450
46081bb3
SH
451/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
452 SUBREG). */
453
bc5e3b54 454#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
46081bb3 455
30f72379
MM
456/* Get the quantity number for REG. */
457
bc5e3b54 458#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
30f72379 459
7afe21cc 460/* Determine if the quantity number for register X represents a valid index
1bb98cec 461 into the qty_table. */
7afe21cc 462
08a69267 463#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
7afe21cc 464
2c5bfdf7
AN
465/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
466
467#define CHEAPER(X, Y) \
468 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
469
9b1549b8 470static struct table_elt *table[HASH_SIZE];
7afe21cc
RK
471
472/* Chain of `struct table_elt's made so far for this function
473 but currently removed from the table. */
474
475static struct table_elt *free_element_chain;
476
24b97832
ILT
477/* Trace a patch through the CFG. */
478
479struct branch_path
480{
481 /* The basic block for this path entry. */
482 basic_block bb;
483};
484
932ad4d9
SB
485/* This data describes a block that will be processed by
486 cse_extended_basic_block. */
6cd4575e 487
14a774a9
RK
488struct cse_basic_block_data
489{
6cd4575e
RK
490 /* Total number of SETs in block. */
491 int nsets;
6cd4575e
RK
492 /* Size of current branch path, if any. */
493 int path_size;
932ad4d9 494 /* Current path, indicating which basic_blocks will be processed. */
24b97832 495 struct branch_path *path;
6cd4575e
RK
496};
497
6fb5fa3c
DB
498
499/* Pointers to the live in/live out bitmaps for the boundaries of the
500 current EBB. */
501static bitmap cse_ebb_live_in, cse_ebb_live_out;
502
932ad4d9
SB
503/* A simple bitmap to track which basic blocks have been visited
504 already as part of an already processed extended basic block. */
505static sbitmap cse_visited_basic_blocks;
506
7080f735 507static bool fixed_base_plus_p (rtx x);
e548c9df 508static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
56ae04af 509static int preferable (int, int, int, int);
7080f735 510static void new_basic_block (void);
ef4bddc2 511static void make_new_qty (unsigned int, machine_mode);
7080f735
AJ
512static void make_regs_eqv (unsigned int, unsigned int);
513static void delete_reg_equiv (unsigned int);
dec7aaab
UB
514static bool mention_regs (rtx);
515static bool insert_regs (rtx, struct table_elt *, bool);
7080f735 516static void remove_from_table (struct table_elt *, unsigned);
d556d181 517static void remove_pseudo_from_table (rtx, unsigned);
ef4bddc2
RS
518static struct table_elt *lookup (rtx, unsigned, machine_mode);
519static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
7080f735 520static rtx lookup_as_function (rtx, enum rtx_code);
2c5bfdf7 521static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
ef4bddc2 522 machine_mode, int, int);
7080f735 523static struct table_elt *insert (rtx, struct table_elt *, unsigned,
ef4bddc2 524 machine_mode);
7080f735 525static void merge_equiv_classes (struct table_elt *, struct table_elt *);
ef4bddc2 526static void invalidate (rtx, machine_mode);
7080f735 527static void remove_invalid_refs (unsigned int);
91914e56 528static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
ef4bddc2 529 machine_mode);
7080f735
AJ
530static void rehash_using_reg (rtx);
531static void invalidate_memory (void);
7080f735 532static rtx use_related_value (rtx, struct table_elt *);
0516f6fe 533
ef4bddc2
RS
534static inline unsigned canon_hash (rtx, machine_mode);
535static inline unsigned safe_hash (rtx, machine_mode);
e855c69d 536static inline unsigned hash_rtx_string (const char *);
0516f6fe 537
20468884 538static rtx canon_reg (rtx, rtx_insn *);
7080f735 539static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
ef4bddc2
RS
540 machine_mode *,
541 machine_mode *);
20468884 542static rtx fold_rtx (rtx, rtx_insn *);
7080f735 543static rtx equiv_constant (rtx);
20468884 544static void record_jump_equiv (rtx_insn *, bool);
dec7aaab 545static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx);
20468884 546static void cse_insn (rtx_insn *);
932ad4d9 547static void cse_prescan_path (struct cse_basic_block_data *);
20468884
DM
548static void invalidate_from_clobbers (rtx_insn *);
549static void invalidate_from_sets_and_clobbers (rtx_insn *);
932ad4d9 550static void cse_extended_basic_block (struct cse_basic_block_data *);
7080f735 551extern void dump_class (struct table_elt*);
bc5e3b54
KH
552static void get_cse_reg_info_1 (unsigned int regno);
553static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
7080f735
AJ
554
555static void flush_hash_table (void);
20468884 556static bool insn_live_p (rtx_insn *, int *);
bd1cd0d0 557static bool set_live_p (rtx, int *);
20468884
DM
558static void cse_change_cc_mode_insn (rtx_insn *, rtx);
559static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
ef4bddc2 560static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
31e9ebaf 561 bool);
7afe21cc 562\f
2f93eea8
PB
563
564#undef RTL_HOOKS_GEN_LOWPART
565#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
566
567static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
568\f
aeeec83b
RB
569/* Compute hash code of X in mode M. Special-case case where X is a pseudo
570 register (hard registers may require `do_not_record' to be set). */
571
572static inline unsigned
573HASH (rtx x, machine_mode mode)
574{
575 unsigned h = (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
576 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (x)))
577 : canon_hash (x, mode));
578 return (h ^ (h >> HASH_SHIFT)) & HASH_MASK;
579}
580
581/* Like HASH, but without side-effects. */
582
583static inline unsigned
584SAFE_HASH (rtx x, machine_mode mode)
585{
586 unsigned h = (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
587 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (x)))
588 : safe_hash (x, mode));
589 return (h ^ (h >> HASH_SHIFT)) & HASH_MASK;
590}
591
6399c0ab 592/* Nonzero if X has the form (PLUS frame-pointer integer). */
4977bab6
ZW
593
594static bool
7080f735 595fixed_base_plus_p (rtx x)
4977bab6
ZW
596{
597 switch (GET_CODE (x))
598 {
599 case REG:
600 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
601 return true;
602 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
603 return true;
4977bab6
ZW
604 return false;
605
606 case PLUS:
481683e1 607 if (!CONST_INT_P (XEXP (x, 1)))
4977bab6
ZW
608 return false;
609 return fixed_base_plus_p (XEXP (x, 0));
610
4977bab6
ZW
611 default:
612 return false;
613 }
614}
615
a4c6502a
MM
616/* Dump the expressions in the equivalence class indicated by CLASSP.
617 This function is used only for debugging. */
711417cd 618DEBUG_FUNCTION void
7080f735 619dump_class (struct table_elt *classp)
a4c6502a
MM
620{
621 struct table_elt *elt;
622
623 fprintf (stderr, "Equivalence chain for ");
624 print_rtl (stderr, classp->exp);
625 fprintf (stderr, ": \n");
278a83b2 626
a4c6502a
MM
627 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
628 {
629 print_rtl (stderr, elt->exp);
630 fprintf (stderr, "\n");
631 }
632}
633
e89b312e
RS
634/* Return an estimate of the cost of the registers used in an rtx.
635 This is mostly the number of different REG expressions in the rtx;
636 however for some exceptions like fixed registers we use a cost of
637 0. If any other hard register reference occurs, return MAX_COST. */
be8ac49a 638
630c79be 639static int
e89b312e 640approx_reg_cost (const_rtx x)
630c79be 641{
e89b312e
RS
642 int cost = 0;
643 subrtx_iterator::array_type array;
644 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
c863f8c2 645 {
e89b312e
RS
646 const_rtx x = *iter;
647 if (REG_P (x))
c863f8c2 648 {
e89b312e
RS
649 unsigned int regno = REGNO (x);
650 if (!CHEAP_REGNO (regno))
c863f8c2 651 {
e89b312e
RS
652 if (regno < FIRST_PSEUDO_REGISTER)
653 {
654 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
655 return MAX_COST;
656 cost += 2;
657 }
658 else
659 cost += 1;
c863f8c2 660 }
c863f8c2
DM
661 }
662 }
c863f8c2 663 return cost;
630c79be
BS
664}
665
666/* Return a negative value if an rtx A, whose costs are given by COST_A
667 and REGCOST_A, is more desirable than an rtx B.
668 Return a positive value if A is less desirable, or 0 if the two are
669 equally good. */
670static int
56ae04af 671preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
630c79be 672{
423adbb9 673 /* First, get rid of cases involving expressions that are entirely
f1c1dfc3
BS
674 unwanted. */
675 if (cost_a != cost_b)
676 {
677 if (cost_a == MAX_COST)
678 return 1;
679 if (cost_b == MAX_COST)
680 return -1;
681 }
682
683 /* Avoid extending lifetimes of hardregs. */
684 if (regcost_a != regcost_b)
685 {
686 if (regcost_a == MAX_COST)
687 return 1;
688 if (regcost_b == MAX_COST)
689 return -1;
690 }
691
692 /* Normal operation costs take precedence. */
630c79be
BS
693 if (cost_a != cost_b)
694 return cost_a - cost_b;
f1c1dfc3 695 /* Only if these are identical consider effects on register pressure. */
630c79be
BS
696 if (regcost_a != regcost_b)
697 return regcost_a - regcost_b;
698 return 0;
699}
700
954a5693
RK
701/* Internal function, to compute cost when X is not a register; called
702 from COST macro to keep it simple. */
703
704static int
e548c9df 705notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
954a5693 706{
b4206259 707 scalar_int_mode int_mode, inner_mode;
954a5693 708 return ((GET_CODE (x) == SUBREG
f8cfc6aa 709 && REG_P (SUBREG_REG (x))
b4206259
RS
710 && is_int_mode (mode, &int_mode)
711 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
712 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
954a5693 713 && subreg_lowpart_p (x)
b4206259 714 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
630c79be 715 ? 0
e548c9df 716 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
954a5693
RK
717}
718
01329426 719\f
bc5e3b54 720/* Initialize CSE_REG_INFO_TABLE. */
9b1549b8 721
bc5e3b54
KH
722static void
723init_cse_reg_info (unsigned int nregs)
724{
725 /* Do we need to grow the table? */
726 if (nregs > cse_reg_info_table_size)
30f72379 727 {
bc5e3b54
KH
728 unsigned int new_size;
729
730 if (cse_reg_info_table_size < 2048)
30f72379 731 {
bc5e3b54
KH
732 /* Compute a new size that is a power of 2 and no smaller
733 than the large of NREGS and 64. */
734 new_size = (cse_reg_info_table_size
735 ? cse_reg_info_table_size : 64);
736
737 while (new_size < nregs)
738 new_size *= 2;
30f72379
MM
739 }
740 else
1590d0d4 741 {
bc5e3b54
KH
742 /* If we need a big table, allocate just enough to hold
743 NREGS registers. */
744 new_size = nregs;
1590d0d4 745 }
9b1549b8 746
bc5e3b54 747 /* Reallocate the table with NEW_SIZE entries. */
04695783 748 free (cse_reg_info_table);
5ed6ace5 749 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
bc5e3b54 750 cse_reg_info_table_size = new_size;
a811c672 751 cse_reg_info_table_first_uninitialized = 0;
bc5e3b54
KH
752 }
753
754 /* Do we have all of the first NREGS entries initialized? */
755 if (cse_reg_info_table_first_uninitialized < nregs)
756 {
757 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
758 unsigned int i;
759
760 /* Put the old timestamp on newly allocated entries so that they
761 will all be considered out of date. We do not touch those
762 entries beyond the first NREGS entries to be nice to the
763 virtual memory. */
764 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
765 cse_reg_info_table[i].timestamp = old_timestamp;
30f72379 766
bc5e3b54 767 cse_reg_info_table_first_uninitialized = nregs;
30f72379 768 }
bc5e3b54
KH
769}
770
a52aff23 771/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
bc5e3b54
KH
772
773static void
774get_cse_reg_info_1 (unsigned int regno)
775{
776 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
777 entry will be considered to have been initialized. */
778 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
779
780 /* Initialize the rest of the entry. */
781 cse_reg_info_table[regno].reg_tick = 1;
782 cse_reg_info_table[regno].reg_in_table = -1;
783 cse_reg_info_table[regno].subreg_ticked = -1;
784 cse_reg_info_table[regno].reg_qty = -regno - 1;
785}
786
787/* Find a cse_reg_info entry for REGNO. */
30f72379 788
bc5e3b54
KH
789static inline struct cse_reg_info *
790get_cse_reg_info (unsigned int regno)
791{
792 struct cse_reg_info *p = &cse_reg_info_table[regno];
793
782c0a3e
KH
794 /* If this entry has not been initialized, go ahead and initialize
795 it. */
bc5e3b54
KH
796 if (p->timestamp != cse_reg_info_timestamp)
797 get_cse_reg_info_1 (regno);
30f72379 798
9b1549b8 799 return p;
30f72379
MM
800}
801
7afe21cc
RK
802/* Clear the hash table and initialize each register with its own quantity,
803 for a new basic block. */
804
805static void
7080f735 806new_basic_block (void)
7afe21cc 807{
b3694847 808 int i;
7afe21cc 809
08a69267 810 next_qty = 0;
7afe21cc 811
a52aff23 812 /* Invalidate cse_reg_info_table. */
bc5e3b54 813 cse_reg_info_timestamp++;
7afe21cc 814
bc5e3b54 815 /* Clear out hash table state for this pass. */
7afe21cc
RK
816 CLEAR_HARD_REG_SET (hard_regs_in_table);
817
818 /* The per-quantity values used to be initialized here, but it is
819 much faster to initialize each as it is made in `make_new_qty'. */
820
9b1549b8 821 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 822 {
9b1549b8
DM
823 struct table_elt *first;
824
825 first = table[i];
826 if (first != NULL)
7afe21cc 827 {
9b1549b8
DM
828 struct table_elt *last = first;
829
830 table[i] = NULL;
831
832 while (last->next_same_hash != NULL)
833 last = last->next_same_hash;
834
835 /* Now relink this hash entire chain into
836 the free element list. */
837
838 last->next_same_hash = free_element_chain;
839 free_element_chain = first;
7afe21cc
RK
840 }
841 }
7afe21cc
RK
842}
843
1bb98cec
DM
844/* Say that register REG contains a quantity in mode MODE not in any
845 register before and initialize that quantity. */
7afe21cc
RK
846
847static void
ef4bddc2 848make_new_qty (unsigned int reg, machine_mode mode)
7afe21cc 849{
b3694847
SS
850 int q;
851 struct qty_table_elem *ent;
852 struct reg_eqv_elem *eqv;
7afe21cc 853
341c100f 854 gcc_assert (next_qty < max_qty);
7afe21cc 855
30f72379 856 q = REG_QTY (reg) = next_qty++;
1bb98cec
DM
857 ent = &qty_table[q];
858 ent->first_reg = reg;
859 ent->last_reg = reg;
860 ent->mode = mode;
20468884 861 ent->const_rtx = ent->const_insn = NULL;
1bb98cec
DM
862 ent->comparison_code = UNKNOWN;
863
864 eqv = &reg_eqv_table[reg];
865 eqv->next = eqv->prev = -1;
7afe21cc
RK
866}
867
868/* Make reg NEW equivalent to reg OLD.
869 OLD is not changing; NEW is. */
870
871static void
32e9fa48 872make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
7afe21cc 873{
770ae6cc 874 unsigned int lastr, firstr;
32e9fa48 875 int q = REG_QTY (old_reg);
770ae6cc 876 struct qty_table_elem *ent;
1bb98cec
DM
877
878 ent = &qty_table[q];
7afe21cc
RK
879
880 /* Nothing should become eqv until it has a "non-invalid" qty number. */
32e9fa48 881 gcc_assert (REGNO_QTY_VALID_P (old_reg));
7afe21cc 882
32e9fa48 883 REG_QTY (new_reg) = q;
1bb98cec
DM
884 firstr = ent->first_reg;
885 lastr = ent->last_reg;
7afe21cc
RK
886
887 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
888 hard regs. Among pseudos, if NEW will live longer than any other reg
889 of the same qty, and that is beyond the current basic block,
890 make it the new canonical replacement for this qty. */
891 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
892 /* Certain fixed registers might be of the class NO_REGS. This means
893 that not only can they not be allocated by the compiler, but
830a38ee 894 they cannot be used in substitutions or canonicalizations
7afe21cc 895 either. */
32e9fa48
KG
896 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
897 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
898 || (new_reg >= FIRST_PSEUDO_REGISTER
7afe21cc 899 && (firstr < FIRST_PSEUDO_REGISTER
32e9fa48 900 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
6fb5fa3c 901 && !bitmap_bit_p (cse_ebb_live_out, firstr))
32e9fa48 902 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
6fb5fa3c 903 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
7afe21cc 904 {
32e9fa48
KG
905 reg_eqv_table[firstr].prev = new_reg;
906 reg_eqv_table[new_reg].next = firstr;
907 reg_eqv_table[new_reg].prev = -1;
908 ent->first_reg = new_reg;
7afe21cc
RK
909 }
910 else
911 {
912 /* If NEW is a hard reg (known to be non-fixed), insert at end.
913 Otherwise, insert before any non-fixed hard regs that are at the
914 end. Registers of class NO_REGS cannot be used as an
915 equivalent for anything. */
1bb98cec 916 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
7afe21cc 917 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
32e9fa48 918 && new_reg >= FIRST_PSEUDO_REGISTER)
1bb98cec 919 lastr = reg_eqv_table[lastr].prev;
32e9fa48 920 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
1bb98cec 921 if (reg_eqv_table[lastr].next >= 0)
32e9fa48 922 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
7afe21cc 923 else
32e9fa48
KG
924 qty_table[q].last_reg = new_reg;
925 reg_eqv_table[lastr].next = new_reg;
926 reg_eqv_table[new_reg].prev = lastr;
7afe21cc
RK
927 }
928}
929
930/* Remove REG from its equivalence class. */
931
932static void
7080f735 933delete_reg_equiv (unsigned int reg)
7afe21cc 934{
b3694847
SS
935 struct qty_table_elem *ent;
936 int q = REG_QTY (reg);
937 int p, n;
7afe21cc 938
a4e262bc 939 /* If invalid, do nothing. */
08a69267 940 if (! REGNO_QTY_VALID_P (reg))
7afe21cc
RK
941 return;
942
1bb98cec
DM
943 ent = &qty_table[q];
944
945 p = reg_eqv_table[reg].prev;
946 n = reg_eqv_table[reg].next;
a4e262bc 947
7afe21cc 948 if (n != -1)
1bb98cec 949 reg_eqv_table[n].prev = p;
7afe21cc 950 else
1bb98cec 951 ent->last_reg = p;
7afe21cc 952 if (p != -1)
1bb98cec 953 reg_eqv_table[p].next = n;
7afe21cc 954 else
1bb98cec 955 ent->first_reg = n;
7afe21cc 956
08a69267 957 REG_QTY (reg) = -reg - 1;
7afe21cc
RK
958}
959
960/* Remove any invalid expressions from the hash table
961 that refer to any of the registers contained in expression X.
962
963 Make sure that newly inserted references to those registers
964 as subexpressions will be considered valid.
965
966 mention_regs is not called when a register itself
967 is being stored in the table.
968
dec7aaab
UB
969 Return true if we have done something that may have changed
970 the hash code of X. */
7afe21cc 971
dec7aaab 972static bool
7080f735 973mention_regs (rtx x)
7afe21cc 974{
b3694847
SS
975 enum rtx_code code;
976 int i, j;
977 const char *fmt;
dec7aaab 978 bool changed = false;
7afe21cc
RK
979
980 if (x == 0)
dec7aaab 981 return false;
7afe21cc
RK
982
983 code = GET_CODE (x);
984 if (code == REG)
985 {
770ae6cc 986 unsigned int regno = REGNO (x);
09e18274 987 unsigned int endregno = END_REGNO (x);
770ae6cc 988 unsigned int i;
7afe21cc
RK
989
990 for (i = regno; i < endregno; i++)
991 {
30f72379 992 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
7afe21cc
RK
993 remove_invalid_refs (i);
994
30f72379 995 REG_IN_TABLE (i) = REG_TICK (i);
46081bb3 996 SUBREG_TICKED (i) = -1;
7afe21cc
RK
997 }
998
dec7aaab 999 return false;
7afe21cc
RK
1000 }
1001
34c73909
R
1002 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1003 pseudo if they don't use overlapping words. We handle only pseudos
1004 here for simplicity. */
f8cfc6aa 1005 if (code == SUBREG && REG_P (SUBREG_REG (x))
34c73909
R
1006 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1007 {
770ae6cc 1008 unsigned int i = REGNO (SUBREG_REG (x));
34c73909 1009
30f72379 1010 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
34c73909 1011 {
46081bb3
SH
1012 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1013 the last store to this register really stored into this
1014 subreg, then remove the memory of this subreg.
1015 Otherwise, remove any memory of the entire register and
1016 all its subregs from the table. */
1017 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
5dd78e9a 1018 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
34c73909
R
1019 remove_invalid_refs (i);
1020 else
ddef6bc7 1021 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
34c73909
R
1022 }
1023
30f72379 1024 REG_IN_TABLE (i) = REG_TICK (i);
5dd78e9a 1025 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
dec7aaab 1026 return false;
34c73909
R
1027 }
1028
7afe21cc
RK
1029 /* If X is a comparison or a COMPARE and either operand is a register
1030 that does not have a quantity, give it one. This is so that a later
1031 call to record_jump_equiv won't cause X to be assigned a different
1032 hash code and not found in the table after that call.
1033
1034 It is not necessary to do this here, since rehash_using_reg can
1035 fix up the table later, but doing this here eliminates the need to
1036 call that expensive function in the most common case where the only
1037 use of the register is in the comparison. */
1038
ec8e098d 1039 if (code == COMPARE || COMPARISON_P (x))
7afe21cc 1040 {
f8cfc6aa 1041 if (REG_P (XEXP (x, 0))
7afe21cc 1042 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
dec7aaab 1043 if (insert_regs (XEXP (x, 0), NULL, false))
7afe21cc
RK
1044 {
1045 rehash_using_reg (XEXP (x, 0));
dec7aaab 1046 changed = true;
7afe21cc
RK
1047 }
1048
f8cfc6aa 1049 if (REG_P (XEXP (x, 1))
7afe21cc 1050 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
dec7aaab 1051 if (insert_regs (XEXP (x, 1), NULL, false))
7afe21cc
RK
1052 {
1053 rehash_using_reg (XEXP (x, 1));
dec7aaab 1054 changed = true;
7afe21cc
RK
1055 }
1056 }
1057
1058 fmt = GET_RTX_FORMAT (code);
1059 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1060 if (fmt[i] == 'e')
dec7aaab
UB
1061 {
1062 if (mention_regs (XEXP (x, i)))
1063 changed = true;
1064 }
7afe21cc
RK
1065 else if (fmt[i] == 'E')
1066 for (j = 0; j < XVECLEN (x, i); j++)
dec7aaab
UB
1067 if (mention_regs (XVECEXP (x, i, j)))
1068 changed = true;
7afe21cc
RK
1069
1070 return changed;
1071}
1072
1073/* Update the register quantities for inserting X into the hash table
1074 with a value equivalent to CLASSP.
1075 (If the class does not contain a REG, it is irrelevant.)
dec7aaab 1076 If MODIFIED is true, X is a destination; it is being modified.
7afe21cc
RK
1077 Note that delete_reg_equiv should be called on a register
1078 before insert_regs is done on that register with MODIFIED != 0.
1079
dec7aaab 1080 True value means that elements of reg_qty have changed
7afe21cc
RK
1081 so X's hash code may be different. */
1082
dec7aaab
UB
1083static bool
1084insert_regs (rtx x, struct table_elt *classp, bool modified)
7afe21cc 1085{
f8cfc6aa 1086 if (REG_P (x))
7afe21cc 1087 {
770ae6cc
RK
1088 unsigned int regno = REGNO (x);
1089 int qty_valid;
7afe21cc 1090
1ff0c00d
RK
1091 /* If REGNO is in the equivalence table already but is of the
1092 wrong mode for that equivalence, don't do anything here. */
1093
1bb98cec
DM
1094 qty_valid = REGNO_QTY_VALID_P (regno);
1095 if (qty_valid)
1096 {
1097 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1ff0c00d 1098
1bb98cec 1099 if (ent->mode != GET_MODE (x))
dec7aaab 1100 return false;
1bb98cec
DM
1101 }
1102
1103 if (modified || ! qty_valid)
7afe21cc
RK
1104 {
1105 if (classp)
1106 for (classp = classp->first_same_value;
1107 classp != 0;
1108 classp = classp->next_same_value)
f8cfc6aa 1109 if (REG_P (classp->exp)
7afe21cc
RK
1110 && GET_MODE (classp->exp) == GET_MODE (x))
1111 {
cd928652
ZD
1112 unsigned c_regno = REGNO (classp->exp);
1113
1114 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1115
1116 /* Suppose that 5 is hard reg and 100 and 101 are
1117 pseudos. Consider
1118
1119 (set (reg:si 100) (reg:si 5))
1120 (set (reg:si 5) (reg:si 100))
1121 (set (reg:di 101) (reg:di 5))
1122
1123 We would now set REG_QTY (101) = REG_QTY (5), but the
1124 entry for 5 is in SImode. When we use this later in
1125 copy propagation, we get the register in wrong mode. */
1126 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1127 continue;
1128
1129 make_regs_eqv (regno, c_regno);
dec7aaab 1130 return true;
7afe21cc
RK
1131 }
1132
d9f20424
R
1133 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1134 than REG_IN_TABLE to find out if there was only a single preceding
1135 invalidation - for the SUBREG - or another one, which would be
1136 for the full register. However, if we find here that REG_TICK
1137 indicates that the register is invalid, it means that it has
1138 been invalidated in a separate operation. The SUBREG might be used
1139 now (then this is a recursive call), or we might use the full REG
1140 now and a SUBREG of it later. So bump up REG_TICK so that
1141 mention_regs will do the right thing. */
1142 if (! modified
1143 && REG_IN_TABLE (regno) >= 0
1144 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1145 REG_TICK (regno)++;
1bb98cec 1146 make_new_qty (regno, GET_MODE (x));
dec7aaab 1147 return true;
7afe21cc 1148 }
cdf4112f 1149
dec7aaab 1150 return false;
7afe21cc 1151 }
c610adec
RK
1152
1153 /* If X is a SUBREG, we will likely be inserting the inner register in the
1154 table. If that register doesn't have an assigned quantity number at
1155 this point but does later, the insertion that we will be doing now will
1156 not be accessible because its hash code will have changed. So assign
1157 a quantity number now. */
1158
f8cfc6aa 1159 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
c610adec
RK
1160 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1161 {
dec7aaab 1162 insert_regs (SUBREG_REG (x), NULL, false);
34c73909 1163 mention_regs (x);
dec7aaab 1164 return true;
c610adec 1165 }
7afe21cc
RK
1166 else
1167 return mention_regs (x);
1168}
1169\f
2c5bfdf7
AN
1170
1171/* Compute upper and lower anchors for CST. Also compute the offset of CST
1172 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1173 CST is equal to an anchor. */
1174
1175static bool
1176compute_const_anchors (rtx cst,
1177 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1178 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1179{
0cb5d7cd 1180 unsigned HOST_WIDE_INT n = UINTVAL (cst);
2c5bfdf7
AN
1181
1182 *lower_base = n & ~(targetm.const_anchor - 1);
0cb5d7cd 1183 if ((unsigned HOST_WIDE_INT) *lower_base == n)
2c5bfdf7
AN
1184 return false;
1185
0cb5d7cd
JJ
1186 *upper_base = ((n + (targetm.const_anchor - 1))
1187 & ~(targetm.const_anchor - 1));
2c5bfdf7
AN
1188 *upper_offs = n - *upper_base;
1189 *lower_offs = n - *lower_base;
1190 return true;
1191}
1192
1193/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1194
1195static void
1196insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
ef4bddc2 1197 machine_mode mode)
2c5bfdf7
AN
1198{
1199 struct table_elt *elt;
1200 unsigned hash;
1201 rtx anchor_exp;
1202 rtx exp;
1203
0cb5d7cd 1204 anchor_exp = gen_int_mode (anchor, mode);
2c5bfdf7
AN
1205 hash = HASH (anchor_exp, mode);
1206 elt = lookup (anchor_exp, hash, mode);
1207 if (!elt)
1208 elt = insert (anchor_exp, NULL, hash, mode);
1209
0a81f074 1210 exp = plus_constant (mode, reg, offs);
2c5bfdf7
AN
1211 /* REG has just been inserted and the hash codes recomputed. */
1212 mention_regs (exp);
1213 hash = HASH (exp, mode);
1214
1215 /* Use the cost of the register rather than the whole expression. When
1216 looking up constant anchors we will further offset the corresponding
1217 expression therefore it does not make sense to prefer REGs over
1218 reg-immediate additions. Prefer instead the oldest expression. Also
1219 don't prefer pseudos over hard regs so that we derive constants in
1220 argument registers from other argument registers rather than from the
1221 original pseudo that was used to synthesize the constant. */
e548c9df 1222 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
2c5bfdf7
AN
1223}
1224
1225/* The constant CST is equivalent to the register REG. Create
1226 equivalences between the two anchors of CST and the corresponding
1227 register-offset expressions using REG. */
1228
1229static void
ef4bddc2 1230insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
2c5bfdf7
AN
1231{
1232 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1233
1234 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1235 &upper_base, &upper_offs))
1236 return;
1237
1238 /* Ignore anchors of value 0. Constants accessible from zero are
1239 simple. */
1240 if (lower_base != 0)
1241 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1242
1243 if (upper_base != 0)
1244 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1245}
1246
1247/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1248 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1249 valid expression. Return the cheapest and oldest of such expressions. In
1250 *OLD, return how old the resulting expression is compared to the other
1251 equivalent expressions. */
1252
1253static rtx
1254find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1255 unsigned *old)
1256{
1257 struct table_elt *elt;
1258 unsigned idx;
1259 struct table_elt *match_elt;
1260 rtx match;
1261
1262 /* Find the cheapest and *oldest* expression to maximize the chance of
1263 reusing the same pseudo. */
1264
1265 match_elt = NULL;
1266 match = NULL_RTX;
1267 for (elt = anchor_elt->first_same_value, idx = 0;
1268 elt;
1269 elt = elt->next_same_value, idx++)
1270 {
1271 if (match_elt && CHEAPER (match_elt, elt))
1272 return match;
1273
1274 if (REG_P (elt->exp)
1275 || (GET_CODE (elt->exp) == PLUS
1276 && REG_P (XEXP (elt->exp, 0))
1277 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1278 {
1279 rtx x;
1280
1281 /* Ignore expressions that are no longer valid. */
1282 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1283 continue;
1284
0a81f074 1285 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
2c5bfdf7
AN
1286 if (REG_P (x)
1287 || (GET_CODE (x) == PLUS
1288 && IN_RANGE (INTVAL (XEXP (x, 1)),
1289 -targetm.const_anchor,
1290 targetm.const_anchor - 1)))
1291 {
1292 match = x;
1293 match_elt = elt;
1294 *old = idx;
1295 }
1296 }
1297 }
1298
1299 return match;
1300}
1301
1302/* Try to express the constant SRC_CONST using a register+offset expression
1303 derived from a constant anchor. Return it if successful or NULL_RTX,
1304 otherwise. */
1305
1306static rtx
ef4bddc2 1307try_const_anchors (rtx src_const, machine_mode mode)
2c5bfdf7
AN
1308{
1309 struct table_elt *lower_elt, *upper_elt;
1310 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1311 rtx lower_anchor_rtx, upper_anchor_rtx;
1312 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1313 unsigned lower_old, upper_old;
1314
c0bd7930
JG
1315 /* CONST_INT may be in various modes, avoid non-scalar-int mode. */
1316 if (!SCALAR_INT_MODE_P (mode))
40dbb05c
RS
1317 return NULL_RTX;
1318
2c5bfdf7
AN
1319 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1320 &upper_base, &upper_offs))
1321 return NULL_RTX;
1322
1323 lower_anchor_rtx = GEN_INT (lower_base);
1324 upper_anchor_rtx = GEN_INT (upper_base);
1325 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1326 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1327
1328 if (lower_elt)
1329 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1330 if (upper_elt)
1331 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1332
1333 if (!lower_exp)
1334 return upper_exp;
1335 if (!upper_exp)
1336 return lower_exp;
1337
1338 /* Return the older expression. */
1339 return (upper_old > lower_old ? upper_exp : lower_exp);
1340}
1341\f
7afe21cc
RK
1342/* Look in or update the hash table. */
1343
7afe21cc
RK
1344/* Remove table element ELT from use in the table.
1345 HASH is its hash code, made using the HASH macro.
1346 It's an argument because often that is known in advance
1347 and we save much time not recomputing it. */
1348
1349static void
7080f735 1350remove_from_table (struct table_elt *elt, unsigned int hash)
7afe21cc
RK
1351{
1352 if (elt == 0)
1353 return;
1354
1355 /* Mark this element as removed. See cse_insn. */
1356 elt->first_same_value = 0;
1357
1358 /* Remove the table element from its equivalence class. */
278a83b2 1359
7afe21cc 1360 {
b3694847
SS
1361 struct table_elt *prev = elt->prev_same_value;
1362 struct table_elt *next = elt->next_same_value;
7afe21cc 1363
278a83b2
KH
1364 if (next)
1365 next->prev_same_value = prev;
7afe21cc
RK
1366
1367 if (prev)
1368 prev->next_same_value = next;
1369 else
1370 {
b3694847 1371 struct table_elt *newfirst = next;
7afe21cc
RK
1372 while (next)
1373 {
1374 next->first_same_value = newfirst;
1375 next = next->next_same_value;
1376 }
1377 }
1378 }
1379
1380 /* Remove the table element from its hash bucket. */
1381
1382 {
b3694847
SS
1383 struct table_elt *prev = elt->prev_same_hash;
1384 struct table_elt *next = elt->next_same_hash;
7afe21cc 1385
278a83b2
KH
1386 if (next)
1387 next->prev_same_hash = prev;
7afe21cc
RK
1388
1389 if (prev)
1390 prev->next_same_hash = next;
1391 else if (table[hash] == elt)
1392 table[hash] = next;
1393 else
1394 {
1395 /* This entry is not in the proper hash bucket. This can happen
1396 when two classes were merged by `merge_equiv_classes'. Search
1397 for the hash bucket that it heads. This happens only very
1398 rarely, so the cost is acceptable. */
9b1549b8 1399 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
1400 if (table[hash] == elt)
1401 table[hash] = next;
1402 }
1403 }
1404
1405 /* Remove the table element from its related-value circular chain. */
1406
1407 if (elt->related_value != 0 && elt->related_value != elt)
1408 {
b3694847 1409 struct table_elt *p = elt->related_value;
770ae6cc 1410
7afe21cc
RK
1411 while (p->related_value != elt)
1412 p = p->related_value;
1413 p->related_value = elt->related_value;
1414 if (p->related_value == p)
1415 p->related_value = 0;
1416 }
1417
9b1549b8
DM
1418 /* Now add it to the free element chain. */
1419 elt->next_same_hash = free_element_chain;
1420 free_element_chain = elt;
7afe21cc
RK
1421}
1422
d556d181
EB
1423/* Same as above, but X is a pseudo-register. */
1424
1425static void
1426remove_pseudo_from_table (rtx x, unsigned int hash)
1427{
1428 struct table_elt *elt;
1429
1430 /* Because a pseudo-register can be referenced in more than one
1431 mode, we might have to remove more than one table entry. */
1432 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1433 remove_from_table (elt, hash);
1434}
1435
7afe21cc
RK
1436/* Look up X in the hash table and return its table element,
1437 or 0 if X is not in the table.
1438
1439 MODE is the machine-mode of X, or if X is an integer constant
1440 with VOIDmode then MODE is the mode with which X will be used.
1441
1442 Here we are satisfied to find an expression whose tree structure
1443 looks like X. */
1444
1445static struct table_elt *
ef4bddc2 1446lookup (rtx x, unsigned int hash, machine_mode mode)
7afe21cc 1447{
b3694847 1448 struct table_elt *p;
7afe21cc
RK
1449
1450 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1451 if (mode == p->mode && ((x == p->exp && REG_P (x))
0516f6fe 1452 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
7afe21cc
RK
1453 return p;
1454
1455 return 0;
1456}
1457
1458/* Like `lookup' but don't care whether the table element uses invalid regs.
1459 Also ignore discrepancies in the machine mode of a register. */
1460
1461static struct table_elt *
ef4bddc2 1462lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
7afe21cc 1463{
b3694847 1464 struct table_elt *p;
7afe21cc 1465
f8cfc6aa 1466 if (REG_P (x))
7afe21cc 1467 {
770ae6cc
RK
1468 unsigned int regno = REGNO (x);
1469
7afe21cc
RK
1470 /* Don't check the machine mode when comparing registers;
1471 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1472 for (p = table[hash]; p; p = p->next_same_hash)
f8cfc6aa 1473 if (REG_P (p->exp)
7afe21cc
RK
1474 && REGNO (p->exp) == regno)
1475 return p;
1476 }
1477 else
1478 {
1479 for (p = table[hash]; p; p = p->next_same_hash)
0516f6fe
SB
1480 if (mode == p->mode
1481 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
7afe21cc
RK
1482 return p;
1483 }
1484
1485 return 0;
1486}
1487
1488/* Look for an expression equivalent to X and with code CODE.
1489 If one is found, return that expression. */
1490
1491static rtx
7080f735 1492lookup_as_function (rtx x, enum rtx_code code)
7afe21cc 1493{
b3694847 1494 struct table_elt *p
0516f6fe 1495 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
770ae6cc 1496
7afe21cc
RK
1497 if (p == 0)
1498 return 0;
1499
1500 for (p = p->first_same_value; p; p = p->next_same_value)
770ae6cc
RK
1501 if (GET_CODE (p->exp) == code
1502 /* Make sure this is a valid entry in the table. */
0516f6fe 1503 && exp_equiv_p (p->exp, p->exp, 1, false))
770ae6cc 1504 return p->exp;
278a83b2 1505
7afe21cc
RK
1506 return 0;
1507}
1508
2c5bfdf7
AN
1509/* Insert X in the hash table, assuming HASH is its hash code and
1510 CLASSP is an element of the class it should go in (or 0 if a new
1511 class should be made). COST is the code of X and reg_cost is the
1512 cost of registers in X. It is inserted at the proper position to
1513 keep the class in the order cheapest first.
7afe21cc
RK
1514
1515 MODE is the machine-mode of X, or if X is an integer constant
1516 with VOIDmode then MODE is the mode with which X will be used.
1517
1518 For elements of equal cheapness, the most recent one
1519 goes in front, except that the first element in the list
1520 remains first unless a cheaper element is added. The order of
1521 pseudo-registers does not matter, as canon_reg will be called to
830a38ee 1522 find the cheapest when a register is retrieved from the table.
7afe21cc
RK
1523
1524 The in_memory field in the hash table element is set to 0.
1525 The caller must set it nonzero if appropriate.
1526
1527 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1528 and if insert_regs returns a nonzero value
1529 you must then recompute its hash code before calling here.
1530
1531 If necessary, update table showing constant values of quantities. */
1532
7afe21cc 1533static struct table_elt *
2c5bfdf7 1534insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
ef4bddc2 1535 machine_mode mode, int cost, int reg_cost)
7afe21cc 1536{
b3694847 1537 struct table_elt *elt;
7afe21cc
RK
1538
1539 /* If X is a register and we haven't made a quantity for it,
1540 something is wrong. */
341c100f 1541 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
7afe21cc
RK
1542
1543 /* If X is a hard register, show it is being put in the table. */
f8cfc6aa 1544 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
09e18274 1545 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
7afe21cc 1546
7afe21cc
RK
1547 /* Put an element for X into the right hash bucket. */
1548
9b1549b8
DM
1549 elt = free_element_chain;
1550 if (elt)
770ae6cc 1551 free_element_chain = elt->next_same_hash;
9b1549b8 1552 else
5ed6ace5 1553 elt = XNEW (struct table_elt);
9b1549b8 1554
7afe21cc 1555 elt->exp = x;
db048faf 1556 elt->canon_exp = NULL_RTX;
2c5bfdf7
AN
1557 elt->cost = cost;
1558 elt->regcost = reg_cost;
7afe21cc
RK
1559 elt->next_same_value = 0;
1560 elt->prev_same_value = 0;
1561 elt->next_same_hash = table[hash];
1562 elt->prev_same_hash = 0;
1563 elt->related_value = 0;
1564 elt->in_memory = 0;
1565 elt->mode = mode;
389fdba0 1566 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
7afe21cc
RK
1567
1568 if (table[hash])
1569 table[hash]->prev_same_hash = elt;
1570 table[hash] = elt;
1571
1572 /* Put it into the proper value-class. */
1573 if (classp)
1574 {
1575 classp = classp->first_same_value;
1576 if (CHEAPER (elt, classp))
f9da5064 1577 /* Insert at the head of the class. */
7afe21cc 1578 {
b3694847 1579 struct table_elt *p;
7afe21cc
RK
1580 elt->next_same_value = classp;
1581 classp->prev_same_value = elt;
1582 elt->first_same_value = elt;
1583
1584 for (p = classp; p; p = p->next_same_value)
1585 p->first_same_value = elt;
1586 }
1587 else
1588 {
1589 /* Insert not at head of the class. */
1590 /* Put it after the last element cheaper than X. */
b3694847 1591 struct table_elt *p, *next;
770ae6cc 1592
e84a58ff
EB
1593 for (p = classp;
1594 (next = p->next_same_value) && CHEAPER (next, elt);
1595 p = next)
1596 ;
770ae6cc 1597
7afe21cc
RK
1598 /* Put it after P and before NEXT. */
1599 elt->next_same_value = next;
1600 if (next)
1601 next->prev_same_value = elt;
770ae6cc 1602
7afe21cc
RK
1603 elt->prev_same_value = p;
1604 p->next_same_value = elt;
1605 elt->first_same_value = classp;
1606 }
1607 }
1608 else
1609 elt->first_same_value = elt;
1610
1611 /* If this is a constant being set equivalent to a register or a register
1612 being set equivalent to a constant, note the constant equivalence.
1613
1614 If this is a constant, it cannot be equivalent to a different constant,
1615 and a constant is the only thing that can be cheaper than a register. So
1616 we know the register is the head of the class (before the constant was
1617 inserted).
1618
1619 If this is a register that is not already known equivalent to a
1620 constant, we must check the entire class.
1621
1622 If this is a register that is already known equivalent to an insn,
1bb98cec 1623 update the qtys `const_insn' to show that `this_insn' is the latest
7afe21cc
RK
1624 insn making that quantity equivalent to the constant. */
1625
f8cfc6aa
JQ
1626 if (elt->is_const && classp && REG_P (classp->exp)
1627 && !REG_P (x))
7afe21cc 1628 {
1bb98cec
DM
1629 int exp_q = REG_QTY (REGNO (classp->exp));
1630 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1631
4de249d9 1632 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1bb98cec 1633 exp_ent->const_insn = this_insn;
7afe21cc
RK
1634 }
1635
f8cfc6aa 1636 else if (REG_P (x)
1bb98cec
DM
1637 && classp
1638 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
f353588a 1639 && ! elt->is_const)
7afe21cc 1640 {
b3694847 1641 struct table_elt *p;
7afe21cc
RK
1642
1643 for (p = classp; p != 0; p = p->next_same_value)
1644 {
f8cfc6aa 1645 if (p->is_const && !REG_P (p->exp))
7afe21cc 1646 {
1bb98cec
DM
1647 int x_q = REG_QTY (REGNO (x));
1648 struct qty_table_elem *x_ent = &qty_table[x_q];
1649
770ae6cc 1650 x_ent->const_rtx
4de249d9 1651 = gen_lowpart (GET_MODE (x), p->exp);
1bb98cec 1652 x_ent->const_insn = this_insn;
7afe21cc
RK
1653 break;
1654 }
1655 }
1656 }
1657
f8cfc6aa 1658 else if (REG_P (x)
1bb98cec
DM
1659 && qty_table[REG_QTY (REGNO (x))].const_rtx
1660 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1661 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
7afe21cc
RK
1662
1663 /* If this is a constant with symbolic value,
1664 and it has a term with an explicit integer value,
1665 link it up with related expressions. */
1666 if (GET_CODE (x) == CONST)
1667 {
1668 rtx subexp = get_related_value (x);
2197a88a 1669 unsigned subhash;
7afe21cc
RK
1670 struct table_elt *subelt, *subelt_prev;
1671
1672 if (subexp != 0)
1673 {
1674 /* Get the integer-free subexpression in the hash table. */
0516f6fe 1675 subhash = SAFE_HASH (subexp, mode);
7afe21cc
RK
1676 subelt = lookup (subexp, subhash, mode);
1677 if (subelt == 0)
9714cf43 1678 subelt = insert (subexp, NULL, subhash, mode);
7afe21cc
RK
1679 /* Initialize SUBELT's circular chain if it has none. */
1680 if (subelt->related_value == 0)
1681 subelt->related_value = subelt;
1682 /* Find the element in the circular chain that precedes SUBELT. */
1683 subelt_prev = subelt;
1684 while (subelt_prev->related_value != subelt)
1685 subelt_prev = subelt_prev->related_value;
1686 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1687 This way the element that follows SUBELT is the oldest one. */
1688 elt->related_value = subelt_prev->related_value;
1689 subelt_prev->related_value = elt;
1690 }
1691 }
1692
1693 return elt;
1694}
2c5bfdf7
AN
1695
1696/* Wrap insert_with_costs by passing the default costs. */
1697
1698static struct table_elt *
1699insert (rtx x, struct table_elt *classp, unsigned int hash,
ef4bddc2 1700 machine_mode mode)
2c5bfdf7 1701{
e548c9df
AM
1702 return insert_with_costs (x, classp, hash, mode,
1703 COST (x, mode), approx_reg_cost (x));
2c5bfdf7
AN
1704}
1705
7afe21cc
RK
1706\f
1707/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1708 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1709 the two classes equivalent.
1710
1711 CLASS1 will be the surviving class; CLASS2 should not be used after this
1712 call.
1713
1714 Any invalid entries in CLASS2 will not be copied. */
1715
1716static void
7080f735 1717merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
7afe21cc 1718{
32e9fa48 1719 struct table_elt *elt, *next, *new_elt;
7afe21cc
RK
1720
1721 /* Ensure we start with the head of the classes. */
1722 class1 = class1->first_same_value;
1723 class2 = class2->first_same_value;
1724
1725 /* If they were already equal, forget it. */
1726 if (class1 == class2)
1727 return;
1728
1729 for (elt = class2; elt; elt = next)
1730 {
770ae6cc 1731 unsigned int hash;
7afe21cc 1732 rtx exp = elt->exp;
ef4bddc2 1733 machine_mode mode = elt->mode;
7afe21cc
RK
1734
1735 next = elt->next_same_value;
1736
1737 /* Remove old entry, make a new one in CLASS1's class.
1738 Don't do this for invalid entries as we cannot find their
0f41302f 1739 hash code (it also isn't necessary). */
0516f6fe 1740 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
7afe21cc 1741 {
a90fc8e0
RH
1742 bool need_rehash = false;
1743
7afe21cc 1744 hash_arg_in_memory = 0;
7afe21cc 1745 hash = HASH (exp, mode);
278a83b2 1746
f8cfc6aa 1747 if (REG_P (exp))
a90fc8e0 1748 {
08a69267 1749 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
a90fc8e0
RH
1750 delete_reg_equiv (REGNO (exp));
1751 }
278a83b2 1752
d556d181
EB
1753 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1754 remove_pseudo_from_table (exp, hash);
1755 else
1756 remove_from_table (elt, hash);
7afe21cc 1757
dec7aaab 1758 if (insert_regs (exp, class1, false) || need_rehash)
8ae2b8f6
JW
1759 {
1760 rehash_using_reg (exp);
1761 hash = HASH (exp, mode);
1762 }
32e9fa48
KG
1763 new_elt = insert (exp, class1, hash, mode);
1764 new_elt->in_memory = hash_arg_in_memory;
6c4d60f8
JJ
1765 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1766 new_elt->cost = MAX_COST;
7afe21cc
RK
1767 }
1768 }
1769}
1770\f
01e752d3
JL
1771/* Flush the entire hash table. */
1772
1773static void
7080f735 1774flush_hash_table (void)
01e752d3
JL
1775{
1776 int i;
1777 struct table_elt *p;
1778
9b1549b8 1779 for (i = 0; i < HASH_SIZE; i++)
01e752d3
JL
1780 for (p = table[i]; p; p = table[i])
1781 {
1782 /* Note that invalidate can remove elements
1783 after P in the current hash chain. */
f8cfc6aa 1784 if (REG_P (p->exp))
524e3576 1785 invalidate (p->exp, VOIDmode);
01e752d3
JL
1786 else
1787 remove_from_table (p, i);
1788 }
1789}
14a774a9 1790\f
c992c066
RS
1791/* Check whether an anti dependence exists between X and EXP. MODE and
1792 ADDR are as for canon_anti_dependence. */
be8ac49a 1793
c992c066 1794static bool
ef4bddc2 1795check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
2ce6dc2f 1796{
c992c066
RS
1797 subrtx_iterator::array_type array;
1798 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1799 {
1800 const_rtx x = *iter;
1801 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1802 return true;
1803 }
1804 return false;
2ce6dc2f 1805}
99788e06
AH
1806
1807/* Remove from the hash table, or mark as invalid, all expressions whose
17d184e5 1808 values could be altered by storing in register X. */
99788e06
AH
1809
1810static void
17d184e5 1811invalidate_reg (rtx x)
99788e06
AH
1812{
1813 gcc_assert (GET_CODE (x) == REG);
1814
1815 /* If X is a register, dependencies on its contents are recorded
1816 through the qty number mechanism. Just change the qty number of
1817 the register, mark it as invalid for expressions that refer to it,
1818 and remove it itself. */
1819 unsigned int regno = REGNO (x);
1820 unsigned int hash = HASH (x, GET_MODE (x));
1821
1822 /* Remove REGNO from any quantity list it might be on and indicate
1823 that its value might have changed. If it is a pseudo, remove its
1824 entry from the hash table.
1825
1826 For a hard register, we do the first two actions above for any
1827 additional hard registers corresponding to X. Then, if any of these
1828 registers are in the table, we must remove any REG entries that
1829 overlap these registers. */
1830
1831 delete_reg_equiv (regno);
1832 REG_TICK (regno)++;
1833 SUBREG_TICKED (regno) = -1;
1834
1835 if (regno >= FIRST_PSEUDO_REGISTER)
17d184e5 1836 remove_pseudo_from_table (x, hash);
99788e06
AH
1837 else
1838 {
1839 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1840 unsigned int endregno = END_REGNO (x);
1841 unsigned int rn;
1842 struct table_elt *p, *next;
1843
1844 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1845
1846 for (rn = regno + 1; rn < endregno; rn++)
1847 {
1848 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1849 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1850 delete_reg_equiv (rn);
1851 REG_TICK (rn)++;
1852 SUBREG_TICKED (rn) = -1;
1853 }
1854
1855 if (in_table)
1856 for (hash = 0; hash < HASH_SIZE; hash++)
1857 for (p = table[hash]; p; p = next)
1858 {
1859 next = p->next_same_hash;
1860
1861 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1862 continue;
1863
17d184e5
RS
1864 unsigned int tregno = REGNO (p->exp);
1865 unsigned int tendregno = END_REGNO (p->exp);
1866 if (tendregno > regno && tregno < endregno)
1867 remove_from_table (p, hash);
99788e06
AH
1868 }
1869 }
1870}
1871
14a774a9
RK
1872/* Remove from the hash table, or mark as invalid, all expressions whose
1873 values could be altered by storing in X. X is a register, a subreg, or
1874 a memory reference with nonvarying address (because, when a memory
1875 reference with a varying address is stored in, all memory references are
1876 removed by invalidate_memory so specific invalidation is superfluous).
1877 FULL_MODE, if not VOIDmode, indicates that this much should be
1878 invalidated instead of just the amount indicated by the mode of X. This
1879 is only used for bitfield stores into memory.
1880
1881 A nonvarying address may be just a register or just a symbol reference,
1882 or it may be either of those plus a numeric offset. */
7afe21cc
RK
1883
1884static void
ef4bddc2 1885invalidate (rtx x, machine_mode full_mode)
7afe21cc 1886{
b3694847
SS
1887 int i;
1888 struct table_elt *p;
9ddb66ca 1889 rtx addr;
7afe21cc 1890
14a774a9 1891 switch (GET_CODE (x))
7afe21cc 1892 {
14a774a9 1893 case REG:
17d184e5 1894 invalidate_reg (x);
7afe21cc 1895 return;
7afe21cc 1896
14a774a9 1897 case SUBREG:
bb4034b3 1898 invalidate (SUBREG_REG (x), VOIDmode);
7afe21cc 1899 return;
aac5cc16 1900
14a774a9 1901 case PARALLEL:
278a83b2 1902 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
aac5cc16
RH
1903 invalidate (XVECEXP (x, 0, i), VOIDmode);
1904 return;
aac5cc16 1905
14a774a9
RK
1906 case EXPR_LIST:
1907 /* This is part of a disjoint return value; extract the location in
1908 question ignoring the offset. */
aac5cc16
RH
1909 invalidate (XEXP (x, 0), VOIDmode);
1910 return;
7afe21cc 1911
14a774a9 1912 case MEM:
9ddb66ca 1913 addr = canon_rtx (get_addr (XEXP (x, 0)));
db048faf
MM
1914 /* Calculate the canonical version of X here so that
1915 true_dependence doesn't generate new RTL for X on each call. */
1916 x = canon_rtx (x);
1917
14a774a9
RK
1918 /* Remove all hash table elements that refer to overlapping pieces of
1919 memory. */
1920 if (full_mode == VOIDmode)
1921 full_mode = GET_MODE (x);
bb4034b3 1922
9b1549b8 1923 for (i = 0; i < HASH_SIZE; i++)
7afe21cc 1924 {
b3694847 1925 struct table_elt *next;
14a774a9
RK
1926
1927 for (p = table[i]; p; p = next)
1928 {
1929 next = p->next_same_hash;
db048faf
MM
1930 if (p->in_memory)
1931 {
2ce6dc2f
JH
1932 /* Just canonicalize the expression once;
1933 otherwise each time we call invalidate
1934 true_dependence will canonicalize the
1935 expression again. */
1936 if (!p->canon_exp)
1937 p->canon_exp = canon_rtx (p->exp);
c992c066 1938 if (check_dependence (p->canon_exp, x, full_mode, addr))
db048faf 1939 remove_from_table (p, i);
db048faf 1940 }
14a774a9 1941 }
7afe21cc 1942 }
14a774a9
RK
1943 return;
1944
1945 default:
341c100f 1946 gcc_unreachable ();
7afe21cc
RK
1947 }
1948}
2a1d78d8
JJ
1949
1950/* Invalidate DEST. Used when DEST is not going to be added
1951 into the hash table for some reason, e.g. do_not_record
1952 flagged on it. */
1953
1954static void
1955invalidate_dest (rtx dest)
1956{
1957 if (REG_P (dest)
1958 || GET_CODE (dest) == SUBREG
1959 || MEM_P (dest))
1960 invalidate (dest, VOIDmode);
1961 else if (GET_CODE (dest) == STRICT_LOW_PART
1962 || GET_CODE (dest) == ZERO_EXTRACT)
1963 invalidate (XEXP (dest, 0), GET_MODE (dest));
1964}
14a774a9 1965\f
7afe21cc
RK
1966/* Remove all expressions that refer to register REGNO,
1967 since they are already invalid, and we are about to
1968 mark that register valid again and don't want the old
1969 expressions to reappear as valid. */
1970
1971static void
7080f735 1972remove_invalid_refs (unsigned int regno)
7afe21cc 1973{
770ae6cc
RK
1974 unsigned int i;
1975 struct table_elt *p, *next;
7afe21cc 1976
9b1549b8 1977 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
1978 for (p = table[i]; p; p = next)
1979 {
1980 next = p->next_same_hash;
c9bd6bcd 1981 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
7afe21cc
RK
1982 remove_from_table (p, i);
1983 }
1984}
34c73909 1985
ddef6bc7
JJ
1986/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1987 and mode MODE. */
34c73909 1988static void
91914e56 1989remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
ef4bddc2 1990 machine_mode mode)
34c73909 1991{
770ae6cc
RK
1992 unsigned int i;
1993 struct table_elt *p, *next;
34c73909 1994
9b1549b8 1995 for (i = 0; i < HASH_SIZE; i++)
34c73909
R
1996 for (p = table[i]; p; p = next)
1997 {
ddef6bc7 1998 rtx exp = p->exp;
34c73909 1999 next = p->next_same_hash;
278a83b2 2000
f8cfc6aa 2001 if (!REG_P (exp)
34c73909 2002 && (GET_CODE (exp) != SUBREG
f8cfc6aa 2003 || !REG_P (SUBREG_REG (exp))
34c73909 2004 || REGNO (SUBREG_REG (exp)) != regno
91914e56
RS
2005 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2006 GET_MODE_SIZE (GET_MODE (exp)),
2007 offset, GET_MODE_SIZE (mode)))
c9bd6bcd 2008 && refers_to_regno_p (regno, p->exp))
34c73909
R
2009 remove_from_table (p, i);
2010 }
2011}
7afe21cc
RK
2012\f
2013/* Recompute the hash codes of any valid entries in the hash table that
2014 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2015
2016 This is called when we make a jump equivalence. */
2017
2018static void
7080f735 2019rehash_using_reg (rtx x)
7afe21cc 2020{
973838fd 2021 unsigned int i;
7afe21cc 2022 struct table_elt *p, *next;
2197a88a 2023 unsigned hash;
7afe21cc
RK
2024
2025 if (GET_CODE (x) == SUBREG)
2026 x = SUBREG_REG (x);
2027
2028 /* If X is not a register or if the register is known not to be in any
2029 valid entries in the table, we have no work to do. */
2030
f8cfc6aa 2031 if (!REG_P (x)
30f72379
MM
2032 || REG_IN_TABLE (REGNO (x)) < 0
2033 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
7afe21cc
RK
2034 return;
2035
2036 /* Scan all hash chains looking for valid entries that mention X.
a90fc8e0 2037 If we find one and it is in the wrong hash chain, move it. */
7afe21cc 2038
9b1549b8 2039 for (i = 0; i < HASH_SIZE; i++)
7afe21cc
RK
2040 for (p = table[i]; p; p = next)
2041 {
2042 next = p->next_same_hash;
a90fc8e0 2043 if (reg_mentioned_p (x, p->exp)
0516f6fe
SB
2044 && exp_equiv_p (p->exp, p->exp, 1, false)
2045 && i != (hash = SAFE_HASH (p->exp, p->mode)))
7afe21cc
RK
2046 {
2047 if (p->next_same_hash)
2048 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2049
2050 if (p->prev_same_hash)
2051 p->prev_same_hash->next_same_hash = p->next_same_hash;
2052 else
2053 table[i] = p->next_same_hash;
2054
2055 p->next_same_hash = table[hash];
2056 p->prev_same_hash = 0;
2057 if (table[hash])
2058 table[hash]->prev_same_hash = p;
2059 table[hash] = p;
2060 }
2061 }
2062}
2063\f
7afe21cc 2064/* Remove from the hash table any expression that is a call-clobbered
311b62ce 2065 register in INSN. Also update their TICK values. */
7afe21cc
RK
2066
2067static void
311b62ce 2068invalidate_for_call (rtx_insn *insn)
7afe21cc 2069{
311b62ce 2070 unsigned int regno;
2197a88a 2071 unsigned hash;
7afe21cc
RK
2072 struct table_elt *p, *next;
2073 int in_table = 0;
c7fb4c7a 2074 hard_reg_set_iterator hrsi;
7afe21cc 2075
311b62ce
RS
2076 /* Go through all the hard registers. For each that might be clobbered
2077 in call insn INSN, remove the register from quantity chains and update
7afe21cc 2078 reg_tick if defined. Also see if any of these registers is currently
311b62ce
RS
2079 in the table.
2080
2081 ??? We could be more precise for partially-clobbered registers,
2082 and only invalidate values that actually occupy the clobbered part
2083 of the registers. It doesn't seem worth the effort though, since
2084 we shouldn't see this situation much before RA. Whatever choice
2085 we make here has to be consistent with the table walk below,
2086 so any change to this test will require a change there too. */
2087 HARD_REG_SET callee_clobbers
2088 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
2089 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
c7fb4c7a
SB
2090 {
2091 delete_reg_equiv (regno);
2092 if (REG_TICK (regno) >= 0)
2093 {
2094 REG_TICK (regno)++;
2095 SUBREG_TICKED (regno) = -1;
2096 }
2097 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2098 }
7afe21cc
RK
2099
2100 /* In the case where we have no call-clobbered hard registers in the
2101 table, we are done. Otherwise, scan the table and remove any
2102 entry that overlaps a call-clobbered register. */
2103
2104 if (in_table)
9b1549b8 2105 for (hash = 0; hash < HASH_SIZE; hash++)
7afe21cc
RK
2106 for (p = table[hash]; p; p = next)
2107 {
2108 next = p->next_same_hash;
2109
f8cfc6aa 2110 if (!REG_P (p->exp)
7afe21cc
RK
2111 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2112 continue;
2113
311b62ce
RS
2114 /* This must use the same test as above rather than the
2115 more accurate clobbers_reg_p. */
2116 if (overlaps_hard_reg_set_p (callee_clobbers, GET_MODE (p->exp),
2117 REGNO (p->exp)))
2118 remove_from_table (p, hash);
7afe21cc
RK
2119 }
2120}
2121\f
2122/* Given an expression X of type CONST,
2123 and ELT which is its table entry (or 0 if it
2124 is not in the hash table),
2125 return an alternate expression for X as a register plus integer.
2126 If none can be found, return 0. */
2127
2128static rtx
7080f735 2129use_related_value (rtx x, struct table_elt *elt)
7afe21cc 2130{
b3694847
SS
2131 struct table_elt *relt = 0;
2132 struct table_elt *p, *q;
906c4e36 2133 HOST_WIDE_INT offset;
7afe21cc
RK
2134
2135 /* First, is there anything related known?
2136 If we have a table element, we can tell from that.
2137 Otherwise, must look it up. */
2138
2139 if (elt != 0 && elt->related_value != 0)
2140 relt = elt;
2141 else if (elt == 0 && GET_CODE (x) == CONST)
2142 {
2143 rtx subexp = get_related_value (x);
2144 if (subexp != 0)
2145 relt = lookup (subexp,
0516f6fe 2146 SAFE_HASH (subexp, GET_MODE (subexp)),
7afe21cc
RK
2147 GET_MODE (subexp));
2148 }
2149
2150 if (relt == 0)
2151 return 0;
2152
2153 /* Search all related table entries for one that has an
2154 equivalent register. */
2155
2156 p = relt;
2157 while (1)
2158 {
2159 /* This loop is strange in that it is executed in two different cases.
2160 The first is when X is already in the table. Then it is searching
2161 the RELATED_VALUE list of X's class (RELT). The second case is when
2162 X is not in the table. Then RELT points to a class for the related
2163 value.
2164
2165 Ensure that, whatever case we are in, that we ignore classes that have
2166 the same value as X. */
2167
2168 if (rtx_equal_p (x, p->exp))
2169 q = 0;
2170 else
2171 for (q = p->first_same_value; q; q = q->next_same_value)
f8cfc6aa 2172 if (REG_P (q->exp))
7afe21cc
RK
2173 break;
2174
2175 if (q)
2176 break;
2177
2178 p = p->related_value;
2179
2180 /* We went all the way around, so there is nothing to be found.
2181 Alternatively, perhaps RELT was in the table for some other reason
2182 and it has no related values recorded. */
2183 if (p == relt || p == 0)
2184 break;
2185 }
2186
2187 if (q == 0)
2188 return 0;
2189
2190 offset = (get_integer_term (x) - get_integer_term (p->exp));
2191 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
0a81f074 2192 return plus_constant (q->mode, q->exp, offset);
7afe21cc
RK
2193}
2194\f
e855c69d 2195
6462bb43
AO
2196/* Hash a string. Just add its bytes up. */
2197static inline unsigned
0516f6fe 2198hash_rtx_string (const char *ps)
6462bb43
AO
2199{
2200 unsigned hash = 0;
68252e27
KH
2201 const unsigned char *p = (const unsigned char *) ps;
2202
6462bb43
AO
2203 if (p)
2204 while (*p)
2205 hash += *p++;
2206
2207 return hash;
2208}
2209
47fa3cef
UB
2210/* Hash an rtx. We are careful to make sure the value is never negative.
2211 Equivalent registers hash identically.
2212 MODE is used in hashing for CONST_INTs only;
2213 otherwise the mode of X is used.
2214
2215 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2216
2217 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2218 a MEM rtx which does not have the MEM_READONLY_P flag set.
2219
2220 Note that cse_insn knows that the hash code of a MEM expression
2221 is just (int) MEM plus the hash code of the address.
2222
2223 Call CB on each rtx if CB is not NULL.
e855c69d 2224 When the callback returns true, we continue with the new rtx. */
7afe21cc 2225
0516f6fe 2226unsigned
47fa3cef
UB
2227hash_rtx (const_rtx x, machine_mode mode,
2228 int *do_not_record_p, int *hash_arg_in_memory_p,
2229 bool have_reg_qty, hash_rtx_callback_function cb)
7afe21cc 2230{
b3694847
SS
2231 int i, j;
2232 unsigned hash = 0;
2233 enum rtx_code code;
2234 const char *fmt;
ef4bddc2 2235 machine_mode newmode;
e855c69d 2236 rtx newx;
7afe21cc 2237
0516f6fe
SB
2238 /* Used to turn recursion into iteration. We can't rely on GCC's
2239 tail-recursion elimination since we need to keep accumulating values
2240 in HASH. */
7afe21cc
RK
2241 repeat:
2242 if (x == 0)
2243 return hash;
2244
e855c69d 2245 /* Invoke the callback first. */
b8698a0f 2246 if (cb != NULL
e855c69d
AB
2247 && ((*cb) (x, mode, &newx, &newmode)))
2248 {
47fa3cef
UB
2249 hash += hash_rtx (newx, newmode, do_not_record_p,
2250 hash_arg_in_memory_p, have_reg_qty, cb);
e855c69d
AB
2251 return hash;
2252 }
2253
7afe21cc
RK
2254 code = GET_CODE (x);
2255 switch (code)
2256 {
2257 case REG:
2258 {
770ae6cc 2259 unsigned int regno = REGNO (x);
7afe21cc 2260
e855c69d 2261 if (do_not_record_p && !reload_completed)
7afe21cc 2262 {
0516f6fe
SB
2263 /* On some machines, we can't record any non-fixed hard register,
2264 because extending its life will cause reload problems. We
2265 consider ap, fp, sp, gp to be fixed for this purpose.
2266
2267 We also consider CCmode registers to be fixed for this purpose;
2268 failure to do so leads to failure to simplify 0<100 type of
2269 conditionals.
2270
2271 On all machines, we can't record any global registers.
2272 Nor should we record any register that is in a small
07b8f0a8 2273 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
0516f6fe
SB
2274 bool record;
2275
2276 if (regno >= FIRST_PSEUDO_REGISTER)
2277 record = true;
2278 else if (x == frame_pointer_rtx
2279 || x == hard_frame_pointer_rtx
2280 || x == arg_pointer_rtx
2281 || x == stack_pointer_rtx
2282 || x == pic_offset_table_rtx)
2283 record = true;
2284 else if (global_regs[regno])
2285 record = false;
2286 else if (fixed_regs[regno])
2287 record = true;
2288 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2289 record = true;
42db504c 2290 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
0516f6fe 2291 record = false;
07b8f0a8 2292 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
0516f6fe
SB
2293 record = false;
2294 else
2295 record = true;
2296
2297 if (!record)
2298 {
2299 *do_not_record_p = 1;
2300 return 0;
2301 }
7afe21cc 2302 }
770ae6cc 2303
0516f6fe
SB
2304 hash += ((unsigned int) REG << 7);
2305 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2197a88a 2306 return hash;
7afe21cc
RK
2307 }
2308
34c73909
R
2309 /* We handle SUBREG of a REG specially because the underlying
2310 reg changes its hash value with every value change; we don't
2311 want to have to forget unrelated subregs when one subreg changes. */
2312 case SUBREG:
2313 {
f8cfc6aa 2314 if (REG_P (SUBREG_REG (x)))
34c73909 2315 {
0516f6fe 2316 hash += (((unsigned int) SUBREG << 7)
ddef6bc7 2317 + REGNO (SUBREG_REG (x))
91914e56
RS
2318 + (constant_lower_bound (SUBREG_BYTE (x))
2319 / UNITS_PER_WORD));
34c73909
R
2320 return hash;
2321 }
2322 break;
2323 }
2324
7afe21cc 2325 case CONST_INT:
0516f6fe
SB
2326 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2327 + (unsigned int) INTVAL (x));
2328 return hash;
7afe21cc 2329
807e902e
KZ
2330 case CONST_WIDE_INT:
2331 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2332 hash += CONST_WIDE_INT_ELT (x, i);
2333 return hash;
2334
0c12fc9b
RS
2335 case CONST_POLY_INT:
2336 {
2337 inchash::hash h;
2338 h.add_int (hash);
2339 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2340 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2341 return h.end ();
2342 }
2343
7afe21cc
RK
2344 case CONST_DOUBLE:
2345 /* This is like the general case, except that it only counts
2346 the integers representing the constant. */
0516f6fe 2347 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
807e902e 2348 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
0516f6fe
SB
2349 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2350 + (unsigned int) CONST_DOUBLE_HIGH (x));
807e902e
KZ
2351 else
2352 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
7afe21cc
RK
2353 return hash;
2354
091a3ac7
CF
2355 case CONST_FIXED:
2356 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2357 hash += fixed_hash (CONST_FIXED_VALUE (x));
2358 return hash;
2359
69ef87e2
AH
2360 case CONST_VECTOR:
2361 {
2362 int units;
2363 rtx elt;
2364
16c78b66 2365 units = const_vector_encoded_nelts (x);
69ef87e2
AH
2366
2367 for (i = 0; i < units; ++i)
2368 {
16c78b66 2369 elt = CONST_VECTOR_ENCODED_ELT (x, i);
47fa3cef
UB
2370 hash += hash_rtx (elt, GET_MODE (elt),
2371 do_not_record_p, hash_arg_in_memory_p,
2372 have_reg_qty, cb);
69ef87e2
AH
2373 }
2374
2375 return hash;
2376 }
2377
7afe21cc
RK
2378 /* Assume there is only one rtx object for any given label. */
2379 case LABEL_REF:
0516f6fe
SB
2380 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2381 differences and differences between each stage's debugging dumps. */
2382 hash += (((unsigned int) LABEL_REF << 7)
04a121a7 2383 + CODE_LABEL_NUMBER (label_ref_label (x)));
2197a88a 2384 return hash;
7afe21cc
RK
2385
2386 case SYMBOL_REF:
0516f6fe
SB
2387 {
2388 /* Don't hash on the symbol's address to avoid bootstrap differences.
2389 Different hash values may cause expressions to be recorded in
2390 different orders and thus different registers to be used in the
2391 final assembler. This also avoids differences in the dump files
2392 between various stages. */
2393 unsigned int h = 0;
2394 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2395
2396 while (*p)
2397 h += (h << 7) + *p++; /* ??? revisit */
2398
2399 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2400 return hash;
2401 }
7afe21cc
RK
2402
2403 case MEM:
14a774a9
RK
2404 /* We don't record if marked volatile or if BLKmode since we don't
2405 know the size of the move. */
e855c69d 2406 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
7afe21cc 2407 {
0516f6fe 2408 *do_not_record_p = 1;
7afe21cc
RK
2409 return 0;
2410 }
0516f6fe
SB
2411 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2412 *hash_arg_in_memory_p = 1;
4977bab6 2413
7afe21cc
RK
2414 /* Now that we have already found this special case,
2415 might as well speed it up as much as possible. */
2197a88a 2416 hash += (unsigned) MEM;
7afe21cc
RK
2417 x = XEXP (x, 0);
2418 goto repeat;
2419
bb07060a
JW
2420 case USE:
2421 /* A USE that mentions non-volatile memory needs special
2422 handling since the MEM may be BLKmode which normally
2423 prevents an entry from being made. Pure calls are
0516f6fe 2424 marked by a USE which mentions BLKmode memory.
e53b6e56 2425 See calls.cc:emit_call_1. */
3c0cb5de 2426 if (MEM_P (XEXP (x, 0))
bb07060a
JW
2427 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2428 {
68252e27 2429 hash += (unsigned) USE;
bb07060a
JW
2430 x = XEXP (x, 0);
2431
0516f6fe
SB
2432 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2433 *hash_arg_in_memory_p = 1;
bb07060a
JW
2434
2435 /* Now that we have already found this special case,
2436 might as well speed it up as much as possible. */
2437 hash += (unsigned) MEM;
2438 x = XEXP (x, 0);
2439 goto repeat;
2440 }
2441 break;
2442
7afe21cc
RK
2443 case PRE_DEC:
2444 case PRE_INC:
2445 case POST_DEC:
2446 case POST_INC:
4b983fdc
RH
2447 case PRE_MODIFY:
2448 case POST_MODIFY:
7afe21cc 2449 case PC:
7afe21cc
RK
2450 case CALL:
2451 case UNSPEC_VOLATILE:
e855c69d
AB
2452 if (do_not_record_p) {
2453 *do_not_record_p = 1;
2454 return 0;
2455 }
2456 else
2457 return hash;
2458 break;
7afe21cc
RK
2459
2460 case ASM_OPERANDS:
e855c69d 2461 if (do_not_record_p && MEM_VOLATILE_P (x))
7afe21cc 2462 {
0516f6fe 2463 *do_not_record_p = 1;
7afe21cc
RK
2464 return 0;
2465 }
6462bb43
AO
2466 else
2467 {
2468 /* We don't want to take the filename and line into account. */
2469 hash += (unsigned) code + (unsigned) GET_MODE (x)
0516f6fe
SB
2470 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2471 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
6462bb43
AO
2472 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2473
2474 if (ASM_OPERANDS_INPUT_LENGTH (x))
2475 {
2476 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2477 {
47fa3cef
UB
2478 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2479 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2480 do_not_record_p, hash_arg_in_memory_p,
2481 have_reg_qty, cb)
0516f6fe 2482 + hash_rtx_string
e855c69d 2483 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
6462bb43
AO
2484 }
2485
0516f6fe 2486 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
6462bb43
AO
2487 x = ASM_OPERANDS_INPUT (x, 0);
2488 mode = GET_MODE (x);
2489 goto repeat;
2490 }
2491
2492 return hash;
2493 }
e9a25f70 2494 break;
278a83b2 2495
e9a25f70
JL
2496 default:
2497 break;
7afe21cc
RK
2498 }
2499
2500 i = GET_RTX_LENGTH (code) - 1;
2197a88a 2501 hash += (unsigned) code + (unsigned) GET_MODE (x);
7afe21cc
RK
2502 fmt = GET_RTX_FORMAT (code);
2503 for (; i >= 0; i--)
2504 {
341c100f 2505 switch (fmt[i])
7afe21cc 2506 {
341c100f 2507 case 'e':
7afe21cc
RK
2508 /* If we are about to do the last recursive call
2509 needed at this level, change it into iteration.
2510 This function is called enough to be worth it. */
2511 if (i == 0)
2512 {
0516f6fe 2513 x = XEXP (x, i);
7afe21cc
RK
2514 goto repeat;
2515 }
b8698a0f 2516
47fa3cef
UB
2517 hash += hash_rtx (XEXP (x, i), VOIDmode, do_not_record_p,
2518 hash_arg_in_memory_p,
2519 have_reg_qty, cb);
341c100f 2520 break;
0516f6fe 2521
341c100f
NS
2522 case 'E':
2523 for (j = 0; j < XVECLEN (x, i); j++)
47fa3cef
UB
2524 hash += hash_rtx (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2525 hash_arg_in_memory_p,
2526 have_reg_qty, cb);
341c100f 2527 break;
0516f6fe 2528
341c100f
NS
2529 case 's':
2530 hash += hash_rtx_string (XSTR (x, i));
2531 break;
2532
2533 case 'i':
2534 hash += (unsigned int) XINT (x, i);
2535 break;
2536
91914e56
RS
2537 case 'p':
2538 hash += constant_lower_bound (SUBREG_BYTE (x));
2539 break;
2540
341c100f
NS
2541 case '0': case 't':
2542 /* Unused. */
2543 break;
2544
2545 default:
2546 gcc_unreachable ();
2547 }
7afe21cc 2548 }
0516f6fe 2549
7afe21cc
RK
2550 return hash;
2551}
2552
0516f6fe
SB
2553/* Hash an rtx X for cse via hash_rtx.
2554 Stores 1 in do_not_record if any subexpression is volatile.
2555 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
3e55d79b 2556 does not have the MEM_READONLY_P flag set. */
0516f6fe
SB
2557
2558static inline unsigned
ef4bddc2 2559canon_hash (rtx x, machine_mode mode)
0516f6fe
SB
2560{
2561 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2562}
2563
2564/* Like canon_hash but with no side effects, i.e. do_not_record
2565 and hash_arg_in_memory are not changed. */
7afe21cc 2566
0516f6fe 2567static inline unsigned
ef4bddc2 2568safe_hash (rtx x, machine_mode mode)
7afe21cc 2569{
0516f6fe
SB
2570 int dummy_do_not_record;
2571 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
7afe21cc
RK
2572}
2573\f
dec7aaab 2574/* Return true iff X and Y would canonicalize into the same thing,
7afe21cc
RK
2575 without actually constructing the canonicalization of either one.
2576 If VALIDATE is nonzero,
2577 we assume X is an expression being processed from the rtl
2578 and Y was found in the hash table. We check register refs
2579 in Y for being marked as valid.
2580
0516f6fe 2581 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
7afe21cc 2582
dec7aaab 2583bool
4f588890 2584exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
7afe21cc 2585{
b3694847
SS
2586 int i, j;
2587 enum rtx_code code;
2588 const char *fmt;
7afe21cc
RK
2589
2590 /* Note: it is incorrect to assume an expression is equivalent to itself
2591 if VALIDATE is nonzero. */
2592 if (x == y && !validate)
dec7aaab 2593 return true;
0516f6fe 2594
7afe21cc
RK
2595 if (x == 0 || y == 0)
2596 return x == y;
2597
2598 code = GET_CODE (x);
2599 if (code != GET_CODE (y))
dec7aaab 2600 return false;
7afe21cc
RK
2601
2602 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2603 if (GET_MODE (x) != GET_MODE (y))
dec7aaab 2604 return false;
7afe21cc 2605
5932a4d4 2606 /* MEMs referring to different address space are not equivalent. */
09e881c9 2607 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
dec7aaab 2608 return false;
09e881c9 2609
7afe21cc
RK
2610 switch (code)
2611 {
2612 case PC:
d8116890 2613 CASE_CONST_UNIQUE:
c13e8210 2614 return x == y;
7afe21cc 2615
a87d3f96
RS
2616 case CONST_VECTOR:
2617 if (!same_vector_encodings_p (x, y))
2618 return false;
2619 break;
2620
7afe21cc 2621 case LABEL_REF:
04a121a7 2622 return label_ref_label (x) == label_ref_label (y);
7afe21cc 2623
f54d4924
RK
2624 case SYMBOL_REF:
2625 return XSTR (x, 0) == XSTR (y, 0);
2626
7afe21cc 2627 case REG:
0516f6fe
SB
2628 if (for_gcse)
2629 return REGNO (x) == REGNO (y);
2630 else
2631 {
2632 unsigned int regno = REGNO (y);
2633 unsigned int i;
09e18274 2634 unsigned int endregno = END_REGNO (y);
7afe21cc 2635
0516f6fe
SB
2636 /* If the quantities are not the same, the expressions are not
2637 equivalent. If there are and we are not to validate, they
2638 are equivalent. Otherwise, ensure all regs are up-to-date. */
7afe21cc 2639
0516f6fe 2640 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
dec7aaab 2641 return false;
0516f6fe
SB
2642
2643 if (! validate)
dec7aaab 2644 return true;
0516f6fe
SB
2645
2646 for (i = regno; i < endregno; i++)
2647 if (REG_IN_TABLE (i) != REG_TICK (i))
dec7aaab 2648 return false;
7afe21cc 2649
dec7aaab 2650 return true;
0516f6fe 2651 }
7afe21cc 2652
0516f6fe
SB
2653 case MEM:
2654 if (for_gcse)
2655 {
0516f6fe
SB
2656 /* A volatile mem should not be considered equivalent to any
2657 other. */
2658 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
dec7aaab 2659 return false;
8a76c4a0
JJ
2660
2661 /* Can't merge two expressions in different alias sets, since we
2662 can decide that the expression is transparent in a block when
2663 it isn't, due to it being set with the different alias set.
2664
2665 Also, can't merge two expressions with different MEM_ATTRS.
2666 They could e.g. be two different entities allocated into the
2667 same space on the stack (see e.g. PR25130). In that case, the
2668 MEM addresses can be the same, even though the two MEMs are
2669 absolutely not equivalent.
2670
2671 But because really all MEM attributes should be the same for
2672 equivalent MEMs, we just use the invariant that MEMs that have
2673 the same attributes share the same mem_attrs data structure. */
96b3c03f 2674 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
dec7aaab 2675 return false;
e304caa4
EB
2676
2677 /* If we are handling exceptions, we cannot consider two expressions
2678 with different trapping status as equivalent, because simple_mem
2679 might accept one and reject the other. */
2680 if (cfun->can_throw_non_call_exceptions
2681 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
dec7aaab 2682 return false;
0516f6fe
SB
2683 }
2684 break;
7afe21cc
RK
2685
2686 /* For commutative operations, check both orders. */
2687 case PLUS:
2688 case MULT:
2689 case AND:
2690 case IOR:
2691 case XOR:
2692 case NE:
2693 case EQ:
0516f6fe
SB
2694 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2695 validate, for_gcse)
7afe21cc 2696 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
0516f6fe 2697 validate, for_gcse))
7afe21cc 2698 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
0516f6fe 2699 validate, for_gcse)
7afe21cc 2700 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
0516f6fe 2701 validate, for_gcse)));
278a83b2 2702
6462bb43
AO
2703 case ASM_OPERANDS:
2704 /* We don't use the generic code below because we want to
2705 disregard filename and line numbers. */
2706
2707 /* A volatile asm isn't equivalent to any other. */
2708 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
dec7aaab 2709 return false;
6462bb43
AO
2710
2711 if (GET_MODE (x) != GET_MODE (y)
2712 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2713 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2714 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2715 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2716 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
dec7aaab 2717 return false;
6462bb43
AO
2718
2719 if (ASM_OPERANDS_INPUT_LENGTH (x))
2720 {
2721 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2722 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2723 ASM_OPERANDS_INPUT (y, i),
0516f6fe 2724 validate, for_gcse)
6462bb43
AO
2725 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2726 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
dec7aaab 2727 return false;
6462bb43
AO
2728 }
2729
dec7aaab 2730 return true;
6462bb43 2731
e9a25f70
JL
2732 default:
2733 break;
7afe21cc
RK
2734 }
2735
2736 /* Compare the elements. If any pair of corresponding elements
0516f6fe 2737 fail to match, return 0 for the whole thing. */
7afe21cc
RK
2738
2739 fmt = GET_RTX_FORMAT (code);
2740 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2741 {
906c4e36 2742 switch (fmt[i])
7afe21cc 2743 {
906c4e36 2744 case 'e':
0516f6fe
SB
2745 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2746 validate, for_gcse))
dec7aaab 2747 return false;
906c4e36
RK
2748 break;
2749
2750 case 'E':
7afe21cc
RK
2751 if (XVECLEN (x, i) != XVECLEN (y, i))
2752 return 0;
2753 for (j = 0; j < XVECLEN (x, i); j++)
2754 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
0516f6fe 2755 validate, for_gcse))
dec7aaab 2756 return false;
906c4e36
RK
2757 break;
2758
2759 case 's':
7afe21cc 2760 if (strcmp (XSTR (x, i), XSTR (y, i)))
dec7aaab 2761 return false;
906c4e36
RK
2762 break;
2763
2764 case 'i':
7afe21cc 2765 if (XINT (x, i) != XINT (y, i))
dec7aaab 2766 return false;
906c4e36
RK
2767 break;
2768
2769 case 'w':
2770 if (XWINT (x, i) != XWINT (y, i))
dec7aaab 2771 return false;
278a83b2 2772 break;
906c4e36 2773
91914e56
RS
2774 case 'p':
2775 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
dec7aaab 2776 return false;
91914e56
RS
2777 break;
2778
906c4e36 2779 case '0':
8f985ec4 2780 case 't':
906c4e36
RK
2781 break;
2782
2783 default:
341c100f 2784 gcc_unreachable ();
7afe21cc 2785 }
278a83b2 2786 }
906c4e36 2787
dec7aaab 2788 return true;
7afe21cc
RK
2789}
2790\f
eef3c949
RS
2791/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2792 the result if necessary. INSN is as for canon_reg. */
2793
2794static void
20468884 2795validate_canon_reg (rtx *xloc, rtx_insn *insn)
eef3c949 2796{
6fb5fa3c
DB
2797 if (*xloc)
2798 {
32e9fa48 2799 rtx new_rtx = canon_reg (*xloc, insn);
eef3c949 2800
6fb5fa3c
DB
2801 /* If replacing pseudo with hard reg or vice versa, ensure the
2802 insn remains valid. Likewise if the insn has MATCH_DUPs. */
32e9fa48
KG
2803 gcc_assert (insn && new_rtx);
2804 validate_change (insn, xloc, new_rtx, 1);
6fb5fa3c 2805 }
eef3c949
RS
2806}
2807
7afe21cc
RK
2808/* Canonicalize an expression:
2809 replace each register reference inside it
2810 with the "oldest" equivalent register.
2811
67e0a632 2812 If INSN is nonzero validate_change is used to ensure that INSN remains valid
da7d8304 2813 after we make our substitution. The calls are made with IN_GROUP nonzero
7722328e
RK
2814 so apply_change_group must be called upon the outermost return from this
2815 function (unless INSN is zero). The result of apply_change_group can
2816 generally be discarded since the changes we are making are optional. */
7afe21cc
RK
2817
2818static rtx
20468884 2819canon_reg (rtx x, rtx_insn *insn)
7afe21cc 2820{
b3694847
SS
2821 int i;
2822 enum rtx_code code;
2823 const char *fmt;
7afe21cc
RK
2824
2825 if (x == 0)
2826 return x;
2827
2828 code = GET_CODE (x);
2829 switch (code)
2830 {
2831 case PC:
7afe21cc 2832 case CONST:
d8116890 2833 CASE_CONST_ANY:
7afe21cc
RK
2834 case SYMBOL_REF:
2835 case LABEL_REF:
2836 case ADDR_VEC:
2837 case ADDR_DIFF_VEC:
2838 return x;
2839
2840 case REG:
2841 {
b3694847
SS
2842 int first;
2843 int q;
2844 struct qty_table_elem *ent;
7afe21cc
RK
2845
2846 /* Never replace a hard reg, because hard regs can appear
2847 in more than one machine mode, and we must preserve the mode
2848 of each occurrence. Also, some hard regs appear in
2849 MEMs that are shared and mustn't be altered. Don't try to
2850 replace any reg that maps to a reg of class NO_REGS. */
2851 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2852 || ! REGNO_QTY_VALID_P (REGNO (x)))
2853 return x;
2854
278a83b2 2855 q = REG_QTY (REGNO (x));
1bb98cec
DM
2856 ent = &qty_table[q];
2857 first = ent->first_reg;
7afe21cc
RK
2858 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2859 : REGNO_REG_CLASS (first) == NO_REGS ? x
1bb98cec 2860 : gen_rtx_REG (ent->mode, first));
7afe21cc 2861 }
278a83b2 2862
e9a25f70
JL
2863 default:
2864 break;
7afe21cc
RK
2865 }
2866
2867 fmt = GET_RTX_FORMAT (code);
2868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2869 {
b3694847 2870 int j;
7afe21cc
RK
2871
2872 if (fmt[i] == 'e')
eef3c949 2873 validate_canon_reg (&XEXP (x, i), insn);
7afe21cc
RK
2874 else if (fmt[i] == 'E')
2875 for (j = 0; j < XVECLEN (x, i); j++)
eef3c949 2876 validate_canon_reg (&XVECEXP (x, i, j), insn);
7afe21cc
RK
2877 }
2878
2879 return x;
2880}
2881\f
bca05d20
RK
2882/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2883 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2884 what values are being compared.
1a87eea2 2885
bca05d20 2886 *PARG1 and *PARG2 are updated to contain the rtx representing the values
bd1cd0d0
SB
2887 actually being compared. For example, if *PARG1 was (reg:CC CC_REG) and
2888 *PARG2 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that
2889 were compared to produce (reg:CC CC_REG).
a432f20d 2890
bca05d20
RK
2891 The return value is the comparison operator and is either the code of
2892 A or the code corresponding to the inverse of the comparison. */
7afe21cc 2893
0cedb36c 2894static enum rtx_code
7080f735 2895find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
ef4bddc2 2896 machine_mode *pmode1, machine_mode *pmode2)
7afe21cc 2897{
0cedb36c 2898 rtx arg1, arg2;
6e2830c3 2899 hash_set<rtx> *visited = NULL;
27ec0502
AJ
2900 /* Set nonzero when we find something of interest. */
2901 rtx x = NULL;
1a87eea2 2902
0cedb36c 2903 arg1 = *parg1, arg2 = *parg2;
7afe21cc 2904
0cedb36c 2905 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
7afe21cc 2906
0cedb36c 2907 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
a432f20d 2908 {
0cedb36c
JL
2909 int reverse_code = 0;
2910 struct table_elt *p = 0;
6076248a 2911
27ec0502
AJ
2912 /* Remember state from previous iteration. */
2913 if (x)
2914 {
2915 if (!visited)
6e2830c3
TS
2916 visited = new hash_set<rtx>;
2917 visited->add (x);
27ec0502
AJ
2918 x = 0;
2919 }
2920
bd1cd0d0 2921 /* If arg1 is a COMPARE, extract the comparison arguments from it. */
6076248a 2922
0cedb36c
JL
2923 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2924 x = arg1;
6076248a 2925
0cedb36c
JL
2926 /* If ARG1 is a comparison operator and CODE is testing for
2927 STORE_FLAG_VALUE, get the inner arguments. */
a432f20d 2928
ec8e098d 2929 else if (COMPARISON_P (arg1))
7afe21cc 2930 {
efdc7e19
RH
2931#ifdef FLOAT_STORE_FLAG_VALUE
2932 REAL_VALUE_TYPE fsfv;
2933#endif
2934
0cedb36c
JL
2935 if (code == NE
2936 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2937 && code == LT && STORE_FLAG_VALUE == -1)
2938#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2939 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2940 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2941 REAL_VALUE_NEGATIVE (fsfv)))
7afe21cc 2942#endif
a432f20d 2943 )
0cedb36c
JL
2944 x = arg1;
2945 else if (code == EQ
2946 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2947 && code == GE && STORE_FLAG_VALUE == -1)
2948#ifdef FLOAT_STORE_FLAG_VALUE
9b92bf04 2949 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
efdc7e19
RH
2950 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2951 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
2952#endif
2953 )
2954 x = arg1, reverse_code = 1;
7afe21cc
RK
2955 }
2956
0cedb36c 2957 /* ??? We could also check for
7afe21cc 2958
0cedb36c 2959 (ne (and (eq (...) (const_int 1))) (const_int 0))
7afe21cc 2960
0cedb36c 2961 and related forms, but let's wait until we see them occurring. */
7afe21cc 2962
0cedb36c
JL
2963 if (x == 0)
2964 /* Look up ARG1 in the hash table and see if it has an equivalence
2965 that lets us see what is being compared. */
0516f6fe 2966 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
278a83b2 2967 if (p)
8b03b984
R
2968 {
2969 p = p->first_same_value;
2970
2971 /* If what we compare is already known to be constant, that is as
2972 good as it gets.
2973 We need to break the loop in this case, because otherwise we
2974 can have an infinite loop when looking at a reg that is known
2975 to be a constant which is the same as a comparison of a reg
2976 against zero which appears later in the insn stream, which in
2977 turn is constant and the same as the comparison of the first reg
2978 against zero... */
2979 if (p->is_const)
2980 break;
2981 }
7afe21cc 2982
0cedb36c 2983 for (; p; p = p->next_same_value)
7afe21cc 2984 {
ef4bddc2 2985 machine_mode inner_mode = GET_MODE (p->exp);
efdc7e19
RH
2986#ifdef FLOAT_STORE_FLAG_VALUE
2987 REAL_VALUE_TYPE fsfv;
2988#endif
7afe21cc 2989
0cedb36c 2990 /* If the entry isn't valid, skip it. */
0516f6fe 2991 if (! exp_equiv_p (p->exp, p->exp, 1, false))
0cedb36c 2992 continue;
f76b9db2 2993
27ec0502 2994 /* If it's a comparison we've used before, skip it. */
6e2830c3 2995 if (visited && visited->contains (p->exp))
8f1ad6b6
SL
2996 continue;
2997
bca05d20
RK
2998 if (GET_CODE (p->exp) == COMPARE
2999 /* Another possibility is that this machine has a compare insn
3000 that includes the comparison code. In that case, ARG1 would
3001 be equivalent to a comparison operation that would set ARG1 to
3002 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3003 ORIG_CODE is the actual comparison being done; if it is an EQ,
3004 we must reverse ORIG_CODE. On machine with a negative value
3005 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3006 || ((code == NE
3007 || (code == LT
2d0c270f
BS
3008 && val_signbit_known_set_p (inner_mode,
3009 STORE_FLAG_VALUE))
0cedb36c 3010#ifdef FLOAT_STORE_FLAG_VALUE
bca05d20 3011 || (code == LT
3d8bf70f 3012 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
3013 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3014 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c 3015#endif
bca05d20 3016 )
ec8e098d 3017 && COMPARISON_P (p->exp)))
7afe21cc 3018 {
0cedb36c
JL
3019 x = p->exp;
3020 break;
3021 }
3022 else if ((code == EQ
3023 || (code == GE
2d0c270f
BS
3024 && val_signbit_known_set_p (inner_mode,
3025 STORE_FLAG_VALUE))
0cedb36c
JL
3026#ifdef FLOAT_STORE_FLAG_VALUE
3027 || (code == GE
3d8bf70f 3028 && SCALAR_FLOAT_MODE_P (inner_mode)
efdc7e19
RH
3029 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3030 REAL_VALUE_NEGATIVE (fsfv)))
0cedb36c
JL
3031#endif
3032 )
ec8e098d 3033 && COMPARISON_P (p->exp))
0cedb36c
JL
3034 {
3035 reverse_code = 1;
3036 x = p->exp;
3037 break;
7afe21cc
RK
3038 }
3039
4977bab6
ZW
3040 /* If this non-trapping address, e.g. fp + constant, the
3041 equivalent is a better operand since it may let us predict
3042 the value of the comparison. */
3043 else if (!rtx_addr_can_trap_p (p->exp))
0cedb36c
JL
3044 {
3045 arg1 = p->exp;
3046 continue;
3047 }
7afe21cc 3048 }
7afe21cc 3049
0cedb36c
JL
3050 /* If we didn't find a useful equivalence for ARG1, we are done.
3051 Otherwise, set up for the next iteration. */
3052 if (x == 0)
3053 break;
7afe21cc 3054
026c3cfd 3055 /* If we need to reverse the comparison, make sure that is
78192b09
RH
3056 possible -- we can't necessarily infer the value of GE from LT
3057 with floating-point operands. */
0cedb36c 3058 if (reverse_code)
261efdef 3059 {
c9b0a227 3060 enum rtx_code reversed = reversed_comparison_code (x, NULL);
261efdef
JH
3061 if (reversed == UNKNOWN)
3062 break;
68252e27
KH
3063 else
3064 code = reversed;
261efdef 3065 }
ec8e098d 3066 else if (COMPARISON_P (x))
261efdef
JH
3067 code = GET_CODE (x);
3068 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
7afe21cc
RK
3069 }
3070
0cedb36c
JL
3071 /* Return our results. Return the modes from before fold_rtx
3072 because fold_rtx might produce const_int, and then it's too late. */
3073 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3074 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3075
27ec0502 3076 if (visited)
6e2830c3 3077 delete visited;
0cedb36c 3078 return code;
7afe21cc
RK
3079}
3080\f
a52b023a
PB
3081/* If X is a nontrivial arithmetic operation on an argument for which
3082 a constant value can be determined, return the result of operating
3083 on that value, as a constant. Otherwise, return X, possibly with
3084 one or more operands changed to a forward-propagated constant.
25910ca4 3085
a52b023a
PB
3086 If X is a register whose contents are known, we do NOT return
3087 those contents here; equiv_constant is called to perform that task.
3088 For SUBREGs and MEMs, we do that both here and in equiv_constant.
7afe21cc
RK
3089
3090 INSN is the insn that we may be modifying. If it is 0, make a copy
3091 of X before modifying it. */
3092
3093static rtx
20468884 3094fold_rtx (rtx x, rtx_insn *insn)
7afe21cc 3095{
b3694847 3096 enum rtx_code code;
ef4bddc2 3097 machine_mode mode;
b3694847
SS
3098 const char *fmt;
3099 int i;
32e9fa48 3100 rtx new_rtx = 0;
dec7aaab 3101 bool changed = false;
5284e559 3102 poly_int64 xval;
7afe21cc 3103
a52b023a 3104 /* Operands of X. */
e54bd4ab
JJ
3105 /* Workaround -Wmaybe-uninitialized false positive during
3106 profiledbootstrap by initializing them. */
3107 rtx folded_arg0 = NULL_RTX;
3108 rtx folded_arg1 = NULL_RTX;
7afe21cc
RK
3109
3110 /* Constant equivalents of first three operands of X;
3111 0 when no such equivalent is known. */
3112 rtx const_arg0;
3113 rtx const_arg1;
3114 rtx const_arg2;
3115
3116 /* The mode of the first operand of X. We need this for sign and zero
3117 extends. */
ef4bddc2 3118 machine_mode mode_arg0;
7afe21cc
RK
3119
3120 if (x == 0)
3121 return x;
3122
a52b023a 3123 /* Try to perform some initial simplifications on X. */
7afe21cc
RK
3124 code = GET_CODE (x);
3125 switch (code)
3126 {
a52b023a
PB
3127 case MEM:
3128 case SUBREG:
5141ed42
JL
3129 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3130 than it would in other contexts. Basically its mode does not
3131 signify the size of the object read. That information is carried
3132 by size operand. If we happen to have a MEM of the appropriate
3133 mode in our tables with a constant value we could simplify the
3134 extraction incorrectly if we allowed substitution of that value
3135 for the MEM. */
3136 case ZERO_EXTRACT:
3137 case SIGN_EXTRACT:
32e9fa48
KG
3138 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3139 return new_rtx;
a52b023a
PB
3140 return x;
3141
7afe21cc 3142 case CONST:
d8116890 3143 CASE_CONST_ANY:
7afe21cc
RK
3144 case SYMBOL_REF:
3145 case LABEL_REF:
3146 case REG:
01aa1d43 3147 case PC:
7afe21cc
RK
3148 /* No use simplifying an EXPR_LIST
3149 since they are used only for lists of args
3150 in a function call's REG_EQUAL note. */
3151 case EXPR_LIST:
3152 return x;
3153
9255709c 3154 case ASM_OPERANDS:
6c667859
AB
3155 if (insn)
3156 {
3157 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3158 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3159 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3160 }
a52b023a
PB
3161 return x;
3162
a52b023a 3163 case CALL:
1e8552c2 3164 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
a52b023a 3165 return x;
9255709c 3166 break;
8695bf78
JW
3167 case VEC_SELECT:
3168 {
3169 rtx trueop0 = XEXP (x, 0);
3170 mode = GET_MODE (trueop0);
3171 rtx trueop1 = XEXP (x, 1);
3172 /* If we select a low-part subreg, return that. */
3173 if (vec_series_lowpart_p (GET_MODE (x), mode, trueop1))
3174 {
3175 rtx new_rtx = lowpart_subreg (GET_MODE (x), trueop0, mode);
3176 if (new_rtx != NULL_RTX)
3177 return new_rtx;
3178 }
3179 }
278a83b2 3180
a52b023a 3181 /* Anything else goes through the loop below. */
e9a25f70
JL
3182 default:
3183 break;
7afe21cc
RK
3184 }
3185
a52b023a 3186 mode = GET_MODE (x);
7afe21cc
RK
3187 const_arg0 = 0;
3188 const_arg1 = 0;
3189 const_arg2 = 0;
3190 mode_arg0 = VOIDmode;
3191
3192 /* Try folding our operands.
3193 Then see which ones have constant values known. */
3194
3195 fmt = GET_RTX_FORMAT (code);
3196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3197 if (fmt[i] == 'e')
3198 {
a52b023a 3199 rtx folded_arg = XEXP (x, i), const_arg;
ef4bddc2 3200 machine_mode mode_arg = GET_MODE (folded_arg);
7e7e28c7
AO
3201
3202 switch (GET_CODE (folded_arg))
3203 {
3204 case MEM:
3205 case REG:
3206 case SUBREG:
3207 const_arg = equiv_constant (folded_arg);
3208 break;
3209
3210 case CONST:
d8116890 3211 CASE_CONST_ANY:
7e7e28c7
AO
3212 case SYMBOL_REF:
3213 case LABEL_REF:
7e7e28c7
AO
3214 const_arg = folded_arg;
3215 break;
3216
7e7e28c7
AO
3217 default:
3218 folded_arg = fold_rtx (folded_arg, insn);
3219 const_arg = equiv_constant (folded_arg);
3220 break;
3221 }
7afe21cc
RK
3222
3223 /* For the first three operands, see if the operand
3224 is constant or equivalent to a constant. */
3225 switch (i)
3226 {
3227 case 0:
3228 folded_arg0 = folded_arg;
3229 const_arg0 = const_arg;
3230 mode_arg0 = mode_arg;
3231 break;
3232 case 1:
3233 folded_arg1 = folded_arg;
3234 const_arg1 = const_arg;
3235 break;
3236 case 2:
3237 const_arg2 = const_arg;
3238 break;
3239 }
3240
a52b023a
PB
3241 /* Pick the least expensive of the argument and an equivalent constant
3242 argument. */
3243 if (const_arg != 0
3244 && const_arg != folded_arg
e548c9df
AM
3245 && (COST_IN (const_arg, mode_arg, code, i)
3246 <= COST_IN (folded_arg, mode_arg, code, i))
f2fa288f 3247
8cce3d04
RS
3248 /* It's not safe to substitute the operand of a conversion
3249 operator with a constant, as the conversion's identity
f652d14b 3250 depends upon the mode of its operand. This optimization
8cce3d04 3251 is handled by the call to simplify_unary_operation. */
a52b023a
PB
3252 && (GET_RTX_CLASS (code) != RTX_UNARY
3253 || GET_MODE (const_arg) == mode_arg0
3254 || (code != ZERO_EXTEND
3255 && code != SIGN_EXTEND
3256 && code != TRUNCATE
3257 && code != FLOAT_TRUNCATE
3258 && code != FLOAT_EXTEND
3259 && code != FLOAT
3260 && code != FIX
3261 && code != UNSIGNED_FLOAT
3262 && code != UNSIGNED_FIX)))
3263 folded_arg = const_arg;
3264
3265 if (folded_arg == XEXP (x, i))
3266 continue;
7afe21cc 3267
a52b023a
PB
3268 if (insn == NULL_RTX && !changed)
3269 x = copy_rtx (x);
dec7aaab 3270 changed = true;
b8b89e7c 3271 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
2d8b0f3a 3272 }
7afe21cc 3273
a52b023a 3274 if (changed)
7afe21cc 3275 {
a52b023a
PB
3276 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3277 consistent with the order in X. */
3278 if (canonicalize_change_group (insn, x))
7afe21cc 3279 {
4e1952ab
KT
3280 std::swap (const_arg0, const_arg1);
3281 std::swap (folded_arg0, folded_arg1);
7afe21cc 3282 }
a52b023a
PB
3283
3284 apply_change_group ();
7afe21cc
RK
3285 }
3286
3287 /* If X is an arithmetic operation, see if we can simplify it. */
3288
3289 switch (GET_RTX_CLASS (code))
3290 {
ec8e098d 3291 case RTX_UNARY:
67a37737 3292 {
67a37737
RK
3293 /* We can't simplify extension ops unless we know the
3294 original mode. */
3295 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3296 && mode_arg0 == VOIDmode)
3297 break;
3298
32e9fa48 3299 new_rtx = simplify_unary_operation (code, mode,
696d76a5
MS
3300 const_arg0 ? const_arg0 : folded_arg0,
3301 mode_arg0);
67a37737 3302 }
7afe21cc 3303 break;
278a83b2 3304
ec8e098d
PB
3305 case RTX_COMPARE:
3306 case RTX_COMM_COMPARE:
7afe21cc
RK
3307 /* See what items are actually being compared and set FOLDED_ARG[01]
3308 to those values and CODE to the actual comparison code. If any are
3309 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3310 do anything if both operands are already known to be constant. */
3311
21e5076a
UB
3312 /* ??? Vector mode comparisons are not supported yet. */
3313 if (VECTOR_MODE_P (mode))
3314 break;
3315
7afe21cc
RK
3316 if (const_arg0 == 0 || const_arg1 == 0)
3317 {
3318 struct table_elt *p0, *p1;
9e6a14a4 3319 rtx true_rtx, false_rtx;
ef4bddc2 3320 machine_mode mode_arg1;
c610adec 3321
9b92bf04 3322 if (SCALAR_FLOAT_MODE_P (mode))
c610adec 3323 {
9e6a14a4 3324#ifdef FLOAT_STORE_FLAG_VALUE
555affd7 3325 true_rtx = (const_double_from_real_value
68252e27 3326 (FLOAT_STORE_FLAG_VALUE (mode), mode));
9e6a14a4
L
3327#else
3328 true_rtx = NULL_RTX;
3329#endif
d6edb99e 3330 false_rtx = CONST0_RTX (mode);
c610adec 3331 }
9e6a14a4
L
3332 else
3333 {
3334 true_rtx = const_true_rtx;
3335 false_rtx = const0_rtx;
3336 }
7afe21cc 3337
13c9910f
RS
3338 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3339 &mode_arg0, &mode_arg1);
7afe21cc 3340
13c9910f
RS
3341 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3342 what kinds of things are being compared, so we can't do
3343 anything with this comparison. */
7afe21cc
RK
3344
3345 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3346 break;
3347
75335440
KH
3348 const_arg0 = equiv_constant (folded_arg0);
3349 const_arg1 = equiv_constant (folded_arg1);
3350
0f41302f
MS
3351 /* If we do not now have two constants being compared, see
3352 if we can nevertheless deduce some things about the
3353 comparison. */
7afe21cc
RK
3354 if (const_arg0 == 0 || const_arg1 == 0)
3355 {
08678f51
HPN
3356 if (const_arg1 != NULL)
3357 {
3358 rtx cheapest_simplification;
3359 int cheapest_cost;
3360 rtx simp_result;
3361 struct table_elt *p;
3362
3363 /* See if we can find an equivalent of folded_arg0
3364 that gets us a cheaper expression, possibly a
3365 constant through simplifications. */
3366 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3367 mode_arg0);
b8698a0f 3368
08678f51
HPN
3369 if (p != NULL)
3370 {
3371 cheapest_simplification = x;
e548c9df 3372 cheapest_cost = COST (x, mode);
08678f51
HPN
3373
3374 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3375 {
3376 int cost;
3377
3378 /* If the entry isn't valid, skip it. */
3379 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3380 continue;
3381
3382 /* Try to simplify using this equivalence. */
3383 simp_result
3384 = simplify_relational_operation (code, mode,
3385 mode_arg0,
3386 p->exp,
3387 const_arg1);
3388
3389 if (simp_result == NULL)
3390 continue;
3391
e548c9df 3392 cost = COST (simp_result, mode);
08678f51
HPN
3393 if (cost < cheapest_cost)
3394 {
3395 cheapest_cost = cost;
3396 cheapest_simplification = simp_result;
3397 }
3398 }
3399
3400 /* If we have a cheaper expression now, use that
3401 and try folding it further, from the top. */
3402 if (cheapest_simplification != x)
7903b3e5
JH
3403 return fold_rtx (copy_rtx (cheapest_simplification),
3404 insn);
08678f51
HPN
3405 }
3406 }
3407
fd13313f
JH
3408 /* See if the two operands are the same. */
3409
39641489
PB
3410 if ((REG_P (folded_arg0)
3411 && REG_P (folded_arg1)
3412 && (REG_QTY (REGNO (folded_arg0))
3413 == REG_QTY (REGNO (folded_arg1))))
fd13313f 3414 || ((p0 = lookup (folded_arg0,
0516f6fe
SB
3415 SAFE_HASH (folded_arg0, mode_arg0),
3416 mode_arg0))
fd13313f 3417 && (p1 = lookup (folded_arg1,
0516f6fe
SB
3418 SAFE_HASH (folded_arg1, mode_arg0),
3419 mode_arg0))
fd13313f 3420 && p0->first_same_value == p1->first_same_value))
39641489 3421 folded_arg1 = folded_arg0;
7afe21cc
RK
3422
3423 /* If FOLDED_ARG0 is a register, see if the comparison we are
3424 doing now is either the same as we did before or the reverse
3425 (we only check the reverse if not floating-point). */
f8cfc6aa 3426 else if (REG_P (folded_arg0))
7afe21cc 3427 {
30f72379 3428 int qty = REG_QTY (REGNO (folded_arg0));
7afe21cc 3429
1bb98cec
DM
3430 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3431 {
3432 struct qty_table_elem *ent = &qty_table[qty];
3433
3434 if ((comparison_dominates_p (ent->comparison_code, code)
1eb8759b
RH
3435 || (! FLOAT_MODE_P (mode_arg0)
3436 && comparison_dominates_p (ent->comparison_code,
3437 reverse_condition (code))))
1bb98cec
DM
3438 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3439 || (const_arg1
3440 && rtx_equal_p (ent->comparison_const,
3441 const_arg1))
f8cfc6aa 3442 || (REG_P (folded_arg1)
1bb98cec 3443 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
9e6a14a4
L
3444 {
3445 if (comparison_dominates_p (ent->comparison_code, code))
3446 {
3447 if (true_rtx)
3448 return true_rtx;
3449 else
3450 break;
3451 }
3452 else
3453 return false_rtx;
3454 }
1bb98cec 3455 }
7afe21cc
RK
3456 }
3457 }
3458 }
3459
3460 /* If we are comparing against zero, see if the first operand is
3461 equivalent to an IOR with a constant. If so, we may be able to
3462 determine the result of this comparison. */
39641489 3463 if (const_arg1 == const0_rtx && !const_arg0)
7afe21cc
RK
3464 {
3465 rtx y = lookup_as_function (folded_arg0, IOR);
3466 rtx inner_const;
3467
3468 if (y != 0
3469 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
481683e1 3470 && CONST_INT_P (inner_const)
7afe21cc 3471 && INTVAL (inner_const) != 0)
39641489 3472 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
7afe21cc
RK
3473 }
3474
c6fb08ad 3475 {
bca3cc97
JJ
3476 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3477 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3478 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3479 op0, op1);
c6fb08ad 3480 }
7afe21cc
RK
3481 break;
3482
ec8e098d
PB
3483 case RTX_BIN_ARITH:
3484 case RTX_COMM_ARITH:
7afe21cc
RK
3485 switch (code)
3486 {
3487 case PLUS:
3488 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3489 with that LABEL_REF as its second operand. If so, the result is
3490 the first operand of that MINUS. This handles switches with an
3491 ADDR_DIFF_VEC table. */
3492 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3493 {
e650cbda
RK
3494 rtx y
3495 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
ddc356e8 3496 : lookup_as_function (folded_arg0, MINUS);
7afe21cc
RK
3497
3498 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
04a121a7 3499 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
7afe21cc 3500 return XEXP (y, 0);
67a37737
RK
3501
3502 /* Now try for a CONST of a MINUS like the above. */
e650cbda
RK
3503 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3504 : lookup_as_function (folded_arg0, CONST))) != 0
67a37737
RK
3505 && GET_CODE (XEXP (y, 0)) == MINUS
3506 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
04a121a7 3507 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
67a37737 3508 return XEXP (XEXP (y, 0), 0);
7afe21cc 3509 }
c2cc0778 3510
e650cbda
RK
3511 /* Likewise if the operands are in the other order. */
3512 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3513 {
3514 rtx y
3515 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
ddc356e8 3516 : lookup_as_function (folded_arg1, MINUS);
e650cbda
RK
3517
3518 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
04a121a7 3519 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
e650cbda
RK
3520 return XEXP (y, 0);
3521
3522 /* Now try for a CONST of a MINUS like the above. */
3523 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3524 : lookup_as_function (folded_arg1, CONST))) != 0
3525 && GET_CODE (XEXP (y, 0)) == MINUS
3526 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
04a121a7 3527 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
e650cbda
RK
3528 return XEXP (XEXP (y, 0), 0);
3529 }
3530
c2cc0778
RK
3531 /* If second operand is a register equivalent to a negative
3532 CONST_INT, see if we can find a register equivalent to the
3533 positive constant. Make a MINUS if so. Don't do this for
5d595063 3534 a non-negative constant since we might then alternate between
a1f300c0 3535 choosing positive and negative constants. Having the positive
5d595063
RK
3536 constant previously-used is the more common case. Be sure
3537 the resulting constant is non-negative; if const_arg1 were
3538 the smallest negative number this would overflow: depending
3539 on the mode, this would either just be the same value (and
3540 hence not save anything) or be incorrect. */
481683e1 3541 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
5d595063 3542 && INTVAL (const_arg1) < 0
4741f6ad
JL
3543 /* This used to test
3544
ddc356e8 3545 -INTVAL (const_arg1) >= 0
4741f6ad
JL
3546
3547 But The Sun V5.0 compilers mis-compiled that test. So
3548 instead we test for the problematic value in a more direct
3549 manner and hope the Sun compilers get it correct. */
5c45a8ac 3550 && INTVAL (const_arg1) !=
fecfbfa4 3551 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
f8cfc6aa 3552 && REG_P (folded_arg1))
c2cc0778 3553 {
ddc356e8 3554 rtx new_const = GEN_INT (-INTVAL (const_arg1));
c2cc0778 3555 struct table_elt *p
0516f6fe 3556 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
c2cc0778
RK
3557
3558 if (p)
3559 for (p = p->first_same_value; p; p = p->next_same_value)
f8cfc6aa 3560 if (REG_P (p->exp))
0cedb36c 3561 return simplify_gen_binary (MINUS, mode, folded_arg0,
20468884 3562 canon_reg (p->exp, NULL));
c2cc0778 3563 }
13c9910f
RS
3564 goto from_plus;
3565
3566 case MINUS:
3567 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3568 If so, produce (PLUS Z C2-C). */
5284e559 3569 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
13c9910f
RS
3570 {
3571 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
5284e559
RS
3572 if (y && poly_int_rtx_p (XEXP (y, 1)))
3573 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
20468884 3574 NULL);
13c9910f 3575 }
7afe21cc 3576
ddc356e8 3577 /* Fall through. */
7afe21cc 3578
13c9910f 3579 from_plus:
7afe21cc
RK
3580 case SMIN: case SMAX: case UMIN: case UMAX:
3581 case IOR: case AND: case XOR:
f930bfd0 3582 case MULT:
7afe21cc
RK
3583 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3584 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3585 is known to be of similar form, we may be able to replace the
3586 operation with a combined operation. This may eliminate the
3587 intermediate operation if every use is simplified in this way.
e53b6e56 3588 Note that the similar optimization done by combine.cc only works
7afe21cc
RK
3589 if the intermediate operation's result has only one reference. */
3590
f8cfc6aa 3591 if (REG_P (folded_arg0)
481683e1 3592 && const_arg1 && CONST_INT_P (const_arg1))
7afe21cc
RK
3593 {
3594 int is_shift
3595 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5bb51e1d 3596 rtx y, inner_const, new_const;
39b2ac74 3597 rtx canon_const_arg1 = const_arg1;
7afe21cc 3598 enum rtx_code associate_code;
7afe21cc 3599
824a4527 3600 if (is_shift
bb06a2d8 3601 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
824a4527
JDA
3602 || INTVAL (const_arg1) < 0))
3603 {
3604 if (SHIFT_COUNT_TRUNCATED)
abd3c800
RS
3605 canon_const_arg1 = gen_int_shift_amount
3606 (mode, (INTVAL (const_arg1)
3607 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
824a4527
JDA
3608 else
3609 break;
3610 }
3611
5bb51e1d 3612 y = lookup_as_function (folded_arg0, code);
824a4527
JDA
3613 if (y == 0)
3614 break;
824a4527
JDA
3615
3616 /* If we have compiled a statement like
3617 "if (x == (x & mask1))", and now are looking at
3618 "x & mask2", we will have a case where the first operand
3619 of Y is the same as our first operand. Unless we detect
3620 this case, an infinite loop will result. */
3621 if (XEXP (y, 0) == folded_arg0)
7afe21cc
RK
3622 break;
3623
5bb51e1d 3624 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
481683e1 3625 if (!inner_const || !CONST_INT_P (inner_const))
5bb51e1d
EB
3626 break;
3627
7afe21cc
RK
3628 /* Don't associate these operations if they are a PLUS with the
3629 same constant and it is a power of two. These might be doable
3630 with a pre- or post-increment. Similarly for two subtracts of
3631 identical powers of two with post decrement. */
3632
213d5fbc 3633 if (code == PLUS && const_arg1 == inner_const
940da324 3634 && ((HAVE_PRE_INCREMENT
146ec50f 3635 && pow2p_hwi (INTVAL (const_arg1)))
940da324 3636 || (HAVE_POST_INCREMENT
146ec50f 3637 && pow2p_hwi (INTVAL (const_arg1)))
940da324 3638 || (HAVE_PRE_DECREMENT
146ec50f 3639 && pow2p_hwi (- INTVAL (const_arg1)))
940da324 3640 || (HAVE_POST_DECREMENT
146ec50f 3641 && pow2p_hwi (- INTVAL (const_arg1)))))
7afe21cc
RK
3642 break;
3643
88057dc8
UB
3644 /* ??? Vector mode shifts by scalar
3645 shift operand are not supported yet. */
3646 if (is_shift && VECTOR_MODE_P (mode))
3647 break;
3648
824a4527 3649 if (is_shift
bb06a2d8 3650 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
824a4527
JDA
3651 || INTVAL (inner_const) < 0))
3652 {
3653 if (SHIFT_COUNT_TRUNCATED)
abd3c800
RS
3654 inner_const = gen_int_shift_amount
3655 (mode, (INTVAL (inner_const)
3656 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
824a4527
JDA
3657 else
3658 break;
3659 }
3660
7afe21cc 3661 /* Compute the code used to compose the constants. For example,
f930bfd0 3662 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
7afe21cc 3663
f930bfd0 3664 associate_code = (is_shift || code == MINUS ? PLUS : code);
7afe21cc
RK
3665
3666 new_const = simplify_binary_operation (associate_code, mode,
39b2ac74
JJ
3667 canon_const_arg1,
3668 inner_const);
7afe21cc
RK
3669
3670 if (new_const == 0)
3671 break;
3672
3673 /* If we are associating shift operations, don't let this
4908e508
RS
3674 produce a shift of the size of the object or larger.
3675 This could occur when we follow a sign-extend by a right
3676 shift on a machine that does a sign-extend as a pair
3677 of shifts. */
7afe21cc 3678
824a4527 3679 if (is_shift
481683e1 3680 && CONST_INT_P (new_const)
bb06a2d8 3681 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
4908e508
RS
3682 {
3683 /* As an exception, we can turn an ASHIFTRT of this
3684 form into a shift of the number of bits - 1. */
3685 if (code == ASHIFTRT)
abd3c800
RS
3686 new_const = gen_int_shift_amount
3687 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
824a4527
JDA
3688 else if (!side_effects_p (XEXP (y, 0)))
3689 return CONST0_RTX (mode);
4908e508
RS
3690 else
3691 break;
3692 }
7afe21cc
RK
3693
3694 y = copy_rtx (XEXP (y, 0));
3695
3696 /* If Y contains our first operand (the most common way this
3697 can happen is if Y is a MEM), we would do into an infinite
3698 loop if we tried to fold it. So don't in that case. */
3699
3700 if (! reg_mentioned_p (folded_arg0, y))
3701 y = fold_rtx (y, insn);
3702
0cedb36c 3703 return simplify_gen_binary (code, mode, y, new_const);
7afe21cc 3704 }
e9a25f70
JL
3705 break;
3706
f930bfd0
JW
3707 case DIV: case UDIV:
3708 /* ??? The associative optimization performed immediately above is
3709 also possible for DIV and UDIV using associate_code of MULT.
3710 However, we would need extra code to verify that the
3711 multiplication does not overflow, that is, there is no overflow
3712 in the calculation of new_const. */
3713 break;
3714
e9a25f70
JL
3715 default:
3716 break;
7afe21cc
RK
3717 }
3718
32e9fa48 3719 new_rtx = simplify_binary_operation (code, mode,
7afe21cc
RK
3720 const_arg0 ? const_arg0 : folded_arg0,
3721 const_arg1 ? const_arg1 : folded_arg1);
3722 break;
3723
ec8e098d 3724 case RTX_OBJ:
7afe21cc
RK
3725 /* (lo_sum (high X) X) is simply X. */
3726 if (code == LO_SUM && const_arg0 != 0
3727 && GET_CODE (const_arg0) == HIGH
3728 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3729 return const_arg1;
3730 break;
3731
ec8e098d
PB
3732 case RTX_TERNARY:
3733 case RTX_BITFIELD_OPS:
32e9fa48 3734 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
7afe21cc
RK
3735 const_arg0 ? const_arg0 : folded_arg0,
3736 const_arg1 ? const_arg1 : folded_arg1,
3737 const_arg2 ? const_arg2 : XEXP (x, 2));
3738 break;
ee5332b8 3739
ec8e098d
PB
3740 default:
3741 break;
7afe21cc
RK
3742 }
3743
32e9fa48 3744 return new_rtx ? new_rtx : x;
7afe21cc
RK
3745}
3746\f
3747/* Return a constant value currently equivalent to X.
3748 Return 0 if we don't know one. */
3749
3750static rtx
7080f735 3751equiv_constant (rtx x)
7afe21cc 3752{
f8cfc6aa 3753 if (REG_P (x)
1bb98cec
DM
3754 && REGNO_QTY_VALID_P (REGNO (x)))
3755 {
3756 int x_q = REG_QTY (REGNO (x));
3757 struct qty_table_elem *x_ent = &qty_table[x_q];
3758
3759 if (x_ent->const_rtx)
4de249d9 3760 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
1bb98cec 3761 }
7afe21cc 3762
2ce5e1b4 3763 if (x == 0 || CONSTANT_P (x))
7afe21cc
RK
3764 return x;
3765
a52b023a
PB
3766 if (GET_CODE (x) == SUBREG)
3767 {
ef4bddc2
RS
3768 machine_mode mode = GET_MODE (x);
3769 machine_mode imode = GET_MODE (SUBREG_REG (x));
32e9fa48 3770 rtx new_rtx;
a52b023a
PB
3771
3772 /* See if we previously assigned a constant value to this SUBREG. */
32e9fa48 3773 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
807e902e 3774 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
0c12fc9b
RS
3775 || (NUM_POLY_INT_COEFFS > 1
3776 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
32e9fa48
KG
3777 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3778 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3779 return new_rtx;
a52b023a 3780
f5f8d79d
EB
3781 /* If we didn't and if doing so makes sense, see if we previously
3782 assigned a constant value to the enclosing word mode SUBREG. */
cf098191
RS
3783 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3784 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
f5f8d79d 3785 {
91914e56
RS
3786 poly_int64 byte = (SUBREG_BYTE (x)
3787 - subreg_lowpart_offset (mode, word_mode));
3788 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
f5f8d79d
EB
3789 {
3790 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3791 new_rtx = lookup_as_function (y, CONST_INT);
3792 if (new_rtx)
3793 return gen_lowpart (mode, new_rtx);
3794 }
3795 }
3796
7cb6668a
MI
3797 /* Otherwise see if we already have a constant for the inner REG,
3798 and if that is enough to calculate an equivalent constant for
3799 the subreg. Note that the upper bits of paradoxical subregs
3800 are undefined, so they cannot be said to equal anything. */
a52b023a 3801 if (REG_P (SUBREG_REG (x))
03a95621 3802 && !paradoxical_subreg_p (x)
32e9fa48 3803 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
f5f8d79d 3804 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
a52b023a
PB
3805
3806 return 0;
3807 }
3808
3809 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3810 the hash table in case its value was seen before. */
fc3ffe83 3811
3c0cb5de 3812 if (MEM_P (x))
fc3ffe83
RK
3813 {
3814 struct table_elt *elt;
3815
a52b023a 3816 x = avoid_constant_pool_reference (x);
fc3ffe83
RK
3817 if (CONSTANT_P (x))
3818 return x;
3819
0516f6fe 3820 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
fc3ffe83
RK
3821 if (elt == 0)
3822 return 0;
3823
3824 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3825 if (elt->is_const && CONSTANT_P (elt->exp))
3826 return elt->exp;
3827 }
3828
7afe21cc
RK
3829 return 0;
3830}
3831\f
0129d079
SB
3832/* Given INSN, a jump insn, TAKEN indicates if we are following the
3833 "taken" branch.
7afe21cc
RK
3834
3835 In certain cases, this can cause us to add an equivalence. For example,
278a83b2 3836 if we are following the taken case of
7080f735 3837 if (i == 2)
7afe21cc
RK
3838 we can add the fact that `i' and '2' are now equivalent.
3839
3840 In any case, we can record that this comparison was passed. If the same
3841 comparison is seen later, we will know its value. */
3842
3843static void
20468884 3844record_jump_equiv (rtx_insn *insn, bool taken)
7afe21cc
RK
3845{
3846 int cond_known_true;
3847 rtx op0, op1;
7f1c097d 3848 rtx set;
ef4bddc2 3849 machine_mode mode, mode0, mode1;
7afe21cc
RK
3850 enum rtx_code code;
3851
3852 /* Ensure this is the right kind of insn. */
0129d079
SB
3853 gcc_assert (any_condjump_p (insn));
3854
7f1c097d 3855 set = pc_set (insn);
7afe21cc
RK
3856
3857 /* See if this jump condition is known true or false. */
3858 if (taken)
7f1c097d 3859 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
7afe21cc 3860 else
7f1c097d 3861 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
7afe21cc
RK
3862
3863 /* Get the type of comparison being done and the operands being compared.
3864 If we had to reverse a non-equality condition, record that fact so we
3865 know that it isn't valid for floating-point. */
7f1c097d
JH
3866 code = GET_CODE (XEXP (SET_SRC (set), 0));
3867 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3868 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
7afe21cc 3869
bd1cd0d0 3870 /* If fold_rtx returns NULL_RTX, there's nothing to record. */
3f1d32a5
JL
3871 if (op0 == NULL_RTX || op1 == NULL_RTX)
3872 return;
3873
13c9910f 3874 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
7afe21cc
RK
3875 if (! cond_known_true)
3876 {
261efdef 3877 code = reversed_comparison_code_parts (code, op0, op1, insn);
1eb8759b
RH
3878
3879 /* Don't remember if we can't find the inverse. */
3880 if (code == UNKNOWN)
3881 return;
7afe21cc
RK
3882 }
3883
3884 /* The mode is the mode of the non-constant. */
13c9910f
RS
3885 mode = mode0;
3886 if (mode1 != VOIDmode)
3887 mode = mode1;
7afe21cc 3888
dec7aaab 3889 record_jump_cond (code, mode, op0, op1);
7afe21cc
RK
3890}
3891
794693c0
RH
3892/* Yet another form of subreg creation. In this case, we want something in
3893 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3894
3895static rtx
ef4bddc2 3896record_jump_cond_subreg (machine_mode mode, rtx op)
794693c0 3897{
ef4bddc2 3898 machine_mode op_mode = GET_MODE (op);
794693c0
RH
3899 if (op_mode == mode || op_mode == VOIDmode)
3900 return op;
3901 return lowpart_subreg (mode, op, op_mode);
3902}
3903
7afe21cc 3904/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
7afe21cc
RK
3905 Make any useful entries we can with that information. Called from
3906 above function and called recursively. */
3907
3908static void
dec7aaab 3909record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0, rtx op1)
7afe21cc 3910{
2197a88a 3911 unsigned op0_hash, op1_hash;
e428d738 3912 int op0_in_memory, op1_in_memory;
7afe21cc
RK
3913 struct table_elt *op0_elt, *op1_elt;
3914
3915 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3916 we know that they are also equal in the smaller mode (this is also
3917 true for all smaller modes whether or not there is a SUBREG, but
ac7ef8d5 3918 is not worth testing for with no SUBREG). */
7afe21cc 3919
2e794ee8 3920 /* Note that GET_MODE (op0) may not equal MODE. */
6a4bdc79 3921 if (code == EQ && paradoxical_subreg_p (op0))
7afe21cc 3922 {
ef4bddc2 3923 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3924 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3925 if (tem)
dec7aaab 3926 record_jump_cond (code, mode, SUBREG_REG (op0), tem);
7afe21cc
RK
3927 }
3928
6a4bdc79 3929 if (code == EQ && paradoxical_subreg_p (op1))
7afe21cc 3930 {
ef4bddc2 3931 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3932 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3933 if (tem)
dec7aaab 3934 record_jump_cond (code, mode, SUBREG_REG (op1), tem);
7afe21cc
RK
3935 }
3936
278a83b2 3937 /* Similarly, if this is an NE comparison, and either is a SUBREG
7afe21cc
RK
3938 making a smaller mode, we know the whole thing is also NE. */
3939
2e794ee8
RS
3940 /* Note that GET_MODE (op0) may not equal MODE;
3941 if we test MODE instead, we can get an infinite recursion
3942 alternating between two modes each wider than MODE. */
3943
bd4288c0
RS
3944 if (code == NE
3945 && partial_subreg_p (op0)
3946 && subreg_lowpart_p (op0))
7afe21cc 3947 {
ef4bddc2 3948 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
794693c0
RH
3949 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3950 if (tem)
dec7aaab 3951 record_jump_cond (code, mode, SUBREG_REG (op0), tem);
7afe21cc
RK
3952 }
3953
bd4288c0
RS
3954 if (code == NE
3955 && partial_subreg_p (op1)
3956 && subreg_lowpart_p (op1))
7afe21cc 3957 {
ef4bddc2 3958 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
794693c0
RH
3959 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3960 if (tem)
dec7aaab 3961 record_jump_cond (code, mode, SUBREG_REG (op1), tem);
7afe21cc
RK
3962 }
3963
3964 /* Hash both operands. */
3965
3966 do_not_record = 0;
3967 hash_arg_in_memory = 0;
2197a88a 3968 op0_hash = HASH (op0, mode);
7afe21cc 3969 op0_in_memory = hash_arg_in_memory;
7afe21cc
RK
3970
3971 if (do_not_record)
3972 return;
3973
3974 do_not_record = 0;
3975 hash_arg_in_memory = 0;
2197a88a 3976 op1_hash = HASH (op1, mode);
7afe21cc 3977 op1_in_memory = hash_arg_in_memory;
278a83b2 3978
7afe21cc
RK
3979 if (do_not_record)
3980 return;
3981
3982 /* Look up both operands. */
2197a88a
RK
3983 op0_elt = lookup (op0, op0_hash, mode);
3984 op1_elt = lookup (op1, op1_hash, mode);
7afe21cc 3985
af3869c1
RK
3986 /* If both operands are already equivalent or if they are not in the
3987 table but are identical, do nothing. */
3988 if ((op0_elt != 0 && op1_elt != 0
3989 && op0_elt->first_same_value == op1_elt->first_same_value)
3990 || op0 == op1 || rtx_equal_p (op0, op1))
3991 return;
3992
7afe21cc 3993 /* If we aren't setting two things equal all we can do is save this
b2796a4b
RK
3994 comparison. Similarly if this is floating-point. In the latter
3995 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3996 If we record the equality, we might inadvertently delete code
3997 whose intent was to change -0 to +0. */
3998
cbf6a543 3999 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
7afe21cc 4000 {
1bb98cec
DM
4001 struct qty_table_elem *ent;
4002 int qty;
4003
dec7aaab
UB
4004 /* If OP0 is not a register, or if OP1 is neither a register
4005 or constant, we can't do anything. */
7afe21cc 4006
f8cfc6aa 4007 if (!REG_P (op1))
7afe21cc
RK
4008 op1 = equiv_constant (op1);
4009
dec7aaab 4010 if (!REG_P (op0) || op1 == 0)
7afe21cc
RK
4011 return;
4012
4013 /* Put OP0 in the hash table if it isn't already. This gives it a
4014 new quantity number. */
4015 if (op0_elt == 0)
4016 {
dec7aaab 4017 if (insert_regs (op0, NULL, false))
7afe21cc
RK
4018 {
4019 rehash_using_reg (op0);
2197a88a 4020 op0_hash = HASH (op0, mode);
2bb81c86
RK
4021
4022 /* If OP0 is contained in OP1, this changes its hash code
4023 as well. Faster to rehash than to check, except
4024 for the simple case of a constant. */
4025 if (! CONSTANT_P (op1))
2197a88a 4026 op1_hash = HASH (op1,mode);
7afe21cc
RK
4027 }
4028
9714cf43 4029 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4030 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4031 }
4032
1bb98cec
DM
4033 qty = REG_QTY (REGNO (op0));
4034 ent = &qty_table[qty];
4035
4036 ent->comparison_code = code;
f8cfc6aa 4037 if (REG_P (op1))
7afe21cc 4038 {
5d5ea909 4039 /* Look it up again--in case op0 and op1 are the same. */
2197a88a 4040 op1_elt = lookup (op1, op1_hash, mode);
5d5ea909 4041
7afe21cc
RK
4042 /* Put OP1 in the hash table so it gets a new quantity number. */
4043 if (op1_elt == 0)
4044 {
dec7aaab 4045 if (insert_regs (op1, NULL, false))
7afe21cc
RK
4046 {
4047 rehash_using_reg (op1);
2197a88a 4048 op1_hash = HASH (op1, mode);
7afe21cc
RK
4049 }
4050
9714cf43 4051 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4052 op1_elt->in_memory = op1_in_memory;
7afe21cc
RK
4053 }
4054
1bb98cec
DM
4055 ent->comparison_const = NULL_RTX;
4056 ent->comparison_qty = REG_QTY (REGNO (op1));
7afe21cc
RK
4057 }
4058 else
4059 {
1bb98cec
DM
4060 ent->comparison_const = op1;
4061 ent->comparison_qty = -1;
7afe21cc
RK
4062 }
4063
4064 return;
4065 }
4066
eb5ad42a
RS
4067 /* If either side is still missing an equivalence, make it now,
4068 then merge the equivalences. */
7afe21cc 4069
7afe21cc
RK
4070 if (op0_elt == 0)
4071 {
dec7aaab 4072 if (insert_regs (op0, NULL, false))
7afe21cc
RK
4073 {
4074 rehash_using_reg (op0);
2197a88a 4075 op0_hash = HASH (op0, mode);
7afe21cc
RK
4076 }
4077
9714cf43 4078 op0_elt = insert (op0, NULL, op0_hash, mode);
7afe21cc 4079 op0_elt->in_memory = op0_in_memory;
7afe21cc
RK
4080 }
4081
4082 if (op1_elt == 0)
4083 {
dec7aaab 4084 if (insert_regs (op1, NULL, false))
7afe21cc
RK
4085 {
4086 rehash_using_reg (op1);
2197a88a 4087 op1_hash = HASH (op1, mode);
7afe21cc
RK
4088 }
4089
9714cf43 4090 op1_elt = insert (op1, NULL, op1_hash, mode);
7afe21cc 4091 op1_elt->in_memory = op1_in_memory;
7afe21cc 4092 }
eb5ad42a
RS
4093
4094 merge_equiv_classes (op0_elt, op1_elt);
7afe21cc
RK
4095}
4096\f
4097/* CSE processing for one instruction.
7b02f4e0
SB
4098
4099 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4100 but the few that "leak through" are cleaned up by cse_insn, and complex
4101 addressing modes are often formed here.
4102
4103 The main function is cse_insn, and between here and that function
4104 a couple of helper functions is defined to keep the size of cse_insn
4105 within reasonable proportions.
4106
4107 Data is shared between the main and helper functions via STRUCT SET,
4108 that contains all data related for every set in the instruction that
4109 is being processed.
4110
4111 Note that cse_main processes all sets in the instruction. Most
4112 passes in GCC only process simple SET insns or single_set insns, but
4113 CSE processes insns with multiple sets as well. */
7afe21cc
RK
4114
4115/* Data on one SET contained in the instruction. */
4116
4117struct set
4118{
4119 /* The SET rtx itself. */
4120 rtx rtl;
4121 /* The SET_SRC of the rtx (the original value, if it is changing). */
4122 rtx src;
4123 /* The hash-table element for the SET_SRC of the SET. */
4124 struct table_elt *src_elt;
2197a88a
RK
4125 /* Hash value for the SET_SRC. */
4126 unsigned src_hash;
4127 /* Hash value for the SET_DEST. */
4128 unsigned dest_hash;
7afe21cc
RK
4129 /* The SET_DEST, with SUBREG, etc., stripped. */
4130 rtx inner_dest;
278a83b2 4131 /* Nonzero if the SET_SRC is in memory. */
7afe21cc 4132 char src_in_memory;
7afe21cc
RK
4133 /* Nonzero if the SET_SRC contains something
4134 whose value cannot be predicted and understood. */
4135 char src_volatile;
b14af304
PL
4136 /* Original machine mode, in case it becomes a CONST_INT. */
4137 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
2197a88a
RK
4138 /* Hash value of constant equivalent for SET_SRC. */
4139 unsigned src_const_hash;
34e82342
RB
4140 /* A constant equivalent for SET_SRC, if any. */
4141 rtx src_const;
7afe21cc
RK
4142 /* Table entry for constant equivalent for SET_SRC, if any. */
4143 struct table_elt *src_const_elt;
05c433f3
PB
4144 /* Table entry for the destination address. */
4145 struct table_elt *dest_addr_elt;
7afe21cc 4146};
7b02f4e0
SB
4147\f
4148/* Special handling for (set REG0 REG1) where REG0 is the
4149 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4150 be used in the sequel, so (if easily done) change this insn to
4151 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4152 that computed their value. Then REG1 will become a dead store
4153 and won't cloud the situation for later optimizations.
4154
4155 Do not make this change if REG1 is a hard register, because it will
4156 then be used in the sequel and we may be changing a two-operand insn
4157 into a three-operand insn.
4158
4159 This is the last transformation that cse_insn will try to do. */
7afe21cc
RK
4160
4161static void
20468884 4162try_back_substitute_reg (rtx set, rtx_insn *insn)
7afe21cc 4163{
7b02f4e0
SB
4164 rtx dest = SET_DEST (set);
4165 rtx src = SET_SRC (set);
7afe21cc 4166
7b02f4e0
SB
4167 if (REG_P (dest)
4168 && REG_P (src) && ! HARD_REGISTER_P (src)
4169 && REGNO_QTY_VALID_P (REGNO (src)))
4170 {
4171 int src_q = REG_QTY (REGNO (src));
4172 struct qty_table_elem *src_ent = &qty_table[src_q];
7afe21cc 4173
7b02f4e0
SB
4174 if (src_ent->first_reg == REGNO (dest))
4175 {
4176 /* Scan for the previous nonnote insn, but stop at a basic
4177 block boundary. */
20468884
DM
4178 rtx_insn *prev = insn;
4179 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
7b02f4e0
SB
4180 do
4181 {
4182 prev = PREV_INSN (prev);
4183 }
4184 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
7afe21cc 4185
7b02f4e0
SB
4186 /* Do not swap the registers around if the previous instruction
4187 attaches a REG_EQUIV note to REG1.
7afe21cc 4188
7b02f4e0
SB
4189 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4190 from the pseudo that originally shadowed an incoming argument
4191 to another register. Some uses of REG_EQUIV might rely on it
4192 being attached to REG1 rather than REG2.
7afe21cc 4193
7b02f4e0
SB
4194 This section previously turned the REG_EQUIV into a REG_EQUAL
4195 note. We cannot do that because REG_EQUIV may provide an
4196 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4197 if (NONJUMP_INSN_P (prev)
4198 && GET_CODE (PATTERN (prev)) == SET
4199 && SET_DEST (PATTERN (prev)) == src
4200 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4201 {
4202 rtx note;
4203
4204 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4205 validate_change (insn, &SET_DEST (set), src, 1);
4206 validate_change (insn, &SET_SRC (set), dest, 1);
4207 apply_change_group ();
4208
4209 /* If INSN has a REG_EQUAL note, and this note mentions
4210 REG0, then we must delete it, because the value in
4211 REG0 has changed. If the note's value is REG1, we must
4212 also delete it because that is now this insn's dest. */
4213 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4214 if (note != 0
4215 && (reg_mentioned_p (dest, XEXP (note, 0))
4216 || rtx_equal_p (src, XEXP (note, 0))))
4217 remove_note (insn, note);
966a140d
JL
4218
4219 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4220 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4221 if (note != 0)
4222 {
4223 remove_note (insn, note);
4224 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4225 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4226 }
7b02f4e0 4227 }
f474c6f8 4228 }
f1e7c95f 4229 }
7b02f4e0 4230}
68b48f3f
TC
4231
4232/* Add an entry containing RTL X into SETS. */
4233static inline void
4234add_to_set (vec<struct set> *sets, rtx x)
4235{
4236 struct set entry = {};
4237 entry.rtl = x;
4238 sets->safe_push (entry);
4239}
4240
7b02f4e0
SB
4241/* Record all the SETs in this instruction into SETS_PTR,
4242 and return the number of recorded sets. */
4243static int
68b48f3f 4244find_sets_in_insn (rtx_insn *insn, vec<struct set> *psets)
7b02f4e0 4245{
7b02f4e0 4246 rtx x = PATTERN (insn);
f1e7c95f 4247
7afe21cc
RK
4248 if (GET_CODE (x) == SET)
4249 {
7afe21cc
RK
4250 /* Ignore SETs that are unconditional jumps.
4251 They never need cse processing, so this does not hurt.
4252 The reason is not efficiency but rather
4253 so that we can test at the end for instructions
4254 that have been simplified to unconditional jumps
4255 and not be misled by unchanged instructions
4256 that were unconditional jumps to begin with. */
4257 if (SET_DEST (x) == pc_rtx
4258 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4259 ;
7afe21cc
RK
4260 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4261 The hard function value register is used only once, to copy to
7b02f4e0 4262 someplace else, so it isn't worth cse'ing. */
7afe21cc 4263 else if (GET_CODE (SET_SRC (x)) == CALL)
7b02f4e0 4264 ;
68b48f3f 4265 else if (GET_CODE (SET_SRC (x)) == CONST_VECTOR
c2c84384
TC
4266 && GET_MODE_CLASS (GET_MODE (SET_SRC (x))) != MODE_VECTOR_BOOL
4267 /* Prevent duplicates from being generated if the type is a V1
4268 type and a subreg. Folding this will result in the same
4269 element as folding x itself. */
4270 && !(SUBREG_P (SET_DEST (x))
4271 && known_eq (GET_MODE_NUNITS (GET_MODE (SET_SRC (x))), 1)))
68b48f3f
TC
4272 {
4273 /* First register the vector itself. */
4274 add_to_set (psets, x);
4275 rtx src = SET_SRC (x);
4276 /* Go over the constants of the CONST_VECTOR in forward order, to
4277 put them in the same order in the SETS array. */
4278 for (unsigned i = 0; i < const_vector_encoded_nelts (src) ; i++)
4279 {
4280 /* These are templates and don't actually get emitted but are
4281 used to tell CSE how to get to a particular constant. */
4282 rtx y = simplify_gen_vec_select (SET_DEST (x), i);
4283 gcc_assert (y);
4284 add_to_set (psets, gen_rtx_SET (y, CONST_VECTOR_ELT (src, i)));
4285 }
4286 }
7afe21cc 4287 else
68b48f3f 4288 add_to_set (psets, x);
7afe21cc
RK
4289 }
4290 else if (GET_CODE (x) == PARALLEL)
4291 {
7b02f4e0 4292 int i, lim = XVECLEN (x, 0);
278a83b2 4293
6c4d60f8 4294 /* Go over the expressions of the PARALLEL in forward order, to
7b02f4e0 4295 put them in the same order in the SETS array. */
7afe21cc
RK
4296 for (i = 0; i < lim; i++)
4297 {
b3694847 4298 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
4299 if (GET_CODE (y) == SET)
4300 {
7722328e
RK
4301 /* As above, we ignore unconditional jumps and call-insns and
4302 ignore the result of apply_change_group. */
7b02f4e0
SB
4303 if (SET_DEST (y) == pc_rtx
4304 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4305 ;
4306 else if (GET_CODE (SET_SRC (y)) == CALL)
7afe21cc
RK
4307 ;
4308 else
68b48f3f 4309 add_to_set (psets, y);
7afe21cc 4310 }
7afe21cc
RK
4311 }
4312 }
7b02f4e0 4313
68b48f3f 4314 return psets->length ();
7b02f4e0
SB
4315}
4316\f
6380a82e
EB
4317/* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4318
4319static void
4320canon_asm_operands (rtx x, rtx_insn *insn)
4321{
4322 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4323 {
4324 rtx input = ASM_OPERANDS_INPUT (x, i);
4325 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4326 {
4327 input = canon_reg (input, insn);
4328 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4329 }
4330 }
4331}
4332
7b02f4e0 4333/* Where possible, substitute every register reference in the N_SETS
026c3cfd 4334 number of SETS in INSN with the canonical register.
7b02f4e0
SB
4335
4336 Register canonicalization propagatest the earliest register (i.e.
4337 one that is set before INSN) with the same value. This is a very
4338 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4339 to RTL. For instance, a CONST for an address is usually expanded
4340 multiple times to loads into different registers, thus creating many
4341 subexpressions of the form:
4342
4343 (set (reg1) (some_const))
4344 (set (mem (... reg1 ...) (thing)))
4345 (set (reg2) (some_const))
4346 (set (mem (... reg2 ...) (thing)))
4347
4348 After canonicalizing, the code takes the following form:
4349
4350 (set (reg1) (some_const))
4351 (set (mem (... reg1 ...) (thing)))
4352 (set (reg2) (some_const))
4353 (set (mem (... reg1 ...) (thing)))
4354
4355 The set to reg2 is now trivially dead, and the memory reference (or
4356 address, or whatever) may be a candidate for further CSEing.
4357
4358 In this function, the result of apply_change_group can be ignored;
4359 see canon_reg. */
4360
4361static void
68b48f3f 4362canonicalize_insn (rtx_insn *insn, vec<struct set> *psets)
7b02f4e0 4363{
68b48f3f
TC
4364 vec<struct set> sets = *psets;
4365 int n_sets = sets.length ();
7b02f4e0
SB
4366 rtx tem;
4367 rtx x = PATTERN (insn);
4368 int i;
4369
4370 if (CALL_P (insn))
4371 {
4372 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
e384e6b5
BS
4373 if (GET_CODE (XEXP (tem, 0)) != SET)
4374 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
7b02f4e0
SB
4375 }
4376
4377 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4378 {
4379 canon_reg (SET_SRC (x), insn);
4380 apply_change_group ();
4381 fold_rtx (SET_SRC (x), insn);
4382 }
7afe21cc
RK
4383 else if (GET_CODE (x) == CLOBBER)
4384 {
7b02f4e0
SB
4385 /* If we clobber memory, canon the address.
4386 This does nothing when a register is clobbered
4387 because we have already invalidated the reg. */
3c0cb5de 4388 if (MEM_P (XEXP (x, 0)))
6fb5fa3c 4389 canon_reg (XEXP (x, 0), insn);
7afe21cc 4390 }
7afe21cc 4391 else if (GET_CODE (x) == USE
f8cfc6aa 4392 && ! (REG_P (XEXP (x, 0))
7afe21cc 4393 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
7b02f4e0 4394 /* Canonicalize a USE of a pseudo register or memory location. */
b1ba284c
EB
4395 canon_reg (x, insn);
4396 else if (GET_CODE (x) == ASM_OPERANDS)
6380a82e 4397 canon_asm_operands (x, insn);
7afe21cc
RK
4398 else if (GET_CODE (x) == CALL)
4399 {
4400 canon_reg (x, insn);
77fa0940 4401 apply_change_group ();
7afe21cc
RK
4402 fold_rtx (x, insn);
4403 }
b5b8b0ac
AO
4404 else if (DEBUG_INSN_P (insn))
4405 canon_reg (PATTERN (insn), insn);
7b02f4e0
SB
4406 else if (GET_CODE (x) == PARALLEL)
4407 {
4408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4409 {
4410 rtx y = XVECEXP (x, 0, i);
4411 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4412 {
4413 canon_reg (SET_SRC (y), insn);
4414 apply_change_group ();
4415 fold_rtx (SET_SRC (y), insn);
4416 }
4417 else if (GET_CODE (y) == CLOBBER)
4418 {
4419 if (MEM_P (XEXP (y, 0)))
4420 canon_reg (XEXP (y, 0), insn);
4421 }
4422 else if (GET_CODE (y) == USE
4423 && ! (REG_P (XEXP (y, 0))
4424 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4425 canon_reg (y, insn);
6380a82e
EB
4426 else if (GET_CODE (y) == ASM_OPERANDS)
4427 canon_asm_operands (y, insn);
7b02f4e0
SB
4428 else if (GET_CODE (y) == CALL)
4429 {
4430 canon_reg (y, insn);
4431 apply_change_group ();
4432 fold_rtx (y, insn);
4433 }
4434 }
4435 }
7afe21cc 4436
92f9aa51 4437 if (n_sets == 1 && REG_NOTES (insn) != 0
7b02f4e0 4438 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
7b668f9e 4439 {
7b02f4e0
SB
4440 /* We potentially will process this insn many times. Therefore,
4441 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4442 unique set in INSN.
4443
4444 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4445 because cse_insn handles those specially. */
4446 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4447 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4448 remove_note (insn, tem);
4449 else
4450 {
4451 canon_reg (XEXP (tem, 0), insn);
4452 apply_change_group ();
4453 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4454 df_notes_rescan (insn);
4455 }
7b668f9e 4456 }
7afe21cc
RK
4457
4458 /* Canonicalize sources and addresses of destinations.
4459 We do this in a separate pass to avoid problems when a MATCH_DUP is
4460 present in the insn pattern. In that case, we want to ensure that
4461 we don't break the duplicate nature of the pattern. So we will replace
4462 both operands at the same time. Otherwise, we would fail to find an
4463 equivalent substitution in the loop calling validate_change below.
7afe21cc
RK
4464
4465 We used to suppress canonicalization of DEST if it appears in SRC,
77fa0940 4466 but we don't do this any more. */
7afe21cc
RK
4467
4468 for (i = 0; i < n_sets; i++)
4469 {
4470 rtx dest = SET_DEST (sets[i].rtl);
4471 rtx src = SET_SRC (sets[i].rtl);
32e9fa48 4472 rtx new_rtx = canon_reg (src, insn);
7afe21cc 4473
32e9fa48 4474 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
7afe21cc 4475
46d096a3 4476 if (GET_CODE (dest) == ZERO_EXTRACT)
7afe21cc
RK
4477 {
4478 validate_change (insn, &XEXP (dest, 1),
77fa0940 4479 canon_reg (XEXP (dest, 1), insn), 1);
7afe21cc 4480 validate_change (insn, &XEXP (dest, 2),
77fa0940 4481 canon_reg (XEXP (dest, 2), insn), 1);
7afe21cc
RK
4482 }
4483
46d096a3 4484 while (GET_CODE (dest) == SUBREG
7afe21cc 4485 || GET_CODE (dest) == ZERO_EXTRACT
46d096a3 4486 || GET_CODE (dest) == STRICT_LOW_PART)
7afe21cc
RK
4487 dest = XEXP (dest, 0);
4488
3c0cb5de 4489 if (MEM_P (dest))
7afe21cc
RK
4490 canon_reg (dest, insn);
4491 }
4492
77fa0940
RK
4493 /* Now that we have done all the replacements, we can apply the change
4494 group and see if they all work. Note that this will cause some
4495 canonicalizations that would have worked individually not to be applied
4496 because some other canonicalization didn't work, but this should not
278a83b2 4497 occur often.
7722328e
RK
4498
4499 The result of apply_change_group can be ignored; see canon_reg. */
77fa0940
RK
4500
4501 apply_change_group ();
7b02f4e0
SB
4502}
4503\f
4504/* Main function of CSE.
4505 First simplify sources and addresses of all assignments
4506 in the instruction, using previously-computed equivalents values.
4507 Then install the new sources and destinations in the table
4508 of available values. */
4509
4510static void
20468884 4511cse_insn (rtx_insn *insn)
7b02f4e0
SB
4512{
4513 rtx x = PATTERN (insn);
4514 int i;
4515 rtx tem;
4516 int n_sets = 0;
4517
4518 rtx src_eqv = 0;
4519 struct table_elt *src_eqv_elt = 0;
4520 int src_eqv_volatile = 0;
4521 int src_eqv_in_memory = 0;
4522 unsigned src_eqv_hash = 0;
4523
7b02f4e0 4524 this_insn = insn;
7b02f4e0
SB
4525
4526 /* Find all regs explicitly clobbered in this insn,
4527 to ensure they are not replaced with any other regs
4528 elsewhere in this insn. */
4529 invalidate_from_sets_and_clobbers (insn);
4530
4531 /* Record all the SETs in this instruction. */
68b48f3f
TC
4532 auto_vec<struct set, 8> sets;
4533 n_sets = find_sets_in_insn (insn, (vec<struct set>*)&sets);
7b02f4e0
SB
4534
4535 /* Substitute the canonical register where possible. */
68b48f3f 4536 canonicalize_insn (insn, (vec<struct set>*)&sets);
7b02f4e0
SB
4537
4538 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
7f7379f6
KV
4539 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4540 latter condition is necessary because SRC_EQV is handled specially for
4541 this case, and if it isn't set, then there will be no equivalence
4542 for the destination. */
7b02f4e0 4543 if (n_sets == 1 && REG_NOTES (insn) != 0
1e928e07 4544 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
7f7379f6 4545 {
7f7379f6 4546
1e928e07
KV
4547 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4548 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4549 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4550 src_eqv = copy_rtx (XEXP (tem, 0));
7f7379f6
KV
4551 /* If DEST is of the form ZERO_EXTACT, as in:
4552 (set (zero_extract:SI (reg:SI 119)
4553 (const_int 16 [0x10])
4554 (const_int 16 [0x10]))
4555 (const_int 51154 [0xc7d2]))
4556 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4557 point. Note that this is different from SRC_EQV. We can however
4558 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4559 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
fa24123b 4560 && CONST_INT_P (XEXP (tem, 0))
7f7379f6
KV
4561 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4562 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4563 {
4564 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
c7ad039d
RS
4565 /* This is the mode of XEXP (tem, 0) as well. */
4566 scalar_int_mode dest_mode
4567 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
7f7379f6
KV
4568 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4569 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
fa24123b 4570 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
7f7379f6
KV
4571 HOST_WIDE_INT mask;
4572 unsigned int shift;
4573 if (BITS_BIG_ENDIAN)
c7ad039d
RS
4574 shift = (GET_MODE_PRECISION (dest_mode)
4575 - INTVAL (pos) - INTVAL (width));
7f7379f6
KV
4576 else
4577 shift = INTVAL (pos);
4578 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
dd4786fe 4579 mask = HOST_WIDE_INT_M1;
7f7379f6 4580 else
fecfbfa4 4581 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
7f7379f6
KV
4582 val = (val >> shift) & mask;
4583 src_eqv = GEN_INT (val);
4584 }
4585 }
77fa0940 4586
7afe21cc
RK
4587 /* Set sets[i].src_elt to the class each source belongs to.
4588 Detect assignments from or to volatile things
4589 and set set[i] to zero so they will be ignored
4590 in the rest of this function.
4591
4592 Nothing in this loop changes the hash table or the register chains. */
4593
4594 for (i = 0; i < n_sets; i++)
4595 {
b4ab701f 4596 bool repeat = false;
4aded535 4597 bool noop_insn = false;
b3694847
SS
4598 rtx src, dest;
4599 rtx src_folded;
4600 struct table_elt *elt = 0, *p;
ef4bddc2 4601 machine_mode mode;
7afe21cc
RK
4602 rtx src_eqv_here;
4603 rtx src_const = 0;
4604 rtx src_related = 0;
2961db43 4605 rtx dest_related = 0;
2c5bfdf7 4606 bool src_related_is_const_anchor = false;
7afe21cc 4607 struct table_elt *src_const_elt = 0;
99a9c946
GS
4608 int src_cost = MAX_COST;
4609 int src_eqv_cost = MAX_COST;
4610 int src_folded_cost = MAX_COST;
4611 int src_related_cost = MAX_COST;
4612 int src_elt_cost = MAX_COST;
4613 int src_regcost = MAX_COST;
4614 int src_eqv_regcost = MAX_COST;
4615 int src_folded_regcost = MAX_COST;
4616 int src_related_regcost = MAX_COST;
4617 int src_elt_regcost = MAX_COST;
b4206259 4618 scalar_int_mode int_mode;
7afe21cc
RK
4619
4620 dest = SET_DEST (sets[i].rtl);
4621 src = SET_SRC (sets[i].rtl);
4622
4623 /* If SRC is a constant that has no machine mode,
4624 hash it with the destination's machine mode.
4625 This way we can keep different modes separate. */
4626
4627 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4628 sets[i].mode = mode;
4629
4630 if (src_eqv)
4631 {
ef4bddc2 4632 machine_mode eqvmode = mode;
7afe21cc
RK
4633 if (GET_CODE (dest) == STRICT_LOW_PART)
4634 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4635 do_not_record = 0;
4636 hash_arg_in_memory = 0;
2197a88a 4637 src_eqv_hash = HASH (src_eqv, eqvmode);
7afe21cc
RK
4638
4639 /* Find the equivalence class for the equivalent expression. */
4640
4641 if (!do_not_record)
2197a88a 4642 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
7afe21cc
RK
4643
4644 src_eqv_volatile = do_not_record;
4645 src_eqv_in_memory = hash_arg_in_memory;
7afe21cc
RK
4646 }
4647
4648 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4649 value of the INNER register, not the destination. So it is not
3826a3da 4650 a valid substitution for the source. But save it for later. */
7afe21cc
RK
4651 if (GET_CODE (dest) == STRICT_LOW_PART)
4652 src_eqv_here = 0;
4653 else
4654 src_eqv_here = src_eqv;
4655
4656 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4657 simplified result, which may not necessarily be valid. */
625d55af 4658 src_folded = fold_rtx (src, NULL);
7afe21cc 4659
e6a125a0
RK
4660#if 0
4661 /* ??? This caused bad code to be generated for the m68k port with -O2.
4662 Suppose src is (CONST_INT -1), and that after truncation src_folded
4663 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4664 At the end we will add src and src_const to the same equivalence
4665 class. We now have 3 and -1 on the same equivalence class. This
4666 causes later instructions to be mis-optimized. */
7afe21cc
RK
4667 /* If storing a constant in a bitfield, pre-truncate the constant
4668 so we will be able to record it later. */
46d096a3 4669 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
4670 {
4671 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4672
481683e1
SZ
4673 if (CONST_INT_P (src)
4674 && CONST_INT_P (width)
906c4e36
RK
4675 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4676 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4677 src_folded
fecfbfa4 4678 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
906c4e36 4679 << INTVAL (width)) - 1));
7afe21cc 4680 }
e6a125a0 4681#endif
7afe21cc
RK
4682
4683 /* Compute SRC's hash code, and also notice if it
4684 should not be recorded at all. In that case,
3737ccc4
JL
4685 prevent any further processing of this assignment.
4686
4687 We set DO_NOT_RECORD if the destination has a REG_UNUSED note.
4688 This avoids getting the source register into the tables, where it
4689 may be invalidated later (via REG_QTY), then trigger an ICE upon
4690 re-insertion.
4691
4692 This is only a problem in multi-set insns. If it were a single
4693 set the dead copy would have been removed. If the RHS were anything
4694 but a simple REG, then we won't call insert_regs and thus there's
4695 no potential for triggering the ICE. */
4696 do_not_record = (REG_P (dest)
4697 && REG_P (src)
4698 && find_reg_note (insn, REG_UNUSED, dest));
7afe21cc 4699 hash_arg_in_memory = 0;
7afe21cc
RK
4700
4701 sets[i].src = src;
2197a88a 4702 sets[i].src_hash = HASH (src, mode);
7afe21cc
RK
4703 sets[i].src_volatile = do_not_record;
4704 sets[i].src_in_memory = hash_arg_in_memory;
7afe21cc 4705
50196afa 4706 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
43e72072
JJ
4707 a pseudo, do not record SRC. Using SRC as a replacement for
4708 anything else will be incorrect in that situation. Note that
4709 this usually occurs only for stack slots, in which case all the
4710 RTL would be referring to SRC, so we don't lose any optimization
4711 opportunities by not having SRC in the hash table. */
50196afa 4712
3c0cb5de 4713 if (MEM_P (src)
43e72072 4714 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
f8cfc6aa 4715 && REG_P (dest)
43e72072 4716 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
50196afa
RK
4717 sets[i].src_volatile = 1;
4718
d8d6ea53
JJ
4719 else if (GET_CODE (src) == ASM_OPERANDS
4720 && GET_CODE (x) == PARALLEL)
6c4d60f8
JJ
4721 {
4722 /* Do not record result of a non-volatile inline asm with
4723 more than one result. */
4724 if (n_sets > 1)
4725 sets[i].src_volatile = 1;
4726
4727 int j, lim = XVECLEN (x, 0);
4728 for (j = 0; j < lim; j++)
4729 {
4730 rtx y = XVECEXP (x, 0, j);
4731 /* And do not record result of a non-volatile inline asm
4732 with "memory" clobber. */
4733 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4734 {
4735 sets[i].src_volatile = 1;
4736 break;
4737 }
4738 }
4739 }
d8d6ea53 4740
0dadecf6
RK
4741#if 0
4742 /* It is no longer clear why we used to do this, but it doesn't
4743 appear to still be needed. So let's try without it since this
4744 code hurts cse'ing widened ops. */
9a5a17f3 4745 /* If source is a paradoxical subreg (such as QI treated as an SI),
7afe21cc
RK
4746 treat it as volatile. It may do the work of an SI in one context
4747 where the extra bits are not being used, but cannot replace an SI
4748 in general. */
6a4bdc79 4749 if (paradoxical_subreg_p (src))
7afe21cc 4750 sets[i].src_volatile = 1;
0dadecf6 4751#endif
7afe21cc
RK
4752
4753 /* Locate all possible equivalent forms for SRC. Try to replace
4754 SRC in the insn with each cheaper equivalent.
4755
4756 We have the following types of equivalents: SRC itself, a folded
4757 version, a value given in a REG_EQUAL note, or a value related
4758 to a constant.
4759
4760 Each of these equivalents may be part of an additional class
4761 of equivalents (if more than one is in the table, they must be in
4762 the same class; we check for this).
4763
4764 If the source is volatile, we don't do any table lookups.
4765
4766 We note any constant equivalent for possible later use in a
4767 REG_NOTE. */
4768
4769 if (!sets[i].src_volatile)
2197a88a 4770 elt = lookup (src, sets[i].src_hash, mode);
7afe21cc
RK
4771
4772 sets[i].src_elt = elt;
4773
4774 if (elt && src_eqv_here && src_eqv_elt)
278a83b2
KH
4775 {
4776 if (elt->first_same_value != src_eqv_elt->first_same_value)
7afe21cc
RK
4777 {
4778 /* The REG_EQUAL is indicating that two formerly distinct
4779 classes are now equivalent. So merge them. */
4780 merge_equiv_classes (elt, src_eqv_elt);
2197a88a
RK
4781 src_eqv_hash = HASH (src_eqv, elt->mode);
4782 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
7afe21cc
RK
4783 }
4784
278a83b2
KH
4785 src_eqv_here = 0;
4786 }
7afe21cc
RK
4787
4788 else if (src_eqv_elt)
278a83b2 4789 elt = src_eqv_elt;
7afe21cc
RK
4790
4791 /* Try to find a constant somewhere and record it in `src_const'.
4792 Record its table element, if any, in `src_const_elt'. Look in
4793 any known equivalences first. (If the constant is not in the
2197a88a 4794 table, also set `sets[i].src_const_hash'). */
7afe21cc 4795 if (elt)
278a83b2 4796 for (p = elt->first_same_value; p; p = p->next_same_value)
7afe21cc
RK
4797 if (p->is_const)
4798 {
4799 src_const = p->exp;
4800 src_const_elt = elt;
4801 break;
4802 }
4803
4804 if (src_const == 0
4805 && (CONSTANT_P (src_folded)
278a83b2 4806 /* Consider (minus (label_ref L1) (label_ref L2)) as
7afe21cc
RK
4807 "constant" here so we will record it. This allows us
4808 to fold switch statements when an ADDR_DIFF_VEC is used. */
4809 || (GET_CODE (src_folded) == MINUS
4810 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4811 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4812 src_const = src_folded, src_const_elt = elt;
4813 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4814 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4815
4816 /* If we don't know if the constant is in the table, get its
4817 hash code and look it up. */
4818 if (src_const && src_const_elt == 0)
4819 {
2197a88a
RK
4820 sets[i].src_const_hash = HASH (src_const, mode);
4821 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
7afe21cc
RK
4822 }
4823
4824 sets[i].src_const = src_const;
4825 sets[i].src_const_elt = src_const_elt;
4826
4827 /* If the constant and our source are both in the table, mark them as
4828 equivalent. Otherwise, if a constant is in the table but the source
4829 isn't, set ELT to it. */
4830 if (src_const_elt && elt
4831 && src_const_elt->first_same_value != elt->first_same_value)
4832 merge_equiv_classes (elt, src_const_elt);
4833 else if (src_const_elt && elt == 0)
4834 elt = src_const_elt;
4835
4836 /* See if there is a register linearly related to a constant
4837 equivalent of SRC. */
4838 if (src_const
4839 && (GET_CODE (src_const) == CONST
4840 || (src_const_elt && src_const_elt->related_value != 0)))
278a83b2
KH
4841 {
4842 src_related = use_related_value (src_const, src_const_elt);
4843 if (src_related)
4844 {
7afe21cc 4845 struct table_elt *src_related_elt
278a83b2 4846 = lookup (src_related, HASH (src_related, mode), mode);
7afe21cc 4847 if (src_related_elt && elt)
278a83b2 4848 {
7afe21cc
RK
4849 if (elt->first_same_value
4850 != src_related_elt->first_same_value)
278a83b2 4851 /* This can occur when we previously saw a CONST
7afe21cc
RK
4852 involving a SYMBOL_REF and then see the SYMBOL_REF
4853 twice. Merge the involved classes. */
4854 merge_equiv_classes (elt, src_related_elt);
4855
278a83b2 4856 src_related = 0;
7afe21cc 4857 src_related_elt = 0;
278a83b2
KH
4858 }
4859 else if (src_related_elt && elt == 0)
4860 elt = src_related_elt;
7afe21cc 4861 }
278a83b2 4862 }
7afe21cc 4863
e4600702
RK
4864 /* See if we have a CONST_INT that is already in a register in a
4865 wider mode. */
4866
481683e1 4867 if (src_const && src_related == 0 && CONST_INT_P (src_const)
b4206259
RS
4868 && is_int_mode (mode, &int_mode)
4869 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
e4600702 4870 {
b4206259
RS
4871 opt_scalar_int_mode wider_mode_iter;
4872 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
e4600702 4873 {
b4206259 4874 scalar_int_mode wider_mode = wider_mode_iter.require ();
c94843d2
RS
4875 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4876 break;
4877
e4600702
RK
4878 struct table_elt *const_elt
4879 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4880
4881 if (const_elt == 0)
4882 continue;
4883
4884 for (const_elt = const_elt->first_same_value;
4885 const_elt; const_elt = const_elt->next_same_value)
f8cfc6aa 4886 if (REG_P (const_elt->exp))
e4600702 4887 {
b4206259 4888 src_related = gen_lowpart (int_mode, const_elt->exp);
e4600702
RK
4889 break;
4890 }
c94843d2
RS
4891
4892 if (src_related != 0)
4893 break;
e4600702
RK
4894 }
4895 }
4896
d45cf215
RS
4897 /* Another possibility is that we have an AND with a constant in
4898 a mode narrower than a word. If so, it might have been generated
4899 as part of an "if" which would narrow the AND. If we already
4900 have done the AND in a wider mode, we can use a SUBREG of that
4901 value. */
4902
4903 if (flag_expensive_optimizations && ! src_related
54651377 4904 && is_a <scalar_int_mode> (mode, &int_mode)
481683e1 4905 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
54651377 4906 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
d45cf215 4907 {
59b51186 4908 opt_scalar_int_mode tmode_iter;
38a448ca 4909 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
d45cf215 4910
59b51186 4911 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
d45cf215 4912 {
59b51186 4913 scalar_int_mode tmode = tmode_iter.require ();
c94843d2
RS
4914 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4915 break;
4916
4de249d9 4917 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
d45cf215
RS
4918 struct table_elt *larger_elt;
4919
4920 if (inner)
4921 {
4922 PUT_MODE (new_and, tmode);
4923 XEXP (new_and, 0) = inner;
4924 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4925 if (larger_elt == 0)
4926 continue;
4927
4928 for (larger_elt = larger_elt->first_same_value;
4929 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4930 if (REG_P (larger_elt->exp))
d45cf215
RS
4931 {
4932 src_related
54651377 4933 = gen_lowpart (int_mode, larger_elt->exp);
d45cf215
RS
4934 break;
4935 }
4936
4937 if (src_related)
4938 break;
4939 }
4940 }
4941 }
7bac1be0 4942
7bac1be0
RK
4943 /* See if a MEM has already been loaded with a widening operation;
4944 if it has, we can use a subreg of that. Many CISC machines
4945 also have such operations, but this is only likely to be
71cc389b 4946 beneficial on these machines. */
278a83b2 4947
3712c7a3 4948 rtx_code extend_op;
ddc356e8 4949 if (flag_expensive_optimizations && src_related == 0
3c0cb5de 4950 && MEM_P (src) && ! do_not_record
095a49c8
RS
4951 && is_a <scalar_int_mode> (mode, &int_mode)
4952 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
7bac1be0 4953 {
9d80ef7c
RH
4954 struct rtx_def memory_extend_buf;
4955 rtx memory_extend_rtx = &memory_extend_buf;
278a83b2 4956
7bac1be0
RK
4957 /* Set what we are trying to extend and the operation it might
4958 have been extended with. */
c3284718 4959 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
3712c7a3 4960 PUT_CODE (memory_extend_rtx, extend_op);
7bac1be0 4961 XEXP (memory_extend_rtx, 0) = src;
278a83b2 4962
59b51186
RS
4963 opt_scalar_int_mode tmode_iter;
4964 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
7bac1be0
RK
4965 {
4966 struct table_elt *larger_elt;
278a83b2 4967
59b51186 4968 scalar_int_mode tmode = tmode_iter.require ();
c94843d2
RS
4969 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4970 break;
4971
7bac1be0 4972 PUT_MODE (memory_extend_rtx, tmode);
278a83b2 4973 larger_elt = lookup (memory_extend_rtx,
7bac1be0
RK
4974 HASH (memory_extend_rtx, tmode), tmode);
4975 if (larger_elt == 0)
4976 continue;
278a83b2 4977
7bac1be0
RK
4978 for (larger_elt = larger_elt->first_same_value;
4979 larger_elt; larger_elt = larger_elt->next_same_value)
f8cfc6aa 4980 if (REG_P (larger_elt->exp))
7bac1be0 4981 {
095a49c8 4982 src_related = gen_lowpart (int_mode, larger_elt->exp);
7bac1be0
RK
4983 break;
4984 }
278a83b2 4985
7bac1be0
RK
4986 if (src_related)
4987 break;
4988 }
4989 }
278a83b2 4990
2c5bfdf7
AN
4991 /* Try to express the constant using a register+offset expression
4992 derived from a constant anchor. */
4993
4994 if (targetm.const_anchor
4995 && !src_related
4996 && src_const
4997 && GET_CODE (src_const) == CONST_INT)
4998 {
4999 src_related = try_const_anchors (src_const, mode);
5000 src_related_is_const_anchor = src_related != NULL_RTX;
5001 }
5002
68b48f3f
TC
5003 /* Try to re-materialize a vec_dup with an existing constant. */
5004 rtx src_elt;
5005 if ((!src_eqv_here || CONSTANT_P (src_eqv_here))
5006 && const_vec_duplicate_p (src, &src_elt))
5007 {
5008 machine_mode const_mode = GET_MODE_INNER (GET_MODE (src));
5009 struct table_elt *related_elt
5010 = lookup (src_elt, HASH (src_elt, const_mode), const_mode);
5011 if (related_elt)
5012 {
5013 for (related_elt = related_elt->first_same_value;
5014 related_elt; related_elt = related_elt->next_same_value)
5015 if (REG_P (related_elt->exp))
5016 {
5017 /* We don't need to compare costs with an existing (constant)
5018 src_eqv_here, since any such src_eqv_here should already be
5019 available in src_const. */
5020 src_eqv_here
5021 = gen_rtx_VEC_DUPLICATE (GET_MODE (src),
5022 related_elt->exp);
5023 break;
5024 }
5025 }
5026 }
2c5bfdf7 5027
7afe21cc 5028 if (src == src_folded)
278a83b2 5029 src_folded = 0;
7afe21cc 5030
da7d8304 5031 /* At this point, ELT, if nonzero, points to a class of expressions
7afe21cc 5032 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
da7d8304 5033 and SRC_RELATED, if nonzero, each contain additional equivalent
7afe21cc
RK
5034 expressions. Prune these latter expressions by deleting expressions
5035 already in the equivalence class.
5036
5037 Check for an equivalent identical to the destination. If found,
5038 this is the preferred equivalent since it will likely lead to
5039 elimination of the insn. Indicate this by placing it in
5040 `src_related'. */
5041
278a83b2
KH
5042 if (elt)
5043 elt = elt->first_same_value;
7afe21cc 5044 for (p = elt; p; p = p->next_same_value)
278a83b2 5045 {
7afe21cc
RK
5046 enum rtx_code code = GET_CODE (p->exp);
5047
5048 /* If the expression is not valid, ignore it. Then we do not
5049 have to check for validity below. In most cases, we can use
5050 `rtx_equal_p', since canonicalization has already been done. */
0516f6fe 5051 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
7afe21cc
RK
5052 continue;
5053
5a03c8c4
RK
5054 /* Also skip paradoxical subregs, unless that's what we're
5055 looking for. */
6a4bdc79 5056 if (paradoxical_subreg_p (p->exp)
5a03c8c4
RK
5057 && ! (src != 0
5058 && GET_CODE (src) == SUBREG
5059 && GET_MODE (src) == GET_MODE (p->exp)
bd4288c0
RS
5060 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5061 GET_MODE (SUBREG_REG (p->exp)))))
5a03c8c4
RK
5062 continue;
5063
278a83b2 5064 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7afe21cc 5065 src = 0;
278a83b2 5066 else if (src_folded && GET_CODE (src_folded) == code
7afe21cc
RK
5067 && rtx_equal_p (src_folded, p->exp))
5068 src_folded = 0;
278a83b2 5069 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7afe21cc
RK
5070 && rtx_equal_p (src_eqv_here, p->exp))
5071 src_eqv_here = 0;
278a83b2 5072 else if (src_related && GET_CODE (src_related) == code
7afe21cc
RK
5073 && rtx_equal_p (src_related, p->exp))
5074 src_related = 0;
5075
5076 /* This is the same as the destination of the insns, we want
2961db43
RB
5077 to prefer it. The code below will then give it a negative
5078 cost. */
5079 if (!dest_related
5080 && GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5081 dest_related = p->exp;
278a83b2 5082 }
7afe21cc
RK
5083
5084 /* Find the cheapest valid equivalent, trying all the available
5085 possibilities. Prefer items not in the hash table to ones
5086 that are when they are equal cost. Note that we can never
5087 worsen an insn as the current contents will also succeed.
05c33dd8 5088 If we find an equivalent identical to the destination, use it as best,
0f41302f 5089 since this insn will probably be eliminated in that case. */
7afe21cc
RK
5090 if (src)
5091 {
5092 if (rtx_equal_p (src, dest))
f1c1dfc3 5093 src_cost = src_regcost = -1;
7afe21cc 5094 else
630c79be 5095 {
e548c9df 5096 src_cost = COST (src, mode);
630c79be
BS
5097 src_regcost = approx_reg_cost (src);
5098 }
7afe21cc
RK
5099 }
5100
5101 if (src_eqv_here)
5102 {
5103 if (rtx_equal_p (src_eqv_here, dest))
f1c1dfc3 5104 src_eqv_cost = src_eqv_regcost = -1;
7afe21cc 5105 else
630c79be 5106 {
e548c9df 5107 src_eqv_cost = COST (src_eqv_here, mode);
630c79be
BS
5108 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5109 }
7afe21cc
RK
5110 }
5111
5112 if (src_folded)
5113 {
5114 if (rtx_equal_p (src_folded, dest))
f1c1dfc3 5115 src_folded_cost = src_folded_regcost = -1;
7afe21cc 5116 else
630c79be 5117 {
e548c9df 5118 src_folded_cost = COST (src_folded, mode);
630c79be
BS
5119 src_folded_regcost = approx_reg_cost (src_folded);
5120 }
7afe21cc
RK
5121 }
5122
2961db43 5123 if (dest_related)
7afe21cc 5124 {
2961db43
RB
5125 src_related_cost = src_related_regcost = -1;
5126 /* Handle it as src_related. */
5127 src_related = dest_related;
5128 }
5129 else if (src_related)
5130 {
5131 src_related_cost = COST (src_related, mode);
5132 src_related_regcost = approx_reg_cost (src_related);
5133
5134 /* If a const-anchor is used to synthesize a constant that
5135 normally requires multiple instructions then slightly prefer
5136 it over the original sequence. These instructions are likely
5137 to become redundant now. We can't compare against the cost
5138 of src_eqv_here because, on MIPS for example, multi-insn
5139 constants have zero cost; they are assumed to be hoisted from
5140 loops. */
5141 if (src_related_is_const_anchor
5142 && src_related_cost == src_cost
5143 && src_eqv_here)
5144 src_related_cost--;
7afe21cc
RK
5145 }
5146
5147 /* If this was an indirect jump insn, a known label will really be
5148 cheaper even though it looks more expensive. */
5149 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
99a9c946 5150 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
278a83b2 5151
7afe21cc
RK
5152 /* Terminate loop when replacement made. This must terminate since
5153 the current contents will be tested and will always be valid. */
5154 while (1)
278a83b2
KH
5155 {
5156 rtx trial;
7afe21cc 5157
278a83b2 5158 /* Skip invalid entries. */
f8cfc6aa 5159 while (elt && !REG_P (elt->exp)
0516f6fe 5160 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
278a83b2 5161 elt = elt->next_same_value;
5a03c8c4
RK
5162
5163 /* A paradoxical subreg would be bad here: it'll be the right
5164 size, but later may be adjusted so that the upper bits aren't
5165 what we want. So reject it. */
5166 if (elt != 0
6a4bdc79 5167 && paradoxical_subreg_p (elt->exp)
5a03c8c4
RK
5168 /* It is okay, though, if the rtx we're trying to match
5169 will ignore any of the bits we can't predict. */
5170 && ! (src != 0
5171 && GET_CODE (src) == SUBREG
5172 && GET_MODE (src) == GET_MODE (elt->exp)
bd4288c0
RS
5173 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5174 GET_MODE (SUBREG_REG (elt->exp)))))
5a03c8c4
RK
5175 {
5176 elt = elt->next_same_value;
5177 continue;
5178 }
278a83b2 5179
68252e27 5180 if (elt)
630c79be
BS
5181 {
5182 src_elt_cost = elt->cost;
5183 src_elt_regcost = elt->regcost;
5184 }
7afe21cc 5185
68252e27 5186 /* Find cheapest and skip it for the next time. For items
7afe21cc
RK
5187 of equal cost, use this order:
5188 src_folded, src, src_eqv, src_related and hash table entry. */
99a9c946 5189 if (src_folded
56ae04af
KH
5190 && preferable (src_folded_cost, src_folded_regcost,
5191 src_cost, src_regcost) <= 0
5192 && preferable (src_folded_cost, src_folded_regcost,
5193 src_eqv_cost, src_eqv_regcost) <= 0
5194 && preferable (src_folded_cost, src_folded_regcost,
5195 src_related_cost, src_related_regcost) <= 0
5196 && preferable (src_folded_cost, src_folded_regcost,
5197 src_elt_cost, src_elt_regcost) <= 0)
247c407c 5198 trial = src_folded, src_folded_cost = MAX_COST;
99a9c946 5199 else if (src
56ae04af
KH
5200 && preferable (src_cost, src_regcost,
5201 src_eqv_cost, src_eqv_regcost) <= 0
5202 && preferable (src_cost, src_regcost,
5203 src_related_cost, src_related_regcost) <= 0
5204 && preferable (src_cost, src_regcost,
5205 src_elt_cost, src_elt_regcost) <= 0)
f1c1dfc3 5206 trial = src, src_cost = MAX_COST;
99a9c946 5207 else if (src_eqv_here
56ae04af
KH
5208 && preferable (src_eqv_cost, src_eqv_regcost,
5209 src_related_cost, src_related_regcost) <= 0
5210 && preferable (src_eqv_cost, src_eqv_regcost,
5211 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 5212 trial = src_eqv_here, src_eqv_cost = MAX_COST;
99a9c946 5213 else if (src_related
56ae04af
KH
5214 && preferable (src_related_cost, src_related_regcost,
5215 src_elt_cost, src_elt_regcost) <= 0)
a36b8a1e 5216 trial = src_related, src_related_cost = MAX_COST;
278a83b2 5217 else
7afe21cc 5218 {
a36b8a1e 5219 trial = elt->exp;
7afe21cc 5220 elt = elt->next_same_value;
f1c1dfc3 5221 src_elt_cost = MAX_COST;
7afe21cc
RK
5222 }
5223
b4ab701f
JJ
5224 /* Try to optimize
5225 (set (reg:M N) (const_int A))
5226 (set (reg:M2 O) (const_int B))
5227 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5228 (reg:M2 O)). */
5229 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5230 && CONST_INT_P (trial)
5231 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5232 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5233 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
bb94ec76
RS
5234 && (known_ge
5235 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5236 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
b4ab701f
JJ
5237 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5238 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5239 <= HOST_BITS_PER_WIDE_INT))
5240 {
5241 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5242 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5243 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5244 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5245 struct table_elt *dest_elt
5246 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5247 rtx dest_cst = NULL;
5248
5249 if (dest_elt)
5250 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5251 if (p->is_const && CONST_INT_P (p->exp))
5252 {
5253 dest_cst = p->exp;
5254 break;
5255 }
5256 if (dest_cst)
5257 {
5258 HOST_WIDE_INT val = INTVAL (dest_cst);
5259 HOST_WIDE_INT mask;
5260 unsigned int shift;
c7ad039d
RS
5261 /* This is the mode of DEST_CST as well. */
5262 scalar_int_mode dest_mode
5263 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
b4ab701f 5264 if (BITS_BIG_ENDIAN)
c7ad039d 5265 shift = GET_MODE_PRECISION (dest_mode)
b4ab701f
JJ
5266 - INTVAL (pos) - INTVAL (width);
5267 else
5268 shift = INTVAL (pos);
5269 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
dd4786fe 5270 mask = HOST_WIDE_INT_M1;
b4ab701f 5271 else
fecfbfa4 5272 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
b4ab701f
JJ
5273 val &= ~(mask << shift);
5274 val |= (INTVAL (trial) & mask) << shift;
c7ad039d 5275 val = trunc_int_for_mode (val, dest_mode);
b4ab701f
JJ
5276 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5277 dest_reg, 1);
5278 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5279 GEN_INT (val), 1);
5280 if (apply_change_group ())
5281 {
5282 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5283 if (note)
5284 {
5285 remove_note (insn, note);
5286 df_notes_rescan (insn);
5287 }
5288 src_eqv = NULL_RTX;
5289 src_eqv_elt = NULL;
5290 src_eqv_volatile = 0;
5291 src_eqv_in_memory = 0;
5292 src_eqv_hash = 0;
5293 repeat = true;
5294 break;
5295 }
5296 }
5297 }
5298
7afe21cc
RK
5299 /* We don't normally have an insn matching (set (pc) (pc)), so
5300 check for this separately here. We will delete such an
5301 insn below.
5302
d466c016
JL
5303 For other cases such as a table jump or conditional jump
5304 where we know the ultimate target, go ahead and replace the
5305 operand. While that may not make a valid insn, we will
5306 reemit the jump below (and also insert any necessary
5307 barriers). */
7afe21cc
RK
5308 if (n_sets == 1 && dest == pc_rtx
5309 && (trial == pc_rtx
5310 || (GET_CODE (trial) == LABEL_REF
5311 && ! condjump_p (insn))))
5312 {
2f39b6ca
UW
5313 /* Don't substitute non-local labels, this confuses CFG. */
5314 if (GET_CODE (trial) == LABEL_REF
5315 && LABEL_REF_NONLOCAL_P (trial))
5316 continue;
5317
d466c016 5318 SET_SRC (sets[i].rtl) = trial;
2aac3a01 5319 cse_jumps_altered = true;
7afe21cc
RK
5320 break;
5321 }
278a83b2 5322
dd77684f 5323 /* Similarly, lots of targets don't allow no-op
4aded535
RS
5324 (set (mem x) (mem x)) moves. Even (set (reg x) (reg x))
5325 might be impossible for certain registers (like CC registers). */
dd77684f 5326 else if (n_sets == 1
4aded535
RS
5327 && !CALL_P (insn)
5328 && (MEM_P (trial) || REG_P (trial))
dd77684f
JJ
5329 && rtx_equal_p (trial, dest)
5330 && !side_effects_p (dest)
5331 && (cfun->can_delete_dead_exceptions
dd9ca9d7
RB
5332 || insn_nothrow_p (insn))
5333 /* We can only remove the later store if the earlier aliases
5334 at least all accesses the later one. */
5335 && (!MEM_P (trial)
5336 || ((MEM_ALIAS_SET (dest) == MEM_ALIAS_SET (trial)
5337 || alias_set_subset_of (MEM_ALIAS_SET (dest),
5338 MEM_ALIAS_SET (trial)))
5339 && (!MEM_EXPR (trial)
5340 || refs_same_for_tbaa_p (MEM_EXPR (trial),
5341 MEM_EXPR (dest))))))
dd77684f
JJ
5342 {
5343 SET_SRC (sets[i].rtl) = trial;
4aded535 5344 noop_insn = true;
dd77684f
JJ
5345 break;
5346 }
5347
1ef6855c
KH
5348 /* Reject certain invalid forms of CONST that we create. */
5349 else if (CONSTANT_P (trial)
5350 && GET_CODE (trial) == CONST
5351 /* Reject cases that will cause decode_rtx_const to
5352 die. On the alpha when simplifying a switch, we
5353 get (const (truncate (minus (label_ref)
5354 (label_ref)))). */
5355 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5356 /* Likewise on IA-64, except without the
5357 truncate. */
5358 || (GET_CODE (XEXP (trial, 0)) == MINUS
5359 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5360 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5361 /* Do nothing for this case. */
5362 ;
5363
23741374
BE
5364 /* Do not replace anything with a MEM, except the replacement
5365 is a no-op. This allows this loop to terminate. */
5366 else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5367 /* Do nothing for this case. */
5368 ;
5369
7afe21cc 5370 /* Look for a substitution that makes a valid insn. */
6c4d60f8
JJ
5371 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5372 trial, 0))
05c33dd8 5373 {
32e9fa48 5374 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
dbaff908 5375
7722328e
RK
5376 /* The result of apply_change_group can be ignored; see
5377 canon_reg. */
5378
32e9fa48 5379 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
6702af89 5380 apply_change_group ();
932ad4d9 5381
05c33dd8
RK
5382 break;
5383 }
7afe21cc 5384
247c407c
RS
5385 /* If the current function uses a constant pool and this is a
5386 constant, try making a pool entry. Put it in src_folded
5387 unless we already have done this since that is where it
5388 likely came from. */
7afe21cc 5389
247c407c 5390 else if (crtl->uses_const_pool
7afe21cc 5391 && CONSTANT_P (trial)
247c407c
RS
5392 && !CONST_INT_P (trial)
5393 && (src_folded == 0 || !MEM_P (src_folded))
9ae8ffe7
JL
5394 && GET_MODE_CLASS (mode) != MODE_CC
5395 && mode != VOIDmode)
7afe21cc 5396 {
247c407c
RS
5397 src_folded = force_const_mem (mode, trial);
5398 if (src_folded)
5399 {
5400 src_folded_cost = COST (src_folded, mode);
5401 src_folded_regcost = approx_reg_cost (src_folded);
5402 }
7afe21cc 5403 }
278a83b2 5404 }
7afe21cc 5405
b4ab701f
JJ
5406 /* If we changed the insn too much, handle this set from scratch. */
5407 if (repeat)
5408 {
5409 i--;
5410 continue;
5411 }
5412
7afe21cc
RK
5413 src = SET_SRC (sets[i].rtl);
5414
5415 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5416 However, there is an important exception: If both are registers
5417 that are not the head of their equivalence class, replace SET_SRC
5418 with the head of the class. If we do not do this, we will have
5419 both registers live over a portion of the basic block. This way,
5420 their lifetimes will likely abut instead of overlapping. */
f8cfc6aa 5421 if (REG_P (dest)
1bb98cec 5422 && REGNO_QTY_VALID_P (REGNO (dest)))
7afe21cc 5423 {
1bb98cec
DM
5424 int dest_q = REG_QTY (REGNO (dest));
5425 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5426
5427 if (dest_ent->mode == GET_MODE (dest)
5428 && dest_ent->first_reg != REGNO (dest)
f8cfc6aa 5429 && REG_P (src) && REGNO (src) == REGNO (dest)
1bb98cec
DM
5430 /* Don't do this if the original insn had a hard reg as
5431 SET_SRC or SET_DEST. */
f8cfc6aa 5432 && (!REG_P (sets[i].src)
1bb98cec 5433 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
f8cfc6aa 5434 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
1bb98cec
DM
5435 /* We can't call canon_reg here because it won't do anything if
5436 SRC is a hard register. */
759bd8b7 5437 {
1bb98cec
DM
5438 int src_q = REG_QTY (REGNO (src));
5439 struct qty_table_elem *src_ent = &qty_table[src_q];
5440 int first = src_ent->first_reg;
5441 rtx new_src
5442 = (first >= FIRST_PSEUDO_REGISTER
5443 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5444
5445 /* We must use validate-change even for this, because this
5446 might be a special no-op instruction, suitable only to
5447 tag notes onto. */
5448 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5449 {
5450 src = new_src;
5451 /* If we had a constant that is cheaper than what we are now
5452 setting SRC to, use that constant. We ignored it when we
5453 thought we could make this into a no-op. */
e548c9df 5454 if (src_const && COST (src_const, mode) < COST (src, mode)
278a83b2
KH
5455 && validate_change (insn, &SET_SRC (sets[i].rtl),
5456 src_const, 0))
1bb98cec
DM
5457 src = src_const;
5458 }
759bd8b7 5459 }
7afe21cc
RK
5460 }
5461
5462 /* If we made a change, recompute SRC values. */
5463 if (src != sets[i].src)
278a83b2 5464 {
278a83b2
KH
5465 do_not_record = 0;
5466 hash_arg_in_memory = 0;
7afe21cc 5467 sets[i].src = src;
278a83b2
KH
5468 sets[i].src_hash = HASH (src, mode);
5469 sets[i].src_volatile = do_not_record;
5470 sets[i].src_in_memory = hash_arg_in_memory;
5471 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5472 }
7afe21cc
RK
5473
5474 /* If this is a single SET, we are setting a register, and we have an
73dd3123
EB
5475 equivalent constant, we want to add a REG_EQUAL note if the constant
5476 is different from the source. We don't want to do it for a constant
5477 pseudo since verifying that this pseudo hasn't been eliminated is a
5478 pain; moreover such a note won't help anything.
ac7ef8d5
FS
5479
5480 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5481 which can be created for a reference to a compile time computable
5482 entry in a jump table. */
73dd3123
EB
5483 if (n_sets == 1
5484 && REG_P (dest)
5485 && src_const
f8cfc6aa 5486 && !REG_P (src_const)
73dd3123
EB
5487 && !(GET_CODE (src_const) == SUBREG
5488 && REG_P (SUBREG_REG (src_const)))
5489 && !(GET_CODE (src_const) == CONST
5490 && GET_CODE (XEXP (src_const, 0)) == MINUS
5491 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5492 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5493 && !rtx_equal_p (src, src_const))
7afe21cc 5494 {
73dd3123
EB
5495 /* Make sure that the rtx is not shared. */
5496 src_const = copy_rtx (src_const);
51e2a951 5497
73dd3123
EB
5498 /* Record the actual constant value in a REG_EQUAL note,
5499 making a new one if one does not already exist. */
5500 set_unique_reg_note (insn, REG_EQUAL, src_const);
5501 df_notes_rescan (insn);
7afe21cc
RK
5502 }
5503
5504 /* Now deal with the destination. */
5505 do_not_record = 0;
7afe21cc 5506
46d096a3
SB
5507 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5508 while (GET_CODE (dest) == SUBREG
7afe21cc 5509 || GET_CODE (dest) == ZERO_EXTRACT
7afe21cc 5510 || GET_CODE (dest) == STRICT_LOW_PART)
0339ce7e 5511 dest = XEXP (dest, 0);
7afe21cc
RK
5512
5513 sets[i].inner_dest = dest;
5514
3c0cb5de 5515 if (MEM_P (dest))
7afe21cc 5516 {
9ae8ffe7
JL
5517#ifdef PUSH_ROUNDING
5518 /* Stack pushes invalidate the stack pointer. */
5519 rtx addr = XEXP (dest, 0);
ec8e098d 5520 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
9ae8ffe7 5521 && XEXP (addr, 0) == stack_pointer_rtx)
524e3576 5522 invalidate (stack_pointer_rtx, VOIDmode);
9ae8ffe7 5523#endif
7afe21cc 5524 dest = fold_rtx (dest, insn);
7afe21cc
RK
5525 }
5526
5527 /* Compute the hash code of the destination now,
5528 before the effects of this instruction are recorded,
5529 since the register values used in the address computation
5530 are those before this instruction. */
2197a88a 5531 sets[i].dest_hash = HASH (dest, mode);
7afe21cc
RK
5532
5533 /* Don't enter a bit-field in the hash table
5534 because the value in it after the store
5535 may not equal what was stored, due to truncation. */
5536
46d096a3 5537 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
7afe21cc
RK
5538 {
5539 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5540
481683e1
SZ
5541 if (src_const != 0 && CONST_INT_P (src_const)
5542 && CONST_INT_P (width)
906c4e36
RK
5543 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5544 && ! (INTVAL (src_const)
0cadbfaa 5545 & (HOST_WIDE_INT_M1U << INTVAL (width))))
7afe21cc
RK
5546 /* Exception: if the value is constant,
5547 and it won't be truncated, record it. */
5548 ;
5549 else
5550 {
5551 /* This is chosen so that the destination will be invalidated
5552 but no new value will be recorded.
5553 We must invalidate because sometimes constant
5554 values can be recorded for bitfields. */
5555 sets[i].src_elt = 0;
5556 sets[i].src_volatile = 1;
5557 src_eqv = 0;
5558 src_eqv_elt = 0;
5559 }
5560 }
5561
5562 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5563 the insn. */
5564 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5565 {
ef178af3 5566 /* One less use of the label this insn used to jump to. */
98ccd1d7 5567 cse_cfg_altered |= delete_insn_and_edges (insn);
2aac3a01 5568 cse_jumps_altered = true;
7afe21cc
RK
5569 /* No more processing for this set. */
5570 sets[i].rtl = 0;
5571 }
5572
4aded535
RS
5573 /* Similarly for no-op moves. */
5574 else if (noop_insn)
dd77684f
JJ
5575 {
5576 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5577 cse_cfg_altered = true;
98ccd1d7 5578 cse_cfg_altered |= delete_insn_and_edges (insn);
dd77684f
JJ
5579 /* No more processing for this set. */
5580 sets[i].rtl = 0;
5581 }
5582
7afe21cc 5583 /* If this SET is now setting PC to a label, we know it used to
d466c016 5584 be a conditional or computed branch. */
8f235343
JH
5585 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5586 && !LABEL_REF_NONLOCAL_P (src))
7afe21cc 5587 {
d466c016
JL
5588 /* We reemit the jump in as many cases as possible just in
5589 case the form of an unconditional jump is significantly
5590 different than a computed jump or conditional jump.
5591
5592 If this insn has multiple sets, then reemitting the
5593 jump is nontrivial. So instead we just force rerecognition
5594 and hope for the best. */
5595 if (n_sets == 1)
7afe21cc 5596 {
e67d1102 5597 rtx_jump_insn *new_rtx;
49506606 5598 rtx note;
8fb1e50e 5599
ec4a505f
RS
5600 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5601 new_rtx = emit_jump_insn_before (seq, insn);
32e9fa48 5602 JUMP_LABEL (new_rtx) = XEXP (src, 0);
7afe21cc 5603 LABEL_NUSES (XEXP (src, 0))++;
9dcb4381
RH
5604
5605 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5606 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5607 if (note)
5608 {
5609 XEXP (note, 1) = NULL_RTX;
32e9fa48 5610 REG_NOTES (new_rtx) = note;
9dcb4381
RH
5611 }
5612
98ccd1d7 5613 cse_cfg_altered |= delete_insn_and_edges (insn);
49506606 5614 insn = new_rtx;
7afe21cc 5615 }
31dcf83f 5616 else
31dcf83f 5617 INSN_CODE (insn) = -1;
7afe21cc 5618
2aac3a01
EB
5619 /* Do not bother deleting any unreachable code, let jump do it. */
5620 cse_jumps_altered = true;
7afe21cc
RK
5621 sets[i].rtl = 0;
5622 }
5623
c2a47e48
RK
5624 /* If destination is volatile, invalidate it and then do no further
5625 processing for this assignment. */
7afe21cc
RK
5626
5627 else if (do_not_record)
c2a47e48 5628 {
2a1d78d8 5629 invalidate_dest (dest);
c2a47e48
RK
5630 sets[i].rtl = 0;
5631 }
7afe21cc
RK
5632
5633 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
2a1d78d8
JJ
5634 {
5635 do_not_record = 0;
5636 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5637 if (do_not_record)
5638 {
5639 invalidate_dest (SET_DEST (sets[i].rtl));
5640 sets[i].rtl = 0;
5641 }
5642 }
7afe21cc
RK
5643 }
5644
5645 /* Now enter all non-volatile source expressions in the hash table
5646 if they are not already present.
5647 Record their equivalence classes in src_elt.
5648 This way we can insert the corresponding destinations into
5649 the same classes even if the actual sources are no longer in them
5650 (having been invalidated). */
5651
5652 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5653 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5654 {
b3694847
SS
5655 struct table_elt *elt;
5656 struct table_elt *classp = sets[0].src_elt;
7afe21cc 5657 rtx dest = SET_DEST (sets[0].rtl);
ef4bddc2 5658 machine_mode eqvmode = GET_MODE (dest);
7afe21cc
RK
5659
5660 if (GET_CODE (dest) == STRICT_LOW_PART)
5661 {
5662 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5663 classp = 0;
5664 }
dec7aaab 5665 if (insert_regs (src_eqv, classp, false))
8ae2b8f6
JW
5666 {
5667 rehash_using_reg (src_eqv);
5668 src_eqv_hash = HASH (src_eqv, eqvmode);
5669 }
2197a88a 5670 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7afe21cc 5671 elt->in_memory = src_eqv_in_memory;
7afe21cc 5672 src_eqv_elt = elt;
f7911249
JW
5673
5674 /* Check to see if src_eqv_elt is the same as a set source which
5675 does not yet have an elt, and if so set the elt of the set source
5676 to src_eqv_elt. */
5677 for (i = 0; i < n_sets; i++)
26132f71
JW
5678 if (sets[i].rtl && sets[i].src_elt == 0
5679 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
f7911249 5680 sets[i].src_elt = src_eqv_elt;
7afe21cc
RK
5681 }
5682
5683 for (i = 0; i < n_sets; i++)
5684 if (sets[i].rtl && ! sets[i].src_volatile
5685 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5686 {
5687 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5688 {
5689 /* REG_EQUAL in setting a STRICT_LOW_PART
5690 gives an equivalent for the entire destination register,
5691 not just for the subreg being stored in now.
5692 This is a more interesting equivalence, so we arrange later
5693 to treat the entire reg as the destination. */
5694 sets[i].src_elt = src_eqv_elt;
2197a88a 5695 sets[i].src_hash = src_eqv_hash;
7afe21cc
RK
5696 }
5697 else
5698 {
5699 /* Insert source and constant equivalent into hash table, if not
5700 already present. */
b3694847
SS
5701 struct table_elt *classp = src_eqv_elt;
5702 rtx src = sets[i].src;
5703 rtx dest = SET_DEST (sets[i].rtl);
ef4bddc2 5704 machine_mode mode
7afe21cc
RK
5705 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5706
1fcc57f1
AM
5707 /* It's possible that we have a source value known to be
5708 constant but don't have a REG_EQUAL note on the insn.
5709 Lack of a note will mean src_eqv_elt will be NULL. This
5710 can happen where we've generated a SUBREG to access a
5711 CONST_INT that is already in a register in a wider mode.
5712 Ensure that the source expression is put in the proper
5713 constant class. */
5714 if (!classp)
5715 classp = sets[i].src_const_elt;
5716
26132f71 5717 if (sets[i].src_elt == 0)
7afe21cc 5718 {
4a8cae83 5719 struct table_elt *elt;
26132f71 5720
4a8cae83
SB
5721 /* Note that these insert_regs calls cannot remove
5722 any of the src_elt's, because they would have failed to
5723 match if not still valid. */
dec7aaab 5724 if (insert_regs (src, classp, false))
4a8cae83
SB
5725 {
5726 rehash_using_reg (src);
5727 sets[i].src_hash = HASH (src, mode);
8ae2b8f6 5728 }
4a8cae83
SB
5729 elt = insert (src, classp, sets[i].src_hash, mode);
5730 elt->in_memory = sets[i].src_in_memory;
6c4d60f8
JJ
5731 /* If inline asm has any clobbers, ensure we only reuse
5732 existing inline asms and never try to put the ASM_OPERANDS
5733 into an insn that isn't inline asm. */
5734 if (GET_CODE (src) == ASM_OPERANDS
5735 && GET_CODE (x) == PARALLEL)
5736 elt->cost = MAX_COST;
4a8cae83 5737 sets[i].src_elt = classp = elt;
7afe21cc 5738 }
7afe21cc
RK
5739 if (sets[i].src_const && sets[i].src_const_elt == 0
5740 && src != sets[i].src_const
5741 && ! rtx_equal_p (sets[i].src_const, src))
5742 sets[i].src_elt = insert (sets[i].src_const, classp,
2197a88a 5743 sets[i].src_const_hash, mode);
7afe21cc
RK
5744 }
5745 }
5746 else if (sets[i].src_elt == 0)
5747 /* If we did not insert the source into the hash table (e.g., it was
5748 volatile), note the equivalence class for the REG_EQUAL value, if any,
5749 so that the destination goes into that class. */
5750 sets[i].src_elt = src_eqv_elt;
5751
05c433f3
PB
5752 /* Record destination addresses in the hash table. This allows us to
5753 check if they are invalidated by other sets. */
5754 for (i = 0; i < n_sets; i++)
5755 {
5756 if (sets[i].rtl)
5757 {
5758 rtx x = sets[i].inner_dest;
5759 struct table_elt *elt;
ef4bddc2 5760 machine_mode mode;
05c433f3
PB
5761 unsigned hash;
5762
5763 if (MEM_P (x))
5764 {
5765 x = XEXP (x, 0);
5766 mode = GET_MODE (x);
5767 hash = HASH (x, mode);
5768 elt = lookup (x, hash, mode);
5769 if (!elt)
5770 {
dec7aaab 5771 if (insert_regs (x, NULL, false))
05c433f3 5772 {
7e7e28c7
AO
5773 rtx dest = SET_DEST (sets[i].rtl);
5774
05c433f3
PB
5775 rehash_using_reg (x);
5776 hash = HASH (x, mode);
7e7e28c7 5777 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
05c433f3
PB
5778 }
5779 elt = insert (x, NULL, hash, mode);
5780 }
5781
5782 sets[i].dest_addr_elt = elt;
5783 }
5784 else
5785 sets[i].dest_addr_elt = NULL;
5786 }
5787 }
5788
7b02f4e0 5789 invalidate_from_clobbers (insn);
77fa0940 5790
278a83b2 5791 /* Some registers are invalidated by subroutine calls. Memory is
77fa0940
RK
5792 invalidated by non-constant calls. */
5793
4b4bf941 5794 if (CALL_P (insn))
7afe21cc 5795 {
becfd6e5 5796 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
9ae8ffe7 5797 invalidate_memory ();
67c25816
JJ
5798 else
5799 /* For const/pure calls, invalidate any argument slots, because
5800 those are owned by the callee. */
5801 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5802 if (GET_CODE (XEXP (tem, 0)) == USE
5803 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5804 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
311b62ce 5805 invalidate_for_call (insn);
7afe21cc
RK
5806 }
5807
5808 /* Now invalidate everything set by this instruction.
5809 If a SUBREG or other funny destination is being set,
5810 sets[i].rtl is still nonzero, so here we invalidate the reg
5811 a part of which is being set. */
5812
5813 for (i = 0; i < n_sets; i++)
5814 if (sets[i].rtl)
5815 {
bb4034b3
JW
5816 /* We can't use the inner dest, because the mode associated with
5817 a ZERO_EXTRACT is significant. */
b3694847 5818 rtx dest = SET_DEST (sets[i].rtl);
7afe21cc
RK
5819
5820 /* Needed for registers to remove the register from its
5821 previous quantity's chain.
5822 Needed for memory if this is a nonvarying address, unless
5823 we have just done an invalidate_memory that covers even those. */
f8cfc6aa 5824 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
bb4034b3 5825 invalidate (dest, VOIDmode);
3c0cb5de 5826 else if (MEM_P (dest))
32fab725 5827 invalidate (dest, VOIDmode);
2708da92
RS
5828 else if (GET_CODE (dest) == STRICT_LOW_PART
5829 || GET_CODE (dest) == ZERO_EXTRACT)
bb4034b3 5830 invalidate (XEXP (dest, 0), GET_MODE (dest));
7afe21cc
RK
5831 }
5832
932ad4d9
SB
5833 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5834 the regs restored by the longjmp come from a later time
5835 than the setjmp. */
5836 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5837 {
5838 flush_hash_table ();
5839 goto done;
5840 }
5841
7afe21cc
RK
5842 /* Make sure registers mentioned in destinations
5843 are safe for use in an expression to be inserted.
5844 This removes from the hash table
5845 any invalid entry that refers to one of these registers.
5846
5847 We don't care about the return value from mention_regs because
5848 we are going to hash the SET_DEST values unconditionally. */
5849
5850 for (i = 0; i < n_sets; i++)
34c73909
R
5851 {
5852 if (sets[i].rtl)
5853 {
5854 rtx x = SET_DEST (sets[i].rtl);
5855
f8cfc6aa 5856 if (!REG_P (x))
34c73909
R
5857 mention_regs (x);
5858 else
5859 {
5860 /* We used to rely on all references to a register becoming
5861 inaccessible when a register changes to a new quantity,
5862 since that changes the hash code. However, that is not
9b1549b8 5863 safe, since after HASH_SIZE new quantities we get a
34c73909
R
5864 hash 'collision' of a register with its own invalid
5865 entries. And since SUBREGs have been changed not to
5866 change their hash code with the hash code of the register,
5867 it wouldn't work any longer at all. So we have to check
5868 for any invalid references lying around now.
5869 This code is similar to the REG case in mention_regs,
5870 but it knows that reg_tick has been incremented, and
5871 it leaves reg_in_table as -1 . */
770ae6cc 5872 unsigned int regno = REGNO (x);
09e18274 5873 unsigned int endregno = END_REGNO (x);
770ae6cc 5874 unsigned int i;
34c73909
R
5875
5876 for (i = regno; i < endregno; i++)
5877 {
30f72379 5878 if (REG_IN_TABLE (i) >= 0)
34c73909
R
5879 {
5880 remove_invalid_refs (i);
30f72379 5881 REG_IN_TABLE (i) = -1;
34c73909
R
5882 }
5883 }
5884 }
5885 }
5886 }
7afe21cc
RK
5887
5888 /* We may have just removed some of the src_elt's from the hash table.
05c433f3
PB
5889 So replace each one with the current head of the same class.
5890 Also check if destination addresses have been removed. */
7afe21cc
RK
5891
5892 for (i = 0; i < n_sets; i++)
5893 if (sets[i].rtl)
5894 {
05c433f3
PB
5895 if (sets[i].dest_addr_elt
5896 && sets[i].dest_addr_elt->first_same_value == 0)
5897 {
e67b81d1 5898 /* The elt was removed, which means this destination is not
05c433f3
PB
5899 valid after this instruction. */
5900 sets[i].rtl = NULL_RTX;
5901 }
5902 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
7afe21cc
RK
5903 /* If elt was removed, find current head of same class,
5904 or 0 if nothing remains of that class. */
5905 {
b3694847 5906 struct table_elt *elt = sets[i].src_elt;
7afe21cc
RK
5907
5908 while (elt && elt->prev_same_value)
5909 elt = elt->prev_same_value;
5910
5911 while (elt && elt->first_same_value == 0)
5912 elt = elt->next_same_value;
5913 sets[i].src_elt = elt ? elt->first_same_value : 0;
5914 }
5915 }
5916
5917 /* Now insert the destinations into their equivalence classes. */
5918
5919 for (i = 0; i < n_sets; i++)
5920 if (sets[i].rtl)
5921 {
b3694847 5922 rtx dest = SET_DEST (sets[i].rtl);
b3694847 5923 struct table_elt *elt;
7afe21cc
RK
5924
5925 /* Don't record value if we are not supposed to risk allocating
5926 floating-point values in registers that might be wider than
5927 memory. */
5928 if ((flag_float_store
3c0cb5de 5929 && MEM_P (dest)
cbf6a543 5930 && FLOAT_MODE_P (GET_MODE (dest)))
bc4ddc77
JW
5931 /* Don't record BLKmode values, because we don't know the
5932 size of it, and can't be sure that other BLKmode values
5933 have the same or smaller size. */
5934 || GET_MODE (dest) == BLKmode
7afe21cc
RK
5935 /* If we didn't put a REG_EQUAL value or a source into the hash
5936 table, there is no point is recording DEST. */
086ad22e 5937 || sets[i].src_elt == 0)
7afe21cc
RK
5938 continue;
5939
5940 /* STRICT_LOW_PART isn't part of the value BEING set,
5941 and neither is the SUBREG inside it.
5942 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5943 if (GET_CODE (dest) == STRICT_LOW_PART)
5944 dest = SUBREG_REG (XEXP (dest, 0));
5945
f8cfc6aa 5946 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
7afe21cc 5947 /* Registers must also be inserted into chains for quantities. */
dec7aaab 5948 if (insert_regs (dest, sets[i].src_elt, true))
8ae2b8f6
JW
5949 {
5950 /* If `insert_regs' changes something, the hash code must be
5951 recalculated. */
5952 rehash_using_reg (dest);
5953 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5954 }
7afe21cc 5955
086ad22e
BE
5956 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5957 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5958 if (paradoxical_subreg_p (dest))
5959 continue;
5960
8fff4fc1
RH
5961 elt = insert (dest, sets[i].src_elt,
5962 sets[i].dest_hash, GET_MODE (dest));
9de2c71a 5963
2c5bfdf7
AN
5964 /* If this is a constant, insert the constant anchors with the
5965 equivalent register-offset expressions using register DEST. */
5966 if (targetm.const_anchor
5967 && REG_P (dest)
5968 && SCALAR_INT_MODE_P (GET_MODE (dest))
5969 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5970 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5971
3c0cb5de 5972 elt->in_memory = (MEM_P (sets[i].inner_dest)
389fdba0 5973 && !MEM_READONLY_P (sets[i].inner_dest));
c256df0b 5974
fc3ffe83
RK
5975 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5976 narrower than M2, and both M1 and M2 are the same number of words,
5977 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5978 make that equivalence as well.
7afe21cc 5979
4de249d9
PB
5980 However, BAR may have equivalences for which gen_lowpart
5981 will produce a simpler value than gen_lowpart applied to
7afe21cc 5982 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
278a83b2 5983 BAR's equivalences. If we don't get a simplified form, make
7afe21cc
RK
5984 the SUBREG. It will not be used in an equivalence, but will
5985 cause two similar assignments to be detected.
5986
5987 Note the loop below will find SUBREG_REG (DEST) since we have
5988 already entered SRC and DEST of the SET in the table. */
5989
5990 if (GET_CODE (dest) == SUBREG
cf098191
RS
5991 && (known_equal_after_align_down
5992 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
5993 GET_MODE_SIZE (GET_MODE (dest)) - 1,
5994 UNITS_PER_WORD))
bd4288c0 5995 && !partial_subreg_p (dest)
7afe21cc
RK
5996 && sets[i].src_elt != 0)
5997 {
ef4bddc2 5998 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
7afe21cc
RK
5999 struct table_elt *elt, *classp = 0;
6000
6001 for (elt = sets[i].src_elt->first_same_value; elt;
6002 elt = elt->next_same_value)
6003 {
6004 rtx new_src = 0;
2197a88a 6005 unsigned src_hash;
7afe21cc
RK
6006 struct table_elt *src_elt;
6007
6008 /* Ignore invalid entries. */
f8cfc6aa 6009 if (!REG_P (elt->exp)
0516f6fe 6010 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
7afe21cc
RK
6011 continue;
6012
9beb7d20
RH
6013 /* We may have already been playing subreg games. If the
6014 mode is already correct for the destination, use it. */
6015 if (GET_MODE (elt->exp) == new_mode)
6016 new_src = elt->exp;
6017 else
6018 {
91914e56 6019 poly_uint64 byte
610c45fc 6020 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
9beb7d20
RH
6021 new_src = simplify_gen_subreg (new_mode, elt->exp,
6022 GET_MODE (dest), byte);
6023 }
6024
ff27a429
R
6025 /* The call to simplify_gen_subreg fails if the value
6026 is VOIDmode, yet we can't do any simplification, e.g.
6027 for EXPR_LISTs denoting function call results.
6028 It is invalid to construct a SUBREG with a VOIDmode
6029 SUBREG_REG, hence a zero new_src means we can't do
6030 this substitution. */
6031 if (! new_src)
6032 continue;
7afe21cc
RK
6033
6034 src_hash = HASH (new_src, new_mode);
6035 src_elt = lookup (new_src, src_hash, new_mode);
6036
6037 /* Put the new source in the hash table is if isn't
6038 already. */
6039 if (src_elt == 0)
6040 {
dec7aaab 6041 if (insert_regs (new_src, classp, false))
8ae2b8f6
JW
6042 {
6043 rehash_using_reg (new_src);
6044 src_hash = HASH (new_src, new_mode);
6045 }
7afe21cc
RK
6046 src_elt = insert (new_src, classp, src_hash, new_mode);
6047 src_elt->in_memory = elt->in_memory;
6c4d60f8
JJ
6048 if (GET_CODE (new_src) == ASM_OPERANDS
6049 && elt->cost == MAX_COST)
6050 src_elt->cost = MAX_COST;
7afe21cc
RK
6051 }
6052 else if (classp && classp != src_elt->first_same_value)
278a83b2 6053 /* Show that two things that we've seen before are
7afe21cc
RK
6054 actually the same. */
6055 merge_equiv_classes (src_elt, classp);
6056
6057 classp = src_elt->first_same_value;
da932f04
JL
6058 /* Ignore invalid entries. */
6059 while (classp
f8cfc6aa 6060 && !REG_P (classp->exp)
0516f6fe 6061 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
da932f04 6062 classp = classp->next_same_value;
7afe21cc
RK
6063 }
6064 }
6065 }
6066
403e25d0
RK
6067 /* Special handling for (set REG0 REG1) where REG0 is the
6068 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6069 be used in the sequel, so (if easily done) change this insn to
6070 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6071 that computed their value. Then REG1 will become a dead store
6072 and won't cloud the situation for later optimizations.
7afe21cc
RK
6073
6074 Do not make this change if REG1 is a hard register, because it will
6075 then be used in the sequel and we may be changing a two-operand insn
6076 into a three-operand insn.
6077
4a8cae83 6078 Also do not do this if we are operating on a copy of INSN. */
7afe21cc 6079
7b02f4e0
SB
6080 if (n_sets == 1 && sets[0].rtl)
6081 try_back_substitute_reg (sets[0].rtl, insn);
7afe21cc 6082
932ad4d9 6083done:;
7afe21cc
RK
6084}
6085\f
a4c6502a 6086/* Remove from the hash table all expressions that reference memory. */
14a774a9 6087
7afe21cc 6088static void
7080f735 6089invalidate_memory (void)
7afe21cc 6090{
b3694847
SS
6091 int i;
6092 struct table_elt *p, *next;
7afe21cc 6093
9b1549b8 6094 for (i = 0; i < HASH_SIZE; i++)
9ae8ffe7
JL
6095 for (p = table[i]; p; p = next)
6096 {
6097 next = p->next_same_hash;
6098 if (p->in_memory)
6099 remove_from_table (p, i);
6100 }
6101}
6102
7b02f4e0 6103/* Perform invalidation on the basis of everything about INSN,
7afe21cc
RK
6104 except for invalidating the actual places that are SET in it.
6105 This includes the places CLOBBERed, and anything that might
7b02f4e0 6106 alias with something that is SET or CLOBBERed. */
7afe21cc
RK
6107
6108static void
20468884 6109invalidate_from_clobbers (rtx_insn *insn)
7afe21cc 6110{
7b02f4e0
SB
6111 rtx x = PATTERN (insn);
6112
7afe21cc
RK
6113 if (GET_CODE (x) == CLOBBER)
6114 {
6115 rtx ref = XEXP (x, 0);
9ae8ffe7
JL
6116 if (ref)
6117 {
f8cfc6aa 6118 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6119 || MEM_P (ref))
9ae8ffe7
JL
6120 invalidate (ref, VOIDmode);
6121 else if (GET_CODE (ref) == STRICT_LOW_PART
6122 || GET_CODE (ref) == ZERO_EXTRACT)
6123 invalidate (XEXP (ref, 0), GET_MODE (ref));
6124 }
7afe21cc
RK
6125 }
6126 else if (GET_CODE (x) == PARALLEL)
6127 {
b3694847 6128 int i;
7afe21cc
RK
6129 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6130 {
b3694847 6131 rtx y = XVECEXP (x, 0, i);
7afe21cc
RK
6132 if (GET_CODE (y) == CLOBBER)
6133 {
6134 rtx ref = XEXP (y, 0);
f8cfc6aa 6135 if (REG_P (ref) || GET_CODE (ref) == SUBREG
3c0cb5de 6136 || MEM_P (ref))
9ae8ffe7
JL
6137 invalidate (ref, VOIDmode);
6138 else if (GET_CODE (ref) == STRICT_LOW_PART
6139 || GET_CODE (ref) == ZERO_EXTRACT)
6140 invalidate (XEXP (ref, 0), GET_MODE (ref));
7afe21cc
RK
6141 }
6142 }
6143 }
6144}
6145\f
7b02f4e0
SB
6146/* Perform invalidation on the basis of everything about INSN.
6147 This includes the places CLOBBERed, and anything that might
6148 alias with something that is SET or CLOBBERed. */
6149
6150static void
20468884 6151invalidate_from_sets_and_clobbers (rtx_insn *insn)
7b02f4e0
SB
6152{
6153 rtx tem;
6154 rtx x = PATTERN (insn);
6155
6156 if (CALL_P (insn))
6157 {
6158 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
99788e06
AH
6159 {
6160 rtx temx = XEXP (tem, 0);
6161 if (GET_CODE (temx) == CLOBBER)
6162 invalidate (SET_DEST (temx), VOIDmode);
99788e06 6163 }
7b02f4e0
SB
6164 }
6165
6166 /* Ensure we invalidate the destination register of a CALL insn.
6167 This is necessary for machines where this register is a fixed_reg,
6168 because no other code would invalidate it. */
6169 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6170 invalidate (SET_DEST (x), VOIDmode);
6171
6172 else if (GET_CODE (x) == PARALLEL)
6173 {
6174 int i;
6175
6176 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6177 {
6178 rtx y = XVECEXP (x, 0, i);
6179 if (GET_CODE (y) == CLOBBER)
6180 {
6181 rtx clobbered = XEXP (y, 0);
6182
6183 if (REG_P (clobbered)
6184 || GET_CODE (clobbered) == SUBREG)
6185 invalidate (clobbered, VOIDmode);
6186 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6187 || GET_CODE (clobbered) == ZERO_EXTRACT)
6188 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6189 }
6190 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6191 invalidate (SET_DEST (y), VOIDmode);
6192 }
6193 }
6194}
6195\f
66ec22b0 6196static rtx cse_process_note (rtx);
7afe21cc 6197
66ec22b0
RS
6198/* A simplify_replace_fn_rtx callback for cse_process_note. Process X,
6199 part of the REG_NOTES of an insn. Replace any registers with either
6200 an equivalent constant or the canonical form of the register.
6201 Only replace addresses if the containing MEM remains valid.
7afe21cc 6202
66ec22b0
RS
6203 Return the replacement for X, or null if it should be simplified
6204 recursively. */
7afe21cc
RK
6205
6206static rtx
66ec22b0 6207cse_process_note_1 (rtx x, const_rtx, void *)
7afe21cc 6208{
66ec22b0 6209 if (MEM_P (x))
7afe21cc 6210 {
66ec22b0 6211 validate_change (x, &XEXP (x, 0), cse_process_note (XEXP (x, 0)), false);
7afe21cc 6212 return x;
66ec22b0 6213 }
7afe21cc 6214
66ec22b0
RS
6215 if (REG_P (x))
6216 {
6217 int i = REG_QTY (REGNO (x));
7afe21cc
RK
6218
6219 /* Return a constant or a constant register. */
1bb98cec 6220 if (REGNO_QTY_VALID_P (REGNO (x)))
7afe21cc 6221 {
1bb98cec
DM
6222 struct qty_table_elem *ent = &qty_table[i];
6223
6224 if (ent->const_rtx != NULL_RTX
6225 && (CONSTANT_P (ent->const_rtx)
f8cfc6aa 6226 || REG_P (ent->const_rtx)))
1bb98cec 6227 {
32e9fa48
KG
6228 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6229 if (new_rtx)
6230 return copy_rtx (new_rtx);
1bb98cec 6231 }
7afe21cc
RK
6232 }
6233
6234 /* Otherwise, canonicalize this register. */
20468884 6235 return canon_reg (x, NULL);
7afe21cc
RK
6236 }
6237
66ec22b0 6238 return NULL_RTX;
7afe21cc 6239}
6fb5fa3c 6240
66ec22b0
RS
6241/* Process X, part of the REG_NOTES of an insn. Replace any registers in it
6242 with either an equivalent constant or the canonical form of the register.
6243 Only replace addresses if the containing MEM remains valid. */
6244
6fb5fa3c 6245static rtx
66ec22b0 6246cse_process_note (rtx x)
6fb5fa3c 6247{
66ec22b0 6248 return simplify_replace_fn_rtx (x, NULL_RTX, cse_process_note_1, NULL);
6fb5fa3c
DB
6249}
6250
7afe21cc 6251\f
932ad4d9 6252/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
7afe21cc 6253
932ad4d9
SB
6254 DATA is a pointer to a struct cse_basic_block_data, that is used to
6255 describe the path.
6256 It is filled with a queue of basic blocks, starting with FIRST_BB
6257 and following a trace through the CFG.
b8698a0f 6258
932ad4d9
SB
6259 If all paths starting at FIRST_BB have been followed, or no new path
6260 starting at FIRST_BB can be constructed, this function returns FALSE.
6261 Otherwise, DATA->path is filled and the function returns TRUE indicating
6262 that a path to follow was found.
7afe21cc 6263
2e226e66 6264 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
932ad4d9 6265 block in the path will be FIRST_BB. */
7afe21cc 6266
932ad4d9
SB
6267static bool
6268cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6269 int follow_jumps)
7afe21cc 6270{
932ad4d9
SB
6271 basic_block bb;
6272 edge e;
6273 int path_size;
b8698a0f 6274
d7c028c0 6275 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
7afe21cc 6276
932ad4d9
SB
6277 /* See if there is a previous path. */
6278 path_size = data->path_size;
6279
6280 /* There is a previous path. Make sure it started with FIRST_BB. */
6281 if (path_size)
6282 gcc_assert (data->path[0].bb == first_bb);
6283
6284 /* There was only one basic block in the last path. Clear the path and
6285 return, so that paths starting at another basic block can be tried. */
6286 if (path_size == 1)
6287 {
6288 path_size = 0;
6289 goto done;
6290 }
6291
6292 /* If the path was empty from the beginning, construct a new path. */
6293 if (path_size == 0)
6294 data->path[path_size++].bb = first_bb;
6295 else
7afe21cc 6296 {
932ad4d9
SB
6297 /* Otherwise, path_size must be equal to or greater than 2, because
6298 a previous path exists that is at least two basic blocks long.
6299
6300 Update the previous branch path, if any. If the last branch was
6301 previously along the branch edge, take the fallthrough edge now. */
6302 while (path_size >= 2)
7afe21cc 6303 {
932ad4d9
SB
6304 basic_block last_bb_in_path, previous_bb_in_path;
6305 edge e;
6306
6307 --path_size;
6308 last_bb_in_path = data->path[path_size].bb;
6309 previous_bb_in_path = data->path[path_size - 1].bb;
6310
6311 /* If we previously followed a path along the branch edge, try
6312 the fallthru edge now. */
6313 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6314 && any_condjump_p (BB_END (previous_bb_in_path))
6315 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6316 && e == BRANCH_EDGE (previous_bb_in_path))
6317 {
6318 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
fefa31b5 6319 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
481e0a49
AO
6320 && single_pred_p (bb)
6321 /* We used to assert here that we would only see blocks
6322 that we have not visited yet. But we may end up
6323 visiting basic blocks twice if the CFG has changed
6324 in this run of cse_main, because when the CFG changes
6325 the topological sort of the CFG also changes. A basic
6326 blocks that previously had more than two predecessors
6327 may now have a single predecessor, and become part of
6328 a path that starts at another basic block.
6329
6330 We still want to visit each basic block only once, so
6331 halt the path here if we have already visited BB. */
d7c028c0 6332 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
932ad4d9 6333 {
d7c028c0 6334 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
932ad4d9
SB
6335 data->path[path_size++].bb = bb;
6336 break;
6337 }
6338 }
6339
6340 data->path[path_size].bb = NULL;
6341 }
6342
6343 /* If only one block remains in the path, bail. */
6344 if (path_size == 1)
6345 {
6346 path_size = 0;
6347 goto done;
7afe21cc 6348 }
7afe21cc
RK
6349 }
6350
932ad4d9
SB
6351 /* Extend the path if possible. */
6352 if (follow_jumps)
7afe21cc 6353 {
932ad4d9 6354 bb = data->path[path_size - 1].bb;
028d4092 6355 while (bb && path_size < param_max_cse_path_length)
932ad4d9
SB
6356 {
6357 if (single_succ_p (bb))
6358 e = single_succ_edge (bb);
6359 else if (EDGE_COUNT (bb->succs) == 2
6360 && any_condjump_p (BB_END (bb)))
6361 {
6362 /* First try to follow the branch. If that doesn't lead
6363 to a useful path, follow the fallthru edge. */
6364 e = BRANCH_EDGE (bb);
6365 if (!single_pred_p (e->dest))
6366 e = FALLTHRU_EDGE (bb);
6367 }
6368 else
6369 e = NULL;
7afe21cc 6370
bc6d3f91 6371 if (e
76015c34 6372 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
fefa31b5 6373 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
481e0a49
AO
6374 && single_pred_p (e->dest)
6375 /* Avoid visiting basic blocks twice. The large comment
6376 above explains why this can happen. */
d7c028c0 6377 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
932ad4d9
SB
6378 {
6379 basic_block bb2 = e->dest;
d7c028c0 6380 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
932ad4d9
SB
6381 data->path[path_size++].bb = bb2;
6382 bb = bb2;
6383 }
6384 else
6385 bb = NULL;
6386 }
6387 }
6388
6389done:
6390 data->path_size = path_size;
6391 return path_size != 0;
6392}
6393\f
6394/* Dump the path in DATA to file F. NSETS is the number of sets
6395 in the path. */
6396
6397static void
6398cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6399{
6400 int path_entry;
6401
6402 fprintf (f, ";; Following path with %d sets: ", nsets);
6403 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6404 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
a29dd8dd 6405 fputc ('\n', f);
932ad4d9
SB
6406 fflush (f);
6407}
6408
a7582f7c
SB
6409\f
6410/* Return true if BB has exception handling successor edges. */
6411
6412static bool
6413have_eh_succ_edges (basic_block bb)
6414{
6415 edge e;
6416 edge_iterator ei;
6417
6418 FOR_EACH_EDGE (e, ei, bb->succs)
6419 if (e->flags & EDGE_EH)
6420 return true;
6421
6422 return false;
6423}
6424
932ad4d9
SB
6425\f
6426/* Scan to the end of the path described by DATA. Return an estimate of
6fb5fa3c 6427 the total number of SETs of all insns in the path. */
932ad4d9
SB
6428
6429static void
6430cse_prescan_path (struct cse_basic_block_data *data)
6431{
6432 int nsets = 0;
932ad4d9
SB
6433 int path_size = data->path_size;
6434 int path_entry;
6435
6436 /* Scan to end of each basic block in the path. */
b8698a0f 6437 for (path_entry = 0; path_entry < path_size; path_entry++)
932ad4d9
SB
6438 {
6439 basic_block bb;
20468884 6440 rtx_insn *insn;
164c8956 6441
932ad4d9 6442 bb = data->path[path_entry].bb;
7afe21cc 6443
932ad4d9 6444 FOR_BB_INSNS (bb, insn)
7afe21cc 6445 {
932ad4d9
SB
6446 if (!INSN_P (insn))
6447 continue;
278a83b2 6448
932ad4d9
SB
6449 /* A PARALLEL can have lots of SETs in it,
6450 especially if it is really an ASM_OPERANDS. */
6451 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6452 nsets += XVECLEN (PATTERN (insn), 0);
6453 else
6454 nsets += 1;
7afe21cc 6455 }
932ad4d9
SB
6456 }
6457
932ad4d9
SB
6458 data->nsets = nsets;
6459}
6460\f
f0002948
RS
6461/* Return true if the pattern of INSN uses a LABEL_REF for which
6462 there isn't a REG_LABEL_OPERAND note. */
6463
6464static bool
6465check_for_label_ref (rtx_insn *insn)
6466{
6467 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6468 note for it, we must rerun jump since it needs to place the note. If
6469 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6470 don't do this since no REG_LABEL_OPERAND will be added. */
6471 subrtx_iterator::array_type array;
6472 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6473 {
6474 const_rtx x = *iter;
6475 if (GET_CODE (x) == LABEL_REF
6476 && !LABEL_REF_NONLOCAL_P (x)
6477 && (!JUMP_P (insn)
04a121a7
TS
6478 || !label_is_jump_target_p (label_ref_label (x), insn))
6479 && LABEL_P (label_ref_label (x))
6480 && INSN_UID (label_ref_label (x)) != 0
6481 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
f0002948
RS
6482 return true;
6483 }
6484 return false;
6485}
6486
932ad4d9 6487/* Process a single extended basic block described by EBB_DATA. */
7afe21cc 6488
932ad4d9
SB
6489static void
6490cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6491{
6492 int path_size = ebb_data->path_size;
6493 int path_entry;
6494 int num_insns = 0;
6495
6496 /* Allocate the space needed by qty_table. */
6497 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6498
6499 new_basic_block ();
89a95777
KZ
6500 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6501 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
932ad4d9
SB
6502 for (path_entry = 0; path_entry < path_size; path_entry++)
6503 {
6504 basic_block bb;
20468884 6505 rtx_insn *insn;
932ad4d9
SB
6506
6507 bb = ebb_data->path[path_entry].bb;
e186ff69
AK
6508
6509 /* Invalidate recorded information for eh regs if there is an EH
6510 edge pointing to that bb. */
6511 if (bb_has_eh_pred (bb))
6512 {
292321a5 6513 df_ref def;
e186ff69 6514
292321a5
RS
6515 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6516 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6517 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
e186ff69
AK
6518 }
6519
9fcb01de 6520 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
ba4807a0 6521 FOR_BB_INSNS (bb, insn)
7afe21cc 6522 {
932ad4d9
SB
6523 /* If we have processed 1,000 insns, flush the hash table to
6524 avoid extreme quadratic behavior. We must not include NOTEs
6525 in the count since there may be more of them when generating
6526 debugging information. If we clear the table at different
6527 times, code generated with -g -O might be different than code
6528 generated with -O but not -g.
6529
6530 FIXME: This is a real kludge and needs to be done some other
6531 way. */
b5b8b0ac 6532 if (NONDEBUG_INSN_P (insn)
028d4092 6533 && num_insns++ > param_max_cse_insns)
932ad4d9
SB
6534 {
6535 flush_hash_table ();
6536 num_insns = 0;
6537 }
7afe21cc 6538
932ad4d9 6539 if (INSN_P (insn))
7afe21cc 6540 {
932ad4d9
SB
6541 /* Process notes first so we have all notes in canonical forms
6542 when looking for duplicate operations. */
66ec22b0
RS
6543 bool changed = false;
6544 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
6545 if (REG_NOTE_KIND (note) == REG_EQUAL)
6546 {
6547 rtx newval = cse_process_note (XEXP (note, 0));
6548 if (newval != XEXP (note, 0))
6549 {
6550 XEXP (note, 0) = newval;
6551 changed = true;
6552 }
6553 }
6554 if (changed)
6555 df_notes_rescan (insn);
932ad4d9 6556
4a8cae83 6557 cse_insn (insn);
932ad4d9 6558
932ad4d9
SB
6559 /* If we haven't already found an insn where we added a LABEL_REF,
6560 check this one. */
2aac3a01 6561 if (INSN_P (insn) && !recorded_label_ref
f0002948 6562 && check_for_label_ref (insn))
2aac3a01 6563 recorded_label_ref = true;
932ad4d9
SB
6564 }
6565 }
7afe21cc 6566
a7582f7c
SB
6567 /* With non-call exceptions, we are not always able to update
6568 the CFG properly inside cse_insn. So clean up possibly
6569 redundant EH edges here. */
8f4f502f 6570 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
2aac3a01 6571 cse_cfg_altered |= purge_dead_edges (bb);
a7582f7c 6572
932ad4d9
SB
6573 /* If we changed a conditional jump, we may have terminated
6574 the path we are following. Check that by verifying that
6575 the edge we would take still exists. If the edge does
6576 not exist anymore, purge the remainder of the path.
6577 Note that this will cause us to return to the caller. */
6578 if (path_entry < path_size - 1)
6579 {
6580 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6581 if (!find_edge (bb, next_bb))
27511c65
SB
6582 {
6583 do
6584 {
6585 path_size--;
6586
6587 /* If we truncate the path, we must also reset the
6588 visited bit on the remaining blocks in the path,
6589 or we will never visit them at all. */
d7c028c0 6590 bitmap_clear_bit (cse_visited_basic_blocks,
27511c65
SB
6591 ebb_data->path[path_size].bb->index);
6592 ebb_data->path[path_size].bb = NULL;
6593 }
6594 while (path_size - 1 != path_entry);
6595 ebb_data->path_size = path_size;
6596 }
7afe21cc 6597 }
7afe21cc 6598
932ad4d9
SB
6599 /* If this is a conditional jump insn, record any known
6600 equivalences due to the condition being tested. */
6601 insn = BB_END (bb);
6602 if (path_entry < path_size - 1
e2da9ffe 6603 && EDGE_COUNT (bb->succs) == 2
932ad4d9
SB
6604 && JUMP_P (insn)
6605 && single_set (insn)
6606 && any_condjump_p (insn))
6607 {
6608 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6609 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6610 record_jump_equiv (insn, taken);
6611 }
6612 }
7afe21cc 6613
932ad4d9 6614 gcc_assert (next_qty <= max_qty);
7afe21cc 6615
932ad4d9 6616 free (qty_table);
7afe21cc 6617}
6fb5fa3c 6618
7afe21cc 6619\f
7afe21cc
RK
6620/* Perform cse on the instructions of a function.
6621 F is the first instruction.
6622 NREGS is one plus the highest pseudo-reg number used in the instruction.
6623
2aac3a01
EB
6624 Return 2 if jump optimizations should be redone due to simplifications
6625 in conditional jump instructions.
6626 Return 1 if the CFG should be cleaned up because it has been modified.
6627 Return 0 otherwise. */
7afe21cc 6628
711417cd 6629static int
20468884 6630cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
7afe21cc 6631{
932ad4d9
SB
6632 struct cse_basic_block_data ebb_data;
6633 basic_block bb;
8b1c6fd7 6634 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
932ad4d9 6635 int i, n_blocks;
7afe21cc 6636
afb72432
IE
6637 /* CSE doesn't use dominane info but can invalidate it in different ways.
6638 For simplicity free dominance info here. */
6639 free_dominance_info (CDI_DOMINATORS);
6640
6fb5fa3c 6641 df_set_flags (DF_LR_RUN_DCE);
dca3da7a 6642 df_note_add_problem ();
6fb5fa3c
DB
6643 df_analyze ();
6644 df_set_flags (DF_DEFER_INSN_RESCAN);
6645
6646 reg_scan (get_insns (), max_reg_num ());
bc5e3b54
KH
6647 init_cse_reg_info (nregs);
6648
932ad4d9 6649 ebb_data.path = XNEWVEC (struct branch_path,
028d4092 6650 param_max_cse_path_length);
9bf8cfbf 6651
2aac3a01
EB
6652 cse_cfg_altered = false;
6653 cse_jumps_altered = false;
6654 recorded_label_ref = false;
932ad4d9
SB
6655 ebb_data.path_size = 0;
6656 ebb_data.nsets = 0;
2f93eea8 6657 rtl_hooks = cse_rtl_hooks;
7afe21cc
RK
6658
6659 init_recog ();
9ae8ffe7 6660 init_alias_analysis ();
7afe21cc 6661
5ed6ace5 6662 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
7afe21cc 6663
932ad4d9 6664 /* Set up the table of already visited basic blocks. */
8b1c6fd7 6665 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 6666 bitmap_clear (cse_visited_basic_blocks);
7afe21cc 6667
a7582f7c 6668 /* Loop over basic blocks in reverse completion order (RPO),
932ad4d9 6669 excluding the ENTRY and EXIT blocks. */
27511c65 6670 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
932ad4d9
SB
6671 i = 0;
6672 while (i < n_blocks)
7afe21cc 6673 {
a7582f7c 6674 /* Find the first block in the RPO queue that we have not yet
932ad4d9
SB
6675 processed before. */
6676 do
e9a25f70 6677 {
06e28de2 6678 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
e9a25f70 6679 }
d7c028c0 6680 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
932ad4d9 6681 && i < n_blocks);
7afe21cc 6682
932ad4d9
SB
6683 /* Find all paths starting with BB, and process them. */
6684 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
7afe21cc 6685 {
932ad4d9
SB
6686 /* Pre-scan the path. */
6687 cse_prescan_path (&ebb_data);
7afe21cc 6688
932ad4d9
SB
6689 /* If this basic block has no sets, skip it. */
6690 if (ebb_data.nsets == 0)
6691 continue;
7afe21cc 6692
2e226e66 6693 /* Get a reasonable estimate for the maximum number of qty's
932ad4d9
SB
6694 needed for this path. For this, we take the number of sets
6695 and multiply that by MAX_RECOG_OPERANDS. */
6696 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
7afe21cc 6697
932ad4d9
SB
6698 /* Dump the path we're about to process. */
6699 if (dump_file)
6700 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6a5293dc 6701
932ad4d9 6702 cse_extended_basic_block (&ebb_data);
7afe21cc 6703 }
7afe21cc
RK
6704 }
6705
932ad4d9
SB
6706 /* Clean up. */
6707 end_alias_analysis ();
932ad4d9
SB
6708 free (reg_eqv_table);
6709 free (ebb_data.path);
6710 sbitmap_free (cse_visited_basic_blocks);
27511c65 6711 free (rc_order);
932ad4d9 6712 rtl_hooks = general_rtl_hooks;
75c6bd46 6713
2aac3a01
EB
6714 if (cse_jumps_altered || recorded_label_ref)
6715 return 2;
6716 else if (cse_cfg_altered)
6717 return 1;
6718 else
6719 return 0;
7afe21cc
RK
6720}
6721\f
6722/* Count the number of times registers are used (not set) in X.
6723 COUNTS is an array in which we accumulate the count, INCR is how much
b92ba6ff
R
6724 we count each register usage.
6725
6726 Don't count a usage of DEST, which is the SET_DEST of a SET which
6727 contains X in its SET_SRC. This is because such a SET does not
6728 modify the liveness of DEST.
34161e98
RS
6729 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6730 We must then count uses of a SET_DEST regardless, because the insn can't be
6731 deleted here. */
7afe21cc
RK
6732
6733static void
b92ba6ff 6734count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7afe21cc 6735{
f1e7c95f 6736 enum rtx_code code;
b17d5d7c 6737 rtx note;
6f7d635c 6738 const char *fmt;
7afe21cc
RK
6739 int i, j;
6740
f1e7c95f
RK
6741 if (x == 0)
6742 return;
6743
6744 switch (code = GET_CODE (x))
7afe21cc
RK
6745 {
6746 case REG:
b92ba6ff
R
6747 if (x != dest)
6748 counts[REGNO (x)] += incr;
7afe21cc
RK
6749 return;
6750
6751 case PC:
7afe21cc 6752 case CONST:
d8116890 6753 CASE_CONST_ANY:
7afe21cc
RK
6754 case SYMBOL_REF:
6755 case LABEL_REF:
02e39abc
JL
6756 return;
6757
278a83b2 6758 case CLOBBER:
02e39abc
JL
6759 /* If we are clobbering a MEM, mark any registers inside the address
6760 as being used. */
3c0cb5de 6761 if (MEM_P (XEXP (x, 0)))
b92ba6ff 6762 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7afe21cc
RK
6763 return;
6764
6765 case SET:
6766 /* Unless we are setting a REG, count everything in SET_DEST. */
f8cfc6aa 6767 if (!REG_P (SET_DEST (x)))
b92ba6ff
R
6768 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6769 count_reg_usage (SET_SRC (x), counts,
6770 dest ? dest : SET_DEST (x),
6771 incr);
7afe21cc
RK
6772 return;
6773
b5b8b0ac
AO
6774 case DEBUG_INSN:
6775 return;
6776
f1e7c95f 6777 case CALL_INSN:
7afe21cc
RK
6778 case INSN:
6779 case JUMP_INSN:
2da02156 6780 /* We expect dest to be NULL_RTX here. If the insn may throw,
34161e98
RS
6781 or if it cannot be deleted due to side-effects, mark this fact
6782 by setting DEST to pc_rtx. */
2da02156
EB
6783 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6784 || side_effects_p (PATTERN (x)))
b92ba6ff
R
6785 dest = pc_rtx;
6786 if (code == CALL_INSN)
6787 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6788 count_reg_usage (PATTERN (x), counts, dest, incr);
7afe21cc
RK
6789
6790 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6791 use them. */
6792
b17d5d7c
ZD
6793 note = find_reg_equal_equiv_note (x);
6794 if (note)
839844be
R
6795 {
6796 rtx eqv = XEXP (note, 0);
6797
6798 if (GET_CODE (eqv) == EXPR_LIST)
6799 /* This REG_EQUAL note describes the result of a function call.
6800 Process all the arguments. */
6801 do
6802 {
b92ba6ff 6803 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
839844be
R
6804 eqv = XEXP (eqv, 1);
6805 }
6806 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6807 else
b92ba6ff 6808 count_reg_usage (eqv, counts, dest, incr);
839844be 6809 }
7afe21cc
RK
6810 return;
6811
ee960939
OH
6812 case EXPR_LIST:
6813 if (REG_NOTE_KIND (x) == REG_EQUAL
6814 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6815 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6816 involving registers in the address. */
17d184e5 6817 || GET_CODE (XEXP (x, 0)) == CLOBBER)
b92ba6ff 6818 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
ee960939 6819
b92ba6ff 6820 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
ee960939
OH
6821 return;
6822
a6c14a64 6823 case ASM_OPERANDS:
a6c14a64
RH
6824 /* Iterate over just the inputs, not the constraints as well. */
6825 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
b92ba6ff 6826 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
a6c14a64
RH
6827 return;
6828
7afe21cc 6829 case INSN_LIST:
f91aec98 6830 case INT_LIST:
341c100f 6831 gcc_unreachable ();
278a83b2 6832
e9a25f70
JL
6833 default:
6834 break;
7afe21cc
RK
6835 }
6836
6837 fmt = GET_RTX_FORMAT (code);
6838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6839 {
6840 if (fmt[i] == 'e')
b92ba6ff 6841 count_reg_usage (XEXP (x, i), counts, dest, incr);
7afe21cc
RK
6842 else if (fmt[i] == 'E')
6843 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
b92ba6ff 6844 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7afe21cc
RK
6845 }
6846}
6847\f
6699b754 6848/* Return true if X is a dead register. */
b5b8b0ac 6849
dec7aaab 6850static inline bool
a5b9bc17 6851is_dead_reg (const_rtx x, int *counts)
b5b8b0ac 6852{
b5b8b0ac
AO
6853 return (REG_P (x)
6854 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6855 && counts[REGNO (x)] == 0);
6856}
6857
4793dca1
JH
6858/* Return true if set is live. */
6859static bool
bd1cd0d0 6860set_live_p (rtx set, int *counts)
4793dca1 6861{
4793dca1 6862 if (set_noop_p (set))
4793dca1 6863 return false;
bd1cd0d0
SB
6864
6865 if (!is_dead_reg (SET_DEST (set), counts)
6866 || side_effects_p (SET_SRC (set)))
4793dca1 6867 return true;
bd1cd0d0 6868
4793dca1
JH
6869 return false;
6870}
6871
6872/* Return true if insn is live. */
6873
6874static bool
20468884 6875insn_live_p (rtx_insn *insn, int *counts)
4793dca1
JH
6876{
6877 int i;
2da02156 6878 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
a646f6cc
AH
6879 return true;
6880 else if (GET_CODE (PATTERN (insn)) == SET)
bd1cd0d0 6881 return set_live_p (PATTERN (insn), counts);
4793dca1 6882 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
0021de69
DB
6883 {
6884 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6885 {
6886 rtx elt = XVECEXP (PATTERN (insn), 0, i);
4793dca1 6887
0021de69
DB
6888 if (GET_CODE (elt) == SET)
6889 {
bd1cd0d0 6890 if (set_live_p (elt, counts))
0021de69
DB
6891 return true;
6892 }
17d184e5 6893 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
0021de69
DB
6894 return true;
6895 }
6896 return false;
6897 }
b5b8b0ac
AO
6898 else if (DEBUG_INSN_P (insn))
6899 {
96a95ac1
AO
6900 if (DEBUG_MARKER_INSN_P (insn))
6901 return true;
6902
675ac882
RB
6903 if (DEBUG_BIND_INSN_P (insn)
6904 && TREE_VISITED (INSN_VAR_LOCATION_DECL (insn)))
6905 return false;
b5b8b0ac 6906
b5b8b0ac
AO
6907 return true;
6908 }
4793dca1
JH
6909 else
6910 return true;
6911}
6912
6699b754
JJ
6913/* Count the number of stores into pseudo. Callback for note_stores. */
6914
6915static void
6916count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6917{
6918 int *counts = (int *) data;
6919 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6920 counts[REGNO (x)]++;
6921}
6922
a5b9bc17
RS
6923/* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6924 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6925 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6926 Set *SEEN_REPL to true if we see a dead register that does have
6927 a replacement. */
6699b754 6928
a5b9bc17
RS
6929static bool
6930is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6931 bool *seen_repl)
6699b754 6932{
a5b9bc17
RS
6933 subrtx_iterator::array_type array;
6934 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6699b754 6935 {
a5b9bc17
RS
6936 const_rtx x = *iter;
6937 if (is_dead_reg (x, counts))
6938 {
6939 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6940 *seen_repl = true;
6941 else
6942 return true;
6943 }
6699b754 6944 }
a5b9bc17 6945 return false;
6699b754
JJ
6946}
6947
6948/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6949 Callback for simplify_replace_fn_rtx. */
6950
6951static rtx
6952replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6953{
6954 rtx *replacements = (rtx *) data;
6955
6956 if (REG_P (x)
6957 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6958 && replacements[REGNO (x)] != NULL_RTX)
6959 {
6960 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6961 return replacements[REGNO (x)];
6962 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6963 GET_MODE (replacements[REGNO (x)]));
6964 }
6965 return NULL_RTX;
6966}
6967
7afe21cc
RK
6968/* Scan all the insns and delete any that are dead; i.e., they store a register
6969 that is never used or they copy a register to itself.
6970
c6a26dc4
JL
6971 This is used to remove insns made obviously dead by cse, loop or other
6972 optimizations. It improves the heuristics in loop since it won't try to
6973 move dead invariants out of loops or make givs for dead quantities. The
6974 remaining passes of the compilation are also sped up. */
7afe21cc 6975
3dec4024 6976int
169d13f5 6977delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7afe21cc 6978{
4da896b2 6979 int *counts;
169d13f5 6980 rtx_insn *insn, *prev;
6699b754 6981 rtx *replacements = NULL;
65e9fa10 6982 int ndead = 0;
7afe21cc 6983
3dec4024 6984 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7afe21cc 6985 /* First count the number of times each register is used. */
36f52e8f 6986 if (MAY_HAVE_DEBUG_BIND_INSNS)
6699b754
JJ
6987 {
6988 counts = XCNEWVEC (int, nreg * 3);
6989 for (insn = insns; insn; insn = NEXT_INSN (insn))
36f52e8f 6990 if (DEBUG_BIND_INSN_P (insn))
675ac882
RB
6991 {
6992 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6993 NULL_RTX, 1);
6994 TREE_VISITED (INSN_VAR_LOCATION_DECL (insn)) = 0;
6995 }
6699b754
JJ
6996 else if (INSN_P (insn))
6997 {
6998 count_reg_usage (insn, counts, NULL_RTX, 1);
e8448ba5 6999 note_stores (insn, count_stores, counts + nreg * 2);
6699b754
JJ
7000 }
7001 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7002 First one counts how many times each pseudo is used outside
7003 of debug insns, second counts how many times each pseudo is
7004 used in debug insns and third counts how many times a pseudo
7005 is stored. */
7006 }
7007 else
7008 {
7009 counts = XCNEWVEC (int, nreg);
7010 for (insn = insns; insn; insn = NEXT_INSN (insn))
7011 if (INSN_P (insn))
7012 count_reg_usage (insn, counts, NULL_RTX, 1);
7013 /* If no debug insns can be present, COUNTS is just an array
7014 which counts how many times each pseudo is used. */
7015 }
56873e13
ES
7016 /* Pseudo PIC register should be considered as used due to possible
7017 new usages generated. */
7018 if (!reload_completed
7019 && pic_offset_table_rtx
7020 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7021 counts[REGNO (pic_offset_table_rtx)]++;
65e9fa10
KH
7022 /* Go from the last insn to the first and delete insns that only set unused
7023 registers or copy a register to itself. As we delete an insn, remove
7024 usage counts for registers it uses.
0cedb36c 7025
65e9fa10
KH
7026 The first jump optimization pass may leave a real insn as the last
7027 insn in the function. We must not skip that insn or we may end
6699b754
JJ
7028 up deleting code that is not really dead.
7029
7030 If some otherwise unused register is only used in DEBUG_INSNs,
7031 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7032 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7033 has been created for the unused register, replace it with
7034 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
675ac882 7035 auto_vec<tree, 32> later_debug_set_vars;
03ce14db 7036 for (insn = get_last_insn (); insn; insn = prev)
65e9fa10
KH
7037 {
7038 int live_insn = 0;
7afe21cc 7039
03ce14db
KH
7040 prev = PREV_INSN (insn);
7041 if (!INSN_P (insn))
7042 continue;
7afe21cc 7043
4a8cae83 7044 live_insn = insn_live_p (insn, counts);
7afe21cc 7045
65e9fa10
KH
7046 /* If this is a dead insn, delete it and show registers in it aren't
7047 being used. */
7afe21cc 7048
6fb5fa3c 7049 if (! live_insn && dbg_cnt (delete_trivial_dead))
65e9fa10 7050 {
6699b754 7051 if (DEBUG_INSN_P (insn))
36f52e8f
AO
7052 {
7053 if (DEBUG_BIND_INSN_P (insn))
7054 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7055 NULL_RTX, -1);
7056 }
6699b754
JJ
7057 else
7058 {
7059 rtx set;
36f52e8f 7060 if (MAY_HAVE_DEBUG_BIND_INSNS
6699b754
JJ
7061 && (set = single_set (insn)) != NULL_RTX
7062 && is_dead_reg (SET_DEST (set), counts)
7063 /* Used at least once in some DEBUG_INSN. */
7064 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7065 /* And set exactly once. */
7066 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7067 && !side_effects_p (SET_SRC (set))
7068 && asm_noperands (PATTERN (insn)) < 0)
7069 {
b2908ba6
DM
7070 rtx dval, bind_var_loc;
7071 rtx_insn *bind;
6699b754
JJ
7072
7073 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7074 dval = make_debug_expr_from_rtl (SET_DEST (set));
7075
7076 /* Emit a debug bind insn before the insn in which
7077 reg dies. */
b2908ba6
DM
7078 bind_var_loc =
7079 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7080 DEBUG_EXPR_TREE_DECL (dval),
7081 SET_SRC (set),
7082 VAR_INIT_STATUS_INITIALIZED);
7083 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7084
7085 bind = emit_debug_insn_before (bind_var_loc, insn);
6699b754
JJ
7086 df_insn_rescan (bind);
7087
7088 if (replacements == NULL)
7089 replacements = XCNEWVEC (rtx, nreg);
7090 replacements[REGNO (SET_DEST (set))] = dval;
7091 }
7092
7093 count_reg_usage (insn, counts, NULL_RTX, -1);
7094 ndead++;
7095 }
98ccd1d7 7096 cse_cfg_altered |= delete_insn_and_edges (insn);
65e9fa10 7097 }
675ac882
RB
7098 else
7099 {
7100 if (!DEBUG_INSN_P (insn) || DEBUG_MARKER_INSN_P (insn))
7101 {
7102 for (tree var : later_debug_set_vars)
7103 TREE_VISITED (var) = 0;
7104 later_debug_set_vars.truncate (0);
7105 }
7106 else if (DEBUG_BIND_INSN_P (insn)
7107 && !TREE_VISITED (INSN_VAR_LOCATION_DECL (insn)))
7108 {
7109 later_debug_set_vars.safe_push (INSN_VAR_LOCATION_DECL (insn));
7110 TREE_VISITED (INSN_VAR_LOCATION_DECL (insn)) = 1;
7111 }
7112 }
68252e27 7113 }
4da896b2 7114
36f52e8f 7115 if (MAY_HAVE_DEBUG_BIND_INSNS)
6699b754 7116 {
6699b754 7117 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
36f52e8f 7118 if (DEBUG_BIND_INSN_P (insn))
6699b754
JJ
7119 {
7120 /* If this debug insn references a dead register that wasn't replaced
7121 with an DEBUG_EXPR, reset the DEBUG_INSN. */
a5b9bc17
RS
7122 bool seen_repl = false;
7123 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7124 counts, replacements, &seen_repl))
6699b754
JJ
7125 {
7126 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7127 df_insn_rescan (insn);
7128 }
a5b9bc17 7129 else if (seen_repl)
6699b754
JJ
7130 {
7131 INSN_VAR_LOCATION_LOC (insn)
7132 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7133 NULL_RTX, replace_dead_reg,
7134 replacements);
7135 df_insn_rescan (insn);
7136 }
7137 }
04695783 7138 free (replacements);
6699b754
JJ
7139 }
7140
c263766c 7141 if (dump_file && ndead)
65e9fa10
KH
7142 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7143 ndead);
4da896b2
MM
7144 /* Clean up. */
7145 free (counts);
3dec4024
JH
7146 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7147 return ndead;
7afe21cc 7148}
e129d93a 7149
a9052a40
RS
7150/* If LOC contains references to NEWREG in a different mode, change them
7151 to use NEWREG instead. */
e129d93a 7152
a9052a40
RS
7153static void
7154cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
88bdcd3d 7155 rtx *loc, rtx_insn *insn, rtx newreg)
e129d93a 7156{
a9052a40 7157 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
e129d93a 7158 {
a9052a40
RS
7159 rtx *loc = *iter;
7160 rtx x = *loc;
7161 if (x
7162 && REG_P (x)
7163 && REGNO (x) == REGNO (newreg)
7164 && GET_MODE (x) != GET_MODE (newreg))
7165 {
7166 validate_change (insn, loc, newreg, 1);
7167 iter.skip_subrtxes ();
7168 }
e129d93a 7169 }
e129d93a
ILT
7170}
7171
fc188d37
AK
7172/* Change the mode of any reference to the register REGNO (NEWREG) to
7173 GET_MODE (NEWREG) in INSN. */
7174
7175static void
20468884 7176cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
fc188d37 7177{
fc188d37
AK
7178 int success;
7179
7180 if (!INSN_P (insn))
7181 return;
7182
a9052a40
RS
7183 subrtx_ptr_iterator::array_type array;
7184 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7185 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
b8698a0f 7186
fc188d37
AK
7187 /* If the following assertion was triggered, there is most probably
7188 something wrong with the cc_modes_compatible back end function.
7189 CC modes only can be considered compatible if the insn - with the mode
7190 replaced by any of the compatible modes - can still be recognized. */
7191 success = apply_change_group ();
7192 gcc_assert (success);
7193}
7194
e129d93a
ILT
7195/* Change the mode of any reference to the register REGNO (NEWREG) to
7196 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
2e802a6f 7197 any instruction which modifies NEWREG. */
e129d93a
ILT
7198
7199static void
20468884 7200cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
e129d93a 7201{
20468884 7202 rtx_insn *insn;
e129d93a
ILT
7203
7204 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7205 {
7206 if (! INSN_P (insn))
7207 continue;
7208
2e802a6f 7209 if (reg_set_p (newreg, insn))
e129d93a
ILT
7210 return;
7211
fc188d37 7212 cse_change_cc_mode_insn (insn, newreg);
e129d93a
ILT
7213 }
7214}
7215
7216/* BB is a basic block which finishes with CC_REG as a condition code
7217 register which is set to CC_SRC. Look through the successors of BB
7218 to find blocks which have a single predecessor (i.e., this one),
7219 and look through those blocks for an assignment to CC_REG which is
7220 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7221 permitted to change the mode of CC_SRC to a compatible mode. This
7222 returns VOIDmode if no equivalent assignments were found.
7223 Otherwise it returns the mode which CC_SRC should wind up with.
31e9ebaf
JJ
7224 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7225 but is passed unmodified down to recursive calls in order to prevent
7226 endless recursion.
e129d93a
ILT
7227
7228 The main complexity in this function is handling the mode issues.
7229 We may have more than one duplicate which we can eliminate, and we
7230 try to find a mode which will work for multiple duplicates. */
7231
ef4bddc2 7232static machine_mode
31e9ebaf
JJ
7233cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7234 bool can_change_mode)
e129d93a
ILT
7235{
7236 bool found_equiv;
ef4bddc2 7237 machine_mode mode;
e129d93a
ILT
7238 unsigned int insn_count;
7239 edge e;
20468884 7240 rtx_insn *insns[2];
ef4bddc2 7241 machine_mode modes[2];
20468884 7242 rtx_insn *last_insns[2];
e129d93a
ILT
7243 unsigned int i;
7244 rtx newreg;
628f6a4e 7245 edge_iterator ei;
e129d93a
ILT
7246
7247 /* We expect to have two successors. Look at both before picking
7248 the final mode for the comparison. If we have more successors
7249 (i.e., some sort of table jump, although that seems unlikely),
7250 then we require all beyond the first two to use the same
7251 mode. */
7252
7253 found_equiv = false;
7254 mode = GET_MODE (cc_src);
7255 insn_count = 0;
628f6a4e 7256 FOR_EACH_EDGE (e, ei, bb->succs)
e129d93a 7257 {
20468884
DM
7258 rtx_insn *insn;
7259 rtx_insn *end;
e129d93a
ILT
7260
7261 if (e->flags & EDGE_COMPLEX)
7262 continue;
7263
628f6a4e 7264 if (EDGE_COUNT (e->dest->preds) != 1
fefa31b5 7265 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
31e9ebaf
JJ
7266 /* Avoid endless recursion on unreachable blocks. */
7267 || e->dest == orig_bb)
e129d93a
ILT
7268 continue;
7269
7270 end = NEXT_INSN (BB_END (e->dest));
7271 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7272 {
7273 rtx set;
7274
7275 if (! INSN_P (insn))
7276 continue;
7277
7278 /* If CC_SRC is modified, we have to stop looking for
7279 something which uses it. */
7280 if (modified_in_p (cc_src, insn))
7281 break;
7282
7283 /* Check whether INSN sets CC_REG to CC_SRC. */
7284 set = single_set (insn);
7285 if (set
f8cfc6aa 7286 && REG_P (SET_DEST (set))
e129d93a
ILT
7287 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7288 {
7289 bool found;
ef4bddc2
RS
7290 machine_mode set_mode;
7291 machine_mode comp_mode;
e129d93a
ILT
7292
7293 found = false;
7294 set_mode = GET_MODE (SET_SRC (set));
7295 comp_mode = set_mode;
7296 if (rtx_equal_p (cc_src, SET_SRC (set)))
7297 found = true;
7298 else if (GET_CODE (cc_src) == COMPARE
7299 && GET_CODE (SET_SRC (set)) == COMPARE
1f44254c 7300 && mode != set_mode
e129d93a
ILT
7301 && rtx_equal_p (XEXP (cc_src, 0),
7302 XEXP (SET_SRC (set), 0))
7303 && rtx_equal_p (XEXP (cc_src, 1),
7304 XEXP (SET_SRC (set), 1)))
b8698a0f 7305
e129d93a 7306 {
5fd9b178 7307 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
e129d93a
ILT
7308 if (comp_mode != VOIDmode
7309 && (can_change_mode || comp_mode == mode))
7310 found = true;
7311 }
7312
7313 if (found)
7314 {
7315 found_equiv = true;
1f44254c 7316 if (insn_count < ARRAY_SIZE (insns))
e129d93a
ILT
7317 {
7318 insns[insn_count] = insn;
7319 modes[insn_count] = set_mode;
7320 last_insns[insn_count] = end;
7321 ++insn_count;
7322
1f44254c
ILT
7323 if (mode != comp_mode)
7324 {
341c100f 7325 gcc_assert (can_change_mode);
1f44254c 7326 mode = comp_mode;
fc188d37
AK
7327
7328 /* The modified insn will be re-recognized later. */
1f44254c
ILT
7329 PUT_MODE (cc_src, mode);
7330 }
e129d93a
ILT
7331 }
7332 else
7333 {
7334 if (set_mode != mode)
1f44254c
ILT
7335 {
7336 /* We found a matching expression in the
7337 wrong mode, but we don't have room to
7338 store it in the array. Punt. This case
7339 should be rare. */
7340 break;
7341 }
e129d93a
ILT
7342 /* INSN sets CC_REG to a value equal to CC_SRC
7343 with the right mode. We can simply delete
7344 it. */
7345 delete_insn (insn);
7346 }
7347
7348 /* We found an instruction to delete. Keep looking,
7349 in the hopes of finding a three-way jump. */
7350 continue;
7351 }
7352
7353 /* We found an instruction which sets the condition
7354 code, so don't look any farther. */
7355 break;
7356 }
7357
7358 /* If INSN sets CC_REG in some other way, don't look any
7359 farther. */
7360 if (reg_set_p (cc_reg, insn))
7361 break;
7362 }
7363
7364 /* If we fell off the bottom of the block, we can keep looking
7365 through successors. We pass CAN_CHANGE_MODE as false because
7366 we aren't prepared to handle compatibility between the
7367 further blocks and this block. */
7368 if (insn == end)
7369 {
ef4bddc2 7370 machine_mode submode;
1f44254c 7371
31e9ebaf 7372 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
1f44254c
ILT
7373 if (submode != VOIDmode)
7374 {
341c100f 7375 gcc_assert (submode == mode);
1f44254c
ILT
7376 found_equiv = true;
7377 can_change_mode = false;
7378 }
e129d93a
ILT
7379 }
7380 }
7381
7382 if (! found_equiv)
7383 return VOIDmode;
7384
7385 /* Now INSN_COUNT is the number of instructions we found which set
7386 CC_REG to a value equivalent to CC_SRC. The instructions are in
7387 INSNS. The modes used by those instructions are in MODES. */
7388
7389 newreg = NULL_RTX;
7390 for (i = 0; i < insn_count; ++i)
7391 {
7392 if (modes[i] != mode)
7393 {
7394 /* We need to change the mode of CC_REG in INSNS[i] and
7395 subsequent instructions. */
7396 if (! newreg)
7397 {
7398 if (GET_MODE (cc_reg) == mode)
7399 newreg = cc_reg;
7400 else
7401 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7402 }
7403 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7404 newreg);
7405 }
7406
98ccd1d7 7407 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
e129d93a
ILT
7408 }
7409
7410 return mode;
7411}
7412
7413/* If we have a fixed condition code register (or two), walk through
7414 the instructions and try to eliminate duplicate assignments. */
7415
cab2264d 7416static void
e129d93a
ILT
7417cse_condition_code_reg (void)
7418{
7419 unsigned int cc_regno_1;
7420 unsigned int cc_regno_2;
7421 rtx cc_reg_1;
7422 rtx cc_reg_2;
7423 basic_block bb;
7424
5fd9b178 7425 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
e129d93a
ILT
7426 return;
7427
7428 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7429 if (cc_regno_2 != INVALID_REGNUM)
7430 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7431 else
7432 cc_reg_2 = NULL_RTX;
7433
11cd3bed 7434 FOR_EACH_BB_FN (bb, cfun)
e129d93a 7435 {
20468884 7436 rtx_insn *last_insn;
e129d93a 7437 rtx cc_reg;
20468884
DM
7438 rtx_insn *insn;
7439 rtx_insn *cc_src_insn;
e129d93a 7440 rtx cc_src;
ef4bddc2
RS
7441 machine_mode mode;
7442 machine_mode orig_mode;
e129d93a
ILT
7443
7444 /* Look for blocks which end with a conditional jump based on a
7445 condition code register. Then look for the instruction which
7446 sets the condition code register. Then look through the
7447 successor blocks for instructions which set the condition
7448 code register to the same value. There are other possible
7449 uses of the condition code register, but these are by far the
7450 most common and the ones which we are most likely to be able
7451 to optimize. */
7452
7453 last_insn = BB_END (bb);
4b4bf941 7454 if (!JUMP_P (last_insn))
e129d93a
ILT
7455 continue;
7456
7457 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7458 cc_reg = cc_reg_1;
7459 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7460 cc_reg = cc_reg_2;
7461 else
7462 continue;
7463
20468884 7464 cc_src_insn = NULL;
e129d93a
ILT
7465 cc_src = NULL_RTX;
7466 for (insn = PREV_INSN (last_insn);
7467 insn && insn != PREV_INSN (BB_HEAD (bb));
7468 insn = PREV_INSN (insn))
7469 {
7470 rtx set;
7471
7472 if (! INSN_P (insn))
7473 continue;
7474 set = single_set (insn);
7475 if (set
f8cfc6aa 7476 && REG_P (SET_DEST (set))
e129d93a
ILT
7477 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7478 {
7479 cc_src_insn = insn;
7480 cc_src = SET_SRC (set);
7481 break;
7482 }
7483 else if (reg_set_p (cc_reg, insn))
7484 break;
7485 }
7486
7487 if (! cc_src_insn)
7488 continue;
7489
7490 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7491 continue;
7492
7493 /* Now CC_REG is a condition code register used for a
7494 conditional jump at the end of the block, and CC_SRC, in
7495 CC_SRC_INSN, is the value to which that condition code
7496 register is set, and CC_SRC is still meaningful at the end of
7497 the basic block. */
7498
1f44254c 7499 orig_mode = GET_MODE (cc_src);
31e9ebaf 7500 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
1f44254c 7501 if (mode != VOIDmode)
e129d93a 7502 {
341c100f 7503 gcc_assert (mode == GET_MODE (cc_src));
1f44254c 7504 if (mode != orig_mode)
2e802a6f
KH
7505 {
7506 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7507
fc188d37 7508 cse_change_cc_mode_insn (cc_src_insn, newreg);
2e802a6f
KH
7509
7510 /* Do the same in the following insns that use the
7511 current value of CC_REG within BB. */
7512 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7513 NEXT_INSN (last_insn),
7514 newreg);
7515 }
e129d93a
ILT
7516 }
7517 }
7518}
ef330312
PB
7519\f
7520
7521/* Perform common subexpression elimination. Nonzero value from
7522 `cse_main' means that jumps were simplified and some code may now
7523 be unreachable, so do jump optimization again. */
c2924966 7524static unsigned int
ef330312
PB
7525rest_of_handle_cse (void)
7526{
7527 int tem;
6fb5fa3c 7528
ef330312 7529 if (dump_file)
5b4fdb20 7530 dump_flow_info (dump_file, dump_flags);
ef330312 7531
10d22567 7532 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7533
7534 /* If we are not running more CSE passes, then we are no longer
7535 expecting CSE to be run. But always rerun it in a cheap mode. */
7536 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7537
2aac3a01
EB
7538 if (tem == 2)
7539 {
7540 timevar_push (TV_JUMP);
7541 rebuild_jump_labels (get_insns ());
da7674f6 7542 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
2aac3a01
EB
7543 timevar_pop (TV_JUMP);
7544 }
7545 else if (tem == 1 || optimize > 1)
da7674f6 7546 cse_cfg_altered |= cleanup_cfg (0);
932ad4d9 7547
c2924966 7548 return 0;
ef330312
PB
7549}
7550
27a4cd48
DM
7551namespace {
7552
7553const pass_data pass_data_cse =
ef330312 7554{
27a4cd48
DM
7555 RTL_PASS, /* type */
7556 "cse1", /* name */
7557 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7558 TV_CSE, /* tv_id */
7559 0, /* properties_required */
7560 0, /* properties_provided */
7561 0, /* properties_destroyed */
7562 0, /* todo_flags_start */
3bea341f 7563 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
7564};
7565
27a4cd48
DM
7566class pass_cse : public rtl_opt_pass
7567{
7568public:
c3284718
RS
7569 pass_cse (gcc::context *ctxt)
7570 : rtl_opt_pass (pass_data_cse, ctxt)
27a4cd48
DM
7571 {}
7572
7573 /* opt_pass methods: */
725793af
DM
7574 bool gate (function *) final override { return optimize > 0; }
7575 unsigned int execute (function *) final override
7576 {
7577 return rest_of_handle_cse ();
7578 }
27a4cd48
DM
7579
7580}; // class pass_cse
7581
7582} // anon namespace
7583
7584rtl_opt_pass *
7585make_pass_cse (gcc::context *ctxt)
7586{
7587 return new pass_cse (ctxt);
7588}
7589
ef330312 7590
ef330312 7591/* Run second CSE pass after loop optimizations. */
c2924966 7592static unsigned int
ef330312
PB
7593rest_of_handle_cse2 (void)
7594{
7595 int tem;
7596
7597 if (dump_file)
5b4fdb20 7598 dump_flow_info (dump_file, dump_flags);
ef330312 7599
10d22567 7600 tem = cse_main (get_insns (), max_reg_num ());
ef330312
PB
7601
7602 /* Run a pass to eliminate duplicated assignments to condition code
7603 registers. We have to run this after bypass_jumps, because it
7604 makes it harder for that pass to determine whether a jump can be
7605 bypassed safely. */
7606 cse_condition_code_reg ();
7607
ef330312
PB
7608 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7609
2aac3a01 7610 if (tem == 2)
ef330312
PB
7611 {
7612 timevar_push (TV_JUMP);
7613 rebuild_jump_labels (get_insns ());
da7674f6 7614 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
ef330312
PB
7615 timevar_pop (TV_JUMP);
7616 }
ba585b91 7617 else if (tem == 1 || cse_cfg_altered)
da7674f6 7618 cse_cfg_altered |= cleanup_cfg (0);
2aac3a01 7619
ef330312 7620 cse_not_expected = 1;
c2924966 7621 return 0;
ef330312
PB
7622}
7623
7624
27a4cd48
DM
7625namespace {
7626
7627const pass_data pass_data_cse2 =
ef330312 7628{
27a4cd48
DM
7629 RTL_PASS, /* type */
7630 "cse2", /* name */
7631 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7632 TV_CSE2, /* tv_id */
7633 0, /* properties_required */
7634 0, /* properties_provided */
7635 0, /* properties_destroyed */
7636 0, /* todo_flags_start */
3bea341f 7637 TODO_df_finish, /* todo_flags_finish */
ef330312 7638};
5f39ad47 7639
27a4cd48
DM
7640class pass_cse2 : public rtl_opt_pass
7641{
7642public:
c3284718
RS
7643 pass_cse2 (gcc::context *ctxt)
7644 : rtl_opt_pass (pass_data_cse2, ctxt)
27a4cd48
DM
7645 {}
7646
7647 /* opt_pass methods: */
725793af 7648 bool gate (function *) final override
1a3d085c
TS
7649 {
7650 return optimize > 0 && flag_rerun_cse_after_loop;
7651 }
7652
725793af
DM
7653 unsigned int execute (function *) final override
7654 {
7655 return rest_of_handle_cse2 ();
7656 }
27a4cd48
DM
7657
7658}; // class pass_cse2
7659
7660} // anon namespace
7661
7662rtl_opt_pass *
7663make_pass_cse2 (gcc::context *ctxt)
7664{
7665 return new pass_cse2 (ctxt);
7666}
7667
5f39ad47
SB
7668/* Run second CSE pass after loop optimizations. */
7669static unsigned int
7670rest_of_handle_cse_after_global_opts (void)
7671{
7672 int save_cfj;
7673 int tem;
7674
7675 /* We only want to do local CSE, so don't follow jumps. */
7676 save_cfj = flag_cse_follow_jumps;
7677 flag_cse_follow_jumps = 0;
7678
7679 rebuild_jump_labels (get_insns ());
7680 tem = cse_main (get_insns (), max_reg_num ());
98ccd1d7 7681 cse_cfg_altered |= purge_all_dead_edges ();
5f39ad47
SB
7682 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7683
7684 cse_not_expected = !flag_rerun_cse_after_loop;
7685
7686 /* If cse altered any jumps, rerun jump opts to clean things up. */
7687 if (tem == 2)
7688 {
7689 timevar_push (TV_JUMP);
7690 rebuild_jump_labels (get_insns ());
da7674f6 7691 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
5f39ad47
SB
7692 timevar_pop (TV_JUMP);
7693 }
ba585b91 7694 else if (tem == 1 || cse_cfg_altered)
da7674f6 7695 cse_cfg_altered |= cleanup_cfg (0);
5f39ad47
SB
7696
7697 flag_cse_follow_jumps = save_cfj;
7698 return 0;
7699}
7700
27a4cd48
DM
7701namespace {
7702
7703const pass_data pass_data_cse_after_global_opts =
5f39ad47 7704{
27a4cd48
DM
7705 RTL_PASS, /* type */
7706 "cse_local", /* name */
7707 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
7708 TV_CSE, /* tv_id */
7709 0, /* properties_required */
7710 0, /* properties_provided */
7711 0, /* properties_destroyed */
7712 0, /* todo_flags_start */
3bea341f 7713 TODO_df_finish, /* todo_flags_finish */
5f39ad47 7714};
27a4cd48
DM
7715
7716class pass_cse_after_global_opts : public rtl_opt_pass
7717{
7718public:
c3284718
RS
7719 pass_cse_after_global_opts (gcc::context *ctxt)
7720 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
27a4cd48
DM
7721 {}
7722
7723 /* opt_pass methods: */
725793af 7724 bool gate (function *) final override
1a3d085c
TS
7725 {
7726 return optimize > 0 && flag_rerun_cse_after_global_opts;
7727 }
7728
725793af 7729 unsigned int execute (function *) final override
be55bfe6
TS
7730 {
7731 return rest_of_handle_cse_after_global_opts ();
7732 }
27a4cd48
DM
7733
7734}; // class pass_cse_after_global_opts
7735
7736} // anon namespace
7737
7738rtl_opt_pass *
7739make_pass_cse_after_global_opts (gcc::context *ctxt)
7740{
7741 return new pass_cse_after_global_opts (ctxt);
7742}