]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cselib.c
* basic-block.h, c-common.c, c-cppbuiltin.c, c-lang.c,
[thirdparty/gcc.git] / gcc / cselib.c
CommitLineData
1500f816 1/* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2b4876d2 3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
1500f816 4
f12b58b3 5This file is part of GCC.
1500f816 6
f12b58b3 7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
1500f816 11
f12b58b3 12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
1500f816 16
17You should have received a copy of the GNU General Public License
f12b58b3 18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
1500f816 21
22#include "config.h"
23#include "system.h"
805e22b2 24#include "coretypes.h"
25#include "tm.h"
1500f816 26
27#include "rtl.h"
28#include "tm_p.h"
29#include "regs.h"
30#include "hard-reg-set.h"
31#include "flags.h"
32#include "real.h"
33#include "insn-config.h"
34#include "recog.h"
35#include "function.h"
4c74e6d9 36#include "emit-rtl.h"
1500f816 37#include "toplev.h"
38#include "output.h"
39#include "ggc.h"
1500f816 40#include "hashtab.h"
41#include "cselib.h"
f391504c 42#include "params.h"
69d7e198 43#include "alloc-pool.h"
1500f816 44
53622482 45static bool cselib_record_memory;
8ec3a57b 46static int entry_and_rtx_equal_p (const void *, const void *);
47static hashval_t get_value_hash (const void *);
48static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50static void unchain_one_value (cselib_val *);
51static void unchain_one_elt_list (struct elt_list **);
52static void unchain_one_elt_loc_list (struct elt_loc_list **);
53static void clear_table (void);
54static int discard_useless_locs (void **, void *);
55static int discard_useless_values (void **, void *);
56static void remove_useless_values (void);
57static rtx wrap_constant (enum machine_mode, rtx);
78d140c9 58static unsigned int cselib_hash_rtx (rtx, enum machine_mode, int);
8ec3a57b 59static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61static cselib_val *cselib_lookup_mem (rtx, int);
62static void cselib_invalidate_regno (unsigned int, enum machine_mode);
8ec3a57b 63static void cselib_invalidate_mem (rtx);
8ec3a57b 64static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65static void cselib_record_sets (rtx);
1500f816 66
67/* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
75
76/* A table that enables us to look up elts by their value. */
fd910ba1 77static htab_t hash_table;
1500f816 78
79/* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81static rtx cselib_current_insn;
8a98e28f 82static bool cselib_current_insn_in_libcall;
1500f816 83
84/* Every new unknown value gets a unique number. */
85static unsigned int next_unknown_value;
86
87/* The number of registers we had when the varrays were last resized. */
88static unsigned int cselib_nregs;
89
90/* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92static int n_useless_values;
93
94/* Number of useless values before we remove them from the hash table. */
95#define MAX_USELESS_VALUES 32
96
38a898c6 97/* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
fd910ba1 104struct elt_list **reg_values;
105unsigned int reg_values_size;
106#define REG_VALUES(i) reg_values[i]
1500f816 107
362ed03f 108/* The largest number of hard regs used by any entry added to the
102502d4 109 REG_VALUES table. Cleared on each clear_table() invocation. */
362ed03f 110static unsigned int max_value_regs;
111
1500f816 112/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in clear_table() for fast emptying. */
fd910ba1 114static unsigned int *used_regs;
115static unsigned int n_used_regs;
1500f816 116
117/* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
1f3233d1 119static GTY(()) rtx callmem;
1500f816 120
1500f816 121/* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123static int values_became_useless;
bb5b3af8 124
125/* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127static cselib_val dummy_val;
128
8ec3a57b 129/* Used to list all values that contain memory reference.
bb5b3af8 130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132static cselib_val *first_containing_mem = &dummy_val;
c59b7e96 133static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
1500f816 134\f
135
136/* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
138
69d7e198 139static inline struct elt_list *
8ec3a57b 140new_elt_list (struct elt_list *next, cselib_val *elt)
1500f816 141{
69d7e198 142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
1500f816 144 el->next = next;
145 el->elt = elt;
146 return el;
147}
148
149/* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
151
69d7e198 152static inline struct elt_loc_list *
8ec3a57b 153new_elt_loc_list (struct elt_loc_list *next, rtx loc)
1500f816 154{
69d7e198 155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
1500f816 157 el->next = next;
158 el->loc = loc;
159 el->setting_insn = cselib_current_insn;
8a98e28f 160 el->in_libcall = cselib_current_insn_in_libcall;
1500f816 161 return el;
162}
163
164/* The elt_list at *PL is no longer needed. Unchain it and free its
165 storage. */
166
69d7e198 167static inline void
8ec3a57b 168unchain_one_elt_list (struct elt_list **pl)
1500f816 169{
170 struct elt_list *l = *pl;
171
172 *pl = l->next;
69d7e198 173 pool_free (elt_list_pool, l);
1500f816 174}
175
176/* Likewise for elt_loc_lists. */
177
178static void
8ec3a57b 179unchain_one_elt_loc_list (struct elt_loc_list **pl)
1500f816 180{
181 struct elt_loc_list *l = *pl;
182
183 *pl = l->next;
69d7e198 184 pool_free (elt_loc_list_pool, l);
1500f816 185}
186
187/* Likewise for cselib_vals. This also frees the addr_list associated with
188 V. */
189
190static void
8ec3a57b 191unchain_one_value (cselib_val *v)
1500f816 192{
193 while (v->addr_list)
194 unchain_one_elt_list (&v->addr_list);
195
69d7e198 196 pool_free (cselib_val_pool, v);
1500f816 197}
198
199/* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
202
203static void
8ec3a57b 204clear_table (void)
1500f816 205{
206 unsigned int i;
207
fd910ba1 208 for (i = 0; i < n_used_regs; i++)
209 REG_VALUES (used_regs[i]) = 0;
1500f816 210
362ed03f 211 max_value_regs = 0;
212
fd910ba1 213 n_used_regs = 0;
1500f816 214
215 htab_empty (hash_table);
1500f816 216
1500f816 217 n_useless_values = 0;
218
219 next_unknown_value = 0;
bb5b3af8 220
221 first_containing_mem = &dummy_val;
1500f816 222}
223
224/* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
228
229static int
8ec3a57b 230entry_and_rtx_equal_p (const void *entry, const void *x_arg)
1500f816 231{
232 struct elt_loc_list *l;
233 const cselib_val *v = (const cselib_val *) entry;
234 rtx x = (rtx) x_arg;
235 enum machine_mode mode = GET_MODE (x);
236
cc636d56 237 gcc_assert (GET_CODE (x) != CONST_INT
238 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
239
1500f816 240 if (mode != GET_MODE (v->u.val_rtx))
241 return 0;
242
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x) == CONST
245 && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247 x = XEXP (x, 0);
8ec3a57b 248
1500f816 249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l = v->locs; l; l = l->next)
252 if (rtx_equal_for_cselib_p (l->loc, x))
253 return 1;
254
255 return 0;
256}
257
258/* The hash function for our hash table. The value is always computed with
78d140c9 259 cselib_hash_rtx when adding an element; this function just extracts the
260 hash value from a cselib_val structure. */
1500f816 261
aa77e59f 262static hashval_t
8ec3a57b 263get_value_hash (const void *entry)
1500f816 264{
265 const cselib_val *v = (const cselib_val *) entry;
266 return v->value;
267}
268
269/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
272 removed. */
273
274int
8ec3a57b 275references_value_p (rtx x, int only_useless)
1500f816 276{
277 enum rtx_code code = GET_CODE (x);
278 const char *fmt = GET_RTX_FORMAT (code);
279 int i, j;
280
281 if (GET_CODE (x) == VALUE
282 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283 return 1;
284
285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
286 {
287 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 return 1;
289 else if (fmt[i] == 'E')
290 for (j = 0; j < XVECLEN (x, i); j++)
291 if (references_value_p (XVECEXP (x, i, j), only_useless))
292 return 1;
293 }
294
295 return 0;
296}
297
298/* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
300 htab_traverse. */
301
302static int
8ec3a57b 303discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
1500f816 304{
305 cselib_val *v = (cselib_val *)*x;
306 struct elt_loc_list **p = &v->locs;
307 int had_locs = v->locs != 0;
308
309 while (*p)
310 {
311 if (references_value_p ((*p)->loc, 1))
312 unchain_one_elt_loc_list (p);
313 else
314 p = &(*p)->next;
315 }
316
317 if (had_locs && v->locs == 0)
318 {
319 n_useless_values++;
320 values_became_useless = 1;
321 }
322 return 1;
323}
324
325/* If X is a value with no locations, remove it from the hashtable. */
326
327static int
8ec3a57b 328discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
1500f816 329{
330 cselib_val *v = (cselib_val *)*x;
331
332 if (v->locs == 0)
333 {
663fb689 334 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
1500f816 335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
338 }
339
340 return 1;
341}
342
343/* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
345
346static void
8ec3a57b 347remove_useless_values (void)
1500f816 348{
bb5b3af8 349 cselib_val **p, *v;
1500f816 350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
352 do
353 {
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
356 }
357 while (values_became_useless);
358
359 /* Second pass: actually remove the values. */
1500f816 360
bb5b3af8 361 p = &first_containing_mem;
362 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
363 if (v->locs)
364 {
365 *p = v;
366 p = &(*p)->next_containing_mem;
367 }
368 *p = &dummy_val;
369
52bc1318 370 htab_traverse (hash_table, discard_useless_values, 0);
371
cc636d56 372 gcc_assert (!n_useless_values);
1500f816 373}
374
38a898c6 375/* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
379
380enum machine_mode
8ec3a57b 381cselib_reg_set_mode (rtx x)
38a898c6 382{
8ad4c111 383 if (!REG_P (x))
38a898c6 384 return GET_MODE (x);
385
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
389
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
391}
392
1500f816 393/* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
395
396int
8ec3a57b 397rtx_equal_for_cselib_p (rtx x, rtx y)
1500f816 398{
399 enum rtx_code code;
400 const char *fmt;
401 int i;
8ec3a57b 402
8ad4c111 403 if (REG_P (x) || MEM_P (x))
1500f816 404 {
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406
407 if (e)
408 x = e->u.val_rtx;
409 }
410
8ad4c111 411 if (REG_P (y) || MEM_P (y))
1500f816 412 {
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414
415 if (e)
416 y = e->u.val_rtx;
417 }
418
419 if (x == y)
420 return 1;
421
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424
425 if (GET_CODE (x) == VALUE)
426 {
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
429
430 for (l = e->locs; l; l = l->next)
431 {
432 rtx t = l->loc;
433
434 /* Avoid infinite recursion. */
e16ceb8e 435 if (REG_P (t) || MEM_P (t))
1500f816 436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
439 }
8ec3a57b 440
1500f816 441 return 0;
442 }
443
444 if (GET_CODE (y) == VALUE)
445 {
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
448
449 for (l = e->locs; l; l = l->next)
450 {
451 rtx t = l->loc;
452
e16ceb8e 453 if (REG_P (t) || MEM_P (t))
1500f816 454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
457 }
8ec3a57b 458
1500f816 459 return 0;
460 }
461
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
464
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x) == LABEL_REF)
467 return XEXP (x, 0) == XEXP (y, 0);
8ec3a57b 468
1500f816 469 code = GET_CODE (x);
470 fmt = GET_RTX_FORMAT (code);
471
472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
473 {
474 int j;
475
476 switch (fmt[i])
477 {
478 case 'w':
479 if (XWINT (x, i) != XWINT (y, i))
480 return 0;
481 break;
482
483 case 'n':
484 case 'i':
485 if (XINT (x, i) != XINT (y, i))
486 return 0;
487 break;
488
489 case 'V':
490 case 'E':
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x, i) != XVECLEN (y, i))
493 return 0;
494
495 /* And the corresponding elements must match. */
496 for (j = 0; j < XVECLEN (x, i); j++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
498 XVECEXP (y, i, j)))
499 return 0;
500 break;
501
502 case 'e':
503 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
504 return 0;
505 break;
506
507 case 'S':
508 case 's':
509 if (strcmp (XSTR (x, i), XSTR (y, i)))
510 return 0;
511 break;
512
513 case 'u':
514 /* These are just backpointers, so they don't matter. */
515 break;
516
517 case '0':
518 case 't':
519 break;
520
521 /* It is believed that rtx's at this level will never
522 contain anything but integers and other rtx's,
523 except for within LABEL_REFs and SYMBOL_REFs. */
524 default:
cc636d56 525 gcc_unreachable ();
1500f816 526 }
527 }
528 return 1;
529}
530
531/* We need to pass down the mode of constants through the hash table
532 functions. For that purpose, wrap them in a CONST of the appropriate
533 mode. */
534static rtx
8ec3a57b 535wrap_constant (enum machine_mode mode, rtx x)
1500f816 536{
537 if (GET_CODE (x) != CONST_INT
538 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
539 return x;
cc636d56 540 gcc_assert (mode != VOIDmode);
1500f816 541 return gen_rtx_CONST (mode, x);
542}
543
544/* Hash an rtx. Return 0 if we couldn't hash the rtx.
545 For registers and memory locations, we look up their cselib_val structure
546 and return its VALUE element.
547 Possible reasons for return 0 are: the object is volatile, or we couldn't
548 find a register or memory location in the table and CREATE is zero. If
549 CREATE is nonzero, table elts are created for regs and mem.
550 MODE is used in hashing for CONST_INTs only;
551 otherwise the mode of X is used. */
552
553static unsigned int
78d140c9 554cselib_hash_rtx (rtx x, enum machine_mode mode, int create)
1500f816 555{
556 cselib_val *e;
557 int i, j;
558 enum rtx_code code;
559 const char *fmt;
560 unsigned int hash = 0;
561
1500f816 562 code = GET_CODE (x);
563 hash += (unsigned) code + (unsigned) GET_MODE (x);
564
565 switch (code)
566 {
567 case MEM:
568 case REG:
569 e = cselib_lookup (x, GET_MODE (x), create);
570 if (! e)
571 return 0;
572
66fa2987 573 return e->value;
1500f816 574
575 case CONST_INT:
576 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
6cf4241f 577 return hash ? hash : (unsigned int) CONST_INT;
1500f816 578
579 case CONST_DOUBLE:
580 /* This is like the general case, except that it only counts
581 the integers representing the constant. */
582 hash += (unsigned) code + (unsigned) GET_MODE (x);
583 if (GET_MODE (x) != VOIDmode)
3393215f 584 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1500f816 585 else
586 hash += ((unsigned) CONST_DOUBLE_LOW (x)
587 + (unsigned) CONST_DOUBLE_HIGH (x));
6cf4241f 588 return hash ? hash : (unsigned int) CONST_DOUBLE;
1500f816 589
886cfd4f 590 case CONST_VECTOR:
591 {
592 int units;
593 rtx elt;
594
595 units = CONST_VECTOR_NUNITS (x);
596
597 for (i = 0; i < units; ++i)
598 {
599 elt = CONST_VECTOR_ELT (x, i);
78d140c9 600 hash += cselib_hash_rtx (elt, GET_MODE (elt), 0);
886cfd4f 601 }
602
603 return hash;
604 }
605
1500f816 606 /* Assume there is only one rtx object for any given label. */
607 case LABEL_REF:
608 hash
609 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
6cf4241f 610 return hash ? hash : (unsigned int) LABEL_REF;
1500f816 611
612 case SYMBOL_REF:
613 hash
614 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
6cf4241f 615 return hash ? hash : (unsigned int) SYMBOL_REF;
1500f816 616
617 case PRE_DEC:
618 case PRE_INC:
619 case POST_DEC:
620 case POST_INC:
621 case POST_MODIFY:
622 case PRE_MODIFY:
623 case PC:
624 case CC0:
625 case CALL:
626 case UNSPEC_VOLATILE:
627 return 0;
628
629 case ASM_OPERANDS:
630 if (MEM_VOLATILE_P (x))
631 return 0;
632
633 break;
8ec3a57b 634
1500f816 635 default:
636 break;
637 }
638
639 i = GET_RTX_LENGTH (code) - 1;
640 fmt = GET_RTX_FORMAT (code);
641 for (; i >= 0; i--)
642 {
cc636d56 643 switch (fmt[i])
1500f816 644 {
cc636d56 645 case 'e':
1500f816 646 {
cc636d56 647 rtx tem = XEXP (x, i);
648 unsigned int tem_hash = cselib_hash_rtx (tem, 0, create);
649
1500f816 650 if (tem_hash == 0)
651 return 0;
cc636d56 652
1500f816 653 hash += tem_hash;
654 }
cc636d56 655 break;
656 case 'E':
657 for (j = 0; j < XVECLEN (x, i); j++)
658 {
659 unsigned int tem_hash
660 = cselib_hash_rtx (XVECEXP (x, i, j), 0, create);
661
662 if (tem_hash == 0)
663 return 0;
664
665 hash += tem_hash;
666 }
667 break;
1500f816 668
cc636d56 669 case 's':
670 {
671 const unsigned char *p = (const unsigned char *) XSTR (x, i);
672
673 if (p)
674 while (*p)
675 hash += *p++;
676 break;
677 }
678
679 case 'i':
680 hash += XINT (x, i);
681 break;
682
683 case '0':
684 case 't':
685 /* unused */
686 break;
687
688 default:
689 gcc_unreachable ();
1500f816 690 }
1500f816 691 }
692
6cf4241f 693 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1500f816 694}
695
696/* Create a new value structure for VALUE and initialize it. The mode of the
697 value is MODE. */
698
69d7e198 699static inline cselib_val *
8ec3a57b 700new_cselib_val (unsigned int value, enum machine_mode mode)
1500f816 701{
69d7e198 702 cselib_val *e = pool_alloc (cselib_val_pool);
1500f816 703
cc636d56 704 gcc_assert (value);
1500f816 705
706 e->value = value;
5bbaf5ca 707 /* We use an alloc pool to allocate this RTL construct because it
708 accounts for about 8% of the overall memory usage. We know
709 precisely when we can have VALUE RTXen (when cselib is active)
10689255 710 so we don't need to put them in garbage collected memory.
5bbaf5ca 711 ??? Why should a VALUE be an RTX in the first place? */
c59b7e96 712 e->u.val_rtx = pool_alloc (value_pool);
713 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
714 PUT_CODE (e->u.val_rtx, VALUE);
715 PUT_MODE (e->u.val_rtx, mode);
1500f816 716 CSELIB_VAL_PTR (e->u.val_rtx) = e;
717 e->addr_list = 0;
718 e->locs = 0;
bb5b3af8 719 e->next_containing_mem = 0;
1500f816 720 return e;
721}
722
723/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
724 contains the data at this address. X is a MEM that represents the
725 value. Update the two value structures to represent this situation. */
726
727static void
8ec3a57b 728add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1500f816 729{
1500f816 730 struct elt_loc_list *l;
731
732 /* Avoid duplicates. */
733 for (l = mem_elt->locs; l; l = l->next)
e16ceb8e 734 if (MEM_P (l->loc)
1500f816 735 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
736 return;
737
1500f816 738 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
e4e86ec5 739 mem_elt->locs
740 = new_elt_loc_list (mem_elt->locs,
741 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
bb5b3af8 742 if (mem_elt->next_containing_mem == NULL)
743 {
744 mem_elt->next_containing_mem = first_containing_mem;
745 first_containing_mem = mem_elt;
746 }
1500f816 747}
748
749/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
750 If CREATE, make a new one if we haven't seen it before. */
751
752static cselib_val *
8ec3a57b 753cselib_lookup_mem (rtx x, int create)
1500f816 754{
755 enum machine_mode mode = GET_MODE (x);
756 void **slot;
757 cselib_val *addr;
758 cselib_val *mem_elt;
759 struct elt_list *l;
760
761 if (MEM_VOLATILE_P (x) || mode == BLKmode
53622482 762 || !cselib_record_memory
1500f816 763 || (FLOAT_MODE_P (mode) && flag_float_store))
764 return 0;
765
766 /* Look up the value for the address. */
767 addr = cselib_lookup (XEXP (x, 0), mode, create);
768 if (! addr)
769 return 0;
770
771 /* Find a value that describes a value of our mode at that address. */
772 for (l = addr->addr_list; l; l = l->next)
773 if (GET_MODE (l->elt->u.val_rtx) == mode)
774 return l->elt;
775
776 if (! create)
777 return 0;
778
779 mem_elt = new_cselib_val (++next_unknown_value, mode);
780 add_mem_for_addr (addr, mem_elt, x);
781 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
782 mem_elt->value, INSERT);
783 *slot = mem_elt;
784 return mem_elt;
785}
786
787/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
788 with VALUE expressions. This way, it becomes independent of changes
789 to registers and memory.
790 X isn't actually modified; if modifications are needed, new rtl is
791 allocated. However, the return value can share rtl with X. */
792
fdc1df6a 793rtx
8ec3a57b 794cselib_subst_to_values (rtx x)
1500f816 795{
796 enum rtx_code code = GET_CODE (x);
797 const char *fmt = GET_RTX_FORMAT (code);
798 cselib_val *e;
799 struct elt_list *l;
800 rtx copy = x;
801 int i;
802
803 switch (code)
804 {
805 case REG:
38a898c6 806 l = REG_VALUES (REGNO (x));
807 if (l && l->elt == NULL)
808 l = l->next;
809 for (; l; l = l->next)
1500f816 810 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
811 return l->elt->u.val_rtx;
812
cc636d56 813 gcc_unreachable ();
1500f816 814
815 case MEM:
816 e = cselib_lookup_mem (x, 0);
817 if (! e)
fdc1df6a 818 {
819 /* This happens for autoincrements. Assign a value that doesn't
820 match any other. */
821 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
822 }
1500f816 823 return e->u.val_rtx;
824
1500f816 825 case CONST_DOUBLE:
886cfd4f 826 case CONST_VECTOR:
1500f816 827 case CONST_INT:
828 return x;
829
fdc1df6a 830 case POST_INC:
831 case PRE_INC:
832 case POST_DEC:
833 case PRE_DEC:
834 case POST_MODIFY:
835 case PRE_MODIFY:
836 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
837 return e->u.val_rtx;
8ec3a57b 838
1500f816 839 default:
840 break;
841 }
842
843 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
844 {
845 if (fmt[i] == 'e')
846 {
847 rtx t = cselib_subst_to_values (XEXP (x, i));
848
849 if (t != XEXP (x, i) && x == copy)
850 copy = shallow_copy_rtx (x);
851
852 XEXP (copy, i) = t;
853 }
854 else if (fmt[i] == 'E')
855 {
856 int j, k;
857
858 for (j = 0; j < XVECLEN (x, i); j++)
859 {
860 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
861
862 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
863 {
864 if (x == copy)
865 copy = shallow_copy_rtx (x);
866
867 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
868 for (k = 0; k < j; k++)
869 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
870 }
871
872 XVECEXP (copy, i, j) = t;
873 }
874 }
875 }
876
877 return copy;
878}
879
880/* Look up the rtl expression X in our tables and return the value it has.
881 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
882 we create a new one if possible, using mode MODE if X doesn't have a mode
883 (i.e. because it's a constant). */
884
885cselib_val *
8ec3a57b 886cselib_lookup (rtx x, enum machine_mode mode, int create)
1500f816 887{
888 void **slot;
889 cselib_val *e;
890 unsigned int hashval;
891
892 if (GET_MODE (x) != VOIDmode)
893 mode = GET_MODE (x);
894
895 if (GET_CODE (x) == VALUE)
896 return CSELIB_VAL_PTR (x);
897
8ad4c111 898 if (REG_P (x))
1500f816 899 {
900 struct elt_list *l;
901 unsigned int i = REGNO (x);
902
38a898c6 903 l = REG_VALUES (i);
904 if (l && l->elt == NULL)
905 l = l->next;
906 for (; l; l = l->next)
1500f816 907 if (mode == GET_MODE (l->elt->u.val_rtx))
908 return l->elt;
909
910 if (! create)
911 return 0;
912
362ed03f 913 if (i < FIRST_PSEUDO_REGISTER)
914 {
67d6c12b 915 unsigned int n = hard_regno_nregs[i][mode];
362ed03f 916
917 if (n > max_value_regs)
918 max_value_regs = n;
919 }
920
1500f816 921 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
922 e->locs = new_elt_loc_list (e->locs, x);
923 if (REG_VALUES (i) == 0)
38a898c6 924 {
925 /* Maintain the invariant that the first entry of
926 REG_VALUES, if present, must be the value used to set the
927 register, or NULL. */
fd910ba1 928 used_regs[n_used_regs++] = i;
38a898c6 929 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
930 }
931 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1500f816 932 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
933 *slot = e;
934 return e;
935 }
936
e16ceb8e 937 if (MEM_P (x))
1500f816 938 return cselib_lookup_mem (x, create);
939
78d140c9 940 hashval = cselib_hash_rtx (x, mode, create);
1500f816 941 /* Can't even create if hashing is not possible. */
942 if (! hashval)
943 return 0;
944
945 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
946 hashval, create ? INSERT : NO_INSERT);
947 if (slot == 0)
948 return 0;
949
950 e = (cselib_val *) *slot;
951 if (e)
952 return e;
953
954 e = new_cselib_val (hashval, mode);
955
956 /* We have to fill the slot before calling cselib_subst_to_values:
957 the hash table is inconsistent until we do so, and
958 cselib_subst_to_values will need to do lookups. */
959 *slot = (void *) e;
960 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
961 return e;
962}
963
964/* Invalidate any entries in reg_values that overlap REGNO. This is called
965 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
966 is used to determine how many hard registers are being changed. If MODE
967 is VOIDmode, then only REGNO is being changed; this is used when
968 invalidating call clobbered registers across a call. */
969
970static void
8ec3a57b 971cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1500f816 972{
973 unsigned int endregno;
974 unsigned int i;
975
976 /* If we see pseudos after reload, something is _wrong_. */
cc636d56 977 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
978 || reg_renumber[regno] < 0);
1500f816 979
980 /* Determine the range of registers that must be invalidated. For
981 pseudos, only REGNO is affected. For hard regs, we must take MODE
982 into account, and we must also invalidate lower register numbers
983 if they contain values that overlap REGNO. */
ff390ce4 984 if (regno < FIRST_PSEUDO_REGISTER)
362ed03f 985 {
cc636d56 986 gcc_assert (mode != VOIDmode);
8ec3a57b 987
362ed03f 988 if (regno < max_value_regs)
989 i = 0;
990 else
991 i = regno - max_value_regs;
1500f816 992
67d6c12b 993 endregno = regno + hard_regno_nregs[regno][mode];
362ed03f 994 }
995 else
996 {
997 i = regno;
998 endregno = regno + 1;
999 }
1000
1001 for (; i < endregno; i++)
1500f816 1002 {
1003 struct elt_list **l = &REG_VALUES (i);
1004
1005 /* Go through all known values for this reg; if it overlaps the range
1006 we're invalidating, remove the value. */
1007 while (*l)
1008 {
1009 cselib_val *v = (*l)->elt;
1010 struct elt_loc_list **p;
1011 unsigned int this_last = i;
1012
38a898c6 1013 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
67d6c12b 1014 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1500f816 1015
38a898c6 1016 if (this_last < regno || v == NULL)
1500f816 1017 {
1018 l = &(*l)->next;
1019 continue;
1020 }
1021
1022 /* We have an overlap. */
38a898c6 1023 if (*l == REG_VALUES (i))
1024 {
1025 /* Maintain the invariant that the first entry of
1026 REG_VALUES, if present, must be the value used to set
1027 the register, or NULL. This is also nice because
1028 then we won't push the same regno onto user_regs
1029 multiple times. */
1030 (*l)->elt = NULL;
1031 l = &(*l)->next;
1032 }
1033 else
1034 unchain_one_elt_list (l);
1500f816 1035
1036 /* Now, we clear the mapping from value to reg. It must exist, so
1037 this code will crash intentionally if it doesn't. */
1038 for (p = &v->locs; ; p = &(*p)->next)
1039 {
1040 rtx x = (*p)->loc;
1041
8ad4c111 1042 if (REG_P (x) && REGNO (x) == i)
1500f816 1043 {
1044 unchain_one_elt_loc_list (p);
1045 break;
1046 }
1047 }
1048 if (v->locs == 0)
1049 n_useless_values++;
1050 }
1051 }
1052}
56bbdce4 1053\f
1054/* Return 1 if X has a value that can vary even between two
1055 executions of the program. 0 means X can be compared reliably
1056 against certain constants or near-constants. */
1500f816 1057
1058static int
56bbdce4 1059cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1500f816 1060{
56bbdce4 1061 /* We actually don't need to verify very hard. This is because
1062 if X has actually changed, we invalidate the memory anyway,
1063 so assume that all common memory addresses are
1064 invariant. */
1500f816 1065 return 0;
1066}
1067
bb5b3af8 1068/* Invalidate any locations in the table which are changed because of a
1069 store to MEM_RTX. If this is called because of a non-const call
1070 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1500f816 1071
bb5b3af8 1072static void
8ec3a57b 1073cselib_invalidate_mem (rtx mem_rtx)
1500f816 1074{
bb5b3af8 1075 cselib_val **vp, *v, *next;
f391504c 1076 int num_mems = 0;
56bbdce4 1077 rtx mem_addr;
1078
1079 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1080 mem_rtx = canon_rtx (mem_rtx);
1500f816 1081
bb5b3af8 1082 vp = &first_containing_mem;
1083 for (v = *vp; v != &dummy_val; v = next)
1500f816 1084 {
bb5b3af8 1085 bool has_mem = false;
1086 struct elt_loc_list **p = &v->locs;
1087 int had_locs = v->locs != 0;
1500f816 1088
bb5b3af8 1089 while (*p)
1500f816 1090 {
bb5b3af8 1091 rtx x = (*p)->loc;
1092 cselib_val *addr;
1093 struct elt_list **mem_chain;
1094
1095 /* MEMs may occur in locations only at the top level; below
1096 that every MEM or REG is substituted by its VALUE. */
e16ceb8e 1097 if (!MEM_P (x))
1500f816 1098 {
bb5b3af8 1099 p = &(*p)->next;
1100 continue;
1101 }
f391504c 1102 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
56bbdce4 1103 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1104 x, cselib_rtx_varies_p))
bb5b3af8 1105 {
1106 has_mem = true;
f391504c 1107 num_mems++;
bb5b3af8 1108 p = &(*p)->next;
1109 continue;
1500f816 1110 }
1111
bb5b3af8 1112 /* This one overlaps. */
1113 /* We must have a mapping from this MEM's address to the
1114 value (E). Remove that, too. */
1115 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1116 mem_chain = &addr->addr_list;
1117 for (;;)
1118 {
1119 if ((*mem_chain)->elt == v)
1120 {
1121 unchain_one_elt_list (mem_chain);
1122 break;
1123 }
1500f816 1124
bb5b3af8 1125 mem_chain = &(*mem_chain)->next;
1126 }
1500f816 1127
bb5b3af8 1128 unchain_one_elt_loc_list (p);
1129 }
1500f816 1130
bb5b3af8 1131 if (had_locs && v->locs == 0)
1132 n_useless_values++;
1500f816 1133
bb5b3af8 1134 next = v->next_containing_mem;
1135 if (has_mem)
1136 {
1137 *vp = v;
1138 vp = &(*vp)->next_containing_mem;
1139 }
1140 else
1141 v->next_containing_mem = NULL;
1142 }
1143 *vp = &dummy_val;
1500f816 1144}
1145
17883489 1146/* Invalidate DEST, which is being assigned to or clobbered. */
1500f816 1147
17883489 1148void
1149cselib_invalidate_rtx (rtx dest)
1500f816 1150{
476d094d 1151 while (GET_CODE (dest) == SUBREG
1152 || GET_CODE (dest) == ZERO_EXTRACT
1153 || GET_CODE (dest) == STRICT_LOW_PART)
1500f816 1154 dest = XEXP (dest, 0);
1155
8ad4c111 1156 if (REG_P (dest))
1500f816 1157 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
e16ceb8e 1158 else if (MEM_P (dest))
1500f816 1159 cselib_invalidate_mem (dest);
1160
1161 /* Some machines don't define AUTO_INC_DEC, but they still use push
1162 instructions. We need to catch that case here in order to
1163 invalidate the stack pointer correctly. Note that invalidating
1164 the stack pointer is different from invalidating DEST. */
1165 if (push_operand (dest, GET_MODE (dest)))
17883489 1166 cselib_invalidate_rtx (stack_pointer_rtx);
1167}
1168
1169/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1170
1171static void
1172cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1173 void *data ATTRIBUTE_UNUSED)
1174{
1175 cselib_invalidate_rtx (dest);
1500f816 1176}
1177
1178/* Record the result of a SET instruction. DEST is being set; the source
1179 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1180 describes its address. */
1181
1182static void
8ec3a57b 1183cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1500f816 1184{
8ad4c111 1185 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1500f816 1186
1187 if (src_elt == 0 || side_effects_p (dest))
1188 return;
1189
1190 if (dreg >= 0)
1191 {
362ed03f 1192 if (dreg < FIRST_PSEUDO_REGISTER)
1193 {
67d6c12b 1194 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
362ed03f 1195
1196 if (n > max_value_regs)
1197 max_value_regs = n;
1198 }
1199
38a898c6 1200 if (REG_VALUES (dreg) == 0)
1201 {
fd910ba1 1202 used_regs[n_used_regs++] = dreg;
38a898c6 1203 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1204 }
1205 else
1206 {
cc636d56 1207 /* The register should have been invalidated. */
1208 gcc_assert (REG_VALUES (dreg)->elt == 0);
1209 REG_VALUES (dreg)->elt = src_elt;
38a898c6 1210 }
1211
1500f816 1212 if (src_elt->locs == 0)
1213 n_useless_values--;
1214 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1215 }
e16ceb8e 1216 else if (MEM_P (dest) && dest_addr_elt != 0
53622482 1217 && cselib_record_memory)
1500f816 1218 {
1219 if (src_elt->locs == 0)
1220 n_useless_values--;
1221 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1222 }
1223}
1224
1225/* Describe a single set that is part of an insn. */
1226struct set
1227{
1228 rtx src;
1229 rtx dest;
1230 cselib_val *src_elt;
1231 cselib_val *dest_addr_elt;
1232};
1233
1234/* There is no good way to determine how many elements there can be
1235 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1236#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1237
1238/* Record the effects of any sets in INSN. */
1239static void
8ec3a57b 1240cselib_record_sets (rtx insn)
1500f816 1241{
1242 int n_sets = 0;
1243 int i;
1244 struct set sets[MAX_SETS];
1245 rtx body = PATTERN (insn);
e00aecfc 1246 rtx cond = 0;
1500f816 1247
1248 body = PATTERN (insn);
e00aecfc 1249 if (GET_CODE (body) == COND_EXEC)
1250 {
1251 cond = COND_EXEC_TEST (body);
1252 body = COND_EXEC_CODE (body);
1253 }
1254
1500f816 1255 /* Find all sets. */
1256 if (GET_CODE (body) == SET)
1257 {
1258 sets[0].src = SET_SRC (body);
1259 sets[0].dest = SET_DEST (body);
1260 n_sets = 1;
1261 }
1262 else if (GET_CODE (body) == PARALLEL)
1263 {
1264 /* Look through the PARALLEL and record the values being
1265 set, if possible. Also handle any CLOBBERs. */
1266 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1267 {
1268 rtx x = XVECEXP (body, 0, i);
1269
1270 if (GET_CODE (x) == SET)
1271 {
1272 sets[n_sets].src = SET_SRC (x);
1273 sets[n_sets].dest = SET_DEST (x);
1274 n_sets++;
1275 }
1276 }
1277 }
1278
1279 /* Look up the values that are read. Do this before invalidating the
1280 locations that are written. */
1281 for (i = 0; i < n_sets; i++)
1282 {
1283 rtx dest = sets[i].dest;
1284
1285 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1286 the low part after invalidating any knowledge about larger modes. */
1287 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1288 sets[i].dest = dest = XEXP (dest, 0);
1289
1290 /* We don't know how to record anything but REG or MEM. */
8ad4c111 1291 if (REG_P (dest)
e16ceb8e 1292 || (MEM_P (dest) && cselib_record_memory))
1500f816 1293 {
e00aecfc 1294 rtx src = sets[i].src;
1295 if (cond)
1296 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
d0bfd0b5 1297 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
e16ceb8e 1298 if (MEM_P (dest))
1500f816 1299 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1300 else
1301 sets[i].dest_addr_elt = 0;
1302 }
1303 }
1304
1305 /* Invalidate all locations written by this insn. Note that the elts we
1306 looked up in the previous loop aren't affected, just some of their
1307 locations may go away. */
17883489 1308 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1500f816 1309
332a71fa 1310 /* If this is an asm, look for duplicate sets. This can happen when the
1311 user uses the same value as an output multiple times. This is valid
1312 if the outputs are not actually used thereafter. Treat this case as
1313 if the value isn't actually set. We do this by smashing the destination
1314 to pc_rtx, so that we won't record the value later. */
1315 if (n_sets >= 2 && asm_noperands (body) >= 0)
1316 {
1317 for (i = 0; i < n_sets; i++)
1318 {
1319 rtx dest = sets[i].dest;
e16ceb8e 1320 if (REG_P (dest) || MEM_P (dest))
332a71fa 1321 {
1322 int j;
1323 for (j = i + 1; j < n_sets; j++)
1324 if (rtx_equal_p (dest, sets[j].dest))
1325 {
1326 sets[i].dest = pc_rtx;
1327 sets[j].dest = pc_rtx;
1328 }
1329 }
1330 }
1331 }
1332
1500f816 1333 /* Now enter the equivalences in our tables. */
1334 for (i = 0; i < n_sets; i++)
1335 {
1336 rtx dest = sets[i].dest;
8ad4c111 1337 if (REG_P (dest)
e16ceb8e 1338 || (MEM_P (dest) && cselib_record_memory))
1500f816 1339 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1340 }
1341}
1342
1343/* Record the effects of INSN. */
1344
1345void
8ec3a57b 1346cselib_process_insn (rtx insn)
1500f816 1347{
1348 int i;
1349 rtx x;
1350
8a98e28f 1351 if (find_reg_note (insn, REG_LIBCALL, NULL))
1352 cselib_current_insn_in_libcall = true;
1500f816 1353 cselib_current_insn = insn;
1354
1355 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
6d7dc5b9 1356 if (LABEL_P (insn)
1357 || (CALL_P (insn)
9239aee6 1358 && find_reg_note (insn, REG_SETJMP, NULL))
6d7dc5b9 1359 || (NONJUMP_INSN_P (insn)
1500f816 1360 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1361 && MEM_VOLATILE_P (PATTERN (insn))))
1362 {
9913d3a4 1363 if (find_reg_note (insn, REG_RETVAL, NULL))
1364 cselib_current_insn_in_libcall = false;
53fffe66 1365 clear_table ();
1500f816 1366 return;
1367 }
1368
1369 if (! INSN_P (insn))
1370 {
9913d3a4 1371 if (find_reg_note (insn, REG_RETVAL, NULL))
1372 cselib_current_insn_in_libcall = false;
1500f816 1373 cselib_current_insn = 0;
1374 return;
1375 }
1376
1377 /* If this is a call instruction, forget anything stored in a
1378 call clobbered register, or, if this is not a const call, in
1379 memory. */
6d7dc5b9 1380 if (CALL_P (insn))
1500f816 1381 {
1382 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1383 if (call_used_regs[i])
ff390ce4 1384 cselib_invalidate_regno (i, reg_raw_mode[i]);
1500f816 1385
06a652d1 1386 if (! CONST_OR_PURE_CALL_P (insn))
1500f816 1387 cselib_invalidate_mem (callmem);
1388 }
1389
1390 cselib_record_sets (insn);
1391
1392#ifdef AUTO_INC_DEC
1393 /* Clobber any registers which appear in REG_INC notes. We
1394 could keep track of the changes to their values, but it is
1395 unlikely to help. */
1396 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1397 if (REG_NOTE_KIND (x) == REG_INC)
17883489 1398 cselib_invalidate_rtx (XEXP (x, 0));
1500f816 1399#endif
1400
1401 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1402 after we have processed the insn. */
6d7dc5b9 1403 if (CALL_P (insn))
1500f816 1404 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1405 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
17883489 1406 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1500f816 1407
9913d3a4 1408 if (find_reg_note (insn, REG_RETVAL, NULL))
1409 cselib_current_insn_in_libcall = false;
1500f816 1410 cselib_current_insn = 0;
1411
1412 if (n_useless_values > MAX_USELESS_VALUES)
1413 remove_useless_values ();
1414}
1415
1500f816 1416/* Initialize cselib for one pass. The caller must also call
1417 init_alias_analysis. */
1418
1419void
53622482 1420cselib_init (bool record_memory)
1500f816 1421{
69d7e198 1422 elt_list_pool = create_alloc_pool ("elt_list",
1423 sizeof (struct elt_list), 10);
1424 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1425 sizeof (struct elt_loc_list), 10);
1426 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1427 sizeof (cselib_val), 10);
c59b7e96 1428 value_pool = create_alloc_pool ("value",
1429 RTX_SIZE (VALUE), 100);
53622482 1430 cselib_record_memory = record_memory;
1f3233d1 1431 /* This is only created once. */
1500f816 1432 if (! callmem)
1f3233d1 1433 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1500f816 1434
1435 cselib_nregs = max_reg_num ();
fd910ba1 1436
1437 /* We preserve reg_values to allow expensive clearing of the whole thing.
1438 Reallocate it however if it happens to be too large. */
1439 if (!reg_values || reg_values_size < cselib_nregs
1440 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1f3233d1 1441 {
fd910ba1 1442 if (reg_values)
1443 free (reg_values);
1444 /* Some space for newly emit instructions so we don't end up
1445 reallocating in between passes. */
1446 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1447 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1f3233d1 1448 }
fd910ba1 1449 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1450 n_used_regs = 0;
1451 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
8a98e28f 1452 cselib_current_insn_in_libcall = false;
1500f816 1453}
1454
1455/* Called when the current user is done with cselib. */
1456
1457void
8ec3a57b 1458cselib_finish (void)
1500f816 1459{
69d7e198 1460 free_alloc_pool (elt_list_pool);
1461 free_alloc_pool (elt_loc_list_pool);
1462 free_alloc_pool (cselib_val_pool);
c59b7e96 1463 free_alloc_pool (value_pool);
53fffe66 1464 clear_table ();
fd910ba1 1465 htab_delete (hash_table);
ce7efeed 1466 free (used_regs);
1f3233d1 1467 used_regs = 0;
1468 hash_table = 0;
1469 n_useless_values = 0;
1470 next_unknown_value = 0;
1500f816 1471}
1f3233d1 1472
1473#include "gt-cselib.h"