]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
8d9254fc 2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
b8698a0f 3 Originally contributed by Michael P. Hayes
4d779342
DB
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
9dcd6f09 12Software Foundation; either version 3, or (at your option) any later
4d779342
DB
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
9dcd6f09
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
4d779342
DB
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
6fb5fa3c
DB
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
4d779342 40
6fb5fa3c
DB
41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
fa10beec 44areas that can be reached from a definition of a variable. The LIVE
b8698a0f 45problem finds the intersection of these two areas.
4d779342 46
6fb5fa3c
DB
47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
4d779342 49
6fb5fa3c
DB
50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
4d779342 57
6fb5fa3c 58In the middle layer, basic blocks are scanned to produce transfer
fa10beec 59functions which describe the effects of that block on the global
6fb5fa3c 60dataflow solution. The transfer functions are only rebuilt if the
b8698a0f 61some instruction within the block has changed.
4d779342 62
6fb5fa3c 63The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 64is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
4d779342
DB
67
68
6fb5fa3c 69USAGE:
4d779342 70
6fb5fa3c 71Here is an example of using the dataflow routines.
4d779342 72
05c219bb 73 df_[chain,live,note,rd]_add_problem (flags);
4d779342 74
6fb5fa3c 75 df_set_blocks (blocks);
4d779342 76
6fb5fa3c 77 df_analyze ();
4d779342 78
6fb5fa3c 79 df_dump (stderr);
4d779342 80
0d475361 81 df_finish_pass (false);
4d779342 82
05c219bb 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
4d779342
DB
87
88Problems can be dependent on other problems. For instance, solving
d1c78882 89def-use or use-def chains is dependent on solving reaching
c0220ea4 90definitions. As long as these dependencies are listed in the problem
4d779342
DB
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
4d779342
DB
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 108before the call to analyze in order to eliminate the possibility that
4d779342
DB
109optimizations that reorder blocks invalidate the bitvector.
110
6fb5fa3c
DB
111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 114to access these bitvectors. All deferred rescannings are down before
0d52bcc1 115the transfer functions are recomputed.
4d779342
DB
116
117DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
0a41f3b2 126deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
cea618ac 146 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
0d52bcc1 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e02101ff 184 note_stores and rtx iterators instead of using the DF data. This
ecb7f6de 185 can be said to fall under case 1c.
6fb5fa3c
DB
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
0a41f3b2 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
190 be rescanned.
191
ecb7f6de
PB
1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
198
1994) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 200 itself using the low level df primitives. Currently no pass does
6fb5fa3c 201 this, but it has the advantage that it is quite efficient given
b8698a0f 202 that the pass generally has exact knowledge of what it is changing.
6fb5fa3c
DB
203
204DATA STRUCTURES
4d779342
DB
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
4d779342
DB
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 239keep the dataflow information up to data (if this is really what is
4d779342
DB
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
b8698a0f 249The basic object is a DF_REF (reference) and this may either be a
4d779342
DB
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
6fb5fa3c
DB
261ACCESSING INSNS:
262
50e94c7e
SB
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
6fb5fa3c 286
4d779342
DB
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
b8698a0f 293 REAL refs are associated with instructions.
4d779342
DB
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c 296 these lists can be accessed by calling df_get_artificial_defs or
b8698a0f
L
297 df_get_artificial_uses for the particular basic block.
298
912f2dac
DB
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
49dbd6a0 301 For blocks that are at the destination of eh edges, the
912f2dac
DB
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
49dbd6a0 304 relate to the registers specified in EH_USES. Logically these
912f2dac 305 defs and uses should really occur along the eh edge, but there is
49dbd6a0 306 no convenient way to do this. Artificial defs that occur at the
912f2dac
DB
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
c0220ea4 314 Artificial defs occur at the end of the entry block. These arise
912f2dac 315 from registers that are live at entry to the function.
4d779342 316
b8698a0f 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
6fb5fa3c 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 319
6fb5fa3c
DB
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
b8698a0f 324 treated like uses. If it is not set they are ignored.
6fb5fa3c
DB
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
4d779342
DB
340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
b8698a0f 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
4d779342 355NOTES:
b8698a0f 356
4d779342
DB
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
fa10beec 368smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
b8698a0f 373are write-only operations.
4d779342
DB
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
c7131fb2 380#include "backend.h"
4d779342 381#include "rtl.h"
c7131fb2 382#include "df.h"
4d0cdd0c 383#include "memmodel.h"
957060b5 384#include "emit-rtl.h"
60393bbc 385#include "cfganal.h"
4d779342 386#include "tree-pass.h"
7be64667 387#include "cfgloop.h"
4d779342 388
23249ac4 389static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 390static void df_set_bb_info (struct dataflow *, unsigned int, void *);
e285df08 391static void df_clear_bb_info (struct dataflow *, unsigned int);
6fb5fa3c
DB
392#ifdef DF_DEBUG_CFG
393static void df_set_clean_cfg (void);
394#endif
4d779342 395
532aafad
SB
396/* The obstack on which regsets are allocated. */
397struct bitmap_obstack reg_obstack;
398
6fb5fa3c
DB
399/* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
4d779342 402
6fb5fa3c 403bitmap_obstack df_bitmap_obstack;
4d779342 404
4d779342 405
6fb5fa3c
DB
406/*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408----------------------------------------------------------------------------*/
409
99b1c316 410class df_d *df;
4d779342 411
6fb5fa3c 412/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 413
6fb5fa3c 414void
fdd5680c 415df_add_problem (const struct df_problem *problem)
4d779342
DB
416{
417 struct dataflow *dflow;
6fb5fa3c 418 int i;
4d779342
DB
419
420 /* First try to add the dependent problem. */
6fb5fa3c
DB
421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
4d779342
DB
423
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
6fb5fa3c 429 return;
4d779342
DB
430
431 /* Make a new one and add it to the end. */
5ed6ace5 432 dflow = XCNEW (struct dataflow);
4d779342 433 dflow->problem = problem;
6fb5fa3c
DB
434 dflow->computed = false;
435 dflow->solutions_dirty = true;
4d779342
DB
436 df->problems_by_index[dflow->problem->id] = dflow;
437
6fb5fa3c
DB
438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
b8698a0f 444 defined. */
6fb5fa3c
DB
445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 {
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
451 {
452 df->problems_in_order[i+1] = dflow;
453 return;
454 }
455 }
456 df->problems_in_order[0] = dflow;
4d779342
DB
457}
458
459
23249ac4
DB
460/* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
81f40b79 463int
bbbbb16a 464df_set_flags (int changeable_flags)
23249ac4 465{
81f40b79 466 int old_flags = df->changeable_flags;
6fb5fa3c 467 df->changeable_flags |= changeable_flags;
23249ac4
DB
468 return old_flags;
469}
470
6fb5fa3c 471
23249ac4
DB
472/* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
81f40b79 475int
bbbbb16a 476df_clear_flags (int changeable_flags)
23249ac4 477{
81f40b79 478 int old_flags = df->changeable_flags;
6fb5fa3c 479 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
480 return old_flags;
481}
482
6fb5fa3c 483
4d779342
DB
484/* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
487
b8698a0f 488void
6fb5fa3c 489df_set_blocks (bitmap blocks)
4d779342
DB
490{
491 if (blocks)
492 {
6fb5fa3c
DB
493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
495 if (df->blocks_to_analyze)
496 {
89a95777
KZ
497 /* This block is called to change the focus from one subset
498 to another. */
3b8266e2 499 int p;
d648b5ff
TS
500 auto_bitmap diff (&df_bitmap_obstack);
501 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
89a95777 502 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
503 {
504 struct dataflow *dflow = df->problems_in_order[p];
89a95777 505 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 506 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 507 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
508 {
509 bitmap_iterator bi;
510 unsigned int bb_index;
b8698a0f 511
d648b5ff 512 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
3b8266e2 513 {
06e28de2 514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
30cb87a0
KZ
515 if (bb)
516 {
6fb5fa3c 517 void *bb_info = df_get_bb_info (dflow, bb_index);
e285df08
JH
518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
30cb87a0 520 }
3b8266e2
KZ
521 }
522 }
523 }
3b8266e2
KZ
524 }
525 else
30cb87a0 526 {
89a95777
KZ
527 /* This block of code is executed to change the focus from
528 the entire function to a subset. */
a7e3698d
JH
529 bitmap_head blocks_to_reset;
530 bool initialized = false;
89a95777
KZ
531 int p;
532 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 533 {
89a95777
KZ
534 struct dataflow *dflow = df->problems_in_order[p];
535 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 536 {
a7e3698d 537 if (!initialized)
30cb87a0 538 {
89a95777 539 basic_block bb;
a7e3698d 540 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
04a90bec 541 FOR_ALL_BB_FN (bb, cfun)
30cb87a0 542 {
a7e3698d 543 bitmap_set_bit (&blocks_to_reset, bb->index);
30cb87a0 544 }
30cb87a0 545 }
a7e3698d 546 dflow->problem->reset_fun (&blocks_to_reset);
30cb87a0 547 }
30cb87a0 548 }
a7e3698d
JH
549 if (initialized)
550 bitmap_clear (&blocks_to_reset);
89a95777 551
6fb5fa3c 552 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 553 }
4d779342 554 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 555 df->analyze_subset = true;
4d779342
DB
556 }
557 else
558 {
89a95777
KZ
559 /* This block is executed to reset the focus to the entire
560 function. */
6fb5fa3c 561 if (dump_file)
89a95777 562 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
563 if (df->blocks_to_analyze)
564 {
565 BITMAP_FREE (df->blocks_to_analyze);
566 df->blocks_to_analyze = NULL;
567 }
6fb5fa3c 568 df->analyze_subset = false;
4d779342 569 }
6fb5fa3c
DB
570
571 /* Setting the blocks causes the refs to be unorganized since only
572 the refs in the blocks are seen. */
573 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 df_mark_solutions_dirty ();
4d779342
DB
576}
577
578
6fb5fa3c
DB
579/* Delete a DFLOW problem (and any problems that depend on this
580 problem). */
23249ac4
DB
581
582void
6fb5fa3c 583df_remove_problem (struct dataflow *dflow)
23249ac4 584{
fdd5680c 585 const struct df_problem *problem;
23249ac4 586 int i;
6fb5fa3c
DB
587
588 if (!dflow)
589 return;
590
591 problem = dflow->problem;
592 gcc_assert (problem->remove_problem_fun);
593
6fb5fa3c 594 /* Delete any problems that depended on this problem first. */
89a95777 595 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
596 if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 df_remove_problem (df->problems_in_order[i]);
598
599 /* Now remove this problem. */
89a95777 600 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
601 if (df->problems_in_order[i] == dflow)
602 {
603 int j;
604 for (j = i + 1; j < df->num_problems_defined; j++)
605 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 606 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
607 df->num_problems_defined--;
608 break;
609 }
610
611 (problem->remove_problem_fun) ();
612 df->problems_by_index[problem->id] = NULL;
613}
614
615
05c219bb
PB
616/* Remove all of the problems that are not permanent. Scanning, LR
617 and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 Also clear all of the changeable_flags. */
6fb5fa3c
DB
619
620void
0d475361 621df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
622{
623 int i;
6fb5fa3c 624
3089f8b5 625#ifdef ENABLE_DF_CHECKING
a46edbff 626 int saved_flags;
6fb5fa3c
DB
627#endif
628
629 if (!df)
630 return;
631
632 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634
3089f8b5 635#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
636 saved_flags = df->changeable_flags;
637#endif
638
8f252203
TP
639 /* We iterate over problems by index as each problem removed will
640 lead to problems_in_order to be reordered. */
641 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
23249ac4 642 {
8f252203 643 struct dataflow *dflow = df->problems_by_index[i];
6fb5fa3c 644
8f252203
TP
645 if (dflow && dflow->optional_p)
646 df_remove_problem (dflow);
6fb5fa3c 647 }
6fb5fa3c
DB
648
649 /* Clear all of the flags. */
650 df->changeable_flags = 0;
651 df_process_deferred_rescans ();
652
653 /* Set the focus back to the whole function. */
654 if (df->blocks_to_analyze)
655 {
656 BITMAP_FREE (df->blocks_to_analyze);
657 df->blocks_to_analyze = NULL;
658 df_mark_solutions_dirty ();
659 df->analyze_subset = false;
23249ac4 660 }
6fb5fa3c 661
3089f8b5 662#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
663 /* Verification will fail in DF_NO_INSN_RESCAN. */
664 if (!(saved_flags & DF_NO_INSN_RESCAN))
665 {
666 df_lr_verify_transfer_functions ();
667 if (df_live)
668 df_live_verify_transfer_functions ();
669 }
670
671#ifdef DF_DEBUG_CFG
672 df_set_clean_cfg ();
673#endif
674#endif
0d475361 675
b2b29377 676 if (flag_checking && verify)
0d475361 677 df->changeable_flags |= DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
678}
679
680
681/* Set up the dataflow instance for the entire back end. */
682
683static unsigned int
684rest_of_handle_df_initialize (void)
685{
686 gcc_assert (!df);
99b1c316 687 df = XCNEW (class df_d);
6fb5fa3c
DB
688 df->changeable_flags = 0;
689
690 bitmap_obstack_initialize (&df_bitmap_obstack);
691
692 /* Set this to a conservative value. Stack_ptr_mod will compute it
693 correctly later. */
416ff32e 694 crtl->sp_is_unchanging = 0;
6fb5fa3c
DB
695
696 df_scan_add_problem ();
697 df_scan_alloc (NULL);
698
699 /* These three problems are permanent. */
700 df_lr_add_problem ();
89a95777 701 if (optimize > 1)
6fb5fa3c
DB
702 df_live_add_problem ();
703
8b1c6fd7 704 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
6fb5fa3c 705 df->n_blocks = post_order_compute (df->postorder, true, true);
6fa95e09
TS
706 inverted_post_order_compute (&df->postorder_inverted);
707 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
6fb5fa3c 708
225ccc68 709 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
6fb5fa3c
DB
710
711 df_hard_reg_init ();
712 /* After reload, some ports add certain bits to regs_ever_live so
713 this cannot be reset. */
714 df_compute_regs_ever_live (true);
715 df_scan_blocks ();
716 df_compute_regs_ever_live (false);
717 return 0;
718}
719
720
27a4cd48
DM
721namespace {
722
723const pass_data pass_data_df_initialize_opt =
6fb5fa3c 724{
27a4cd48
DM
725 RTL_PASS, /* type */
726 "dfinit", /* name */
727 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
728 TV_DF_SCAN, /* tv_id */
729 0, /* properties_required */
730 0, /* properties_provided */
731 0, /* properties_destroyed */
732 0, /* todo_flags_start */
733 0, /* todo_flags_finish */
6fb5fa3c
DB
734};
735
27a4cd48
DM
736class pass_df_initialize_opt : public rtl_opt_pass
737{
738public:
c3284718
RS
739 pass_df_initialize_opt (gcc::context *ctxt)
740 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
27a4cd48
DM
741 {}
742
743 /* opt_pass methods: */
1a3d085c 744 virtual bool gate (function *) { return optimize > 0; }
be55bfe6
TS
745 virtual unsigned int execute (function *)
746 {
747 return rest_of_handle_df_initialize ();
748 }
27a4cd48
DM
749
750}; // class pass_df_initialize_opt
751
752} // anon namespace
753
754rtl_opt_pass *
755make_pass_df_initialize_opt (gcc::context *ctxt)
756{
757 return new pass_df_initialize_opt (ctxt);
758}
759
6fb5fa3c 760
27a4cd48
DM
761namespace {
762
763const pass_data pass_data_df_initialize_no_opt =
6fb5fa3c 764{
27a4cd48
DM
765 RTL_PASS, /* type */
766 "no-opt dfinit", /* name */
767 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
768 TV_DF_SCAN, /* tv_id */
769 0, /* properties_required */
770 0, /* properties_provided */
771 0, /* properties_destroyed */
772 0, /* todo_flags_start */
773 0, /* todo_flags_finish */
6fb5fa3c
DB
774};
775
27a4cd48
DM
776class pass_df_initialize_no_opt : public rtl_opt_pass
777{
778public:
c3284718
RS
779 pass_df_initialize_no_opt (gcc::context *ctxt)
780 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
27a4cd48
DM
781 {}
782
783 /* opt_pass methods: */
1a3d085c 784 virtual bool gate (function *) { return optimize == 0; }
be55bfe6
TS
785 virtual unsigned int execute (function *)
786 {
787 return rest_of_handle_df_initialize ();
788 }
27a4cd48
DM
789
790}; // class pass_df_initialize_no_opt
791
792} // anon namespace
793
794rtl_opt_pass *
795make_pass_df_initialize_no_opt (gcc::context *ctxt)
796{
797 return new pass_df_initialize_no_opt (ctxt);
798}
799
6fb5fa3c 800
4d779342
DB
801/* Free all the dataflow info and the DF structure. This should be
802 called from the df_finish macro which also NULLs the parm. */
803
6fb5fa3c
DB
804static unsigned int
805rest_of_handle_df_finish (void)
4d779342
DB
806{
807 int i;
808
6fb5fa3c
DB
809 gcc_assert (df);
810
4d779342 811 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
812 {
813 struct dataflow *dflow = df->problems_in_order[i];
b8698a0f 814 dflow->problem->free_fun ();
6fb5fa3c 815 }
4d779342 816
04695783 817 free (df->postorder);
6fa95e09 818 df->postorder_inverted.release ();
6fb5fa3c 819 free (df->hard_regs_live_count);
4d779342 820 free (df);
6fb5fa3c
DB
821 df = NULL;
822
823 bitmap_obstack_release (&df_bitmap_obstack);
824 return 0;
4d779342
DB
825}
826
6fb5fa3c 827
27a4cd48
DM
828namespace {
829
830const pass_data pass_data_df_finish =
6fb5fa3c 831{
27a4cd48
DM
832 RTL_PASS, /* type */
833 "dfinish", /* name */
834 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
835 TV_NONE, /* tv_id */
836 0, /* properties_required */
837 0, /* properties_provided */
838 0, /* properties_destroyed */
839 0, /* todo_flags_start */
840 0, /* todo_flags_finish */
6fb5fa3c
DB
841};
842
27a4cd48
DM
843class pass_df_finish : public rtl_opt_pass
844{
845public:
c3284718
RS
846 pass_df_finish (gcc::context *ctxt)
847 : rtl_opt_pass (pass_data_df_finish, ctxt)
27a4cd48
DM
848 {}
849
850 /* opt_pass methods: */
be55bfe6
TS
851 virtual unsigned int execute (function *)
852 {
853 return rest_of_handle_df_finish ();
854 }
27a4cd48
DM
855
856}; // class pass_df_finish
857
858} // anon namespace
859
860rtl_opt_pass *
861make_pass_df_finish (gcc::context *ctxt)
862{
863 return new pass_df_finish (ctxt);
864}
865
6fb5fa3c
DB
866
867
868
4d779342
DB
869\f
870/*----------------------------------------------------------------------------
871 The general data flow analysis engine.
872----------------------------------------------------------------------------*/
873
6fb5fa3c 874/* Helper function for df_worklist_dataflow.
b8698a0f 875 Propagate the dataflow forward.
6fb5fa3c
DB
876 Given a BB_INDEX, do the dataflow propagation
877 and set bits on for successors in PENDING
50b2e859
JH
878 if the out set of the dataflow has changed.
879
880 AGE specify time when BB was visited last time.
881 AGE of 0 means we are visiting for first time and need to
882 compute transfer function to initialize datastructures.
883 Otherwise we re-do transfer function only if something change
884 while computing confluence functions.
885 We need to compute confluence only of basic block that are younger
886 then last visit of the BB.
887
888 Return true if BB info has changed. This is always the case
889 in the first visit. */
4d779342 890
1a0f3fa1 891static bool
6fb5fa3c
DB
892df_worklist_propagate_forward (struct dataflow *dataflow,
893 unsigned bb_index,
894 unsigned *bbindex_to_postorder,
895 bitmap pending,
1a0f3fa1 896 sbitmap considered,
5c7e6d4b
SB
897 vec<int> &last_change_age,
898 int age)
4d779342 899{
4d779342
DB
900 edge e;
901 edge_iterator ei;
06e28de2 902 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 903 bool changed = !age;
4d779342 904
6fb5fa3c 905 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
906 if (EDGE_COUNT (bb->preds) > 0)
907 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 908 {
5c7e6d4b
SB
909 if (bbindex_to_postorder[e->src->index] < last_change_age.length ()
910 && age <= last_change_age[bbindex_to_postorder[e->src->index]]
d7c028c0 911 && bitmap_bit_p (considered, e->src->index))
1a0f3fa1 912 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 913 }
e45dcf9c 914 else if (dataflow->problem->con_fun_0)
50b2e859 915 dataflow->problem->con_fun_0 (bb);
6fb5fa3c 916
1a0f3fa1
JH
917 if (changed
918 && dataflow->problem->trans_fun (bb_index))
4d779342 919 {
b8698a0f 920 /* The out set of this block has changed.
6fb5fa3c
DB
921 Propagate to the outgoing blocks. */
922 FOR_EACH_EDGE (e, ei, bb->succs)
923 {
924 unsigned ob_index = e->dest->index;
925
d7c028c0 926 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
927 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
928 }
1a0f3fa1 929 return true;
4d779342 930 }
1a0f3fa1 931 return false;
4d779342
DB
932}
933
6fb5fa3c
DB
934
935/* Helper function for df_worklist_dataflow.
936 Propagate the dataflow backward. */
937
1a0f3fa1 938static bool
6fb5fa3c
DB
939df_worklist_propagate_backward (struct dataflow *dataflow,
940 unsigned bb_index,
941 unsigned *bbindex_to_postorder,
942 bitmap pending,
1a0f3fa1 943 sbitmap considered,
5c7e6d4b
SB
944 vec<int> &last_change_age,
945 int age)
4d779342 946{
4d779342
DB
947 edge e;
948 edge_iterator ei;
06e28de2 949 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 950 bool changed = !age;
4d779342 951
6fb5fa3c 952 /* Calculate <conf_op> of incoming edges. */
4d779342 953 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 954 FOR_EACH_EDGE (e, ei, bb->succs)
b8698a0f 955 {
5c7e6d4b
SB
956 if (bbindex_to_postorder[e->dest->index] < last_change_age.length ()
957 && age <= last_change_age[bbindex_to_postorder[e->dest->index]]
d7c028c0 958 && bitmap_bit_p (considered, e->dest->index))
1a0f3fa1 959 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 960 }
e45dcf9c 961 else if (dataflow->problem->con_fun_0)
50b2e859 962 dataflow->problem->con_fun_0 (bb);
4d779342 963
1a0f3fa1
JH
964 if (changed
965 && dataflow->problem->trans_fun (bb_index))
4d779342 966 {
b8698a0f 967 /* The out set of this block has changed.
6fb5fa3c
DB
968 Propagate to the outgoing blocks. */
969 FOR_EACH_EDGE (e, ei, bb->preds)
970 {
971 unsigned ob_index = e->src->index;
972
d7c028c0 973 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
974 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
975 }
1a0f3fa1 976 return true;
4d779342 977 }
1a0f3fa1 978 return false;
4d779342
DB
979}
980
50b2e859
JH
981/* Main dataflow solver loop.
982
983 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
984 need to visit.
985 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
688010ba 986 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
50b2e859
JH
987 PENDING will be freed.
988
989 The worklists are bitmaps indexed by postorder positions.
990
991 The function implements standard algorithm for dataflow solving with two
992 worklists (we are processing WORKLIST and storing new BBs to visit in
993 PENDING).
185082a7 994
5c7e6d4b
SB
995 As an optimization we maintain ages when BB was changed (stored in
996 last_change_age) and when it was last visited (stored in last_visit_age).
997 This avoids need to re-do confluence function for edges to basic blocks
998 whose source did not change since destination was visited last time. */
185082a7 999
b8698a0f 1000static void
185082a7
SP
1001df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1002 bitmap pending,
1003 sbitmap considered,
1004 int *blocks_in_postorder,
1a0f3fa1
JH
1005 unsigned *bbindex_to_postorder,
1006 int n_blocks)
185082a7
SP
1007{
1008 enum df_flow_dir dir = dataflow->problem->dir;
1009 int dcount = 0;
1010 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
50b2e859 1011 int age = 0;
1a0f3fa1 1012 bool changed;
6e1aa848 1013 vec<int> last_visit_age = vNULL;
5c7e6d4b 1014 vec<int> last_change_age = vNULL;
50b2e859 1015 int prev_age;
1a0f3fa1 1016
9771b263 1017 last_visit_age.safe_grow_cleared (n_blocks);
5c7e6d4b 1018 last_change_age.safe_grow_cleared (n_blocks);
185082a7
SP
1019
1020 /* Double-queueing. Worklist is for the current iteration,
1021 and pending is for the next. */
1022 while (!bitmap_empty_p (pending))
1023 {
1a0f3fa1
JH
1024 bitmap_iterator bi;
1025 unsigned int index;
1026
6b4db501 1027 std::swap (pending, worklist);
185082a7 1028
1a0f3fa1 1029 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
185082a7 1030 {
185082a7
SP
1031 unsigned bb_index;
1032 dcount++;
1033
50b2e859 1034 bitmap_clear_bit (pending, index);
185082a7 1035 bb_index = blocks_in_postorder[index];
9771b263 1036 prev_age = last_visit_age[index];
185082a7 1037 if (dir == DF_FORWARD)
1a0f3fa1
JH
1038 changed = df_worklist_propagate_forward (dataflow, bb_index,
1039 bbindex_to_postorder,
1040 pending, considered,
5c7e6d4b 1041 last_change_age,
1a0f3fa1 1042 prev_age);
b8698a0f 1043 else
1a0f3fa1
JH
1044 changed = df_worklist_propagate_backward (dataflow, bb_index,
1045 bbindex_to_postorder,
1046 pending, considered,
5c7e6d4b 1047 last_change_age,
1a0f3fa1 1048 prev_age);
9771b263 1049 last_visit_age[index] = ++age;
1a0f3fa1 1050 if (changed)
5c7e6d4b 1051 last_change_age[index] = age;
185082a7 1052 }
1a0f3fa1 1053 bitmap_clear (worklist);
185082a7
SP
1054 }
1055
1056 BITMAP_FREE (worklist);
1057 BITMAP_FREE (pending);
9771b263 1058 last_visit_age.release ();
5c7e6d4b 1059 last_change_age.release ();
185082a7
SP
1060
1061 /* Dump statistics. */
1062 if (dump_file)
1063 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
aa326bfb 1064 " n_basic_blocks %d n_edges %d"
185082a7 1065 " count %d (%5.2g)\n",
dc936fb2 1066 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
0cae8d31 1067 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
185082a7
SP
1068}
1069
6fb5fa3c 1070/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
b8698a0f 1071 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
1072 The solver is a double-queue algorithm similar to the "double stack" solver
1073 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1074 The only significant difference is that the worklist in this implementation
1075 is always sorted in RPO of the CFG visiting direction. */
4d779342 1076
b8698a0f 1077void
6fb5fa3c
DB
1078df_worklist_dataflow (struct dataflow *dataflow,
1079 bitmap blocks_to_consider,
1080 int *blocks_in_postorder,
1081 int n_blocks)
4d779342 1082{
6fb5fa3c 1083 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
4d779342 1084 bitmap_iterator bi;
6fb5fa3c
DB
1085 unsigned int *bbindex_to_postorder;
1086 int i;
1087 unsigned int index;
1088 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1089
6fb5fa3c 1090 gcc_assert (dir != DF_NONE);
4d779342 1091
6fb5fa3c 1092 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
8b1c6fd7
DM
1093 bbindex_to_postorder = XNEWVEC (unsigned int,
1094 last_basic_block_for_fn (cfun));
4d779342 1095
6fb5fa3c 1096 /* Initialize the array to an out-of-bound value. */
8b1c6fd7
DM
1097 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1098 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
23249ac4 1099
6fb5fa3c 1100 /* Initialize the considered map. */
7ba9e72d 1101 auto_sbitmap considered (last_basic_block_for_fn (cfun));
f61e445a 1102 bitmap_clear (considered);
6fb5fa3c 1103 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1104 {
d7c028c0 1105 bitmap_set_bit (considered, index);
4d779342
DB
1106 }
1107
6fb5fa3c 1108 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1109 for (i = 0; i < n_blocks; i++)
1110 {
6fb5fa3c
DB
1111 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1112 /* Add all blocks to the worklist. */
1113 bitmap_set_bit (pending, i);
1114 }
4d779342 1115
185082a7 1116 /* Initialize the problem. */
6fb5fa3c
DB
1117 if (dataflow->problem->init_fun)
1118 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1119
240b5cea
SB
1120 /* Solve it. */
1121 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1122 blocks_in_postorder,
1a0f3fa1
JH
1123 bbindex_to_postorder,
1124 n_blocks);
6fb5fa3c 1125 free (bbindex_to_postorder);
4d779342
DB
1126}
1127
1128
1129/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1130 the order of the remaining entries. Returns the length of the resulting
1131 list. */
1132
1133static unsigned
1134df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1135{
1136 unsigned act, last;
1137
1138 for (act = 0, last = 0; act < len; act++)
1139 if (bitmap_bit_p (blocks, list[act]))
1140 list[last++] = list[act];
1141
1142 return last;
1143}
1144
1145
b8698a0f 1146/* Execute dataflow analysis on a single dataflow problem.
4d779342 1147
4d779342
DB
1148 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1149 examined or will be computed. For calls from DF_ANALYZE, this is
b8698a0f 1150 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1151*/
1152
23249ac4 1153void
b8698a0f
L
1154df_analyze_problem (struct dataflow *dflow,
1155 bitmap blocks_to_consider,
6fb5fa3c 1156 int *postorder, int n_blocks)
4d779342 1157{
6fb5fa3c
DB
1158 timevar_push (dflow->problem->tv_id);
1159
e7f96023
JH
1160 /* (Re)Allocate the datastructures necessary to solve the problem. */
1161 if (dflow->problem->alloc_fun)
1162 dflow->problem->alloc_fun (blocks_to_consider);
1163
3089f8b5 1164#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1165 if (dflow->problem->verify_start_fun)
1166 dflow->problem->verify_start_fun ();
1167#endif
1168
6fb5fa3c 1169 /* Set up the problem and compute the local information. */
e45dcf9c 1170 if (dflow->problem->local_compute_fun)
6fb5fa3c 1171 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1172
1173 /* Solve the equations. */
e45dcf9c 1174 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1175 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1176 postorder, n_blocks);
4d779342
DB
1177
1178 /* Massage the solution. */
e45dcf9c 1179 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1180 dflow->problem->finalize_fun (blocks_to_consider);
1181
3089f8b5 1182#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1183 if (dflow->problem->verify_end_fun)
1184 dflow->problem->verify_end_fun ();
1185#endif
1186
1187 timevar_pop (dflow->problem->tv_id);
1188
1189 dflow->computed = true;
4d779342
DB
1190}
1191
1192
7be64667 1193/* Analyze dataflow info. */
4d779342 1194
7be64667
RB
1195static void
1196df_analyze_1 (void)
4d779342 1197{
6fb5fa3c 1198 int i;
b8698a0f 1199
6fb5fa3c 1200 /* These should be the same. */
6fa95e09 1201 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
6fb5fa3c
DB
1202
1203 /* We need to do this before the df_verify_all because this is
1204 not kept incrementally up to date. */
1205 df_compute_regs_ever_live (false);
1206 df_process_deferred_rescans ();
1207
6fb5fa3c
DB
1208 if (dump_file)
1209 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1210
0d475361
PB
1211#ifndef ENABLE_DF_CHECKING
1212 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1213#endif
1214 df_verify ();
6fb5fa3c 1215
7be64667
RB
1216 /* Skip over the DF_SCAN problem. */
1217 for (i = 1; i < df->num_problems_defined; i++)
1218 {
1219 struct dataflow *dflow = df->problems_in_order[i];
1220 if (dflow->solutions_dirty)
1221 {
1222 if (dflow->problem->dir == DF_FORWARD)
1223 df_analyze_problem (dflow,
1224 df->blocks_to_analyze,
6fa95e09
TS
1225 df->postorder_inverted.address (),
1226 df->postorder_inverted.length ());
7be64667
RB
1227 else
1228 df_analyze_problem (dflow,
1229 df->blocks_to_analyze,
1230 df->postorder,
1231 df->n_blocks);
1232 }
1233 }
1234
1235 if (!df->analyze_subset)
1236 {
1237 BITMAP_FREE (df->blocks_to_analyze);
1238 df->blocks_to_analyze = NULL;
1239 }
1240
1241#ifdef DF_DEBUG_CFG
1242 df_set_clean_cfg ();
1243#endif
1244}
1245
1246/* Analyze dataflow info. */
1247
1248void
1249df_analyze (void)
1250{
1251 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
7be64667
RB
1252
1253 free (df->postorder);
7be64667 1254 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
7be64667 1255 df->n_blocks = post_order_compute (df->postorder, true, true);
6fa95e09
TS
1256 df->postorder_inverted.truncate (0);
1257 inverted_post_order_compute (&df->postorder_inverted);
7be64667 1258
6fa95e09 1259 for (int i = 0; i < df->n_blocks; i++)
6fb5fa3c
DB
1260 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1261
b2b29377
MM
1262 if (flag_checking)
1263 {
1264 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1265 the ENTRY block. */
6fa95e09 1266 for (unsigned int i = 0; i < df->postorder_inverted.length (); i++)
b2b29377
MM
1267 gcc_assert (bitmap_bit_p (current_all_blocks,
1268 df->postorder_inverted[i]));
1269 }
4d779342
DB
1270
1271 /* Make sure that we have pruned any unreachable blocks from these
1272 sets. */
6fb5fa3c 1273 if (df->analyze_subset)
4d779342 1274 {
4d779342 1275 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
b8698a0f 1276 df->n_blocks = df_prune_to_subcfg (df->postorder,
6fb5fa3c 1277 df->n_blocks, df->blocks_to_analyze);
6fa95e09
TS
1278 unsigned int newlen = df_prune_to_subcfg (df->postorder_inverted.address (),
1279 df->postorder_inverted.length (),
7be64667 1280 df->blocks_to_analyze);
6fa95e09 1281 df->postorder_inverted.truncate (newlen);
4d779342
DB
1282 BITMAP_FREE (current_all_blocks);
1283 }
1284 else
1285 {
4d779342
DB
1286 df->blocks_to_analyze = current_all_blocks;
1287 current_all_blocks = NULL;
1288 }
1289
7be64667
RB
1290 df_analyze_1 ();
1291}
1292
1293/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1294 Returns the number of blocks which is always loop->num_nodes. */
1295
1296static int
99b1c316 1297loop_post_order_compute (int *post_order, class loop *loop)
7be64667
RB
1298{
1299 edge_iterator *stack;
1300 int sp;
1301 int post_order_num = 0;
7be64667
RB
1302
1303 /* Allocate stack for back-tracking up CFG. */
1304 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1305 sp = 0;
1306
1307 /* Allocate bitmap to track nodes that have been visited. */
0e3de1d4 1308 auto_bitmap visited;
7be64667
RB
1309
1310 /* Push the first edge on to the stack. */
1311 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1312
1313 while (sp)
6fb5fa3c 1314 {
7be64667
RB
1315 edge_iterator ei;
1316 basic_block src;
1317 basic_block dest;
1318
1319 /* Look at the edge on the top of the stack. */
1320 ei = stack[sp - 1];
1321 src = ei_edge (ei)->src;
1322 dest = ei_edge (ei)->dest;
1323
1324 /* Check if the edge destination has been visited yet and mark it
1325 if not so. */
1326 if (flow_bb_inside_loop_p (loop, dest)
1327 && bitmap_set_bit (visited, dest->index))
1328 {
1329 if (EDGE_COUNT (dest->succs) > 0)
1330 /* Since the DEST node has been visited for the first
1331 time, check its successors. */
1332 stack[sp++] = ei_start (dest->succs);
1333 else
1334 post_order[post_order_num++] = dest->index;
1335 }
1336 else
1337 {
1338 if (ei_one_before_end_p (ei)
1339 && src != loop_preheader_edge (loop)->src)
1340 post_order[post_order_num++] = src->index;
1341
1342 if (!ei_one_before_end_p (ei))
1343 ei_next (&stack[sp - 1]);
1344 else
1345 sp--;
1346 }
6fb5fa3c 1347 }
4d779342 1348
7be64667 1349 free (stack);
7be64667
RB
1350
1351 return post_order_num;
1352}
1353
1354/* Compute the reverse top sort order of the inverted sub-CFG specified
1355 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1356
6fa95e09 1357static void
99b1c316 1358loop_inverted_post_order_compute (vec<int> *post_order, class loop *loop)
7be64667
RB
1359{
1360 basic_block bb;
1361 edge_iterator *stack;
1362 int sp;
6fa95e09
TS
1363
1364 post_order->reserve_exact (loop->num_nodes);
7be64667
RB
1365
1366 /* Allocate stack for back-tracking up CFG. */
1367 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1368 sp = 0;
1369
1370 /* Allocate bitmap to track nodes that have been visited. */
0e3de1d4 1371 auto_bitmap visited;
7be64667
RB
1372
1373 /* Put all latches into the initial work list. In theory we'd want
1374 to start from loop exits but then we'd have the special case of
1375 endless loops. It doesn't really matter for DF iteration order and
1376 handling latches last is probably even better. */
1377 stack[sp++] = ei_start (loop->header->preds);
1378 bitmap_set_bit (visited, loop->header->index);
1379
1380 /* The inverted traversal loop. */
1381 while (sp)
4d779342 1382 {
7be64667
RB
1383 edge_iterator ei;
1384 basic_block pred;
1385
1386 /* Look at the edge on the top of the stack. */
1387 ei = stack[sp - 1];
1388 bb = ei_edge (ei)->dest;
1389 pred = ei_edge (ei)->src;
1390
1391 /* Check if the predecessor has been visited yet and mark it
1392 if not so. */
1393 if (flow_bb_inside_loop_p (loop, pred)
1394 && bitmap_set_bit (visited, pred->index))
1395 {
1396 if (EDGE_COUNT (pred->preds) > 0)
1397 /* Since the predecessor node has been visited for the first
1398 time, check its predecessors. */
1399 stack[sp++] = ei_start (pred->preds);
1400 else
6fa95e09 1401 post_order->quick_push (pred->index);
7be64667
RB
1402 }
1403 else
1404 {
1405 if (flow_bb_inside_loop_p (loop, bb)
1406 && ei_one_before_end_p (ei))
6fa95e09 1407 post_order->quick_push (bb->index);
7be64667
RB
1408
1409 if (!ei_one_before_end_p (ei))
1410 ei_next (&stack[sp - 1]);
1411 else
1412 sp--;
1413 }
4d779342
DB
1414 }
1415
7be64667 1416 free (stack);
7be64667
RB
1417}
1418
1419
1420/* Analyze dataflow info for the basic blocks contained in LOOP. */
1421
1422void
99b1c316 1423df_analyze_loop (class loop *loop)
7be64667
RB
1424{
1425 free (df->postorder);
7be64667
RB
1426
1427 df->postorder = XNEWVEC (int, loop->num_nodes);
6fa95e09 1428 df->postorder_inverted.truncate (0);
7be64667 1429 df->n_blocks = loop_post_order_compute (df->postorder, loop);
6fa95e09 1430 loop_inverted_post_order_compute (&df->postorder_inverted, loop);
7be64667 1431 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
6fa95e09 1432 gcc_assert (df->postorder_inverted.length () == loop->num_nodes);
7be64667
RB
1433
1434 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1435 for (int i = 0; i < df->n_blocks; ++i)
1436 bitmap_set_bit (blocks, df->postorder[i]);
1437 df_set_blocks (blocks);
1438 BITMAP_FREE (blocks);
1439
1440 df_analyze_1 ();
6fb5fa3c
DB
1441}
1442
1443
1444/* Return the number of basic blocks from the last call to df_analyze. */
1445
b8698a0f 1446int
6fb5fa3c
DB
1447df_get_n_blocks (enum df_flow_dir dir)
1448{
1449 gcc_assert (dir != DF_NONE);
1450
1451 if (dir == DF_FORWARD)
1452 {
6fa95e09
TS
1453 gcc_assert (df->postorder_inverted.length ());
1454 return df->postorder_inverted.length ();
6fb5fa3c
DB
1455 }
1456
1457 gcc_assert (df->postorder);
1458 return df->n_blocks;
1459}
1460
1461
b8698a0f 1462/* Return a pointer to the array of basic blocks in the reverse postorder.
6fb5fa3c
DB
1463 Depending on the direction of the dataflow problem,
1464 it returns either the usual reverse postorder array
1465 or the reverse postorder of inverted traversal. */
1466int *
1467df_get_postorder (enum df_flow_dir dir)
1468{
1469 gcc_assert (dir != DF_NONE);
1470
1471 if (dir == DF_FORWARD)
1472 {
6fa95e09
TS
1473 gcc_assert (df->postorder_inverted.length ());
1474 return df->postorder_inverted.address ();
6fb5fa3c
DB
1475 }
1476 gcc_assert (df->postorder);
1477 return df->postorder;
4d779342
DB
1478}
1479
b8698a0f 1480static struct df_problem user_problem;
6fb5fa3c 1481static struct dataflow user_dflow;
4d779342 1482
6fb5fa3c
DB
1483/* Interface for calling iterative dataflow with user defined
1484 confluence and transfer functions. All that is necessary is to
1485 supply DIR, a direction, CONF_FUN_0, a confluence function for
1486 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1487 confluence function, TRANS_FUN, the basic block transfer function,
1488 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1489 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1490
1491void
1492df_simple_dataflow (enum df_flow_dir dir,
1493 df_init_function init_fun,
1494 df_confluence_function_0 con_fun_0,
1495 df_confluence_function_n con_fun_n,
1496 df_transfer_function trans_fun,
1497 bitmap blocks, int * postorder, int n_blocks)
1498{
1499 memset (&user_problem, 0, sizeof (struct df_problem));
1500 user_problem.dir = dir;
1501 user_problem.init_fun = init_fun;
1502 user_problem.con_fun_0 = con_fun_0;
1503 user_problem.con_fun_n = con_fun_n;
1504 user_problem.trans_fun = trans_fun;
1505 user_dflow.problem = &user_problem;
1506 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1507}
1508
b8698a0f 1509
4d779342
DB
1510\f
1511/*----------------------------------------------------------------------------
1512 Functions to support limited incremental change.
1513----------------------------------------------------------------------------*/
1514
1515
1516/* Get basic block info. */
1517
1518static void *
1519df_get_bb_info (struct dataflow *dflow, unsigned int index)
1520{
6fb5fa3c
DB
1521 if (dflow->block_info == NULL)
1522 return NULL;
1523 if (index >= dflow->block_info_size)
1524 return NULL;
e285df08
JH
1525 return (void *)((char *)dflow->block_info
1526 + index * dflow->problem->block_info_elt_size);
4d779342
DB
1527}
1528
1529
1530/* Set basic block info. */
1531
1532static void
b8698a0f 1533df_set_bb_info (struct dataflow *dflow, unsigned int index,
4d779342
DB
1534 void *bb_info)
1535{
6fb5fa3c 1536 gcc_assert (dflow->block_info);
e285df08
JH
1537 memcpy ((char *)dflow->block_info
1538 + index * dflow->problem->block_info_elt_size,
1539 bb_info, dflow->problem->block_info_elt_size);
1540}
1541
1542
1543/* Clear basic block info. */
1544
1545static void
1546df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1547{
1548 gcc_assert (dflow->block_info);
1549 gcc_assert (dflow->block_info_size > index);
1550 memset ((char *)dflow->block_info
1551 + index * dflow->problem->block_info_elt_size,
1552 0, dflow->problem->block_info_elt_size);
4d779342
DB
1553}
1554
1555
6fb5fa3c
DB
1556/* Mark the solutions as being out of date. */
1557
b8698a0f 1558void
6fb5fa3c
DB
1559df_mark_solutions_dirty (void)
1560{
1561 if (df)
1562 {
b8698a0f 1563 int p;
6fb5fa3c
DB
1564 for (p = 1; p < df->num_problems_defined; p++)
1565 df->problems_in_order[p]->solutions_dirty = true;
1566 }
1567}
1568
1569
1570/* Return true if BB needs it's transfer functions recomputed. */
1571
b8698a0f 1572bool
6fb5fa3c
DB
1573df_get_bb_dirty (basic_block bb)
1574{
65e0a0f3
JJ
1575 return bitmap_bit_p ((df_live
1576 ? df_live : df_lr)->out_of_date_transfer_functions,
1577 bb->index);
6fb5fa3c
DB
1578}
1579
1580
1581/* Mark BB as needing it's transfer functions as being out of
1582 date. */
1583
b8698a0f 1584void
6fb5fa3c
DB
1585df_set_bb_dirty (basic_block bb)
1586{
4ec5d4f5 1587 bb->flags |= BB_MODIFIED;
6fb5fa3c
DB
1588 if (df)
1589 {
b8698a0f 1590 int p;
6fb5fa3c
DB
1591 for (p = 1; p < df->num_problems_defined; p++)
1592 {
1593 struct dataflow *dflow = df->problems_in_order[p];
1594 if (dflow->out_of_date_transfer_functions)
1595 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1596 }
1597 df_mark_solutions_dirty ();
1598 }
1599}
1600
1601
e285df08
JH
1602/* Grow the bb_info array. */
1603
1604void
1605df_grow_bb_info (struct dataflow *dflow)
1606{
8b1c6fd7 1607 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
e285df08
JH
1608 if (dflow->block_info_size < new_size)
1609 {
1610 new_size += new_size / 4;
1611 dflow->block_info
1612 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1613 new_size
1614 * dflow->problem->block_info_elt_size);
1615 memset ((char *)dflow->block_info
1616 + dflow->block_info_size
1617 * dflow->problem->block_info_elt_size,
1618 0,
1619 (new_size - dflow->block_info_size)
1620 * dflow->problem->block_info_elt_size);
1621 dflow->block_info_size = new_size;
1622 }
1623}
1624
c23cd1d6 1625
6fb5fa3c
DB
1626/* Clear the dirty bits. This is called from places that delete
1627 blocks. */
1628static void
1629df_clear_bb_dirty (basic_block bb)
1630{
b8698a0f 1631 int p;
6fb5fa3c
DB
1632 for (p = 1; p < df->num_problems_defined; p++)
1633 {
1634 struct dataflow *dflow = df->problems_in_order[p];
1635 if (dflow->out_of_date_transfer_functions)
1636 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1637 }
1638}
e285df08 1639
4d779342
DB
1640/* Called from the rtl_compact_blocks to reorganize the problems basic
1641 block info. */
1642
b8698a0f 1643void
6fb5fa3c 1644df_compact_blocks (void)
4d779342
DB
1645{
1646 int i, p;
1647 basic_block bb;
e285df08 1648 void *problem_temps;
4d779342 1649
d648b5ff 1650 auto_bitmap tmp (&df_bitmap_obstack);
4d779342
DB
1651 for (p = 0; p < df->num_problems_defined; p++)
1652 {
1653 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1654
1655 /* Need to reorganize the out_of_date_transfer_functions for the
1656 dflow problem. */
1657 if (dflow->out_of_date_transfer_functions)
1658 {
d648b5ff 1659 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
6fb5fa3c 1660 bitmap_clear (dflow->out_of_date_transfer_functions);
d648b5ff 1661 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
6fb5fa3c 1662 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
d648b5ff 1663 if (bitmap_bit_p (tmp, EXIT_BLOCK))
6fb5fa3c
DB
1664 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1665
1666 i = NUM_FIXED_BLOCKS;
11cd3bed 1667 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1668 {
d648b5ff 1669 if (bitmap_bit_p (tmp, bb->index))
6fb5fa3c
DB
1670 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1671 i++;
1672 }
1673 }
1674
1675 /* Now shuffle the block info for the problem. */
e45dcf9c 1676 if (dflow->problem->free_bb_fun)
4d779342 1677 {
8b1c6fd7
DM
1678 int size = (last_basic_block_for_fn (cfun)
1679 * dflow->problem->block_info_elt_size);
e285df08 1680 problem_temps = XNEWVAR (char, size);
4d779342
DB
1681 df_grow_bb_info (dflow);
1682 memcpy (problem_temps, dflow->block_info, size);
1683
1684 /* Copy the bb info from the problem tmps to the proper
1685 place in the block_info vector. Null out the copied
6fb5fa3c 1686 item. The entry and exit blocks never move. */
4d779342 1687 i = NUM_FIXED_BLOCKS;
11cd3bed 1688 FOR_EACH_BB_FN (bb, cfun)
4d779342 1689 {
e285df08
JH
1690 df_set_bb_info (dflow, i,
1691 (char *)problem_temps
1692 + bb->index * dflow->problem->block_info_elt_size);
4d779342
DB
1693 i++;
1694 }
e285df08
JH
1695 memset ((char *)dflow->block_info
1696 + i * dflow->problem->block_info_elt_size, 0,
8b1c6fd7 1697 (last_basic_block_for_fn (cfun) - i)
e285df08 1698 * dflow->problem->block_info_elt_size);
f75aa51c 1699 free (problem_temps);
4d779342
DB
1700 }
1701 }
1702
6fb5fa3c
DB
1703 /* Shuffle the bits in the basic_block indexed arrays. */
1704
1705 if (df->blocks_to_analyze)
1706 {
d648b5ff 1707 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
6fb5fa3c 1708 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
d648b5ff 1709 if (bitmap_bit_p (tmp, EXIT_BLOCK))
6fb5fa3c 1710 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
d648b5ff 1711 bitmap_copy (tmp, df->blocks_to_analyze);
6fb5fa3c
DB
1712 bitmap_clear (df->blocks_to_analyze);
1713 i = NUM_FIXED_BLOCKS;
11cd3bed 1714 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1715 {
d648b5ff 1716 if (bitmap_bit_p (tmp, bb->index))
6fb5fa3c
DB
1717 bitmap_set_bit (df->blocks_to_analyze, i);
1718 i++;
1719 }
1720 }
1721
4d779342 1722 i = NUM_FIXED_BLOCKS;
11cd3bed 1723 FOR_EACH_BB_FN (bb, cfun)
4d779342 1724 {
557c4b49 1725 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
4d779342
DB
1726 bb->index = i;
1727 i++;
1728 }
1729
0cae8d31 1730 gcc_assert (i == n_basic_blocks_for_fn (cfun));
4d779342 1731
8b1c6fd7 1732 for (; i < last_basic_block_for_fn (cfun); i++)
557c4b49 1733 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
6fb5fa3c
DB
1734
1735#ifdef DF_DEBUG_CFG
1736 if (!df_lr->solutions_dirty)
1737 df_set_clean_cfg ();
1738#endif
4d779342
DB
1739}
1740
1741
6fb5fa3c 1742/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1743 block. There is no excuse for people to do this kind of thing. */
1744
b8698a0f 1745void
6fb5fa3c 1746df_bb_replace (int old_index, basic_block new_block)
4d779342 1747{
6fb5fa3c 1748 int new_block_index = new_block->index;
4d779342
DB
1749 int p;
1750
6fb5fa3c
DB
1751 if (dump_file)
1752 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1753
1754 gcc_assert (df);
06e28de2 1755 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
6fb5fa3c 1756
4d779342
DB
1757 for (p = 0; p < df->num_problems_defined; p++)
1758 {
1759 struct dataflow *dflow = df->problems_in_order[p];
1760 if (dflow->block_info)
1761 {
4d779342 1762 df_grow_bb_info (dflow);
b8698a0f 1763 df_set_bb_info (dflow, old_index,
6fb5fa3c 1764 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1765 }
1766 }
1767
6fb5fa3c 1768 df_clear_bb_dirty (new_block);
557c4b49 1769 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
4d779342 1770 new_block->index = old_index;
06e28de2 1771 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
557c4b49 1772 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
6fb5fa3c
DB
1773}
1774
1775
1776/* Free all of the per basic block dataflow from all of the problems.
1777 This is typically called before a basic block is deleted and the
1778 problem will be reanalyzed. */
1779
1780void
1781df_bb_delete (int bb_index)
1782{
06e28de2 1783 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
6fb5fa3c
DB
1784 int i;
1785
1786 if (!df)
1787 return;
b8698a0f 1788
6fb5fa3c
DB
1789 for (i = 0; i < df->num_problems_defined; i++)
1790 {
1791 struct dataflow *dflow = df->problems_in_order[i];
1792 if (dflow->problem->free_bb_fun)
1793 {
1794 void *bb_info = df_get_bb_info (dflow, bb_index);
1795 if (bb_info)
1796 {
b8698a0f 1797 dflow->problem->free_bb_fun (bb, bb_info);
e285df08 1798 df_clear_bb_info (dflow, bb_index);
6fb5fa3c
DB
1799 }
1800 }
1801 }
1802 df_clear_bb_dirty (bb);
1803 df_mark_solutions_dirty ();
1804}
1805
1806
1807/* Verify that there is a place for everything and everything is in
1808 its place. This is too expensive to run after every pass in the
1809 mainline. However this is an excellent debugging tool if the
6ed3da00 1810 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1811 sprinkle calls in until you find the place that is changing an
1812 underlying structure without calling the proper updating
0d52bcc1 1813 routine. */
6fb5fa3c
DB
1814
1815void
1816df_verify (void)
1817{
1818 df_scan_verify ();
0d475361 1819#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1820 df_lr_verify_transfer_functions ();
1821 if (df_live)
1822 df_live_verify_transfer_functions ();
0d475361 1823#endif
2c90c549 1824 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
1825}
1826
1827#ifdef DF_DEBUG_CFG
1828
1829/* Compute an array of ints that describes the cfg. This can be used
1830 to discover places where the cfg is modified by the appropriate
1831 calls have not been made to the keep df informed. The internals of
1832 this are unexciting, the key is that two instances of this can be
1833 compared to see if any changes have been made to the cfg. */
1834
1835static int *
1836df_compute_cfg_image (void)
1837{
1838 basic_block bb;
0cae8d31 1839 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
6fb5fa3c
DB
1840 int i;
1841 int * map;
1842
04a90bec 1843 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1844 {
1845 size += EDGE_COUNT (bb->succs);
1846 }
1847
1848 map = XNEWVEC (int, size);
1849 map[0] = size;
1850 i = 1;
04a90bec 1851 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1852 {
1853 edge_iterator ei;
1854 edge e;
1855
1856 map[i++] = bb->index;
1857 FOR_EACH_EDGE (e, ei, bb->succs)
1858 map[i++] = e->dest->index;
1859 map[i++] = -1;
1860 }
1861 map[i] = -1;
1862 return map;
1863}
1864
1865static int *saved_cfg = NULL;
1866
1867
1868/* This function compares the saved version of the cfg with the
1869 current cfg and aborts if the two are identical. The function
1870 silently returns if the cfg has been marked as dirty or the two are
1871 the same. */
1872
1873void
1874df_check_cfg_clean (void)
1875{
1876 int *new_map;
1877
1878 if (!df)
1879 return;
1880
1881 if (df_lr->solutions_dirty)
1882 return;
1883
b8698a0f 1884 if (saved_cfg == NULL)
6fb5fa3c
DB
1885 return;
1886
1887 new_map = df_compute_cfg_image ();
1888 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1889 free (new_map);
4d779342
DB
1890}
1891
6fb5fa3c
DB
1892
1893/* This function builds a cfg fingerprint and squirrels it away in
1894 saved_cfg. */
1895
1896static void
1897df_set_clean_cfg (void)
1898{
04695783 1899 free (saved_cfg);
6fb5fa3c
DB
1900 saved_cfg = df_compute_cfg_image ();
1901}
1902
1903#endif /* DF_DEBUG_CFG */
4d779342
DB
1904/*----------------------------------------------------------------------------
1905 PUBLIC INTERFACES TO QUERY INFORMATION.
1906----------------------------------------------------------------------------*/
1907
1908
4d779342
DB
1909/* Return first def of REGNO within BB. */
1910
b8698a0f 1911df_ref
6fb5fa3c 1912df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342 1913{
dd3eed93 1914 rtx_insn *insn;
bfac633a 1915 df_ref def;
4d779342
DB
1916
1917 FOR_BB_INSNS (bb, insn)
1918 {
a1b53177
SB
1919 if (!INSN_P (insn))
1920 continue;
1921
bfac633a
RS
1922 FOR_EACH_INSN_DEF (def, insn)
1923 if (DF_REF_REGNO (def) == regno)
1924 return def;
4d779342
DB
1925 }
1926 return NULL;
1927}
1928
1929
1930/* Return last def of REGNO within BB. */
1931
b8698a0f 1932df_ref
6fb5fa3c 1933df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342 1934{
dd3eed93 1935 rtx_insn *insn;
bfac633a 1936 df_ref def;
4d779342
DB
1937
1938 FOR_BB_INSNS_REVERSE (bb, insn)
1939 {
a1b53177
SB
1940 if (!INSN_P (insn))
1941 continue;
4d779342 1942
bfac633a
RS
1943 FOR_EACH_INSN_DEF (def, insn)
1944 if (DF_REF_REGNO (def) == regno)
1945 return def;
4d779342
DB
1946 }
1947
1948 return NULL;
1949}
1950
4d779342
DB
1951/* Finds the reference corresponding to the definition of REG in INSN.
1952 DF is the dataflow object. */
1953
b8698a0f 1954df_ref
b2908ba6 1955df_find_def (rtx_insn *insn, rtx reg)
4d779342 1956{
bfac633a 1957 df_ref def;
4d779342
DB
1958
1959 if (GET_CODE (reg) == SUBREG)
1960 reg = SUBREG_REG (reg);
1961 gcc_assert (REG_P (reg));
1962
bfac633a
RS
1963 FOR_EACH_INSN_DEF (def, insn)
1964 if (DF_REF_REGNO (def) == REGNO (reg))
1965 return def;
4d779342
DB
1966
1967 return NULL;
1968}
1969
1970
b8698a0f 1971/* Return true if REG is defined in INSN, zero otherwise. */
4d779342
DB
1972
1973bool
b2908ba6 1974df_reg_defined (rtx_insn *insn, rtx reg)
4d779342 1975{
6fb5fa3c 1976 return df_find_def (insn, reg) != NULL;
4d779342 1977}
b8698a0f 1978
4d779342
DB
1979
1980/* Finds the reference corresponding to the use of REG in INSN.
1981 DF is the dataflow object. */
b8698a0f
L
1982
1983df_ref
b2908ba6 1984df_find_use (rtx_insn *insn, rtx reg)
4d779342 1985{
bfac633a 1986 df_ref use;
4d779342
DB
1987
1988 if (GET_CODE (reg) == SUBREG)
1989 reg = SUBREG_REG (reg);
1990 gcc_assert (REG_P (reg));
1991
bfac633a
RS
1992 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1993 FOR_EACH_INSN_INFO_USE (use, insn_info)
1994 if (DF_REF_REGNO (use) == REGNO (reg))
1995 return use;
1996 if (df->changeable_flags & DF_EQ_NOTES)
1997 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
226e378f 1998 if (DF_REF_REGNO (use) == REGNO (reg))
6fb5fa3c 1999 return use;
4d779342
DB
2000 return NULL;
2001}
2002
2003
b8698a0f 2004/* Return true if REG is referenced in INSN, zero otherwise. */
4d779342
DB
2005
2006bool
b2908ba6 2007df_reg_used (rtx_insn *insn, rtx reg)
4d779342 2008{
6fb5fa3c 2009 return df_find_use (insn, reg) != NULL;
4d779342 2010}
b8698a0f 2011
4d779342
DB
2012\f
2013/*----------------------------------------------------------------------------
2014 Debugging and printing functions.
2015----------------------------------------------------------------------------*/
2016
532aafad
SB
2017/* Write information about registers and basic blocks into FILE.
2018 This is part of making a debugging dump. */
2019
2020void
2021dump_regset (regset r, FILE *outf)
2022{
2023 unsigned i;
2024 reg_set_iterator rsi;
2025
2026 if (r == NULL)
2027 {
2028 fputs (" (nil)", outf);
2029 return;
2030 }
2031
2032 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2033 {
2034 fprintf (outf, " %d", i);
2035 if (i < FIRST_PSEUDO_REGISTER)
2036 fprintf (outf, " [%s]",
2037 reg_names[i]);
2038 }
2039}
2040
2041/* Print a human-readable representation of R on the standard error
2042 stream. This function is designed to be used from within the
2043 debugger. */
2044extern void debug_regset (regset);
2045DEBUG_FUNCTION void
2046debug_regset (regset r)
2047{
2048 dump_regset (r, stderr);
2049 putc ('\n', stderr);
2050}
6fb5fa3c
DB
2051
2052/* Write information about registers and basic blocks into FILE.
2053 This is part of making a debugging dump. */
2054
2055void
0b0310e9 2056df_print_regset (FILE *file, const_bitmap r)
6fb5fa3c
DB
2057{
2058 unsigned int i;
2059 bitmap_iterator bi;
2060
2061 if (r == NULL)
2062 fputs (" (nil)", file);
2063 else
2064 {
2065 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2066 {
2067 fprintf (file, " %d", i);
2068 if (i < FIRST_PSEUDO_REGISTER)
2069 fprintf (file, " [%s]", reg_names[i]);
2070 }
2071 }
2072 fprintf (file, "\n");
2073}
2074
2075
cc806ac1
RS
2076/* Write information about registers and basic blocks into FILE. The
2077 bitmap is in the form used by df_byte_lr. This is part of making a
2078 debugging dump. */
2079
2080void
0b0310e9 2081df_print_word_regset (FILE *file, const_bitmap r)
cc806ac1
RS
2082{
2083 unsigned int max_reg = max_reg_num ();
cc806ac1
RS
2084
2085 if (r == NULL)
2086 fputs (" (nil)", file);
2087 else
2088 {
2089 unsigned int i;
8d074192 2090 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
cc806ac1 2091 {
8d074192
BS
2092 bool found = (bitmap_bit_p (r, 2 * i)
2093 || bitmap_bit_p (r, 2 * i + 1));
2094 if (found)
cc806ac1 2095 {
8d074192
BS
2096 int word;
2097 const char * sep = "";
2098 fprintf (file, " %d", i);
2099 fprintf (file, "(");
2100 for (word = 0; word < 2; word++)
2101 if (bitmap_bit_p (r, 2 * i + word))
2102 {
2103 fprintf (file, "%s%d", sep, word);
2104 sep = ", ";
2105 }
2106 fprintf (file, ")");
cc806ac1 2107 }
cc806ac1
RS
2108 }
2109 }
2110 fprintf (file, "\n");
2111}
2112
2113
4d779342 2114/* Dump dataflow info. */
ffd640ed 2115
4d779342 2116void
6fb5fa3c
DB
2117df_dump (FILE *file)
2118{
2119 basic_block bb;
2120 df_dump_start (file);
2121
04a90bec 2122 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2123 {
2124 df_print_bb_index (bb, file);
2125 df_dump_top (bb, file);
2126 df_dump_bottom (bb, file);
2127 }
2128
2129 fprintf (file, "\n");
2130}
2131
2132
ffd640ed
KZ
2133/* Dump dataflow info for df->blocks_to_analyze. */
2134
2135void
2136df_dump_region (FILE *file)
2137{
2138 if (df->blocks_to_analyze)
2139 {
2140 bitmap_iterator bi;
2141 unsigned int bb_index;
2142
2143 fprintf (file, "\n\nstarting region dump\n");
2144 df_dump_start (file);
b8698a0f
L
2145
2146 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
ffd640ed 2147 {
06e28de2 2148 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
7b19209f 2149 dump_bb (file, bb, 0, TDF_DETAILS);
ffd640ed
KZ
2150 }
2151 fprintf (file, "\n");
2152 }
b8698a0f 2153 else
ffd640ed
KZ
2154 df_dump (file);
2155}
2156
2157
6fb5fa3c
DB
2158/* Dump the introductory information for each problem defined. */
2159
2160void
2161df_dump_start (FILE *file)
4d779342
DB
2162{
2163 int i;
2164
23249ac4 2165 if (!df || !file)
4d779342
DB
2166 return;
2167
2168 fprintf (file, "\n\n%s\n", current_function_name ());
2169 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
2170 if (df->blocks_to_analyze)
2171 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2172 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
2173
2174 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
2175 {
2176 struct dataflow *dflow = df->problems_in_order[i];
2177 if (dflow->computed)
2178 {
2179 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2180 if (fun)
c3284718 2181 fun (file);
6fb5fa3c
DB
2182 }
2183 }
2184}
4d779342 2185
6fb5fa3c 2186
7b19209f
SB
2187/* Dump the top or bottom of the block information for BB. */
2188static void
2189df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
6fb5fa3c
DB
2190{
2191 int i;
2192
2193 if (!df || !file)
2194 return;
2195
2196 for (i = 0; i < df->num_problems_defined; i++)
2197 {
2198 struct dataflow *dflow = df->problems_in_order[i];
2199 if (dflow->computed)
2200 {
7b19209f
SB
2201 df_dump_bb_problem_function bbfun;
2202
2203 if (top)
2204 bbfun = dflow->problem->dump_top_fun;
2205 else
2206 bbfun = dflow->problem->dump_bottom_fun;
2207
6fb5fa3c 2208 if (bbfun)
b8698a0f 2209 bbfun (bb, file);
6fb5fa3c
DB
2210 }
2211 }
2212}
2213
7b19209f
SB
2214/* Dump the top of the block information for BB. */
2215
2216void
2217df_dump_top (basic_block bb, FILE *file)
2218{
2219 df_dump_bb_problem_data (bb, file, /*top=*/true);
2220}
6fb5fa3c 2221
b8698a0f 2222/* Dump the bottom of the block information for BB. */
6fb5fa3c
DB
2223
2224void
2225df_dump_bottom (basic_block bb, FILE *file)
7b19209f
SB
2226{
2227 df_dump_bb_problem_data (bb, file, /*top=*/false);
2228}
2229
2230
2231/* Dump information about INSN just before or after dumping INSN itself. */
2232static void
b2908ba6 2233df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
6fb5fa3c
DB
2234{
2235 int i;
2236
2237 if (!df || !file)
2238 return;
2239
2240 for (i = 0; i < df->num_problems_defined; i++)
2241 {
2242 struct dataflow *dflow = df->problems_in_order[i];
2243 if (dflow->computed)
2244 {
7b19209f
SB
2245 df_dump_insn_problem_function insnfun;
2246
2247 if (top)
2248 insnfun = dflow->problem->dump_insn_top_fun;
2249 else
2250 insnfun = dflow->problem->dump_insn_bottom_fun;
2251
2252 if (insnfun)
2253 insnfun (insn, file);
6fb5fa3c
DB
2254 }
2255 }
4d779342
DB
2256}
2257
7b19209f
SB
2258/* Dump information about INSN before dumping INSN itself. */
2259
2260void
b2908ba6 2261df_dump_insn_top (const rtx_insn *insn, FILE *file)
7b19209f
SB
2262{
2263 df_dump_insn_problem_data (insn, file, /*top=*/true);
2264}
2265
2266/* Dump information about INSN after dumping INSN itself. */
2267
2268void
b2908ba6 2269df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
7b19209f
SB
2270{
2271 df_dump_insn_problem_data (insn, file, /*top=*/false);
2272}
2273
4d779342 2274
885c9b5d
EB
2275static void
2276df_ref_dump (df_ref ref, FILE *file)
2277{
2278 fprintf (file, "%c%d(%d)",
2279 DF_REF_REG_DEF_P (ref)
2280 ? 'd'
2281 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2282 DF_REF_ID (ref),
2283 DF_REF_REGNO (ref));
2284}
2285
4d779342 2286void
b512946c 2287df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
4d779342
DB
2288{
2289 fprintf (file, "{ ");
b512946c 2290 for (; ref; ref = DF_REF_NEXT_LOC (ref))
4d779342 2291 {
885c9b5d 2292 df_ref_dump (ref, file);
4d779342 2293 if (follow_chain)
23249ac4 2294 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2295 }
2296 fprintf (file, "}");
2297}
2298
2299
2300/* Dump either a ref-def or reg-use chain. */
2301
2302void
57512f53 2303df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2304{
2305 fprintf (file, "{ ");
2306 while (ref)
2307 {
885c9b5d 2308 df_ref_dump (ref, file);
57512f53 2309 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2310 }
2311 fprintf (file, "}");
2312}
2313
2314
23249ac4 2315static void
b512946c 2316df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
4d779342 2317{
b512946c
RS
2318 for (; mws; mws = DF_MWS_NEXT (mws))
2319 fprintf (file, "mw %c r[%d..%d]\n",
2320 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2321 mws->start_regno, mws->end_regno);
23249ac4
DB
2322}
2323
2324
b8698a0f
L
2325static void
2326df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2327 bool follow_chain, FILE *file)
2328{
6fb5fa3c
DB
2329 fprintf (file, "insn %d luid %d",
2330 uid, DF_INSN_UID_LUID (uid));
4d779342 2331
6fb5fa3c 2332 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2333 {
2334 fprintf (file, " defs ");
6fb5fa3c 2335 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2336 }
2337
6fb5fa3c 2338 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2339 {
2340 fprintf (file, " uses ");
6fb5fa3c
DB
2341 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2342 }
2343
2344 if (DF_INSN_UID_EQ_USES (uid))
2345 {
2346 fprintf (file, " eq uses ");
2347 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2348 }
2349
6fb5fa3c 2350 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2351 {
2352 fprintf (file, " mws ");
6fb5fa3c 2353 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2354 }
4d779342
DB
2355 fprintf (file, "\n");
2356}
2357
23249ac4 2358
24e47c76 2359DEBUG_FUNCTION void
b2908ba6 2360df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
23249ac4 2361{
6fb5fa3c 2362 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2363}
2364
24e47c76 2365DEBUG_FUNCTION void
b2908ba6 2366df_insn_debug_regno (rtx_insn *insn, FILE *file)
4d779342 2367{
50e94c7e 2368 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2369
2370 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2371 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2372 DF_INSN_INFO_LUID (insn_info));
2373 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
b8698a0f 2374
4d779342 2375 fprintf (file, " uses ");
50e94c7e 2376 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2377
2378 fprintf (file, " eq_uses ");
50e94c7e 2379 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2380 fprintf (file, "\n");
2381}
2382
24e47c76 2383DEBUG_FUNCTION void
6fb5fa3c 2384df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2385{
2386 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2387 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2388 fprintf (file, " uses ");
6fb5fa3c
DB
2389 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2390 fprintf (file, " eq_uses ");
2391 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2392 fprintf (file, "\n");
2393}
2394
2395
24e47c76 2396DEBUG_FUNCTION void
57512f53 2397df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2398{
2399 fprintf (file, "%c%d ",
2400 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2401 DF_REF_ID (ref));
a3f1cee4 2402 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
4d779342
DB
2403 DF_REF_REGNO (ref),
2404 DF_REF_BBNO (ref),
57512f53 2405 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2406 DF_REF_FLAGS (ref),
2407 DF_REF_TYPE (ref));
2408 if (DF_REF_LOC (ref))
8588f797
AO
2409 {
2410 if (flag_dump_noaddr)
2411 fprintf (file, "loc #(#) chain ");
2412 else
2413 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2414 (void *)*DF_REF_LOC (ref));
2415 }
6fb5fa3c
DB
2416 else
2417 fprintf (file, "chain ");
23249ac4 2418 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2419 fprintf (file, "\n");
2420}
2421\f
2422/* Functions for debugging from GDB. */
2423
24e47c76 2424DEBUG_FUNCTION void
b2908ba6 2425debug_df_insn (rtx_insn *insn)
4d779342 2426{
6fb5fa3c 2427 df_insn_debug (insn, true, stderr);
4d779342
DB
2428 debug_rtx (insn);
2429}
2430
2431
24e47c76 2432DEBUG_FUNCTION void
4d779342
DB
2433debug_df_reg (rtx reg)
2434{
6fb5fa3c 2435 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2436}
2437
2438
24e47c76 2439DEBUG_FUNCTION void
4d779342
DB
2440debug_df_regno (unsigned int regno)
2441{
6fb5fa3c 2442 df_regno_debug (regno, stderr);
4d779342
DB
2443}
2444
2445
24e47c76 2446DEBUG_FUNCTION void
57512f53 2447debug_df_ref (df_ref ref)
4d779342 2448{
23249ac4 2449 df_ref_debug (ref, stderr);
4d779342
DB
2450}
2451
2452
24e47c76 2453DEBUG_FUNCTION void
4d779342
DB
2454debug_df_defno (unsigned int defno)
2455{
6fb5fa3c 2456 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2457}
2458
2459
24e47c76 2460DEBUG_FUNCTION void
4d779342
DB
2461debug_df_useno (unsigned int defno)
2462{
6fb5fa3c 2463 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2464}
2465
2466
24e47c76 2467DEBUG_FUNCTION void
4d779342
DB
2468debug_df_chain (struct df_link *link)
2469{
23249ac4 2470 df_chain_dump (link, stderr);
4d779342
DB
2471 fputc ('\n', stderr);
2472}