]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
* sv.po: Update.
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
e011eba9 1/* Allocation for dataflow support routines.
f0b5f617 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0b1615c1 3 2008, 2009 Free Software Foundation, Inc.
48e1416a 4 Originally contributed by Michael P. Hayes
e011eba9 5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
8c4c00c1 13Software Foundation; either version 3, or (at your option) any later
e011eba9 14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
8c4c00c1 22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
e011eba9 24
25/*
26OVERVIEW:
27
28The files in this collection (df*.c,df.h) provide a general framework
29for solving dataflow problems. The global dataflow is performed using
30a good implementation of iterative dataflow analysis.
31
32The file df-problems.c provides problem instance for the most common
33dataflow problems: reaching defs, upward exposed uses, live variables,
34uninitialized variables, def-use chains, and use-def chains. However,
35the interface allows other dataflow problems to be defined as well.
36
3072d30e 37Dataflow analysis is available in most of the rtl backend (the parts
38between pass_df_initialize and pass_df_finish). It is quite likely
39that these boundaries will be expanded in the future. The only
40requirement is that there be a correct control flow graph.
e011eba9 41
3072d30e 42There are three variations of the live variable problem that are
43available whenever dataflow is available. The LR problem finds the
44areas that can reach a use of a variable, the UR problems finds the
f0b5f617 45areas that can be reached from a definition of a variable. The LIVE
48e1416a 46problem finds the intersection of these two areas.
e011eba9 47
3072d30e 48There are several optional problems. These can be enabled when they
49are needed and disabled when they are not needed.
e011eba9 50
3072d30e 51Dataflow problems are generally solved in three layers. The bottom
52layer is called scanning where a data structure is built for each rtl
53insn that describes the set of defs and uses of that insn. Scanning
54is generally kept up to date, i.e. as the insns changes, the scanned
55version of that insn changes also. There are various mechanisms for
56making this happen and are described in the INCREMENTAL SCANNING
57section.
e011eba9 58
3072d30e 59In the middle layer, basic blocks are scanned to produce transfer
f0b5f617 60functions which describe the effects of that block on the global
3072d30e 61dataflow solution. The transfer functions are only rebuilt if the
48e1416a 62some instruction within the block has changed.
e011eba9 63
3072d30e 64The top layer is the dataflow solution itself. The dataflow solution
bef304b8 65is computed by using an efficient iterative solver and the transfer
3072d30e 66functions. The dataflow solution must be recomputed whenever the
67control changes or if one of the transfer function changes.
e011eba9 68
69
3072d30e 70USAGE:
e011eba9 71
3072d30e 72Here is an example of using the dataflow routines.
e011eba9 73
84da8954 74 df_[chain,live,note,rd]_add_problem (flags);
e011eba9 75
3072d30e 76 df_set_blocks (blocks);
e011eba9 77
3072d30e 78 df_analyze ();
e011eba9 79
3072d30e 80 df_dump (stderr);
e011eba9 81
314966f4 82 df_finish_pass (false);
e011eba9 83
84da8954 84DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
3072d30e 85instance to struct df_problem, to the set of problems solved in this
86instance of df. All calls to add a problem for a given instance of df
87must occur before the first call to DF_ANALYZE.
e011eba9 88
89Problems can be dependent on other problems. For instance, solving
ed7bb01a 90def-use or use-def chains is dependent on solving reaching
334ec2d8 91definitions. As long as these dependencies are listed in the problem
e011eba9 92definition, the order of adding the problems is not material.
93Otherwise, the problems will be solved in the order of calls to
94df_add_problem. Note that it is not necessary to have a problem. In
95that case, df will just be used to do the scanning.
96
97
98
99DF_SET_BLOCKS is an optional call used to define a region of the
100function on which the analysis will be performed. The normal case is
101to analyze the entire function and no call to df_set_blocks is made.
3072d30e 102DF_SET_BLOCKS only effects the blocks that are effected when computing
103the transfer functions and final solution. The insn level information
104is always kept up to date.
e011eba9 105
106When a subset is given, the analysis behaves as if the function only
107contains those blocks and any edges that occur directly between the
108blocks in the set. Care should be taken to call df_set_blocks right
334ec2d8 109before the call to analyze in order to eliminate the possibility that
e011eba9 110optimizations that reorder blocks invalidate the bitvector.
111
3072d30e 112DF_ANALYZE causes all of the defined problems to be (re)solved. When
113DF_ANALYZE is completes, the IN and OUT sets for each basic block
114contain the computer information. The DF_*_BB_INFO macros can be used
a3de79f9 115to access these bitvectors. All deferred rescannings are down before
bef304b8 116the transfer functions are recomputed.
e011eba9 117
118DF_DUMP can then be called to dump the information produce to some
3072d30e 119file. This calls DF_DUMP_START, to print the information that is not
120basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121for each block to print the basic specific information. These parts
122can all be called separately as part of a larger dump function.
123
124
125DF_FINISH_PASS causes df_remove_problem to be called on all of the
126optional problems. It also causes any insns whose scanning has been
a3de79f9 127deferred to be rescanned as well as clears all of the changeable flags.
3072d30e 128Setting the pass manager TODO_df_finish flag causes this function to
129be run. However, the pass manager will call df_finish_pass AFTER the
130pass dumping has been done, so if you want to see the results of the
131optional problems in the pass dumps, use the TODO flag rather than
132calling the function yourself.
133
134INCREMENTAL SCANNING
135
136There are four ways of doing the incremental scanning:
137
1381) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
4a7e4fcc 147 upon even after changes have been made to the instructions. This
3072d30e 148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
bef304b8 1732) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
3072d30e 174 df_insn_delete do not immediately change the insn but instead make
175 a note that the insn needs to be rescanned. The next call to
176 df_analyze, df_finish_pass, or df_process_deferred_rescans will
177 cause all of the pending rescans to be processed.
178
179 This is the technique of choice if either 1a, 1b, or 1c are issues
d6b07704 180 in the pass. In the case of 1a or 1b, a call to df_finish_pass
181 (either manually or via TODO_df_finish) should be made before the
182 next call to df_analyze or df_process_deferred_rescans.
183
184 This mode is also used by a few passes that still rely on note_uses,
185 note_stores and for_each_rtx instead of using the DF data. This
186 can be said to fall under case 1c.
3072d30e 187
188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189 (This mode can be cleared by calling df_clear_flags
a3de79f9 190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
3072d30e 191 be rescanned.
192
d6b07704 1933) Total rescanning - In this mode the rescanning is disabled.
194 Only when insns are deleted is the df information associated with
195 it also deleted. At the end of the pass, a call must be made to
196 df_insn_rescan_all. This method is used by the register allocator
197 since it generally changes each insn multiple times (once for each ref)
198 and does not need to make use of the updated scanning information.
3072d30e 199
2004) Do it yourself - In this mechanism, the pass updates the insns
6dfdc153 201 itself using the low level df primitives. Currently no pass does
3072d30e 202 this, but it has the advantage that it is quite efficient given
48e1416a 203 that the pass generally has exact knowledge of what it is changing.
3072d30e 204
205DATA STRUCTURES
e011eba9 206
207Scanning produces a `struct df_ref' data structure (ref) is allocated
208for every register reference (def or use) and this records the insn
209and bb the ref is found within. The refs are linked together in
210chains of uses and defs for each insn and for each register. Each ref
211also has a chain field that links all the use refs for a def or all
212the def refs for a use. This is used to create use-def or def-use
213chains.
214
215Different optimizations have different needs. Ultimately, only
216register allocation and schedulers should be using the bitmaps
217produced for the live register and uninitialized register problems.
218The rest of the backend should be upgraded to using and maintaining
219the linked information such as def use or use def chains.
220
221
e011eba9 222PHILOSOPHY:
223
224While incremental bitmaps are not worthwhile to maintain, incremental
225chains may be perfectly reasonable. The fastest way to build chains
226from scratch or after significant modifications is to build reaching
227definitions (RD) and build the chains from this.
228
229However, general algorithms for maintaining use-def or def-use chains
230are not practical. The amount of work to recompute the chain any
231chain after an arbitrary change is large. However, with a modest
232amount of work it is generally possible to have the application that
233uses the chains keep them up to date. The high level knowledge of
234what is really happening is essential to crafting efficient
235incremental algorithms.
236
237As for the bit vector problems, there is no interface to give a set of
238blocks over with to resolve the iteration. In general, restarting a
239dataflow iteration is difficult and expensive. Again, the best way to
554f2707 240keep the dataflow information up to data (if this is really what is
e011eba9 241needed) it to formulate a problem specific solution.
242
243There are fine grained calls for creating and deleting references from
244instructions in df-scan.c. However, these are not currently connected
245to the engine that resolves the dataflow equations.
246
247
248DATA STRUCTURES:
249
48e1416a 250The basic object is a DF_REF (reference) and this may either be a
e011eba9 251DEF (definition) or a USE of a register.
252
253These are linked into a variety of lists; namely reg-def, reg-use,
254insn-def, insn-use, def-use, and use-def lists. For example, the
255reg-def lists contain all the locations that define a given register
256while the insn-use lists contain all the locations that use a
257register.
258
259Note that the reg-def and reg-use chains are generally short for
260pseudos and long for the hard registers.
261
3072d30e 262ACCESSING INSNS:
263
158b6cc9 2641) The df insn information is kept in an array of DF_INSN_INFO objects.
265 The array is indexed by insn uid, and every DF_REF points to the
266 DF_INSN_INFO object of the insn that contains the reference.
267
2682) Each insn has three sets of refs, which are linked into one of three
269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274 The latter list are the list of references in REG_EQUAL or REG_EQUIV
275 notes. These macros produce a ref (or NULL), the rest of the list
276 can be obtained by traversal of the NEXT_REF field (accessed by the
277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
278 the uses or refs in an instruction.
279
2803) Each insn has a logical uid field (LUID) which is stored in the
281 DF_INSN_INFO object for the insn. The LUID field is accessed by
282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283 When properly set, the LUID is an integer that numbers each insn in
284 the basic block, in order from the start of the block.
285 The numbers are only correct after a call to df_analyze. They will
286 rot after insns are added deleted or moved round.
3072d30e 287
e011eba9 288ACCESSING REFS:
289
290There are 4 ways to obtain access to refs:
291
2921) References are divided into two categories, REAL and ARTIFICIAL.
293
48e1416a 294 REAL refs are associated with instructions.
e011eba9 295
296 ARTIFICIAL refs are associated with basic blocks. The heads of
3072d30e 297 these lists can be accessed by calling df_get_artificial_defs or
48e1416a 298 df_get_artificial_uses for the particular basic block.
299
fcf2ad9f 300 Artificial defs and uses occur both at the beginning and ends of blocks.
301
302 For blocks that area at the destination of eh edges, the
303 artificial uses and defs occur at the beginning. The defs relate
304 to the registers specified in EH_RETURN_DATA_REGNO and the uses
305 relate to the registers specified in ED_USES. Logically these
306 defs and uses should really occur along the eh edge, but there is
307 no convenient way to do this. Artificial edges that occur at the
308 beginning of the block have the DF_REF_AT_TOP flag set.
309
310 Artificial uses occur at the end of all blocks. These arise from
311 the hard registers that are always live, such as the stack
312 register and are put there to keep the code from forgetting about
313 them.
314
334ec2d8 315 Artificial defs occur at the end of the entry block. These arise
fcf2ad9f 316 from registers that are live at entry to the function.
e011eba9 317
48e1416a 3182) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
3072d30e 319 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
e011eba9 320
3072d30e 321 All of the eq_uses, uses and defs associated with each pseudo or
322 hard register may be linked in a bidirectional chain. These are
323 called reg-use or reg_def chains. If the changeable flag
324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
48e1416a 325 treated like uses. If it is not set they are ignored.
3072d30e 326
327 The first use, eq_use or def for a register can be obtained using
328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329 macros. Subsequent uses for the same regno can be obtained by
330 following the next_reg field of the ref. The number of elements in
331 each of the chains can be found by using the DF_REG_USE_COUNT,
332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
e011eba9 333
334 In previous versions of this code, these chains were ordered. It
335 has not been practical to continue this practice.
336
3373) If def-use or use-def chains are built, these can be traversed to
3072d30e 338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
339 include the eq_uses. Otherwise these are ignored when building the
340 chains.
e011eba9 341
3424) An array of all of the uses (and an array of all of the defs) can
343 be built. These arrays are indexed by the value in the id
344 structure. These arrays are only lazily kept up to date, and that
345 process can be expensive. To have these arrays built, call
3072d30e 346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
347 has been set the array will contain the eq_uses. Otherwise these
348 are ignored when building the array and assigning the ids. Note
349 that the values in the id field of a ref may change across calls to
48e1416a 350 df_analyze or df_reorganize_defs or df_reorganize_uses.
e011eba9 351
352 If the only use of this array is to find all of the refs, it is
353 better to traverse all of the registers and then traverse all of
354 reg-use or reg-def chains.
355
e011eba9 356NOTES:
48e1416a 357
e011eba9 358Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359both a use and a def. These are both marked read/write to show that they
360are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361will generate a use of reg 42 followed by a def of reg 42 (both marked
362read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363generates a use of reg 41 then a def of reg 41 (both marked read/write),
364even though reg 41 is decremented before it is used for the memory
365address in this second example.
366
367A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368for which the number of word_mode units covered by the outer mode is
f0b5f617 369smaller than that covered by the inner mode, invokes a read-modify-write
e011eba9 370operation. We generate both a use and a def and again mark them
371read/write.
372
373Paradoxical subreg writes do not leave a trace of the old content, so they
48e1416a 374are write-only operations.
e011eba9 375*/
376
377
378#include "config.h"
379#include "system.h"
380#include "coretypes.h"
381#include "tm.h"
382#include "rtl.h"
383#include "tm_p.h"
384#include "insn-config.h"
385#include "recog.h"
386#include "function.h"
387#include "regs.h"
388#include "output.h"
389#include "alloc-pool.h"
390#include "flags.h"
391#include "hard-reg-set.h"
392#include "basic-block.h"
393#include "sbitmap.h"
394#include "bitmap.h"
395#include "timevar.h"
396#include "df.h"
397#include "tree-pass.h"
a9e21c4c 398#include "params.h"
e011eba9 399
3e6933a8 400static void *df_get_bb_info (struct dataflow *, unsigned int);
f64e6a69 401static void df_set_bb_info (struct dataflow *, unsigned int, void *);
3072d30e 402#ifdef DF_DEBUG_CFG
403static void df_set_clean_cfg (void);
404#endif
e011eba9 405
3072d30e 406/* An obstack for bitmap not related to specific dataflow problems.
407 This obstack should e.g. be used for bitmaps with a short life time
408 such as temporary bitmaps. */
e011eba9 409
3072d30e 410bitmap_obstack df_bitmap_obstack;
e011eba9 411
e011eba9 412
3072d30e 413/*----------------------------------------------------------------------------
414 Functions to create, destroy and manipulate an instance of df.
415----------------------------------------------------------------------------*/
416
417struct df *df;
e011eba9 418
3072d30e 419/* Add PROBLEM (and any dependent problems) to the DF instance. */
e011eba9 420
3072d30e 421void
422df_add_problem (struct df_problem *problem)
e011eba9 423{
424 struct dataflow *dflow;
3072d30e 425 int i;
e011eba9 426
427 /* First try to add the dependent problem. */
3072d30e 428 if (problem->dependent_problem)
429 df_add_problem (problem->dependent_problem);
e011eba9 430
431 /* Check to see if this problem has already been defined. If it
432 has, just return that instance, if not, add it to the end of the
433 vector. */
434 dflow = df->problems_by_index[problem->id];
435 if (dflow)
3072d30e 436 return;
e011eba9 437
438 /* Make a new one and add it to the end. */
4c36ffe6 439 dflow = XCNEW (struct dataflow);
e011eba9 440 dflow->problem = problem;
3072d30e 441 dflow->computed = false;
442 dflow->solutions_dirty = true;
e011eba9 443 df->problems_by_index[dflow->problem->id] = dflow;
444
3072d30e 445 /* Keep the defined problems ordered by index. This solves the
446 problem that RI will use the information from UREC if UREC has
447 been defined, or from LIVE if LIVE is defined and otherwise LR.
448 However for this to work, the computation of RI must be pushed
449 after which ever of those problems is defined, but we do not
450 require any of those except for LR to have actually been
48e1416a 451 defined. */
3072d30e 452 df->num_problems_defined++;
453 for (i = df->num_problems_defined - 2; i >= 0; i--)
454 {
455 if (problem->id < df->problems_in_order[i]->problem->id)
456 df->problems_in_order[i+1] = df->problems_in_order[i];
457 else
458 {
459 df->problems_in_order[i+1] = dflow;
460 return;
461 }
462 }
463 df->problems_in_order[0] = dflow;
e011eba9 464}
465
466
3e6933a8 467/* Set the MASK flags in the DFLOW problem. The old flags are
468 returned. If a flag is not allowed to be changed this will fail if
469 checking is enabled. */
bc620c5c 470int
b9c74b4d 471df_set_flags (int changeable_flags)
3e6933a8 472{
bc620c5c 473 int old_flags = df->changeable_flags;
3072d30e 474 df->changeable_flags |= changeable_flags;
3e6933a8 475 return old_flags;
476}
477
3072d30e 478
3e6933a8 479/* Clear the MASK flags in the DFLOW problem. The old flags are
480 returned. If a flag is not allowed to be changed this will fail if
481 checking is enabled. */
bc620c5c 482int
b9c74b4d 483df_clear_flags (int changeable_flags)
3e6933a8 484{
bc620c5c 485 int old_flags = df->changeable_flags;
3072d30e 486 df->changeable_flags &= ~changeable_flags;
3e6933a8 487 return old_flags;
488}
489
3072d30e 490
e011eba9 491/* Set the blocks that are to be considered for analysis. If this is
492 not called or is called with null, the entire function in
493 analyzed. */
494
48e1416a 495void
3072d30e 496df_set_blocks (bitmap blocks)
e011eba9 497{
498 if (blocks)
499 {
3072d30e 500 if (dump_file)
501 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
d0802b39 502 if (df->blocks_to_analyze)
503 {
deb2741b 504 /* This block is called to change the focus from one subset
505 to another. */
d0802b39 506 int p;
3072d30e 507 bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
d0802b39 508 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
deb2741b 509 for (p = 0; p < df->num_problems_defined; p++)
d0802b39 510 {
511 struct dataflow *dflow = df->problems_in_order[p];
deb2741b 512 if (dflow->optional_p && dflow->problem->reset_fun)
3072d30e 513 dflow->problem->reset_fun (df->blocks_to_analyze);
deb2741b 514 else if (dflow->problem->free_blocks_on_set_blocks)
d0802b39 515 {
516 bitmap_iterator bi;
517 unsigned int bb_index;
48e1416a 518
d0802b39 519 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
520 {
521 basic_block bb = BASIC_BLOCK (bb_index);
f64e6a69 522 if (bb)
523 {
3072d30e 524 void *bb_info = df_get_bb_info (dflow, bb_index);
525 if (bb_info)
526 {
527 dflow->problem->free_bb_fun (bb, bb_info);
528 df_set_bb_info (dflow, bb_index, NULL);
529 }
f64e6a69 530 }
d0802b39 531 }
532 }
533 }
534
535 BITMAP_FREE (diff);
536 }
537 else
f64e6a69 538 {
deb2741b 539 /* This block of code is executed to change the focus from
540 the entire function to a subset. */
541 bitmap blocks_to_reset = NULL;
542 int p;
543 for (p = 0; p < df->num_problems_defined; p++)
f64e6a69 544 {
deb2741b 545 struct dataflow *dflow = df->problems_in_order[p];
546 if (dflow->optional_p && dflow->problem->reset_fun)
f64e6a69 547 {
deb2741b 548 if (!blocks_to_reset)
f64e6a69 549 {
deb2741b 550 basic_block bb;
551 blocks_to_reset =
552 BITMAP_ALLOC (&df_bitmap_obstack);
553 FOR_ALL_BB(bb)
f64e6a69 554 {
48e1416a 555 bitmap_set_bit (blocks_to_reset, bb->index);
f64e6a69 556 }
f64e6a69 557 }
deb2741b 558 dflow->problem->reset_fun (blocks_to_reset);
f64e6a69 559 }
f64e6a69 560 }
deb2741b 561 if (blocks_to_reset)
562 BITMAP_FREE (blocks_to_reset);
563
3072d30e 564 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
f64e6a69 565 }
e011eba9 566 bitmap_copy (df->blocks_to_analyze, blocks);
3072d30e 567 df->analyze_subset = true;
e011eba9 568 }
569 else
570 {
deb2741b 571 /* This block is executed to reset the focus to the entire
572 function. */
3072d30e 573 if (dump_file)
deb2741b 574 fprintf (dump_file, "clearing blocks_to_analyze\n");
e011eba9 575 if (df->blocks_to_analyze)
576 {
577 BITMAP_FREE (df->blocks_to_analyze);
578 df->blocks_to_analyze = NULL;
579 }
3072d30e 580 df->analyze_subset = false;
e011eba9 581 }
3072d30e 582
583 /* Setting the blocks causes the refs to be unorganized since only
584 the refs in the blocks are seen. */
585 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
586 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
587 df_mark_solutions_dirty ();
e011eba9 588}
589
590
3072d30e 591/* Delete a DFLOW problem (and any problems that depend on this
592 problem). */
3e6933a8 593
594void
3072d30e 595df_remove_problem (struct dataflow *dflow)
3e6933a8 596{
3072d30e 597 struct df_problem *problem;
3e6933a8 598 int i;
3072d30e 599
600 if (!dflow)
601 return;
602
603 problem = dflow->problem;
604 gcc_assert (problem->remove_problem_fun);
605
3072d30e 606 /* Delete any problems that depended on this problem first. */
deb2741b 607 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 608 if (df->problems_in_order[i]->problem->dependent_problem == problem)
609 df_remove_problem (df->problems_in_order[i]);
610
611 /* Now remove this problem. */
deb2741b 612 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 613 if (df->problems_in_order[i] == dflow)
614 {
615 int j;
616 for (j = i + 1; j < df->num_problems_defined; j++)
617 df->problems_in_order[j-1] = df->problems_in_order[j];
149d23ac 618 df->problems_in_order[j-1] = NULL;
3072d30e 619 df->num_problems_defined--;
620 break;
621 }
622
623 (problem->remove_problem_fun) ();
624 df->problems_by_index[problem->id] = NULL;
625}
626
627
84da8954 628/* Remove all of the problems that are not permanent. Scanning, LR
629 and (at -O2 or higher) LIVE are permanent, the rest are removable.
630 Also clear all of the changeable_flags. */
3072d30e 631
632void
314966f4 633df_finish_pass (bool verify ATTRIBUTE_UNUSED)
3072d30e 634{
635 int i;
636 int removed = 0;
637
5ccba2dc 638#ifdef ENABLE_DF_CHECKING
3072d30e 639 enum df_changeable_flags saved_flags;
640#endif
641
642 if (!df)
643 return;
644
645 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
646 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
647
5ccba2dc 648#ifdef ENABLE_DF_CHECKING
3072d30e 649 saved_flags = df->changeable_flags;
650#endif
651
deb2741b 652 for (i = 0; i < df->num_problems_defined; i++)
3e6933a8 653 {
654 struct dataflow *dflow = df->problems_in_order[i];
3072d30e 655 struct df_problem *problem = dflow->problem;
656
deb2741b 657 if (dflow->optional_p)
658 {
659 gcc_assert (problem->remove_problem_fun);
660 (problem->remove_problem_fun) ();
661 df->problems_in_order[i] = NULL;
662 df->problems_by_index[problem->id] = NULL;
663 removed++;
664 }
3072d30e 665 }
666 df->num_problems_defined -= removed;
667
668 /* Clear all of the flags. */
669 df->changeable_flags = 0;
670 df_process_deferred_rescans ();
671
672 /* Set the focus back to the whole function. */
673 if (df->blocks_to_analyze)
674 {
675 BITMAP_FREE (df->blocks_to_analyze);
676 df->blocks_to_analyze = NULL;
677 df_mark_solutions_dirty ();
678 df->analyze_subset = false;
3e6933a8 679 }
3072d30e 680
5ccba2dc 681#ifdef ENABLE_DF_CHECKING
3072d30e 682 /* Verification will fail in DF_NO_INSN_RESCAN. */
683 if (!(saved_flags & DF_NO_INSN_RESCAN))
684 {
685 df_lr_verify_transfer_functions ();
686 if (df_live)
687 df_live_verify_transfer_functions ();
688 }
689
690#ifdef DF_DEBUG_CFG
691 df_set_clean_cfg ();
692#endif
693#endif
314966f4 694
695#ifdef ENABLE_CHECKING
696 if (verify)
697 df->changeable_flags |= DF_VERIFY_SCHEDULED;
698#endif
3072d30e 699}
700
701
702/* Set up the dataflow instance for the entire back end. */
703
704static unsigned int
705rest_of_handle_df_initialize (void)
706{
707 gcc_assert (!df);
708 df = XCNEW (struct df);
709 df->changeable_flags = 0;
710
711 bitmap_obstack_initialize (&df_bitmap_obstack);
712
713 /* Set this to a conservative value. Stack_ptr_mod will compute it
714 correctly later. */
715 current_function_sp_is_unchanging = 0;
716
717 df_scan_add_problem ();
718 df_scan_alloc (NULL);
719
720 /* These three problems are permanent. */
721 df_lr_add_problem ();
deb2741b 722 if (optimize > 1)
3072d30e 723 df_live_add_problem ();
724
725 df->postorder = XNEWVEC (int, last_basic_block);
726 df->postorder_inverted = XNEWVEC (int, last_basic_block);
727 df->n_blocks = post_order_compute (df->postorder, true, true);
728 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
729 gcc_assert (df->n_blocks == df->n_blocks_inverted);
730
731 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
48e1416a 732 memset (df->hard_regs_live_count, 0,
3072d30e 733 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
734
735 df_hard_reg_init ();
736 /* After reload, some ports add certain bits to regs_ever_live so
737 this cannot be reset. */
738 df_compute_regs_ever_live (true);
739 df_scan_blocks ();
740 df_compute_regs_ever_live (false);
741 return 0;
742}
743
744
745static bool
746gate_opt (void)
747{
748 return optimize > 0;
3e6933a8 749}
750
751
20099e35 752struct rtl_opt_pass pass_df_initialize_opt =
3072d30e 753{
20099e35 754 {
755 RTL_PASS,
3072d30e 756 "dfinit", /* name */
757 gate_opt, /* gate */
758 rest_of_handle_df_initialize, /* execute */
759 NULL, /* sub */
760 NULL, /* next */
761 0, /* static_pass_number */
0b1615c1 762 TV_NONE, /* tv_id */
3072d30e 763 0, /* properties_required */
764 0, /* properties_provided */
765 0, /* properties_destroyed */
766 0, /* todo_flags_start */
20099e35 767 0 /* todo_flags_finish */
768 }
3072d30e 769};
770
771
772static bool
773gate_no_opt (void)
774{
775 return optimize == 0;
776}
777
778
20099e35 779struct rtl_opt_pass pass_df_initialize_no_opt =
3072d30e 780{
20099e35 781 {
782 RTL_PASS,
0c297edc 783 "no-opt dfinit", /* name */
3072d30e 784 gate_no_opt, /* gate */
785 rest_of_handle_df_initialize, /* execute */
786 NULL, /* sub */
787 NULL, /* next */
788 0, /* static_pass_number */
0b1615c1 789 TV_NONE, /* tv_id */
3072d30e 790 0, /* properties_required */
791 0, /* properties_provided */
792 0, /* properties_destroyed */
793 0, /* todo_flags_start */
20099e35 794 0 /* todo_flags_finish */
795 }
3072d30e 796};
797
798
e011eba9 799/* Free all the dataflow info and the DF structure. This should be
800 called from the df_finish macro which also NULLs the parm. */
801
3072d30e 802static unsigned int
803rest_of_handle_df_finish (void)
e011eba9 804{
805 int i;
806
3072d30e 807 gcc_assert (df);
808
e011eba9 809 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 810 {
811 struct dataflow *dflow = df->problems_in_order[i];
48e1416a 812 dflow->problem->free_fun ();
3072d30e 813 }
e011eba9 814
3072d30e 815 if (df->postorder)
816 free (df->postorder);
817 if (df->postorder_inverted)
818 free (df->postorder_inverted);
819 free (df->hard_regs_live_count);
e011eba9 820 free (df);
3072d30e 821 df = NULL;
822
823 bitmap_obstack_release (&df_bitmap_obstack);
824 return 0;
e011eba9 825}
826
3072d30e 827
20099e35 828struct rtl_opt_pass pass_df_finish =
3072d30e 829{
20099e35 830 {
831 RTL_PASS,
3072d30e 832 "dfinish", /* name */
833 NULL, /* gate */
834 rest_of_handle_df_finish, /* execute */
835 NULL, /* sub */
836 NULL, /* next */
837 0, /* static_pass_number */
0b1615c1 838 TV_NONE, /* tv_id */
3072d30e 839 0, /* properties_required */
840 0, /* properties_provided */
841 0, /* properties_destroyed */
842 0, /* todo_flags_start */
20099e35 843 0 /* todo_flags_finish */
844 }
3072d30e 845};
846
847
848
849
e011eba9 850\f
851/*----------------------------------------------------------------------------
852 The general data flow analysis engine.
853----------------------------------------------------------------------------*/
854
855
3072d30e 856/* Helper function for df_worklist_dataflow.
48e1416a 857 Propagate the dataflow forward.
3072d30e 858 Given a BB_INDEX, do the dataflow propagation
859 and set bits on for successors in PENDING
860 if the out set of the dataflow has changed. */
e011eba9 861
862static void
3072d30e 863df_worklist_propagate_forward (struct dataflow *dataflow,
864 unsigned bb_index,
865 unsigned *bbindex_to_postorder,
866 bitmap pending,
867 sbitmap considered)
e011eba9 868{
e011eba9 869 edge e;
870 edge_iterator ei;
3072d30e 871 basic_block bb = BASIC_BLOCK (bb_index);
e011eba9 872
3072d30e 873 /* Calculate <conf_op> of incoming edges. */
e011eba9 874 if (EDGE_COUNT (bb->preds) > 0)
875 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 876 {
877 if (TEST_BIT (considered, e->src->index))
3072d30e 878 dataflow->problem->con_fun_n (e);
48e1416a 879 }
1c1a6437 880 else if (dataflow->problem->con_fun_0)
3072d30e 881 dataflow->problem->con_fun_0 (bb);
882
883 if (dataflow->problem->trans_fun (bb_index))
e011eba9 884 {
48e1416a 885 /* The out set of this block has changed.
3072d30e 886 Propagate to the outgoing blocks. */
887 FOR_EACH_EDGE (e, ei, bb->succs)
888 {
889 unsigned ob_index = e->dest->index;
890
891 if (TEST_BIT (considered, ob_index))
892 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
893 }
e011eba9 894 }
895}
896
3072d30e 897
898/* Helper function for df_worklist_dataflow.
899 Propagate the dataflow backward. */
900
e011eba9 901static void
3072d30e 902df_worklist_propagate_backward (struct dataflow *dataflow,
903 unsigned bb_index,
904 unsigned *bbindex_to_postorder,
905 bitmap pending,
906 sbitmap considered)
e011eba9 907{
e011eba9 908 edge e;
909 edge_iterator ei;
3072d30e 910 basic_block bb = BASIC_BLOCK (bb_index);
e011eba9 911
3072d30e 912 /* Calculate <conf_op> of incoming edges. */
e011eba9 913 if (EDGE_COUNT (bb->succs) > 0)
3072d30e 914 FOR_EACH_EDGE (e, ei, bb->succs)
48e1416a 915 {
916 if (TEST_BIT (considered, e->dest->index))
3072d30e 917 dataflow->problem->con_fun_n (e);
48e1416a 918 }
1c1a6437 919 else if (dataflow->problem->con_fun_0)
3072d30e 920 dataflow->problem->con_fun_0 (bb);
e011eba9 921
3072d30e 922 if (dataflow->problem->trans_fun (bb_index))
e011eba9 923 {
48e1416a 924 /* The out set of this block has changed.
3072d30e 925 Propagate to the outgoing blocks. */
926 FOR_EACH_EDGE (e, ei, bb->preds)
927 {
928 unsigned ob_index = e->src->index;
929
930 if (TEST_BIT (considered, ob_index))
931 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
932 }
e011eba9 933 }
934}
935
936
a9e21c4c 937
938/* This will free "pending". */
a9e21c4c 939
48e1416a 940static void
a9e21c4c 941df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
942 bitmap pending,
943 sbitmap considered,
944 int *blocks_in_postorder,
945 unsigned *bbindex_to_postorder)
946{
947 enum df_flow_dir dir = dataflow->problem->dir;
948 int dcount = 0;
949 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
950
951 /* Double-queueing. Worklist is for the current iteration,
952 and pending is for the next. */
953 while (!bitmap_empty_p (pending))
954 {
955 /* Swap pending and worklist. */
956 bitmap temp = worklist;
957 worklist = pending;
958 pending = temp;
959
960 do
961 {
962 int index;
963 unsigned bb_index;
964 dcount++;
965
966 index = bitmap_first_set_bit (worklist);
967 bitmap_clear_bit (worklist, index);
968
969 bb_index = blocks_in_postorder[index];
970
971 if (dir == DF_FORWARD)
972 df_worklist_propagate_forward (dataflow, bb_index,
973 bbindex_to_postorder,
974 pending, considered);
48e1416a 975 else
a9e21c4c 976 df_worklist_propagate_backward (dataflow, bb_index,
977 bbindex_to_postorder,
978 pending, considered);
979 }
980 while (!bitmap_empty_p (worklist));
981 }
982
983 BITMAP_FREE (worklist);
984 BITMAP_FREE (pending);
985
986 /* Dump statistics. */
987 if (dump_file)
988 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
989 "n_basic_blocks %d n_edges %d"
990 " count %d (%5.2g)\n",
991 n_basic_blocks, n_edges,
992 dcount, dcount / (float)n_basic_blocks);
993}
994
3072d30e 995/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
48e1416a 996 with "n"-th bit representing the n-th block in the reverse-postorder order.
576af552 997 The solver is a double-queue algorithm similar to the "double stack" solver
998 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
999 The only significant difference is that the worklist in this implementation
1000 is always sorted in RPO of the CFG visiting direction. */
e011eba9 1001
48e1416a 1002void
3072d30e 1003df_worklist_dataflow (struct dataflow *dataflow,
1004 bitmap blocks_to_consider,
1005 int *blocks_in_postorder,
1006 int n_blocks)
e011eba9 1007{
3072d30e 1008 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1009 sbitmap considered = sbitmap_alloc (last_basic_block);
1010 bitmap_iterator bi;
3072d30e 1011 unsigned int *bbindex_to_postorder;
1012 int i;
1013 unsigned int index;
1014 enum df_flow_dir dir = dataflow->problem->dir;
e011eba9 1015
3072d30e 1016 gcc_assert (dir != DF_NONE);
e011eba9 1017
3072d30e 1018 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1019 bbindex_to_postorder =
1020 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
e011eba9 1021
3072d30e 1022 /* Initialize the array to an out-of-bound value. */
1023 for (i = 0; i < last_basic_block; i++)
1024 bbindex_to_postorder[i] = last_basic_block;
3e6933a8 1025
3072d30e 1026 /* Initialize the considered map. */
1027 sbitmap_zero (considered);
1028 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
e011eba9 1029 {
3072d30e 1030 SET_BIT (considered, index);
e011eba9 1031 }
1032
3072d30e 1033 /* Initialize the mapping of block index to postorder. */
e011eba9 1034 for (i = 0; i < n_blocks; i++)
1035 {
3072d30e 1036 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1037 /* Add all blocks to the worklist. */
1038 bitmap_set_bit (pending, i);
1039 }
e011eba9 1040
a9e21c4c 1041 /* Initialize the problem. */
3072d30e 1042 if (dataflow->problem->init_fun)
1043 dataflow->problem->init_fun (blocks_to_consider);
e011eba9 1044
576af552 1045 /* Solve it. */
1046 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1047 blocks_in_postorder,
1048 bbindex_to_postorder);
e011eba9 1049
e011eba9 1050 sbitmap_free (considered);
3072d30e 1051 free (bbindex_to_postorder);
e011eba9 1052}
1053
1054
1055/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1056 the order of the remaining entries. Returns the length of the resulting
1057 list. */
1058
1059static unsigned
1060df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1061{
1062 unsigned act, last;
1063
1064 for (act = 0, last = 0; act < len; act++)
1065 if (bitmap_bit_p (blocks, list[act]))
1066 list[last++] = list[act];
1067
1068 return last;
1069}
1070
1071
48e1416a 1072/* Execute dataflow analysis on a single dataflow problem.
e011eba9 1073
e011eba9 1074 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1075 examined or will be computed. For calls from DF_ANALYZE, this is
48e1416a 1076 the set of blocks that has been passed to DF_SET_BLOCKS.
e011eba9 1077*/
1078
3e6933a8 1079void
48e1416a 1080df_analyze_problem (struct dataflow *dflow,
1081 bitmap blocks_to_consider,
3072d30e 1082 int *postorder, int n_blocks)
e011eba9 1083{
3072d30e 1084 timevar_push (dflow->problem->tv_id);
1085
5ccba2dc 1086#ifdef ENABLE_DF_CHECKING
3072d30e 1087 if (dflow->problem->verify_start_fun)
1088 dflow->problem->verify_start_fun ();
1089#endif
1090
48e1416a 1091 /* (Re)Allocate the datastructures necessary to solve the problem. */
1c1a6437 1092 if (dflow->problem->alloc_fun)
3072d30e 1093 dflow->problem->alloc_fun (blocks_to_consider);
e011eba9 1094
3072d30e 1095 /* Set up the problem and compute the local information. */
1c1a6437 1096 if (dflow->problem->local_compute_fun)
3072d30e 1097 dflow->problem->local_compute_fun (blocks_to_consider);
e011eba9 1098
1099 /* Solve the equations. */
1c1a6437 1100 if (dflow->problem->dataflow_fun)
3072d30e 1101 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1102 postorder, n_blocks);
e011eba9 1103
1104 /* Massage the solution. */
1c1a6437 1105 if (dflow->problem->finalize_fun)
3072d30e 1106 dflow->problem->finalize_fun (blocks_to_consider);
1107
5ccba2dc 1108#ifdef ENABLE_DF_CHECKING
3072d30e 1109 if (dflow->problem->verify_end_fun)
1110 dflow->problem->verify_end_fun ();
1111#endif
1112
1113 timevar_pop (dflow->problem->tv_id);
1114
1115 dflow->computed = true;
e011eba9 1116}
1117
1118
1119/* Analyze dataflow info for the basic blocks specified by the bitmap
1120 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1121
1122void
3072d30e 1123df_analyze (void)
e011eba9 1124{
3072d30e 1125 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1126 bool everything;
3072d30e 1127 int i;
48e1416a 1128
3072d30e 1129 if (df->postorder)
1130 free (df->postorder);
1131 if (df->postorder_inverted)
1132 free (df->postorder_inverted);
1133 df->postorder = XNEWVEC (int, last_basic_block);
1134 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1135 df->n_blocks = post_order_compute (df->postorder, true, true);
1136 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1137
1138 /* These should be the same. */
1139 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1140
1141 /* We need to do this before the df_verify_all because this is
1142 not kept incrementally up to date. */
1143 df_compute_regs_ever_live (false);
1144 df_process_deferred_rescans ();
1145
3072d30e 1146 if (dump_file)
1147 fprintf (dump_file, "df_analyze called\n");
5ccba2dc 1148
314966f4 1149#ifndef ENABLE_DF_CHECKING
1150 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1151#endif
1152 df_verify ();
3072d30e 1153
1154 for (i = 0; i < df->n_blocks; i++)
1155 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1156
1157#ifdef ENABLE_CHECKING
1158 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1159 the ENTRY block. */
1160 for (i = 0; i < df->n_blocks_inverted; i++)
1161 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1162#endif
e011eba9 1163
1164 /* Make sure that we have pruned any unreachable blocks from these
1165 sets. */
3072d30e 1166 if (df->analyze_subset)
e011eba9 1167 {
1168 everything = false;
1169 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
48e1416a 1170 df->n_blocks = df_prune_to_subcfg (df->postorder,
3072d30e 1171 df->n_blocks, df->blocks_to_analyze);
48e1416a 1172 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1173 df->n_blocks_inverted,
3072d30e 1174 df->blocks_to_analyze);
e011eba9 1175 BITMAP_FREE (current_all_blocks);
1176 }
1177 else
1178 {
1179 everything = true;
1180 df->blocks_to_analyze = current_all_blocks;
1181 current_all_blocks = NULL;
1182 }
1183
1184 /* Skip over the DF_SCAN problem. */
1185 for (i = 1; i < df->num_problems_defined; i++)
3072d30e 1186 {
1187 struct dataflow *dflow = df->problems_in_order[i];
1188 if (dflow->solutions_dirty)
1189 {
1190 if (dflow->problem->dir == DF_FORWARD)
1191 df_analyze_problem (dflow,
1192 df->blocks_to_analyze,
1193 df->postorder_inverted,
1194 df->n_blocks_inverted);
1195 else
1196 df_analyze_problem (dflow,
1197 df->blocks_to_analyze,
1198 df->postorder,
1199 df->n_blocks);
1200 }
1201 }
e011eba9 1202
1203 if (everything)
1204 {
1205 BITMAP_FREE (df->blocks_to_analyze);
1206 df->blocks_to_analyze = NULL;
1207 }
1208
3072d30e 1209#ifdef DF_DEBUG_CFG
1210 df_set_clean_cfg ();
1211#endif
1212}
1213
1214
1215/* Return the number of basic blocks from the last call to df_analyze. */
1216
48e1416a 1217int
3072d30e 1218df_get_n_blocks (enum df_flow_dir dir)
1219{
1220 gcc_assert (dir != DF_NONE);
1221
1222 if (dir == DF_FORWARD)
1223 {
1224 gcc_assert (df->postorder_inverted);
1225 return df->n_blocks_inverted;
1226 }
1227
1228 gcc_assert (df->postorder);
1229 return df->n_blocks;
1230}
1231
1232
48e1416a 1233/* Return a pointer to the array of basic blocks in the reverse postorder.
3072d30e 1234 Depending on the direction of the dataflow problem,
1235 it returns either the usual reverse postorder array
1236 or the reverse postorder of inverted traversal. */
1237int *
1238df_get_postorder (enum df_flow_dir dir)
1239{
1240 gcc_assert (dir != DF_NONE);
1241
1242 if (dir == DF_FORWARD)
1243 {
1244 gcc_assert (df->postorder_inverted);
1245 return df->postorder_inverted;
1246 }
1247 gcc_assert (df->postorder);
1248 return df->postorder;
e011eba9 1249}
1250
48e1416a 1251static struct df_problem user_problem;
3072d30e 1252static struct dataflow user_dflow;
e011eba9 1253
3072d30e 1254/* Interface for calling iterative dataflow with user defined
1255 confluence and transfer functions. All that is necessary is to
1256 supply DIR, a direction, CONF_FUN_0, a confluence function for
1257 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1258 confluence function, TRANS_FUN, the basic block transfer function,
1259 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1260 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1261
1262void
1263df_simple_dataflow (enum df_flow_dir dir,
1264 df_init_function init_fun,
1265 df_confluence_function_0 con_fun_0,
1266 df_confluence_function_n con_fun_n,
1267 df_transfer_function trans_fun,
1268 bitmap blocks, int * postorder, int n_blocks)
1269{
1270 memset (&user_problem, 0, sizeof (struct df_problem));
1271 user_problem.dir = dir;
1272 user_problem.init_fun = init_fun;
1273 user_problem.con_fun_0 = con_fun_0;
1274 user_problem.con_fun_n = con_fun_n;
1275 user_problem.trans_fun = trans_fun;
1276 user_dflow.problem = &user_problem;
1277 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1278}
1279
48e1416a 1280
e011eba9 1281\f
1282/*----------------------------------------------------------------------------
1283 Functions to support limited incremental change.
1284----------------------------------------------------------------------------*/
1285
1286
1287/* Get basic block info. */
1288
1289static void *
1290df_get_bb_info (struct dataflow *dflow, unsigned int index)
1291{
3072d30e 1292 if (dflow->block_info == NULL)
1293 return NULL;
1294 if (index >= dflow->block_info_size)
1295 return NULL;
e011eba9 1296 return (struct df_scan_bb_info *) dflow->block_info[index];
1297}
1298
1299
1300/* Set basic block info. */
1301
1302static void
48e1416a 1303df_set_bb_info (struct dataflow *dflow, unsigned int index,
e011eba9 1304 void *bb_info)
1305{
3072d30e 1306 gcc_assert (dflow->block_info);
e011eba9 1307 dflow->block_info[index] = bb_info;
1308}
1309
1310
3072d30e 1311/* Mark the solutions as being out of date. */
1312
48e1416a 1313void
3072d30e 1314df_mark_solutions_dirty (void)
1315{
1316 if (df)
1317 {
48e1416a 1318 int p;
3072d30e 1319 for (p = 1; p < df->num_problems_defined; p++)
1320 df->problems_in_order[p]->solutions_dirty = true;
1321 }
1322}
1323
1324
1325/* Return true if BB needs it's transfer functions recomputed. */
1326
48e1416a 1327bool
3072d30e 1328df_get_bb_dirty (basic_block bb)
1329{
1330 if (df && df_live)
1331 return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
48e1416a 1332 else
3072d30e 1333 return false;
1334}
1335
1336
1337/* Mark BB as needing it's transfer functions as being out of
1338 date. */
1339
48e1416a 1340void
3072d30e 1341df_set_bb_dirty (basic_block bb)
1342{
1343 if (df)
1344 {
48e1416a 1345 int p;
3072d30e 1346 for (p = 1; p < df->num_problems_defined; p++)
1347 {
1348 struct dataflow *dflow = df->problems_in_order[p];
1349 if (dflow->out_of_date_transfer_functions)
1350 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1351 }
1352 df_mark_solutions_dirty ();
1353 }
1354}
1355
1356
86fc6921 1357/* Mark BB as needing it's transfer functions as being out of
1358 date, except for LR problem. Used when analyzing DEBUG_INSNs,
1359 as LR problem can trigger DCE, and DEBUG_INSNs shouldn't ever
1360 shorten or enlarge lifetime of regs. */
1361
1362void
1363df_set_bb_dirty_nonlr (basic_block bb)
1364{
1365 if (df)
1366 {
1367 int p;
1368 for (p = 1; p < df->num_problems_defined; p++)
1369 {
1370 struct dataflow *dflow = df->problems_in_order[p];
1371 if (dflow == df_lr)
1372 continue;
1373 if (dflow->out_of_date_transfer_functions)
1374 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1375 dflow->solutions_dirty = true;
1376 }
1377 }
1378}
1379
1380
3072d30e 1381/* Clear the dirty bits. This is called from places that delete
1382 blocks. */
1383static void
1384df_clear_bb_dirty (basic_block bb)
1385{
48e1416a 1386 int p;
3072d30e 1387 for (p = 1; p < df->num_problems_defined; p++)
1388 {
1389 struct dataflow *dflow = df->problems_in_order[p];
1390 if (dflow->out_of_date_transfer_functions)
1391 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1392 }
1393}
e011eba9 1394/* Called from the rtl_compact_blocks to reorganize the problems basic
1395 block info. */
1396
48e1416a 1397void
3072d30e 1398df_compact_blocks (void)
e011eba9 1399{
1400 int i, p;
1401 basic_block bb;
1402 void **problem_temps;
3072d30e 1403 int size = last_basic_block * sizeof (void *);
1404 bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
364c0c59 1405 problem_temps = XNEWVAR (void *, size);
e011eba9 1406
1407 for (p = 0; p < df->num_problems_defined; p++)
1408 {
1409 struct dataflow *dflow = df->problems_in_order[p];
3072d30e 1410
1411 /* Need to reorganize the out_of_date_transfer_functions for the
1412 dflow problem. */
1413 if (dflow->out_of_date_transfer_functions)
1414 {
1415 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1416 bitmap_clear (dflow->out_of_date_transfer_functions);
1417 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1418 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1419 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1420 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1421
1422 i = NUM_FIXED_BLOCKS;
48e1416a 1423 FOR_EACH_BB (bb)
3072d30e 1424 {
1425 if (bitmap_bit_p (tmp, bb->index))
1426 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1427 i++;
1428 }
1429 }
1430
1431 /* Now shuffle the block info for the problem. */
1c1a6437 1432 if (dflow->problem->free_bb_fun)
e011eba9 1433 {
1434 df_grow_bb_info (dflow);
1435 memcpy (problem_temps, dflow->block_info, size);
1436
1437 /* Copy the bb info from the problem tmps to the proper
1438 place in the block_info vector. Null out the copied
3072d30e 1439 item. The entry and exit blocks never move. */
e011eba9 1440 i = NUM_FIXED_BLOCKS;
48e1416a 1441 FOR_EACH_BB (bb)
e011eba9 1442 {
1443 df_set_bb_info (dflow, i, problem_temps[bb->index]);
1444 problem_temps[bb->index] = NULL;
1445 i++;
1446 }
48e1416a 1447 memset (dflow->block_info + i, 0,
e011eba9 1448 (last_basic_block - i) *sizeof (void *));
1449
1450 /* Free any block infos that were not copied (and NULLed).
1451 These are from orphaned blocks. */
1452 for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1453 {
48e1416a 1454 basic_block bb = BASIC_BLOCK (i);
d0802b39 1455 if (problem_temps[i] && bb)
1c1a6437 1456 dflow->problem->free_bb_fun
3072d30e 1457 (bb, problem_temps[i]);
e011eba9 1458 }
1459 }
1460 }
1461
3072d30e 1462 /* Shuffle the bits in the basic_block indexed arrays. */
1463
1464 if (df->blocks_to_analyze)
1465 {
1466 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1467 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1468 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1469 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1470 bitmap_copy (tmp, df->blocks_to_analyze);
1471 bitmap_clear (df->blocks_to_analyze);
1472 i = NUM_FIXED_BLOCKS;
48e1416a 1473 FOR_EACH_BB (bb)
3072d30e 1474 {
1475 if (bitmap_bit_p (tmp, bb->index))
1476 bitmap_set_bit (df->blocks_to_analyze, i);
1477 i++;
1478 }
1479 }
1480
1481 BITMAP_FREE (tmp);
1482
e011eba9 1483 free (problem_temps);
1484
1485 i = NUM_FIXED_BLOCKS;
48e1416a 1486 FOR_EACH_BB (bb)
e011eba9 1487 {
a9b9dcf4 1488 SET_BASIC_BLOCK (i, bb);
e011eba9 1489 bb->index = i;
1490 i++;
1491 }
1492
1493 gcc_assert (i == n_basic_blocks);
1494
1495 for (; i < last_basic_block; i++)
a9b9dcf4 1496 SET_BASIC_BLOCK (i, NULL);
3072d30e 1497
1498#ifdef DF_DEBUG_CFG
1499 if (!df_lr->solutions_dirty)
1500 df_set_clean_cfg ();
1501#endif
e011eba9 1502}
1503
1504
3072d30e 1505/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
e011eba9 1506 block. There is no excuse for people to do this kind of thing. */
1507
48e1416a 1508void
3072d30e 1509df_bb_replace (int old_index, basic_block new_block)
e011eba9 1510{
3072d30e 1511 int new_block_index = new_block->index;
e011eba9 1512 int p;
1513
3072d30e 1514 if (dump_file)
1515 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1516
1517 gcc_assert (df);
1518 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1519
e011eba9 1520 for (p = 0; p < df->num_problems_defined; p++)
1521 {
1522 struct dataflow *dflow = df->problems_in_order[p];
1523 if (dflow->block_info)
1524 {
e011eba9 1525 df_grow_bb_info (dflow);
3072d30e 1526 gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
48e1416a 1527 df_set_bb_info (dflow, old_index,
3072d30e 1528 df_get_bb_info (dflow, new_block_index));
e011eba9 1529 }
1530 }
1531
3072d30e 1532 df_clear_bb_dirty (new_block);
a9b9dcf4 1533 SET_BASIC_BLOCK (old_index, new_block);
e011eba9 1534 new_block->index = old_index;
3072d30e 1535 df_set_bb_dirty (BASIC_BLOCK (old_index));
1536 SET_BASIC_BLOCK (new_block_index, NULL);
1537}
1538
1539
1540/* Free all of the per basic block dataflow from all of the problems.
1541 This is typically called before a basic block is deleted and the
1542 problem will be reanalyzed. */
1543
1544void
1545df_bb_delete (int bb_index)
1546{
1547 basic_block bb = BASIC_BLOCK (bb_index);
1548 int i;
1549
1550 if (!df)
1551 return;
48e1416a 1552
3072d30e 1553 for (i = 0; i < df->num_problems_defined; i++)
1554 {
1555 struct dataflow *dflow = df->problems_in_order[i];
1556 if (dflow->problem->free_bb_fun)
1557 {
1558 void *bb_info = df_get_bb_info (dflow, bb_index);
1559 if (bb_info)
1560 {
48e1416a 1561 dflow->problem->free_bb_fun (bb, bb_info);
3072d30e 1562 df_set_bb_info (dflow, bb_index, NULL);
1563 }
1564 }
1565 }
1566 df_clear_bb_dirty (bb);
1567 df_mark_solutions_dirty ();
1568}
1569
1570
1571/* Verify that there is a place for everything and everything is in
1572 its place. This is too expensive to run after every pass in the
1573 mainline. However this is an excellent debugging tool if the
6dfdc153 1574 dataflow information is not being updated properly. You can just
3072d30e 1575 sprinkle calls in until you find the place that is changing an
1576 underlying structure without calling the proper updating
bef304b8 1577 routine. */
3072d30e 1578
1579void
1580df_verify (void)
1581{
1582 df_scan_verify ();
314966f4 1583#ifdef ENABLE_DF_CHECKING
3072d30e 1584 df_lr_verify_transfer_functions ();
1585 if (df_live)
1586 df_live_verify_transfer_functions ();
314966f4 1587#endif
3072d30e 1588}
1589
1590#ifdef DF_DEBUG_CFG
1591
1592/* Compute an array of ints that describes the cfg. This can be used
1593 to discover places where the cfg is modified by the appropriate
1594 calls have not been made to the keep df informed. The internals of
1595 this are unexciting, the key is that two instances of this can be
1596 compared to see if any changes have been made to the cfg. */
1597
1598static int *
1599df_compute_cfg_image (void)
1600{
1601 basic_block bb;
1602 int size = 2 + (2 * n_basic_blocks);
1603 int i;
1604 int * map;
1605
1606 FOR_ALL_BB (bb)
1607 {
1608 size += EDGE_COUNT (bb->succs);
1609 }
1610
1611 map = XNEWVEC (int, size);
1612 map[0] = size;
1613 i = 1;
1614 FOR_ALL_BB (bb)
1615 {
1616 edge_iterator ei;
1617 edge e;
1618
1619 map[i++] = bb->index;
1620 FOR_EACH_EDGE (e, ei, bb->succs)
1621 map[i++] = e->dest->index;
1622 map[i++] = -1;
1623 }
1624 map[i] = -1;
1625 return map;
1626}
1627
1628static int *saved_cfg = NULL;
1629
1630
1631/* This function compares the saved version of the cfg with the
1632 current cfg and aborts if the two are identical. The function
1633 silently returns if the cfg has been marked as dirty or the two are
1634 the same. */
1635
1636void
1637df_check_cfg_clean (void)
1638{
1639 int *new_map;
1640
1641 if (!df)
1642 return;
1643
1644 if (df_lr->solutions_dirty)
1645 return;
1646
48e1416a 1647 if (saved_cfg == NULL)
3072d30e 1648 return;
1649
1650 new_map = df_compute_cfg_image ();
1651 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1652 free (new_map);
e011eba9 1653}
1654
3072d30e 1655
1656/* This function builds a cfg fingerprint and squirrels it away in
1657 saved_cfg. */
1658
1659static void
1660df_set_clean_cfg (void)
1661{
1662 if (saved_cfg)
1663 free (saved_cfg);
1664 saved_cfg = df_compute_cfg_image ();
1665}
1666
1667#endif /* DF_DEBUG_CFG */
e011eba9 1668/*----------------------------------------------------------------------------
1669 PUBLIC INTERFACES TO QUERY INFORMATION.
1670----------------------------------------------------------------------------*/
1671
1672
e011eba9 1673/* Return first def of REGNO within BB. */
1674
48e1416a 1675df_ref
3072d30e 1676df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
e011eba9 1677{
1678 rtx insn;
ed6e85ae 1679 df_ref *def_rec;
6151bbc3 1680 unsigned int uid;
e011eba9 1681
1682 FOR_BB_INSNS (bb, insn)
1683 {
6151bbc3 1684 if (!INSN_P (insn))
1685 continue;
1686
1687 uid = INSN_UID (insn);
3072d30e 1688 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1689 {
ed6e85ae 1690 df_ref def = *def_rec;
3072d30e 1691 if (DF_REF_REGNO (def) == regno)
1692 return def;
1693 }
e011eba9 1694 }
1695 return NULL;
1696}
1697
1698
1699/* Return last def of REGNO within BB. */
1700
48e1416a 1701df_ref
3072d30e 1702df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
e011eba9 1703{
1704 rtx insn;
ed6e85ae 1705 df_ref *def_rec;
6151bbc3 1706 unsigned int uid;
e011eba9 1707
1708 FOR_BB_INSNS_REVERSE (bb, insn)
1709 {
6151bbc3 1710 if (!INSN_P (insn))
1711 continue;
e011eba9 1712
6151bbc3 1713 uid = INSN_UID (insn);
3072d30e 1714 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1715 {
ed6e85ae 1716 df_ref def = *def_rec;
3072d30e 1717 if (DF_REF_REGNO (def) == regno)
1718 return def;
1719 }
e011eba9 1720 }
1721
1722 return NULL;
1723}
1724
e011eba9 1725/* Finds the reference corresponding to the definition of REG in INSN.
1726 DF is the dataflow object. */
1727
48e1416a 1728df_ref
3072d30e 1729df_find_def (rtx insn, rtx reg)
e011eba9 1730{
1731 unsigned int uid;
ed6e85ae 1732 df_ref *def_rec;
e011eba9 1733
1734 if (GET_CODE (reg) == SUBREG)
1735 reg = SUBREG_REG (reg);
1736 gcc_assert (REG_P (reg));
1737
1738 uid = INSN_UID (insn);
3072d30e 1739 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1740 {
ed6e85ae 1741 df_ref def = *def_rec;
3072d30e 1742 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1743 return def;
1744 }
e011eba9 1745
1746 return NULL;
1747}
1748
1749
48e1416a 1750/* Return true if REG is defined in INSN, zero otherwise. */
e011eba9 1751
1752bool
3072d30e 1753df_reg_defined (rtx insn, rtx reg)
e011eba9 1754{
3072d30e 1755 return df_find_def (insn, reg) != NULL;
e011eba9 1756}
48e1416a 1757
e011eba9 1758
1759/* Finds the reference corresponding to the use of REG in INSN.
1760 DF is the dataflow object. */
48e1416a 1761
1762df_ref
3072d30e 1763df_find_use (rtx insn, rtx reg)
e011eba9 1764{
1765 unsigned int uid;
ed6e85ae 1766 df_ref *use_rec;
e011eba9 1767
1768 if (GET_CODE (reg) == SUBREG)
1769 reg = SUBREG_REG (reg);
1770 gcc_assert (REG_P (reg));
1771
1772 uid = INSN_UID (insn);
3072d30e 1773 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1774 {
ed6e85ae 1775 df_ref use = *use_rec;
3072d30e 1776 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1777 return use;
48e1416a 1778 }
3072d30e 1779 if (df->changeable_flags & DF_EQ_NOTES)
1780 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1781 {
ed6e85ae 1782 df_ref use = *use_rec;
3072d30e 1783 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
48e1416a 1784 return use;
3072d30e 1785 }
e011eba9 1786 return NULL;
1787}
1788
1789
48e1416a 1790/* Return true if REG is referenced in INSN, zero otherwise. */
e011eba9 1791
1792bool
3072d30e 1793df_reg_used (rtx insn, rtx reg)
e011eba9 1794{
3072d30e 1795 return df_find_use (insn, reg) != NULL;
e011eba9 1796}
48e1416a 1797
e011eba9 1798\f
1799/*----------------------------------------------------------------------------
1800 Debugging and printing functions.
1801----------------------------------------------------------------------------*/
1802
3072d30e 1803
1804/* Write information about registers and basic blocks into FILE.
1805 This is part of making a debugging dump. */
1806
1807void
1808df_print_regset (FILE *file, bitmap r)
1809{
1810 unsigned int i;
1811 bitmap_iterator bi;
1812
1813 if (r == NULL)
1814 fputs (" (nil)", file);
1815 else
1816 {
1817 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1818 {
1819 fprintf (file, " %d", i);
1820 if (i < FIRST_PSEUDO_REGISTER)
1821 fprintf (file, " [%s]", reg_names[i]);
1822 }
1823 }
1824 fprintf (file, "\n");
1825}
1826
1827
bf1f8fbc 1828/* Write information about registers and basic blocks into FILE. The
1829 bitmap is in the form used by df_byte_lr. This is part of making a
1830 debugging dump. */
1831
1832void
1833df_print_byte_regset (FILE *file, bitmap r)
1834{
1835 unsigned int max_reg = max_reg_num ();
1836 bitmap_iterator bi;
1837
1838 if (r == NULL)
1839 fputs (" (nil)", file);
1840 else
1841 {
1842 unsigned int i;
1843 for (i = 0; i < max_reg; i++)
1844 {
1845 unsigned int first = df_byte_lr_get_regno_start (i);
1846 unsigned int len = df_byte_lr_get_regno_len (i);
1847
1848 if (len > 1)
1849 {
1850 bool found = false;
1851 unsigned int j;
1852
1853 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1854 {
1855 found = j < first + len;
1856 break;
1857 }
1858 if (found)
1859 {
1860 const char * sep = "";
1861 fprintf (file, " %d", i);
1862 if (i < FIRST_PSEUDO_REGISTER)
1863 fprintf (file, " [%s]", reg_names[i]);
1864 fprintf (file, "(");
1865 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1866 {
1867 if (j > first + len - 1)
1868 break;
1869 fprintf (file, "%s%d", sep, j-first);
1870 sep = ", ";
1871 }
1872 fprintf (file, ")");
1873 }
1874 }
1875 else
1876 {
1877 if (bitmap_bit_p (r, first))
1878 {
1879 fprintf (file, " %d", i);
1880 if (i < FIRST_PSEUDO_REGISTER)
1881 fprintf (file, " [%s]", reg_names[i]);
1882 }
1883 }
1884
1885 }
1886 }
1887 fprintf (file, "\n");
1888}
1889
1890
e011eba9 1891/* Dump dataflow info. */
774f8797 1892
e011eba9 1893void
3072d30e 1894df_dump (FILE *file)
1895{
1896 basic_block bb;
1897 df_dump_start (file);
1898
1899 FOR_ALL_BB (bb)
1900 {
1901 df_print_bb_index (bb, file);
1902 df_dump_top (bb, file);
1903 df_dump_bottom (bb, file);
1904 }
1905
1906 fprintf (file, "\n");
1907}
1908
1909
774f8797 1910/* Dump dataflow info for df->blocks_to_analyze. */
1911
1912void
1913df_dump_region (FILE *file)
1914{
1915 if (df->blocks_to_analyze)
1916 {
1917 bitmap_iterator bi;
1918 unsigned int bb_index;
1919
1920 fprintf (file, "\n\nstarting region dump\n");
1921 df_dump_start (file);
48e1416a 1922
1923 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
774f8797 1924 {
1925 basic_block bb = BASIC_BLOCK (bb_index);
48e1416a 1926
774f8797 1927 df_print_bb_index (bb, file);
1928 df_dump_top (bb, file);
1929 df_dump_bottom (bb, file);
1930 }
1931 fprintf (file, "\n");
1932 }
48e1416a 1933 else
774f8797 1934 df_dump (file);
1935}
1936
1937
3072d30e 1938/* Dump the introductory information for each problem defined. */
1939
1940void
1941df_dump_start (FILE *file)
e011eba9 1942{
1943 int i;
1944
3e6933a8 1945 if (!df || !file)
e011eba9 1946 return;
1947
1948 fprintf (file, "\n\n%s\n", current_function_name ());
1949 fprintf (file, "\nDataflow summary:\n");
3072d30e 1950 if (df->blocks_to_analyze)
1951 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1952 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
e011eba9 1953
1954 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 1955 {
1956 struct dataflow *dflow = df->problems_in_order[i];
1957 if (dflow->computed)
1958 {
1959 df_dump_problem_function fun = dflow->problem->dump_start_fun;
1960 if (fun)
48e1416a 1961 fun(file);
3072d30e 1962 }
1963 }
1964}
e011eba9 1965
3072d30e 1966
48e1416a 1967/* Dump the top of the block information for BB. */
3072d30e 1968
1969void
1970df_dump_top (basic_block bb, FILE *file)
1971{
1972 int i;
1973
1974 if (!df || !file)
1975 return;
1976
1977 for (i = 0; i < df->num_problems_defined; i++)
1978 {
1979 struct dataflow *dflow = df->problems_in_order[i];
1980 if (dflow->computed)
1981 {
1982 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
1983 if (bbfun)
48e1416a 1984 bbfun (bb, file);
3072d30e 1985 }
1986 }
1987}
1988
1989
48e1416a 1990/* Dump the bottom of the block information for BB. */
3072d30e 1991
1992void
1993df_dump_bottom (basic_block bb, FILE *file)
1994{
1995 int i;
1996
1997 if (!df || !file)
1998 return;
1999
2000 for (i = 0; i < df->num_problems_defined; i++)
2001 {
2002 struct dataflow *dflow = df->problems_in_order[i];
2003 if (dflow->computed)
2004 {
2005 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2006 if (bbfun)
48e1416a 2007 bbfun (bb, file);
3072d30e 2008 }
2009 }
e011eba9 2010}
2011
2012
2013void
ed6e85ae 2014df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
e011eba9 2015{
2016 fprintf (file, "{ ");
3072d30e 2017 while (*ref_rec)
e011eba9 2018 {
ed6e85ae 2019 df_ref ref = *ref_rec;
3072d30e 2020 fprintf (file, "%c%d(%d)",
2021 DF_REF_REG_DEF_P (ref) ? 'd' : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
e011eba9 2022 DF_REF_ID (ref),
2023 DF_REF_REGNO (ref));
2024 if (follow_chain)
3e6933a8 2025 df_chain_dump (DF_REF_CHAIN (ref), file);
3072d30e 2026 ref_rec++;
e011eba9 2027 }
2028 fprintf (file, "}");
2029}
2030
2031
2032/* Dump either a ref-def or reg-use chain. */
2033
2034void
ed6e85ae 2035df_regs_chain_dump (df_ref ref, FILE *file)
e011eba9 2036{
2037 fprintf (file, "{ ");
2038 while (ref)
2039 {
2040 fprintf (file, "%c%d(%d) ",
2041 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2042 DF_REF_ID (ref),
2043 DF_REF_REGNO (ref));
ed6e85ae 2044 ref = DF_REF_NEXT_REG (ref);
e011eba9 2045 }
2046 fprintf (file, "}");
2047}
2048
2049
3e6933a8 2050static void
3072d30e 2051df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
e011eba9 2052{
3072d30e 2053 while (*mws)
3e6933a8 2054 {
48e1416a 2055 fprintf (file, "mw %c r[%d..%d]\n",
ed6e85ae 2056 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
3072d30e 2057 (*mws)->start_regno, (*mws)->end_regno);
2058 mws++;
3e6933a8 2059 }
2060}
2061
2062
48e1416a 2063static void
2064df_insn_uid_debug (unsigned int uid,
3e6933a8 2065 bool follow_chain, FILE *file)
2066{
3072d30e 2067 fprintf (file, "insn %d luid %d",
2068 uid, DF_INSN_UID_LUID (uid));
e011eba9 2069
3072d30e 2070 if (DF_INSN_UID_DEFS (uid))
3e6933a8 2071 {
2072 fprintf (file, " defs ");
3072d30e 2073 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
3e6933a8 2074 }
2075
3072d30e 2076 if (DF_INSN_UID_USES (uid))
3e6933a8 2077 {
2078 fprintf (file, " uses ");
3072d30e 2079 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2080 }
2081
2082 if (DF_INSN_UID_EQ_USES (uid))
2083 {
2084 fprintf (file, " eq uses ");
2085 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
3e6933a8 2086 }
2087
3072d30e 2088 if (DF_INSN_UID_MWS (uid))
3e6933a8 2089 {
2090 fprintf (file, " mws ");
3072d30e 2091 df_mws_dump (DF_INSN_UID_MWS (uid), file);
3e6933a8 2092 }
e011eba9 2093 fprintf (file, "\n");
2094}
2095
3e6933a8 2096
2097void
3072d30e 2098df_insn_debug (rtx insn, bool follow_chain, FILE *file)
3e6933a8 2099{
3072d30e 2100 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
3e6933a8 2101}
2102
e011eba9 2103void
3072d30e 2104df_insn_debug_regno (rtx insn, FILE *file)
e011eba9 2105{
158b6cc9 2106 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
e011eba9 2107
2108 fprintf (file, "insn %d bb %d luid %d defs ",
158b6cc9 2109 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2110 DF_INSN_INFO_LUID (insn_info));
2111 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
48e1416a 2112
e011eba9 2113 fprintf (file, " uses ");
158b6cc9 2114 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
3072d30e 2115
2116 fprintf (file, " eq_uses ");
158b6cc9 2117 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
e011eba9 2118 fprintf (file, "\n");
2119}
2120
2121void
3072d30e 2122df_regno_debug (unsigned int regno, FILE *file)
e011eba9 2123{
2124 fprintf (file, "reg %d defs ", regno);
3072d30e 2125 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
e011eba9 2126 fprintf (file, " uses ");
3072d30e 2127 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2128 fprintf (file, " eq_uses ");
2129 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
e011eba9 2130 fprintf (file, "\n");
2131}
2132
2133
2134void
ed6e85ae 2135df_ref_debug (df_ref ref, FILE *file)
e011eba9 2136{
2137 fprintf (file, "%c%d ",
2138 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2139 DF_REF_ID (ref));
3072d30e 2140 fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
e011eba9 2141 DF_REF_REGNO (ref),
2142 DF_REF_BBNO (ref),
ed6e85ae 2143 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
3072d30e 2144 DF_REF_FLAGS (ref),
2145 DF_REF_TYPE (ref));
2146 if (DF_REF_LOC (ref))
44cb2148 2147 {
2148 if (flag_dump_noaddr)
2149 fprintf (file, "loc #(#) chain ");
2150 else
2151 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2152 (void *)*DF_REF_LOC (ref));
2153 }
3072d30e 2154 else
2155 fprintf (file, "chain ");
3e6933a8 2156 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2157 fprintf (file, "\n");
2158}
2159\f
2160/* Functions for debugging from GDB. */
2161
2162void
2163debug_df_insn (rtx insn)
2164{
3072d30e 2165 df_insn_debug (insn, true, stderr);
e011eba9 2166 debug_rtx (insn);
2167}
2168
2169
2170void
2171debug_df_reg (rtx reg)
2172{
3072d30e 2173 df_regno_debug (REGNO (reg), stderr);
e011eba9 2174}
2175
2176
2177void
2178debug_df_regno (unsigned int regno)
2179{
3072d30e 2180 df_regno_debug (regno, stderr);
e011eba9 2181}
2182
2183
2184void
ed6e85ae 2185debug_df_ref (df_ref ref)
e011eba9 2186{
3e6933a8 2187 df_ref_debug (ref, stderr);
e011eba9 2188}
2189
2190
2191void
2192debug_df_defno (unsigned int defno)
2193{
3072d30e 2194 df_ref_debug (DF_DEFS_GET (defno), stderr);
e011eba9 2195}
2196
2197
2198void
2199debug_df_useno (unsigned int defno)
2200{
3072d30e 2201 df_ref_debug (DF_USES_GET (defno), stderr);
e011eba9 2202}
2203
2204
2205void
2206debug_df_chain (struct df_link *link)
2207{
3e6933a8 2208 df_chain_dump (link, stderr);
e011eba9 2209 fputc ('\n', stderr);
2210}