]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
* config/nvptx/mkoffload.c (process): Add space in between
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
e011eba9 1/* Allocation for dataflow support routines.
aad93da1 2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
48e1416a 3 Originally contributed by Michael P. Hayes
e011eba9 4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
8c4c00c1 12Software Foundation; either version 3, or (at your option) any later
e011eba9 13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
8c4c00c1 21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
e011eba9 23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
3072d30e 36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
e011eba9 40
3072d30e 41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
f0b5f617 44areas that can be reached from a definition of a variable. The LIVE
48e1416a 45problem finds the intersection of these two areas.
e011eba9 46
3072d30e 47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
e011eba9 49
3072d30e 50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
e011eba9 57
3072d30e 58In the middle layer, basic blocks are scanned to produce transfer
f0b5f617 59functions which describe the effects of that block on the global
3072d30e 60dataflow solution. The transfer functions are only rebuilt if the
48e1416a 61some instruction within the block has changed.
e011eba9 62
3072d30e 63The top layer is the dataflow solution itself. The dataflow solution
bef304b8 64is computed by using an efficient iterative solver and the transfer
3072d30e 65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
e011eba9 67
68
3072d30e 69USAGE:
e011eba9 70
3072d30e 71Here is an example of using the dataflow routines.
e011eba9 72
84da8954 73 df_[chain,live,note,rd]_add_problem (flags);
e011eba9 74
3072d30e 75 df_set_blocks (blocks);
e011eba9 76
3072d30e 77 df_analyze ();
e011eba9 78
3072d30e 79 df_dump (stderr);
e011eba9 80
314966f4 81 df_finish_pass (false);
e011eba9 82
84da8954 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
3072d30e 84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
e011eba9 87
88Problems can be dependent on other problems. For instance, solving
ed7bb01a 89def-use or use-def chains is dependent on solving reaching
334ec2d8 90definitions. As long as these dependencies are listed in the problem
e011eba9 91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
3072d30e 101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
e011eba9 104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
334ec2d8 108before the call to analyze in order to eliminate the possibility that
e011eba9 109optimizations that reorder blocks invalidate the bitvector.
110
3072d30e 111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
a3de79f9 114to access these bitvectors. All deferred rescannings are down before
bef304b8 115the transfer functions are recomputed.
e011eba9 116
117DF_DUMP can then be called to dump the information produce to some
3072d30e 118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
a3de79f9 126deferred to be rescanned as well as clears all of the changeable flags.
3072d30e 127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
4a7e4fcc 146 upon even after changes have been made to the instructions. This
3072d30e 147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
bef304b8 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
3072d30e 173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
d6b07704 179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e506ea62 184 note_stores and rtx iterators instead of using the DF data. This
d6b07704 185 can be said to fall under case 1c.
3072d30e 186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
a3de79f9 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
3072d30e 190 be rescanned.
191
d6b07704 1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
3072d30e 198
1994) Do it yourself - In this mechanism, the pass updates the insns
6dfdc153 200 itself using the low level df primitives. Currently no pass does
3072d30e 201 this, but it has the advantage that it is quite efficient given
48e1416a 202 that the pass generally has exact knowledge of what it is changing.
3072d30e 203
204DATA STRUCTURES
e011eba9 205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
e011eba9 221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
554f2707 239keep the dataflow information up to data (if this is really what is
e011eba9 240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
48e1416a 249The basic object is a DF_REF (reference) and this may either be a
e011eba9 250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
3072d30e 261ACCESSING INSNS:
262
158b6cc9 2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
3072d30e 286
e011eba9 287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
48e1416a 293 REAL refs are associated with instructions.
e011eba9 294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
3072d30e 296 these lists can be accessed by calling df_get_artificial_defs or
48e1416a 297 df_get_artificial_uses for the particular basic block.
298
fcf2ad9f 299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
334ec2d8 314 Artificial defs occur at the end of the entry block. These arise
fcf2ad9f 315 from registers that are live at entry to the function.
e011eba9 316
48e1416a 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
3072d30e 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
e011eba9 319
3072d30e 320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
48e1416a 324 treated like uses. If it is not set they are ignored.
3072d30e 325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
e011eba9 332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
3072d30e 337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
e011eba9 340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
3072d30e 345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
48e1416a 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
e011eba9 350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
e011eba9 355NOTES:
48e1416a 356
e011eba9 357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
f0b5f617 368smaller than that covered by the inner mode, invokes a read-modify-write
e011eba9 369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
48e1416a 373are write-only operations.
e011eba9 374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
9ef16211 380#include "backend.h"
e011eba9 381#include "rtl.h"
9ef16211 382#include "df.h"
ad7b10a2 383#include "memmodel.h"
7c29e30e 384#include "emit-rtl.h"
94ea8568 385#include "cfganal.h"
e011eba9 386#include "tree-pass.h"
67e23d6f 387#include "cfgloop.h"
e011eba9 388
3e6933a8 389static void *df_get_bb_info (struct dataflow *, unsigned int);
f64e6a69 390static void df_set_bb_info (struct dataflow *, unsigned int, void *);
369ea98d 391static void df_clear_bb_info (struct dataflow *, unsigned int);
3072d30e 392#ifdef DF_DEBUG_CFG
393static void df_set_clean_cfg (void);
394#endif
e011eba9 395
4a020a8c 396/* The obstack on which regsets are allocated. */
397struct bitmap_obstack reg_obstack;
398
3072d30e 399/* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
e011eba9 402
3072d30e 403bitmap_obstack df_bitmap_obstack;
e011eba9 404
e011eba9 405
3072d30e 406/*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408----------------------------------------------------------------------------*/
409
f2956fc5 410struct df_d *df;
e011eba9 411
3072d30e 412/* Add PROBLEM (and any dependent problems) to the DF instance. */
e011eba9 413
3072d30e 414void
d8000c94 415df_add_problem (const struct df_problem *problem)
e011eba9 416{
417 struct dataflow *dflow;
3072d30e 418 int i;
e011eba9 419
420 /* First try to add the dependent problem. */
3072d30e 421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
e011eba9 423
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
3072d30e 429 return;
e011eba9 430
431 /* Make a new one and add it to the end. */
4c36ffe6 432 dflow = XCNEW (struct dataflow);
e011eba9 433 dflow->problem = problem;
3072d30e 434 dflow->computed = false;
435 dflow->solutions_dirty = true;
e011eba9 436 df->problems_by_index[dflow->problem->id] = dflow;
437
3072d30e 438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
48e1416a 444 defined. */
3072d30e 445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 {
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
451 {
452 df->problems_in_order[i+1] = dflow;
453 return;
454 }
455 }
456 df->problems_in_order[0] = dflow;
e011eba9 457}
458
459
3e6933a8 460/* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
bc620c5c 463int
b9c74b4d 464df_set_flags (int changeable_flags)
3e6933a8 465{
bc620c5c 466 int old_flags = df->changeable_flags;
3072d30e 467 df->changeable_flags |= changeable_flags;
3e6933a8 468 return old_flags;
469}
470
3072d30e 471
3e6933a8 472/* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
bc620c5c 475int
b9c74b4d 476df_clear_flags (int changeable_flags)
3e6933a8 477{
bc620c5c 478 int old_flags = df->changeable_flags;
3072d30e 479 df->changeable_flags &= ~changeable_flags;
3e6933a8 480 return old_flags;
481}
482
3072d30e 483
e011eba9 484/* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
487
48e1416a 488void
3072d30e 489df_set_blocks (bitmap blocks)
e011eba9 490{
491 if (blocks)
492 {
3072d30e 493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
d0802b39 495 if (df->blocks_to_analyze)
496 {
deb2741b 497 /* This block is called to change the focus from one subset
498 to another. */
d0802b39 499 int p;
4b5a4301 500 bitmap_head diff;
501 bitmap_initialize (&diff, &df_bitmap_obstack);
502 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
deb2741b 503 for (p = 0; p < df->num_problems_defined; p++)
d0802b39 504 {
505 struct dataflow *dflow = df->problems_in_order[p];
deb2741b 506 if (dflow->optional_p && dflow->problem->reset_fun)
3072d30e 507 dflow->problem->reset_fun (df->blocks_to_analyze);
deb2741b 508 else if (dflow->problem->free_blocks_on_set_blocks)
d0802b39 509 {
510 bitmap_iterator bi;
511 unsigned int bb_index;
48e1416a 512
4b5a4301 513 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
d0802b39 514 {
f5a6b05f 515 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
f64e6a69 516 if (bb)
517 {
3072d30e 518 void *bb_info = df_get_bb_info (dflow, bb_index);
369ea98d 519 dflow->problem->free_bb_fun (bb, bb_info);
520 df_clear_bb_info (dflow, bb_index);
f64e6a69 521 }
d0802b39 522 }
523 }
524 }
525
4b5a4301 526 bitmap_clear (&diff);
d0802b39 527 }
528 else
f64e6a69 529 {
deb2741b 530 /* This block of code is executed to change the focus from
531 the entire function to a subset. */
4b5a4301 532 bitmap_head blocks_to_reset;
533 bool initialized = false;
deb2741b 534 int p;
535 for (p = 0; p < df->num_problems_defined; p++)
f64e6a69 536 {
deb2741b 537 struct dataflow *dflow = df->problems_in_order[p];
538 if (dflow->optional_p && dflow->problem->reset_fun)
f64e6a69 539 {
4b5a4301 540 if (!initialized)
f64e6a69 541 {
deb2741b 542 basic_block bb;
4b5a4301 543 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
ed7d889a 544 FOR_ALL_BB_FN (bb, cfun)
f64e6a69 545 {
4b5a4301 546 bitmap_set_bit (&blocks_to_reset, bb->index);
f64e6a69 547 }
f64e6a69 548 }
4b5a4301 549 dflow->problem->reset_fun (&blocks_to_reset);
f64e6a69 550 }
f64e6a69 551 }
4b5a4301 552 if (initialized)
553 bitmap_clear (&blocks_to_reset);
deb2741b 554
3072d30e 555 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
f64e6a69 556 }
e011eba9 557 bitmap_copy (df->blocks_to_analyze, blocks);
3072d30e 558 df->analyze_subset = true;
e011eba9 559 }
560 else
561 {
deb2741b 562 /* This block is executed to reset the focus to the entire
563 function. */
3072d30e 564 if (dump_file)
deb2741b 565 fprintf (dump_file, "clearing blocks_to_analyze\n");
e011eba9 566 if (df->blocks_to_analyze)
567 {
568 BITMAP_FREE (df->blocks_to_analyze);
569 df->blocks_to_analyze = NULL;
570 }
3072d30e 571 df->analyze_subset = false;
e011eba9 572 }
3072d30e 573
574 /* Setting the blocks causes the refs to be unorganized since only
575 the refs in the blocks are seen. */
576 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
577 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
578 df_mark_solutions_dirty ();
e011eba9 579}
580
581
3072d30e 582/* Delete a DFLOW problem (and any problems that depend on this
583 problem). */
3e6933a8 584
585void
3072d30e 586df_remove_problem (struct dataflow *dflow)
3e6933a8 587{
d8000c94 588 const struct df_problem *problem;
3e6933a8 589 int i;
3072d30e 590
591 if (!dflow)
592 return;
593
594 problem = dflow->problem;
595 gcc_assert (problem->remove_problem_fun);
596
3072d30e 597 /* Delete any problems that depended on this problem first. */
deb2741b 598 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 599 if (df->problems_in_order[i]->problem->dependent_problem == problem)
600 df_remove_problem (df->problems_in_order[i]);
601
602 /* Now remove this problem. */
deb2741b 603 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 604 if (df->problems_in_order[i] == dflow)
605 {
606 int j;
607 for (j = i + 1; j < df->num_problems_defined; j++)
608 df->problems_in_order[j-1] = df->problems_in_order[j];
149d23ac 609 df->problems_in_order[j-1] = NULL;
3072d30e 610 df->num_problems_defined--;
611 break;
612 }
613
614 (problem->remove_problem_fun) ();
615 df->problems_by_index[problem->id] = NULL;
616}
617
618
84da8954 619/* Remove all of the problems that are not permanent. Scanning, LR
620 and (at -O2 or higher) LIVE are permanent, the rest are removable.
621 Also clear all of the changeable_flags. */
3072d30e 622
623void
314966f4 624df_finish_pass (bool verify ATTRIBUTE_UNUSED)
3072d30e 625{
626 int i;
3072d30e 627
5ccba2dc 628#ifdef ENABLE_DF_CHECKING
744b32fe 629 int saved_flags;
3072d30e 630#endif
631
632 if (!df)
633 return;
634
635 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
636 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
637
5ccba2dc 638#ifdef ENABLE_DF_CHECKING
3072d30e 639 saved_flags = df->changeable_flags;
640#endif
641
4ef6d61b 642 /* We iterate over problems by index as each problem removed will
643 lead to problems_in_order to be reordered. */
644 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
3e6933a8 645 {
4ef6d61b 646 struct dataflow *dflow = df->problems_by_index[i];
3072d30e 647
4ef6d61b 648 if (dflow && dflow->optional_p)
649 df_remove_problem (dflow);
3072d30e 650 }
3072d30e 651
652 /* Clear all of the flags. */
653 df->changeable_flags = 0;
654 df_process_deferred_rescans ();
655
656 /* Set the focus back to the whole function. */
657 if (df->blocks_to_analyze)
658 {
659 BITMAP_FREE (df->blocks_to_analyze);
660 df->blocks_to_analyze = NULL;
661 df_mark_solutions_dirty ();
662 df->analyze_subset = false;
3e6933a8 663 }
3072d30e 664
5ccba2dc 665#ifdef ENABLE_DF_CHECKING
3072d30e 666 /* Verification will fail in DF_NO_INSN_RESCAN. */
667 if (!(saved_flags & DF_NO_INSN_RESCAN))
668 {
669 df_lr_verify_transfer_functions ();
670 if (df_live)
671 df_live_verify_transfer_functions ();
672 }
673
674#ifdef DF_DEBUG_CFG
675 df_set_clean_cfg ();
676#endif
677#endif
314966f4 678
382ecba7 679 if (flag_checking && verify)
314966f4 680 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3072d30e 681}
682
683
684/* Set up the dataflow instance for the entire back end. */
685
686static unsigned int
687rest_of_handle_df_initialize (void)
688{
689 gcc_assert (!df);
f2956fc5 690 df = XCNEW (struct df_d);
3072d30e 691 df->changeable_flags = 0;
692
693 bitmap_obstack_initialize (&df_bitmap_obstack);
694
695 /* Set this to a conservative value. Stack_ptr_mod will compute it
696 correctly later. */
d5bf7b64 697 crtl->sp_is_unchanging = 0;
3072d30e 698
699 df_scan_add_problem ();
700 df_scan_alloc (NULL);
701
702 /* These three problems are permanent. */
703 df_lr_add_problem ();
deb2741b 704 if (optimize > 1)
3072d30e 705 df_live_add_problem ();
706
fe672ac0 707 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
708 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
3072d30e 709 df->n_blocks = post_order_compute (df->postorder, true, true);
710 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
711 gcc_assert (df->n_blocks == df->n_blocks_inverted);
712
690973a8 713 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
3072d30e 714
715 df_hard_reg_init ();
716 /* After reload, some ports add certain bits to regs_ever_live so
717 this cannot be reset. */
718 df_compute_regs_ever_live (true);
719 df_scan_blocks ();
720 df_compute_regs_ever_live (false);
721 return 0;
722}
723
724
cbe8bda8 725namespace {
726
727const pass_data pass_data_df_initialize_opt =
3072d30e 728{
cbe8bda8 729 RTL_PASS, /* type */
730 "dfinit", /* name */
731 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 732 TV_DF_SCAN, /* tv_id */
733 0, /* properties_required */
734 0, /* properties_provided */
735 0, /* properties_destroyed */
736 0, /* todo_flags_start */
737 0, /* todo_flags_finish */
3072d30e 738};
739
cbe8bda8 740class pass_df_initialize_opt : public rtl_opt_pass
741{
742public:
9af5ce0c 743 pass_df_initialize_opt (gcc::context *ctxt)
744 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
cbe8bda8 745 {}
746
747 /* opt_pass methods: */
31315c24 748 virtual bool gate (function *) { return optimize > 0; }
65b0537f 749 virtual unsigned int execute (function *)
750 {
751 return rest_of_handle_df_initialize ();
752 }
cbe8bda8 753
754}; // class pass_df_initialize_opt
755
756} // anon namespace
757
758rtl_opt_pass *
759make_pass_df_initialize_opt (gcc::context *ctxt)
760{
761 return new pass_df_initialize_opt (ctxt);
762}
763
3072d30e 764
cbe8bda8 765namespace {
766
767const pass_data pass_data_df_initialize_no_opt =
3072d30e 768{
cbe8bda8 769 RTL_PASS, /* type */
770 "no-opt dfinit", /* name */
771 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 772 TV_DF_SCAN, /* tv_id */
773 0, /* properties_required */
774 0, /* properties_provided */
775 0, /* properties_destroyed */
776 0, /* todo_flags_start */
777 0, /* todo_flags_finish */
3072d30e 778};
779
cbe8bda8 780class pass_df_initialize_no_opt : public rtl_opt_pass
781{
782public:
9af5ce0c 783 pass_df_initialize_no_opt (gcc::context *ctxt)
784 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
cbe8bda8 785 {}
786
787 /* opt_pass methods: */
31315c24 788 virtual bool gate (function *) { return optimize == 0; }
65b0537f 789 virtual unsigned int execute (function *)
790 {
791 return rest_of_handle_df_initialize ();
792 }
cbe8bda8 793
794}; // class pass_df_initialize_no_opt
795
796} // anon namespace
797
798rtl_opt_pass *
799make_pass_df_initialize_no_opt (gcc::context *ctxt)
800{
801 return new pass_df_initialize_no_opt (ctxt);
802}
803
3072d30e 804
e011eba9 805/* Free all the dataflow info and the DF structure. This should be
806 called from the df_finish macro which also NULLs the parm. */
807
3072d30e 808static unsigned int
809rest_of_handle_df_finish (void)
e011eba9 810{
811 int i;
812
3072d30e 813 gcc_assert (df);
814
e011eba9 815 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 816 {
817 struct dataflow *dflow = df->problems_in_order[i];
48e1416a 818 dflow->problem->free_fun ();
3072d30e 819 }
e011eba9 820
dd045aee 821 free (df->postorder);
822 free (df->postorder_inverted);
3072d30e 823 free (df->hard_regs_live_count);
e011eba9 824 free (df);
3072d30e 825 df = NULL;
826
827 bitmap_obstack_release (&df_bitmap_obstack);
828 return 0;
e011eba9 829}
830
3072d30e 831
cbe8bda8 832namespace {
833
834const pass_data pass_data_df_finish =
3072d30e 835{
cbe8bda8 836 RTL_PASS, /* type */
837 "dfinish", /* name */
838 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 839 TV_NONE, /* tv_id */
840 0, /* properties_required */
841 0, /* properties_provided */
842 0, /* properties_destroyed */
843 0, /* todo_flags_start */
844 0, /* todo_flags_finish */
3072d30e 845};
846
cbe8bda8 847class pass_df_finish : public rtl_opt_pass
848{
849public:
9af5ce0c 850 pass_df_finish (gcc::context *ctxt)
851 : rtl_opt_pass (pass_data_df_finish, ctxt)
cbe8bda8 852 {}
853
854 /* opt_pass methods: */
65b0537f 855 virtual unsigned int execute (function *)
856 {
857 return rest_of_handle_df_finish ();
858 }
cbe8bda8 859
860}; // class pass_df_finish
861
862} // anon namespace
863
864rtl_opt_pass *
865make_pass_df_finish (gcc::context *ctxt)
866{
867 return new pass_df_finish (ctxt);
868}
869
3072d30e 870
871
872
e011eba9 873\f
874/*----------------------------------------------------------------------------
875 The general data flow analysis engine.
876----------------------------------------------------------------------------*/
877
21256416 878/* Return time BB when it was visited for last time. */
879#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
e011eba9 880
3072d30e 881/* Helper function for df_worklist_dataflow.
48e1416a 882 Propagate the dataflow forward.
3072d30e 883 Given a BB_INDEX, do the dataflow propagation
884 and set bits on for successors in PENDING
21256416 885 if the out set of the dataflow has changed.
886
887 AGE specify time when BB was visited last time.
888 AGE of 0 means we are visiting for first time and need to
889 compute transfer function to initialize datastructures.
890 Otherwise we re-do transfer function only if something change
891 while computing confluence functions.
892 We need to compute confluence only of basic block that are younger
893 then last visit of the BB.
894
895 Return true if BB info has changed. This is always the case
896 in the first visit. */
e011eba9 897
a703ca31 898static bool
3072d30e 899df_worklist_propagate_forward (struct dataflow *dataflow,
900 unsigned bb_index,
901 unsigned *bbindex_to_postorder,
902 bitmap pending,
a703ca31 903 sbitmap considered,
21256416 904 ptrdiff_t age)
e011eba9 905{
e011eba9 906 edge e;
907 edge_iterator ei;
f5a6b05f 908 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
a703ca31 909 bool changed = !age;
e011eba9 910
3072d30e 911 /* Calculate <conf_op> of incoming edges. */
e011eba9 912 if (EDGE_COUNT (bb->preds) > 0)
913 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 914 {
21256416 915 if (age <= BB_LAST_CHANGE_AGE (e->src)
08b7917c 916 && bitmap_bit_p (considered, e->src->index))
a703ca31 917 changed |= dataflow->problem->con_fun_n (e);
48e1416a 918 }
1c1a6437 919 else if (dataflow->problem->con_fun_0)
21256416 920 dataflow->problem->con_fun_0 (bb);
3072d30e 921
a703ca31 922 if (changed
923 && dataflow->problem->trans_fun (bb_index))
e011eba9 924 {
48e1416a 925 /* The out set of this block has changed.
3072d30e 926 Propagate to the outgoing blocks. */
927 FOR_EACH_EDGE (e, ei, bb->succs)
928 {
929 unsigned ob_index = e->dest->index;
930
08b7917c 931 if (bitmap_bit_p (considered, ob_index))
3072d30e 932 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
933 }
a703ca31 934 return true;
e011eba9 935 }
a703ca31 936 return false;
e011eba9 937}
938
3072d30e 939
940/* Helper function for df_worklist_dataflow.
941 Propagate the dataflow backward. */
942
a703ca31 943static bool
3072d30e 944df_worklist_propagate_backward (struct dataflow *dataflow,
945 unsigned bb_index,
946 unsigned *bbindex_to_postorder,
947 bitmap pending,
a703ca31 948 sbitmap considered,
21256416 949 ptrdiff_t age)
e011eba9 950{
e011eba9 951 edge e;
952 edge_iterator ei;
f5a6b05f 953 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
a703ca31 954 bool changed = !age;
e011eba9 955
3072d30e 956 /* Calculate <conf_op> of incoming edges. */
e011eba9 957 if (EDGE_COUNT (bb->succs) > 0)
3072d30e 958 FOR_EACH_EDGE (e, ei, bb->succs)
48e1416a 959 {
21256416 960 if (age <= BB_LAST_CHANGE_AGE (e->dest)
08b7917c 961 && bitmap_bit_p (considered, e->dest->index))
a703ca31 962 changed |= dataflow->problem->con_fun_n (e);
48e1416a 963 }
1c1a6437 964 else if (dataflow->problem->con_fun_0)
21256416 965 dataflow->problem->con_fun_0 (bb);
e011eba9 966
a703ca31 967 if (changed
968 && dataflow->problem->trans_fun (bb_index))
e011eba9 969 {
48e1416a 970 /* The out set of this block has changed.
3072d30e 971 Propagate to the outgoing blocks. */
972 FOR_EACH_EDGE (e, ei, bb->preds)
973 {
974 unsigned ob_index = e->src->index;
975
08b7917c 976 if (bitmap_bit_p (considered, ob_index))
3072d30e 977 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
978 }
a703ca31 979 return true;
e011eba9 980 }
a703ca31 981 return false;
e011eba9 982}
983
21256416 984/* Main dataflow solver loop.
985
986 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
987 need to visit.
988 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
a04e8d62 989 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
21256416 990 PENDING will be freed.
991
992 The worklists are bitmaps indexed by postorder positions.
993
994 The function implements standard algorithm for dataflow solving with two
995 worklists (we are processing WORKLIST and storing new BBs to visit in
996 PENDING).
a9e21c4c 997
21256416 998 As an optimization we maintain ages when BB was changed (stored in bb->aux)
999 and when it was last visited (stored in last_visit_age). This avoids need
1000 to re-do confluence function for edges to basic blocks whose source
1001 did not change since destination was visited last time. */
a9e21c4c 1002
48e1416a 1003static void
a9e21c4c 1004df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1005 bitmap pending,
1006 sbitmap considered,
1007 int *blocks_in_postorder,
a703ca31 1008 unsigned *bbindex_to_postorder,
1009 int n_blocks)
a9e21c4c 1010{
1011 enum df_flow_dir dir = dataflow->problem->dir;
1012 int dcount = 0;
1013 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
21256416 1014 int age = 0;
a703ca31 1015 bool changed;
1e094109 1016 vec<int> last_visit_age = vNULL;
21256416 1017 int prev_age;
a703ca31 1018 basic_block bb;
1019 int i;
1020
f1f41a6c 1021 last_visit_age.safe_grow_cleared (n_blocks);
a9e21c4c 1022
1023 /* Double-queueing. Worklist is for the current iteration,
1024 and pending is for the next. */
1025 while (!bitmap_empty_p (pending))
1026 {
a703ca31 1027 bitmap_iterator bi;
1028 unsigned int index;
1029
a4f59596 1030 std::swap (pending, worklist);
a9e21c4c 1031
a703ca31 1032 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
a9e21c4c 1033 {
a9e21c4c 1034 unsigned bb_index;
1035 dcount++;
1036
21256416 1037 bitmap_clear_bit (pending, index);
a9e21c4c 1038 bb_index = blocks_in_postorder[index];
f5a6b05f 1039 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
f1f41a6c 1040 prev_age = last_visit_age[index];
a9e21c4c 1041 if (dir == DF_FORWARD)
a703ca31 1042 changed = df_worklist_propagate_forward (dataflow, bb_index,
1043 bbindex_to_postorder,
1044 pending, considered,
1045 prev_age);
48e1416a 1046 else
a703ca31 1047 changed = df_worklist_propagate_backward (dataflow, bb_index,
1048 bbindex_to_postorder,
1049 pending, considered,
1050 prev_age);
f1f41a6c 1051 last_visit_age[index] = ++age;
a703ca31 1052 if (changed)
21256416 1053 bb->aux = (void *)(ptrdiff_t)age;
a9e21c4c 1054 }
a703ca31 1055 bitmap_clear (worklist);
a9e21c4c 1056 }
a703ca31 1057 for (i = 0; i < n_blocks; i++)
f5a6b05f 1058 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
a9e21c4c 1059
1060 BITMAP_FREE (worklist);
1061 BITMAP_FREE (pending);
f1f41a6c 1062 last_visit_age.release ();
a9e21c4c 1063
1064 /* Dump statistics. */
1065 if (dump_file)
1066 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1067 "n_basic_blocks %d n_edges %d"
1068 " count %d (%5.2g)\n",
f1955b22 1069 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
a28770e1 1070 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
a9e21c4c 1071}
1072
3072d30e 1073/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
48e1416a 1074 with "n"-th bit representing the n-th block in the reverse-postorder order.
576af552 1075 The solver is a double-queue algorithm similar to the "double stack" solver
1076 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1077 The only significant difference is that the worklist in this implementation
1078 is always sorted in RPO of the CFG visiting direction. */
e011eba9 1079
48e1416a 1080void
3072d30e 1081df_worklist_dataflow (struct dataflow *dataflow,
1082 bitmap blocks_to_consider,
1083 int *blocks_in_postorder,
1084 int n_blocks)
e011eba9 1085{
3072d30e 1086 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1087 bitmap_iterator bi;
3072d30e 1088 unsigned int *bbindex_to_postorder;
1089 int i;
1090 unsigned int index;
1091 enum df_flow_dir dir = dataflow->problem->dir;
e011eba9 1092
3072d30e 1093 gcc_assert (dir != DF_NONE);
e011eba9 1094
3072d30e 1095 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
fe672ac0 1096 bbindex_to_postorder = XNEWVEC (unsigned int,
1097 last_basic_block_for_fn (cfun));
e011eba9 1098
3072d30e 1099 /* Initialize the array to an out-of-bound value. */
fe672ac0 1100 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1101 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
3e6933a8 1102
3072d30e 1103 /* Initialize the considered map. */
3c6549f8 1104 auto_sbitmap considered (last_basic_block_for_fn (cfun));
53c5d9d4 1105 bitmap_clear (considered);
3072d30e 1106 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
e011eba9 1107 {
08b7917c 1108 bitmap_set_bit (considered, index);
e011eba9 1109 }
1110
3072d30e 1111 /* Initialize the mapping of block index to postorder. */
e011eba9 1112 for (i = 0; i < n_blocks; i++)
1113 {
3072d30e 1114 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1115 /* Add all blocks to the worklist. */
1116 bitmap_set_bit (pending, i);
1117 }
e011eba9 1118
a9e21c4c 1119 /* Initialize the problem. */
3072d30e 1120 if (dataflow->problem->init_fun)
1121 dataflow->problem->init_fun (blocks_to_consider);
e011eba9 1122
576af552 1123 /* Solve it. */
1124 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1125 blocks_in_postorder,
a703ca31 1126 bbindex_to_postorder,
1127 n_blocks);
3072d30e 1128 free (bbindex_to_postorder);
e011eba9 1129}
1130
1131
1132/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1133 the order of the remaining entries. Returns the length of the resulting
1134 list. */
1135
1136static unsigned
1137df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1138{
1139 unsigned act, last;
1140
1141 for (act = 0, last = 0; act < len; act++)
1142 if (bitmap_bit_p (blocks, list[act]))
1143 list[last++] = list[act];
1144
1145 return last;
1146}
1147
1148
48e1416a 1149/* Execute dataflow analysis on a single dataflow problem.
e011eba9 1150
e011eba9 1151 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1152 examined or will be computed. For calls from DF_ANALYZE, this is
48e1416a 1153 the set of blocks that has been passed to DF_SET_BLOCKS.
e011eba9 1154*/
1155
3e6933a8 1156void
48e1416a 1157df_analyze_problem (struct dataflow *dflow,
1158 bitmap blocks_to_consider,
3072d30e 1159 int *postorder, int n_blocks)
e011eba9 1160{
3072d30e 1161 timevar_push (dflow->problem->tv_id);
1162
253d7fd0 1163 /* (Re)Allocate the datastructures necessary to solve the problem. */
1164 if (dflow->problem->alloc_fun)
1165 dflow->problem->alloc_fun (blocks_to_consider);
1166
5ccba2dc 1167#ifdef ENABLE_DF_CHECKING
3072d30e 1168 if (dflow->problem->verify_start_fun)
1169 dflow->problem->verify_start_fun ();
1170#endif
1171
3072d30e 1172 /* Set up the problem and compute the local information. */
1c1a6437 1173 if (dflow->problem->local_compute_fun)
3072d30e 1174 dflow->problem->local_compute_fun (blocks_to_consider);
e011eba9 1175
1176 /* Solve the equations. */
1c1a6437 1177 if (dflow->problem->dataflow_fun)
3072d30e 1178 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1179 postorder, n_blocks);
e011eba9 1180
1181 /* Massage the solution. */
1c1a6437 1182 if (dflow->problem->finalize_fun)
3072d30e 1183 dflow->problem->finalize_fun (blocks_to_consider);
1184
5ccba2dc 1185#ifdef ENABLE_DF_CHECKING
3072d30e 1186 if (dflow->problem->verify_end_fun)
1187 dflow->problem->verify_end_fun ();
1188#endif
1189
1190 timevar_pop (dflow->problem->tv_id);
1191
1192 dflow->computed = true;
e011eba9 1193}
1194
1195
67e23d6f 1196/* Analyze dataflow info. */
e011eba9 1197
67e23d6f 1198static void
1199df_analyze_1 (void)
e011eba9 1200{
3072d30e 1201 int i;
48e1416a 1202
3072d30e 1203 /* These should be the same. */
1204 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1205
1206 /* We need to do this before the df_verify_all because this is
1207 not kept incrementally up to date. */
1208 df_compute_regs_ever_live (false);
1209 df_process_deferred_rescans ();
1210
3072d30e 1211 if (dump_file)
1212 fprintf (dump_file, "df_analyze called\n");
5ccba2dc 1213
314966f4 1214#ifndef ENABLE_DF_CHECKING
1215 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1216#endif
1217 df_verify ();
3072d30e 1218
67e23d6f 1219 /* Skip over the DF_SCAN problem. */
1220 for (i = 1; i < df->num_problems_defined; i++)
1221 {
1222 struct dataflow *dflow = df->problems_in_order[i];
1223 if (dflow->solutions_dirty)
1224 {
1225 if (dflow->problem->dir == DF_FORWARD)
1226 df_analyze_problem (dflow,
1227 df->blocks_to_analyze,
1228 df->postorder_inverted,
1229 df->n_blocks_inverted);
1230 else
1231 df_analyze_problem (dflow,
1232 df->blocks_to_analyze,
1233 df->postorder,
1234 df->n_blocks);
1235 }
1236 }
1237
1238 if (!df->analyze_subset)
1239 {
1240 BITMAP_FREE (df->blocks_to_analyze);
1241 df->blocks_to_analyze = NULL;
1242 }
1243
1244#ifdef DF_DEBUG_CFG
1245 df_set_clean_cfg ();
1246#endif
1247}
1248
1249/* Analyze dataflow info. */
1250
1251void
1252df_analyze (void)
1253{
1254 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1255 int i;
1256
1257 free (df->postorder);
1258 free (df->postorder_inverted);
1259 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1260 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1261 df->n_blocks = post_order_compute (df->postorder, true, true);
1262 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1263
3072d30e 1264 for (i = 0; i < df->n_blocks; i++)
1265 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1266
382ecba7 1267 if (flag_checking)
1268 {
1269 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1270 the ENTRY block. */
1271 for (i = 0; i < df->n_blocks_inverted; i++)
1272 gcc_assert (bitmap_bit_p (current_all_blocks,
1273 df->postorder_inverted[i]));
1274 }
e011eba9 1275
1276 /* Make sure that we have pruned any unreachable blocks from these
1277 sets. */
3072d30e 1278 if (df->analyze_subset)
e011eba9 1279 {
e011eba9 1280 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
48e1416a 1281 df->n_blocks = df_prune_to_subcfg (df->postorder,
3072d30e 1282 df->n_blocks, df->blocks_to_analyze);
48e1416a 1283 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
67e23d6f 1284 df->n_blocks_inverted,
1285 df->blocks_to_analyze);
e011eba9 1286 BITMAP_FREE (current_all_blocks);
1287 }
1288 else
1289 {
e011eba9 1290 df->blocks_to_analyze = current_all_blocks;
1291 current_all_blocks = NULL;
1292 }
1293
67e23d6f 1294 df_analyze_1 ();
1295}
1296
1297/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1298 Returns the number of blocks which is always loop->num_nodes. */
1299
1300static int
1301loop_post_order_compute (int *post_order, struct loop *loop)
1302{
1303 edge_iterator *stack;
1304 int sp;
1305 int post_order_num = 0;
1306 bitmap visited;
1307
1308 /* Allocate stack for back-tracking up CFG. */
1309 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1310 sp = 0;
1311
1312 /* Allocate bitmap to track nodes that have been visited. */
1313 visited = BITMAP_ALLOC (NULL);
1314
1315 /* Push the first edge on to the stack. */
1316 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1317
1318 while (sp)
3072d30e 1319 {
67e23d6f 1320 edge_iterator ei;
1321 basic_block src;
1322 basic_block dest;
1323
1324 /* Look at the edge on the top of the stack. */
1325 ei = stack[sp - 1];
1326 src = ei_edge (ei)->src;
1327 dest = ei_edge (ei)->dest;
1328
1329 /* Check if the edge destination has been visited yet and mark it
1330 if not so. */
1331 if (flow_bb_inside_loop_p (loop, dest)
1332 && bitmap_set_bit (visited, dest->index))
1333 {
1334 if (EDGE_COUNT (dest->succs) > 0)
1335 /* Since the DEST node has been visited for the first
1336 time, check its successors. */
1337 stack[sp++] = ei_start (dest->succs);
1338 else
1339 post_order[post_order_num++] = dest->index;
1340 }
1341 else
1342 {
1343 if (ei_one_before_end_p (ei)
1344 && src != loop_preheader_edge (loop)->src)
1345 post_order[post_order_num++] = src->index;
1346
1347 if (!ei_one_before_end_p (ei))
1348 ei_next (&stack[sp - 1]);
1349 else
1350 sp--;
1351 }
3072d30e 1352 }
e011eba9 1353
67e23d6f 1354 free (stack);
1355 BITMAP_FREE (visited);
1356
1357 return post_order_num;
1358}
1359
1360/* Compute the reverse top sort order of the inverted sub-CFG specified
1361 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1362
1363static int
1364loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1365{
1366 basic_block bb;
1367 edge_iterator *stack;
1368 int sp;
1369 int post_order_num = 0;
1370 bitmap visited;
1371
1372 /* Allocate stack for back-tracking up CFG. */
1373 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1374 sp = 0;
1375
1376 /* Allocate bitmap to track nodes that have been visited. */
1377 visited = BITMAP_ALLOC (NULL);
1378
1379 /* Put all latches into the initial work list. In theory we'd want
1380 to start from loop exits but then we'd have the special case of
1381 endless loops. It doesn't really matter for DF iteration order and
1382 handling latches last is probably even better. */
1383 stack[sp++] = ei_start (loop->header->preds);
1384 bitmap_set_bit (visited, loop->header->index);
1385
1386 /* The inverted traversal loop. */
1387 while (sp)
e011eba9 1388 {
67e23d6f 1389 edge_iterator ei;
1390 basic_block pred;
1391
1392 /* Look at the edge on the top of the stack. */
1393 ei = stack[sp - 1];
1394 bb = ei_edge (ei)->dest;
1395 pred = ei_edge (ei)->src;
1396
1397 /* Check if the predecessor has been visited yet and mark it
1398 if not so. */
1399 if (flow_bb_inside_loop_p (loop, pred)
1400 && bitmap_set_bit (visited, pred->index))
1401 {
1402 if (EDGE_COUNT (pred->preds) > 0)
1403 /* Since the predecessor node has been visited for the first
1404 time, check its predecessors. */
1405 stack[sp++] = ei_start (pred->preds);
1406 else
1407 post_order[post_order_num++] = pred->index;
1408 }
1409 else
1410 {
1411 if (flow_bb_inside_loop_p (loop, bb)
1412 && ei_one_before_end_p (ei))
1413 post_order[post_order_num++] = bb->index;
1414
1415 if (!ei_one_before_end_p (ei))
1416 ei_next (&stack[sp - 1]);
1417 else
1418 sp--;
1419 }
e011eba9 1420 }
1421
67e23d6f 1422 free (stack);
1423 BITMAP_FREE (visited);
1424 return post_order_num;
1425}
1426
1427
1428/* Analyze dataflow info for the basic blocks contained in LOOP. */
1429
1430void
1431df_analyze_loop (struct loop *loop)
1432{
1433 free (df->postorder);
1434 free (df->postorder_inverted);
1435
1436 df->postorder = XNEWVEC (int, loop->num_nodes);
1437 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1438 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1439 df->n_blocks_inverted
1440 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1441 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1442 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1443
1444 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1445 for (int i = 0; i < df->n_blocks; ++i)
1446 bitmap_set_bit (blocks, df->postorder[i]);
1447 df_set_blocks (blocks);
1448 BITMAP_FREE (blocks);
1449
1450 df_analyze_1 ();
3072d30e 1451}
1452
1453
1454/* Return the number of basic blocks from the last call to df_analyze. */
1455
48e1416a 1456int
3072d30e 1457df_get_n_blocks (enum df_flow_dir dir)
1458{
1459 gcc_assert (dir != DF_NONE);
1460
1461 if (dir == DF_FORWARD)
1462 {
1463 gcc_assert (df->postorder_inverted);
1464 return df->n_blocks_inverted;
1465 }
1466
1467 gcc_assert (df->postorder);
1468 return df->n_blocks;
1469}
1470
1471
48e1416a 1472/* Return a pointer to the array of basic blocks in the reverse postorder.
3072d30e 1473 Depending on the direction of the dataflow problem,
1474 it returns either the usual reverse postorder array
1475 or the reverse postorder of inverted traversal. */
1476int *
1477df_get_postorder (enum df_flow_dir dir)
1478{
1479 gcc_assert (dir != DF_NONE);
1480
1481 if (dir == DF_FORWARD)
1482 {
1483 gcc_assert (df->postorder_inverted);
1484 return df->postorder_inverted;
1485 }
1486 gcc_assert (df->postorder);
1487 return df->postorder;
e011eba9 1488}
1489
48e1416a 1490static struct df_problem user_problem;
3072d30e 1491static struct dataflow user_dflow;
e011eba9 1492
3072d30e 1493/* Interface for calling iterative dataflow with user defined
1494 confluence and transfer functions. All that is necessary is to
1495 supply DIR, a direction, CONF_FUN_0, a confluence function for
1496 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1497 confluence function, TRANS_FUN, the basic block transfer function,
1498 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1499 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1500
1501void
1502df_simple_dataflow (enum df_flow_dir dir,
1503 df_init_function init_fun,
1504 df_confluence_function_0 con_fun_0,
1505 df_confluence_function_n con_fun_n,
1506 df_transfer_function trans_fun,
1507 bitmap blocks, int * postorder, int n_blocks)
1508{
1509 memset (&user_problem, 0, sizeof (struct df_problem));
1510 user_problem.dir = dir;
1511 user_problem.init_fun = init_fun;
1512 user_problem.con_fun_0 = con_fun_0;
1513 user_problem.con_fun_n = con_fun_n;
1514 user_problem.trans_fun = trans_fun;
1515 user_dflow.problem = &user_problem;
1516 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1517}
1518
48e1416a 1519
e011eba9 1520\f
1521/*----------------------------------------------------------------------------
1522 Functions to support limited incremental change.
1523----------------------------------------------------------------------------*/
1524
1525
1526/* Get basic block info. */
1527
1528static void *
1529df_get_bb_info (struct dataflow *dflow, unsigned int index)
1530{
3072d30e 1531 if (dflow->block_info == NULL)
1532 return NULL;
1533 if (index >= dflow->block_info_size)
1534 return NULL;
369ea98d 1535 return (void *)((char *)dflow->block_info
1536 + index * dflow->problem->block_info_elt_size);
e011eba9 1537}
1538
1539
1540/* Set basic block info. */
1541
1542static void
48e1416a 1543df_set_bb_info (struct dataflow *dflow, unsigned int index,
e011eba9 1544 void *bb_info)
1545{
3072d30e 1546 gcc_assert (dflow->block_info);
369ea98d 1547 memcpy ((char *)dflow->block_info
1548 + index * dflow->problem->block_info_elt_size,
1549 bb_info, dflow->problem->block_info_elt_size);
1550}
1551
1552
1553/* Clear basic block info. */
1554
1555static void
1556df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1557{
1558 gcc_assert (dflow->block_info);
1559 gcc_assert (dflow->block_info_size > index);
1560 memset ((char *)dflow->block_info
1561 + index * dflow->problem->block_info_elt_size,
1562 0, dflow->problem->block_info_elt_size);
e011eba9 1563}
1564
1565
3072d30e 1566/* Mark the solutions as being out of date. */
1567
48e1416a 1568void
3072d30e 1569df_mark_solutions_dirty (void)
1570{
1571 if (df)
1572 {
48e1416a 1573 int p;
3072d30e 1574 for (p = 1; p < df->num_problems_defined; p++)
1575 df->problems_in_order[p]->solutions_dirty = true;
1576 }
1577}
1578
1579
1580/* Return true if BB needs it's transfer functions recomputed. */
1581
48e1416a 1582bool
3072d30e 1583df_get_bb_dirty (basic_block bb)
1584{
3693f86f 1585 return bitmap_bit_p ((df_live
1586 ? df_live : df_lr)->out_of_date_transfer_functions,
1587 bb->index);
3072d30e 1588}
1589
1590
1591/* Mark BB as needing it's transfer functions as being out of
1592 date. */
1593
48e1416a 1594void
3072d30e 1595df_set_bb_dirty (basic_block bb)
1596{
bc6adae4 1597 bb->flags |= BB_MODIFIED;
3072d30e 1598 if (df)
1599 {
48e1416a 1600 int p;
3072d30e 1601 for (p = 1; p < df->num_problems_defined; p++)
1602 {
1603 struct dataflow *dflow = df->problems_in_order[p];
1604 if (dflow->out_of_date_transfer_functions)
1605 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1606 }
1607 df_mark_solutions_dirty ();
1608 }
1609}
1610
1611
369ea98d 1612/* Grow the bb_info array. */
1613
1614void
1615df_grow_bb_info (struct dataflow *dflow)
1616{
fe672ac0 1617 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
369ea98d 1618 if (dflow->block_info_size < new_size)
1619 {
1620 new_size += new_size / 4;
1621 dflow->block_info
1622 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1623 new_size
1624 * dflow->problem->block_info_elt_size);
1625 memset ((char *)dflow->block_info
1626 + dflow->block_info_size
1627 * dflow->problem->block_info_elt_size,
1628 0,
1629 (new_size - dflow->block_info_size)
1630 * dflow->problem->block_info_elt_size);
1631 dflow->block_info_size = new_size;
1632 }
1633}
1634
86fc6921 1635
3072d30e 1636/* Clear the dirty bits. This is called from places that delete
1637 blocks. */
1638static void
1639df_clear_bb_dirty (basic_block bb)
1640{
48e1416a 1641 int p;
3072d30e 1642 for (p = 1; p < df->num_problems_defined; p++)
1643 {
1644 struct dataflow *dflow = df->problems_in_order[p];
1645 if (dflow->out_of_date_transfer_functions)
1646 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1647 }
1648}
369ea98d 1649
e011eba9 1650/* Called from the rtl_compact_blocks to reorganize the problems basic
1651 block info. */
1652
48e1416a 1653void
3072d30e 1654df_compact_blocks (void)
e011eba9 1655{
1656 int i, p;
1657 basic_block bb;
369ea98d 1658 void *problem_temps;
4b5a4301 1659 bitmap_head tmp;
e011eba9 1660
4b5a4301 1661 bitmap_initialize (&tmp, &df_bitmap_obstack);
e011eba9 1662 for (p = 0; p < df->num_problems_defined; p++)
1663 {
1664 struct dataflow *dflow = df->problems_in_order[p];
3072d30e 1665
1666 /* Need to reorganize the out_of_date_transfer_functions for the
1667 dflow problem. */
1668 if (dflow->out_of_date_transfer_functions)
1669 {
4b5a4301 1670 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
3072d30e 1671 bitmap_clear (dflow->out_of_date_transfer_functions);
4b5a4301 1672 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1673 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
4b5a4301 1674 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1675 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1676
1677 i = NUM_FIXED_BLOCKS;
fc00614f 1678 FOR_EACH_BB_FN (bb, cfun)
3072d30e 1679 {
4b5a4301 1680 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1681 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1682 i++;
1683 }
1684 }
1685
1686 /* Now shuffle the block info for the problem. */
1c1a6437 1687 if (dflow->problem->free_bb_fun)
e011eba9 1688 {
fe672ac0 1689 int size = (last_basic_block_for_fn (cfun)
1690 * dflow->problem->block_info_elt_size);
369ea98d 1691 problem_temps = XNEWVAR (char, size);
e011eba9 1692 df_grow_bb_info (dflow);
1693 memcpy (problem_temps, dflow->block_info, size);
1694
1695 /* Copy the bb info from the problem tmps to the proper
1696 place in the block_info vector. Null out the copied
3072d30e 1697 item. The entry and exit blocks never move. */
e011eba9 1698 i = NUM_FIXED_BLOCKS;
fc00614f 1699 FOR_EACH_BB_FN (bb, cfun)
e011eba9 1700 {
369ea98d 1701 df_set_bb_info (dflow, i,
1702 (char *)problem_temps
1703 + bb->index * dflow->problem->block_info_elt_size);
e011eba9 1704 i++;
1705 }
369ea98d 1706 memset ((char *)dflow->block_info
1707 + i * dflow->problem->block_info_elt_size, 0,
fe672ac0 1708 (last_basic_block_for_fn (cfun) - i)
369ea98d 1709 * dflow->problem->block_info_elt_size);
c5fa0717 1710 free (problem_temps);
e011eba9 1711 }
1712 }
1713
3072d30e 1714 /* Shuffle the bits in the basic_block indexed arrays. */
1715
1716 if (df->blocks_to_analyze)
1717 {
4b5a4301 1718 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1719 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
4b5a4301 1720 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1721 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
4b5a4301 1722 bitmap_copy (&tmp, df->blocks_to_analyze);
3072d30e 1723 bitmap_clear (df->blocks_to_analyze);
1724 i = NUM_FIXED_BLOCKS;
fc00614f 1725 FOR_EACH_BB_FN (bb, cfun)
3072d30e 1726 {
4b5a4301 1727 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1728 bitmap_set_bit (df->blocks_to_analyze, i);
1729 i++;
1730 }
1731 }
1732
4b5a4301 1733 bitmap_clear (&tmp);
3072d30e 1734
e011eba9 1735 i = NUM_FIXED_BLOCKS;
fc00614f 1736 FOR_EACH_BB_FN (bb, cfun)
e011eba9 1737 {
f64d2ca4 1738 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
e011eba9 1739 bb->index = i;
1740 i++;
1741 }
1742
a28770e1 1743 gcc_assert (i == n_basic_blocks_for_fn (cfun));
e011eba9 1744
fe672ac0 1745 for (; i < last_basic_block_for_fn (cfun); i++)
f64d2ca4 1746 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
3072d30e 1747
1748#ifdef DF_DEBUG_CFG
1749 if (!df_lr->solutions_dirty)
1750 df_set_clean_cfg ();
1751#endif
e011eba9 1752}
1753
1754
3072d30e 1755/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
e011eba9 1756 block. There is no excuse for people to do this kind of thing. */
1757
48e1416a 1758void
3072d30e 1759df_bb_replace (int old_index, basic_block new_block)
e011eba9 1760{
3072d30e 1761 int new_block_index = new_block->index;
e011eba9 1762 int p;
1763
3072d30e 1764 if (dump_file)
1765 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1766
1767 gcc_assert (df);
f5a6b05f 1768 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
3072d30e 1769
e011eba9 1770 for (p = 0; p < df->num_problems_defined; p++)
1771 {
1772 struct dataflow *dflow = df->problems_in_order[p];
1773 if (dflow->block_info)
1774 {
e011eba9 1775 df_grow_bb_info (dflow);
48e1416a 1776 df_set_bb_info (dflow, old_index,
3072d30e 1777 df_get_bb_info (dflow, new_block_index));
e011eba9 1778 }
1779 }
1780
3072d30e 1781 df_clear_bb_dirty (new_block);
f64d2ca4 1782 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
e011eba9 1783 new_block->index = old_index;
f5a6b05f 1784 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
f64d2ca4 1785 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
3072d30e 1786}
1787
1788
1789/* Free all of the per basic block dataflow from all of the problems.
1790 This is typically called before a basic block is deleted and the
1791 problem will be reanalyzed. */
1792
1793void
1794df_bb_delete (int bb_index)
1795{
f5a6b05f 1796 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
3072d30e 1797 int i;
1798
1799 if (!df)
1800 return;
48e1416a 1801
3072d30e 1802 for (i = 0; i < df->num_problems_defined; i++)
1803 {
1804 struct dataflow *dflow = df->problems_in_order[i];
1805 if (dflow->problem->free_bb_fun)
1806 {
1807 void *bb_info = df_get_bb_info (dflow, bb_index);
1808 if (bb_info)
1809 {
48e1416a 1810 dflow->problem->free_bb_fun (bb, bb_info);
369ea98d 1811 df_clear_bb_info (dflow, bb_index);
3072d30e 1812 }
1813 }
1814 }
1815 df_clear_bb_dirty (bb);
1816 df_mark_solutions_dirty ();
1817}
1818
1819
1820/* Verify that there is a place for everything and everything is in
1821 its place. This is too expensive to run after every pass in the
1822 mainline. However this is an excellent debugging tool if the
6dfdc153 1823 dataflow information is not being updated properly. You can just
3072d30e 1824 sprinkle calls in until you find the place that is changing an
1825 underlying structure without calling the proper updating
bef304b8 1826 routine. */
3072d30e 1827
1828void
1829df_verify (void)
1830{
1831 df_scan_verify ();
314966f4 1832#ifdef ENABLE_DF_CHECKING
3072d30e 1833 df_lr_verify_transfer_functions ();
1834 if (df_live)
1835 df_live_verify_transfer_functions ();
314966f4 1836#endif
07c7518d 1837 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
3072d30e 1838}
1839
1840#ifdef DF_DEBUG_CFG
1841
1842/* Compute an array of ints that describes the cfg. This can be used
1843 to discover places where the cfg is modified by the appropriate
1844 calls have not been made to the keep df informed. The internals of
1845 this are unexciting, the key is that two instances of this can be
1846 compared to see if any changes have been made to the cfg. */
1847
1848static int *
1849df_compute_cfg_image (void)
1850{
1851 basic_block bb;
a28770e1 1852 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
3072d30e 1853 int i;
1854 int * map;
1855
ed7d889a 1856 FOR_ALL_BB_FN (bb, cfun)
3072d30e 1857 {
1858 size += EDGE_COUNT (bb->succs);
1859 }
1860
1861 map = XNEWVEC (int, size);
1862 map[0] = size;
1863 i = 1;
ed7d889a 1864 FOR_ALL_BB_FN (bb, cfun)
3072d30e 1865 {
1866 edge_iterator ei;
1867 edge e;
1868
1869 map[i++] = bb->index;
1870 FOR_EACH_EDGE (e, ei, bb->succs)
1871 map[i++] = e->dest->index;
1872 map[i++] = -1;
1873 }
1874 map[i] = -1;
1875 return map;
1876}
1877
1878static int *saved_cfg = NULL;
1879
1880
1881/* This function compares the saved version of the cfg with the
1882 current cfg and aborts if the two are identical. The function
1883 silently returns if the cfg has been marked as dirty or the two are
1884 the same. */
1885
1886void
1887df_check_cfg_clean (void)
1888{
1889 int *new_map;
1890
1891 if (!df)
1892 return;
1893
1894 if (df_lr->solutions_dirty)
1895 return;
1896
48e1416a 1897 if (saved_cfg == NULL)
3072d30e 1898 return;
1899
1900 new_map = df_compute_cfg_image ();
1901 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1902 free (new_map);
e011eba9 1903}
1904
3072d30e 1905
1906/* This function builds a cfg fingerprint and squirrels it away in
1907 saved_cfg. */
1908
1909static void
1910df_set_clean_cfg (void)
1911{
dd045aee 1912 free (saved_cfg);
3072d30e 1913 saved_cfg = df_compute_cfg_image ();
1914}
1915
1916#endif /* DF_DEBUG_CFG */
e011eba9 1917/*----------------------------------------------------------------------------
1918 PUBLIC INTERFACES TO QUERY INFORMATION.
1919----------------------------------------------------------------------------*/
1920
1921
e011eba9 1922/* Return first def of REGNO within BB. */
1923
48e1416a 1924df_ref
3072d30e 1925df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
e011eba9 1926{
7a6a083c 1927 rtx_insn *insn;
be10bb5a 1928 df_ref def;
e011eba9 1929
1930 FOR_BB_INSNS (bb, insn)
1931 {
6151bbc3 1932 if (!INSN_P (insn))
1933 continue;
1934
be10bb5a 1935 FOR_EACH_INSN_DEF (def, insn)
1936 if (DF_REF_REGNO (def) == regno)
1937 return def;
e011eba9 1938 }
1939 return NULL;
1940}
1941
1942
1943/* Return last def of REGNO within BB. */
1944
48e1416a 1945df_ref
3072d30e 1946df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
e011eba9 1947{
7a6a083c 1948 rtx_insn *insn;
be10bb5a 1949 df_ref def;
e011eba9 1950
1951 FOR_BB_INSNS_REVERSE (bb, insn)
1952 {
6151bbc3 1953 if (!INSN_P (insn))
1954 continue;
e011eba9 1955
be10bb5a 1956 FOR_EACH_INSN_DEF (def, insn)
1957 if (DF_REF_REGNO (def) == regno)
1958 return def;
e011eba9 1959 }
1960
1961 return NULL;
1962}
1963
e011eba9 1964/* Finds the reference corresponding to the definition of REG in INSN.
1965 DF is the dataflow object. */
1966
48e1416a 1967df_ref
e149ca56 1968df_find_def (rtx_insn *insn, rtx reg)
e011eba9 1969{
be10bb5a 1970 df_ref def;
e011eba9 1971
1972 if (GET_CODE (reg) == SUBREG)
1973 reg = SUBREG_REG (reg);
1974 gcc_assert (REG_P (reg));
1975
be10bb5a 1976 FOR_EACH_INSN_DEF (def, insn)
1977 if (DF_REF_REGNO (def) == REGNO (reg))
1978 return def;
e011eba9 1979
1980 return NULL;
1981}
1982
1983
48e1416a 1984/* Return true if REG is defined in INSN, zero otherwise. */
e011eba9 1985
1986bool
e149ca56 1987df_reg_defined (rtx_insn *insn, rtx reg)
e011eba9 1988{
3072d30e 1989 return df_find_def (insn, reg) != NULL;
e011eba9 1990}
48e1416a 1991
e011eba9 1992
1993/* Finds the reference corresponding to the use of REG in INSN.
1994 DF is the dataflow object. */
48e1416a 1995
1996df_ref
e149ca56 1997df_find_use (rtx_insn *insn, rtx reg)
e011eba9 1998{
be10bb5a 1999 df_ref use;
e011eba9 2000
2001 if (GET_CODE (reg) == SUBREG)
2002 reg = SUBREG_REG (reg);
2003 gcc_assert (REG_P (reg));
2004
be10bb5a 2005 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2006 FOR_EACH_INSN_INFO_USE (use, insn_info)
2007 if (DF_REF_REGNO (use) == REGNO (reg))
2008 return use;
2009 if (df->changeable_flags & DF_EQ_NOTES)
2010 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
09f44684 2011 if (DF_REF_REGNO (use) == REGNO (reg))
3072d30e 2012 return use;
e011eba9 2013 return NULL;
2014}
2015
2016
48e1416a 2017/* Return true if REG is referenced in INSN, zero otherwise. */
e011eba9 2018
2019bool
e149ca56 2020df_reg_used (rtx_insn *insn, rtx reg)
e011eba9 2021{
3072d30e 2022 return df_find_use (insn, reg) != NULL;
e011eba9 2023}
48e1416a 2024
e011eba9 2025\f
2026/*----------------------------------------------------------------------------
2027 Debugging and printing functions.
2028----------------------------------------------------------------------------*/
2029
4a020a8c 2030/* Write information about registers and basic blocks into FILE.
2031 This is part of making a debugging dump. */
2032
2033void
2034dump_regset (regset r, FILE *outf)
2035{
2036 unsigned i;
2037 reg_set_iterator rsi;
2038
2039 if (r == NULL)
2040 {
2041 fputs (" (nil)", outf);
2042 return;
2043 }
2044
2045 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2046 {
2047 fprintf (outf, " %d", i);
2048 if (i < FIRST_PSEUDO_REGISTER)
2049 fprintf (outf, " [%s]",
2050 reg_names[i]);
2051 }
2052}
2053
2054/* Print a human-readable representation of R on the standard error
2055 stream. This function is designed to be used from within the
2056 debugger. */
2057extern void debug_regset (regset);
2058DEBUG_FUNCTION void
2059debug_regset (regset r)
2060{
2061 dump_regset (r, stderr);
2062 putc ('\n', stderr);
2063}
3072d30e 2064
2065/* Write information about registers and basic blocks into FILE.
2066 This is part of making a debugging dump. */
2067
2068void
2069df_print_regset (FILE *file, bitmap r)
2070{
2071 unsigned int i;
2072 bitmap_iterator bi;
2073
2074 if (r == NULL)
2075 fputs (" (nil)", file);
2076 else
2077 {
2078 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2079 {
2080 fprintf (file, " %d", i);
2081 if (i < FIRST_PSEUDO_REGISTER)
2082 fprintf (file, " [%s]", reg_names[i]);
2083 }
2084 }
2085 fprintf (file, "\n");
2086}
2087
2088
bf1f8fbc 2089/* Write information about registers and basic blocks into FILE. The
2090 bitmap is in the form used by df_byte_lr. This is part of making a
2091 debugging dump. */
2092
2093void
0e8e9be3 2094df_print_word_regset (FILE *file, bitmap r)
bf1f8fbc 2095{
2096 unsigned int max_reg = max_reg_num ();
bf1f8fbc 2097
2098 if (r == NULL)
2099 fputs (" (nil)", file);
2100 else
2101 {
2102 unsigned int i;
0e8e9be3 2103 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
bf1f8fbc 2104 {
0e8e9be3 2105 bool found = (bitmap_bit_p (r, 2 * i)
2106 || bitmap_bit_p (r, 2 * i + 1));
2107 if (found)
bf1f8fbc 2108 {
0e8e9be3 2109 int word;
2110 const char * sep = "";
2111 fprintf (file, " %d", i);
2112 fprintf (file, "(");
2113 for (word = 0; word < 2; word++)
2114 if (bitmap_bit_p (r, 2 * i + word))
2115 {
2116 fprintf (file, "%s%d", sep, word);
2117 sep = ", ";
2118 }
2119 fprintf (file, ")");
bf1f8fbc 2120 }
bf1f8fbc 2121 }
2122 }
2123 fprintf (file, "\n");
2124}
2125
2126
e011eba9 2127/* Dump dataflow info. */
774f8797 2128
e011eba9 2129void
3072d30e 2130df_dump (FILE *file)
2131{
2132 basic_block bb;
2133 df_dump_start (file);
2134
ed7d889a 2135 FOR_ALL_BB_FN (bb, cfun)
3072d30e 2136 {
2137 df_print_bb_index (bb, file);
2138 df_dump_top (bb, file);
2139 df_dump_bottom (bb, file);
2140 }
2141
2142 fprintf (file, "\n");
2143}
2144
2145
774f8797 2146/* Dump dataflow info for df->blocks_to_analyze. */
2147
2148void
2149df_dump_region (FILE *file)
2150{
2151 if (df->blocks_to_analyze)
2152 {
2153 bitmap_iterator bi;
2154 unsigned int bb_index;
2155
2156 fprintf (file, "\n\nstarting region dump\n");
2157 df_dump_start (file);
48e1416a 2158
2159 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
774f8797 2160 {
f5a6b05f 2161 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
ea9538fb 2162 dump_bb (file, bb, 0, TDF_DETAILS);
774f8797 2163 }
2164 fprintf (file, "\n");
2165 }
48e1416a 2166 else
774f8797 2167 df_dump (file);
2168}
2169
2170
3072d30e 2171/* Dump the introductory information for each problem defined. */
2172
2173void
2174df_dump_start (FILE *file)
e011eba9 2175{
2176 int i;
2177
3e6933a8 2178 if (!df || !file)
e011eba9 2179 return;
2180
2181 fprintf (file, "\n\n%s\n", current_function_name ());
2182 fprintf (file, "\nDataflow summary:\n");
3072d30e 2183 if (df->blocks_to_analyze)
2184 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2185 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
e011eba9 2186
2187 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 2188 {
2189 struct dataflow *dflow = df->problems_in_order[i];
2190 if (dflow->computed)
2191 {
2192 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2193 if (fun)
9af5ce0c 2194 fun (file);
3072d30e 2195 }
2196 }
2197}
e011eba9 2198
3072d30e 2199
ea9538fb 2200/* Dump the top or bottom of the block information for BB. */
2201static void
2202df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
3072d30e 2203{
2204 int i;
2205
2206 if (!df || !file)
2207 return;
2208
2209 for (i = 0; i < df->num_problems_defined; i++)
2210 {
2211 struct dataflow *dflow = df->problems_in_order[i];
2212 if (dflow->computed)
2213 {
ea9538fb 2214 df_dump_bb_problem_function bbfun;
2215
2216 if (top)
2217 bbfun = dflow->problem->dump_top_fun;
2218 else
2219 bbfun = dflow->problem->dump_bottom_fun;
2220
3072d30e 2221 if (bbfun)
48e1416a 2222 bbfun (bb, file);
3072d30e 2223 }
2224 }
2225}
2226
ea9538fb 2227/* Dump the top of the block information for BB. */
2228
2229void
2230df_dump_top (basic_block bb, FILE *file)
2231{
2232 df_dump_bb_problem_data (bb, file, /*top=*/true);
2233}
3072d30e 2234
48e1416a 2235/* Dump the bottom of the block information for BB. */
3072d30e 2236
2237void
2238df_dump_bottom (basic_block bb, FILE *file)
ea9538fb 2239{
2240 df_dump_bb_problem_data (bb, file, /*top=*/false);
2241}
2242
2243
2244/* Dump information about INSN just before or after dumping INSN itself. */
2245static void
e149ca56 2246df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
3072d30e 2247{
2248 int i;
2249
2250 if (!df || !file)
2251 return;
2252
2253 for (i = 0; i < df->num_problems_defined; i++)
2254 {
2255 struct dataflow *dflow = df->problems_in_order[i];
2256 if (dflow->computed)
2257 {
ea9538fb 2258 df_dump_insn_problem_function insnfun;
2259
2260 if (top)
2261 insnfun = dflow->problem->dump_insn_top_fun;
2262 else
2263 insnfun = dflow->problem->dump_insn_bottom_fun;
2264
2265 if (insnfun)
2266 insnfun (insn, file);
3072d30e 2267 }
2268 }
e011eba9 2269}
2270
ea9538fb 2271/* Dump information about INSN before dumping INSN itself. */
2272
2273void
e149ca56 2274df_dump_insn_top (const rtx_insn *insn, FILE *file)
ea9538fb 2275{
2276 df_dump_insn_problem_data (insn, file, /*top=*/true);
2277}
2278
2279/* Dump information about INSN after dumping INSN itself. */
2280
2281void
e149ca56 2282df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
ea9538fb 2283{
2284 df_dump_insn_problem_data (insn, file, /*top=*/false);
2285}
2286
e011eba9 2287
09669349 2288static void
2289df_ref_dump (df_ref ref, FILE *file)
2290{
2291 fprintf (file, "%c%d(%d)",
2292 DF_REF_REG_DEF_P (ref)
2293 ? 'd'
2294 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2295 DF_REF_ID (ref),
2296 DF_REF_REGNO (ref));
2297}
2298
e011eba9 2299void
ddc2d0e3 2300df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
e011eba9 2301{
2302 fprintf (file, "{ ");
ddc2d0e3 2303 for (; ref; ref = DF_REF_NEXT_LOC (ref))
e011eba9 2304 {
09669349 2305 df_ref_dump (ref, file);
e011eba9 2306 if (follow_chain)
3e6933a8 2307 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2308 }
2309 fprintf (file, "}");
2310}
2311
2312
2313/* Dump either a ref-def or reg-use chain. */
2314
2315void
ed6e85ae 2316df_regs_chain_dump (df_ref ref, FILE *file)
e011eba9 2317{
2318 fprintf (file, "{ ");
2319 while (ref)
2320 {
09669349 2321 df_ref_dump (ref, file);
ed6e85ae 2322 ref = DF_REF_NEXT_REG (ref);
e011eba9 2323 }
2324 fprintf (file, "}");
2325}
2326
2327
3e6933a8 2328static void
ddc2d0e3 2329df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
e011eba9 2330{
ddc2d0e3 2331 for (; mws; mws = DF_MWS_NEXT (mws))
2332 fprintf (file, "mw %c r[%d..%d]\n",
2333 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2334 mws->start_regno, mws->end_regno);
3e6933a8 2335}
2336
2337
48e1416a 2338static void
2339df_insn_uid_debug (unsigned int uid,
3e6933a8 2340 bool follow_chain, FILE *file)
2341{
3072d30e 2342 fprintf (file, "insn %d luid %d",
2343 uid, DF_INSN_UID_LUID (uid));
e011eba9 2344
3072d30e 2345 if (DF_INSN_UID_DEFS (uid))
3e6933a8 2346 {
2347 fprintf (file, " defs ");
3072d30e 2348 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
3e6933a8 2349 }
2350
3072d30e 2351 if (DF_INSN_UID_USES (uid))
3e6933a8 2352 {
2353 fprintf (file, " uses ");
3072d30e 2354 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2355 }
2356
2357 if (DF_INSN_UID_EQ_USES (uid))
2358 {
2359 fprintf (file, " eq uses ");
2360 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
3e6933a8 2361 }
2362
3072d30e 2363 if (DF_INSN_UID_MWS (uid))
3e6933a8 2364 {
2365 fprintf (file, " mws ");
3072d30e 2366 df_mws_dump (DF_INSN_UID_MWS (uid), file);
3e6933a8 2367 }
e011eba9 2368 fprintf (file, "\n");
2369}
2370
3e6933a8 2371
4b987fac 2372DEBUG_FUNCTION void
e149ca56 2373df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
3e6933a8 2374{
3072d30e 2375 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
3e6933a8 2376}
2377
4b987fac 2378DEBUG_FUNCTION void
e149ca56 2379df_insn_debug_regno (rtx_insn *insn, FILE *file)
e011eba9 2380{
158b6cc9 2381 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
e011eba9 2382
2383 fprintf (file, "insn %d bb %d luid %d defs ",
158b6cc9 2384 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2385 DF_INSN_INFO_LUID (insn_info));
2386 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
48e1416a 2387
e011eba9 2388 fprintf (file, " uses ");
158b6cc9 2389 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
3072d30e 2390
2391 fprintf (file, " eq_uses ");
158b6cc9 2392 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
e011eba9 2393 fprintf (file, "\n");
2394}
2395
4b987fac 2396DEBUG_FUNCTION void
3072d30e 2397df_regno_debug (unsigned int regno, FILE *file)
e011eba9 2398{
2399 fprintf (file, "reg %d defs ", regno);
3072d30e 2400 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
e011eba9 2401 fprintf (file, " uses ");
3072d30e 2402 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2403 fprintf (file, " eq_uses ");
2404 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
e011eba9 2405 fprintf (file, "\n");
2406}
2407
2408
4b987fac 2409DEBUG_FUNCTION void
ed6e85ae 2410df_ref_debug (df_ref ref, FILE *file)
e011eba9 2411{
2412 fprintf (file, "%c%d ",
2413 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2414 DF_REF_ID (ref));
3eb9ad16 2415 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
e011eba9 2416 DF_REF_REGNO (ref),
2417 DF_REF_BBNO (ref),
ed6e85ae 2418 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
3072d30e 2419 DF_REF_FLAGS (ref),
2420 DF_REF_TYPE (ref));
2421 if (DF_REF_LOC (ref))
44cb2148 2422 {
2423 if (flag_dump_noaddr)
2424 fprintf (file, "loc #(#) chain ");
2425 else
2426 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2427 (void *)*DF_REF_LOC (ref));
2428 }
3072d30e 2429 else
2430 fprintf (file, "chain ");
3e6933a8 2431 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2432 fprintf (file, "\n");
2433}
2434\f
2435/* Functions for debugging from GDB. */
2436
4b987fac 2437DEBUG_FUNCTION void
e149ca56 2438debug_df_insn (rtx_insn *insn)
e011eba9 2439{
3072d30e 2440 df_insn_debug (insn, true, stderr);
e011eba9 2441 debug_rtx (insn);
2442}
2443
2444
4b987fac 2445DEBUG_FUNCTION void
e011eba9 2446debug_df_reg (rtx reg)
2447{
3072d30e 2448 df_regno_debug (REGNO (reg), stderr);
e011eba9 2449}
2450
2451
4b987fac 2452DEBUG_FUNCTION void
e011eba9 2453debug_df_regno (unsigned int regno)
2454{
3072d30e 2455 df_regno_debug (regno, stderr);
e011eba9 2456}
2457
2458
4b987fac 2459DEBUG_FUNCTION void
ed6e85ae 2460debug_df_ref (df_ref ref)
e011eba9 2461{
3e6933a8 2462 df_ref_debug (ref, stderr);
e011eba9 2463}
2464
2465
4b987fac 2466DEBUG_FUNCTION void
e011eba9 2467debug_df_defno (unsigned int defno)
2468{
3072d30e 2469 df_ref_debug (DF_DEFS_GET (defno), stderr);
e011eba9 2470}
2471
2472
4b987fac 2473DEBUG_FUNCTION void
e011eba9 2474debug_df_useno (unsigned int defno)
2475{
3072d30e 2476 df_ref_debug (DF_USES_GET (defno), stderr);
e011eba9 2477}
2478
2479
4b987fac 2480DEBUG_FUNCTION void
e011eba9 2481debug_df_chain (struct df_link *link)
2482{
3e6933a8 2483 df_chain_dump (link, stderr);
e011eba9 2484 fputc ('\n', stderr);
2485}