]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
Split AVX vec_extract_lo_XXX and 128bit to 256bit cast.
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
e011eba9 1/* Allocation for dataflow support routines.
f0b5f617 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7cf0dbf3 3 2008, 2009, 2010 Free Software Foundation, Inc.
48e1416a 4 Originally contributed by Michael P. Hayes
e011eba9 5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
8c4c00c1 13Software Foundation; either version 3, or (at your option) any later
e011eba9 14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
8c4c00c1 22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
e011eba9 24
25/*
26OVERVIEW:
27
28The files in this collection (df*.c,df.h) provide a general framework
29for solving dataflow problems. The global dataflow is performed using
30a good implementation of iterative dataflow analysis.
31
32The file df-problems.c provides problem instance for the most common
33dataflow problems: reaching defs, upward exposed uses, live variables,
34uninitialized variables, def-use chains, and use-def chains. However,
35the interface allows other dataflow problems to be defined as well.
36
3072d30e 37Dataflow analysis is available in most of the rtl backend (the parts
38between pass_df_initialize and pass_df_finish). It is quite likely
39that these boundaries will be expanded in the future. The only
40requirement is that there be a correct control flow graph.
e011eba9 41
3072d30e 42There are three variations of the live variable problem that are
43available whenever dataflow is available. The LR problem finds the
44areas that can reach a use of a variable, the UR problems finds the
f0b5f617 45areas that can be reached from a definition of a variable. The LIVE
48e1416a 46problem finds the intersection of these two areas.
e011eba9 47
3072d30e 48There are several optional problems. These can be enabled when they
49are needed and disabled when they are not needed.
e011eba9 50
3072d30e 51Dataflow problems are generally solved in three layers. The bottom
52layer is called scanning where a data structure is built for each rtl
53insn that describes the set of defs and uses of that insn. Scanning
54is generally kept up to date, i.e. as the insns changes, the scanned
55version of that insn changes also. There are various mechanisms for
56making this happen and are described in the INCREMENTAL SCANNING
57section.
e011eba9 58
3072d30e 59In the middle layer, basic blocks are scanned to produce transfer
f0b5f617 60functions which describe the effects of that block on the global
3072d30e 61dataflow solution. The transfer functions are only rebuilt if the
48e1416a 62some instruction within the block has changed.
e011eba9 63
3072d30e 64The top layer is the dataflow solution itself. The dataflow solution
bef304b8 65is computed by using an efficient iterative solver and the transfer
3072d30e 66functions. The dataflow solution must be recomputed whenever the
67control changes or if one of the transfer function changes.
e011eba9 68
69
3072d30e 70USAGE:
e011eba9 71
3072d30e 72Here is an example of using the dataflow routines.
e011eba9 73
84da8954 74 df_[chain,live,note,rd]_add_problem (flags);
e011eba9 75
3072d30e 76 df_set_blocks (blocks);
e011eba9 77
3072d30e 78 df_analyze ();
e011eba9 79
3072d30e 80 df_dump (stderr);
e011eba9 81
314966f4 82 df_finish_pass (false);
e011eba9 83
84da8954 84DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
3072d30e 85instance to struct df_problem, to the set of problems solved in this
86instance of df. All calls to add a problem for a given instance of df
87must occur before the first call to DF_ANALYZE.
e011eba9 88
89Problems can be dependent on other problems. For instance, solving
ed7bb01a 90def-use or use-def chains is dependent on solving reaching
334ec2d8 91definitions. As long as these dependencies are listed in the problem
e011eba9 92definition, the order of adding the problems is not material.
93Otherwise, the problems will be solved in the order of calls to
94df_add_problem. Note that it is not necessary to have a problem. In
95that case, df will just be used to do the scanning.
96
97
98
99DF_SET_BLOCKS is an optional call used to define a region of the
100function on which the analysis will be performed. The normal case is
101to analyze the entire function and no call to df_set_blocks is made.
3072d30e 102DF_SET_BLOCKS only effects the blocks that are effected when computing
103the transfer functions and final solution. The insn level information
104is always kept up to date.
e011eba9 105
106When a subset is given, the analysis behaves as if the function only
107contains those blocks and any edges that occur directly between the
108blocks in the set. Care should be taken to call df_set_blocks right
334ec2d8 109before the call to analyze in order to eliminate the possibility that
e011eba9 110optimizations that reorder blocks invalidate the bitvector.
111
3072d30e 112DF_ANALYZE causes all of the defined problems to be (re)solved. When
113DF_ANALYZE is completes, the IN and OUT sets for each basic block
114contain the computer information. The DF_*_BB_INFO macros can be used
a3de79f9 115to access these bitvectors. All deferred rescannings are down before
bef304b8 116the transfer functions are recomputed.
e011eba9 117
118DF_DUMP can then be called to dump the information produce to some
3072d30e 119file. This calls DF_DUMP_START, to print the information that is not
120basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121for each block to print the basic specific information. These parts
122can all be called separately as part of a larger dump function.
123
124
125DF_FINISH_PASS causes df_remove_problem to be called on all of the
126optional problems. It also causes any insns whose scanning has been
a3de79f9 127deferred to be rescanned as well as clears all of the changeable flags.
3072d30e 128Setting the pass manager TODO_df_finish flag causes this function to
129be run. However, the pass manager will call df_finish_pass AFTER the
130pass dumping has been done, so if you want to see the results of the
131optional problems in the pass dumps, use the TODO flag rather than
132calling the function yourself.
133
134INCREMENTAL SCANNING
135
136There are four ways of doing the incremental scanning:
137
1381) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
4a7e4fcc 147 upon even after changes have been made to the instructions. This
3072d30e 148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
bef304b8 1732) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
3072d30e 174 df_insn_delete do not immediately change the insn but instead make
175 a note that the insn needs to be rescanned. The next call to
176 df_analyze, df_finish_pass, or df_process_deferred_rescans will
177 cause all of the pending rescans to be processed.
178
179 This is the technique of choice if either 1a, 1b, or 1c are issues
d6b07704 180 in the pass. In the case of 1a or 1b, a call to df_finish_pass
181 (either manually or via TODO_df_finish) should be made before the
182 next call to df_analyze or df_process_deferred_rescans.
183
184 This mode is also used by a few passes that still rely on note_uses,
185 note_stores and for_each_rtx instead of using the DF data. This
186 can be said to fall under case 1c.
3072d30e 187
188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189 (This mode can be cleared by calling df_clear_flags
a3de79f9 190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
3072d30e 191 be rescanned.
192
d6b07704 1933) Total rescanning - In this mode the rescanning is disabled.
194 Only when insns are deleted is the df information associated with
195 it also deleted. At the end of the pass, a call must be made to
196 df_insn_rescan_all. This method is used by the register allocator
197 since it generally changes each insn multiple times (once for each ref)
198 and does not need to make use of the updated scanning information.
3072d30e 199
2004) Do it yourself - In this mechanism, the pass updates the insns
6dfdc153 201 itself using the low level df primitives. Currently no pass does
3072d30e 202 this, but it has the advantage that it is quite efficient given
48e1416a 203 that the pass generally has exact knowledge of what it is changing.
3072d30e 204
205DATA STRUCTURES
e011eba9 206
207Scanning produces a `struct df_ref' data structure (ref) is allocated
208for every register reference (def or use) and this records the insn
209and bb the ref is found within. The refs are linked together in
210chains of uses and defs for each insn and for each register. Each ref
211also has a chain field that links all the use refs for a def or all
212the def refs for a use. This is used to create use-def or def-use
213chains.
214
215Different optimizations have different needs. Ultimately, only
216register allocation and schedulers should be using the bitmaps
217produced for the live register and uninitialized register problems.
218The rest of the backend should be upgraded to using and maintaining
219the linked information such as def use or use def chains.
220
221
e011eba9 222PHILOSOPHY:
223
224While incremental bitmaps are not worthwhile to maintain, incremental
225chains may be perfectly reasonable. The fastest way to build chains
226from scratch or after significant modifications is to build reaching
227definitions (RD) and build the chains from this.
228
229However, general algorithms for maintaining use-def or def-use chains
230are not practical. The amount of work to recompute the chain any
231chain after an arbitrary change is large. However, with a modest
232amount of work it is generally possible to have the application that
233uses the chains keep them up to date. The high level knowledge of
234what is really happening is essential to crafting efficient
235incremental algorithms.
236
237As for the bit vector problems, there is no interface to give a set of
238blocks over with to resolve the iteration. In general, restarting a
239dataflow iteration is difficult and expensive. Again, the best way to
554f2707 240keep the dataflow information up to data (if this is really what is
e011eba9 241needed) it to formulate a problem specific solution.
242
243There are fine grained calls for creating and deleting references from
244instructions in df-scan.c. However, these are not currently connected
245to the engine that resolves the dataflow equations.
246
247
248DATA STRUCTURES:
249
48e1416a 250The basic object is a DF_REF (reference) and this may either be a
e011eba9 251DEF (definition) or a USE of a register.
252
253These are linked into a variety of lists; namely reg-def, reg-use,
254insn-def, insn-use, def-use, and use-def lists. For example, the
255reg-def lists contain all the locations that define a given register
256while the insn-use lists contain all the locations that use a
257register.
258
259Note that the reg-def and reg-use chains are generally short for
260pseudos and long for the hard registers.
261
3072d30e 262ACCESSING INSNS:
263
158b6cc9 2641) The df insn information is kept in an array of DF_INSN_INFO objects.
265 The array is indexed by insn uid, and every DF_REF points to the
266 DF_INSN_INFO object of the insn that contains the reference.
267
2682) Each insn has three sets of refs, which are linked into one of three
269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274 The latter list are the list of references in REG_EQUAL or REG_EQUIV
275 notes. These macros produce a ref (or NULL), the rest of the list
276 can be obtained by traversal of the NEXT_REF field (accessed by the
277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
278 the uses or refs in an instruction.
279
2803) Each insn has a logical uid field (LUID) which is stored in the
281 DF_INSN_INFO object for the insn. The LUID field is accessed by
282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283 When properly set, the LUID is an integer that numbers each insn in
284 the basic block, in order from the start of the block.
285 The numbers are only correct after a call to df_analyze. They will
286 rot after insns are added deleted or moved round.
3072d30e 287
e011eba9 288ACCESSING REFS:
289
290There are 4 ways to obtain access to refs:
291
2921) References are divided into two categories, REAL and ARTIFICIAL.
293
48e1416a 294 REAL refs are associated with instructions.
e011eba9 295
296 ARTIFICIAL refs are associated with basic blocks. The heads of
3072d30e 297 these lists can be accessed by calling df_get_artificial_defs or
48e1416a 298 df_get_artificial_uses for the particular basic block.
299
fcf2ad9f 300 Artificial defs and uses occur both at the beginning and ends of blocks.
301
302 For blocks that area at the destination of eh edges, the
303 artificial uses and defs occur at the beginning. The defs relate
304 to the registers specified in EH_RETURN_DATA_REGNO and the uses
305 relate to the registers specified in ED_USES. Logically these
306 defs and uses should really occur along the eh edge, but there is
307 no convenient way to do this. Artificial edges that occur at the
308 beginning of the block have the DF_REF_AT_TOP flag set.
309
310 Artificial uses occur at the end of all blocks. These arise from
311 the hard registers that are always live, such as the stack
312 register and are put there to keep the code from forgetting about
313 them.
314
334ec2d8 315 Artificial defs occur at the end of the entry block. These arise
fcf2ad9f 316 from registers that are live at entry to the function.
e011eba9 317
48e1416a 3182) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
3072d30e 319 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
e011eba9 320
3072d30e 321 All of the eq_uses, uses and defs associated with each pseudo or
322 hard register may be linked in a bidirectional chain. These are
323 called reg-use or reg_def chains. If the changeable flag
324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
48e1416a 325 treated like uses. If it is not set they are ignored.
3072d30e 326
327 The first use, eq_use or def for a register can be obtained using
328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329 macros. Subsequent uses for the same regno can be obtained by
330 following the next_reg field of the ref. The number of elements in
331 each of the chains can be found by using the DF_REG_USE_COUNT,
332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
e011eba9 333
334 In previous versions of this code, these chains were ordered. It
335 has not been practical to continue this practice.
336
3373) If def-use or use-def chains are built, these can be traversed to
3072d30e 338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
339 include the eq_uses. Otherwise these are ignored when building the
340 chains.
e011eba9 341
3424) An array of all of the uses (and an array of all of the defs) can
343 be built. These arrays are indexed by the value in the id
344 structure. These arrays are only lazily kept up to date, and that
345 process can be expensive. To have these arrays built, call
3072d30e 346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
347 has been set the array will contain the eq_uses. Otherwise these
348 are ignored when building the array and assigning the ids. Note
349 that the values in the id field of a ref may change across calls to
48e1416a 350 df_analyze or df_reorganize_defs or df_reorganize_uses.
e011eba9 351
352 If the only use of this array is to find all of the refs, it is
353 better to traverse all of the registers and then traverse all of
354 reg-use or reg-def chains.
355
e011eba9 356NOTES:
48e1416a 357
e011eba9 358Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359both a use and a def. These are both marked read/write to show that they
360are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361will generate a use of reg 42 followed by a def of reg 42 (both marked
362read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363generates a use of reg 41 then a def of reg 41 (both marked read/write),
364even though reg 41 is decremented before it is used for the memory
365address in this second example.
366
367A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368for which the number of word_mode units covered by the outer mode is
f0b5f617 369smaller than that covered by the inner mode, invokes a read-modify-write
e011eba9 370operation. We generate both a use and a def and again mark them
371read/write.
372
373Paradoxical subreg writes do not leave a trace of the old content, so they
48e1416a 374are write-only operations.
e011eba9 375*/
376
377
378#include "config.h"
379#include "system.h"
380#include "coretypes.h"
381#include "tm.h"
382#include "rtl.h"
383#include "tm_p.h"
384#include "insn-config.h"
385#include "recog.h"
386#include "function.h"
387#include "regs.h"
388#include "output.h"
389#include "alloc-pool.h"
390#include "flags.h"
391#include "hard-reg-set.h"
392#include "basic-block.h"
393#include "sbitmap.h"
394#include "bitmap.h"
395#include "timevar.h"
396#include "df.h"
397#include "tree-pass.h"
a9e21c4c 398#include "params.h"
e011eba9 399
3e6933a8 400static void *df_get_bb_info (struct dataflow *, unsigned int);
f64e6a69 401static void df_set_bb_info (struct dataflow *, unsigned int, void *);
369ea98d 402static void df_clear_bb_info (struct dataflow *, unsigned int);
3072d30e 403#ifdef DF_DEBUG_CFG
404static void df_set_clean_cfg (void);
405#endif
e011eba9 406
3072d30e 407/* An obstack for bitmap not related to specific dataflow problems.
408 This obstack should e.g. be used for bitmaps with a short life time
409 such as temporary bitmaps. */
e011eba9 410
3072d30e 411bitmap_obstack df_bitmap_obstack;
e011eba9 412
e011eba9 413
3072d30e 414/*----------------------------------------------------------------------------
415 Functions to create, destroy and manipulate an instance of df.
416----------------------------------------------------------------------------*/
417
418struct df *df;
e011eba9 419
3072d30e 420/* Add PROBLEM (and any dependent problems) to the DF instance. */
e011eba9 421
3072d30e 422void
423df_add_problem (struct df_problem *problem)
e011eba9 424{
425 struct dataflow *dflow;
3072d30e 426 int i;
e011eba9 427
428 /* First try to add the dependent problem. */
3072d30e 429 if (problem->dependent_problem)
430 df_add_problem (problem->dependent_problem);
e011eba9 431
432 /* Check to see if this problem has already been defined. If it
433 has, just return that instance, if not, add it to the end of the
434 vector. */
435 dflow = df->problems_by_index[problem->id];
436 if (dflow)
3072d30e 437 return;
e011eba9 438
439 /* Make a new one and add it to the end. */
4c36ffe6 440 dflow = XCNEW (struct dataflow);
e011eba9 441 dflow->problem = problem;
3072d30e 442 dflow->computed = false;
443 dflow->solutions_dirty = true;
e011eba9 444 df->problems_by_index[dflow->problem->id] = dflow;
445
3072d30e 446 /* Keep the defined problems ordered by index. This solves the
447 problem that RI will use the information from UREC if UREC has
448 been defined, or from LIVE if LIVE is defined and otherwise LR.
449 However for this to work, the computation of RI must be pushed
450 after which ever of those problems is defined, but we do not
451 require any of those except for LR to have actually been
48e1416a 452 defined. */
3072d30e 453 df->num_problems_defined++;
454 for (i = df->num_problems_defined - 2; i >= 0; i--)
455 {
456 if (problem->id < df->problems_in_order[i]->problem->id)
457 df->problems_in_order[i+1] = df->problems_in_order[i];
458 else
459 {
460 df->problems_in_order[i+1] = dflow;
461 return;
462 }
463 }
464 df->problems_in_order[0] = dflow;
e011eba9 465}
466
467
3e6933a8 468/* Set the MASK flags in the DFLOW problem. The old flags are
469 returned. If a flag is not allowed to be changed this will fail if
470 checking is enabled. */
bc620c5c 471int
b9c74b4d 472df_set_flags (int changeable_flags)
3e6933a8 473{
bc620c5c 474 int old_flags = df->changeable_flags;
3072d30e 475 df->changeable_flags |= changeable_flags;
3e6933a8 476 return old_flags;
477}
478
3072d30e 479
3e6933a8 480/* Clear the MASK flags in the DFLOW problem. The old flags are
481 returned. If a flag is not allowed to be changed this will fail if
482 checking is enabled. */
bc620c5c 483int
b9c74b4d 484df_clear_flags (int changeable_flags)
3e6933a8 485{
bc620c5c 486 int old_flags = df->changeable_flags;
3072d30e 487 df->changeable_flags &= ~changeable_flags;
3e6933a8 488 return old_flags;
489}
490
3072d30e 491
e011eba9 492/* Set the blocks that are to be considered for analysis. If this is
493 not called or is called with null, the entire function in
494 analyzed. */
495
48e1416a 496void
3072d30e 497df_set_blocks (bitmap blocks)
e011eba9 498{
499 if (blocks)
500 {
3072d30e 501 if (dump_file)
502 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
d0802b39 503 if (df->blocks_to_analyze)
504 {
deb2741b 505 /* This block is called to change the focus from one subset
506 to another. */
d0802b39 507 int p;
4b5a4301 508 bitmap_head diff;
509 bitmap_initialize (&diff, &df_bitmap_obstack);
510 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
deb2741b 511 for (p = 0; p < df->num_problems_defined; p++)
d0802b39 512 {
513 struct dataflow *dflow = df->problems_in_order[p];
deb2741b 514 if (dflow->optional_p && dflow->problem->reset_fun)
3072d30e 515 dflow->problem->reset_fun (df->blocks_to_analyze);
deb2741b 516 else if (dflow->problem->free_blocks_on_set_blocks)
d0802b39 517 {
518 bitmap_iterator bi;
519 unsigned int bb_index;
48e1416a 520
4b5a4301 521 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
d0802b39 522 {
523 basic_block bb = BASIC_BLOCK (bb_index);
f64e6a69 524 if (bb)
525 {
3072d30e 526 void *bb_info = df_get_bb_info (dflow, bb_index);
369ea98d 527 dflow->problem->free_bb_fun (bb, bb_info);
528 df_clear_bb_info (dflow, bb_index);
f64e6a69 529 }
d0802b39 530 }
531 }
532 }
533
4b5a4301 534 bitmap_clear (&diff);
d0802b39 535 }
536 else
f64e6a69 537 {
deb2741b 538 /* This block of code is executed to change the focus from
539 the entire function to a subset. */
4b5a4301 540 bitmap_head blocks_to_reset;
541 bool initialized = false;
deb2741b 542 int p;
543 for (p = 0; p < df->num_problems_defined; p++)
f64e6a69 544 {
deb2741b 545 struct dataflow *dflow = df->problems_in_order[p];
546 if (dflow->optional_p && dflow->problem->reset_fun)
f64e6a69 547 {
4b5a4301 548 if (!initialized)
f64e6a69 549 {
deb2741b 550 basic_block bb;
4b5a4301 551 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
deb2741b 552 FOR_ALL_BB(bb)
f64e6a69 553 {
4b5a4301 554 bitmap_set_bit (&blocks_to_reset, bb->index);
f64e6a69 555 }
f64e6a69 556 }
4b5a4301 557 dflow->problem->reset_fun (&blocks_to_reset);
f64e6a69 558 }
f64e6a69 559 }
4b5a4301 560 if (initialized)
561 bitmap_clear (&blocks_to_reset);
deb2741b 562
3072d30e 563 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
f64e6a69 564 }
e011eba9 565 bitmap_copy (df->blocks_to_analyze, blocks);
3072d30e 566 df->analyze_subset = true;
e011eba9 567 }
568 else
569 {
deb2741b 570 /* This block is executed to reset the focus to the entire
571 function. */
3072d30e 572 if (dump_file)
deb2741b 573 fprintf (dump_file, "clearing blocks_to_analyze\n");
e011eba9 574 if (df->blocks_to_analyze)
575 {
576 BITMAP_FREE (df->blocks_to_analyze);
577 df->blocks_to_analyze = NULL;
578 }
3072d30e 579 df->analyze_subset = false;
e011eba9 580 }
3072d30e 581
582 /* Setting the blocks causes the refs to be unorganized since only
583 the refs in the blocks are seen. */
584 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586 df_mark_solutions_dirty ();
e011eba9 587}
588
589
3072d30e 590/* Delete a DFLOW problem (and any problems that depend on this
591 problem). */
3e6933a8 592
593void
3072d30e 594df_remove_problem (struct dataflow *dflow)
3e6933a8 595{
3072d30e 596 struct df_problem *problem;
3e6933a8 597 int i;
3072d30e 598
599 if (!dflow)
600 return;
601
602 problem = dflow->problem;
603 gcc_assert (problem->remove_problem_fun);
604
3072d30e 605 /* Delete any problems that depended on this problem first. */
deb2741b 606 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 607 if (df->problems_in_order[i]->problem->dependent_problem == problem)
608 df_remove_problem (df->problems_in_order[i]);
609
610 /* Now remove this problem. */
deb2741b 611 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 612 if (df->problems_in_order[i] == dflow)
613 {
614 int j;
615 for (j = i + 1; j < df->num_problems_defined; j++)
616 df->problems_in_order[j-1] = df->problems_in_order[j];
149d23ac 617 df->problems_in_order[j-1] = NULL;
3072d30e 618 df->num_problems_defined--;
619 break;
620 }
621
622 (problem->remove_problem_fun) ();
623 df->problems_by_index[problem->id] = NULL;
624}
625
626
84da8954 627/* Remove all of the problems that are not permanent. Scanning, LR
628 and (at -O2 or higher) LIVE are permanent, the rest are removable.
629 Also clear all of the changeable_flags. */
3072d30e 630
631void
314966f4 632df_finish_pass (bool verify ATTRIBUTE_UNUSED)
3072d30e 633{
634 int i;
635 int removed = 0;
636
5ccba2dc 637#ifdef ENABLE_DF_CHECKING
744b32fe 638 int saved_flags;
3072d30e 639#endif
640
641 if (!df)
642 return;
643
644 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
646
5ccba2dc 647#ifdef ENABLE_DF_CHECKING
3072d30e 648 saved_flags = df->changeable_flags;
649#endif
650
deb2741b 651 for (i = 0; i < df->num_problems_defined; i++)
3e6933a8 652 {
653 struct dataflow *dflow = df->problems_in_order[i];
3072d30e 654 struct df_problem *problem = dflow->problem;
655
deb2741b 656 if (dflow->optional_p)
657 {
658 gcc_assert (problem->remove_problem_fun);
659 (problem->remove_problem_fun) ();
660 df->problems_in_order[i] = NULL;
661 df->problems_by_index[problem->id] = NULL;
662 removed++;
663 }
3072d30e 664 }
665 df->num_problems_defined -= removed;
666
667 /* Clear all of the flags. */
668 df->changeable_flags = 0;
669 df_process_deferred_rescans ();
670
671 /* Set the focus back to the whole function. */
672 if (df->blocks_to_analyze)
673 {
674 BITMAP_FREE (df->blocks_to_analyze);
675 df->blocks_to_analyze = NULL;
676 df_mark_solutions_dirty ();
677 df->analyze_subset = false;
3e6933a8 678 }
3072d30e 679
5ccba2dc 680#ifdef ENABLE_DF_CHECKING
3072d30e 681 /* Verification will fail in DF_NO_INSN_RESCAN. */
682 if (!(saved_flags & DF_NO_INSN_RESCAN))
683 {
684 df_lr_verify_transfer_functions ();
685 if (df_live)
686 df_live_verify_transfer_functions ();
687 }
688
689#ifdef DF_DEBUG_CFG
690 df_set_clean_cfg ();
691#endif
692#endif
314966f4 693
694#ifdef ENABLE_CHECKING
695 if (verify)
696 df->changeable_flags |= DF_VERIFY_SCHEDULED;
697#endif
3072d30e 698}
699
700
701/* Set up the dataflow instance for the entire back end. */
702
703static unsigned int
704rest_of_handle_df_initialize (void)
705{
706 gcc_assert (!df);
707 df = XCNEW (struct df);
708 df->changeable_flags = 0;
709
710 bitmap_obstack_initialize (&df_bitmap_obstack);
711
712 /* Set this to a conservative value. Stack_ptr_mod will compute it
713 correctly later. */
714 current_function_sp_is_unchanging = 0;
715
716 df_scan_add_problem ();
717 df_scan_alloc (NULL);
718
719 /* These three problems are permanent. */
720 df_lr_add_problem ();
deb2741b 721 if (optimize > 1)
3072d30e 722 df_live_add_problem ();
723
724 df->postorder = XNEWVEC (int, last_basic_block);
725 df->postorder_inverted = XNEWVEC (int, last_basic_block);
726 df->n_blocks = post_order_compute (df->postorder, true, true);
727 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728 gcc_assert (df->n_blocks == df->n_blocks_inverted);
729
730 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
48e1416a 731 memset (df->hard_regs_live_count, 0,
3072d30e 732 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
733
734 df_hard_reg_init ();
735 /* After reload, some ports add certain bits to regs_ever_live so
736 this cannot be reset. */
737 df_compute_regs_ever_live (true);
738 df_scan_blocks ();
739 df_compute_regs_ever_live (false);
740 return 0;
741}
742
743
744static bool
745gate_opt (void)
746{
747 return optimize > 0;
3e6933a8 748}
749
750
20099e35 751struct rtl_opt_pass pass_df_initialize_opt =
3072d30e 752{
20099e35 753 {
754 RTL_PASS,
3072d30e 755 "dfinit", /* name */
756 gate_opt, /* gate */
757 rest_of_handle_df_initialize, /* execute */
758 NULL, /* sub */
759 NULL, /* next */
760 0, /* static_pass_number */
0b1615c1 761 TV_NONE, /* tv_id */
3072d30e 762 0, /* properties_required */
763 0, /* properties_provided */
764 0, /* properties_destroyed */
765 0, /* todo_flags_start */
20099e35 766 0 /* todo_flags_finish */
767 }
3072d30e 768};
769
770
771static bool
772gate_no_opt (void)
773{
774 return optimize == 0;
775}
776
777
20099e35 778struct rtl_opt_pass pass_df_initialize_no_opt =
3072d30e 779{
20099e35 780 {
781 RTL_PASS,
0c297edc 782 "no-opt dfinit", /* name */
3072d30e 783 gate_no_opt, /* gate */
784 rest_of_handle_df_initialize, /* execute */
785 NULL, /* sub */
786 NULL, /* next */
787 0, /* static_pass_number */
0b1615c1 788 TV_NONE, /* tv_id */
3072d30e 789 0, /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
20099e35 793 0 /* todo_flags_finish */
794 }
3072d30e 795};
796
797
e011eba9 798/* Free all the dataflow info and the DF structure. This should be
799 called from the df_finish macro which also NULLs the parm. */
800
3072d30e 801static unsigned int
802rest_of_handle_df_finish (void)
e011eba9 803{
804 int i;
805
3072d30e 806 gcc_assert (df);
807
e011eba9 808 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 809 {
810 struct dataflow *dflow = df->problems_in_order[i];
48e1416a 811 dflow->problem->free_fun ();
3072d30e 812 }
e011eba9 813
3072d30e 814 if (df->postorder)
815 free (df->postorder);
816 if (df->postorder_inverted)
817 free (df->postorder_inverted);
818 free (df->hard_regs_live_count);
e011eba9 819 free (df);
3072d30e 820 df = NULL;
821
822 bitmap_obstack_release (&df_bitmap_obstack);
823 return 0;
e011eba9 824}
825
3072d30e 826
20099e35 827struct rtl_opt_pass pass_df_finish =
3072d30e 828{
20099e35 829 {
830 RTL_PASS,
3072d30e 831 "dfinish", /* name */
832 NULL, /* gate */
833 rest_of_handle_df_finish, /* execute */
834 NULL, /* sub */
835 NULL, /* next */
836 0, /* static_pass_number */
0b1615c1 837 TV_NONE, /* tv_id */
3072d30e 838 0, /* properties_required */
839 0, /* properties_provided */
840 0, /* properties_destroyed */
841 0, /* todo_flags_start */
20099e35 842 0 /* todo_flags_finish */
843 }
3072d30e 844};
845
846
847
848
e011eba9 849\f
850/*----------------------------------------------------------------------------
851 The general data flow analysis engine.
852----------------------------------------------------------------------------*/
853
21256416 854/* Return time BB when it was visited for last time. */
855#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
e011eba9 856
3072d30e 857/* Helper function for df_worklist_dataflow.
48e1416a 858 Propagate the dataflow forward.
3072d30e 859 Given a BB_INDEX, do the dataflow propagation
860 and set bits on for successors in PENDING
21256416 861 if the out set of the dataflow has changed.
862
863 AGE specify time when BB was visited last time.
864 AGE of 0 means we are visiting for first time and need to
865 compute transfer function to initialize datastructures.
866 Otherwise we re-do transfer function only if something change
867 while computing confluence functions.
868 We need to compute confluence only of basic block that are younger
869 then last visit of the BB.
870
871 Return true if BB info has changed. This is always the case
872 in the first visit. */
e011eba9 873
a703ca31 874static bool
3072d30e 875df_worklist_propagate_forward (struct dataflow *dataflow,
876 unsigned bb_index,
877 unsigned *bbindex_to_postorder,
878 bitmap pending,
a703ca31 879 sbitmap considered,
21256416 880 ptrdiff_t age)
e011eba9 881{
e011eba9 882 edge e;
883 edge_iterator ei;
3072d30e 884 basic_block bb = BASIC_BLOCK (bb_index);
a703ca31 885 bool changed = !age;
e011eba9 886
3072d30e 887 /* Calculate <conf_op> of incoming edges. */
e011eba9 888 if (EDGE_COUNT (bb->preds) > 0)
889 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 890 {
21256416 891 if (age <= BB_LAST_CHANGE_AGE (e->src)
892 && TEST_BIT (considered, e->src->index))
a703ca31 893 changed |= dataflow->problem->con_fun_n (e);
48e1416a 894 }
1c1a6437 895 else if (dataflow->problem->con_fun_0)
21256416 896 dataflow->problem->con_fun_0 (bb);
3072d30e 897
a703ca31 898 if (changed
899 && dataflow->problem->trans_fun (bb_index))
e011eba9 900 {
48e1416a 901 /* The out set of this block has changed.
3072d30e 902 Propagate to the outgoing blocks. */
903 FOR_EACH_EDGE (e, ei, bb->succs)
904 {
905 unsigned ob_index = e->dest->index;
906
907 if (TEST_BIT (considered, ob_index))
908 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
909 }
a703ca31 910 return true;
e011eba9 911 }
a703ca31 912 return false;
e011eba9 913}
914
3072d30e 915
916/* Helper function for df_worklist_dataflow.
917 Propagate the dataflow backward. */
918
a703ca31 919static bool
3072d30e 920df_worklist_propagate_backward (struct dataflow *dataflow,
921 unsigned bb_index,
922 unsigned *bbindex_to_postorder,
923 bitmap pending,
a703ca31 924 sbitmap considered,
21256416 925 ptrdiff_t age)
e011eba9 926{
e011eba9 927 edge e;
928 edge_iterator ei;
3072d30e 929 basic_block bb = BASIC_BLOCK (bb_index);
a703ca31 930 bool changed = !age;
e011eba9 931
3072d30e 932 /* Calculate <conf_op> of incoming edges. */
e011eba9 933 if (EDGE_COUNT (bb->succs) > 0)
3072d30e 934 FOR_EACH_EDGE (e, ei, bb->succs)
48e1416a 935 {
21256416 936 if (age <= BB_LAST_CHANGE_AGE (e->dest)
937 && TEST_BIT (considered, e->dest->index))
a703ca31 938 changed |= dataflow->problem->con_fun_n (e);
48e1416a 939 }
1c1a6437 940 else if (dataflow->problem->con_fun_0)
21256416 941 dataflow->problem->con_fun_0 (bb);
e011eba9 942
a703ca31 943 if (changed
944 && dataflow->problem->trans_fun (bb_index))
e011eba9 945 {
48e1416a 946 /* The out set of this block has changed.
3072d30e 947 Propagate to the outgoing blocks. */
948 FOR_EACH_EDGE (e, ei, bb->preds)
949 {
950 unsigned ob_index = e->src->index;
951
952 if (TEST_BIT (considered, ob_index))
953 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
954 }
a703ca31 955 return true;
e011eba9 956 }
a703ca31 957 return false;
e011eba9 958}
959
21256416 960/* Main dataflow solver loop.
961
962 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
963 need to visit.
964 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
965 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
966 PENDING will be freed.
967
968 The worklists are bitmaps indexed by postorder positions.
969
970 The function implements standard algorithm for dataflow solving with two
971 worklists (we are processing WORKLIST and storing new BBs to visit in
972 PENDING).
a9e21c4c 973
21256416 974 As an optimization we maintain ages when BB was changed (stored in bb->aux)
975 and when it was last visited (stored in last_visit_age). This avoids need
976 to re-do confluence function for edges to basic blocks whose source
977 did not change since destination was visited last time. */
a9e21c4c 978
48e1416a 979static void
a9e21c4c 980df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
981 bitmap pending,
982 sbitmap considered,
983 int *blocks_in_postorder,
a703ca31 984 unsigned *bbindex_to_postorder,
985 int n_blocks)
a9e21c4c 986{
987 enum df_flow_dir dir = dataflow->problem->dir;
988 int dcount = 0;
989 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
21256416 990 int age = 0;
a703ca31 991 bool changed;
21256416 992 VEC(int, heap) *last_visit_age = NULL;
993 int prev_age;
a703ca31 994 basic_block bb;
995 int i;
996
21256416 997 VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks);
a9e21c4c 998
999 /* Double-queueing. Worklist is for the current iteration,
1000 and pending is for the next. */
1001 while (!bitmap_empty_p (pending))
1002 {
a703ca31 1003 bitmap_iterator bi;
1004 unsigned int index;
1005
a9e21c4c 1006 /* Swap pending and worklist. */
1007 bitmap temp = worklist;
1008 worklist = pending;
1009 pending = temp;
1010
a703ca31 1011 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
a9e21c4c 1012 {
a9e21c4c 1013 unsigned bb_index;
1014 dcount++;
1015
21256416 1016 bitmap_clear_bit (pending, index);
a9e21c4c 1017 bb_index = blocks_in_postorder[index];
a703ca31 1018 bb = BASIC_BLOCK (bb_index);
21256416 1019 prev_age = VEC_index (int, last_visit_age, index);
a9e21c4c 1020 if (dir == DF_FORWARD)
a703ca31 1021 changed = df_worklist_propagate_forward (dataflow, bb_index,
1022 bbindex_to_postorder,
1023 pending, considered,
1024 prev_age);
48e1416a 1025 else
a703ca31 1026 changed = df_worklist_propagate_backward (dataflow, bb_index,
1027 bbindex_to_postorder,
1028 pending, considered,
1029 prev_age);
21256416 1030 VEC_replace (int, last_visit_age, index, ++age);
a703ca31 1031 if (changed)
21256416 1032 bb->aux = (void *)(ptrdiff_t)age;
a9e21c4c 1033 }
a703ca31 1034 bitmap_clear (worklist);
a9e21c4c 1035 }
a703ca31 1036 for (i = 0; i < n_blocks; i++)
1037 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
a9e21c4c 1038
1039 BITMAP_FREE (worklist);
1040 BITMAP_FREE (pending);
21256416 1041 VEC_free (int, heap, last_visit_age);
a9e21c4c 1042
1043 /* Dump statistics. */
1044 if (dump_file)
1045 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1046 "n_basic_blocks %d n_edges %d"
1047 " count %d (%5.2g)\n",
1048 n_basic_blocks, n_edges,
1049 dcount, dcount / (float)n_basic_blocks);
1050}
1051
3072d30e 1052/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
48e1416a 1053 with "n"-th bit representing the n-th block in the reverse-postorder order.
576af552 1054 The solver is a double-queue algorithm similar to the "double stack" solver
1055 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1056 The only significant difference is that the worklist in this implementation
1057 is always sorted in RPO of the CFG visiting direction. */
e011eba9 1058
48e1416a 1059void
3072d30e 1060df_worklist_dataflow (struct dataflow *dataflow,
1061 bitmap blocks_to_consider,
1062 int *blocks_in_postorder,
1063 int n_blocks)
e011eba9 1064{
3072d30e 1065 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1066 sbitmap considered = sbitmap_alloc (last_basic_block);
1067 bitmap_iterator bi;
3072d30e 1068 unsigned int *bbindex_to_postorder;
1069 int i;
1070 unsigned int index;
1071 enum df_flow_dir dir = dataflow->problem->dir;
e011eba9 1072
3072d30e 1073 gcc_assert (dir != DF_NONE);
e011eba9 1074
3072d30e 1075 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1076 bbindex_to_postorder =
1077 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
e011eba9 1078
3072d30e 1079 /* Initialize the array to an out-of-bound value. */
1080 for (i = 0; i < last_basic_block; i++)
1081 bbindex_to_postorder[i] = last_basic_block;
3e6933a8 1082
3072d30e 1083 /* Initialize the considered map. */
1084 sbitmap_zero (considered);
1085 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
e011eba9 1086 {
3072d30e 1087 SET_BIT (considered, index);
e011eba9 1088 }
1089
3072d30e 1090 /* Initialize the mapping of block index to postorder. */
e011eba9 1091 for (i = 0; i < n_blocks; i++)
1092 {
3072d30e 1093 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1094 /* Add all blocks to the worklist. */
1095 bitmap_set_bit (pending, i);
1096 }
e011eba9 1097
a9e21c4c 1098 /* Initialize the problem. */
3072d30e 1099 if (dataflow->problem->init_fun)
1100 dataflow->problem->init_fun (blocks_to_consider);
e011eba9 1101
576af552 1102 /* Solve it. */
1103 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1104 blocks_in_postorder,
a703ca31 1105 bbindex_to_postorder,
1106 n_blocks);
e011eba9 1107 sbitmap_free (considered);
3072d30e 1108 free (bbindex_to_postorder);
e011eba9 1109}
1110
1111
1112/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1113 the order of the remaining entries. Returns the length of the resulting
1114 list. */
1115
1116static unsigned
1117df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1118{
1119 unsigned act, last;
1120
1121 for (act = 0, last = 0; act < len; act++)
1122 if (bitmap_bit_p (blocks, list[act]))
1123 list[last++] = list[act];
1124
1125 return last;
1126}
1127
1128
48e1416a 1129/* Execute dataflow analysis on a single dataflow problem.
e011eba9 1130
e011eba9 1131 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1132 examined or will be computed. For calls from DF_ANALYZE, this is
48e1416a 1133 the set of blocks that has been passed to DF_SET_BLOCKS.
e011eba9 1134*/
1135
3e6933a8 1136void
48e1416a 1137df_analyze_problem (struct dataflow *dflow,
1138 bitmap blocks_to_consider,
3072d30e 1139 int *postorder, int n_blocks)
e011eba9 1140{
3072d30e 1141 timevar_push (dflow->problem->tv_id);
1142
253d7fd0 1143 /* (Re)Allocate the datastructures necessary to solve the problem. */
1144 if (dflow->problem->alloc_fun)
1145 dflow->problem->alloc_fun (blocks_to_consider);
1146
5ccba2dc 1147#ifdef ENABLE_DF_CHECKING
3072d30e 1148 if (dflow->problem->verify_start_fun)
1149 dflow->problem->verify_start_fun ();
1150#endif
1151
3072d30e 1152 /* Set up the problem and compute the local information. */
1c1a6437 1153 if (dflow->problem->local_compute_fun)
3072d30e 1154 dflow->problem->local_compute_fun (blocks_to_consider);
e011eba9 1155
1156 /* Solve the equations. */
1c1a6437 1157 if (dflow->problem->dataflow_fun)
3072d30e 1158 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1159 postorder, n_blocks);
e011eba9 1160
1161 /* Massage the solution. */
1c1a6437 1162 if (dflow->problem->finalize_fun)
3072d30e 1163 dflow->problem->finalize_fun (blocks_to_consider);
1164
5ccba2dc 1165#ifdef ENABLE_DF_CHECKING
3072d30e 1166 if (dflow->problem->verify_end_fun)
1167 dflow->problem->verify_end_fun ();
1168#endif
1169
1170 timevar_pop (dflow->problem->tv_id);
1171
1172 dflow->computed = true;
e011eba9 1173}
1174
1175
1176/* Analyze dataflow info for the basic blocks specified by the bitmap
1177 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1178
1179void
3072d30e 1180df_analyze (void)
e011eba9 1181{
3072d30e 1182 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1183 bool everything;
3072d30e 1184 int i;
48e1416a 1185
3072d30e 1186 if (df->postorder)
1187 free (df->postorder);
1188 if (df->postorder_inverted)
1189 free (df->postorder_inverted);
1190 df->postorder = XNEWVEC (int, last_basic_block);
1191 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1192 df->n_blocks = post_order_compute (df->postorder, true, true);
1193 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1194
1195 /* These should be the same. */
1196 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1197
1198 /* We need to do this before the df_verify_all because this is
1199 not kept incrementally up to date. */
1200 df_compute_regs_ever_live (false);
1201 df_process_deferred_rescans ();
1202
3072d30e 1203 if (dump_file)
1204 fprintf (dump_file, "df_analyze called\n");
5ccba2dc 1205
314966f4 1206#ifndef ENABLE_DF_CHECKING
1207 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1208#endif
1209 df_verify ();
3072d30e 1210
1211 for (i = 0; i < df->n_blocks; i++)
1212 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1213
1214#ifdef ENABLE_CHECKING
1215 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1216 the ENTRY block. */
1217 for (i = 0; i < df->n_blocks_inverted; i++)
1218 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1219#endif
e011eba9 1220
1221 /* Make sure that we have pruned any unreachable blocks from these
1222 sets. */
3072d30e 1223 if (df->analyze_subset)
e011eba9 1224 {
1225 everything = false;
1226 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
48e1416a 1227 df->n_blocks = df_prune_to_subcfg (df->postorder,
3072d30e 1228 df->n_blocks, df->blocks_to_analyze);
48e1416a 1229 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1230 df->n_blocks_inverted,
3072d30e 1231 df->blocks_to_analyze);
e011eba9 1232 BITMAP_FREE (current_all_blocks);
1233 }
1234 else
1235 {
1236 everything = true;
1237 df->blocks_to_analyze = current_all_blocks;
1238 current_all_blocks = NULL;
1239 }
1240
1241 /* Skip over the DF_SCAN problem. */
1242 for (i = 1; i < df->num_problems_defined; i++)
3072d30e 1243 {
1244 struct dataflow *dflow = df->problems_in_order[i];
1245 if (dflow->solutions_dirty)
1246 {
1247 if (dflow->problem->dir == DF_FORWARD)
1248 df_analyze_problem (dflow,
1249 df->blocks_to_analyze,
1250 df->postorder_inverted,
1251 df->n_blocks_inverted);
1252 else
1253 df_analyze_problem (dflow,
1254 df->blocks_to_analyze,
1255 df->postorder,
1256 df->n_blocks);
1257 }
1258 }
e011eba9 1259
1260 if (everything)
1261 {
1262 BITMAP_FREE (df->blocks_to_analyze);
1263 df->blocks_to_analyze = NULL;
1264 }
1265
3072d30e 1266#ifdef DF_DEBUG_CFG
1267 df_set_clean_cfg ();
1268#endif
1269}
1270
1271
1272/* Return the number of basic blocks from the last call to df_analyze. */
1273
48e1416a 1274int
3072d30e 1275df_get_n_blocks (enum df_flow_dir dir)
1276{
1277 gcc_assert (dir != DF_NONE);
1278
1279 if (dir == DF_FORWARD)
1280 {
1281 gcc_assert (df->postorder_inverted);
1282 return df->n_blocks_inverted;
1283 }
1284
1285 gcc_assert (df->postorder);
1286 return df->n_blocks;
1287}
1288
1289
48e1416a 1290/* Return a pointer to the array of basic blocks in the reverse postorder.
3072d30e 1291 Depending on the direction of the dataflow problem,
1292 it returns either the usual reverse postorder array
1293 or the reverse postorder of inverted traversal. */
1294int *
1295df_get_postorder (enum df_flow_dir dir)
1296{
1297 gcc_assert (dir != DF_NONE);
1298
1299 if (dir == DF_FORWARD)
1300 {
1301 gcc_assert (df->postorder_inverted);
1302 return df->postorder_inverted;
1303 }
1304 gcc_assert (df->postorder);
1305 return df->postorder;
e011eba9 1306}
1307
48e1416a 1308static struct df_problem user_problem;
3072d30e 1309static struct dataflow user_dflow;
e011eba9 1310
3072d30e 1311/* Interface for calling iterative dataflow with user defined
1312 confluence and transfer functions. All that is necessary is to
1313 supply DIR, a direction, CONF_FUN_0, a confluence function for
1314 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1315 confluence function, TRANS_FUN, the basic block transfer function,
1316 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1317 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1318
1319void
1320df_simple_dataflow (enum df_flow_dir dir,
1321 df_init_function init_fun,
1322 df_confluence_function_0 con_fun_0,
1323 df_confluence_function_n con_fun_n,
1324 df_transfer_function trans_fun,
1325 bitmap blocks, int * postorder, int n_blocks)
1326{
1327 memset (&user_problem, 0, sizeof (struct df_problem));
1328 user_problem.dir = dir;
1329 user_problem.init_fun = init_fun;
1330 user_problem.con_fun_0 = con_fun_0;
1331 user_problem.con_fun_n = con_fun_n;
1332 user_problem.trans_fun = trans_fun;
1333 user_dflow.problem = &user_problem;
1334 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1335}
1336
48e1416a 1337
e011eba9 1338\f
1339/*----------------------------------------------------------------------------
1340 Functions to support limited incremental change.
1341----------------------------------------------------------------------------*/
1342
1343
1344/* Get basic block info. */
1345
1346static void *
1347df_get_bb_info (struct dataflow *dflow, unsigned int index)
1348{
3072d30e 1349 if (dflow->block_info == NULL)
1350 return NULL;
1351 if (index >= dflow->block_info_size)
1352 return NULL;
369ea98d 1353 return (void *)((char *)dflow->block_info
1354 + index * dflow->problem->block_info_elt_size);
e011eba9 1355}
1356
1357
1358/* Set basic block info. */
1359
1360static void
48e1416a 1361df_set_bb_info (struct dataflow *dflow, unsigned int index,
e011eba9 1362 void *bb_info)
1363{
3072d30e 1364 gcc_assert (dflow->block_info);
369ea98d 1365 memcpy ((char *)dflow->block_info
1366 + index * dflow->problem->block_info_elt_size,
1367 bb_info, dflow->problem->block_info_elt_size);
1368}
1369
1370
1371/* Clear basic block info. */
1372
1373static void
1374df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1375{
1376 gcc_assert (dflow->block_info);
1377 gcc_assert (dflow->block_info_size > index);
1378 memset ((char *)dflow->block_info
1379 + index * dflow->problem->block_info_elt_size,
1380 0, dflow->problem->block_info_elt_size);
e011eba9 1381}
1382
1383
3072d30e 1384/* Mark the solutions as being out of date. */
1385
48e1416a 1386void
3072d30e 1387df_mark_solutions_dirty (void)
1388{
1389 if (df)
1390 {
48e1416a 1391 int p;
3072d30e 1392 for (p = 1; p < df->num_problems_defined; p++)
1393 df->problems_in_order[p]->solutions_dirty = true;
1394 }
1395}
1396
1397
1398/* Return true if BB needs it's transfer functions recomputed. */
1399
48e1416a 1400bool
3072d30e 1401df_get_bb_dirty (basic_block bb)
1402{
1403 if (df && df_live)
1404 return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
48e1416a 1405 else
3072d30e 1406 return false;
1407}
1408
1409
1410/* Mark BB as needing it's transfer functions as being out of
1411 date. */
1412
48e1416a 1413void
3072d30e 1414df_set_bb_dirty (basic_block bb)
1415{
1416 if (df)
1417 {
48e1416a 1418 int p;
3072d30e 1419 for (p = 1; p < df->num_problems_defined; p++)
1420 {
1421 struct dataflow *dflow = df->problems_in_order[p];
1422 if (dflow->out_of_date_transfer_functions)
1423 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1424 }
1425 df_mark_solutions_dirty ();
1426 }
1427}
1428
1429
86fc6921 1430/* Mark BB as needing it's transfer functions as being out of
1431 date, except for LR problem. Used when analyzing DEBUG_INSNs,
1432 as LR problem can trigger DCE, and DEBUG_INSNs shouldn't ever
1433 shorten or enlarge lifetime of regs. */
1434
1435void
1436df_set_bb_dirty_nonlr (basic_block bb)
1437{
1438 if (df)
1439 {
1440 int p;
1441 for (p = 1; p < df->num_problems_defined; p++)
1442 {
1443 struct dataflow *dflow = df->problems_in_order[p];
1444 if (dflow == df_lr)
1445 continue;
1446 if (dflow->out_of_date_transfer_functions)
1447 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1448 dflow->solutions_dirty = true;
1449 }
1450 }
1451}
1452
369ea98d 1453/* Grow the bb_info array. */
1454
1455void
1456df_grow_bb_info (struct dataflow *dflow)
1457{
1458 unsigned int new_size = last_basic_block + 1;
1459 if (dflow->block_info_size < new_size)
1460 {
1461 new_size += new_size / 4;
1462 dflow->block_info
1463 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1464 new_size
1465 * dflow->problem->block_info_elt_size);
1466 memset ((char *)dflow->block_info
1467 + dflow->block_info_size
1468 * dflow->problem->block_info_elt_size,
1469 0,
1470 (new_size - dflow->block_info_size)
1471 * dflow->problem->block_info_elt_size);
1472 dflow->block_info_size = new_size;
1473 }
1474}
1475
86fc6921 1476
3072d30e 1477/* Clear the dirty bits. This is called from places that delete
1478 blocks. */
1479static void
1480df_clear_bb_dirty (basic_block bb)
1481{
48e1416a 1482 int p;
3072d30e 1483 for (p = 1; p < df->num_problems_defined; p++)
1484 {
1485 struct dataflow *dflow = df->problems_in_order[p];
1486 if (dflow->out_of_date_transfer_functions)
1487 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1488 }
1489}
369ea98d 1490
e011eba9 1491/* Called from the rtl_compact_blocks to reorganize the problems basic
1492 block info. */
1493
48e1416a 1494void
3072d30e 1495df_compact_blocks (void)
e011eba9 1496{
1497 int i, p;
1498 basic_block bb;
369ea98d 1499 void *problem_temps;
4b5a4301 1500 bitmap_head tmp;
e011eba9 1501
4b5a4301 1502 bitmap_initialize (&tmp, &df_bitmap_obstack);
e011eba9 1503 for (p = 0; p < df->num_problems_defined; p++)
1504 {
1505 struct dataflow *dflow = df->problems_in_order[p];
3072d30e 1506
1507 /* Need to reorganize the out_of_date_transfer_functions for the
1508 dflow problem. */
1509 if (dflow->out_of_date_transfer_functions)
1510 {
4b5a4301 1511 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
3072d30e 1512 bitmap_clear (dflow->out_of_date_transfer_functions);
4b5a4301 1513 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1514 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
4b5a4301 1515 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1516 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1517
1518 i = NUM_FIXED_BLOCKS;
48e1416a 1519 FOR_EACH_BB (bb)
3072d30e 1520 {
4b5a4301 1521 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1522 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1523 i++;
1524 }
1525 }
1526
1527 /* Now shuffle the block info for the problem. */
1c1a6437 1528 if (dflow->problem->free_bb_fun)
e011eba9 1529 {
369ea98d 1530 int size = last_basic_block * dflow->problem->block_info_elt_size;
1531 problem_temps = XNEWVAR (char, size);
e011eba9 1532 df_grow_bb_info (dflow);
1533 memcpy (problem_temps, dflow->block_info, size);
1534
1535 /* Copy the bb info from the problem tmps to the proper
1536 place in the block_info vector. Null out the copied
3072d30e 1537 item. The entry and exit blocks never move. */
e011eba9 1538 i = NUM_FIXED_BLOCKS;
48e1416a 1539 FOR_EACH_BB (bb)
e011eba9 1540 {
369ea98d 1541 df_set_bb_info (dflow, i,
1542 (char *)problem_temps
1543 + bb->index * dflow->problem->block_info_elt_size);
e011eba9 1544 i++;
1545 }
369ea98d 1546 memset ((char *)dflow->block_info
1547 + i * dflow->problem->block_info_elt_size, 0,
1548 (last_basic_block - i)
1549 * dflow->problem->block_info_elt_size);
c5fa0717 1550 free (problem_temps);
e011eba9 1551 }
1552 }
1553
3072d30e 1554 /* Shuffle the bits in the basic_block indexed arrays. */
1555
1556 if (df->blocks_to_analyze)
1557 {
4b5a4301 1558 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1559 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
4b5a4301 1560 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1561 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
4b5a4301 1562 bitmap_copy (&tmp, df->blocks_to_analyze);
3072d30e 1563 bitmap_clear (df->blocks_to_analyze);
1564 i = NUM_FIXED_BLOCKS;
48e1416a 1565 FOR_EACH_BB (bb)
3072d30e 1566 {
4b5a4301 1567 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1568 bitmap_set_bit (df->blocks_to_analyze, i);
1569 i++;
1570 }
1571 }
1572
4b5a4301 1573 bitmap_clear (&tmp);
3072d30e 1574
e011eba9 1575 i = NUM_FIXED_BLOCKS;
48e1416a 1576 FOR_EACH_BB (bb)
e011eba9 1577 {
a9b9dcf4 1578 SET_BASIC_BLOCK (i, bb);
e011eba9 1579 bb->index = i;
1580 i++;
1581 }
1582
1583 gcc_assert (i == n_basic_blocks);
1584
1585 for (; i < last_basic_block; i++)
a9b9dcf4 1586 SET_BASIC_BLOCK (i, NULL);
3072d30e 1587
1588#ifdef DF_DEBUG_CFG
1589 if (!df_lr->solutions_dirty)
1590 df_set_clean_cfg ();
1591#endif
e011eba9 1592}
1593
1594
3072d30e 1595/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
e011eba9 1596 block. There is no excuse for people to do this kind of thing. */
1597
48e1416a 1598void
3072d30e 1599df_bb_replace (int old_index, basic_block new_block)
e011eba9 1600{
3072d30e 1601 int new_block_index = new_block->index;
e011eba9 1602 int p;
1603
3072d30e 1604 if (dump_file)
1605 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1606
1607 gcc_assert (df);
1608 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1609
e011eba9 1610 for (p = 0; p < df->num_problems_defined; p++)
1611 {
1612 struct dataflow *dflow = df->problems_in_order[p];
1613 if (dflow->block_info)
1614 {
e011eba9 1615 df_grow_bb_info (dflow);
48e1416a 1616 df_set_bb_info (dflow, old_index,
3072d30e 1617 df_get_bb_info (dflow, new_block_index));
e011eba9 1618 }
1619 }
1620
3072d30e 1621 df_clear_bb_dirty (new_block);
a9b9dcf4 1622 SET_BASIC_BLOCK (old_index, new_block);
e011eba9 1623 new_block->index = old_index;
3072d30e 1624 df_set_bb_dirty (BASIC_BLOCK (old_index));
1625 SET_BASIC_BLOCK (new_block_index, NULL);
1626}
1627
1628
1629/* Free all of the per basic block dataflow from all of the problems.
1630 This is typically called before a basic block is deleted and the
1631 problem will be reanalyzed. */
1632
1633void
1634df_bb_delete (int bb_index)
1635{
1636 basic_block bb = BASIC_BLOCK (bb_index);
1637 int i;
1638
1639 if (!df)
1640 return;
48e1416a 1641
3072d30e 1642 for (i = 0; i < df->num_problems_defined; i++)
1643 {
1644 struct dataflow *dflow = df->problems_in_order[i];
1645 if (dflow->problem->free_bb_fun)
1646 {
1647 void *bb_info = df_get_bb_info (dflow, bb_index);
1648 if (bb_info)
1649 {
48e1416a 1650 dflow->problem->free_bb_fun (bb, bb_info);
369ea98d 1651 df_clear_bb_info (dflow, bb_index);
3072d30e 1652 }
1653 }
1654 }
1655 df_clear_bb_dirty (bb);
1656 df_mark_solutions_dirty ();
1657}
1658
1659
1660/* Verify that there is a place for everything and everything is in
1661 its place. This is too expensive to run after every pass in the
1662 mainline. However this is an excellent debugging tool if the
6dfdc153 1663 dataflow information is not being updated properly. You can just
3072d30e 1664 sprinkle calls in until you find the place that is changing an
1665 underlying structure without calling the proper updating
bef304b8 1666 routine. */
3072d30e 1667
1668void
1669df_verify (void)
1670{
1671 df_scan_verify ();
314966f4 1672#ifdef ENABLE_DF_CHECKING
3072d30e 1673 df_lr_verify_transfer_functions ();
1674 if (df_live)
1675 df_live_verify_transfer_functions ();
314966f4 1676#endif
3072d30e 1677}
1678
1679#ifdef DF_DEBUG_CFG
1680
1681/* Compute an array of ints that describes the cfg. This can be used
1682 to discover places where the cfg is modified by the appropriate
1683 calls have not been made to the keep df informed. The internals of
1684 this are unexciting, the key is that two instances of this can be
1685 compared to see if any changes have been made to the cfg. */
1686
1687static int *
1688df_compute_cfg_image (void)
1689{
1690 basic_block bb;
1691 int size = 2 + (2 * n_basic_blocks);
1692 int i;
1693 int * map;
1694
1695 FOR_ALL_BB (bb)
1696 {
1697 size += EDGE_COUNT (bb->succs);
1698 }
1699
1700 map = XNEWVEC (int, size);
1701 map[0] = size;
1702 i = 1;
1703 FOR_ALL_BB (bb)
1704 {
1705 edge_iterator ei;
1706 edge e;
1707
1708 map[i++] = bb->index;
1709 FOR_EACH_EDGE (e, ei, bb->succs)
1710 map[i++] = e->dest->index;
1711 map[i++] = -1;
1712 }
1713 map[i] = -1;
1714 return map;
1715}
1716
1717static int *saved_cfg = NULL;
1718
1719
1720/* This function compares the saved version of the cfg with the
1721 current cfg and aborts if the two are identical. The function
1722 silently returns if the cfg has been marked as dirty or the two are
1723 the same. */
1724
1725void
1726df_check_cfg_clean (void)
1727{
1728 int *new_map;
1729
1730 if (!df)
1731 return;
1732
1733 if (df_lr->solutions_dirty)
1734 return;
1735
48e1416a 1736 if (saved_cfg == NULL)
3072d30e 1737 return;
1738
1739 new_map = df_compute_cfg_image ();
1740 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1741 free (new_map);
e011eba9 1742}
1743
3072d30e 1744
1745/* This function builds a cfg fingerprint and squirrels it away in
1746 saved_cfg. */
1747
1748static void
1749df_set_clean_cfg (void)
1750{
1751 if (saved_cfg)
1752 free (saved_cfg);
1753 saved_cfg = df_compute_cfg_image ();
1754}
1755
1756#endif /* DF_DEBUG_CFG */
e011eba9 1757/*----------------------------------------------------------------------------
1758 PUBLIC INTERFACES TO QUERY INFORMATION.
1759----------------------------------------------------------------------------*/
1760
1761
e011eba9 1762/* Return first def of REGNO within BB. */
1763
48e1416a 1764df_ref
3072d30e 1765df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
e011eba9 1766{
1767 rtx insn;
ed6e85ae 1768 df_ref *def_rec;
6151bbc3 1769 unsigned int uid;
e011eba9 1770
1771 FOR_BB_INSNS (bb, insn)
1772 {
6151bbc3 1773 if (!INSN_P (insn))
1774 continue;
1775
1776 uid = INSN_UID (insn);
3072d30e 1777 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1778 {
ed6e85ae 1779 df_ref def = *def_rec;
3072d30e 1780 if (DF_REF_REGNO (def) == regno)
1781 return def;
1782 }
e011eba9 1783 }
1784 return NULL;
1785}
1786
1787
1788/* Return last def of REGNO within BB. */
1789
48e1416a 1790df_ref
3072d30e 1791df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
e011eba9 1792{
1793 rtx insn;
ed6e85ae 1794 df_ref *def_rec;
6151bbc3 1795 unsigned int uid;
e011eba9 1796
1797 FOR_BB_INSNS_REVERSE (bb, insn)
1798 {
6151bbc3 1799 if (!INSN_P (insn))
1800 continue;
e011eba9 1801
6151bbc3 1802 uid = INSN_UID (insn);
3072d30e 1803 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1804 {
ed6e85ae 1805 df_ref def = *def_rec;
3072d30e 1806 if (DF_REF_REGNO (def) == regno)
1807 return def;
1808 }
e011eba9 1809 }
1810
1811 return NULL;
1812}
1813
e011eba9 1814/* Finds the reference corresponding to the definition of REG in INSN.
1815 DF is the dataflow object. */
1816
48e1416a 1817df_ref
3072d30e 1818df_find_def (rtx insn, rtx reg)
e011eba9 1819{
1820 unsigned int uid;
ed6e85ae 1821 df_ref *def_rec;
e011eba9 1822
1823 if (GET_CODE (reg) == SUBREG)
1824 reg = SUBREG_REG (reg);
1825 gcc_assert (REG_P (reg));
1826
1827 uid = INSN_UID (insn);
3072d30e 1828 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1829 {
ed6e85ae 1830 df_ref def = *def_rec;
3072d30e 1831 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1832 return def;
1833 }
e011eba9 1834
1835 return NULL;
1836}
1837
1838
48e1416a 1839/* Return true if REG is defined in INSN, zero otherwise. */
e011eba9 1840
1841bool
3072d30e 1842df_reg_defined (rtx insn, rtx reg)
e011eba9 1843{
3072d30e 1844 return df_find_def (insn, reg) != NULL;
e011eba9 1845}
48e1416a 1846
e011eba9 1847
1848/* Finds the reference corresponding to the use of REG in INSN.
1849 DF is the dataflow object. */
48e1416a 1850
1851df_ref
3072d30e 1852df_find_use (rtx insn, rtx reg)
e011eba9 1853{
1854 unsigned int uid;
ed6e85ae 1855 df_ref *use_rec;
e011eba9 1856
1857 if (GET_CODE (reg) == SUBREG)
1858 reg = SUBREG_REG (reg);
1859 gcc_assert (REG_P (reg));
1860
1861 uid = INSN_UID (insn);
3072d30e 1862 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1863 {
ed6e85ae 1864 df_ref use = *use_rec;
3072d30e 1865 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1866 return use;
48e1416a 1867 }
3072d30e 1868 if (df->changeable_flags & DF_EQ_NOTES)
1869 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1870 {
ed6e85ae 1871 df_ref use = *use_rec;
3072d30e 1872 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
48e1416a 1873 return use;
3072d30e 1874 }
e011eba9 1875 return NULL;
1876}
1877
1878
48e1416a 1879/* Return true if REG is referenced in INSN, zero otherwise. */
e011eba9 1880
1881bool
3072d30e 1882df_reg_used (rtx insn, rtx reg)
e011eba9 1883{
3072d30e 1884 return df_find_use (insn, reg) != NULL;
e011eba9 1885}
48e1416a 1886
e011eba9 1887\f
1888/*----------------------------------------------------------------------------
1889 Debugging and printing functions.
1890----------------------------------------------------------------------------*/
1891
3072d30e 1892
1893/* Write information about registers and basic blocks into FILE.
1894 This is part of making a debugging dump. */
1895
1896void
1897df_print_regset (FILE *file, bitmap r)
1898{
1899 unsigned int i;
1900 bitmap_iterator bi;
1901
1902 if (r == NULL)
1903 fputs (" (nil)", file);
1904 else
1905 {
1906 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1907 {
1908 fprintf (file, " %d", i);
1909 if (i < FIRST_PSEUDO_REGISTER)
1910 fprintf (file, " [%s]", reg_names[i]);
1911 }
1912 }
1913 fprintf (file, "\n");
1914}
1915
1916
bf1f8fbc 1917/* Write information about registers and basic blocks into FILE. The
1918 bitmap is in the form used by df_byte_lr. This is part of making a
1919 debugging dump. */
1920
1921void
1922df_print_byte_regset (FILE *file, bitmap r)
1923{
1924 unsigned int max_reg = max_reg_num ();
1925 bitmap_iterator bi;
1926
1927 if (r == NULL)
1928 fputs (" (nil)", file);
1929 else
1930 {
1931 unsigned int i;
1932 for (i = 0; i < max_reg; i++)
1933 {
1934 unsigned int first = df_byte_lr_get_regno_start (i);
1935 unsigned int len = df_byte_lr_get_regno_len (i);
1936
1937 if (len > 1)
1938 {
1939 bool found = false;
1940 unsigned int j;
1941
1942 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1943 {
1944 found = j < first + len;
1945 break;
1946 }
1947 if (found)
1948 {
1949 const char * sep = "";
1950 fprintf (file, " %d", i);
1951 if (i < FIRST_PSEUDO_REGISTER)
1952 fprintf (file, " [%s]", reg_names[i]);
1953 fprintf (file, "(");
1954 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1955 {
1956 if (j > first + len - 1)
1957 break;
1958 fprintf (file, "%s%d", sep, j-first);
1959 sep = ", ";
1960 }
1961 fprintf (file, ")");
1962 }
1963 }
1964 else
1965 {
1966 if (bitmap_bit_p (r, first))
1967 {
1968 fprintf (file, " %d", i);
1969 if (i < FIRST_PSEUDO_REGISTER)
1970 fprintf (file, " [%s]", reg_names[i]);
1971 }
1972 }
1973
1974 }
1975 }
1976 fprintf (file, "\n");
1977}
1978
1979
e011eba9 1980/* Dump dataflow info. */
774f8797 1981
e011eba9 1982void
3072d30e 1983df_dump (FILE *file)
1984{
1985 basic_block bb;
1986 df_dump_start (file);
1987
1988 FOR_ALL_BB (bb)
1989 {
1990 df_print_bb_index (bb, file);
1991 df_dump_top (bb, file);
1992 df_dump_bottom (bb, file);
1993 }
1994
1995 fprintf (file, "\n");
1996}
1997
1998
774f8797 1999/* Dump dataflow info for df->blocks_to_analyze. */
2000
2001void
2002df_dump_region (FILE *file)
2003{
2004 if (df->blocks_to_analyze)
2005 {
2006 bitmap_iterator bi;
2007 unsigned int bb_index;
2008
2009 fprintf (file, "\n\nstarting region dump\n");
2010 df_dump_start (file);
48e1416a 2011
2012 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
774f8797 2013 {
2014 basic_block bb = BASIC_BLOCK (bb_index);
48e1416a 2015
774f8797 2016 df_print_bb_index (bb, file);
2017 df_dump_top (bb, file);
2018 df_dump_bottom (bb, file);
2019 }
2020 fprintf (file, "\n");
2021 }
48e1416a 2022 else
774f8797 2023 df_dump (file);
2024}
2025
2026
3072d30e 2027/* Dump the introductory information for each problem defined. */
2028
2029void
2030df_dump_start (FILE *file)
e011eba9 2031{
2032 int i;
2033
3e6933a8 2034 if (!df || !file)
e011eba9 2035 return;
2036
2037 fprintf (file, "\n\n%s\n", current_function_name ());
2038 fprintf (file, "\nDataflow summary:\n");
3072d30e 2039 if (df->blocks_to_analyze)
2040 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2041 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
e011eba9 2042
2043 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 2044 {
2045 struct dataflow *dflow = df->problems_in_order[i];
2046 if (dflow->computed)
2047 {
2048 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2049 if (fun)
48e1416a 2050 fun(file);
3072d30e 2051 }
2052 }
2053}
e011eba9 2054
3072d30e 2055
48e1416a 2056/* Dump the top of the block information for BB. */
3072d30e 2057
2058void
2059df_dump_top (basic_block bb, FILE *file)
2060{
2061 int i;
2062
2063 if (!df || !file)
2064 return;
2065
2066 for (i = 0; i < df->num_problems_defined; i++)
2067 {
2068 struct dataflow *dflow = df->problems_in_order[i];
2069 if (dflow->computed)
2070 {
2071 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
2072 if (bbfun)
48e1416a 2073 bbfun (bb, file);
3072d30e 2074 }
2075 }
2076}
2077
2078
48e1416a 2079/* Dump the bottom of the block information for BB. */
3072d30e 2080
2081void
2082df_dump_bottom (basic_block bb, FILE *file)
2083{
2084 int i;
2085
2086 if (!df || !file)
2087 return;
2088
2089 for (i = 0; i < df->num_problems_defined; i++)
2090 {
2091 struct dataflow *dflow = df->problems_in_order[i];
2092 if (dflow->computed)
2093 {
2094 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2095 if (bbfun)
48e1416a 2096 bbfun (bb, file);
3072d30e 2097 }
2098 }
e011eba9 2099}
2100
2101
2102void
ed6e85ae 2103df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
e011eba9 2104{
2105 fprintf (file, "{ ");
3072d30e 2106 while (*ref_rec)
e011eba9 2107 {
ed6e85ae 2108 df_ref ref = *ref_rec;
3072d30e 2109 fprintf (file, "%c%d(%d)",
2110 DF_REF_REG_DEF_P (ref) ? 'd' : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
e011eba9 2111 DF_REF_ID (ref),
2112 DF_REF_REGNO (ref));
2113 if (follow_chain)
3e6933a8 2114 df_chain_dump (DF_REF_CHAIN (ref), file);
3072d30e 2115 ref_rec++;
e011eba9 2116 }
2117 fprintf (file, "}");
2118}
2119
2120
2121/* Dump either a ref-def or reg-use chain. */
2122
2123void
ed6e85ae 2124df_regs_chain_dump (df_ref ref, FILE *file)
e011eba9 2125{
2126 fprintf (file, "{ ");
2127 while (ref)
2128 {
2129 fprintf (file, "%c%d(%d) ",
2130 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2131 DF_REF_ID (ref),
2132 DF_REF_REGNO (ref));
ed6e85ae 2133 ref = DF_REF_NEXT_REG (ref);
e011eba9 2134 }
2135 fprintf (file, "}");
2136}
2137
2138
3e6933a8 2139static void
3072d30e 2140df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
e011eba9 2141{
3072d30e 2142 while (*mws)
3e6933a8 2143 {
48e1416a 2144 fprintf (file, "mw %c r[%d..%d]\n",
ed6e85ae 2145 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
3072d30e 2146 (*mws)->start_regno, (*mws)->end_regno);
2147 mws++;
3e6933a8 2148 }
2149}
2150
2151
48e1416a 2152static void
2153df_insn_uid_debug (unsigned int uid,
3e6933a8 2154 bool follow_chain, FILE *file)
2155{
3072d30e 2156 fprintf (file, "insn %d luid %d",
2157 uid, DF_INSN_UID_LUID (uid));
e011eba9 2158
3072d30e 2159 if (DF_INSN_UID_DEFS (uid))
3e6933a8 2160 {
2161 fprintf (file, " defs ");
3072d30e 2162 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
3e6933a8 2163 }
2164
3072d30e 2165 if (DF_INSN_UID_USES (uid))
3e6933a8 2166 {
2167 fprintf (file, " uses ");
3072d30e 2168 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2169 }
2170
2171 if (DF_INSN_UID_EQ_USES (uid))
2172 {
2173 fprintf (file, " eq uses ");
2174 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
3e6933a8 2175 }
2176
3072d30e 2177 if (DF_INSN_UID_MWS (uid))
3e6933a8 2178 {
2179 fprintf (file, " mws ");
3072d30e 2180 df_mws_dump (DF_INSN_UID_MWS (uid), file);
3e6933a8 2181 }
e011eba9 2182 fprintf (file, "\n");
2183}
2184
3e6933a8 2185
4b987fac 2186DEBUG_FUNCTION void
3072d30e 2187df_insn_debug (rtx insn, bool follow_chain, FILE *file)
3e6933a8 2188{
3072d30e 2189 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
3e6933a8 2190}
2191
4b987fac 2192DEBUG_FUNCTION void
3072d30e 2193df_insn_debug_regno (rtx insn, FILE *file)
e011eba9 2194{
158b6cc9 2195 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
e011eba9 2196
2197 fprintf (file, "insn %d bb %d luid %d defs ",
158b6cc9 2198 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2199 DF_INSN_INFO_LUID (insn_info));
2200 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
48e1416a 2201
e011eba9 2202 fprintf (file, " uses ");
158b6cc9 2203 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
3072d30e 2204
2205 fprintf (file, " eq_uses ");
158b6cc9 2206 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
e011eba9 2207 fprintf (file, "\n");
2208}
2209
4b987fac 2210DEBUG_FUNCTION void
3072d30e 2211df_regno_debug (unsigned int regno, FILE *file)
e011eba9 2212{
2213 fprintf (file, "reg %d defs ", regno);
3072d30e 2214 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
e011eba9 2215 fprintf (file, " uses ");
3072d30e 2216 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2217 fprintf (file, " eq_uses ");
2218 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
e011eba9 2219 fprintf (file, "\n");
2220}
2221
2222
4b987fac 2223DEBUG_FUNCTION void
ed6e85ae 2224df_ref_debug (df_ref ref, FILE *file)
e011eba9 2225{
2226 fprintf (file, "%c%d ",
2227 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2228 DF_REF_ID (ref));
3eb9ad16 2229 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
e011eba9 2230 DF_REF_REGNO (ref),
2231 DF_REF_BBNO (ref),
ed6e85ae 2232 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
3072d30e 2233 DF_REF_FLAGS (ref),
2234 DF_REF_TYPE (ref));
2235 if (DF_REF_LOC (ref))
44cb2148 2236 {
2237 if (flag_dump_noaddr)
2238 fprintf (file, "loc #(#) chain ");
2239 else
2240 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2241 (void *)*DF_REF_LOC (ref));
2242 }
3072d30e 2243 else
2244 fprintf (file, "chain ");
3e6933a8 2245 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2246 fprintf (file, "\n");
2247}
2248\f
2249/* Functions for debugging from GDB. */
2250
4b987fac 2251DEBUG_FUNCTION void
e011eba9 2252debug_df_insn (rtx insn)
2253{
3072d30e 2254 df_insn_debug (insn, true, stderr);
e011eba9 2255 debug_rtx (insn);
2256}
2257
2258
4b987fac 2259DEBUG_FUNCTION void
e011eba9 2260debug_df_reg (rtx reg)
2261{
3072d30e 2262 df_regno_debug (REGNO (reg), stderr);
e011eba9 2263}
2264
2265
4b987fac 2266DEBUG_FUNCTION void
e011eba9 2267debug_df_regno (unsigned int regno)
2268{
3072d30e 2269 df_regno_debug (regno, stderr);
e011eba9 2270}
2271
2272
4b987fac 2273DEBUG_FUNCTION void
ed6e85ae 2274debug_df_ref (df_ref ref)
e011eba9 2275{
3e6933a8 2276 df_ref_debug (ref, stderr);
e011eba9 2277}
2278
2279
4b987fac 2280DEBUG_FUNCTION void
e011eba9 2281debug_df_defno (unsigned int defno)
2282{
3072d30e 2283 df_ref_debug (DF_DEFS_GET (defno), stderr);
e011eba9 2284}
2285
2286
4b987fac 2287DEBUG_FUNCTION void
e011eba9 2288debug_df_useno (unsigned int defno)
2289{
3072d30e 2290 df_ref_debug (DF_USES_GET (defno), stderr);
e011eba9 2291}
2292
2293
4b987fac 2294DEBUG_FUNCTION void
e011eba9 2295debug_df_chain (struct df_link *link)
2296{
3e6933a8 2297 df_chain_dump (link, stderr);
e011eba9 2298 fputc ('\n', stderr);
2299}