]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
gcc/
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
e011eba9 1/* Allocation for dataflow support routines.
f0b5f617 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3693f86f 3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
48e1416a 4 Originally contributed by Michael P. Hayes
e011eba9 5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
8c4c00c1 13Software Foundation; either version 3, or (at your option) any later
e011eba9 14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
8c4c00c1 22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
e011eba9 24
25/*
26OVERVIEW:
27
28The files in this collection (df*.c,df.h) provide a general framework
29for solving dataflow problems. The global dataflow is performed using
30a good implementation of iterative dataflow analysis.
31
32The file df-problems.c provides problem instance for the most common
33dataflow problems: reaching defs, upward exposed uses, live variables,
34uninitialized variables, def-use chains, and use-def chains. However,
35the interface allows other dataflow problems to be defined as well.
36
3072d30e 37Dataflow analysis is available in most of the rtl backend (the parts
38between pass_df_initialize and pass_df_finish). It is quite likely
39that these boundaries will be expanded in the future. The only
40requirement is that there be a correct control flow graph.
e011eba9 41
3072d30e 42There are three variations of the live variable problem that are
43available whenever dataflow is available. The LR problem finds the
44areas that can reach a use of a variable, the UR problems finds the
f0b5f617 45areas that can be reached from a definition of a variable. The LIVE
48e1416a 46problem finds the intersection of these two areas.
e011eba9 47
3072d30e 48There are several optional problems. These can be enabled when they
49are needed and disabled when they are not needed.
e011eba9 50
3072d30e 51Dataflow problems are generally solved in three layers. The bottom
52layer is called scanning where a data structure is built for each rtl
53insn that describes the set of defs and uses of that insn. Scanning
54is generally kept up to date, i.e. as the insns changes, the scanned
55version of that insn changes also. There are various mechanisms for
56making this happen and are described in the INCREMENTAL SCANNING
57section.
e011eba9 58
3072d30e 59In the middle layer, basic blocks are scanned to produce transfer
f0b5f617 60functions which describe the effects of that block on the global
3072d30e 61dataflow solution. The transfer functions are only rebuilt if the
48e1416a 62some instruction within the block has changed.
e011eba9 63
3072d30e 64The top layer is the dataflow solution itself. The dataflow solution
bef304b8 65is computed by using an efficient iterative solver and the transfer
3072d30e 66functions. The dataflow solution must be recomputed whenever the
67control changes or if one of the transfer function changes.
e011eba9 68
69
3072d30e 70USAGE:
e011eba9 71
3072d30e 72Here is an example of using the dataflow routines.
e011eba9 73
84da8954 74 df_[chain,live,note,rd]_add_problem (flags);
e011eba9 75
3072d30e 76 df_set_blocks (blocks);
e011eba9 77
3072d30e 78 df_analyze ();
e011eba9 79
3072d30e 80 df_dump (stderr);
e011eba9 81
314966f4 82 df_finish_pass (false);
e011eba9 83
84da8954 84DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
3072d30e 85instance to struct df_problem, to the set of problems solved in this
86instance of df. All calls to add a problem for a given instance of df
87must occur before the first call to DF_ANALYZE.
e011eba9 88
89Problems can be dependent on other problems. For instance, solving
ed7bb01a 90def-use or use-def chains is dependent on solving reaching
334ec2d8 91definitions. As long as these dependencies are listed in the problem
e011eba9 92definition, the order of adding the problems is not material.
93Otherwise, the problems will be solved in the order of calls to
94df_add_problem. Note that it is not necessary to have a problem. In
95that case, df will just be used to do the scanning.
96
97
98
99DF_SET_BLOCKS is an optional call used to define a region of the
100function on which the analysis will be performed. The normal case is
101to analyze the entire function and no call to df_set_blocks is made.
3072d30e 102DF_SET_BLOCKS only effects the blocks that are effected when computing
103the transfer functions and final solution. The insn level information
104is always kept up to date.
e011eba9 105
106When a subset is given, the analysis behaves as if the function only
107contains those blocks and any edges that occur directly between the
108blocks in the set. Care should be taken to call df_set_blocks right
334ec2d8 109before the call to analyze in order to eliminate the possibility that
e011eba9 110optimizations that reorder blocks invalidate the bitvector.
111
3072d30e 112DF_ANALYZE causes all of the defined problems to be (re)solved. When
113DF_ANALYZE is completes, the IN and OUT sets for each basic block
114contain the computer information. The DF_*_BB_INFO macros can be used
a3de79f9 115to access these bitvectors. All deferred rescannings are down before
bef304b8 116the transfer functions are recomputed.
e011eba9 117
118DF_DUMP can then be called to dump the information produce to some
3072d30e 119file. This calls DF_DUMP_START, to print the information that is not
120basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121for each block to print the basic specific information. These parts
122can all be called separately as part of a larger dump function.
123
124
125DF_FINISH_PASS causes df_remove_problem to be called on all of the
126optional problems. It also causes any insns whose scanning has been
a3de79f9 127deferred to be rescanned as well as clears all of the changeable flags.
3072d30e 128Setting the pass manager TODO_df_finish flag causes this function to
129be run. However, the pass manager will call df_finish_pass AFTER the
130pass dumping has been done, so if you want to see the results of the
131optional problems in the pass dumps, use the TODO flag rather than
132calling the function yourself.
133
134INCREMENTAL SCANNING
135
136There are four ways of doing the incremental scanning:
137
1381) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
4a7e4fcc 147 upon even after changes have been made to the instructions. This
3072d30e 148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
bef304b8 1732) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
3072d30e 174 df_insn_delete do not immediately change the insn but instead make
175 a note that the insn needs to be rescanned. The next call to
176 df_analyze, df_finish_pass, or df_process_deferred_rescans will
177 cause all of the pending rescans to be processed.
178
179 This is the technique of choice if either 1a, 1b, or 1c are issues
d6b07704 180 in the pass. In the case of 1a or 1b, a call to df_finish_pass
181 (either manually or via TODO_df_finish) should be made before the
182 next call to df_analyze or df_process_deferred_rescans.
183
184 This mode is also used by a few passes that still rely on note_uses,
185 note_stores and for_each_rtx instead of using the DF data. This
186 can be said to fall under case 1c.
3072d30e 187
188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189 (This mode can be cleared by calling df_clear_flags
a3de79f9 190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
3072d30e 191 be rescanned.
192
d6b07704 1933) Total rescanning - In this mode the rescanning is disabled.
194 Only when insns are deleted is the df information associated with
195 it also deleted. At the end of the pass, a call must be made to
196 df_insn_rescan_all. This method is used by the register allocator
197 since it generally changes each insn multiple times (once for each ref)
198 and does not need to make use of the updated scanning information.
3072d30e 199
2004) Do it yourself - In this mechanism, the pass updates the insns
6dfdc153 201 itself using the low level df primitives. Currently no pass does
3072d30e 202 this, but it has the advantage that it is quite efficient given
48e1416a 203 that the pass generally has exact knowledge of what it is changing.
3072d30e 204
205DATA STRUCTURES
e011eba9 206
207Scanning produces a `struct df_ref' data structure (ref) is allocated
208for every register reference (def or use) and this records the insn
209and bb the ref is found within. The refs are linked together in
210chains of uses and defs for each insn and for each register. Each ref
211also has a chain field that links all the use refs for a def or all
212the def refs for a use. This is used to create use-def or def-use
213chains.
214
215Different optimizations have different needs. Ultimately, only
216register allocation and schedulers should be using the bitmaps
217produced for the live register and uninitialized register problems.
218The rest of the backend should be upgraded to using and maintaining
219the linked information such as def use or use def chains.
220
221
e011eba9 222PHILOSOPHY:
223
224While incremental bitmaps are not worthwhile to maintain, incremental
225chains may be perfectly reasonable. The fastest way to build chains
226from scratch or after significant modifications is to build reaching
227definitions (RD) and build the chains from this.
228
229However, general algorithms for maintaining use-def or def-use chains
230are not practical. The amount of work to recompute the chain any
231chain after an arbitrary change is large. However, with a modest
232amount of work it is generally possible to have the application that
233uses the chains keep them up to date. The high level knowledge of
234what is really happening is essential to crafting efficient
235incremental algorithms.
236
237As for the bit vector problems, there is no interface to give a set of
238blocks over with to resolve the iteration. In general, restarting a
239dataflow iteration is difficult and expensive. Again, the best way to
554f2707 240keep the dataflow information up to data (if this is really what is
e011eba9 241needed) it to formulate a problem specific solution.
242
243There are fine grained calls for creating and deleting references from
244instructions in df-scan.c. However, these are not currently connected
245to the engine that resolves the dataflow equations.
246
247
248DATA STRUCTURES:
249
48e1416a 250The basic object is a DF_REF (reference) and this may either be a
e011eba9 251DEF (definition) or a USE of a register.
252
253These are linked into a variety of lists; namely reg-def, reg-use,
254insn-def, insn-use, def-use, and use-def lists. For example, the
255reg-def lists contain all the locations that define a given register
256while the insn-use lists contain all the locations that use a
257register.
258
259Note that the reg-def and reg-use chains are generally short for
260pseudos and long for the hard registers.
261
3072d30e 262ACCESSING INSNS:
263
158b6cc9 2641) The df insn information is kept in an array of DF_INSN_INFO objects.
265 The array is indexed by insn uid, and every DF_REF points to the
266 DF_INSN_INFO object of the insn that contains the reference.
267
2682) Each insn has three sets of refs, which are linked into one of three
269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274 The latter list are the list of references in REG_EQUAL or REG_EQUIV
275 notes. These macros produce a ref (or NULL), the rest of the list
276 can be obtained by traversal of the NEXT_REF field (accessed by the
277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
278 the uses or refs in an instruction.
279
2803) Each insn has a logical uid field (LUID) which is stored in the
281 DF_INSN_INFO object for the insn. The LUID field is accessed by
282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283 When properly set, the LUID is an integer that numbers each insn in
284 the basic block, in order from the start of the block.
285 The numbers are only correct after a call to df_analyze. They will
286 rot after insns are added deleted or moved round.
3072d30e 287
e011eba9 288ACCESSING REFS:
289
290There are 4 ways to obtain access to refs:
291
2921) References are divided into two categories, REAL and ARTIFICIAL.
293
48e1416a 294 REAL refs are associated with instructions.
e011eba9 295
296 ARTIFICIAL refs are associated with basic blocks. The heads of
3072d30e 297 these lists can be accessed by calling df_get_artificial_defs or
48e1416a 298 df_get_artificial_uses for the particular basic block.
299
fcf2ad9f 300 Artificial defs and uses occur both at the beginning and ends of blocks.
301
302 For blocks that area at the destination of eh edges, the
303 artificial uses and defs occur at the beginning. The defs relate
304 to the registers specified in EH_RETURN_DATA_REGNO and the uses
305 relate to the registers specified in ED_USES. Logically these
306 defs and uses should really occur along the eh edge, but there is
307 no convenient way to do this. Artificial edges that occur at the
308 beginning of the block have the DF_REF_AT_TOP flag set.
309
310 Artificial uses occur at the end of all blocks. These arise from
311 the hard registers that are always live, such as the stack
312 register and are put there to keep the code from forgetting about
313 them.
314
334ec2d8 315 Artificial defs occur at the end of the entry block. These arise
fcf2ad9f 316 from registers that are live at entry to the function.
e011eba9 317
48e1416a 3182) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
3072d30e 319 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
e011eba9 320
3072d30e 321 All of the eq_uses, uses and defs associated with each pseudo or
322 hard register may be linked in a bidirectional chain. These are
323 called reg-use or reg_def chains. If the changeable flag
324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
48e1416a 325 treated like uses. If it is not set they are ignored.
3072d30e 326
327 The first use, eq_use or def for a register can be obtained using
328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329 macros. Subsequent uses for the same regno can be obtained by
330 following the next_reg field of the ref. The number of elements in
331 each of the chains can be found by using the DF_REG_USE_COUNT,
332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
e011eba9 333
334 In previous versions of this code, these chains were ordered. It
335 has not been practical to continue this practice.
336
3373) If def-use or use-def chains are built, these can be traversed to
3072d30e 338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
339 include the eq_uses. Otherwise these are ignored when building the
340 chains.
e011eba9 341
3424) An array of all of the uses (and an array of all of the defs) can
343 be built. These arrays are indexed by the value in the id
344 structure. These arrays are only lazily kept up to date, and that
345 process can be expensive. To have these arrays built, call
3072d30e 346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
347 has been set the array will contain the eq_uses. Otherwise these
348 are ignored when building the array and assigning the ids. Note
349 that the values in the id field of a ref may change across calls to
48e1416a 350 df_analyze or df_reorganize_defs or df_reorganize_uses.
e011eba9 351
352 If the only use of this array is to find all of the refs, it is
353 better to traverse all of the registers and then traverse all of
354 reg-use or reg-def chains.
355
e011eba9 356NOTES:
48e1416a 357
e011eba9 358Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359both a use and a def. These are both marked read/write to show that they
360are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361will generate a use of reg 42 followed by a def of reg 42 (both marked
362read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363generates a use of reg 41 then a def of reg 41 (both marked read/write),
364even though reg 41 is decremented before it is used for the memory
365address in this second example.
366
367A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368for which the number of word_mode units covered by the outer mode is
f0b5f617 369smaller than that covered by the inner mode, invokes a read-modify-write
e011eba9 370operation. We generate both a use and a def and again mark them
371read/write.
372
373Paradoxical subreg writes do not leave a trace of the old content, so they
48e1416a 374are write-only operations.
e011eba9 375*/
376
377
378#include "config.h"
379#include "system.h"
380#include "coretypes.h"
381#include "tm.h"
382#include "rtl.h"
383#include "tm_p.h"
384#include "insn-config.h"
385#include "recog.h"
386#include "function.h"
387#include "regs.h"
e011eba9 388#include "alloc-pool.h"
389#include "flags.h"
390#include "hard-reg-set.h"
391#include "basic-block.h"
392#include "sbitmap.h"
393#include "bitmap.h"
394#include "timevar.h"
395#include "df.h"
396#include "tree-pass.h"
a9e21c4c 397#include "params.h"
e011eba9 398
3e6933a8 399static void *df_get_bb_info (struct dataflow *, unsigned int);
f64e6a69 400static void df_set_bb_info (struct dataflow *, unsigned int, void *);
369ea98d 401static void df_clear_bb_info (struct dataflow *, unsigned int);
3072d30e 402#ifdef DF_DEBUG_CFG
403static void df_set_clean_cfg (void);
404#endif
e011eba9 405
4a020a8c 406/* The obstack on which regsets are allocated. */
407struct bitmap_obstack reg_obstack;
408
3072d30e 409/* An obstack for bitmap not related to specific dataflow problems.
410 This obstack should e.g. be used for bitmaps with a short life time
411 such as temporary bitmaps. */
e011eba9 412
3072d30e 413bitmap_obstack df_bitmap_obstack;
e011eba9 414
e011eba9 415
3072d30e 416/*----------------------------------------------------------------------------
417 Functions to create, destroy and manipulate an instance of df.
418----------------------------------------------------------------------------*/
419
f2956fc5 420struct df_d *df;
e011eba9 421
3072d30e 422/* Add PROBLEM (and any dependent problems) to the DF instance. */
e011eba9 423
3072d30e 424void
425df_add_problem (struct df_problem *problem)
e011eba9 426{
427 struct dataflow *dflow;
3072d30e 428 int i;
e011eba9 429
430 /* First try to add the dependent problem. */
3072d30e 431 if (problem->dependent_problem)
432 df_add_problem (problem->dependent_problem);
e011eba9 433
434 /* Check to see if this problem has already been defined. If it
435 has, just return that instance, if not, add it to the end of the
436 vector. */
437 dflow = df->problems_by_index[problem->id];
438 if (dflow)
3072d30e 439 return;
e011eba9 440
441 /* Make a new one and add it to the end. */
4c36ffe6 442 dflow = XCNEW (struct dataflow);
e011eba9 443 dflow->problem = problem;
3072d30e 444 dflow->computed = false;
445 dflow->solutions_dirty = true;
e011eba9 446 df->problems_by_index[dflow->problem->id] = dflow;
447
3072d30e 448 /* Keep the defined problems ordered by index. This solves the
449 problem that RI will use the information from UREC if UREC has
450 been defined, or from LIVE if LIVE is defined and otherwise LR.
451 However for this to work, the computation of RI must be pushed
452 after which ever of those problems is defined, but we do not
453 require any of those except for LR to have actually been
48e1416a 454 defined. */
3072d30e 455 df->num_problems_defined++;
456 for (i = df->num_problems_defined - 2; i >= 0; i--)
457 {
458 if (problem->id < df->problems_in_order[i]->problem->id)
459 df->problems_in_order[i+1] = df->problems_in_order[i];
460 else
461 {
462 df->problems_in_order[i+1] = dflow;
463 return;
464 }
465 }
466 df->problems_in_order[0] = dflow;
e011eba9 467}
468
469
3e6933a8 470/* Set the MASK flags in the DFLOW problem. The old flags are
471 returned. If a flag is not allowed to be changed this will fail if
472 checking is enabled. */
bc620c5c 473int
b9c74b4d 474df_set_flags (int changeable_flags)
3e6933a8 475{
bc620c5c 476 int old_flags = df->changeable_flags;
3072d30e 477 df->changeable_flags |= changeable_flags;
3e6933a8 478 return old_flags;
479}
480
3072d30e 481
3e6933a8 482/* Clear the MASK flags in the DFLOW problem. The old flags are
483 returned. If a flag is not allowed to be changed this will fail if
484 checking is enabled. */
bc620c5c 485int
b9c74b4d 486df_clear_flags (int changeable_flags)
3e6933a8 487{
bc620c5c 488 int old_flags = df->changeable_flags;
3072d30e 489 df->changeable_flags &= ~changeable_flags;
3e6933a8 490 return old_flags;
491}
492
3072d30e 493
e011eba9 494/* Set the blocks that are to be considered for analysis. If this is
495 not called or is called with null, the entire function in
496 analyzed. */
497
48e1416a 498void
3072d30e 499df_set_blocks (bitmap blocks)
e011eba9 500{
501 if (blocks)
502 {
3072d30e 503 if (dump_file)
504 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
d0802b39 505 if (df->blocks_to_analyze)
506 {
deb2741b 507 /* This block is called to change the focus from one subset
508 to another. */
d0802b39 509 int p;
4b5a4301 510 bitmap_head diff;
511 bitmap_initialize (&diff, &df_bitmap_obstack);
512 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
deb2741b 513 for (p = 0; p < df->num_problems_defined; p++)
d0802b39 514 {
515 struct dataflow *dflow = df->problems_in_order[p];
deb2741b 516 if (dflow->optional_p && dflow->problem->reset_fun)
3072d30e 517 dflow->problem->reset_fun (df->blocks_to_analyze);
deb2741b 518 else if (dflow->problem->free_blocks_on_set_blocks)
d0802b39 519 {
520 bitmap_iterator bi;
521 unsigned int bb_index;
48e1416a 522
4b5a4301 523 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
d0802b39 524 {
525 basic_block bb = BASIC_BLOCK (bb_index);
f64e6a69 526 if (bb)
527 {
3072d30e 528 void *bb_info = df_get_bb_info (dflow, bb_index);
369ea98d 529 dflow->problem->free_bb_fun (bb, bb_info);
530 df_clear_bb_info (dflow, bb_index);
f64e6a69 531 }
d0802b39 532 }
533 }
534 }
535
4b5a4301 536 bitmap_clear (&diff);
d0802b39 537 }
538 else
f64e6a69 539 {
deb2741b 540 /* This block of code is executed to change the focus from
541 the entire function to a subset. */
4b5a4301 542 bitmap_head blocks_to_reset;
543 bool initialized = false;
deb2741b 544 int p;
545 for (p = 0; p < df->num_problems_defined; p++)
f64e6a69 546 {
deb2741b 547 struct dataflow *dflow = df->problems_in_order[p];
548 if (dflow->optional_p && dflow->problem->reset_fun)
f64e6a69 549 {
4b5a4301 550 if (!initialized)
f64e6a69 551 {
deb2741b 552 basic_block bb;
4b5a4301 553 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
deb2741b 554 FOR_ALL_BB(bb)
f64e6a69 555 {
4b5a4301 556 bitmap_set_bit (&blocks_to_reset, bb->index);
f64e6a69 557 }
f64e6a69 558 }
4b5a4301 559 dflow->problem->reset_fun (&blocks_to_reset);
f64e6a69 560 }
f64e6a69 561 }
4b5a4301 562 if (initialized)
563 bitmap_clear (&blocks_to_reset);
deb2741b 564
3072d30e 565 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
f64e6a69 566 }
e011eba9 567 bitmap_copy (df->blocks_to_analyze, blocks);
3072d30e 568 df->analyze_subset = true;
e011eba9 569 }
570 else
571 {
deb2741b 572 /* This block is executed to reset the focus to the entire
573 function. */
3072d30e 574 if (dump_file)
deb2741b 575 fprintf (dump_file, "clearing blocks_to_analyze\n");
e011eba9 576 if (df->blocks_to_analyze)
577 {
578 BITMAP_FREE (df->blocks_to_analyze);
579 df->blocks_to_analyze = NULL;
580 }
3072d30e 581 df->analyze_subset = false;
e011eba9 582 }
3072d30e 583
584 /* Setting the blocks causes the refs to be unorganized since only
585 the refs in the blocks are seen. */
586 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
587 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
588 df_mark_solutions_dirty ();
e011eba9 589}
590
591
3072d30e 592/* Delete a DFLOW problem (and any problems that depend on this
593 problem). */
3e6933a8 594
595void
3072d30e 596df_remove_problem (struct dataflow *dflow)
3e6933a8 597{
3072d30e 598 struct df_problem *problem;
3e6933a8 599 int i;
3072d30e 600
601 if (!dflow)
602 return;
603
604 problem = dflow->problem;
605 gcc_assert (problem->remove_problem_fun);
606
3072d30e 607 /* Delete any problems that depended on this problem first. */
deb2741b 608 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 609 if (df->problems_in_order[i]->problem->dependent_problem == problem)
610 df_remove_problem (df->problems_in_order[i]);
611
612 /* Now remove this problem. */
deb2741b 613 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 614 if (df->problems_in_order[i] == dflow)
615 {
616 int j;
617 for (j = i + 1; j < df->num_problems_defined; j++)
618 df->problems_in_order[j-1] = df->problems_in_order[j];
149d23ac 619 df->problems_in_order[j-1] = NULL;
3072d30e 620 df->num_problems_defined--;
621 break;
622 }
623
624 (problem->remove_problem_fun) ();
625 df->problems_by_index[problem->id] = NULL;
626}
627
628
84da8954 629/* Remove all of the problems that are not permanent. Scanning, LR
630 and (at -O2 or higher) LIVE are permanent, the rest are removable.
631 Also clear all of the changeable_flags. */
3072d30e 632
633void
314966f4 634df_finish_pass (bool verify ATTRIBUTE_UNUSED)
3072d30e 635{
636 int i;
637 int removed = 0;
638
5ccba2dc 639#ifdef ENABLE_DF_CHECKING
744b32fe 640 int saved_flags;
3072d30e 641#endif
642
643 if (!df)
644 return;
645
646 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
647 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
648
5ccba2dc 649#ifdef ENABLE_DF_CHECKING
3072d30e 650 saved_flags = df->changeable_flags;
651#endif
652
deb2741b 653 for (i = 0; i < df->num_problems_defined; i++)
3e6933a8 654 {
655 struct dataflow *dflow = df->problems_in_order[i];
3072d30e 656 struct df_problem *problem = dflow->problem;
657
deb2741b 658 if (dflow->optional_p)
659 {
660 gcc_assert (problem->remove_problem_fun);
661 (problem->remove_problem_fun) ();
662 df->problems_in_order[i] = NULL;
663 df->problems_by_index[problem->id] = NULL;
664 removed++;
665 }
3072d30e 666 }
667 df->num_problems_defined -= removed;
668
669 /* Clear all of the flags. */
670 df->changeable_flags = 0;
671 df_process_deferred_rescans ();
672
673 /* Set the focus back to the whole function. */
674 if (df->blocks_to_analyze)
675 {
676 BITMAP_FREE (df->blocks_to_analyze);
677 df->blocks_to_analyze = NULL;
678 df_mark_solutions_dirty ();
679 df->analyze_subset = false;
3e6933a8 680 }
3072d30e 681
5ccba2dc 682#ifdef ENABLE_DF_CHECKING
3072d30e 683 /* Verification will fail in DF_NO_INSN_RESCAN. */
684 if (!(saved_flags & DF_NO_INSN_RESCAN))
685 {
686 df_lr_verify_transfer_functions ();
687 if (df_live)
688 df_live_verify_transfer_functions ();
689 }
690
691#ifdef DF_DEBUG_CFG
692 df_set_clean_cfg ();
693#endif
694#endif
314966f4 695
696#ifdef ENABLE_CHECKING
697 if (verify)
698 df->changeable_flags |= DF_VERIFY_SCHEDULED;
699#endif
3072d30e 700}
701
702
703/* Set up the dataflow instance for the entire back end. */
704
705static unsigned int
706rest_of_handle_df_initialize (void)
707{
708 gcc_assert (!df);
f2956fc5 709 df = XCNEW (struct df_d);
3072d30e 710 df->changeable_flags = 0;
711
712 bitmap_obstack_initialize (&df_bitmap_obstack);
713
714 /* Set this to a conservative value. Stack_ptr_mod will compute it
715 correctly later. */
d5bf7b64 716 crtl->sp_is_unchanging = 0;
3072d30e 717
718 df_scan_add_problem ();
719 df_scan_alloc (NULL);
720
721 /* These three problems are permanent. */
722 df_lr_add_problem ();
deb2741b 723 if (optimize > 1)
3072d30e 724 df_live_add_problem ();
725
726 df->postorder = XNEWVEC (int, last_basic_block);
727 df->postorder_inverted = XNEWVEC (int, last_basic_block);
728 df->n_blocks = post_order_compute (df->postorder, true, true);
729 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
730 gcc_assert (df->n_blocks == df->n_blocks_inverted);
731
732 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
48e1416a 733 memset (df->hard_regs_live_count, 0,
3072d30e 734 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
735
736 df_hard_reg_init ();
737 /* After reload, some ports add certain bits to regs_ever_live so
738 this cannot be reset. */
739 df_compute_regs_ever_live (true);
740 df_scan_blocks ();
741 df_compute_regs_ever_live (false);
742 return 0;
743}
744
745
746static bool
747gate_opt (void)
748{
749 return optimize > 0;
3e6933a8 750}
751
752
20099e35 753struct rtl_opt_pass pass_df_initialize_opt =
3072d30e 754{
20099e35 755 {
756 RTL_PASS,
3072d30e 757 "dfinit", /* name */
758 gate_opt, /* gate */
759 rest_of_handle_df_initialize, /* execute */
760 NULL, /* sub */
761 NULL, /* next */
762 0, /* static_pass_number */
4b366dd3 763 TV_DF_SCAN, /* tv_id */
3072d30e 764 0, /* properties_required */
765 0, /* properties_provided */
766 0, /* properties_destroyed */
767 0, /* todo_flags_start */
20099e35 768 0 /* todo_flags_finish */
769 }
3072d30e 770};
771
772
773static bool
774gate_no_opt (void)
775{
776 return optimize == 0;
777}
778
779
20099e35 780struct rtl_opt_pass pass_df_initialize_no_opt =
3072d30e 781{
20099e35 782 {
783 RTL_PASS,
0c297edc 784 "no-opt dfinit", /* name */
3072d30e 785 gate_no_opt, /* gate */
786 rest_of_handle_df_initialize, /* execute */
787 NULL, /* sub */
788 NULL, /* next */
789 0, /* static_pass_number */
4b366dd3 790 TV_DF_SCAN, /* tv_id */
3072d30e 791 0, /* properties_required */
792 0, /* properties_provided */
793 0, /* properties_destroyed */
794 0, /* todo_flags_start */
20099e35 795 0 /* todo_flags_finish */
796 }
3072d30e 797};
798
799
e011eba9 800/* Free all the dataflow info and the DF structure. This should be
801 called from the df_finish macro which also NULLs the parm. */
802
3072d30e 803static unsigned int
804rest_of_handle_df_finish (void)
e011eba9 805{
806 int i;
807
3072d30e 808 gcc_assert (df);
809
e011eba9 810 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 811 {
812 struct dataflow *dflow = df->problems_in_order[i];
48e1416a 813 dflow->problem->free_fun ();
3072d30e 814 }
e011eba9 815
dd045aee 816 free (df->postorder);
817 free (df->postorder_inverted);
3072d30e 818 free (df->hard_regs_live_count);
e011eba9 819 free (df);
3072d30e 820 df = NULL;
821
822 bitmap_obstack_release (&df_bitmap_obstack);
823 return 0;
e011eba9 824}
825
3072d30e 826
20099e35 827struct rtl_opt_pass pass_df_finish =
3072d30e 828{
20099e35 829 {
830 RTL_PASS,
3072d30e 831 "dfinish", /* name */
832 NULL, /* gate */
833 rest_of_handle_df_finish, /* execute */
834 NULL, /* sub */
835 NULL, /* next */
836 0, /* static_pass_number */
0b1615c1 837 TV_NONE, /* tv_id */
3072d30e 838 0, /* properties_required */
839 0, /* properties_provided */
840 0, /* properties_destroyed */
841 0, /* todo_flags_start */
20099e35 842 0 /* todo_flags_finish */
843 }
3072d30e 844};
845
846
847
848
e011eba9 849\f
850/*----------------------------------------------------------------------------
851 The general data flow analysis engine.
852----------------------------------------------------------------------------*/
853
21256416 854/* Return time BB when it was visited for last time. */
855#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
e011eba9 856
3072d30e 857/* Helper function for df_worklist_dataflow.
48e1416a 858 Propagate the dataflow forward.
3072d30e 859 Given a BB_INDEX, do the dataflow propagation
860 and set bits on for successors in PENDING
21256416 861 if the out set of the dataflow has changed.
862
863 AGE specify time when BB was visited last time.
864 AGE of 0 means we are visiting for first time and need to
865 compute transfer function to initialize datastructures.
866 Otherwise we re-do transfer function only if something change
867 while computing confluence functions.
868 We need to compute confluence only of basic block that are younger
869 then last visit of the BB.
870
871 Return true if BB info has changed. This is always the case
872 in the first visit. */
e011eba9 873
a703ca31 874static bool
3072d30e 875df_worklist_propagate_forward (struct dataflow *dataflow,
876 unsigned bb_index,
877 unsigned *bbindex_to_postorder,
878 bitmap pending,
a703ca31 879 sbitmap considered,
21256416 880 ptrdiff_t age)
e011eba9 881{
e011eba9 882 edge e;
883 edge_iterator ei;
3072d30e 884 basic_block bb = BASIC_BLOCK (bb_index);
a703ca31 885 bool changed = !age;
e011eba9 886
3072d30e 887 /* Calculate <conf_op> of incoming edges. */
e011eba9 888 if (EDGE_COUNT (bb->preds) > 0)
889 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 890 {
21256416 891 if (age <= BB_LAST_CHANGE_AGE (e->src)
892 && TEST_BIT (considered, e->src->index))
a703ca31 893 changed |= dataflow->problem->con_fun_n (e);
48e1416a 894 }
1c1a6437 895 else if (dataflow->problem->con_fun_0)
21256416 896 dataflow->problem->con_fun_0 (bb);
3072d30e 897
a703ca31 898 if (changed
899 && dataflow->problem->trans_fun (bb_index))
e011eba9 900 {
48e1416a 901 /* The out set of this block has changed.
3072d30e 902 Propagate to the outgoing blocks. */
903 FOR_EACH_EDGE (e, ei, bb->succs)
904 {
905 unsigned ob_index = e->dest->index;
906
907 if (TEST_BIT (considered, ob_index))
908 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
909 }
a703ca31 910 return true;
e011eba9 911 }
a703ca31 912 return false;
e011eba9 913}
914
3072d30e 915
916/* Helper function for df_worklist_dataflow.
917 Propagate the dataflow backward. */
918
a703ca31 919static bool
3072d30e 920df_worklist_propagate_backward (struct dataflow *dataflow,
921 unsigned bb_index,
922 unsigned *bbindex_to_postorder,
923 bitmap pending,
a703ca31 924 sbitmap considered,
21256416 925 ptrdiff_t age)
e011eba9 926{
e011eba9 927 edge e;
928 edge_iterator ei;
3072d30e 929 basic_block bb = BASIC_BLOCK (bb_index);
a703ca31 930 bool changed = !age;
e011eba9 931
3072d30e 932 /* Calculate <conf_op> of incoming edges. */
e011eba9 933 if (EDGE_COUNT (bb->succs) > 0)
3072d30e 934 FOR_EACH_EDGE (e, ei, bb->succs)
48e1416a 935 {
21256416 936 if (age <= BB_LAST_CHANGE_AGE (e->dest)
937 && TEST_BIT (considered, e->dest->index))
a703ca31 938 changed |= dataflow->problem->con_fun_n (e);
48e1416a 939 }
1c1a6437 940 else if (dataflow->problem->con_fun_0)
21256416 941 dataflow->problem->con_fun_0 (bb);
e011eba9 942
a703ca31 943 if (changed
944 && dataflow->problem->trans_fun (bb_index))
e011eba9 945 {
48e1416a 946 /* The out set of this block has changed.
3072d30e 947 Propagate to the outgoing blocks. */
948 FOR_EACH_EDGE (e, ei, bb->preds)
949 {
950 unsigned ob_index = e->src->index;
951
952 if (TEST_BIT (considered, ob_index))
953 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
954 }
a703ca31 955 return true;
e011eba9 956 }
a703ca31 957 return false;
e011eba9 958}
959
21256416 960/* Main dataflow solver loop.
961
962 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
963 need to visit.
964 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
965 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
966 PENDING will be freed.
967
968 The worklists are bitmaps indexed by postorder positions.
969
970 The function implements standard algorithm for dataflow solving with two
971 worklists (we are processing WORKLIST and storing new BBs to visit in
972 PENDING).
a9e21c4c 973
21256416 974 As an optimization we maintain ages when BB was changed (stored in bb->aux)
975 and when it was last visited (stored in last_visit_age). This avoids need
976 to re-do confluence function for edges to basic blocks whose source
977 did not change since destination was visited last time. */
a9e21c4c 978
48e1416a 979static void
a9e21c4c 980df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
981 bitmap pending,
982 sbitmap considered,
983 int *blocks_in_postorder,
a703ca31 984 unsigned *bbindex_to_postorder,
985 int n_blocks)
a9e21c4c 986{
987 enum df_flow_dir dir = dataflow->problem->dir;
988 int dcount = 0;
989 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
21256416 990 int age = 0;
a703ca31 991 bool changed;
21256416 992 VEC(int, heap) *last_visit_age = NULL;
993 int prev_age;
a703ca31 994 basic_block bb;
995 int i;
996
21256416 997 VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks);
a9e21c4c 998
999 /* Double-queueing. Worklist is for the current iteration,
1000 and pending is for the next. */
1001 while (!bitmap_empty_p (pending))
1002 {
a703ca31 1003 bitmap_iterator bi;
1004 unsigned int index;
1005
a9e21c4c 1006 /* Swap pending and worklist. */
1007 bitmap temp = worklist;
1008 worklist = pending;
1009 pending = temp;
1010
a703ca31 1011 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
a9e21c4c 1012 {
a9e21c4c 1013 unsigned bb_index;
1014 dcount++;
1015
21256416 1016 bitmap_clear_bit (pending, index);
a9e21c4c 1017 bb_index = blocks_in_postorder[index];
a703ca31 1018 bb = BASIC_BLOCK (bb_index);
21256416 1019 prev_age = VEC_index (int, last_visit_age, index);
a9e21c4c 1020 if (dir == DF_FORWARD)
a703ca31 1021 changed = df_worklist_propagate_forward (dataflow, bb_index,
1022 bbindex_to_postorder,
1023 pending, considered,
1024 prev_age);
48e1416a 1025 else
a703ca31 1026 changed = df_worklist_propagate_backward (dataflow, bb_index,
1027 bbindex_to_postorder,
1028 pending, considered,
1029 prev_age);
21256416 1030 VEC_replace (int, last_visit_age, index, ++age);
a703ca31 1031 if (changed)
21256416 1032 bb->aux = (void *)(ptrdiff_t)age;
a9e21c4c 1033 }
a703ca31 1034 bitmap_clear (worklist);
a9e21c4c 1035 }
a703ca31 1036 for (i = 0; i < n_blocks; i++)
1037 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
a9e21c4c 1038
1039 BITMAP_FREE (worklist);
1040 BITMAP_FREE (pending);
21256416 1041 VEC_free (int, heap, last_visit_age);
a9e21c4c 1042
1043 /* Dump statistics. */
1044 if (dump_file)
1045 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1046 "n_basic_blocks %d n_edges %d"
1047 " count %d (%5.2g)\n",
1048 n_basic_blocks, n_edges,
1049 dcount, dcount / (float)n_basic_blocks);
1050}
1051
3072d30e 1052/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
48e1416a 1053 with "n"-th bit representing the n-th block in the reverse-postorder order.
576af552 1054 The solver is a double-queue algorithm similar to the "double stack" solver
1055 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1056 The only significant difference is that the worklist in this implementation
1057 is always sorted in RPO of the CFG visiting direction. */
e011eba9 1058
48e1416a 1059void
3072d30e 1060df_worklist_dataflow (struct dataflow *dataflow,
1061 bitmap blocks_to_consider,
1062 int *blocks_in_postorder,
1063 int n_blocks)
e011eba9 1064{
3072d30e 1065 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1066 sbitmap considered = sbitmap_alloc (last_basic_block);
1067 bitmap_iterator bi;
3072d30e 1068 unsigned int *bbindex_to_postorder;
1069 int i;
1070 unsigned int index;
1071 enum df_flow_dir dir = dataflow->problem->dir;
e011eba9 1072
3072d30e 1073 gcc_assert (dir != DF_NONE);
e011eba9 1074
3072d30e 1075 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1076 bbindex_to_postorder =
1077 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
e011eba9 1078
3072d30e 1079 /* Initialize the array to an out-of-bound value. */
1080 for (i = 0; i < last_basic_block; i++)
1081 bbindex_to_postorder[i] = last_basic_block;
3e6933a8 1082
3072d30e 1083 /* Initialize the considered map. */
1084 sbitmap_zero (considered);
1085 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
e011eba9 1086 {
3072d30e 1087 SET_BIT (considered, index);
e011eba9 1088 }
1089
3072d30e 1090 /* Initialize the mapping of block index to postorder. */
e011eba9 1091 for (i = 0; i < n_blocks; i++)
1092 {
3072d30e 1093 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1094 /* Add all blocks to the worklist. */
1095 bitmap_set_bit (pending, i);
1096 }
e011eba9 1097
a9e21c4c 1098 /* Initialize the problem. */
3072d30e 1099 if (dataflow->problem->init_fun)
1100 dataflow->problem->init_fun (blocks_to_consider);
e011eba9 1101
576af552 1102 /* Solve it. */
1103 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1104 blocks_in_postorder,
a703ca31 1105 bbindex_to_postorder,
1106 n_blocks);
e011eba9 1107 sbitmap_free (considered);
3072d30e 1108 free (bbindex_to_postorder);
e011eba9 1109}
1110
1111
1112/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1113 the order of the remaining entries. Returns the length of the resulting
1114 list. */
1115
1116static unsigned
1117df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1118{
1119 unsigned act, last;
1120
1121 for (act = 0, last = 0; act < len; act++)
1122 if (bitmap_bit_p (blocks, list[act]))
1123 list[last++] = list[act];
1124
1125 return last;
1126}
1127
1128
48e1416a 1129/* Execute dataflow analysis on a single dataflow problem.
e011eba9 1130
e011eba9 1131 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1132 examined or will be computed. For calls from DF_ANALYZE, this is
48e1416a 1133 the set of blocks that has been passed to DF_SET_BLOCKS.
e011eba9 1134*/
1135
3e6933a8 1136void
48e1416a 1137df_analyze_problem (struct dataflow *dflow,
1138 bitmap blocks_to_consider,
3072d30e 1139 int *postorder, int n_blocks)
e011eba9 1140{
3072d30e 1141 timevar_push (dflow->problem->tv_id);
1142
253d7fd0 1143 /* (Re)Allocate the datastructures necessary to solve the problem. */
1144 if (dflow->problem->alloc_fun)
1145 dflow->problem->alloc_fun (blocks_to_consider);
1146
5ccba2dc 1147#ifdef ENABLE_DF_CHECKING
3072d30e 1148 if (dflow->problem->verify_start_fun)
1149 dflow->problem->verify_start_fun ();
1150#endif
1151
3072d30e 1152 /* Set up the problem and compute the local information. */
1c1a6437 1153 if (dflow->problem->local_compute_fun)
3072d30e 1154 dflow->problem->local_compute_fun (blocks_to_consider);
e011eba9 1155
1156 /* Solve the equations. */
1c1a6437 1157 if (dflow->problem->dataflow_fun)
3072d30e 1158 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1159 postorder, n_blocks);
e011eba9 1160
1161 /* Massage the solution. */
1c1a6437 1162 if (dflow->problem->finalize_fun)
3072d30e 1163 dflow->problem->finalize_fun (blocks_to_consider);
1164
5ccba2dc 1165#ifdef ENABLE_DF_CHECKING
3072d30e 1166 if (dflow->problem->verify_end_fun)
1167 dflow->problem->verify_end_fun ();
1168#endif
1169
1170 timevar_pop (dflow->problem->tv_id);
1171
1172 dflow->computed = true;
e011eba9 1173}
1174
1175
1176/* Analyze dataflow info for the basic blocks specified by the bitmap
1177 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1178
1179void
3072d30e 1180df_analyze (void)
e011eba9 1181{
3072d30e 1182 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1183 bool everything;
3072d30e 1184 int i;
48e1416a 1185
dd045aee 1186 free (df->postorder);
1187 free (df->postorder_inverted);
3072d30e 1188 df->postorder = XNEWVEC (int, last_basic_block);
1189 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1190 df->n_blocks = post_order_compute (df->postorder, true, true);
1191 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1192
1193 /* These should be the same. */
1194 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1195
1196 /* We need to do this before the df_verify_all because this is
1197 not kept incrementally up to date. */
1198 df_compute_regs_ever_live (false);
1199 df_process_deferred_rescans ();
1200
3072d30e 1201 if (dump_file)
1202 fprintf (dump_file, "df_analyze called\n");
5ccba2dc 1203
314966f4 1204#ifndef ENABLE_DF_CHECKING
1205 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1206#endif
1207 df_verify ();
3072d30e 1208
1209 for (i = 0; i < df->n_blocks; i++)
1210 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1211
1212#ifdef ENABLE_CHECKING
1213 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1214 the ENTRY block. */
1215 for (i = 0; i < df->n_blocks_inverted; i++)
1216 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1217#endif
e011eba9 1218
1219 /* Make sure that we have pruned any unreachable blocks from these
1220 sets. */
3072d30e 1221 if (df->analyze_subset)
e011eba9 1222 {
1223 everything = false;
1224 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
48e1416a 1225 df->n_blocks = df_prune_to_subcfg (df->postorder,
3072d30e 1226 df->n_blocks, df->blocks_to_analyze);
48e1416a 1227 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1228 df->n_blocks_inverted,
3072d30e 1229 df->blocks_to_analyze);
e011eba9 1230 BITMAP_FREE (current_all_blocks);
1231 }
1232 else
1233 {
1234 everything = true;
1235 df->blocks_to_analyze = current_all_blocks;
1236 current_all_blocks = NULL;
1237 }
1238
1239 /* Skip over the DF_SCAN problem. */
1240 for (i = 1; i < df->num_problems_defined; i++)
3072d30e 1241 {
1242 struct dataflow *dflow = df->problems_in_order[i];
1243 if (dflow->solutions_dirty)
1244 {
1245 if (dflow->problem->dir == DF_FORWARD)
1246 df_analyze_problem (dflow,
1247 df->blocks_to_analyze,
1248 df->postorder_inverted,
1249 df->n_blocks_inverted);
1250 else
1251 df_analyze_problem (dflow,
1252 df->blocks_to_analyze,
1253 df->postorder,
1254 df->n_blocks);
1255 }
1256 }
e011eba9 1257
1258 if (everything)
1259 {
1260 BITMAP_FREE (df->blocks_to_analyze);
1261 df->blocks_to_analyze = NULL;
1262 }
1263
3072d30e 1264#ifdef DF_DEBUG_CFG
1265 df_set_clean_cfg ();
1266#endif
1267}
1268
1269
1270/* Return the number of basic blocks from the last call to df_analyze. */
1271
48e1416a 1272int
3072d30e 1273df_get_n_blocks (enum df_flow_dir dir)
1274{
1275 gcc_assert (dir != DF_NONE);
1276
1277 if (dir == DF_FORWARD)
1278 {
1279 gcc_assert (df->postorder_inverted);
1280 return df->n_blocks_inverted;
1281 }
1282
1283 gcc_assert (df->postorder);
1284 return df->n_blocks;
1285}
1286
1287
48e1416a 1288/* Return a pointer to the array of basic blocks in the reverse postorder.
3072d30e 1289 Depending on the direction of the dataflow problem,
1290 it returns either the usual reverse postorder array
1291 or the reverse postorder of inverted traversal. */
1292int *
1293df_get_postorder (enum df_flow_dir dir)
1294{
1295 gcc_assert (dir != DF_NONE);
1296
1297 if (dir == DF_FORWARD)
1298 {
1299 gcc_assert (df->postorder_inverted);
1300 return df->postorder_inverted;
1301 }
1302 gcc_assert (df->postorder);
1303 return df->postorder;
e011eba9 1304}
1305
48e1416a 1306static struct df_problem user_problem;
3072d30e 1307static struct dataflow user_dflow;
e011eba9 1308
3072d30e 1309/* Interface for calling iterative dataflow with user defined
1310 confluence and transfer functions. All that is necessary is to
1311 supply DIR, a direction, CONF_FUN_0, a confluence function for
1312 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1313 confluence function, TRANS_FUN, the basic block transfer function,
1314 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1315 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1316
1317void
1318df_simple_dataflow (enum df_flow_dir dir,
1319 df_init_function init_fun,
1320 df_confluence_function_0 con_fun_0,
1321 df_confluence_function_n con_fun_n,
1322 df_transfer_function trans_fun,
1323 bitmap blocks, int * postorder, int n_blocks)
1324{
1325 memset (&user_problem, 0, sizeof (struct df_problem));
1326 user_problem.dir = dir;
1327 user_problem.init_fun = init_fun;
1328 user_problem.con_fun_0 = con_fun_0;
1329 user_problem.con_fun_n = con_fun_n;
1330 user_problem.trans_fun = trans_fun;
1331 user_dflow.problem = &user_problem;
1332 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1333}
1334
48e1416a 1335
e011eba9 1336\f
1337/*----------------------------------------------------------------------------
1338 Functions to support limited incremental change.
1339----------------------------------------------------------------------------*/
1340
1341
1342/* Get basic block info. */
1343
1344static void *
1345df_get_bb_info (struct dataflow *dflow, unsigned int index)
1346{
3072d30e 1347 if (dflow->block_info == NULL)
1348 return NULL;
1349 if (index >= dflow->block_info_size)
1350 return NULL;
369ea98d 1351 return (void *)((char *)dflow->block_info
1352 + index * dflow->problem->block_info_elt_size);
e011eba9 1353}
1354
1355
1356/* Set basic block info. */
1357
1358static void
48e1416a 1359df_set_bb_info (struct dataflow *dflow, unsigned int index,
e011eba9 1360 void *bb_info)
1361{
3072d30e 1362 gcc_assert (dflow->block_info);
369ea98d 1363 memcpy ((char *)dflow->block_info
1364 + index * dflow->problem->block_info_elt_size,
1365 bb_info, dflow->problem->block_info_elt_size);
1366}
1367
1368
1369/* Clear basic block info. */
1370
1371static void
1372df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1373{
1374 gcc_assert (dflow->block_info);
1375 gcc_assert (dflow->block_info_size > index);
1376 memset ((char *)dflow->block_info
1377 + index * dflow->problem->block_info_elt_size,
1378 0, dflow->problem->block_info_elt_size);
e011eba9 1379}
1380
1381
3072d30e 1382/* Mark the solutions as being out of date. */
1383
48e1416a 1384void
3072d30e 1385df_mark_solutions_dirty (void)
1386{
1387 if (df)
1388 {
48e1416a 1389 int p;
3072d30e 1390 for (p = 1; p < df->num_problems_defined; p++)
1391 df->problems_in_order[p]->solutions_dirty = true;
1392 }
1393}
1394
1395
1396/* Return true if BB needs it's transfer functions recomputed. */
1397
48e1416a 1398bool
3072d30e 1399df_get_bb_dirty (basic_block bb)
1400{
3693f86f 1401 return bitmap_bit_p ((df_live
1402 ? df_live : df_lr)->out_of_date_transfer_functions,
1403 bb->index);
3072d30e 1404}
1405
1406
1407/* Mark BB as needing it's transfer functions as being out of
1408 date. */
1409
48e1416a 1410void
3072d30e 1411df_set_bb_dirty (basic_block bb)
1412{
bc6adae4 1413 bb->flags |= BB_MODIFIED;
3072d30e 1414 if (df)
1415 {
48e1416a 1416 int p;
3072d30e 1417 for (p = 1; p < df->num_problems_defined; p++)
1418 {
1419 struct dataflow *dflow = df->problems_in_order[p];
1420 if (dflow->out_of_date_transfer_functions)
1421 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1422 }
1423 df_mark_solutions_dirty ();
1424 }
1425}
1426
1427
369ea98d 1428/* Grow the bb_info array. */
1429
1430void
1431df_grow_bb_info (struct dataflow *dflow)
1432{
1433 unsigned int new_size = last_basic_block + 1;
1434 if (dflow->block_info_size < new_size)
1435 {
1436 new_size += new_size / 4;
1437 dflow->block_info
1438 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1439 new_size
1440 * dflow->problem->block_info_elt_size);
1441 memset ((char *)dflow->block_info
1442 + dflow->block_info_size
1443 * dflow->problem->block_info_elt_size,
1444 0,
1445 (new_size - dflow->block_info_size)
1446 * dflow->problem->block_info_elt_size);
1447 dflow->block_info_size = new_size;
1448 }
1449}
1450
86fc6921 1451
3072d30e 1452/* Clear the dirty bits. This is called from places that delete
1453 blocks. */
1454static void
1455df_clear_bb_dirty (basic_block bb)
1456{
48e1416a 1457 int p;
3072d30e 1458 for (p = 1; p < df->num_problems_defined; p++)
1459 {
1460 struct dataflow *dflow = df->problems_in_order[p];
1461 if (dflow->out_of_date_transfer_functions)
1462 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1463 }
1464}
369ea98d 1465
e011eba9 1466/* Called from the rtl_compact_blocks to reorganize the problems basic
1467 block info. */
1468
48e1416a 1469void
3072d30e 1470df_compact_blocks (void)
e011eba9 1471{
1472 int i, p;
1473 basic_block bb;
369ea98d 1474 void *problem_temps;
4b5a4301 1475 bitmap_head tmp;
e011eba9 1476
4b5a4301 1477 bitmap_initialize (&tmp, &df_bitmap_obstack);
e011eba9 1478 for (p = 0; p < df->num_problems_defined; p++)
1479 {
1480 struct dataflow *dflow = df->problems_in_order[p];
3072d30e 1481
1482 /* Need to reorganize the out_of_date_transfer_functions for the
1483 dflow problem. */
1484 if (dflow->out_of_date_transfer_functions)
1485 {
4b5a4301 1486 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
3072d30e 1487 bitmap_clear (dflow->out_of_date_transfer_functions);
4b5a4301 1488 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1489 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
4b5a4301 1490 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1491 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1492
1493 i = NUM_FIXED_BLOCKS;
48e1416a 1494 FOR_EACH_BB (bb)
3072d30e 1495 {
4b5a4301 1496 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1497 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1498 i++;
1499 }
1500 }
1501
1502 /* Now shuffle the block info for the problem. */
1c1a6437 1503 if (dflow->problem->free_bb_fun)
e011eba9 1504 {
369ea98d 1505 int size = last_basic_block * dflow->problem->block_info_elt_size;
1506 problem_temps = XNEWVAR (char, size);
e011eba9 1507 df_grow_bb_info (dflow);
1508 memcpy (problem_temps, dflow->block_info, size);
1509
1510 /* Copy the bb info from the problem tmps to the proper
1511 place in the block_info vector. Null out the copied
3072d30e 1512 item. The entry and exit blocks never move. */
e011eba9 1513 i = NUM_FIXED_BLOCKS;
48e1416a 1514 FOR_EACH_BB (bb)
e011eba9 1515 {
369ea98d 1516 df_set_bb_info (dflow, i,
1517 (char *)problem_temps
1518 + bb->index * dflow->problem->block_info_elt_size);
e011eba9 1519 i++;
1520 }
369ea98d 1521 memset ((char *)dflow->block_info
1522 + i * dflow->problem->block_info_elt_size, 0,
1523 (last_basic_block - i)
1524 * dflow->problem->block_info_elt_size);
c5fa0717 1525 free (problem_temps);
e011eba9 1526 }
1527 }
1528
3072d30e 1529 /* Shuffle the bits in the basic_block indexed arrays. */
1530
1531 if (df->blocks_to_analyze)
1532 {
4b5a4301 1533 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1534 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
4b5a4301 1535 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1536 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
4b5a4301 1537 bitmap_copy (&tmp, df->blocks_to_analyze);
3072d30e 1538 bitmap_clear (df->blocks_to_analyze);
1539 i = NUM_FIXED_BLOCKS;
48e1416a 1540 FOR_EACH_BB (bb)
3072d30e 1541 {
4b5a4301 1542 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1543 bitmap_set_bit (df->blocks_to_analyze, i);
1544 i++;
1545 }
1546 }
1547
4b5a4301 1548 bitmap_clear (&tmp);
3072d30e 1549
e011eba9 1550 i = NUM_FIXED_BLOCKS;
48e1416a 1551 FOR_EACH_BB (bb)
e011eba9 1552 {
a9b9dcf4 1553 SET_BASIC_BLOCK (i, bb);
e011eba9 1554 bb->index = i;
1555 i++;
1556 }
1557
1558 gcc_assert (i == n_basic_blocks);
1559
1560 for (; i < last_basic_block; i++)
a9b9dcf4 1561 SET_BASIC_BLOCK (i, NULL);
3072d30e 1562
1563#ifdef DF_DEBUG_CFG
1564 if (!df_lr->solutions_dirty)
1565 df_set_clean_cfg ();
1566#endif
e011eba9 1567}
1568
1569
3072d30e 1570/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
e011eba9 1571 block. There is no excuse for people to do this kind of thing. */
1572
48e1416a 1573void
3072d30e 1574df_bb_replace (int old_index, basic_block new_block)
e011eba9 1575{
3072d30e 1576 int new_block_index = new_block->index;
e011eba9 1577 int p;
1578
3072d30e 1579 if (dump_file)
1580 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1581
1582 gcc_assert (df);
1583 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1584
e011eba9 1585 for (p = 0; p < df->num_problems_defined; p++)
1586 {
1587 struct dataflow *dflow = df->problems_in_order[p];
1588 if (dflow->block_info)
1589 {
e011eba9 1590 df_grow_bb_info (dflow);
48e1416a 1591 df_set_bb_info (dflow, old_index,
3072d30e 1592 df_get_bb_info (dflow, new_block_index));
e011eba9 1593 }
1594 }
1595
3072d30e 1596 df_clear_bb_dirty (new_block);
a9b9dcf4 1597 SET_BASIC_BLOCK (old_index, new_block);
e011eba9 1598 new_block->index = old_index;
3072d30e 1599 df_set_bb_dirty (BASIC_BLOCK (old_index));
1600 SET_BASIC_BLOCK (new_block_index, NULL);
1601}
1602
1603
1604/* Free all of the per basic block dataflow from all of the problems.
1605 This is typically called before a basic block is deleted and the
1606 problem will be reanalyzed. */
1607
1608void
1609df_bb_delete (int bb_index)
1610{
1611 basic_block bb = BASIC_BLOCK (bb_index);
1612 int i;
1613
1614 if (!df)
1615 return;
48e1416a 1616
3072d30e 1617 for (i = 0; i < df->num_problems_defined; i++)
1618 {
1619 struct dataflow *dflow = df->problems_in_order[i];
1620 if (dflow->problem->free_bb_fun)
1621 {
1622 void *bb_info = df_get_bb_info (dflow, bb_index);
1623 if (bb_info)
1624 {
48e1416a 1625 dflow->problem->free_bb_fun (bb, bb_info);
369ea98d 1626 df_clear_bb_info (dflow, bb_index);
3072d30e 1627 }
1628 }
1629 }
1630 df_clear_bb_dirty (bb);
1631 df_mark_solutions_dirty ();
1632}
1633
1634
1635/* Verify that there is a place for everything and everything is in
1636 its place. This is too expensive to run after every pass in the
1637 mainline. However this is an excellent debugging tool if the
6dfdc153 1638 dataflow information is not being updated properly. You can just
3072d30e 1639 sprinkle calls in until you find the place that is changing an
1640 underlying structure without calling the proper updating
bef304b8 1641 routine. */
3072d30e 1642
1643void
1644df_verify (void)
1645{
1646 df_scan_verify ();
314966f4 1647#ifdef ENABLE_DF_CHECKING
3072d30e 1648 df_lr_verify_transfer_functions ();
1649 if (df_live)
1650 df_live_verify_transfer_functions ();
314966f4 1651#endif
3072d30e 1652}
1653
1654#ifdef DF_DEBUG_CFG
1655
1656/* Compute an array of ints that describes the cfg. This can be used
1657 to discover places where the cfg is modified by the appropriate
1658 calls have not been made to the keep df informed. The internals of
1659 this are unexciting, the key is that two instances of this can be
1660 compared to see if any changes have been made to the cfg. */
1661
1662static int *
1663df_compute_cfg_image (void)
1664{
1665 basic_block bb;
1666 int size = 2 + (2 * n_basic_blocks);
1667 int i;
1668 int * map;
1669
1670 FOR_ALL_BB (bb)
1671 {
1672 size += EDGE_COUNT (bb->succs);
1673 }
1674
1675 map = XNEWVEC (int, size);
1676 map[0] = size;
1677 i = 1;
1678 FOR_ALL_BB (bb)
1679 {
1680 edge_iterator ei;
1681 edge e;
1682
1683 map[i++] = bb->index;
1684 FOR_EACH_EDGE (e, ei, bb->succs)
1685 map[i++] = e->dest->index;
1686 map[i++] = -1;
1687 }
1688 map[i] = -1;
1689 return map;
1690}
1691
1692static int *saved_cfg = NULL;
1693
1694
1695/* This function compares the saved version of the cfg with the
1696 current cfg and aborts if the two are identical. The function
1697 silently returns if the cfg has been marked as dirty or the two are
1698 the same. */
1699
1700void
1701df_check_cfg_clean (void)
1702{
1703 int *new_map;
1704
1705 if (!df)
1706 return;
1707
1708 if (df_lr->solutions_dirty)
1709 return;
1710
48e1416a 1711 if (saved_cfg == NULL)
3072d30e 1712 return;
1713
1714 new_map = df_compute_cfg_image ();
1715 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1716 free (new_map);
e011eba9 1717}
1718
3072d30e 1719
1720/* This function builds a cfg fingerprint and squirrels it away in
1721 saved_cfg. */
1722
1723static void
1724df_set_clean_cfg (void)
1725{
dd045aee 1726 free (saved_cfg);
3072d30e 1727 saved_cfg = df_compute_cfg_image ();
1728}
1729
1730#endif /* DF_DEBUG_CFG */
e011eba9 1731/*----------------------------------------------------------------------------
1732 PUBLIC INTERFACES TO QUERY INFORMATION.
1733----------------------------------------------------------------------------*/
1734
1735
e011eba9 1736/* Return first def of REGNO within BB. */
1737
48e1416a 1738df_ref
3072d30e 1739df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
e011eba9 1740{
1741 rtx insn;
ed6e85ae 1742 df_ref *def_rec;
6151bbc3 1743 unsigned int uid;
e011eba9 1744
1745 FOR_BB_INSNS (bb, insn)
1746 {
6151bbc3 1747 if (!INSN_P (insn))
1748 continue;
1749
1750 uid = INSN_UID (insn);
3072d30e 1751 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1752 {
ed6e85ae 1753 df_ref def = *def_rec;
3072d30e 1754 if (DF_REF_REGNO (def) == regno)
1755 return def;
1756 }
e011eba9 1757 }
1758 return NULL;
1759}
1760
1761
1762/* Return last def of REGNO within BB. */
1763
48e1416a 1764df_ref
3072d30e 1765df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
e011eba9 1766{
1767 rtx insn;
ed6e85ae 1768 df_ref *def_rec;
6151bbc3 1769 unsigned int uid;
e011eba9 1770
1771 FOR_BB_INSNS_REVERSE (bb, insn)
1772 {
6151bbc3 1773 if (!INSN_P (insn))
1774 continue;
e011eba9 1775
6151bbc3 1776 uid = INSN_UID (insn);
3072d30e 1777 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1778 {
ed6e85ae 1779 df_ref def = *def_rec;
3072d30e 1780 if (DF_REF_REGNO (def) == regno)
1781 return def;
1782 }
e011eba9 1783 }
1784
1785 return NULL;
1786}
1787
e011eba9 1788/* Finds the reference corresponding to the definition of REG in INSN.
1789 DF is the dataflow object. */
1790
48e1416a 1791df_ref
3072d30e 1792df_find_def (rtx insn, rtx reg)
e011eba9 1793{
1794 unsigned int uid;
ed6e85ae 1795 df_ref *def_rec;
e011eba9 1796
1797 if (GET_CODE (reg) == SUBREG)
1798 reg = SUBREG_REG (reg);
1799 gcc_assert (REG_P (reg));
1800
1801 uid = INSN_UID (insn);
3072d30e 1802 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1803 {
ed6e85ae 1804 df_ref def = *def_rec;
3072d30e 1805 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1806 return def;
1807 }
e011eba9 1808
1809 return NULL;
1810}
1811
1812
48e1416a 1813/* Return true if REG is defined in INSN, zero otherwise. */
e011eba9 1814
1815bool
3072d30e 1816df_reg_defined (rtx insn, rtx reg)
e011eba9 1817{
3072d30e 1818 return df_find_def (insn, reg) != NULL;
e011eba9 1819}
48e1416a 1820
e011eba9 1821
1822/* Finds the reference corresponding to the use of REG in INSN.
1823 DF is the dataflow object. */
48e1416a 1824
1825df_ref
3072d30e 1826df_find_use (rtx insn, rtx reg)
e011eba9 1827{
1828 unsigned int uid;
ed6e85ae 1829 df_ref *use_rec;
e011eba9 1830
1831 if (GET_CODE (reg) == SUBREG)
1832 reg = SUBREG_REG (reg);
1833 gcc_assert (REG_P (reg));
1834
1835 uid = INSN_UID (insn);
3072d30e 1836 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1837 {
ed6e85ae 1838 df_ref use = *use_rec;
3072d30e 1839 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1840 return use;
48e1416a 1841 }
3072d30e 1842 if (df->changeable_flags & DF_EQ_NOTES)
1843 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1844 {
ed6e85ae 1845 df_ref use = *use_rec;
3072d30e 1846 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
48e1416a 1847 return use;
3072d30e 1848 }
e011eba9 1849 return NULL;
1850}
1851
1852
48e1416a 1853/* Return true if REG is referenced in INSN, zero otherwise. */
e011eba9 1854
1855bool
3072d30e 1856df_reg_used (rtx insn, rtx reg)
e011eba9 1857{
3072d30e 1858 return df_find_use (insn, reg) != NULL;
e011eba9 1859}
48e1416a 1860
e011eba9 1861\f
1862/*----------------------------------------------------------------------------
1863 Debugging and printing functions.
1864----------------------------------------------------------------------------*/
1865
4a020a8c 1866/* Write information about registers and basic blocks into FILE.
1867 This is part of making a debugging dump. */
1868
1869void
1870dump_regset (regset r, FILE *outf)
1871{
1872 unsigned i;
1873 reg_set_iterator rsi;
1874
1875 if (r == NULL)
1876 {
1877 fputs (" (nil)", outf);
1878 return;
1879 }
1880
1881 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
1882 {
1883 fprintf (outf, " %d", i);
1884 if (i < FIRST_PSEUDO_REGISTER)
1885 fprintf (outf, " [%s]",
1886 reg_names[i]);
1887 }
1888}
1889
1890/* Print a human-readable representation of R on the standard error
1891 stream. This function is designed to be used from within the
1892 debugger. */
1893extern void debug_regset (regset);
1894DEBUG_FUNCTION void
1895debug_regset (regset r)
1896{
1897 dump_regset (r, stderr);
1898 putc ('\n', stderr);
1899}
3072d30e 1900
1901/* Write information about registers and basic blocks into FILE.
1902 This is part of making a debugging dump. */
1903
1904void
1905df_print_regset (FILE *file, bitmap r)
1906{
1907 unsigned int i;
1908 bitmap_iterator bi;
1909
1910 if (r == NULL)
1911 fputs (" (nil)", file);
1912 else
1913 {
1914 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1915 {
1916 fprintf (file, " %d", i);
1917 if (i < FIRST_PSEUDO_REGISTER)
1918 fprintf (file, " [%s]", reg_names[i]);
1919 }
1920 }
1921 fprintf (file, "\n");
1922}
1923
1924
bf1f8fbc 1925/* Write information about registers and basic blocks into FILE. The
1926 bitmap is in the form used by df_byte_lr. This is part of making a
1927 debugging dump. */
1928
1929void
0e8e9be3 1930df_print_word_regset (FILE *file, bitmap r)
bf1f8fbc 1931{
1932 unsigned int max_reg = max_reg_num ();
bf1f8fbc 1933
1934 if (r == NULL)
1935 fputs (" (nil)", file);
1936 else
1937 {
1938 unsigned int i;
0e8e9be3 1939 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
bf1f8fbc 1940 {
0e8e9be3 1941 bool found = (bitmap_bit_p (r, 2 * i)
1942 || bitmap_bit_p (r, 2 * i + 1));
1943 if (found)
bf1f8fbc 1944 {
0e8e9be3 1945 int word;
1946 const char * sep = "";
1947 fprintf (file, " %d", i);
1948 fprintf (file, "(");
1949 for (word = 0; word < 2; word++)
1950 if (bitmap_bit_p (r, 2 * i + word))
1951 {
1952 fprintf (file, "%s%d", sep, word);
1953 sep = ", ";
1954 }
1955 fprintf (file, ")");
bf1f8fbc 1956 }
bf1f8fbc 1957 }
1958 }
1959 fprintf (file, "\n");
1960}
1961
1962
e011eba9 1963/* Dump dataflow info. */
774f8797 1964
e011eba9 1965void
3072d30e 1966df_dump (FILE *file)
1967{
1968 basic_block bb;
1969 df_dump_start (file);
1970
1971 FOR_ALL_BB (bb)
1972 {
1973 df_print_bb_index (bb, file);
1974 df_dump_top (bb, file);
1975 df_dump_bottom (bb, file);
1976 }
1977
1978 fprintf (file, "\n");
1979}
1980
1981
774f8797 1982/* Dump dataflow info for df->blocks_to_analyze. */
1983
1984void
1985df_dump_region (FILE *file)
1986{
1987 if (df->blocks_to_analyze)
1988 {
1989 bitmap_iterator bi;
1990 unsigned int bb_index;
1991
1992 fprintf (file, "\n\nstarting region dump\n");
1993 df_dump_start (file);
48e1416a 1994
1995 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
774f8797 1996 {
1997 basic_block bb = BASIC_BLOCK (bb_index);
48e1416a 1998
774f8797 1999 df_print_bb_index (bb, file);
2000 df_dump_top (bb, file);
2001 df_dump_bottom (bb, file);
2002 }
2003 fprintf (file, "\n");
2004 }
48e1416a 2005 else
774f8797 2006 df_dump (file);
2007}
2008
2009
3072d30e 2010/* Dump the introductory information for each problem defined. */
2011
2012void
2013df_dump_start (FILE *file)
e011eba9 2014{
2015 int i;
2016
3e6933a8 2017 if (!df || !file)
e011eba9 2018 return;
2019
2020 fprintf (file, "\n\n%s\n", current_function_name ());
2021 fprintf (file, "\nDataflow summary:\n");
3072d30e 2022 if (df->blocks_to_analyze)
2023 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2024 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
e011eba9 2025
2026 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 2027 {
2028 struct dataflow *dflow = df->problems_in_order[i];
2029 if (dflow->computed)
2030 {
2031 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2032 if (fun)
48e1416a 2033 fun(file);
3072d30e 2034 }
2035 }
2036}
e011eba9 2037
3072d30e 2038
48e1416a 2039/* Dump the top of the block information for BB. */
3072d30e 2040
2041void
2042df_dump_top (basic_block bb, FILE *file)
2043{
2044 int i;
2045
2046 if (!df || !file)
2047 return;
2048
2049 for (i = 0; i < df->num_problems_defined; i++)
2050 {
2051 struct dataflow *dflow = df->problems_in_order[i];
2052 if (dflow->computed)
2053 {
2054 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
2055 if (bbfun)
48e1416a 2056 bbfun (bb, file);
3072d30e 2057 }
2058 }
2059}
2060
2061
48e1416a 2062/* Dump the bottom of the block information for BB. */
3072d30e 2063
2064void
2065df_dump_bottom (basic_block bb, FILE *file)
2066{
2067 int i;
2068
2069 if (!df || !file)
2070 return;
2071
2072 for (i = 0; i < df->num_problems_defined; i++)
2073 {
2074 struct dataflow *dflow = df->problems_in_order[i];
2075 if (dflow->computed)
2076 {
2077 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2078 if (bbfun)
48e1416a 2079 bbfun (bb, file);
3072d30e 2080 }
2081 }
e011eba9 2082}
2083
2084
09669349 2085static void
2086df_ref_dump (df_ref ref, FILE *file)
2087{
2088 fprintf (file, "%c%d(%d)",
2089 DF_REF_REG_DEF_P (ref)
2090 ? 'd'
2091 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2092 DF_REF_ID (ref),
2093 DF_REF_REGNO (ref));
2094}
2095
e011eba9 2096void
ed6e85ae 2097df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
e011eba9 2098{
2099 fprintf (file, "{ ");
3072d30e 2100 while (*ref_rec)
e011eba9 2101 {
ed6e85ae 2102 df_ref ref = *ref_rec;
09669349 2103 df_ref_dump (ref, file);
e011eba9 2104 if (follow_chain)
3e6933a8 2105 df_chain_dump (DF_REF_CHAIN (ref), file);
3072d30e 2106 ref_rec++;
e011eba9 2107 }
2108 fprintf (file, "}");
2109}
2110
2111
2112/* Dump either a ref-def or reg-use chain. */
2113
2114void
ed6e85ae 2115df_regs_chain_dump (df_ref ref, FILE *file)
e011eba9 2116{
2117 fprintf (file, "{ ");
2118 while (ref)
2119 {
09669349 2120 df_ref_dump (ref, file);
ed6e85ae 2121 ref = DF_REF_NEXT_REG (ref);
e011eba9 2122 }
2123 fprintf (file, "}");
2124}
2125
2126
3e6933a8 2127static void
3072d30e 2128df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
e011eba9 2129{
3072d30e 2130 while (*mws)
3e6933a8 2131 {
48e1416a 2132 fprintf (file, "mw %c r[%d..%d]\n",
ed6e85ae 2133 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
3072d30e 2134 (*mws)->start_regno, (*mws)->end_regno);
2135 mws++;
3e6933a8 2136 }
2137}
2138
2139
48e1416a 2140static void
2141df_insn_uid_debug (unsigned int uid,
3e6933a8 2142 bool follow_chain, FILE *file)
2143{
3072d30e 2144 fprintf (file, "insn %d luid %d",
2145 uid, DF_INSN_UID_LUID (uid));
e011eba9 2146
3072d30e 2147 if (DF_INSN_UID_DEFS (uid))
3e6933a8 2148 {
2149 fprintf (file, " defs ");
3072d30e 2150 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
3e6933a8 2151 }
2152
3072d30e 2153 if (DF_INSN_UID_USES (uid))
3e6933a8 2154 {
2155 fprintf (file, " uses ");
3072d30e 2156 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2157 }
2158
2159 if (DF_INSN_UID_EQ_USES (uid))
2160 {
2161 fprintf (file, " eq uses ");
2162 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
3e6933a8 2163 }
2164
3072d30e 2165 if (DF_INSN_UID_MWS (uid))
3e6933a8 2166 {
2167 fprintf (file, " mws ");
3072d30e 2168 df_mws_dump (DF_INSN_UID_MWS (uid), file);
3e6933a8 2169 }
e011eba9 2170 fprintf (file, "\n");
2171}
2172
3e6933a8 2173
4b987fac 2174DEBUG_FUNCTION void
3072d30e 2175df_insn_debug (rtx insn, bool follow_chain, FILE *file)
3e6933a8 2176{
3072d30e 2177 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
3e6933a8 2178}
2179
4b987fac 2180DEBUG_FUNCTION void
3072d30e 2181df_insn_debug_regno (rtx insn, FILE *file)
e011eba9 2182{
158b6cc9 2183 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
e011eba9 2184
2185 fprintf (file, "insn %d bb %d luid %d defs ",
158b6cc9 2186 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2187 DF_INSN_INFO_LUID (insn_info));
2188 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
48e1416a 2189
e011eba9 2190 fprintf (file, " uses ");
158b6cc9 2191 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
3072d30e 2192
2193 fprintf (file, " eq_uses ");
158b6cc9 2194 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
e011eba9 2195 fprintf (file, "\n");
2196}
2197
4b987fac 2198DEBUG_FUNCTION void
3072d30e 2199df_regno_debug (unsigned int regno, FILE *file)
e011eba9 2200{
2201 fprintf (file, "reg %d defs ", regno);
3072d30e 2202 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
e011eba9 2203 fprintf (file, " uses ");
3072d30e 2204 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2205 fprintf (file, " eq_uses ");
2206 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
e011eba9 2207 fprintf (file, "\n");
2208}
2209
2210
4b987fac 2211DEBUG_FUNCTION void
ed6e85ae 2212df_ref_debug (df_ref ref, FILE *file)
e011eba9 2213{
2214 fprintf (file, "%c%d ",
2215 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2216 DF_REF_ID (ref));
3eb9ad16 2217 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
e011eba9 2218 DF_REF_REGNO (ref),
2219 DF_REF_BBNO (ref),
ed6e85ae 2220 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
3072d30e 2221 DF_REF_FLAGS (ref),
2222 DF_REF_TYPE (ref));
2223 if (DF_REF_LOC (ref))
44cb2148 2224 {
2225 if (flag_dump_noaddr)
2226 fprintf (file, "loc #(#) chain ");
2227 else
2228 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2229 (void *)*DF_REF_LOC (ref));
2230 }
3072d30e 2231 else
2232 fprintf (file, "chain ");
3e6933a8 2233 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2234 fprintf (file, "\n");
2235}
2236\f
2237/* Functions for debugging from GDB. */
2238
4b987fac 2239DEBUG_FUNCTION void
e011eba9 2240debug_df_insn (rtx insn)
2241{
3072d30e 2242 df_insn_debug (insn, true, stderr);
e011eba9 2243 debug_rtx (insn);
2244}
2245
2246
4b987fac 2247DEBUG_FUNCTION void
e011eba9 2248debug_df_reg (rtx reg)
2249{
3072d30e 2250 df_regno_debug (REGNO (reg), stderr);
e011eba9 2251}
2252
2253
4b987fac 2254DEBUG_FUNCTION void
e011eba9 2255debug_df_regno (unsigned int regno)
2256{
3072d30e 2257 df_regno_debug (regno, stderr);
e011eba9 2258}
2259
2260
4b987fac 2261DEBUG_FUNCTION void
ed6e85ae 2262debug_df_ref (df_ref ref)
e011eba9 2263{
3e6933a8 2264 df_ref_debug (ref, stderr);
e011eba9 2265}
2266
2267
4b987fac 2268DEBUG_FUNCTION void
e011eba9 2269debug_df_defno (unsigned int defno)
2270{
3072d30e 2271 df_ref_debug (DF_DEFS_GET (defno), stderr);
e011eba9 2272}
2273
2274
4b987fac 2275DEBUG_FUNCTION void
e011eba9 2276debug_df_useno (unsigned int defno)
2277{
3072d30e 2278 df_ref_debug (DF_USES_GET (defno), stderr);
e011eba9 2279}
2280
2281
4b987fac 2282DEBUG_FUNCTION void
e011eba9 2283debug_df_chain (struct df_link *link)
2284{
3e6933a8 2285 df_chain_dump (link, stderr);
e011eba9 2286 fputc ('\n', stderr);
2287}