]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
5624e564 2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
b8698a0f 3 Originally contributed by Michael P. Hayes
4d779342
DB
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
9dcd6f09 12Software Foundation; either version 3, or (at your option) any later
4d779342
DB
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
9dcd6f09
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
4d779342
DB
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
6fb5fa3c
DB
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
4d779342 40
6fb5fa3c
DB
41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
fa10beec 44areas that can be reached from a definition of a variable. The LIVE
b8698a0f 45problem finds the intersection of these two areas.
4d779342 46
6fb5fa3c
DB
47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
4d779342 49
6fb5fa3c
DB
50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
4d779342 57
6fb5fa3c 58In the middle layer, basic blocks are scanned to produce transfer
fa10beec 59functions which describe the effects of that block on the global
6fb5fa3c 60dataflow solution. The transfer functions are only rebuilt if the
b8698a0f 61some instruction within the block has changed.
4d779342 62
6fb5fa3c 63The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 64is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
4d779342
DB
67
68
6fb5fa3c 69USAGE:
4d779342 70
6fb5fa3c 71Here is an example of using the dataflow routines.
4d779342 72
05c219bb 73 df_[chain,live,note,rd]_add_problem (flags);
4d779342 74
6fb5fa3c 75 df_set_blocks (blocks);
4d779342 76
6fb5fa3c 77 df_analyze ();
4d779342 78
6fb5fa3c 79 df_dump (stderr);
4d779342 80
0d475361 81 df_finish_pass (false);
4d779342 82
05c219bb 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
4d779342
DB
87
88Problems can be dependent on other problems. For instance, solving
d1c78882 89def-use or use-def chains is dependent on solving reaching
c0220ea4 90definitions. As long as these dependencies are listed in the problem
4d779342
DB
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
4d779342
DB
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 108before the call to analyze in order to eliminate the possibility that
4d779342
DB
109optimizations that reorder blocks invalidate the bitvector.
110
6fb5fa3c
DB
111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 114to access these bitvectors. All deferred rescannings are down before
0d52bcc1 115the transfer functions are recomputed.
4d779342
DB
116
117DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
0a41f3b2 126deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
cea618ac 146 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
0d52bcc1 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e02101ff 184 note_stores and rtx iterators instead of using the DF data. This
ecb7f6de 185 can be said to fall under case 1c.
6fb5fa3c
DB
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
0a41f3b2 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
190 be rescanned.
191
ecb7f6de
PB
1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
198
1994) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 200 itself using the low level df primitives. Currently no pass does
6fb5fa3c 201 this, but it has the advantage that it is quite efficient given
b8698a0f 202 that the pass generally has exact knowledge of what it is changing.
6fb5fa3c
DB
203
204DATA STRUCTURES
4d779342
DB
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
4d779342
DB
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 239keep the dataflow information up to data (if this is really what is
4d779342
DB
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
b8698a0f 249The basic object is a DF_REF (reference) and this may either be a
4d779342
DB
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
6fb5fa3c
DB
261ACCESSING INSNS:
262
50e94c7e
SB
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
6fb5fa3c 286
4d779342
DB
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
b8698a0f 293 REAL refs are associated with instructions.
4d779342
DB
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c 296 these lists can be accessed by calling df_get_artificial_defs or
b8698a0f
L
297 df_get_artificial_uses for the particular basic block.
298
912f2dac
DB
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
c0220ea4 314 Artificial defs occur at the end of the entry block. These arise
912f2dac 315 from registers that are live at entry to the function.
4d779342 316
b8698a0f 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
6fb5fa3c 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 319
6fb5fa3c
DB
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
b8698a0f 324 treated like uses. If it is not set they are ignored.
6fb5fa3c
DB
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
4d779342
DB
340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
b8698a0f 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
4d779342 355NOTES:
b8698a0f 356
4d779342
DB
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
fa10beec 368smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
b8698a0f 373are write-only operations.
4d779342
DB
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
c7131fb2 380#include "backend.h"
4d779342 381#include "rtl.h"
c7131fb2 382#include "df.h"
4d779342
DB
383#include "tm_p.h"
384#include "insn-config.h"
4d779342 385#include "regs.h"
957060b5
AM
386#include "emit-rtl.h"
387#include "recog.h"
4d779342 388#include "flags.h"
60393bbc 389#include "cfganal.h"
4d779342 390#include "tree-pass.h"
185082a7 391#include "params.h"
7be64667 392#include "cfgloop.h"
4d779342 393
23249ac4 394static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 395static void df_set_bb_info (struct dataflow *, unsigned int, void *);
e285df08 396static void df_clear_bb_info (struct dataflow *, unsigned int);
6fb5fa3c
DB
397#ifdef DF_DEBUG_CFG
398static void df_set_clean_cfg (void);
399#endif
4d779342 400
532aafad
SB
401/* The obstack on which regsets are allocated. */
402struct bitmap_obstack reg_obstack;
403
6fb5fa3c
DB
404/* An obstack for bitmap not related to specific dataflow problems.
405 This obstack should e.g. be used for bitmaps with a short life time
406 such as temporary bitmaps. */
4d779342 407
6fb5fa3c 408bitmap_obstack df_bitmap_obstack;
4d779342 409
4d779342 410
6fb5fa3c
DB
411/*----------------------------------------------------------------------------
412 Functions to create, destroy and manipulate an instance of df.
413----------------------------------------------------------------------------*/
414
f12c802a 415struct df_d *df;
4d779342 416
6fb5fa3c 417/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 418
6fb5fa3c
DB
419void
420df_add_problem (struct df_problem *problem)
4d779342
DB
421{
422 struct dataflow *dflow;
6fb5fa3c 423 int i;
4d779342
DB
424
425 /* First try to add the dependent problem. */
6fb5fa3c
DB
426 if (problem->dependent_problem)
427 df_add_problem (problem->dependent_problem);
4d779342
DB
428
429 /* Check to see if this problem has already been defined. If it
430 has, just return that instance, if not, add it to the end of the
431 vector. */
432 dflow = df->problems_by_index[problem->id];
433 if (dflow)
6fb5fa3c 434 return;
4d779342
DB
435
436 /* Make a new one and add it to the end. */
5ed6ace5 437 dflow = XCNEW (struct dataflow);
4d779342 438 dflow->problem = problem;
6fb5fa3c
DB
439 dflow->computed = false;
440 dflow->solutions_dirty = true;
4d779342
DB
441 df->problems_by_index[dflow->problem->id] = dflow;
442
6fb5fa3c
DB
443 /* Keep the defined problems ordered by index. This solves the
444 problem that RI will use the information from UREC if UREC has
445 been defined, or from LIVE if LIVE is defined and otherwise LR.
446 However for this to work, the computation of RI must be pushed
447 after which ever of those problems is defined, but we do not
448 require any of those except for LR to have actually been
b8698a0f 449 defined. */
6fb5fa3c
DB
450 df->num_problems_defined++;
451 for (i = df->num_problems_defined - 2; i >= 0; i--)
452 {
453 if (problem->id < df->problems_in_order[i]->problem->id)
454 df->problems_in_order[i+1] = df->problems_in_order[i];
455 else
456 {
457 df->problems_in_order[i+1] = dflow;
458 return;
459 }
460 }
461 df->problems_in_order[0] = dflow;
4d779342
DB
462}
463
464
23249ac4
DB
465/* Set the MASK flags in the DFLOW problem. The old flags are
466 returned. If a flag is not allowed to be changed this will fail if
467 checking is enabled. */
81f40b79 468int
bbbbb16a 469df_set_flags (int changeable_flags)
23249ac4 470{
81f40b79 471 int old_flags = df->changeable_flags;
6fb5fa3c 472 df->changeable_flags |= changeable_flags;
23249ac4
DB
473 return old_flags;
474}
475
6fb5fa3c 476
23249ac4
DB
477/* Clear the MASK flags in the DFLOW problem. The old flags are
478 returned. If a flag is not allowed to be changed this will fail if
479 checking is enabled. */
81f40b79 480int
bbbbb16a 481df_clear_flags (int changeable_flags)
23249ac4 482{
81f40b79 483 int old_flags = df->changeable_flags;
6fb5fa3c 484 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
485 return old_flags;
486}
487
6fb5fa3c 488
4d779342
DB
489/* Set the blocks that are to be considered for analysis. If this is
490 not called or is called with null, the entire function in
491 analyzed. */
492
b8698a0f 493void
6fb5fa3c 494df_set_blocks (bitmap blocks)
4d779342
DB
495{
496 if (blocks)
497 {
6fb5fa3c
DB
498 if (dump_file)
499 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
500 if (df->blocks_to_analyze)
501 {
89a95777
KZ
502 /* This block is called to change the focus from one subset
503 to another. */
3b8266e2 504 int p;
a7e3698d
JH
505 bitmap_head diff;
506 bitmap_initialize (&diff, &df_bitmap_obstack);
507 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
89a95777 508 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
509 {
510 struct dataflow *dflow = df->problems_in_order[p];
89a95777 511 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 512 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 513 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
514 {
515 bitmap_iterator bi;
516 unsigned int bb_index;
b8698a0f 517
a7e3698d 518 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
3b8266e2 519 {
06e28de2 520 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
30cb87a0
KZ
521 if (bb)
522 {
6fb5fa3c 523 void *bb_info = df_get_bb_info (dflow, bb_index);
e285df08
JH
524 dflow->problem->free_bb_fun (bb, bb_info);
525 df_clear_bb_info (dflow, bb_index);
30cb87a0 526 }
3b8266e2
KZ
527 }
528 }
529 }
530
a7e3698d 531 bitmap_clear (&diff);
3b8266e2
KZ
532 }
533 else
30cb87a0 534 {
89a95777
KZ
535 /* This block of code is executed to change the focus from
536 the entire function to a subset. */
a7e3698d
JH
537 bitmap_head blocks_to_reset;
538 bool initialized = false;
89a95777
KZ
539 int p;
540 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 541 {
89a95777
KZ
542 struct dataflow *dflow = df->problems_in_order[p];
543 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 544 {
a7e3698d 545 if (!initialized)
30cb87a0 546 {
89a95777 547 basic_block bb;
a7e3698d 548 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
04a90bec 549 FOR_ALL_BB_FN (bb, cfun)
30cb87a0 550 {
a7e3698d 551 bitmap_set_bit (&blocks_to_reset, bb->index);
30cb87a0 552 }
30cb87a0 553 }
a7e3698d 554 dflow->problem->reset_fun (&blocks_to_reset);
30cb87a0 555 }
30cb87a0 556 }
a7e3698d
JH
557 if (initialized)
558 bitmap_clear (&blocks_to_reset);
89a95777 559
6fb5fa3c 560 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 561 }
4d779342 562 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 563 df->analyze_subset = true;
4d779342
DB
564 }
565 else
566 {
89a95777
KZ
567 /* This block is executed to reset the focus to the entire
568 function. */
6fb5fa3c 569 if (dump_file)
89a95777 570 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
571 if (df->blocks_to_analyze)
572 {
573 BITMAP_FREE (df->blocks_to_analyze);
574 df->blocks_to_analyze = NULL;
575 }
6fb5fa3c 576 df->analyze_subset = false;
4d779342 577 }
6fb5fa3c
DB
578
579 /* Setting the blocks causes the refs to be unorganized since only
580 the refs in the blocks are seen. */
581 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
582 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
583 df_mark_solutions_dirty ();
4d779342
DB
584}
585
586
6fb5fa3c
DB
587/* Delete a DFLOW problem (and any problems that depend on this
588 problem). */
23249ac4
DB
589
590void
6fb5fa3c 591df_remove_problem (struct dataflow *dflow)
23249ac4 592{
6fb5fa3c 593 struct df_problem *problem;
23249ac4 594 int i;
6fb5fa3c
DB
595
596 if (!dflow)
597 return;
598
599 problem = dflow->problem;
600 gcc_assert (problem->remove_problem_fun);
601
6fb5fa3c 602 /* Delete any problems that depended on this problem first. */
89a95777 603 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
604 if (df->problems_in_order[i]->problem->dependent_problem == problem)
605 df_remove_problem (df->problems_in_order[i]);
606
607 /* Now remove this problem. */
89a95777 608 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
609 if (df->problems_in_order[i] == dflow)
610 {
611 int j;
612 for (j = i + 1; j < df->num_problems_defined; j++)
613 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 614 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
615 df->num_problems_defined--;
616 break;
617 }
618
619 (problem->remove_problem_fun) ();
620 df->problems_by_index[problem->id] = NULL;
621}
622
623
05c219bb
PB
624/* Remove all of the problems that are not permanent. Scanning, LR
625 and (at -O2 or higher) LIVE are permanent, the rest are removable.
626 Also clear all of the changeable_flags. */
6fb5fa3c
DB
627
628void
0d475361 629df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
630{
631 int i;
6fb5fa3c 632
3089f8b5 633#ifdef ENABLE_DF_CHECKING
a46edbff 634 int saved_flags;
6fb5fa3c
DB
635#endif
636
637 if (!df)
638 return;
639
640 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
641 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
642
3089f8b5 643#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
644 saved_flags = df->changeable_flags;
645#endif
646
8f252203
TP
647 /* We iterate over problems by index as each problem removed will
648 lead to problems_in_order to be reordered. */
649 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
23249ac4 650 {
8f252203 651 struct dataflow *dflow = df->problems_by_index[i];
6fb5fa3c 652
8f252203
TP
653 if (dflow && dflow->optional_p)
654 df_remove_problem (dflow);
6fb5fa3c 655 }
6fb5fa3c
DB
656
657 /* Clear all of the flags. */
658 df->changeable_flags = 0;
659 df_process_deferred_rescans ();
660
661 /* Set the focus back to the whole function. */
662 if (df->blocks_to_analyze)
663 {
664 BITMAP_FREE (df->blocks_to_analyze);
665 df->blocks_to_analyze = NULL;
666 df_mark_solutions_dirty ();
667 df->analyze_subset = false;
23249ac4 668 }
6fb5fa3c 669
3089f8b5 670#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
671 /* Verification will fail in DF_NO_INSN_RESCAN. */
672 if (!(saved_flags & DF_NO_INSN_RESCAN))
673 {
674 df_lr_verify_transfer_functions ();
675 if (df_live)
676 df_live_verify_transfer_functions ();
677 }
678
679#ifdef DF_DEBUG_CFG
680 df_set_clean_cfg ();
681#endif
682#endif
0d475361 683
b2b29377 684 if (flag_checking && verify)
0d475361 685 df->changeable_flags |= DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
686}
687
688
689/* Set up the dataflow instance for the entire back end. */
690
691static unsigned int
692rest_of_handle_df_initialize (void)
693{
694 gcc_assert (!df);
f12c802a 695 df = XCNEW (struct df_d);
6fb5fa3c
DB
696 df->changeable_flags = 0;
697
698 bitmap_obstack_initialize (&df_bitmap_obstack);
699
700 /* Set this to a conservative value. Stack_ptr_mod will compute it
701 correctly later. */
416ff32e 702 crtl->sp_is_unchanging = 0;
6fb5fa3c
DB
703
704 df_scan_add_problem ();
705 df_scan_alloc (NULL);
706
707 /* These three problems are permanent. */
708 df_lr_add_problem ();
89a95777 709 if (optimize > 1)
6fb5fa3c
DB
710 df_live_add_problem ();
711
8b1c6fd7
DM
712 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
713 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
714 df->n_blocks = post_order_compute (df->postorder, true, true);
715 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
716 gcc_assert (df->n_blocks == df->n_blocks_inverted);
717
225ccc68 718 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
6fb5fa3c
DB
719
720 df_hard_reg_init ();
721 /* After reload, some ports add certain bits to regs_ever_live so
722 this cannot be reset. */
723 df_compute_regs_ever_live (true);
724 df_scan_blocks ();
725 df_compute_regs_ever_live (false);
726 return 0;
727}
728
729
27a4cd48
DM
730namespace {
731
732const pass_data pass_data_df_initialize_opt =
6fb5fa3c 733{
27a4cd48
DM
734 RTL_PASS, /* type */
735 "dfinit", /* name */
736 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
737 TV_DF_SCAN, /* tv_id */
738 0, /* properties_required */
739 0, /* properties_provided */
740 0, /* properties_destroyed */
741 0, /* todo_flags_start */
742 0, /* todo_flags_finish */
6fb5fa3c
DB
743};
744
27a4cd48
DM
745class pass_df_initialize_opt : public rtl_opt_pass
746{
747public:
c3284718
RS
748 pass_df_initialize_opt (gcc::context *ctxt)
749 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
27a4cd48
DM
750 {}
751
752 /* opt_pass methods: */
1a3d085c 753 virtual bool gate (function *) { return optimize > 0; }
be55bfe6
TS
754 virtual unsigned int execute (function *)
755 {
756 return rest_of_handle_df_initialize ();
757 }
27a4cd48
DM
758
759}; // class pass_df_initialize_opt
760
761} // anon namespace
762
763rtl_opt_pass *
764make_pass_df_initialize_opt (gcc::context *ctxt)
765{
766 return new pass_df_initialize_opt (ctxt);
767}
768
6fb5fa3c 769
27a4cd48
DM
770namespace {
771
772const pass_data pass_data_df_initialize_no_opt =
6fb5fa3c 773{
27a4cd48
DM
774 RTL_PASS, /* type */
775 "no-opt dfinit", /* name */
776 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
777 TV_DF_SCAN, /* tv_id */
778 0, /* properties_required */
779 0, /* properties_provided */
780 0, /* properties_destroyed */
781 0, /* todo_flags_start */
782 0, /* todo_flags_finish */
6fb5fa3c
DB
783};
784
27a4cd48
DM
785class pass_df_initialize_no_opt : public rtl_opt_pass
786{
787public:
c3284718
RS
788 pass_df_initialize_no_opt (gcc::context *ctxt)
789 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
27a4cd48
DM
790 {}
791
792 /* opt_pass methods: */
1a3d085c 793 virtual bool gate (function *) { return optimize == 0; }
be55bfe6
TS
794 virtual unsigned int execute (function *)
795 {
796 return rest_of_handle_df_initialize ();
797 }
27a4cd48
DM
798
799}; // class pass_df_initialize_no_opt
800
801} // anon namespace
802
803rtl_opt_pass *
804make_pass_df_initialize_no_opt (gcc::context *ctxt)
805{
806 return new pass_df_initialize_no_opt (ctxt);
807}
808
6fb5fa3c 809
4d779342
DB
810/* Free all the dataflow info and the DF structure. This should be
811 called from the df_finish macro which also NULLs the parm. */
812
6fb5fa3c
DB
813static unsigned int
814rest_of_handle_df_finish (void)
4d779342
DB
815{
816 int i;
817
6fb5fa3c
DB
818 gcc_assert (df);
819
4d779342 820 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
821 {
822 struct dataflow *dflow = df->problems_in_order[i];
b8698a0f 823 dflow->problem->free_fun ();
6fb5fa3c 824 }
4d779342 825
04695783
JM
826 free (df->postorder);
827 free (df->postorder_inverted);
6fb5fa3c 828 free (df->hard_regs_live_count);
4d779342 829 free (df);
6fb5fa3c
DB
830 df = NULL;
831
832 bitmap_obstack_release (&df_bitmap_obstack);
833 return 0;
4d779342
DB
834}
835
6fb5fa3c 836
27a4cd48
DM
837namespace {
838
839const pass_data pass_data_df_finish =
6fb5fa3c 840{
27a4cd48
DM
841 RTL_PASS, /* type */
842 "dfinish", /* name */
843 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
844 TV_NONE, /* tv_id */
845 0, /* properties_required */
846 0, /* properties_provided */
847 0, /* properties_destroyed */
848 0, /* todo_flags_start */
849 0, /* todo_flags_finish */
6fb5fa3c
DB
850};
851
27a4cd48
DM
852class pass_df_finish : public rtl_opt_pass
853{
854public:
c3284718
RS
855 pass_df_finish (gcc::context *ctxt)
856 : rtl_opt_pass (pass_data_df_finish, ctxt)
27a4cd48
DM
857 {}
858
859 /* opt_pass methods: */
be55bfe6
TS
860 virtual unsigned int execute (function *)
861 {
862 return rest_of_handle_df_finish ();
863 }
27a4cd48
DM
864
865}; // class pass_df_finish
866
867} // anon namespace
868
869rtl_opt_pass *
870make_pass_df_finish (gcc::context *ctxt)
871{
872 return new pass_df_finish (ctxt);
873}
874
6fb5fa3c
DB
875
876
877
4d779342
DB
878\f
879/*----------------------------------------------------------------------------
880 The general data flow analysis engine.
881----------------------------------------------------------------------------*/
882
50b2e859
JH
883/* Return time BB when it was visited for last time. */
884#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
4d779342 885
6fb5fa3c 886/* Helper function for df_worklist_dataflow.
b8698a0f 887 Propagate the dataflow forward.
6fb5fa3c
DB
888 Given a BB_INDEX, do the dataflow propagation
889 and set bits on for successors in PENDING
50b2e859
JH
890 if the out set of the dataflow has changed.
891
892 AGE specify time when BB was visited last time.
893 AGE of 0 means we are visiting for first time and need to
894 compute transfer function to initialize datastructures.
895 Otherwise we re-do transfer function only if something change
896 while computing confluence functions.
897 We need to compute confluence only of basic block that are younger
898 then last visit of the BB.
899
900 Return true if BB info has changed. This is always the case
901 in the first visit. */
4d779342 902
1a0f3fa1 903static bool
6fb5fa3c
DB
904df_worklist_propagate_forward (struct dataflow *dataflow,
905 unsigned bb_index,
906 unsigned *bbindex_to_postorder,
907 bitmap pending,
1a0f3fa1 908 sbitmap considered,
50b2e859 909 ptrdiff_t age)
4d779342 910{
4d779342
DB
911 edge e;
912 edge_iterator ei;
06e28de2 913 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 914 bool changed = !age;
4d779342 915
6fb5fa3c 916 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
917 if (EDGE_COUNT (bb->preds) > 0)
918 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 919 {
50b2e859 920 if (age <= BB_LAST_CHANGE_AGE (e->src)
d7c028c0 921 && bitmap_bit_p (considered, e->src->index))
1a0f3fa1 922 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 923 }
e45dcf9c 924 else if (dataflow->problem->con_fun_0)
50b2e859 925 dataflow->problem->con_fun_0 (bb);
6fb5fa3c 926
1a0f3fa1
JH
927 if (changed
928 && dataflow->problem->trans_fun (bb_index))
4d779342 929 {
b8698a0f 930 /* The out set of this block has changed.
6fb5fa3c
DB
931 Propagate to the outgoing blocks. */
932 FOR_EACH_EDGE (e, ei, bb->succs)
933 {
934 unsigned ob_index = e->dest->index;
935
d7c028c0 936 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
937 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
938 }
1a0f3fa1 939 return true;
4d779342 940 }
1a0f3fa1 941 return false;
4d779342
DB
942}
943
6fb5fa3c
DB
944
945/* Helper function for df_worklist_dataflow.
946 Propagate the dataflow backward. */
947
1a0f3fa1 948static bool
6fb5fa3c
DB
949df_worklist_propagate_backward (struct dataflow *dataflow,
950 unsigned bb_index,
951 unsigned *bbindex_to_postorder,
952 bitmap pending,
1a0f3fa1 953 sbitmap considered,
50b2e859 954 ptrdiff_t age)
4d779342 955{
4d779342
DB
956 edge e;
957 edge_iterator ei;
06e28de2 958 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 959 bool changed = !age;
4d779342 960
6fb5fa3c 961 /* Calculate <conf_op> of incoming edges. */
4d779342 962 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 963 FOR_EACH_EDGE (e, ei, bb->succs)
b8698a0f 964 {
50b2e859 965 if (age <= BB_LAST_CHANGE_AGE (e->dest)
d7c028c0 966 && bitmap_bit_p (considered, e->dest->index))
1a0f3fa1 967 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 968 }
e45dcf9c 969 else if (dataflow->problem->con_fun_0)
50b2e859 970 dataflow->problem->con_fun_0 (bb);
4d779342 971
1a0f3fa1
JH
972 if (changed
973 && dataflow->problem->trans_fun (bb_index))
4d779342 974 {
b8698a0f 975 /* The out set of this block has changed.
6fb5fa3c
DB
976 Propagate to the outgoing blocks. */
977 FOR_EACH_EDGE (e, ei, bb->preds)
978 {
979 unsigned ob_index = e->src->index;
980
d7c028c0 981 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
982 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
983 }
1a0f3fa1 984 return true;
4d779342 985 }
1a0f3fa1 986 return false;
4d779342
DB
987}
988
50b2e859
JH
989/* Main dataflow solver loop.
990
991 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
992 need to visit.
993 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
688010ba 994 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
50b2e859
JH
995 PENDING will be freed.
996
997 The worklists are bitmaps indexed by postorder positions.
998
999 The function implements standard algorithm for dataflow solving with two
1000 worklists (we are processing WORKLIST and storing new BBs to visit in
1001 PENDING).
185082a7 1002
50b2e859
JH
1003 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1004 and when it was last visited (stored in last_visit_age). This avoids need
1005 to re-do confluence function for edges to basic blocks whose source
1006 did not change since destination was visited last time. */
185082a7 1007
b8698a0f 1008static void
185082a7
SP
1009df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1010 bitmap pending,
1011 sbitmap considered,
1012 int *blocks_in_postorder,
1a0f3fa1
JH
1013 unsigned *bbindex_to_postorder,
1014 int n_blocks)
185082a7
SP
1015{
1016 enum df_flow_dir dir = dataflow->problem->dir;
1017 int dcount = 0;
1018 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
50b2e859 1019 int age = 0;
1a0f3fa1 1020 bool changed;
6e1aa848 1021 vec<int> last_visit_age = vNULL;
50b2e859 1022 int prev_age;
1a0f3fa1
JH
1023 basic_block bb;
1024 int i;
1025
9771b263 1026 last_visit_age.safe_grow_cleared (n_blocks);
185082a7
SP
1027
1028 /* Double-queueing. Worklist is for the current iteration,
1029 and pending is for the next. */
1030 while (!bitmap_empty_p (pending))
1031 {
1a0f3fa1
JH
1032 bitmap_iterator bi;
1033 unsigned int index;
1034
6b4db501 1035 std::swap (pending, worklist);
185082a7 1036
1a0f3fa1 1037 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
185082a7 1038 {
185082a7
SP
1039 unsigned bb_index;
1040 dcount++;
1041
50b2e859 1042 bitmap_clear_bit (pending, index);
185082a7 1043 bb_index = blocks_in_postorder[index];
06e28de2 1044 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
9771b263 1045 prev_age = last_visit_age[index];
185082a7 1046 if (dir == DF_FORWARD)
1a0f3fa1
JH
1047 changed = df_worklist_propagate_forward (dataflow, bb_index,
1048 bbindex_to_postorder,
1049 pending, considered,
1050 prev_age);
b8698a0f 1051 else
1a0f3fa1
JH
1052 changed = df_worklist_propagate_backward (dataflow, bb_index,
1053 bbindex_to_postorder,
1054 pending, considered,
1055 prev_age);
9771b263 1056 last_visit_age[index] = ++age;
1a0f3fa1 1057 if (changed)
50b2e859 1058 bb->aux = (void *)(ptrdiff_t)age;
185082a7 1059 }
1a0f3fa1 1060 bitmap_clear (worklist);
185082a7 1061 }
1a0f3fa1 1062 for (i = 0; i < n_blocks; i++)
06e28de2 1063 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
185082a7
SP
1064
1065 BITMAP_FREE (worklist);
1066 BITMAP_FREE (pending);
9771b263 1067 last_visit_age.release ();
185082a7
SP
1068
1069 /* Dump statistics. */
1070 if (dump_file)
1071 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1072 "n_basic_blocks %d n_edges %d"
1073 " count %d (%5.2g)\n",
dc936fb2 1074 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
0cae8d31 1075 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
185082a7
SP
1076}
1077
6fb5fa3c 1078/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
b8698a0f 1079 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
1080 The solver is a double-queue algorithm similar to the "double stack" solver
1081 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1082 The only significant difference is that the worklist in this implementation
1083 is always sorted in RPO of the CFG visiting direction. */
4d779342 1084
b8698a0f 1085void
6fb5fa3c
DB
1086df_worklist_dataflow (struct dataflow *dataflow,
1087 bitmap blocks_to_consider,
1088 int *blocks_in_postorder,
1089 int n_blocks)
4d779342 1090{
6fb5fa3c 1091 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
8b1c6fd7 1092 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
4d779342 1093 bitmap_iterator bi;
6fb5fa3c
DB
1094 unsigned int *bbindex_to_postorder;
1095 int i;
1096 unsigned int index;
1097 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1098
6fb5fa3c 1099 gcc_assert (dir != DF_NONE);
4d779342 1100
6fb5fa3c 1101 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
8b1c6fd7
DM
1102 bbindex_to_postorder = XNEWVEC (unsigned int,
1103 last_basic_block_for_fn (cfun));
4d779342 1104
6fb5fa3c 1105 /* Initialize the array to an out-of-bound value. */
8b1c6fd7
DM
1106 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1107 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
23249ac4 1108
6fb5fa3c 1109 /* Initialize the considered map. */
f61e445a 1110 bitmap_clear (considered);
6fb5fa3c 1111 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1112 {
d7c028c0 1113 bitmap_set_bit (considered, index);
4d779342
DB
1114 }
1115
6fb5fa3c 1116 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1117 for (i = 0; i < n_blocks; i++)
1118 {
6fb5fa3c
DB
1119 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1120 /* Add all blocks to the worklist. */
1121 bitmap_set_bit (pending, i);
1122 }
4d779342 1123
185082a7 1124 /* Initialize the problem. */
6fb5fa3c
DB
1125 if (dataflow->problem->init_fun)
1126 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1127
240b5cea
SB
1128 /* Solve it. */
1129 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1130 blocks_in_postorder,
1a0f3fa1
JH
1131 bbindex_to_postorder,
1132 n_blocks);
4d779342 1133 sbitmap_free (considered);
6fb5fa3c 1134 free (bbindex_to_postorder);
4d779342
DB
1135}
1136
1137
1138/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1139 the order of the remaining entries. Returns the length of the resulting
1140 list. */
1141
1142static unsigned
1143df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1144{
1145 unsigned act, last;
1146
1147 for (act = 0, last = 0; act < len; act++)
1148 if (bitmap_bit_p (blocks, list[act]))
1149 list[last++] = list[act];
1150
1151 return last;
1152}
1153
1154
b8698a0f 1155/* Execute dataflow analysis on a single dataflow problem.
4d779342 1156
4d779342
DB
1157 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1158 examined or will be computed. For calls from DF_ANALYZE, this is
b8698a0f 1159 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1160*/
1161
23249ac4 1162void
b8698a0f
L
1163df_analyze_problem (struct dataflow *dflow,
1164 bitmap blocks_to_consider,
6fb5fa3c 1165 int *postorder, int n_blocks)
4d779342 1166{
6fb5fa3c
DB
1167 timevar_push (dflow->problem->tv_id);
1168
e7f96023
JH
1169 /* (Re)Allocate the datastructures necessary to solve the problem. */
1170 if (dflow->problem->alloc_fun)
1171 dflow->problem->alloc_fun (blocks_to_consider);
1172
3089f8b5 1173#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1174 if (dflow->problem->verify_start_fun)
1175 dflow->problem->verify_start_fun ();
1176#endif
1177
6fb5fa3c 1178 /* Set up the problem and compute the local information. */
e45dcf9c 1179 if (dflow->problem->local_compute_fun)
6fb5fa3c 1180 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1181
1182 /* Solve the equations. */
e45dcf9c 1183 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1184 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1185 postorder, n_blocks);
4d779342
DB
1186
1187 /* Massage the solution. */
e45dcf9c 1188 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1189 dflow->problem->finalize_fun (blocks_to_consider);
1190
3089f8b5 1191#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1192 if (dflow->problem->verify_end_fun)
1193 dflow->problem->verify_end_fun ();
1194#endif
1195
1196 timevar_pop (dflow->problem->tv_id);
1197
1198 dflow->computed = true;
4d779342
DB
1199}
1200
1201
7be64667 1202/* Analyze dataflow info. */
4d779342 1203
7be64667
RB
1204static void
1205df_analyze_1 (void)
4d779342 1206{
6fb5fa3c 1207 int i;
b8698a0f 1208
6fb5fa3c
DB
1209 /* These should be the same. */
1210 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1211
1212 /* We need to do this before the df_verify_all because this is
1213 not kept incrementally up to date. */
1214 df_compute_regs_ever_live (false);
1215 df_process_deferred_rescans ();
1216
6fb5fa3c
DB
1217 if (dump_file)
1218 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1219
0d475361
PB
1220#ifndef ENABLE_DF_CHECKING
1221 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1222#endif
1223 df_verify ();
6fb5fa3c 1224
7be64667
RB
1225 /* Skip over the DF_SCAN problem. */
1226 for (i = 1; i < df->num_problems_defined; i++)
1227 {
1228 struct dataflow *dflow = df->problems_in_order[i];
1229 if (dflow->solutions_dirty)
1230 {
1231 if (dflow->problem->dir == DF_FORWARD)
1232 df_analyze_problem (dflow,
1233 df->blocks_to_analyze,
1234 df->postorder_inverted,
1235 df->n_blocks_inverted);
1236 else
1237 df_analyze_problem (dflow,
1238 df->blocks_to_analyze,
1239 df->postorder,
1240 df->n_blocks);
1241 }
1242 }
1243
1244 if (!df->analyze_subset)
1245 {
1246 BITMAP_FREE (df->blocks_to_analyze);
1247 df->blocks_to_analyze = NULL;
1248 }
1249
1250#ifdef DF_DEBUG_CFG
1251 df_set_clean_cfg ();
1252#endif
1253}
1254
1255/* Analyze dataflow info. */
1256
1257void
1258df_analyze (void)
1259{
1260 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1261 int i;
1262
1263 free (df->postorder);
1264 free (df->postorder_inverted);
1265 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1266 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1267 df->n_blocks = post_order_compute (df->postorder, true, true);
1268 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1269
6fb5fa3c
DB
1270 for (i = 0; i < df->n_blocks; i++)
1271 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1272
b2b29377
MM
1273 if (flag_checking)
1274 {
1275 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1276 the ENTRY block. */
1277 for (i = 0; i < df->n_blocks_inverted; i++)
1278 gcc_assert (bitmap_bit_p (current_all_blocks,
1279 df->postorder_inverted[i]));
1280 }
4d779342
DB
1281
1282 /* Make sure that we have pruned any unreachable blocks from these
1283 sets. */
6fb5fa3c 1284 if (df->analyze_subset)
4d779342 1285 {
4d779342 1286 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
b8698a0f 1287 df->n_blocks = df_prune_to_subcfg (df->postorder,
6fb5fa3c 1288 df->n_blocks, df->blocks_to_analyze);
b8698a0f 1289 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
7be64667
RB
1290 df->n_blocks_inverted,
1291 df->blocks_to_analyze);
4d779342
DB
1292 BITMAP_FREE (current_all_blocks);
1293 }
1294 else
1295 {
4d779342
DB
1296 df->blocks_to_analyze = current_all_blocks;
1297 current_all_blocks = NULL;
1298 }
1299
7be64667
RB
1300 df_analyze_1 ();
1301}
1302
1303/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1304 Returns the number of blocks which is always loop->num_nodes. */
1305
1306static int
1307loop_post_order_compute (int *post_order, struct loop *loop)
1308{
1309 edge_iterator *stack;
1310 int sp;
1311 int post_order_num = 0;
1312 bitmap visited;
1313
1314 /* Allocate stack for back-tracking up CFG. */
1315 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1316 sp = 0;
1317
1318 /* Allocate bitmap to track nodes that have been visited. */
1319 visited = BITMAP_ALLOC (NULL);
1320
1321 /* Push the first edge on to the stack. */
1322 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1323
1324 while (sp)
6fb5fa3c 1325 {
7be64667
RB
1326 edge_iterator ei;
1327 basic_block src;
1328 basic_block dest;
1329
1330 /* Look at the edge on the top of the stack. */
1331 ei = stack[sp - 1];
1332 src = ei_edge (ei)->src;
1333 dest = ei_edge (ei)->dest;
1334
1335 /* Check if the edge destination has been visited yet and mark it
1336 if not so. */
1337 if (flow_bb_inside_loop_p (loop, dest)
1338 && bitmap_set_bit (visited, dest->index))
1339 {
1340 if (EDGE_COUNT (dest->succs) > 0)
1341 /* Since the DEST node has been visited for the first
1342 time, check its successors. */
1343 stack[sp++] = ei_start (dest->succs);
1344 else
1345 post_order[post_order_num++] = dest->index;
1346 }
1347 else
1348 {
1349 if (ei_one_before_end_p (ei)
1350 && src != loop_preheader_edge (loop)->src)
1351 post_order[post_order_num++] = src->index;
1352
1353 if (!ei_one_before_end_p (ei))
1354 ei_next (&stack[sp - 1]);
1355 else
1356 sp--;
1357 }
6fb5fa3c 1358 }
4d779342 1359
7be64667
RB
1360 free (stack);
1361 BITMAP_FREE (visited);
1362
1363 return post_order_num;
1364}
1365
1366/* Compute the reverse top sort order of the inverted sub-CFG specified
1367 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1368
1369static int
1370loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1371{
1372 basic_block bb;
1373 edge_iterator *stack;
1374 int sp;
1375 int post_order_num = 0;
1376 bitmap visited;
1377
1378 /* Allocate stack for back-tracking up CFG. */
1379 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1380 sp = 0;
1381
1382 /* Allocate bitmap to track nodes that have been visited. */
1383 visited = BITMAP_ALLOC (NULL);
1384
1385 /* Put all latches into the initial work list. In theory we'd want
1386 to start from loop exits but then we'd have the special case of
1387 endless loops. It doesn't really matter for DF iteration order and
1388 handling latches last is probably even better. */
1389 stack[sp++] = ei_start (loop->header->preds);
1390 bitmap_set_bit (visited, loop->header->index);
1391
1392 /* The inverted traversal loop. */
1393 while (sp)
4d779342 1394 {
7be64667
RB
1395 edge_iterator ei;
1396 basic_block pred;
1397
1398 /* Look at the edge on the top of the stack. */
1399 ei = stack[sp - 1];
1400 bb = ei_edge (ei)->dest;
1401 pred = ei_edge (ei)->src;
1402
1403 /* Check if the predecessor has been visited yet and mark it
1404 if not so. */
1405 if (flow_bb_inside_loop_p (loop, pred)
1406 && bitmap_set_bit (visited, pred->index))
1407 {
1408 if (EDGE_COUNT (pred->preds) > 0)
1409 /* Since the predecessor node has been visited for the first
1410 time, check its predecessors. */
1411 stack[sp++] = ei_start (pred->preds);
1412 else
1413 post_order[post_order_num++] = pred->index;
1414 }
1415 else
1416 {
1417 if (flow_bb_inside_loop_p (loop, bb)
1418 && ei_one_before_end_p (ei))
1419 post_order[post_order_num++] = bb->index;
1420
1421 if (!ei_one_before_end_p (ei))
1422 ei_next (&stack[sp - 1]);
1423 else
1424 sp--;
1425 }
4d779342
DB
1426 }
1427
7be64667
RB
1428 free (stack);
1429 BITMAP_FREE (visited);
1430 return post_order_num;
1431}
1432
1433
1434/* Analyze dataflow info for the basic blocks contained in LOOP. */
1435
1436void
1437df_analyze_loop (struct loop *loop)
1438{
1439 free (df->postorder);
1440 free (df->postorder_inverted);
1441
1442 df->postorder = XNEWVEC (int, loop->num_nodes);
1443 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1444 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1445 df->n_blocks_inverted
1446 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1447 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1448 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1449
1450 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1451 for (int i = 0; i < df->n_blocks; ++i)
1452 bitmap_set_bit (blocks, df->postorder[i]);
1453 df_set_blocks (blocks);
1454 BITMAP_FREE (blocks);
1455
1456 df_analyze_1 ();
6fb5fa3c
DB
1457}
1458
1459
1460/* Return the number of basic blocks from the last call to df_analyze. */
1461
b8698a0f 1462int
6fb5fa3c
DB
1463df_get_n_blocks (enum df_flow_dir dir)
1464{
1465 gcc_assert (dir != DF_NONE);
1466
1467 if (dir == DF_FORWARD)
1468 {
1469 gcc_assert (df->postorder_inverted);
1470 return df->n_blocks_inverted;
1471 }
1472
1473 gcc_assert (df->postorder);
1474 return df->n_blocks;
1475}
1476
1477
b8698a0f 1478/* Return a pointer to the array of basic blocks in the reverse postorder.
6fb5fa3c
DB
1479 Depending on the direction of the dataflow problem,
1480 it returns either the usual reverse postorder array
1481 or the reverse postorder of inverted traversal. */
1482int *
1483df_get_postorder (enum df_flow_dir dir)
1484{
1485 gcc_assert (dir != DF_NONE);
1486
1487 if (dir == DF_FORWARD)
1488 {
1489 gcc_assert (df->postorder_inverted);
1490 return df->postorder_inverted;
1491 }
1492 gcc_assert (df->postorder);
1493 return df->postorder;
4d779342
DB
1494}
1495
b8698a0f 1496static struct df_problem user_problem;
6fb5fa3c 1497static struct dataflow user_dflow;
4d779342 1498
6fb5fa3c
DB
1499/* Interface for calling iterative dataflow with user defined
1500 confluence and transfer functions. All that is necessary is to
1501 supply DIR, a direction, CONF_FUN_0, a confluence function for
1502 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1503 confluence function, TRANS_FUN, the basic block transfer function,
1504 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1505 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1506
1507void
1508df_simple_dataflow (enum df_flow_dir dir,
1509 df_init_function init_fun,
1510 df_confluence_function_0 con_fun_0,
1511 df_confluence_function_n con_fun_n,
1512 df_transfer_function trans_fun,
1513 bitmap blocks, int * postorder, int n_blocks)
1514{
1515 memset (&user_problem, 0, sizeof (struct df_problem));
1516 user_problem.dir = dir;
1517 user_problem.init_fun = init_fun;
1518 user_problem.con_fun_0 = con_fun_0;
1519 user_problem.con_fun_n = con_fun_n;
1520 user_problem.trans_fun = trans_fun;
1521 user_dflow.problem = &user_problem;
1522 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1523}
1524
b8698a0f 1525
4d779342
DB
1526\f
1527/*----------------------------------------------------------------------------
1528 Functions to support limited incremental change.
1529----------------------------------------------------------------------------*/
1530
1531
1532/* Get basic block info. */
1533
1534static void *
1535df_get_bb_info (struct dataflow *dflow, unsigned int index)
1536{
6fb5fa3c
DB
1537 if (dflow->block_info == NULL)
1538 return NULL;
1539 if (index >= dflow->block_info_size)
1540 return NULL;
e285df08
JH
1541 return (void *)((char *)dflow->block_info
1542 + index * dflow->problem->block_info_elt_size);
4d779342
DB
1543}
1544
1545
1546/* Set basic block info. */
1547
1548static void
b8698a0f 1549df_set_bb_info (struct dataflow *dflow, unsigned int index,
4d779342
DB
1550 void *bb_info)
1551{
6fb5fa3c 1552 gcc_assert (dflow->block_info);
e285df08
JH
1553 memcpy ((char *)dflow->block_info
1554 + index * dflow->problem->block_info_elt_size,
1555 bb_info, dflow->problem->block_info_elt_size);
1556}
1557
1558
1559/* Clear basic block info. */
1560
1561static void
1562df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1563{
1564 gcc_assert (dflow->block_info);
1565 gcc_assert (dflow->block_info_size > index);
1566 memset ((char *)dflow->block_info
1567 + index * dflow->problem->block_info_elt_size,
1568 0, dflow->problem->block_info_elt_size);
4d779342
DB
1569}
1570
1571
6fb5fa3c
DB
1572/* Mark the solutions as being out of date. */
1573
b8698a0f 1574void
6fb5fa3c
DB
1575df_mark_solutions_dirty (void)
1576{
1577 if (df)
1578 {
b8698a0f 1579 int p;
6fb5fa3c
DB
1580 for (p = 1; p < df->num_problems_defined; p++)
1581 df->problems_in_order[p]->solutions_dirty = true;
1582 }
1583}
1584
1585
1586/* Return true if BB needs it's transfer functions recomputed. */
1587
b8698a0f 1588bool
6fb5fa3c
DB
1589df_get_bb_dirty (basic_block bb)
1590{
65e0a0f3
JJ
1591 return bitmap_bit_p ((df_live
1592 ? df_live : df_lr)->out_of_date_transfer_functions,
1593 bb->index);
6fb5fa3c
DB
1594}
1595
1596
1597/* Mark BB as needing it's transfer functions as being out of
1598 date. */
1599
b8698a0f 1600void
6fb5fa3c
DB
1601df_set_bb_dirty (basic_block bb)
1602{
4ec5d4f5 1603 bb->flags |= BB_MODIFIED;
6fb5fa3c
DB
1604 if (df)
1605 {
b8698a0f 1606 int p;
6fb5fa3c
DB
1607 for (p = 1; p < df->num_problems_defined; p++)
1608 {
1609 struct dataflow *dflow = df->problems_in_order[p];
1610 if (dflow->out_of_date_transfer_functions)
1611 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1612 }
1613 df_mark_solutions_dirty ();
1614 }
1615}
1616
1617
e285df08
JH
1618/* Grow the bb_info array. */
1619
1620void
1621df_grow_bb_info (struct dataflow *dflow)
1622{
8b1c6fd7 1623 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
e285df08
JH
1624 if (dflow->block_info_size < new_size)
1625 {
1626 new_size += new_size / 4;
1627 dflow->block_info
1628 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1629 new_size
1630 * dflow->problem->block_info_elt_size);
1631 memset ((char *)dflow->block_info
1632 + dflow->block_info_size
1633 * dflow->problem->block_info_elt_size,
1634 0,
1635 (new_size - dflow->block_info_size)
1636 * dflow->problem->block_info_elt_size);
1637 dflow->block_info_size = new_size;
1638 }
1639}
1640
c23cd1d6 1641
6fb5fa3c
DB
1642/* Clear the dirty bits. This is called from places that delete
1643 blocks. */
1644static void
1645df_clear_bb_dirty (basic_block bb)
1646{
b8698a0f 1647 int p;
6fb5fa3c
DB
1648 for (p = 1; p < df->num_problems_defined; p++)
1649 {
1650 struct dataflow *dflow = df->problems_in_order[p];
1651 if (dflow->out_of_date_transfer_functions)
1652 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1653 }
1654}
e285df08 1655
4d779342
DB
1656/* Called from the rtl_compact_blocks to reorganize the problems basic
1657 block info. */
1658
b8698a0f 1659void
6fb5fa3c 1660df_compact_blocks (void)
4d779342
DB
1661{
1662 int i, p;
1663 basic_block bb;
e285df08 1664 void *problem_temps;
a7e3698d 1665 bitmap_head tmp;
4d779342 1666
a7e3698d 1667 bitmap_initialize (&tmp, &df_bitmap_obstack);
4d779342
DB
1668 for (p = 0; p < df->num_problems_defined; p++)
1669 {
1670 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1671
1672 /* Need to reorganize the out_of_date_transfer_functions for the
1673 dflow problem. */
1674 if (dflow->out_of_date_transfer_functions)
1675 {
a7e3698d 1676 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
6fb5fa3c 1677 bitmap_clear (dflow->out_of_date_transfer_functions);
a7e3698d 1678 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
6fb5fa3c 1679 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
a7e3698d 1680 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
6fb5fa3c
DB
1681 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1682
1683 i = NUM_FIXED_BLOCKS;
11cd3bed 1684 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1685 {
a7e3698d 1686 if (bitmap_bit_p (&tmp, bb->index))
6fb5fa3c
DB
1687 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1688 i++;
1689 }
1690 }
1691
1692 /* Now shuffle the block info for the problem. */
e45dcf9c 1693 if (dflow->problem->free_bb_fun)
4d779342 1694 {
8b1c6fd7
DM
1695 int size = (last_basic_block_for_fn (cfun)
1696 * dflow->problem->block_info_elt_size);
e285df08 1697 problem_temps = XNEWVAR (char, size);
4d779342
DB
1698 df_grow_bb_info (dflow);
1699 memcpy (problem_temps, dflow->block_info, size);
1700
1701 /* Copy the bb info from the problem tmps to the proper
1702 place in the block_info vector. Null out the copied
6fb5fa3c 1703 item. The entry and exit blocks never move. */
4d779342 1704 i = NUM_FIXED_BLOCKS;
11cd3bed 1705 FOR_EACH_BB_FN (bb, cfun)
4d779342 1706 {
e285df08
JH
1707 df_set_bb_info (dflow, i,
1708 (char *)problem_temps
1709 + bb->index * dflow->problem->block_info_elt_size);
4d779342
DB
1710 i++;
1711 }
e285df08
JH
1712 memset ((char *)dflow->block_info
1713 + i * dflow->problem->block_info_elt_size, 0,
8b1c6fd7 1714 (last_basic_block_for_fn (cfun) - i)
e285df08 1715 * dflow->problem->block_info_elt_size);
f75aa51c 1716 free (problem_temps);
4d779342
DB
1717 }
1718 }
1719
6fb5fa3c
DB
1720 /* Shuffle the bits in the basic_block indexed arrays. */
1721
1722 if (df->blocks_to_analyze)
1723 {
a7e3698d 1724 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
6fb5fa3c 1725 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
a7e3698d 1726 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
6fb5fa3c 1727 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
a7e3698d 1728 bitmap_copy (&tmp, df->blocks_to_analyze);
6fb5fa3c
DB
1729 bitmap_clear (df->blocks_to_analyze);
1730 i = NUM_FIXED_BLOCKS;
11cd3bed 1731 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1732 {
a7e3698d 1733 if (bitmap_bit_p (&tmp, bb->index))
6fb5fa3c
DB
1734 bitmap_set_bit (df->blocks_to_analyze, i);
1735 i++;
1736 }
1737 }
1738
a7e3698d 1739 bitmap_clear (&tmp);
6fb5fa3c 1740
4d779342 1741 i = NUM_FIXED_BLOCKS;
11cd3bed 1742 FOR_EACH_BB_FN (bb, cfun)
4d779342 1743 {
557c4b49 1744 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
4d779342
DB
1745 bb->index = i;
1746 i++;
1747 }
1748
0cae8d31 1749 gcc_assert (i == n_basic_blocks_for_fn (cfun));
4d779342 1750
8b1c6fd7 1751 for (; i < last_basic_block_for_fn (cfun); i++)
557c4b49 1752 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
6fb5fa3c
DB
1753
1754#ifdef DF_DEBUG_CFG
1755 if (!df_lr->solutions_dirty)
1756 df_set_clean_cfg ();
1757#endif
4d779342
DB
1758}
1759
1760
6fb5fa3c 1761/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1762 block. There is no excuse for people to do this kind of thing. */
1763
b8698a0f 1764void
6fb5fa3c 1765df_bb_replace (int old_index, basic_block new_block)
4d779342 1766{
6fb5fa3c 1767 int new_block_index = new_block->index;
4d779342
DB
1768 int p;
1769
6fb5fa3c
DB
1770 if (dump_file)
1771 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1772
1773 gcc_assert (df);
06e28de2 1774 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
6fb5fa3c 1775
4d779342
DB
1776 for (p = 0; p < df->num_problems_defined; p++)
1777 {
1778 struct dataflow *dflow = df->problems_in_order[p];
1779 if (dflow->block_info)
1780 {
4d779342 1781 df_grow_bb_info (dflow);
b8698a0f 1782 df_set_bb_info (dflow, old_index,
6fb5fa3c 1783 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1784 }
1785 }
1786
6fb5fa3c 1787 df_clear_bb_dirty (new_block);
557c4b49 1788 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
4d779342 1789 new_block->index = old_index;
06e28de2 1790 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
557c4b49 1791 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
6fb5fa3c
DB
1792}
1793
1794
1795/* Free all of the per basic block dataflow from all of the problems.
1796 This is typically called before a basic block is deleted and the
1797 problem will be reanalyzed. */
1798
1799void
1800df_bb_delete (int bb_index)
1801{
06e28de2 1802 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
6fb5fa3c
DB
1803 int i;
1804
1805 if (!df)
1806 return;
b8698a0f 1807
6fb5fa3c
DB
1808 for (i = 0; i < df->num_problems_defined; i++)
1809 {
1810 struct dataflow *dflow = df->problems_in_order[i];
1811 if (dflow->problem->free_bb_fun)
1812 {
1813 void *bb_info = df_get_bb_info (dflow, bb_index);
1814 if (bb_info)
1815 {
b8698a0f 1816 dflow->problem->free_bb_fun (bb, bb_info);
e285df08 1817 df_clear_bb_info (dflow, bb_index);
6fb5fa3c
DB
1818 }
1819 }
1820 }
1821 df_clear_bb_dirty (bb);
1822 df_mark_solutions_dirty ();
1823}
1824
1825
1826/* Verify that there is a place for everything and everything is in
1827 its place. This is too expensive to run after every pass in the
1828 mainline. However this is an excellent debugging tool if the
6ed3da00 1829 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1830 sprinkle calls in until you find the place that is changing an
1831 underlying structure without calling the proper updating
0d52bcc1 1832 routine. */
6fb5fa3c
DB
1833
1834void
1835df_verify (void)
1836{
1837 df_scan_verify ();
0d475361 1838#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1839 df_lr_verify_transfer_functions ();
1840 if (df_live)
1841 df_live_verify_transfer_functions ();
0d475361 1842#endif
6fb5fa3c
DB
1843}
1844
1845#ifdef DF_DEBUG_CFG
1846
1847/* Compute an array of ints that describes the cfg. This can be used
1848 to discover places where the cfg is modified by the appropriate
1849 calls have not been made to the keep df informed. The internals of
1850 this are unexciting, the key is that two instances of this can be
1851 compared to see if any changes have been made to the cfg. */
1852
1853static int *
1854df_compute_cfg_image (void)
1855{
1856 basic_block bb;
0cae8d31 1857 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
6fb5fa3c
DB
1858 int i;
1859 int * map;
1860
04a90bec 1861 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1862 {
1863 size += EDGE_COUNT (bb->succs);
1864 }
1865
1866 map = XNEWVEC (int, size);
1867 map[0] = size;
1868 i = 1;
04a90bec 1869 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1870 {
1871 edge_iterator ei;
1872 edge e;
1873
1874 map[i++] = bb->index;
1875 FOR_EACH_EDGE (e, ei, bb->succs)
1876 map[i++] = e->dest->index;
1877 map[i++] = -1;
1878 }
1879 map[i] = -1;
1880 return map;
1881}
1882
1883static int *saved_cfg = NULL;
1884
1885
1886/* This function compares the saved version of the cfg with the
1887 current cfg and aborts if the two are identical. The function
1888 silently returns if the cfg has been marked as dirty or the two are
1889 the same. */
1890
1891void
1892df_check_cfg_clean (void)
1893{
1894 int *new_map;
1895
1896 if (!df)
1897 return;
1898
1899 if (df_lr->solutions_dirty)
1900 return;
1901
b8698a0f 1902 if (saved_cfg == NULL)
6fb5fa3c
DB
1903 return;
1904
1905 new_map = df_compute_cfg_image ();
1906 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1907 free (new_map);
4d779342
DB
1908}
1909
6fb5fa3c
DB
1910
1911/* This function builds a cfg fingerprint and squirrels it away in
1912 saved_cfg. */
1913
1914static void
1915df_set_clean_cfg (void)
1916{
04695783 1917 free (saved_cfg);
6fb5fa3c
DB
1918 saved_cfg = df_compute_cfg_image ();
1919}
1920
1921#endif /* DF_DEBUG_CFG */
4d779342
DB
1922/*----------------------------------------------------------------------------
1923 PUBLIC INTERFACES TO QUERY INFORMATION.
1924----------------------------------------------------------------------------*/
1925
1926
4d779342
DB
1927/* Return first def of REGNO within BB. */
1928
b8698a0f 1929df_ref
6fb5fa3c 1930df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342 1931{
dd3eed93 1932 rtx_insn *insn;
bfac633a 1933 df_ref def;
4d779342
DB
1934
1935 FOR_BB_INSNS (bb, insn)
1936 {
a1b53177
SB
1937 if (!INSN_P (insn))
1938 continue;
1939
bfac633a
RS
1940 FOR_EACH_INSN_DEF (def, insn)
1941 if (DF_REF_REGNO (def) == regno)
1942 return def;
4d779342
DB
1943 }
1944 return NULL;
1945}
1946
1947
1948/* Return last def of REGNO within BB. */
1949
b8698a0f 1950df_ref
6fb5fa3c 1951df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342 1952{
dd3eed93 1953 rtx_insn *insn;
bfac633a 1954 df_ref def;
4d779342
DB
1955
1956 FOR_BB_INSNS_REVERSE (bb, insn)
1957 {
a1b53177
SB
1958 if (!INSN_P (insn))
1959 continue;
4d779342 1960
bfac633a
RS
1961 FOR_EACH_INSN_DEF (def, insn)
1962 if (DF_REF_REGNO (def) == regno)
1963 return def;
4d779342
DB
1964 }
1965
1966 return NULL;
1967}
1968
4d779342
DB
1969/* Finds the reference corresponding to the definition of REG in INSN.
1970 DF is the dataflow object. */
1971
b8698a0f 1972df_ref
b2908ba6 1973df_find_def (rtx_insn *insn, rtx reg)
4d779342 1974{
bfac633a 1975 df_ref def;
4d779342
DB
1976
1977 if (GET_CODE (reg) == SUBREG)
1978 reg = SUBREG_REG (reg);
1979 gcc_assert (REG_P (reg));
1980
bfac633a
RS
1981 FOR_EACH_INSN_DEF (def, insn)
1982 if (DF_REF_REGNO (def) == REGNO (reg))
1983 return def;
4d779342
DB
1984
1985 return NULL;
1986}
1987
1988
b8698a0f 1989/* Return true if REG is defined in INSN, zero otherwise. */
4d779342
DB
1990
1991bool
b2908ba6 1992df_reg_defined (rtx_insn *insn, rtx reg)
4d779342 1993{
6fb5fa3c 1994 return df_find_def (insn, reg) != NULL;
4d779342 1995}
b8698a0f 1996
4d779342
DB
1997
1998/* Finds the reference corresponding to the use of REG in INSN.
1999 DF is the dataflow object. */
b8698a0f
L
2000
2001df_ref
b2908ba6 2002df_find_use (rtx_insn *insn, rtx reg)
4d779342 2003{
bfac633a 2004 df_ref use;
4d779342
DB
2005
2006 if (GET_CODE (reg) == SUBREG)
2007 reg = SUBREG_REG (reg);
2008 gcc_assert (REG_P (reg));
2009
bfac633a
RS
2010 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2011 FOR_EACH_INSN_INFO_USE (use, insn_info)
2012 if (DF_REF_REGNO (use) == REGNO (reg))
2013 return use;
2014 if (df->changeable_flags & DF_EQ_NOTES)
2015 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
226e378f 2016 if (DF_REF_REGNO (use) == REGNO (reg))
6fb5fa3c 2017 return use;
4d779342
DB
2018 return NULL;
2019}
2020
2021
b8698a0f 2022/* Return true if REG is referenced in INSN, zero otherwise. */
4d779342
DB
2023
2024bool
b2908ba6 2025df_reg_used (rtx_insn *insn, rtx reg)
4d779342 2026{
6fb5fa3c 2027 return df_find_use (insn, reg) != NULL;
4d779342 2028}
b8698a0f 2029
4d779342
DB
2030\f
2031/*----------------------------------------------------------------------------
2032 Debugging and printing functions.
2033----------------------------------------------------------------------------*/
2034
532aafad
SB
2035/* Write information about registers and basic blocks into FILE.
2036 This is part of making a debugging dump. */
2037
2038void
2039dump_regset (regset r, FILE *outf)
2040{
2041 unsigned i;
2042 reg_set_iterator rsi;
2043
2044 if (r == NULL)
2045 {
2046 fputs (" (nil)", outf);
2047 return;
2048 }
2049
2050 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2051 {
2052 fprintf (outf, " %d", i);
2053 if (i < FIRST_PSEUDO_REGISTER)
2054 fprintf (outf, " [%s]",
2055 reg_names[i]);
2056 }
2057}
2058
2059/* Print a human-readable representation of R on the standard error
2060 stream. This function is designed to be used from within the
2061 debugger. */
2062extern void debug_regset (regset);
2063DEBUG_FUNCTION void
2064debug_regset (regset r)
2065{
2066 dump_regset (r, stderr);
2067 putc ('\n', stderr);
2068}
6fb5fa3c
DB
2069
2070/* Write information about registers and basic blocks into FILE.
2071 This is part of making a debugging dump. */
2072
2073void
2074df_print_regset (FILE *file, bitmap r)
2075{
2076 unsigned int i;
2077 bitmap_iterator bi;
2078
2079 if (r == NULL)
2080 fputs (" (nil)", file);
2081 else
2082 {
2083 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2084 {
2085 fprintf (file, " %d", i);
2086 if (i < FIRST_PSEUDO_REGISTER)
2087 fprintf (file, " [%s]", reg_names[i]);
2088 }
2089 }
2090 fprintf (file, "\n");
2091}
2092
2093
cc806ac1
RS
2094/* Write information about registers and basic blocks into FILE. The
2095 bitmap is in the form used by df_byte_lr. This is part of making a
2096 debugging dump. */
2097
2098void
8d074192 2099df_print_word_regset (FILE *file, bitmap r)
cc806ac1
RS
2100{
2101 unsigned int max_reg = max_reg_num ();
cc806ac1
RS
2102
2103 if (r == NULL)
2104 fputs (" (nil)", file);
2105 else
2106 {
2107 unsigned int i;
8d074192 2108 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
cc806ac1 2109 {
8d074192
BS
2110 bool found = (bitmap_bit_p (r, 2 * i)
2111 || bitmap_bit_p (r, 2 * i + 1));
2112 if (found)
cc806ac1 2113 {
8d074192
BS
2114 int word;
2115 const char * sep = "";
2116 fprintf (file, " %d", i);
2117 fprintf (file, "(");
2118 for (word = 0; word < 2; word++)
2119 if (bitmap_bit_p (r, 2 * i + word))
2120 {
2121 fprintf (file, "%s%d", sep, word);
2122 sep = ", ";
2123 }
2124 fprintf (file, ")");
cc806ac1 2125 }
cc806ac1
RS
2126 }
2127 }
2128 fprintf (file, "\n");
2129}
2130
2131
4d779342 2132/* Dump dataflow info. */
ffd640ed 2133
4d779342 2134void
6fb5fa3c
DB
2135df_dump (FILE *file)
2136{
2137 basic_block bb;
2138 df_dump_start (file);
2139
04a90bec 2140 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2141 {
2142 df_print_bb_index (bb, file);
2143 df_dump_top (bb, file);
2144 df_dump_bottom (bb, file);
2145 }
2146
2147 fprintf (file, "\n");
2148}
2149
2150
ffd640ed
KZ
2151/* Dump dataflow info for df->blocks_to_analyze. */
2152
2153void
2154df_dump_region (FILE *file)
2155{
2156 if (df->blocks_to_analyze)
2157 {
2158 bitmap_iterator bi;
2159 unsigned int bb_index;
2160
2161 fprintf (file, "\n\nstarting region dump\n");
2162 df_dump_start (file);
b8698a0f
L
2163
2164 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
ffd640ed 2165 {
06e28de2 2166 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
7b19209f 2167 dump_bb (file, bb, 0, TDF_DETAILS);
ffd640ed
KZ
2168 }
2169 fprintf (file, "\n");
2170 }
b8698a0f 2171 else
ffd640ed
KZ
2172 df_dump (file);
2173}
2174
2175
6fb5fa3c
DB
2176/* Dump the introductory information for each problem defined. */
2177
2178void
2179df_dump_start (FILE *file)
4d779342
DB
2180{
2181 int i;
2182
23249ac4 2183 if (!df || !file)
4d779342
DB
2184 return;
2185
2186 fprintf (file, "\n\n%s\n", current_function_name ());
2187 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
2188 if (df->blocks_to_analyze)
2189 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2190 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
2191
2192 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
2193 {
2194 struct dataflow *dflow = df->problems_in_order[i];
2195 if (dflow->computed)
2196 {
2197 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2198 if (fun)
c3284718 2199 fun (file);
6fb5fa3c
DB
2200 }
2201 }
2202}
4d779342 2203
6fb5fa3c 2204
7b19209f
SB
2205/* Dump the top or bottom of the block information for BB. */
2206static void
2207df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
6fb5fa3c
DB
2208{
2209 int i;
2210
2211 if (!df || !file)
2212 return;
2213
2214 for (i = 0; i < df->num_problems_defined; i++)
2215 {
2216 struct dataflow *dflow = df->problems_in_order[i];
2217 if (dflow->computed)
2218 {
7b19209f
SB
2219 df_dump_bb_problem_function bbfun;
2220
2221 if (top)
2222 bbfun = dflow->problem->dump_top_fun;
2223 else
2224 bbfun = dflow->problem->dump_bottom_fun;
2225
6fb5fa3c 2226 if (bbfun)
b8698a0f 2227 bbfun (bb, file);
6fb5fa3c
DB
2228 }
2229 }
2230}
2231
7b19209f
SB
2232/* Dump the top of the block information for BB. */
2233
2234void
2235df_dump_top (basic_block bb, FILE *file)
2236{
2237 df_dump_bb_problem_data (bb, file, /*top=*/true);
2238}
6fb5fa3c 2239
b8698a0f 2240/* Dump the bottom of the block information for BB. */
6fb5fa3c
DB
2241
2242void
2243df_dump_bottom (basic_block bb, FILE *file)
7b19209f
SB
2244{
2245 df_dump_bb_problem_data (bb, file, /*top=*/false);
2246}
2247
2248
2249/* Dump information about INSN just before or after dumping INSN itself. */
2250static void
b2908ba6 2251df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
6fb5fa3c
DB
2252{
2253 int i;
2254
2255 if (!df || !file)
2256 return;
2257
2258 for (i = 0; i < df->num_problems_defined; i++)
2259 {
2260 struct dataflow *dflow = df->problems_in_order[i];
2261 if (dflow->computed)
2262 {
7b19209f
SB
2263 df_dump_insn_problem_function insnfun;
2264
2265 if (top)
2266 insnfun = dflow->problem->dump_insn_top_fun;
2267 else
2268 insnfun = dflow->problem->dump_insn_bottom_fun;
2269
2270 if (insnfun)
2271 insnfun (insn, file);
6fb5fa3c
DB
2272 }
2273 }
4d779342
DB
2274}
2275
7b19209f
SB
2276/* Dump information about INSN before dumping INSN itself. */
2277
2278void
b2908ba6 2279df_dump_insn_top (const rtx_insn *insn, FILE *file)
7b19209f
SB
2280{
2281 df_dump_insn_problem_data (insn, file, /*top=*/true);
2282}
2283
2284/* Dump information about INSN after dumping INSN itself. */
2285
2286void
b2908ba6 2287df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
7b19209f
SB
2288{
2289 df_dump_insn_problem_data (insn, file, /*top=*/false);
2290}
2291
4d779342 2292
885c9b5d
EB
2293static void
2294df_ref_dump (df_ref ref, FILE *file)
2295{
2296 fprintf (file, "%c%d(%d)",
2297 DF_REF_REG_DEF_P (ref)
2298 ? 'd'
2299 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2300 DF_REF_ID (ref),
2301 DF_REF_REGNO (ref));
2302}
2303
4d779342 2304void
b512946c 2305df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
4d779342
DB
2306{
2307 fprintf (file, "{ ");
b512946c 2308 for (; ref; ref = DF_REF_NEXT_LOC (ref))
4d779342 2309 {
885c9b5d 2310 df_ref_dump (ref, file);
4d779342 2311 if (follow_chain)
23249ac4 2312 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2313 }
2314 fprintf (file, "}");
2315}
2316
2317
2318/* Dump either a ref-def or reg-use chain. */
2319
2320void
57512f53 2321df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2322{
2323 fprintf (file, "{ ");
2324 while (ref)
2325 {
885c9b5d 2326 df_ref_dump (ref, file);
57512f53 2327 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2328 }
2329 fprintf (file, "}");
2330}
2331
2332
23249ac4 2333static void
b512946c 2334df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
4d779342 2335{
b512946c
RS
2336 for (; mws; mws = DF_MWS_NEXT (mws))
2337 fprintf (file, "mw %c r[%d..%d]\n",
2338 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2339 mws->start_regno, mws->end_regno);
23249ac4
DB
2340}
2341
2342
b8698a0f
L
2343static void
2344df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2345 bool follow_chain, FILE *file)
2346{
6fb5fa3c
DB
2347 fprintf (file, "insn %d luid %d",
2348 uid, DF_INSN_UID_LUID (uid));
4d779342 2349
6fb5fa3c 2350 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2351 {
2352 fprintf (file, " defs ");
6fb5fa3c 2353 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2354 }
2355
6fb5fa3c 2356 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2357 {
2358 fprintf (file, " uses ");
6fb5fa3c
DB
2359 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2360 }
2361
2362 if (DF_INSN_UID_EQ_USES (uid))
2363 {
2364 fprintf (file, " eq uses ");
2365 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2366 }
2367
6fb5fa3c 2368 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2369 {
2370 fprintf (file, " mws ");
6fb5fa3c 2371 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2372 }
4d779342
DB
2373 fprintf (file, "\n");
2374}
2375
23249ac4 2376
24e47c76 2377DEBUG_FUNCTION void
b2908ba6 2378df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
23249ac4 2379{
6fb5fa3c 2380 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2381}
2382
24e47c76 2383DEBUG_FUNCTION void
b2908ba6 2384df_insn_debug_regno (rtx_insn *insn, FILE *file)
4d779342 2385{
50e94c7e 2386 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2387
2388 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2389 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2390 DF_INSN_INFO_LUID (insn_info));
2391 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
b8698a0f 2392
4d779342 2393 fprintf (file, " uses ");
50e94c7e 2394 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2395
2396 fprintf (file, " eq_uses ");
50e94c7e 2397 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2398 fprintf (file, "\n");
2399}
2400
24e47c76 2401DEBUG_FUNCTION void
6fb5fa3c 2402df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2403{
2404 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2405 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2406 fprintf (file, " uses ");
6fb5fa3c
DB
2407 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2408 fprintf (file, " eq_uses ");
2409 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2410 fprintf (file, "\n");
2411}
2412
2413
24e47c76 2414DEBUG_FUNCTION void
57512f53 2415df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2416{
2417 fprintf (file, "%c%d ",
2418 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2419 DF_REF_ID (ref));
a3f1cee4 2420 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
4d779342
DB
2421 DF_REF_REGNO (ref),
2422 DF_REF_BBNO (ref),
57512f53 2423 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2424 DF_REF_FLAGS (ref),
2425 DF_REF_TYPE (ref));
2426 if (DF_REF_LOC (ref))
8588f797
AO
2427 {
2428 if (flag_dump_noaddr)
2429 fprintf (file, "loc #(#) chain ");
2430 else
2431 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2432 (void *)*DF_REF_LOC (ref));
2433 }
6fb5fa3c
DB
2434 else
2435 fprintf (file, "chain ");
23249ac4 2436 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2437 fprintf (file, "\n");
2438}
2439\f
2440/* Functions for debugging from GDB. */
2441
24e47c76 2442DEBUG_FUNCTION void
b2908ba6 2443debug_df_insn (rtx_insn *insn)
4d779342 2444{
6fb5fa3c 2445 df_insn_debug (insn, true, stderr);
4d779342
DB
2446 debug_rtx (insn);
2447}
2448
2449
24e47c76 2450DEBUG_FUNCTION void
4d779342
DB
2451debug_df_reg (rtx reg)
2452{
6fb5fa3c 2453 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2454}
2455
2456
24e47c76 2457DEBUG_FUNCTION void
4d779342
DB
2458debug_df_regno (unsigned int regno)
2459{
6fb5fa3c 2460 df_regno_debug (regno, stderr);
4d779342
DB
2461}
2462
2463
24e47c76 2464DEBUG_FUNCTION void
57512f53 2465debug_df_ref (df_ref ref)
4d779342 2466{
23249ac4 2467 df_ref_debug (ref, stderr);
4d779342
DB
2468}
2469
2470
24e47c76 2471DEBUG_FUNCTION void
4d779342
DB
2472debug_df_defno (unsigned int defno)
2473{
6fb5fa3c 2474 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2475}
2476
2477
24e47c76 2478DEBUG_FUNCTION void
4d779342
DB
2479debug_df_useno (unsigned int defno)
2480{
6fb5fa3c 2481 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2482}
2483
2484
24e47c76 2485DEBUG_FUNCTION void
4d779342
DB
2486debug_df_chain (struct df_link *link)
2487{
23249ac4 2488 df_chain_dump (link, stderr);
4d779342
DB
2489 fputc ('\n', stderr);
2490}