]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
Update copyright years.
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
a5544970 2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
b8698a0f 3 Originally contributed by Michael P. Hayes
4d779342
DB
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
9dcd6f09 12Software Foundation; either version 3, or (at your option) any later
4d779342
DB
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
9dcd6f09
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
4d779342
DB
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
6fb5fa3c
DB
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
4d779342 40
6fb5fa3c
DB
41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
fa10beec 44areas that can be reached from a definition of a variable. The LIVE
b8698a0f 45problem finds the intersection of these two areas.
4d779342 46
6fb5fa3c
DB
47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
4d779342 49
6fb5fa3c
DB
50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
4d779342 57
6fb5fa3c 58In the middle layer, basic blocks are scanned to produce transfer
fa10beec 59functions which describe the effects of that block on the global
6fb5fa3c 60dataflow solution. The transfer functions are only rebuilt if the
b8698a0f 61some instruction within the block has changed.
4d779342 62
6fb5fa3c 63The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 64is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
4d779342
DB
67
68
6fb5fa3c 69USAGE:
4d779342 70
6fb5fa3c 71Here is an example of using the dataflow routines.
4d779342 72
05c219bb 73 df_[chain,live,note,rd]_add_problem (flags);
4d779342 74
6fb5fa3c 75 df_set_blocks (blocks);
4d779342 76
6fb5fa3c 77 df_analyze ();
4d779342 78
6fb5fa3c 79 df_dump (stderr);
4d779342 80
0d475361 81 df_finish_pass (false);
4d779342 82
05c219bb 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
4d779342
DB
87
88Problems can be dependent on other problems. For instance, solving
d1c78882 89def-use or use-def chains is dependent on solving reaching
c0220ea4 90definitions. As long as these dependencies are listed in the problem
4d779342
DB
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
4d779342
DB
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 108before the call to analyze in order to eliminate the possibility that
4d779342
DB
109optimizations that reorder blocks invalidate the bitvector.
110
6fb5fa3c
DB
111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 114to access these bitvectors. All deferred rescannings are down before
0d52bcc1 115the transfer functions are recomputed.
4d779342
DB
116
117DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
0a41f3b2 126deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
cea618ac 146 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
0d52bcc1 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e02101ff 184 note_stores and rtx iterators instead of using the DF data. This
ecb7f6de 185 can be said to fall under case 1c.
6fb5fa3c
DB
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
0a41f3b2 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
190 be rescanned.
191
ecb7f6de
PB
1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
198
1994) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 200 itself using the low level df primitives. Currently no pass does
6fb5fa3c 201 this, but it has the advantage that it is quite efficient given
b8698a0f 202 that the pass generally has exact knowledge of what it is changing.
6fb5fa3c
DB
203
204DATA STRUCTURES
4d779342
DB
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
4d779342
DB
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 239keep the dataflow information up to data (if this is really what is
4d779342
DB
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
b8698a0f 249The basic object is a DF_REF (reference) and this may either be a
4d779342
DB
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
6fb5fa3c
DB
261ACCESSING INSNS:
262
50e94c7e
SB
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
6fb5fa3c 286
4d779342
DB
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
b8698a0f 293 REAL refs are associated with instructions.
4d779342
DB
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c 296 these lists can be accessed by calling df_get_artificial_defs or
b8698a0f
L
297 df_get_artificial_uses for the particular basic block.
298
912f2dac
DB
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
c0220ea4 314 Artificial defs occur at the end of the entry block. These arise
912f2dac 315 from registers that are live at entry to the function.
4d779342 316
b8698a0f 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
6fb5fa3c 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 319
6fb5fa3c
DB
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
b8698a0f 324 treated like uses. If it is not set they are ignored.
6fb5fa3c
DB
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
4d779342
DB
340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
b8698a0f 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
4d779342 355NOTES:
b8698a0f 356
4d779342
DB
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
fa10beec 368smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
b8698a0f 373are write-only operations.
4d779342
DB
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
c7131fb2 380#include "backend.h"
4d779342 381#include "rtl.h"
c7131fb2 382#include "df.h"
4d0cdd0c 383#include "memmodel.h"
957060b5 384#include "emit-rtl.h"
60393bbc 385#include "cfganal.h"
4d779342 386#include "tree-pass.h"
7be64667 387#include "cfgloop.h"
4d779342 388
23249ac4 389static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 390static void df_set_bb_info (struct dataflow *, unsigned int, void *);
e285df08 391static void df_clear_bb_info (struct dataflow *, unsigned int);
6fb5fa3c
DB
392#ifdef DF_DEBUG_CFG
393static void df_set_clean_cfg (void);
394#endif
4d779342 395
532aafad
SB
396/* The obstack on which regsets are allocated. */
397struct bitmap_obstack reg_obstack;
398
6fb5fa3c
DB
399/* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
4d779342 402
6fb5fa3c 403bitmap_obstack df_bitmap_obstack;
4d779342 404
4d779342 405
6fb5fa3c
DB
406/*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408----------------------------------------------------------------------------*/
409
f12c802a 410struct df_d *df;
4d779342 411
6fb5fa3c 412/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 413
6fb5fa3c 414void
fdd5680c 415df_add_problem (const struct df_problem *problem)
4d779342
DB
416{
417 struct dataflow *dflow;
6fb5fa3c 418 int i;
4d779342
DB
419
420 /* First try to add the dependent problem. */
6fb5fa3c
DB
421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
4d779342
DB
423
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
6fb5fa3c 429 return;
4d779342
DB
430
431 /* Make a new one and add it to the end. */
5ed6ace5 432 dflow = XCNEW (struct dataflow);
4d779342 433 dflow->problem = problem;
6fb5fa3c
DB
434 dflow->computed = false;
435 dflow->solutions_dirty = true;
4d779342
DB
436 df->problems_by_index[dflow->problem->id] = dflow;
437
6fb5fa3c
DB
438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
b8698a0f 444 defined. */
6fb5fa3c
DB
445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 {
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
451 {
452 df->problems_in_order[i+1] = dflow;
453 return;
454 }
455 }
456 df->problems_in_order[0] = dflow;
4d779342
DB
457}
458
459
23249ac4
DB
460/* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
81f40b79 463int
bbbbb16a 464df_set_flags (int changeable_flags)
23249ac4 465{
81f40b79 466 int old_flags = df->changeable_flags;
6fb5fa3c 467 df->changeable_flags |= changeable_flags;
23249ac4
DB
468 return old_flags;
469}
470
6fb5fa3c 471
23249ac4
DB
472/* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
81f40b79 475int
bbbbb16a 476df_clear_flags (int changeable_flags)
23249ac4 477{
81f40b79 478 int old_flags = df->changeable_flags;
6fb5fa3c 479 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
480 return old_flags;
481}
482
6fb5fa3c 483
4d779342
DB
484/* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
487
b8698a0f 488void
6fb5fa3c 489df_set_blocks (bitmap blocks)
4d779342
DB
490{
491 if (blocks)
492 {
6fb5fa3c
DB
493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
495 if (df->blocks_to_analyze)
496 {
89a95777
KZ
497 /* This block is called to change the focus from one subset
498 to another. */
3b8266e2 499 int p;
d648b5ff
TS
500 auto_bitmap diff (&df_bitmap_obstack);
501 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
89a95777 502 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
503 {
504 struct dataflow *dflow = df->problems_in_order[p];
89a95777 505 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 506 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 507 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
508 {
509 bitmap_iterator bi;
510 unsigned int bb_index;
b8698a0f 511
d648b5ff 512 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
3b8266e2 513 {
06e28de2 514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
30cb87a0
KZ
515 if (bb)
516 {
6fb5fa3c 517 void *bb_info = df_get_bb_info (dflow, bb_index);
e285df08
JH
518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
30cb87a0 520 }
3b8266e2
KZ
521 }
522 }
523 }
3b8266e2
KZ
524 }
525 else
30cb87a0 526 {
89a95777
KZ
527 /* This block of code is executed to change the focus from
528 the entire function to a subset. */
a7e3698d
JH
529 bitmap_head blocks_to_reset;
530 bool initialized = false;
89a95777
KZ
531 int p;
532 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 533 {
89a95777
KZ
534 struct dataflow *dflow = df->problems_in_order[p];
535 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 536 {
a7e3698d 537 if (!initialized)
30cb87a0 538 {
89a95777 539 basic_block bb;
a7e3698d 540 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
04a90bec 541 FOR_ALL_BB_FN (bb, cfun)
30cb87a0 542 {
a7e3698d 543 bitmap_set_bit (&blocks_to_reset, bb->index);
30cb87a0 544 }
30cb87a0 545 }
a7e3698d 546 dflow->problem->reset_fun (&blocks_to_reset);
30cb87a0 547 }
30cb87a0 548 }
a7e3698d
JH
549 if (initialized)
550 bitmap_clear (&blocks_to_reset);
89a95777 551
6fb5fa3c 552 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 553 }
4d779342 554 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 555 df->analyze_subset = true;
4d779342
DB
556 }
557 else
558 {
89a95777
KZ
559 /* This block is executed to reset the focus to the entire
560 function. */
6fb5fa3c 561 if (dump_file)
89a95777 562 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
563 if (df->blocks_to_analyze)
564 {
565 BITMAP_FREE (df->blocks_to_analyze);
566 df->blocks_to_analyze = NULL;
567 }
6fb5fa3c 568 df->analyze_subset = false;
4d779342 569 }
6fb5fa3c
DB
570
571 /* Setting the blocks causes the refs to be unorganized since only
572 the refs in the blocks are seen. */
573 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 df_mark_solutions_dirty ();
4d779342
DB
576}
577
578
6fb5fa3c
DB
579/* Delete a DFLOW problem (and any problems that depend on this
580 problem). */
23249ac4
DB
581
582void
6fb5fa3c 583df_remove_problem (struct dataflow *dflow)
23249ac4 584{
fdd5680c 585 const struct df_problem *problem;
23249ac4 586 int i;
6fb5fa3c
DB
587
588 if (!dflow)
589 return;
590
591 problem = dflow->problem;
592 gcc_assert (problem->remove_problem_fun);
593
6fb5fa3c 594 /* Delete any problems that depended on this problem first. */
89a95777 595 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
596 if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 df_remove_problem (df->problems_in_order[i]);
598
599 /* Now remove this problem. */
89a95777 600 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
601 if (df->problems_in_order[i] == dflow)
602 {
603 int j;
604 for (j = i + 1; j < df->num_problems_defined; j++)
605 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 606 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
607 df->num_problems_defined--;
608 break;
609 }
610
611 (problem->remove_problem_fun) ();
612 df->problems_by_index[problem->id] = NULL;
613}
614
615
05c219bb
PB
616/* Remove all of the problems that are not permanent. Scanning, LR
617 and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 Also clear all of the changeable_flags. */
6fb5fa3c
DB
619
620void
0d475361 621df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
622{
623 int i;
6fb5fa3c 624
3089f8b5 625#ifdef ENABLE_DF_CHECKING
a46edbff 626 int saved_flags;
6fb5fa3c
DB
627#endif
628
629 if (!df)
630 return;
631
632 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634
3089f8b5 635#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
636 saved_flags = df->changeable_flags;
637#endif
638
8f252203
TP
639 /* We iterate over problems by index as each problem removed will
640 lead to problems_in_order to be reordered. */
641 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
23249ac4 642 {
8f252203 643 struct dataflow *dflow = df->problems_by_index[i];
6fb5fa3c 644
8f252203
TP
645 if (dflow && dflow->optional_p)
646 df_remove_problem (dflow);
6fb5fa3c 647 }
6fb5fa3c
DB
648
649 /* Clear all of the flags. */
650 df->changeable_flags = 0;
651 df_process_deferred_rescans ();
652
653 /* Set the focus back to the whole function. */
654 if (df->blocks_to_analyze)
655 {
656 BITMAP_FREE (df->blocks_to_analyze);
657 df->blocks_to_analyze = NULL;
658 df_mark_solutions_dirty ();
659 df->analyze_subset = false;
23249ac4 660 }
6fb5fa3c 661
3089f8b5 662#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
663 /* Verification will fail in DF_NO_INSN_RESCAN. */
664 if (!(saved_flags & DF_NO_INSN_RESCAN))
665 {
666 df_lr_verify_transfer_functions ();
667 if (df_live)
668 df_live_verify_transfer_functions ();
669 }
670
671#ifdef DF_DEBUG_CFG
672 df_set_clean_cfg ();
673#endif
674#endif
0d475361 675
b2b29377 676 if (flag_checking && verify)
0d475361 677 df->changeable_flags |= DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
678}
679
680
681/* Set up the dataflow instance for the entire back end. */
682
683static unsigned int
684rest_of_handle_df_initialize (void)
685{
686 gcc_assert (!df);
f12c802a 687 df = XCNEW (struct df_d);
6fb5fa3c
DB
688 df->changeable_flags = 0;
689
690 bitmap_obstack_initialize (&df_bitmap_obstack);
691
692 /* Set this to a conservative value. Stack_ptr_mod will compute it
693 correctly later. */
416ff32e 694 crtl->sp_is_unchanging = 0;
6fb5fa3c
DB
695
696 df_scan_add_problem ();
697 df_scan_alloc (NULL);
698
699 /* These three problems are permanent. */
700 df_lr_add_problem ();
89a95777 701 if (optimize > 1)
6fb5fa3c
DB
702 df_live_add_problem ();
703
8b1c6fd7 704 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
6fb5fa3c 705 df->n_blocks = post_order_compute (df->postorder, true, true);
6fa95e09
TS
706 inverted_post_order_compute (&df->postorder_inverted);
707 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
6fb5fa3c 708
225ccc68 709 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
6fb5fa3c
DB
710
711 df_hard_reg_init ();
712 /* After reload, some ports add certain bits to regs_ever_live so
713 this cannot be reset. */
714 df_compute_regs_ever_live (true);
715 df_scan_blocks ();
716 df_compute_regs_ever_live (false);
717 return 0;
718}
719
720
27a4cd48
DM
721namespace {
722
723const pass_data pass_data_df_initialize_opt =
6fb5fa3c 724{
27a4cd48
DM
725 RTL_PASS, /* type */
726 "dfinit", /* name */
727 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
728 TV_DF_SCAN, /* tv_id */
729 0, /* properties_required */
730 0, /* properties_provided */
731 0, /* properties_destroyed */
732 0, /* todo_flags_start */
733 0, /* todo_flags_finish */
6fb5fa3c
DB
734};
735
27a4cd48
DM
736class pass_df_initialize_opt : public rtl_opt_pass
737{
738public:
c3284718
RS
739 pass_df_initialize_opt (gcc::context *ctxt)
740 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
27a4cd48
DM
741 {}
742
743 /* opt_pass methods: */
1a3d085c 744 virtual bool gate (function *) { return optimize > 0; }
be55bfe6
TS
745 virtual unsigned int execute (function *)
746 {
747 return rest_of_handle_df_initialize ();
748 }
27a4cd48
DM
749
750}; // class pass_df_initialize_opt
751
752} // anon namespace
753
754rtl_opt_pass *
755make_pass_df_initialize_opt (gcc::context *ctxt)
756{
757 return new pass_df_initialize_opt (ctxt);
758}
759
6fb5fa3c 760
27a4cd48
DM
761namespace {
762
763const pass_data pass_data_df_initialize_no_opt =
6fb5fa3c 764{
27a4cd48
DM
765 RTL_PASS, /* type */
766 "no-opt dfinit", /* name */
767 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
768 TV_DF_SCAN, /* tv_id */
769 0, /* properties_required */
770 0, /* properties_provided */
771 0, /* properties_destroyed */
772 0, /* todo_flags_start */
773 0, /* todo_flags_finish */
6fb5fa3c
DB
774};
775
27a4cd48
DM
776class pass_df_initialize_no_opt : public rtl_opt_pass
777{
778public:
c3284718
RS
779 pass_df_initialize_no_opt (gcc::context *ctxt)
780 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
27a4cd48
DM
781 {}
782
783 /* opt_pass methods: */
1a3d085c 784 virtual bool gate (function *) { return optimize == 0; }
be55bfe6
TS
785 virtual unsigned int execute (function *)
786 {
787 return rest_of_handle_df_initialize ();
788 }
27a4cd48
DM
789
790}; // class pass_df_initialize_no_opt
791
792} // anon namespace
793
794rtl_opt_pass *
795make_pass_df_initialize_no_opt (gcc::context *ctxt)
796{
797 return new pass_df_initialize_no_opt (ctxt);
798}
799
6fb5fa3c 800
4d779342
DB
801/* Free all the dataflow info and the DF structure. This should be
802 called from the df_finish macro which also NULLs the parm. */
803
6fb5fa3c
DB
804static unsigned int
805rest_of_handle_df_finish (void)
4d779342
DB
806{
807 int i;
808
6fb5fa3c
DB
809 gcc_assert (df);
810
4d779342 811 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
812 {
813 struct dataflow *dflow = df->problems_in_order[i];
b8698a0f 814 dflow->problem->free_fun ();
6fb5fa3c 815 }
4d779342 816
04695783 817 free (df->postorder);
6fa95e09 818 df->postorder_inverted.release ();
6fb5fa3c 819 free (df->hard_regs_live_count);
4d779342 820 free (df);
6fb5fa3c
DB
821 df = NULL;
822
823 bitmap_obstack_release (&df_bitmap_obstack);
824 return 0;
4d779342
DB
825}
826
6fb5fa3c 827
27a4cd48
DM
828namespace {
829
830const pass_data pass_data_df_finish =
6fb5fa3c 831{
27a4cd48
DM
832 RTL_PASS, /* type */
833 "dfinish", /* name */
834 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
835 TV_NONE, /* tv_id */
836 0, /* properties_required */
837 0, /* properties_provided */
838 0, /* properties_destroyed */
839 0, /* todo_flags_start */
840 0, /* todo_flags_finish */
6fb5fa3c
DB
841};
842
27a4cd48
DM
843class pass_df_finish : public rtl_opt_pass
844{
845public:
c3284718
RS
846 pass_df_finish (gcc::context *ctxt)
847 : rtl_opt_pass (pass_data_df_finish, ctxt)
27a4cd48
DM
848 {}
849
850 /* opt_pass methods: */
be55bfe6
TS
851 virtual unsigned int execute (function *)
852 {
853 return rest_of_handle_df_finish ();
854 }
27a4cd48
DM
855
856}; // class pass_df_finish
857
858} // anon namespace
859
860rtl_opt_pass *
861make_pass_df_finish (gcc::context *ctxt)
862{
863 return new pass_df_finish (ctxt);
864}
865
6fb5fa3c
DB
866
867
868
4d779342
DB
869\f
870/*----------------------------------------------------------------------------
871 The general data flow analysis engine.
872----------------------------------------------------------------------------*/
873
50b2e859
JH
874/* Return time BB when it was visited for last time. */
875#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
4d779342 876
6fb5fa3c 877/* Helper function for df_worklist_dataflow.
b8698a0f 878 Propagate the dataflow forward.
6fb5fa3c
DB
879 Given a BB_INDEX, do the dataflow propagation
880 and set bits on for successors in PENDING
50b2e859
JH
881 if the out set of the dataflow has changed.
882
883 AGE specify time when BB was visited last time.
884 AGE of 0 means we are visiting for first time and need to
885 compute transfer function to initialize datastructures.
886 Otherwise we re-do transfer function only if something change
887 while computing confluence functions.
888 We need to compute confluence only of basic block that are younger
889 then last visit of the BB.
890
891 Return true if BB info has changed. This is always the case
892 in the first visit. */
4d779342 893
1a0f3fa1 894static bool
6fb5fa3c
DB
895df_worklist_propagate_forward (struct dataflow *dataflow,
896 unsigned bb_index,
897 unsigned *bbindex_to_postorder,
898 bitmap pending,
1a0f3fa1 899 sbitmap considered,
50b2e859 900 ptrdiff_t age)
4d779342 901{
4d779342
DB
902 edge e;
903 edge_iterator ei;
06e28de2 904 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 905 bool changed = !age;
4d779342 906
6fb5fa3c 907 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
908 if (EDGE_COUNT (bb->preds) > 0)
909 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 910 {
50b2e859 911 if (age <= BB_LAST_CHANGE_AGE (e->src)
d7c028c0 912 && bitmap_bit_p (considered, e->src->index))
1a0f3fa1 913 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 914 }
e45dcf9c 915 else if (dataflow->problem->con_fun_0)
50b2e859 916 dataflow->problem->con_fun_0 (bb);
6fb5fa3c 917
1a0f3fa1
JH
918 if (changed
919 && dataflow->problem->trans_fun (bb_index))
4d779342 920 {
b8698a0f 921 /* The out set of this block has changed.
6fb5fa3c
DB
922 Propagate to the outgoing blocks. */
923 FOR_EACH_EDGE (e, ei, bb->succs)
924 {
925 unsigned ob_index = e->dest->index;
926
d7c028c0 927 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
928 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
929 }
1a0f3fa1 930 return true;
4d779342 931 }
1a0f3fa1 932 return false;
4d779342
DB
933}
934
6fb5fa3c
DB
935
936/* Helper function for df_worklist_dataflow.
937 Propagate the dataflow backward. */
938
1a0f3fa1 939static bool
6fb5fa3c
DB
940df_worklist_propagate_backward (struct dataflow *dataflow,
941 unsigned bb_index,
942 unsigned *bbindex_to_postorder,
943 bitmap pending,
1a0f3fa1 944 sbitmap considered,
50b2e859 945 ptrdiff_t age)
4d779342 946{
4d779342
DB
947 edge e;
948 edge_iterator ei;
06e28de2 949 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 950 bool changed = !age;
4d779342 951
6fb5fa3c 952 /* Calculate <conf_op> of incoming edges. */
4d779342 953 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 954 FOR_EACH_EDGE (e, ei, bb->succs)
b8698a0f 955 {
50b2e859 956 if (age <= BB_LAST_CHANGE_AGE (e->dest)
d7c028c0 957 && bitmap_bit_p (considered, e->dest->index))
1a0f3fa1 958 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 959 }
e45dcf9c 960 else if (dataflow->problem->con_fun_0)
50b2e859 961 dataflow->problem->con_fun_0 (bb);
4d779342 962
1a0f3fa1
JH
963 if (changed
964 && dataflow->problem->trans_fun (bb_index))
4d779342 965 {
b8698a0f 966 /* The out set of this block has changed.
6fb5fa3c
DB
967 Propagate to the outgoing blocks. */
968 FOR_EACH_EDGE (e, ei, bb->preds)
969 {
970 unsigned ob_index = e->src->index;
971
d7c028c0 972 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
973 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
974 }
1a0f3fa1 975 return true;
4d779342 976 }
1a0f3fa1 977 return false;
4d779342
DB
978}
979
50b2e859
JH
980/* Main dataflow solver loop.
981
982 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
983 need to visit.
984 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
688010ba 985 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
50b2e859
JH
986 PENDING will be freed.
987
988 The worklists are bitmaps indexed by postorder positions.
989
990 The function implements standard algorithm for dataflow solving with two
991 worklists (we are processing WORKLIST and storing new BBs to visit in
992 PENDING).
185082a7 993
50b2e859
JH
994 As an optimization we maintain ages when BB was changed (stored in bb->aux)
995 and when it was last visited (stored in last_visit_age). This avoids need
996 to re-do confluence function for edges to basic blocks whose source
997 did not change since destination was visited last time. */
185082a7 998
b8698a0f 999static void
185082a7
SP
1000df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1001 bitmap pending,
1002 sbitmap considered,
1003 int *blocks_in_postorder,
1a0f3fa1
JH
1004 unsigned *bbindex_to_postorder,
1005 int n_blocks)
185082a7
SP
1006{
1007 enum df_flow_dir dir = dataflow->problem->dir;
1008 int dcount = 0;
1009 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
50b2e859 1010 int age = 0;
1a0f3fa1 1011 bool changed;
6e1aa848 1012 vec<int> last_visit_age = vNULL;
50b2e859 1013 int prev_age;
1a0f3fa1
JH
1014 basic_block bb;
1015 int i;
1016
9771b263 1017 last_visit_age.safe_grow_cleared (n_blocks);
185082a7
SP
1018
1019 /* Double-queueing. Worklist is for the current iteration,
1020 and pending is for the next. */
1021 while (!bitmap_empty_p (pending))
1022 {
1a0f3fa1
JH
1023 bitmap_iterator bi;
1024 unsigned int index;
1025
6b4db501 1026 std::swap (pending, worklist);
185082a7 1027
1a0f3fa1 1028 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
185082a7 1029 {
185082a7
SP
1030 unsigned bb_index;
1031 dcount++;
1032
50b2e859 1033 bitmap_clear_bit (pending, index);
185082a7 1034 bb_index = blocks_in_postorder[index];
06e28de2 1035 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
9771b263 1036 prev_age = last_visit_age[index];
185082a7 1037 if (dir == DF_FORWARD)
1a0f3fa1
JH
1038 changed = df_worklist_propagate_forward (dataflow, bb_index,
1039 bbindex_to_postorder,
1040 pending, considered,
1041 prev_age);
b8698a0f 1042 else
1a0f3fa1
JH
1043 changed = df_worklist_propagate_backward (dataflow, bb_index,
1044 bbindex_to_postorder,
1045 pending, considered,
1046 prev_age);
9771b263 1047 last_visit_age[index] = ++age;
1a0f3fa1 1048 if (changed)
50b2e859 1049 bb->aux = (void *)(ptrdiff_t)age;
185082a7 1050 }
1a0f3fa1 1051 bitmap_clear (worklist);
185082a7 1052 }
1a0f3fa1 1053 for (i = 0; i < n_blocks; i++)
06e28de2 1054 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
185082a7
SP
1055
1056 BITMAP_FREE (worklist);
1057 BITMAP_FREE (pending);
9771b263 1058 last_visit_age.release ();
185082a7
SP
1059
1060 /* Dump statistics. */
1061 if (dump_file)
1062 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
aa326bfb 1063 " n_basic_blocks %d n_edges %d"
185082a7 1064 " count %d (%5.2g)\n",
dc936fb2 1065 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
0cae8d31 1066 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
185082a7
SP
1067}
1068
6fb5fa3c 1069/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
b8698a0f 1070 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
1071 The solver is a double-queue algorithm similar to the "double stack" solver
1072 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1073 The only significant difference is that the worklist in this implementation
1074 is always sorted in RPO of the CFG visiting direction. */
4d779342 1075
b8698a0f 1076void
6fb5fa3c
DB
1077df_worklist_dataflow (struct dataflow *dataflow,
1078 bitmap blocks_to_consider,
1079 int *blocks_in_postorder,
1080 int n_blocks)
4d779342 1081{
6fb5fa3c 1082 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
4d779342 1083 bitmap_iterator bi;
6fb5fa3c
DB
1084 unsigned int *bbindex_to_postorder;
1085 int i;
1086 unsigned int index;
1087 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1088
6fb5fa3c 1089 gcc_assert (dir != DF_NONE);
4d779342 1090
6fb5fa3c 1091 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
8b1c6fd7
DM
1092 bbindex_to_postorder = XNEWVEC (unsigned int,
1093 last_basic_block_for_fn (cfun));
4d779342 1094
6fb5fa3c 1095 /* Initialize the array to an out-of-bound value. */
8b1c6fd7
DM
1096 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1097 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
23249ac4 1098
6fb5fa3c 1099 /* Initialize the considered map. */
7ba9e72d 1100 auto_sbitmap considered (last_basic_block_for_fn (cfun));
f61e445a 1101 bitmap_clear (considered);
6fb5fa3c 1102 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1103 {
d7c028c0 1104 bitmap_set_bit (considered, index);
4d779342
DB
1105 }
1106
6fb5fa3c 1107 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1108 for (i = 0; i < n_blocks; i++)
1109 {
6fb5fa3c
DB
1110 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1111 /* Add all blocks to the worklist. */
1112 bitmap_set_bit (pending, i);
1113 }
4d779342 1114
185082a7 1115 /* Initialize the problem. */
6fb5fa3c
DB
1116 if (dataflow->problem->init_fun)
1117 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1118
240b5cea
SB
1119 /* Solve it. */
1120 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1121 blocks_in_postorder,
1a0f3fa1
JH
1122 bbindex_to_postorder,
1123 n_blocks);
6fb5fa3c 1124 free (bbindex_to_postorder);
4d779342
DB
1125}
1126
1127
1128/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1129 the order of the remaining entries. Returns the length of the resulting
1130 list. */
1131
1132static unsigned
1133df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1134{
1135 unsigned act, last;
1136
1137 for (act = 0, last = 0; act < len; act++)
1138 if (bitmap_bit_p (blocks, list[act]))
1139 list[last++] = list[act];
1140
1141 return last;
1142}
1143
1144
b8698a0f 1145/* Execute dataflow analysis on a single dataflow problem.
4d779342 1146
4d779342
DB
1147 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1148 examined or will be computed. For calls from DF_ANALYZE, this is
b8698a0f 1149 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1150*/
1151
23249ac4 1152void
b8698a0f
L
1153df_analyze_problem (struct dataflow *dflow,
1154 bitmap blocks_to_consider,
6fb5fa3c 1155 int *postorder, int n_blocks)
4d779342 1156{
6fb5fa3c
DB
1157 timevar_push (dflow->problem->tv_id);
1158
e7f96023
JH
1159 /* (Re)Allocate the datastructures necessary to solve the problem. */
1160 if (dflow->problem->alloc_fun)
1161 dflow->problem->alloc_fun (blocks_to_consider);
1162
3089f8b5 1163#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1164 if (dflow->problem->verify_start_fun)
1165 dflow->problem->verify_start_fun ();
1166#endif
1167
6fb5fa3c 1168 /* Set up the problem and compute the local information. */
e45dcf9c 1169 if (dflow->problem->local_compute_fun)
6fb5fa3c 1170 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1171
1172 /* Solve the equations. */
e45dcf9c 1173 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1174 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1175 postorder, n_blocks);
4d779342
DB
1176
1177 /* Massage the solution. */
e45dcf9c 1178 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1179 dflow->problem->finalize_fun (blocks_to_consider);
1180
3089f8b5 1181#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1182 if (dflow->problem->verify_end_fun)
1183 dflow->problem->verify_end_fun ();
1184#endif
1185
1186 timevar_pop (dflow->problem->tv_id);
1187
1188 dflow->computed = true;
4d779342
DB
1189}
1190
1191
7be64667 1192/* Analyze dataflow info. */
4d779342 1193
7be64667
RB
1194static void
1195df_analyze_1 (void)
4d779342 1196{
6fb5fa3c 1197 int i;
b8698a0f 1198
6fb5fa3c 1199 /* These should be the same. */
6fa95e09 1200 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
6fb5fa3c
DB
1201
1202 /* We need to do this before the df_verify_all because this is
1203 not kept incrementally up to date. */
1204 df_compute_regs_ever_live (false);
1205 df_process_deferred_rescans ();
1206
6fb5fa3c
DB
1207 if (dump_file)
1208 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1209
0d475361
PB
1210#ifndef ENABLE_DF_CHECKING
1211 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1212#endif
1213 df_verify ();
6fb5fa3c 1214
7be64667
RB
1215 /* Skip over the DF_SCAN problem. */
1216 for (i = 1; i < df->num_problems_defined; i++)
1217 {
1218 struct dataflow *dflow = df->problems_in_order[i];
1219 if (dflow->solutions_dirty)
1220 {
1221 if (dflow->problem->dir == DF_FORWARD)
1222 df_analyze_problem (dflow,
1223 df->blocks_to_analyze,
6fa95e09
TS
1224 df->postorder_inverted.address (),
1225 df->postorder_inverted.length ());
7be64667
RB
1226 else
1227 df_analyze_problem (dflow,
1228 df->blocks_to_analyze,
1229 df->postorder,
1230 df->n_blocks);
1231 }
1232 }
1233
1234 if (!df->analyze_subset)
1235 {
1236 BITMAP_FREE (df->blocks_to_analyze);
1237 df->blocks_to_analyze = NULL;
1238 }
1239
1240#ifdef DF_DEBUG_CFG
1241 df_set_clean_cfg ();
1242#endif
1243}
1244
1245/* Analyze dataflow info. */
1246
1247void
1248df_analyze (void)
1249{
1250 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
7be64667
RB
1251
1252 free (df->postorder);
7be64667 1253 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
7be64667 1254 df->n_blocks = post_order_compute (df->postorder, true, true);
6fa95e09
TS
1255 df->postorder_inverted.truncate (0);
1256 inverted_post_order_compute (&df->postorder_inverted);
7be64667 1257
6fa95e09 1258 for (int i = 0; i < df->n_blocks; i++)
6fb5fa3c
DB
1259 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1260
b2b29377
MM
1261 if (flag_checking)
1262 {
1263 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1264 the ENTRY block. */
6fa95e09 1265 for (unsigned int i = 0; i < df->postorder_inverted.length (); i++)
b2b29377
MM
1266 gcc_assert (bitmap_bit_p (current_all_blocks,
1267 df->postorder_inverted[i]));
1268 }
4d779342
DB
1269
1270 /* Make sure that we have pruned any unreachable blocks from these
1271 sets. */
6fb5fa3c 1272 if (df->analyze_subset)
4d779342 1273 {
4d779342 1274 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
b8698a0f 1275 df->n_blocks = df_prune_to_subcfg (df->postorder,
6fb5fa3c 1276 df->n_blocks, df->blocks_to_analyze);
6fa95e09
TS
1277 unsigned int newlen = df_prune_to_subcfg (df->postorder_inverted.address (),
1278 df->postorder_inverted.length (),
7be64667 1279 df->blocks_to_analyze);
6fa95e09 1280 df->postorder_inverted.truncate (newlen);
4d779342
DB
1281 BITMAP_FREE (current_all_blocks);
1282 }
1283 else
1284 {
4d779342
DB
1285 df->blocks_to_analyze = current_all_blocks;
1286 current_all_blocks = NULL;
1287 }
1288
7be64667
RB
1289 df_analyze_1 ();
1290}
1291
1292/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1293 Returns the number of blocks which is always loop->num_nodes. */
1294
1295static int
1296loop_post_order_compute (int *post_order, struct loop *loop)
1297{
1298 edge_iterator *stack;
1299 int sp;
1300 int post_order_num = 0;
7be64667
RB
1301
1302 /* Allocate stack for back-tracking up CFG. */
1303 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1304 sp = 0;
1305
1306 /* Allocate bitmap to track nodes that have been visited. */
0e3de1d4 1307 auto_bitmap visited;
7be64667
RB
1308
1309 /* Push the first edge on to the stack. */
1310 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1311
1312 while (sp)
6fb5fa3c 1313 {
7be64667
RB
1314 edge_iterator ei;
1315 basic_block src;
1316 basic_block dest;
1317
1318 /* Look at the edge on the top of the stack. */
1319 ei = stack[sp - 1];
1320 src = ei_edge (ei)->src;
1321 dest = ei_edge (ei)->dest;
1322
1323 /* Check if the edge destination has been visited yet and mark it
1324 if not so. */
1325 if (flow_bb_inside_loop_p (loop, dest)
1326 && bitmap_set_bit (visited, dest->index))
1327 {
1328 if (EDGE_COUNT (dest->succs) > 0)
1329 /* Since the DEST node has been visited for the first
1330 time, check its successors. */
1331 stack[sp++] = ei_start (dest->succs);
1332 else
1333 post_order[post_order_num++] = dest->index;
1334 }
1335 else
1336 {
1337 if (ei_one_before_end_p (ei)
1338 && src != loop_preheader_edge (loop)->src)
1339 post_order[post_order_num++] = src->index;
1340
1341 if (!ei_one_before_end_p (ei))
1342 ei_next (&stack[sp - 1]);
1343 else
1344 sp--;
1345 }
6fb5fa3c 1346 }
4d779342 1347
7be64667 1348 free (stack);
7be64667
RB
1349
1350 return post_order_num;
1351}
1352
1353/* Compute the reverse top sort order of the inverted sub-CFG specified
1354 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1355
6fa95e09
TS
1356static void
1357loop_inverted_post_order_compute (vec<int> *post_order, struct loop *loop)
7be64667
RB
1358{
1359 basic_block bb;
1360 edge_iterator *stack;
1361 int sp;
6fa95e09
TS
1362
1363 post_order->reserve_exact (loop->num_nodes);
7be64667
RB
1364
1365 /* Allocate stack for back-tracking up CFG. */
1366 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1367 sp = 0;
1368
1369 /* Allocate bitmap to track nodes that have been visited. */
0e3de1d4 1370 auto_bitmap visited;
7be64667
RB
1371
1372 /* Put all latches into the initial work list. In theory we'd want
1373 to start from loop exits but then we'd have the special case of
1374 endless loops. It doesn't really matter for DF iteration order and
1375 handling latches last is probably even better. */
1376 stack[sp++] = ei_start (loop->header->preds);
1377 bitmap_set_bit (visited, loop->header->index);
1378
1379 /* The inverted traversal loop. */
1380 while (sp)
4d779342 1381 {
7be64667
RB
1382 edge_iterator ei;
1383 basic_block pred;
1384
1385 /* Look at the edge on the top of the stack. */
1386 ei = stack[sp - 1];
1387 bb = ei_edge (ei)->dest;
1388 pred = ei_edge (ei)->src;
1389
1390 /* Check if the predecessor has been visited yet and mark it
1391 if not so. */
1392 if (flow_bb_inside_loop_p (loop, pred)
1393 && bitmap_set_bit (visited, pred->index))
1394 {
1395 if (EDGE_COUNT (pred->preds) > 0)
1396 /* Since the predecessor node has been visited for the first
1397 time, check its predecessors. */
1398 stack[sp++] = ei_start (pred->preds);
1399 else
6fa95e09 1400 post_order->quick_push (pred->index);
7be64667
RB
1401 }
1402 else
1403 {
1404 if (flow_bb_inside_loop_p (loop, bb)
1405 && ei_one_before_end_p (ei))
6fa95e09 1406 post_order->quick_push (bb->index);
7be64667
RB
1407
1408 if (!ei_one_before_end_p (ei))
1409 ei_next (&stack[sp - 1]);
1410 else
1411 sp--;
1412 }
4d779342
DB
1413 }
1414
7be64667 1415 free (stack);
7be64667
RB
1416}
1417
1418
1419/* Analyze dataflow info for the basic blocks contained in LOOP. */
1420
1421void
1422df_analyze_loop (struct loop *loop)
1423{
1424 free (df->postorder);
7be64667
RB
1425
1426 df->postorder = XNEWVEC (int, loop->num_nodes);
6fa95e09 1427 df->postorder_inverted.truncate (0);
7be64667 1428 df->n_blocks = loop_post_order_compute (df->postorder, loop);
6fa95e09 1429 loop_inverted_post_order_compute (&df->postorder_inverted, loop);
7be64667 1430 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
6fa95e09 1431 gcc_assert (df->postorder_inverted.length () == loop->num_nodes);
7be64667
RB
1432
1433 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1434 for (int i = 0; i < df->n_blocks; ++i)
1435 bitmap_set_bit (blocks, df->postorder[i]);
1436 df_set_blocks (blocks);
1437 BITMAP_FREE (blocks);
1438
1439 df_analyze_1 ();
6fb5fa3c
DB
1440}
1441
1442
1443/* Return the number of basic blocks from the last call to df_analyze. */
1444
b8698a0f 1445int
6fb5fa3c
DB
1446df_get_n_blocks (enum df_flow_dir dir)
1447{
1448 gcc_assert (dir != DF_NONE);
1449
1450 if (dir == DF_FORWARD)
1451 {
6fa95e09
TS
1452 gcc_assert (df->postorder_inverted.length ());
1453 return df->postorder_inverted.length ();
6fb5fa3c
DB
1454 }
1455
1456 gcc_assert (df->postorder);
1457 return df->n_blocks;
1458}
1459
1460
b8698a0f 1461/* Return a pointer to the array of basic blocks in the reverse postorder.
6fb5fa3c
DB
1462 Depending on the direction of the dataflow problem,
1463 it returns either the usual reverse postorder array
1464 or the reverse postorder of inverted traversal. */
1465int *
1466df_get_postorder (enum df_flow_dir dir)
1467{
1468 gcc_assert (dir != DF_NONE);
1469
1470 if (dir == DF_FORWARD)
1471 {
6fa95e09
TS
1472 gcc_assert (df->postorder_inverted.length ());
1473 return df->postorder_inverted.address ();
6fb5fa3c
DB
1474 }
1475 gcc_assert (df->postorder);
1476 return df->postorder;
4d779342
DB
1477}
1478
b8698a0f 1479static struct df_problem user_problem;
6fb5fa3c 1480static struct dataflow user_dflow;
4d779342 1481
6fb5fa3c
DB
1482/* Interface for calling iterative dataflow with user defined
1483 confluence and transfer functions. All that is necessary is to
1484 supply DIR, a direction, CONF_FUN_0, a confluence function for
1485 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1486 confluence function, TRANS_FUN, the basic block transfer function,
1487 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1488 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1489
1490void
1491df_simple_dataflow (enum df_flow_dir dir,
1492 df_init_function init_fun,
1493 df_confluence_function_0 con_fun_0,
1494 df_confluence_function_n con_fun_n,
1495 df_transfer_function trans_fun,
1496 bitmap blocks, int * postorder, int n_blocks)
1497{
1498 memset (&user_problem, 0, sizeof (struct df_problem));
1499 user_problem.dir = dir;
1500 user_problem.init_fun = init_fun;
1501 user_problem.con_fun_0 = con_fun_0;
1502 user_problem.con_fun_n = con_fun_n;
1503 user_problem.trans_fun = trans_fun;
1504 user_dflow.problem = &user_problem;
1505 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1506}
1507
b8698a0f 1508
4d779342
DB
1509\f
1510/*----------------------------------------------------------------------------
1511 Functions to support limited incremental change.
1512----------------------------------------------------------------------------*/
1513
1514
1515/* Get basic block info. */
1516
1517static void *
1518df_get_bb_info (struct dataflow *dflow, unsigned int index)
1519{
6fb5fa3c
DB
1520 if (dflow->block_info == NULL)
1521 return NULL;
1522 if (index >= dflow->block_info_size)
1523 return NULL;
e285df08
JH
1524 return (void *)((char *)dflow->block_info
1525 + index * dflow->problem->block_info_elt_size);
4d779342
DB
1526}
1527
1528
1529/* Set basic block info. */
1530
1531static void
b8698a0f 1532df_set_bb_info (struct dataflow *dflow, unsigned int index,
4d779342
DB
1533 void *bb_info)
1534{
6fb5fa3c 1535 gcc_assert (dflow->block_info);
e285df08
JH
1536 memcpy ((char *)dflow->block_info
1537 + index * dflow->problem->block_info_elt_size,
1538 bb_info, dflow->problem->block_info_elt_size);
1539}
1540
1541
1542/* Clear basic block info. */
1543
1544static void
1545df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1546{
1547 gcc_assert (dflow->block_info);
1548 gcc_assert (dflow->block_info_size > index);
1549 memset ((char *)dflow->block_info
1550 + index * dflow->problem->block_info_elt_size,
1551 0, dflow->problem->block_info_elt_size);
4d779342
DB
1552}
1553
1554
6fb5fa3c
DB
1555/* Mark the solutions as being out of date. */
1556
b8698a0f 1557void
6fb5fa3c
DB
1558df_mark_solutions_dirty (void)
1559{
1560 if (df)
1561 {
b8698a0f 1562 int p;
6fb5fa3c
DB
1563 for (p = 1; p < df->num_problems_defined; p++)
1564 df->problems_in_order[p]->solutions_dirty = true;
1565 }
1566}
1567
1568
1569/* Return true if BB needs it's transfer functions recomputed. */
1570
b8698a0f 1571bool
6fb5fa3c
DB
1572df_get_bb_dirty (basic_block bb)
1573{
65e0a0f3
JJ
1574 return bitmap_bit_p ((df_live
1575 ? df_live : df_lr)->out_of_date_transfer_functions,
1576 bb->index);
6fb5fa3c
DB
1577}
1578
1579
1580/* Mark BB as needing it's transfer functions as being out of
1581 date. */
1582
b8698a0f 1583void
6fb5fa3c
DB
1584df_set_bb_dirty (basic_block bb)
1585{
4ec5d4f5 1586 bb->flags |= BB_MODIFIED;
6fb5fa3c
DB
1587 if (df)
1588 {
b8698a0f 1589 int p;
6fb5fa3c
DB
1590 for (p = 1; p < df->num_problems_defined; p++)
1591 {
1592 struct dataflow *dflow = df->problems_in_order[p];
1593 if (dflow->out_of_date_transfer_functions)
1594 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1595 }
1596 df_mark_solutions_dirty ();
1597 }
1598}
1599
1600
e285df08
JH
1601/* Grow the bb_info array. */
1602
1603void
1604df_grow_bb_info (struct dataflow *dflow)
1605{
8b1c6fd7 1606 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
e285df08
JH
1607 if (dflow->block_info_size < new_size)
1608 {
1609 new_size += new_size / 4;
1610 dflow->block_info
1611 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1612 new_size
1613 * dflow->problem->block_info_elt_size);
1614 memset ((char *)dflow->block_info
1615 + dflow->block_info_size
1616 * dflow->problem->block_info_elt_size,
1617 0,
1618 (new_size - dflow->block_info_size)
1619 * dflow->problem->block_info_elt_size);
1620 dflow->block_info_size = new_size;
1621 }
1622}
1623
c23cd1d6 1624
6fb5fa3c
DB
1625/* Clear the dirty bits. This is called from places that delete
1626 blocks. */
1627static void
1628df_clear_bb_dirty (basic_block bb)
1629{
b8698a0f 1630 int p;
6fb5fa3c
DB
1631 for (p = 1; p < df->num_problems_defined; p++)
1632 {
1633 struct dataflow *dflow = df->problems_in_order[p];
1634 if (dflow->out_of_date_transfer_functions)
1635 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1636 }
1637}
e285df08 1638
4d779342
DB
1639/* Called from the rtl_compact_blocks to reorganize the problems basic
1640 block info. */
1641
b8698a0f 1642void
6fb5fa3c 1643df_compact_blocks (void)
4d779342
DB
1644{
1645 int i, p;
1646 basic_block bb;
e285df08 1647 void *problem_temps;
4d779342 1648
d648b5ff 1649 auto_bitmap tmp (&df_bitmap_obstack);
4d779342
DB
1650 for (p = 0; p < df->num_problems_defined; p++)
1651 {
1652 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1653
1654 /* Need to reorganize the out_of_date_transfer_functions for the
1655 dflow problem. */
1656 if (dflow->out_of_date_transfer_functions)
1657 {
d648b5ff 1658 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
6fb5fa3c 1659 bitmap_clear (dflow->out_of_date_transfer_functions);
d648b5ff 1660 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
6fb5fa3c 1661 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
d648b5ff 1662 if (bitmap_bit_p (tmp, EXIT_BLOCK))
6fb5fa3c
DB
1663 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1664
1665 i = NUM_FIXED_BLOCKS;
11cd3bed 1666 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1667 {
d648b5ff 1668 if (bitmap_bit_p (tmp, bb->index))
6fb5fa3c
DB
1669 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1670 i++;
1671 }
1672 }
1673
1674 /* Now shuffle the block info for the problem. */
e45dcf9c 1675 if (dflow->problem->free_bb_fun)
4d779342 1676 {
8b1c6fd7
DM
1677 int size = (last_basic_block_for_fn (cfun)
1678 * dflow->problem->block_info_elt_size);
e285df08 1679 problem_temps = XNEWVAR (char, size);
4d779342
DB
1680 df_grow_bb_info (dflow);
1681 memcpy (problem_temps, dflow->block_info, size);
1682
1683 /* Copy the bb info from the problem tmps to the proper
1684 place in the block_info vector. Null out the copied
6fb5fa3c 1685 item. The entry and exit blocks never move. */
4d779342 1686 i = NUM_FIXED_BLOCKS;
11cd3bed 1687 FOR_EACH_BB_FN (bb, cfun)
4d779342 1688 {
e285df08
JH
1689 df_set_bb_info (dflow, i,
1690 (char *)problem_temps
1691 + bb->index * dflow->problem->block_info_elt_size);
4d779342
DB
1692 i++;
1693 }
e285df08
JH
1694 memset ((char *)dflow->block_info
1695 + i * dflow->problem->block_info_elt_size, 0,
8b1c6fd7 1696 (last_basic_block_for_fn (cfun) - i)
e285df08 1697 * dflow->problem->block_info_elt_size);
f75aa51c 1698 free (problem_temps);
4d779342
DB
1699 }
1700 }
1701
6fb5fa3c
DB
1702 /* Shuffle the bits in the basic_block indexed arrays. */
1703
1704 if (df->blocks_to_analyze)
1705 {
d648b5ff 1706 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
6fb5fa3c 1707 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
d648b5ff 1708 if (bitmap_bit_p (tmp, EXIT_BLOCK))
6fb5fa3c 1709 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
d648b5ff 1710 bitmap_copy (tmp, df->blocks_to_analyze);
6fb5fa3c
DB
1711 bitmap_clear (df->blocks_to_analyze);
1712 i = NUM_FIXED_BLOCKS;
11cd3bed 1713 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1714 {
d648b5ff 1715 if (bitmap_bit_p (tmp, bb->index))
6fb5fa3c
DB
1716 bitmap_set_bit (df->blocks_to_analyze, i);
1717 i++;
1718 }
1719 }
1720
4d779342 1721 i = NUM_FIXED_BLOCKS;
11cd3bed 1722 FOR_EACH_BB_FN (bb, cfun)
4d779342 1723 {
557c4b49 1724 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
4d779342
DB
1725 bb->index = i;
1726 i++;
1727 }
1728
0cae8d31 1729 gcc_assert (i == n_basic_blocks_for_fn (cfun));
4d779342 1730
8b1c6fd7 1731 for (; i < last_basic_block_for_fn (cfun); i++)
557c4b49 1732 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
6fb5fa3c
DB
1733
1734#ifdef DF_DEBUG_CFG
1735 if (!df_lr->solutions_dirty)
1736 df_set_clean_cfg ();
1737#endif
4d779342
DB
1738}
1739
1740
6fb5fa3c 1741/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1742 block. There is no excuse for people to do this kind of thing. */
1743
b8698a0f 1744void
6fb5fa3c 1745df_bb_replace (int old_index, basic_block new_block)
4d779342 1746{
6fb5fa3c 1747 int new_block_index = new_block->index;
4d779342
DB
1748 int p;
1749
6fb5fa3c
DB
1750 if (dump_file)
1751 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1752
1753 gcc_assert (df);
06e28de2 1754 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
6fb5fa3c 1755
4d779342
DB
1756 for (p = 0; p < df->num_problems_defined; p++)
1757 {
1758 struct dataflow *dflow = df->problems_in_order[p];
1759 if (dflow->block_info)
1760 {
4d779342 1761 df_grow_bb_info (dflow);
b8698a0f 1762 df_set_bb_info (dflow, old_index,
6fb5fa3c 1763 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1764 }
1765 }
1766
6fb5fa3c 1767 df_clear_bb_dirty (new_block);
557c4b49 1768 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
4d779342 1769 new_block->index = old_index;
06e28de2 1770 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
557c4b49 1771 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
6fb5fa3c
DB
1772}
1773
1774
1775/* Free all of the per basic block dataflow from all of the problems.
1776 This is typically called before a basic block is deleted and the
1777 problem will be reanalyzed. */
1778
1779void
1780df_bb_delete (int bb_index)
1781{
06e28de2 1782 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
6fb5fa3c
DB
1783 int i;
1784
1785 if (!df)
1786 return;
b8698a0f 1787
6fb5fa3c
DB
1788 for (i = 0; i < df->num_problems_defined; i++)
1789 {
1790 struct dataflow *dflow = df->problems_in_order[i];
1791 if (dflow->problem->free_bb_fun)
1792 {
1793 void *bb_info = df_get_bb_info (dflow, bb_index);
1794 if (bb_info)
1795 {
b8698a0f 1796 dflow->problem->free_bb_fun (bb, bb_info);
e285df08 1797 df_clear_bb_info (dflow, bb_index);
6fb5fa3c
DB
1798 }
1799 }
1800 }
1801 df_clear_bb_dirty (bb);
1802 df_mark_solutions_dirty ();
1803}
1804
1805
1806/* Verify that there is a place for everything and everything is in
1807 its place. This is too expensive to run after every pass in the
1808 mainline. However this is an excellent debugging tool if the
6ed3da00 1809 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1810 sprinkle calls in until you find the place that is changing an
1811 underlying structure without calling the proper updating
0d52bcc1 1812 routine. */
6fb5fa3c
DB
1813
1814void
1815df_verify (void)
1816{
1817 df_scan_verify ();
0d475361 1818#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1819 df_lr_verify_transfer_functions ();
1820 if (df_live)
1821 df_live_verify_transfer_functions ();
0d475361 1822#endif
2c90c549 1823 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
1824}
1825
1826#ifdef DF_DEBUG_CFG
1827
1828/* Compute an array of ints that describes the cfg. This can be used
1829 to discover places where the cfg is modified by the appropriate
1830 calls have not been made to the keep df informed. The internals of
1831 this are unexciting, the key is that two instances of this can be
1832 compared to see if any changes have been made to the cfg. */
1833
1834static int *
1835df_compute_cfg_image (void)
1836{
1837 basic_block bb;
0cae8d31 1838 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
6fb5fa3c
DB
1839 int i;
1840 int * map;
1841
04a90bec 1842 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1843 {
1844 size += EDGE_COUNT (bb->succs);
1845 }
1846
1847 map = XNEWVEC (int, size);
1848 map[0] = size;
1849 i = 1;
04a90bec 1850 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1851 {
1852 edge_iterator ei;
1853 edge e;
1854
1855 map[i++] = bb->index;
1856 FOR_EACH_EDGE (e, ei, bb->succs)
1857 map[i++] = e->dest->index;
1858 map[i++] = -1;
1859 }
1860 map[i] = -1;
1861 return map;
1862}
1863
1864static int *saved_cfg = NULL;
1865
1866
1867/* This function compares the saved version of the cfg with the
1868 current cfg and aborts if the two are identical. The function
1869 silently returns if the cfg has been marked as dirty or the two are
1870 the same. */
1871
1872void
1873df_check_cfg_clean (void)
1874{
1875 int *new_map;
1876
1877 if (!df)
1878 return;
1879
1880 if (df_lr->solutions_dirty)
1881 return;
1882
b8698a0f 1883 if (saved_cfg == NULL)
6fb5fa3c
DB
1884 return;
1885
1886 new_map = df_compute_cfg_image ();
1887 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1888 free (new_map);
4d779342
DB
1889}
1890
6fb5fa3c
DB
1891
1892/* This function builds a cfg fingerprint and squirrels it away in
1893 saved_cfg. */
1894
1895static void
1896df_set_clean_cfg (void)
1897{
04695783 1898 free (saved_cfg);
6fb5fa3c
DB
1899 saved_cfg = df_compute_cfg_image ();
1900}
1901
1902#endif /* DF_DEBUG_CFG */
4d779342
DB
1903/*----------------------------------------------------------------------------
1904 PUBLIC INTERFACES TO QUERY INFORMATION.
1905----------------------------------------------------------------------------*/
1906
1907
4d779342
DB
1908/* Return first def of REGNO within BB. */
1909
b8698a0f 1910df_ref
6fb5fa3c 1911df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342 1912{
dd3eed93 1913 rtx_insn *insn;
bfac633a 1914 df_ref def;
4d779342
DB
1915
1916 FOR_BB_INSNS (bb, insn)
1917 {
a1b53177
SB
1918 if (!INSN_P (insn))
1919 continue;
1920
bfac633a
RS
1921 FOR_EACH_INSN_DEF (def, insn)
1922 if (DF_REF_REGNO (def) == regno)
1923 return def;
4d779342
DB
1924 }
1925 return NULL;
1926}
1927
1928
1929/* Return last def of REGNO within BB. */
1930
b8698a0f 1931df_ref
6fb5fa3c 1932df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342 1933{
dd3eed93 1934 rtx_insn *insn;
bfac633a 1935 df_ref def;
4d779342
DB
1936
1937 FOR_BB_INSNS_REVERSE (bb, insn)
1938 {
a1b53177
SB
1939 if (!INSN_P (insn))
1940 continue;
4d779342 1941
bfac633a
RS
1942 FOR_EACH_INSN_DEF (def, insn)
1943 if (DF_REF_REGNO (def) == regno)
1944 return def;
4d779342
DB
1945 }
1946
1947 return NULL;
1948}
1949
4d779342
DB
1950/* Finds the reference corresponding to the definition of REG in INSN.
1951 DF is the dataflow object. */
1952
b8698a0f 1953df_ref
b2908ba6 1954df_find_def (rtx_insn *insn, rtx reg)
4d779342 1955{
bfac633a 1956 df_ref def;
4d779342
DB
1957
1958 if (GET_CODE (reg) == SUBREG)
1959 reg = SUBREG_REG (reg);
1960 gcc_assert (REG_P (reg));
1961
bfac633a
RS
1962 FOR_EACH_INSN_DEF (def, insn)
1963 if (DF_REF_REGNO (def) == REGNO (reg))
1964 return def;
4d779342
DB
1965
1966 return NULL;
1967}
1968
1969
b8698a0f 1970/* Return true if REG is defined in INSN, zero otherwise. */
4d779342
DB
1971
1972bool
b2908ba6 1973df_reg_defined (rtx_insn *insn, rtx reg)
4d779342 1974{
6fb5fa3c 1975 return df_find_def (insn, reg) != NULL;
4d779342 1976}
b8698a0f 1977
4d779342
DB
1978
1979/* Finds the reference corresponding to the use of REG in INSN.
1980 DF is the dataflow object. */
b8698a0f
L
1981
1982df_ref
b2908ba6 1983df_find_use (rtx_insn *insn, rtx reg)
4d779342 1984{
bfac633a 1985 df_ref use;
4d779342
DB
1986
1987 if (GET_CODE (reg) == SUBREG)
1988 reg = SUBREG_REG (reg);
1989 gcc_assert (REG_P (reg));
1990
bfac633a
RS
1991 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1992 FOR_EACH_INSN_INFO_USE (use, insn_info)
1993 if (DF_REF_REGNO (use) == REGNO (reg))
1994 return use;
1995 if (df->changeable_flags & DF_EQ_NOTES)
1996 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
226e378f 1997 if (DF_REF_REGNO (use) == REGNO (reg))
6fb5fa3c 1998 return use;
4d779342
DB
1999 return NULL;
2000}
2001
2002
b8698a0f 2003/* Return true if REG is referenced in INSN, zero otherwise. */
4d779342
DB
2004
2005bool
b2908ba6 2006df_reg_used (rtx_insn *insn, rtx reg)
4d779342 2007{
6fb5fa3c 2008 return df_find_use (insn, reg) != NULL;
4d779342 2009}
b8698a0f 2010
4d779342
DB
2011\f
2012/*----------------------------------------------------------------------------
2013 Debugging and printing functions.
2014----------------------------------------------------------------------------*/
2015
532aafad
SB
2016/* Write information about registers and basic blocks into FILE.
2017 This is part of making a debugging dump. */
2018
2019void
2020dump_regset (regset r, FILE *outf)
2021{
2022 unsigned i;
2023 reg_set_iterator rsi;
2024
2025 if (r == NULL)
2026 {
2027 fputs (" (nil)", outf);
2028 return;
2029 }
2030
2031 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2032 {
2033 fprintf (outf, " %d", i);
2034 if (i < FIRST_PSEUDO_REGISTER)
2035 fprintf (outf, " [%s]",
2036 reg_names[i]);
2037 }
2038}
2039
2040/* Print a human-readable representation of R on the standard error
2041 stream. This function is designed to be used from within the
2042 debugger. */
2043extern void debug_regset (regset);
2044DEBUG_FUNCTION void
2045debug_regset (regset r)
2046{
2047 dump_regset (r, stderr);
2048 putc ('\n', stderr);
2049}
6fb5fa3c
DB
2050
2051/* Write information about registers and basic blocks into FILE.
2052 This is part of making a debugging dump. */
2053
2054void
2055df_print_regset (FILE *file, bitmap r)
2056{
2057 unsigned int i;
2058 bitmap_iterator bi;
2059
2060 if (r == NULL)
2061 fputs (" (nil)", file);
2062 else
2063 {
2064 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2065 {
2066 fprintf (file, " %d", i);
2067 if (i < FIRST_PSEUDO_REGISTER)
2068 fprintf (file, " [%s]", reg_names[i]);
2069 }
2070 }
2071 fprintf (file, "\n");
2072}
2073
2074
cc806ac1
RS
2075/* Write information about registers and basic blocks into FILE. The
2076 bitmap is in the form used by df_byte_lr. This is part of making a
2077 debugging dump. */
2078
2079void
8d074192 2080df_print_word_regset (FILE *file, bitmap r)
cc806ac1
RS
2081{
2082 unsigned int max_reg = max_reg_num ();
cc806ac1
RS
2083
2084 if (r == NULL)
2085 fputs (" (nil)", file);
2086 else
2087 {
2088 unsigned int i;
8d074192 2089 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
cc806ac1 2090 {
8d074192
BS
2091 bool found = (bitmap_bit_p (r, 2 * i)
2092 || bitmap_bit_p (r, 2 * i + 1));
2093 if (found)
cc806ac1 2094 {
8d074192
BS
2095 int word;
2096 const char * sep = "";
2097 fprintf (file, " %d", i);
2098 fprintf (file, "(");
2099 for (word = 0; word < 2; word++)
2100 if (bitmap_bit_p (r, 2 * i + word))
2101 {
2102 fprintf (file, "%s%d", sep, word);
2103 sep = ", ";
2104 }
2105 fprintf (file, ")");
cc806ac1 2106 }
cc806ac1
RS
2107 }
2108 }
2109 fprintf (file, "\n");
2110}
2111
2112
4d779342 2113/* Dump dataflow info. */
ffd640ed 2114
4d779342 2115void
6fb5fa3c
DB
2116df_dump (FILE *file)
2117{
2118 basic_block bb;
2119 df_dump_start (file);
2120
04a90bec 2121 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2122 {
2123 df_print_bb_index (bb, file);
2124 df_dump_top (bb, file);
2125 df_dump_bottom (bb, file);
2126 }
2127
2128 fprintf (file, "\n");
2129}
2130
2131
ffd640ed
KZ
2132/* Dump dataflow info for df->blocks_to_analyze. */
2133
2134void
2135df_dump_region (FILE *file)
2136{
2137 if (df->blocks_to_analyze)
2138 {
2139 bitmap_iterator bi;
2140 unsigned int bb_index;
2141
2142 fprintf (file, "\n\nstarting region dump\n");
2143 df_dump_start (file);
b8698a0f
L
2144
2145 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
ffd640ed 2146 {
06e28de2 2147 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
7b19209f 2148 dump_bb (file, bb, 0, TDF_DETAILS);
ffd640ed
KZ
2149 }
2150 fprintf (file, "\n");
2151 }
b8698a0f 2152 else
ffd640ed
KZ
2153 df_dump (file);
2154}
2155
2156
6fb5fa3c
DB
2157/* Dump the introductory information for each problem defined. */
2158
2159void
2160df_dump_start (FILE *file)
4d779342
DB
2161{
2162 int i;
2163
23249ac4 2164 if (!df || !file)
4d779342
DB
2165 return;
2166
2167 fprintf (file, "\n\n%s\n", current_function_name ());
2168 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
2169 if (df->blocks_to_analyze)
2170 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2171 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
2172
2173 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
2174 {
2175 struct dataflow *dflow = df->problems_in_order[i];
2176 if (dflow->computed)
2177 {
2178 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2179 if (fun)
c3284718 2180 fun (file);
6fb5fa3c
DB
2181 }
2182 }
2183}
4d779342 2184
6fb5fa3c 2185
7b19209f
SB
2186/* Dump the top or bottom of the block information for BB. */
2187static void
2188df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
6fb5fa3c
DB
2189{
2190 int i;
2191
2192 if (!df || !file)
2193 return;
2194
2195 for (i = 0; i < df->num_problems_defined; i++)
2196 {
2197 struct dataflow *dflow = df->problems_in_order[i];
2198 if (dflow->computed)
2199 {
7b19209f
SB
2200 df_dump_bb_problem_function bbfun;
2201
2202 if (top)
2203 bbfun = dflow->problem->dump_top_fun;
2204 else
2205 bbfun = dflow->problem->dump_bottom_fun;
2206
6fb5fa3c 2207 if (bbfun)
b8698a0f 2208 bbfun (bb, file);
6fb5fa3c
DB
2209 }
2210 }
2211}
2212
7b19209f
SB
2213/* Dump the top of the block information for BB. */
2214
2215void
2216df_dump_top (basic_block bb, FILE *file)
2217{
2218 df_dump_bb_problem_data (bb, file, /*top=*/true);
2219}
6fb5fa3c 2220
b8698a0f 2221/* Dump the bottom of the block information for BB. */
6fb5fa3c
DB
2222
2223void
2224df_dump_bottom (basic_block bb, FILE *file)
7b19209f
SB
2225{
2226 df_dump_bb_problem_data (bb, file, /*top=*/false);
2227}
2228
2229
2230/* Dump information about INSN just before or after dumping INSN itself. */
2231static void
b2908ba6 2232df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
6fb5fa3c
DB
2233{
2234 int i;
2235
2236 if (!df || !file)
2237 return;
2238
2239 for (i = 0; i < df->num_problems_defined; i++)
2240 {
2241 struct dataflow *dflow = df->problems_in_order[i];
2242 if (dflow->computed)
2243 {
7b19209f
SB
2244 df_dump_insn_problem_function insnfun;
2245
2246 if (top)
2247 insnfun = dflow->problem->dump_insn_top_fun;
2248 else
2249 insnfun = dflow->problem->dump_insn_bottom_fun;
2250
2251 if (insnfun)
2252 insnfun (insn, file);
6fb5fa3c
DB
2253 }
2254 }
4d779342
DB
2255}
2256
7b19209f
SB
2257/* Dump information about INSN before dumping INSN itself. */
2258
2259void
b2908ba6 2260df_dump_insn_top (const rtx_insn *insn, FILE *file)
7b19209f
SB
2261{
2262 df_dump_insn_problem_data (insn, file, /*top=*/true);
2263}
2264
2265/* Dump information about INSN after dumping INSN itself. */
2266
2267void
b2908ba6 2268df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
7b19209f
SB
2269{
2270 df_dump_insn_problem_data (insn, file, /*top=*/false);
2271}
2272
4d779342 2273
885c9b5d
EB
2274static void
2275df_ref_dump (df_ref ref, FILE *file)
2276{
2277 fprintf (file, "%c%d(%d)",
2278 DF_REF_REG_DEF_P (ref)
2279 ? 'd'
2280 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2281 DF_REF_ID (ref),
2282 DF_REF_REGNO (ref));
2283}
2284
4d779342 2285void
b512946c 2286df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
4d779342
DB
2287{
2288 fprintf (file, "{ ");
b512946c 2289 for (; ref; ref = DF_REF_NEXT_LOC (ref))
4d779342 2290 {
885c9b5d 2291 df_ref_dump (ref, file);
4d779342 2292 if (follow_chain)
23249ac4 2293 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2294 }
2295 fprintf (file, "}");
2296}
2297
2298
2299/* Dump either a ref-def or reg-use chain. */
2300
2301void
57512f53 2302df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2303{
2304 fprintf (file, "{ ");
2305 while (ref)
2306 {
885c9b5d 2307 df_ref_dump (ref, file);
57512f53 2308 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2309 }
2310 fprintf (file, "}");
2311}
2312
2313
23249ac4 2314static void
b512946c 2315df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
4d779342 2316{
b512946c
RS
2317 for (; mws; mws = DF_MWS_NEXT (mws))
2318 fprintf (file, "mw %c r[%d..%d]\n",
2319 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2320 mws->start_regno, mws->end_regno);
23249ac4
DB
2321}
2322
2323
b8698a0f
L
2324static void
2325df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2326 bool follow_chain, FILE *file)
2327{
6fb5fa3c
DB
2328 fprintf (file, "insn %d luid %d",
2329 uid, DF_INSN_UID_LUID (uid));
4d779342 2330
6fb5fa3c 2331 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2332 {
2333 fprintf (file, " defs ");
6fb5fa3c 2334 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2335 }
2336
6fb5fa3c 2337 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2338 {
2339 fprintf (file, " uses ");
6fb5fa3c
DB
2340 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2341 }
2342
2343 if (DF_INSN_UID_EQ_USES (uid))
2344 {
2345 fprintf (file, " eq uses ");
2346 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2347 }
2348
6fb5fa3c 2349 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2350 {
2351 fprintf (file, " mws ");
6fb5fa3c 2352 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2353 }
4d779342
DB
2354 fprintf (file, "\n");
2355}
2356
23249ac4 2357
24e47c76 2358DEBUG_FUNCTION void
b2908ba6 2359df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
23249ac4 2360{
6fb5fa3c 2361 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2362}
2363
24e47c76 2364DEBUG_FUNCTION void
b2908ba6 2365df_insn_debug_regno (rtx_insn *insn, FILE *file)
4d779342 2366{
50e94c7e 2367 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2368
2369 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2370 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2371 DF_INSN_INFO_LUID (insn_info));
2372 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
b8698a0f 2373
4d779342 2374 fprintf (file, " uses ");
50e94c7e 2375 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2376
2377 fprintf (file, " eq_uses ");
50e94c7e 2378 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2379 fprintf (file, "\n");
2380}
2381
24e47c76 2382DEBUG_FUNCTION void
6fb5fa3c 2383df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2384{
2385 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2386 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2387 fprintf (file, " uses ");
6fb5fa3c
DB
2388 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2389 fprintf (file, " eq_uses ");
2390 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2391 fprintf (file, "\n");
2392}
2393
2394
24e47c76 2395DEBUG_FUNCTION void
57512f53 2396df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2397{
2398 fprintf (file, "%c%d ",
2399 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2400 DF_REF_ID (ref));
a3f1cee4 2401 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
4d779342
DB
2402 DF_REF_REGNO (ref),
2403 DF_REF_BBNO (ref),
57512f53 2404 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2405 DF_REF_FLAGS (ref),
2406 DF_REF_TYPE (ref));
2407 if (DF_REF_LOC (ref))
8588f797
AO
2408 {
2409 if (flag_dump_noaddr)
2410 fprintf (file, "loc #(#) chain ");
2411 else
2412 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2413 (void *)*DF_REF_LOC (ref));
2414 }
6fb5fa3c
DB
2415 else
2416 fprintf (file, "chain ");
23249ac4 2417 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2418 fprintf (file, "\n");
2419}
2420\f
2421/* Functions for debugging from GDB. */
2422
24e47c76 2423DEBUG_FUNCTION void
b2908ba6 2424debug_df_insn (rtx_insn *insn)
4d779342 2425{
6fb5fa3c 2426 df_insn_debug (insn, true, stderr);
4d779342
DB
2427 debug_rtx (insn);
2428}
2429
2430
24e47c76 2431DEBUG_FUNCTION void
4d779342
DB
2432debug_df_reg (rtx reg)
2433{
6fb5fa3c 2434 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2435}
2436
2437
24e47c76 2438DEBUG_FUNCTION void
4d779342
DB
2439debug_df_regno (unsigned int regno)
2440{
6fb5fa3c 2441 df_regno_debug (regno, stderr);
4d779342
DB
2442}
2443
2444
24e47c76 2445DEBUG_FUNCTION void
57512f53 2446debug_df_ref (df_ref ref)
4d779342 2447{
23249ac4 2448 df_ref_debug (ref, stderr);
4d779342
DB
2449}
2450
2451
24e47c76 2452DEBUG_FUNCTION void
4d779342
DB
2453debug_df_defno (unsigned int defno)
2454{
6fb5fa3c 2455 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2456}
2457
2458
24e47c76 2459DEBUG_FUNCTION void
4d779342
DB
2460debug_df_useno (unsigned int defno)
2461{
6fb5fa3c 2462 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2463}
2464
2465
24e47c76 2466DEBUG_FUNCTION void
4d779342
DB
2467debug_df_chain (struct df_link *link)
2468{
23249ac4 2469 df_chain_dump (link, stderr);
4d779342
DB
2470 fputc ('\n', stderr);
2471}