]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
2013-03-23 Sebastian Huber <sebastian.huber@embedded-brains.de>
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
e011eba9 1/* Allocation for dataflow support routines.
711789cc 2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
48e1416a 3 Originally contributed by Michael P. Hayes
e011eba9 4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
8c4c00c1 12Software Foundation; either version 3, or (at your option) any later
e011eba9 13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
8c4c00c1 21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
e011eba9 23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
3072d30e 36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
e011eba9 40
3072d30e 41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
f0b5f617 44areas that can be reached from a definition of a variable. The LIVE
48e1416a 45problem finds the intersection of these two areas.
e011eba9 46
3072d30e 47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
e011eba9 49
3072d30e 50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
e011eba9 57
3072d30e 58In the middle layer, basic blocks are scanned to produce transfer
f0b5f617 59functions which describe the effects of that block on the global
3072d30e 60dataflow solution. The transfer functions are only rebuilt if the
48e1416a 61some instruction within the block has changed.
e011eba9 62
3072d30e 63The top layer is the dataflow solution itself. The dataflow solution
bef304b8 64is computed by using an efficient iterative solver and the transfer
3072d30e 65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
e011eba9 67
68
3072d30e 69USAGE:
e011eba9 70
3072d30e 71Here is an example of using the dataflow routines.
e011eba9 72
84da8954 73 df_[chain,live,note,rd]_add_problem (flags);
e011eba9 74
3072d30e 75 df_set_blocks (blocks);
e011eba9 76
3072d30e 77 df_analyze ();
e011eba9 78
3072d30e 79 df_dump (stderr);
e011eba9 80
314966f4 81 df_finish_pass (false);
e011eba9 82
84da8954 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
3072d30e 84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
e011eba9 87
88Problems can be dependent on other problems. For instance, solving
ed7bb01a 89def-use or use-def chains is dependent on solving reaching
334ec2d8 90definitions. As long as these dependencies are listed in the problem
e011eba9 91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
3072d30e 101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
e011eba9 104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
334ec2d8 108before the call to analyze in order to eliminate the possibility that
e011eba9 109optimizations that reorder blocks invalidate the bitvector.
110
3072d30e 111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
a3de79f9 114to access these bitvectors. All deferred rescannings are down before
bef304b8 115the transfer functions are recomputed.
e011eba9 116
117DF_DUMP can then be called to dump the information produce to some
3072d30e 118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
a3de79f9 126deferred to be rescanned as well as clears all of the changeable flags.
3072d30e 127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
4a7e4fcc 146 upon even after changes have been made to the instructions. This
3072d30e 147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
bef304b8 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
3072d30e 173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
d6b07704 179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and for_each_rtx instead of using the DF data. This
185 can be said to fall under case 1c.
3072d30e 186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
a3de79f9 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
3072d30e 190 be rescanned.
191
d6b07704 1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
3072d30e 198
1994) Do it yourself - In this mechanism, the pass updates the insns
6dfdc153 200 itself using the low level df primitives. Currently no pass does
3072d30e 201 this, but it has the advantage that it is quite efficient given
48e1416a 202 that the pass generally has exact knowledge of what it is changing.
3072d30e 203
204DATA STRUCTURES
e011eba9 205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
e011eba9 221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
554f2707 239keep the dataflow information up to data (if this is really what is
e011eba9 240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
48e1416a 249The basic object is a DF_REF (reference) and this may either be a
e011eba9 250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
3072d30e 261ACCESSING INSNS:
262
158b6cc9 2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
3072d30e 286
e011eba9 287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
48e1416a 293 REAL refs are associated with instructions.
e011eba9 294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
3072d30e 296 these lists can be accessed by calling df_get_artificial_defs or
48e1416a 297 df_get_artificial_uses for the particular basic block.
298
fcf2ad9f 299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
334ec2d8 314 Artificial defs occur at the end of the entry block. These arise
fcf2ad9f 315 from registers that are live at entry to the function.
e011eba9 316
48e1416a 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
3072d30e 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
e011eba9 319
3072d30e 320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
48e1416a 324 treated like uses. If it is not set they are ignored.
3072d30e 325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
e011eba9 332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
3072d30e 337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
e011eba9 340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
3072d30e 345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
48e1416a 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
e011eba9 350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
e011eba9 355NOTES:
48e1416a 356
e011eba9 357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
f0b5f617 368smaller than that covered by the inner mode, invokes a read-modify-write
e011eba9 369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
48e1416a 373are write-only operations.
e011eba9 374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
380#include "tm.h"
381#include "rtl.h"
382#include "tm_p.h"
383#include "insn-config.h"
384#include "recog.h"
385#include "function.h"
386#include "regs.h"
e011eba9 387#include "alloc-pool.h"
388#include "flags.h"
389#include "hard-reg-set.h"
390#include "basic-block.h"
391#include "sbitmap.h"
392#include "bitmap.h"
e011eba9 393#include "df.h"
394#include "tree-pass.h"
a9e21c4c 395#include "params.h"
e011eba9 396
3e6933a8 397static void *df_get_bb_info (struct dataflow *, unsigned int);
f64e6a69 398static void df_set_bb_info (struct dataflow *, unsigned int, void *);
369ea98d 399static void df_clear_bb_info (struct dataflow *, unsigned int);
3072d30e 400#ifdef DF_DEBUG_CFG
401static void df_set_clean_cfg (void);
402#endif
e011eba9 403
4a020a8c 404/* The obstack on which regsets are allocated. */
405struct bitmap_obstack reg_obstack;
406
3072d30e 407/* An obstack for bitmap not related to specific dataflow problems.
408 This obstack should e.g. be used for bitmaps with a short life time
409 such as temporary bitmaps. */
e011eba9 410
3072d30e 411bitmap_obstack df_bitmap_obstack;
e011eba9 412
e011eba9 413
3072d30e 414/*----------------------------------------------------------------------------
415 Functions to create, destroy and manipulate an instance of df.
416----------------------------------------------------------------------------*/
417
f2956fc5 418struct df_d *df;
e011eba9 419
3072d30e 420/* Add PROBLEM (and any dependent problems) to the DF instance. */
e011eba9 421
3072d30e 422void
423df_add_problem (struct df_problem *problem)
e011eba9 424{
425 struct dataflow *dflow;
3072d30e 426 int i;
e011eba9 427
428 /* First try to add the dependent problem. */
3072d30e 429 if (problem->dependent_problem)
430 df_add_problem (problem->dependent_problem);
e011eba9 431
432 /* Check to see if this problem has already been defined. If it
433 has, just return that instance, if not, add it to the end of the
434 vector. */
435 dflow = df->problems_by_index[problem->id];
436 if (dflow)
3072d30e 437 return;
e011eba9 438
439 /* Make a new one and add it to the end. */
4c36ffe6 440 dflow = XCNEW (struct dataflow);
e011eba9 441 dflow->problem = problem;
3072d30e 442 dflow->computed = false;
443 dflow->solutions_dirty = true;
e011eba9 444 df->problems_by_index[dflow->problem->id] = dflow;
445
3072d30e 446 /* Keep the defined problems ordered by index. This solves the
447 problem that RI will use the information from UREC if UREC has
448 been defined, or from LIVE if LIVE is defined and otherwise LR.
449 However for this to work, the computation of RI must be pushed
450 after which ever of those problems is defined, but we do not
451 require any of those except for LR to have actually been
48e1416a 452 defined. */
3072d30e 453 df->num_problems_defined++;
454 for (i = df->num_problems_defined - 2; i >= 0; i--)
455 {
456 if (problem->id < df->problems_in_order[i]->problem->id)
457 df->problems_in_order[i+1] = df->problems_in_order[i];
458 else
459 {
460 df->problems_in_order[i+1] = dflow;
461 return;
462 }
463 }
464 df->problems_in_order[0] = dflow;
e011eba9 465}
466
467
3e6933a8 468/* Set the MASK flags in the DFLOW problem. The old flags are
469 returned. If a flag is not allowed to be changed this will fail if
470 checking is enabled. */
bc620c5c 471int
b9c74b4d 472df_set_flags (int changeable_flags)
3e6933a8 473{
bc620c5c 474 int old_flags = df->changeable_flags;
3072d30e 475 df->changeable_flags |= changeable_flags;
3e6933a8 476 return old_flags;
477}
478
3072d30e 479
3e6933a8 480/* Clear the MASK flags in the DFLOW problem. The old flags are
481 returned. If a flag is not allowed to be changed this will fail if
482 checking is enabled. */
bc620c5c 483int
b9c74b4d 484df_clear_flags (int changeable_flags)
3e6933a8 485{
bc620c5c 486 int old_flags = df->changeable_flags;
3072d30e 487 df->changeable_flags &= ~changeable_flags;
3e6933a8 488 return old_flags;
489}
490
3072d30e 491
e011eba9 492/* Set the blocks that are to be considered for analysis. If this is
493 not called or is called with null, the entire function in
494 analyzed. */
495
48e1416a 496void
3072d30e 497df_set_blocks (bitmap blocks)
e011eba9 498{
499 if (blocks)
500 {
3072d30e 501 if (dump_file)
502 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
d0802b39 503 if (df->blocks_to_analyze)
504 {
deb2741b 505 /* This block is called to change the focus from one subset
506 to another. */
d0802b39 507 int p;
4b5a4301 508 bitmap_head diff;
509 bitmap_initialize (&diff, &df_bitmap_obstack);
510 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
deb2741b 511 for (p = 0; p < df->num_problems_defined; p++)
d0802b39 512 {
513 struct dataflow *dflow = df->problems_in_order[p];
deb2741b 514 if (dflow->optional_p && dflow->problem->reset_fun)
3072d30e 515 dflow->problem->reset_fun (df->blocks_to_analyze);
deb2741b 516 else if (dflow->problem->free_blocks_on_set_blocks)
d0802b39 517 {
518 bitmap_iterator bi;
519 unsigned int bb_index;
48e1416a 520
4b5a4301 521 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
d0802b39 522 {
523 basic_block bb = BASIC_BLOCK (bb_index);
f64e6a69 524 if (bb)
525 {
3072d30e 526 void *bb_info = df_get_bb_info (dflow, bb_index);
369ea98d 527 dflow->problem->free_bb_fun (bb, bb_info);
528 df_clear_bb_info (dflow, bb_index);
f64e6a69 529 }
d0802b39 530 }
531 }
532 }
533
4b5a4301 534 bitmap_clear (&diff);
d0802b39 535 }
536 else
f64e6a69 537 {
deb2741b 538 /* This block of code is executed to change the focus from
539 the entire function to a subset. */
4b5a4301 540 bitmap_head blocks_to_reset;
541 bool initialized = false;
deb2741b 542 int p;
543 for (p = 0; p < df->num_problems_defined; p++)
f64e6a69 544 {
deb2741b 545 struct dataflow *dflow = df->problems_in_order[p];
546 if (dflow->optional_p && dflow->problem->reset_fun)
f64e6a69 547 {
4b5a4301 548 if (!initialized)
f64e6a69 549 {
deb2741b 550 basic_block bb;
4b5a4301 551 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
deb2741b 552 FOR_ALL_BB(bb)
f64e6a69 553 {
4b5a4301 554 bitmap_set_bit (&blocks_to_reset, bb->index);
f64e6a69 555 }
f64e6a69 556 }
4b5a4301 557 dflow->problem->reset_fun (&blocks_to_reset);
f64e6a69 558 }
f64e6a69 559 }
4b5a4301 560 if (initialized)
561 bitmap_clear (&blocks_to_reset);
deb2741b 562
3072d30e 563 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
f64e6a69 564 }
e011eba9 565 bitmap_copy (df->blocks_to_analyze, blocks);
3072d30e 566 df->analyze_subset = true;
e011eba9 567 }
568 else
569 {
deb2741b 570 /* This block is executed to reset the focus to the entire
571 function. */
3072d30e 572 if (dump_file)
deb2741b 573 fprintf (dump_file, "clearing blocks_to_analyze\n");
e011eba9 574 if (df->blocks_to_analyze)
575 {
576 BITMAP_FREE (df->blocks_to_analyze);
577 df->blocks_to_analyze = NULL;
578 }
3072d30e 579 df->analyze_subset = false;
e011eba9 580 }
3072d30e 581
582 /* Setting the blocks causes the refs to be unorganized since only
583 the refs in the blocks are seen. */
584 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586 df_mark_solutions_dirty ();
e011eba9 587}
588
589
3072d30e 590/* Delete a DFLOW problem (and any problems that depend on this
591 problem). */
3e6933a8 592
593void
3072d30e 594df_remove_problem (struct dataflow *dflow)
3e6933a8 595{
3072d30e 596 struct df_problem *problem;
3e6933a8 597 int i;
3072d30e 598
599 if (!dflow)
600 return;
601
602 problem = dflow->problem;
603 gcc_assert (problem->remove_problem_fun);
604
3072d30e 605 /* Delete any problems that depended on this problem first. */
deb2741b 606 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 607 if (df->problems_in_order[i]->problem->dependent_problem == problem)
608 df_remove_problem (df->problems_in_order[i]);
609
610 /* Now remove this problem. */
deb2741b 611 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 612 if (df->problems_in_order[i] == dflow)
613 {
614 int j;
615 for (j = i + 1; j < df->num_problems_defined; j++)
616 df->problems_in_order[j-1] = df->problems_in_order[j];
149d23ac 617 df->problems_in_order[j-1] = NULL;
3072d30e 618 df->num_problems_defined--;
619 break;
620 }
621
622 (problem->remove_problem_fun) ();
623 df->problems_by_index[problem->id] = NULL;
624}
625
626
84da8954 627/* Remove all of the problems that are not permanent. Scanning, LR
628 and (at -O2 or higher) LIVE are permanent, the rest are removable.
629 Also clear all of the changeable_flags. */
3072d30e 630
631void
314966f4 632df_finish_pass (bool verify ATTRIBUTE_UNUSED)
3072d30e 633{
634 int i;
635 int removed = 0;
636
5ccba2dc 637#ifdef ENABLE_DF_CHECKING
744b32fe 638 int saved_flags;
3072d30e 639#endif
640
641 if (!df)
642 return;
643
644 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
646
5ccba2dc 647#ifdef ENABLE_DF_CHECKING
3072d30e 648 saved_flags = df->changeable_flags;
649#endif
650
deb2741b 651 for (i = 0; i < df->num_problems_defined; i++)
3e6933a8 652 {
653 struct dataflow *dflow = df->problems_in_order[i];
3072d30e 654 struct df_problem *problem = dflow->problem;
655
deb2741b 656 if (dflow->optional_p)
657 {
658 gcc_assert (problem->remove_problem_fun);
659 (problem->remove_problem_fun) ();
660 df->problems_in_order[i] = NULL;
661 df->problems_by_index[problem->id] = NULL;
662 removed++;
663 }
3072d30e 664 }
665 df->num_problems_defined -= removed;
666
667 /* Clear all of the flags. */
668 df->changeable_flags = 0;
669 df_process_deferred_rescans ();
670
671 /* Set the focus back to the whole function. */
672 if (df->blocks_to_analyze)
673 {
674 BITMAP_FREE (df->blocks_to_analyze);
675 df->blocks_to_analyze = NULL;
676 df_mark_solutions_dirty ();
677 df->analyze_subset = false;
3e6933a8 678 }
3072d30e 679
5ccba2dc 680#ifdef ENABLE_DF_CHECKING
3072d30e 681 /* Verification will fail in DF_NO_INSN_RESCAN. */
682 if (!(saved_flags & DF_NO_INSN_RESCAN))
683 {
684 df_lr_verify_transfer_functions ();
685 if (df_live)
686 df_live_verify_transfer_functions ();
687 }
688
689#ifdef DF_DEBUG_CFG
690 df_set_clean_cfg ();
691#endif
692#endif
314966f4 693
694#ifdef ENABLE_CHECKING
695 if (verify)
696 df->changeable_flags |= DF_VERIFY_SCHEDULED;
697#endif
3072d30e 698}
699
700
701/* Set up the dataflow instance for the entire back end. */
702
703static unsigned int
704rest_of_handle_df_initialize (void)
705{
706 gcc_assert (!df);
f2956fc5 707 df = XCNEW (struct df_d);
3072d30e 708 df->changeable_flags = 0;
709
710 bitmap_obstack_initialize (&df_bitmap_obstack);
711
712 /* Set this to a conservative value. Stack_ptr_mod will compute it
713 correctly later. */
d5bf7b64 714 crtl->sp_is_unchanging = 0;
3072d30e 715
716 df_scan_add_problem ();
717 df_scan_alloc (NULL);
718
719 /* These three problems are permanent. */
720 df_lr_add_problem ();
deb2741b 721 if (optimize > 1)
3072d30e 722 df_live_add_problem ();
723
724 df->postorder = XNEWVEC (int, last_basic_block);
725 df->postorder_inverted = XNEWVEC (int, last_basic_block);
726 df->n_blocks = post_order_compute (df->postorder, true, true);
727 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728 gcc_assert (df->n_blocks == df->n_blocks_inverted);
729
730 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
48e1416a 731 memset (df->hard_regs_live_count, 0,
3072d30e 732 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
733
734 df_hard_reg_init ();
735 /* After reload, some ports add certain bits to regs_ever_live so
736 this cannot be reset. */
737 df_compute_regs_ever_live (true);
738 df_scan_blocks ();
739 df_compute_regs_ever_live (false);
740 return 0;
741}
742
743
744static bool
745gate_opt (void)
746{
747 return optimize > 0;
3e6933a8 748}
749
750
20099e35 751struct rtl_opt_pass pass_df_initialize_opt =
3072d30e 752{
20099e35 753 {
754 RTL_PASS,
3072d30e 755 "dfinit", /* name */
c7875731 756 OPTGROUP_NONE, /* optinfo_flags */
3072d30e 757 gate_opt, /* gate */
758 rest_of_handle_df_initialize, /* execute */
759 NULL, /* sub */
760 NULL, /* next */
761 0, /* static_pass_number */
4b366dd3 762 TV_DF_SCAN, /* tv_id */
3072d30e 763 0, /* properties_required */
764 0, /* properties_provided */
765 0, /* properties_destroyed */
766 0, /* todo_flags_start */
20099e35 767 0 /* todo_flags_finish */
768 }
3072d30e 769};
770
771
772static bool
773gate_no_opt (void)
774{
775 return optimize == 0;
776}
777
778
20099e35 779struct rtl_opt_pass pass_df_initialize_no_opt =
3072d30e 780{
20099e35 781 {
782 RTL_PASS,
0c297edc 783 "no-opt dfinit", /* name */
c7875731 784 OPTGROUP_NONE, /* optinfo_flags */
3072d30e 785 gate_no_opt, /* gate */
786 rest_of_handle_df_initialize, /* execute */
787 NULL, /* sub */
788 NULL, /* next */
789 0, /* static_pass_number */
4b366dd3 790 TV_DF_SCAN, /* tv_id */
3072d30e 791 0, /* properties_required */
792 0, /* properties_provided */
793 0, /* properties_destroyed */
794 0, /* todo_flags_start */
20099e35 795 0 /* todo_flags_finish */
796 }
3072d30e 797};
798
799
e011eba9 800/* Free all the dataflow info and the DF structure. This should be
801 called from the df_finish macro which also NULLs the parm. */
802
3072d30e 803static unsigned int
804rest_of_handle_df_finish (void)
e011eba9 805{
806 int i;
807
3072d30e 808 gcc_assert (df);
809
e011eba9 810 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 811 {
812 struct dataflow *dflow = df->problems_in_order[i];
48e1416a 813 dflow->problem->free_fun ();
3072d30e 814 }
e011eba9 815
dd045aee 816 free (df->postorder);
817 free (df->postorder_inverted);
3072d30e 818 free (df->hard_regs_live_count);
e011eba9 819 free (df);
3072d30e 820 df = NULL;
821
822 bitmap_obstack_release (&df_bitmap_obstack);
823 return 0;
e011eba9 824}
825
3072d30e 826
20099e35 827struct rtl_opt_pass pass_df_finish =
3072d30e 828{
20099e35 829 {
830 RTL_PASS,
3072d30e 831 "dfinish", /* name */
c7875731 832 OPTGROUP_NONE, /* optinfo_flags */
3072d30e 833 NULL, /* gate */
834 rest_of_handle_df_finish, /* execute */
835 NULL, /* sub */
836 NULL, /* next */
837 0, /* static_pass_number */
0b1615c1 838 TV_NONE, /* tv_id */
3072d30e 839 0, /* properties_required */
840 0, /* properties_provided */
841 0, /* properties_destroyed */
842 0, /* todo_flags_start */
20099e35 843 0 /* todo_flags_finish */
844 }
3072d30e 845};
846
847
848
849
e011eba9 850\f
851/*----------------------------------------------------------------------------
852 The general data flow analysis engine.
853----------------------------------------------------------------------------*/
854
21256416 855/* Return time BB when it was visited for last time. */
856#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
e011eba9 857
3072d30e 858/* Helper function for df_worklist_dataflow.
48e1416a 859 Propagate the dataflow forward.
3072d30e 860 Given a BB_INDEX, do the dataflow propagation
861 and set bits on for successors in PENDING
21256416 862 if the out set of the dataflow has changed.
863
864 AGE specify time when BB was visited last time.
865 AGE of 0 means we are visiting for first time and need to
866 compute transfer function to initialize datastructures.
867 Otherwise we re-do transfer function only if something change
868 while computing confluence functions.
869 We need to compute confluence only of basic block that are younger
870 then last visit of the BB.
871
872 Return true if BB info has changed. This is always the case
873 in the first visit. */
e011eba9 874
a703ca31 875static bool
3072d30e 876df_worklist_propagate_forward (struct dataflow *dataflow,
877 unsigned bb_index,
878 unsigned *bbindex_to_postorder,
879 bitmap pending,
a703ca31 880 sbitmap considered,
21256416 881 ptrdiff_t age)
e011eba9 882{
e011eba9 883 edge e;
884 edge_iterator ei;
3072d30e 885 basic_block bb = BASIC_BLOCK (bb_index);
a703ca31 886 bool changed = !age;
e011eba9 887
3072d30e 888 /* Calculate <conf_op> of incoming edges. */
e011eba9 889 if (EDGE_COUNT (bb->preds) > 0)
890 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 891 {
21256416 892 if (age <= BB_LAST_CHANGE_AGE (e->src)
08b7917c 893 && bitmap_bit_p (considered, e->src->index))
a703ca31 894 changed |= dataflow->problem->con_fun_n (e);
48e1416a 895 }
1c1a6437 896 else if (dataflow->problem->con_fun_0)
21256416 897 dataflow->problem->con_fun_0 (bb);
3072d30e 898
a703ca31 899 if (changed
900 && dataflow->problem->trans_fun (bb_index))
e011eba9 901 {
48e1416a 902 /* The out set of this block has changed.
3072d30e 903 Propagate to the outgoing blocks. */
904 FOR_EACH_EDGE (e, ei, bb->succs)
905 {
906 unsigned ob_index = e->dest->index;
907
08b7917c 908 if (bitmap_bit_p (considered, ob_index))
3072d30e 909 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
910 }
a703ca31 911 return true;
e011eba9 912 }
a703ca31 913 return false;
e011eba9 914}
915
3072d30e 916
917/* Helper function for df_worklist_dataflow.
918 Propagate the dataflow backward. */
919
a703ca31 920static bool
3072d30e 921df_worklist_propagate_backward (struct dataflow *dataflow,
922 unsigned bb_index,
923 unsigned *bbindex_to_postorder,
924 bitmap pending,
a703ca31 925 sbitmap considered,
21256416 926 ptrdiff_t age)
e011eba9 927{
e011eba9 928 edge e;
929 edge_iterator ei;
3072d30e 930 basic_block bb = BASIC_BLOCK (bb_index);
a703ca31 931 bool changed = !age;
e011eba9 932
3072d30e 933 /* Calculate <conf_op> of incoming edges. */
e011eba9 934 if (EDGE_COUNT (bb->succs) > 0)
3072d30e 935 FOR_EACH_EDGE (e, ei, bb->succs)
48e1416a 936 {
21256416 937 if (age <= BB_LAST_CHANGE_AGE (e->dest)
08b7917c 938 && bitmap_bit_p (considered, e->dest->index))
a703ca31 939 changed |= dataflow->problem->con_fun_n (e);
48e1416a 940 }
1c1a6437 941 else if (dataflow->problem->con_fun_0)
21256416 942 dataflow->problem->con_fun_0 (bb);
e011eba9 943
a703ca31 944 if (changed
945 && dataflow->problem->trans_fun (bb_index))
e011eba9 946 {
48e1416a 947 /* The out set of this block has changed.
3072d30e 948 Propagate to the outgoing blocks. */
949 FOR_EACH_EDGE (e, ei, bb->preds)
950 {
951 unsigned ob_index = e->src->index;
952
08b7917c 953 if (bitmap_bit_p (considered, ob_index))
3072d30e 954 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
955 }
a703ca31 956 return true;
e011eba9 957 }
a703ca31 958 return false;
e011eba9 959}
960
21256416 961/* Main dataflow solver loop.
962
963 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
964 need to visit.
965 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
966 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
967 PENDING will be freed.
968
969 The worklists are bitmaps indexed by postorder positions.
970
971 The function implements standard algorithm for dataflow solving with two
972 worklists (we are processing WORKLIST and storing new BBs to visit in
973 PENDING).
a9e21c4c 974
21256416 975 As an optimization we maintain ages when BB was changed (stored in bb->aux)
976 and when it was last visited (stored in last_visit_age). This avoids need
977 to re-do confluence function for edges to basic blocks whose source
978 did not change since destination was visited last time. */
a9e21c4c 979
48e1416a 980static void
a9e21c4c 981df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
982 bitmap pending,
983 sbitmap considered,
984 int *blocks_in_postorder,
a703ca31 985 unsigned *bbindex_to_postorder,
986 int n_blocks)
a9e21c4c 987{
988 enum df_flow_dir dir = dataflow->problem->dir;
989 int dcount = 0;
990 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
21256416 991 int age = 0;
a703ca31 992 bool changed;
1e094109 993 vec<int> last_visit_age = vNULL;
21256416 994 int prev_age;
a703ca31 995 basic_block bb;
996 int i;
997
f1f41a6c 998 last_visit_age.safe_grow_cleared (n_blocks);
a9e21c4c 999
1000 /* Double-queueing. Worklist is for the current iteration,
1001 and pending is for the next. */
1002 while (!bitmap_empty_p (pending))
1003 {
a703ca31 1004 bitmap_iterator bi;
1005 unsigned int index;
1006
a9e21c4c 1007 /* Swap pending and worklist. */
1008 bitmap temp = worklist;
1009 worklist = pending;
1010 pending = temp;
1011
a703ca31 1012 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
a9e21c4c 1013 {
a9e21c4c 1014 unsigned bb_index;
1015 dcount++;
1016
21256416 1017 bitmap_clear_bit (pending, index);
a9e21c4c 1018 bb_index = blocks_in_postorder[index];
a703ca31 1019 bb = BASIC_BLOCK (bb_index);
f1f41a6c 1020 prev_age = last_visit_age[index];
a9e21c4c 1021 if (dir == DF_FORWARD)
a703ca31 1022 changed = df_worklist_propagate_forward (dataflow, bb_index,
1023 bbindex_to_postorder,
1024 pending, considered,
1025 prev_age);
48e1416a 1026 else
a703ca31 1027 changed = df_worklist_propagate_backward (dataflow, bb_index,
1028 bbindex_to_postorder,
1029 pending, considered,
1030 prev_age);
f1f41a6c 1031 last_visit_age[index] = ++age;
a703ca31 1032 if (changed)
21256416 1033 bb->aux = (void *)(ptrdiff_t)age;
a9e21c4c 1034 }
a703ca31 1035 bitmap_clear (worklist);
a9e21c4c 1036 }
a703ca31 1037 for (i = 0; i < n_blocks; i++)
1038 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
a9e21c4c 1039
1040 BITMAP_FREE (worklist);
1041 BITMAP_FREE (pending);
f1f41a6c 1042 last_visit_age.release ();
a9e21c4c 1043
1044 /* Dump statistics. */
1045 if (dump_file)
1046 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1047 "n_basic_blocks %d n_edges %d"
1048 " count %d (%5.2g)\n",
1049 n_basic_blocks, n_edges,
1050 dcount, dcount / (float)n_basic_blocks);
1051}
1052
3072d30e 1053/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
48e1416a 1054 with "n"-th bit representing the n-th block in the reverse-postorder order.
576af552 1055 The solver is a double-queue algorithm similar to the "double stack" solver
1056 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1057 The only significant difference is that the worklist in this implementation
1058 is always sorted in RPO of the CFG visiting direction. */
e011eba9 1059
48e1416a 1060void
3072d30e 1061df_worklist_dataflow (struct dataflow *dataflow,
1062 bitmap blocks_to_consider,
1063 int *blocks_in_postorder,
1064 int n_blocks)
e011eba9 1065{
3072d30e 1066 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1067 sbitmap considered = sbitmap_alloc (last_basic_block);
1068 bitmap_iterator bi;
3072d30e 1069 unsigned int *bbindex_to_postorder;
1070 int i;
1071 unsigned int index;
1072 enum df_flow_dir dir = dataflow->problem->dir;
e011eba9 1073
3072d30e 1074 gcc_assert (dir != DF_NONE);
e011eba9 1075
3072d30e 1076 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1077 bbindex_to_postorder =
1078 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
e011eba9 1079
3072d30e 1080 /* Initialize the array to an out-of-bound value. */
1081 for (i = 0; i < last_basic_block; i++)
1082 bbindex_to_postorder[i] = last_basic_block;
3e6933a8 1083
3072d30e 1084 /* Initialize the considered map. */
53c5d9d4 1085 bitmap_clear (considered);
3072d30e 1086 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
e011eba9 1087 {
08b7917c 1088 bitmap_set_bit (considered, index);
e011eba9 1089 }
1090
3072d30e 1091 /* Initialize the mapping of block index to postorder. */
e011eba9 1092 for (i = 0; i < n_blocks; i++)
1093 {
3072d30e 1094 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1095 /* Add all blocks to the worklist. */
1096 bitmap_set_bit (pending, i);
1097 }
e011eba9 1098
a9e21c4c 1099 /* Initialize the problem. */
3072d30e 1100 if (dataflow->problem->init_fun)
1101 dataflow->problem->init_fun (blocks_to_consider);
e011eba9 1102
576af552 1103 /* Solve it. */
1104 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1105 blocks_in_postorder,
a703ca31 1106 bbindex_to_postorder,
1107 n_blocks);
e011eba9 1108 sbitmap_free (considered);
3072d30e 1109 free (bbindex_to_postorder);
e011eba9 1110}
1111
1112
1113/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1114 the order of the remaining entries. Returns the length of the resulting
1115 list. */
1116
1117static unsigned
1118df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1119{
1120 unsigned act, last;
1121
1122 for (act = 0, last = 0; act < len; act++)
1123 if (bitmap_bit_p (blocks, list[act]))
1124 list[last++] = list[act];
1125
1126 return last;
1127}
1128
1129
48e1416a 1130/* Execute dataflow analysis on a single dataflow problem.
e011eba9 1131
e011eba9 1132 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1133 examined or will be computed. For calls from DF_ANALYZE, this is
48e1416a 1134 the set of blocks that has been passed to DF_SET_BLOCKS.
e011eba9 1135*/
1136
3e6933a8 1137void
48e1416a 1138df_analyze_problem (struct dataflow *dflow,
1139 bitmap blocks_to_consider,
3072d30e 1140 int *postorder, int n_blocks)
e011eba9 1141{
3072d30e 1142 timevar_push (dflow->problem->tv_id);
1143
253d7fd0 1144 /* (Re)Allocate the datastructures necessary to solve the problem. */
1145 if (dflow->problem->alloc_fun)
1146 dflow->problem->alloc_fun (blocks_to_consider);
1147
5ccba2dc 1148#ifdef ENABLE_DF_CHECKING
3072d30e 1149 if (dflow->problem->verify_start_fun)
1150 dflow->problem->verify_start_fun ();
1151#endif
1152
3072d30e 1153 /* Set up the problem and compute the local information. */
1c1a6437 1154 if (dflow->problem->local_compute_fun)
3072d30e 1155 dflow->problem->local_compute_fun (blocks_to_consider);
e011eba9 1156
1157 /* Solve the equations. */
1c1a6437 1158 if (dflow->problem->dataflow_fun)
3072d30e 1159 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1160 postorder, n_blocks);
e011eba9 1161
1162 /* Massage the solution. */
1c1a6437 1163 if (dflow->problem->finalize_fun)
3072d30e 1164 dflow->problem->finalize_fun (blocks_to_consider);
1165
5ccba2dc 1166#ifdef ENABLE_DF_CHECKING
3072d30e 1167 if (dflow->problem->verify_end_fun)
1168 dflow->problem->verify_end_fun ();
1169#endif
1170
1171 timevar_pop (dflow->problem->tv_id);
1172
1173 dflow->computed = true;
e011eba9 1174}
1175
1176
1177/* Analyze dataflow info for the basic blocks specified by the bitmap
1178 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1179
1180void
3072d30e 1181df_analyze (void)
e011eba9 1182{
3072d30e 1183 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1184 bool everything;
3072d30e 1185 int i;
48e1416a 1186
dd045aee 1187 free (df->postorder);
1188 free (df->postorder_inverted);
3072d30e 1189 df->postorder = XNEWVEC (int, last_basic_block);
1190 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1191 df->n_blocks = post_order_compute (df->postorder, true, true);
1192 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1193
1194 /* These should be the same. */
1195 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1196
1197 /* We need to do this before the df_verify_all because this is
1198 not kept incrementally up to date. */
1199 df_compute_regs_ever_live (false);
1200 df_process_deferred_rescans ();
1201
3072d30e 1202 if (dump_file)
1203 fprintf (dump_file, "df_analyze called\n");
5ccba2dc 1204
314966f4 1205#ifndef ENABLE_DF_CHECKING
1206 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1207#endif
1208 df_verify ();
3072d30e 1209
1210 for (i = 0; i < df->n_blocks; i++)
1211 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1212
1213#ifdef ENABLE_CHECKING
1214 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1215 the ENTRY block. */
1216 for (i = 0; i < df->n_blocks_inverted; i++)
1217 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1218#endif
e011eba9 1219
1220 /* Make sure that we have pruned any unreachable blocks from these
1221 sets. */
3072d30e 1222 if (df->analyze_subset)
e011eba9 1223 {
1224 everything = false;
1225 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
48e1416a 1226 df->n_blocks = df_prune_to_subcfg (df->postorder,
3072d30e 1227 df->n_blocks, df->blocks_to_analyze);
48e1416a 1228 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1229 df->n_blocks_inverted,
3072d30e 1230 df->blocks_to_analyze);
e011eba9 1231 BITMAP_FREE (current_all_blocks);
1232 }
1233 else
1234 {
1235 everything = true;
1236 df->blocks_to_analyze = current_all_blocks;
1237 current_all_blocks = NULL;
1238 }
1239
1240 /* Skip over the DF_SCAN problem. */
1241 for (i = 1; i < df->num_problems_defined; i++)
3072d30e 1242 {
1243 struct dataflow *dflow = df->problems_in_order[i];
1244 if (dflow->solutions_dirty)
1245 {
1246 if (dflow->problem->dir == DF_FORWARD)
1247 df_analyze_problem (dflow,
1248 df->blocks_to_analyze,
1249 df->postorder_inverted,
1250 df->n_blocks_inverted);
1251 else
1252 df_analyze_problem (dflow,
1253 df->blocks_to_analyze,
1254 df->postorder,
1255 df->n_blocks);
1256 }
1257 }
e011eba9 1258
1259 if (everything)
1260 {
1261 BITMAP_FREE (df->blocks_to_analyze);
1262 df->blocks_to_analyze = NULL;
1263 }
1264
3072d30e 1265#ifdef DF_DEBUG_CFG
1266 df_set_clean_cfg ();
1267#endif
1268}
1269
1270
1271/* Return the number of basic blocks from the last call to df_analyze. */
1272
48e1416a 1273int
3072d30e 1274df_get_n_blocks (enum df_flow_dir dir)
1275{
1276 gcc_assert (dir != DF_NONE);
1277
1278 if (dir == DF_FORWARD)
1279 {
1280 gcc_assert (df->postorder_inverted);
1281 return df->n_blocks_inverted;
1282 }
1283
1284 gcc_assert (df->postorder);
1285 return df->n_blocks;
1286}
1287
1288
48e1416a 1289/* Return a pointer to the array of basic blocks in the reverse postorder.
3072d30e 1290 Depending on the direction of the dataflow problem,
1291 it returns either the usual reverse postorder array
1292 or the reverse postorder of inverted traversal. */
1293int *
1294df_get_postorder (enum df_flow_dir dir)
1295{
1296 gcc_assert (dir != DF_NONE);
1297
1298 if (dir == DF_FORWARD)
1299 {
1300 gcc_assert (df->postorder_inverted);
1301 return df->postorder_inverted;
1302 }
1303 gcc_assert (df->postorder);
1304 return df->postorder;
e011eba9 1305}
1306
48e1416a 1307static struct df_problem user_problem;
3072d30e 1308static struct dataflow user_dflow;
e011eba9 1309
3072d30e 1310/* Interface for calling iterative dataflow with user defined
1311 confluence and transfer functions. All that is necessary is to
1312 supply DIR, a direction, CONF_FUN_0, a confluence function for
1313 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1314 confluence function, TRANS_FUN, the basic block transfer function,
1315 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1316 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1317
1318void
1319df_simple_dataflow (enum df_flow_dir dir,
1320 df_init_function init_fun,
1321 df_confluence_function_0 con_fun_0,
1322 df_confluence_function_n con_fun_n,
1323 df_transfer_function trans_fun,
1324 bitmap blocks, int * postorder, int n_blocks)
1325{
1326 memset (&user_problem, 0, sizeof (struct df_problem));
1327 user_problem.dir = dir;
1328 user_problem.init_fun = init_fun;
1329 user_problem.con_fun_0 = con_fun_0;
1330 user_problem.con_fun_n = con_fun_n;
1331 user_problem.trans_fun = trans_fun;
1332 user_dflow.problem = &user_problem;
1333 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1334}
1335
48e1416a 1336
e011eba9 1337\f
1338/*----------------------------------------------------------------------------
1339 Functions to support limited incremental change.
1340----------------------------------------------------------------------------*/
1341
1342
1343/* Get basic block info. */
1344
1345static void *
1346df_get_bb_info (struct dataflow *dflow, unsigned int index)
1347{
3072d30e 1348 if (dflow->block_info == NULL)
1349 return NULL;
1350 if (index >= dflow->block_info_size)
1351 return NULL;
369ea98d 1352 return (void *)((char *)dflow->block_info
1353 + index * dflow->problem->block_info_elt_size);
e011eba9 1354}
1355
1356
1357/* Set basic block info. */
1358
1359static void
48e1416a 1360df_set_bb_info (struct dataflow *dflow, unsigned int index,
e011eba9 1361 void *bb_info)
1362{
3072d30e 1363 gcc_assert (dflow->block_info);
369ea98d 1364 memcpy ((char *)dflow->block_info
1365 + index * dflow->problem->block_info_elt_size,
1366 bb_info, dflow->problem->block_info_elt_size);
1367}
1368
1369
1370/* Clear basic block info. */
1371
1372static void
1373df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1374{
1375 gcc_assert (dflow->block_info);
1376 gcc_assert (dflow->block_info_size > index);
1377 memset ((char *)dflow->block_info
1378 + index * dflow->problem->block_info_elt_size,
1379 0, dflow->problem->block_info_elt_size);
e011eba9 1380}
1381
1382
3072d30e 1383/* Mark the solutions as being out of date. */
1384
48e1416a 1385void
3072d30e 1386df_mark_solutions_dirty (void)
1387{
1388 if (df)
1389 {
48e1416a 1390 int p;
3072d30e 1391 for (p = 1; p < df->num_problems_defined; p++)
1392 df->problems_in_order[p]->solutions_dirty = true;
1393 }
1394}
1395
1396
1397/* Return true if BB needs it's transfer functions recomputed. */
1398
48e1416a 1399bool
3072d30e 1400df_get_bb_dirty (basic_block bb)
1401{
3693f86f 1402 return bitmap_bit_p ((df_live
1403 ? df_live : df_lr)->out_of_date_transfer_functions,
1404 bb->index);
3072d30e 1405}
1406
1407
1408/* Mark BB as needing it's transfer functions as being out of
1409 date. */
1410
48e1416a 1411void
3072d30e 1412df_set_bb_dirty (basic_block bb)
1413{
bc6adae4 1414 bb->flags |= BB_MODIFIED;
3072d30e 1415 if (df)
1416 {
48e1416a 1417 int p;
3072d30e 1418 for (p = 1; p < df->num_problems_defined; p++)
1419 {
1420 struct dataflow *dflow = df->problems_in_order[p];
1421 if (dflow->out_of_date_transfer_functions)
1422 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1423 }
1424 df_mark_solutions_dirty ();
1425 }
1426}
1427
1428
369ea98d 1429/* Grow the bb_info array. */
1430
1431void
1432df_grow_bb_info (struct dataflow *dflow)
1433{
1434 unsigned int new_size = last_basic_block + 1;
1435 if (dflow->block_info_size < new_size)
1436 {
1437 new_size += new_size / 4;
1438 dflow->block_info
1439 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1440 new_size
1441 * dflow->problem->block_info_elt_size);
1442 memset ((char *)dflow->block_info
1443 + dflow->block_info_size
1444 * dflow->problem->block_info_elt_size,
1445 0,
1446 (new_size - dflow->block_info_size)
1447 * dflow->problem->block_info_elt_size);
1448 dflow->block_info_size = new_size;
1449 }
1450}
1451
86fc6921 1452
3072d30e 1453/* Clear the dirty bits. This is called from places that delete
1454 blocks. */
1455static void
1456df_clear_bb_dirty (basic_block bb)
1457{
48e1416a 1458 int p;
3072d30e 1459 for (p = 1; p < df->num_problems_defined; p++)
1460 {
1461 struct dataflow *dflow = df->problems_in_order[p];
1462 if (dflow->out_of_date_transfer_functions)
1463 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1464 }
1465}
369ea98d 1466
e011eba9 1467/* Called from the rtl_compact_blocks to reorganize the problems basic
1468 block info. */
1469
48e1416a 1470void
3072d30e 1471df_compact_blocks (void)
e011eba9 1472{
1473 int i, p;
1474 basic_block bb;
369ea98d 1475 void *problem_temps;
4b5a4301 1476 bitmap_head tmp;
e011eba9 1477
4b5a4301 1478 bitmap_initialize (&tmp, &df_bitmap_obstack);
e011eba9 1479 for (p = 0; p < df->num_problems_defined; p++)
1480 {
1481 struct dataflow *dflow = df->problems_in_order[p];
3072d30e 1482
1483 /* Need to reorganize the out_of_date_transfer_functions for the
1484 dflow problem. */
1485 if (dflow->out_of_date_transfer_functions)
1486 {
4b5a4301 1487 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
3072d30e 1488 bitmap_clear (dflow->out_of_date_transfer_functions);
4b5a4301 1489 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1490 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
4b5a4301 1491 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1492 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1493
1494 i = NUM_FIXED_BLOCKS;
48e1416a 1495 FOR_EACH_BB (bb)
3072d30e 1496 {
4b5a4301 1497 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1498 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1499 i++;
1500 }
1501 }
1502
1503 /* Now shuffle the block info for the problem. */
1c1a6437 1504 if (dflow->problem->free_bb_fun)
e011eba9 1505 {
369ea98d 1506 int size = last_basic_block * dflow->problem->block_info_elt_size;
1507 problem_temps = XNEWVAR (char, size);
e011eba9 1508 df_grow_bb_info (dflow);
1509 memcpy (problem_temps, dflow->block_info, size);
1510
1511 /* Copy the bb info from the problem tmps to the proper
1512 place in the block_info vector. Null out the copied
3072d30e 1513 item. The entry and exit blocks never move. */
e011eba9 1514 i = NUM_FIXED_BLOCKS;
48e1416a 1515 FOR_EACH_BB (bb)
e011eba9 1516 {
369ea98d 1517 df_set_bb_info (dflow, i,
1518 (char *)problem_temps
1519 + bb->index * dflow->problem->block_info_elt_size);
e011eba9 1520 i++;
1521 }
369ea98d 1522 memset ((char *)dflow->block_info
1523 + i * dflow->problem->block_info_elt_size, 0,
1524 (last_basic_block - i)
1525 * dflow->problem->block_info_elt_size);
c5fa0717 1526 free (problem_temps);
e011eba9 1527 }
1528 }
1529
3072d30e 1530 /* Shuffle the bits in the basic_block indexed arrays. */
1531
1532 if (df->blocks_to_analyze)
1533 {
4b5a4301 1534 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
3072d30e 1535 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
4b5a4301 1536 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
3072d30e 1537 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
4b5a4301 1538 bitmap_copy (&tmp, df->blocks_to_analyze);
3072d30e 1539 bitmap_clear (df->blocks_to_analyze);
1540 i = NUM_FIXED_BLOCKS;
48e1416a 1541 FOR_EACH_BB (bb)
3072d30e 1542 {
4b5a4301 1543 if (bitmap_bit_p (&tmp, bb->index))
3072d30e 1544 bitmap_set_bit (df->blocks_to_analyze, i);
1545 i++;
1546 }
1547 }
1548
4b5a4301 1549 bitmap_clear (&tmp);
3072d30e 1550
e011eba9 1551 i = NUM_FIXED_BLOCKS;
48e1416a 1552 FOR_EACH_BB (bb)
e011eba9 1553 {
a9b9dcf4 1554 SET_BASIC_BLOCK (i, bb);
e011eba9 1555 bb->index = i;
1556 i++;
1557 }
1558
1559 gcc_assert (i == n_basic_blocks);
1560
1561 for (; i < last_basic_block; i++)
a9b9dcf4 1562 SET_BASIC_BLOCK (i, NULL);
3072d30e 1563
1564#ifdef DF_DEBUG_CFG
1565 if (!df_lr->solutions_dirty)
1566 df_set_clean_cfg ();
1567#endif
e011eba9 1568}
1569
1570
3072d30e 1571/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
e011eba9 1572 block. There is no excuse for people to do this kind of thing. */
1573
48e1416a 1574void
3072d30e 1575df_bb_replace (int old_index, basic_block new_block)
e011eba9 1576{
3072d30e 1577 int new_block_index = new_block->index;
e011eba9 1578 int p;
1579
3072d30e 1580 if (dump_file)
1581 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1582
1583 gcc_assert (df);
1584 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1585
e011eba9 1586 for (p = 0; p < df->num_problems_defined; p++)
1587 {
1588 struct dataflow *dflow = df->problems_in_order[p];
1589 if (dflow->block_info)
1590 {
e011eba9 1591 df_grow_bb_info (dflow);
48e1416a 1592 df_set_bb_info (dflow, old_index,
3072d30e 1593 df_get_bb_info (dflow, new_block_index));
e011eba9 1594 }
1595 }
1596
3072d30e 1597 df_clear_bb_dirty (new_block);
a9b9dcf4 1598 SET_BASIC_BLOCK (old_index, new_block);
e011eba9 1599 new_block->index = old_index;
3072d30e 1600 df_set_bb_dirty (BASIC_BLOCK (old_index));
1601 SET_BASIC_BLOCK (new_block_index, NULL);
1602}
1603
1604
1605/* Free all of the per basic block dataflow from all of the problems.
1606 This is typically called before a basic block is deleted and the
1607 problem will be reanalyzed. */
1608
1609void
1610df_bb_delete (int bb_index)
1611{
1612 basic_block bb = BASIC_BLOCK (bb_index);
1613 int i;
1614
1615 if (!df)
1616 return;
48e1416a 1617
3072d30e 1618 for (i = 0; i < df->num_problems_defined; i++)
1619 {
1620 struct dataflow *dflow = df->problems_in_order[i];
1621 if (dflow->problem->free_bb_fun)
1622 {
1623 void *bb_info = df_get_bb_info (dflow, bb_index);
1624 if (bb_info)
1625 {
48e1416a 1626 dflow->problem->free_bb_fun (bb, bb_info);
369ea98d 1627 df_clear_bb_info (dflow, bb_index);
3072d30e 1628 }
1629 }
1630 }
1631 df_clear_bb_dirty (bb);
1632 df_mark_solutions_dirty ();
1633}
1634
1635
1636/* Verify that there is a place for everything and everything is in
1637 its place. This is too expensive to run after every pass in the
1638 mainline. However this is an excellent debugging tool if the
6dfdc153 1639 dataflow information is not being updated properly. You can just
3072d30e 1640 sprinkle calls in until you find the place that is changing an
1641 underlying structure without calling the proper updating
bef304b8 1642 routine. */
3072d30e 1643
1644void
1645df_verify (void)
1646{
1647 df_scan_verify ();
314966f4 1648#ifdef ENABLE_DF_CHECKING
3072d30e 1649 df_lr_verify_transfer_functions ();
1650 if (df_live)
1651 df_live_verify_transfer_functions ();
314966f4 1652#endif
3072d30e 1653}
1654
1655#ifdef DF_DEBUG_CFG
1656
1657/* Compute an array of ints that describes the cfg. This can be used
1658 to discover places where the cfg is modified by the appropriate
1659 calls have not been made to the keep df informed. The internals of
1660 this are unexciting, the key is that two instances of this can be
1661 compared to see if any changes have been made to the cfg. */
1662
1663static int *
1664df_compute_cfg_image (void)
1665{
1666 basic_block bb;
1667 int size = 2 + (2 * n_basic_blocks);
1668 int i;
1669 int * map;
1670
1671 FOR_ALL_BB (bb)
1672 {
1673 size += EDGE_COUNT (bb->succs);
1674 }
1675
1676 map = XNEWVEC (int, size);
1677 map[0] = size;
1678 i = 1;
1679 FOR_ALL_BB (bb)
1680 {
1681 edge_iterator ei;
1682 edge e;
1683
1684 map[i++] = bb->index;
1685 FOR_EACH_EDGE (e, ei, bb->succs)
1686 map[i++] = e->dest->index;
1687 map[i++] = -1;
1688 }
1689 map[i] = -1;
1690 return map;
1691}
1692
1693static int *saved_cfg = NULL;
1694
1695
1696/* This function compares the saved version of the cfg with the
1697 current cfg and aborts if the two are identical. The function
1698 silently returns if the cfg has been marked as dirty or the two are
1699 the same. */
1700
1701void
1702df_check_cfg_clean (void)
1703{
1704 int *new_map;
1705
1706 if (!df)
1707 return;
1708
1709 if (df_lr->solutions_dirty)
1710 return;
1711
48e1416a 1712 if (saved_cfg == NULL)
3072d30e 1713 return;
1714
1715 new_map = df_compute_cfg_image ();
1716 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1717 free (new_map);
e011eba9 1718}
1719
3072d30e 1720
1721/* This function builds a cfg fingerprint and squirrels it away in
1722 saved_cfg. */
1723
1724static void
1725df_set_clean_cfg (void)
1726{
dd045aee 1727 free (saved_cfg);
3072d30e 1728 saved_cfg = df_compute_cfg_image ();
1729}
1730
1731#endif /* DF_DEBUG_CFG */
e011eba9 1732/*----------------------------------------------------------------------------
1733 PUBLIC INTERFACES TO QUERY INFORMATION.
1734----------------------------------------------------------------------------*/
1735
1736
e011eba9 1737/* Return first def of REGNO within BB. */
1738
48e1416a 1739df_ref
3072d30e 1740df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
e011eba9 1741{
1742 rtx insn;
ed6e85ae 1743 df_ref *def_rec;
6151bbc3 1744 unsigned int uid;
e011eba9 1745
1746 FOR_BB_INSNS (bb, insn)
1747 {
6151bbc3 1748 if (!INSN_P (insn))
1749 continue;
1750
1751 uid = INSN_UID (insn);
3072d30e 1752 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1753 {
ed6e85ae 1754 df_ref def = *def_rec;
3072d30e 1755 if (DF_REF_REGNO (def) == regno)
1756 return def;
1757 }
e011eba9 1758 }
1759 return NULL;
1760}
1761
1762
1763/* Return last def of REGNO within BB. */
1764
48e1416a 1765df_ref
3072d30e 1766df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
e011eba9 1767{
1768 rtx insn;
ed6e85ae 1769 df_ref *def_rec;
6151bbc3 1770 unsigned int uid;
e011eba9 1771
1772 FOR_BB_INSNS_REVERSE (bb, insn)
1773 {
6151bbc3 1774 if (!INSN_P (insn))
1775 continue;
e011eba9 1776
6151bbc3 1777 uid = INSN_UID (insn);
3072d30e 1778 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1779 {
ed6e85ae 1780 df_ref def = *def_rec;
3072d30e 1781 if (DF_REF_REGNO (def) == regno)
1782 return def;
1783 }
e011eba9 1784 }
1785
1786 return NULL;
1787}
1788
e011eba9 1789/* Finds the reference corresponding to the definition of REG in INSN.
1790 DF is the dataflow object. */
1791
48e1416a 1792df_ref
3072d30e 1793df_find_def (rtx insn, rtx reg)
e011eba9 1794{
1795 unsigned int uid;
ed6e85ae 1796 df_ref *def_rec;
e011eba9 1797
1798 if (GET_CODE (reg) == SUBREG)
1799 reg = SUBREG_REG (reg);
1800 gcc_assert (REG_P (reg));
1801
1802 uid = INSN_UID (insn);
3072d30e 1803 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1804 {
ed6e85ae 1805 df_ref def = *def_rec;
3072d30e 1806 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1807 return def;
1808 }
e011eba9 1809
1810 return NULL;
1811}
1812
1813
48e1416a 1814/* Return true if REG is defined in INSN, zero otherwise. */
e011eba9 1815
1816bool
3072d30e 1817df_reg_defined (rtx insn, rtx reg)
e011eba9 1818{
3072d30e 1819 return df_find_def (insn, reg) != NULL;
e011eba9 1820}
48e1416a 1821
e011eba9 1822
1823/* Finds the reference corresponding to the use of REG in INSN.
1824 DF is the dataflow object. */
48e1416a 1825
1826df_ref
3072d30e 1827df_find_use (rtx insn, rtx reg)
e011eba9 1828{
1829 unsigned int uid;
ed6e85ae 1830 df_ref *use_rec;
e011eba9 1831
1832 if (GET_CODE (reg) == SUBREG)
1833 reg = SUBREG_REG (reg);
1834 gcc_assert (REG_P (reg));
1835
1836 uid = INSN_UID (insn);
3072d30e 1837 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1838 {
ed6e85ae 1839 df_ref use = *use_rec;
3072d30e 1840 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1841 return use;
48e1416a 1842 }
3072d30e 1843 if (df->changeable_flags & DF_EQ_NOTES)
1844 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1845 {
ed6e85ae 1846 df_ref use = *use_rec;
3072d30e 1847 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
48e1416a 1848 return use;
3072d30e 1849 }
e011eba9 1850 return NULL;
1851}
1852
1853
48e1416a 1854/* Return true if REG is referenced in INSN, zero otherwise. */
e011eba9 1855
1856bool
3072d30e 1857df_reg_used (rtx insn, rtx reg)
e011eba9 1858{
3072d30e 1859 return df_find_use (insn, reg) != NULL;
e011eba9 1860}
48e1416a 1861
e011eba9 1862\f
1863/*----------------------------------------------------------------------------
1864 Debugging and printing functions.
1865----------------------------------------------------------------------------*/
1866
4a020a8c 1867/* Write information about registers and basic blocks into FILE.
1868 This is part of making a debugging dump. */
1869
1870void
1871dump_regset (regset r, FILE *outf)
1872{
1873 unsigned i;
1874 reg_set_iterator rsi;
1875
1876 if (r == NULL)
1877 {
1878 fputs (" (nil)", outf);
1879 return;
1880 }
1881
1882 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
1883 {
1884 fprintf (outf, " %d", i);
1885 if (i < FIRST_PSEUDO_REGISTER)
1886 fprintf (outf, " [%s]",
1887 reg_names[i]);
1888 }
1889}
1890
1891/* Print a human-readable representation of R on the standard error
1892 stream. This function is designed to be used from within the
1893 debugger. */
1894extern void debug_regset (regset);
1895DEBUG_FUNCTION void
1896debug_regset (regset r)
1897{
1898 dump_regset (r, stderr);
1899 putc ('\n', stderr);
1900}
3072d30e 1901
1902/* Write information about registers and basic blocks into FILE.
1903 This is part of making a debugging dump. */
1904
1905void
1906df_print_regset (FILE *file, bitmap r)
1907{
1908 unsigned int i;
1909 bitmap_iterator bi;
1910
1911 if (r == NULL)
1912 fputs (" (nil)", file);
1913 else
1914 {
1915 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1916 {
1917 fprintf (file, " %d", i);
1918 if (i < FIRST_PSEUDO_REGISTER)
1919 fprintf (file, " [%s]", reg_names[i]);
1920 }
1921 }
1922 fprintf (file, "\n");
1923}
1924
1925
bf1f8fbc 1926/* Write information about registers and basic blocks into FILE. The
1927 bitmap is in the form used by df_byte_lr. This is part of making a
1928 debugging dump. */
1929
1930void
0e8e9be3 1931df_print_word_regset (FILE *file, bitmap r)
bf1f8fbc 1932{
1933 unsigned int max_reg = max_reg_num ();
bf1f8fbc 1934
1935 if (r == NULL)
1936 fputs (" (nil)", file);
1937 else
1938 {
1939 unsigned int i;
0e8e9be3 1940 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
bf1f8fbc 1941 {
0e8e9be3 1942 bool found = (bitmap_bit_p (r, 2 * i)
1943 || bitmap_bit_p (r, 2 * i + 1));
1944 if (found)
bf1f8fbc 1945 {
0e8e9be3 1946 int word;
1947 const char * sep = "";
1948 fprintf (file, " %d", i);
1949 fprintf (file, "(");
1950 for (word = 0; word < 2; word++)
1951 if (bitmap_bit_p (r, 2 * i + word))
1952 {
1953 fprintf (file, "%s%d", sep, word);
1954 sep = ", ";
1955 }
1956 fprintf (file, ")");
bf1f8fbc 1957 }
bf1f8fbc 1958 }
1959 }
1960 fprintf (file, "\n");
1961}
1962
1963
e011eba9 1964/* Dump dataflow info. */
774f8797 1965
e011eba9 1966void
3072d30e 1967df_dump (FILE *file)
1968{
1969 basic_block bb;
1970 df_dump_start (file);
1971
1972 FOR_ALL_BB (bb)
1973 {
1974 df_print_bb_index (bb, file);
1975 df_dump_top (bb, file);
1976 df_dump_bottom (bb, file);
1977 }
1978
1979 fprintf (file, "\n");
1980}
1981
1982
774f8797 1983/* Dump dataflow info for df->blocks_to_analyze. */
1984
1985void
1986df_dump_region (FILE *file)
1987{
1988 if (df->blocks_to_analyze)
1989 {
1990 bitmap_iterator bi;
1991 unsigned int bb_index;
1992
1993 fprintf (file, "\n\nstarting region dump\n");
1994 df_dump_start (file);
48e1416a 1995
1996 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
774f8797 1997 {
1998 basic_block bb = BASIC_BLOCK (bb_index);
ea9538fb 1999 dump_bb (file, bb, 0, TDF_DETAILS);
774f8797 2000 }
2001 fprintf (file, "\n");
2002 }
48e1416a 2003 else
774f8797 2004 df_dump (file);
2005}
2006
2007
3072d30e 2008/* Dump the introductory information for each problem defined. */
2009
2010void
2011df_dump_start (FILE *file)
e011eba9 2012{
2013 int i;
2014
3e6933a8 2015 if (!df || !file)
e011eba9 2016 return;
2017
2018 fprintf (file, "\n\n%s\n", current_function_name ());
2019 fprintf (file, "\nDataflow summary:\n");
3072d30e 2020 if (df->blocks_to_analyze)
2021 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2022 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
e011eba9 2023
2024 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 2025 {
2026 struct dataflow *dflow = df->problems_in_order[i];
2027 if (dflow->computed)
2028 {
2029 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2030 if (fun)
48e1416a 2031 fun(file);
3072d30e 2032 }
2033 }
2034}
e011eba9 2035
3072d30e 2036
ea9538fb 2037/* Dump the top or bottom of the block information for BB. */
2038static void
2039df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
3072d30e 2040{
2041 int i;
2042
2043 if (!df || !file)
2044 return;
2045
2046 for (i = 0; i < df->num_problems_defined; i++)
2047 {
2048 struct dataflow *dflow = df->problems_in_order[i];
2049 if (dflow->computed)
2050 {
ea9538fb 2051 df_dump_bb_problem_function bbfun;
2052
2053 if (top)
2054 bbfun = dflow->problem->dump_top_fun;
2055 else
2056 bbfun = dflow->problem->dump_bottom_fun;
2057
3072d30e 2058 if (bbfun)
48e1416a 2059 bbfun (bb, file);
3072d30e 2060 }
2061 }
2062}
2063
ea9538fb 2064/* Dump the top of the block information for BB. */
2065
2066void
2067df_dump_top (basic_block bb, FILE *file)
2068{
2069 df_dump_bb_problem_data (bb, file, /*top=*/true);
2070}
3072d30e 2071
48e1416a 2072/* Dump the bottom of the block information for BB. */
3072d30e 2073
2074void
2075df_dump_bottom (basic_block bb, FILE *file)
ea9538fb 2076{
2077 df_dump_bb_problem_data (bb, file, /*top=*/false);
2078}
2079
2080
2081/* Dump information about INSN just before or after dumping INSN itself. */
2082static void
2083df_dump_insn_problem_data (const_rtx insn, FILE *file, bool top)
3072d30e 2084{
2085 int i;
2086
2087 if (!df || !file)
2088 return;
2089
2090 for (i = 0; i < df->num_problems_defined; i++)
2091 {
2092 struct dataflow *dflow = df->problems_in_order[i];
2093 if (dflow->computed)
2094 {
ea9538fb 2095 df_dump_insn_problem_function insnfun;
2096
2097 if (top)
2098 insnfun = dflow->problem->dump_insn_top_fun;
2099 else
2100 insnfun = dflow->problem->dump_insn_bottom_fun;
2101
2102 if (insnfun)
2103 insnfun (insn, file);
3072d30e 2104 }
2105 }
e011eba9 2106}
2107
ea9538fb 2108/* Dump information about INSN before dumping INSN itself. */
2109
2110void
2111df_dump_insn_top (const_rtx insn, FILE *file)
2112{
2113 df_dump_insn_problem_data (insn, file, /*top=*/true);
2114}
2115
2116/* Dump information about INSN after dumping INSN itself. */
2117
2118void
2119df_dump_insn_bottom (const_rtx insn, FILE *file)
2120{
2121 df_dump_insn_problem_data (insn, file, /*top=*/false);
2122}
2123
e011eba9 2124
09669349 2125static void
2126df_ref_dump (df_ref ref, FILE *file)
2127{
2128 fprintf (file, "%c%d(%d)",
2129 DF_REF_REG_DEF_P (ref)
2130 ? 'd'
2131 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2132 DF_REF_ID (ref),
2133 DF_REF_REGNO (ref));
2134}
2135
e011eba9 2136void
ed6e85ae 2137df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
e011eba9 2138{
2139 fprintf (file, "{ ");
3072d30e 2140 while (*ref_rec)
e011eba9 2141 {
ed6e85ae 2142 df_ref ref = *ref_rec;
09669349 2143 df_ref_dump (ref, file);
e011eba9 2144 if (follow_chain)
3e6933a8 2145 df_chain_dump (DF_REF_CHAIN (ref), file);
3072d30e 2146 ref_rec++;
e011eba9 2147 }
2148 fprintf (file, "}");
2149}
2150
2151
2152/* Dump either a ref-def or reg-use chain. */
2153
2154void
ed6e85ae 2155df_regs_chain_dump (df_ref ref, FILE *file)
e011eba9 2156{
2157 fprintf (file, "{ ");
2158 while (ref)
2159 {
09669349 2160 df_ref_dump (ref, file);
ed6e85ae 2161 ref = DF_REF_NEXT_REG (ref);
e011eba9 2162 }
2163 fprintf (file, "}");
2164}
2165
2166
3e6933a8 2167static void
3072d30e 2168df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
e011eba9 2169{
3072d30e 2170 while (*mws)
3e6933a8 2171 {
48e1416a 2172 fprintf (file, "mw %c r[%d..%d]\n",
ed6e85ae 2173 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
3072d30e 2174 (*mws)->start_regno, (*mws)->end_regno);
2175 mws++;
3e6933a8 2176 }
2177}
2178
2179
48e1416a 2180static void
2181df_insn_uid_debug (unsigned int uid,
3e6933a8 2182 bool follow_chain, FILE *file)
2183{
3072d30e 2184 fprintf (file, "insn %d luid %d",
2185 uid, DF_INSN_UID_LUID (uid));
e011eba9 2186
3072d30e 2187 if (DF_INSN_UID_DEFS (uid))
3e6933a8 2188 {
2189 fprintf (file, " defs ");
3072d30e 2190 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
3e6933a8 2191 }
2192
3072d30e 2193 if (DF_INSN_UID_USES (uid))
3e6933a8 2194 {
2195 fprintf (file, " uses ");
3072d30e 2196 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2197 }
2198
2199 if (DF_INSN_UID_EQ_USES (uid))
2200 {
2201 fprintf (file, " eq uses ");
2202 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
3e6933a8 2203 }
2204
3072d30e 2205 if (DF_INSN_UID_MWS (uid))
3e6933a8 2206 {
2207 fprintf (file, " mws ");
3072d30e 2208 df_mws_dump (DF_INSN_UID_MWS (uid), file);
3e6933a8 2209 }
e011eba9 2210 fprintf (file, "\n");
2211}
2212
3e6933a8 2213
4b987fac 2214DEBUG_FUNCTION void
3072d30e 2215df_insn_debug (rtx insn, bool follow_chain, FILE *file)
3e6933a8 2216{
3072d30e 2217 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
3e6933a8 2218}
2219
4b987fac 2220DEBUG_FUNCTION void
3072d30e 2221df_insn_debug_regno (rtx insn, FILE *file)
e011eba9 2222{
158b6cc9 2223 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
e011eba9 2224
2225 fprintf (file, "insn %d bb %d luid %d defs ",
158b6cc9 2226 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2227 DF_INSN_INFO_LUID (insn_info));
2228 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
48e1416a 2229
e011eba9 2230 fprintf (file, " uses ");
158b6cc9 2231 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
3072d30e 2232
2233 fprintf (file, " eq_uses ");
158b6cc9 2234 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
e011eba9 2235 fprintf (file, "\n");
2236}
2237
4b987fac 2238DEBUG_FUNCTION void
3072d30e 2239df_regno_debug (unsigned int regno, FILE *file)
e011eba9 2240{
2241 fprintf (file, "reg %d defs ", regno);
3072d30e 2242 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
e011eba9 2243 fprintf (file, " uses ");
3072d30e 2244 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2245 fprintf (file, " eq_uses ");
2246 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
e011eba9 2247 fprintf (file, "\n");
2248}
2249
2250
4b987fac 2251DEBUG_FUNCTION void
ed6e85ae 2252df_ref_debug (df_ref ref, FILE *file)
e011eba9 2253{
2254 fprintf (file, "%c%d ",
2255 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2256 DF_REF_ID (ref));
3eb9ad16 2257 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
e011eba9 2258 DF_REF_REGNO (ref),
2259 DF_REF_BBNO (ref),
ed6e85ae 2260 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
3072d30e 2261 DF_REF_FLAGS (ref),
2262 DF_REF_TYPE (ref));
2263 if (DF_REF_LOC (ref))
44cb2148 2264 {
2265 if (flag_dump_noaddr)
2266 fprintf (file, "loc #(#) chain ");
2267 else
2268 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2269 (void *)*DF_REF_LOC (ref));
2270 }
3072d30e 2271 else
2272 fprintf (file, "chain ");
3e6933a8 2273 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2274 fprintf (file, "\n");
2275}
2276\f
2277/* Functions for debugging from GDB. */
2278
4b987fac 2279DEBUG_FUNCTION void
e011eba9 2280debug_df_insn (rtx insn)
2281{
3072d30e 2282 df_insn_debug (insn, true, stderr);
e011eba9 2283 debug_rtx (insn);
2284}
2285
2286
4b987fac 2287DEBUG_FUNCTION void
e011eba9 2288debug_df_reg (rtx reg)
2289{
3072d30e 2290 df_regno_debug (REGNO (reg), stderr);
e011eba9 2291}
2292
2293
4b987fac 2294DEBUG_FUNCTION void
e011eba9 2295debug_df_regno (unsigned int regno)
2296{
3072d30e 2297 df_regno_debug (regno, stderr);
e011eba9 2298}
2299
2300
4b987fac 2301DEBUG_FUNCTION void
ed6e85ae 2302debug_df_ref (df_ref ref)
e011eba9 2303{
3e6933a8 2304 df_ref_debug (ref, stderr);
e011eba9 2305}
2306
2307
4b987fac 2308DEBUG_FUNCTION void
e011eba9 2309debug_df_defno (unsigned int defno)
2310{
3072d30e 2311 df_ref_debug (DF_DEFS_GET (defno), stderr);
e011eba9 2312}
2313
2314
4b987fac 2315DEBUG_FUNCTION void
e011eba9 2316debug_df_useno (unsigned int defno)
2317{
3072d30e 2318 df_ref_debug (DF_USES_GET (defno), stderr);
e011eba9 2319}
2320
2321
4b987fac 2322DEBUG_FUNCTION void
e011eba9 2323debug_df_chain (struct df_link *link)
2324{
3e6933a8 2325 df_chain_dump (link, stderr);
e011eba9 2326 fputc ('\n', stderr);
2327}