]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.cc
Daily bump.
[thirdparty/gcc.git] / gcc / df-core.cc
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
aeee4812 2 Copyright (C) 1999-2023 Free Software Foundation, Inc.
b8698a0f 3 Originally contributed by Michael P. Hayes
4d779342
DB
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
9dcd6f09 12Software Foundation; either version 3, or (at your option) any later
4d779342
DB
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
9dcd6f09
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
4d779342
DB
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
e53b6e56 31The file df-problems.cc provides problem instance for the most common
4d779342
DB
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
6fb5fa3c
DB
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
4d779342 40
6fb5fa3c
DB
41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
fa10beec 44areas that can be reached from a definition of a variable. The LIVE
b8698a0f 45problem finds the intersection of these two areas.
4d779342 46
6fb5fa3c
DB
47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
4d779342 49
6fb5fa3c
DB
50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
4d779342 57
6fb5fa3c 58In the middle layer, basic blocks are scanned to produce transfer
fa10beec 59functions which describe the effects of that block on the global
6fb5fa3c 60dataflow solution. The transfer functions are only rebuilt if the
b8698a0f 61some instruction within the block has changed.
4d779342 62
6fb5fa3c 63The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 64is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
4d779342
DB
67
68
6fb5fa3c 69USAGE:
4d779342 70
6fb5fa3c 71Here is an example of using the dataflow routines.
4d779342 72
05c219bb 73 df_[chain,live,note,rd]_add_problem (flags);
4d779342 74
6fb5fa3c 75 df_set_blocks (blocks);
4d779342 76
6fb5fa3c 77 df_analyze ();
4d779342 78
6fb5fa3c 79 df_dump (stderr);
4d779342 80
0d475361 81 df_finish_pass (false);
4d779342 82
05c219bb 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
4d779342
DB
87
88Problems can be dependent on other problems. For instance, solving
d1c78882 89def-use or use-def chains is dependent on solving reaching
c0220ea4 90definitions. As long as these dependencies are listed in the problem
4d779342
DB
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
4d779342
DB
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 108before the call to analyze in order to eliminate the possibility that
4d779342
DB
109optimizations that reorder blocks invalidate the bitvector.
110
6fb5fa3c
DB
111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 114to access these bitvectors. All deferred rescannings are down before
0d52bcc1 115the transfer functions are recomputed.
4d779342
DB
116
117DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
0a41f3b2 126deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
cea618ac 146 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
0d52bcc1 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e02101ff 184 note_stores and rtx iterators instead of using the DF data. This
ecb7f6de 185 can be said to fall under case 1c.
6fb5fa3c
DB
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
0a41f3b2 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
190 be rescanned.
191
ecb7f6de
PB
1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
198
1994) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 200 itself using the low level df primitives. Currently no pass does
6fb5fa3c 201 this, but it has the advantage that it is quite efficient given
b8698a0f 202 that the pass generally has exact knowledge of what it is changing.
6fb5fa3c
DB
203
204DATA STRUCTURES
4d779342
DB
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
4d779342
DB
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 239keep the dataflow information up to data (if this is really what is
4d779342
DB
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
e53b6e56 243instructions in df-scan.cc. However, these are not currently connected
4d779342
DB
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
b8698a0f 249The basic object is a DF_REF (reference) and this may either be a
4d779342
DB
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
6fb5fa3c
DB
261ACCESSING INSNS:
262
50e94c7e
SB
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
6fb5fa3c 286
4d779342
DB
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
b8698a0f 293 REAL refs are associated with instructions.
4d779342
DB
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c 296 these lists can be accessed by calling df_get_artificial_defs or
b8698a0f
L
297 df_get_artificial_uses for the particular basic block.
298
912f2dac
DB
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
49dbd6a0 301 For blocks that are at the destination of eh edges, the
912f2dac
DB
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
49dbd6a0 304 relate to the registers specified in EH_USES. Logically these
912f2dac 305 defs and uses should really occur along the eh edge, but there is
49dbd6a0 306 no convenient way to do this. Artificial defs that occur at the
912f2dac
DB
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
c0220ea4 314 Artificial defs occur at the end of the entry block. These arise
912f2dac 315 from registers that are live at entry to the function.
4d779342 316
b8698a0f 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
6fb5fa3c 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 319
6fb5fa3c
DB
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
b8698a0f 324 treated like uses. If it is not set they are ignored.
6fb5fa3c
DB
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
4d779342
DB
340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
b8698a0f 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
4d779342 355NOTES:
b8698a0f 356
4d779342
DB
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
fa10beec 368smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
b8698a0f 373are write-only operations.
4d779342
DB
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
c7131fb2 380#include "backend.h"
4d779342 381#include "rtl.h"
c7131fb2 382#include "df.h"
4d0cdd0c 383#include "memmodel.h"
957060b5 384#include "emit-rtl.h"
60393bbc 385#include "cfganal.h"
4d779342 386#include "tree-pass.h"
7be64667 387#include "cfgloop.h"
4d779342 388
23249ac4 389static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 390static void df_set_bb_info (struct dataflow *, unsigned int, void *);
e285df08 391static void df_clear_bb_info (struct dataflow *, unsigned int);
6fb5fa3c
DB
392#ifdef DF_DEBUG_CFG
393static void df_set_clean_cfg (void);
394#endif
4d779342 395
532aafad
SB
396/* The obstack on which regsets are allocated. */
397struct bitmap_obstack reg_obstack;
398
6fb5fa3c
DB
399/* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
4d779342 402
6fb5fa3c 403bitmap_obstack df_bitmap_obstack;
4d779342 404
4d779342 405
6fb5fa3c
DB
406/*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408----------------------------------------------------------------------------*/
409
99b1c316 410class df_d *df;
4d779342 411
6fb5fa3c 412/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 413
6fb5fa3c 414void
fdd5680c 415df_add_problem (const struct df_problem *problem)
4d779342
DB
416{
417 struct dataflow *dflow;
6fb5fa3c 418 int i;
4d779342
DB
419
420 /* First try to add the dependent problem. */
6fb5fa3c
DB
421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
4d779342
DB
423
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
6fb5fa3c 429 return;
4d779342
DB
430
431 /* Make a new one and add it to the end. */
5ed6ace5 432 dflow = XCNEW (struct dataflow);
4d779342 433 dflow->problem = problem;
6fb5fa3c
DB
434 dflow->computed = false;
435 dflow->solutions_dirty = true;
4d779342
DB
436 df->problems_by_index[dflow->problem->id] = dflow;
437
6fb5fa3c
DB
438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
b8698a0f 444 defined. */
6fb5fa3c
DB
445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 {
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
451 {
452 df->problems_in_order[i+1] = dflow;
453 return;
454 }
455 }
456 df->problems_in_order[0] = dflow;
4d779342
DB
457}
458
459
23249ac4
DB
460/* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
81f40b79 463int
bbbbb16a 464df_set_flags (int changeable_flags)
23249ac4 465{
81f40b79 466 int old_flags = df->changeable_flags;
6fb5fa3c 467 df->changeable_flags |= changeable_flags;
23249ac4
DB
468 return old_flags;
469}
470
6fb5fa3c 471
23249ac4
DB
472/* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
81f40b79 475int
bbbbb16a 476df_clear_flags (int changeable_flags)
23249ac4 477{
81f40b79 478 int old_flags = df->changeable_flags;
6fb5fa3c 479 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
480 return old_flags;
481}
482
6fb5fa3c 483
4d779342
DB
484/* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
487
b8698a0f 488void
6fb5fa3c 489df_set_blocks (bitmap blocks)
4d779342
DB
490{
491 if (blocks)
492 {
6fb5fa3c
DB
493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
495 if (df->blocks_to_analyze)
496 {
89a95777
KZ
497 /* This block is called to change the focus from one subset
498 to another. */
3b8266e2 499 int p;
d648b5ff
TS
500 auto_bitmap diff (&df_bitmap_obstack);
501 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
89a95777 502 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
503 {
504 struct dataflow *dflow = df->problems_in_order[p];
89a95777 505 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 506 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 507 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
508 {
509 bitmap_iterator bi;
510 unsigned int bb_index;
b8698a0f 511
d648b5ff 512 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
3b8266e2 513 {
06e28de2 514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
30cb87a0
KZ
515 if (bb)
516 {
6fb5fa3c 517 void *bb_info = df_get_bb_info (dflow, bb_index);
e285df08
JH
518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
30cb87a0 520 }
3b8266e2
KZ
521 }
522 }
523 }
3b8266e2
KZ
524 }
525 else
30cb87a0 526 {
89a95777
KZ
527 /* This block of code is executed to change the focus from
528 the entire function to a subset. */
a7e3698d
JH
529 bitmap_head blocks_to_reset;
530 bool initialized = false;
89a95777
KZ
531 int p;
532 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 533 {
89a95777
KZ
534 struct dataflow *dflow = df->problems_in_order[p];
535 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 536 {
a7e3698d 537 if (!initialized)
30cb87a0 538 {
89a95777 539 basic_block bb;
a7e3698d 540 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
04a90bec 541 FOR_ALL_BB_FN (bb, cfun)
30cb87a0 542 {
a7e3698d 543 bitmap_set_bit (&blocks_to_reset, bb->index);
30cb87a0 544 }
30cb87a0 545 }
a7e3698d 546 dflow->problem->reset_fun (&blocks_to_reset);
30cb87a0 547 }
30cb87a0 548 }
a7e3698d
JH
549 if (initialized)
550 bitmap_clear (&blocks_to_reset);
89a95777 551
6fb5fa3c 552 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 553 }
4d779342 554 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 555 df->analyze_subset = true;
4d779342
DB
556 }
557 else
558 {
89a95777
KZ
559 /* This block is executed to reset the focus to the entire
560 function. */
6fb5fa3c 561 if (dump_file)
89a95777 562 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
563 if (df->blocks_to_analyze)
564 {
565 BITMAP_FREE (df->blocks_to_analyze);
566 df->blocks_to_analyze = NULL;
567 }
6fb5fa3c 568 df->analyze_subset = false;
4d779342 569 }
6fb5fa3c
DB
570
571 /* Setting the blocks causes the refs to be unorganized since only
572 the refs in the blocks are seen. */
573 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 df_mark_solutions_dirty ();
4d779342
DB
576}
577
578
6fb5fa3c
DB
579/* Delete a DFLOW problem (and any problems that depend on this
580 problem). */
23249ac4
DB
581
582void
6fb5fa3c 583df_remove_problem (struct dataflow *dflow)
23249ac4 584{
fdd5680c 585 const struct df_problem *problem;
23249ac4 586 int i;
6fb5fa3c
DB
587
588 if (!dflow)
589 return;
590
591 problem = dflow->problem;
592 gcc_assert (problem->remove_problem_fun);
593
6fb5fa3c 594 /* Delete any problems that depended on this problem first. */
89a95777 595 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
596 if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 df_remove_problem (df->problems_in_order[i]);
598
599 /* Now remove this problem. */
89a95777 600 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
601 if (df->problems_in_order[i] == dflow)
602 {
603 int j;
604 for (j = i + 1; j < df->num_problems_defined; j++)
605 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 606 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
607 df->num_problems_defined--;
608 break;
609 }
610
611 (problem->remove_problem_fun) ();
612 df->problems_by_index[problem->id] = NULL;
613}
614
615
05c219bb
PB
616/* Remove all of the problems that are not permanent. Scanning, LR
617 and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 Also clear all of the changeable_flags. */
6fb5fa3c
DB
619
620void
0d475361 621df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
622{
623 int i;
6fb5fa3c 624
3089f8b5 625#ifdef ENABLE_DF_CHECKING
a46edbff 626 int saved_flags;
6fb5fa3c
DB
627#endif
628
629 if (!df)
630 return;
631
632 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634
3089f8b5 635#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
636 saved_flags = df->changeable_flags;
637#endif
638
8f252203
TP
639 /* We iterate over problems by index as each problem removed will
640 lead to problems_in_order to be reordered. */
641 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
23249ac4 642 {
8f252203 643 struct dataflow *dflow = df->problems_by_index[i];
6fb5fa3c 644
8f252203
TP
645 if (dflow && dflow->optional_p)
646 df_remove_problem (dflow);
6fb5fa3c 647 }
6fb5fa3c
DB
648
649 /* Clear all of the flags. */
650 df->changeable_flags = 0;
651 df_process_deferred_rescans ();
652
653 /* Set the focus back to the whole function. */
654 if (df->blocks_to_analyze)
655 {
656 BITMAP_FREE (df->blocks_to_analyze);
657 df->blocks_to_analyze = NULL;
658 df_mark_solutions_dirty ();
659 df->analyze_subset = false;
23249ac4 660 }
6fb5fa3c 661
3089f8b5 662#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
663 /* Verification will fail in DF_NO_INSN_RESCAN. */
664 if (!(saved_flags & DF_NO_INSN_RESCAN))
665 {
666 df_lr_verify_transfer_functions ();
667 if (df_live)
668 df_live_verify_transfer_functions ();
669 }
670
671#ifdef DF_DEBUG_CFG
672 df_set_clean_cfg ();
673#endif
674#endif
0d475361 675
b2b29377 676 if (flag_checking && verify)
0d475361 677 df->changeable_flags |= DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
678}
679
680
681/* Set up the dataflow instance for the entire back end. */
682
683static unsigned int
684rest_of_handle_df_initialize (void)
685{
686 gcc_assert (!df);
99b1c316 687 df = XCNEW (class df_d);
6fb5fa3c
DB
688 df->changeable_flags = 0;
689
690 bitmap_obstack_initialize (&df_bitmap_obstack);
691
692 /* Set this to a conservative value. Stack_ptr_mod will compute it
693 correctly later. */
416ff32e 694 crtl->sp_is_unchanging = 0;
6fb5fa3c
DB
695
696 df_scan_add_problem ();
697 df_scan_alloc (NULL);
698
699 /* These three problems are permanent. */
700 df_lr_add_problem ();
89a95777 701 if (optimize > 1)
6fb5fa3c
DB
702 df_live_add_problem ();
703
225ccc68 704 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
6fb5fa3c
DB
705
706 df_hard_reg_init ();
707 /* After reload, some ports add certain bits to regs_ever_live so
708 this cannot be reset. */
709 df_compute_regs_ever_live (true);
710 df_scan_blocks ();
711 df_compute_regs_ever_live (false);
712 return 0;
713}
714
715
27a4cd48
DM
716namespace {
717
718const pass_data pass_data_df_initialize_opt =
6fb5fa3c 719{
27a4cd48
DM
720 RTL_PASS, /* type */
721 "dfinit", /* name */
722 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
723 TV_DF_SCAN, /* tv_id */
724 0, /* properties_required */
725 0, /* properties_provided */
726 0, /* properties_destroyed */
727 0, /* todo_flags_start */
728 0, /* todo_flags_finish */
6fb5fa3c
DB
729};
730
27a4cd48
DM
731class pass_df_initialize_opt : public rtl_opt_pass
732{
733public:
c3284718
RS
734 pass_df_initialize_opt (gcc::context *ctxt)
735 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
27a4cd48
DM
736 {}
737
738 /* opt_pass methods: */
725793af
DM
739 bool gate (function *) final override { return optimize > 0; }
740 unsigned int execute (function *) final override
be55bfe6
TS
741 {
742 return rest_of_handle_df_initialize ();
743 }
27a4cd48
DM
744
745}; // class pass_df_initialize_opt
746
747} // anon namespace
748
749rtl_opt_pass *
750make_pass_df_initialize_opt (gcc::context *ctxt)
751{
752 return new pass_df_initialize_opt (ctxt);
753}
754
6fb5fa3c 755
27a4cd48
DM
756namespace {
757
758const pass_data pass_data_df_initialize_no_opt =
6fb5fa3c 759{
27a4cd48
DM
760 RTL_PASS, /* type */
761 "no-opt dfinit", /* name */
762 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
763 TV_DF_SCAN, /* tv_id */
764 0, /* properties_required */
765 0, /* properties_provided */
766 0, /* properties_destroyed */
767 0, /* todo_flags_start */
768 0, /* todo_flags_finish */
6fb5fa3c
DB
769};
770
27a4cd48
DM
771class pass_df_initialize_no_opt : public rtl_opt_pass
772{
773public:
c3284718
RS
774 pass_df_initialize_no_opt (gcc::context *ctxt)
775 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
27a4cd48
DM
776 {}
777
778 /* opt_pass methods: */
725793af
DM
779 bool gate (function *) final override { return optimize == 0; }
780 unsigned int execute (function *) final override
be55bfe6
TS
781 {
782 return rest_of_handle_df_initialize ();
783 }
27a4cd48
DM
784
785}; // class pass_df_initialize_no_opt
786
787} // anon namespace
788
789rtl_opt_pass *
790make_pass_df_initialize_no_opt (gcc::context *ctxt)
791{
792 return new pass_df_initialize_no_opt (ctxt);
793}
794
6fb5fa3c 795
4d779342
DB
796/* Free all the dataflow info and the DF structure. This should be
797 called from the df_finish macro which also NULLs the parm. */
798
6fb5fa3c
DB
799static unsigned int
800rest_of_handle_df_finish (void)
4d779342
DB
801{
802 int i;
803
6fb5fa3c
DB
804 gcc_assert (df);
805
4d779342 806 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
807 {
808 struct dataflow *dflow = df->problems_in_order[i];
b8698a0f 809 dflow->problem->free_fun ();
6fb5fa3c 810 }
4d779342 811
04695783 812 free (df->postorder);
94a04c24 813 free (df->postorder_inverted);
6fb5fa3c 814 free (df->hard_regs_live_count);
4d779342 815 free (df);
6fb5fa3c
DB
816 df = NULL;
817
818 bitmap_obstack_release (&df_bitmap_obstack);
819 return 0;
4d779342
DB
820}
821
6fb5fa3c 822
27a4cd48
DM
823namespace {
824
825const pass_data pass_data_df_finish =
6fb5fa3c 826{
27a4cd48
DM
827 RTL_PASS, /* type */
828 "dfinish", /* name */
829 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
830 TV_NONE, /* tv_id */
831 0, /* properties_required */
832 0, /* properties_provided */
833 0, /* properties_destroyed */
834 0, /* todo_flags_start */
835 0, /* todo_flags_finish */
6fb5fa3c
DB
836};
837
27a4cd48
DM
838class pass_df_finish : public rtl_opt_pass
839{
840public:
c3284718
RS
841 pass_df_finish (gcc::context *ctxt)
842 : rtl_opt_pass (pass_data_df_finish, ctxt)
27a4cd48
DM
843 {}
844
845 /* opt_pass methods: */
725793af 846 unsigned int execute (function *) final override
be55bfe6
TS
847 {
848 return rest_of_handle_df_finish ();
849 }
27a4cd48
DM
850
851}; // class pass_df_finish
852
853} // anon namespace
854
855rtl_opt_pass *
856make_pass_df_finish (gcc::context *ctxt)
857{
858 return new pass_df_finish (ctxt);
859}
860
6fb5fa3c
DB
861
862
863
4d779342
DB
864\f
865/*----------------------------------------------------------------------------
866 The general data flow analysis engine.
867----------------------------------------------------------------------------*/
868
6fb5fa3c 869/* Helper function for df_worklist_dataflow.
b8698a0f 870 Propagate the dataflow forward.
6fb5fa3c 871 Given a BB_INDEX, do the dataflow propagation
053d4dda
RB
872 and set bits on for successors in PENDING for earlier
873 and WORKLIST for later in bbindex_to_postorder
50b2e859
JH
874 if the out set of the dataflow has changed.
875
876 AGE specify time when BB was visited last time.
877 AGE of 0 means we are visiting for first time and need to
878 compute transfer function to initialize datastructures.
879 Otherwise we re-do transfer function only if something change
880 while computing confluence functions.
881 We need to compute confluence only of basic block that are younger
882 then last visit of the BB.
883
884 Return true if BB info has changed. This is always the case
885 in the first visit. */
4d779342 886
1a0f3fa1 887static bool
6fb5fa3c 888df_worklist_propagate_forward (struct dataflow *dataflow,
053d4dda
RB
889 unsigned bb_index,
890 unsigned *bbindex_to_postorder,
891 bitmap worklist,
892 bitmap pending,
893 sbitmap considered,
5c7e6d4b
SB
894 vec<int> &last_change_age,
895 int age)
4d779342 896{
4d779342
DB
897 edge e;
898 edge_iterator ei;
06e28de2 899 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 900 bool changed = !age;
4d779342 901
6fb5fa3c 902 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
903 if (EDGE_COUNT (bb->preds) > 0)
904 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 905 {
5c7e6d4b
SB
906 if (bbindex_to_postorder[e->src->index] < last_change_age.length ()
907 && age <= last_change_age[bbindex_to_postorder[e->src->index]]
d7c028c0 908 && bitmap_bit_p (considered, e->src->index))
1a0f3fa1 909 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 910 }
e45dcf9c 911 else if (dataflow->problem->con_fun_0)
50b2e859 912 dataflow->problem->con_fun_0 (bb);
6fb5fa3c 913
1a0f3fa1
JH
914 if (changed
915 && dataflow->problem->trans_fun (bb_index))
4d779342 916 {
b8698a0f 917 /* The out set of this block has changed.
6fb5fa3c
DB
918 Propagate to the outgoing blocks. */
919 FOR_EACH_EDGE (e, ei, bb->succs)
920 {
921 unsigned ob_index = e->dest->index;
922
d7c028c0 923 if (bitmap_bit_p (considered, ob_index))
053d4dda
RB
924 {
925 if (bbindex_to_postorder[bb_index]
926 < bbindex_to_postorder[ob_index])
927 bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
928 else
929 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
930 }
6fb5fa3c 931 }
1a0f3fa1 932 return true;
4d779342 933 }
1a0f3fa1 934 return false;
4d779342
DB
935}
936
6fb5fa3c
DB
937
938/* Helper function for df_worklist_dataflow.
939 Propagate the dataflow backward. */
940
1a0f3fa1 941static bool
6fb5fa3c 942df_worklist_propagate_backward (struct dataflow *dataflow,
053d4dda
RB
943 unsigned bb_index,
944 unsigned *bbindex_to_postorder,
945 bitmap worklist,
946 bitmap pending,
947 sbitmap considered,
5c7e6d4b
SB
948 vec<int> &last_change_age,
949 int age)
4d779342 950{
4d779342
DB
951 edge e;
952 edge_iterator ei;
06e28de2 953 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 954 bool changed = !age;
4d779342 955
6fb5fa3c 956 /* Calculate <conf_op> of incoming edges. */
4d779342 957 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 958 FOR_EACH_EDGE (e, ei, bb->succs)
b8698a0f 959 {
5c7e6d4b
SB
960 if (bbindex_to_postorder[e->dest->index] < last_change_age.length ()
961 && age <= last_change_age[bbindex_to_postorder[e->dest->index]]
d7c028c0 962 && bitmap_bit_p (considered, e->dest->index))
1a0f3fa1 963 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 964 }
e45dcf9c 965 else if (dataflow->problem->con_fun_0)
50b2e859 966 dataflow->problem->con_fun_0 (bb);
4d779342 967
1a0f3fa1
JH
968 if (changed
969 && dataflow->problem->trans_fun (bb_index))
4d779342 970 {
b8698a0f 971 /* The out set of this block has changed.
6fb5fa3c
DB
972 Propagate to the outgoing blocks. */
973 FOR_EACH_EDGE (e, ei, bb->preds)
974 {
975 unsigned ob_index = e->src->index;
976
d7c028c0 977 if (bitmap_bit_p (considered, ob_index))
053d4dda
RB
978 {
979 if (bbindex_to_postorder[bb_index]
980 < bbindex_to_postorder[ob_index])
981 bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
982 else
983 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
984 }
6fb5fa3c 985 }
1a0f3fa1 986 return true;
4d779342 987 }
1a0f3fa1 988 return false;
4d779342
DB
989}
990
50b2e859
JH
991/* Main dataflow solver loop.
992
993 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
994 need to visit.
995 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
688010ba 996 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
50b2e859
JH
997 PENDING will be freed.
998
999 The worklists are bitmaps indexed by postorder positions.
1000
1001 The function implements standard algorithm for dataflow solving with two
1002 worklists (we are processing WORKLIST and storing new BBs to visit in
1003 PENDING).
185082a7 1004
5c7e6d4b
SB
1005 As an optimization we maintain ages when BB was changed (stored in
1006 last_change_age) and when it was last visited (stored in last_visit_age).
1007 This avoids need to re-do confluence function for edges to basic blocks
1008 whose source did not change since destination was visited last time. */
185082a7 1009
b8698a0f 1010static void
185082a7
SP
1011df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1012 bitmap pending,
1013 sbitmap considered,
1014 int *blocks_in_postorder,
1a0f3fa1
JH
1015 unsigned *bbindex_to_postorder,
1016 int n_blocks)
185082a7
SP
1017{
1018 enum df_flow_dir dir = dataflow->problem->dir;
1019 int dcount = 0;
1020 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
50b2e859 1021 int age = 0;
1a0f3fa1 1022 bool changed;
6e1aa848 1023 vec<int> last_visit_age = vNULL;
5c7e6d4b 1024 vec<int> last_change_age = vNULL;
50b2e859 1025 int prev_age;
1a0f3fa1 1026
cb3874dc
ML
1027 last_visit_age.safe_grow_cleared (n_blocks, true);
1028 last_change_age.safe_grow_cleared (n_blocks, true);
185082a7
SP
1029
1030 /* Double-queueing. Worklist is for the current iteration,
1031 and pending is for the next. */
1032 while (!bitmap_empty_p (pending))
1033 {
6b4db501 1034 std::swap (pending, worklist);
185082a7 1035
053d4dda 1036 do
185082a7 1037 {
f548ece7 1038 unsigned index = bitmap_clear_first_set_bit (worklist);
053d4dda 1039
185082a7
SP
1040 unsigned bb_index;
1041 dcount++;
1042
185082a7 1043 bb_index = blocks_in_postorder[index];
9771b263 1044 prev_age = last_visit_age[index];
185082a7 1045 if (dir == DF_FORWARD)
1a0f3fa1
JH
1046 changed = df_worklist_propagate_forward (dataflow, bb_index,
1047 bbindex_to_postorder,
053d4dda
RB
1048 worklist, pending,
1049 considered,
5c7e6d4b 1050 last_change_age,
1a0f3fa1 1051 prev_age);
b8698a0f 1052 else
1a0f3fa1
JH
1053 changed = df_worklist_propagate_backward (dataflow, bb_index,
1054 bbindex_to_postorder,
053d4dda
RB
1055 worklist, pending,
1056 considered,
5c7e6d4b 1057 last_change_age,
1a0f3fa1 1058 prev_age);
9771b263 1059 last_visit_age[index] = ++age;
1a0f3fa1 1060 if (changed)
5c7e6d4b 1061 last_change_age[index] = age;
185082a7 1062 }
053d4dda 1063 while (!bitmap_empty_p (worklist));
185082a7
SP
1064 }
1065
1066 BITMAP_FREE (worklist);
1067 BITMAP_FREE (pending);
9771b263 1068 last_visit_age.release ();
5c7e6d4b 1069 last_change_age.release ();
185082a7
SP
1070
1071 /* Dump statistics. */
1072 if (dump_file)
1073 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
aa326bfb 1074 " n_basic_blocks %d n_edges %d"
185082a7 1075 " count %d (%5.2g)\n",
dc936fb2 1076 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
8ec4f693 1077 dcount, dcount / (double)n_basic_blocks_for_fn (cfun));
185082a7
SP
1078}
1079
6fb5fa3c 1080/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
b8698a0f 1081 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
1082 The solver is a double-queue algorithm similar to the "double stack" solver
1083 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1084 The only significant difference is that the worklist in this implementation
1085 is always sorted in RPO of the CFG visiting direction. */
4d779342 1086
b8698a0f 1087void
6fb5fa3c
DB
1088df_worklist_dataflow (struct dataflow *dataflow,
1089 bitmap blocks_to_consider,
1090 int *blocks_in_postorder,
1091 int n_blocks)
4d779342 1092{
6fb5fa3c 1093 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
4d779342 1094 bitmap_iterator bi;
6fb5fa3c
DB
1095 unsigned int *bbindex_to_postorder;
1096 int i;
1097 unsigned int index;
1098 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1099
6fb5fa3c 1100 gcc_assert (dir != DF_NONE);
4d779342 1101
6fb5fa3c 1102 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
8b1c6fd7
DM
1103 bbindex_to_postorder = XNEWVEC (unsigned int,
1104 last_basic_block_for_fn (cfun));
4d779342 1105
6fb5fa3c 1106 /* Initialize the array to an out-of-bound value. */
8b1c6fd7
DM
1107 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1108 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
23249ac4 1109
6fb5fa3c 1110 /* Initialize the considered map. */
7ba9e72d 1111 auto_sbitmap considered (last_basic_block_for_fn (cfun));
f61e445a 1112 bitmap_clear (considered);
6fb5fa3c 1113 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1114 {
d7c028c0 1115 bitmap_set_bit (considered, index);
4d779342
DB
1116 }
1117
6fb5fa3c 1118 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1119 for (i = 0; i < n_blocks; i++)
1120 {
6fb5fa3c
DB
1121 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1122 /* Add all blocks to the worklist. */
1123 bitmap_set_bit (pending, i);
1124 }
4d779342 1125
185082a7 1126 /* Initialize the problem. */
6fb5fa3c
DB
1127 if (dataflow->problem->init_fun)
1128 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1129
240b5cea
SB
1130 /* Solve it. */
1131 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1132 blocks_in_postorder,
1a0f3fa1
JH
1133 bbindex_to_postorder,
1134 n_blocks);
6fb5fa3c 1135 free (bbindex_to_postorder);
4d779342
DB
1136}
1137
1138
1139/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1140 the order of the remaining entries. Returns the length of the resulting
1141 list. */
1142
1143static unsigned
1144df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1145{
1146 unsigned act, last;
1147
1148 for (act = 0, last = 0; act < len; act++)
1149 if (bitmap_bit_p (blocks, list[act]))
1150 list[last++] = list[act];
1151
1152 return last;
1153}
1154
1155
b8698a0f 1156/* Execute dataflow analysis on a single dataflow problem.
4d779342 1157
4d779342
DB
1158 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1159 examined or will be computed. For calls from DF_ANALYZE, this is
b8698a0f 1160 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1161*/
1162
23249ac4 1163void
b8698a0f
L
1164df_analyze_problem (struct dataflow *dflow,
1165 bitmap blocks_to_consider,
6fb5fa3c 1166 int *postorder, int n_blocks)
4d779342 1167{
6fb5fa3c
DB
1168 timevar_push (dflow->problem->tv_id);
1169
e7f96023
JH
1170 /* (Re)Allocate the datastructures necessary to solve the problem. */
1171 if (dflow->problem->alloc_fun)
1172 dflow->problem->alloc_fun (blocks_to_consider);
1173
3089f8b5 1174#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1175 if (dflow->problem->verify_start_fun)
1176 dflow->problem->verify_start_fun ();
1177#endif
1178
6fb5fa3c 1179 /* Set up the problem and compute the local information. */
e45dcf9c 1180 if (dflow->problem->local_compute_fun)
6fb5fa3c 1181 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1182
1183 /* Solve the equations. */
e45dcf9c 1184 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1185 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1186 postorder, n_blocks);
4d779342
DB
1187
1188 /* Massage the solution. */
e45dcf9c 1189 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1190 dflow->problem->finalize_fun (blocks_to_consider);
1191
3089f8b5 1192#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1193 if (dflow->problem->verify_end_fun)
1194 dflow->problem->verify_end_fun ();
1195#endif
1196
1197 timevar_pop (dflow->problem->tv_id);
1198
1199 dflow->computed = true;
4d779342
DB
1200}
1201
1202
7be64667 1203/* Analyze dataflow info. */
4d779342 1204
7be64667
RB
1205static void
1206df_analyze_1 (void)
4d779342 1207{
6fb5fa3c 1208 int i;
b8698a0f 1209
6fb5fa3c
DB
1210 /* We need to do this before the df_verify_all because this is
1211 not kept incrementally up to date. */
1212 df_compute_regs_ever_live (false);
1213 df_process_deferred_rescans ();
1214
6fb5fa3c
DB
1215 if (dump_file)
1216 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1217
0d475361
PB
1218#ifndef ENABLE_DF_CHECKING
1219 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1220#endif
1221 df_verify ();
6fb5fa3c 1222
7be64667
RB
1223 /* Skip over the DF_SCAN problem. */
1224 for (i = 1; i < df->num_problems_defined; i++)
1225 {
1226 struct dataflow *dflow = df->problems_in_order[i];
1227 if (dflow->solutions_dirty)
1228 {
1229 if (dflow->problem->dir == DF_FORWARD)
1230 df_analyze_problem (dflow,
1231 df->blocks_to_analyze,
94a04c24
RB
1232 df->postorder_inverted,
1233 df->n_blocks);
7be64667
RB
1234 else
1235 df_analyze_problem (dflow,
1236 df->blocks_to_analyze,
1237 df->postorder,
1238 df->n_blocks);
1239 }
1240 }
1241
1242 if (!df->analyze_subset)
1243 {
1244 BITMAP_FREE (df->blocks_to_analyze);
1245 df->blocks_to_analyze = NULL;
1246 }
1247
1248#ifdef DF_DEBUG_CFG
1249 df_set_clean_cfg ();
1250#endif
1251}
1252
1253/* Analyze dataflow info. */
1254
1255void
1256df_analyze (void)
1257{
1258 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
7be64667
RB
1259
1260 free (df->postorder);
94a04c24 1261 free (df->postorder_inverted);
94a04c24
RB
1262 /* For DF_FORWARD use a RPO on the forward graph. Since we want to
1263 have unreachable blocks deleted use post_order_compute and reverse
1264 the order. */
1265 df->postorder_inverted = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
53dddbfe
RB
1266 df->n_blocks = post_order_compute (df->postorder_inverted, true, true);
1267 for (int i = 0; i < df->n_blocks / 2; ++i)
1268 std::swap (df->postorder_inverted[i],
1269 df->postorder_inverted[df->n_blocks - 1 - i]);
1270 /* For DF_BACKWARD use a RPO on the reverse graph. */
1271 df->postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1272 int n = inverted_rev_post_order_compute (cfun, df->postorder);
1273 gcc_assert (n == df->n_blocks);
7be64667 1274
6fa95e09 1275 for (int i = 0; i < df->n_blocks; i++)
6fb5fa3c
DB
1276 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1277
b2b29377
MM
1278 if (flag_checking)
1279 {
1280 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1281 the ENTRY block. */
94a04c24 1282 for (int i = 0; i < df->n_blocks; i++)
b2b29377
MM
1283 gcc_assert (bitmap_bit_p (current_all_blocks,
1284 df->postorder_inverted[i]));
1285 }
4d779342
DB
1286
1287 /* Make sure that we have pruned any unreachable blocks from these
1288 sets. */
6fb5fa3c 1289 if (df->analyze_subset)
4d779342 1290 {
4d779342 1291 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
94a04c24
RB
1292 unsigned int newlen = df_prune_to_subcfg (df->postorder, df->n_blocks,
1293 df->blocks_to_analyze);
1294 df_prune_to_subcfg (df->postorder_inverted, df->n_blocks,
1295 df->blocks_to_analyze);
1296 df->n_blocks = newlen;
4d779342
DB
1297 BITMAP_FREE (current_all_blocks);
1298 }
1299 else
1300 {
4d779342
DB
1301 df->blocks_to_analyze = current_all_blocks;
1302 current_all_blocks = NULL;
1303 }
1304
7be64667
RB
1305 df_analyze_1 ();
1306}
1307
1308/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1309 Returns the number of blocks which is always loop->num_nodes. */
1310
1311static int
53dddbfe 1312loop_rev_post_order_compute (int *post_order, class loop *loop)
7be64667
RB
1313{
1314 edge_iterator *stack;
1315 int sp;
53dddbfe 1316 int post_order_num = loop->num_nodes - 1;
7be64667
RB
1317
1318 /* Allocate stack for back-tracking up CFG. */
1319 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1320 sp = 0;
1321
1322 /* Allocate bitmap to track nodes that have been visited. */
0e3de1d4 1323 auto_bitmap visited;
7be64667
RB
1324
1325 /* Push the first edge on to the stack. */
1326 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1327
1328 while (sp)
6fb5fa3c 1329 {
7be64667
RB
1330 edge_iterator ei;
1331 basic_block src;
1332 basic_block dest;
1333
1334 /* Look at the edge on the top of the stack. */
1335 ei = stack[sp - 1];
1336 src = ei_edge (ei)->src;
1337 dest = ei_edge (ei)->dest;
1338
1339 /* Check if the edge destination has been visited yet and mark it
1340 if not so. */
1341 if (flow_bb_inside_loop_p (loop, dest)
1342 && bitmap_set_bit (visited, dest->index))
1343 {
1344 if (EDGE_COUNT (dest->succs) > 0)
1345 /* Since the DEST node has been visited for the first
1346 time, check its successors. */
1347 stack[sp++] = ei_start (dest->succs);
1348 else
53dddbfe 1349 post_order[post_order_num--] = dest->index;
7be64667
RB
1350 }
1351 else
1352 {
1353 if (ei_one_before_end_p (ei)
1354 && src != loop_preheader_edge (loop)->src)
53dddbfe 1355 post_order[post_order_num--] = src->index;
7be64667
RB
1356
1357 if (!ei_one_before_end_p (ei))
1358 ei_next (&stack[sp - 1]);
1359 else
1360 sp--;
1361 }
6fb5fa3c 1362 }
4d779342 1363
7be64667 1364 free (stack);
7be64667 1365
53dddbfe 1366 return loop->num_nodes;
7be64667
RB
1367}
1368
1369/* Compute the reverse top sort order of the inverted sub-CFG specified
1370 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1371
94a04c24 1372static int
53dddbfe 1373loop_inverted_rev_post_order_compute (int *post_order, class loop *loop)
7be64667
RB
1374{
1375 basic_block bb;
1376 edge_iterator *stack;
1377 int sp;
53dddbfe 1378 int post_order_num = loop->num_nodes - 1;
7be64667
RB
1379
1380 /* Allocate stack for back-tracking up CFG. */
1381 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1382 sp = 0;
1383
1384 /* Allocate bitmap to track nodes that have been visited. */
0e3de1d4 1385 auto_bitmap visited;
7be64667
RB
1386
1387 /* Put all latches into the initial work list. In theory we'd want
1388 to start from loop exits but then we'd have the special case of
1389 endless loops. It doesn't really matter for DF iteration order and
1390 handling latches last is probably even better. */
1391 stack[sp++] = ei_start (loop->header->preds);
1392 bitmap_set_bit (visited, loop->header->index);
1393
1394 /* The inverted traversal loop. */
1395 while (sp)
4d779342 1396 {
7be64667
RB
1397 edge_iterator ei;
1398 basic_block pred;
1399
1400 /* Look at the edge on the top of the stack. */
1401 ei = stack[sp - 1];
1402 bb = ei_edge (ei)->dest;
1403 pred = ei_edge (ei)->src;
1404
1405 /* Check if the predecessor has been visited yet and mark it
1406 if not so. */
1407 if (flow_bb_inside_loop_p (loop, pred)
1408 && bitmap_set_bit (visited, pred->index))
1409 {
1410 if (EDGE_COUNT (pred->preds) > 0)
1411 /* Since the predecessor node has been visited for the first
1412 time, check its predecessors. */
1413 stack[sp++] = ei_start (pred->preds);
1414 else
53dddbfe 1415 post_order[post_order_num--] = pred->index;
7be64667
RB
1416 }
1417 else
1418 {
1419 if (flow_bb_inside_loop_p (loop, bb)
1420 && ei_one_before_end_p (ei))
53dddbfe 1421 post_order[post_order_num--] = bb->index;
7be64667
RB
1422
1423 if (!ei_one_before_end_p (ei))
1424 ei_next (&stack[sp - 1]);
1425 else
1426 sp--;
1427 }
4d779342
DB
1428 }
1429
7be64667 1430 free (stack);
53dddbfe 1431 return loop->num_nodes;
7be64667
RB
1432}
1433
1434
1435/* Analyze dataflow info for the basic blocks contained in LOOP. */
1436
1437void
99b1c316 1438df_analyze_loop (class loop *loop)
7be64667
RB
1439{
1440 free (df->postorder);
94a04c24 1441 free (df->postorder_inverted);
7be64667
RB
1442
1443 df->postorder = XNEWVEC (int, loop->num_nodes);
94a04c24 1444 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
53dddbfe
RB
1445 df->n_blocks = loop_rev_post_order_compute (df->postorder_inverted, loop);
1446 int n = loop_inverted_rev_post_order_compute (df->postorder, loop);
7be64667 1447 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
94a04c24 1448 gcc_assert ((unsigned) n == loop->num_nodes);
7be64667
RB
1449
1450 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1451 for (int i = 0; i < df->n_blocks; ++i)
1452 bitmap_set_bit (blocks, df->postorder[i]);
1453 df_set_blocks (blocks);
1454 BITMAP_FREE (blocks);
1455
1456 df_analyze_1 ();
6fb5fa3c
DB
1457}
1458
1459
1460/* Return the number of basic blocks from the last call to df_analyze. */
1461
b8698a0f 1462int
6fb5fa3c
DB
1463df_get_n_blocks (enum df_flow_dir dir)
1464{
1465 gcc_assert (dir != DF_NONE);
1466
1467 if (dir == DF_FORWARD)
1468 {
94a04c24
RB
1469 gcc_assert (df->postorder_inverted);
1470 return df->n_blocks;
6fb5fa3c
DB
1471 }
1472
1473 gcc_assert (df->postorder);
1474 return df->n_blocks;
1475}
1476
1477
b8698a0f 1478/* Return a pointer to the array of basic blocks in the reverse postorder.
6fb5fa3c
DB
1479 Depending on the direction of the dataflow problem,
1480 it returns either the usual reverse postorder array
1481 or the reverse postorder of inverted traversal. */
1482int *
1483df_get_postorder (enum df_flow_dir dir)
1484{
1485 gcc_assert (dir != DF_NONE);
1486
1487 if (dir == DF_FORWARD)
1488 {
94a04c24
RB
1489 gcc_assert (df->postorder_inverted);
1490 return df->postorder_inverted;
6fb5fa3c
DB
1491 }
1492 gcc_assert (df->postorder);
1493 return df->postorder;
4d779342
DB
1494}
1495
b8698a0f 1496static struct df_problem user_problem;
6fb5fa3c 1497static struct dataflow user_dflow;
4d779342 1498
6fb5fa3c
DB
1499/* Interface for calling iterative dataflow with user defined
1500 confluence and transfer functions. All that is necessary is to
1501 supply DIR, a direction, CONF_FUN_0, a confluence function for
1502 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1503 confluence function, TRANS_FUN, the basic block transfer function,
1504 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1505 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1506
1507void
1508df_simple_dataflow (enum df_flow_dir dir,
1509 df_init_function init_fun,
1510 df_confluence_function_0 con_fun_0,
1511 df_confluence_function_n con_fun_n,
1512 df_transfer_function trans_fun,
1513 bitmap blocks, int * postorder, int n_blocks)
1514{
1515 memset (&user_problem, 0, sizeof (struct df_problem));
1516 user_problem.dir = dir;
1517 user_problem.init_fun = init_fun;
1518 user_problem.con_fun_0 = con_fun_0;
1519 user_problem.con_fun_n = con_fun_n;
1520 user_problem.trans_fun = trans_fun;
1521 user_dflow.problem = &user_problem;
1522 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1523}
1524
b8698a0f 1525
4d779342
DB
1526\f
1527/*----------------------------------------------------------------------------
1528 Functions to support limited incremental change.
1529----------------------------------------------------------------------------*/
1530
1531
1532/* Get basic block info. */
1533
1534static void *
1535df_get_bb_info (struct dataflow *dflow, unsigned int index)
1536{
6fb5fa3c
DB
1537 if (dflow->block_info == NULL)
1538 return NULL;
1539 if (index >= dflow->block_info_size)
1540 return NULL;
e285df08
JH
1541 return (void *)((char *)dflow->block_info
1542 + index * dflow->problem->block_info_elt_size);
4d779342
DB
1543}
1544
1545
1546/* Set basic block info. */
1547
1548static void
b8698a0f 1549df_set_bb_info (struct dataflow *dflow, unsigned int index,
4d779342
DB
1550 void *bb_info)
1551{
6fb5fa3c 1552 gcc_assert (dflow->block_info);
e285df08
JH
1553 memcpy ((char *)dflow->block_info
1554 + index * dflow->problem->block_info_elt_size,
1555 bb_info, dflow->problem->block_info_elt_size);
1556}
1557
1558
1559/* Clear basic block info. */
1560
1561static void
1562df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1563{
1564 gcc_assert (dflow->block_info);
1565 gcc_assert (dflow->block_info_size > index);
1566 memset ((char *)dflow->block_info
1567 + index * dflow->problem->block_info_elt_size,
1568 0, dflow->problem->block_info_elt_size);
4d779342
DB
1569}
1570
1571
6fb5fa3c
DB
1572/* Mark the solutions as being out of date. */
1573
b8698a0f 1574void
6fb5fa3c
DB
1575df_mark_solutions_dirty (void)
1576{
1577 if (df)
1578 {
b8698a0f 1579 int p;
6fb5fa3c
DB
1580 for (p = 1; p < df->num_problems_defined; p++)
1581 df->problems_in_order[p]->solutions_dirty = true;
1582 }
1583}
1584
1585
1586/* Return true if BB needs it's transfer functions recomputed. */
1587
b8698a0f 1588bool
6fb5fa3c
DB
1589df_get_bb_dirty (basic_block bb)
1590{
65e0a0f3
JJ
1591 return bitmap_bit_p ((df_live
1592 ? df_live : df_lr)->out_of_date_transfer_functions,
1593 bb->index);
6fb5fa3c
DB
1594}
1595
1596
1597/* Mark BB as needing it's transfer functions as being out of
1598 date. */
1599
b8698a0f 1600void
6fb5fa3c
DB
1601df_set_bb_dirty (basic_block bb)
1602{
4ec5d4f5 1603 bb->flags |= BB_MODIFIED;
6fb5fa3c
DB
1604 if (df)
1605 {
b8698a0f 1606 int p;
6fb5fa3c
DB
1607 for (p = 1; p < df->num_problems_defined; p++)
1608 {
1609 struct dataflow *dflow = df->problems_in_order[p];
1610 if (dflow->out_of_date_transfer_functions)
1611 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1612 }
1613 df_mark_solutions_dirty ();
1614 }
1615}
1616
1617
e285df08
JH
1618/* Grow the bb_info array. */
1619
1620void
1621df_grow_bb_info (struct dataflow *dflow)
1622{
8b1c6fd7 1623 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
e285df08
JH
1624 if (dflow->block_info_size < new_size)
1625 {
1626 new_size += new_size / 4;
1627 dflow->block_info
1628 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1629 new_size
1630 * dflow->problem->block_info_elt_size);
1631 memset ((char *)dflow->block_info
1632 + dflow->block_info_size
1633 * dflow->problem->block_info_elt_size,
1634 0,
1635 (new_size - dflow->block_info_size)
1636 * dflow->problem->block_info_elt_size);
1637 dflow->block_info_size = new_size;
1638 }
1639}
1640
c23cd1d6 1641
6fb5fa3c
DB
1642/* Clear the dirty bits. This is called from places that delete
1643 blocks. */
1644static void
1645df_clear_bb_dirty (basic_block bb)
1646{
b8698a0f 1647 int p;
6fb5fa3c
DB
1648 for (p = 1; p < df->num_problems_defined; p++)
1649 {
1650 struct dataflow *dflow = df->problems_in_order[p];
1651 if (dflow->out_of_date_transfer_functions)
1652 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1653 }
1654}
e285df08 1655
4d779342
DB
1656/* Called from the rtl_compact_blocks to reorganize the problems basic
1657 block info. */
1658
b8698a0f 1659void
6fb5fa3c 1660df_compact_blocks (void)
4d779342
DB
1661{
1662 int i, p;
1663 basic_block bb;
e285df08 1664 void *problem_temps;
4d779342 1665
d648b5ff 1666 auto_bitmap tmp (&df_bitmap_obstack);
4d779342
DB
1667 for (p = 0; p < df->num_problems_defined; p++)
1668 {
1669 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1670
1671 /* Need to reorganize the out_of_date_transfer_functions for the
1672 dflow problem. */
1673 if (dflow->out_of_date_transfer_functions)
1674 {
d648b5ff 1675 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
6fb5fa3c 1676 bitmap_clear (dflow->out_of_date_transfer_functions);
d648b5ff 1677 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
6fb5fa3c 1678 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
d648b5ff 1679 if (bitmap_bit_p (tmp, EXIT_BLOCK))
6fb5fa3c
DB
1680 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1681
1682 i = NUM_FIXED_BLOCKS;
11cd3bed 1683 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1684 {
d648b5ff 1685 if (bitmap_bit_p (tmp, bb->index))
6fb5fa3c
DB
1686 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1687 i++;
1688 }
1689 }
1690
1691 /* Now shuffle the block info for the problem. */
e45dcf9c 1692 if (dflow->problem->free_bb_fun)
4d779342 1693 {
8b1c6fd7
DM
1694 int size = (last_basic_block_for_fn (cfun)
1695 * dflow->problem->block_info_elt_size);
e285df08 1696 problem_temps = XNEWVAR (char, size);
4d779342
DB
1697 df_grow_bb_info (dflow);
1698 memcpy (problem_temps, dflow->block_info, size);
1699
1700 /* Copy the bb info from the problem tmps to the proper
1701 place in the block_info vector. Null out the copied
6fb5fa3c 1702 item. The entry and exit blocks never move. */
4d779342 1703 i = NUM_FIXED_BLOCKS;
11cd3bed 1704 FOR_EACH_BB_FN (bb, cfun)
4d779342 1705 {
e285df08
JH
1706 df_set_bb_info (dflow, i,
1707 (char *)problem_temps
1708 + bb->index * dflow->problem->block_info_elt_size);
4d779342
DB
1709 i++;
1710 }
e285df08
JH
1711 memset ((char *)dflow->block_info
1712 + i * dflow->problem->block_info_elt_size, 0,
8b1c6fd7 1713 (last_basic_block_for_fn (cfun) - i)
e285df08 1714 * dflow->problem->block_info_elt_size);
f75aa51c 1715 free (problem_temps);
4d779342
DB
1716 }
1717 }
1718
6fb5fa3c
DB
1719 /* Shuffle the bits in the basic_block indexed arrays. */
1720
1721 if (df->blocks_to_analyze)
1722 {
d648b5ff 1723 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
6fb5fa3c 1724 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
d648b5ff 1725 if (bitmap_bit_p (tmp, EXIT_BLOCK))
6fb5fa3c 1726 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
d648b5ff 1727 bitmap_copy (tmp, df->blocks_to_analyze);
6fb5fa3c
DB
1728 bitmap_clear (df->blocks_to_analyze);
1729 i = NUM_FIXED_BLOCKS;
11cd3bed 1730 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1731 {
d648b5ff 1732 if (bitmap_bit_p (tmp, bb->index))
6fb5fa3c
DB
1733 bitmap_set_bit (df->blocks_to_analyze, i);
1734 i++;
1735 }
1736 }
1737
4d779342 1738 i = NUM_FIXED_BLOCKS;
11cd3bed 1739 FOR_EACH_BB_FN (bb, cfun)
4d779342 1740 {
557c4b49 1741 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
4d779342
DB
1742 bb->index = i;
1743 i++;
1744 }
1745
0cae8d31 1746 gcc_assert (i == n_basic_blocks_for_fn (cfun));
4d779342 1747
8b1c6fd7 1748 for (; i < last_basic_block_for_fn (cfun); i++)
557c4b49 1749 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
6fb5fa3c
DB
1750
1751#ifdef DF_DEBUG_CFG
1752 if (!df_lr->solutions_dirty)
1753 df_set_clean_cfg ();
1754#endif
4d779342
DB
1755}
1756
1757
6fb5fa3c 1758/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1759 block. There is no excuse for people to do this kind of thing. */
1760
b8698a0f 1761void
6fb5fa3c 1762df_bb_replace (int old_index, basic_block new_block)
4d779342 1763{
6fb5fa3c 1764 int new_block_index = new_block->index;
4d779342
DB
1765 int p;
1766
6fb5fa3c
DB
1767 if (dump_file)
1768 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1769
1770 gcc_assert (df);
06e28de2 1771 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
6fb5fa3c 1772
4d779342
DB
1773 for (p = 0; p < df->num_problems_defined; p++)
1774 {
1775 struct dataflow *dflow = df->problems_in_order[p];
1776 if (dflow->block_info)
1777 {
4d779342 1778 df_grow_bb_info (dflow);
b8698a0f 1779 df_set_bb_info (dflow, old_index,
6fb5fa3c 1780 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1781 }
1782 }
1783
6fb5fa3c 1784 df_clear_bb_dirty (new_block);
557c4b49 1785 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
4d779342 1786 new_block->index = old_index;
06e28de2 1787 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
557c4b49 1788 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
6fb5fa3c
DB
1789}
1790
1791
1792/* Free all of the per basic block dataflow from all of the problems.
1793 This is typically called before a basic block is deleted and the
1794 problem will be reanalyzed. */
1795
1796void
1797df_bb_delete (int bb_index)
1798{
06e28de2 1799 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
6fb5fa3c
DB
1800 int i;
1801
1802 if (!df)
1803 return;
b8698a0f 1804
6fb5fa3c
DB
1805 for (i = 0; i < df->num_problems_defined; i++)
1806 {
1807 struct dataflow *dflow = df->problems_in_order[i];
1808 if (dflow->problem->free_bb_fun)
1809 {
1810 void *bb_info = df_get_bb_info (dflow, bb_index);
1811 if (bb_info)
1812 {
b8698a0f 1813 dflow->problem->free_bb_fun (bb, bb_info);
e285df08 1814 df_clear_bb_info (dflow, bb_index);
6fb5fa3c
DB
1815 }
1816 }
1817 }
1818 df_clear_bb_dirty (bb);
1819 df_mark_solutions_dirty ();
1820}
1821
1822
1823/* Verify that there is a place for everything and everything is in
1824 its place. This is too expensive to run after every pass in the
1825 mainline. However this is an excellent debugging tool if the
6ed3da00 1826 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1827 sprinkle calls in until you find the place that is changing an
1828 underlying structure without calling the proper updating
0d52bcc1 1829 routine. */
6fb5fa3c
DB
1830
1831void
1832df_verify (void)
1833{
1834 df_scan_verify ();
0d475361 1835#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1836 df_lr_verify_transfer_functions ();
1837 if (df_live)
1838 df_live_verify_transfer_functions ();
0d475361 1839#endif
2c90c549 1840 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
6fb5fa3c
DB
1841}
1842
1843#ifdef DF_DEBUG_CFG
1844
1845/* Compute an array of ints that describes the cfg. This can be used
1846 to discover places where the cfg is modified by the appropriate
1847 calls have not been made to the keep df informed. The internals of
1848 this are unexciting, the key is that two instances of this can be
1849 compared to see if any changes have been made to the cfg. */
1850
1851static int *
1852df_compute_cfg_image (void)
1853{
1854 basic_block bb;
0cae8d31 1855 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
6fb5fa3c
DB
1856 int i;
1857 int * map;
1858
04a90bec 1859 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1860 {
1861 size += EDGE_COUNT (bb->succs);
1862 }
1863
1864 map = XNEWVEC (int, size);
1865 map[0] = size;
1866 i = 1;
04a90bec 1867 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1868 {
1869 edge_iterator ei;
1870 edge e;
1871
1872 map[i++] = bb->index;
1873 FOR_EACH_EDGE (e, ei, bb->succs)
1874 map[i++] = e->dest->index;
1875 map[i++] = -1;
1876 }
1877 map[i] = -1;
1878 return map;
1879}
1880
1881static int *saved_cfg = NULL;
1882
1883
1884/* This function compares the saved version of the cfg with the
1885 current cfg and aborts if the two are identical. The function
1886 silently returns if the cfg has been marked as dirty or the two are
1887 the same. */
1888
1889void
1890df_check_cfg_clean (void)
1891{
1892 int *new_map;
1893
1894 if (!df)
1895 return;
1896
1897 if (df_lr->solutions_dirty)
1898 return;
1899
b8698a0f 1900 if (saved_cfg == NULL)
6fb5fa3c
DB
1901 return;
1902
1903 new_map = df_compute_cfg_image ();
1904 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1905 free (new_map);
4d779342
DB
1906}
1907
6fb5fa3c
DB
1908
1909/* This function builds a cfg fingerprint and squirrels it away in
1910 saved_cfg. */
1911
1912static void
1913df_set_clean_cfg (void)
1914{
04695783 1915 free (saved_cfg);
6fb5fa3c
DB
1916 saved_cfg = df_compute_cfg_image ();
1917}
1918
1919#endif /* DF_DEBUG_CFG */
4d779342
DB
1920/*----------------------------------------------------------------------------
1921 PUBLIC INTERFACES TO QUERY INFORMATION.
1922----------------------------------------------------------------------------*/
1923
1924
4d779342
DB
1925/* Return first def of REGNO within BB. */
1926
b8698a0f 1927df_ref
6fb5fa3c 1928df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342 1929{
dd3eed93 1930 rtx_insn *insn;
bfac633a 1931 df_ref def;
4d779342
DB
1932
1933 FOR_BB_INSNS (bb, insn)
1934 {
a1b53177
SB
1935 if (!INSN_P (insn))
1936 continue;
1937
bfac633a
RS
1938 FOR_EACH_INSN_DEF (def, insn)
1939 if (DF_REF_REGNO (def) == regno)
1940 return def;
4d779342
DB
1941 }
1942 return NULL;
1943}
1944
1945
1946/* Return last def of REGNO within BB. */
1947
b8698a0f 1948df_ref
6fb5fa3c 1949df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342 1950{
dd3eed93 1951 rtx_insn *insn;
bfac633a 1952 df_ref def;
4d779342
DB
1953
1954 FOR_BB_INSNS_REVERSE (bb, insn)
1955 {
a1b53177
SB
1956 if (!INSN_P (insn))
1957 continue;
4d779342 1958
bfac633a
RS
1959 FOR_EACH_INSN_DEF (def, insn)
1960 if (DF_REF_REGNO (def) == regno)
1961 return def;
4d779342
DB
1962 }
1963
1964 return NULL;
1965}
1966
4d779342
DB
1967/* Finds the reference corresponding to the definition of REG in INSN.
1968 DF is the dataflow object. */
1969
b8698a0f 1970df_ref
b2908ba6 1971df_find_def (rtx_insn *insn, rtx reg)
4d779342 1972{
bfac633a 1973 df_ref def;
4d779342
DB
1974
1975 if (GET_CODE (reg) == SUBREG)
1976 reg = SUBREG_REG (reg);
1977 gcc_assert (REG_P (reg));
1978
bfac633a
RS
1979 FOR_EACH_INSN_DEF (def, insn)
1980 if (DF_REF_REGNO (def) == REGNO (reg))
1981 return def;
4d779342
DB
1982
1983 return NULL;
1984}
1985
1986
b8698a0f 1987/* Return true if REG is defined in INSN, zero otherwise. */
4d779342
DB
1988
1989bool
b2908ba6 1990df_reg_defined (rtx_insn *insn, rtx reg)
4d779342 1991{
6fb5fa3c 1992 return df_find_def (insn, reg) != NULL;
4d779342 1993}
b8698a0f 1994
4d779342
DB
1995
1996/* Finds the reference corresponding to the use of REG in INSN.
1997 DF is the dataflow object. */
b8698a0f
L
1998
1999df_ref
b2908ba6 2000df_find_use (rtx_insn *insn, rtx reg)
4d779342 2001{
bfac633a 2002 df_ref use;
4d779342
DB
2003
2004 if (GET_CODE (reg) == SUBREG)
2005 reg = SUBREG_REG (reg);
2006 gcc_assert (REG_P (reg));
2007
bfac633a
RS
2008 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2009 FOR_EACH_INSN_INFO_USE (use, insn_info)
2010 if (DF_REF_REGNO (use) == REGNO (reg))
2011 return use;
2012 if (df->changeable_flags & DF_EQ_NOTES)
2013 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
226e378f 2014 if (DF_REF_REGNO (use) == REGNO (reg))
6fb5fa3c 2015 return use;
4d779342
DB
2016 return NULL;
2017}
2018
2019
b8698a0f 2020/* Return true if REG is referenced in INSN, zero otherwise. */
4d779342
DB
2021
2022bool
b2908ba6 2023df_reg_used (rtx_insn *insn, rtx reg)
4d779342 2024{
6fb5fa3c 2025 return df_find_use (insn, reg) != NULL;
4d779342 2026}
b8698a0f 2027
a743a727
L
2028/* If REG has a single definition, return its known value, otherwise return
2029 null. */
2030
2031rtx
2032df_find_single_def_src (rtx reg)
2033{
2034 rtx src = NULL_RTX;
2035
2036 /* Don't look through unbounded number of single definition REG copies,
2037 there might be loops for sources with uninitialized variables. */
2038 for (int cnt = 0; cnt < 128; cnt++)
2039 {
2040 df_ref adef = DF_REG_DEF_CHAIN (REGNO (reg));
2041 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
2042 || DF_REF_IS_ARTIFICIAL (adef)
2043 || (DF_REF_FLAGS (adef)
2044 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
2045 return NULL_RTX;
2046
2047 rtx set = single_set (DF_REF_INSN (adef));
2048 if (set == NULL || !rtx_equal_p (SET_DEST (set), reg))
2049 return NULL_RTX;
2050
2051 rtx note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
2052 if (note && function_invariant_p (XEXP (note, 0)))
2053 return XEXP (note, 0);
2054 src = SET_SRC (set);
2055
2056 if (REG_P (src))
2057 {
2058 reg = src;
2059 continue;
2060 }
2061 break;
2062 }
2063 if (!function_invariant_p (src))
2064 return NULL_RTX;
2065
2066 return src;
2067}
2068
4d779342
DB
2069\f
2070/*----------------------------------------------------------------------------
2071 Debugging and printing functions.
2072----------------------------------------------------------------------------*/
2073
532aafad
SB
2074/* Write information about registers and basic blocks into FILE.
2075 This is part of making a debugging dump. */
2076
2077void
2078dump_regset (regset r, FILE *outf)
2079{
2080 unsigned i;
2081 reg_set_iterator rsi;
2082
2083 if (r == NULL)
2084 {
2085 fputs (" (nil)", outf);
2086 return;
2087 }
2088
2089 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2090 {
2091 fprintf (outf, " %d", i);
2092 if (i < FIRST_PSEUDO_REGISTER)
2093 fprintf (outf, " [%s]",
2094 reg_names[i]);
2095 }
2096}
2097
2098/* Print a human-readable representation of R on the standard error
2099 stream. This function is designed to be used from within the
2100 debugger. */
2101extern void debug_regset (regset);
2102DEBUG_FUNCTION void
2103debug_regset (regset r)
2104{
2105 dump_regset (r, stderr);
2106 putc ('\n', stderr);
2107}
6fb5fa3c
DB
2108
2109/* Write information about registers and basic blocks into FILE.
2110 This is part of making a debugging dump. */
2111
2112void
0b0310e9 2113df_print_regset (FILE *file, const_bitmap r)
6fb5fa3c
DB
2114{
2115 unsigned int i;
2116 bitmap_iterator bi;
2117
2118 if (r == NULL)
2119 fputs (" (nil)", file);
2120 else
2121 {
2122 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2123 {
2124 fprintf (file, " %d", i);
2125 if (i < FIRST_PSEUDO_REGISTER)
2126 fprintf (file, " [%s]", reg_names[i]);
2127 }
2128 }
2129 fprintf (file, "\n");
2130}
2131
2132
cc806ac1
RS
2133/* Write information about registers and basic blocks into FILE. The
2134 bitmap is in the form used by df_byte_lr. This is part of making a
2135 debugging dump. */
2136
2137void
0b0310e9 2138df_print_word_regset (FILE *file, const_bitmap r)
cc806ac1
RS
2139{
2140 unsigned int max_reg = max_reg_num ();
cc806ac1
RS
2141
2142 if (r == NULL)
2143 fputs (" (nil)", file);
2144 else
2145 {
2146 unsigned int i;
8d074192 2147 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
cc806ac1 2148 {
8d074192
BS
2149 bool found = (bitmap_bit_p (r, 2 * i)
2150 || bitmap_bit_p (r, 2 * i + 1));
2151 if (found)
cc806ac1 2152 {
8d074192
BS
2153 int word;
2154 const char * sep = "";
2155 fprintf (file, " %d", i);
2156 fprintf (file, "(");
2157 for (word = 0; word < 2; word++)
2158 if (bitmap_bit_p (r, 2 * i + word))
2159 {
2160 fprintf (file, "%s%d", sep, word);
2161 sep = ", ";
2162 }
2163 fprintf (file, ")");
cc806ac1 2164 }
cc806ac1
RS
2165 }
2166 }
2167 fprintf (file, "\n");
2168}
2169
2170
4d779342 2171/* Dump dataflow info. */
ffd640ed 2172
4d779342 2173void
6fb5fa3c
DB
2174df_dump (FILE *file)
2175{
2176 basic_block bb;
2177 df_dump_start (file);
2178
04a90bec 2179 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2180 {
2181 df_print_bb_index (bb, file);
2182 df_dump_top (bb, file);
2183 df_dump_bottom (bb, file);
2184 }
2185
2186 fprintf (file, "\n");
2187}
2188
2189
ffd640ed
KZ
2190/* Dump dataflow info for df->blocks_to_analyze. */
2191
2192void
2193df_dump_region (FILE *file)
2194{
2195 if (df->blocks_to_analyze)
2196 {
2197 bitmap_iterator bi;
2198 unsigned int bb_index;
2199
2200 fprintf (file, "\n\nstarting region dump\n");
2201 df_dump_start (file);
b8698a0f
L
2202
2203 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
ffd640ed 2204 {
06e28de2 2205 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
7b19209f 2206 dump_bb (file, bb, 0, TDF_DETAILS);
ffd640ed
KZ
2207 }
2208 fprintf (file, "\n");
2209 }
b8698a0f 2210 else
ffd640ed
KZ
2211 df_dump (file);
2212}
2213
2214
6fb5fa3c
DB
2215/* Dump the introductory information for each problem defined. */
2216
2217void
2218df_dump_start (FILE *file)
4d779342
DB
2219{
2220 int i;
2221
23249ac4 2222 if (!df || !file)
4d779342
DB
2223 return;
2224
2225 fprintf (file, "\n\n%s\n", current_function_name ());
2226 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
2227 if (df->blocks_to_analyze)
2228 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2229 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
2230
2231 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
2232 {
2233 struct dataflow *dflow = df->problems_in_order[i];
2234 if (dflow->computed)
2235 {
2236 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2237 if (fun)
c3284718 2238 fun (file);
6fb5fa3c
DB
2239 }
2240 }
2241}
4d779342 2242
6fb5fa3c 2243
7b19209f
SB
2244/* Dump the top or bottom of the block information for BB. */
2245static void
2246df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
6fb5fa3c
DB
2247{
2248 int i;
2249
2250 if (!df || !file)
2251 return;
2252
2253 for (i = 0; i < df->num_problems_defined; i++)
2254 {
2255 struct dataflow *dflow = df->problems_in_order[i];
2256 if (dflow->computed)
2257 {
7b19209f
SB
2258 df_dump_bb_problem_function bbfun;
2259
2260 if (top)
2261 bbfun = dflow->problem->dump_top_fun;
2262 else
2263 bbfun = dflow->problem->dump_bottom_fun;
2264
6fb5fa3c 2265 if (bbfun)
b8698a0f 2266 bbfun (bb, file);
6fb5fa3c
DB
2267 }
2268 }
2269}
2270
7b19209f
SB
2271/* Dump the top of the block information for BB. */
2272
2273void
2274df_dump_top (basic_block bb, FILE *file)
2275{
2276 df_dump_bb_problem_data (bb, file, /*top=*/true);
2277}
6fb5fa3c 2278
b8698a0f 2279/* Dump the bottom of the block information for BB. */
6fb5fa3c
DB
2280
2281void
2282df_dump_bottom (basic_block bb, FILE *file)
7b19209f
SB
2283{
2284 df_dump_bb_problem_data (bb, file, /*top=*/false);
2285}
2286
2287
2288/* Dump information about INSN just before or after dumping INSN itself. */
2289static void
b2908ba6 2290df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
6fb5fa3c
DB
2291{
2292 int i;
2293
2294 if (!df || !file)
2295 return;
2296
2297 for (i = 0; i < df->num_problems_defined; i++)
2298 {
2299 struct dataflow *dflow = df->problems_in_order[i];
2300 if (dflow->computed)
2301 {
7b19209f
SB
2302 df_dump_insn_problem_function insnfun;
2303
2304 if (top)
2305 insnfun = dflow->problem->dump_insn_top_fun;
2306 else
2307 insnfun = dflow->problem->dump_insn_bottom_fun;
2308
2309 if (insnfun)
2310 insnfun (insn, file);
6fb5fa3c
DB
2311 }
2312 }
4d779342
DB
2313}
2314
7b19209f
SB
2315/* Dump information about INSN before dumping INSN itself. */
2316
2317void
b2908ba6 2318df_dump_insn_top (const rtx_insn *insn, FILE *file)
7b19209f
SB
2319{
2320 df_dump_insn_problem_data (insn, file, /*top=*/true);
2321}
2322
2323/* Dump information about INSN after dumping INSN itself. */
2324
2325void
b2908ba6 2326df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
7b19209f
SB
2327{
2328 df_dump_insn_problem_data (insn, file, /*top=*/false);
2329}
2330
4d779342 2331
885c9b5d
EB
2332static void
2333df_ref_dump (df_ref ref, FILE *file)
2334{
2335 fprintf (file, "%c%d(%d)",
2336 DF_REF_REG_DEF_P (ref)
2337 ? 'd'
2338 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2339 DF_REF_ID (ref),
2340 DF_REF_REGNO (ref));
2341}
2342
4d779342 2343void
b512946c 2344df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
4d779342
DB
2345{
2346 fprintf (file, "{ ");
b512946c 2347 for (; ref; ref = DF_REF_NEXT_LOC (ref))
4d779342 2348 {
885c9b5d 2349 df_ref_dump (ref, file);
4d779342 2350 if (follow_chain)
23249ac4 2351 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2352 }
2353 fprintf (file, "}");
2354}
2355
2356
2357/* Dump either a ref-def or reg-use chain. */
2358
2359void
57512f53 2360df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2361{
2362 fprintf (file, "{ ");
2363 while (ref)
2364 {
885c9b5d 2365 df_ref_dump (ref, file);
57512f53 2366 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2367 }
2368 fprintf (file, "}");
2369}
2370
2371
23249ac4 2372static void
b512946c 2373df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
4d779342 2374{
b512946c
RS
2375 for (; mws; mws = DF_MWS_NEXT (mws))
2376 fprintf (file, "mw %c r[%d..%d]\n",
2377 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2378 mws->start_regno, mws->end_regno);
23249ac4
DB
2379}
2380
2381
b8698a0f
L
2382static void
2383df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2384 bool follow_chain, FILE *file)
2385{
6fb5fa3c
DB
2386 fprintf (file, "insn %d luid %d",
2387 uid, DF_INSN_UID_LUID (uid));
4d779342 2388
6fb5fa3c 2389 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2390 {
2391 fprintf (file, " defs ");
6fb5fa3c 2392 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2393 }
2394
6fb5fa3c 2395 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2396 {
2397 fprintf (file, " uses ");
6fb5fa3c
DB
2398 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2399 }
2400
2401 if (DF_INSN_UID_EQ_USES (uid))
2402 {
2403 fprintf (file, " eq uses ");
2404 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2405 }
2406
6fb5fa3c 2407 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2408 {
2409 fprintf (file, " mws ");
6fb5fa3c 2410 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2411 }
4d779342
DB
2412 fprintf (file, "\n");
2413}
2414
23249ac4 2415
24e47c76 2416DEBUG_FUNCTION void
b2908ba6 2417df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
23249ac4 2418{
6fb5fa3c 2419 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2420}
2421
24e47c76 2422DEBUG_FUNCTION void
b2908ba6 2423df_insn_debug_regno (rtx_insn *insn, FILE *file)
4d779342 2424{
50e94c7e 2425 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2426
2427 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2428 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2429 DF_INSN_INFO_LUID (insn_info));
2430 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
b8698a0f 2431
4d779342 2432 fprintf (file, " uses ");
50e94c7e 2433 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2434
2435 fprintf (file, " eq_uses ");
50e94c7e 2436 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2437 fprintf (file, "\n");
2438}
2439
24e47c76 2440DEBUG_FUNCTION void
6fb5fa3c 2441df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2442{
2443 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2444 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2445 fprintf (file, " uses ");
6fb5fa3c
DB
2446 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2447 fprintf (file, " eq_uses ");
2448 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2449 fprintf (file, "\n");
2450}
2451
2452
24e47c76 2453DEBUG_FUNCTION void
57512f53 2454df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2455{
2456 fprintf (file, "%c%d ",
2457 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2458 DF_REF_ID (ref));
a3f1cee4 2459 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
4d779342
DB
2460 DF_REF_REGNO (ref),
2461 DF_REF_BBNO (ref),
57512f53 2462 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2463 DF_REF_FLAGS (ref),
2464 DF_REF_TYPE (ref));
2465 if (DF_REF_LOC (ref))
8588f797
AO
2466 {
2467 if (flag_dump_noaddr)
2468 fprintf (file, "loc #(#) chain ");
2469 else
2470 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2471 (void *)*DF_REF_LOC (ref));
2472 }
6fb5fa3c
DB
2473 else
2474 fprintf (file, "chain ");
23249ac4 2475 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2476 fprintf (file, "\n");
2477}
2478\f
2479/* Functions for debugging from GDB. */
2480
24e47c76 2481DEBUG_FUNCTION void
b2908ba6 2482debug_df_insn (rtx_insn *insn)
4d779342 2483{
6fb5fa3c 2484 df_insn_debug (insn, true, stderr);
4d779342
DB
2485 debug_rtx (insn);
2486}
2487
2488
24e47c76 2489DEBUG_FUNCTION void
4d779342
DB
2490debug_df_reg (rtx reg)
2491{
6fb5fa3c 2492 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2493}
2494
2495
24e47c76 2496DEBUG_FUNCTION void
4d779342
DB
2497debug_df_regno (unsigned int regno)
2498{
6fb5fa3c 2499 df_regno_debug (regno, stderr);
4d779342
DB
2500}
2501
2502
24e47c76 2503DEBUG_FUNCTION void
57512f53 2504debug_df_ref (df_ref ref)
4d779342 2505{
23249ac4 2506 df_ref_debug (ref, stderr);
4d779342
DB
2507}
2508
2509
24e47c76 2510DEBUG_FUNCTION void
4d779342
DB
2511debug_df_defno (unsigned int defno)
2512{
6fb5fa3c 2513 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2514}
2515
2516
24e47c76 2517DEBUG_FUNCTION void
4d779342
DB
2518debug_df_useno (unsigned int defno)
2519{
6fb5fa3c 2520 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2521}
2522
2523
24e47c76 2524DEBUG_FUNCTION void
4d779342
DB
2525debug_df_chain (struct df_link *link)
2526{
23249ac4 2527 df_chain_dump (link, stderr);
4d779342
DB
2528 fputc ('\n', stderr);
2529}