]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/doc/extend.texi
cpplib.h (NODE_CONDITIONAL): New.
[thirdparty/gcc.git] / gcc / doc / extend.texi
CommitLineData
8d8da227
JM
1@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2@c 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
9a8ce21f 3
c1f7febf
RK
4@c This is part of the GCC manual.
5@c For copying conditions, see the file gcc.texi.
6
7@node C Extensions
8@chapter Extensions to the C Language Family
9@cindex extensions, C language
10@cindex C language extensions
11
84330467 12@opindex pedantic
161d7b59 13GNU C provides several language features not found in ISO standard C@.
f0523f02 14(The @option{-pedantic} option directs GCC to print a warning message if
c1f7febf
RK
15any of these features is used.) To test for the availability of these
16features in conditional compilation, check for a predefined macro
161d7b59 17@code{__GNUC__}, which is always defined under GCC@.
c1f7febf 18
161d7b59 19These extensions are available in C and Objective-C@. Most of them are
c1f7febf
RK
20also available in C++. @xref{C++ Extensions,,Extensions to the
21C++ Language}, for extensions that apply @emph{only} to C++.
22
4b404517
JM
23Some features that are in ISO C99 but not C89 or C++ are also, as
24extensions, accepted by GCC in C89 mode and in C++.
5490d604 25
c1f7febf
RK
26@menu
27* Statement Exprs:: Putting statements and declarations inside expressions.
14e33ee8 28* Local Labels:: Labels local to a block.
c1f7febf
RK
29* Labels as Values:: Getting pointers to labels, and computed gotos.
30* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
6ccde948 31* Constructing Calls:: Dispatching a call to another function.
c1f7febf 32* Typeof:: @code{typeof}: referring to the type of an expression.
c1f7febf 33* Conditionals:: Omitting the middle operand of a @samp{?:} expression.
6ccde948 34* Long Long:: Double-word integers---@code{long long int}.
c1f7febf 35* Complex:: Data types for complex numbers.
c77cd3d1 36* Floating Types:: Additional Floating Types.
85a92f7e 37* Decimal Float:: Decimal Floating Types.
6f4d7222 38* Hex Floats:: Hexadecimal floating-point constants.
0f996086 39* Fixed-Point:: Fixed-Point Types.
c1f7febf
RK
40* Zero Length:: Zero-length arrays.
41* Variable Length:: Arrays whose length is computed at run time.
ba05abd3 42* Empty Structures:: Structures with no members.
6ccde948 43* Variadic Macros:: Macros with a variable number of arguments.
ccd96f0a 44* Escaped Newlines:: Slightly looser rules for escaped newlines.
c1f7febf
RK
45* Subscripting:: Any array can be subscripted, even if not an lvalue.
46* Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
47* Initializers:: Non-constant initializers.
4b404517 48* Compound Literals:: Compound literals give structures, unions
6ccde948
RW
49 or arrays as values.
50* Designated Inits:: Labeling elements of initializers.
c1f7febf 51* Cast to Union:: Casting to union type from any member of the union.
6ccde948
RW
52* Case Ranges:: `case 1 ... 9' and such.
53* Mixed Declarations:: Mixing declarations and code.
c1f7febf 54* Function Attributes:: Declaring that functions have no side effects,
6ccde948 55 or that they can never return.
2c5e91d2 56* Attribute Syntax:: Formal syntax for attributes.
c1f7febf
RK
57* Function Prototypes:: Prototype declarations and old-style definitions.
58* C++ Comments:: C++ comments are recognized.
59* Dollar Signs:: Dollar sign is allowed in identifiers.
60* Character Escapes:: @samp{\e} stands for the character @key{ESC}.
6ccde948
RW
61* Variable Attributes:: Specifying attributes of variables.
62* Type Attributes:: Specifying attributes of types.
c1f7febf
RK
63* Alignment:: Inquiring about the alignment of a type or variable.
64* Inline:: Defining inline functions (as fast as macros).
65* Extended Asm:: Assembler instructions with C expressions as operands.
6ccde948 66 (With them you can define ``built-in'' functions.)
c1f7febf
RK
67* Constraints:: Constraints for asm operands
68* Asm Labels:: Specifying the assembler name to use for a C symbol.
69* Explicit Reg Vars:: Defining variables residing in specified registers.
70* Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
71* Incomplete Enums:: @code{enum foo;}, with details to follow.
6ccde948
RW
72* Function Names:: Printable strings which are the name of the current
73 function.
c1f7febf 74* Return Address:: Getting the return or frame address of a function.
1255c85c 75* Vector Extensions:: Using vector instructions through built-in functions.
7a3ea201 76* Offsetof:: Special syntax for implementing @code{offsetof}.
6ccde948 77* Atomic Builtins:: Built-in functions for atomic memory access.
10a0d495
JJ
78* Object Size Checking:: Built-in functions for limited buffer overflow
79 checking.
c5c76735 80* Other Builtins:: Other built-in functions.
0975678f 81* Target Builtins:: Built-in functions specific to particular targets.
a2bec818 82* Target Format Checks:: Format checks specific to particular targets.
0168a849 83* Pragmas:: Pragmas accepted by GCC.
b11cc610 84* Unnamed Fields:: Unnamed struct/union fields within structs/unions.
3d78f2e9 85* Thread-Local:: Per-thread variables.
f7fd775f 86* Binary constants:: Binary constants using the @samp{0b} prefix.
c1f7febf 87@end menu
c1f7febf
RK
88
89@node Statement Exprs
90@section Statements and Declarations in Expressions
91@cindex statements inside expressions
92@cindex declarations inside expressions
93@cindex expressions containing statements
94@cindex macros, statements in expressions
95
96@c the above section title wrapped and causes an underfull hbox.. i
97@c changed it from "within" to "in". --mew 4feb93
c1f7febf 98A compound statement enclosed in parentheses may appear as an expression
161d7b59 99in GNU C@. This allows you to use loops, switches, and local variables
c1f7febf
RK
100within an expression.
101
102Recall that a compound statement is a sequence of statements surrounded
103by braces; in this construct, parentheses go around the braces. For
104example:
105
3ab51846 106@smallexample
c1f7febf
RK
107(@{ int y = foo (); int z;
108 if (y > 0) z = y;
109 else z = - y;
110 z; @})
3ab51846 111@end smallexample
c1f7febf
RK
112
113@noindent
114is a valid (though slightly more complex than necessary) expression
115for the absolute value of @code{foo ()}.
116
117The last thing in the compound statement should be an expression
118followed by a semicolon; the value of this subexpression serves as the
119value of the entire construct. (If you use some other kind of statement
120last within the braces, the construct has type @code{void}, and thus
121effectively no value.)
122
123This feature is especially useful in making macro definitions ``safe'' (so
124that they evaluate each operand exactly once). For example, the
125``maximum'' function is commonly defined as a macro in standard C as
126follows:
127
3ab51846 128@smallexample
c1f7febf 129#define max(a,b) ((a) > (b) ? (a) : (b))
3ab51846 130@end smallexample
c1f7febf
RK
131
132@noindent
133@cindex side effects, macro argument
134But this definition computes either @var{a} or @var{b} twice, with bad
135results if the operand has side effects. In GNU C, if you know the
962e6e00 136type of the operands (here taken as @code{int}), you can define
c1f7febf
RK
137the macro safely as follows:
138
3ab51846 139@smallexample
c1f7febf
RK
140#define maxint(a,b) \
141 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
3ab51846 142@end smallexample
c1f7febf
RK
143
144Embedded statements are not allowed in constant expressions, such as
c771326b 145the value of an enumeration constant, the width of a bit-field, or
c1f7febf
RK
146the initial value of a static variable.
147
148If you don't know the type of the operand, you can still do this, but you
95f79357 149must use @code{typeof} (@pxref{Typeof}).
c1f7febf 150
a5bcc582
NS
151In G++, the result value of a statement expression undergoes array and
152function pointer decay, and is returned by value to the enclosing
8a36672b 153expression. For instance, if @code{A} is a class, then
b98e139b 154
a5bcc582
NS
155@smallexample
156 A a;
b98e139b 157
a5bcc582
NS
158 (@{a;@}).Foo ()
159@end smallexample
b98e139b
MM
160
161@noindent
a5bcc582
NS
162will construct a temporary @code{A} object to hold the result of the
163statement expression, and that will be used to invoke @code{Foo}.
164Therefore the @code{this} pointer observed by @code{Foo} will not be the
165address of @code{a}.
166
167Any temporaries created within a statement within a statement expression
168will be destroyed at the statement's end. This makes statement
169expressions inside macros slightly different from function calls. In
170the latter case temporaries introduced during argument evaluation will
171be destroyed at the end of the statement that includes the function
172call. In the statement expression case they will be destroyed during
173the statement expression. For instance,
b98e139b 174
a5bcc582
NS
175@smallexample
176#define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
177template<typename T> T function(T a) @{ T b = a; return b + 3; @}
178
179void foo ()
180@{
181 macro (X ());
182 function (X ());
183@}
184@end smallexample
b98e139b
MM
185
186@noindent
a5bcc582
NS
187will have different places where temporaries are destroyed. For the
188@code{macro} case, the temporary @code{X} will be destroyed just after
189the initialization of @code{b}. In the @code{function} case that
190temporary will be destroyed when the function returns.
b98e139b
MM
191
192These considerations mean that it is probably a bad idea to use
193statement-expressions of this form in header files that are designed to
54e1d3a6
MM
194work with C++. (Note that some versions of the GNU C Library contained
195header files using statement-expression that lead to precisely this
196bug.)
b98e139b 197
16ef3acc
JM
198Jumping into a statement expression with @code{goto} or using a
199@code{switch} statement outside the statement expression with a
200@code{case} or @code{default} label inside the statement expression is
201not permitted. Jumping into a statement expression with a computed
202@code{goto} (@pxref{Labels as Values}) yields undefined behavior.
203Jumping out of a statement expression is permitted, but if the
204statement expression is part of a larger expression then it is
205unspecified which other subexpressions of that expression have been
206evaluated except where the language definition requires certain
207subexpressions to be evaluated before or after the statement
208expression. In any case, as with a function call the evaluation of a
209statement expression is not interleaved with the evaluation of other
210parts of the containing expression. For example,
211
212@smallexample
213 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
214@end smallexample
215
216@noindent
217will call @code{foo} and @code{bar1} and will not call @code{baz} but
218may or may not call @code{bar2}. If @code{bar2} is called, it will be
219called after @code{foo} and before @code{bar1}
220
c1f7febf
RK
221@node Local Labels
222@section Locally Declared Labels
223@cindex local labels
224@cindex macros, local labels
225
14e33ee8 226GCC allows you to declare @dfn{local labels} in any nested block
8a36672b 227scope. A local label is just like an ordinary label, but you can
14e33ee8 228only reference it (with a @code{goto} statement, or by taking its
daf2f129 229address) within the block in which it was declared.
c1f7febf
RK
230
231A local label declaration looks like this:
232
3ab51846 233@smallexample
c1f7febf 234__label__ @var{label};
3ab51846 235@end smallexample
c1f7febf
RK
236
237@noindent
238or
239
3ab51846 240@smallexample
0d893a63 241__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
3ab51846 242@end smallexample
c1f7febf 243
14e33ee8
ZW
244Local label declarations must come at the beginning of the block,
245before any ordinary declarations or statements.
c1f7febf
RK
246
247The label declaration defines the label @emph{name}, but does not define
248the label itself. You must do this in the usual way, with
249@code{@var{label}:}, within the statements of the statement expression.
250
14e33ee8
ZW
251The local label feature is useful for complex macros. If a macro
252contains nested loops, a @code{goto} can be useful for breaking out of
253them. However, an ordinary label whose scope is the whole function
254cannot be used: if the macro can be expanded several times in one
255function, the label will be multiply defined in that function. A
256local label avoids this problem. For example:
257
3ab51846 258@smallexample
14e33ee8
ZW
259#define SEARCH(value, array, target) \
260do @{ \
261 __label__ found; \
262 typeof (target) _SEARCH_target = (target); \
263 typeof (*(array)) *_SEARCH_array = (array); \
264 int i, j; \
265 int value; \
266 for (i = 0; i < max; i++) \
267 for (j = 0; j < max; j++) \
268 if (_SEARCH_array[i][j] == _SEARCH_target) \
269 @{ (value) = i; goto found; @} \
270 (value) = -1; \
271 found:; \
272@} while (0)
3ab51846 273@end smallexample
14e33ee8
ZW
274
275This could also be written using a statement-expression:
c1f7febf 276
3ab51846 277@smallexample
c1f7febf 278#define SEARCH(array, target) \
310668e8 279(@{ \
c1f7febf
RK
280 __label__ found; \
281 typeof (target) _SEARCH_target = (target); \
282 typeof (*(array)) *_SEARCH_array = (array); \
283 int i, j; \
284 int value; \
285 for (i = 0; i < max; i++) \
286 for (j = 0; j < max; j++) \
287 if (_SEARCH_array[i][j] == _SEARCH_target) \
310668e8 288 @{ value = i; goto found; @} \
c1f7febf
RK
289 value = -1; \
290 found: \
291 value; \
292@})
3ab51846 293@end smallexample
c1f7febf 294
14e33ee8
ZW
295Local label declarations also make the labels they declare visible to
296nested functions, if there are any. @xref{Nested Functions}, for details.
297
c1f7febf
RK
298@node Labels as Values
299@section Labels as Values
300@cindex labels as values
301@cindex computed gotos
302@cindex goto with computed label
303@cindex address of a label
304
305You can get the address of a label defined in the current function
306(or a containing function) with the unary operator @samp{&&}. The
307value has type @code{void *}. This value is a constant and can be used
308wherever a constant of that type is valid. For example:
309
3ab51846 310@smallexample
c1f7febf 311void *ptr;
0d893a63 312/* @r{@dots{}} */
c1f7febf 313ptr = &&foo;
3ab51846 314@end smallexample
c1f7febf
RK
315
316To use these values, you need to be able to jump to one. This is done
317with the computed goto statement@footnote{The analogous feature in
318Fortran is called an assigned goto, but that name seems inappropriate in
319C, where one can do more than simply store label addresses in label
320variables.}, @code{goto *@var{exp};}. For example,
321
3ab51846 322@smallexample
c1f7febf 323goto *ptr;
3ab51846 324@end smallexample
c1f7febf
RK
325
326@noindent
327Any expression of type @code{void *} is allowed.
328
329One way of using these constants is in initializing a static array that
330will serve as a jump table:
331
3ab51846 332@smallexample
c1f7febf 333static void *array[] = @{ &&foo, &&bar, &&hack @};
3ab51846 334@end smallexample
c1f7febf
RK
335
336Then you can select a label with indexing, like this:
337
3ab51846 338@smallexample
c1f7febf 339goto *array[i];
3ab51846 340@end smallexample
c1f7febf
RK
341
342@noindent
343Note that this does not check whether the subscript is in bounds---array
344indexing in C never does that.
345
346Such an array of label values serves a purpose much like that of the
347@code{switch} statement. The @code{switch} statement is cleaner, so
348use that rather than an array unless the problem does not fit a
349@code{switch} statement very well.
350
351Another use of label values is in an interpreter for threaded code.
352The labels within the interpreter function can be stored in the
353threaded code for super-fast dispatching.
354
02f52e19 355You may not use this mechanism to jump to code in a different function.
47620e09 356If you do that, totally unpredictable things will happen. The best way to
c1f7febf
RK
357avoid this is to store the label address only in automatic variables and
358never pass it as an argument.
359
47620e09
RH
360An alternate way to write the above example is
361
3ab51846 362@smallexample
310668e8
JM
363static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
364 &&hack - &&foo @};
47620e09 365goto *(&&foo + array[i]);
3ab51846 366@end smallexample
47620e09
RH
367
368@noindent
369This is more friendly to code living in shared libraries, as it reduces
370the number of dynamic relocations that are needed, and by consequence,
371allows the data to be read-only.
372
2092ee7d
JJ
373The @code{&&foo} expressions for the same label might have different values
374if the containing function is inlined or cloned. If a program relies on
375them being always the same, @code{__attribute__((__noinline__))} should
376be used to prevent inlining. If @code{&&foo} is used
377in a static variable initializer, inlining is forbidden.
378
c1f7febf
RK
379@node Nested Functions
380@section Nested Functions
381@cindex nested functions
382@cindex downward funargs
383@cindex thunks
384
385A @dfn{nested function} is a function defined inside another function.
386(Nested functions are not supported for GNU C++.) The nested function's
387name is local to the block where it is defined. For example, here we
388define a nested function named @code{square}, and call it twice:
389
3ab51846 390@smallexample
c1f7febf
RK
391@group
392foo (double a, double b)
393@{
394 double square (double z) @{ return z * z; @}
395
396 return square (a) + square (b);
397@}
398@end group
3ab51846 399@end smallexample
c1f7febf
RK
400
401The nested function can access all the variables of the containing
402function that are visible at the point of its definition. This is
403called @dfn{lexical scoping}. For example, here we show a nested
404function which uses an inherited variable named @code{offset}:
405
3ab51846 406@smallexample
aee96fe9 407@group
c1f7febf
RK
408bar (int *array, int offset, int size)
409@{
410 int access (int *array, int index)
411 @{ return array[index + offset]; @}
412 int i;
0d893a63 413 /* @r{@dots{}} */
c1f7febf 414 for (i = 0; i < size; i++)
0d893a63 415 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
c1f7febf 416@}
aee96fe9 417@end group
3ab51846 418@end smallexample
c1f7febf
RK
419
420Nested function definitions are permitted within functions in the places
475b6e22
JM
421where variable definitions are allowed; that is, in any block, mixed
422with the other declarations and statements in the block.
c1f7febf
RK
423
424It is possible to call the nested function from outside the scope of its
425name by storing its address or passing the address to another function:
426
3ab51846 427@smallexample
c1f7febf
RK
428hack (int *array, int size)
429@{
430 void store (int index, int value)
431 @{ array[index] = value; @}
432
433 intermediate (store, size);
434@}
3ab51846 435@end smallexample
c1f7febf
RK
436
437Here, the function @code{intermediate} receives the address of
438@code{store} as an argument. If @code{intermediate} calls @code{store},
439the arguments given to @code{store} are used to store into @code{array}.
440But this technique works only so long as the containing function
441(@code{hack}, in this example) does not exit.
442
443If you try to call the nested function through its address after the
444containing function has exited, all hell will break loose. If you try
445to call it after a containing scope level has exited, and if it refers
446to some of the variables that are no longer in scope, you may be lucky,
447but it's not wise to take the risk. If, however, the nested function
448does not refer to anything that has gone out of scope, you should be
449safe.
450
9c34dbbf
ZW
451GCC implements taking the address of a nested function using a technique
452called @dfn{trampolines}. A paper describing them is available as
453
454@noindent
b73b1546 455@uref{http://people.debian.org/~aaronl/Usenix88-lexic.pdf}.
c1f7febf
RK
456
457A nested function can jump to a label inherited from a containing
458function, provided the label was explicitly declared in the containing
459function (@pxref{Local Labels}). Such a jump returns instantly to the
460containing function, exiting the nested function which did the
461@code{goto} and any intermediate functions as well. Here is an example:
462
3ab51846 463@smallexample
c1f7febf
RK
464@group
465bar (int *array, int offset, int size)
466@{
467 __label__ failure;
468 int access (int *array, int index)
469 @{
470 if (index > size)
471 goto failure;
472 return array[index + offset];
473 @}
474 int i;
0d893a63 475 /* @r{@dots{}} */
c1f7febf 476 for (i = 0; i < size; i++)
0d893a63
MK
477 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
478 /* @r{@dots{}} */
c1f7febf
RK
479 return 0;
480
481 /* @r{Control comes here from @code{access}
482 if it detects an error.} */
483 failure:
484 return -1;
485@}
486@end group
3ab51846 487@end smallexample
c1f7febf 488
28697267
DJ
489A nested function always has no linkage. Declaring one with
490@code{extern} or @code{static} is erroneous. If you need to declare the nested function
c1f7febf
RK
491before its definition, use @code{auto} (which is otherwise meaningless
492for function declarations).
493
3ab51846 494@smallexample
c1f7febf
RK
495bar (int *array, int offset, int size)
496@{
497 __label__ failure;
498 auto int access (int *, int);
0d893a63 499 /* @r{@dots{}} */
c1f7febf
RK
500 int access (int *array, int index)
501 @{
502 if (index > size)
503 goto failure;
504 return array[index + offset];
505 @}
0d893a63 506 /* @r{@dots{}} */
c1f7febf 507@}
3ab51846 508@end smallexample
c1f7febf
RK
509
510@node Constructing Calls
511@section Constructing Function Calls
512@cindex constructing calls
513@cindex forwarding calls
514
515Using the built-in functions described below, you can record
516the arguments a function received, and call another function
517with the same arguments, without knowing the number or types
518of the arguments.
519
520You can also record the return value of that function call,
521and later return that value, without knowing what data type
522the function tried to return (as long as your caller expects
523that data type).
524
6429bc7c
EB
525However, these built-in functions may interact badly with some
526sophisticated features or other extensions of the language. It
527is, therefore, not recommended to use them outside very simple
528functions acting as mere forwarders for their arguments.
529
84330467
JM
530@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
531This built-in function returns a pointer to data
c1f7febf
RK
532describing how to perform a call with the same arguments as were passed
533to the current function.
534
535The function saves the arg pointer register, structure value address,
536and all registers that might be used to pass arguments to a function
537into a block of memory allocated on the stack. Then it returns the
538address of that block.
84330467 539@end deftypefn
c1f7febf 540
84330467
JM
541@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
542This built-in function invokes @var{function}
543with a copy of the parameters described by @var{arguments}
544and @var{size}.
c1f7febf
RK
545
546The value of @var{arguments} should be the value returned by
547@code{__builtin_apply_args}. The argument @var{size} specifies the size
548of the stack argument data, in bytes.
549
84330467 550This function returns a pointer to data describing
c1f7febf
RK
551how to return whatever value was returned by @var{function}. The data
552is saved in a block of memory allocated on the stack.
553
554It is not always simple to compute the proper value for @var{size}. The
555value is used by @code{__builtin_apply} to compute the amount of data
556that should be pushed on the stack and copied from the incoming argument
557area.
84330467 558@end deftypefn
c1f7febf 559
84330467 560@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
c1f7febf
RK
561This built-in function returns the value described by @var{result} from
562the containing function. You should specify, for @var{result}, a value
563returned by @code{__builtin_apply}.
84330467 564@end deftypefn
c1f7febf 565
6ef5231b
JJ
566@deftypefn {Built-in Function} __builtin_va_arg_pack ()
567This built-in function represents all anonymous arguments of an inline
568function. It can be used only in inline functions which will be always
569inlined, never compiled as a separate function, such as those using
570@code{__attribute__ ((__always_inline__))} or
571@code{__attribute__ ((__gnu_inline__))} extern inline functions.
572It must be only passed as last argument to some other function
573with variable arguments. This is useful for writing small wrapper
574inlines for variable argument functions, when using preprocessor
575macros is undesirable. For example:
576@smallexample
577extern int myprintf (FILE *f, const char *format, ...);
578extern inline __attribute__ ((__gnu_inline__)) int
579myprintf (FILE *f, const char *format, ...)
580@{
581 int r = fprintf (f, "myprintf: ");
582 if (r < 0)
583 return r;
584 int s = fprintf (f, format, __builtin_va_arg_pack ());
585 if (s < 0)
586 return s;
587 return r + s;
588@}
589@end smallexample
590@end deftypefn
591
ab0e176c
JJ
592@deftypefn {Built-in Function} __builtin_va_arg_pack_len ()
593This built-in function returns the number of anonymous arguments of
594an inline function. It can be used only in inline functions which
595will be always inlined, never compiled as a separate function, such
596as those using @code{__attribute__ ((__always_inline__))} or
597@code{__attribute__ ((__gnu_inline__))} extern inline functions.
598For example following will do link or runtime checking of open
599arguments for optimized code:
600@smallexample
601#ifdef __OPTIMIZE__
602extern inline __attribute__((__gnu_inline__)) int
603myopen (const char *path, int oflag, ...)
604@{
605 if (__builtin_va_arg_pack_len () > 1)
606 warn_open_too_many_arguments ();
607
608 if (__builtin_constant_p (oflag))
609 @{
610 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
611 @{
612 warn_open_missing_mode ();
613 return __open_2 (path, oflag);
614 @}
615 return open (path, oflag, __builtin_va_arg_pack ());
616 @}
617
618 if (__builtin_va_arg_pack_len () < 1)
619 return __open_2 (path, oflag);
620
621 return open (path, oflag, __builtin_va_arg_pack ());
622@}
623#endif
624@end smallexample
625@end deftypefn
626
c1f7febf
RK
627@node Typeof
628@section Referring to a Type with @code{typeof}
629@findex typeof
630@findex sizeof
631@cindex macros, types of arguments
632
633Another way to refer to the type of an expression is with @code{typeof}.
634The syntax of using of this keyword looks like @code{sizeof}, but the
635construct acts semantically like a type name defined with @code{typedef}.
636
637There are two ways of writing the argument to @code{typeof}: with an
638expression or with a type. Here is an example with an expression:
639
3ab51846 640@smallexample
c1f7febf 641typeof (x[0](1))
3ab51846 642@end smallexample
c1f7febf
RK
643
644@noindent
89aed483
JM
645This assumes that @code{x} is an array of pointers to functions;
646the type described is that of the values of the functions.
c1f7febf
RK
647
648Here is an example with a typename as the argument:
649
3ab51846 650@smallexample
c1f7febf 651typeof (int *)
3ab51846 652@end smallexample
c1f7febf
RK
653
654@noindent
655Here the type described is that of pointers to @code{int}.
656
5490d604 657If you are writing a header file that must work when included in ISO C
c1f7febf
RK
658programs, write @code{__typeof__} instead of @code{typeof}.
659@xref{Alternate Keywords}.
660
661A @code{typeof}-construct can be used anywhere a typedef name could be
662used. For example, you can use it in a declaration, in a cast, or inside
663of @code{sizeof} or @code{typeof}.
664
95f79357
ZW
665@code{typeof} is often useful in conjunction with the
666statements-within-expressions feature. Here is how the two together can
667be used to define a safe ``maximum'' macro that operates on any
668arithmetic type and evaluates each of its arguments exactly once:
669
3ab51846 670@smallexample
95f79357
ZW
671#define max(a,b) \
672 (@{ typeof (a) _a = (a); \
673 typeof (b) _b = (b); \
674 _a > _b ? _a : _b; @})
3ab51846 675@end smallexample
95f79357 676
526278c9
VR
677@cindex underscores in variables in macros
678@cindex @samp{_} in variables in macros
679@cindex local variables in macros
680@cindex variables, local, in macros
681@cindex macros, local variables in
682
683The reason for using names that start with underscores for the local
684variables is to avoid conflicts with variable names that occur within the
685expressions that are substituted for @code{a} and @code{b}. Eventually we
686hope to design a new form of declaration syntax that allows you to declare
687variables whose scopes start only after their initializers; this will be a
688more reliable way to prevent such conflicts.
689
95f79357
ZW
690@noindent
691Some more examples of the use of @code{typeof}:
692
c1f7febf
RK
693@itemize @bullet
694@item
695This declares @code{y} with the type of what @code{x} points to.
696
3ab51846 697@smallexample
c1f7febf 698typeof (*x) y;
3ab51846 699@end smallexample
c1f7febf
RK
700
701@item
702This declares @code{y} as an array of such values.
703
3ab51846 704@smallexample
c1f7febf 705typeof (*x) y[4];
3ab51846 706@end smallexample
c1f7febf
RK
707
708@item
709This declares @code{y} as an array of pointers to characters:
710
3ab51846 711@smallexample
c1f7febf 712typeof (typeof (char *)[4]) y;
3ab51846 713@end smallexample
c1f7febf
RK
714
715@noindent
716It is equivalent to the following traditional C declaration:
717
3ab51846 718@smallexample
c1f7febf 719char *y[4];
3ab51846 720@end smallexample
c1f7febf
RK
721
722To see the meaning of the declaration using @code{typeof}, and why it
962e6e00 723might be a useful way to write, rewrite it with these macros:
c1f7febf 724
3ab51846 725@smallexample
c1f7febf
RK
726#define pointer(T) typeof(T *)
727#define array(T, N) typeof(T [N])
3ab51846 728@end smallexample
c1f7febf
RK
729
730@noindent
731Now the declaration can be rewritten this way:
732
3ab51846 733@smallexample
c1f7febf 734array (pointer (char), 4) y;
3ab51846 735@end smallexample
c1f7febf
RK
736
737@noindent
738Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
739pointers to @code{char}.
740@end itemize
741
95f79357
ZW
742@emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
743a more limited extension which permitted one to write
744
3ab51846 745@smallexample
95f79357 746typedef @var{T} = @var{expr};
3ab51846 747@end smallexample
95f79357
ZW
748
749@noindent
750with the effect of declaring @var{T} to have the type of the expression
751@var{expr}. This extension does not work with GCC 3 (versions between
7523.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
753relies on it should be rewritten to use @code{typeof}:
754
3ab51846 755@smallexample
95f79357 756typedef typeof(@var{expr}) @var{T};
3ab51846 757@end smallexample
95f79357
ZW
758
759@noindent
760This will work with all versions of GCC@.
761
c1f7febf
RK
762@node Conditionals
763@section Conditionals with Omitted Operands
764@cindex conditional expressions, extensions
765@cindex omitted middle-operands
766@cindex middle-operands, omitted
767@cindex extensions, @code{?:}
768@cindex @code{?:} extensions
769
770The middle operand in a conditional expression may be omitted. Then
771if the first operand is nonzero, its value is the value of the conditional
772expression.
773
774Therefore, the expression
775
3ab51846 776@smallexample
c1f7febf 777x ? : y
3ab51846 778@end smallexample
c1f7febf
RK
779
780@noindent
781has the value of @code{x} if that is nonzero; otherwise, the value of
782@code{y}.
783
784This example is perfectly equivalent to
785
3ab51846 786@smallexample
c1f7febf 787x ? x : y
3ab51846 788@end smallexample
c1f7febf
RK
789
790@cindex side effect in ?:
791@cindex ?: side effect
792@noindent
793In this simple case, the ability to omit the middle operand is not
794especially useful. When it becomes useful is when the first operand does,
795or may (if it is a macro argument), contain a side effect. Then repeating
796the operand in the middle would perform the side effect twice. Omitting
797the middle operand uses the value already computed without the undesirable
798effects of recomputing it.
799
800@node Long Long
801@section Double-Word Integers
802@cindex @code{long long} data types
803@cindex double-word arithmetic
804@cindex multiprecision arithmetic
4b404517
JM
805@cindex @code{LL} integer suffix
806@cindex @code{ULL} integer suffix
c1f7febf 807
4b404517
JM
808ISO C99 supports data types for integers that are at least 64 bits wide,
809and as an extension GCC supports them in C89 mode and in C++.
810Simply write @code{long long int} for a signed integer, or
c1f7febf 811@code{unsigned long long int} for an unsigned integer. To make an
84330467 812integer constant of type @code{long long int}, add the suffix @samp{LL}
c1f7febf 813to the integer. To make an integer constant of type @code{unsigned long
84330467 814long int}, add the suffix @samp{ULL} to the integer.
c1f7febf
RK
815
816You can use these types in arithmetic like any other integer types.
817Addition, subtraction, and bitwise boolean operations on these types
818are open-coded on all types of machines. Multiplication is open-coded
819if the machine supports fullword-to-doubleword a widening multiply
820instruction. Division and shifts are open-coded only on machines that
821provide special support. The operations that are not open-coded use
161d7b59 822special library routines that come with GCC@.
c1f7febf
RK
823
824There may be pitfalls when you use @code{long long} types for function
825arguments, unless you declare function prototypes. If a function
826expects type @code{int} for its argument, and you pass a value of type
827@code{long long int}, confusion will result because the caller and the
828subroutine will disagree about the number of bytes for the argument.
829Likewise, if the function expects @code{long long int} and you pass
830@code{int}. The best way to avoid such problems is to use prototypes.
831
832@node Complex
833@section Complex Numbers
834@cindex complex numbers
4b404517
JM
835@cindex @code{_Complex} keyword
836@cindex @code{__complex__} keyword
c1f7febf 837
4b404517
JM
838ISO C99 supports complex floating data types, and as an extension GCC
839supports them in C89 mode and in C++, and supports complex integer data
840types which are not part of ISO C99. You can declare complex types
841using the keyword @code{_Complex}. As an extension, the older GNU
842keyword @code{__complex__} is also supported.
c1f7febf 843
4b404517 844For example, @samp{_Complex double x;} declares @code{x} as a
c1f7febf 845variable whose real part and imaginary part are both of type
4b404517 846@code{double}. @samp{_Complex short int y;} declares @code{y} to
c1f7febf
RK
847have real and imaginary parts of type @code{short int}; this is not
848likely to be useful, but it shows that the set of complex types is
849complete.
850
851To write a constant with a complex data type, use the suffix @samp{i} or
852@samp{j} (either one; they are equivalent). For example, @code{2.5fi}
4b404517
JM
853has type @code{_Complex float} and @code{3i} has type
854@code{_Complex int}. Such a constant always has a pure imaginary
c1f7febf 855value, but you can form any complex value you like by adding one to a
4b404517
JM
856real constant. This is a GNU extension; if you have an ISO C99
857conforming C library (such as GNU libc), and want to construct complex
858constants of floating type, you should include @code{<complex.h>} and
859use the macros @code{I} or @code{_Complex_I} instead.
c1f7febf 860
4b404517
JM
861@cindex @code{__real__} keyword
862@cindex @code{__imag__} keyword
c1f7febf
RK
863To extract the real part of a complex-valued expression @var{exp}, write
864@code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
4b404517
JM
865extract the imaginary part. This is a GNU extension; for values of
866floating type, you should use the ISO C99 functions @code{crealf},
867@code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
868@code{cimagl}, declared in @code{<complex.h>} and also provided as
161d7b59 869built-in functions by GCC@.
c1f7febf 870
4b404517 871@cindex complex conjugation
c1f7febf 872The operator @samp{~} performs complex conjugation when used on a value
4b404517
JM
873with a complex type. This is a GNU extension; for values of
874floating type, you should use the ISO C99 functions @code{conjf},
875@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
161d7b59 876provided as built-in functions by GCC@.
c1f7febf 877
f0523f02 878GCC can allocate complex automatic variables in a noncontiguous
c1f7febf 879fashion; it's even possible for the real part to be in a register while
580fb356
JW
880the imaginary part is on the stack (or vice-versa). Only the DWARF2
881debug info format can represent this, so use of DWARF2 is recommended.
882If you are using the stabs debug info format, GCC describes a noncontiguous
883complex variable as if it were two separate variables of noncomplex type.
c1f7febf
RK
884If the variable's actual name is @code{foo}, the two fictitious
885variables are named @code{foo$real} and @code{foo$imag}. You can
886examine and set these two fictitious variables with your debugger.
887
c77cd3d1
UB
888@node Floating Types
889@section Additional Floating Types
890@cindex additional floating types
891@cindex @code{__float80} data type
892@cindex @code{__float128} data type
893@cindex @code{w} floating point suffix
894@cindex @code{q} floating point suffix
895@cindex @code{W} floating point suffix
896@cindex @code{Q} floating point suffix
897
898As an extension, the GNU C compiler supports additional floating
899types, @code{__float80} and @code{__float128} to support 80bit
900(@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
901Support for additional types includes the arithmetic operators:
902add, subtract, multiply, divide; unary arithmetic operators;
903relational operators; equality operators; and conversions to and from
904integer and other floating types. Use a suffix @samp{w} or @samp{W}
905in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
906for @code{_float128}. You can declare complex types using the
907corresponding internal complex type, @code{XCmode} for @code{__float80}
908type and @code{TCmode} for @code{__float128} type:
909
910@smallexample
911typedef _Complex float __attribute__((mode(TC))) _Complex128;
912typedef _Complex float __attribute__((mode(XC))) _Complex80;
913@end smallexample
914
915Not all targets support additional floating point types. @code{__float80}
916is supported on i386, x86_64 and ia64 targets and target @code{__float128}
917is supported on x86_64 and ia64 targets.
918
9a8ce21f 919@node Decimal Float
85a92f7e
JJ
920@section Decimal Floating Types
921@cindex decimal floating types
9a8ce21f
JG
922@cindex @code{_Decimal32} data type
923@cindex @code{_Decimal64} data type
924@cindex @code{_Decimal128} data type
925@cindex @code{df} integer suffix
926@cindex @code{dd} integer suffix
927@cindex @code{dl} integer suffix
928@cindex @code{DF} integer suffix
929@cindex @code{DD} integer suffix
930@cindex @code{DL} integer suffix
931
85a92f7e
JJ
932As an extension, the GNU C compiler supports decimal floating types as
933defined in the N1176 draft of ISO/IEC WDTR24732. Support for decimal
934floating types in GCC will evolve as the draft technical report changes.
935Calling conventions for any target might also change. Not all targets
936support decimal floating types.
9a8ce21f 937
85a92f7e
JJ
938The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
939@code{_Decimal128}. They use a radix of ten, unlike the floating types
940@code{float}, @code{double}, and @code{long double} whose radix is not
941specified by the C standard but is usually two.
942
943Support for decimal floating types includes the arithmetic operators
9a8ce21f
JG
944add, subtract, multiply, divide; unary arithmetic operators;
945relational operators; equality operators; and conversions to and from
85a92f7e 946integer and other floating types. Use a suffix @samp{df} or
9a8ce21f
JG
947@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
948or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
949@code{_Decimal128}.
950
85a92f7e
JJ
951GCC support of decimal float as specified by the draft technical report
952is incomplete:
953
954@itemize @bullet
955@item
956Translation time data type (TTDT) is not supported.
957
85a92f7e
JJ
958@item
959When the value of a decimal floating type cannot be represented in the
960integer type to which it is being converted, the result is undefined
961rather than the result value specified by the draft technical report.
962@end itemize
9a8ce21f
JG
963
964Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
965are supported by the DWARF2 debug information format.
966
6f4d7222 967@node Hex Floats
6b42b9ea
UD
968@section Hex Floats
969@cindex hex floats
c5c76735 970
4b404517 971ISO C99 supports floating-point numbers written not only in the usual
6f4d7222 972decimal notation, such as @code{1.55e1}, but also numbers such as
4b404517
JM
973@code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
974supports this in C89 mode (except in some cases when strictly
975conforming) and in C++. In that format the
84330467 976@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
6f4d7222 977mandatory. The exponent is a decimal number that indicates the power of
84330467 9782 by which the significant part will be multiplied. Thus @samp{0x1.f} is
aee96fe9
JM
979@tex
980$1 {15\over16}$,
981@end tex
982@ifnottex
9831 15/16,
984@end ifnottex
985@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
6f4d7222
UD
986is the same as @code{1.55e1}.
987
988Unlike for floating-point numbers in the decimal notation the exponent
989is always required in the hexadecimal notation. Otherwise the compiler
990would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
84330467 991could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
6f4d7222
UD
992extension for floating-point constants of type @code{float}.
993
0f996086
CF
994@node Fixed-Point
995@section Fixed-Point Types
996@cindex fixed-point types
997@cindex @code{_Fract} data type
998@cindex @code{_Accum} data type
999@cindex @code{_Sat} data type
1000@cindex @code{hr} fixed-suffix
1001@cindex @code{r} fixed-suffix
1002@cindex @code{lr} fixed-suffix
1003@cindex @code{llr} fixed-suffix
1004@cindex @code{uhr} fixed-suffix
1005@cindex @code{ur} fixed-suffix
1006@cindex @code{ulr} fixed-suffix
1007@cindex @code{ullr} fixed-suffix
1008@cindex @code{hk} fixed-suffix
1009@cindex @code{k} fixed-suffix
1010@cindex @code{lk} fixed-suffix
1011@cindex @code{llk} fixed-suffix
1012@cindex @code{uhk} fixed-suffix
1013@cindex @code{uk} fixed-suffix
1014@cindex @code{ulk} fixed-suffix
1015@cindex @code{ullk} fixed-suffix
1016@cindex @code{HR} fixed-suffix
1017@cindex @code{R} fixed-suffix
1018@cindex @code{LR} fixed-suffix
1019@cindex @code{LLR} fixed-suffix
1020@cindex @code{UHR} fixed-suffix
1021@cindex @code{UR} fixed-suffix
1022@cindex @code{ULR} fixed-suffix
1023@cindex @code{ULLR} fixed-suffix
1024@cindex @code{HK} fixed-suffix
1025@cindex @code{K} fixed-suffix
1026@cindex @code{LK} fixed-suffix
1027@cindex @code{LLK} fixed-suffix
1028@cindex @code{UHK} fixed-suffix
1029@cindex @code{UK} fixed-suffix
1030@cindex @code{ULK} fixed-suffix
1031@cindex @code{ULLK} fixed-suffix
1032
1033As an extension, the GNU C compiler supports fixed-point types as
1034defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1035types in GCC will evolve as the draft technical report changes.
1036Calling conventions for any target might also change. Not all targets
1037support fixed-point types.
1038
1039The fixed-point types are
1040@code{short _Fract},
1041@code{_Fract},
1042@code{long _Fract},
1043@code{long long _Fract},
1044@code{unsigned short _Fract},
1045@code{unsigned _Fract},
1046@code{unsigned long _Fract},
1047@code{unsigned long long _Fract},
1048@code{_Sat short _Fract},
1049@code{_Sat _Fract},
1050@code{_Sat long _Fract},
1051@code{_Sat long long _Fract},
1052@code{_Sat unsigned short _Fract},
1053@code{_Sat unsigned _Fract},
1054@code{_Sat unsigned long _Fract},
1055@code{_Sat unsigned long long _Fract},
1056@code{short _Accum},
1057@code{_Accum},
1058@code{long _Accum},
1059@code{long long _Accum},
1060@code{unsigned short _Accum},
1061@code{unsigned _Accum},
1062@code{unsigned long _Accum},
1063@code{unsigned long long _Accum},
1064@code{_Sat short _Accum},
1065@code{_Sat _Accum},
1066@code{_Sat long _Accum},
1067@code{_Sat long long _Accum},
1068@code{_Sat unsigned short _Accum},
1069@code{_Sat unsigned _Accum},
1070@code{_Sat unsigned long _Accum},
1071@code{_Sat unsigned long long _Accum}.
1072Fixed-point data values contain fractional and optional integral parts.
1073The format of fixed-point data varies and depends on the target machine.
1074
1075Support for fixed-point types includes prefix and postfix increment
1076and decrement operators (@code{++}, @code{--}); unary arithmetic operators
1077(@code{+}, @code{-}, @code{!}); binary arithmetic operators (@code{+},
1078@code{-}, @code{*}, @code{/}); binary shift operators (@code{<<}, @code{>>});
1079relational operators (@code{<}, @code{<=}, @code{>=}, @code{>});
1080equality operators (@code{==}, @code{!=}); assignment operators
1081(@code{+=}, @code{-=}, @code{*=}, @code{/=}, @code{<<=}, @code{>>=});
1082and conversions to and from integer, floating-point, or fixed-point types.
1083
1084Use a suffix @samp{hr} or @samp{HR} in a literal constant of type
1085@code{short _Fract} and @code{_Sat short _Fract},
1086@samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract},
1087@samp{lr} or @samp{LR} for @code{long _Fract} and @code{_Sat long _Fract},
1088@samp{llr} or @samp{LLR} for @code{long long _Fract} and
1089@code{_Sat long long _Fract},
1090@samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1091@code{_Sat unsigned short _Fract},
1092@samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1093@code{_Sat unsigned _Fract},
1094@samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1095@code{_Sat unsigned long _Fract},
1096@samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1097and @code{_Sat unsigned long long _Fract},
1098@samp{hk} or @samp{HK} for @code{short _Accum} and @code{_Sat short _Accum},
1099@samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum},
1100@samp{lk} or @samp{LK} for @code{long _Accum} and @code{_Sat long _Accum},
1101@samp{llk} or @samp{LLK} for @code{long long _Accum} and
1102@code{_Sat long long _Accum},
1103@samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1104@code{_Sat unsigned short _Accum},
1105@samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1106@code{_Sat unsigned _Accum},
1107@samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1108@code{_Sat unsigned long _Accum},
1109and @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1110and @code{_Sat unsigned long long _Accum}.
1111
1112GCC support of fixed-point types as specified by the draft technical report
1113is incomplete:
1114
1115@itemize @bullet
1116@item
1117Pragmas to control overflow and rounding behaviors are not implemented.
1118@end itemize
1119
1120Fixed-point types are supported by the DWARF2 debug information format.
1121
c1f7febf
RK
1122@node Zero Length
1123@section Arrays of Length Zero
1124@cindex arrays of length zero
1125@cindex zero-length arrays
1126@cindex length-zero arrays
ffc5c6a9 1127@cindex flexible array members
c1f7febf 1128
161d7b59 1129Zero-length arrays are allowed in GNU C@. They are very useful as the
584ef5fe 1130last element of a structure which is really a header for a variable-length
c1f7febf
RK
1131object:
1132
3ab51846 1133@smallexample
c1f7febf
RK
1134struct line @{
1135 int length;
1136 char contents[0];
1137@};
1138
584ef5fe
RH
1139struct line *thisline = (struct line *)
1140 malloc (sizeof (struct line) + this_length);
1141thisline->length = this_length;
3ab51846 1142@end smallexample
c1f7febf 1143
3764f879 1144In ISO C90, you would have to give @code{contents} a length of 1, which
c1f7febf
RK
1145means either you waste space or complicate the argument to @code{malloc}.
1146
02f52e19 1147In ISO C99, you would use a @dfn{flexible array member}, which is
584ef5fe
RH
1148slightly different in syntax and semantics:
1149
1150@itemize @bullet
1151@item
1152Flexible array members are written as @code{contents[]} without
1153the @code{0}.
1154
1155@item
1156Flexible array members have incomplete type, and so the @code{sizeof}
1157operator may not be applied. As a quirk of the original implementation
1158of zero-length arrays, @code{sizeof} evaluates to zero.
1159
1160@item
1161Flexible array members may only appear as the last member of a
e7b6a0ee 1162@code{struct} that is otherwise non-empty.
2984fe64
JM
1163
1164@item
1165A structure containing a flexible array member, or a union containing
1166such a structure (possibly recursively), may not be a member of a
1167structure or an element of an array. (However, these uses are
1168permitted by GCC as extensions.)
ffc5c6a9 1169@end itemize
a25f1211 1170
ffc5c6a9 1171GCC versions before 3.0 allowed zero-length arrays to be statically
e7b6a0ee
DD
1172initialized, as if they were flexible arrays. In addition to those
1173cases that were useful, it also allowed initializations in situations
1174that would corrupt later data. Non-empty initialization of zero-length
1175arrays is now treated like any case where there are more initializer
1176elements than the array holds, in that a suitable warning about "excess
1177elements in array" is given, and the excess elements (all of them, in
1178this case) are ignored.
ffc5c6a9
RH
1179
1180Instead GCC allows static initialization of flexible array members.
1181This is equivalent to defining a new structure containing the original
1182structure followed by an array of sufficient size to contain the data.
e979f9e8 1183I.e.@: in the following, @code{f1} is constructed as if it were declared
ffc5c6a9 1184like @code{f2}.
a25f1211 1185
3ab51846 1186@smallexample
ffc5c6a9
RH
1187struct f1 @{
1188 int x; int y[];
1189@} f1 = @{ 1, @{ 2, 3, 4 @} @};
1190
1191struct f2 @{
1192 struct f1 f1; int data[3];
1193@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
3ab51846 1194@end smallexample
584ef5fe 1195
ffc5c6a9
RH
1196@noindent
1197The convenience of this extension is that @code{f1} has the desired
1198type, eliminating the need to consistently refer to @code{f2.f1}.
1199
1200This has symmetry with normal static arrays, in that an array of
1201unknown size is also written with @code{[]}.
a25f1211 1202
ffc5c6a9
RH
1203Of course, this extension only makes sense if the extra data comes at
1204the end of a top-level object, as otherwise we would be overwriting
1205data at subsequent offsets. To avoid undue complication and confusion
1206with initialization of deeply nested arrays, we simply disallow any
1207non-empty initialization except when the structure is the top-level
1208object. For example:
584ef5fe 1209
3ab51846 1210@smallexample
ffc5c6a9
RH
1211struct foo @{ int x; int y[]; @};
1212struct bar @{ struct foo z; @};
1213
13ba36b4
JM
1214struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1215struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1216struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1217struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
3ab51846 1218@end smallexample
4b606faf 1219
ba05abd3
GK
1220@node Empty Structures
1221@section Structures With No Members
1222@cindex empty structures
1223@cindex zero-size structures
1224
1225GCC permits a C structure to have no members:
1226
3ab51846 1227@smallexample
ba05abd3
GK
1228struct empty @{
1229@};
3ab51846 1230@end smallexample
ba05abd3
GK
1231
1232The structure will have size zero. In C++, empty structures are part
db0b376e
MM
1233of the language. G++ treats empty structures as if they had a single
1234member of type @code{char}.
ba05abd3 1235
c1f7febf
RK
1236@node Variable Length
1237@section Arrays of Variable Length
1238@cindex variable-length arrays
1239@cindex arrays of variable length
4b404517 1240@cindex VLAs
c1f7febf 1241
4b404517
JM
1242Variable-length automatic arrays are allowed in ISO C99, and as an
1243extension GCC accepts them in C89 mode and in C++. (However, GCC's
1244implementation of variable-length arrays does not yet conform in detail
1245to the ISO C99 standard.) These arrays are
c1f7febf
RK
1246declared like any other automatic arrays, but with a length that is not
1247a constant expression. The storage is allocated at the point of
1248declaration and deallocated when the brace-level is exited. For
1249example:
1250
3ab51846 1251@smallexample
c1f7febf
RK
1252FILE *
1253concat_fopen (char *s1, char *s2, char *mode)
1254@{
1255 char str[strlen (s1) + strlen (s2) + 1];
1256 strcpy (str, s1);
1257 strcat (str, s2);
1258 return fopen (str, mode);
1259@}
3ab51846 1260@end smallexample
c1f7febf
RK
1261
1262@cindex scope of a variable length array
1263@cindex variable-length array scope
1264@cindex deallocating variable length arrays
1265Jumping or breaking out of the scope of the array name deallocates the
1266storage. Jumping into the scope is not allowed; you get an error
1267message for it.
1268
1269@cindex @code{alloca} vs variable-length arrays
1270You can use the function @code{alloca} to get an effect much like
1271variable-length arrays. The function @code{alloca} is available in
1272many other C implementations (but not in all). On the other hand,
1273variable-length arrays are more elegant.
1274
1275There are other differences between these two methods. Space allocated
1276with @code{alloca} exists until the containing @emph{function} returns.
1277The space for a variable-length array is deallocated as soon as the array
1278name's scope ends. (If you use both variable-length arrays and
1279@code{alloca} in the same function, deallocation of a variable-length array
1280will also deallocate anything more recently allocated with @code{alloca}.)
1281
1282You can also use variable-length arrays as arguments to functions:
1283
3ab51846 1284@smallexample
c1f7febf
RK
1285struct entry
1286tester (int len, char data[len][len])
1287@{
0d893a63 1288 /* @r{@dots{}} */
c1f7febf 1289@}
3ab51846 1290@end smallexample
c1f7febf
RK
1291
1292The length of an array is computed once when the storage is allocated
1293and is remembered for the scope of the array in case you access it with
1294@code{sizeof}.
1295
1296If you want to pass the array first and the length afterward, you can
1297use a forward declaration in the parameter list---another GNU extension.
1298
3ab51846 1299@smallexample
c1f7febf
RK
1300struct entry
1301tester (int len; char data[len][len], int len)
1302@{
0d893a63 1303 /* @r{@dots{}} */
c1f7febf 1304@}
3ab51846 1305@end smallexample
c1f7febf
RK
1306
1307@cindex parameter forward declaration
1308The @samp{int len} before the semicolon is a @dfn{parameter forward
1309declaration}, and it serves the purpose of making the name @code{len}
1310known when the declaration of @code{data} is parsed.
1311
1312You can write any number of such parameter forward declarations in the
1313parameter list. They can be separated by commas or semicolons, but the
1314last one must end with a semicolon, which is followed by the ``real''
1315parameter declarations. Each forward declaration must match a ``real''
4b404517
JM
1316declaration in parameter name and data type. ISO C99 does not support
1317parameter forward declarations.
c1f7febf 1318
ccd96f0a
NB
1319@node Variadic Macros
1320@section Macros with a Variable Number of Arguments.
c1f7febf
RK
1321@cindex variable number of arguments
1322@cindex macro with variable arguments
1323@cindex rest argument (in macro)
ccd96f0a 1324@cindex variadic macros
c1f7febf 1325
ccd96f0a
NB
1326In the ISO C standard of 1999, a macro can be declared to accept a
1327variable number of arguments much as a function can. The syntax for
1328defining the macro is similar to that of a function. Here is an
1329example:
c1f7febf 1330
478c9e72 1331@smallexample
ccd96f0a 1332#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
478c9e72 1333@end smallexample
c1f7febf 1334
ccd96f0a
NB
1335Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1336such a macro, it represents the zero or more tokens until the closing
1337parenthesis that ends the invocation, including any commas. This set of
1338tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1339wherever it appears. See the CPP manual for more information.
1340
1341GCC has long supported variadic macros, and used a different syntax that
1342allowed you to give a name to the variable arguments just like any other
1343argument. Here is an example:
c1f7febf 1344
3ab51846 1345@smallexample
ccd96f0a 1346#define debug(format, args...) fprintf (stderr, format, args)
3ab51846 1347@end smallexample
c1f7febf 1348
ccd96f0a
NB
1349This is in all ways equivalent to the ISO C example above, but arguably
1350more readable and descriptive.
c1f7febf 1351
ccd96f0a
NB
1352GNU CPP has two further variadic macro extensions, and permits them to
1353be used with either of the above forms of macro definition.
1354
1355In standard C, you are not allowed to leave the variable argument out
1356entirely; but you are allowed to pass an empty argument. For example,
1357this invocation is invalid in ISO C, because there is no comma after
1358the string:
c1f7febf 1359
3ab51846 1360@smallexample
ccd96f0a 1361debug ("A message")
3ab51846 1362@end smallexample
c1f7febf 1363
ccd96f0a
NB
1364GNU CPP permits you to completely omit the variable arguments in this
1365way. In the above examples, the compiler would complain, though since
1366the expansion of the macro still has the extra comma after the format
1367string.
1368
1369To help solve this problem, CPP behaves specially for variable arguments
1370used with the token paste operator, @samp{##}. If instead you write
c1f7febf 1371
478c9e72 1372@smallexample
ccd96f0a 1373#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
478c9e72 1374@end smallexample
c1f7febf 1375
ccd96f0a
NB
1376and if the variable arguments are omitted or empty, the @samp{##}
1377operator causes the preprocessor to remove the comma before it. If you
1378do provide some variable arguments in your macro invocation, GNU CPP
1379does not complain about the paste operation and instead places the
1380variable arguments after the comma. Just like any other pasted macro
1381argument, these arguments are not macro expanded.
1382
1383@node Escaped Newlines
1384@section Slightly Looser Rules for Escaped Newlines
1385@cindex escaped newlines
1386@cindex newlines (escaped)
1387
f458d1d5
ZW
1388Recently, the preprocessor has relaxed its treatment of escaped
1389newlines. Previously, the newline had to immediately follow a
e6cc3a24
ZW
1390backslash. The current implementation allows whitespace in the form
1391of spaces, horizontal and vertical tabs, and form feeds between the
ccd96f0a
NB
1392backslash and the subsequent newline. The preprocessor issues a
1393warning, but treats it as a valid escaped newline and combines the two
1394lines to form a single logical line. This works within comments and
e6cc3a24
ZW
1395tokens, as well as between tokens. Comments are @emph{not} treated as
1396whitespace for the purposes of this relaxation, since they have not
1397yet been replaced with spaces.
c1f7febf
RK
1398
1399@node Subscripting
1400@section Non-Lvalue Arrays May Have Subscripts
1401@cindex subscripting
1402@cindex arrays, non-lvalue
1403
1404@cindex subscripting and function values
207bf485
JM
1405In ISO C99, arrays that are not lvalues still decay to pointers, and
1406may be subscripted, although they may not be modified or used after
1407the next sequence point and the unary @samp{&} operator may not be
1408applied to them. As an extension, GCC allows such arrays to be
1409subscripted in C89 mode, though otherwise they do not decay to
1410pointers outside C99 mode. For example,
4b404517 1411this is valid in GNU C though not valid in C89:
c1f7febf 1412
3ab51846 1413@smallexample
c1f7febf
RK
1414@group
1415struct foo @{int a[4];@};
1416
1417struct foo f();
1418
1419bar (int index)
1420@{
1421 return f().a[index];
1422@}
1423@end group
3ab51846 1424@end smallexample
c1f7febf
RK
1425
1426@node Pointer Arith
1427@section Arithmetic on @code{void}- and Function-Pointers
1428@cindex void pointers, arithmetic
1429@cindex void, size of pointer to
1430@cindex function pointers, arithmetic
1431@cindex function, size of pointer to
1432
1433In GNU C, addition and subtraction operations are supported on pointers to
1434@code{void} and on pointers to functions. This is done by treating the
1435size of a @code{void} or of a function as 1.
1436
1437A consequence of this is that @code{sizeof} is also allowed on @code{void}
1438and on function types, and returns 1.
1439
84330467
JM
1440@opindex Wpointer-arith
1441The option @option{-Wpointer-arith} requests a warning if these extensions
c1f7febf
RK
1442are used.
1443
1444@node Initializers
1445@section Non-Constant Initializers
1446@cindex initializers, non-constant
1447@cindex non-constant initializers
1448
4b404517 1449As in standard C++ and ISO C99, the elements of an aggregate initializer for an
161d7b59 1450automatic variable are not required to be constant expressions in GNU C@.
c1f7febf
RK
1451Here is an example of an initializer with run-time varying elements:
1452
3ab51846 1453@smallexample
c1f7febf
RK
1454foo (float f, float g)
1455@{
1456 float beat_freqs[2] = @{ f-g, f+g @};
0d893a63 1457 /* @r{@dots{}} */
c1f7febf 1458@}
3ab51846 1459@end smallexample
c1f7febf 1460
4b404517
JM
1461@node Compound Literals
1462@section Compound Literals
c1f7febf
RK
1463@cindex constructor expressions
1464@cindex initializations in expressions
1465@cindex structures, constructor expression
1466@cindex expressions, constructor
4b404517
JM
1467@cindex compound literals
1468@c The GNU C name for what C99 calls compound literals was "constructor expressions".
c1f7febf 1469
4b404517 1470ISO C99 supports compound literals. A compound literal looks like
c1f7febf
RK
1471a cast containing an initializer. Its value is an object of the
1472type specified in the cast, containing the elements specified in
db3acfa5
JM
1473the initializer; it is an lvalue. As an extension, GCC supports
1474compound literals in C89 mode and in C++.
c1f7febf
RK
1475
1476Usually, the specified type is a structure. Assume that
1477@code{struct foo} and @code{structure} are declared as shown:
1478
3ab51846 1479@smallexample
c1f7febf 1480struct foo @{int a; char b[2];@} structure;
3ab51846 1481@end smallexample
c1f7febf
RK
1482
1483@noindent
4b404517 1484Here is an example of constructing a @code{struct foo} with a compound literal:
c1f7febf 1485
3ab51846 1486@smallexample
c1f7febf 1487structure = ((struct foo) @{x + y, 'a', 0@});
3ab51846 1488@end smallexample
c1f7febf
RK
1489
1490@noindent
1491This is equivalent to writing the following:
1492
3ab51846 1493@smallexample
c1f7febf
RK
1494@{
1495 struct foo temp = @{x + y, 'a', 0@};
1496 structure = temp;
1497@}
3ab51846 1498@end smallexample
c1f7febf 1499
4b404517 1500You can also construct an array. If all the elements of the compound literal
c1f7febf 1501are (made up of) simple constant expressions, suitable for use in
db3acfa5
JM
1502initializers of objects of static storage duration, then the compound
1503literal can be coerced to a pointer to its first element and used in
1504such an initializer, as shown here:
c1f7febf 1505
3ab51846 1506@smallexample
c1f7febf 1507char **foo = (char *[]) @{ "x", "y", "z" @};
3ab51846 1508@end smallexample
c1f7febf 1509
4b404517
JM
1510Compound literals for scalar types and union types are is
1511also allowed, but then the compound literal is equivalent
c1f7febf
RK
1512to a cast.
1513
59c83dbf
JJ
1514As a GNU extension, GCC allows initialization of objects with static storage
1515duration by compound literals (which is not possible in ISO C99, because
1516the initializer is not a constant).
1517It is handled as if the object was initialized only with the bracket
1eaf20ec 1518enclosed list if the types of the compound literal and the object match.
59c83dbf
JJ
1519The initializer list of the compound literal must be constant.
1520If the object being initialized has array type of unknown size, the size is
ad47f1e5 1521determined by compound literal size.
59c83dbf 1522
3ab51846 1523@smallexample
59c83dbf
JJ
1524static struct foo x = (struct foo) @{1, 'a', 'b'@};
1525static int y[] = (int []) @{1, 2, 3@};
1526static int z[] = (int [3]) @{1@};
3ab51846 1527@end smallexample
59c83dbf
JJ
1528
1529@noindent
1530The above lines are equivalent to the following:
3ab51846 1531@smallexample
59c83dbf
JJ
1532static struct foo x = @{1, 'a', 'b'@};
1533static int y[] = @{1, 2, 3@};
ad47f1e5 1534static int z[] = @{1, 0, 0@};
3ab51846 1535@end smallexample
59c83dbf 1536
4b404517
JM
1537@node Designated Inits
1538@section Designated Initializers
c1f7febf
RK
1539@cindex initializers with labeled elements
1540@cindex labeled elements in initializers
1541@cindex case labels in initializers
4b404517 1542@cindex designated initializers
c1f7febf 1543
26d4fec7 1544Standard C89 requires the elements of an initializer to appear in a fixed
c1f7febf
RK
1545order, the same as the order of the elements in the array or structure
1546being initialized.
1547
26d4fec7
JM
1548In ISO C99 you can give the elements in any order, specifying the array
1549indices or structure field names they apply to, and GNU C allows this as
1550an extension in C89 mode as well. This extension is not
c1f7febf
RK
1551implemented in GNU C++.
1552
26d4fec7 1553To specify an array index, write
c1f7febf
RK
1554@samp{[@var{index}] =} before the element value. For example,
1555
3ab51846 1556@smallexample
26d4fec7 1557int a[6] = @{ [4] = 29, [2] = 15 @};
3ab51846 1558@end smallexample
c1f7febf
RK
1559
1560@noindent
1561is equivalent to
1562
3ab51846 1563@smallexample
c1f7febf 1564int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
3ab51846 1565@end smallexample
c1f7febf
RK
1566
1567@noindent
1568The index values must be constant expressions, even if the array being
1569initialized is automatic.
1570
26d4fec7
JM
1571An alternative syntax for this which has been obsolete since GCC 2.5 but
1572GCC still accepts is to write @samp{[@var{index}]} before the element
1573value, with no @samp{=}.
1574
c1f7febf 1575To initialize a range of elements to the same value, write
26d4fec7
JM
1576@samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1577extension. For example,
c1f7febf 1578
3ab51846 1579@smallexample
c1f7febf 1580int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
3ab51846 1581@end smallexample
c1f7febf 1582
8b6a5902
JJ
1583@noindent
1584If the value in it has side-effects, the side-effects will happen only once,
1585not for each initialized field by the range initializer.
1586
c1f7febf
RK
1587@noindent
1588Note that the length of the array is the highest value specified
1589plus one.
1590
1591In a structure initializer, specify the name of a field to initialize
26d4fec7 1592with @samp{.@var{fieldname} =} before the element value. For example,
c1f7febf
RK
1593given the following structure,
1594
3ab51846 1595@smallexample
c1f7febf 1596struct point @{ int x, y; @};
3ab51846 1597@end smallexample
c1f7febf
RK
1598
1599@noindent
1600the following initialization
1601
3ab51846 1602@smallexample
26d4fec7 1603struct point p = @{ .y = yvalue, .x = xvalue @};
3ab51846 1604@end smallexample
c1f7febf
RK
1605
1606@noindent
1607is equivalent to
1608
3ab51846 1609@smallexample
c1f7febf 1610struct point p = @{ xvalue, yvalue @};
3ab51846 1611@end smallexample
c1f7febf 1612
26d4fec7
JM
1613Another syntax which has the same meaning, obsolete since GCC 2.5, is
1614@samp{@var{fieldname}:}, as shown here:
c1f7febf 1615
3ab51846 1616@smallexample
26d4fec7 1617struct point p = @{ y: yvalue, x: xvalue @};
3ab51846 1618@end smallexample
c1f7febf 1619
4b404517
JM
1620@cindex designators
1621The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1622@dfn{designator}. You can also use a designator (or the obsolete colon
1623syntax) when initializing a union, to specify which element of the union
1624should be used. For example,
c1f7febf 1625
3ab51846 1626@smallexample
c1f7febf
RK
1627union foo @{ int i; double d; @};
1628
26d4fec7 1629union foo f = @{ .d = 4 @};
3ab51846 1630@end smallexample
c1f7febf
RK
1631
1632@noindent
1633will convert 4 to a @code{double} to store it in the union using
1634the second element. By contrast, casting 4 to type @code{union foo}
1635would store it into the union as the integer @code{i}, since it is
1636an integer. (@xref{Cast to Union}.)
1637
1638You can combine this technique of naming elements with ordinary C
1639initialization of successive elements. Each initializer element that
4b404517 1640does not have a designator applies to the next consecutive element of the
c1f7febf
RK
1641array or structure. For example,
1642
3ab51846 1643@smallexample
c1f7febf 1644int a[6] = @{ [1] = v1, v2, [4] = v4 @};
3ab51846 1645@end smallexample
c1f7febf
RK
1646
1647@noindent
1648is equivalent to
1649
3ab51846 1650@smallexample
c1f7febf 1651int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
3ab51846 1652@end smallexample
c1f7febf
RK
1653
1654Labeling the elements of an array initializer is especially useful
1655when the indices are characters or belong to an @code{enum} type.
1656For example:
1657
3ab51846 1658@smallexample
c1f7febf
RK
1659int whitespace[256]
1660 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1661 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
3ab51846 1662@end smallexample
c1f7febf 1663
4b404517 1664@cindex designator lists
26d4fec7 1665You can also write a series of @samp{.@var{fieldname}} and
4b404517 1666@samp{[@var{index}]} designators before an @samp{=} to specify a
26d4fec7
JM
1667nested subobject to initialize; the list is taken relative to the
1668subobject corresponding to the closest surrounding brace pair. For
1669example, with the @samp{struct point} declaration above:
1670
478c9e72 1671@smallexample
26d4fec7 1672struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
478c9e72 1673@end smallexample
26d4fec7 1674
8b6a5902
JJ
1675@noindent
1676If the same field is initialized multiple times, it will have value from
1677the last initialization. If any such overridden initialization has
1678side-effect, it is unspecified whether the side-effect happens or not.
2dd76960 1679Currently, GCC will discard them and issue a warning.
8b6a5902 1680
c1f7febf
RK
1681@node Case Ranges
1682@section Case Ranges
1683@cindex case ranges
1684@cindex ranges in case statements
1685
1686You can specify a range of consecutive values in a single @code{case} label,
1687like this:
1688
3ab51846 1689@smallexample
c1f7febf 1690case @var{low} ... @var{high}:
3ab51846 1691@end smallexample
c1f7febf
RK
1692
1693@noindent
1694This has the same effect as the proper number of individual @code{case}
1695labels, one for each integer value from @var{low} to @var{high}, inclusive.
1696
1697This feature is especially useful for ranges of ASCII character codes:
1698
3ab51846 1699@smallexample
c1f7febf 1700case 'A' ... 'Z':
3ab51846 1701@end smallexample
c1f7febf
RK
1702
1703@strong{Be careful:} Write spaces around the @code{...}, for otherwise
1704it may be parsed wrong when you use it with integer values. For example,
1705write this:
1706
3ab51846 1707@smallexample
c1f7febf 1708case 1 ... 5:
3ab51846 1709@end smallexample
c1f7febf
RK
1710
1711@noindent
1712rather than this:
1713
3ab51846 1714@smallexample
c1f7febf 1715case 1...5:
3ab51846 1716@end smallexample
c1f7febf
RK
1717
1718@node Cast to Union
1719@section Cast to a Union Type
1720@cindex cast to a union
1721@cindex union, casting to a
1722
1723A cast to union type is similar to other casts, except that the type
1724specified is a union type. You can specify the type either with
1725@code{union @var{tag}} or with a typedef name. A cast to union is actually
1726a constructor though, not a cast, and hence does not yield an lvalue like
4b404517 1727normal casts. (@xref{Compound Literals}.)
c1f7febf
RK
1728
1729The types that may be cast to the union type are those of the members
1730of the union. Thus, given the following union and variables:
1731
3ab51846 1732@smallexample
c1f7febf
RK
1733union foo @{ int i; double d; @};
1734int x;
1735double y;
3ab51846 1736@end smallexample
c1f7febf
RK
1737
1738@noindent
aee96fe9 1739both @code{x} and @code{y} can be cast to type @code{union foo}.
c1f7febf
RK
1740
1741Using the cast as the right-hand side of an assignment to a variable of
1742union type is equivalent to storing in a member of the union:
1743
3ab51846 1744@smallexample
c1f7febf 1745union foo u;
0d893a63 1746/* @r{@dots{}} */
c1f7febf
RK
1747u = (union foo) x @equiv{} u.i = x
1748u = (union foo) y @equiv{} u.d = y
3ab51846 1749@end smallexample
c1f7febf
RK
1750
1751You can also use the union cast as a function argument:
1752
3ab51846 1753@smallexample
c1f7febf 1754void hack (union foo);
0d893a63 1755/* @r{@dots{}} */
c1f7febf 1756hack ((union foo) x);
3ab51846 1757@end smallexample
c1f7febf 1758
4b404517
JM
1759@node Mixed Declarations
1760@section Mixed Declarations and Code
1761@cindex mixed declarations and code
1762@cindex declarations, mixed with code
1763@cindex code, mixed with declarations
1764
1765ISO C99 and ISO C++ allow declarations and code to be freely mixed
1766within compound statements. As an extension, GCC also allows this in
1767C89 mode. For example, you could do:
1768
3ab51846 1769@smallexample
4b404517 1770int i;
0d893a63 1771/* @r{@dots{}} */
4b404517
JM
1772i++;
1773int j = i + 2;
3ab51846 1774@end smallexample
4b404517
JM
1775
1776Each identifier is visible from where it is declared until the end of
1777the enclosing block.
1778
c1f7febf
RK
1779@node Function Attributes
1780@section Declaring Attributes of Functions
1781@cindex function attributes
1782@cindex declaring attributes of functions
1783@cindex functions that never return
6e9a3221 1784@cindex functions that return more than once
c1f7febf
RK
1785@cindex functions that have no side effects
1786@cindex functions in arbitrary sections
2a59078d 1787@cindex functions that behave like malloc
c1f7febf
RK
1788@cindex @code{volatile} applied to function
1789@cindex @code{const} applied to function
26f6672d 1790@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
b34c7881 1791@cindex functions with non-null pointer arguments
c1f7febf
RK
1792@cindex functions that are passed arguments in registers on the 386
1793@cindex functions that pop the argument stack on the 386
1794@cindex functions that do not pop the argument stack on the 386
1795
1796In GNU C, you declare certain things about functions called in your program
1797which help the compiler optimize function calls and check your code more
1798carefully.
1799
1800The keyword @code{__attribute__} allows you to specify special
1801attributes when making a declaration. This keyword is followed by an
9162542e 1802attribute specification inside double parentheses. The following
eacecf96 1803attributes are currently defined for functions on all targets:
837edd5f
GK
1804@code{aligned}, @code{alloc_size}, @code{noreturn},
1805@code{returns_twice}, @code{noinline}, @code{always_inline},
1806@code{flatten}, @code{pure}, @code{const}, @code{nothrow},
1807@code{sentinel}, @code{format}, @code{format_arg},
51bc54a6
DM
1808@code{no_instrument_function}, @code{section}, @code{constructor},
1809@code{destructor}, @code{used}, @code{unused}, @code{deprecated},
1810@code{weak}, @code{malloc}, @code{alias}, @code{warn_unused_result},
d752cfdb 1811@code{nonnull}, @code{gnu_inline}, @code{externally_visible},
d2af6a68
JJ
1812@code{hot}, @code{cold}, @code{artificial}, @code{error}
1813and @code{warning}.
837edd5f
GK
1814Several other attributes are defined for functions on particular
1815target systems. Other attributes, including @code{section} are
1816supported for variables declarations (@pxref{Variable Attributes}) and
1817for types (@pxref{Type Attributes}).
c1f7febf
RK
1818
1819You may also specify attributes with @samp{__} preceding and following
1820each keyword. This allows you to use them in header files without
1821being concerned about a possible macro of the same name. For example,
1822you may use @code{__noreturn__} instead of @code{noreturn}.
1823
2c5e91d2
JM
1824@xref{Attribute Syntax}, for details of the exact syntax for using
1825attributes.
1826
c1f7febf 1827@table @code
8a36672b 1828@c Keep this table alphabetized by attribute name. Treat _ as space.
c1f7febf 1829
c8619b90
NS
1830@item alias ("@var{target}")
1831@cindex @code{alias} attribute
1832The @code{alias} attribute causes the declaration to be emitted as an
1833alias for another symbol, which must be specified. For instance,
c1f7febf
RK
1834
1835@smallexample
c8619b90
NS
1836void __f () @{ /* @r{Do something.} */; @}
1837void f () __attribute__ ((weak, alias ("__f")));
c1f7febf
RK
1838@end smallexample
1839
a9b0b825 1840defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
52eb57df
RH
1841mangled name for the target must be used. It is an error if @samp{__f}
1842is not defined in the same translation unit.
c8619b90
NS
1843
1844Not all target machines support this attribute.
9162542e 1845
837edd5f
GK
1846@item aligned (@var{alignment})
1847@cindex @code{aligned} attribute
1848This attribute specifies a minimum alignment for the function,
1849measured in bytes.
1850
1851You cannot use this attribute to decrease the alignment of a function,
1852only to increase it. However, when you explicitly specify a function
1853alignment this will override the effect of the
1854@option{-falign-functions} (@pxref{Optimize Options}) option for this
1855function.
1856
1857Note that the effectiveness of @code{aligned} attributes may be
1858limited by inherent limitations in your linker. On many systems, the
1859linker is only able to arrange for functions to be aligned up to a
1860certain maximum alignment. (For some linkers, the maximum supported
1861alignment may be very very small.) See your linker documentation for
1862further information.
1863
1864The @code{aligned} attribute can also be used for variables and fields
1865(@pxref{Variable Attributes}.)
1866
51bc54a6
DM
1867@item alloc_size
1868@cindex @code{alloc_size} attribute
1869The @code{alloc_size} attribute is used to tell the compiler that the
1870function return value points to memory, where the size is given by
1871one or two of the functions parameters. GCC uses this
1872information to improve the correctness of @code{__builtin_object_size}.
1873
1874The function parameter(s) denoting the allocated size are specified by
1875one or two integer arguments supplied to the attribute. The allocated size
1876is either the value of the single function argument specified or the product
1877of the two function arguments specified. Argument numbering starts at
1878one.
1879
1880For instance,
1881
1882@smallexample
1883void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
1c42f5c6 1884void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
51bc54a6
DM
1885@end smallexample
1886
1887declares that my_calloc will return memory of the size given by
1888the product of parameter 1 and 2 and that my_realloc will return memory
1889of the size given by parameter 2.
1890
6aa77e6c 1891@item always_inline
c8619b90 1892@cindex @code{always_inline} function attribute
6aa77e6c
AH
1893Generally, functions are not inlined unless optimization is specified.
1894For functions declared inline, this attribute inlines the function even
1895if no optimization level was specified.
1896
4eb7fd83
JJ
1897@item gnu_inline
1898@cindex @code{gnu_inline} function attribute
da1c7394
ILT
1899This attribute should be used with a function which is also declared
1900with the @code{inline} keyword. It directs GCC to treat the function
1901as if it were defined in gnu89 mode even when compiling in C99 or
1902gnu99 mode.
1903
1904If the function is declared @code{extern}, then this definition of the
1905function is used only for inlining. In no case is the function
1906compiled as a standalone function, not even if you take its address
1907explicitly. Such an address becomes an external reference, as if you
1908had only declared the function, and had not defined it. This has
1909almost the effect of a macro. The way to use this is to put a
1910function definition in a header file with this attribute, and put
1911another copy of the function, without @code{extern}, in a library
1912file. The definition in the header file will cause most calls to the
1913function to be inlined. If any uses of the function remain, they will
1914refer to the single copy in the library. Note that the two
1915definitions of the functions need not be precisely the same, although
1916if they do not have the same effect your program may behave oddly.
1917
3a47c4e4
AO
1918In C, if the function is neither @code{extern} nor @code{static}, then
1919the function is compiled as a standalone function, as well as being
da1c7394
ILT
1920inlined where possible.
1921
1922This is how GCC traditionally handled functions declared
1923@code{inline}. Since ISO C99 specifies a different semantics for
1924@code{inline}, this function attribute is provided as a transition
1925measure and as a useful feature in its own right. This attribute is
1926available in GCC 4.1.3 and later. It is available if either of the
1927preprocessor macros @code{__GNUC_GNU_INLINE__} or
1928@code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
1929Function is As Fast As a Macro}.
4eb7fd83 1930
3a47c4e4
AO
1931In C++, this attribute does not depend on @code{extern} in any way,
1932but it still requires the @code{inline} keyword to enable its special
1933behavior.
1934
d752cfdb
JJ
1935@cindex @code{artificial} function attribute
1936@item artificial
1937This attribute is useful for small inline wrappers which if possible
1938should appear during debugging as a unit, depending on the debug
1939info format it will either mean marking the function as artificial
1940or using the caller location for all instructions within the inlined
1941body.
1942
0691d1d4
RG
1943@cindex @code{flatten} function attribute
1944@item flatten
1945Generally, inlining into a function is limited. For a function marked with
1946this attribute, every call inside this function will be inlined, if possible.
1947Whether the function itself is considered for inlining depends on its size and
1948the current inlining parameters. The @code{flatten} attribute only works
1949reliably in unit-at-a-time mode.
1950
d2af6a68
JJ
1951@item error ("@var{message}")
1952@cindex @code{error} function attribute
1953If this attribute is used on a function declaration and a call to such a function
1954is not eliminated through dead code elimination or other optimizations, an error
1955which will include @var{message} will be diagnosed. This is useful
1956for compile time checking, especially together with @code{__builtin_constant_p}
1957and inline functions where checking the inline function arguments is not
1958possible through @code{extern char [(condition) ? 1 : -1];} tricks.
1959While it is possible to leave the function undefined and thus invoke
1960a link failure, when using this attribute the problem will be diagnosed
1961earlier and with exact location of the call even in presence of inline
1962functions or when not emitting debugging information.
1963
1964@item warning ("@var{message}")
1965@cindex @code{warning} function attribute
1966If this attribute is used on a function declaration and a call to such a function
1967is not eliminated through dead code elimination or other optimizations, a warning
1968which will include @var{message} will be diagnosed. This is useful
1969for compile time checking, especially together with @code{__builtin_constant_p}
1970and inline functions. While it is possible to define the function with
1971a message in @code{.gnu.warning*} section, when using this attribute the problem
1972will be diagnosed earlier and with exact location of the call even in presence
1973of inline functions or when not emitting debugging information.
1974
c8619b90
NS
1975@item cdecl
1976@cindex functions that do pop the argument stack on the 386
1977@opindex mrtd
1978On the Intel 386, the @code{cdecl} attribute causes the compiler to
1979assume that the calling function will pop off the stack space used to
1980pass arguments. This is
1981useful to override the effects of the @option{-mrtd} switch.
2a8f6b90 1982
2a8f6b90 1983@item const
c8619b90 1984@cindex @code{const} function attribute
2a8f6b90
JH
1985Many functions do not examine any values except their arguments, and
1986have no effects except the return value. Basically this is just slightly
50c177f7 1987more strict class than the @code{pure} attribute below, since function is not
2a59078d 1988allowed to read global memory.
2a8f6b90
JH
1989
1990@cindex pointer arguments
1991Note that a function that has pointer arguments and examines the data
1992pointed to must @emph{not} be declared @code{const}. Likewise, a
1993function that calls a non-@code{const} function usually must not be
1994@code{const}. It does not make sense for a @code{const} function to
1995return @code{void}.
1996
f0523f02 1997The attribute @code{const} is not implemented in GCC versions earlier
c1f7febf
RK
1998than 2.5. An alternative way to declare that a function has no side
1999effects, which works in the current version and in some older versions,
2000is as follows:
2001
2002@smallexample
2003typedef int intfn ();
2004
2005extern const intfn square;
2006@end smallexample
2007
2008This approach does not work in GNU C++ from 2.6.0 on, since the language
2009specifies that the @samp{const} must be attached to the return value.
2010
c8619b90
NS
2011@item constructor
2012@itemx destructor
fc8600f9
MM
2013@itemx constructor (@var{priority})
2014@itemx destructor (@var{priority})
c8619b90
NS
2015@cindex @code{constructor} function attribute
2016@cindex @code{destructor} function attribute
2017The @code{constructor} attribute causes the function to be called
2018automatically before execution enters @code{main ()}. Similarly, the
2019@code{destructor} attribute causes the function to be called
2020automatically after @code{main ()} has completed or @code{exit ()} has
2021been called. Functions with these attributes are useful for
2022initializing data that will be used implicitly during the execution of
2023the program.
2024
fc8600f9
MM
2025You may provide an optional integer priority to control the order in
2026which constructor and destructor functions are run. A constructor
2027with a smaller priority number runs before a constructor with a larger
2028priority number; the opposite relationship holds for destructors. So,
2029if you have a constructor that allocates a resource and a destructor
2030that deallocates the same resource, both functions typically have the
2031same priority. The priorities for constructor and destructor
2032functions are the same as those specified for namespace-scope C++
2033objects (@pxref{C++ Attributes}).
2034
c8619b90
NS
2035These attributes are not currently implemented for Objective-C@.
2036
2037@item deprecated
2038@cindex @code{deprecated} attribute.
2039The @code{deprecated} attribute results in a warning if the function
2040is used anywhere in the source file. This is useful when identifying
2041functions that are expected to be removed in a future version of a
2042program. The warning also includes the location of the declaration
2043of the deprecated function, to enable users to easily find further
2044information about why the function is deprecated, or what they should
2045do instead. Note that the warnings only occurs for uses:
2046
2047@smallexample
2048int old_fn () __attribute__ ((deprecated));
2049int old_fn ();
2050int (*fn_ptr)() = old_fn;
2051@end smallexample
2052
2053results in a warning on line 3 but not line 2.
2054
2055The @code{deprecated} attribute can also be used for variables and
2056types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2057
2058@item dllexport
2059@cindex @code{__declspec(dllexport)}
b2ca3702
MM
2060On Microsoft Windows targets and Symbian OS targets the
2061@code{dllexport} attribute causes the compiler to provide a global
2062pointer to a pointer in a DLL, so that it can be referenced with the
2063@code{dllimport} attribute. On Microsoft Windows targets, the pointer
2064name is formed by combining @code{_imp__} and the function or variable
2065name.
2066
2067You can use @code{__declspec(dllexport)} as a synonym for
2068@code{__attribute__ ((dllexport))} for compatibility with other
2069compilers.
2070
2071On systems that support the @code{visibility} attribute, this
3a687f8b
MM
2072attribute also implies ``default'' visibility. It is an error to
2073explicitly specify any other visibility.
c8619b90 2074
b2ca3702
MM
2075Currently, the @code{dllexport} attribute is ignored for inlined
2076functions, unless the @option{-fkeep-inline-functions} flag has been
2077used. The attribute is also ignored for undefined symbols.
c8619b90 2078
8a36672b
JM
2079When applied to C++ classes, the attribute marks defined non-inlined
2080member functions and static data members as exports. Static consts
c8619b90
NS
2081initialized in-class are not marked unless they are also defined
2082out-of-class.
2083
b55e3aad 2084For Microsoft Windows targets there are alternative methods for
b2ca3702 2085including the symbol in the DLL's export table such as using a
b55e3aad
NC
2086@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2087the @option{--export-all} linker flag.
c8619b90
NS
2088
2089@item dllimport
2090@cindex @code{__declspec(dllimport)}
b2ca3702 2091On Microsoft Windows and Symbian OS targets, the @code{dllimport}
b55e3aad 2092attribute causes the compiler to reference a function or variable via
b2ca3702 2093a global pointer to a pointer that is set up by the DLL exporting the
3a687f8b
MM
2094symbol. The attribute implies @code{extern}. On Microsoft Windows
2095targets, the pointer name is formed by combining @code{_imp__} and the
2096function or variable name.
b2ca3702
MM
2097
2098You can use @code{__declspec(dllimport)} as a synonym for
2099@code{__attribute__ ((dllimport))} for compatibility with other
2100compilers.
c8619b90 2101
3a687f8b
MM
2102On systems that support the @code{visibility} attribute, this
2103attribute also implies ``default'' visibility. It is an error to
2104explicitly specify any other visibility.
2105
8a36672b 2106Currently, the attribute is ignored for inlined functions. If the
c8619b90
NS
2107attribute is applied to a symbol @emph{definition}, an error is reported.
2108If a symbol previously declared @code{dllimport} is later defined, the
2109attribute is ignored in subsequent references, and a warning is emitted.
2110The attribute is also overridden by a subsequent declaration as
2111@code{dllexport}.
2112
2113When applied to C++ classes, the attribute marks non-inlined
2114member functions and static data members as imports. However, the
2115attribute is ignored for virtual methods to allow creation of vtables
2116using thunks.
2117
b2ca3702 2118On the SH Symbian OS target the @code{dllimport} attribute also has
78466c0e 2119another affect---it can cause the vtable and run-time type information
b2ca3702
MM
2120for a class to be exported. This happens when the class has a
2121dllimport'ed constructor or a non-inline, non-pure virtual function
2122and, for either of those two conditions, the class also has a inline
2123constructor or destructor and has a key function that is defined in
2124the current translation unit.
b55e3aad
NC
2125
2126For Microsoft Windows based targets the use of the @code{dllimport}
2127attribute on functions is not necessary, but provides a small
8a36672b 2128performance benefit by eliminating a thunk in the DLL@. The use of the
b55e3aad 2129@code{dllimport} attribute on imported variables was required on older
b2ca3702 2130versions of the GNU linker, but can now be avoided by passing the
8a36672b 2131@option{--enable-auto-import} switch to the GNU linker. As with
b2ca3702 2132functions, using the attribute for a variable eliminates a thunk in
8a36672b 2133the DLL@.
b2ca3702 2134
d32034a7
DS
2135One drawback to using this attribute is that a pointer to a
2136@emph{variable} marked as @code{dllimport} cannot be used as a constant
2137address. However, a pointer to a @emph{function} with the
2138@code{dllimport} attribute can be used as a constant initializer; in
2139this case, the address of a stub function in the import lib is
2140referenced. On Microsoft Windows targets, the attribute can be disabled
b2ca3702 2141for functions by setting the @option{-mnop-fun-dllimport} flag.
c8619b90
NS
2142
2143@item eightbit_data
2144@cindex eight bit data on the H8/300, H8/300H, and H8S
2145Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2146variable should be placed into the eight bit data section.
2147The compiler will generate more efficient code for certain operations
2148on data in the eight bit data area. Note the eight bit data area is limited to
2149256 bytes of data.
2150
2151You must use GAS and GLD from GNU binutils version 2.7 or later for
2152this attribute to work correctly.
2153
0d4a78eb
BS
2154@item exception_handler
2155@cindex exception handler functions on the Blackfin processor
2156Use this attribute on the Blackfin to indicate that the specified function
2157is an exception handler. The compiler will generate function entry and
2158exit sequences suitable for use in an exception handler when this
2159attribute is present.
2160
c8619b90
NS
2161@item far
2162@cindex functions which handle memory bank switching
2163On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2164use a calling convention that takes care of switching memory banks when
2165entering and leaving a function. This calling convention is also the
2166default when using the @option{-mlong-calls} option.
2167
2168On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2169to call and return from a function.
2170
2171On 68HC11 the compiler will generate a sequence of instructions
2172to invoke a board-specific routine to switch the memory bank and call the
8a36672b 2173real function. The board-specific routine simulates a @code{call}.
c8619b90 2174At the end of a function, it will jump to a board-specific routine
8a36672b 2175instead of using @code{rts}. The board-specific return routine simulates
c8619b90
NS
2176the @code{rtc}.
2177
2178@item fastcall
2179@cindex functions that pop the argument stack on the 386
2180On the Intel 386, the @code{fastcall} attribute causes the compiler to
2f84b963
RG
2181pass the first argument (if of integral type) in the register ECX and
2182the second argument (if of integral type) in the register EDX@. Subsequent
2183and other typed arguments are passed on the stack. The called function will
2184pop the arguments off the stack. If the number of arguments is variable all
c8619b90 2185arguments are pushed on the stack.
c1f7febf
RK
2186
2187@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2188@cindex @code{format} function attribute
84330467 2189@opindex Wformat
bb72a084 2190The @code{format} attribute specifies that a function takes @code{printf},
26f6672d
JM
2191@code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2192should be type-checked against a format string. For example, the
2193declaration:
c1f7febf
RK
2194
2195@smallexample
2196extern int
2197my_printf (void *my_object, const char *my_format, ...)
2198 __attribute__ ((format (printf, 2, 3)));
2199@end smallexample
2200
2201@noindent
2202causes the compiler to check the arguments in calls to @code{my_printf}
2203for consistency with the @code{printf} style format string argument
2204@code{my_format}.
2205
2206The parameter @var{archetype} determines how the format string is
6590fc9f
KT
2207interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2208@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2209@code{strfmon}. (You can also use @code{__printf__},
2210@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2211MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2212@code{ms_strftime} are also present.
2213@var{archtype} values such as @code{printf} refer to the formats accepted
2214by the system's C run-time library, while @code{gnu_} values always refer
2215to the formats accepted by the GNU C Library. On Microsoft Windows
2216targets, @code{ms_} values refer to the formats accepted by the
2217@file{msvcrt.dll} library.
2218The parameter @var{string-index}
2219specifies which argument is the format string argument (starting
2220from 1), while @var{first-to-check} is the number of the first
2221argument to check against the format string. For functions
2222where the arguments are not available to be checked (such as
c1f7febf 2223@code{vprintf}), specify the third parameter as zero. In this case the
b722c82c
JM
2224compiler only checks the format string for consistency. For
2225@code{strftime} formats, the third parameter is required to be zero.
f57a2e3a
BE
2226Since non-static C++ methods have an implicit @code{this} argument, the
2227arguments of such methods should be counted from two, not one, when
2228giving values for @var{string-index} and @var{first-to-check}.
c1f7febf
RK
2229
2230In the example above, the format string (@code{my_format}) is the second
2231argument of the function @code{my_print}, and the arguments to check
2232start with the third argument, so the correct parameters for the format
2233attribute are 2 and 3.
2234
84330467 2235@opindex ffreestanding
e6e931b7 2236@opindex fno-builtin
c1f7febf 2237The @code{format} attribute allows you to identify your own functions
f0523f02 2238which take format strings as arguments, so that GCC can check the
b722c82c 2239calls to these functions for errors. The compiler always (unless
e6e931b7 2240@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
b722c82c 2241for the standard library functions @code{printf}, @code{fprintf},
bb72a084 2242@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
c1f7febf 2243@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
84330467 2244warnings are requested (using @option{-Wformat}), so there is no need to
b722c82c
JM
2245modify the header file @file{stdio.h}. In C99 mode, the functions
2246@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
26f6672d 2247@code{vsscanf} are also checked. Except in strictly conforming C
b4c984fb
KG
2248standard modes, the X/Open function @code{strfmon} is also checked as
2249are @code{printf_unlocked} and @code{fprintf_unlocked}.
b722c82c 2250@xref{C Dialect Options,,Options Controlling C Dialect}.
c1f7febf 2251
a2bec818
DJ
2252The target may provide additional types of format checks.
2253@xref{Target Format Checks,,Format Checks Specific to Particular
2254Target Machines}.
2255
c1f7febf
RK
2256@item format_arg (@var{string-index})
2257@cindex @code{format_arg} function attribute
84330467 2258@opindex Wformat-nonliteral
26f6672d
JM
2259The @code{format_arg} attribute specifies that a function takes a format
2260string for a @code{printf}, @code{scanf}, @code{strftime} or
2261@code{strfmon} style function and modifies it (for example, to translate
2262it into another language), so the result can be passed to a
2263@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2264function (with the remaining arguments to the format function the same
2265as they would have been for the unmodified string). For example, the
2266declaration:
c1f7febf
RK
2267
2268@smallexample
2269extern char *
2270my_dgettext (char *my_domain, const char *my_format)
2271 __attribute__ ((format_arg (2)));
2272@end smallexample
2273
2274@noindent
26f6672d
JM
2275causes the compiler to check the arguments in calls to a @code{printf},
2276@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2277format string argument is a call to the @code{my_dgettext} function, for
2278consistency with the format string argument @code{my_format}. If the
2279@code{format_arg} attribute had not been specified, all the compiler
2280could tell in such calls to format functions would be that the format
2281string argument is not constant; this would generate a warning when
84330467 2282@option{-Wformat-nonliteral} is used, but the calls could not be checked
26f6672d 2283without the attribute.
c1f7febf
RK
2284
2285The parameter @var{string-index} specifies which argument is the format
f57a2e3a
BE
2286string argument (starting from one). Since non-static C++ methods have
2287an implicit @code{this} argument, the arguments of such methods should
2288be counted from two.
c1f7febf
RK
2289
2290The @code{format-arg} attribute allows you to identify your own
f0523f02 2291functions which modify format strings, so that GCC can check the
26f6672d
JM
2292calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2293type function whose operands are a call to one of your own function.
2294The compiler always treats @code{gettext}, @code{dgettext}, and
2295@code{dcgettext} in this manner except when strict ISO C support is
84330467 2296requested by @option{-ansi} or an appropriate @option{-std} option, or
e6e931b7
JM
2297@option{-ffreestanding} or @option{-fno-builtin}
2298is used. @xref{C Dialect Options,,Options
26f6672d 2299Controlling C Dialect}.
c1f7febf 2300
c8619b90 2301@item function_vector
561642fa 2302@cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
c8619b90
NS
2303Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2304function should be called through the function vector. Calling a
2305function through the function vector will reduce code size, however;
2306the function vector has a limited size (maximum 128 entries on the H8/300
2307and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
b34c7881 2308
561642fa
AP
2309In SH2A target, this attribute declares a function to be called using the
2310TBR relative addressing mode. The argument to this attribute is the entry
2311number of the same function in a vector table containing all the TBR
2312relative addressable functions. For the successful jump, register TBR
2313should contain the start address of this TBR relative vector table.
2314In the startup routine of the user application, user needs to care of this
2315TBR register initialization. The TBR relative vector table can have at
2316max 256 function entries. The jumps to these functions will be generated
2317using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
c8619b90
NS
2318You must use GAS and GLD from GNU binutils version 2.7 or later for
2319this attribute to work correctly.
b34c7881 2320
561642fa
AP
2321Please refer the example of M16C target, to see the use of this
2322attribute while declaring a function,
2323
2324In an application, for a function being called once, this attribute will
2325save at least 8 bytes of code; and if other successive calls are being
2326made to the same function, it will save 2 bytes of code per each of these
2327calls.
2328
5abd2125
JS
2329On M16C/M32C targets, the @code{function_vector} attribute declares a
2330special page subroutine call function. Use of this attribute reduces
2331the code size by 2 bytes for each call generated to the
2332subroutine. The argument to the attribute is the vector number entry
2333from the special page vector table which contains the 16 low-order
2334bits of the subroutine's entry address. Each vector table has special
2335page number (18 to 255) which are used in @code{jsrs} instruction.
2336Jump addresses of the routines are generated by adding 0x0F0000 (in
2337case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2338byte addresses set in the vector table. Therefore you need to ensure
2339that all the special page vector routines should get mapped within the
2340address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2341(for M32C).
2342
2343In the following example 2 bytes will be saved for each call to
2344function @code{foo}.
2345
2346@smallexample
2347void foo (void) __attribute__((function_vector(0x18)));
2348void foo (void)
2349@{
2350@}
2351
2352void bar (void)
2353@{
2354 foo();
2355@}
2356@end smallexample
2357
2358If functions are defined in one file and are called in another file,
2359then be sure to write this declaration in both files.
2360
2361This attribute is ignored for R8C target.
2362
c8619b90
NS
2363@item interrupt
2364@cindex interrupt handler functions
cd985f66 2365Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k,
2bccb817
KH
2366and Xstormy16 ports to indicate that the specified function is an
2367interrupt handler. The compiler will generate function entry and exit
2368sequences suitable for use in an interrupt handler when this attribute
2369is present.
b34c7881 2370
2bccb817 2371Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, and
0d4a78eb 2372SH processors can be specified via the @code{interrupt_handler} attribute.
b34c7881 2373
c8619b90 2374Note, on the AVR, interrupts will be enabled inside the function.
9162542e 2375
c8619b90
NS
2376Note, for the ARM, you can specify the kind of interrupt to be handled by
2377adding an optional parameter to the interrupt attribute like this:
e23bd218
IR
2378
2379@smallexample
c8619b90 2380void f () __attribute__ ((interrupt ("IRQ")));
e23bd218
IR
2381@end smallexample
2382
c8619b90 2383Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
e23bd218 2384
7a085dce 2385On ARMv7-M the interrupt type is ignored, and the attribute means the function
5b3e6663
PB
2386may be called with a word aligned stack pointer.
2387
c8619b90 2388@item interrupt_handler
0d4a78eb
BS
2389@cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2390Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2391indicate that the specified function is an interrupt handler. The compiler
2392will generate function entry and exit sequences suitable for use in an
2393interrupt handler when this attribute is present.
2394
a4242737
KH
2395@item interrupt_thread
2396@cindex interrupt thread functions on fido
2397Use this attribute on fido, a subarchitecture of the m68k, to indicate
2398that the specified function is an interrupt handler that is designed
2399to run as a thread. The compiler omits generate prologue/epilogue
2400sequences and replaces the return instruction with a @code{sleep}
2401instruction. This attribute is available only on fido.
2402
0d4a78eb
BS
2403@item kspisusp
2404@cindex User stack pointer in interrupts on the Blackfin
2405When used together with @code{interrupt_handler}, @code{exception_handler}
2406or @code{nmi_handler}, code will be generated to load the stack pointer
2407from the USP register in the function prologue.
72954a4f 2408
4af797b5
JZ
2409@item l1_text
2410@cindex @code{l1_text} function attribute
2411This attribute specifies a function to be placed into L1 Instruction
0ee2ea09 2412SRAM@. The function will be put into a specific section named @code{.l1.text}.
4af797b5
JZ
2413With @option{-mfdpic}, function calls with a such function as the callee
2414or caller will use inlined PLT.
2415
c8619b90
NS
2416@item long_call/short_call
2417@cindex indirect calls on ARM
2418This attribute specifies how a particular function is called on
2419ARM@. Both attributes override the @option{-mlong-calls} (@pxref{ARM Options})
2420command line switch and @code{#pragma long_calls} settings. The
87c365a4
NS
2421@code{long_call} attribute indicates that the function might be far
2422away from the call site and require a different (more expensive)
2423calling sequence. The @code{short_call} attribute always places
c8619b90
NS
2424the offset to the function from the call site into the @samp{BL}
2425instruction directly.
72954a4f 2426
c8619b90
NS
2427@item longcall/shortcall
2428@cindex functions called via pointer on the RS/6000 and PowerPC
87c365a4
NS
2429On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2430indicates that the function might be far away from the call site and
2431require a different (more expensive) calling sequence. The
2432@code{shortcall} attribute indicates that the function is always close
2433enough for the shorter calling sequence to be used. These attributes
2434override both the @option{-mlongcall} switch and, on the RS/6000 and
2435PowerPC, the @code{#pragma longcall} setting.
72954a4f 2436
c8619b90
NS
2437@xref{RS/6000 and PowerPC Options}, for more information on whether long
2438calls are necessary.
c1f7febf 2439
cd3a59b3 2440@item long_call/near/far
4dbdb061 2441@cindex indirect calls on MIPS
cd3a59b3
SL
2442These attributes specify how a particular function is called on MIPS@.
2443The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2444command-line switch. The @code{long_call} and @code{far} attributes are
2445synonyms, and cause the compiler to always call
4dbdb061 2446the function by first loading its address into a register, and then using
cd3a59b3
SL
2447the contents of that register. The @code{near} attribute has the opposite
2448effect; it specifies that non-PIC calls should be made using the more
2449efficient @code{jal} instruction.
4dbdb061 2450
140592a0
AG
2451@item malloc
2452@cindex @code{malloc} attribute
2453The @code{malloc} attribute is used to tell the compiler that a function
928a5ba9
JM
2454may be treated as if any non-@code{NULL} pointer it returns cannot
2455alias any other pointer valid when the function returns.
140592a0 2456This will often improve optimization.
928a5ba9
JM
2457Standard functions with this property include @code{malloc} and
2458@code{calloc}. @code{realloc}-like functions have this property as
2459long as the old pointer is never referred to (including comparing it
2460to the new pointer) after the function returns a non-@code{NULL}
2461value.
140592a0 2462
f9e4a411
SL
2463@item mips16/nomips16
2464@cindex @code{mips16} attribute
2465@cindex @code{nomips16} attribute
2466
2467On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2468function attributes to locally select or turn off MIPS16 code generation.
2469A function with the @code{mips16} attribute is emitted as MIPS16 code,
2470while MIPS16 code generation is disabled for functions with the
2471@code{nomips16} attribute. These attributes override the
2472@option{-mips16} and @option{-mno-mips16} options on the command line
2473(@pxref{MIPS Options}).
2474
2475When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2476preprocessor symbol @code{__mips16} reflects the setting on the command line,
2477not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2478may interact badly with some GCC extensions such as @code{__builtin_apply}
2479(@pxref{Constructing Calls}).
2480
c8619b90
NS
2481@item model (@var{model-name})
2482@cindex function addressability on the M32R/D
2483@cindex variable addressability on the IA-64
2484
2485On the M32R/D, use this attribute to set the addressability of an
2486object, and of the code generated for a function. The identifier
2487@var{model-name} is one of @code{small}, @code{medium}, or
2488@code{large}, representing each of the code models.
2489
2490Small model objects live in the lower 16MB of memory (so that their
2491addresses can be loaded with the @code{ld24} instruction), and are
2492callable with the @code{bl} instruction.
2493
2494Medium model objects may live anywhere in the 32-bit address space (the
2495compiler will generate @code{seth/add3} instructions to load their addresses),
2496and are callable with the @code{bl} instruction.
2497
2498Large model objects may live anywhere in the 32-bit address space (the
2499compiler will generate @code{seth/add3} instructions to load their addresses),
2500and may not be reachable with the @code{bl} instruction (the compiler will
2501generate the much slower @code{seth/add3/jl} instruction sequence).
2502
2503On IA-64, use this attribute to set the addressability of an object.
2504At present, the only supported identifier for @var{model-name} is
2505@code{small}, indicating addressability via ``small'' (22-bit)
2506addresses (so that their addresses can be loaded with the @code{addl}
2507instruction). Caveat: such addressing is by definition not position
2508independent and hence this attribute must not be used for objects
2509defined by shared libraries.
2510
7c800926 2511@item ms_abi/sysv_abi
f9ac6b1e 2512@cindex @code{ms_abi} attribute
7c800926
KT
2513@cindex @code{sysv_abi} attribute
2514
2515On 64-bit x86_65-*-* targets, you can use an ABI attribute to indicate
2516which calling convention should be used for a function. The @code{ms_abi}
2517attribute tells the compiler to use the Microsoft ABI, while the
2518@code{sysv_abi} attribute tells the compiler to use the ABI used on
2519GNU/Linux and other systems. The default is to use the Microsoft ABI
2520when targeting Windows. On all other systems, the default is the AMD ABI.
2521
2522Note, This feature is currently sorried out for Windows targets trying to
2523
c8619b90
NS
2524@item naked
2525@cindex function without a prologue/epilogue code
8d8da227 2526Use this attribute on the ARM, AVR, IP2K and SPU ports to indicate that
85d9c13c 2527the specified function does not need prologue/epilogue sequences generated by
007e61c2
PB
2528the compiler. It is up to the programmer to provide these sequences. The
2529only statements that can be safely included in naked functions are
2530@code{asm} statements that do not have operands. All other statements,
2531including declarations of local variables, @code{if} statements, and so
2532forth, should be avoided. Naked functions should be used to implement the
2533body of an assembly function, while allowing the compiler to construct
2534the requisite function declaration for the assembler.
c8619b90
NS
2535
2536@item near
2537@cindex functions which do not handle memory bank switching on 68HC11/68HC12
2538On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
2539use the normal calling convention based on @code{jsr} and @code{rts}.
2540This attribute can be used to cancel the effect of the @option{-mlong-calls}
2541option.
2542
0d4a78eb
BS
2543@item nesting
2544@cindex Allow nesting in an interrupt handler on the Blackfin processor.
2545Use this attribute together with @code{interrupt_handler},
2546@code{exception_handler} or @code{nmi_handler} to indicate that the function
2547entry code should enable nested interrupts or exceptions.
2548
2549@item nmi_handler
2550@cindex NMI handler functions on the Blackfin processor
2551Use this attribute on the Blackfin to indicate that the specified function
2552is an NMI handler. The compiler will generate function entry and
2553exit sequences suitable for use in an NMI handler when this
2554attribute is present.
2555
c8619b90
NS
2556@item no_instrument_function
2557@cindex @code{no_instrument_function} function attribute
2558@opindex finstrument-functions
2559If @option{-finstrument-functions} is given, profiling function calls will
2560be generated at entry and exit of most user-compiled functions.
2561Functions with this attribute will not be so instrumented.
2562
2563@item noinline
2564@cindex @code{noinline} function attribute
2565This function attribute prevents a function from being considered for
2566inlining.
ccd2a21e
HPN
2567@c Don't enumerate the optimizations by name here; we try to be
2568@c future-compatible with this mechanism.
2569If the function does not have side-effects, there are optimizations
2570other than inlining that causes function calls to be optimized away,
2571although the function call is live. To keep such calls from being
2572optimized away, put
2573@smallexample
2574asm ("");
2575@end smallexample
2576(@pxref{Extended Asm}) in the called function, to serve as a special
2577side-effect.
c8619b90
NS
2578
2579@item nonnull (@var{arg-index}, @dots{})
2580@cindex @code{nonnull} function attribute
2581The @code{nonnull} attribute specifies that some function parameters should
2582be non-null pointers. For instance, the declaration:
c1f7febf
RK
2583
2584@smallexample
c8619b90
NS
2585extern void *
2586my_memcpy (void *dest, const void *src, size_t len)
6ccde948 2587 __attribute__((nonnull (1, 2)));
c1f7febf
RK
2588@end smallexample
2589
c8619b90
NS
2590@noindent
2591causes the compiler to check that, in calls to @code{my_memcpy},
2592arguments @var{dest} and @var{src} are non-null. If the compiler
2593determines that a null pointer is passed in an argument slot marked
2594as non-null, and the @option{-Wnonnull} option is enabled, a warning
2595is issued. The compiler may also choose to make optimizations based
2596on the knowledge that certain function arguments will not be null.
af3e86c2 2597
c8619b90
NS
2598If no argument index list is given to the @code{nonnull} attribute,
2599all pointer arguments are marked as non-null. To illustrate, the
2600following declaration is equivalent to the previous example:
47bd70b5
JJ
2601
2602@smallexample
c8619b90
NS
2603extern void *
2604my_memcpy (void *dest, const void *src, size_t len)
6ccde948 2605 __attribute__((nonnull));
47bd70b5
JJ
2606@end smallexample
2607
c8619b90
NS
2608@item noreturn
2609@cindex @code{noreturn} function attribute
2610A few standard library functions, such as @code{abort} and @code{exit},
2611cannot return. GCC knows this automatically. Some programs define
2612their own functions that never return. You can declare them
2613@code{noreturn} to tell the compiler this fact. For example,
9e8aab55 2614
c8619b90
NS
2615@smallexample
2616@group
2617void fatal () __attribute__ ((noreturn));
d5c4db17 2618
c8619b90
NS
2619void
2620fatal (/* @r{@dots{}} */)
2621@{
2622 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
2623 exit (1);
2624@}
2625@end group
2626@end smallexample
9e8aab55 2627
c8619b90
NS
2628The @code{noreturn} keyword tells the compiler to assume that
2629@code{fatal} cannot return. It can then optimize without regard to what
2630would happen if @code{fatal} ever did return. This makes slightly
2631better code. More importantly, it helps avoid spurious warnings of
2632uninitialized variables.
9e8aab55 2633
c8619b90
NS
2634The @code{noreturn} keyword does not affect the exceptional path when that
2635applies: a @code{noreturn}-marked function may still return to the caller
2e9522f4 2636by throwing an exception or calling @code{longjmp}.
9e8aab55 2637
c8619b90
NS
2638Do not assume that registers saved by the calling function are
2639restored before calling the @code{noreturn} function.
47bd70b5 2640
c8619b90
NS
2641It does not make sense for a @code{noreturn} function to have a return
2642type other than @code{void}.
c1f7febf 2643
c8619b90
NS
2644The attribute @code{noreturn} is not implemented in GCC versions
2645earlier than 2.5. An alternative way to declare that a function does
2646not return, which works in the current version and in some older
2647versions, is as follows:
5d34c8e9 2648
c8619b90
NS
2649@smallexample
2650typedef void voidfn ();
c1f7febf 2651
c8619b90
NS
2652volatile voidfn fatal;
2653@end smallexample
e91f04de 2654
a1e73046
PC
2655This approach does not work in GNU C++.
2656
c8619b90
NS
2657@item nothrow
2658@cindex @code{nothrow} function attribute
2659The @code{nothrow} attribute is used to inform the compiler that a
2660function cannot throw an exception. For example, most functions in
2661the standard C library can be guaranteed not to throw an exception
2662with the notable exceptions of @code{qsort} and @code{bsearch} that
2663take function pointer arguments. The @code{nothrow} attribute is not
3f3174b6 2664implemented in GCC versions earlier than 3.3.
c1f7febf 2665
c8619b90
NS
2666@item pure
2667@cindex @code{pure} function attribute
2668Many functions have no effects except the return value and their
2669return value depends only on the parameters and/or global variables.
2670Such a function can be subject
2671to common subexpression elimination and loop optimization just as an
2672arithmetic operator would be. These functions should be declared
2673with the attribute @code{pure}. For example,
a5c76ee6 2674
c8619b90
NS
2675@smallexample
2676int square (int) __attribute__ ((pure));
2677@end smallexample
c1f7febf 2678
c8619b90
NS
2679@noindent
2680says that the hypothetical function @code{square} is safe to call
2681fewer times than the program says.
c27ba912 2682
c8619b90
NS
2683Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
2684Interesting non-pure functions are functions with infinite loops or those
2685depending on volatile memory or other system resource, that may change between
2686two consecutive calls (such as @code{feof} in a multithreading environment).
c1f7febf 2687
c8619b90
NS
2688The attribute @code{pure} is not implemented in GCC versions earlier
2689than 2.96.
c1f7febf 2690
52bf96d2
JH
2691@item hot
2692@cindex @code{hot} function attribute
2693The @code{hot} attribute is used to inform the compiler that a function is a
2694hot spot of the compiled program. The function is optimized more aggressively
2695and on many target it is placed into special subsection of the text section so
2696all hot functions appears close together improving locality.
2697
2698When profile feedback is available, via @option{-fprofile-use}, hot functions
2699are automatically detected and this attribute is ignored.
2700
2701The @code{hot} attribute is not implemented in GCC versions earlier than 4.3.
2702
2703@item cold
2704@cindex @code{cold} function attribute
2705The @code{cold} attribute is used to inform the compiler that a function is
2706unlikely executed. The function is optimized for size rather than speed and on
2707many targets it is placed into special subsection of the text section so all
2708cold functions appears close together improving code locality of non-cold parts
2709of program. The paths leading to call of cold functions within code are marked
44c7bd63 2710as unlikely by the branch prediction mechanism. It is thus useful to mark
52bf96d2
JH
2711functions used to handle unlikely conditions, such as @code{perror}, as cold to
2712improve optimization of hot functions that do call marked functions in rare
2713occasions.
2714
2715When profile feedback is available, via @option{-fprofile-use}, hot functions
2716are automatically detected and this attribute is ignored.
2717
2718The @code{hot} attribute is not implemented in GCC versions earlier than 4.3.
2719
c8619b90
NS
2720@item regparm (@var{number})
2721@cindex @code{regparm} attribute
2722@cindex functions that are passed arguments in registers on the 386
2723On the Intel 386, the @code{regparm} attribute causes the compiler to
2f84b963
RG
2724pass arguments number one to @var{number} if they are of integral type
2725in registers EAX, EDX, and ECX instead of on the stack. Functions that
2726take a variable number of arguments will continue to be passed all of their
c8619b90 2727arguments on the stack.
6d3d9133 2728
c8619b90
NS
2729Beware that on some ELF systems this attribute is unsuitable for
2730global functions in shared libraries with lazy binding (which is the
2731default). Lazy binding will send the first call via resolving code in
2732the loader, which might assume EAX, EDX and ECX can be clobbered, as
2733per the standard calling conventions. Solaris 8 is affected by this.
2734GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
2735safe since the loaders there save all registers. (Lazy binding can be
2736disabled with the linker or the loader if desired, to avoid the
2737problem.)
6d3d9133 2738
2f84b963
RG
2739@item sseregparm
2740@cindex @code{sseregparm} attribute
2741On the Intel 386 with SSE support, the @code{sseregparm} attribute
56829cae 2742causes the compiler to pass up to 3 floating point arguments in
2f84b963
RG
2743SSE registers instead of on the stack. Functions that take a
2744variable number of arguments will continue to pass all of their
2745floating point arguments on the stack.
2746
33932946
SH
2747@item force_align_arg_pointer
2748@cindex @code{force_align_arg_pointer} attribute
2749On the Intel x86, the @code{force_align_arg_pointer} attribute may be
2750applied to individual function definitions, generating an alternate
2751prologue and epilogue that realigns the runtime stack. This supports
2752mixing legacy codes that run with a 4-byte aligned stack with modern
2753codes that keep a 16-byte stack for SSE compatibility. The alternate
2754prologue and epilogue are slower and bigger than the regular ones, and
2755the alternate prologue requires a scratch register; this lowers the
2756number of registers available if used in conjunction with the
2757@code{regparm} attribute. The @code{force_align_arg_pointer}
2758attribute is incompatible with nested functions; this is considered a
2759hard error.
2760
561642fa
AP
2761@item resbank
2762@cindex @code{resbank} attribute
2763On the SH2A target, this attribute enables the high-speed register
2764saving and restoration using a register bank for @code{interrupt_handler}
2765routines. Saving to the bank is performed automatcially after the CPU
2766accepts an interrupt that uses a register bank.
2767
2768The nineteen 32-bit registers comprising general register R0 to R14,
2769control register GBR, and system registers MACH, MACL, and PR and the
2770vector table address offset are saved into a register bank. Register
2771banks are stacked in first-in last-out (FILO) sequence. Restoration
2772from the bank is executed by issuing a RESBANK instruction.
2773
6e9a3221
AN
2774@item returns_twice
2775@cindex @code{returns_twice} attribute
2776The @code{returns_twice} attribute tells the compiler that a function may
2777return more than one time. The compiler will ensure that all registers
2778are dead before calling such a function and will emit a warning about
2779the variables that may be clobbered after the second return from the
2780function. Examples of such functions are @code{setjmp} and @code{vfork}.
2781The @code{longjmp}-like counterpart of such function, if any, might need
2782to be marked with the @code{noreturn} attribute.
2783
c8619b90 2784@item saveall
0d4a78eb
BS
2785@cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
2786Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
c8619b90
NS
2787all registers except the stack pointer should be saved in the prologue
2788regardless of whether they are used or not.
6d3d9133 2789
c8619b90
NS
2790@item section ("@var{section-name}")
2791@cindex @code{section} function attribute
2792Normally, the compiler places the code it generates in the @code{text} section.
2793Sometimes, however, you need additional sections, or you need certain
2794particular functions to appear in special sections. The @code{section}
2795attribute specifies that a function lives in a particular section.
2796For example, the declaration:
6d3d9133
NC
2797
2798@smallexample
c8619b90 2799extern void foobar (void) __attribute__ ((section ("bar")));
6d3d9133
NC
2800@end smallexample
2801
c8619b90
NS
2802@noindent
2803puts the function @code{foobar} in the @code{bar} section.
6d3d9133 2804
c8619b90
NS
2805Some file formats do not support arbitrary sections so the @code{section}
2806attribute is not available on all platforms.
2807If you need to map the entire contents of a module to a particular
2808section, consider using the facilities of the linker instead.
2809
3d091dac
KG
2810@item sentinel
2811@cindex @code{sentinel} function attribute
254986c7
KG
2812This function attribute ensures that a parameter in a function call is
2813an explicit @code{NULL}. The attribute is only valid on variadic
2814functions. By default, the sentinel is located at position zero, the
2815last parameter of the function call. If an optional integer position
2816argument P is supplied to the attribute, the sentinel must be located at
2817position P counting backwards from the end of the argument list.
2818
2819@smallexample
2820__attribute__ ((sentinel))
2821is equivalent to
2822__attribute__ ((sentinel(0)))
2823@end smallexample
2824
2825The attribute is automatically set with a position of 0 for the built-in
2826functions @code{execl} and @code{execlp}. The built-in function
254ea84c 2827@code{execle} has the attribute set with a position of 1.
254986c7
KG
2828
2829A valid @code{NULL} in this context is defined as zero with any pointer
2830type. If your system defines the @code{NULL} macro with an integer type
2831then you need to add an explicit cast. GCC replaces @code{stddef.h}
2832with a copy that redefines NULL appropriately.
2833
2834The warnings for missing or incorrect sentinels are enabled with
2835@option{-Wformat}.
3d091dac 2836
c8619b90
NS
2837@item short_call
2838See long_call/short_call.
2839
2840@item shortcall
2841See longcall/shortcall.
2842
2843@item signal
2844@cindex signal handler functions on the AVR processors
2845Use this attribute on the AVR to indicate that the specified
2846function is a signal handler. The compiler will generate function
2847entry and exit sequences suitable for use in a signal handler when this
2848attribute is present. Interrupts will be disabled inside the function.
b93e3893
AO
2849
2850@item sp_switch
88ab0d1c 2851Use this attribute on the SH to indicate an @code{interrupt_handler}
b93e3893
AO
2852function should switch to an alternate stack. It expects a string
2853argument that names a global variable holding the address of the
2854alternate stack.
2855
2856@smallexample
2857void *alt_stack;
aee96fe9
JM
2858void f () __attribute__ ((interrupt_handler,
2859 sp_switch ("alt_stack")));
b93e3893
AO
2860@end smallexample
2861
c8619b90
NS
2862@item stdcall
2863@cindex functions that pop the argument stack on the 386
2864On the Intel 386, the @code{stdcall} attribute causes the compiler to
2865assume that the called function will pop off the stack space used to
2866pass arguments, unless it takes a variable number of arguments.
c1f7febf
RK
2867
2868@item tiny_data
dbacaa98
KH
2869@cindex tiny data section on the H8/300H and H8S
2870Use this attribute on the H8/300H and H8S to indicate that the specified
c1f7febf
RK
2871variable should be placed into the tiny data section.
2872The compiler will generate more efficient code for loads and stores
2873on data in the tiny data section. Note the tiny data area is limited to
2874slightly under 32kbytes of data.
845da534 2875
c8619b90
NS
2876@item trap_exit
2877Use this attribute on the SH for an @code{interrupt_handler} to return using
2878@code{trapa} instead of @code{rte}. This attribute expects an integer
2879argument specifying the trap number to be used.
845da534 2880
c8619b90
NS
2881@item unused
2882@cindex @code{unused} attribute.
2883This attribute, attached to a function, means that the function is meant
2884to be possibly unused. GCC will not produce a warning for this
2885function.
a32767e4 2886
c8619b90
NS
2887@item used
2888@cindex @code{used} attribute.
2889This attribute, attached to a function, means that code must be emitted
2890for the function even if it appears that the function is not referenced.
2891This is useful, for example, when the function is referenced only in
2892inline assembly.
5936c7e7 2893
812b587e
SE
2894@item version_id
2895@cindex @code{version_id} attribute on IA64 HP-UX
2896This attribute, attached to a global variable or function, renames a
2897symbol to contain a version string, thus allowing for function level
2898versioning. HP-UX system header files may use version level functioning
2899for some system calls.
2900
2901@smallexample
2902extern int foo () __attribute__((version_id ("20040821")));
2903@end smallexample
2904
2905Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
2906
c8619b90
NS
2907@item visibility ("@var{visibility_type}")
2908@cindex @code{visibility} attribute
46bdbc00
GK
2909This attribute affects the linkage of the declaration to which it is attached.
2910There are four supported @var{visibility_type} values: default,
2911hidden, protected or internal visibility.
5936c7e7 2912
c8619b90
NS
2913@smallexample
2914void __attribute__ ((visibility ("protected")))
2915f () @{ /* @r{Do something.} */; @}
2916int i __attribute__ ((visibility ("hidden")));
2917@end smallexample
5936c7e7 2918
46bdbc00
GK
2919The possible values of @var{visibility_type} correspond to the
2920visibility settings in the ELF gABI.
5936c7e7 2921
c8619b90 2922@table @dfn
63c5b495 2923@c keep this list of visibilities in alphabetical order.
6b6cb52e 2924
c8619b90 2925@item default
46bdbc00
GK
2926Default visibility is the normal case for the object file format.
2927This value is available for the visibility attribute to override other
2928options that may change the assumed visibility of entities.
2929
2930On ELF, default visibility means that the declaration is visible to other
2931modules and, in shared libraries, means that the declared entity may be
2932overridden.
2933
2934On Darwin, default visibility means that the declaration is visible to
2935other modules.
2936
2937Default visibility corresponds to ``external linkage'' in the language.
6b6cb52e 2938
c8619b90 2939@item hidden
46bdbc00
GK
2940Hidden visibility indicates that the entity declared will have a new
2941form of linkage, which we'll call ``hidden linkage''. Two
2942declarations of an object with hidden linkage refer to the same object
2943if they are in the same shared object.
6b6cb52e 2944
c8619b90
NS
2945@item internal
2946Internal visibility is like hidden visibility, but with additional
46bdbc00
GK
2947processor specific semantics. Unless otherwise specified by the
2948psABI, GCC defines internal visibility to mean that a function is
2949@emph{never} called from another module. Compare this with hidden
2950functions which, while they cannot be referenced directly by other
2951modules, can be referenced indirectly via function pointers. By
2952indicating that a function cannot be called from outside the module,
2953GCC may for instance omit the load of a PIC register since it is known
2954that the calling function loaded the correct value.
6b6cb52e 2955
c8619b90 2956@item protected
46bdbc00
GK
2957Protected visibility is like default visibility except that it
2958indicates that references within the defining module will bind to the
2959definition in that module. That is, the declared entity cannot be
2960overridden by another module.
6b6cb52e 2961
c8619b90 2962@end table
6b6cb52e 2963
46bdbc00
GK
2964All visibilities are supported on many, but not all, ELF targets
2965(supported when the assembler supports the @samp{.visibility}
2966pseudo-op). Default visibility is supported everywhere. Hidden
2967visibility is supported on Darwin targets.
2968
2969The visibility attribute should be applied only to declarations which
2970would otherwise have external linkage. The attribute should be applied
2971consistently, so that the same entity should not be declared with
2972different settings of the attribute.
2973
2974In C++, the visibility attribute applies to types as well as functions
b9e75696
JM
2975and objects, because in C++ types have linkage. A class must not have
2976greater visibility than its non-static data member types and bases,
2977and class members default to the visibility of their class. Also, a
b70f0f48
JM
2978declaration without explicit visibility is limited to the visibility
2979of its type.
46bdbc00
GK
2980
2981In C++, you can mark member functions and static member variables of a
2982class with the visibility attribute. This is useful if if you know a
2983particular method or static member variable should only be used from
2984one shared object; then you can mark it hidden while the rest of the
2985class has default visibility. Care must be taken to avoid breaking
b70f0f48
JM
2986the One Definition Rule; for example, it is usually not useful to mark
2987an inline method as hidden without marking the whole class as hidden.
6b6cb52e 2988
b9e75696
JM
2989A C++ namespace declaration can also have the visibility attribute.
2990This attribute applies only to the particular namespace body, not to
2991other definitions of the same namespace; it is equivalent to using
2992@samp{#pragma GCC visibility} before and after the namespace
2993definition (@pxref{Visibility Pragmas}).
2994
2995In C++, if a template argument has limited visibility, this
2996restriction is implicitly propagated to the template instantiation.
2997Otherwise, template instantiations and specializations default to the
2998visibility of their template.
2999
b70f0f48
JM
3000If both the template and enclosing class have explicit visibility, the
3001visibility from the template is used.
3002
c8619b90
NS
3003@item warn_unused_result
3004@cindex @code{warn_unused_result} attribute
3005The @code{warn_unused_result} attribute causes a warning to be emitted
3006if a caller of the function with this attribute does not use its
3007return value. This is useful for functions where not checking
3008the result is either a security problem or always a bug, such as
3009@code{realloc}.
6b6cb52e 3010
c8619b90
NS
3011@smallexample
3012int fn () __attribute__ ((warn_unused_result));
3013int foo ()
3014@{
3015 if (fn () < 0) return -1;
3016 fn ();
3017 return 0;
3018@}
3019@end smallexample
6b6cb52e 3020
c8619b90 3021results in warning on line 5.
6b6cb52e 3022
c8619b90
NS
3023@item weak
3024@cindex @code{weak} attribute
3025The @code{weak} attribute causes the declaration to be emitted as a weak
3026symbol rather than a global. This is primarily useful in defining
3027library functions which can be overridden in user code, though it can
3028also be used with non-function declarations. Weak symbols are supported
3029for ELF targets, and also for a.out targets when using the GNU assembler
3030and linker.
6b6cb52e 3031
a0203ca7
AO
3032@item weakref
3033@itemx weakref ("@var{target}")
3034@cindex @code{weakref} attribute
3035The @code{weakref} attribute marks a declaration as a weak reference.
3036Without arguments, it should be accompanied by an @code{alias} attribute
3037naming the target symbol. Optionally, the @var{target} may be given as
3038an argument to @code{weakref} itself. In either case, @code{weakref}
3039implicitly marks the declaration as @code{weak}. Without a
3040@var{target}, given as an argument to @code{weakref} or to @code{alias},
3041@code{weakref} is equivalent to @code{weak}.
3042
3043@smallexample
a9b0b825 3044static int x() __attribute__ ((weakref ("y")));
a0203ca7 3045/* is equivalent to... */
a9b0b825 3046static int x() __attribute__ ((weak, weakref, alias ("y")));
a0203ca7 3047/* and to... */
a9b0b825
GK
3048static int x() __attribute__ ((weakref));
3049static int x() __attribute__ ((alias ("y")));
a0203ca7
AO
3050@end smallexample
3051
3052A weak reference is an alias that does not by itself require a
3053definition to be given for the target symbol. If the target symbol is
3054only referenced through weak references, then the becomes a @code{weak}
3055undefined symbol. If it is directly referenced, however, then such
3056strong references prevail, and a definition will be required for the
3057symbol, not necessarily in the same translation unit.
3058
3059The effect is equivalent to moving all references to the alias to a
3060separate translation unit, renaming the alias to the aliased symbol,
3061declaring it as weak, compiling the two separate translation units and
3062performing a reloadable link on them.
3063
a9b0b825
GK
3064At present, a declaration to which @code{weakref} is attached can
3065only be @code{static}.
3066
ce91e74c
JH
3067@item externally_visible
3068@cindex @code{externally_visible} attribute.
3069This attribute, attached to a global variable or function nullify
3070effect of @option{-fwhole-program} command line option, so the object
3071remain visible outside the current compilation unit
3072
c1f7febf
RK
3073@end table
3074
3075You can specify multiple attributes in a declaration by separating them
3076by commas within the double parentheses or by immediately following an
3077attribute declaration with another attribute declaration.
3078
3079@cindex @code{#pragma}, reason for not using
3080@cindex pragma, reason for not using
9f1bbeaa
JM
3081Some people object to the @code{__attribute__} feature, suggesting that
3082ISO C's @code{#pragma} should be used instead. At the time
3083@code{__attribute__} was designed, there were two reasons for not doing
3084this.
c1f7febf
RK
3085
3086@enumerate
3087@item
3088It is impossible to generate @code{#pragma} commands from a macro.
3089
3090@item
3091There is no telling what the same @code{#pragma} might mean in another
3092compiler.
3093@end enumerate
3094
9f1bbeaa
JM
3095These two reasons applied to almost any application that might have been
3096proposed for @code{#pragma}. It was basically a mistake to use
3097@code{#pragma} for @emph{anything}.
3098
3099The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
3100to be generated from macros. In addition, a @code{#pragma GCC}
3101namespace is now in use for GCC-specific pragmas. However, it has been
3102found convenient to use @code{__attribute__} to achieve a natural
3103attachment of attributes to their corresponding declarations, whereas
3104@code{#pragma GCC} is of use for constructs that do not naturally form
3105part of the grammar. @xref{Other Directives,,Miscellaneous
48795525 3106Preprocessing Directives, cpp, The GNU C Preprocessor}.
c1f7febf 3107
2c5e91d2
JM
3108@node Attribute Syntax
3109@section Attribute Syntax
3110@cindex attribute syntax
3111
3112This section describes the syntax with which @code{__attribute__} may be
3113used, and the constructs to which attribute specifiers bind, for the C
161d7b59 3114language. Some details may vary for C++ and Objective-C@. Because of
2c5e91d2
JM
3115infelicities in the grammar for attributes, some forms described here
3116may not be successfully parsed in all cases.
3117
91d231cb
JM
3118There are some problems with the semantics of attributes in C++. For
3119example, there are no manglings for attributes, although they may affect
3120code generation, so problems may arise when attributed types are used in
3121conjunction with templates or overloading. Similarly, @code{typeid}
3122does not distinguish between types with different attributes. Support
3123for attributes in C++ may be restricted in future to attributes on
3124declarations only, but not on nested declarators.
3125
2c5e91d2
JM
3126@xref{Function Attributes}, for details of the semantics of attributes
3127applying to functions. @xref{Variable Attributes}, for details of the
3128semantics of attributes applying to variables. @xref{Type Attributes},
3129for details of the semantics of attributes applying to structure, union
3130and enumerated types.
3131
3132An @dfn{attribute specifier} is of the form
3133@code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
3134is a possibly empty comma-separated sequence of @dfn{attributes}, where
3135each attribute is one of the following:
3136
3137@itemize @bullet
3138@item
3139Empty. Empty attributes are ignored.
3140
3141@item
3142A word (which may be an identifier such as @code{unused}, or a reserved
3143word such as @code{const}).
3144
3145@item
3146A word, followed by, in parentheses, parameters for the attribute.
3147These parameters take one of the following forms:
3148
3149@itemize @bullet
3150@item
3151An identifier. For example, @code{mode} attributes use this form.
3152
3153@item
3154An identifier followed by a comma and a non-empty comma-separated list
3155of expressions. For example, @code{format} attributes use this form.
3156
3157@item
3158A possibly empty comma-separated list of expressions. For example,
3159@code{format_arg} attributes use this form with the list being a single
3160integer constant expression, and @code{alias} attributes use this form
3161with the list being a single string constant.
3162@end itemize
3163@end itemize
3164
3165An @dfn{attribute specifier list} is a sequence of one or more attribute
3166specifiers, not separated by any other tokens.
3167
50fc59e7 3168In GNU C, an attribute specifier list may appear after the colon following a
2c5e91d2
JM
3169label, other than a @code{case} or @code{default} label. The only
3170attribute it makes sense to use after a label is @code{unused}. This
3171feature is intended for code generated by programs which contains labels
3172that may be unused but which is compiled with @option{-Wall}. It would
3173not normally be appropriate to use in it human-written code, though it
3174could be useful in cases where the code that jumps to the label is
8a36672b 3175contained within an @code{#ifdef} conditional. GNU C++ does not permit
50fc59e7
NS
3176such placement of attribute lists, as it is permissible for a
3177declaration, which could begin with an attribute list, to be labelled in
8a36672b 3178C++. Declarations cannot be labelled in C90 or C99, so the ambiguity
50fc59e7 3179does not arise there.
2c5e91d2
JM
3180
3181An attribute specifier list may appear as part of a @code{struct},
3182@code{union} or @code{enum} specifier. It may go either immediately
3183after the @code{struct}, @code{union} or @code{enum} keyword, or after
b9e75696 3184the closing brace. The former syntax is preferred.
2c5e91d2
JM
3185Where attribute specifiers follow the closing brace, they are considered
3186to relate to the structure, union or enumerated type defined, not to any
3187enclosing declaration the type specifier appears in, and the type
3188defined is not complete until after the attribute specifiers.
3189@c Otherwise, there would be the following problems: a shift/reduce
4fe9b91c 3190@c conflict between attributes binding the struct/union/enum and
2c5e91d2
JM
3191@c binding to the list of specifiers/qualifiers; and "aligned"
3192@c attributes could use sizeof for the structure, but the size could be
3193@c changed later by "packed" attributes.
3194
3195Otherwise, an attribute specifier appears as part of a declaration,
3196counting declarations of unnamed parameters and type names, and relates
3197to that declaration (which may be nested in another declaration, for
91d231cb
JM
3198example in the case of a parameter declaration), or to a particular declarator
3199within a declaration. Where an
ff867905
JM
3200attribute specifier is applied to a parameter declared as a function or
3201an array, it should apply to the function or array rather than the
3202pointer to which the parameter is implicitly converted, but this is not
3203yet correctly implemented.
2c5e91d2
JM
3204
3205Any list of specifiers and qualifiers at the start of a declaration may
3206contain attribute specifiers, whether or not such a list may in that
3207context contain storage class specifiers. (Some attributes, however,
3208are essentially in the nature of storage class specifiers, and only make
3209sense where storage class specifiers may be used; for example,
3210@code{section}.) There is one necessary limitation to this syntax: the
3211first old-style parameter declaration in a function definition cannot
3212begin with an attribute specifier, because such an attribute applies to
3213the function instead by syntax described below (which, however, is not
3214yet implemented in this case). In some other cases, attribute
3215specifiers are permitted by this grammar but not yet supported by the
3216compiler. All attribute specifiers in this place relate to the
c771326b 3217declaration as a whole. In the obsolescent usage where a type of
2c5e91d2
JM
3218@code{int} is implied by the absence of type specifiers, such a list of
3219specifiers and qualifiers may be an attribute specifier list with no
3220other specifiers or qualifiers.
3221
7dcb0442
JM
3222At present, the first parameter in a function prototype must have some
3223type specifier which is not an attribute specifier; this resolves an
3224ambiguity in the interpretation of @code{void f(int
3225(__attribute__((foo)) x))}, but is subject to change. At present, if
3226the parentheses of a function declarator contain only attributes then
3227those attributes are ignored, rather than yielding an error or warning
3228or implying a single parameter of type int, but this is subject to
3229change.
3230
2c5e91d2
JM
3231An attribute specifier list may appear immediately before a declarator
3232(other than the first) in a comma-separated list of declarators in a
3233declaration of more than one identifier using a single list of
4b01f8d8 3234specifiers and qualifiers. Such attribute specifiers apply
9c34dbbf
ZW
3235only to the identifier before whose declarator they appear. For
3236example, in
3237
3238@smallexample
3239__attribute__((noreturn)) void d0 (void),
3240 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
3241 d2 (void)
3242@end smallexample
3243
3244@noindent
3245the @code{noreturn} attribute applies to all the functions
4b01f8d8 3246declared; the @code{format} attribute only applies to @code{d1}.
2c5e91d2
JM
3247
3248An attribute specifier list may appear immediately before the comma,
3249@code{=} or semicolon terminating the declaration of an identifier other
770a9950
JM
3250than a function definition. Such attribute specifiers apply
3251to the declared object or function. Where an
9c34dbbf 3252assembler name for an object or function is specified (@pxref{Asm
770a9950
JM
3253Labels}), the attribute must follow the @code{asm}
3254specification.
2c5e91d2
JM
3255
3256An attribute specifier list may, in future, be permitted to appear after
3257the declarator in a function definition (before any old-style parameter
3258declarations or the function body).
3259
0e03329a
JM
3260Attribute specifiers may be mixed with type qualifiers appearing inside
3261the @code{[]} of a parameter array declarator, in the C99 construct by
3262which such qualifiers are applied to the pointer to which the array is
3263implicitly converted. Such attribute specifiers apply to the pointer,
3264not to the array, but at present this is not implemented and they are
3265ignored.
3266
2c5e91d2
JM
3267An attribute specifier list may appear at the start of a nested
3268declarator. At present, there are some limitations in this usage: the
91d231cb
JM
3269attributes correctly apply to the declarator, but for most individual
3270attributes the semantics this implies are not implemented.
3271When attribute specifiers follow the @code{*} of a pointer
4b01f8d8 3272declarator, they may be mixed with any type qualifiers present.
91d231cb 3273The following describes the formal semantics of this syntax. It will make the
2c5e91d2
JM
3274most sense if you are familiar with the formal specification of
3275declarators in the ISO C standard.
3276
3277Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
3278D1}, where @code{T} contains declaration specifiers that specify a type
3279@var{Type} (such as @code{int}) and @code{D1} is a declarator that
3280contains an identifier @var{ident}. The type specified for @var{ident}
3281for derived declarators whose type does not include an attribute
3282specifier is as in the ISO C standard.
3283
3284If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
3285and the declaration @code{T D} specifies the type
3286``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
3287@code{T D1} specifies the type ``@var{derived-declarator-type-list}
3288@var{attribute-specifier-list} @var{Type}'' for @var{ident}.
3289
3290If @code{D1} has the form @code{*
3291@var{type-qualifier-and-attribute-specifier-list} D}, and the
3292declaration @code{T D} specifies the type
3293``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
3294@code{T D1} specifies the type ``@var{derived-declarator-type-list}
3295@var{type-qualifier-and-attribute-specifier-list} @var{Type}'' for
3296@var{ident}.
3297
f282ffb3 3298For example,
9c34dbbf
ZW
3299
3300@smallexample
3301void (__attribute__((noreturn)) ****f) (void);
3302@end smallexample
3303
3304@noindent
3305specifies the type ``pointer to pointer to pointer to pointer to
3306non-returning function returning @code{void}''. As another example,
3307
3308@smallexample
3309char *__attribute__((aligned(8))) *f;
3310@end smallexample
3311
3312@noindent
3313specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
91d231cb
JM
3314Note again that this does not work with most attributes; for example,
3315the usage of @samp{aligned} and @samp{noreturn} attributes given above
3316is not yet supported.
3317
3318For compatibility with existing code written for compiler versions that
3319did not implement attributes on nested declarators, some laxity is
3320allowed in the placing of attributes. If an attribute that only applies
3321to types is applied to a declaration, it will be treated as applying to
3322the type of that declaration. If an attribute that only applies to
3323declarations is applied to the type of a declaration, it will be treated
3324as applying to that declaration; and, for compatibility with code
3325placing the attributes immediately before the identifier declared, such
3326an attribute applied to a function return type will be treated as
3327applying to the function type, and such an attribute applied to an array
3328element type will be treated as applying to the array type. If an
3329attribute that only applies to function types is applied to a
3330pointer-to-function type, it will be treated as applying to the pointer
3331target type; if such an attribute is applied to a function return type
3332that is not a pointer-to-function type, it will be treated as applying
3333to the function type.
2c5e91d2 3334
c1f7febf
RK
3335@node Function Prototypes
3336@section Prototypes and Old-Style Function Definitions
3337@cindex function prototype declarations
3338@cindex old-style function definitions
3339@cindex promotion of formal parameters
3340
5490d604 3341GNU C extends ISO C to allow a function prototype to override a later
c1f7febf
RK
3342old-style non-prototype definition. Consider the following example:
3343
3ab51846 3344@smallexample
c1f7febf 3345/* @r{Use prototypes unless the compiler is old-fashioned.} */
d863830b 3346#ifdef __STDC__
c1f7febf
RK
3347#define P(x) x
3348#else
3349#define P(x) ()
3350#endif
3351
3352/* @r{Prototype function declaration.} */
3353int isroot P((uid_t));
3354
3355/* @r{Old-style function definition.} */
3356int
12bcfaa1 3357isroot (x) /* @r{??? lossage here ???} */
c1f7febf
RK
3358 uid_t x;
3359@{
3360 return x == 0;
3361@}
3ab51846 3362@end smallexample
c1f7febf 3363
5490d604 3364Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
c1f7febf
RK
3365not allow this example, because subword arguments in old-style
3366non-prototype definitions are promoted. Therefore in this example the
3367function definition's argument is really an @code{int}, which does not
3368match the prototype argument type of @code{short}.
3369
5490d604 3370This restriction of ISO C makes it hard to write code that is portable
c1f7febf
RK
3371to traditional C compilers, because the programmer does not know
3372whether the @code{uid_t} type is @code{short}, @code{int}, or
3373@code{long}. Therefore, in cases like these GNU C allows a prototype
3374to override a later old-style definition. More precisely, in GNU C, a
3375function prototype argument type overrides the argument type specified
3376by a later old-style definition if the former type is the same as the
3377latter type before promotion. Thus in GNU C the above example is
3378equivalent to the following:
3379
3ab51846 3380@smallexample
c1f7febf
RK
3381int isroot (uid_t);
3382
3383int
3384isroot (uid_t x)
3385@{
3386 return x == 0;
3387@}
3ab51846 3388@end smallexample
c1f7febf 3389
9c34dbbf 3390@noindent
c1f7febf
RK
3391GNU C++ does not support old-style function definitions, so this
3392extension is irrelevant.
3393
3394@node C++ Comments
3395@section C++ Style Comments
3396@cindex //
3397@cindex C++ comments
3398@cindex comments, C++ style
3399
3400In GNU C, you may use C++ style comments, which start with @samp{//} and
3401continue until the end of the line. Many other C implementations allow
f458d1d5
ZW
3402such comments, and they are included in the 1999 C standard. However,
3403C++ style comments are not recognized if you specify an @option{-std}
3404option specifying a version of ISO C before C99, or @option{-ansi}
3405(equivalent to @option{-std=c89}).
c1f7febf
RK
3406
3407@node Dollar Signs
3408@section Dollar Signs in Identifier Names
3409@cindex $
3410@cindex dollar signs in identifier names
3411@cindex identifier names, dollar signs in
3412
79188db9
RK
3413In GNU C, you may normally use dollar signs in identifier names.
3414This is because many traditional C implementations allow such identifiers.
3415However, dollar signs in identifiers are not supported on a few target
3416machines, typically because the target assembler does not allow them.
c1f7febf
RK
3417
3418@node Character Escapes
3419@section The Character @key{ESC} in Constants
3420
3421You can use the sequence @samp{\e} in a string or character constant to
3422stand for the ASCII character @key{ESC}.
3423
3424@node Alignment
3425@section Inquiring on Alignment of Types or Variables
3426@cindex alignment
3427@cindex type alignment
3428@cindex variable alignment
3429
3430The keyword @code{__alignof__} allows you to inquire about how an object
3431is aligned, or the minimum alignment usually required by a type. Its
3432syntax is just like @code{sizeof}.
3433
3434For example, if the target machine requires a @code{double} value to be
3435aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
3436This is true on many RISC machines. On more traditional machine
3437designs, @code{__alignof__ (double)} is 4 or even 2.
3438
3439Some machines never actually require alignment; they allow reference to any
64c18e57 3440data type even at an odd address. For these machines, @code{__alignof__}
2a31c49c
HPN
3441reports the smallest alignment that GCC will give the data type, usually as
3442mandated by the target ABI.
c1f7febf 3443
5372b3fb
NB
3444If the operand of @code{__alignof__} is an lvalue rather than a type,
3445its value is the required alignment for its type, taking into account
3446any minimum alignment specified with GCC's @code{__attribute__}
3447extension (@pxref{Variable Attributes}). For example, after this
3448declaration:
c1f7febf 3449
3ab51846 3450@smallexample
c1f7febf 3451struct foo @{ int x; char y; @} foo1;
3ab51846 3452@end smallexample
c1f7febf
RK
3453
3454@noindent
5372b3fb
NB
3455the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
3456alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
c1f7febf 3457
9d27bffe
SS
3458It is an error to ask for the alignment of an incomplete type.
3459
c1f7febf
RK
3460@node Variable Attributes
3461@section Specifying Attributes of Variables
3462@cindex attribute of variables
3463@cindex variable attributes
3464
3465The keyword @code{__attribute__} allows you to specify special
3466attributes of variables or structure fields. This keyword is followed
905e8651
RH
3467by an attribute specification inside double parentheses. Some
3468attributes are currently defined generically for variables.
3469Other attributes are defined for variables on particular target
3470systems. Other attributes are available for functions
3471(@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
3472Other front ends might define more attributes
3473(@pxref{C++ Extensions,,Extensions to the C++ Language}).
c1f7febf
RK
3474
3475You may also specify attributes with @samp{__} preceding and following
3476each keyword. This allows you to use them in header files without
3477being concerned about a possible macro of the same name. For example,
3478you may use @code{__aligned__} instead of @code{aligned}.
3479
2c5e91d2
JM
3480@xref{Attribute Syntax}, for details of the exact syntax for using
3481attributes.
3482
c1f7febf
RK
3483@table @code
3484@cindex @code{aligned} attribute
3485@item aligned (@var{alignment})
3486This attribute specifies a minimum alignment for the variable or
3487structure field, measured in bytes. For example, the declaration:
3488
3489@smallexample
3490int x __attribute__ ((aligned (16))) = 0;
3491@end smallexample
3492
3493@noindent
3494causes the compiler to allocate the global variable @code{x} on a
349516-byte boundary. On a 68040, this could be used in conjunction with
3496an @code{asm} expression to access the @code{move16} instruction which
3497requires 16-byte aligned operands.
3498
3499You can also specify the alignment of structure fields. For example, to
3500create a double-word aligned @code{int} pair, you could write:
3501
3502@smallexample
3503struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
3504@end smallexample
3505
3506@noindent
3507This is an alternative to creating a union with a @code{double} member
3508that forces the union to be double-word aligned.
3509
c1f7febf
RK
3510As in the preceding examples, you can explicitly specify the alignment
3511(in bytes) that you wish the compiler to use for a given variable or
3512structure field. Alternatively, you can leave out the alignment factor
3513and just ask the compiler to align a variable or field to the maximum
3514useful alignment for the target machine you are compiling for. For
3515example, you could write:
3516
3517@smallexample
3518short array[3] __attribute__ ((aligned));
3519@end smallexample
3520
3521Whenever you leave out the alignment factor in an @code{aligned} attribute
3522specification, the compiler automatically sets the alignment for the declared
3523variable or field to the largest alignment which is ever used for any data
3524type on the target machine you are compiling for. Doing this can often make
3525copy operations more efficient, because the compiler can use whatever
3526instructions copy the biggest chunks of memory when performing copies to
3527or from the variables or fields that you have aligned this way.
3528
e9f9692b
MW
3529When used on a struct, or struct member, the @code{aligned} attribute can
3530only increase the alignment; in order to decrease it, the @code{packed}
3531attribute must be specified as well. When used as part of a typedef, the
3532@code{aligned} attribute can both increase and decrease alignment, and
3533specifying the @code{packed} attribute will generate a warning.
c1f7febf
RK
3534
3535Note that the effectiveness of @code{aligned} attributes may be limited
3536by inherent limitations in your linker. On many systems, the linker is
3537only able to arrange for variables to be aligned up to a certain maximum
3538alignment. (For some linkers, the maximum supported alignment may
3539be very very small.) If your linker is only able to align variables
3540up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
3541in an @code{__attribute__} will still only provide you with 8 byte
3542alignment. See your linker documentation for further information.
3543
837edd5f
GK
3544The @code{aligned} attribute can also be used for functions
3545(@pxref{Function Attributes}.)
3546
0bfa5f65
RH
3547@item cleanup (@var{cleanup_function})
3548@cindex @code{cleanup} attribute
3549The @code{cleanup} attribute runs a function when the variable goes
3550out of scope. This attribute can only be applied to auto function
3551scope variables; it may not be applied to parameters or variables
3552with static storage duration. The function must take one parameter,
3553a pointer to a type compatible with the variable. The return value
3554of the function (if any) is ignored.
3555
3556If @option{-fexceptions} is enabled, then @var{cleanup_function}
3557will be run during the stack unwinding that happens during the
3558processing of the exception. Note that the @code{cleanup} attribute
3559does not allow the exception to be caught, only to perform an action.
3560It is undefined what happens if @var{cleanup_function} does not
3561return normally.
3562
905e8651
RH
3563@item common
3564@itemx nocommon
3565@cindex @code{common} attribute
3566@cindex @code{nocommon} attribute
3567@opindex fcommon
3568@opindex fno-common
3569The @code{common} attribute requests GCC to place a variable in
3570``common'' storage. The @code{nocommon} attribute requests the
78466c0e 3571opposite---to allocate space for it directly.
905e8651 3572
daf2f129 3573These attributes override the default chosen by the
905e8651
RH
3574@option{-fno-common} and @option{-fcommon} flags respectively.
3575
3576@item deprecated
3577@cindex @code{deprecated} attribute
3578The @code{deprecated} attribute results in a warning if the variable
3579is used anywhere in the source file. This is useful when identifying
3580variables that are expected to be removed in a future version of a
3581program. The warning also includes the location of the declaration
3582of the deprecated variable, to enable users to easily find further
3583information about why the variable is deprecated, or what they should
64c18e57 3584do instead. Note that the warning only occurs for uses:
905e8651
RH
3585
3586@smallexample
3587extern int old_var __attribute__ ((deprecated));
3588extern int old_var;
3589int new_fn () @{ return old_var; @}
3590@end smallexample
3591
3592results in a warning on line 3 but not line 2.
3593
3594The @code{deprecated} attribute can also be used for functions and
3595types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
3596
c1f7febf
RK
3597@item mode (@var{mode})
3598@cindex @code{mode} attribute
3599This attribute specifies the data type for the declaration---whichever
3600type corresponds to the mode @var{mode}. This in effect lets you
3601request an integer or floating point type according to its width.
3602
3603You may also specify a mode of @samp{byte} or @samp{__byte__} to
3604indicate the mode corresponding to a one-byte integer, @samp{word} or
3605@samp{__word__} for the mode of a one-word integer, and @samp{pointer}
3606or @samp{__pointer__} for the mode used to represent pointers.
3607
c1f7febf
RK
3608@item packed
3609@cindex @code{packed} attribute
3610The @code{packed} attribute specifies that a variable or structure field
3611should have the smallest possible alignment---one byte for a variable,
3612and one bit for a field, unless you specify a larger value with the
3613@code{aligned} attribute.
3614
3615Here is a structure in which the field @code{x} is packed, so that it
3616immediately follows @code{a}:
3617
3ab51846 3618@smallexample
c1f7febf
RK
3619struct foo
3620@{
3621 char a;
3622 int x[2] __attribute__ ((packed));
3623@};
3ab51846 3624@end smallexample
c1f7febf 3625
84330467 3626@item section ("@var{section-name}")
c1f7febf
RK
3627@cindex @code{section} variable attribute
3628Normally, the compiler places the objects it generates in sections like
3629@code{data} and @code{bss}. Sometimes, however, you need additional sections,
3630or you need certain particular variables to appear in special sections,
3631for example to map to special hardware. The @code{section}
3632attribute specifies that a variable (or function) lives in a particular
3633section. For example, this small program uses several specific section names:
3634
3635@smallexample
3636struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
3637struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
3638char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
3639int init_data __attribute__ ((section ("INITDATA"))) = 0;
3640
3641main()
3642@{
12bcfaa1 3643 /* @r{Initialize stack pointer} */
c1f7febf
RK
3644 init_sp (stack + sizeof (stack));
3645
12bcfaa1 3646 /* @r{Initialize initialized data} */
c1f7febf
RK
3647 memcpy (&init_data, &data, &edata - &data);
3648
12bcfaa1 3649 /* @r{Turn on the serial ports} */
c1f7febf
RK
3650 init_duart (&a);
3651 init_duart (&b);
3652@}
3653@end smallexample
3654
3655@noindent
3656Use the @code{section} attribute with an @emph{initialized} definition
f0523f02 3657of a @emph{global} variable, as shown in the example. GCC issues
c1f7febf
RK
3658a warning and otherwise ignores the @code{section} attribute in
3659uninitialized variable declarations.
3660
3661You may only use the @code{section} attribute with a fully initialized
3662global definition because of the way linkers work. The linker requires
3663each object be defined once, with the exception that uninitialized
3664variables tentatively go in the @code{common} (or @code{bss}) section
84330467
JM
3665and can be multiply ``defined''. You can force a variable to be
3666initialized with the @option{-fno-common} flag or the @code{nocommon}
c1f7febf
RK
3667attribute.
3668
3669Some file formats do not support arbitrary sections so the @code{section}
3670attribute is not available on all platforms.
3671If you need to map the entire contents of a module to a particular
3672section, consider using the facilities of the linker instead.
3673
593d3a34
MK
3674@item shared
3675@cindex @code{shared} variable attribute
95fef11f 3676On Microsoft Windows, in addition to putting variable definitions in a named
02f52e19 3677section, the section can also be shared among all running copies of an
161d7b59 3678executable or DLL@. For example, this small program defines shared data
84330467 3679by putting it in a named section @code{shared} and marking the section
593d3a34
MK
3680shareable:
3681
3682@smallexample
3683int foo __attribute__((section ("shared"), shared)) = 0;
3684
3685int
3686main()
3687@{
12bcfaa1
JM
3688 /* @r{Read and write foo. All running
3689 copies see the same value.} */
593d3a34
MK
3690 return 0;
3691@}
3692@end smallexample
3693
3694@noindent
3695You may only use the @code{shared} attribute along with @code{section}
02f52e19 3696attribute with a fully initialized global definition because of the way
593d3a34
MK
3697linkers work. See @code{section} attribute for more information.
3698
95fef11f 3699The @code{shared} attribute is only available on Microsoft Windows@.
593d3a34 3700
905e8651
RH
3701@item tls_model ("@var{tls_model}")
3702@cindex @code{tls_model} attribute
3703The @code{tls_model} attribute sets thread-local storage model
3704(@pxref{Thread-Local}) of a particular @code{__thread} variable,
4ec7afd7 3705overriding @option{-ftls-model=} command line switch on a per-variable
905e8651
RH
3706basis.
3707The @var{tls_model} argument should be one of @code{global-dynamic},
3708@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
3709
3710Not all targets support this attribute.
3711
c1f7febf
RK
3712@item unused
3713This attribute, attached to a variable, means that the variable is meant
f0523f02 3714to be possibly unused. GCC will not produce a warning for this
c1f7febf
RK
3715variable.
3716
5f79d643
RM
3717@item used
3718This attribute, attached to a variable, means that the variable must be
3719emitted even if it appears that the variable is not referenced.
3720
1b9191d2
AH
3721@item vector_size (@var{bytes})
3722This attribute specifies the vector size for the variable, measured in
3723bytes. For example, the declaration:
3724
3725@smallexample
3726int foo __attribute__ ((vector_size (16)));
3727@end smallexample
3728
3729@noindent
3730causes the compiler to set the mode for @code{foo}, to be 16 bytes,
3731divided into @code{int} sized units. Assuming a 32-bit int (a vector of
37324 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
3733
3734This attribute is only applicable to integral and float scalars,
3735although arrays, pointers, and function return values are allowed in
3736conjunction with this construct.
3737
3738Aggregates with this attribute are invalid, even if they are of the same
3739size as a corresponding scalar. For example, the declaration:
3740
3741@smallexample
ad706f54 3742struct S @{ int a; @};
1b9191d2
AH
3743struct S __attribute__ ((vector_size (16))) foo;
3744@end smallexample
3745
3746@noindent
3747is invalid even if the size of the structure is the same as the size of
3748the @code{int}.
3749
a20f6f00
DS
3750@item selectany
3751The @code{selectany} attribute causes an initialized global variable to
3752have link-once semantics. When multiple definitions of the variable are
3753encountered by the linker, the first is selected and the remainder are
3754discarded. Following usage by the Microsoft compiler, the linker is told
3755@emph{not} to warn about size or content differences of the multiple
3756definitions.
3757
3758Although the primary usage of this attribute is for POD types, the
3759attribute can also be applied to global C++ objects that are initialized
3760by a constructor. In this case, the static initialization and destruction
3761code for the object is emitted in each translation defining the object,
3762but the calls to the constructor and destructor are protected by a
0ac11108 3763link-once guard variable.
a20f6f00
DS
3764
3765The @code{selectany} attribute is only available on Microsoft Windows
3766targets. You can use @code{__declspec (selectany)} as a synonym for
3767@code{__attribute__ ((selectany))} for compatibility with other
3768compilers.
3769
c1f7febf 3770@item weak
38bb2b65 3771The @code{weak} attribute is described in @ref{Function Attributes}.
6b6cb52e
DS
3772
3773@item dllimport
38bb2b65 3774The @code{dllimport} attribute is described in @ref{Function Attributes}.
6b6cb52e 3775
9baf8aea 3776@item dllexport
38bb2b65 3777The @code{dllexport} attribute is described in @ref{Function Attributes}.
6b6cb52e 3778
905e8651
RH
3779@end table
3780
4af797b5
JZ
3781@subsection Blackfin Variable Attributes
3782
3783Three attributes are currently defined for the Blackfin.
3784
3785@table @code
3786@item l1_data
3787@item l1_data_A
3788@item l1_data_B
3789@cindex @code{l1_data} variable attribute
3790@cindex @code{l1_data_A} variable attribute
3791@cindex @code{l1_data_B} variable attribute
3792Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
3793Variables with @code{l1_data} attribute will be put into the specific section
3794named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
3795the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
3796attribute will be put into the specific section named @code{.l1.data.B}.
3797@end table
3798
905e8651 3799@subsection M32R/D Variable Attributes
845da534 3800
8a36672b 3801One attribute is currently defined for the M32R/D@.
905e8651
RH
3802
3803@table @code
845da534
DE
3804@item model (@var{model-name})
3805@cindex variable addressability on the M32R/D
3806Use this attribute on the M32R/D to set the addressability of an object.
3807The identifier @var{model-name} is one of @code{small}, @code{medium},
3808or @code{large}, representing each of the code models.
3809
3810Small model objects live in the lower 16MB of memory (so that their
3811addresses can be loaded with the @code{ld24} instruction).
3812
02f52e19 3813Medium and large model objects may live anywhere in the 32-bit address space
845da534
DE
3814(the compiler will generate @code{seth/add3} instructions to load their
3815addresses).
905e8651 3816@end table
845da534 3817
1ccbef77 3818@anchor{i386 Variable Attributes}
fe77449a
DR
3819@subsection i386 Variable Attributes
3820
3821Two attributes are currently defined for i386 configurations:
3822@code{ms_struct} and @code{gcc_struct}
3823
905e8651 3824@table @code
fe77449a
DR
3825@item ms_struct
3826@itemx gcc_struct
905e8651
RH
3827@cindex @code{ms_struct} attribute
3828@cindex @code{gcc_struct} attribute
fe77449a
DR
3829
3830If @code{packed} is used on a structure, or if bit-fields are used
3831it may be that the Microsoft ABI packs them differently
3832than GCC would normally pack them. Particularly when moving packed
3833data between functions compiled with GCC and the native Microsoft compiler
3834(either via function call or as data in a file), it may be necessary to access
3835either format.
3836
95fef11f 3837Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
fe77449a 3838compilers to match the native Microsoft compiler.
0ac11108
EC
3839
3840The Microsoft structure layout algorithm is fairly simple with the exception
3841of the bitfield packing:
3842
3843The padding and alignment of members of structures and whether a bit field
3844can straddle a storage-unit boundary
3845
3846@enumerate
3847@item Structure members are stored sequentially in the order in which they are
3848declared: the first member has the lowest memory address and the last member
3849the highest.
3850
3851@item Every data object has an alignment-requirement. The alignment-requirement
3852for all data except structures, unions, and arrays is either the size of the
3853object or the current packing size (specified with either the aligned attribute
3854or the pack pragma), whichever is less. For structures, unions, and arrays,
3855the alignment-requirement is the largest alignment-requirement of its members.
3856Every object is allocated an offset so that:
3857
3858offset % alignment-requirement == 0
3859
3860@item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
3861unit if the integral types are the same size and if the next bit field fits
3862into the current allocation unit without crossing the boundary imposed by the
3863common alignment requirements of the bit fields.
3864@end enumerate
3865
3866Handling of zero-length bitfields:
3867
3868MSVC interprets zero-length bitfields in the following ways:
3869
3870@enumerate
3871@item If a zero-length bitfield is inserted between two bitfields that would
3872normally be coalesced, the bitfields will not be coalesced.
3873
3874For example:
3875
3876@smallexample
3877struct
3878 @{
3879 unsigned long bf_1 : 12;
3880 unsigned long : 0;
3881 unsigned long bf_2 : 12;
3882 @} t1;
3883@end smallexample
3884
3885The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
3886zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
3887
3888@item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
3889alignment of the zero-length bitfield is greater than the member that follows it,
3890@code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
3891
3892For example:
3893
3894@smallexample
3895struct
3896 @{
3897 char foo : 4;
3898 short : 0;
3899 char bar;
3900 @} t2;
3901
3902struct
3903 @{
3904 char foo : 4;
3905 short : 0;
3906 double bar;
3907 @} t3;
3908@end smallexample
3909
3910For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
3911Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
3912bitfield will not affect the alignment of @code{bar} or, as a result, the size
3913of the structure.
3914
3915Taking this into account, it is important to note the following:
3916
3917@enumerate
3918@item If a zero-length bitfield follows a normal bitfield, the type of the
3919zero-length bitfield may affect the alignment of the structure as whole. For
3920example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
3921normal bitfield, and is of type short.
3922
3923@item Even if a zero-length bitfield is not followed by a normal bitfield, it may
3924still affect the alignment of the structure:
3925
3926@smallexample
3927struct
3928 @{
3929 char foo : 6;
3930 long : 0;
3931 @} t4;
3932@end smallexample
3933
3934Here, @code{t4} will take up 4 bytes.
3935@end enumerate
3936
3937@item Zero-length bitfields following non-bitfield members are ignored:
3938
3939@smallexample
3940struct
3941 @{
3942 char foo;
3943 long : 0;
3944 char bar;
3945 @} t5;
3946@end smallexample
3947
3948Here, @code{t5} will take up 2 bytes.
3949@end enumerate
c1f7febf
RK
3950@end table
3951
1ccbef77
EC
3952@subsection PowerPC Variable Attributes
3953
63d0dca4
DE
3954Three attributes currently are defined for PowerPC configurations:
3955@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
1ccbef77 3956
63d0dca4 3957For full documentation of the struct attributes please see the
38bb2b65 3958documentation in @ref{i386 Variable Attributes}.
63d0dca4
DE
3959
3960For documentation of @code{altivec} attribute please see the
38bb2b65 3961documentation in @ref{PowerPC Type Attributes}.
1ccbef77 3962
85d9c13c
TS
3963@subsection SPU Variable Attributes
3964
3965The SPU supports the @code{spu_vector} attribute for variables. For
38bb2b65
SL
3966documentation of this attribute please see the documentation in
3967@ref{SPU Type Attributes}.
85d9c13c 3968
54e9a19d
DD
3969@subsection Xstormy16 Variable Attributes
3970
3971One attribute is currently defined for xstormy16 configurations:
38bb2b65 3972@code{below100}.
54e9a19d
DD
3973
3974@table @code
3975@item below100
3976@cindex @code{below100} attribute
3977
3978If a variable has the @code{below100} attribute (@code{BELOW100} is
3979allowed also), GCC will place the variable in the first 0x100 bytes of
3980memory and use special opcodes to access it. Such variables will be
3981placed in either the @code{.bss_below100} section or the
3982@code{.data_below100} section.
3983
3984@end table
3985
79532d34
EW
3986@subsection AVR Variable Attributes
3987
3988@table @code
3989@item progmem
3990@cindex @code{progmem} variable attribute
3991The @code{progmem} attribute is used on the AVR to place data in the Program
3992Memory address space. The AVR is a Harvard Architecture processor and data
3993normally resides in the Data Memory address space.
3994@end table
3995
c1f7febf
RK
3996@node Type Attributes
3997@section Specifying Attributes of Types
3998@cindex attribute of types
3999@cindex type attributes
4000
4001The keyword @code{__attribute__} allows you to specify special
b9e75696
JM
4002attributes of @code{struct} and @code{union} types when you define
4003such types. This keyword is followed by an attribute specification
4004inside double parentheses. Seven attributes are currently defined for
4005types: @code{aligned}, @code{packed}, @code{transparent_union},
4006@code{unused}, @code{deprecated}, @code{visibility}, and
4007@code{may_alias}. Other attributes are defined for functions
4008(@pxref{Function Attributes}) and for variables (@pxref{Variable
4009Attributes}).
c1f7febf
RK
4010
4011You may also specify any one of these attributes with @samp{__}
4012preceding and following its keyword. This allows you to use these
4013attributes in header files without being concerned about a possible
4014macro of the same name. For example, you may use @code{__aligned__}
4015instead of @code{aligned}.
4016
4009f2e7
JM
4017You may specify type attributes in an enum, struct or union type
4018declaration or definition, or for other types in a @code{typedef}
4019declaration.
c1f7febf 4020
b9e75696
JM
4021For an enum, struct or union type, you may specify attributes either
4022between the enum, struct or union tag and the name of the type, or
4023just past the closing curly brace of the @emph{definition}. The
4024former syntax is preferred.
4051959b 4025
2c5e91d2
JM
4026@xref{Attribute Syntax}, for details of the exact syntax for using
4027attributes.
4028
c1f7febf
RK
4029@table @code
4030@cindex @code{aligned} attribute
4031@item aligned (@var{alignment})
4032This attribute specifies a minimum alignment (in bytes) for variables
4033of the specified type. For example, the declarations:
4034
4035@smallexample
f69eecfb
JL
4036struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
4037typedef int more_aligned_int __attribute__ ((aligned (8)));
c1f7febf
RK
4038@end smallexample
4039
4040@noindent
d863830b 4041force the compiler to insure (as far as it can) that each variable whose
c1f7febf 4042type is @code{struct S} or @code{more_aligned_int} will be allocated and
981f6289 4043aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
c1f7febf
RK
4044variables of type @code{struct S} aligned to 8-byte boundaries allows
4045the compiler to use the @code{ldd} and @code{std} (doubleword load and
4046store) instructions when copying one variable of type @code{struct S} to
4047another, thus improving run-time efficiency.
4048
4049Note that the alignment of any given @code{struct} or @code{union} type
5490d604 4050is required by the ISO C standard to be at least a perfect multiple of
c1f7febf
RK
4051the lowest common multiple of the alignments of all of the members of
4052the @code{struct} or @code{union} in question. This means that you @emph{can}
4053effectively adjust the alignment of a @code{struct} or @code{union}
4054type by attaching an @code{aligned} attribute to any one of the members
4055of such a type, but the notation illustrated in the example above is a
4056more obvious, intuitive, and readable way to request the compiler to
4057adjust the alignment of an entire @code{struct} or @code{union} type.
4058
4059As in the preceding example, you can explicitly specify the alignment
4060(in bytes) that you wish the compiler to use for a given @code{struct}
4061or @code{union} type. Alternatively, you can leave out the alignment factor
4062and just ask the compiler to align a type to the maximum
4063useful alignment for the target machine you are compiling for. For
4064example, you could write:
4065
4066@smallexample
4067struct S @{ short f[3]; @} __attribute__ ((aligned));
4068@end smallexample
4069
4070Whenever you leave out the alignment factor in an @code{aligned}
4071attribute specification, the compiler automatically sets the alignment
4072for the type to the largest alignment which is ever used for any data
4073type on the target machine you are compiling for. Doing this can often
4074make copy operations more efficient, because the compiler can use
4075whatever instructions copy the biggest chunks of memory when performing
4076copies to or from the variables which have types that you have aligned
4077this way.
4078
4079In the example above, if the size of each @code{short} is 2 bytes, then
4080the size of the entire @code{struct S} type is 6 bytes. The smallest
4081power of two which is greater than or equal to that is 8, so the
4082compiler sets the alignment for the entire @code{struct S} type to 8
4083bytes.
4084
4085Note that although you can ask the compiler to select a time-efficient
4086alignment for a given type and then declare only individual stand-alone
4087objects of that type, the compiler's ability to select a time-efficient
4088alignment is primarily useful only when you plan to create arrays of
4089variables having the relevant (efficiently aligned) type. If you
4090declare or use arrays of variables of an efficiently-aligned type, then
4091it is likely that your program will also be doing pointer arithmetic (or
4092subscripting, which amounts to the same thing) on pointers to the
4093relevant type, and the code that the compiler generates for these
4094pointer arithmetic operations will often be more efficient for
4095efficiently-aligned types than for other types.
4096
4097The @code{aligned} attribute can only increase the alignment; but you
4098can decrease it by specifying @code{packed} as well. See below.
4099
4100Note that the effectiveness of @code{aligned} attributes may be limited
4101by inherent limitations in your linker. On many systems, the linker is
4102only able to arrange for variables to be aligned up to a certain maximum
4103alignment. (For some linkers, the maximum supported alignment may
4104be very very small.) If your linker is only able to align variables
4105up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4106in an @code{__attribute__} will still only provide you with 8 byte
4107alignment. See your linker documentation for further information.
4108
4109@item packed
a5bcc582 4110This attribute, attached to @code{struct} or @code{union} type
d1a701eb
MM
4111definition, specifies that each member (other than zero-width bitfields)
4112of the structure or union is placed to minimize the memory required. When
4113attached to an @code{enum} definition, it indicates that the smallest
4114integral type should be used.
c1f7febf 4115
84330467 4116@opindex fshort-enums
c1f7febf
RK
4117Specifying this attribute for @code{struct} and @code{union} types is
4118equivalent to specifying the @code{packed} attribute on each of the
84330467 4119structure or union members. Specifying the @option{-fshort-enums}
c1f7febf
RK
4120flag on the line is equivalent to specifying the @code{packed}
4121attribute on all @code{enum} definitions.
4122
a5bcc582
NS
4123In the following example @code{struct my_packed_struct}'s members are
4124packed closely together, but the internal layout of its @code{s} member
78466c0e 4125is not packed---to do that, @code{struct my_unpacked_struct} would need to
a5bcc582
NS
4126be packed too.
4127
4128@smallexample
4129struct my_unpacked_struct
4130 @{
4131 char c;
4132 int i;
4133 @};
4134
75b66a16 4135struct __attribute__ ((__packed__)) my_packed_struct
a5bcc582
NS
4136 @{
4137 char c;
4138 int i;
4139 struct my_unpacked_struct s;
4140 @};
4141@end smallexample
4142
4143You may only specify this attribute on the definition of a @code{enum},
4144@code{struct} or @code{union}, not on a @code{typedef} which does not
4145also define the enumerated type, structure or union.
c1f7febf
RK
4146
4147@item transparent_union
4148This attribute, attached to a @code{union} type definition, indicates
4149that any function parameter having that union type causes calls to that
4150function to be treated in a special way.
4151
4152First, the argument corresponding to a transparent union type can be of
4153any type in the union; no cast is required. Also, if the union contains
4154a pointer type, the corresponding argument can be a null pointer
4155constant or a void pointer expression; and if the union contains a void
4156pointer type, the corresponding argument can be any pointer expression.
4157If the union member type is a pointer, qualifiers like @code{const} on
4158the referenced type must be respected, just as with normal pointer
4159conversions.
4160
4161Second, the argument is passed to the function using the calling
64c18e57 4162conventions of the first member of the transparent union, not the calling
c1f7febf
RK
4163conventions of the union itself. All members of the union must have the
4164same machine representation; this is necessary for this argument passing
4165to work properly.
4166
4167Transparent unions are designed for library functions that have multiple
4168interfaces for compatibility reasons. For example, suppose the
4169@code{wait} function must accept either a value of type @code{int *} to
4170comply with Posix, or a value of type @code{union wait *} to comply with
4171the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
4172@code{wait} would accept both kinds of arguments, but it would also
4173accept any other pointer type and this would make argument type checking
4174less useful. Instead, @code{<sys/wait.h>} might define the interface
4175as follows:
4176
4177@smallexample
4009f2e7 4178typedef union __attribute__ ((__transparent_union__))
c1f7febf
RK
4179 @{
4180 int *__ip;
4181 union wait *__up;
4009f2e7 4182 @} wait_status_ptr_t;
c1f7febf
RK
4183
4184pid_t wait (wait_status_ptr_t);
4185@end smallexample
4186
4187This interface allows either @code{int *} or @code{union wait *}
4188arguments to be passed, using the @code{int *} calling convention.
4189The program can call @code{wait} with arguments of either type:
4190
3ab51846 4191@smallexample
c1f7febf
RK
4192int w1 () @{ int w; return wait (&w); @}
4193int w2 () @{ union wait w; return wait (&w); @}
3ab51846 4194@end smallexample
c1f7febf
RK
4195
4196With this interface, @code{wait}'s implementation might look like this:
4197
3ab51846 4198@smallexample
c1f7febf
RK
4199pid_t wait (wait_status_ptr_t p)
4200@{
4201 return waitpid (-1, p.__ip, 0);
4202@}
3ab51846 4203@end smallexample
d863830b
JL
4204
4205@item unused
4206When attached to a type (including a @code{union} or a @code{struct}),
4207this attribute means that variables of that type are meant to appear
f0523f02 4208possibly unused. GCC will not produce a warning for any variables of
d863830b
JL
4209that type, even if the variable appears to do nothing. This is often
4210the case with lock or thread classes, which are usually defined and then
4211not referenced, but contain constructors and destructors that have
956d6950 4212nontrivial bookkeeping functions.
d863830b 4213
e23bd218
IR
4214@item deprecated
4215The @code{deprecated} attribute results in a warning if the type
4216is used anywhere in the source file. This is useful when identifying
4217types that are expected to be removed in a future version of a program.
4218If possible, the warning also includes the location of the declaration
4219of the deprecated type, to enable users to easily find further
4220information about why the type is deprecated, or what they should do
4221instead. Note that the warnings only occur for uses and then only
adc9fe67 4222if the type is being applied to an identifier that itself is not being
e23bd218
IR
4223declared as deprecated.
4224
4225@smallexample
4226typedef int T1 __attribute__ ((deprecated));
4227T1 x;
4228typedef T1 T2;
4229T2 y;
4230typedef T1 T3 __attribute__ ((deprecated));
4231T3 z __attribute__ ((deprecated));
4232@end smallexample
4233
4234results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
4235warning is issued for line 4 because T2 is not explicitly
4236deprecated. Line 5 has no warning because T3 is explicitly
4237deprecated. Similarly for line 6.
4238
4239The @code{deprecated} attribute can also be used for functions and
4240variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
4241
d18b1ed8
OS
4242@item may_alias
4243Accesses to objects with types with this attribute are not subjected to
4244type-based alias analysis, but are instead assumed to be able to alias
4245any other type of objects, just like the @code{char} type. See
4246@option{-fstrict-aliasing} for more information on aliasing issues.
4247
4248Example of use:
4249
478c9e72 4250@smallexample
d18b1ed8
OS
4251typedef short __attribute__((__may_alias__)) short_a;
4252
4253int
4254main (void)
4255@{
4256 int a = 0x12345678;
4257 short_a *b = (short_a *) &a;
4258
4259 b[1] = 0;
4260
4261 if (a == 0x12345678)
4262 abort();
4263
4264 exit(0);
4265@}
478c9e72 4266@end smallexample
d18b1ed8
OS
4267
4268If you replaced @code{short_a} with @code{short} in the variable
4269declaration, the above program would abort when compiled with
4270@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
4271above in recent GCC versions.
fe77449a 4272
b9e75696 4273@item visibility
b9e75696
JM
4274In C++, attribute visibility (@pxref{Function Attributes}) can also be
4275applied to class, struct, union and enum types. Unlike other type
4276attributes, the attribute must appear between the initial keyword and
4277the name of the type; it cannot appear after the body of the type.
4278
b70f0f48
JM
4279Note that the type visibility is applied to vague linkage entities
4280associated with the class (vtable, typeinfo node, etc.). In
4281particular, if a class is thrown as an exception in one shared object
4282and caught in another, the class must have default visibility.
4283Otherwise the two shared objects will be unable to use the same
4284typeinfo node and exception handling will break.
4285
38bb2b65
SL
4286@end table
4287
04fb56d5
MM
4288@subsection ARM Type Attributes
4289
4290On those ARM targets that support @code{dllimport} (such as Symbian
f0eb93a8 4291OS), you can use the @code{notshared} attribute to indicate that the
04fb56d5 4292virtual table and other similar data for a class should not be
8a36672b 4293exported from a DLL@. For example:
04fb56d5
MM
4294
4295@smallexample
4296class __declspec(notshared) C @{
4297public:
f0eb93a8 4298 __declspec(dllimport) C();
04fb56d5
MM
4299 virtual void f();
4300@}
4301
4302__declspec(dllexport)
4303C::C() @{@}
4304@end smallexample
4305
4306In this code, @code{C::C} is exported from the current DLL, but the
4307virtual table for @code{C} is not exported. (You can use
4308@code{__attribute__} instead of @code{__declspec} if you prefer, but
4309most Symbian OS code uses @code{__declspec}.)
4310
63d0dca4 4311@anchor{i386 Type Attributes}
fe77449a
DR
4312@subsection i386 Type Attributes
4313
4314Two attributes are currently defined for i386 configurations:
38bb2b65
SL
4315@code{ms_struct} and @code{gcc_struct}.
4316
4317@table @code
fe77449a
DR
4318
4319@item ms_struct
4320@itemx gcc_struct
4321@cindex @code{ms_struct}
4322@cindex @code{gcc_struct}
4323
4324If @code{packed} is used on a structure, or if bit-fields are used
4325it may be that the Microsoft ABI packs them differently
4326than GCC would normally pack them. Particularly when moving packed
4327data between functions compiled with GCC and the native Microsoft compiler
4328(either via function call or as data in a file), it may be necessary to access
4329either format.
4330
95fef11f 4331Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
fe77449a 4332compilers to match the native Microsoft compiler.
c1f7febf
RK
4333@end table
4334
4335To specify multiple attributes, separate them by commas within the
4336double parentheses: for example, @samp{__attribute__ ((aligned (16),
4337packed))}.
4338
63d0dca4
DE
4339@anchor{PowerPC Type Attributes}
4340@subsection PowerPC Type Attributes
4341
4342Three attributes currently are defined for PowerPC configurations:
4343@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
4344
38bb2b65
SL
4345For full documentation of the @code{ms_struct} and @code{gcc_struct}
4346attributes please see the documentation in @ref{i386 Type Attributes}.
63d0dca4
DE
4347
4348The @code{altivec} attribute allows one to declare AltiVec vector data
4349types supported by the AltiVec Programming Interface Manual. The
4350attribute requires an argument to specify one of three vector types:
4351@code{vector__}, @code{pixel__} (always followed by unsigned short),
4352and @code{bool__} (always followed by unsigned).
4353
4354@smallexample
4355__attribute__((altivec(vector__)))
4356__attribute__((altivec(pixel__))) unsigned short
4357__attribute__((altivec(bool__))) unsigned
4358@end smallexample
4359
4360These attributes mainly are intended to support the @code{__vector},
4361@code{__pixel}, and @code{__bool} AltiVec keywords.
4362
85d9c13c
TS
4363@anchor{SPU Type Attributes}
4364@subsection SPU Type Attributes
4365
4366The SPU supports the @code{spu_vector} attribute for types. This attribute
4367allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
4368Language Extensions Specification. It is intended to support the
4369@code{__vector} keyword.
4370
4371
c1f7febf
RK
4372@node Inline
4373@section An Inline Function is As Fast As a Macro
4374@cindex inline functions
4375@cindex integrating function code
4376@cindex open coding
4377@cindex macros, inline alternative
4378
0a052b16
GK
4379By declaring a function inline, you can direct GCC to make
4380calls to that function faster. One way GCC can achieve this is to
c1f7febf
RK
4381integrate that function's code into the code for its callers. This
4382makes execution faster by eliminating the function-call overhead; in
0a052b16
GK
4383addition, if any of the actual argument values are constant, their
4384known values may permit simplifications at compile time so that not
4385all of the inline function's code needs to be included. The effect on
4386code size is less predictable; object code may be larger or smaller
4387with function inlining, depending on the particular case. You can
4388also direct GCC to try to integrate all ``simple enough'' functions
4389into their callers with the option @option{-finline-functions}.
4390
4391GCC implements three different semantics of declaring a function
da1c7394
ILT
4392inline. One is available with @option{-std=gnu89} or
4393@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
4394on all inline declarations, another when @option{-std=c99} or
4395@option{-std=gnu99} (without @option{-fgnu89-inline}), and the third
4396is used when compiling C++.
4b404517 4397
c1f7febf
RK
4398To declare a function inline, use the @code{inline} keyword in its
4399declaration, like this:
4400
3ab51846 4401@smallexample
0a052b16 4402static inline int
c1f7febf
RK
4403inc (int *a)
4404@{
4405 (*a)++;
4406@}
3ab51846 4407@end smallexample
c1f7febf 4408
0a052b16
GK
4409If you are writing a header file to be included in ISO C89 programs, write
4410@code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
247b14bd 4411
0a052b16
GK
4412The three types of inlining behave similarly in two important cases:
4413when the @code{inline} keyword is used on a @code{static} function,
4414like the example above, and when a function is first declared without
4415using the @code{inline} keyword and then is defined with
4416@code{inline}, like this:
c1f7febf 4417
0a052b16
GK
4418@smallexample
4419extern int inc (int *a);
4420inline int
4421inc (int *a)
4422@{
4423 (*a)++;
4424@}
4425@end smallexample
c1f7febf 4426
0a052b16
GK
4427In both of these common cases, the program behaves the same as if you
4428had not used the @code{inline} keyword, except for its speed.
c1f7febf
RK
4429
4430@cindex inline functions, omission of
84330467 4431@opindex fkeep-inline-functions
c1f7febf
RK
4432When a function is both inline and @code{static}, if all calls to the
4433function are integrated into the caller, and the function's address is
4434never used, then the function's own assembler code is never referenced.
f0523f02 4435In this case, GCC does not actually output assembler code for the
84330467 4436function, unless you specify the option @option{-fkeep-inline-functions}.
c1f7febf
RK
4437Some calls cannot be integrated for various reasons (in particular,
4438calls that precede the function's definition cannot be integrated, and
4439neither can recursive calls within the definition). If there is a
4440nonintegrated call, then the function is compiled to assembler code as
4441usual. The function must also be compiled as usual if the program
4442refers to its address, because that can't be inlined.
4443
0a052b16
GK
4444@opindex Winline
4445Note that certain usages in a function definition can make it unsuitable
4446for inline substitution. Among these usages are: use of varargs, use of
4447alloca, use of variable sized data types (@pxref{Variable Length}),
4448use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
4449and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
4450will warn when a function marked @code{inline} could not be substituted,
4451and will give the reason for the failure.
4452
4453@cindex automatic @code{inline} for C++ member fns
4454@cindex @code{inline} automatic for C++ member fns
4455@cindex member fns, automatically @code{inline}
4456@cindex C++ member fns, automatically @code{inline}
4457@opindex fno-default-inline
4458As required by ISO C++, GCC considers member functions defined within
4459the body of a class to be marked inline even if they are
4460not explicitly declared with the @code{inline} keyword. You can
4461override this with @option{-fno-default-inline}; @pxref{C++ Dialect
4462Options,,Options Controlling C++ Dialect}.
4463
4464GCC does not inline any functions when not optimizing unless you specify
4465the @samp{always_inline} attribute for the function, like this:
4466
4467@smallexample
4468/* @r{Prototype.} */
4469inline void foo (const char) __attribute__((always_inline));
4470@end smallexample
4471
4472The remainder of this section is specific to GNU C89 inlining.
4473
c1f7febf
RK
4474@cindex non-static inline function
4475When an inline function is not @code{static}, then the compiler must assume
4476that there may be calls from other source files; since a global symbol can
4477be defined only once in any program, the function must not be defined in
4478the other source files, so the calls therein cannot be integrated.
4479Therefore, a non-@code{static} inline function is always compiled on its
4480own in the usual fashion.
4481
4482If you specify both @code{inline} and @code{extern} in the function
4483definition, then the definition is used only for inlining. In no case
4484is the function compiled on its own, not even if you refer to its
4485address explicitly. Such an address becomes an external reference, as
4486if you had only declared the function, and had not defined it.
4487
4488This combination of @code{inline} and @code{extern} has almost the
4489effect of a macro. The way to use it is to put a function definition in
4490a header file with these keywords, and put another copy of the
4491definition (lacking @code{inline} and @code{extern}) in a library file.
4492The definition in the header file will cause most calls to the function
4493to be inlined. If any uses of the function remain, they will refer to
4494the single copy in the library.
4495
c1f7febf
RK
4496@node Extended Asm
4497@section Assembler Instructions with C Expression Operands
4498@cindex extended @code{asm}
4499@cindex @code{asm} expressions
4500@cindex assembler instructions
4501@cindex registers
4502
c85f7c16
JL
4503In an assembler instruction using @code{asm}, you can specify the
4504operands of the instruction using C expressions. This means you need not
4505guess which registers or memory locations will contain the data you want
c1f7febf
RK
4506to use.
4507
c85f7c16
JL
4508You must specify an assembler instruction template much like what
4509appears in a machine description, plus an operand constraint string for
4510each operand.
c1f7febf
RK
4511
4512For example, here is how to use the 68881's @code{fsinx} instruction:
4513
3ab51846 4514@smallexample
c1f7febf 4515asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
3ab51846 4516@end smallexample
c1f7febf
RK
4517
4518@noindent
4519Here @code{angle} is the C expression for the input operand while
4520@code{result} is that of the output operand. Each has @samp{"f"} as its
c85f7c16
JL
4521operand constraint, saying that a floating point register is required.
4522The @samp{=} in @samp{=f} indicates that the operand is an output; all
4523output operands' constraints must use @samp{=}. The constraints use the
4524same language used in the machine description (@pxref{Constraints}).
4525
4526Each operand is described by an operand-constraint string followed by
4527the C expression in parentheses. A colon separates the assembler
4528template from the first output operand and another separates the last
4529output operand from the first input, if any. Commas separate the
84b72302
RH
4530operands within each group. The total number of operands is currently
4531limited to 30; this limitation may be lifted in some future version of
8a36672b 4532GCC@.
c85f7c16
JL
4533
4534If there are no output operands but there are input operands, you must
4535place two consecutive colons surrounding the place where the output
c1f7febf
RK
4536operands would go.
4537
84b72302
RH
4538As of GCC version 3.1, it is also possible to specify input and output
4539operands using symbolic names which can be referenced within the
4540assembler code. These names are specified inside square brackets
4541preceding the constraint string, and can be referenced inside the
4542assembler code using @code{%[@var{name}]} instead of a percentage sign
4543followed by the operand number. Using named operands the above example
4544could look like:
4545
3ab51846 4546@smallexample
84b72302
RH
4547asm ("fsinx %[angle],%[output]"
4548 : [output] "=f" (result)
4549 : [angle] "f" (angle));
3ab51846 4550@end smallexample
84b72302
RH
4551
4552@noindent
4553Note that the symbolic operand names have no relation whatsoever to
4554other C identifiers. You may use any name you like, even those of
64c18e57 4555existing C symbols, but you must ensure that no two operands within the same
84b72302
RH
4556assembler construct use the same symbolic name.
4557
c1f7febf 4558Output operand expressions must be lvalues; the compiler can check this.
c85f7c16
JL
4559The input operands need not be lvalues. The compiler cannot check
4560whether the operands have data types that are reasonable for the
4561instruction being executed. It does not parse the assembler instruction
4562template and does not know what it means or even whether it is valid
4563assembler input. The extended @code{asm} feature is most often used for
4564machine instructions the compiler itself does not know exist. If
4565the output expression cannot be directly addressed (for example, it is a
f0523f02 4566bit-field), your constraint must allow a register. In that case, GCC
c85f7c16
JL
4567will use the register as the output of the @code{asm}, and then store
4568that register into the output.
4569
f0523f02 4570The ordinary output operands must be write-only; GCC will assume that
c85f7c16
JL
4571the values in these operands before the instruction are dead and need
4572not be generated. Extended asm supports input-output or read-write
4573operands. Use the constraint character @samp{+} to indicate such an
373a04f1
JM
4574operand and list it with the output operands. You should only use
4575read-write operands when the constraints for the operand (or the
4576operand in which only some of the bits are to be changed) allow a
4577register.
4578
4579You may, as an alternative, logically split its function into two
4580separate operands, one input operand and one write-only output
4581operand. The connection between them is expressed by constraints
4582which say they need to be in the same location when the instruction
4583executes. You can use the same C expression for both operands, or
4584different expressions. For example, here we write the (fictitious)
4585@samp{combine} instruction with @code{bar} as its read-only source
4586operand and @code{foo} as its read-write destination:
c1f7febf 4587
3ab51846 4588@smallexample
c1f7febf 4589asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
3ab51846 4590@end smallexample
c1f7febf
RK
4591
4592@noindent
c85f7c16 4593The constraint @samp{"0"} for operand 1 says that it must occupy the
84b72302
RH
4594same location as operand 0. A number in constraint is allowed only in
4595an input operand and it must refer to an output operand.
c1f7febf 4596
84b72302 4597Only a number in the constraint can guarantee that one operand will be in
c85f7c16
JL
4598the same place as another. The mere fact that @code{foo} is the value
4599of both operands is not enough to guarantee that they will be in the
4600same place in the generated assembler code. The following would not
4601work reliably:
c1f7febf 4602
3ab51846 4603@smallexample
c1f7febf 4604asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
3ab51846 4605@end smallexample
c1f7febf
RK
4606
4607Various optimizations or reloading could cause operands 0 and 1 to be in
f0523f02 4608different registers; GCC knows no reason not to do so. For example, the
c1f7febf
RK
4609compiler might find a copy of the value of @code{foo} in one register and
4610use it for operand 1, but generate the output operand 0 in a different
4611register (copying it afterward to @code{foo}'s own address). Of course,
4612since the register for operand 1 is not even mentioned in the assembler
f0523f02 4613code, the result will not work, but GCC can't tell that.
c1f7febf 4614
84b72302
RH
4615As of GCC version 3.1, one may write @code{[@var{name}]} instead of
4616the operand number for a matching constraint. For example:
4617
3ab51846 4618@smallexample
84b72302
RH
4619asm ("cmoveq %1,%2,%[result]"
4620 : [result] "=r"(result)
4621 : "r" (test), "r"(new), "[result]"(old));
3ab51846 4622@end smallexample
84b72302 4623
805c33df
HPN
4624Sometimes you need to make an @code{asm} operand be a specific register,
4625but there's no matching constraint letter for that register @emph{by
4626itself}. To force the operand into that register, use a local variable
4627for the operand and specify the register in the variable declaration.
4628@xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
4629register constraint letter that matches the register:
4630
4631@smallexample
4632register int *p1 asm ("r0") = @dots{};
4633register int *p2 asm ("r1") = @dots{};
4634register int *result asm ("r0");
4635asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
4636@end smallexample
4637
b55d5746
HPN
4638@anchor{Example of asm with clobbered asm reg}
4639In the above example, beware that a register that is call-clobbered by
4640the target ABI will be overwritten by any function call in the
4641assignment, including library calls for arithmetic operators.
4642Assuming it is a call-clobbered register, this may happen to @code{r0}
4643above by the assignment to @code{p2}. If you have to use such a
4644register, use temporary variables for expressions between the register
4645assignment and use:
4646
4647@smallexample
4648int t1 = @dots{};
4649register int *p1 asm ("r0") = @dots{};
4650register int *p2 asm ("r1") = t1;
4651register int *result asm ("r0");
4652asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
4653@end smallexample
4654
c85f7c16
JL
4655Some instructions clobber specific hard registers. To describe this,
4656write a third colon after the input operands, followed by the names of
4657the clobbered hard registers (given as strings). Here is a realistic
4658example for the VAX:
c1f7febf 4659
3ab51846 4660@smallexample
c1f7febf 4661asm volatile ("movc3 %0,%1,%2"
12bcfaa1 4662 : /* @r{no outputs} */
c1f7febf
RK
4663 : "g" (from), "g" (to), "g" (count)
4664 : "r0", "r1", "r2", "r3", "r4", "r5");
3ab51846 4665@end smallexample
c1f7febf 4666
c5c76735
JL
4667You may not write a clobber description in a way that overlaps with an
4668input or output operand. For example, you may not have an operand
4669describing a register class with one member if you mention that register
acb5d088
HPN
4670in the clobber list. Variables declared to live in specific registers
4671(@pxref{Explicit Reg Vars}), and used as asm input or output operands must
4672have no part mentioned in the clobber description.
4673There is no way for you to specify that an input
c5c76735
JL
4674operand is modified without also specifying it as an output
4675operand. Note that if all the output operands you specify are for this
4676purpose (and hence unused), you will then also need to specify
4677@code{volatile} for the @code{asm} construct, as described below, to
f0523f02 4678prevent GCC from deleting the @code{asm} statement as unused.
8fe1938e 4679
c1f7febf 4680If you refer to a particular hardware register from the assembler code,
c85f7c16
JL
4681you will probably have to list the register after the third colon to
4682tell the compiler the register's value is modified. In some assemblers,
4683the register names begin with @samp{%}; to produce one @samp{%} in the
4684assembler code, you must write @samp{%%} in the input.
4685
4686If your assembler instruction can alter the condition code register, add
f0523f02 4687@samp{cc} to the list of clobbered registers. GCC on some machines
c85f7c16
JL
4688represents the condition codes as a specific hardware register;
4689@samp{cc} serves to name this register. On other machines, the
4690condition code is handled differently, and specifying @samp{cc} has no
4691effect. But it is valid no matter what the machine.
c1f7febf 4692
bbf5a54d 4693If your assembler instructions access memory in an unpredictable
c85f7c16 4694fashion, add @samp{memory} to the list of clobbered registers. This
bbf5a54d
AJ
4695will cause GCC to not keep memory values cached in registers across the
4696assembler instruction and not optimize stores or loads to that memory.
4697You will also want to add the @code{volatile} keyword if the memory
4698affected is not listed in the inputs or outputs of the @code{asm}, as
4699the @samp{memory} clobber does not count as a side-effect of the
4700@code{asm}. If you know how large the accessed memory is, you can add
4701it as input or output but if this is not known, you should add
4702@samp{memory}. As an example, if you access ten bytes of a string, you
4703can use a memory input like:
4704
cd1a8088 4705@smallexample
bbf5a54d 4706@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
cd1a8088 4707@end smallexample
bbf5a54d
AJ
4708
4709Note that in the following example the memory input is necessary,
4710otherwise GCC might optimize the store to @code{x} away:
cd1a8088 4711@smallexample
bbf5a54d
AJ
4712int foo ()
4713@{
4714 int x = 42;
4715 int *y = &x;
4716 int result;
4717 asm ("magic stuff accessing an 'int' pointed to by '%1'"
4718 "=&d" (r) : "a" (y), "m" (*y));
f0eb93a8 4719 return result;
bbf5a54d 4720@}
cd1a8088 4721@end smallexample
c1f7febf 4722
c85f7c16 4723You can put multiple assembler instructions together in a single
8720914b
HPN
4724@code{asm} template, separated by the characters normally used in assembly
4725code for the system. A combination that works in most places is a newline
4726to break the line, plus a tab character to move to the instruction field
4727(written as @samp{\n\t}). Sometimes semicolons can be used, if the
4728assembler allows semicolons as a line-breaking character. Note that some
4729assembler dialects use semicolons to start a comment.
4730The input operands are guaranteed not to use any of the clobbered
c85f7c16
JL
4731registers, and neither will the output operands' addresses, so you can
4732read and write the clobbered registers as many times as you like. Here
4733is an example of multiple instructions in a template; it assumes the
4734subroutine @code{_foo} accepts arguments in registers 9 and 10:
c1f7febf 4735
3ab51846 4736@smallexample
8720914b 4737asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
c1f7febf
RK
4738 : /* no outputs */
4739 : "g" (from), "g" (to)
4740 : "r9", "r10");
3ab51846 4741@end smallexample
c1f7febf 4742
f0523f02 4743Unless an output operand has the @samp{&} constraint modifier, GCC
c85f7c16
JL
4744may allocate it in the same register as an unrelated input operand, on
4745the assumption the inputs are consumed before the outputs are produced.
c1f7febf
RK
4746This assumption may be false if the assembler code actually consists of
4747more than one instruction. In such a case, use @samp{&} for each output
c85f7c16 4748operand that may not overlap an input. @xref{Modifiers}.
c1f7febf 4749
c85f7c16
JL
4750If you want to test the condition code produced by an assembler
4751instruction, you must include a branch and a label in the @code{asm}
4752construct, as follows:
c1f7febf 4753
3ab51846 4754@smallexample
8720914b 4755asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
c1f7febf
RK
4756 : "g" (result)
4757 : "g" (input));
3ab51846 4758@end smallexample
c1f7febf
RK
4759
4760@noindent
4761This assumes your assembler supports local labels, as the GNU assembler
4762and most Unix assemblers do.
4763
4764Speaking of labels, jumps from one @code{asm} to another are not
c85f7c16
JL
4765supported. The compiler's optimizers do not know about these jumps, and
4766therefore they cannot take account of them when deciding how to
c1f7febf
RK
4767optimize.
4768
4769@cindex macros containing @code{asm}
4770Usually the most convenient way to use these @code{asm} instructions is to
4771encapsulate them in macros that look like functions. For example,
4772
3ab51846 4773@smallexample
c1f7febf
RK
4774#define sin(x) \
4775(@{ double __value, __arg = (x); \
4776 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
4777 __value; @})
3ab51846 4778@end smallexample
c1f7febf
RK
4779
4780@noindent
4781Here the variable @code{__arg} is used to make sure that the instruction
4782operates on a proper @code{double} value, and to accept only those
4783arguments @code{x} which can convert automatically to a @code{double}.
4784
c85f7c16
JL
4785Another way to make sure the instruction operates on the correct data
4786type is to use a cast in the @code{asm}. This is different from using a
c1f7febf
RK
4787variable @code{__arg} in that it converts more different types. For
4788example, if the desired type were @code{int}, casting the argument to
4789@code{int} would accept a pointer with no complaint, while assigning the
4790argument to an @code{int} variable named @code{__arg} would warn about
4791using a pointer unless the caller explicitly casts it.
4792
f0523f02 4793If an @code{asm} has output operands, GCC assumes for optimization
c85f7c16
JL
4794purposes the instruction has no side effects except to change the output
4795operands. This does not mean instructions with a side effect cannot be
4796used, but you must be careful, because the compiler may eliminate them
4797if the output operands aren't used, or move them out of loops, or
4798replace two with one if they constitute a common subexpression. Also,
4799if your instruction does have a side effect on a variable that otherwise
4800appears not to change, the old value of the variable may be reused later
4801if it happens to be found in a register.
c1f7febf 4802
2f59e40e
DJ
4803You can prevent an @code{asm} instruction from being deleted
4804by writing the keyword @code{volatile} after
c1f7febf
RK
4805the @code{asm}. For example:
4806
3ab51846 4807@smallexample
310668e8
JM
4808#define get_and_set_priority(new) \
4809(@{ int __old; \
4810 asm volatile ("get_and_set_priority %0, %1" \
4811 : "=g" (__old) : "g" (new)); \
c85f7c16 4812 __old; @})
3ab51846 4813@end smallexample
c1f7febf
RK
4814
4815@noindent
e71b34aa
MM
4816The @code{volatile} keyword indicates that the instruction has
4817important side-effects. GCC will not delete a volatile @code{asm} if
4818it is reachable. (The instruction can still be deleted if GCC can
4819prove that control-flow will never reach the location of the
f0eb93a8 4820instruction.) Note that even a volatile @code{asm} instruction
2f59e40e 4821can be moved relative to other code, including across jump
f0eb93a8
JM
4822instructions. For example, on many targets there is a system
4823register which can be set to control the rounding mode of
2f59e40e
DJ
4824floating point operations. You might try
4825setting it with a volatile @code{asm}, like this PowerPC example:
e71b34aa 4826
3ab51846 4827@smallexample
2f59e40e
DJ
4828 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
4829 sum = x + y;
3ab51846 4830@end smallexample
e71b34aa 4831
ebb48a4d 4832@noindent
2f59e40e
DJ
4833This will not work reliably, as the compiler may move the addition back
4834before the volatile @code{asm}. To make it work you need to add an
4835artificial dependency to the @code{asm} referencing a variable in the code
4836you don't want moved, for example:
4837
4838@smallexample
4839 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
4840 sum = x + y;
4841@end smallexample
4842
4843Similarly, you can't expect a
4844sequence of volatile @code{asm} instructions to remain perfectly
4845consecutive. If you want consecutive output, use a single @code{asm}.
4846Also, GCC will perform some optimizations across a volatile @code{asm}
4847instruction; GCC does not ``forget everything'' when it encounters
4848a volatile @code{asm} instruction the way some other compilers do.
4849
4850An @code{asm} instruction without any output operands will be treated
4851identically to a volatile @code{asm} instruction.
c1f7febf
RK
4852
4853It is a natural idea to look for a way to give access to the condition
4854code left by the assembler instruction. However, when we attempted to
4855implement this, we found no way to make it work reliably. The problem
4856is that output operands might need reloading, which would result in
4857additional following ``store'' instructions. On most machines, these
4858instructions would alter the condition code before there was time to
4859test it. This problem doesn't arise for ordinary ``test'' and
4860``compare'' instructions because they don't have any output operands.
4861
eda3fbbe
GB
4862For reasons similar to those described above, it is not possible to give
4863an assembler instruction access to the condition code left by previous
4864instructions.
4865
5490d604 4866If you are writing a header file that should be includable in ISO C
c1f7febf
RK
4867programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
4868Keywords}.
4869
ece7fc1c
RE
4870@subsection Size of an @code{asm}
4871
4872Some targets require that GCC track the size of each instruction used in
4873order to generate correct code. Because the final length of an
4874@code{asm} is only known by the assembler, GCC must make an estimate as
4875to how big it will be. The estimate is formed by counting the number of
4876statements in the pattern of the @code{asm} and multiplying that by the
4877length of the longest instruction on that processor. Statements in the
4878@code{asm} are identified by newline characters and whatever statement
4879separator characters are supported by the assembler; on most processors
4880this is the `@code{;}' character.
4881
4882Normally, GCC's estimate is perfectly adequate to ensure that correct
4883code is generated, but it is possible to confuse the compiler if you use
4884pseudo instructions or assembler macros that expand into multiple real
4885instructions or if you use assembler directives that expand to more
4886space in the object file than would be needed for a single instruction.
4887If this happens then the assembler will produce a diagnostic saying that
4888a label is unreachable.
4889
fe0ce426
JH
4890@subsection i386 floating point asm operands
4891
4892There are several rules on the usage of stack-like regs in
4893asm_operands insns. These rules apply only to the operands that are
4894stack-like regs:
4895
4896@enumerate
4897@item
4898Given a set of input regs that die in an asm_operands, it is
4899necessary to know which are implicitly popped by the asm, and
4900which must be explicitly popped by gcc.
4901
4902An input reg that is implicitly popped by the asm must be
4903explicitly clobbered, unless it is constrained to match an
4904output operand.
4905
4906@item
4907For any input reg that is implicitly popped by an asm, it is
4908necessary to know how to adjust the stack to compensate for the pop.
4909If any non-popped input is closer to the top of the reg-stack than
4910the implicitly popped reg, it would not be possible to know what the
84330467 4911stack looked like---it's not clear how the rest of the stack ``slides
fe0ce426
JH
4912up''.
4913
4914All implicitly popped input regs must be closer to the top of
4915the reg-stack than any input that is not implicitly popped.
4916
4917It is possible that if an input dies in an insn, reload might
4918use the input reg for an output reload. Consider this example:
4919
3ab51846 4920@smallexample
fe0ce426 4921asm ("foo" : "=t" (a) : "f" (b));
3ab51846 4922@end smallexample
fe0ce426
JH
4923
4924This asm says that input B is not popped by the asm, and that
c771326b 4925the asm pushes a result onto the reg-stack, i.e., the stack is one
fe0ce426
JH
4926deeper after the asm than it was before. But, it is possible that
4927reload will think that it can use the same reg for both the input and
4928the output, if input B dies in this insn.
4929
4930If any input operand uses the @code{f} constraint, all output reg
4931constraints must use the @code{&} earlyclobber.
4932
4933The asm above would be written as
4934
3ab51846 4935@smallexample
fe0ce426 4936asm ("foo" : "=&t" (a) : "f" (b));
3ab51846 4937@end smallexample
fe0ce426
JH
4938
4939@item
4940Some operands need to be in particular places on the stack. All
84330467 4941output operands fall in this category---there is no other way to
fe0ce426
JH
4942know which regs the outputs appear in unless the user indicates
4943this in the constraints.
4944
4945Output operands must specifically indicate which reg an output
4946appears in after an asm. @code{=f} is not allowed: the operand
4947constraints must select a class with a single reg.
4948
4949@item
4950Output operands may not be ``inserted'' between existing stack regs.
4951Since no 387 opcode uses a read/write operand, all output operands
4952are dead before the asm_operands, and are pushed by the asm_operands.
4953It makes no sense to push anywhere but the top of the reg-stack.
4954
4955Output operands must start at the top of the reg-stack: output
4956operands may not ``skip'' a reg.
4957
4958@item
4959Some asm statements may need extra stack space for internal
4960calculations. This can be guaranteed by clobbering stack registers
4961unrelated to the inputs and outputs.
4962
4963@end enumerate
4964
4965Here are a couple of reasonable asms to want to write. This asm
4966takes one input, which is internally popped, and produces two outputs.
4967
3ab51846 4968@smallexample
fe0ce426 4969asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
3ab51846 4970@end smallexample
fe0ce426
JH
4971
4972This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
4973and replaces them with one output. The user must code the @code{st(1)}
4974clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
4975
3ab51846 4976@smallexample
fe0ce426 4977asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
3ab51846 4978@end smallexample
fe0ce426 4979
c1f7febf 4980@include md.texi
c1f7febf
RK
4981
4982@node Asm Labels
4983@section Controlling Names Used in Assembler Code
4984@cindex assembler names for identifiers
4985@cindex names used in assembler code
4986@cindex identifiers, names in assembler code
4987
4988You can specify the name to be used in the assembler code for a C
4989function or variable by writing the @code{asm} (or @code{__asm__})
4990keyword after the declarator as follows:
4991
3ab51846 4992@smallexample
c1f7febf 4993int foo asm ("myfoo") = 2;
3ab51846 4994@end smallexample
c1f7febf
RK
4995
4996@noindent
4997This specifies that the name to be used for the variable @code{foo} in
4998the assembler code should be @samp{myfoo} rather than the usual
4999@samp{_foo}.
5000
5001On systems where an underscore is normally prepended to the name of a C
5002function or variable, this feature allows you to define names for the
5003linker that do not start with an underscore.
5004
0adc3c19
MM
5005It does not make sense to use this feature with a non-static local
5006variable since such variables do not have assembler names. If you are
5007trying to put the variable in a particular register, see @ref{Explicit
5008Reg Vars}. GCC presently accepts such code with a warning, but will
5009probably be changed to issue an error, rather than a warning, in the
5010future.
5011
c1f7febf
RK
5012You cannot use @code{asm} in this way in a function @emph{definition}; but
5013you can get the same effect by writing a declaration for the function
5014before its definition and putting @code{asm} there, like this:
5015
3ab51846 5016@smallexample
c1f7febf
RK
5017extern func () asm ("FUNC");
5018
5019func (x, y)
5020 int x, y;
0d893a63 5021/* @r{@dots{}} */
3ab51846 5022@end smallexample
c1f7febf
RK
5023
5024It is up to you to make sure that the assembler names you choose do not
5025conflict with any other assembler symbols. Also, you must not use a
f0523f02
JM
5026register name; that would produce completely invalid assembler code. GCC
5027does not as yet have the ability to store static variables in registers.
c1f7febf
RK
5028Perhaps that will be added.
5029
5030@node Explicit Reg Vars
5031@section Variables in Specified Registers
5032@cindex explicit register variables
5033@cindex variables in specified registers
5034@cindex specified registers
5035@cindex registers, global allocation
5036
5037GNU C allows you to put a few global variables into specified hardware
5038registers. You can also specify the register in which an ordinary
5039register variable should be allocated.
5040
5041@itemize @bullet
5042@item
5043Global register variables reserve registers throughout the program.
5044This may be useful in programs such as programming language
5045interpreters which have a couple of global variables that are accessed
5046very often.
5047
5048@item
5049Local register variables in specific registers do not reserve the
805c33df
HPN
5050registers, except at the point where they are used as input or output
5051operands in an @code{asm} statement and the @code{asm} statement itself is
5052not deleted. The compiler's data flow analysis is capable of determining
c1f7febf 5053where the specified registers contain live values, and where they are
8d344fbc 5054available for other uses. Stores into local register variables may be deleted
0deaf590
JL
5055when they appear to be dead according to dataflow analysis. References
5056to local register variables may be deleted or moved or simplified.
c1f7febf
RK
5057
5058These local variables are sometimes convenient for use with the extended
5059@code{asm} feature (@pxref{Extended Asm}), if you want to write one
5060output of the assembler instruction directly into a particular register.
5061(This will work provided the register you specify fits the constraints
5062specified for that operand in the @code{asm}.)
5063@end itemize
5064
5065@menu
5066* Global Reg Vars::
5067* Local Reg Vars::
5068@end menu
5069
5070@node Global Reg Vars
5071@subsection Defining Global Register Variables
5072@cindex global register variables
5073@cindex registers, global variables in
5074
5075You can define a global register variable in GNU C like this:
5076
3ab51846 5077@smallexample
c1f7febf 5078register int *foo asm ("a5");
3ab51846 5079@end smallexample
c1f7febf
RK
5080
5081@noindent
5082Here @code{a5} is the name of the register which should be used. Choose a
5083register which is normally saved and restored by function calls on your
5084machine, so that library routines will not clobber it.
5085
5086Naturally the register name is cpu-dependent, so you would need to
5087conditionalize your program according to cpu type. The register
5088@code{a5} would be a good choice on a 68000 for a variable of pointer
5089type. On machines with register windows, be sure to choose a ``global''
5090register that is not affected magically by the function call mechanism.
5091
5092In addition, operating systems on one type of cpu may differ in how they
5093name the registers; then you would need additional conditionals. For
5094example, some 68000 operating systems call this register @code{%a5}.
5095
5096Eventually there may be a way of asking the compiler to choose a register
5097automatically, but first we need to figure out how it should choose and
5098how to enable you to guide the choice. No solution is evident.
5099
5100Defining a global register variable in a certain register reserves that
5101register entirely for this use, at least within the current compilation.
5102The register will not be allocated for any other purpose in the functions
5103in the current compilation. The register will not be saved and restored by
5104these functions. Stores into this register are never deleted even if they
5105would appear to be dead, but references may be deleted or moved or
5106simplified.
5107
5108It is not safe to access the global register variables from signal
5109handlers, or from more than one thread of control, because the system
5110library routines may temporarily use the register for other things (unless
5111you recompile them specially for the task at hand).
5112
5113@cindex @code{qsort}, and global register variables
5114It is not safe for one function that uses a global register variable to
5115call another such function @code{foo} by way of a third function
e979f9e8 5116@code{lose} that was compiled without knowledge of this variable (i.e.@: in a
c1f7febf
RK
5117different source file in which the variable wasn't declared). This is
5118because @code{lose} might save the register and put some other value there.
5119For example, you can't expect a global register variable to be available in
5120the comparison-function that you pass to @code{qsort}, since @code{qsort}
5121might have put something else in that register. (If you are prepared to
5122recompile @code{qsort} with the same global register variable, you can
5123solve this problem.)
5124
5125If you want to recompile @code{qsort} or other source files which do not
5126actually use your global register variable, so that they will not use that
5127register for any other purpose, then it suffices to specify the compiler
84330467 5128option @option{-ffixed-@var{reg}}. You need not actually add a global
c1f7febf
RK
5129register declaration to their source code.
5130
5131A function which can alter the value of a global register variable cannot
5132safely be called from a function compiled without this variable, because it
5133could clobber the value the caller expects to find there on return.
5134Therefore, the function which is the entry point into the part of the
5135program that uses the global register variable must explicitly save and
5136restore the value which belongs to its caller.
5137
5138@cindex register variable after @code{longjmp}
5139@cindex global register after @code{longjmp}
5140@cindex value after @code{longjmp}
5141@findex longjmp
5142@findex setjmp
5143On most machines, @code{longjmp} will restore to each global register
5144variable the value it had at the time of the @code{setjmp}. On some
5145machines, however, @code{longjmp} will not change the value of global
5146register variables. To be portable, the function that called @code{setjmp}
5147should make other arrangements to save the values of the global register
5148variables, and to restore them in a @code{longjmp}. This way, the same
5149thing will happen regardless of what @code{longjmp} does.
5150
5151All global register variable declarations must precede all function
5152definitions. If such a declaration could appear after function
5153definitions, the declaration would be too late to prevent the register from
5154being used for other purposes in the preceding functions.
5155
5156Global register variables may not have initial values, because an
5157executable file has no means to supply initial contents for a register.
5158
981f6289 5159On the SPARC, there are reports that g3 @dots{} g7 are suitable
c1f7febf
RK
5160registers, but certain library functions, such as @code{getwd}, as well
5161as the subroutines for division and remainder, modify g3 and g4. g1 and
5162g2 are local temporaries.
5163
5164On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
5165Of course, it will not do to use more than a few of those.
5166
5167@node Local Reg Vars
5168@subsection Specifying Registers for Local Variables
5169@cindex local variables, specifying registers
5170@cindex specifying registers for local variables
5171@cindex registers for local variables
5172
5173You can define a local register variable with a specified register
5174like this:
5175
3ab51846 5176@smallexample
c1f7febf 5177register int *foo asm ("a5");
3ab51846 5178@end smallexample
c1f7febf
RK
5179
5180@noindent
5181Here @code{a5} is the name of the register which should be used. Note
5182that this is the same syntax used for defining global register
5183variables, but for a local variable it would appear within a function.
5184
5185Naturally the register name is cpu-dependent, but this is not a
5186problem, since specific registers are most often useful with explicit
5187assembler instructions (@pxref{Extended Asm}). Both of these things
5188generally require that you conditionalize your program according to
5189cpu type.
5190
5191In addition, operating systems on one type of cpu may differ in how they
5192name the registers; then you would need additional conditionals. For
5193example, some 68000 operating systems call this register @code{%a5}.
5194
c1f7febf
RK
5195Defining such a register variable does not reserve the register; it
5196remains available for other uses in places where flow control determines
d754127f 5197the variable's value is not live.
e5e809f4 5198
f0523f02 5199This option does not guarantee that GCC will generate code that has
e5e809f4 5200this variable in the register you specify at all times. You may not
805c33df
HPN
5201code an explicit reference to this register in the @emph{assembler
5202instruction template} part of an @code{asm} statement and assume it will
5203always refer to this variable. However, using the variable as an
5204@code{asm} @emph{operand} guarantees that the specified register is used
5205for the operand.
c1f7febf 5206
8d344fbc 5207Stores into local register variables may be deleted when they appear to be dead
0deaf590
JL
5208according to dataflow analysis. References to local register variables may
5209be deleted or moved or simplified.
5210
b55d5746
HPN
5211As for global register variables, it's recommended that you choose a
5212register which is normally saved and restored by function calls on
5213your machine, so that library routines will not clobber it. A common
5214pitfall is to initialize multiple call-clobbered registers with
5215arbitrary expressions, where a function call or library call for an
5216arithmetic operator will overwrite a register value from a previous
5217assignment, for example @code{r0} below:
5218@smallexample
5219register int *p1 asm ("r0") = @dots{};
5220register int *p2 asm ("r1") = @dots{};
5221@end smallexample
5222In those cases, a solution is to use a temporary variable for
5223each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
5224
c1f7febf
RK
5225@node Alternate Keywords
5226@section Alternate Keywords
5227@cindex alternate keywords
5228@cindex keywords, alternate
5229
5490d604 5230@option{-ansi} and the various @option{-std} options disable certain
f458d1d5
ZW
5231keywords. This causes trouble when you want to use GNU C extensions, or
5232a general-purpose header file that should be usable by all programs,
5233including ISO C programs. The keywords @code{asm}, @code{typeof} and
5234@code{inline} are not available in programs compiled with
5235@option{-ansi} or @option{-std} (although @code{inline} can be used in a
5236program compiled with @option{-std=c99}). The ISO C99 keyword
5490d604
JM
5237@code{restrict} is only available when @option{-std=gnu99} (which will
5238eventually be the default) or @option{-std=c99} (or the equivalent
bd819a4a 5239@option{-std=iso9899:1999}) is used.
c1f7febf
RK
5240
5241The way to solve these problems is to put @samp{__} at the beginning and
5242end of each problematical keyword. For example, use @code{__asm__}
f458d1d5 5243instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
c1f7febf
RK
5244
5245Other C compilers won't accept these alternative keywords; if you want to
5246compile with another compiler, you can define the alternate keywords as
5247macros to replace them with the customary keywords. It looks like this:
5248
3ab51846 5249@smallexample
c1f7febf
RK
5250#ifndef __GNUC__
5251#define __asm__ asm
5252#endif
3ab51846 5253@end smallexample
c1f7febf 5254
6e6b0525 5255@findex __extension__
84330467
JM
5256@opindex pedantic
5257@option{-pedantic} and other options cause warnings for many GNU C extensions.
dbe519e0 5258You can
c1f7febf
RK
5259prevent such warnings within one expression by writing
5260@code{__extension__} before the expression. @code{__extension__} has no
5261effect aside from this.
5262
5263@node Incomplete Enums
5264@section Incomplete @code{enum} Types
5265
5266You can define an @code{enum} tag without specifying its possible values.
5267This results in an incomplete type, much like what you get if you write
5268@code{struct foo} without describing the elements. A later declaration
5269which does specify the possible values completes the type.
5270
5271You can't allocate variables or storage using the type while it is
5272incomplete. However, you can work with pointers to that type.
5273
5274This extension may not be very useful, but it makes the handling of
5275@code{enum} more consistent with the way @code{struct} and @code{union}
5276are handled.
5277
5278This extension is not supported by GNU C++.
5279
5280@node Function Names
5281@section Function Names as Strings
e6cc3a24 5282@cindex @code{__func__} identifier
4b404517
JM
5283@cindex @code{__FUNCTION__} identifier
5284@cindex @code{__PRETTY_FUNCTION__} identifier
c1f7febf 5285
e6cc3a24
ZW
5286GCC provides three magic variables which hold the name of the current
5287function, as a string. The first of these is @code{__func__}, which
5288is part of the C99 standard:
5289
e6cc3a24
ZW
5290The identifier @code{__func__} is implicitly declared by the translator
5291as if, immediately following the opening brace of each function
5292definition, the declaration
5293
5294@smallexample
5295static const char __func__[] = "function-name";
5296@end smallexample
c1f7febf 5297
38bb2b65 5298@noindent
e6cc3a24
ZW
5299appeared, where function-name is the name of the lexically-enclosing
5300function. This name is the unadorned name of the function.
e6cc3a24
ZW
5301
5302@code{__FUNCTION__} is another name for @code{__func__}. Older
5303versions of GCC recognize only this name. However, it is not
5304standardized. For maximum portability, we recommend you use
5305@code{__func__}, but provide a fallback definition with the
5306preprocessor:
5307
5308@smallexample
5309#if __STDC_VERSION__ < 199901L
5310# if __GNUC__ >= 2
5311# define __func__ __FUNCTION__
5312# else
5313# define __func__ "<unknown>"
5314# endif
5315#endif
5316@end smallexample
5317
5318In C, @code{__PRETTY_FUNCTION__} is yet another name for
5319@code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
5320the type signature of the function as well as its bare name. For
5321example, this program:
c1f7febf
RK
5322
5323@smallexample
5324extern "C" @{
5325extern int printf (char *, ...);
5326@}
5327
5328class a @{
5329 public:
a721a601 5330 void sub (int i)
c1f7febf
RK
5331 @{
5332 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
5333 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
5334 @}
5335@};
5336
5337int
5338main (void)
5339@{
5340 a ax;
5341 ax.sub (0);
5342 return 0;
5343@}
5344@end smallexample
5345
5346@noindent
5347gives this output:
5348
5349@smallexample
5350__FUNCTION__ = sub
e6cc3a24 5351__PRETTY_FUNCTION__ = void a::sub(int)
22acfb79
NM
5352@end smallexample
5353
e6cc3a24
ZW
5354These identifiers are not preprocessor macros. In GCC 3.3 and
5355earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
5356were treated as string literals; they could be used to initialize
5357@code{char} arrays, and they could be concatenated with other string
5358literals. GCC 3.4 and later treat them as variables, like
5359@code{__func__}. In C++, @code{__FUNCTION__} and
5360@code{__PRETTY_FUNCTION__} have always been variables.
22acfb79 5361
c1f7febf
RK
5362@node Return Address
5363@section Getting the Return or Frame Address of a Function
5364
5365These functions may be used to get information about the callers of a
5366function.
5367
84330467 5368@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
c1f7febf
RK
5369This function returns the return address of the current function, or of
5370one of its callers. The @var{level} argument is number of frames to
5371scan up the call stack. A value of @code{0} yields the return address
5372of the current function, a value of @code{1} yields the return address
8a36672b 5373of the caller of the current function, and so forth. When inlining
95b1627e
EC
5374the expected behavior is that the function will return the address of
5375the function that will be returned to. To work around this behavior use
5376the @code{noinline} function attribute.
c1f7febf
RK
5377
5378The @var{level} argument must be a constant integer.
5379
5380On some machines it may be impossible to determine the return address of
5381any function other than the current one; in such cases, or when the top
dd96fbc5 5382of the stack has been reached, this function will return @code{0} or a
8a36672b 5383random value. In addition, @code{__builtin_frame_address} may be used
dd96fbc5 5384to determine if the top of the stack has been reached.
c1f7febf 5385
df2a54e9 5386This function should only be used with a nonzero argument for debugging
c1f7febf 5387purposes.
84330467 5388@end deftypefn
c1f7febf 5389
84330467 5390@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
c1f7febf
RK
5391This function is similar to @code{__builtin_return_address}, but it
5392returns the address of the function frame rather than the return address
5393of the function. Calling @code{__builtin_frame_address} with a value of
5394@code{0} yields the frame address of the current function, a value of
5395@code{1} yields the frame address of the caller of the current function,
5396and so forth.
5397
5398The frame is the area on the stack which holds local variables and saved
5399registers. The frame address is normally the address of the first word
5400pushed on to the stack by the function. However, the exact definition
5401depends upon the processor and the calling convention. If the processor
5402has a dedicated frame pointer register, and the function has a frame,
5403then @code{__builtin_frame_address} will return the value of the frame
5404pointer register.
5405
dd96fbc5
L
5406On some machines it may be impossible to determine the frame address of
5407any function other than the current one; in such cases, or when the top
5408of the stack has been reached, this function will return @code{0} if
5409the first frame pointer is properly initialized by the startup code.
5410
df2a54e9 5411This function should only be used with a nonzero argument for debugging
dd96fbc5 5412purposes.
84330467 5413@end deftypefn
c1f7febf 5414
1255c85c
BS
5415@node Vector Extensions
5416@section Using vector instructions through built-in functions
5417
5418On some targets, the instruction set contains SIMD vector instructions that
5419operate on multiple values contained in one large register at the same time.
5420For example, on the i386 the MMX, 3Dnow! and SSE extensions can be used
5421this way.
5422
5423The first step in using these extensions is to provide the necessary data
5424types. This should be done using an appropriate @code{typedef}:
5425
3ab51846 5426@smallexample
4a5eab38 5427typedef int v4si __attribute__ ((vector_size (16)));
3ab51846 5428@end smallexample
1255c85c 5429
4a5eab38
PB
5430The @code{int} type specifies the base type, while the attribute specifies
5431the vector size for the variable, measured in bytes. For example, the
5432declaration above causes the compiler to set the mode for the @code{v4si}
5433type to be 16 bytes wide and divided into @code{int} sized units. For
5434a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
5435corresponding mode of @code{foo} will be @acronym{V4SI}.
1255c85c 5436
4a5eab38
PB
5437The @code{vector_size} attribute is only applicable to integral and
5438float scalars, although arrays, pointers, and function return values
5439are allowed in conjunction with this construct.
5440
5441All the basic integer types can be used as base types, both as signed
5442and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
5443@code{long long}. In addition, @code{float} and @code{double} can be
5444used to build floating-point vector types.
1255c85c 5445
cb2a532e 5446Specifying a combination that is not valid for the current architecture
2dd76960 5447will cause GCC to synthesize the instructions using a narrower mode.
cb2a532e 5448For example, if you specify a variable of type @code{V4SI} and your
2dd76960 5449architecture does not allow for this specific SIMD type, GCC will
cb2a532e
AH
5450produce code that uses 4 @code{SIs}.
5451
5452The types defined in this manner can be used with a subset of normal C
2dd76960 5453operations. Currently, GCC will allow using the following operators
3a3e1600 5454on these types: @code{+, -, *, /, unary minus, ^, |, &, ~}@.
cb2a532e
AH
5455
5456The operations behave like C++ @code{valarrays}. Addition is defined as
5457the addition of the corresponding elements of the operands. For
5458example, in the code below, each of the 4 elements in @var{a} will be
5459added to the corresponding 4 elements in @var{b} and the resulting
5460vector will be stored in @var{c}.
5461
3ab51846 5462@smallexample
4a5eab38 5463typedef int v4si __attribute__ ((vector_size (16)));
cb2a532e
AH
5464
5465v4si a, b, c;
5466
5467c = a + b;
3ab51846 5468@end smallexample
cb2a532e 5469
3a3e1600
GK
5470Subtraction, multiplication, division, and the logical operations
5471operate in a similar manner. Likewise, the result of using the unary
5472minus or complement operators on a vector type is a vector whose
5473elements are the negative or complemented values of the corresponding
cb2a532e
AH
5474elements in the operand.
5475
5476You can declare variables and use them in function calls and returns, as
5477well as in assignments and some casts. You can specify a vector type as
5478a return type for a function. Vector types can also be used as function
5479arguments. It is possible to cast from one vector type to another,
5480provided they are of the same size (in fact, you can also cast vectors
5481to and from other datatypes of the same size).
5482
5483You cannot operate between vectors of different lengths or different
90a21764 5484signedness without a cast.
cb2a532e
AH
5485
5486A port that supports hardware vector operations, usually provides a set
5487of built-in functions that can be used to operate on vectors. For
5488example, a function to add two vectors and multiply the result by a
5489third could look like this:
1255c85c 5490
3ab51846 5491@smallexample
1255c85c
BS
5492v4si f (v4si a, v4si b, v4si c)
5493@{
5494 v4si tmp = __builtin_addv4si (a, b);
5495 return __builtin_mulv4si (tmp, c);
5496@}
5497
3ab51846 5498@end smallexample
1255c85c 5499
7a3ea201
RH
5500@node Offsetof
5501@section Offsetof
5502@findex __builtin_offsetof
5503
5504GCC implements for both C and C++ a syntactic extension to implement
5505the @code{offsetof} macro.
5506
5507@smallexample
5508primary:
6ccde948 5509 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
7a3ea201
RH
5510
5511offsetof_member_designator:
6ccde948
RW
5512 @code{identifier}
5513 | offsetof_member_designator "." @code{identifier}
5514 | offsetof_member_designator "[" @code{expr} "]"
7a3ea201
RH
5515@end smallexample
5516
5517This extension is sufficient such that
5518
5519@smallexample
5520#define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
5521@end smallexample
5522
5523is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
5524may be dependent. In either case, @var{member} may consist of a single
5525identifier, or a sequence of member accesses and array references.
5526
48ae6c13
RH
5527@node Atomic Builtins
5528@section Built-in functions for atomic memory access
5529
5530The following builtins are intended to be compatible with those described
5531in the @cite{Intel Itanium Processor-specific Application Binary Interface},
5532section 7.4. As such, they depart from the normal GCC practice of using
5533the ``__builtin_'' prefix, and further that they are overloaded such that
5534they work on multiple types.
5535
5536The definition given in the Intel documentation allows only for the use of
5537the types @code{int}, @code{long}, @code{long long} as well as their unsigned
5538counterparts. GCC will allow any integral scalar or pointer type that is
55391, 2, 4 or 8 bytes in length.
5540
5541Not all operations are supported by all target processors. If a particular
5542operation cannot be implemented on the target processor, a warning will be
5543generated and a call an external function will be generated. The external
5544function will carry the same name as the builtin, with an additional suffix
5545@samp{_@var{n}} where @var{n} is the size of the data type.
5546
5547@c ??? Should we have a mechanism to suppress this warning? This is almost
5548@c useful for implementing the operation under the control of an external
5549@c mutex.
5550
5551In most cases, these builtins are considered a @dfn{full barrier}. That is,
5552no memory operand will be moved across the operation, either forward or
5553backward. Further, instructions will be issued as necessary to prevent the
5554processor from speculating loads across the operation and from queuing stores
5555after the operation.
5556
5557All of the routines are are described in the Intel documentation to take
5558``an optional list of variables protected by the memory barrier''. It's
5559not clear what is meant by that; it could mean that @emph{only} the
5560following variables are protected, or it could mean that these variables
5561should in addition be protected. At present GCC ignores this list and
5562protects all variables which are globally accessible. If in the future
5563we make some use of this list, an empty list will continue to mean all
5564globally accessible variables.
5565
5566@table @code
5567@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
5568@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
5569@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
5570@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
5571@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
5572@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
5573@findex __sync_fetch_and_add
5574@findex __sync_fetch_and_sub
5575@findex __sync_fetch_and_or
5576@findex __sync_fetch_and_and
5577@findex __sync_fetch_and_xor
5578@findex __sync_fetch_and_nand
5579These builtins perform the operation suggested by the name, and
5580returns the value that had previously been in memory. That is,
5581
5582@smallexample
5583@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
f12b785d 5584@{ tmp = *ptr; *ptr = ~tmp & value; return tmp; @} // nand
48ae6c13
RH
5585@end smallexample
5586
48ae6c13
RH
5587@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
5588@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
5589@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
5590@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
5591@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
5592@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
5593@findex __sync_add_and_fetch
5594@findex __sync_sub_and_fetch
5595@findex __sync_or_and_fetch
5596@findex __sync_and_and_fetch
5597@findex __sync_xor_and_fetch
5598@findex __sync_nand_and_fetch
5599These builtins perform the operation suggested by the name, and
5600return the new value. That is,
5601
5602@smallexample
5603@{ *ptr @var{op}= value; return *ptr; @}
f12b785d 5604@{ *ptr = ~*ptr & value; return *ptr; @} // nand
48ae6c13
RH
5605@end smallexample
5606
5607@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
5608@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
5609@findex __sync_bool_compare_and_swap
5610@findex __sync_val_compare_and_swap
5611These builtins perform an atomic compare and swap. That is, if the current
5612value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
5613@code{*@var{ptr}}.
5614
0ac11108 5615The ``bool'' version returns true if the comparison is successful and
48ae6c13 5616@var{newval} was written. The ``val'' version returns the contents
f12b785d 5617of @code{*@var{ptr}} before the operation.
48ae6c13
RH
5618
5619@item __sync_synchronize (...)
5620@findex __sync_synchronize
5621This builtin issues a full memory barrier.
5622
5623@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
5624@findex __sync_lock_test_and_set
5625This builtin, as described by Intel, is not a traditional test-and-set
5626operation, but rather an atomic exchange operation. It writes @var{value}
5627into @code{*@var{ptr}}, and returns the previous contents of
5628@code{*@var{ptr}}.
5629
5630Many targets have only minimal support for such locks, and do not support
5631a full exchange operation. In this case, a target may support reduced
5632functionality here by which the @emph{only} valid value to store is the
5633immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
5634is implementation defined.
5635
5636This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
5637This means that references after the builtin cannot move to (or be
5638speculated to) before the builtin, but previous memory stores may not
0ac11108 5639be globally visible yet, and previous memory loads may not yet be
48ae6c13
RH
5640satisfied.
5641
5642@item void __sync_lock_release (@var{type} *ptr, ...)
5643@findex __sync_lock_release
5644This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
5645Normally this means writing the constant 0 to @code{*@var{ptr}}.
5646
5647This builtin is not a full barrier, but rather a @dfn{release barrier}.
5648This means that all previous memory stores are globally visible, and all
5649previous memory loads have been satisfied, but following memory reads
5650are not prevented from being speculated to before the barrier.
5651@end table
5652
10a0d495
JJ
5653@node Object Size Checking
5654@section Object Size Checking Builtins
5655@findex __builtin_object_size
5656@findex __builtin___memcpy_chk
5657@findex __builtin___mempcpy_chk
5658@findex __builtin___memmove_chk
5659@findex __builtin___memset_chk
5660@findex __builtin___strcpy_chk
5661@findex __builtin___stpcpy_chk
5662@findex __builtin___strncpy_chk
5663@findex __builtin___strcat_chk
5664@findex __builtin___strncat_chk
5665@findex __builtin___sprintf_chk
5666@findex __builtin___snprintf_chk
5667@findex __builtin___vsprintf_chk
5668@findex __builtin___vsnprintf_chk
5669@findex __builtin___printf_chk
5670@findex __builtin___vprintf_chk
5671@findex __builtin___fprintf_chk
5672@findex __builtin___vfprintf_chk
5673
5674GCC implements a limited buffer overflow protection mechanism
5675that can prevent some buffer overflow attacks.
5676
5677@deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
5678is a built-in construct that returns a constant number of bytes from
5679@var{ptr} to the end of the object @var{ptr} pointer points to
5680(if known at compile time). @code{__builtin_object_size} never evaluates
5681its arguments for side-effects. If there are any side-effects in them, it
5682returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
5683for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
5684point to and all of them are known at compile time, the returned number
5685is the maximum of remaining byte counts in those objects if @var{type} & 2 is
a4d05547 56860 and minimum if nonzero. If it is not possible to determine which objects
10a0d495
JJ
5687@var{ptr} points to at compile time, @code{__builtin_object_size} should
5688return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
5689for @var{type} 2 or 3.
5690
5691@var{type} is an integer constant from 0 to 3. If the least significant
5692bit is clear, objects are whole variables, if it is set, a closest
5693surrounding subobject is considered the object a pointer points to.
5694The second bit determines if maximum or minimum of remaining bytes
5695is computed.
5696
5697@smallexample
5698struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
5699char *p = &var.buf1[1], *q = &var.b;
5700
5701/* Here the object p points to is var. */
5702assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
5703/* The subobject p points to is var.buf1. */
5704assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
5705/* The object q points to is var. */
5706assert (__builtin_object_size (q, 0)
6ccde948 5707 == (char *) (&var + 1) - (char *) &var.b);
10a0d495
JJ
5708/* The subobject q points to is var.b. */
5709assert (__builtin_object_size (q, 1) == sizeof (var.b));
5710@end smallexample
5711@end deftypefn
5712
5713There are built-in functions added for many common string operation
021efafc 5714functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10a0d495
JJ
5715built-in is provided. This built-in has an additional last argument,
5716which is the number of bytes remaining in object the @var{dest}
5717argument points to or @code{(size_t) -1} if the size is not known.
5718
5719The built-in functions are optimized into the normal string functions
5720like @code{memcpy} if the last argument is @code{(size_t) -1} or if
5721it is known at compile time that the destination object will not
5722be overflown. If the compiler can determine at compile time the
5723object will be always overflown, it issues a warning.
5724
5725The intended use can be e.g.
5726
5727@smallexample
5728#undef memcpy
5729#define bos0(dest) __builtin_object_size (dest, 0)
5730#define memcpy(dest, src, n) \
5731 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
5732
5733char *volatile p;
5734char buf[10];
5735/* It is unknown what object p points to, so this is optimized
5736 into plain memcpy - no checking is possible. */
5737memcpy (p, "abcde", n);
5738/* Destination is known and length too. It is known at compile
5739 time there will be no overflow. */
5740memcpy (&buf[5], "abcde", 5);
5741/* Destination is known, but the length is not known at compile time.
5742 This will result in __memcpy_chk call that can check for overflow
5743 at runtime. */
5744memcpy (&buf[5], "abcde", n);
5745/* Destination is known and it is known at compile time there will
5746 be overflow. There will be a warning and __memcpy_chk call that
5747 will abort the program at runtime. */
5748memcpy (&buf[6], "abcde", 5);
5749@end smallexample
5750
5751Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
5752@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
5753@code{strcat} and @code{strncat}.
5754
5755There are also checking built-in functions for formatted output functions.
5756@smallexample
5757int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
5758int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6ccde948 5759 const char *fmt, ...);
10a0d495 5760int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
6ccde948 5761 va_list ap);
10a0d495 5762int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6ccde948 5763 const char *fmt, va_list ap);
10a0d495
JJ
5764@end smallexample
5765
5766The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
021efafc 5767etc.@: functions and can contain implementation specific flags on what
10a0d495
JJ
5768additional security measures the checking function might take, such as
5769handling @code{%n} differently.
5770
5771The @var{os} argument is the object size @var{s} points to, like in the
a4d05547 5772other built-in functions. There is a small difference in the behavior
10a0d495
JJ
5773though, if @var{os} is @code{(size_t) -1}, the built-in functions are
5774optimized into the non-checking functions only if @var{flag} is 0, otherwise
5775the checking function is called with @var{os} argument set to
5776@code{(size_t) -1}.
5777
5778In addition to this, there are checking built-in functions
5779@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
5780@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
5781These have just one additional argument, @var{flag}, right before
5782format string @var{fmt}. If the compiler is able to optimize them to
021efafc 5783@code{fputc} etc.@: functions, it will, otherwise the checking function
10a0d495
JJ
5784should be called and the @var{flag} argument passed to it.
5785
185ebd6c 5786@node Other Builtins
f0523f02 5787@section Other built-in functions provided by GCC
c771326b 5788@cindex built-in functions
3bf5906b 5789@findex __builtin_fpclassify
0c8d3c2b 5790@findex __builtin_isfinite
8a91c45b 5791@findex __builtin_isnormal
01702459
JM
5792@findex __builtin_isgreater
5793@findex __builtin_isgreaterequal
05f41289 5794@findex __builtin_isinf_sign
01702459
JM
5795@findex __builtin_isless
5796@findex __builtin_islessequal
5797@findex __builtin_islessgreater
5798@findex __builtin_isunordered
17684d46
RG
5799@findex __builtin_powi
5800@findex __builtin_powif
5801@findex __builtin_powil
98ff7c4d
KG
5802@findex _Exit
5803@findex _exit
01702459
JM
5804@findex abort
5805@findex abs
98ff7c4d
KG
5806@findex acos
5807@findex acosf
5808@findex acosh
5809@findex acoshf
5810@findex acoshl
5811@findex acosl
01702459 5812@findex alloca
98ff7c4d
KG
5813@findex asin
5814@findex asinf
5815@findex asinh
5816@findex asinhf
5817@findex asinhl
5818@findex asinl
29f523be 5819@findex atan
46847aa6
RS
5820@findex atan2
5821@findex atan2f
5822@findex atan2l
29f523be 5823@findex atanf
98ff7c4d
KG
5824@findex atanh
5825@findex atanhf
5826@findex atanhl
29f523be 5827@findex atanl
01702459
JM
5828@findex bcmp
5829@findex bzero
075ec276
RS
5830@findex cabs
5831@findex cabsf
5832@findex cabsl
11bf0eb0
KG
5833@findex cacos
5834@findex cacosf
5835@findex cacosh
5836@findex cacoshf
5837@findex cacoshl
5838@findex cacosl
1331d16f 5839@findex calloc
11bf0eb0
KG
5840@findex carg
5841@findex cargf
5842@findex cargl
5843@findex casin
5844@findex casinf
5845@findex casinh
5846@findex casinhf
5847@findex casinhl
5848@findex casinl
5849@findex catan
5850@findex catanf
5851@findex catanh
5852@findex catanhf
5853@findex catanhl
5854@findex catanl
98ff7c4d
KG
5855@findex cbrt
5856@findex cbrtf
5857@findex cbrtl
11bf0eb0
KG
5858@findex ccos
5859@findex ccosf
5860@findex ccosh
5861@findex ccoshf
5862@findex ccoshl
5863@findex ccosl
b052d8ee
RS
5864@findex ceil
5865@findex ceilf
5866@findex ceill
11bf0eb0
KG
5867@findex cexp
5868@findex cexpf
5869@findex cexpl
341e3d11
JM
5870@findex cimag
5871@findex cimagf
5872@findex cimagl
c3887ef2
PC
5873@findex clog
5874@findex clogf
5875@findex clogl
341e3d11
JM
5876@findex conj
5877@findex conjf
5878@findex conjl
98ff7c4d
KG
5879@findex copysign
5880@findex copysignf
5881@findex copysignl
01702459
JM
5882@findex cos
5883@findex cosf
98ff7c4d
KG
5884@findex cosh
5885@findex coshf
5886@findex coshl
01702459 5887@findex cosl
11bf0eb0
KG
5888@findex cpow
5889@findex cpowf
5890@findex cpowl
5891@findex cproj
5892@findex cprojf
5893@findex cprojl
341e3d11
JM
5894@findex creal
5895@findex crealf
5896@findex creall
11bf0eb0
KG
5897@findex csin
5898@findex csinf
5899@findex csinh
5900@findex csinhf
5901@findex csinhl
5902@findex csinl
5903@findex csqrt
5904@findex csqrtf
5905@findex csqrtl
5906@findex ctan
5907@findex ctanf
5908@findex ctanh
5909@findex ctanhf
5910@findex ctanhl
5911@findex ctanl
178b2b9f
RS
5912@findex dcgettext
5913@findex dgettext
98ff7c4d
KG
5914@findex drem
5915@findex dremf
5916@findex dreml
488f17e1
KG
5917@findex erf
5918@findex erfc
5919@findex erfcf
5920@findex erfcl
5921@findex erff
5922@findex erfl
01702459 5923@findex exit
e7b489c8 5924@findex exp
98ff7c4d
KG
5925@findex exp10
5926@findex exp10f
5927@findex exp10l
5928@findex exp2
5929@findex exp2f
5930@findex exp2l
e7b489c8
RS
5931@findex expf
5932@findex expl
98ff7c4d
KG
5933@findex expm1
5934@findex expm1f
5935@findex expm1l
01702459
JM
5936@findex fabs
5937@findex fabsf
5938@findex fabsl
98ff7c4d
KG
5939@findex fdim
5940@findex fdimf
5941@findex fdiml
01702459 5942@findex ffs
b052d8ee
RS
5943@findex floor
5944@findex floorf
5945@findex floorl
98ff7c4d
KG
5946@findex fma
5947@findex fmaf
5948@findex fmal
5949@findex fmax
5950@findex fmaxf
5951@findex fmaxl
5952@findex fmin
5953@findex fminf
5954@findex fminl
b052d8ee
RS
5955@findex fmod
5956@findex fmodf
5957@findex fmodl
18f988a0 5958@findex fprintf
b4c984fb 5959@findex fprintf_unlocked
01702459 5960@findex fputs
b4c984fb 5961@findex fputs_unlocked
a2a919aa
KG
5962@findex frexp
5963@findex frexpf
5964@findex frexpl
178b2b9f 5965@findex fscanf
488f17e1
KG
5966@findex gamma
5967@findex gammaf
5968@findex gammal
bf460eec
KG
5969@findex gamma_r
5970@findex gammaf_r
5971@findex gammal_r
178b2b9f 5972@findex gettext
98ff7c4d
KG
5973@findex hypot
5974@findex hypotf
5975@findex hypotl
5976@findex ilogb
5977@findex ilogbf
5978@findex ilogbl
e78f4a97 5979@findex imaxabs
c7b6c6cd 5980@findex index
740e5b6f
KG
5981@findex isalnum
5982@findex isalpha
5983@findex isascii
5984@findex isblank
5985@findex iscntrl
5986@findex isdigit
5987@findex isgraph
5988@findex islower
5989@findex isprint
5990@findex ispunct
5991@findex isspace
5992@findex isupper
ca4944e1
KG
5993@findex iswalnum
5994@findex iswalpha
5995@findex iswblank
5996@findex iswcntrl
5997@findex iswdigit
5998@findex iswgraph
5999@findex iswlower
6000@findex iswprint
6001@findex iswpunct
6002@findex iswspace
6003@findex iswupper
6004@findex iswxdigit
740e5b6f 6005@findex isxdigit
488f17e1
KG
6006@findex j0
6007@findex j0f
6008@findex j0l
6009@findex j1
6010@findex j1f
6011@findex j1l
6012@findex jn
6013@findex jnf
6014@findex jnl
01702459 6015@findex labs
98ff7c4d
KG
6016@findex ldexp
6017@findex ldexpf
6018@findex ldexpl
488f17e1
KG
6019@findex lgamma
6020@findex lgammaf
6021@findex lgammal
bf460eec
KG
6022@findex lgamma_r
6023@findex lgammaf_r
6024@findex lgammal_r
01702459 6025@findex llabs
98ff7c4d
KG
6026@findex llrint
6027@findex llrintf
6028@findex llrintl
6029@findex llround
6030@findex llroundf
6031@findex llroundl
e7b489c8 6032@findex log
98ff7c4d
KG
6033@findex log10
6034@findex log10f
6035@findex log10l
6036@findex log1p
6037@findex log1pf
6038@findex log1pl
6039@findex log2
6040@findex log2f
6041@findex log2l
6042@findex logb
6043@findex logbf
6044@findex logbl
e7b489c8
RS
6045@findex logf
6046@findex logl
98ff7c4d
KG
6047@findex lrint
6048@findex lrintf
6049@findex lrintl
6050@findex lround
6051@findex lroundf
6052@findex lroundl
1331d16f 6053@findex malloc
2a5fce6d 6054@findex memchr
01702459
JM
6055@findex memcmp
6056@findex memcpy
9cb65f92 6057@findex mempcpy
01702459 6058@findex memset
a2a919aa
KG
6059@findex modf
6060@findex modff
6061@findex modfl
b052d8ee
RS
6062@findex nearbyint
6063@findex nearbyintf
6064@findex nearbyintl
98ff7c4d
KG
6065@findex nextafter
6066@findex nextafterf
6067@findex nextafterl
6068@findex nexttoward
6069@findex nexttowardf
6070@findex nexttowardl
46847aa6 6071@findex pow
98ff7c4d
KG
6072@findex pow10
6073@findex pow10f
6074@findex pow10l
46847aa6
RS
6075@findex powf
6076@findex powl
01702459 6077@findex printf
b4c984fb 6078@findex printf_unlocked
08291658
RS
6079@findex putchar
6080@findex puts
98ff7c4d
KG
6081@findex remainder
6082@findex remainderf
6083@findex remainderl
a2a919aa
KG
6084@findex remquo
6085@findex remquof
6086@findex remquol
c7b6c6cd 6087@findex rindex
98ff7c4d
KG
6088@findex rint
6089@findex rintf
6090@findex rintl
b052d8ee
RS
6091@findex round
6092@findex roundf
6093@findex roundl
98ff7c4d
KG
6094@findex scalb
6095@findex scalbf
6096@findex scalbl
6097@findex scalbln
6098@findex scalblnf
6099@findex scalblnf
6100@findex scalbn
6101@findex scalbnf
6102@findex scanfnl
ef79730c
RS
6103@findex signbit
6104@findex signbitf
6105@findex signbitl
44aea9ac
JJ
6106@findex signbitd32
6107@findex signbitd64
6108@findex signbitd128
488f17e1
KG
6109@findex significand
6110@findex significandf
6111@findex significandl
01702459 6112@findex sin
a2a919aa
KG
6113@findex sincos
6114@findex sincosf
6115@findex sincosl
01702459 6116@findex sinf
98ff7c4d
KG
6117@findex sinh
6118@findex sinhf
6119@findex sinhl
01702459 6120@findex sinl
08291658
RS
6121@findex snprintf
6122@findex sprintf
01702459
JM
6123@findex sqrt
6124@findex sqrtf
6125@findex sqrtl
08291658 6126@findex sscanf
9cb65f92 6127@findex stpcpy
e905ac64
KG
6128@findex stpncpy
6129@findex strcasecmp
d118937d 6130@findex strcat
01702459
JM
6131@findex strchr
6132@findex strcmp
6133@findex strcpy
d118937d 6134@findex strcspn
1331d16f 6135@findex strdup
178b2b9f
RS
6136@findex strfmon
6137@findex strftime
01702459 6138@findex strlen
e905ac64 6139@findex strncasecmp
d118937d 6140@findex strncat
da9e9f08
KG
6141@findex strncmp
6142@findex strncpy
e905ac64 6143@findex strndup
01702459
JM
6144@findex strpbrk
6145@findex strrchr
d118937d 6146@findex strspn
01702459 6147@findex strstr
29f523be
RS
6148@findex tan
6149@findex tanf
98ff7c4d
KG
6150@findex tanh
6151@findex tanhf
6152@findex tanhl
29f523be 6153@findex tanl
488f17e1
KG
6154@findex tgamma
6155@findex tgammaf
6156@findex tgammal
740e5b6f
KG
6157@findex toascii
6158@findex tolower
6159@findex toupper
ca4944e1
KG
6160@findex towlower
6161@findex towupper
4977bab6
ZW
6162@findex trunc
6163@findex truncf
6164@findex truncl
178b2b9f
RS
6165@findex vfprintf
6166@findex vfscanf
08291658
RS
6167@findex vprintf
6168@findex vscanf
6169@findex vsnprintf
6170@findex vsprintf
6171@findex vsscanf
488f17e1
KG
6172@findex y0
6173@findex y0f
6174@findex y0l
6175@findex y1
6176@findex y1f
6177@findex y1l
6178@findex yn
6179@findex ynf
6180@findex ynl
185ebd6c 6181
f0523f02 6182GCC provides a large number of built-in functions other than the ones
185ebd6c
RH
6183mentioned above. Some of these are for internal use in the processing
6184of exceptions or variable-length argument lists and will not be
6185documented here because they may change from time to time; we do not
6186recommend general use of these functions.
6187
6188The remaining functions are provided for optimization purposes.
6189
84330467 6190@opindex fno-builtin
9c34dbbf
ZW
6191GCC includes built-in versions of many of the functions in the standard
6192C library. The versions prefixed with @code{__builtin_} will always be
6193treated as having the same meaning as the C library function even if you
8a36672b 6194specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
9c34dbbf 6195Many of these functions are only optimized in certain cases; if they are
01702459
JM
6196not optimized in a particular case, a call to the library function will
6197be emitted.
6198
84330467
JM
6199@opindex ansi
6200@opindex std
b052d8ee 6201Outside strict ISO C mode (@option{-ansi}, @option{-std=c89} or
98ff7c4d
KG
6202@option{-std=c99}), the functions
6203@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
6204@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
6205@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
bf460eec
KG
6206@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
6207@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
6208@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
740e5b6f
KG
6209@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
6210@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
bf460eec
KG
6211@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
6212@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
6213@code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
6214@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
6215@code{signbitd64}, @code{signbitd128}, @code{significandf},
6216@code{significandl}, @code{significand}, @code{sincosf},
6217@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
6218@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
6219@code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
6220@code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
6221@code{yn}
1331d16f 6222may be handled as built-in functions.
b052d8ee 6223All these functions have corresponding versions
9c34dbbf
ZW
6224prefixed with @code{__builtin_}, which may be used even in strict C89
6225mode.
01702459 6226
075ec276 6227The ISO C99 functions
98ff7c4d
KG
6228@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
6229@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11bf0eb0
KG
6230@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
6231@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
6232@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
6233@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
6234@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
6235@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
6236@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
6237@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
c3887ef2
PC
6238@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
6239@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
6240@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
6241@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
6242@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
6243@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
6244@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
6245@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
6246@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
6247@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
6248@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
6249@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
6250@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
6251@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
6252@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
ca4944e1
KG
6253@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
6254@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
6255@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
6256@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
6257@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
740e5b6f
KG
6258@code{nextafterf}, @code{nextafterl}, @code{nextafter},
6259@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
6260@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
6261@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
6262@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
6263@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
6264@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
6265@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
6266@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
08291658 6267are handled as built-in functions
b052d8ee 6268except in strict ISO C90 mode (@option{-ansi} or @option{-std=c89}).
46847aa6 6269
98ff7c4d
KG
6270There are also built-in versions of the ISO C99 functions
6271@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
29f523be 6272@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
98ff7c4d
KG
6273@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
6274@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
a2a919aa
KG
6275@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
6276@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
6277@code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
6278@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
6279@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
46847aa6
RS
6280that are recognized in any mode since ISO C90 reserves these names for
6281the purpose to which ISO C99 puts them. All these functions have
6282corresponding versions prefixed with @code{__builtin_}.
6283
ca4944e1
KG
6284The ISO C94 functions
6285@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
6286@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
6287@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
6288@code{towupper}
6289are handled as built-in functions
6290except in strict ISO C90 mode (@option{-ansi} or @option{-std=c89}).
6291
98ff7c4d
KG
6292The ISO C90 functions
6293@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
6294@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
6295@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
740e5b6f
KG
6296@code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
6297@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
6298@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
6299@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
6300@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
2a5fce6d
PC
6301@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
6302@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
6303@code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
6304@code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
6305@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
6306@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
6307@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
6308@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
08291658 6309are all recognized as built-in functions unless
46847aa6
RS
6310@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
6311is specified for an individual function). All of these functions have
4977bab6 6312corresponding versions prefixed with @code{__builtin_}.
9c34dbbf
ZW
6313
6314GCC provides built-in versions of the ISO C99 floating point comparison
6315macros that avoid raising exceptions for unordered operands. They have
6316the same names as the standard macros ( @code{isgreater},
6317@code{isgreaterequal}, @code{isless}, @code{islessequal},
6318@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
6319prefixed. We intend for a library implementor to be able to simply
6320@code{#define} each standard macro to its built-in equivalent.
3bf5906b
KG
6321In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
6322@code{isinf_sign} and @code{isnormal} built-ins used with
6323@code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
6324builtins appear both with and without the @code{__builtin_} prefix.
185ebd6c 6325
ecbcf7b3
AH
6326@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
6327
6328You can use the built-in function @code{__builtin_types_compatible_p} to
6329determine whether two types are the same.
6330
6331This built-in function returns 1 if the unqualified versions of the
6332types @var{type1} and @var{type2} (which are types, not expressions) are
6333compatible, 0 otherwise. The result of this built-in function can be
6334used in integer constant expressions.
6335
6336This built-in function ignores top level qualifiers (e.g., @code{const},
6337@code{volatile}). For example, @code{int} is equivalent to @code{const
6338int}.
6339
6340The type @code{int[]} and @code{int[5]} are compatible. On the other
6341hand, @code{int} and @code{char *} are not compatible, even if the size
6342of their types, on the particular architecture are the same. Also, the
6343amount of pointer indirection is taken into account when determining
6344similarity. Consequently, @code{short *} is not similar to
6345@code{short **}. Furthermore, two types that are typedefed are
6346considered compatible if their underlying types are compatible.
6347
bca63328
JM
6348An @code{enum} type is not considered to be compatible with another
6349@code{enum} type even if both are compatible with the same integer
6350type; this is what the C standard specifies.
6351For example, @code{enum @{foo, bar@}} is not similar to
ecbcf7b3
AH
6352@code{enum @{hot, dog@}}.
6353
6354You would typically use this function in code whose execution varies
6355depending on the arguments' types. For example:
6356
6357@smallexample
6e5bb5ad
JM
6358#define foo(x) \
6359 (@{ \
b7886f14 6360 typeof (x) tmp = (x); \
6e5bb5ad
JM
6361 if (__builtin_types_compatible_p (typeof (x), long double)) \
6362 tmp = foo_long_double (tmp); \
6363 else if (__builtin_types_compatible_p (typeof (x), double)) \
6364 tmp = foo_double (tmp); \
6365 else if (__builtin_types_compatible_p (typeof (x), float)) \
6366 tmp = foo_float (tmp); \
6367 else \
6368 abort (); \
6369 tmp; \
ecbcf7b3
AH
6370 @})
6371@end smallexample
6372
8a36672b 6373@emph{Note:} This construct is only available for C@.
ecbcf7b3
AH
6374
6375@end deftypefn
6376
6377@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
6378
6379You can use the built-in function @code{__builtin_choose_expr} to
6380evaluate code depending on the value of a constant expression. This
6381built-in function returns @var{exp1} if @var{const_exp}, which is a
6382constant expression that must be able to be determined at compile time,
6383is nonzero. Otherwise it returns 0.
6384
6385This built-in function is analogous to the @samp{? :} operator in C,
6386except that the expression returned has its type unaltered by promotion
6387rules. Also, the built-in function does not evaluate the expression
6388that was not chosen. For example, if @var{const_exp} evaluates to true,
6389@var{exp2} is not evaluated even if it has side-effects.
6390
6391This built-in function can return an lvalue if the chosen argument is an
6392lvalue.
6393
6394If @var{exp1} is returned, the return type is the same as @var{exp1}'s
6395type. Similarly, if @var{exp2} is returned, its return type is the same
6396as @var{exp2}.
6397
6398Example:
6399
6400@smallexample
478c9e72
JJ
6401#define foo(x) \
6402 __builtin_choose_expr ( \
6403 __builtin_types_compatible_p (typeof (x), double), \
6404 foo_double (x), \
6405 __builtin_choose_expr ( \
6406 __builtin_types_compatible_p (typeof (x), float), \
6407 foo_float (x), \
6408 /* @r{The void expression results in a compile-time error} \
6409 @r{when assigning the result to something.} */ \
ecbcf7b3
AH
6410 (void)0))
6411@end smallexample
6412
8a36672b 6413@emph{Note:} This construct is only available for C@. Furthermore, the
ecbcf7b3
AH
6414unused expression (@var{exp1} or @var{exp2} depending on the value of
6415@var{const_exp}) may still generate syntax errors. This may change in
6416future revisions.
6417
6418@end deftypefn
6419
84330467
JM
6420@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
6421You can use the built-in function @code{__builtin_constant_p} to
185ebd6c 6422determine if a value is known to be constant at compile-time and hence
f0523f02 6423that GCC can perform constant-folding on expressions involving that
185ebd6c
RH
6424value. The argument of the function is the value to test. The function
6425returns the integer 1 if the argument is known to be a compile-time
6426constant and 0 if it is not known to be a compile-time constant. A
6427return of 0 does not indicate that the value is @emph{not} a constant,
f0523f02 6428but merely that GCC cannot prove it is a constant with the specified
84330467 6429value of the @option{-O} option.
185ebd6c
RH
6430
6431You would typically use this function in an embedded application where
6432memory was a critical resource. If you have some complex calculation,
6433you may want it to be folded if it involves constants, but need to call
6434a function if it does not. For example:
6435
4d390518 6436@smallexample
310668e8
JM
6437#define Scale_Value(X) \
6438 (__builtin_constant_p (X) \
6439 ? ((X) * SCALE + OFFSET) : Scale (X))
185ebd6c
RH
6440@end smallexample
6441
84330467 6442You may use this built-in function in either a macro or an inline
185ebd6c 6443function. However, if you use it in an inlined function and pass an
f0523f02 6444argument of the function as the argument to the built-in, GCC will
185ebd6c 6445never return 1 when you call the inline function with a string constant
4b404517 6446or compound literal (@pxref{Compound Literals}) and will not return 1
185ebd6c 6447when you pass a constant numeric value to the inline function unless you
84330467 6448specify the @option{-O} option.
13104975
ZW
6449
6450You may also use @code{__builtin_constant_p} in initializers for static
6451data. For instance, you can write
6452
6453@smallexample
79323c50 6454static const int table[] = @{
13104975 6455 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
0d893a63 6456 /* @r{@dots{}} */
79323c50 6457@};
13104975
ZW
6458@end smallexample
6459
6460@noindent
6461This is an acceptable initializer even if @var{EXPRESSION} is not a
6462constant expression. GCC must be more conservative about evaluating the
6463built-in in this case, because it has no opportunity to perform
6464optimization.
6465
6466Previous versions of GCC did not accept this built-in in data
6467initializers. The earliest version where it is completely safe is
64683.0.1.
84330467 6469@end deftypefn
185ebd6c 6470
84330467
JM
6471@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
6472@opindex fprofile-arcs
02f52e19 6473You may use @code{__builtin_expect} to provide the compiler with
994a57cd 6474branch prediction information. In general, you should prefer to
84330467 6475use actual profile feedback for this (@option{-fprofile-arcs}), as
994a57cd 6476programmers are notoriously bad at predicting how their programs
60b6e1f5 6477actually perform. However, there are applications in which this
994a57cd
RH
6478data is hard to collect.
6479
ef950eba
JH
6480The return value is the value of @var{exp}, which should be an integral
6481expression. The semantics of the built-in are that it is expected that
6482@var{exp} == @var{c}. For example:
994a57cd
RH
6483
6484@smallexample
6485if (__builtin_expect (x, 0))
6486 foo ();
6487@end smallexample
6488
6489@noindent
6490would indicate that we do not expect to call @code{foo}, since
6491we expect @code{x} to be zero. Since you are limited to integral
6492expressions for @var{exp}, you should use constructions such as
6493
6494@smallexample
6495if (__builtin_expect (ptr != NULL, 1))
6496 error ();
6497@end smallexample
6498
6499@noindent
6500when testing pointer or floating-point values.
84330467 6501@end deftypefn
994a57cd 6502
a18c20ec
AP
6503@deftypefn {Built-in Function} void __builtin_trap (void)
6504This function causes the program to exit abnormally. GCC implements
6505this function by using a target-dependent mechanism (such as
6506intentionally executing an illegal instruction) or by calling
6507@code{abort}. The mechanism used may vary from release to release so
6508you should not rely on any particular implementation.
6509@end deftypefn
6510
677feb77
DD
6511@deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
6512This function is used to flush the processor's instruction cache for
6513the region of memory between @var{begin} inclusive and @var{end}
6514exclusive. Some targets require that the instruction cache be
6515flushed, after modifying memory containing code, in order to obtain
6516deterministic behavior.
6517
6518If the target does not require instruction cache flushes,
6519@code{__builtin___clear_cache} has no effect. Otherwise either
6520instructions are emitted in-line to clear the instruction cache or a
6521call to the @code{__clear_cache} function in libgcc is made.
6522@end deftypefn
6523
3bca17dd 6524@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
a9ccbb60
JJ
6525This function is used to minimize cache-miss latency by moving data into
6526a cache before it is accessed.
6527You can insert calls to @code{__builtin_prefetch} into code for which
6528you know addresses of data in memory that is likely to be accessed soon.
6529If the target supports them, data prefetch instructions will be generated.
6530If the prefetch is done early enough before the access then the data will
6531be in the cache by the time it is accessed.
6532
6533The value of @var{addr} is the address of the memory to prefetch.
e83d297b 6534There are two optional arguments, @var{rw} and @var{locality}.
a9ccbb60 6535The value of @var{rw} is a compile-time constant one or zero; one
e83d297b
JJ
6536means that the prefetch is preparing for a write to the memory address
6537and zero, the default, means that the prefetch is preparing for a read.
a9ccbb60
JJ
6538The value @var{locality} must be a compile-time constant integer between
6539zero and three. A value of zero means that the data has no temporal
6540locality, so it need not be left in the cache after the access. A value
6541of three means that the data has a high degree of temporal locality and
6542should be left in all levels of cache possible. Values of one and two
e83d297b
JJ
6543mean, respectively, a low or moderate degree of temporal locality. The
6544default is three.
a9ccbb60
JJ
6545
6546@smallexample
6547for (i = 0; i < n; i++)
6548 @{
6549 a[i] = a[i] + b[i];
6550 __builtin_prefetch (&a[i+j], 1, 1);
6551 __builtin_prefetch (&b[i+j], 0, 1);
0d893a63 6552 /* @r{@dots{}} */
a9ccbb60
JJ
6553 @}
6554@end smallexample
6555
f282ffb3 6556Data prefetch does not generate faults if @var{addr} is invalid, but
a9ccbb60
JJ
6557the address expression itself must be valid. For example, a prefetch
6558of @code{p->next} will not fault if @code{p->next} is not a valid
6559address, but evaluation will fault if @code{p} is not a valid address.
6560
6561If the target does not support data prefetch, the address expression
6562is evaluated if it includes side effects but no other code is generated
6563and GCC does not issue a warning.
6564@end deftypefn
6565
ab5e2615
RH
6566@deftypefn {Built-in Function} double __builtin_huge_val (void)
6567Returns a positive infinity, if supported by the floating-point format,
6568else @code{DBL_MAX}. This function is suitable for implementing the
6569ISO C macro @code{HUGE_VAL}.
6570@end deftypefn
6571
6572@deftypefn {Built-in Function} float __builtin_huge_valf (void)
6573Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
6574@end deftypefn
6575
dad78426 6576@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
ab5e2615
RH
6577Similar to @code{__builtin_huge_val}, except the return
6578type is @code{long double}.
6579@end deftypefn
6580
3bf5906b
KG
6581@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
6582This built-in implements the C99 fpclassify functionality. The first
6583five int arguments should be the target library's notion of the
6584possible FP classes and are used for return values. They must be
6585constant values and they must appear in this order: @code{FP_NAN},
32101f99 6586@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
3bf5906b
KG
6587@code{FP_ZERO}. The ellipsis is for exactly one floating point value
6588to classify. GCC treats the last argument as type-generic, which
6589means it does not do default promotion from float to double.
6590@end deftypefn
6591
ab5e2615
RH
6592@deftypefn {Built-in Function} double __builtin_inf (void)
6593Similar to @code{__builtin_huge_val}, except a warning is generated
6594if the target floating-point format does not support infinities.
ab5e2615
RH
6595@end deftypefn
6596
9a8ce21f
JG
6597@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
6598Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
6599@end deftypefn
6600
6601@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
6602Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
6603@end deftypefn
6604
6605@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
6606Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
6607@end deftypefn
6608
ab5e2615
RH
6609@deftypefn {Built-in Function} float __builtin_inff (void)
6610Similar to @code{__builtin_inf}, except the return type is @code{float}.
9c86fc0b 6611This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
ab5e2615
RH
6612@end deftypefn
6613
dad78426 6614@deftypefn {Built-in Function} {long double} __builtin_infl (void)
ab5e2615
RH
6615Similar to @code{__builtin_inf}, except the return
6616type is @code{long double}.
6617@end deftypefn
6618
05f41289
KG
6619@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
6620Similar to @code{isinf}, except the return value will be negative for
6621an argument of @code{-Inf}. Note while the parameter list is an
6622ellipsis, this function only accepts exactly one floating point
6623argument. GCC treats this parameter as type-generic, which means it
6624does not do default promotion from float to double.
6625@end deftypefn
6626
1472e41c
RH
6627@deftypefn {Built-in Function} double __builtin_nan (const char *str)
6628This is an implementation of the ISO C99 function @code{nan}.
6629
6630Since ISO C99 defines this function in terms of @code{strtod}, which we
c0478a66 6631do not implement, a description of the parsing is in order. The string
1472e41c
RH
6632is parsed as by @code{strtol}; that is, the base is recognized by
6633leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
6634in the significand such that the least significant bit of the number
daf2f129 6635is at the least significant bit of the significand. The number is
1472e41c 6636truncated to fit the significand field provided. The significand is
8a36672b 6637forced to be a quiet NaN@.
1472e41c 6638
a7d37464
GK
6639This function, if given a string literal all of which would have been
6640consumed by strtol, is evaluated early enough that it is considered a
6641compile-time constant.
1472e41c
RH
6642@end deftypefn
6643
9a8ce21f
JG
6644@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
6645Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
6646@end deftypefn
6647
6648@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
6649Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
6650@end deftypefn
6651
6652@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
6653Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
6654@end deftypefn
6655
1472e41c
RH
6656@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
6657Similar to @code{__builtin_nan}, except the return type is @code{float}.
6658@end deftypefn
6659
dad78426 6660@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
1472e41c
RH
6661Similar to @code{__builtin_nan}, except the return type is @code{long double}.
6662@end deftypefn
6663
6664@deftypefn {Built-in Function} double __builtin_nans (const char *str)
daf2f129 6665Similar to @code{__builtin_nan}, except the significand is forced
8a36672b 6666to be a signaling NaN@. The @code{nans} function is proposed by
aaa67502 6667@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
1472e41c
RH
6668@end deftypefn
6669
6670@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
6671Similar to @code{__builtin_nans}, except the return type is @code{float}.
6672@end deftypefn
6673
dad78426 6674@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
1472e41c
RH
6675Similar to @code{__builtin_nans}, except the return type is @code{long double}.
6676@end deftypefn
6677
2928cd7a
RH
6678@deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
6679Returns one plus the index of the least significant 1-bit of @var{x}, or
6680if @var{x} is zero, returns zero.
6681@end deftypefn
6682
6683@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
6684Returns the number of leading 0-bits in @var{x}, starting at the most
6685significant bit position. If @var{x} is 0, the result is undefined.
6686@end deftypefn
6687
6688@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
6689Returns the number of trailing 0-bits in @var{x}, starting at the least
6690significant bit position. If @var{x} is 0, the result is undefined.
6691@end deftypefn
6692
6693@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
6694Returns the number of 1-bits in @var{x}.
6695@end deftypefn
6696
6697@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
8a36672b 6698Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
2928cd7a
RH
6699modulo 2.
6700@end deftypefn
6701
6702@deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
6703Similar to @code{__builtin_ffs}, except the argument type is
6704@code{unsigned long}.
6705@end deftypefn
6706
6707@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
6708Similar to @code{__builtin_clz}, except the argument type is
6709@code{unsigned long}.
6710@end deftypefn
6711
6712@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
6713Similar to @code{__builtin_ctz}, except the argument type is
6714@code{unsigned long}.
6715@end deftypefn
6716
6717@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
6718Similar to @code{__builtin_popcount}, except the argument type is
6719@code{unsigned long}.
6720@end deftypefn
6721
6722@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
6723Similar to @code{__builtin_parity}, except the argument type is
6724@code{unsigned long}.
6725@end deftypefn
6726
6727@deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
6728Similar to @code{__builtin_ffs}, except the argument type is
6729@code{unsigned long long}.
6730@end deftypefn
6731
6732@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
6733Similar to @code{__builtin_clz}, except the argument type is
6734@code{unsigned long long}.
6735@end deftypefn
6736
6737@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
6738Similar to @code{__builtin_ctz}, except the argument type is
6739@code{unsigned long long}.
6740@end deftypefn
6741
6742@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
6743Similar to @code{__builtin_popcount}, except the argument type is
6744@code{unsigned long long}.
6745@end deftypefn
6746
6747@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
6748Similar to @code{__builtin_parity}, except the argument type is
6749@code{unsigned long long}.
6750@end deftypefn
6751
17684d46
RG
6752@deftypefn {Built-in Function} double __builtin_powi (double, int)
6753Returns the first argument raised to the power of the second. Unlike the
6754@code{pow} function no guarantees about precision and rounding are made.
6755@end deftypefn
6756
6757@deftypefn {Built-in Function} float __builtin_powif (float, int)
6758Similar to @code{__builtin_powi}, except the argument and return types
6759are @code{float}.
6760@end deftypefn
6761
6762@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
6763Similar to @code{__builtin_powi}, except the argument and return types
6764are @code{long double}.
6765@end deftypefn
6766
167fa32c
EC
6767@deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
6768Returns @var{x} with the order of the bytes reversed; for example,
6769@code{0xaabbccdd} becomes @code{0xddccbbaa}. Byte here always means
6770exactly 8 bits.
6771@end deftypefn
6772
6773@deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
6774Similar to @code{__builtin_bswap32}, except the argument and return types
6775are 64-bit.
6776@end deftypefn
2928cd7a 6777
0975678f
JM
6778@node Target Builtins
6779@section Built-in Functions Specific to Particular Target Machines
6780
6781On some target machines, GCC supports many built-in functions specific
6782to those machines. Generally these generate calls to specific machine
6783instructions, but allow the compiler to schedule those calls.
6784
6785@menu
6d8fd7bb 6786* Alpha Built-in Functions::
88f77cba
JB
6787* ARM iWMMXt Built-in Functions::
6788* ARM NEON Intrinsics::
161c21b6 6789* Blackfin Built-in Functions::
c3ee0579 6790* FR-V Built-in Functions::
0975678f 6791* X86 Built-in Functions::
118ea793 6792* MIPS DSP Built-in Functions::
d840bfd3 6793* MIPS Paired-Single Support::
93581857 6794* MIPS Loongson Built-in Functions::
333c8841 6795* PowerPC AltiVec Built-in Functions::
c5145ceb 6796* SPARC VIS Built-in Functions::
85d9c13c 6797* SPU Built-in Functions::
0975678f
JM
6798@end menu
6799
6d8fd7bb
RH
6800@node Alpha Built-in Functions
6801@subsection Alpha Built-in Functions
6802
6803These built-in functions are available for the Alpha family of
6804processors, depending on the command-line switches used.
6805
95b1627e 6806The following built-in functions are always available. They
6d8fd7bb
RH
6807all generate the machine instruction that is part of the name.
6808
3ab51846 6809@smallexample
6d8fd7bb
RH
6810long __builtin_alpha_implver (void)
6811long __builtin_alpha_rpcc (void)
6812long __builtin_alpha_amask (long)
6813long __builtin_alpha_cmpbge (long, long)
c4b50f1a
RH
6814long __builtin_alpha_extbl (long, long)
6815long __builtin_alpha_extwl (long, long)
6816long __builtin_alpha_extll (long, long)
6d8fd7bb 6817long __builtin_alpha_extql (long, long)
c4b50f1a
RH
6818long __builtin_alpha_extwh (long, long)
6819long __builtin_alpha_extlh (long, long)
6d8fd7bb 6820long __builtin_alpha_extqh (long, long)
c4b50f1a
RH
6821long __builtin_alpha_insbl (long, long)
6822long __builtin_alpha_inswl (long, long)
6823long __builtin_alpha_insll (long, long)
6824long __builtin_alpha_insql (long, long)
6825long __builtin_alpha_inswh (long, long)
6826long __builtin_alpha_inslh (long, long)
6827long __builtin_alpha_insqh (long, long)
6828long __builtin_alpha_mskbl (long, long)
6829long __builtin_alpha_mskwl (long, long)
6830long __builtin_alpha_mskll (long, long)
6831long __builtin_alpha_mskql (long, long)
6832long __builtin_alpha_mskwh (long, long)
6833long __builtin_alpha_msklh (long, long)
6834long __builtin_alpha_mskqh (long, long)
6835long __builtin_alpha_umulh (long, long)
6d8fd7bb
RH
6836long __builtin_alpha_zap (long, long)
6837long __builtin_alpha_zapnot (long, long)
3ab51846 6838@end smallexample
6d8fd7bb
RH
6839
6840The following built-in functions are always with @option{-mmax}
6841or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
6842later. They all generate the machine instruction that is part
6843of the name.
6844
3ab51846 6845@smallexample
6d8fd7bb
RH
6846long __builtin_alpha_pklb (long)
6847long __builtin_alpha_pkwb (long)
6848long __builtin_alpha_unpkbl (long)
6849long __builtin_alpha_unpkbw (long)
6850long __builtin_alpha_minub8 (long, long)
6851long __builtin_alpha_minsb8 (long, long)
6852long __builtin_alpha_minuw4 (long, long)
6853long __builtin_alpha_minsw4 (long, long)
6854long __builtin_alpha_maxub8 (long, long)
6855long __builtin_alpha_maxsb8 (long, long)
6856long __builtin_alpha_maxuw4 (long, long)
6857long __builtin_alpha_maxsw4 (long, long)
6858long __builtin_alpha_perr (long, long)
3ab51846 6859@end smallexample
6d8fd7bb 6860
c4b50f1a
RH
6861The following built-in functions are always with @option{-mcix}
6862or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
6863later. They all generate the machine instruction that is part
6864of the name.
6865
3ab51846 6866@smallexample
c4b50f1a
RH
6867long __builtin_alpha_cttz (long)
6868long __builtin_alpha_ctlz (long)
6869long __builtin_alpha_ctpop (long)
3ab51846 6870@end smallexample
c4b50f1a 6871
116b7a5e
RH
6872The following builtins are available on systems that use the OSF/1
6873PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
6874PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
6875@code{rdval} and @code{wrval}.
6876
3ab51846 6877@smallexample
116b7a5e
RH
6878void *__builtin_thread_pointer (void)
6879void __builtin_set_thread_pointer (void *)
3ab51846 6880@end smallexample
116b7a5e 6881
88f77cba
JB
6882@node ARM iWMMXt Built-in Functions
6883@subsection ARM iWMMXt Built-in Functions
4bc73018
NC
6884
6885These built-in functions are available for the ARM family of
88f77cba 6886processors when the @option{-mcpu=iwmmxt} switch is used:
4bc73018 6887
3ab51846 6888@smallexample
d63851eb
ILT
6889typedef int v2si __attribute__ ((vector_size (8)));
6890typedef short v4hi __attribute__ ((vector_size (8)));
6891typedef char v8qi __attribute__ ((vector_size (8)));
6892
6893int __builtin_arm_getwcx (int)
6894void __builtin_arm_setwcx (int, int)
6895int __builtin_arm_textrmsb (v8qi, int)
6896int __builtin_arm_textrmsh (v4hi, int)
6897int __builtin_arm_textrmsw (v2si, int)
6898int __builtin_arm_textrmub (v8qi, int)
6899int __builtin_arm_textrmuh (v4hi, int)
6900int __builtin_arm_textrmuw (v2si, int)
6901v8qi __builtin_arm_tinsrb (v8qi, int)
6902v4hi __builtin_arm_tinsrh (v4hi, int)
6903v2si __builtin_arm_tinsrw (v2si, int)
6904long long __builtin_arm_tmia (long long, int, int)
6905long long __builtin_arm_tmiabb (long long, int, int)
6906long long __builtin_arm_tmiabt (long long, int, int)
6907long long __builtin_arm_tmiaph (long long, int, int)
6908long long __builtin_arm_tmiatb (long long, int, int)
6909long long __builtin_arm_tmiatt (long long, int, int)
6910int __builtin_arm_tmovmskb (v8qi)
6911int __builtin_arm_tmovmskh (v4hi)
6912int __builtin_arm_tmovmskw (v2si)
6913long long __builtin_arm_waccb (v8qi)
6914long long __builtin_arm_wacch (v4hi)
6915long long __builtin_arm_waccw (v2si)
6916v8qi __builtin_arm_waddb (v8qi, v8qi)
6917v8qi __builtin_arm_waddbss (v8qi, v8qi)
6918v8qi __builtin_arm_waddbus (v8qi, v8qi)
6919v4hi __builtin_arm_waddh (v4hi, v4hi)
6920v4hi __builtin_arm_waddhss (v4hi, v4hi)
6921v4hi __builtin_arm_waddhus (v4hi, v4hi)
4bc73018 6922v2si __builtin_arm_waddw (v2si, v2si)
4bc73018 6923v2si __builtin_arm_waddwss (v2si, v2si)
4bc73018 6924v2si __builtin_arm_waddwus (v2si, v2si)
d63851eb
ILT
6925v8qi __builtin_arm_walign (v8qi, v8qi, int)
6926long long __builtin_arm_wand(long long, long long)
6927long long __builtin_arm_wandn (long long, long long)
6928v8qi __builtin_arm_wavg2b (v8qi, v8qi)
6929v8qi __builtin_arm_wavg2br (v8qi, v8qi)
6930v4hi __builtin_arm_wavg2h (v4hi, v4hi)
6931v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
6932v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
6933v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
4bc73018 6934v2si __builtin_arm_wcmpeqw (v2si, v2si)
d63851eb
ILT
6935v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
6936v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
4bc73018 6937v2si __builtin_arm_wcmpgtsw (v2si, v2si)
d63851eb
ILT
6938v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
6939v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
6940v2si __builtin_arm_wcmpgtuw (v2si, v2si)
6941long long __builtin_arm_wmacs (long long, v4hi, v4hi)
6942long long __builtin_arm_wmacsz (v4hi, v4hi)
6943long long __builtin_arm_wmacu (long long, v4hi, v4hi)
6944long long __builtin_arm_wmacuz (v4hi, v4hi)
6945v4hi __builtin_arm_wmadds (v4hi, v4hi)
6946v4hi __builtin_arm_wmaddu (v4hi, v4hi)
6947v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
6948v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
4bc73018 6949v2si __builtin_arm_wmaxsw (v2si, v2si)
d63851eb
ILT
6950v8qi __builtin_arm_wmaxub (v8qi, v8qi)
6951v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
4bc73018 6952v2si __builtin_arm_wmaxuw (v2si, v2si)
d63851eb
ILT
6953v8qi __builtin_arm_wminsb (v8qi, v8qi)
6954v4hi __builtin_arm_wminsh (v4hi, v4hi)
4bc73018 6955v2si __builtin_arm_wminsw (v2si, v2si)
d63851eb
ILT
6956v8qi __builtin_arm_wminub (v8qi, v8qi)
6957v4hi __builtin_arm_wminuh (v4hi, v4hi)
4bc73018 6958v2si __builtin_arm_wminuw (v2si, v2si)
d63851eb
ILT
6959v4hi __builtin_arm_wmulsm (v4hi, v4hi)
6960v4hi __builtin_arm_wmulul (v4hi, v4hi)
6961v4hi __builtin_arm_wmulum (v4hi, v4hi)
6962long long __builtin_arm_wor (long long, long long)
6963v2si __builtin_arm_wpackdss (long long, long long)
6964v2si __builtin_arm_wpackdus (long long, long long)
6965v8qi __builtin_arm_wpackhss (v4hi, v4hi)
6966v8qi __builtin_arm_wpackhus (v4hi, v4hi)
6967v4hi __builtin_arm_wpackwss (v2si, v2si)
6968v4hi __builtin_arm_wpackwus (v2si, v2si)
6969long long __builtin_arm_wrord (long long, long long)
6970long long __builtin_arm_wrordi (long long, int)
6971v4hi __builtin_arm_wrorh (v4hi, long long)
6972v4hi __builtin_arm_wrorhi (v4hi, int)
6973v2si __builtin_arm_wrorw (v2si, long long)
6974v2si __builtin_arm_wrorwi (v2si, int)
6975v2si __builtin_arm_wsadb (v8qi, v8qi)
6976v2si __builtin_arm_wsadbz (v8qi, v8qi)
6977v2si __builtin_arm_wsadh (v4hi, v4hi)
6978v2si __builtin_arm_wsadhz (v4hi, v4hi)
6979v4hi __builtin_arm_wshufh (v4hi, int)
6980long long __builtin_arm_wslld (long long, long long)
6981long long __builtin_arm_wslldi (long long, int)
6982v4hi __builtin_arm_wsllh (v4hi, long long)
6983v4hi __builtin_arm_wsllhi (v4hi, int)
6984v2si __builtin_arm_wsllw (v2si, long long)
4bc73018 6985v2si __builtin_arm_wsllwi (v2si, int)
d63851eb
ILT
6986long long __builtin_arm_wsrad (long long, long long)
6987long long __builtin_arm_wsradi (long long, int)
6988v4hi __builtin_arm_wsrah (v4hi, long long)
6989v4hi __builtin_arm_wsrahi (v4hi, int)
6990v2si __builtin_arm_wsraw (v2si, long long)
4bc73018 6991v2si __builtin_arm_wsrawi (v2si, int)
d63851eb
ILT
6992long long __builtin_arm_wsrld (long long, long long)
6993long long __builtin_arm_wsrldi (long long, int)
6994v4hi __builtin_arm_wsrlh (v4hi, long long)
6995v4hi __builtin_arm_wsrlhi (v4hi, int)
6996v2si __builtin_arm_wsrlw (v2si, long long)
4bc73018 6997v2si __builtin_arm_wsrlwi (v2si, int)
d63851eb
ILT
6998v8qi __builtin_arm_wsubb (v8qi, v8qi)
6999v8qi __builtin_arm_wsubbss (v8qi, v8qi)
7000v8qi __builtin_arm_wsubbus (v8qi, v8qi)
7001v4hi __builtin_arm_wsubh (v4hi, v4hi)
7002v4hi __builtin_arm_wsubhss (v4hi, v4hi)
7003v4hi __builtin_arm_wsubhus (v4hi, v4hi)
7004v2si __builtin_arm_wsubw (v2si, v2si)
7005v2si __builtin_arm_wsubwss (v2si, v2si)
7006v2si __builtin_arm_wsubwus (v2si, v2si)
7007v4hi __builtin_arm_wunpckehsb (v8qi)
7008v2si __builtin_arm_wunpckehsh (v4hi)
7009long long __builtin_arm_wunpckehsw (v2si)
7010v4hi __builtin_arm_wunpckehub (v8qi)
7011v2si __builtin_arm_wunpckehuh (v4hi)
7012long long __builtin_arm_wunpckehuw (v2si)
7013v4hi __builtin_arm_wunpckelsb (v8qi)
7014v2si __builtin_arm_wunpckelsh (v4hi)
7015long long __builtin_arm_wunpckelsw (v2si)
7016v4hi __builtin_arm_wunpckelub (v8qi)
7017v2si __builtin_arm_wunpckeluh (v4hi)
7018long long __builtin_arm_wunpckeluw (v2si)
7019v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
7020v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
4bc73018 7021v2si __builtin_arm_wunpckihw (v2si, v2si)
d63851eb
ILT
7022v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
7023v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
4bc73018 7024v2si __builtin_arm_wunpckilw (v2si, v2si)
d63851eb
ILT
7025long long __builtin_arm_wxor (long long, long long)
7026long long __builtin_arm_wzero ()
3ab51846 7027@end smallexample
4bc73018 7028
88f77cba
JB
7029@node ARM NEON Intrinsics
7030@subsection ARM NEON Intrinsics
7031
7032These built-in intrinsics for the ARM Advanced SIMD extension are available
7033when the @option{-mfpu=neon} switch is used:
7034
7035@include arm-neon-intrinsics.texi
7036
161c21b6
BS
7037@node Blackfin Built-in Functions
7038@subsection Blackfin Built-in Functions
7039
7040Currently, there are two Blackfin-specific built-in functions. These are
7041used for generating @code{CSYNC} and @code{SSYNC} machine insns without
7042using inline assembly; by using these built-in functions the compiler can
7043automatically add workarounds for hardware errata involving these
7044instructions. These functions are named as follows:
7045
7046@smallexample
7047void __builtin_bfin_csync (void)
7048void __builtin_bfin_ssync (void)
7049@end smallexample
7050
c3ee0579
RS
7051@node FR-V Built-in Functions
7052@subsection FR-V Built-in Functions
7053
7054GCC provides many FR-V-specific built-in functions. In general,
7055these functions are intended to be compatible with those described
7056by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
7057Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
7058@code{__MBTOHE}, the gcc forms of which pass 128-bit values by
7059pointer rather than by value.
7060
7061Most of the functions are named after specific FR-V instructions.
27ef2cdd 7062Such functions are said to be ``directly mapped'' and are summarized
c3ee0579
RS
7063here in tabular form.
7064
7065@menu
7066* Argument Types::
7067* Directly-mapped Integer Functions::
7068* Directly-mapped Media Functions::
c14ff86e 7069* Raw read/write Functions::
c3ee0579
RS
7070* Other Built-in Functions::
7071@end menu
7072
7073@node Argument Types
7074@subsubsection Argument Types
7075
7076The arguments to the built-in functions can be divided into three groups:
7077register numbers, compile-time constants and run-time values. In order
7078to make this classification clear at a glance, the arguments and return
7079values are given the following pseudo types:
7080
7081@multitable @columnfractions .20 .30 .15 .35
7082@item Pseudo type @tab Real C type @tab Constant? @tab Description
7083@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
7084@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
7085@item @code{sw1} @tab @code{int} @tab No @tab a signed word
7086@item @code{uw2} @tab @code{unsigned long long} @tab No
7087@tab an unsigned doubleword
7088@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
7089@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
7090@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
7091@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
7092@end multitable
7093
7094These pseudo types are not defined by GCC, they are simply a notational
7095convenience used in this manual.
7096
7097Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
7098and @code{sw2} are evaluated at run time. They correspond to
7099register operands in the underlying FR-V instructions.
7100
7101@code{const} arguments represent immediate operands in the underlying
7102FR-V instructions. They must be compile-time constants.
7103
7104@code{acc} arguments are evaluated at compile time and specify the number
7105of an accumulator register. For example, an @code{acc} argument of 2
7106will select the ACC2 register.
7107
7108@code{iacc} arguments are similar to @code{acc} arguments but specify the
7109number of an IACC register. See @pxref{Other Built-in Functions}
7110for more details.
7111
7112@node Directly-mapped Integer Functions
7113@subsubsection Directly-mapped Integer Functions
7114
7115The functions listed below map directly to FR-V I-type instructions.
7116
7117@multitable @columnfractions .45 .32 .23
7118@item Function prototype @tab Example usage @tab Assembly output
7119@item @code{sw1 __ADDSS (sw1, sw1)}
7120@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
7121@tab @code{ADDSS @var{a},@var{b},@var{c}}
7122@item @code{sw1 __SCAN (sw1, sw1)}
7123@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
7124@tab @code{SCAN @var{a},@var{b},@var{c}}
7125@item @code{sw1 __SCUTSS (sw1)}
7126@tab @code{@var{b} = __SCUTSS (@var{a})}
7127@tab @code{SCUTSS @var{a},@var{b}}
7128@item @code{sw1 __SLASS (sw1, sw1)}
7129@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
7130@tab @code{SLASS @var{a},@var{b},@var{c}}
7131@item @code{void __SMASS (sw1, sw1)}
7132@tab @code{__SMASS (@var{a}, @var{b})}
7133@tab @code{SMASS @var{a},@var{b}}
7134@item @code{void __SMSSS (sw1, sw1)}
7135@tab @code{__SMSSS (@var{a}, @var{b})}
7136@tab @code{SMSSS @var{a},@var{b}}
7137@item @code{void __SMU (sw1, sw1)}
7138@tab @code{__SMU (@var{a}, @var{b})}
7139@tab @code{SMU @var{a},@var{b}}
7140@item @code{sw2 __SMUL (sw1, sw1)}
7141@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
7142@tab @code{SMUL @var{a},@var{b},@var{c}}
7143@item @code{sw1 __SUBSS (sw1, sw1)}
7144@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
7145@tab @code{SUBSS @var{a},@var{b},@var{c}}
7146@item @code{uw2 __UMUL (uw1, uw1)}
7147@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
7148@tab @code{UMUL @var{a},@var{b},@var{c}}
7149@end multitable
7150
7151@node Directly-mapped Media Functions
7152@subsubsection Directly-mapped Media Functions
7153
7154The functions listed below map directly to FR-V M-type instructions.
7155
7156@multitable @columnfractions .45 .32 .23
7157@item Function prototype @tab Example usage @tab Assembly output
7158@item @code{uw1 __MABSHS (sw1)}
7159@tab @code{@var{b} = __MABSHS (@var{a})}
7160@tab @code{MABSHS @var{a},@var{b}}
7161@item @code{void __MADDACCS (acc, acc)}
7162@tab @code{__MADDACCS (@var{b}, @var{a})}
7163@tab @code{MADDACCS @var{a},@var{b}}
7164@item @code{sw1 __MADDHSS (sw1, sw1)}
7165@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
7166@tab @code{MADDHSS @var{a},@var{b},@var{c}}
7167@item @code{uw1 __MADDHUS (uw1, uw1)}
7168@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
7169@tab @code{MADDHUS @var{a},@var{b},@var{c}}
7170@item @code{uw1 __MAND (uw1, uw1)}
7171@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
7172@tab @code{MAND @var{a},@var{b},@var{c}}
7173@item @code{void __MASACCS (acc, acc)}
7174@tab @code{__MASACCS (@var{b}, @var{a})}
7175@tab @code{MASACCS @var{a},@var{b}}
7176@item @code{uw1 __MAVEH (uw1, uw1)}
7177@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
7178@tab @code{MAVEH @var{a},@var{b},@var{c}}
7179@item @code{uw2 __MBTOH (uw1)}
7180@tab @code{@var{b} = __MBTOH (@var{a})}
7181@tab @code{MBTOH @var{a},@var{b}}
7182@item @code{void __MBTOHE (uw1 *, uw1)}
7183@tab @code{__MBTOHE (&@var{b}, @var{a})}
7184@tab @code{MBTOHE @var{a},@var{b}}
7185@item @code{void __MCLRACC (acc)}
7186@tab @code{__MCLRACC (@var{a})}
7187@tab @code{MCLRACC @var{a}}
7188@item @code{void __MCLRACCA (void)}
7189@tab @code{__MCLRACCA ()}
7190@tab @code{MCLRACCA}
7191@item @code{uw1 __Mcop1 (uw1, uw1)}
7192@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
7193@tab @code{Mcop1 @var{a},@var{b},@var{c}}
7194@item @code{uw1 __Mcop2 (uw1, uw1)}
7195@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
7196@tab @code{Mcop2 @var{a},@var{b},@var{c}}
7197@item @code{uw1 __MCPLHI (uw2, const)}
7198@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
7199@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
7200@item @code{uw1 __MCPLI (uw2, const)}
7201@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
7202@tab @code{MCPLI @var{a},#@var{b},@var{c}}
7203@item @code{void __MCPXIS (acc, sw1, sw1)}
7204@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
7205@tab @code{MCPXIS @var{a},@var{b},@var{c}}
7206@item @code{void __MCPXIU (acc, uw1, uw1)}
7207@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
7208@tab @code{MCPXIU @var{a},@var{b},@var{c}}
7209@item @code{void __MCPXRS (acc, sw1, sw1)}
7210@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
7211@tab @code{MCPXRS @var{a},@var{b},@var{c}}
7212@item @code{void __MCPXRU (acc, uw1, uw1)}
7213@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
7214@tab @code{MCPXRU @var{a},@var{b},@var{c}}
7215@item @code{uw1 __MCUT (acc, uw1)}
7216@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
7217@tab @code{MCUT @var{a},@var{b},@var{c}}
7218@item @code{uw1 __MCUTSS (acc, sw1)}
7219@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
7220@tab @code{MCUTSS @var{a},@var{b},@var{c}}
7221@item @code{void __MDADDACCS (acc, acc)}
7222@tab @code{__MDADDACCS (@var{b}, @var{a})}
7223@tab @code{MDADDACCS @var{a},@var{b}}
7224@item @code{void __MDASACCS (acc, acc)}
7225@tab @code{__MDASACCS (@var{b}, @var{a})}
7226@tab @code{MDASACCS @var{a},@var{b}}
7227@item @code{uw2 __MDCUTSSI (acc, const)}
7228@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
7229@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
7230@item @code{uw2 __MDPACKH (uw2, uw2)}
7231@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
7232@tab @code{MDPACKH @var{a},@var{b},@var{c}}
7233@item @code{uw2 __MDROTLI (uw2, const)}
7234@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
7235@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
7236@item @code{void __MDSUBACCS (acc, acc)}
7237@tab @code{__MDSUBACCS (@var{b}, @var{a})}
7238@tab @code{MDSUBACCS @var{a},@var{b}}
7239@item @code{void __MDUNPACKH (uw1 *, uw2)}
7240@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
7241@tab @code{MDUNPACKH @var{a},@var{b}}
7242@item @code{uw2 __MEXPDHD (uw1, const)}
7243@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
7244@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
7245@item @code{uw1 __MEXPDHW (uw1, const)}
7246@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
7247@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
7248@item @code{uw1 __MHDSETH (uw1, const)}
7249@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
7250@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
7251@item @code{sw1 __MHDSETS (const)}
7252@tab @code{@var{b} = __MHDSETS (@var{a})}
7253@tab @code{MHDSETS #@var{a},@var{b}}
7254@item @code{uw1 __MHSETHIH (uw1, const)}
7255@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
7256@tab @code{MHSETHIH #@var{a},@var{b}}
7257@item @code{sw1 __MHSETHIS (sw1, const)}
7258@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
7259@tab @code{MHSETHIS #@var{a},@var{b}}
7260@item @code{uw1 __MHSETLOH (uw1, const)}
7261@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
7262@tab @code{MHSETLOH #@var{a},@var{b}}
7263@item @code{sw1 __MHSETLOS (sw1, const)}
7264@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
7265@tab @code{MHSETLOS #@var{a},@var{b}}
7266@item @code{uw1 __MHTOB (uw2)}
7267@tab @code{@var{b} = __MHTOB (@var{a})}
7268@tab @code{MHTOB @var{a},@var{b}}
7269@item @code{void __MMACHS (acc, sw1, sw1)}
7270@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
7271@tab @code{MMACHS @var{a},@var{b},@var{c}}
7272@item @code{void __MMACHU (acc, uw1, uw1)}
7273@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
7274@tab @code{MMACHU @var{a},@var{b},@var{c}}
7275@item @code{void __MMRDHS (acc, sw1, sw1)}
7276@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
7277@tab @code{MMRDHS @var{a},@var{b},@var{c}}
7278@item @code{void __MMRDHU (acc, uw1, uw1)}
7279@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
7280@tab @code{MMRDHU @var{a},@var{b},@var{c}}
7281@item @code{void __MMULHS (acc, sw1, sw1)}
7282@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
7283@tab @code{MMULHS @var{a},@var{b},@var{c}}
7284@item @code{void __MMULHU (acc, uw1, uw1)}
7285@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
7286@tab @code{MMULHU @var{a},@var{b},@var{c}}
7287@item @code{void __MMULXHS (acc, sw1, sw1)}
7288@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
7289@tab @code{MMULXHS @var{a},@var{b},@var{c}}
7290@item @code{void __MMULXHU (acc, uw1, uw1)}
7291@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
7292@tab @code{MMULXHU @var{a},@var{b},@var{c}}
7293@item @code{uw1 __MNOT (uw1)}
7294@tab @code{@var{b} = __MNOT (@var{a})}
7295@tab @code{MNOT @var{a},@var{b}}
7296@item @code{uw1 __MOR (uw1, uw1)}
7297@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
7298@tab @code{MOR @var{a},@var{b},@var{c}}
7299@item @code{uw1 __MPACKH (uh, uh)}
7300@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
7301@tab @code{MPACKH @var{a},@var{b},@var{c}}
7302@item @code{sw2 __MQADDHSS (sw2, sw2)}
7303@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
7304@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
7305@item @code{uw2 __MQADDHUS (uw2, uw2)}
7306@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
7307@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
7308@item @code{void __MQCPXIS (acc, sw2, sw2)}
7309@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
7310@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
7311@item @code{void __MQCPXIU (acc, uw2, uw2)}
7312@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
7313@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
7314@item @code{void __MQCPXRS (acc, sw2, sw2)}
7315@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
7316@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
7317@item @code{void __MQCPXRU (acc, uw2, uw2)}
7318@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
7319@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
7320@item @code{sw2 __MQLCLRHS (sw2, sw2)}
7321@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
7322@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
7323@item @code{sw2 __MQLMTHS (sw2, sw2)}
7324@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
7325@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
7326@item @code{void __MQMACHS (acc, sw2, sw2)}
7327@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
7328@tab @code{MQMACHS @var{a},@var{b},@var{c}}
7329@item @code{void __MQMACHU (acc, uw2, uw2)}
7330@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
7331@tab @code{MQMACHU @var{a},@var{b},@var{c}}
7332@item @code{void __MQMACXHS (acc, sw2, sw2)}
7333@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
7334@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
7335@item @code{void __MQMULHS (acc, sw2, sw2)}
7336@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
7337@tab @code{MQMULHS @var{a},@var{b},@var{c}}
7338@item @code{void __MQMULHU (acc, uw2, uw2)}
7339@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
7340@tab @code{MQMULHU @var{a},@var{b},@var{c}}
7341@item @code{void __MQMULXHS (acc, sw2, sw2)}
7342@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
7343@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
7344@item @code{void __MQMULXHU (acc, uw2, uw2)}
7345@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
7346@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
7347@item @code{sw2 __MQSATHS (sw2, sw2)}
7348@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
7349@tab @code{MQSATHS @var{a},@var{b},@var{c}}
7350@item @code{uw2 __MQSLLHI (uw2, int)}
7351@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
7352@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
7353@item @code{sw2 __MQSRAHI (sw2, int)}
7354@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
7355@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
7356@item @code{sw2 __MQSUBHSS (sw2, sw2)}
7357@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
7358@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
7359@item @code{uw2 __MQSUBHUS (uw2, uw2)}
7360@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
7361@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
7362@item @code{void __MQXMACHS (acc, sw2, sw2)}
7363@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
7364@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
7365@item @code{void __MQXMACXHS (acc, sw2, sw2)}
7366@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
7367@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
7368@item @code{uw1 __MRDACC (acc)}
7369@tab @code{@var{b} = __MRDACC (@var{a})}
7370@tab @code{MRDACC @var{a},@var{b}}
7371@item @code{uw1 __MRDACCG (acc)}
7372@tab @code{@var{b} = __MRDACCG (@var{a})}
7373@tab @code{MRDACCG @var{a},@var{b}}
7374@item @code{uw1 __MROTLI (uw1, const)}
7375@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
7376@tab @code{MROTLI @var{a},#@var{b},@var{c}}
7377@item @code{uw1 __MROTRI (uw1, const)}
7378@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
7379@tab @code{MROTRI @var{a},#@var{b},@var{c}}
7380@item @code{sw1 __MSATHS (sw1, sw1)}
7381@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
7382@tab @code{MSATHS @var{a},@var{b},@var{c}}
7383@item @code{uw1 __MSATHU (uw1, uw1)}
7384@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
7385@tab @code{MSATHU @var{a},@var{b},@var{c}}
7386@item @code{uw1 __MSLLHI (uw1, const)}
7387@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
7388@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
7389@item @code{sw1 __MSRAHI (sw1, const)}
7390@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
7391@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
7392@item @code{uw1 __MSRLHI (uw1, const)}
7393@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
7394@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
7395@item @code{void __MSUBACCS (acc, acc)}
7396@tab @code{__MSUBACCS (@var{b}, @var{a})}
7397@tab @code{MSUBACCS @var{a},@var{b}}
7398@item @code{sw1 __MSUBHSS (sw1, sw1)}
7399@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
7400@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
7401@item @code{uw1 __MSUBHUS (uw1, uw1)}
7402@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
7403@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
7404@item @code{void __MTRAP (void)}
7405@tab @code{__MTRAP ()}
7406@tab @code{MTRAP}
7407@item @code{uw2 __MUNPACKH (uw1)}
7408@tab @code{@var{b} = __MUNPACKH (@var{a})}
7409@tab @code{MUNPACKH @var{a},@var{b}}
7410@item @code{uw1 __MWCUT (uw2, uw1)}
7411@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
7412@tab @code{MWCUT @var{a},@var{b},@var{c}}
7413@item @code{void __MWTACC (acc, uw1)}
7414@tab @code{__MWTACC (@var{b}, @var{a})}
7415@tab @code{MWTACC @var{a},@var{b}}
7416@item @code{void __MWTACCG (acc, uw1)}
7417@tab @code{__MWTACCG (@var{b}, @var{a})}
7418@tab @code{MWTACCG @var{a},@var{b}}
7419@item @code{uw1 __MXOR (uw1, uw1)}
7420@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
7421@tab @code{MXOR @var{a},@var{b},@var{c}}
7422@end multitable
7423
c14ff86e
AH
7424@node Raw read/write Functions
7425@subsubsection Raw read/write Functions
7426
7427This sections describes built-in functions related to read and write
7428instructions to access memory. These functions generate
7429@code{membar} instructions to flush the I/O load and stores where
7430appropriate, as described in Fujitsu's manual described above.
7431
7432@table @code
7433
7434@item unsigned char __builtin_read8 (void *@var{data})
7435@item unsigned short __builtin_read16 (void *@var{data})
7436@item unsigned long __builtin_read32 (void *@var{data})
7437@item unsigned long long __builtin_read64 (void *@var{data})
7438
7439@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
7440@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
7441@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
7442@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
7443@end table
7444
c3ee0579
RS
7445@node Other Built-in Functions
7446@subsubsection Other Built-in Functions
7447
7448This section describes built-in functions that are not named after
7449a specific FR-V instruction.
7450
7451@table @code
7452@item sw2 __IACCreadll (iacc @var{reg})
7453Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
7454for future expansion and must be 0.
7455
7456@item sw1 __IACCreadl (iacc @var{reg})
7457Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
7458Other values of @var{reg} are rejected as invalid.
7459
7460@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
7461Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
7462is reserved for future expansion and must be 0.
7463
7464@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
7465Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
7466is 1. Other values of @var{reg} are rejected as invalid.
7467
7468@item void __data_prefetch0 (const void *@var{x})
7469Use the @code{dcpl} instruction to load the contents of address @var{x}
7470into the data cache.
7471
7472@item void __data_prefetch (const void *@var{x})
7473Use the @code{nldub} instruction to load the contents of address @var{x}
7474into the data cache. The instruction will be issued in slot I1@.
7475@end table
7476
0975678f
JM
7477@node X86 Built-in Functions
7478@subsection X86 Built-in Functions
7479
7480These built-in functions are available for the i386 and x86-64 family
7481of computers, depending on the command-line switches used.
7482
75576871
BB
7483Note that, if you specify command-line switches such as @option{-msse},
7484the compiler could use the extended instruction sets even if the built-ins
7485are not used explicitly in the program. For this reason, applications
7486which perform runtime CPU detection must compile separate files for each
7487supported architecture, using the appropriate flags. In particular,
7488the file containing the CPU detection code should be compiled without
7489these options.
7490
0975678f 7491The following machine modes are available for use with MMX built-in functions
333c8841
AH
7492(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
7493@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
7494vector of eight 8-bit integers. Some of the built-in functions operate on
75d8b30e 7495MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
0975678f
JM
7496
7497If 3Dnow extensions are enabled, @code{V2SF} is used as a mode for a vector
333c8841 7498of two 32-bit floating point values.
0975678f 7499
333c8841
AH
7500If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
7501floating point values. Some instructions use a vector of four 32-bit
0975678f 7502integers, these use @code{V4SI}. Finally, some instructions operate on an
333c8841 7503entire vector register, interpreting it as a 128-bit integer, these use mode
0975678f
JM
7504@code{TI}.
7505
27f56cb1 7506In 64-bit mode, the x86-64 family of processors uses additional built-in
5513e239
UB
7507functions for efficient use of @code{TF} (@code{__float128}) 128-bit
7508floating point and @code{TC} 128-bit complex floating point values.
7509
27f56cb1
GP
7510The following floating point built-in functions are available in 64-bit
7511mode. All of them implement the function that is part of the name.
5513e239
UB
7512
7513@smallexample
7514__float128 __builtin_fabsq (__float128)
7515__float128 __builtin_copysignq (__float128, __float128)
7516@end smallexample
7517
7518The following floating point built-in functions are made available in the
751964-bit mode.
7520
7521@table @code
7522@item __float128 __builtin_infq (void)
7523Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
7524@end table
7525
0975678f
JM
7526The following built-in functions are made available by @option{-mmmx}.
7527All of them generate the machine instruction that is part of the name.
7528
3ab51846 7529@smallexample
0975678f
JM
7530v8qi __builtin_ia32_paddb (v8qi, v8qi)
7531v4hi __builtin_ia32_paddw (v4hi, v4hi)
7532v2si __builtin_ia32_paddd (v2si, v2si)
7533v8qi __builtin_ia32_psubb (v8qi, v8qi)
7534v4hi __builtin_ia32_psubw (v4hi, v4hi)
7535v2si __builtin_ia32_psubd (v2si, v2si)
7536v8qi __builtin_ia32_paddsb (v8qi, v8qi)
7537v4hi __builtin_ia32_paddsw (v4hi, v4hi)
7538v8qi __builtin_ia32_psubsb (v8qi, v8qi)
7539v4hi __builtin_ia32_psubsw (v4hi, v4hi)
7540v8qi __builtin_ia32_paddusb (v8qi, v8qi)
7541v4hi __builtin_ia32_paddusw (v4hi, v4hi)
7542v8qi __builtin_ia32_psubusb (v8qi, v8qi)
7543v4hi __builtin_ia32_psubusw (v4hi, v4hi)
7544v4hi __builtin_ia32_pmullw (v4hi, v4hi)
7545v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
7546di __builtin_ia32_pand (di, di)
7547di __builtin_ia32_pandn (di,di)
7548di __builtin_ia32_por (di, di)
7549di __builtin_ia32_pxor (di, di)
7550v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
7551v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
7552v2si __builtin_ia32_pcmpeqd (v2si, v2si)
7553v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
7554v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
7555v2si __builtin_ia32_pcmpgtd (v2si, v2si)
7556v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
7557v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
7558v2si __builtin_ia32_punpckhdq (v2si, v2si)
7559v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
7560v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
7561v2si __builtin_ia32_punpckldq (v2si, v2si)
7562v8qi __builtin_ia32_packsswb (v4hi, v4hi)
7563v4hi __builtin_ia32_packssdw (v2si, v2si)
7564v8qi __builtin_ia32_packuswb (v4hi, v4hi)
10a97ae6 7565
52eaae97
UB
7566v4hi __builtin_ia32_psllw (v4hi, v4hi)
7567v2si __builtin_ia32_pslld (v2si, v2si)
7568v1di __builtin_ia32_psllq (v1di, v1di)
7569v4hi __builtin_ia32_psrlw (v4hi, v4hi)
7570v2si __builtin_ia32_psrld (v2si, v2si)
7571v1di __builtin_ia32_psrlq (v1di, v1di)
7572v4hi __builtin_ia32_psraw (v4hi, v4hi)
7573v2si __builtin_ia32_psrad (v2si, v2si)
7574v4hi __builtin_ia32_psllwi (v4hi, int)
7575v2si __builtin_ia32_pslldi (v2si, int)
7576v1di __builtin_ia32_psllqi (v1di, int)
7577v4hi __builtin_ia32_psrlwi (v4hi, int)
7578v2si __builtin_ia32_psrldi (v2si, int)
7579v1di __builtin_ia32_psrlqi (v1di, int)
7580v4hi __builtin_ia32_psrawi (v4hi, int)
7581v2si __builtin_ia32_psradi (v2si, int)
10a97ae6 7582
3ab51846 7583@end smallexample
0975678f
JM
7584
7585The following built-in functions are made available either with
7586@option{-msse}, or with a combination of @option{-m3dnow} and
7587@option{-march=athlon}. All of them generate the machine
7588instruction that is part of the name.
7589
3ab51846 7590@smallexample
0975678f
JM
7591v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
7592v8qi __builtin_ia32_pavgb (v8qi, v8qi)
7593v4hi __builtin_ia32_pavgw (v4hi, v4hi)
ab555a5b 7594v1di __builtin_ia32_psadbw (v8qi, v8qi)
0975678f
JM
7595v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
7596v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
7597v8qi __builtin_ia32_pminub (v8qi, v8qi)
7598v4hi __builtin_ia32_pminsw (v4hi, v4hi)
7599int __builtin_ia32_pextrw (v4hi, int)
7600v4hi __builtin_ia32_pinsrw (v4hi, int, int)
7601int __builtin_ia32_pmovmskb (v8qi)
7602void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
7603void __builtin_ia32_movntq (di *, di)
7604void __builtin_ia32_sfence (void)
3ab51846 7605@end smallexample
0975678f
JM
7606
7607The following built-in functions are available when @option{-msse} is used.
7608All of them generate the machine instruction that is part of the name.
7609
3ab51846 7610@smallexample
0975678f
JM
7611int __builtin_ia32_comieq (v4sf, v4sf)
7612int __builtin_ia32_comineq (v4sf, v4sf)
7613int __builtin_ia32_comilt (v4sf, v4sf)
7614int __builtin_ia32_comile (v4sf, v4sf)
7615int __builtin_ia32_comigt (v4sf, v4sf)
7616int __builtin_ia32_comige (v4sf, v4sf)
7617int __builtin_ia32_ucomieq (v4sf, v4sf)
7618int __builtin_ia32_ucomineq (v4sf, v4sf)
7619int __builtin_ia32_ucomilt (v4sf, v4sf)
7620int __builtin_ia32_ucomile (v4sf, v4sf)
7621int __builtin_ia32_ucomigt (v4sf, v4sf)
7622int __builtin_ia32_ucomige (v4sf, v4sf)
7623v4sf __builtin_ia32_addps (v4sf, v4sf)
7624v4sf __builtin_ia32_subps (v4sf, v4sf)
7625v4sf __builtin_ia32_mulps (v4sf, v4sf)
7626v4sf __builtin_ia32_divps (v4sf, v4sf)
7627v4sf __builtin_ia32_addss (v4sf, v4sf)
7628v4sf __builtin_ia32_subss (v4sf, v4sf)
7629v4sf __builtin_ia32_mulss (v4sf, v4sf)
7630v4sf __builtin_ia32_divss (v4sf, v4sf)
7631v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
7632v4si __builtin_ia32_cmpltps (v4sf, v4sf)
7633v4si __builtin_ia32_cmpleps (v4sf, v4sf)
7634v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
7635v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
7636v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
7637v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
7638v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
7639v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
7640v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
7641v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
7642v4si __builtin_ia32_cmpordps (v4sf, v4sf)
7643v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
7644v4si __builtin_ia32_cmpltss (v4sf, v4sf)
7645v4si __builtin_ia32_cmpless (v4sf, v4sf)
0975678f
JM
7646v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
7647v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
7648v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
7649v4si __builtin_ia32_cmpnless (v4sf, v4sf)
0975678f
JM
7650v4si __builtin_ia32_cmpordss (v4sf, v4sf)
7651v4sf __builtin_ia32_maxps (v4sf, v4sf)
7652v4sf __builtin_ia32_maxss (v4sf, v4sf)
7653v4sf __builtin_ia32_minps (v4sf, v4sf)
7654v4sf __builtin_ia32_minss (v4sf, v4sf)
7655v4sf __builtin_ia32_andps (v4sf, v4sf)
7656v4sf __builtin_ia32_andnps (v4sf, v4sf)
7657v4sf __builtin_ia32_orps (v4sf, v4sf)
7658v4sf __builtin_ia32_xorps (v4sf, v4sf)
7659v4sf __builtin_ia32_movss (v4sf, v4sf)
7660v4sf __builtin_ia32_movhlps (v4sf, v4sf)
7661v4sf __builtin_ia32_movlhps (v4sf, v4sf)
7662v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
7663v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
7664v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
7665v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
7666v2si __builtin_ia32_cvtps2pi (v4sf)
7667int __builtin_ia32_cvtss2si (v4sf)
7668v2si __builtin_ia32_cvttps2pi (v4sf)
7669int __builtin_ia32_cvttss2si (v4sf)
7670v4sf __builtin_ia32_rcpps (v4sf)
7671v4sf __builtin_ia32_rsqrtps (v4sf)
7672v4sf __builtin_ia32_sqrtps (v4sf)
7673v4sf __builtin_ia32_rcpss (v4sf)
7674v4sf __builtin_ia32_rsqrtss (v4sf)
7675v4sf __builtin_ia32_sqrtss (v4sf)
7676v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
7677void __builtin_ia32_movntps (float *, v4sf)
7678int __builtin_ia32_movmskps (v4sf)
3ab51846 7679@end smallexample
0975678f
JM
7680
7681The following built-in functions are available when @option{-msse} is used.
7682
7683@table @code
7684@item v4sf __builtin_ia32_loadaps (float *)
7685Generates the @code{movaps} machine instruction as a load from memory.
7686@item void __builtin_ia32_storeaps (float *, v4sf)
7687Generates the @code{movaps} machine instruction as a store to memory.
7688@item v4sf __builtin_ia32_loadups (float *)
7689Generates the @code{movups} machine instruction as a load from memory.
7690@item void __builtin_ia32_storeups (float *, v4sf)
7691Generates the @code{movups} machine instruction as a store to memory.
7692@item v4sf __builtin_ia32_loadsss (float *)
7693Generates the @code{movss} machine instruction as a load from memory.
7694@item void __builtin_ia32_storess (float *, v4sf)
7695Generates the @code{movss} machine instruction as a store to memory.
bb1418c1 7696@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
0975678f 7697Generates the @code{movhps} machine instruction as a load from memory.
bb1418c1 7698@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
0975678f 7699Generates the @code{movlps} machine instruction as a load from memory
bb1418c1 7700@item void __builtin_ia32_storehps (v2sf *, v4sf)
0975678f 7701Generates the @code{movhps} machine instruction as a store to memory.
bb1418c1 7702@item void __builtin_ia32_storelps (v2sf *, v4sf)
0975678f
JM
7703Generates the @code{movlps} machine instruction as a store to memory.
7704@end table
7705
d7aa4788
RG
7706The following built-in functions are available when @option{-msse2} is used.
7707All of them generate the machine instruction that is part of the name.
7708
7709@smallexample
7710int __builtin_ia32_comisdeq (v2df, v2df)
7711int __builtin_ia32_comisdlt (v2df, v2df)
7712int __builtin_ia32_comisdle (v2df, v2df)
7713int __builtin_ia32_comisdgt (v2df, v2df)
7714int __builtin_ia32_comisdge (v2df, v2df)
7715int __builtin_ia32_comisdneq (v2df, v2df)
7716int __builtin_ia32_ucomisdeq (v2df, v2df)
7717int __builtin_ia32_ucomisdlt (v2df, v2df)
7718int __builtin_ia32_ucomisdle (v2df, v2df)
7719int __builtin_ia32_ucomisdgt (v2df, v2df)
7720int __builtin_ia32_ucomisdge (v2df, v2df)
7721int __builtin_ia32_ucomisdneq (v2df, v2df)
7722v2df __builtin_ia32_cmpeqpd (v2df, v2df)
7723v2df __builtin_ia32_cmpltpd (v2df, v2df)
7724v2df __builtin_ia32_cmplepd (v2df, v2df)
7725v2df __builtin_ia32_cmpgtpd (v2df, v2df)
7726v2df __builtin_ia32_cmpgepd (v2df, v2df)
7727v2df __builtin_ia32_cmpunordpd (v2df, v2df)
7728v2df __builtin_ia32_cmpneqpd (v2df, v2df)
7729v2df __builtin_ia32_cmpnltpd (v2df, v2df)
7730v2df __builtin_ia32_cmpnlepd (v2df, v2df)
7731v2df __builtin_ia32_cmpngtpd (v2df, v2df)
7732v2df __builtin_ia32_cmpngepd (v2df, v2df)
7733v2df __builtin_ia32_cmpordpd (v2df, v2df)
7734v2df __builtin_ia32_cmpeqsd (v2df, v2df)
7735v2df __builtin_ia32_cmpltsd (v2df, v2df)
7736v2df __builtin_ia32_cmplesd (v2df, v2df)
7737v2df __builtin_ia32_cmpunordsd (v2df, v2df)
7738v2df __builtin_ia32_cmpneqsd (v2df, v2df)
7739v2df __builtin_ia32_cmpnltsd (v2df, v2df)
7740v2df __builtin_ia32_cmpnlesd (v2df, v2df)
7741v2df __builtin_ia32_cmpordsd (v2df, v2df)
7742v2di __builtin_ia32_paddq (v2di, v2di)
7743v2di __builtin_ia32_psubq (v2di, v2di)
7744v2df __builtin_ia32_addpd (v2df, v2df)
7745v2df __builtin_ia32_subpd (v2df, v2df)
7746v2df __builtin_ia32_mulpd (v2df, v2df)
7747v2df __builtin_ia32_divpd (v2df, v2df)
7748v2df __builtin_ia32_addsd (v2df, v2df)
7749v2df __builtin_ia32_subsd (v2df, v2df)
7750v2df __builtin_ia32_mulsd (v2df, v2df)
7751v2df __builtin_ia32_divsd (v2df, v2df)
7752v2df __builtin_ia32_minpd (v2df, v2df)
7753v2df __builtin_ia32_maxpd (v2df, v2df)
7754v2df __builtin_ia32_minsd (v2df, v2df)
7755v2df __builtin_ia32_maxsd (v2df, v2df)
7756v2df __builtin_ia32_andpd (v2df, v2df)
7757v2df __builtin_ia32_andnpd (v2df, v2df)
7758v2df __builtin_ia32_orpd (v2df, v2df)
7759v2df __builtin_ia32_xorpd (v2df, v2df)
7760v2df __builtin_ia32_movsd (v2df, v2df)
7761v2df __builtin_ia32_unpckhpd (v2df, v2df)
7762v2df __builtin_ia32_unpcklpd (v2df, v2df)
7763v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
7764v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
7765v4si __builtin_ia32_paddd128 (v4si, v4si)
7766v2di __builtin_ia32_paddq128 (v2di, v2di)
7767v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
7768v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
7769v4si __builtin_ia32_psubd128 (v4si, v4si)
7770v2di __builtin_ia32_psubq128 (v2di, v2di)
7771v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
7772v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
7773v2di __builtin_ia32_pand128 (v2di, v2di)
7774v2di __builtin_ia32_pandn128 (v2di, v2di)
7775v2di __builtin_ia32_por128 (v2di, v2di)
7776v2di __builtin_ia32_pxor128 (v2di, v2di)
7777v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
7778v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
7779v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
7780v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
7781v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
7782v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
7783v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
7784v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
7785v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
7786v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
7787v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
7788v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
7789v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
7790v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
7791v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
7792v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
7793v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
7794v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
7795v4si __builtin_ia32_punpckldq128 (v4si, v4si)
7796v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
1b667c82
L
7797v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
7798v8hi __builtin_ia32_packssdw128 (v4si, v4si)
7799v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
d7aa4788
RG
7800v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
7801void __builtin_ia32_maskmovdqu (v16qi, v16qi)
7802v2df __builtin_ia32_loadupd (double *)
7803void __builtin_ia32_storeupd (double *, v2df)
bb1418c1
L
7804v2df __builtin_ia32_loadhpd (v2df, double const *)
7805v2df __builtin_ia32_loadlpd (v2df, double const *)
d7aa4788
RG
7806int __builtin_ia32_movmskpd (v2df)
7807int __builtin_ia32_pmovmskb128 (v16qi)
7808void __builtin_ia32_movnti (int *, int)
7809void __builtin_ia32_movntpd (double *, v2df)
7810void __builtin_ia32_movntdq (v2df *, v2df)
7811v4si __builtin_ia32_pshufd (v4si, int)
7812v8hi __builtin_ia32_pshuflw (v8hi, int)
7813v8hi __builtin_ia32_pshufhw (v8hi, int)
7814v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
7815v2df __builtin_ia32_sqrtpd (v2df)
7816v2df __builtin_ia32_sqrtsd (v2df)
7817v2df __builtin_ia32_shufpd (v2df, v2df, int)
7818v2df __builtin_ia32_cvtdq2pd (v4si)
7819v4sf __builtin_ia32_cvtdq2ps (v4si)
7820v4si __builtin_ia32_cvtpd2dq (v2df)
7821v2si __builtin_ia32_cvtpd2pi (v2df)
7822v4sf __builtin_ia32_cvtpd2ps (v2df)
7823v4si __builtin_ia32_cvttpd2dq (v2df)
7824v2si __builtin_ia32_cvttpd2pi (v2df)
7825v2df __builtin_ia32_cvtpi2pd (v2si)
7826int __builtin_ia32_cvtsd2si (v2df)
7827int __builtin_ia32_cvttsd2si (v2df)
7828long long __builtin_ia32_cvtsd2si64 (v2df)
7829long long __builtin_ia32_cvttsd2si64 (v2df)
7830v4si __builtin_ia32_cvtps2dq (v4sf)
7831v2df __builtin_ia32_cvtps2pd (v4sf)
7832v4si __builtin_ia32_cvttps2dq (v4sf)
7833v2df __builtin_ia32_cvtsi2sd (v2df, int)
7834v2df __builtin_ia32_cvtsi642sd (v2df, long long)
7835v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
7836v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
7837void __builtin_ia32_clflush (const void *)
7838void __builtin_ia32_lfence (void)
7839void __builtin_ia32_mfence (void)
7840v16qi __builtin_ia32_loaddqu (const char *)
7841void __builtin_ia32_storedqu (char *, v16qi)
ab555a5b 7842v1di __builtin_ia32_pmuludq (v2si, v2si)
d7aa4788 7843v2di __builtin_ia32_pmuludq128 (v4si, v4si)
52eaae97
UB
7844v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
7845v4si __builtin_ia32_pslld128 (v4si, v4si)
7846v2di __builtin_ia32_psllq128 (v2di, v2di)
7847v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
7848v4si __builtin_ia32_psrld128 (v4si, v4si)
d7aa4788 7849v2di __builtin_ia32_psrlq128 (v2di, v2di)
52eaae97
UB
7850v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
7851v4si __builtin_ia32_psrad128 (v4si, v4si)
d7aa4788
RG
7852v2di __builtin_ia32_pslldqi128 (v2di, int)
7853v8hi __builtin_ia32_psllwi128 (v8hi, int)
7854v4si __builtin_ia32_pslldi128 (v4si, int)
7855v2di __builtin_ia32_psllqi128 (v2di, int)
7856v2di __builtin_ia32_psrldqi128 (v2di, int)
7857v8hi __builtin_ia32_psrlwi128 (v8hi, int)
7858v4si __builtin_ia32_psrldi128 (v4si, int)
7859v2di __builtin_ia32_psrlqi128 (v2di, int)
7860v8hi __builtin_ia32_psrawi128 (v8hi, int)
7861v4si __builtin_ia32_psradi128 (v4si, int)
7862v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
7863@end smallexample
7864
9e200aaf 7865The following built-in functions are available when @option{-msse3} is used.
22c7c85e
L
7866All of them generate the machine instruction that is part of the name.
7867
3ab51846 7868@smallexample
22c7c85e 7869v2df __builtin_ia32_addsubpd (v2df, v2df)
d7aa4788 7870v4sf __builtin_ia32_addsubps (v4sf, v4sf)
22c7c85e 7871v2df __builtin_ia32_haddpd (v2df, v2df)
d7aa4788 7872v4sf __builtin_ia32_haddps (v4sf, v4sf)
22c7c85e 7873v2df __builtin_ia32_hsubpd (v2df, v2df)
d7aa4788 7874v4sf __builtin_ia32_hsubps (v4sf, v4sf)
22c7c85e
L
7875v16qi __builtin_ia32_lddqu (char const *)
7876void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
7877v2df __builtin_ia32_movddup (v2df)
7878v4sf __builtin_ia32_movshdup (v4sf)
7879v4sf __builtin_ia32_movsldup (v4sf)
7880void __builtin_ia32_mwait (unsigned int, unsigned int)
3ab51846 7881@end smallexample
22c7c85e 7882
9e200aaf 7883The following built-in functions are available when @option{-msse3} is used.
22c7c85e
L
7884
7885@table @code
7886@item v2df __builtin_ia32_loadddup (double const *)
7887Generates the @code{movddup} machine instruction as a load from memory.
7888@end table
7889
b1875f52
L
7890The following built-in functions are available when @option{-mssse3} is used.
7891All of them generate the machine instruction that is part of the name
7892with MMX registers.
7893
7894@smallexample
7895v2si __builtin_ia32_phaddd (v2si, v2si)
7896v4hi __builtin_ia32_phaddw (v4hi, v4hi)
7897v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
7898v2si __builtin_ia32_phsubd (v2si, v2si)
7899v4hi __builtin_ia32_phsubw (v4hi, v4hi)
7900v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
1b667c82 7901v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
b1875f52
L
7902v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
7903v8qi __builtin_ia32_pshufb (v8qi, v8qi)
7904v8qi __builtin_ia32_psignb (v8qi, v8qi)
7905v2si __builtin_ia32_psignd (v2si, v2si)
7906v4hi __builtin_ia32_psignw (v4hi, v4hi)
99c25ac1 7907v1di __builtin_ia32_palignr (v1di, v1di, int)
b1875f52
L
7908v8qi __builtin_ia32_pabsb (v8qi)
7909v2si __builtin_ia32_pabsd (v2si)
7910v4hi __builtin_ia32_pabsw (v4hi)
7911@end smallexample
7912
7913The following built-in functions are available when @option{-mssse3} is used.
7914All of them generate the machine instruction that is part of the name
7915with SSE registers.
7916
7917@smallexample
7918v4si __builtin_ia32_phaddd128 (v4si, v4si)
7919v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
7920v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
7921v4si __builtin_ia32_phsubd128 (v4si, v4si)
7922v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
7923v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
1b667c82 7924v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
b1875f52
L
7925v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
7926v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
7927v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
7928v4si __builtin_ia32_psignd128 (v4si, v4si)
7929v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
858e5e79 7930v2di __builtin_ia32_palignr128 (v2di, v2di, int)
b1875f52
L
7931v16qi __builtin_ia32_pabsb128 (v16qi)
7932v4si __builtin_ia32_pabsd128 (v4si)
7933v8hi __builtin_ia32_pabsw128 (v8hi)
7934@end smallexample
7935
9a5cee02
L
7936The following built-in functions are available when @option{-msse4.1} is
7937used. All of them generate the machine instruction that is part of the
7938name.
7939
7940@smallexample
7941v2df __builtin_ia32_blendpd (v2df, v2df, const int)
7942v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
7943v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
7944v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
291d9a2d 7945v2df __builtin_ia32_dppd (v2df, v2df, const int)
9a5cee02
L
7946v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
7947v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
7948v2di __builtin_ia32_movntdqa (v2di *);
7949v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
7950v8hi __builtin_ia32_packusdw128 (v4si, v4si)
7951v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
7952v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
7953v2di __builtin_ia32_pcmpeqq (v2di, v2di)
7954v8hi __builtin_ia32_phminposuw128 (v8hi)
7955v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
7956v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
7957v4si __builtin_ia32_pmaxud128 (v4si, v4si)
7958v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
7959v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
7960v4si __builtin_ia32_pminsd128 (v4si, v4si)
7961v4si __builtin_ia32_pminud128 (v4si, v4si)
7962v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
7963v4si __builtin_ia32_pmovsxbd128 (v16qi)
7964v2di __builtin_ia32_pmovsxbq128 (v16qi)
7965v8hi __builtin_ia32_pmovsxbw128 (v16qi)
7966v2di __builtin_ia32_pmovsxdq128 (v4si)
7967v4si __builtin_ia32_pmovsxwd128 (v8hi)
7968v2di __builtin_ia32_pmovsxwq128 (v8hi)
7969v4si __builtin_ia32_pmovzxbd128 (v16qi)
7970v2di __builtin_ia32_pmovzxbq128 (v16qi)
7971v8hi __builtin_ia32_pmovzxbw128 (v16qi)
7972v2di __builtin_ia32_pmovzxdq128 (v4si)
7973v4si __builtin_ia32_pmovzxwd128 (v8hi)
7974v2di __builtin_ia32_pmovzxwq128 (v8hi)
7975v2di __builtin_ia32_pmuldq128 (v4si, v4si)
7976v4si __builtin_ia32_pmulld128 (v4si, v4si)
7977int __builtin_ia32_ptestc128 (v2di, v2di)
7978int __builtin_ia32_ptestnzc128 (v2di, v2di)
7979int __builtin_ia32_ptestz128 (v2di, v2di)
7980v2df __builtin_ia32_roundpd (v2df, const int)
7981v4sf __builtin_ia32_roundps (v4sf, const int)
7982v2df __builtin_ia32_roundsd (v2df, v2df, const int)
7983v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
7984@end smallexample
7985
7986The following built-in functions are available when @option{-msse4.1} is
7987used.
7988
7989@table @code
7990@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
7991Generates the @code{insertps} machine instruction.
7992@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
7993Generates the @code{pextrb} machine instruction.
7994@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
7995Generates the @code{pinsrb} machine instruction.
7996@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
7997Generates the @code{pinsrd} machine instruction.
7998@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
7999Generates the @code{pinsrq} machine instruction in 64bit mode.
8000@end table
8001
8002The following built-in functions are changed to generate new SSE4.1
8003instructions when @option{-msse4.1} is used.
8004
8005@table @code
8006@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
8007Generates the @code{extractps} machine instruction.
8008@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
8009Generates the @code{pextrd} machine instruction.
8010@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
8011Generates the @code{pextrq} machine instruction in 64bit mode.
8012@end table
8013
3b8dd071
L
8014The following built-in functions are available when @option{-msse4.2} is
8015used. All of them generate the machine instruction that is part of the
8016name.
8017
8018@smallexample
8019v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
8020int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
8021int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
8022int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
8023int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
8024int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
8025int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
8026v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
8027int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
8028int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
8029int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
8030int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
8031int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
8032int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
291d9a2d 8033v2di __builtin_ia32_pcmpgtq (v2di, v2di)
3b8dd071
L
8034@end smallexample
8035
8036The following built-in functions are available when @option{-msse4.2} is
8037used.
8038
8039@table @code
291d9a2d 8040@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
3b8dd071 8041Generates the @code{crc32b} machine instruction.
291d9a2d 8042@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
3b8dd071 8043Generates the @code{crc32w} machine instruction.
291d9a2d 8044@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
3b8dd071 8045Generates the @code{crc32l} machine instruction.
a44acfb9 8046@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
3b8dd071
L
8047@end table
8048
8049The following built-in functions are changed to generate new SSE4.2
8050instructions when @option{-msse4.2} is used.
8051
8052@table @code
291d9a2d 8053@item int __builtin_popcount (unsigned int)
3b8dd071 8054Generates the @code{popcntl} machine instruction.
291d9a2d 8055@item int __builtin_popcountl (unsigned long)
3b8dd071
L
8056Generates the @code{popcntl} or @code{popcntq} machine instruction,
8057depending on the size of @code{unsigned long}.
291d9a2d 8058@item int __builtin_popcountll (unsigned long long)
3b8dd071
L
8059Generates the @code{popcntq} machine instruction.
8060@end table
8061
8b96a312
L
8062The following built-in functions are available when @option{-maes} is
8063used. All of them generate the machine instruction that is part of the
8064name.
8065
8066@smallexample
8067v2di __builtin_ia32_aesenc128 (v2di, v2di)
8068v2di __builtin_ia32_aesenclast128 (v2di, v2di)
8069v2di __builtin_ia32_aesdec128 (v2di, v2di)
8070v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
8071v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
8072v2di __builtin_ia32_aesimc128 (v2di)
8073@end smallexample
8074
8075The following built-in function is available when @option{-mpclmul} is
8076used.
8077
8078@table @code
8079@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
8080Generates the @code{pclmulqdq} machine instruction.
8081@end table
8082
21efb4d4 8083The following built-in functions are available when @option{-msse4a} is used.
291d9a2d 8084All of them generate the machine instruction that is part of the name.
21efb4d4
HJ
8085
8086@smallexample
291d9a2d
UB
8087void __builtin_ia32_movntsd (double *, v2df)
8088void __builtin_ia32_movntss (float *, v4sf)
8089v2di __builtin_ia32_extrq (v2di, v16qi)
8090v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
8091v2di __builtin_ia32_insertq (v2di, v2di)
8092v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
21efb4d4
HJ
8093@end smallexample
8094
04e1d06b
MM
8095The following built-in functions are available when @option{-msse5} is used.
8096All of them generate the machine instruction that is part of the name
8097with MMX registers.
8098
8099@smallexample
8100v2df __builtin_ia32_comeqpd (v2df, v2df)
8101v2df __builtin_ia32_comeqps (v2df, v2df)
8102v4sf __builtin_ia32_comeqsd (v4sf, v4sf)
8103v4sf __builtin_ia32_comeqss (v4sf, v4sf)
8104v2df __builtin_ia32_comfalsepd (v2df, v2df)
8105v2df __builtin_ia32_comfalseps (v2df, v2df)
8106v4sf __builtin_ia32_comfalsesd (v4sf, v4sf)
8107v4sf __builtin_ia32_comfalsess (v4sf, v4sf)
8108v2df __builtin_ia32_comgepd (v2df, v2df)
8109v2df __builtin_ia32_comgeps (v2df, v2df)
8110v4sf __builtin_ia32_comgesd (v4sf, v4sf)
8111v4sf __builtin_ia32_comgess (v4sf, v4sf)
8112v2df __builtin_ia32_comgtpd (v2df, v2df)
8113v2df __builtin_ia32_comgtps (v2df, v2df)
8114v4sf __builtin_ia32_comgtsd (v4sf, v4sf)
8115v4sf __builtin_ia32_comgtss (v4sf, v4sf)
8116v2df __builtin_ia32_comlepd (v2df, v2df)
8117v2df __builtin_ia32_comleps (v2df, v2df)
8118v4sf __builtin_ia32_comlesd (v4sf, v4sf)
8119v4sf __builtin_ia32_comless (v4sf, v4sf)
8120v2df __builtin_ia32_comltpd (v2df, v2df)
8121v2df __builtin_ia32_comltps (v2df, v2df)
8122v4sf __builtin_ia32_comltsd (v4sf, v4sf)
8123v4sf __builtin_ia32_comltss (v4sf, v4sf)
8124v2df __builtin_ia32_comnepd (v2df, v2df)
8125v2df __builtin_ia32_comneps (v2df, v2df)
8126v4sf __builtin_ia32_comnesd (v4sf, v4sf)
8127v4sf __builtin_ia32_comness (v4sf, v4sf)
8128v2df __builtin_ia32_comordpd (v2df, v2df)
8129v2df __builtin_ia32_comordps (v2df, v2df)
8130v4sf __builtin_ia32_comordsd (v4sf, v4sf)
8131v4sf __builtin_ia32_comordss (v4sf, v4sf)
8132v2df __builtin_ia32_comtruepd (v2df, v2df)
8133v2df __builtin_ia32_comtrueps (v2df, v2df)
8134v4sf __builtin_ia32_comtruesd (v4sf, v4sf)
8135v4sf __builtin_ia32_comtruess (v4sf, v4sf)
8136v2df __builtin_ia32_comueqpd (v2df, v2df)
8137v2df __builtin_ia32_comueqps (v2df, v2df)
8138v4sf __builtin_ia32_comueqsd (v4sf, v4sf)
8139v4sf __builtin_ia32_comueqss (v4sf, v4sf)
8140v2df __builtin_ia32_comugepd (v2df, v2df)
8141v2df __builtin_ia32_comugeps (v2df, v2df)
8142v4sf __builtin_ia32_comugesd (v4sf, v4sf)
8143v4sf __builtin_ia32_comugess (v4sf, v4sf)
8144v2df __builtin_ia32_comugtpd (v2df, v2df)
8145v2df __builtin_ia32_comugtps (v2df, v2df)
8146v4sf __builtin_ia32_comugtsd (v4sf, v4sf)
8147v4sf __builtin_ia32_comugtss (v4sf, v4sf)
8148v2df __builtin_ia32_comulepd (v2df, v2df)
8149v2df __builtin_ia32_comuleps (v2df, v2df)
8150v4sf __builtin_ia32_comulesd (v4sf, v4sf)
8151v4sf __builtin_ia32_comuless (v4sf, v4sf)
8152v2df __builtin_ia32_comultpd (v2df, v2df)
8153v2df __builtin_ia32_comultps (v2df, v2df)
8154v4sf __builtin_ia32_comultsd (v4sf, v4sf)
8155v4sf __builtin_ia32_comultss (v4sf, v4sf)
8156v2df __builtin_ia32_comunepd (v2df, v2df)
8157v2df __builtin_ia32_comuneps (v2df, v2df)
8158v4sf __builtin_ia32_comunesd (v4sf, v4sf)
8159v4sf __builtin_ia32_comuness (v4sf, v4sf)
8160v2df __builtin_ia32_comunordpd (v2df, v2df)
8161v2df __builtin_ia32_comunordps (v2df, v2df)
8162v4sf __builtin_ia32_comunordsd (v4sf, v4sf)
8163v4sf __builtin_ia32_comunordss (v4sf, v4sf)
8164v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
8165v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
8166v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
8167v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
8168v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
8169v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
8170v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
8171v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
8172v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
8173v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
8174v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
8175v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
8176v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
8177v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
8178v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
8179v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
8180v2df __builtin_ia32_frczpd (v2df)
8181v4sf __builtin_ia32_frczps (v4sf)
8182v2df __builtin_ia32_frczsd (v2df, v2df)
8183v4sf __builtin_ia32_frczss (v4sf, v4sf)
8184v2di __builtin_ia32_pcmov (v2di, v2di, v2di)
8185v2di __builtin_ia32_pcmov_v2di (v2di, v2di, v2di)
8186v4si __builtin_ia32_pcmov_v4si (v4si, v4si, v4si)
8187v8hi __builtin_ia32_pcmov_v8hi (v8hi, v8hi, v8hi)
8188v16qi __builtin_ia32_pcmov_v16qi (v16qi, v16qi, v16qi)
8189v2df __builtin_ia32_pcmov_v2df (v2df, v2df, v2df)
8190v4sf __builtin_ia32_pcmov_v4sf (v4sf, v4sf, v4sf)
8191v16qi __builtin_ia32_pcomeqb (v16qi, v16qi)
8192v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
8193v4si __builtin_ia32_pcomeqd (v4si, v4si)
8194v2di __builtin_ia32_pcomeqq (v2di, v2di)
8195v16qi __builtin_ia32_pcomequb (v16qi, v16qi)
8196v4si __builtin_ia32_pcomequd (v4si, v4si)
8197v2di __builtin_ia32_pcomequq (v2di, v2di)
8198v8hi __builtin_ia32_pcomequw (v8hi, v8hi)
8199v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
8200v16qi __builtin_ia32_pcomfalseb (v16qi, v16qi)
8201v4si __builtin_ia32_pcomfalsed (v4si, v4si)
8202v2di __builtin_ia32_pcomfalseq (v2di, v2di)
8203v16qi __builtin_ia32_pcomfalseub (v16qi, v16qi)
8204v4si __builtin_ia32_pcomfalseud (v4si, v4si)
8205v2di __builtin_ia32_pcomfalseuq (v2di, v2di)
8206v8hi __builtin_ia32_pcomfalseuw (v8hi, v8hi)
8207v8hi __builtin_ia32_pcomfalsew (v8hi, v8hi)
8208v16qi __builtin_ia32_pcomgeb (v16qi, v16qi)
8209v4si __builtin_ia32_pcomged (v4si, v4si)
8210v2di __builtin_ia32_pcomgeq (v2di, v2di)
8211v16qi __builtin_ia32_pcomgeub (v16qi, v16qi)
8212v4si __builtin_ia32_pcomgeud (v4si, v4si)
8213v2di __builtin_ia32_pcomgeuq (v2di, v2di)
8214v8hi __builtin_ia32_pcomgeuw (v8hi, v8hi)
8215v8hi __builtin_ia32_pcomgew (v8hi, v8hi)
8216v16qi __builtin_ia32_pcomgtb (v16qi, v16qi)
8217v4si __builtin_ia32_pcomgtd (v4si, v4si)
8218v2di __builtin_ia32_pcomgtq (v2di, v2di)
8219v16qi __builtin_ia32_pcomgtub (v16qi, v16qi)
8220v4si __builtin_ia32_pcomgtud (v4si, v4si)
8221v2di __builtin_ia32_pcomgtuq (v2di, v2di)
8222v8hi __builtin_ia32_pcomgtuw (v8hi, v8hi)
8223v8hi __builtin_ia32_pcomgtw (v8hi, v8hi)
8224v16qi __builtin_ia32_pcomleb (v16qi, v16qi)
8225v4si __builtin_ia32_pcomled (v4si, v4si)
8226v2di __builtin_ia32_pcomleq (v2di, v2di)
8227v16qi __builtin_ia32_pcomleub (v16qi, v16qi)
8228v4si __builtin_ia32_pcomleud (v4si, v4si)
8229v2di __builtin_ia32_pcomleuq (v2di, v2di)
8230v8hi __builtin_ia32_pcomleuw (v8hi, v8hi)
8231v8hi __builtin_ia32_pcomlew (v8hi, v8hi)
8232v16qi __builtin_ia32_pcomltb (v16qi, v16qi)
8233v4si __builtin_ia32_pcomltd (v4si, v4si)
8234v2di __builtin_ia32_pcomltq (v2di, v2di)
8235v16qi __builtin_ia32_pcomltub (v16qi, v16qi)
8236v4si __builtin_ia32_pcomltud (v4si, v4si)
8237v2di __builtin_ia32_pcomltuq (v2di, v2di)
8238v8hi __builtin_ia32_pcomltuw (v8hi, v8hi)
8239v8hi __builtin_ia32_pcomltw (v8hi, v8hi)
8240v16qi __builtin_ia32_pcomneb (v16qi, v16qi)
8241v4si __builtin_ia32_pcomned (v4si, v4si)
8242v2di __builtin_ia32_pcomneq (v2di, v2di)
8243v16qi __builtin_ia32_pcomneub (v16qi, v16qi)
8244v4si __builtin_ia32_pcomneud (v4si, v4si)
8245v2di __builtin_ia32_pcomneuq (v2di, v2di)
8246v8hi __builtin_ia32_pcomneuw (v8hi, v8hi)
8247v8hi __builtin_ia32_pcomnew (v8hi, v8hi)
8248v16qi __builtin_ia32_pcomtrueb (v16qi, v16qi)
8249v4si __builtin_ia32_pcomtrued (v4si, v4si)
8250v2di __builtin_ia32_pcomtrueq (v2di, v2di)
8251v16qi __builtin_ia32_pcomtrueub (v16qi, v16qi)
8252v4si __builtin_ia32_pcomtrueud (v4si, v4si)
8253v2di __builtin_ia32_pcomtrueuq (v2di, v2di)
8254v8hi __builtin_ia32_pcomtrueuw (v8hi, v8hi)
8255v8hi __builtin_ia32_pcomtruew (v8hi, v8hi)
8256v4df __builtin_ia32_permpd (v2df, v2df, v16qi)
8257v4sf __builtin_ia32_permps (v4sf, v4sf, v16qi)
8258v4si __builtin_ia32_phaddbd (v16qi)
8259v2di __builtin_ia32_phaddbq (v16qi)
8260v8hi __builtin_ia32_phaddbw (v16qi)
8261v2di __builtin_ia32_phadddq (v4si)
8262v4si __builtin_ia32_phaddubd (v16qi)
8263v2di __builtin_ia32_phaddubq (v16qi)
8264v8hi __builtin_ia32_phaddubw (v16qi)
8265v2di __builtin_ia32_phaddudq (v4si)
8266v4si __builtin_ia32_phadduwd (v8hi)
8267v2di __builtin_ia32_phadduwq (v8hi)
8268v4si __builtin_ia32_phaddwd (v8hi)
8269v2di __builtin_ia32_phaddwq (v8hi)
8270v8hi __builtin_ia32_phsubbw (v16qi)
8271v2di __builtin_ia32_phsubdq (v4si)
8272v4si __builtin_ia32_phsubwd (v8hi)
8273v4si __builtin_ia32_pmacsdd (v4si, v4si, v4si)
8274v2di __builtin_ia32_pmacsdqh (v4si, v4si, v2di)
8275v2di __builtin_ia32_pmacsdql (v4si, v4si, v2di)
8276v4si __builtin_ia32_pmacssdd (v4si, v4si, v4si)
8277v2di __builtin_ia32_pmacssdqh (v4si, v4si, v2di)
8278v2di __builtin_ia32_pmacssdql (v4si, v4si, v2di)
8279v4si __builtin_ia32_pmacsswd (v8hi, v8hi, v4si)
8280v8hi __builtin_ia32_pmacssww (v8hi, v8hi, v8hi)
8281v4si __builtin_ia32_pmacswd (v8hi, v8hi, v4si)
8282v8hi __builtin_ia32_pmacsww (v8hi, v8hi, v8hi)
8283v4si __builtin_ia32_pmadcsswd (v8hi, v8hi, v4si)
8284v4si __builtin_ia32_pmadcswd (v8hi, v8hi, v4si)
8285v16qi __builtin_ia32_pperm (v16qi, v16qi, v16qi)
8286v16qi __builtin_ia32_protb (v16qi, v16qi)
8287v4si __builtin_ia32_protd (v4si, v4si)
8288v2di __builtin_ia32_protq (v2di, v2di)
8289v8hi __builtin_ia32_protw (v8hi, v8hi)
8290v16qi __builtin_ia32_pshab (v16qi, v16qi)
8291v4si __builtin_ia32_pshad (v4si, v4si)
8292v2di __builtin_ia32_pshaq (v2di, v2di)
8293v8hi __builtin_ia32_pshaw (v8hi, v8hi)
8294v16qi __builtin_ia32_pshlb (v16qi, v16qi)
8295v4si __builtin_ia32_pshld (v4si, v4si)
8296v2di __builtin_ia32_pshlq (v2di, v2di)
8297v8hi __builtin_ia32_pshlw (v8hi, v8hi)
8298@end smallexample
8299
84fbffb2 8300The following builtin-in functions are available when @option{-msse5}
04e1d06b
MM
8301is used. The second argument must be an integer constant and generate
8302the machine instruction that is part of the name with the @samp{_imm}
8303suffix removed.
8304
8305@smallexample
8306v16qi __builtin_ia32_protb_imm (v16qi, int)
8307v4si __builtin_ia32_protd_imm (v4si, int)
8308v2di __builtin_ia32_protq_imm (v2di, int)
8309v8hi __builtin_ia32_protw_imm (v8hi, int)
8310@end smallexample
8311
0975678f
JM
8312The following built-in functions are available when @option{-m3dnow} is used.
8313All of them generate the machine instruction that is part of the name.
8314
3ab51846 8315@smallexample
0975678f
JM
8316void __builtin_ia32_femms (void)
8317v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
8318v2si __builtin_ia32_pf2id (v2sf)
8319v2sf __builtin_ia32_pfacc (v2sf, v2sf)
8320v2sf __builtin_ia32_pfadd (v2sf, v2sf)
8321v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
8322v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
8323v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
8324v2sf __builtin_ia32_pfmax (v2sf, v2sf)
8325v2sf __builtin_ia32_pfmin (v2sf, v2sf)
8326v2sf __builtin_ia32_pfmul (v2sf, v2sf)
8327v2sf __builtin_ia32_pfrcp (v2sf)
8328v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
8329v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
8330v2sf __builtin_ia32_pfrsqrt (v2sf)
8331v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
8332v2sf __builtin_ia32_pfsub (v2sf, v2sf)
8333v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
8334v2sf __builtin_ia32_pi2fd (v2si)
8335v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
3ab51846 8336@end smallexample
0975678f
JM
8337
8338The following built-in functions are available when both @option{-m3dnow}
8339and @option{-march=athlon} are used. All of them generate the machine
8340instruction that is part of the name.
8341
3ab51846 8342@smallexample
0975678f
JM
8343v2si __builtin_ia32_pf2iw (v2sf)
8344v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
8345v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
8346v2sf __builtin_ia32_pi2fw (v2si)
8347v2sf __builtin_ia32_pswapdsf (v2sf)
8348v2si __builtin_ia32_pswapdsi (v2si)
3ab51846 8349@end smallexample
0975678f 8350
118ea793
CF
8351@node MIPS DSP Built-in Functions
8352@subsection MIPS DSP Built-in Functions
8353
8354The MIPS DSP Application-Specific Extension (ASE) includes new
8355instructions that are designed to improve the performance of DSP and
8356media applications. It provides instructions that operate on packed
32041385 83578-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
118ea793
CF
8358
8359GCC supports MIPS DSP operations using both the generic
8360vector extensions (@pxref{Vector Extensions}) and a collection of
8361MIPS-specific built-in functions. Both kinds of support are
8362enabled by the @option{-mdsp} command-line option.
8363
32041385
CF
8364Revision 2 of the ASE was introduced in the second half of 2006.
8365This revision adds extra instructions to the original ASE, but is
8366otherwise backwards-compatible with it. You can select revision 2
8367using the command-line option @option{-mdspr2}; this option implies
8368@option{-mdsp}.
8369
118ea793
CF
8370At present, GCC only provides support for operations on 32-bit
8371vectors. The vector type associated with 8-bit integer data is
32041385
CF
8372usually called @code{v4i8}, the vector type associated with Q7
8373is usually called @code{v4q7}, the vector type associated with 16-bit
8374integer data is usually called @code{v2i16}, and the vector type
8375associated with Q15 is usually called @code{v2q15}. They can be
8376defined in C as follows:
118ea793
CF
8377
8378@smallexample
32041385
CF
8379typedef signed char v4i8 __attribute__ ((vector_size(4)));
8380typedef signed char v4q7 __attribute__ ((vector_size(4)));
8381typedef short v2i16 __attribute__ ((vector_size(4)));
118ea793
CF
8382typedef short v2q15 __attribute__ ((vector_size(4)));
8383@end smallexample
8384
32041385
CF
8385@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
8386initialized in the same way as aggregates. For example:
118ea793
CF
8387
8388@smallexample
8389v4i8 a = @{1, 2, 3, 4@};
8390v4i8 b;
8391b = (v4i8) @{5, 6, 7, 8@};
8392
8393v2q15 c = @{0x0fcb, 0x3a75@};
8394v2q15 d;
8395d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
8396@end smallexample
8397
8398@emph{Note:} The CPU's endianness determines the order in which values
8399are packed. On little-endian targets, the first value is the least
8400significant and the last value is the most significant. The opposite
8401order applies to big-endian targets. For example, the code above will
8402set the lowest byte of @code{a} to @code{1} on little-endian targets
8403and @code{4} on big-endian targets.
8404
32041385 8405@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
118ea793 8406representation. As shown in this example, the integer representation
32041385
CF
8407of a Q7 value can be obtained by multiplying the fractional value by
8408@code{0x1.0p7}. The equivalent for Q15 values is to multiply by
118ea793
CF
8409@code{0x1.0p15}. The equivalent for Q31 values is to multiply by
8410@code{0x1.0p31}.
8411
8412The table below lists the @code{v4i8} and @code{v2q15} operations for which
8413hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
8414and @code{c} and @code{d} are @code{v2q15} values.
8415
8416@multitable @columnfractions .50 .50
8417@item C code @tab MIPS instruction
8418@item @code{a + b} @tab @code{addu.qb}
8419@item @code{c + d} @tab @code{addq.ph}
8420@item @code{a - b} @tab @code{subu.qb}
8421@item @code{c - d} @tab @code{subq.ph}
8422@end multitable
8423
32041385
CF
8424The table below lists the @code{v2i16} operation for which
8425hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
8426@code{v2i16} values.
8427
8428@multitable @columnfractions .50 .50
8429@item C code @tab MIPS instruction
8430@item @code{e * f} @tab @code{mul.ph}
8431@end multitable
8432
118ea793
CF
8433It is easier to describe the DSP built-in functions if we first define
8434the following types:
8435
8436@smallexample
8437typedef int q31;
8438typedef int i32;
32041385 8439typedef unsigned int ui32;
118ea793
CF
8440typedef long long a64;
8441@end smallexample
8442
8443@code{q31} and @code{i32} are actually the same as @code{int}, but we
8444use @code{q31} to indicate a Q31 fractional value and @code{i32} to
8445indicate a 32-bit integer value. Similarly, @code{a64} is the same as
8446@code{long long}, but we use @code{a64} to indicate values that will
8447be placed in one of the four DSP accumulators (@code{$ac0},
8448@code{$ac1}, @code{$ac2} or @code{$ac3}).
8449
8450Also, some built-in functions prefer or require immediate numbers as
8451parameters, because the corresponding DSP instructions accept both immediate
8452numbers and register operands, or accept immediate numbers only. The
8453immediate parameters are listed as follows.
8454
8455@smallexample
32041385 8456imm0_3: 0 to 3.
118ea793
CF
8457imm0_7: 0 to 7.
8458imm0_15: 0 to 15.
8459imm0_31: 0 to 31.
8460imm0_63: 0 to 63.
8461imm0_255: 0 to 255.
8462imm_n32_31: -32 to 31.
8463imm_n512_511: -512 to 511.
8464@end smallexample
8465
8466The following built-in functions map directly to a particular MIPS DSP
8467instruction. Please refer to the architecture specification
8468for details on what each instruction does.
8469
8470@smallexample
8471v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
8472v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
8473q31 __builtin_mips_addq_s_w (q31, q31)
8474v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
8475v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
8476v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
8477v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
8478q31 __builtin_mips_subq_s_w (q31, q31)
8479v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
8480v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
8481i32 __builtin_mips_addsc (i32, i32)
8482i32 __builtin_mips_addwc (i32, i32)
8483i32 __builtin_mips_modsub (i32, i32)
8484i32 __builtin_mips_raddu_w_qb (v4i8)
8485v2q15 __builtin_mips_absq_s_ph (v2q15)
8486q31 __builtin_mips_absq_s_w (q31)
8487v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
8488v2q15 __builtin_mips_precrq_ph_w (q31, q31)
8489v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
8490v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
8491q31 __builtin_mips_preceq_w_phl (v2q15)
8492q31 __builtin_mips_preceq_w_phr (v2q15)
8493v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
8494v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
8495v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
8496v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
8497v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
8498v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
8499v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
8500v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
8501v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
8502v4i8 __builtin_mips_shll_qb (v4i8, i32)
8503v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
8504v2q15 __builtin_mips_shll_ph (v2q15, i32)
8505v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
8506v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
8507q31 __builtin_mips_shll_s_w (q31, imm0_31)
8508q31 __builtin_mips_shll_s_w (q31, i32)
8509v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
8510v4i8 __builtin_mips_shrl_qb (v4i8, i32)
8511v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
8512v2q15 __builtin_mips_shra_ph (v2q15, i32)
8513v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
8514v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
8515q31 __builtin_mips_shra_r_w (q31, imm0_31)
8516q31 __builtin_mips_shra_r_w (q31, i32)
8517v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
8518v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
8519v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
8520q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
8521q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
8522a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
8523a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
8524a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
8525a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
8526a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
8527a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
8528a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
8529a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
8530a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
8531a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
8532a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
8533a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
8534a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
8535i32 __builtin_mips_bitrev (i32)
8536i32 __builtin_mips_insv (i32, i32)
8537v4i8 __builtin_mips_repl_qb (imm0_255)
8538v4i8 __builtin_mips_repl_qb (i32)
8539v2q15 __builtin_mips_repl_ph (imm_n512_511)
8540v2q15 __builtin_mips_repl_ph (i32)
8541void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
8542void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
8543void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
8544i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
8545i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
8546i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
8547void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
8548void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
8549void __builtin_mips_cmp_le_ph (v2q15, v2q15)
8550v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
8551v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
8552v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
8553i32 __builtin_mips_extr_w (a64, imm0_31)
8554i32 __builtin_mips_extr_w (a64, i32)
8555i32 __builtin_mips_extr_r_w (a64, imm0_31)
8556i32 __builtin_mips_extr_s_h (a64, i32)
8557i32 __builtin_mips_extr_rs_w (a64, imm0_31)
8558i32 __builtin_mips_extr_rs_w (a64, i32)
8559i32 __builtin_mips_extr_s_h (a64, imm0_31)
8560i32 __builtin_mips_extr_r_w (a64, i32)
8561i32 __builtin_mips_extp (a64, imm0_31)
8562i32 __builtin_mips_extp (a64, i32)
8563i32 __builtin_mips_extpdp (a64, imm0_31)
8564i32 __builtin_mips_extpdp (a64, i32)
8565a64 __builtin_mips_shilo (a64, imm_n32_31)
8566a64 __builtin_mips_shilo (a64, i32)
8567a64 __builtin_mips_mthlip (a64, i32)
8568void __builtin_mips_wrdsp (i32, imm0_63)
8569i32 __builtin_mips_rddsp (imm0_63)
8570i32 __builtin_mips_lbux (void *, i32)
8571i32 __builtin_mips_lhx (void *, i32)
8572i32 __builtin_mips_lwx (void *, i32)
8573i32 __builtin_mips_bposge32 (void)
8574@end smallexample
8575
32041385
CF
8576The following built-in functions map directly to a particular MIPS DSP REV 2
8577instruction. Please refer to the architecture specification
8578for details on what each instruction does.
8579
8580@smallexample
8581v4q7 __builtin_mips_absq_s_qb (v4q7);
8582v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
8583v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
8584v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
8585v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
8586i32 __builtin_mips_append (i32, i32, imm0_31);
8587i32 __builtin_mips_balign (i32, i32, imm0_3);
8588i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
8589i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
8590i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
8591a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
8592a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
8593a64 __builtin_mips_madd (a64, i32, i32);
8594a64 __builtin_mips_maddu (a64, ui32, ui32);
8595a64 __builtin_mips_msub (a64, i32, i32);
8596a64 __builtin_mips_msubu (a64, ui32, ui32);
8597v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
8598v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
8599q31 __builtin_mips_mulq_rs_w (q31, q31);
8600v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
8601q31 __builtin_mips_mulq_s_w (q31, q31);
8602a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
8603a64 __builtin_mips_mult (i32, i32);
8604a64 __builtin_mips_multu (ui32, ui32);
8605v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
8606v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
8607v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
8608i32 __builtin_mips_prepend (i32, i32, imm0_31);
8609v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
8610v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
8611v4i8 __builtin_mips_shra_qb (v4i8, i32);
8612v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
8613v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
8614v2i16 __builtin_mips_shrl_ph (v2i16, i32);
8615v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
8616v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
8617v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
8618v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
8619v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
8620v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
8621q31 __builtin_mips_addqh_w (q31, q31);
8622q31 __builtin_mips_addqh_r_w (q31, q31);
8623v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
8624v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
8625q31 __builtin_mips_subqh_w (q31, q31);
8626q31 __builtin_mips_subqh_r_w (q31, q31);
8627a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
8628a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
8629a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
8630a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
8631a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
8632a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
8633@end smallexample
8634
8635
d840bfd3
CF
8636@node MIPS Paired-Single Support
8637@subsection MIPS Paired-Single Support
8638
8639The MIPS64 architecture includes a number of instructions that
8640operate on pairs of single-precision floating-point values.
8641Each pair is packed into a 64-bit floating-point register,
8642with one element being designated the ``upper half'' and
8643the other being designated the ``lower half''.
8644
8645GCC supports paired-single operations using both the generic
8646vector extensions (@pxref{Vector Extensions}) and a collection of
8647MIPS-specific built-in functions. Both kinds of support are
8648enabled by the @option{-mpaired-single} command-line option.
8649
8650The vector type associated with paired-single values is usually
8651called @code{v2sf}. It can be defined in C as follows:
8652
8653@smallexample
8654typedef float v2sf __attribute__ ((vector_size (8)));
8655@end smallexample
8656
8657@code{v2sf} values are initialized in the same way as aggregates.
8658For example:
8659
8660@smallexample
8661v2sf a = @{1.5, 9.1@};
8662v2sf b;
8663float e, f;
8664b = (v2sf) @{e, f@};
8665@end smallexample
8666
8667@emph{Note:} The CPU's endianness determines which value is stored in
8668the upper half of a register and which value is stored in the lower half.
8669On little-endian targets, the first value is the lower one and the second
8670value is the upper one. The opposite order applies to big-endian targets.
8671For example, the code above will set the lower half of @code{a} to
8672@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
8673
93581857
MS
8674@node MIPS Loongson Built-in Functions
8675@subsection MIPS Loongson Built-in Functions
8676
8677GCC provides intrinsics to access the SIMD instructions provided by the
8678ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
8679available after inclusion of the @code{loongson.h} header file,
8680operate on the following 64-bit vector types:
8681
8682@itemize
8683@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
8684@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
8685@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
8686@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
8687@item @code{int16x4_t}, a vector of four signed 16-bit integers;
8688@item @code{int32x2_t}, a vector of two signed 32-bit integers.
8689@end itemize
8690
8691The intrinsics provided are listed below; each is named after the
8692machine instruction to which it corresponds, with suffixes added as
8693appropriate to distinguish intrinsics that expand to the same machine
8694instruction yet have different argument types. Refer to the architecture
8695documentation for a description of the functionality of each
8696instruction.
8697
8698@smallexample
8699int16x4_t packsswh (int32x2_t s, int32x2_t t);
8700int8x8_t packsshb (int16x4_t s, int16x4_t t);
8701uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
8702uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
8703uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
8704uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
8705int32x2_t paddw_s (int32x2_t s, int32x2_t t);
8706int16x4_t paddh_s (int16x4_t s, int16x4_t t);
8707int8x8_t paddb_s (int8x8_t s, int8x8_t t);
8708uint64_t paddd_u (uint64_t s, uint64_t t);
8709int64_t paddd_s (int64_t s, int64_t t);
8710int16x4_t paddsh (int16x4_t s, int16x4_t t);
8711int8x8_t paddsb (int8x8_t s, int8x8_t t);
8712uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
8713uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
8714uint64_t pandn_ud (uint64_t s, uint64_t t);
8715uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
8716uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
8717uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
8718int64_t pandn_sd (int64_t s, int64_t t);
8719int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
8720int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
8721int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
8722uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
8723uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
8724uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
8725uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
8726uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
8727int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
8728int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
8729int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
8730uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
8731uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
8732uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
8733int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
8734int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
8735int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
8736uint16x4_t pextrh_u (uint16x4_t s, int field);
8737int16x4_t pextrh_s (int16x4_t s, int field);
8738uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
8739uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
8740uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
8741uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
8742int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
8743int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
8744int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
8745int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
8746int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
8747int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
8748uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
8749int16x4_t pminsh (int16x4_t s, int16x4_t t);
8750uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
8751uint8x8_t pmovmskb_u (uint8x8_t s);
8752int8x8_t pmovmskb_s (int8x8_t s);
8753uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
8754int16x4_t pmulhh (int16x4_t s, int16x4_t t);
8755int16x4_t pmullh (int16x4_t s, int16x4_t t);
8756int64_t pmuluw (uint32x2_t s, uint32x2_t t);
8757uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
8758uint16x4_t biadd (uint8x8_t s);
8759uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
8760uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
8761int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
8762uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
8763int16x4_t psllh_s (int16x4_t s, uint8_t amount);
8764uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
8765int32x2_t psllw_s (int32x2_t s, uint8_t amount);
8766uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
8767int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
8768uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
8769int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
8770uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
8771int16x4_t psrah_s (int16x4_t s, uint8_t amount);
8772uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
8773int32x2_t psraw_s (int32x2_t s, uint8_t amount);
8774uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
8775uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
8776uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
8777int32x2_t psubw_s (int32x2_t s, int32x2_t t);
8778int16x4_t psubh_s (int16x4_t s, int16x4_t t);
8779int8x8_t psubb_s (int8x8_t s, int8x8_t t);
8780uint64_t psubd_u (uint64_t s, uint64_t t);
8781int64_t psubd_s (int64_t s, int64_t t);
8782int16x4_t psubsh (int16x4_t s, int16x4_t t);
8783int8x8_t psubsb (int8x8_t s, int8x8_t t);
8784uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
8785uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
8786uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
8787uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
8788uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
8789int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
8790int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
8791int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
8792uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
8793uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
8794uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
8795int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
8796int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
8797int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
8798@end smallexample
8799
d840bfd3
CF
8800@menu
8801* Paired-Single Arithmetic::
8802* Paired-Single Built-in Functions::
8803* MIPS-3D Built-in Functions::
8804@end menu
8805
8806@node Paired-Single Arithmetic
8807@subsubsection Paired-Single Arithmetic
8808
8809The table below lists the @code{v2sf} operations for which hardware
8810support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
8811values and @code{x} is an integral value.
8812
8813@multitable @columnfractions .50 .50
8814@item C code @tab MIPS instruction
8815@item @code{a + b} @tab @code{add.ps}
8816@item @code{a - b} @tab @code{sub.ps}
8817@item @code{-a} @tab @code{neg.ps}
8818@item @code{a * b} @tab @code{mul.ps}
8819@item @code{a * b + c} @tab @code{madd.ps}
8820@item @code{a * b - c} @tab @code{msub.ps}
8821@item @code{-(a * b + c)} @tab @code{nmadd.ps}
8822@item @code{-(a * b - c)} @tab @code{nmsub.ps}
8823@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
8824@end multitable
8825
8826Note that the multiply-accumulate instructions can be disabled
8827using the command-line option @code{-mno-fused-madd}.
8828
8829@node Paired-Single Built-in Functions
8830@subsubsection Paired-Single Built-in Functions
8831
8832The following paired-single functions map directly to a particular
8833MIPS instruction. Please refer to the architecture specification
8834for details on what each instruction does.
8835
8836@table @code
8837@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
8838Pair lower lower (@code{pll.ps}).
8839
8840@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
8841Pair upper lower (@code{pul.ps}).
8842
8843@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
8844Pair lower upper (@code{plu.ps}).
8845
8846@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
8847Pair upper upper (@code{puu.ps}).
8848
8849@item v2sf __builtin_mips_cvt_ps_s (float, float)
8850Convert pair to paired single (@code{cvt.ps.s}).
8851
8852@item float __builtin_mips_cvt_s_pl (v2sf)
8853Convert pair lower to single (@code{cvt.s.pl}).
8854
8855@item float __builtin_mips_cvt_s_pu (v2sf)
8856Convert pair upper to single (@code{cvt.s.pu}).
8857
8858@item v2sf __builtin_mips_abs_ps (v2sf)
8859Absolute value (@code{abs.ps}).
8860
8861@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
8862Align variable (@code{alnv.ps}).
8863
8864@emph{Note:} The value of the third parameter must be 0 or 4
8865modulo 8, otherwise the result will be unpredictable. Please read the
8866instruction description for details.
8867@end table
8868
8869The following multi-instruction functions are also available.
8870In each case, @var{cond} can be any of the 16 floating-point conditions:
8871@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
8872@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
8873@code{lt}, @code{nge}, @code{le} or @code{ngt}.
8874
8875@table @code
8876@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8877@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8878Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
8879@code{movt.ps}/@code{movf.ps}).
8880
8881The @code{movt} functions return the value @var{x} computed by:
8882
8883@smallexample
8884c.@var{cond}.ps @var{cc},@var{a},@var{b}
8885mov.ps @var{x},@var{c}
8886movt.ps @var{x},@var{d},@var{cc}
8887@end smallexample
8888
8889The @code{movf} functions are similar but use @code{movf.ps} instead
8890of @code{movt.ps}.
8891
8892@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8893@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8894Comparison of two paired-single values (@code{c.@var{cond}.ps},
8895@code{bc1t}/@code{bc1f}).
8896
8897These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
8898and return either the upper or lower half of the result. For example:
8899
8900@smallexample
8901v2sf a, b;
8902if (__builtin_mips_upper_c_eq_ps (a, b))
8903 upper_halves_are_equal ();
8904else
8905 upper_halves_are_unequal ();
8906
8907if (__builtin_mips_lower_c_eq_ps (a, b))
8908 lower_halves_are_equal ();
8909else
8910 lower_halves_are_unequal ();
8911@end smallexample
8912@end table
8913
8914@node MIPS-3D Built-in Functions
8915@subsubsection MIPS-3D Built-in Functions
8916
8917The MIPS-3D Application-Specific Extension (ASE) includes additional
8918paired-single instructions that are designed to improve the performance
8919of 3D graphics operations. Support for these instructions is controlled
8920by the @option{-mips3d} command-line option.
8921
8922The functions listed below map directly to a particular MIPS-3D
8923instruction. Please refer to the architecture specification for
8924more details on what each instruction does.
8925
8926@table @code
8927@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
8928Reduction add (@code{addr.ps}).
8929
8930@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
8931Reduction multiply (@code{mulr.ps}).
8932
8933@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
8934Convert paired single to paired word (@code{cvt.pw.ps}).
8935
8936@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
8937Convert paired word to paired single (@code{cvt.ps.pw}).
8938
8939@item float __builtin_mips_recip1_s (float)
8940@itemx double __builtin_mips_recip1_d (double)
8941@itemx v2sf __builtin_mips_recip1_ps (v2sf)
8942Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
8943
8944@item float __builtin_mips_recip2_s (float, float)
8945@itemx double __builtin_mips_recip2_d (double, double)
8946@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
8947Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
8948
8949@item float __builtin_mips_rsqrt1_s (float)
8950@itemx double __builtin_mips_rsqrt1_d (double)
8951@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
8952Reduced precision reciprocal square root (sequence step 1)
8953(@code{rsqrt1.@var{fmt}}).
8954
8955@item float __builtin_mips_rsqrt2_s (float, float)
8956@itemx double __builtin_mips_rsqrt2_d (double, double)
8957@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
8958Reduced precision reciprocal square root (sequence step 2)
8959(@code{rsqrt2.@var{fmt}}).
8960@end table
8961
8962The following multi-instruction functions are also available.
8963In each case, @var{cond} can be any of the 16 floating-point conditions:
8964@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
8965@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
8966@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
8967
8968@table @code
8969@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
8970@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
8971Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
8972@code{bc1t}/@code{bc1f}).
8973
8974These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
8975or @code{cabs.@var{cond}.d} and return the result as a boolean value.
8976For example:
8977
8978@smallexample
8979float a, b;
8980if (__builtin_mips_cabs_eq_s (a, b))
8981 true ();
8982else
8983 false ();
8984@end smallexample
8985
8986@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8987@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8988Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
8989@code{bc1t}/@code{bc1f}).
8990
8991These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
8992and return either the upper or lower half of the result. For example:
8993
8994@smallexample
8995v2sf a, b;
8996if (__builtin_mips_upper_cabs_eq_ps (a, b))
8997 upper_halves_are_equal ();
8998else
8999 upper_halves_are_unequal ();
9000
9001if (__builtin_mips_lower_cabs_eq_ps (a, b))
9002 lower_halves_are_equal ();
9003else
9004 lower_halves_are_unequal ();
9005@end smallexample
9006
9007@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
9008@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
9009Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
9010@code{movt.ps}/@code{movf.ps}).
9011
9012The @code{movt} functions return the value @var{x} computed by:
9013
9014@smallexample
9015cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
9016mov.ps @var{x},@var{c}
9017movt.ps @var{x},@var{d},@var{cc}
9018@end smallexample
9019
9020The @code{movf} functions are similar but use @code{movf.ps} instead
9021of @code{movt.ps}.
9022
9023@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
9024@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
9025@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
9026@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
9027Comparison of two paired-single values
9028(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
9029@code{bc1any2t}/@code{bc1any2f}).
9030
9031These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
9032or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
9033result is true and the @code{all} forms return true if both results are true.
9034For example:
9035
9036@smallexample
9037v2sf a, b;
9038if (__builtin_mips_any_c_eq_ps (a, b))
9039 one_is_true ();
9040else
9041 both_are_false ();
9042
9043if (__builtin_mips_all_c_eq_ps (a, b))
9044 both_are_true ();
9045else
9046 one_is_false ();
9047@end smallexample
9048
9049@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
9050@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
9051@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
9052@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
9053Comparison of four paired-single values
9054(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
9055@code{bc1any4t}/@code{bc1any4f}).
9056
9057These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
9058to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
9059The @code{any} forms return true if any of the four results are true
9060and the @code{all} forms return true if all four results are true.
9061For example:
9062
9063@smallexample
9064v2sf a, b, c, d;
9065if (__builtin_mips_any_c_eq_4s (a, b, c, d))
9066 some_are_true ();
9067else
9068 all_are_false ();
9069
9070if (__builtin_mips_all_c_eq_4s (a, b, c, d))
9071 all_are_true ();
9072else
9073 some_are_false ();
9074@end smallexample
9075@end table
9076
333c8841
AH
9077@node PowerPC AltiVec Built-in Functions
9078@subsection PowerPC AltiVec Built-in Functions
9079
b0b343db
JJ
9080GCC provides an interface for the PowerPC family of processors to access
9081the AltiVec operations described in Motorola's AltiVec Programming
9082Interface Manual. The interface is made available by including
9083@code{<altivec.h>} and using @option{-maltivec} and
9084@option{-mabi=altivec}. The interface supports the following vector
9085types.
333c8841 9086
b0b343db
JJ
9087@smallexample
9088vector unsigned char
9089vector signed char
9090vector bool char
333c8841 9091
b0b343db
JJ
9092vector unsigned short
9093vector signed short
9094vector bool short
9095vector pixel
9096
9097vector unsigned int
9098vector signed int
9099vector bool int
9100vector float
9101@end smallexample
9102
9103GCC's implementation of the high-level language interface available from
9104C and C++ code differs from Motorola's documentation in several ways.
9105
9106@itemize @bullet
9107
9108@item
9109A vector constant is a list of constant expressions within curly braces.
9110
9111@item
9112A vector initializer requires no cast if the vector constant is of the
9113same type as the variable it is initializing.
333c8841 9114
b0b343db 9115@item
5edea4c6
JJ
9116If @code{signed} or @code{unsigned} is omitted, the signedness of the
9117vector type is the default signedness of the base type. The default
9118varies depending on the operating system, so a portable program should
9119always specify the signedness.
4e6e4e4c
JJ
9120
9121@item
9122Compiling with @option{-maltivec} adds keywords @code{__vector},
5950c3c9
BE
9123@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
9124@code{bool}. When compiling ISO C, the context-sensitive substitution
9125of the keywords @code{vector}, @code{pixel} and @code{bool} is
9126disabled. To use them, you must include @code{<altivec.h>} instead.
4e6e4e4c
JJ
9127
9128@item
9129GCC allows using a @code{typedef} name as the type specifier for a
9130vector type.
b0b343db
JJ
9131
9132@item
9133For C, overloaded functions are implemented with macros so the following
9134does not work:
90989b26
AH
9135
9136@smallexample
8254cb45 9137 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
90989b26
AH
9138@end smallexample
9139
b0b343db
JJ
9140Since @code{vec_add} is a macro, the vector constant in the example
9141is treated as four separate arguments. Wrap the entire argument in
9142parentheses for this to work.
9143@end itemize
90989b26 9144
ae4b4a02
AH
9145@emph{Note:} Only the @code{<altivec.h>} interface is supported.
9146Internally, GCC uses built-in functions to achieve the functionality in
9147the aforementioned header file, but they are not supported and are
9148subject to change without notice.
9149
b0b343db
JJ
9150The following interfaces are supported for the generic and specific
9151AltiVec operations and the AltiVec predicates. In cases where there
9152is a direct mapping between generic and specific operations, only the
9153generic names are shown here, although the specific operations can also
9154be used.
333c8841 9155
b0b343db
JJ
9156Arguments that are documented as @code{const int} require literal
9157integral values within the range required for that operation.
333c8841 9158
b0b343db
JJ
9159@smallexample
9160vector signed char vec_abs (vector signed char);
9161vector signed short vec_abs (vector signed short);
9162vector signed int vec_abs (vector signed int);
9163vector float vec_abs (vector float);
333c8841 9164
b0b343db
JJ
9165vector signed char vec_abss (vector signed char);
9166vector signed short vec_abss (vector signed short);
9167vector signed int vec_abss (vector signed int);
333c8841 9168
b0b343db
JJ
9169vector signed char vec_add (vector bool char, vector signed char);
9170vector signed char vec_add (vector signed char, vector bool char);
9171vector signed char vec_add (vector signed char, vector signed char);
9172vector unsigned char vec_add (vector bool char, vector unsigned char);
9173vector unsigned char vec_add (vector unsigned char, vector bool char);
924fcc4e
JM
9174vector unsigned char vec_add (vector unsigned char,
9175 vector unsigned char);
b0b343db
JJ
9176vector signed short vec_add (vector bool short, vector signed short);
9177vector signed short vec_add (vector signed short, vector bool short);
333c8841 9178vector signed short vec_add (vector signed short, vector signed short);
b0b343db 9179vector unsigned short vec_add (vector bool short,
924fcc4e
JM
9180 vector unsigned short);
9181vector unsigned short vec_add (vector unsigned short,
b0b343db 9182 vector bool short);
6e5bb5ad
JM
9183vector unsigned short vec_add (vector unsigned short,
9184 vector unsigned short);
b0b343db
JJ
9185vector signed int vec_add (vector bool int, vector signed int);
9186vector signed int vec_add (vector signed int, vector bool int);
333c8841 9187vector signed int vec_add (vector signed int, vector signed int);
b0b343db
JJ
9188vector unsigned int vec_add (vector bool int, vector unsigned int);
9189vector unsigned int vec_add (vector unsigned int, vector bool int);
333c8841
AH
9190vector unsigned int vec_add (vector unsigned int, vector unsigned int);
9191vector float vec_add (vector float, vector float);
9192
b0b343db
JJ
9193vector float vec_vaddfp (vector float, vector float);
9194
9195vector signed int vec_vadduwm (vector bool int, vector signed int);
9196vector signed int vec_vadduwm (vector signed int, vector bool int);
9197vector signed int vec_vadduwm (vector signed int, vector signed int);
9198vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
9199vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
9200vector unsigned int vec_vadduwm (vector unsigned int,
9201 vector unsigned int);
9202
9203vector signed short vec_vadduhm (vector bool short,
9204 vector signed short);
9205vector signed short vec_vadduhm (vector signed short,
9206 vector bool short);
9207vector signed short vec_vadduhm (vector signed short,
9208 vector signed short);
9209vector unsigned short vec_vadduhm (vector bool short,
9210 vector unsigned short);
9211vector unsigned short vec_vadduhm (vector unsigned short,
9212 vector bool short);
9213vector unsigned short vec_vadduhm (vector unsigned short,
9214 vector unsigned short);
9215
9216vector signed char vec_vaddubm (vector bool char, vector signed char);
9217vector signed char vec_vaddubm (vector signed char, vector bool char);
9218vector signed char vec_vaddubm (vector signed char, vector signed char);
9219vector unsigned char vec_vaddubm (vector bool char,
9220 vector unsigned char);
9221vector unsigned char vec_vaddubm (vector unsigned char,
9222 vector bool char);
9223vector unsigned char vec_vaddubm (vector unsigned char,
9224 vector unsigned char);
9225
333c8841
AH
9226vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
9227
b0b343db
JJ
9228vector unsigned char vec_adds (vector bool char, vector unsigned char);
9229vector unsigned char vec_adds (vector unsigned char, vector bool char);
924fcc4e
JM
9230vector unsigned char vec_adds (vector unsigned char,
9231 vector unsigned char);
b0b343db
JJ
9232vector signed char vec_adds (vector bool char, vector signed char);
9233vector signed char vec_adds (vector signed char, vector bool char);
333c8841 9234vector signed char vec_adds (vector signed char, vector signed char);
b0b343db 9235vector unsigned short vec_adds (vector bool short,
924fcc4e
JM
9236 vector unsigned short);
9237vector unsigned short vec_adds (vector unsigned short,
b0b343db 9238 vector bool short);
6e5bb5ad
JM
9239vector unsigned short vec_adds (vector unsigned short,
9240 vector unsigned short);
b0b343db
JJ
9241vector signed short vec_adds (vector bool short, vector signed short);
9242vector signed short vec_adds (vector signed short, vector bool short);
333c8841 9243vector signed short vec_adds (vector signed short, vector signed short);
b0b343db
JJ
9244vector unsigned int vec_adds (vector bool int, vector unsigned int);
9245vector unsigned int vec_adds (vector unsigned int, vector bool int);
333c8841 9246vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
b0b343db
JJ
9247vector signed int vec_adds (vector bool int, vector signed int);
9248vector signed int vec_adds (vector signed int, vector bool int);
333c8841
AH
9249vector signed int vec_adds (vector signed int, vector signed int);
9250
b0b343db
JJ
9251vector signed int vec_vaddsws (vector bool int, vector signed int);
9252vector signed int vec_vaddsws (vector signed int, vector bool int);
9253vector signed int vec_vaddsws (vector signed int, vector signed int);
9254
9255vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
9256vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
9257vector unsigned int vec_vadduws (vector unsigned int,
9258 vector unsigned int);
9259
9260vector signed short vec_vaddshs (vector bool short,
9261 vector signed short);
9262vector signed short vec_vaddshs (vector signed short,
9263 vector bool short);
9264vector signed short vec_vaddshs (vector signed short,
9265 vector signed short);
9266
9267vector unsigned short vec_vadduhs (vector bool short,
9268 vector unsigned short);
9269vector unsigned short vec_vadduhs (vector unsigned short,
9270 vector bool short);
9271vector unsigned short vec_vadduhs (vector unsigned short,
9272 vector unsigned short);
9273
9274vector signed char vec_vaddsbs (vector bool char, vector signed char);
9275vector signed char vec_vaddsbs (vector signed char, vector bool char);
9276vector signed char vec_vaddsbs (vector signed char, vector signed char);
9277
9278vector unsigned char vec_vaddubs (vector bool char,
9279 vector unsigned char);
9280vector unsigned char vec_vaddubs (vector unsigned char,
9281 vector bool char);
9282vector unsigned char vec_vaddubs (vector unsigned char,
9283 vector unsigned char);
9284
333c8841 9285vector float vec_and (vector float, vector float);
b0b343db
JJ
9286vector float vec_and (vector float, vector bool int);
9287vector float vec_and (vector bool int, vector float);
9288vector bool int vec_and (vector bool int, vector bool int);
9289vector signed int vec_and (vector bool int, vector signed int);
9290vector signed int vec_and (vector signed int, vector bool int);
333c8841 9291vector signed int vec_and (vector signed int, vector signed int);
b0b343db
JJ
9292vector unsigned int vec_and (vector bool int, vector unsigned int);
9293vector unsigned int vec_and (vector unsigned int, vector bool int);
333c8841 9294vector unsigned int vec_and (vector unsigned int, vector unsigned int);
b0b343db
JJ
9295vector bool short vec_and (vector bool short, vector bool short);
9296vector signed short vec_and (vector bool short, vector signed short);
9297vector signed short vec_and (vector signed short, vector bool short);
333c8841 9298vector signed short vec_and (vector signed short, vector signed short);
b0b343db 9299vector unsigned short vec_and (vector bool short,
924fcc4e
JM
9300 vector unsigned short);
9301vector unsigned short vec_and (vector unsigned short,
b0b343db 9302 vector bool short);
6e5bb5ad
JM
9303vector unsigned short vec_and (vector unsigned short,
9304 vector unsigned short);
b0b343db
JJ
9305vector signed char vec_and (vector bool char, vector signed char);
9306vector bool char vec_and (vector bool char, vector bool char);
9307vector signed char vec_and (vector signed char, vector bool char);
333c8841 9308vector signed char vec_and (vector signed char, vector signed char);
b0b343db
JJ
9309vector unsigned char vec_and (vector bool char, vector unsigned char);
9310vector unsigned char vec_and (vector unsigned char, vector bool char);
924fcc4e
JM
9311vector unsigned char vec_and (vector unsigned char,
9312 vector unsigned char);
333c8841
AH
9313
9314vector float vec_andc (vector float, vector float);
b0b343db
JJ
9315vector float vec_andc (vector float, vector bool int);
9316vector float vec_andc (vector bool int, vector float);
9317vector bool int vec_andc (vector bool int, vector bool int);
9318vector signed int vec_andc (vector bool int, vector signed int);
9319vector signed int vec_andc (vector signed int, vector bool int);
333c8841 9320vector signed int vec_andc (vector signed int, vector signed int);
b0b343db
JJ
9321vector unsigned int vec_andc (vector bool int, vector unsigned int);
9322vector unsigned int vec_andc (vector unsigned int, vector bool int);
333c8841 9323vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
b0b343db
JJ
9324vector bool short vec_andc (vector bool short, vector bool short);
9325vector signed short vec_andc (vector bool short, vector signed short);
9326vector signed short vec_andc (vector signed short, vector bool short);
333c8841 9327vector signed short vec_andc (vector signed short, vector signed short);
b0b343db 9328vector unsigned short vec_andc (vector bool short,
924fcc4e
JM
9329 vector unsigned short);
9330vector unsigned short vec_andc (vector unsigned short,
b0b343db 9331 vector bool short);
6e5bb5ad
JM
9332vector unsigned short vec_andc (vector unsigned short,
9333 vector unsigned short);
b0b343db
JJ
9334vector signed char vec_andc (vector bool char, vector signed char);
9335vector bool char vec_andc (vector bool char, vector bool char);
9336vector signed char vec_andc (vector signed char, vector bool char);
333c8841 9337vector signed char vec_andc (vector signed char, vector signed char);
b0b343db
JJ
9338vector unsigned char vec_andc (vector bool char, vector unsigned char);
9339vector unsigned char vec_andc (vector unsigned char, vector bool char);
924fcc4e
JM
9340vector unsigned char vec_andc (vector unsigned char,
9341 vector unsigned char);
333c8841 9342
924fcc4e
JM
9343vector unsigned char vec_avg (vector unsigned char,
9344 vector unsigned char);
333c8841 9345vector signed char vec_avg (vector signed char, vector signed char);
6e5bb5ad
JM
9346vector unsigned short vec_avg (vector unsigned short,
9347 vector unsigned short);
333c8841
AH
9348vector signed short vec_avg (vector signed short, vector signed short);
9349vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
9350vector signed int vec_avg (vector signed int, vector signed int);
9351
b0b343db
JJ
9352vector signed int vec_vavgsw (vector signed int, vector signed int);
9353
9354vector unsigned int vec_vavguw (vector unsigned int,
9355 vector unsigned int);
9356
9357vector signed short vec_vavgsh (vector signed short,
9358 vector signed short);
9359
9360vector unsigned short vec_vavguh (vector unsigned short,
9361 vector unsigned short);
9362
9363vector signed char vec_vavgsb (vector signed char, vector signed char);
9364
9365vector unsigned char vec_vavgub (vector unsigned char,
9366 vector unsigned char);
9367
333c8841
AH
9368vector float vec_ceil (vector float);
9369
9370vector signed int vec_cmpb (vector float, vector float);
9371
b0b343db
JJ
9372vector bool char vec_cmpeq (vector signed char, vector signed char);
9373vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
9374vector bool short vec_cmpeq (vector signed short, vector signed short);
9375vector bool short vec_cmpeq (vector unsigned short,
9376 vector unsigned short);
9377vector bool int vec_cmpeq (vector signed int, vector signed int);
9378vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
9379vector bool int vec_cmpeq (vector float, vector float);
333c8841 9380
b0b343db 9381vector bool int vec_vcmpeqfp (vector float, vector float);
333c8841 9382
b0b343db
JJ
9383vector bool int vec_vcmpequw (vector signed int, vector signed int);
9384vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
9385
9386vector bool short vec_vcmpequh (vector signed short,
9387 vector signed short);
9388vector bool short vec_vcmpequh (vector unsigned short,
9389 vector unsigned short);
333c8841 9390
b0b343db
JJ
9391vector bool char vec_vcmpequb (vector signed char, vector signed char);
9392vector bool char vec_vcmpequb (vector unsigned char,
9393 vector unsigned char);
333c8841 9394
b0b343db 9395vector bool int vec_cmpge (vector float, vector float);
333c8841 9396
b0b343db
JJ
9397vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
9398vector bool char vec_cmpgt (vector signed char, vector signed char);
9399vector bool short vec_cmpgt (vector unsigned short,
9400 vector unsigned short);
9401vector bool short vec_cmpgt (vector signed short, vector signed short);
9402vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
9403vector bool int vec_cmpgt (vector signed int, vector signed int);
9404vector bool int vec_cmpgt (vector float, vector float);
9405
9406vector bool int vec_vcmpgtfp (vector float, vector float);
9407
9408vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
9409
9410vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
333c8841 9411
b0b343db
JJ
9412vector bool short vec_vcmpgtsh (vector signed short,
9413 vector signed short);
9414
9415vector bool short vec_vcmpgtuh (vector unsigned short,
9416 vector unsigned short);
9417
9418vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
9419
9420vector bool char vec_vcmpgtub (vector unsigned char,
9421 vector unsigned char);
9422
9423vector bool int vec_cmple (vector float, vector float);
9424
9425vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
9426vector bool char vec_cmplt (vector signed char, vector signed char);
9427vector bool short vec_cmplt (vector unsigned short,
9428 vector unsigned short);
9429vector bool short vec_cmplt (vector signed short, vector signed short);
9430vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
9431vector bool int vec_cmplt (vector signed int, vector signed int);
9432vector bool int vec_cmplt (vector float, vector float);
333c8841 9433
b0b343db
JJ
9434vector float vec_ctf (vector unsigned int, const int);
9435vector float vec_ctf (vector signed int, const int);
333c8841 9436
b0b343db
JJ
9437vector float vec_vcfsx (vector signed int, const int);
9438
9439vector float vec_vcfux (vector unsigned int, const int);
9440
9441vector signed int vec_cts (vector float, const int);
9442
9443vector unsigned int vec_ctu (vector float, const int);
9444
9445void vec_dss (const int);
333c8841
AH
9446
9447void vec_dssall (void);
9448
b0b343db
JJ
9449void vec_dst (const vector unsigned char *, int, const int);
9450void vec_dst (const vector signed char *, int, const int);
9451void vec_dst (const vector bool char *, int, const int);
9452void vec_dst (const vector unsigned short *, int, const int);
9453void vec_dst (const vector signed short *, int, const int);
9454void vec_dst (const vector bool short *, int, const int);
9455void vec_dst (const vector pixel *, int, const int);
9456void vec_dst (const vector unsigned int *, int, const int);
9457void vec_dst (const vector signed int *, int, const int);
9458void vec_dst (const vector bool int *, int, const int);
9459void vec_dst (const vector float *, int, const int);
9460void vec_dst (const unsigned char *, int, const int);
9461void vec_dst (const signed char *, int, const int);
9462void vec_dst (const unsigned short *, int, const int);
9463void vec_dst (const short *, int, const int);
9464void vec_dst (const unsigned int *, int, const int);
9465void vec_dst (const int *, int, const int);
9466void vec_dst (const unsigned long *, int, const int);
9467void vec_dst (const long *, int, const int);
9468void vec_dst (const float *, int, const int);
9469
9470void vec_dstst (const vector unsigned char *, int, const int);
9471void vec_dstst (const vector signed char *, int, const int);
9472void vec_dstst (const vector bool char *, int, const int);
9473void vec_dstst (const vector unsigned short *, int, const int);
9474void vec_dstst (const vector signed short *, int, const int);
9475void vec_dstst (const vector bool short *, int, const int);
9476void vec_dstst (const vector pixel *, int, const int);
9477void vec_dstst (const vector unsigned int *, int, const int);
9478void vec_dstst (const vector signed int *, int, const int);
9479void vec_dstst (const vector bool int *, int, const int);
9480void vec_dstst (const vector float *, int, const int);
9481void vec_dstst (const unsigned char *, int, const int);
9482void vec_dstst (const signed char *, int, const int);
9483void vec_dstst (const unsigned short *, int, const int);
9484void vec_dstst (const short *, int, const int);
9485void vec_dstst (const unsigned int *, int, const int);
9486void vec_dstst (const int *, int, const int);
9487void vec_dstst (const unsigned long *, int, const int);
9488void vec_dstst (const long *, int, const int);
9489void vec_dstst (const float *, int, const int);
9490
9491void vec_dststt (const vector unsigned char *, int, const int);
9492void vec_dststt (const vector signed char *, int, const int);
9493void vec_dststt (const vector bool char *, int, const int);
9494void vec_dststt (const vector unsigned short *, int, const int);
9495void vec_dststt (const vector signed short *, int, const int);
9496void vec_dststt (const vector bool short *, int, const int);
9497void vec_dststt (const vector pixel *, int, const int);
9498void vec_dststt (const vector unsigned int *, int, const int);
9499void vec_dststt (const vector signed int *, int, const int);
9500void vec_dststt (const vector bool int *, int, const int);
9501void vec_dststt (const vector float *, int, const int);
9502void vec_dststt (const unsigned char *, int, const int);
9503void vec_dststt (const signed char *, int, const int);
9504void vec_dststt (const unsigned short *, int, const int);
9505void vec_dststt (const short *, int, const int);
9506void vec_dststt (const unsigned int *, int, const int);
9507void vec_dststt (const int *, int, const int);
9508void vec_dststt (const unsigned long *, int, const int);
9509void vec_dststt (const long *, int, const int);
9510void vec_dststt (const float *, int, const int);
9511
9512void vec_dstt (const vector unsigned char *, int, const int);
9513void vec_dstt (const vector signed char *, int, const int);
9514void vec_dstt (const vector bool char *, int, const int);
9515void vec_dstt (const vector unsigned short *, int, const int);
9516void vec_dstt (const vector signed short *, int, const int);
9517void vec_dstt (const vector bool short *, int, const int);
9518void vec_dstt (const vector pixel *, int, const int);
9519void vec_dstt (const vector unsigned int *, int, const int);
9520void vec_dstt (const vector signed int *, int, const int);
9521void vec_dstt (const vector bool int *, int, const int);
9522void vec_dstt (const vector float *, int, const int);
9523void vec_dstt (const unsigned char *, int, const int);
9524void vec_dstt (const signed char *, int, const int);
9525void vec_dstt (const unsigned short *, int, const int);
9526void vec_dstt (const short *, int, const int);
9527void vec_dstt (const unsigned int *, int, const int);
9528void vec_dstt (const int *, int, const int);
9529void vec_dstt (const unsigned long *, int, const int);
9530void vec_dstt (const long *, int, const int);
9531void vec_dstt (const float *, int, const int);
9532
9533vector float vec_expte (vector float);
9534
9535vector float vec_floor (vector float);
9536
9537vector float vec_ld (int, const vector float *);
9538vector float vec_ld (int, const float *);
9539vector bool int vec_ld (int, const vector bool int *);
9540vector signed int vec_ld (int, const vector signed int *);
9541vector signed int vec_ld (int, const int *);
9542vector signed int vec_ld (int, const long *);
9543vector unsigned int vec_ld (int, const vector unsigned int *);
9544vector unsigned int vec_ld (int, const unsigned int *);
9545vector unsigned int vec_ld (int, const unsigned long *);
9546vector bool short vec_ld (int, const vector bool short *);
9547vector pixel vec_ld (int, const vector pixel *);
9548vector signed short vec_ld (int, const vector signed short *);
9549vector signed short vec_ld (int, const short *);
9550vector unsigned short vec_ld (int, const vector unsigned short *);
9551vector unsigned short vec_ld (int, const unsigned short *);
9552vector bool char vec_ld (int, const vector bool char *);
9553vector signed char vec_ld (int, const vector signed char *);
9554vector signed char vec_ld (int, const signed char *);
9555vector unsigned char vec_ld (int, const vector unsigned char *);
9556vector unsigned char vec_ld (int, const unsigned char *);
9557
9558vector signed char vec_lde (int, const signed char *);
9559vector unsigned char vec_lde (int, const unsigned char *);
9560vector signed short vec_lde (int, const short *);
9561vector unsigned short vec_lde (int, const unsigned short *);
9562vector float vec_lde (int, const float *);
9563vector signed int vec_lde (int, const int *);
9564vector unsigned int vec_lde (int, const unsigned int *);
9565vector signed int vec_lde (int, const long *);
9566vector unsigned int vec_lde (int, const unsigned long *);
9567
9568vector float vec_lvewx (int, float *);
9569vector signed int vec_lvewx (int, int *);
9570vector unsigned int vec_lvewx (int, unsigned int *);
9571vector signed int vec_lvewx (int, long *);
9572vector unsigned int vec_lvewx (int, unsigned long *);
9573
9574vector signed short vec_lvehx (int, short *);
9575vector unsigned short vec_lvehx (int, unsigned short *);
9576
9577vector signed char vec_lvebx (int, char *);
9578vector unsigned char vec_lvebx (int, unsigned char *);
9579
9580vector float vec_ldl (int, const vector float *);
9581vector float vec_ldl (int, const float *);
9582vector bool int vec_ldl (int, const vector bool int *);
9583vector signed int vec_ldl (int, const vector signed int *);
9584vector signed int vec_ldl (int, const int *);
9585vector signed int vec_ldl (int, const long *);
9586vector unsigned int vec_ldl (int, const vector unsigned int *);
9587vector unsigned int vec_ldl (int, const unsigned int *);
9588vector unsigned int vec_ldl (int, const unsigned long *);
9589vector bool short vec_ldl (int, const vector bool short *);
9590vector pixel vec_ldl (int, const vector pixel *);
9591vector signed short vec_ldl (int, const vector signed short *);
9592vector signed short vec_ldl (int, const short *);
9593vector unsigned short vec_ldl (int, const vector unsigned short *);
9594vector unsigned short vec_ldl (int, const unsigned short *);
9595vector bool char vec_ldl (int, const vector bool char *);
9596vector signed char vec_ldl (int, const vector signed char *);
9597vector signed char vec_ldl (int, const signed char *);
9598vector unsigned char vec_ldl (int, const vector unsigned char *);
9599vector unsigned char vec_ldl (int, const unsigned char *);
333c8841
AH
9600
9601vector float vec_loge (vector float);
9602
b0b343db
JJ
9603vector unsigned char vec_lvsl (int, const volatile unsigned char *);
9604vector unsigned char vec_lvsl (int, const volatile signed char *);
9605vector unsigned char vec_lvsl (int, const volatile unsigned short *);
9606vector unsigned char vec_lvsl (int, const volatile short *);
9607vector unsigned char vec_lvsl (int, const volatile unsigned int *);
9608vector unsigned char vec_lvsl (int, const volatile int *);
9609vector unsigned char vec_lvsl (int, const volatile unsigned long *);
9610vector unsigned char vec_lvsl (int, const volatile long *);
9611vector unsigned char vec_lvsl (int, const volatile float *);
9612
9613vector unsigned char vec_lvsr (int, const volatile unsigned char *);
9614vector unsigned char vec_lvsr (int, const volatile signed char *);
9615vector unsigned char vec_lvsr (int, const volatile unsigned short *);
9616vector unsigned char vec_lvsr (int, const volatile short *);
9617vector unsigned char vec_lvsr (int, const volatile unsigned int *);
9618vector unsigned char vec_lvsr (int, const volatile int *);
9619vector unsigned char vec_lvsr (int, const volatile unsigned long *);
9620vector unsigned char vec_lvsr (int, const volatile long *);
9621vector unsigned char vec_lvsr (int, const volatile float *);
333c8841
AH
9622
9623vector float vec_madd (vector float, vector float, vector float);
9624
b0b343db
JJ
9625vector signed short vec_madds (vector signed short,
9626 vector signed short,
6e5bb5ad 9627 vector signed short);
333c8841 9628
b0b343db
JJ
9629vector unsigned char vec_max (vector bool char, vector unsigned char);
9630vector unsigned char vec_max (vector unsigned char, vector bool char);
924fcc4e
JM
9631vector unsigned char vec_max (vector unsigned char,
9632 vector unsigned char);
b0b343db
JJ
9633vector signed char vec_max (vector bool char, vector signed char);
9634vector signed char vec_max (vector signed char, vector bool char);
333c8841 9635vector signed char vec_max (vector signed char, vector signed char);
b0b343db 9636vector unsigned short vec_max (vector bool short,
924fcc4e
JM
9637 vector unsigned short);
9638vector unsigned short vec_max (vector unsigned short,
b0b343db 9639 vector bool short);
6e5bb5ad
JM
9640vector unsigned short vec_max (vector unsigned short,
9641 vector unsigned short);
b0b343db
JJ
9642vector signed short vec_max (vector bool short, vector signed short);
9643vector signed short vec_max (vector signed short, vector bool short);
333c8841 9644vector signed short vec_max (vector signed short, vector signed short);
b0b343db
JJ
9645vector unsigned int vec_max (vector bool int, vector unsigned int);
9646vector unsigned int vec_max (vector unsigned int, vector bool int);
333c8841 9647vector unsigned int vec_max (vector unsigned int, vector unsigned int);
b0b343db
JJ
9648vector signed int vec_max (vector bool int, vector signed int);
9649vector signed int vec_max (vector signed int, vector bool int);
333c8841
AH
9650vector signed int vec_max (vector signed int, vector signed int);
9651vector float vec_max (vector float, vector float);
9652
b0b343db
JJ
9653vector float vec_vmaxfp (vector float, vector float);
9654
9655vector signed int vec_vmaxsw (vector bool int, vector signed int);
9656vector signed int vec_vmaxsw (vector signed int, vector bool int);
9657vector signed int vec_vmaxsw (vector signed int, vector signed int);
9658
9659vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
9660vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
9661vector unsigned int vec_vmaxuw (vector unsigned int,
9662 vector unsigned int);
9663
9664vector signed short vec_vmaxsh (vector bool short, vector signed short);
9665vector signed short vec_vmaxsh (vector signed short, vector bool short);
9666vector signed short vec_vmaxsh (vector signed short,
9667 vector signed short);
9668
9669vector unsigned short vec_vmaxuh (vector bool short,
9670 vector unsigned short);
9671vector unsigned short vec_vmaxuh (vector unsigned short,
9672 vector bool short);
9673vector unsigned short vec_vmaxuh (vector unsigned short,
9674 vector unsigned short);
9675
9676vector signed char vec_vmaxsb (vector bool char, vector signed char);
9677vector signed char vec_vmaxsb (vector signed char, vector bool char);
9678vector signed char vec_vmaxsb (vector signed char, vector signed char);
9679
9680vector unsigned char vec_vmaxub (vector bool char,
9681 vector unsigned char);
9682vector unsigned char vec_vmaxub (vector unsigned char,
9683 vector bool char);
9684vector unsigned char vec_vmaxub (vector unsigned char,
9685 vector unsigned char);
9686
9687vector bool char vec_mergeh (vector bool char, vector bool char);
333c8841 9688vector signed char vec_mergeh (vector signed char, vector signed char);
6e5bb5ad
JM
9689vector unsigned char vec_mergeh (vector unsigned char,
9690 vector unsigned char);
b0b343db
JJ
9691vector bool short vec_mergeh (vector bool short, vector bool short);
9692vector pixel vec_mergeh (vector pixel, vector pixel);
924fcc4e
JM
9693vector signed short vec_mergeh (vector signed short,
9694 vector signed short);
6e5bb5ad
JM
9695vector unsigned short vec_mergeh (vector unsigned short,
9696 vector unsigned short);
333c8841 9697vector float vec_mergeh (vector float, vector float);
b0b343db 9698vector bool int vec_mergeh (vector bool int, vector bool int);
333c8841 9699vector signed int vec_mergeh (vector signed int, vector signed int);
924fcc4e
JM
9700vector unsigned int vec_mergeh (vector unsigned int,
9701 vector unsigned int);
333c8841 9702
b0b343db
JJ
9703vector float vec_vmrghw (vector float, vector float);
9704vector bool int vec_vmrghw (vector bool int, vector bool int);
9705vector signed int vec_vmrghw (vector signed int, vector signed int);
9706vector unsigned int vec_vmrghw (vector unsigned int,
9707 vector unsigned int);
9708
9709vector bool short vec_vmrghh (vector bool short, vector bool short);
9710vector signed short vec_vmrghh (vector signed short,
9711 vector signed short);
9712vector unsigned short vec_vmrghh (vector unsigned short,
9713 vector unsigned short);
9714vector pixel vec_vmrghh (vector pixel, vector pixel);
9715
9716vector bool char vec_vmrghb (vector bool char, vector bool char);
9717vector signed char vec_vmrghb (vector signed char, vector signed char);
9718vector unsigned char vec_vmrghb (vector unsigned char,
9719 vector unsigned char);
9720
9721vector bool char vec_mergel (vector bool char, vector bool char);
333c8841 9722vector signed char vec_mergel (vector signed char, vector signed char);
6e5bb5ad
JM
9723vector unsigned char vec_mergel (vector unsigned char,
9724 vector unsigned char);
b0b343db
JJ
9725vector bool short vec_mergel (vector bool short, vector bool short);
9726vector pixel vec_mergel (vector pixel, vector pixel);
924fcc4e
JM
9727vector signed short vec_mergel (vector signed short,
9728 vector signed short);
6e5bb5ad
JM
9729vector unsigned short vec_mergel (vector unsigned short,
9730 vector unsigned short);
333c8841 9731vector float vec_mergel (vector float, vector float);
b0b343db 9732vector bool int vec_mergel (vector bool int, vector bool int);
333c8841 9733vector signed int vec_mergel (vector signed int, vector signed int);
924fcc4e
JM
9734vector unsigned int vec_mergel (vector unsigned int,
9735 vector unsigned int);
333c8841 9736
b0b343db
JJ
9737vector float vec_vmrglw (vector float, vector float);
9738vector signed int vec_vmrglw (vector signed int, vector signed int);
9739vector unsigned int vec_vmrglw (vector unsigned int,
9740 vector unsigned int);
9741vector bool int vec_vmrglw (vector bool int, vector bool int);
333c8841 9742
b0b343db
JJ
9743vector bool short vec_vmrglh (vector bool short, vector bool short);
9744vector signed short vec_vmrglh (vector signed short,
9745 vector signed short);
9746vector unsigned short vec_vmrglh (vector unsigned short,
9747 vector unsigned short);
9748vector pixel vec_vmrglh (vector pixel, vector pixel);
9749
9750vector bool char vec_vmrglb (vector bool char, vector bool char);
9751vector signed char vec_vmrglb (vector signed char, vector signed char);
9752vector unsigned char vec_vmrglb (vector unsigned char,
9753 vector unsigned char);
333c8841 9754
b0b343db 9755vector unsigned short vec_mfvscr (void);
333c8841 9756
b0b343db
JJ
9757vector unsigned char vec_min (vector bool char, vector unsigned char);
9758vector unsigned char vec_min (vector unsigned char, vector bool char);
924fcc4e
JM
9759vector unsigned char vec_min (vector unsigned char,
9760 vector unsigned char);
b0b343db
JJ
9761vector signed char vec_min (vector bool char, vector signed char);
9762vector signed char vec_min (vector signed char, vector bool char);
333c8841 9763vector signed char vec_min (vector signed char, vector signed char);
b0b343db 9764vector unsigned short vec_min (vector bool short,
924fcc4e
JM
9765 vector unsigned short);
9766vector unsigned short vec_min (vector unsigned short,
b0b343db 9767 vector bool short);
6e5bb5ad
JM
9768vector unsigned short vec_min (vector unsigned short,
9769 vector unsigned short);
b0b343db
JJ
9770vector signed short vec_min (vector bool short, vector signed short);
9771vector signed short vec_min (vector signed short, vector bool short);
333c8841 9772vector signed short vec_min (vector signed short, vector signed short);
b0b343db
JJ
9773vector unsigned int vec_min (vector bool int, vector unsigned int);
9774vector unsigned int vec_min (vector unsigned int, vector bool int);
333c8841 9775vector unsigned int vec_min (vector unsigned int, vector unsigned int);
b0b343db
JJ
9776vector signed int vec_min (vector bool int, vector signed int);
9777vector signed int vec_min (vector signed int, vector bool int);
333c8841
AH
9778vector signed int vec_min (vector signed int, vector signed int);
9779vector float vec_min (vector float, vector float);
9780
b0b343db
JJ
9781vector float vec_vminfp (vector float, vector float);
9782
9783vector signed int vec_vminsw (vector bool int, vector signed int);
9784vector signed int vec_vminsw (vector signed int, vector bool int);
9785vector signed int vec_vminsw (vector signed int, vector signed int);
9786
9787vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
9788vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
9789vector unsigned int vec_vminuw (vector unsigned int,
9790 vector unsigned int);
9791
9792vector signed short vec_vminsh (vector bool short, vector signed short);
9793vector signed short vec_vminsh (vector signed short, vector bool short);
9794vector signed short vec_vminsh (vector signed short,
9795 vector signed short);
9796
9797vector unsigned short vec_vminuh (vector bool short,
9798 vector unsigned short);
9799vector unsigned short vec_vminuh (vector unsigned short,
9800 vector bool short);
9801vector unsigned short vec_vminuh (vector unsigned short,
9802 vector unsigned short);
9803
9804vector signed char vec_vminsb (vector bool char, vector signed char);
9805vector signed char vec_vminsb (vector signed char, vector bool char);
9806vector signed char vec_vminsb (vector signed char, vector signed char);
9807
9808vector unsigned char vec_vminub (vector bool char,
9809 vector unsigned char);
9810vector unsigned char vec_vminub (vector unsigned char,
9811 vector bool char);
9812vector unsigned char vec_vminub (vector unsigned char,
9813 vector unsigned char);
9814
9815vector signed short vec_mladd (vector signed short,
9816 vector signed short,
6e5bb5ad 9817 vector signed short);
924fcc4e
JM
9818vector signed short vec_mladd (vector signed short,
9819 vector unsigned short,
6e5bb5ad 9820 vector unsigned short);
924fcc4e
JM
9821vector signed short vec_mladd (vector unsigned short,
9822 vector signed short,
6e5bb5ad
JM
9823 vector signed short);
9824vector unsigned short vec_mladd (vector unsigned short,
9825 vector unsigned short,
9826 vector unsigned short);
9827
924fcc4e
JM
9828vector signed short vec_mradds (vector signed short,
9829 vector signed short,
6e5bb5ad
JM
9830 vector signed short);
9831
924fcc4e
JM
9832vector unsigned int vec_msum (vector unsigned char,
9833 vector unsigned char,
6e5bb5ad 9834 vector unsigned int);
b0b343db
JJ
9835vector signed int vec_msum (vector signed char,
9836 vector unsigned char,
6e5bb5ad 9837 vector signed int);
924fcc4e
JM
9838vector unsigned int vec_msum (vector unsigned short,
9839 vector unsigned short,
6e5bb5ad 9840 vector unsigned int);
b0b343db
JJ
9841vector signed int vec_msum (vector signed short,
9842 vector signed short,
6e5bb5ad
JM
9843 vector signed int);
9844
b0b343db
JJ
9845vector signed int vec_vmsumshm (vector signed short,
9846 vector signed short,
9847 vector signed int);
9848
9849vector unsigned int vec_vmsumuhm (vector unsigned short,
9850 vector unsigned short,
9851 vector unsigned int);
9852
9853vector signed int vec_vmsummbm (vector signed char,
9854 vector unsigned char,
9855 vector signed int);
9856
9857vector unsigned int vec_vmsumubm (vector unsigned char,
9858 vector unsigned char,
9859 vector unsigned int);
9860
6e5bb5ad 9861vector unsigned int vec_msums (vector unsigned short,
924fcc4e
JM
9862 vector unsigned short,
9863 vector unsigned int);
b0b343db
JJ
9864vector signed int vec_msums (vector signed short,
9865 vector signed short,
6e5bb5ad 9866 vector signed int);
333c8841 9867
b0b343db
JJ
9868vector signed int vec_vmsumshs (vector signed short,
9869 vector signed short,
9870 vector signed int);
9871
9872vector unsigned int vec_vmsumuhs (vector unsigned short,
9873 vector unsigned short,
9874 vector unsigned int);
9875
333c8841
AH
9876void vec_mtvscr (vector signed int);
9877void vec_mtvscr (vector unsigned int);
b0b343db 9878void vec_mtvscr (vector bool int);
333c8841
AH
9879void vec_mtvscr (vector signed short);
9880void vec_mtvscr (vector unsigned short);
b0b343db
JJ
9881void vec_mtvscr (vector bool short);
9882void vec_mtvscr (vector pixel);
333c8841
AH
9883void vec_mtvscr (vector signed char);
9884void vec_mtvscr (vector unsigned char);
b0b343db 9885void vec_mtvscr (vector bool char);
333c8841 9886
924fcc4e
JM
9887vector unsigned short vec_mule (vector unsigned char,
9888 vector unsigned char);
b0b343db
JJ
9889vector signed short vec_mule (vector signed char,
9890 vector signed char);
924fcc4e
JM
9891vector unsigned int vec_mule (vector unsigned short,
9892 vector unsigned short);
333c8841
AH
9893vector signed int vec_mule (vector signed short, vector signed short);
9894
b0b343db
JJ
9895vector signed int vec_vmulesh (vector signed short,
9896 vector signed short);
9897
9898vector unsigned int vec_vmuleuh (vector unsigned short,
9899 vector unsigned short);
9900
9901vector signed short vec_vmulesb (vector signed char,
9902 vector signed char);
9903
9904vector unsigned short vec_vmuleub (vector unsigned char,
9905 vector unsigned char);
9906
924fcc4e
JM
9907vector unsigned short vec_mulo (vector unsigned char,
9908 vector unsigned char);
333c8841 9909vector signed short vec_mulo (vector signed char, vector signed char);
924fcc4e
JM
9910vector unsigned int vec_mulo (vector unsigned short,
9911 vector unsigned short);
333c8841
AH
9912vector signed int vec_mulo (vector signed short, vector signed short);
9913
b0b343db
JJ
9914vector signed int vec_vmulosh (vector signed short,
9915 vector signed short);
9916
9917vector unsigned int vec_vmulouh (vector unsigned short,
9918 vector unsigned short);
9919
9920vector signed short vec_vmulosb (vector signed char,
9921 vector signed char);
9922
9923vector unsigned short vec_vmuloub (vector unsigned char,
9924 vector unsigned char);
9925
333c8841
AH
9926vector float vec_nmsub (vector float, vector float, vector float);
9927
9928vector float vec_nor (vector float, vector float);
9929vector signed int vec_nor (vector signed int, vector signed int);
9930vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
b0b343db 9931vector bool int vec_nor (vector bool int, vector bool int);
333c8841 9932vector signed short vec_nor (vector signed short, vector signed short);
6e5bb5ad
JM
9933vector unsigned short vec_nor (vector unsigned short,
9934 vector unsigned short);
b0b343db 9935vector bool short vec_nor (vector bool short, vector bool short);
333c8841 9936vector signed char vec_nor (vector signed char, vector signed char);
924fcc4e
JM
9937vector unsigned char vec_nor (vector unsigned char,
9938 vector unsigned char);
b0b343db 9939vector bool char vec_nor (vector bool char, vector bool char);
333c8841
AH
9940
9941vector float vec_or (vector float, vector float);
b0b343db
JJ
9942vector float vec_or (vector float, vector bool int);
9943vector float vec_or (vector bool int, vector float);
9944vector bool int vec_or (vector bool int, vector bool int);
9945vector signed int vec_or (vector bool int, vector signed int);
9946vector signed int vec_or (vector signed int, vector bool int);
333c8841 9947vector signed int vec_or (vector signed int, vector signed int);
b0b343db
JJ
9948vector unsigned int vec_or (vector bool int, vector unsigned int);
9949vector unsigned int vec_or (vector unsigned int, vector bool int);
333c8841 9950vector unsigned int vec_or (vector unsigned int, vector unsigned int);
b0b343db
JJ
9951vector bool short vec_or (vector bool short, vector bool short);
9952vector signed short vec_or (vector bool short, vector signed short);
9953vector signed short vec_or (vector signed short, vector bool short);
333c8841 9954vector signed short vec_or (vector signed short, vector signed short);
b0b343db
JJ
9955vector unsigned short vec_or (vector bool short, vector unsigned short);
9956vector unsigned short vec_or (vector unsigned short, vector bool short);
924fcc4e
JM
9957vector unsigned short vec_or (vector unsigned short,
9958 vector unsigned short);
b0b343db
JJ
9959vector signed char vec_or (vector bool char, vector signed char);
9960vector bool char vec_or (vector bool char, vector bool char);
9961vector signed char vec_or (vector signed char, vector bool char);
333c8841 9962vector signed char vec_or (vector signed char, vector signed char);
b0b343db
JJ
9963vector unsigned char vec_or (vector bool char, vector unsigned char);
9964vector unsigned char vec_or (vector unsigned char, vector bool char);
924fcc4e
JM
9965vector unsigned char vec_or (vector unsigned char,
9966 vector unsigned char);
333c8841
AH
9967
9968vector signed char vec_pack (vector signed short, vector signed short);
6e5bb5ad
JM
9969vector unsigned char vec_pack (vector unsigned short,
9970 vector unsigned short);
b0b343db 9971vector bool char vec_pack (vector bool short, vector bool short);
333c8841 9972vector signed short vec_pack (vector signed int, vector signed int);
924fcc4e
JM
9973vector unsigned short vec_pack (vector unsigned int,
9974 vector unsigned int);
b0b343db 9975vector bool short vec_pack (vector bool int, vector bool int);
333c8841 9976
b0b343db
JJ
9977vector bool short vec_vpkuwum (vector bool int, vector bool int);
9978vector signed short vec_vpkuwum (vector signed int, vector signed int);
9979vector unsigned short vec_vpkuwum (vector unsigned int,
9980 vector unsigned int);
9981
9982vector bool char vec_vpkuhum (vector bool short, vector bool short);
9983vector signed char vec_vpkuhum (vector signed short,
9984 vector signed short);
9985vector unsigned char vec_vpkuhum (vector unsigned short,
9986 vector unsigned short);
9987
9988vector pixel vec_packpx (vector unsigned int, vector unsigned int);
333c8841 9989
6e5bb5ad
JM
9990vector unsigned char vec_packs (vector unsigned short,
9991 vector unsigned short);
333c8841 9992vector signed char vec_packs (vector signed short, vector signed short);
924fcc4e
JM
9993vector unsigned short vec_packs (vector unsigned int,
9994 vector unsigned int);
333c8841
AH
9995vector signed short vec_packs (vector signed int, vector signed int);
9996
b0b343db
JJ
9997vector signed short vec_vpkswss (vector signed int, vector signed int);
9998
9999vector unsigned short vec_vpkuwus (vector unsigned int,
10000 vector unsigned int);
10001
10002vector signed char vec_vpkshss (vector signed short,
10003 vector signed short);
10004
10005vector unsigned char vec_vpkuhus (vector unsigned short,
10006 vector unsigned short);
10007
6e5bb5ad
JM
10008vector unsigned char vec_packsu (vector unsigned short,
10009 vector unsigned short);
924fcc4e
JM
10010vector unsigned char vec_packsu (vector signed short,
10011 vector signed short);
10012vector unsigned short vec_packsu (vector unsigned int,
10013 vector unsigned int);
333c8841
AH
10014vector unsigned short vec_packsu (vector signed int, vector signed int);
10015
b0b343db
JJ
10016vector unsigned short vec_vpkswus (vector signed int,
10017 vector signed int);
10018
10019vector unsigned char vec_vpkshus (vector signed short,
10020 vector signed short);
10021
10022vector float vec_perm (vector float,
10023 vector float,
924fcc4e 10024 vector unsigned char);
b0b343db
JJ
10025vector signed int vec_perm (vector signed int,
10026 vector signed int,
6e5bb5ad 10027 vector unsigned char);
b0b343db
JJ
10028vector unsigned int vec_perm (vector unsigned int,
10029 vector unsigned int,
6e5bb5ad 10030 vector unsigned char);
b0b343db
JJ
10031vector bool int vec_perm (vector bool int,
10032 vector bool int,
10033 vector unsigned char);
10034vector signed short vec_perm (vector signed short,
10035 vector signed short,
6e5bb5ad
JM
10036 vector unsigned char);
10037vector unsigned short vec_perm (vector unsigned short,
10038 vector unsigned short,
10039 vector unsigned char);
b0b343db
JJ
10040vector bool short vec_perm (vector bool short,
10041 vector bool short,
10042 vector unsigned char);
10043vector pixel vec_perm (vector pixel,
10044 vector pixel,
10045 vector unsigned char);
10046vector signed char vec_perm (vector signed char,
10047 vector signed char,
6e5bb5ad 10048 vector unsigned char);
924fcc4e
JM
10049vector unsigned char vec_perm (vector unsigned char,
10050 vector unsigned char,
6e5bb5ad 10051 vector unsigned char);
b0b343db
JJ
10052vector bool char vec_perm (vector bool char,
10053 vector bool char,
10054 vector unsigned char);
333c8841
AH
10055
10056vector float vec_re (vector float);
10057
b0b343db
JJ
10058vector signed char vec_rl (vector signed char,
10059 vector unsigned char);
924fcc4e
JM
10060vector unsigned char vec_rl (vector unsigned char,
10061 vector unsigned char);
333c8841 10062vector signed short vec_rl (vector signed short, vector unsigned short);
924fcc4e
JM
10063vector unsigned short vec_rl (vector unsigned short,
10064 vector unsigned short);
333c8841
AH
10065vector signed int vec_rl (vector signed int, vector unsigned int);
10066vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
10067
b0b343db
JJ
10068vector signed int vec_vrlw (vector signed int, vector unsigned int);
10069vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
10070
10071vector signed short vec_vrlh (vector signed short,
10072 vector unsigned short);
10073vector unsigned short vec_vrlh (vector unsigned short,
10074 vector unsigned short);
10075
10076vector signed char vec_vrlb (vector signed char, vector unsigned char);
10077vector unsigned char vec_vrlb (vector unsigned char,
10078 vector unsigned char);
10079
333c8841
AH
10080vector float vec_round (vector float);
10081
10082vector float vec_rsqrte (vector float);
10083
b0b343db 10084vector float vec_sel (vector float, vector float, vector bool int);
333c8841 10085vector float vec_sel (vector float, vector float, vector unsigned int);
b0b343db
JJ
10086vector signed int vec_sel (vector signed int,
10087 vector signed int,
10088 vector bool int);
10089vector signed int vec_sel (vector signed int,
10090 vector signed int,
6e5bb5ad 10091 vector unsigned int);
b0b343db
JJ
10092vector unsigned int vec_sel (vector unsigned int,
10093 vector unsigned int,
10094 vector bool int);
10095vector unsigned int vec_sel (vector unsigned int,
10096 vector unsigned int,
6e5bb5ad 10097 vector unsigned int);
b0b343db
JJ
10098vector bool int vec_sel (vector bool int,
10099 vector bool int,
10100 vector bool int);
10101vector bool int vec_sel (vector bool int,
10102 vector bool int,
10103 vector unsigned int);
10104vector signed short vec_sel (vector signed short,
10105 vector signed short,
10106 vector bool short);
10107vector signed short vec_sel (vector signed short,
10108 vector signed short,
6e5bb5ad
JM
10109 vector unsigned short);
10110vector unsigned short vec_sel (vector unsigned short,
924fcc4e 10111 vector unsigned short,
b0b343db 10112 vector bool short);
6e5bb5ad
JM
10113vector unsigned short vec_sel (vector unsigned short,
10114 vector unsigned short,
10115 vector unsigned short);
b0b343db
JJ
10116vector bool short vec_sel (vector bool short,
10117 vector bool short,
10118 vector bool short);
10119vector bool short vec_sel (vector bool short,
10120 vector bool short,
10121 vector unsigned short);
10122vector signed char vec_sel (vector signed char,
10123 vector signed char,
10124 vector bool char);
10125vector signed char vec_sel (vector signed char,
10126 vector signed char,
6e5bb5ad 10127 vector unsigned char);
924fcc4e
JM
10128vector unsigned char vec_sel (vector unsigned char,
10129 vector unsigned char,
b0b343db 10130 vector bool char);
924fcc4e
JM
10131vector unsigned char vec_sel (vector unsigned char,
10132 vector unsigned char,
6e5bb5ad 10133 vector unsigned char);
b0b343db
JJ
10134vector bool char vec_sel (vector bool char,
10135 vector bool char,
10136 vector bool char);
10137vector bool char vec_sel (vector bool char,
10138 vector bool char,
10139 vector unsigned char);
10140
10141vector signed char vec_sl (vector signed char,
10142 vector unsigned char);
924fcc4e
JM
10143vector unsigned char vec_sl (vector unsigned char,
10144 vector unsigned char);
333c8841 10145vector signed short vec_sl (vector signed short, vector unsigned short);
924fcc4e
JM
10146vector unsigned short vec_sl (vector unsigned short,
10147 vector unsigned short);
333c8841
AH
10148vector signed int vec_sl (vector signed int, vector unsigned int);
10149vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
10150
b0b343db
JJ
10151vector signed int vec_vslw (vector signed int, vector unsigned int);
10152vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
10153
10154vector signed short vec_vslh (vector signed short,
10155 vector unsigned short);
10156vector unsigned short vec_vslh (vector unsigned short,
10157 vector unsigned short);
10158
10159vector signed char vec_vslb (vector signed char, vector unsigned char);
10160vector unsigned char vec_vslb (vector unsigned char,
10161 vector unsigned char);
10162
10163vector float vec_sld (vector float, vector float, const int);
10164vector signed int vec_sld (vector signed int,
10165 vector signed int,
10166 const int);
10167vector unsigned int vec_sld (vector unsigned int,
10168 vector unsigned int,
10169 const int);
10170vector bool int vec_sld (vector bool int,
10171 vector bool int,
10172 const int);
10173vector signed short vec_sld (vector signed short,
10174 vector signed short,
10175 const int);
6e5bb5ad 10176vector unsigned short vec_sld (vector unsigned short,
b0b343db
JJ
10177 vector unsigned short,
10178 const int);
10179vector bool short vec_sld (vector bool short,
10180 vector bool short,
10181 const int);
10182vector pixel vec_sld (vector pixel,
10183 vector pixel,
10184 const int);
10185vector signed char vec_sld (vector signed char,
10186 vector signed char,
10187 const int);
924fcc4e
JM
10188vector unsigned char vec_sld (vector unsigned char,
10189 vector unsigned char,
b0b343db
JJ
10190 const int);
10191vector bool char vec_sld (vector bool char,
10192 vector bool char,
10193 const int);
333c8841 10194
b0b343db
JJ
10195vector signed int vec_sll (vector signed int,
10196 vector unsigned int);
10197vector signed int vec_sll (vector signed int,
10198 vector unsigned short);
10199vector signed int vec_sll (vector signed int,
10200 vector unsigned char);
10201vector unsigned int vec_sll (vector unsigned int,
10202 vector unsigned int);
924fcc4e
JM
10203vector unsigned int vec_sll (vector unsigned int,
10204 vector unsigned short);
b0b343db
JJ
10205vector unsigned int vec_sll (vector unsigned int,
10206 vector unsigned char);
10207vector bool int vec_sll (vector bool int,
10208 vector unsigned int);
10209vector bool int vec_sll (vector bool int,
10210 vector unsigned short);
10211vector bool int vec_sll (vector bool int,
10212 vector unsigned char);
10213vector signed short vec_sll (vector signed short,
10214 vector unsigned int);
924fcc4e
JM
10215vector signed short vec_sll (vector signed short,
10216 vector unsigned short);
b0b343db
JJ
10217vector signed short vec_sll (vector signed short,
10218 vector unsigned char);
924fcc4e
JM
10219vector unsigned short vec_sll (vector unsigned short,
10220 vector unsigned int);
6e5bb5ad
JM
10221vector unsigned short vec_sll (vector unsigned short,
10222 vector unsigned short);
924fcc4e
JM
10223vector unsigned short vec_sll (vector unsigned short,
10224 vector unsigned char);
b0b343db
JJ
10225vector bool short vec_sll (vector bool short, vector unsigned int);
10226vector bool short vec_sll (vector bool short, vector unsigned short);
10227vector bool short vec_sll (vector bool short, vector unsigned char);
10228vector pixel vec_sll (vector pixel, vector unsigned int);
10229vector pixel vec_sll (vector pixel, vector unsigned short);
10230vector pixel vec_sll (vector pixel, vector unsigned char);
333c8841
AH
10231vector signed char vec_sll (vector signed char, vector unsigned int);
10232vector signed char vec_sll (vector signed char, vector unsigned short);
10233vector signed char vec_sll (vector signed char, vector unsigned char);
924fcc4e
JM
10234vector unsigned char vec_sll (vector unsigned char,
10235 vector unsigned int);
10236vector unsigned char vec_sll (vector unsigned char,
10237 vector unsigned short);
10238vector unsigned char vec_sll (vector unsigned char,
10239 vector unsigned char);
b0b343db
JJ
10240vector bool char vec_sll (vector bool char, vector unsigned int);
10241vector bool char vec_sll (vector bool char, vector unsigned short);
10242vector bool char vec_sll (vector bool char, vector unsigned char);
333c8841
AH
10243
10244vector float vec_slo (vector float, vector signed char);
10245vector float vec_slo (vector float, vector unsigned char);
10246vector signed int vec_slo (vector signed int, vector signed char);
10247vector signed int vec_slo (vector signed int, vector unsigned char);
10248vector unsigned int vec_slo (vector unsigned int, vector signed char);
10249vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
333c8841
AH
10250vector signed short vec_slo (vector signed short, vector signed char);
10251vector signed short vec_slo (vector signed short, vector unsigned char);
924fcc4e
JM
10252vector unsigned short vec_slo (vector unsigned short,
10253 vector signed char);
10254vector unsigned short vec_slo (vector unsigned short,
10255 vector unsigned char);
b0b343db
JJ
10256vector pixel vec_slo (vector pixel, vector signed char);
10257vector pixel vec_slo (vector pixel, vector unsigned char);
333c8841
AH
10258vector signed char vec_slo (vector signed char, vector signed char);
10259vector signed char vec_slo (vector signed char, vector unsigned char);
10260vector unsigned char vec_slo (vector unsigned char, vector signed char);
924fcc4e
JM
10261vector unsigned char vec_slo (vector unsigned char,
10262 vector unsigned char);
333c8841 10263
b0b343db
JJ
10264vector signed char vec_splat (vector signed char, const int);
10265vector unsigned char vec_splat (vector unsigned char, const int);
10266vector bool char vec_splat (vector bool char, const int);
10267vector signed short vec_splat (vector signed short, const int);
10268vector unsigned short vec_splat (vector unsigned short, const int);
10269vector bool short vec_splat (vector bool short, const int);
10270vector pixel vec_splat (vector pixel, const int);
10271vector float vec_splat (vector float, const int);
10272vector signed int vec_splat (vector signed int, const int);
10273vector unsigned int vec_splat (vector unsigned int, const int);
10274vector bool int vec_splat (vector bool int, const int);
10275
10276vector float vec_vspltw (vector float, const int);
10277vector signed int vec_vspltw (vector signed int, const int);
10278vector unsigned int vec_vspltw (vector unsigned int, const int);
10279vector bool int vec_vspltw (vector bool int, const int);
10280
10281vector bool short vec_vsplth (vector bool short, const int);
10282vector signed short vec_vsplth (vector signed short, const int);
10283vector unsigned short vec_vsplth (vector unsigned short, const int);
10284vector pixel vec_vsplth (vector pixel, const int);
10285
10286vector signed char vec_vspltb (vector signed char, const int);
10287vector unsigned char vec_vspltb (vector unsigned char, const int);
10288vector bool char vec_vspltb (vector bool char, const int);
333c8841 10289
b0b343db 10290vector signed char vec_splat_s8 (const int);
333c8841 10291
b0b343db 10292vector signed short vec_splat_s16 (const int);
333c8841 10293
b0b343db 10294vector signed int vec_splat_s32 (const int);
333c8841 10295
b0b343db 10296vector unsigned char vec_splat_u8 (const int);
333c8841 10297
b0b343db 10298vector unsigned short vec_splat_u16 (const int);
333c8841 10299
b0b343db 10300vector unsigned int vec_splat_u32 (const int);
333c8841
AH
10301
10302vector signed char vec_sr (vector signed char, vector unsigned char);
924fcc4e
JM
10303vector unsigned char vec_sr (vector unsigned char,
10304 vector unsigned char);
b0b343db
JJ
10305vector signed short vec_sr (vector signed short,
10306 vector unsigned short);
924fcc4e
JM
10307vector unsigned short vec_sr (vector unsigned short,
10308 vector unsigned short);
333c8841
AH
10309vector signed int vec_sr (vector signed int, vector unsigned int);
10310vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
10311
b0b343db
JJ
10312vector signed int vec_vsrw (vector signed int, vector unsigned int);
10313vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
10314
10315vector signed short vec_vsrh (vector signed short,
10316 vector unsigned short);
10317vector unsigned short vec_vsrh (vector unsigned short,
10318 vector unsigned short);
10319
10320vector signed char vec_vsrb (vector signed char, vector unsigned char);
10321vector unsigned char vec_vsrb (vector unsigned char,
10322 vector unsigned char);
10323
333c8841 10324vector signed char vec_sra (vector signed char, vector unsigned char);
924fcc4e
JM
10325vector unsigned char vec_sra (vector unsigned char,
10326 vector unsigned char);
10327vector signed short vec_sra (vector signed short,
10328 vector unsigned short);
6e5bb5ad
JM
10329vector unsigned short vec_sra (vector unsigned short,
10330 vector unsigned short);
333c8841
AH
10331vector signed int vec_sra (vector signed int, vector unsigned int);
10332vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
10333
b0b343db
JJ
10334vector signed int vec_vsraw (vector signed int, vector unsigned int);
10335vector unsigned int vec_vsraw (vector unsigned int,
10336 vector unsigned int);
10337
10338vector signed short vec_vsrah (vector signed short,
10339 vector unsigned short);
10340vector unsigned short vec_vsrah (vector unsigned short,
10341 vector unsigned short);
10342
10343vector signed char vec_vsrab (vector signed char, vector unsigned char);
10344vector unsigned char vec_vsrab (vector unsigned char,
10345 vector unsigned char);
10346
333c8841
AH
10347vector signed int vec_srl (vector signed int, vector unsigned int);
10348vector signed int vec_srl (vector signed int, vector unsigned short);
10349vector signed int vec_srl (vector signed int, vector unsigned char);
10350vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
924fcc4e
JM
10351vector unsigned int vec_srl (vector unsigned int,
10352 vector unsigned short);
333c8841 10353vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
b0b343db
JJ
10354vector bool int vec_srl (vector bool int, vector unsigned int);
10355vector bool int vec_srl (vector bool int, vector unsigned short);
10356vector bool int vec_srl (vector bool int, vector unsigned char);
333c8841 10357vector signed short vec_srl (vector signed short, vector unsigned int);
924fcc4e
JM
10358vector signed short vec_srl (vector signed short,
10359 vector unsigned short);
333c8841 10360vector signed short vec_srl (vector signed short, vector unsigned char);
924fcc4e
JM
10361vector unsigned short vec_srl (vector unsigned short,
10362 vector unsigned int);
6e5bb5ad
JM
10363vector unsigned short vec_srl (vector unsigned short,
10364 vector unsigned short);
924fcc4e
JM
10365vector unsigned short vec_srl (vector unsigned short,
10366 vector unsigned char);
b0b343db
JJ
10367vector bool short vec_srl (vector bool short, vector unsigned int);
10368vector bool short vec_srl (vector bool short, vector unsigned short);
10369vector bool short vec_srl (vector bool short, vector unsigned char);
10370vector pixel vec_srl (vector pixel, vector unsigned int);
10371vector pixel vec_srl (vector pixel, vector unsigned short);
10372vector pixel vec_srl (vector pixel, vector unsigned char);
333c8841
AH
10373vector signed char vec_srl (vector signed char, vector unsigned int);
10374vector signed char vec_srl (vector signed char, vector unsigned short);
10375vector signed char vec_srl (vector signed char, vector unsigned char);
924fcc4e
JM
10376vector unsigned char vec_srl (vector unsigned char,
10377 vector unsigned int);
10378vector unsigned char vec_srl (vector unsigned char,
10379 vector unsigned short);
10380vector unsigned char vec_srl (vector unsigned char,
10381 vector unsigned char);
b0b343db
JJ
10382vector bool char vec_srl (vector bool char, vector unsigned int);
10383vector bool char vec_srl (vector bool char, vector unsigned short);
10384vector bool char vec_srl (vector bool char, vector unsigned char);
333c8841
AH
10385
10386vector float vec_sro (vector float, vector signed char);
10387vector float vec_sro (vector float, vector unsigned char);
10388vector signed int vec_sro (vector signed int, vector signed char);
10389vector signed int vec_sro (vector signed int, vector unsigned char);
10390vector unsigned int vec_sro (vector unsigned int, vector signed char);
10391vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
333c8841
AH
10392vector signed short vec_sro (vector signed short, vector signed char);
10393vector signed short vec_sro (vector signed short, vector unsigned char);
924fcc4e
JM
10394vector unsigned short vec_sro (vector unsigned short,
10395 vector signed char);
10396vector unsigned short vec_sro (vector unsigned short,
10397 vector unsigned char);
b0b343db
JJ
10398vector pixel vec_sro (vector pixel, vector signed char);
10399vector pixel vec_sro (vector pixel, vector unsigned char);
333c8841
AH
10400vector signed char vec_sro (vector signed char, vector signed char);
10401vector signed char vec_sro (vector signed char, vector unsigned char);
10402vector unsigned char vec_sro (vector unsigned char, vector signed char);
924fcc4e
JM
10403vector unsigned char vec_sro (vector unsigned char,
10404 vector unsigned char);
333c8841 10405
333c8841 10406void vec_st (vector float, int, vector float *);
b0b343db
JJ
10407void vec_st (vector float, int, float *);
10408void vec_st (vector signed int, int, vector signed int *);
333c8841 10409void vec_st (vector signed int, int, int *);
333c8841 10410void vec_st (vector unsigned int, int, vector unsigned int *);
b0b343db
JJ
10411void vec_st (vector unsigned int, int, unsigned int *);
10412void vec_st (vector bool int, int, vector bool int *);
10413void vec_st (vector bool int, int, unsigned int *);
10414void vec_st (vector bool int, int, int *);
333c8841 10415void vec_st (vector signed short, int, vector signed short *);
b0b343db 10416void vec_st (vector signed short, int, short *);
333c8841 10417void vec_st (vector unsigned short, int, vector unsigned short *);
b0b343db
JJ
10418void vec_st (vector unsigned short, int, unsigned short *);
10419void vec_st (vector bool short, int, vector bool short *);
10420void vec_st (vector bool short, int, unsigned short *);
10421void vec_st (vector pixel, int, vector pixel *);
10422void vec_st (vector pixel, int, unsigned short *);
10423void vec_st (vector pixel, int, short *);
10424void vec_st (vector bool short, int, short *);
333c8841 10425void vec_st (vector signed char, int, vector signed char *);
b0b343db 10426void vec_st (vector signed char, int, signed char *);
333c8841 10427void vec_st (vector unsigned char, int, vector unsigned char *);
b0b343db
JJ
10428void vec_st (vector unsigned char, int, unsigned char *);
10429void vec_st (vector bool char, int, vector bool char *);
10430void vec_st (vector bool char, int, unsigned char *);
10431void vec_st (vector bool char, int, signed char *);
333c8841 10432
333c8841
AH
10433void vec_ste (vector signed char, int, signed char *);
10434void vec_ste (vector unsigned char, int, unsigned char *);
b0b343db
JJ
10435void vec_ste (vector bool char, int, signed char *);
10436void vec_ste (vector bool char, int, unsigned char *);
333c8841 10437void vec_ste (vector signed short, int, short *);
b0b343db
JJ
10438void vec_ste (vector unsigned short, int, unsigned short *);
10439void vec_ste (vector bool short, int, short *);
10440void vec_ste (vector bool short, int, unsigned short *);
10441void vec_ste (vector pixel, int, short *);
10442void vec_ste (vector pixel, int, unsigned short *);
10443void vec_ste (vector float, int, float *);
333c8841
AH
10444void vec_ste (vector signed int, int, int *);
10445void vec_ste (vector unsigned int, int, unsigned int *);
b0b343db
JJ
10446void vec_ste (vector bool int, int, int *);
10447void vec_ste (vector bool int, int, unsigned int *);
10448
10449void vec_stvewx (vector float, int, float *);
10450void vec_stvewx (vector signed int, int, int *);
10451void vec_stvewx (vector unsigned int, int, unsigned int *);
10452void vec_stvewx (vector bool int, int, int *);
10453void vec_stvewx (vector bool int, int, unsigned int *);
10454
10455void vec_stvehx (vector signed short, int, short *);
10456void vec_stvehx (vector unsigned short, int, unsigned short *);
10457void vec_stvehx (vector bool short, int, short *);
10458void vec_stvehx (vector bool short, int, unsigned short *);
10459void vec_stvehx (vector pixel, int, short *);
10460void vec_stvehx (vector pixel, int, unsigned short *);
10461
10462void vec_stvebx (vector signed char, int, signed char *);
10463void vec_stvebx (vector unsigned char, int, unsigned char *);
10464void vec_stvebx (vector bool char, int, signed char *);
10465void vec_stvebx (vector bool char, int, unsigned char *);
333c8841
AH
10466
10467void vec_stl (vector float, int, vector float *);
10468void vec_stl (vector float, int, float *);
10469void vec_stl (vector signed int, int, vector signed int *);
10470void vec_stl (vector signed int, int, int *);
333c8841
AH
10471void vec_stl (vector unsigned int, int, vector unsigned int *);
10472void vec_stl (vector unsigned int, int, unsigned int *);
b0b343db
JJ
10473void vec_stl (vector bool int, int, vector bool int *);
10474void vec_stl (vector bool int, int, unsigned int *);
10475void vec_stl (vector bool int, int, int *);
333c8841 10476void vec_stl (vector signed short, int, vector signed short *);
b0b343db
JJ
10477void vec_stl (vector signed short, int, short *);
10478void vec_stl (vector unsigned short, int, vector unsigned short *);
333c8841 10479void vec_stl (vector unsigned short, int, unsigned short *);
b0b343db
JJ
10480void vec_stl (vector bool short, int, vector bool short *);
10481void vec_stl (vector bool short, int, unsigned short *);
10482void vec_stl (vector bool short, int, short *);
10483void vec_stl (vector pixel, int, vector pixel *);
10484void vec_stl (vector pixel, int, unsigned short *);
10485void vec_stl (vector pixel, int, short *);
333c8841 10486void vec_stl (vector signed char, int, vector signed char *);
b0b343db 10487void vec_stl (vector signed char, int, signed char *);
333c8841 10488void vec_stl (vector unsigned char, int, vector unsigned char *);
b0b343db
JJ
10489void vec_stl (vector unsigned char, int, unsigned char *);
10490void vec_stl (vector bool char, int, vector bool char *);
10491void vec_stl (vector bool char, int, unsigned char *);
10492void vec_stl (vector bool char, int, signed char *);
333c8841 10493
b0b343db
JJ
10494vector signed char vec_sub (vector bool char, vector signed char);
10495vector signed char vec_sub (vector signed char, vector bool char);
333c8841 10496vector signed char vec_sub (vector signed char, vector signed char);
b0b343db
JJ
10497vector unsigned char vec_sub (vector bool char, vector unsigned char);
10498vector unsigned char vec_sub (vector unsigned char, vector bool char);
924fcc4e
JM
10499vector unsigned char vec_sub (vector unsigned char,
10500 vector unsigned char);
b0b343db
JJ
10501vector signed short vec_sub (vector bool short, vector signed short);
10502vector signed short vec_sub (vector signed short, vector bool short);
333c8841 10503vector signed short vec_sub (vector signed short, vector signed short);
b0b343db 10504vector unsigned short vec_sub (vector bool short,
924fcc4e
JM
10505 vector unsigned short);
10506vector unsigned short vec_sub (vector unsigned short,
b0b343db 10507 vector bool short);
6e5bb5ad
JM
10508vector unsigned short vec_sub (vector unsigned short,
10509 vector unsigned short);
b0b343db
JJ
10510vector signed int vec_sub (vector bool int, vector signed int);
10511vector signed int vec_sub (vector signed int, vector bool int);
333c8841 10512vector signed int vec_sub (vector signed int, vector signed int);
b0b343db
JJ
10513vector unsigned int vec_sub (vector bool int, vector unsigned int);
10514vector unsigned int vec_sub (vector unsigned int, vector bool int);
333c8841
AH
10515vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
10516vector float vec_sub (vector float, vector float);
10517
b0b343db
JJ
10518vector float vec_vsubfp (vector float, vector float);
10519
10520vector signed int vec_vsubuwm (vector bool int, vector signed int);
10521vector signed int vec_vsubuwm (vector signed int, vector bool int);
10522vector signed int vec_vsubuwm (vector signed int, vector signed int);
10523vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
10524vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
10525vector unsigned int vec_vsubuwm (vector unsigned int,
10526 vector unsigned int);
10527
10528vector signed short vec_vsubuhm (vector bool short,
10529 vector signed short);
10530vector signed short vec_vsubuhm (vector signed short,
10531 vector bool short);
10532vector signed short vec_vsubuhm (vector signed short,
10533 vector signed short);
10534vector unsigned short vec_vsubuhm (vector bool short,
10535 vector unsigned short);
10536vector unsigned short vec_vsubuhm (vector unsigned short,
10537 vector bool short);
10538vector unsigned short vec_vsubuhm (vector unsigned short,
10539 vector unsigned short);
10540
10541vector signed char vec_vsububm (vector bool char, vector signed char);
10542vector signed char vec_vsububm (vector signed char, vector bool char);
10543vector signed char vec_vsububm (vector signed char, vector signed char);
10544vector unsigned char vec_vsububm (vector bool char,
10545 vector unsigned char);
10546vector unsigned char vec_vsububm (vector unsigned char,
10547 vector bool char);
10548vector unsigned char vec_vsububm (vector unsigned char,
10549 vector unsigned char);
10550
333c8841
AH
10551vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
10552
b0b343db
JJ
10553vector unsigned char vec_subs (vector bool char, vector unsigned char);
10554vector unsigned char vec_subs (vector unsigned char, vector bool char);
924fcc4e
JM
10555vector unsigned char vec_subs (vector unsigned char,
10556 vector unsigned char);
b0b343db
JJ
10557vector signed char vec_subs (vector bool char, vector signed char);
10558vector signed char vec_subs (vector signed char, vector bool char);
333c8841 10559vector signed char vec_subs (vector signed char, vector signed char);
b0b343db 10560vector unsigned short vec_subs (vector bool short,
924fcc4e
JM
10561 vector unsigned short);
10562vector unsigned short vec_subs (vector unsigned short,
b0b343db 10563 vector bool short);
6e5bb5ad
JM
10564vector unsigned short vec_subs (vector unsigned short,
10565 vector unsigned short);
b0b343db
JJ
10566vector signed short vec_subs (vector bool short, vector signed short);
10567vector signed short vec_subs (vector signed short, vector bool short);
333c8841 10568vector signed short vec_subs (vector signed short, vector signed short);
b0b343db
JJ
10569vector unsigned int vec_subs (vector bool int, vector unsigned int);
10570vector unsigned int vec_subs (vector unsigned int, vector bool int);
333c8841 10571vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
b0b343db
JJ
10572vector signed int vec_subs (vector bool int, vector signed int);
10573vector signed int vec_subs (vector signed int, vector bool int);
333c8841
AH
10574vector signed int vec_subs (vector signed int, vector signed int);
10575
b0b343db
JJ
10576vector signed int vec_vsubsws (vector bool int, vector signed int);
10577vector signed int vec_vsubsws (vector signed int, vector bool int);
10578vector signed int vec_vsubsws (vector signed int, vector signed int);
10579
10580vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
10581vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
10582vector unsigned int vec_vsubuws (vector unsigned int,
10583 vector unsigned int);
10584
10585vector signed short vec_vsubshs (vector bool short,
10586 vector signed short);
10587vector signed short vec_vsubshs (vector signed short,
10588 vector bool short);
10589vector signed short vec_vsubshs (vector signed short,
10590 vector signed short);
10591
10592vector unsigned short vec_vsubuhs (vector bool short,
10593 vector unsigned short);
10594vector unsigned short vec_vsubuhs (vector unsigned short,
10595 vector bool short);
10596vector unsigned short vec_vsubuhs (vector unsigned short,
10597 vector unsigned short);
10598
10599vector signed char vec_vsubsbs (vector bool char, vector signed char);
10600vector signed char vec_vsubsbs (vector signed char, vector bool char);
10601vector signed char vec_vsubsbs (vector signed char, vector signed char);
10602
10603vector unsigned char vec_vsububs (vector bool char,
10604 vector unsigned char);
10605vector unsigned char vec_vsububs (vector unsigned char,
10606 vector bool char);
10607vector unsigned char vec_vsububs (vector unsigned char,
10608 vector unsigned char);
10609
924fcc4e
JM
10610vector unsigned int vec_sum4s (vector unsigned char,
10611 vector unsigned int);
333c8841
AH
10612vector signed int vec_sum4s (vector signed char, vector signed int);
10613vector signed int vec_sum4s (vector signed short, vector signed int);
10614
b0b343db
JJ
10615vector signed int vec_vsum4shs (vector signed short, vector signed int);
10616
10617vector signed int vec_vsum4sbs (vector signed char, vector signed int);
10618
10619vector unsigned int vec_vsum4ubs (vector unsigned char,
10620 vector unsigned int);
10621
333c8841
AH
10622vector signed int vec_sum2s (vector signed int, vector signed int);
10623
10624vector signed int vec_sums (vector signed int, vector signed int);
10625
10626vector float vec_trunc (vector float);
10627
10628vector signed short vec_unpackh (vector signed char);
b0b343db 10629vector bool short vec_unpackh (vector bool char);
333c8841 10630vector signed int vec_unpackh (vector signed short);
b0b343db
JJ
10631vector bool int vec_unpackh (vector bool short);
10632vector unsigned int vec_unpackh (vector pixel);
10633
10634vector bool int vec_vupkhsh (vector bool short);
10635vector signed int vec_vupkhsh (vector signed short);
10636
10637vector unsigned int vec_vupkhpx (vector pixel);
10638
10639vector bool short vec_vupkhsb (vector bool char);
10640vector signed short vec_vupkhsb (vector signed char);
333c8841
AH
10641
10642vector signed short vec_unpackl (vector signed char);
b0b343db
JJ
10643vector bool short vec_unpackl (vector bool char);
10644vector unsigned int vec_unpackl (vector pixel);
333c8841 10645vector signed int vec_unpackl (vector signed short);
b0b343db
JJ
10646vector bool int vec_unpackl (vector bool short);
10647
10648vector unsigned int vec_vupklpx (vector pixel);
10649
10650vector bool int vec_vupklsh (vector bool short);
10651vector signed int vec_vupklsh (vector signed short);
10652
10653vector bool short vec_vupklsb (vector bool char);
10654vector signed short vec_vupklsb (vector signed char);
333c8841
AH
10655
10656vector float vec_xor (vector float, vector float);
b0b343db
JJ
10657vector float vec_xor (vector float, vector bool int);
10658vector float vec_xor (vector bool int, vector float);
10659vector bool int vec_xor (vector bool int, vector bool int);
10660vector signed int vec_xor (vector bool int, vector signed int);
10661vector signed int vec_xor (vector signed int, vector bool int);
333c8841 10662vector signed int vec_xor (vector signed int, vector signed int);
b0b343db
JJ
10663vector unsigned int vec_xor (vector bool int, vector unsigned int);
10664vector unsigned int vec_xor (vector unsigned int, vector bool int);
333c8841 10665vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
b0b343db
JJ
10666vector bool short vec_xor (vector bool short, vector bool short);
10667vector signed short vec_xor (vector bool short, vector signed short);
10668vector signed short vec_xor (vector signed short, vector bool short);
333c8841 10669vector signed short vec_xor (vector signed short, vector signed short);
b0b343db 10670vector unsigned short vec_xor (vector bool short,
924fcc4e
JM
10671 vector unsigned short);
10672vector unsigned short vec_xor (vector unsigned short,
b0b343db 10673 vector bool short);
6e5bb5ad
JM
10674vector unsigned short vec_xor (vector unsigned short,
10675 vector unsigned short);
b0b343db
JJ
10676vector signed char vec_xor (vector bool char, vector signed char);
10677vector bool char vec_xor (vector bool char, vector bool char);
10678vector signed char vec_xor (vector signed char, vector bool char);
333c8841 10679vector signed char vec_xor (vector signed char, vector signed char);
b0b343db
JJ
10680vector unsigned char vec_xor (vector bool char, vector unsigned char);
10681vector unsigned char vec_xor (vector unsigned char, vector bool char);
924fcc4e
JM
10682vector unsigned char vec_xor (vector unsigned char,
10683 vector unsigned char);
333c8841 10684
b0b343db
JJ
10685int vec_all_eq (vector signed char, vector bool char);
10686int vec_all_eq (vector signed char, vector signed char);
10687int vec_all_eq (vector unsigned char, vector bool char);
10688int vec_all_eq (vector unsigned char, vector unsigned char);
10689int vec_all_eq (vector bool char, vector bool char);
10690int vec_all_eq (vector bool char, vector unsigned char);
10691int vec_all_eq (vector bool char, vector signed char);
10692int vec_all_eq (vector signed short, vector bool short);
10693int vec_all_eq (vector signed short, vector signed short);
10694int vec_all_eq (vector unsigned short, vector bool short);
10695int vec_all_eq (vector unsigned short, vector unsigned short);
10696int vec_all_eq (vector bool short, vector bool short);
10697int vec_all_eq (vector bool short, vector unsigned short);
10698int vec_all_eq (vector bool short, vector signed short);
10699int vec_all_eq (vector pixel, vector pixel);
10700int vec_all_eq (vector signed int, vector bool int);
10701int vec_all_eq (vector signed int, vector signed int);
10702int vec_all_eq (vector unsigned int, vector bool int);
10703int vec_all_eq (vector unsigned int, vector unsigned int);
10704int vec_all_eq (vector bool int, vector bool int);
10705int vec_all_eq (vector bool int, vector unsigned int);
10706int vec_all_eq (vector bool int, vector signed int);
10707int vec_all_eq (vector float, vector float);
10708
10709int vec_all_ge (vector bool char, vector unsigned char);
10710int vec_all_ge (vector unsigned char, vector bool char);
10711int vec_all_ge (vector unsigned char, vector unsigned char);
10712int vec_all_ge (vector bool char, vector signed char);
10713int vec_all_ge (vector signed char, vector bool char);
10714int vec_all_ge (vector signed char, vector signed char);
10715int vec_all_ge (vector bool short, vector unsigned short);
10716int vec_all_ge (vector unsigned short, vector bool short);
10717int vec_all_ge (vector unsigned short, vector unsigned short);
10718int vec_all_ge (vector signed short, vector signed short);
10719int vec_all_ge (vector bool short, vector signed short);
10720int vec_all_ge (vector signed short, vector bool short);
10721int vec_all_ge (vector bool int, vector unsigned int);
10722int vec_all_ge (vector unsigned int, vector bool int);
10723int vec_all_ge (vector unsigned int, vector unsigned int);
10724int vec_all_ge (vector bool int, vector signed int);
10725int vec_all_ge (vector signed int, vector bool int);
10726int vec_all_ge (vector signed int, vector signed int);
10727int vec_all_ge (vector float, vector float);
10728
10729int vec_all_gt (vector bool char, vector unsigned char);
10730int vec_all_gt (vector unsigned char, vector bool char);
10731int vec_all_gt (vector unsigned char, vector unsigned char);
10732int vec_all_gt (vector bool char, vector signed char);
10733int vec_all_gt (vector signed char, vector bool char);
10734int vec_all_gt (vector signed char, vector signed char);
10735int vec_all_gt (vector bool short, vector unsigned short);
10736int vec_all_gt (vector unsigned short, vector bool short);
10737int vec_all_gt (vector unsigned short, vector unsigned short);
10738int vec_all_gt (vector bool short, vector signed short);
10739int vec_all_gt (vector signed short, vector bool short);
10740int vec_all_gt (vector signed short, vector signed short);
10741int vec_all_gt (vector bool int, vector unsigned int);
10742int vec_all_gt (vector unsigned int, vector bool int);
10743int vec_all_gt (vector unsigned int, vector unsigned int);
10744int vec_all_gt (vector bool int, vector signed int);
10745int vec_all_gt (vector signed int, vector bool int);
10746int vec_all_gt (vector signed int, vector signed int);
10747int vec_all_gt (vector float, vector float);
10748
10749int vec_all_in (vector float, vector float);
10750
10751int vec_all_le (vector bool char, vector unsigned char);
10752int vec_all_le (vector unsigned char, vector bool char);
10753int vec_all_le (vector unsigned char, vector unsigned char);
10754int vec_all_le (vector bool char, vector signed char);
10755int vec_all_le (vector signed char, vector bool char);
10756int vec_all_le (vector signed char, vector signed char);
10757int vec_all_le (vector bool short, vector unsigned short);
10758int vec_all_le (vector unsigned short, vector bool short);
10759int vec_all_le (vector unsigned short, vector unsigned short);
10760int vec_all_le (vector bool short, vector signed short);
10761int vec_all_le (vector signed short, vector bool short);
10762int vec_all_le (vector signed short, vector signed short);
10763int vec_all_le (vector bool int, vector unsigned int);
10764int vec_all_le (vector unsigned int, vector bool int);
10765int vec_all_le (vector unsigned int, vector unsigned int);
10766int vec_all_le (vector bool int, vector signed int);
10767int vec_all_le (vector signed int, vector bool int);
10768int vec_all_le (vector signed int, vector signed int);
10769int vec_all_le (vector float, vector float);
10770
10771int vec_all_lt (vector bool char, vector unsigned char);
10772int vec_all_lt (vector unsigned char, vector bool char);
10773int vec_all_lt (vector unsigned char, vector unsigned char);
10774int vec_all_lt (vector bool char, vector signed char);
10775int vec_all_lt (vector signed char, vector bool char);
10776int vec_all_lt (vector signed char, vector signed char);
10777int vec_all_lt (vector bool short, vector unsigned short);
10778int vec_all_lt (vector unsigned short, vector bool short);
10779int vec_all_lt (vector unsigned short, vector unsigned short);
10780int vec_all_lt (vector bool short, vector signed short);
10781int vec_all_lt (vector signed short, vector bool short);
10782int vec_all_lt (vector signed short, vector signed short);
10783int vec_all_lt (vector bool int, vector unsigned int);
10784int vec_all_lt (vector unsigned int, vector bool int);
10785int vec_all_lt (vector unsigned int, vector unsigned int);
10786int vec_all_lt (vector bool int, vector signed int);
10787int vec_all_lt (vector signed int, vector bool int);
10788int vec_all_lt (vector signed int, vector signed int);
10789int vec_all_lt (vector float, vector float);
10790
10791int vec_all_nan (vector float);
10792
10793int vec_all_ne (vector signed char, vector bool char);
10794int vec_all_ne (vector signed char, vector signed char);
10795int vec_all_ne (vector unsigned char, vector bool char);
10796int vec_all_ne (vector unsigned char, vector unsigned char);
10797int vec_all_ne (vector bool char, vector bool char);
10798int vec_all_ne (vector bool char, vector unsigned char);
10799int vec_all_ne (vector bool char, vector signed char);
10800int vec_all_ne (vector signed short, vector bool short);
10801int vec_all_ne (vector signed short, vector signed short);
10802int vec_all_ne (vector unsigned short, vector bool short);
10803int vec_all_ne (vector unsigned short, vector unsigned short);
10804int vec_all_ne (vector bool short, vector bool short);
10805int vec_all_ne (vector bool short, vector unsigned short);
10806int vec_all_ne (vector bool short, vector signed short);
10807int vec_all_ne (vector pixel, vector pixel);
10808int vec_all_ne (vector signed int, vector bool int);
10809int vec_all_ne (vector signed int, vector signed int);
10810int vec_all_ne (vector unsigned int, vector bool int);
10811int vec_all_ne (vector unsigned int, vector unsigned int);
10812int vec_all_ne (vector bool int, vector bool int);
10813int vec_all_ne (vector bool int, vector unsigned int);
10814int vec_all_ne (vector bool int, vector signed int);
10815int vec_all_ne (vector float, vector float);
10816
10817int vec_all_nge (vector float, vector float);
10818
10819int vec_all_ngt (vector float, vector float);
10820
10821int vec_all_nle (vector float, vector float);
10822
10823int vec_all_nlt (vector float, vector float);
10824
10825int vec_all_numeric (vector float);
10826
10827int vec_any_eq (vector signed char, vector bool char);
10828int vec_any_eq (vector signed char, vector signed char);
10829int vec_any_eq (vector unsigned char, vector bool char);
10830int vec_any_eq (vector unsigned char, vector unsigned char);
10831int vec_any_eq (vector bool char, vector bool char);
10832int vec_any_eq (vector bool char, vector unsigned char);
10833int vec_any_eq (vector bool char, vector signed char);
10834int vec_any_eq (vector signed short, vector bool short);
10835int vec_any_eq (vector signed short, vector signed short);
10836int vec_any_eq (vector unsigned short, vector bool short);
10837int vec_any_eq (vector unsigned short, vector unsigned short);
10838int vec_any_eq (vector bool short, vector bool short);
10839int vec_any_eq (vector bool short, vector unsigned short);
10840int vec_any_eq (vector bool short, vector signed short);
10841int vec_any_eq (vector pixel, vector pixel);
10842int vec_any_eq (vector signed int, vector bool int);
10843int vec_any_eq (vector signed int, vector signed int);
10844int vec_any_eq (vector unsigned int, vector bool int);
10845int vec_any_eq (vector unsigned int, vector unsigned int);
10846int vec_any_eq (vector bool int, vector bool int);
10847int vec_any_eq (vector bool int, vector unsigned int);
10848int vec_any_eq (vector bool int, vector signed int);
10849int vec_any_eq (vector float, vector float);
10850
10851int vec_any_ge (vector signed char, vector bool char);
10852int vec_any_ge (vector unsigned char, vector bool char);
10853int vec_any_ge (vector unsigned char, vector unsigned char);
10854int vec_any_ge (vector signed char, vector signed char);
10855int vec_any_ge (vector bool char, vector unsigned char);
10856int vec_any_ge (vector bool char, vector signed char);
10857int vec_any_ge (vector unsigned short, vector bool short);
10858int vec_any_ge (vector unsigned short, vector unsigned short);
10859int vec_any_ge (vector signed short, vector signed short);
10860int vec_any_ge (vector signed short, vector bool short);
10861int vec_any_ge (vector bool short, vector unsigned short);
10862int vec_any_ge (vector bool short, vector signed short);
10863int vec_any_ge (vector signed int, vector bool int);
10864int vec_any_ge (vector unsigned int, vector bool int);
10865int vec_any_ge (vector unsigned int, vector unsigned int);
10866int vec_any_ge (vector signed int, vector signed int);
10867int vec_any_ge (vector bool int, vector unsigned int);
10868int vec_any_ge (vector bool int, vector signed int);
10869int vec_any_ge (vector float, vector float);
10870
10871int vec_any_gt (vector bool char, vector unsigned char);
10872int vec_any_gt (vector unsigned char, vector bool char);
10873int vec_any_gt (vector unsigned char, vector unsigned char);
10874int vec_any_gt (vector bool char, vector signed char);
10875int vec_any_gt (vector signed char, vector bool char);
10876int vec_any_gt (vector signed char, vector signed char);
10877int vec_any_gt (vector bool short, vector unsigned short);
10878int vec_any_gt (vector unsigned short, vector bool short);
10879int vec_any_gt (vector unsigned short, vector unsigned short);
10880int vec_any_gt (vector bool short, vector signed short);
10881int vec_any_gt (vector signed short, vector bool short);
10882int vec_any_gt (vector signed short, vector signed short);
10883int vec_any_gt (vector bool int, vector unsigned int);
10884int vec_any_gt (vector unsigned int, vector bool int);
10885int vec_any_gt (vector unsigned int, vector unsigned int);
10886int vec_any_gt (vector bool int, vector signed int);
10887int vec_any_gt (vector signed int, vector bool int);
10888int vec_any_gt (vector signed int, vector signed int);
10889int vec_any_gt (vector float, vector float);
10890
10891int vec_any_le (vector bool char, vector unsigned char);
10892int vec_any_le (vector unsigned char, vector bool char);
10893int vec_any_le (vector unsigned char, vector unsigned char);
10894int vec_any_le (vector bool char, vector signed char);
10895int vec_any_le (vector signed char, vector bool char);
10896int vec_any_le (vector signed char, vector signed char);
10897int vec_any_le (vector bool short, vector unsigned short);
10898int vec_any_le (vector unsigned short, vector bool short);
10899int vec_any_le (vector unsigned short, vector unsigned short);
10900int vec_any_le (vector bool short, vector signed short);
10901int vec_any_le (vector signed short, vector bool short);
10902int vec_any_le (vector signed short, vector signed short);
10903int vec_any_le (vector bool int, vector unsigned int);
10904int vec_any_le (vector unsigned int, vector bool int);
10905int vec_any_le (vector unsigned int, vector unsigned int);
10906int vec_any_le (vector bool int, vector signed int);
10907int vec_any_le (vector signed int, vector bool int);
10908int vec_any_le (vector signed int, vector signed int);
10909int vec_any_le (vector float, vector float);
10910
10911int vec_any_lt (vector bool char, vector unsigned char);
10912int vec_any_lt (vector unsigned char, vector bool char);
10913int vec_any_lt (vector unsigned char, vector unsigned char);
10914int vec_any_lt (vector bool char, vector signed char);
10915int vec_any_lt (vector signed char, vector bool char);
10916int vec_any_lt (vector signed char, vector signed char);
10917int vec_any_lt (vector bool short, vector unsigned short);
10918int vec_any_lt (vector unsigned short, vector bool short);
10919int vec_any_lt (vector unsigned short, vector unsigned short);
10920int vec_any_lt (vector bool short, vector signed short);
10921int vec_any_lt (vector signed short, vector bool short);
10922int vec_any_lt (vector signed short, vector signed short);
10923int vec_any_lt (vector bool int, vector unsigned int);
10924int vec_any_lt (vector unsigned int, vector bool int);
10925int vec_any_lt (vector unsigned int, vector unsigned int);
10926int vec_any_lt (vector bool int, vector signed int);
10927int vec_any_lt (vector signed int, vector bool int);
10928int vec_any_lt (vector signed int, vector signed int);
10929int vec_any_lt (vector float, vector float);
10930
10931int vec_any_nan (vector float);
10932
10933int vec_any_ne (vector signed char, vector bool char);
10934int vec_any_ne (vector signed char, vector signed char);
10935int vec_any_ne (vector unsigned char, vector bool char);
10936int vec_any_ne (vector unsigned char, vector unsigned char);
10937int vec_any_ne (vector bool char, vector bool char);
10938int vec_any_ne (vector bool char, vector unsigned char);
10939int vec_any_ne (vector bool char, vector signed char);
10940int vec_any_ne (vector signed short, vector bool short);
10941int vec_any_ne (vector signed short, vector signed short);
10942int vec_any_ne (vector unsigned short, vector bool short);
10943int vec_any_ne (vector unsigned short, vector unsigned short);
10944int vec_any_ne (vector bool short, vector bool short);
10945int vec_any_ne (vector bool short, vector unsigned short);
10946int vec_any_ne (vector bool short, vector signed short);
10947int vec_any_ne (vector pixel, vector pixel);
10948int vec_any_ne (vector signed int, vector bool int);
10949int vec_any_ne (vector signed int, vector signed int);
10950int vec_any_ne (vector unsigned int, vector bool int);
10951int vec_any_ne (vector unsigned int, vector unsigned int);
10952int vec_any_ne (vector bool int, vector bool int);
10953int vec_any_ne (vector bool int, vector unsigned int);
10954int vec_any_ne (vector bool int, vector signed int);
10955int vec_any_ne (vector float, vector float);
10956
10957int vec_any_nge (vector float, vector float);
10958
10959int vec_any_ngt (vector float, vector float);
10960
10961int vec_any_nle (vector float, vector float);
10962
10963int vec_any_nlt (vector float, vector float);
10964
10965int vec_any_numeric (vector float);
10966
10967int vec_any_out (vector float, vector float);
333c8841
AH
10968@end smallexample
10969
c5145ceb
JM
10970@node SPARC VIS Built-in Functions
10971@subsection SPARC VIS Built-in Functions
10972
10973GCC supports SIMD operations on the SPARC using both the generic vector
2fd13506 10974extensions (@pxref{Vector Extensions}) as well as built-in functions for
c5145ceb
JM
10975the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
10976switch, the VIS extension is exposed as the following built-in functions:
10977
10978@smallexample
10979typedef int v2si __attribute__ ((vector_size (8)));
10980typedef short v4hi __attribute__ ((vector_size (8)));
10981typedef short v2hi __attribute__ ((vector_size (4)));
10982typedef char v8qi __attribute__ ((vector_size (8)));
10983typedef char v4qi __attribute__ ((vector_size (4)));
10984
10985void * __builtin_vis_alignaddr (void *, long);
10986int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
10987v2si __builtin_vis_faligndatav2si (v2si, v2si);
10988v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
10989v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
10990
10991v4hi __builtin_vis_fexpand (v4qi);
10992
10993v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
10994v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);
10995v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);
10996v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
10997v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
10998v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
10999v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
11000
11001v4qi __builtin_vis_fpack16 (v4hi);
11002v8qi __builtin_vis_fpack32 (v2si, v2si);
11003v2hi __builtin_vis_fpackfix (v2si);
11004v8qi __builtin_vis_fpmerge (v4qi, v4qi);
11005
11006int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
11007@end smallexample
11008
85d9c13c
TS
11009@node SPU Built-in Functions
11010@subsection SPU Built-in Functions
11011
11012GCC provides extensions for the SPU processor as described in the
11013Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
11014found at @uref{http://cell.scei.co.jp/} or
11015@uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
11016implementation differs in several ways.
11017
11018@itemize @bullet
11019
11020@item
11021The optional extension of specifying vector constants in parentheses is
11022not supported.
11023
11024@item
11025A vector initializer requires no cast if the vector constant is of the
11026same type as the variable it is initializing.
11027
11028@item
11029If @code{signed} or @code{unsigned} is omitted, the signedness of the
11030vector type is the default signedness of the base type. The default
11031varies depending on the operating system, so a portable program should
11032always specify the signedness.
11033
11034@item
11035By default, the keyword @code{__vector} is added. The macro
11036@code{vector} is defined in @code{<spu_intrinsics.h>} and can be
11037undefined.
11038
11039@item
11040GCC allows using a @code{typedef} name as the type specifier for a
11041vector type.
11042
11043@item
11044For C, overloaded functions are implemented with macros so the following
11045does not work:
11046
11047@smallexample
11048 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
11049@end smallexample
11050
11051Since @code{spu_add} is a macro, the vector constant in the example
11052is treated as four separate arguments. Wrap the entire argument in
11053parentheses for this to work.
11054
11055@item
11056The extended version of @code{__builtin_expect} is not supported.
11057
11058@end itemize
11059
5681c208 11060@emph{Note:} Only the interface described in the aforementioned
85d9c13c
TS
11061specification is supported. Internally, GCC uses built-in functions to
11062implement the required functionality, but these are not supported and
11063are subject to change without notice.
11064
a2bec818
DJ
11065@node Target Format Checks
11066@section Format Checks Specific to Particular Target Machines
11067
11068For some target machines, GCC supports additional options to the
11069format attribute
11070(@pxref{Function Attributes,,Declaring Attributes of Functions}).
11071
11072@menu
11073* Solaris Format Checks::
11074@end menu
11075
11076@node Solaris Format Checks
11077@subsection Solaris Format Checks
11078
11079Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
11080check. @code{cmn_err} accepts a subset of the standard @code{printf}
11081conversions, and the two-argument @code{%b} conversion for displaying
11082bit-fields. See the Solaris man page for @code{cmn_err} for more information.
11083
0168a849
SS
11084@node Pragmas
11085@section Pragmas Accepted by GCC
11086@cindex pragmas
11087@cindex #pragma
11088
11089GCC supports several types of pragmas, primarily in order to compile
11090code originally written for other compilers. Note that in general
11091we do not recommend the use of pragmas; @xref{Function Attributes},
11092for further explanation.
11093
11094@menu
11095* ARM Pragmas::
38b2d076 11096* M32C Pragmas::
a5c76ee6 11097* RS/6000 and PowerPC Pragmas::
0168a849 11098* Darwin Pragmas::
07a43492 11099* Solaris Pragmas::
84b8b0e0 11100* Symbol-Renaming Pragmas::
467cecf3 11101* Structure-Packing Pragmas::
52eb57df 11102* Weak Pragmas::
79cf5994 11103* Diagnostic Pragmas::
b9e75696 11104* Visibility Pragmas::
20cef83a 11105* Push/Pop Macro Pragmas::
0168a849
SS
11106@end menu
11107
11108@node ARM Pragmas
11109@subsection ARM Pragmas
11110
11111The ARM target defines pragmas for controlling the default addition of
11112@code{long_call} and @code{short_call} attributes to functions.
11113@xref{Function Attributes}, for information about the effects of these
11114attributes.
11115
11116@table @code
11117@item long_calls
11118@cindex pragma, long_calls
11119Set all subsequent functions to have the @code{long_call} attribute.
11120
11121@item no_long_calls
11122@cindex pragma, no_long_calls
11123Set all subsequent functions to have the @code{short_call} attribute.
11124
11125@item long_calls_off
11126@cindex pragma, long_calls_off
11127Do not affect the @code{long_call} or @code{short_call} attributes of
11128subsequent functions.
11129@end table
11130
38b2d076
DD
11131@node M32C Pragmas
11132@subsection M32C Pragmas
11133
11134@table @code
11135@item memregs @var{number}
11136@cindex pragma, memregs
11137Overrides the command line option @code{-memregs=} for the current
11138file. Use with care! This pragma must be before any function in the
11139file, and mixing different memregs values in different objects may
11140make them incompatible. This pragma is useful when a
11141performance-critical function uses a memreg for temporary values,
11142as it may allow you to reduce the number of memregs used.
11143
11144@end table
11145
a5c76ee6
ZW
11146@node RS/6000 and PowerPC Pragmas
11147@subsection RS/6000 and PowerPC Pragmas
11148
11149The RS/6000 and PowerPC targets define one pragma for controlling
11150whether or not the @code{longcall} attribute is added to function
11151declarations by default. This pragma overrides the @option{-mlongcall}
95b1627e 11152option, but not the @code{longcall} and @code{shortcall} attributes.
a5c76ee6
ZW
11153@xref{RS/6000 and PowerPC Options}, for more information about when long
11154calls are and are not necessary.
11155
11156@table @code
11157@item longcall (1)
11158@cindex pragma, longcall
11159Apply the @code{longcall} attribute to all subsequent function
11160declarations.
11161
11162@item longcall (0)
11163Do not apply the @code{longcall} attribute to subsequent function
11164declarations.
11165@end table
11166
0168a849 11167@c Describe h8300 pragmas here.
0168a849
SS
11168@c Describe sh pragmas here.
11169@c Describe v850 pragmas here.
11170
11171@node Darwin Pragmas
11172@subsection Darwin Pragmas
11173
11174The following pragmas are available for all architectures running the
11175Darwin operating system. These are useful for compatibility with other
85ebf0c6 11176Mac OS compilers.
0168a849
SS
11177
11178@table @code
11179@item mark @var{tokens}@dots{}
11180@cindex pragma, mark
11181This pragma is accepted, but has no effect.
11182
11183@item options align=@var{alignment}
11184@cindex pragma, options align
11185This pragma sets the alignment of fields in structures. The values of
11186@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
11187@code{power}, to emulate PowerPC alignment. Uses of this pragma nest
11188properly; to restore the previous setting, use @code{reset} for the
11189@var{alignment}.
11190
11191@item segment @var{tokens}@dots{}
11192@cindex pragma, segment
11193This pragma is accepted, but has no effect.
11194
11195@item unused (@var{var} [, @var{var}]@dots{})
11196@cindex pragma, unused
11197This pragma declares variables to be possibly unused. GCC will not
11198produce warnings for the listed variables. The effect is similar to
11199that of the @code{unused} attribute, except that this pragma may appear
11200anywhere within the variables' scopes.
11201@end table
11202
07a43492
DJ
11203@node Solaris Pragmas
11204@subsection Solaris Pragmas
11205
11206The Solaris target supports @code{#pragma redefine_extname}
11207(@pxref{Symbol-Renaming Pragmas}). It also supports additional
11208@code{#pragma} directives for compatibility with the system compiler.
11209
11210@table @code
11211@item align @var{alignment} (@var{variable} [, @var{variable}]...)
11212@cindex pragma, align
11213
11214Increase the minimum alignment of each @var{variable} to @var{alignment}.
11215This is the same as GCC's @code{aligned} attribute @pxref{Variable
b5b3e36a 11216Attributes}). Macro expansion occurs on the arguments to this pragma
0ee2ea09 11217when compiling C and Objective-C@. It does not currently occur when
b5b3e36a
DJ
11218compiling C++, but this is a bug which may be fixed in a future
11219release.
07a43492
DJ
11220
11221@item fini (@var{function} [, @var{function}]...)
11222@cindex pragma, fini
11223
11224This pragma causes each listed @var{function} to be called after
11225main, or during shared module unloading, by adding a call to the
11226@code{.fini} section.
11227
11228@item init (@var{function} [, @var{function}]...)
11229@cindex pragma, init
11230
11231This pragma causes each listed @var{function} to be called during
11232initialization (before @code{main}) or during shared module loading, by
11233adding a call to the @code{.init} section.
11234
11235@end table
11236
84b8b0e0
ZW
11237@node Symbol-Renaming Pragmas
11238@subsection Symbol-Renaming Pragmas
41c64394 11239
84b8b0e0
ZW
11240For compatibility with the Solaris and Tru64 UNIX system headers, GCC
11241supports two @code{#pragma} directives which change the name used in
11242assembly for a given declaration. These pragmas are only available on
11243platforms whose system headers need them. To get this effect on all
11244platforms supported by GCC, use the asm labels extension (@pxref{Asm
11245Labels}).
41c64394
RH
11246
11247@table @code
11248@item redefine_extname @var{oldname} @var{newname}
11249@cindex pragma, redefine_extname
11250
84b8b0e0
ZW
11251This pragma gives the C function @var{oldname} the assembly symbol
11252@var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
11253will be defined if this pragma is available (currently only on
11254Solaris).
41c64394 11255
41c64394
RH
11256@item extern_prefix @var{string}
11257@cindex pragma, extern_prefix
11258
84b8b0e0
ZW
11259This pragma causes all subsequent external function and variable
11260declarations to have @var{string} prepended to their assembly symbols.
11261This effect may be terminated with another @code{extern_prefix} pragma
11262whose argument is an empty string. The preprocessor macro
11263@code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
8a36672b 11264available (currently only on Tru64 UNIX)@.
41c64394
RH
11265@end table
11266
84b8b0e0
ZW
11267These pragmas and the asm labels extension interact in a complicated
11268manner. Here are some corner cases you may want to be aware of.
11269
11270@enumerate
11271@item Both pragmas silently apply only to declarations with external
11272linkage. Asm labels do not have this restriction.
11273
11274@item In C++, both pragmas silently apply only to declarations with
11275``C'' linkage. Again, asm labels do not have this restriction.
11276
11277@item If any of the three ways of changing the assembly name of a
11278declaration is applied to a declaration whose assembly name has
11279already been determined (either by a previous use of one of these
11280features, or because the compiler needed the assembly name in order to
11281generate code), and the new name is different, a warning issues and
11282the name does not change.
11283
11284@item The @var{oldname} used by @code{#pragma redefine_extname} is
11285always the C-language name.
11286
11287@item If @code{#pragma extern_prefix} is in effect, and a declaration
11288occurs with an asm label attached, the prefix is silently ignored for
11289that declaration.
11290
11291@item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
11292apply to the same declaration, whichever triggered first wins, and a
11293warning issues if they contradict each other. (We would like to have
11294@code{#pragma redefine_extname} always win, for consistency with asm
11295labels, but if @code{#pragma extern_prefix} triggers first we have no
11296way of knowing that that happened.)
11297@end enumerate
11298
467cecf3
JB
11299@node Structure-Packing Pragmas
11300@subsection Structure-Packing Pragmas
11301
20cef83a
DS
11302For compatibility with Microsoft Windows compilers, GCC supports a
11303set of @code{#pragma} directives which change the maximum alignment of
11304members of structures (other than zero-width bitfields), unions, and
11305classes subsequently defined. The @var{n} value below always is required
11306to be a small power of two and specifies the new alignment in bytes.
467cecf3
JB
11307
11308@enumerate
11309@item @code{#pragma pack(@var{n})} simply sets the new alignment.
11310@item @code{#pragma pack()} sets the alignment to the one that was in
11311effect when compilation started (see also command line option
11312@option{-fpack-struct[=<n>]} @pxref{Code Gen Options}).
11313@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
11314setting on an internal stack and then optionally sets the new alignment.
11315@item @code{#pragma pack(pop)} restores the alignment setting to the one
11316saved at the top of the internal stack (and removes that stack entry).
11317Note that @code{#pragma pack([@var{n}])} does not influence this internal
11318stack; thus it is possible to have @code{#pragma pack(push)} followed by
11319multiple @code{#pragma pack(@var{n})} instances and finalized by a single
11320@code{#pragma pack(pop)}.
11321@end enumerate
11322
021efafc 11323Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
6bb7beac
EC
11324@code{#pragma} which lays out a structure as the documented
11325@code{__attribute__ ((ms_struct))}.
11326@enumerate
11327@item @code{#pragma ms_struct on} turns on the layout for structures
11328declared.
11329@item @code{#pragma ms_struct off} turns off the layout for structures
11330declared.
11331@item @code{#pragma ms_struct reset} goes back to the default layout.
11332@end enumerate
11333
52eb57df
RH
11334@node Weak Pragmas
11335@subsection Weak Pragmas
11336
11337For compatibility with SVR4, GCC supports a set of @code{#pragma}
11338directives for declaring symbols to be weak, and defining weak
11339aliases.
11340
11341@table @code
11342@item #pragma weak @var{symbol}
11343@cindex pragma, weak
11344This pragma declares @var{symbol} to be weak, as if the declaration
11345had the attribute of the same name. The pragma may appear before
0ac11108 11346or after the declaration of @var{symbol}, but must appear before
52eb57df
RH
11347either its first use or its definition. It is not an error for
11348@var{symbol} to never be defined at all.
11349
11350@item #pragma weak @var{symbol1} = @var{symbol2}
11351This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
11352It is an error if @var{symbol2} is not defined in the current
11353translation unit.
11354@end table
11355
79cf5994
DD
11356@node Diagnostic Pragmas
11357@subsection Diagnostic Pragmas
11358
11359GCC allows the user to selectively enable or disable certain types of
11360diagnostics, and change the kind of the diagnostic. For example, a
11361project's policy might require that all sources compile with
11362@option{-Werror} but certain files might have exceptions allowing
11363specific types of warnings. Or, a project might selectively enable
11364diagnostics and treat them as errors depending on which preprocessor
11365macros are defined.
11366
11367@table @code
11368@item #pragma GCC diagnostic @var{kind} @var{option}
11369@cindex pragma, diagnostic
11370
11371Modifies the disposition of a diagnostic. Note that not all
1eaf20ec 11372diagnostics are modifiable; at the moment only warnings (normally
923158be 11373controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
79cf5994
DD
11374Use @option{-fdiagnostics-show-option} to determine which diagnostics
11375are controllable and which option controls them.
11376
11377@var{kind} is @samp{error} to treat this diagnostic as an error,
11378@samp{warning} to treat it like a warning (even if @option{-Werror} is
11379in effect), or @samp{ignored} if the diagnostic is to be ignored.
11380@var{option} is a double quoted string which matches the command line
11381option.
11382
11383@example
11384#pragma GCC diagnostic warning "-Wformat"
c116cd05
MLI
11385#pragma GCC diagnostic error "-Wformat"
11386#pragma GCC diagnostic ignored "-Wformat"
79cf5994
DD
11387@end example
11388
11389Note that these pragmas override any command line options. Also,
11390while it is syntactically valid to put these pragmas anywhere in your
11391sources, the only supported location for them is before any data or
11392functions are defined. Doing otherwise may result in unpredictable
11393results depending on how the optimizer manages your sources. If the
11394same option is listed multiple times, the last one specified is the
11395one that is in effect. This pragma is not intended to be a general
11396purpose replacement for command line options, but for implementing
11397strict control over project policies.
11398
11399@end table
11400
b9e75696
JM
11401@node Visibility Pragmas
11402@subsection Visibility Pragmas
11403
11404@table @code
11405@item #pragma GCC visibility push(@var{visibility})
11406@itemx #pragma GCC visibility pop
11407@cindex pragma, visibility
11408
11409This pragma allows the user to set the visibility for multiple
11410declarations without having to give each a visibility attribute
11411@xref{Function Attributes}, for more information about visibility and
11412the attribute syntax.
11413
11414In C++, @samp{#pragma GCC visibility} affects only namespace-scope
11415declarations. Class members and template specializations are not
11416affected; if you want to override the visibility for a particular
11417member or instantiation, you must use an attribute.
11418
11419@end table
11420
20cef83a
DS
11421
11422@node Push/Pop Macro Pragmas
11423@subsection Push/Pop Macro Pragmas
11424
11425For compatibility with Microsoft Windows compilers, GCC supports
11426@samp{#pragma push_macro(@var{"macro_name"})}
11427and @samp{#pragma pop_macro(@var{"macro_name"})}.
11428
11429@table @code
11430@item #pragma push_macro(@var{"macro_name"})
11431@cindex pragma, push_macro
11432This pragma saves the value of the macro named as @var{macro_name} to
11433the top of the stack for this macro.
11434
11435@item #pragma pop_macro(@var{"macro_name"})
11436@cindex pragma, pop_macro
11437This pragma sets the value of the macro named as @var{macro_name} to
11438the value on top of the stack for this macro. If the stack for
11439@var{macro_name} is empty, the value of the macro remains unchanged.
11440@end table
11441
11442For example:
11443
11444@smallexample
11445#define X 1
11446#pragma push_macro("X")
11447#undef X
11448#define X -1
11449#pragma pop_macro("X")
11450int x [X];
11451@end smallexample
11452
11453In this example, the definition of X as 1 is saved by @code{#pragma
11454push_macro} and restored by @code{#pragma pop_macro}.
11455
3e96a2fd 11456@node Unnamed Fields
2fbebc71 11457@section Unnamed struct/union fields within structs/unions
3e96a2fd
DD
11458@cindex struct
11459@cindex union
11460
11461For compatibility with other compilers, GCC allows you to define
11462a structure or union that contains, as fields, structures and unions
11463without names. For example:
11464
3ab51846 11465@smallexample
3e96a2fd
DD
11466struct @{
11467 int a;
11468 union @{
11469 int b;
11470 float c;
11471 @};
11472 int d;
11473@} foo;
3ab51846 11474@end smallexample
3e96a2fd
DD
11475
11476In this example, the user would be able to access members of the unnamed
11477union with code like @samp{foo.b}. Note that only unnamed structs and
11478unions are allowed, you may not have, for example, an unnamed
11479@code{int}.
11480
11481You must never create such structures that cause ambiguous field definitions.
11482For example, this structure:
11483
3ab51846 11484@smallexample
3e96a2fd
DD
11485struct @{
11486 int a;
11487 struct @{
11488 int a;
11489 @};
11490@} foo;
3ab51846 11491@end smallexample
3e96a2fd
DD
11492
11493It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
11494Such constructs are not supported and must be avoided. In the future,
11495such constructs may be detected and treated as compilation errors.
11496
2fbebc71
JM
11497@opindex fms-extensions
11498Unless @option{-fms-extensions} is used, the unnamed field must be a
11499structure or union definition without a tag (for example, @samp{struct
11500@{ int a; @};}). If @option{-fms-extensions} is used, the field may
11501also be a definition with a tag such as @samp{struct foo @{ int a;
11502@};}, a reference to a previously defined structure or union such as
11503@samp{struct foo;}, or a reference to a @code{typedef} name for a
11504previously defined structure or union type.
11505
3d78f2e9
RH
11506@node Thread-Local
11507@section Thread-Local Storage
11508@cindex Thread-Local Storage
9217ef40 11509@cindex @acronym{TLS}
3d78f2e9
RH
11510@cindex __thread
11511
9217ef40
RH
11512Thread-local storage (@acronym{TLS}) is a mechanism by which variables
11513are allocated such that there is one instance of the variable per extant
3d78f2e9
RH
11514thread. The run-time model GCC uses to implement this originates
11515in the IA-64 processor-specific ABI, but has since been migrated
11516to other processors as well. It requires significant support from
11517the linker (@command{ld}), dynamic linker (@command{ld.so}), and
11518system libraries (@file{libc.so} and @file{libpthread.so}), so it
9217ef40 11519is not available everywhere.
3d78f2e9
RH
11520
11521At the user level, the extension is visible with a new storage
11522class keyword: @code{__thread}. For example:
11523
3ab51846 11524@smallexample
3d78f2e9
RH
11525__thread int i;
11526extern __thread struct state s;
11527static __thread char *p;
3ab51846 11528@end smallexample
3d78f2e9
RH
11529
11530The @code{__thread} specifier may be used alone, with the @code{extern}
11531or @code{static} specifiers, but with no other storage class specifier.
11532When used with @code{extern} or @code{static}, @code{__thread} must appear
11533immediately after the other storage class specifier.
11534
11535The @code{__thread} specifier may be applied to any global, file-scoped
244c2241
RH
11536static, function-scoped static, or static data member of a class. It may
11537not be applied to block-scoped automatic or non-static data member.
3d78f2e9
RH
11538
11539When the address-of operator is applied to a thread-local variable, it is
11540evaluated at run-time and returns the address of the current thread's
11541instance of that variable. An address so obtained may be used by any
11542thread. When a thread terminates, any pointers to thread-local variables
11543in that thread become invalid.
11544
11545No static initialization may refer to the address of a thread-local variable.
11546
244c2241
RH
11547In C++, if an initializer is present for a thread-local variable, it must
11548be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
11549standard.
3d78f2e9
RH
11550
11551See @uref{http://people.redhat.com/drepper/tls.pdf,
11552ELF Handling For Thread-Local Storage} for a detailed explanation of
11553the four thread-local storage addressing models, and how the run-time
11554is expected to function.
11555
9217ef40
RH
11556@menu
11557* C99 Thread-Local Edits::
11558* C++98 Thread-Local Edits::
11559@end menu
11560
11561@node C99 Thread-Local Edits
11562@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
11563
11564The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
11565that document the exact semantics of the language extension.
11566
11567@itemize @bullet
11568@item
11569@cite{5.1.2 Execution environments}
11570
11571Add new text after paragraph 1
11572
11573@quotation
11574Within either execution environment, a @dfn{thread} is a flow of
11575control within a program. It is implementation defined whether
11576or not there may be more than one thread associated with a program.
11577It is implementation defined how threads beyond the first are
11578created, the name and type of the function called at thread
11579startup, and how threads may be terminated. However, objects
11580with thread storage duration shall be initialized before thread
11581startup.
11582@end quotation
11583
11584@item
11585@cite{6.2.4 Storage durations of objects}
11586
11587Add new text before paragraph 3
11588
11589@quotation
11590An object whose identifier is declared with the storage-class
11591specifier @w{@code{__thread}} has @dfn{thread storage duration}.
11592Its lifetime is the entire execution of the thread, and its
11593stored value is initialized only once, prior to thread startup.
11594@end quotation
11595
11596@item
11597@cite{6.4.1 Keywords}
11598
11599Add @code{__thread}.
11600
11601@item
11602@cite{6.7.1 Storage-class specifiers}
11603
11604Add @code{__thread} to the list of storage class specifiers in
11605paragraph 1.
11606
11607Change paragraph 2 to
11608
11609@quotation
11610With the exception of @code{__thread}, at most one storage-class
11611specifier may be given [@dots{}]. The @code{__thread} specifier may
11612be used alone, or immediately following @code{extern} or
11613@code{static}.
11614@end quotation
11615
11616Add new text after paragraph 6
11617
11618@quotation
11619The declaration of an identifier for a variable that has
11620block scope that specifies @code{__thread} shall also
11621specify either @code{extern} or @code{static}.
11622
11623The @code{__thread} specifier shall be used only with
11624variables.
11625@end quotation
11626@end itemize
11627
11628@node C++98 Thread-Local Edits
11629@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
11630
11631The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
11632that document the exact semantics of the language extension.
11633
11634@itemize @bullet
8d23a2c8 11635@item
9217ef40
RH
11636@b{[intro.execution]}
11637
11638New text after paragraph 4
11639
11640@quotation
11641A @dfn{thread} is a flow of control within the abstract machine.
11642It is implementation defined whether or not there may be more than
11643one thread.
11644@end quotation
11645
11646New text after paragraph 7
11647
11648@quotation
95b1627e 11649It is unspecified whether additional action must be taken to
9217ef40
RH
11650ensure when and whether side effects are visible to other threads.
11651@end quotation
11652
11653@item
11654@b{[lex.key]}
11655
11656Add @code{__thread}.
11657
11658@item
11659@b{[basic.start.main]}
11660
11661Add after paragraph 5
11662
11663@quotation
11664The thread that begins execution at the @code{main} function is called
95b1627e 11665the @dfn{main thread}. It is implementation defined how functions
9217ef40
RH
11666beginning threads other than the main thread are designated or typed.
11667A function so designated, as well as the @code{main} function, is called
11668a @dfn{thread startup function}. It is implementation defined what
11669happens if a thread startup function returns. It is implementation
11670defined what happens to other threads when any thread calls @code{exit}.
11671@end quotation
11672
11673@item
11674@b{[basic.start.init]}
11675
11676Add after paragraph 4
11677
11678@quotation
11679The storage for an object of thread storage duration shall be
c0478a66 11680statically initialized before the first statement of the thread startup
9217ef40
RH
11681function. An object of thread storage duration shall not require
11682dynamic initialization.
11683@end quotation
11684
11685@item
11686@b{[basic.start.term]}
11687
11688Add after paragraph 3
11689
11690@quotation
244c2241
RH
11691The type of an object with thread storage duration shall not have a
11692non-trivial destructor, nor shall it be an array type whose elements
11693(directly or indirectly) have non-trivial destructors.
9217ef40
RH
11694@end quotation
11695
11696@item
11697@b{[basic.stc]}
11698
11699Add ``thread storage duration'' to the list in paragraph 1.
11700
11701Change paragraph 2
11702
11703@quotation
11704Thread, static, and automatic storage durations are associated with
11705objects introduced by declarations [@dots{}].
11706@end quotation
11707
11708Add @code{__thread} to the list of specifiers in paragraph 3.
11709
11710@item
11711@b{[basic.stc.thread]}
11712
11713New section before @b{[basic.stc.static]}
11714
11715@quotation
63519d23 11716The keyword @code{__thread} applied to a non-local object gives the
9217ef40
RH
11717object thread storage duration.
11718
11719A local variable or class data member declared both @code{static}
11720and @code{__thread} gives the variable or member thread storage
11721duration.
11722@end quotation
11723
11724@item
11725@b{[basic.stc.static]}
11726
11727Change paragraph 1
11728
11729@quotation
11730All objects which have neither thread storage duration, dynamic
11731storage duration nor are local [@dots{}].
11732@end quotation
11733
11734@item
11735@b{[dcl.stc]}
11736
11737Add @code{__thread} to the list in paragraph 1.
11738
11739Change paragraph 1
11740
11741@quotation
11742With the exception of @code{__thread}, at most one
11743@var{storage-class-specifier} shall appear in a given
11744@var{decl-specifier-seq}. The @code{__thread} specifier may
11745be used alone, or immediately following the @code{extern} or
11746@code{static} specifiers. [@dots{}]
11747@end quotation
11748
11749Add after paragraph 5
11750
11751@quotation
11752The @code{__thread} specifier can be applied only to the names of objects
11753and to anonymous unions.
11754@end quotation
11755
11756@item
11757@b{[class.mem]}
11758
11759Add after paragraph 6
11760
11761@quotation
11762Non-@code{static} members shall not be @code{__thread}.
11763@end quotation
11764@end itemize
11765
f7fd775f
JW
11766@node Binary constants
11767@section Binary constants using the @samp{0b} prefix
11768@cindex Binary constants using the @samp{0b} prefix
11769
11770Integer constants can be written as binary constants, consisting of a
11771sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
11772@samp{0B}. This is particularly useful in environments that operate a
11773lot on the bit-level (like microcontrollers).
11774
11775The following statements are identical:
11776
11777@smallexample
11778i = 42;
11779i = 0x2a;
11780i = 052;
11781i = 0b101010;
11782@end smallexample
11783
11784The type of these constants follows the same rules as for octal or
11785hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
11786can be applied.
11787
c1f7febf
RK
11788@node C++ Extensions
11789@chapter Extensions to the C++ Language
11790@cindex extensions, C++ language
11791@cindex C++ language extensions
11792
11793The GNU compiler provides these extensions to the C++ language (and you
11794can also use most of the C language extensions in your C++ programs). If you
11795want to write code that checks whether these features are available, you can
11796test for the GNU compiler the same way as for C programs: check for a
11797predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
48795525
GP
11798test specifically for GNU C++ (@pxref{Common Predefined Macros,,
11799Predefined Macros,cpp,The GNU C Preprocessor}).
c1f7febf
RK
11800
11801@menu
6ccde948 11802* Volatiles:: What constitutes an access to a volatile object.
49419c8f 11803* Restricted Pointers:: C99 restricted pointers and references.
7a81cf7f 11804* Vague Linkage:: Where G++ puts inlines, vtables and such.
c1f7febf 11805* C++ Interface:: You can use a single C++ header file for both
e6f3b89d 11806 declarations and definitions.
c1f7febf 11807* Template Instantiation:: Methods for ensuring that exactly one copy of
e6f3b89d 11808 each needed template instantiation is emitted.
0ded1f18
JM
11809* Bound member functions:: You can extract a function pointer to the
11810 method denoted by a @samp{->*} or @samp{.*} expression.
e6f3b89d 11811* C++ Attributes:: Variable, function, and type attributes for C++ only.
664a90c0 11812* Namespace Association:: Strong using-directives for namespace association.
cb68ec50 11813* Type Traits:: Compiler support for type traits
1f730ff7 11814* Java Exceptions:: Tweaking exception handling to work with Java.
90ea7324 11815* Deprecated Features:: Things will disappear from g++.
e6f3b89d 11816* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
c1f7febf
RK
11817@end menu
11818
02cac427
NS
11819@node Volatiles
11820@section When is a Volatile Object Accessed?
11821@cindex accessing volatiles
11822@cindex volatile read
11823@cindex volatile write
11824@cindex volatile access
11825
767094dd
JM
11826Both the C and C++ standard have the concept of volatile objects. These
11827are normally accessed by pointers and used for accessing hardware. The
a9e64c63
EB
11828standards encourage compilers to refrain from optimizations concerning
11829accesses to volatile objects. The C standard leaves it implementation
11830defined as to what constitutes a volatile access. The C++ standard omits
11831to specify this, except to say that C++ should behave in a similar manner
767094dd 11832to C with respect to volatiles, where possible. The minimum either
8117da65 11833standard specifies is that at a sequence point all previous accesses to
02cac427 11834volatile objects have stabilized and no subsequent accesses have
767094dd 11835occurred. Thus an implementation is free to reorder and combine
02cac427 11836volatile accesses which occur between sequence points, but cannot do so
767094dd 11837for accesses across a sequence point. The use of volatiles does not
02cac427
NS
11838allow you to violate the restriction on updating objects multiple times
11839within a sequence point.
11840
a9e64c63 11841@xref{Qualifiers implementation, , Volatile qualifier and the C compiler}.
02cac427 11842
a9e64c63 11843The behavior differs slightly between C and C++ in the non-obvious cases:
02cac427 11844
3ab51846 11845@smallexample
c771326b 11846volatile int *src = @var{somevalue};
02cac427 11847*src;
3ab51846 11848@end smallexample
02cac427 11849
a9e64c63
EB
11850With C, such expressions are rvalues, and GCC interprets this either as a
11851read of the volatile object being pointed to or only as request to evaluate
11852the side-effects. The C++ standard specifies that such expressions do not
11853undergo lvalue to rvalue conversion, and that the type of the dereferenced
767094dd 11854object may be incomplete. The C++ standard does not specify explicitly
a9e64c63 11855that it is this lvalue to rvalue conversion which may be responsible for
767094dd
JM
11856causing an access. However, there is reason to believe that it is,
11857because otherwise certain simple expressions become undefined. However,
f0523f02 11858because it would surprise most programmers, G++ treats dereferencing a
a9e64c63 11859pointer to volatile object of complete type when the value is unused as
0ee2ea09 11860GCC would do for an equivalent type in C@. When the object has incomplete
a9e64c63
EB
11861type, G++ issues a warning; if you wish to force an error, you must
11862force a conversion to rvalue with, for instance, a static cast.
02cac427 11863
f0523f02 11864When using a reference to volatile, G++ does not treat equivalent
02cac427 11865expressions as accesses to volatiles, but instead issues a warning that
767094dd 11866no volatile is accessed. The rationale for this is that otherwise it
02cac427
NS
11867becomes difficult to determine where volatile access occur, and not
11868possible to ignore the return value from functions returning volatile
767094dd 11869references. Again, if you wish to force a read, cast the reference to
02cac427
NS
11870an rvalue.
11871
535233a8
NS
11872@node Restricted Pointers
11873@section Restricting Pointer Aliasing
11874@cindex restricted pointers
11875@cindex restricted references
11876@cindex restricted this pointer
11877
2dd76960 11878As with the C front end, G++ understands the C99 feature of restricted pointers,
535233a8 11879specified with the @code{__restrict__}, or @code{__restrict} type
767094dd 11880qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
535233a8
NS
11881language flag, @code{restrict} is not a keyword in C++.
11882
11883In addition to allowing restricted pointers, you can specify restricted
11884references, which indicate that the reference is not aliased in the local
11885context.
11886
3ab51846 11887@smallexample
535233a8
NS
11888void fn (int *__restrict__ rptr, int &__restrict__ rref)
11889@{
0d893a63 11890 /* @r{@dots{}} */
535233a8 11891@}
3ab51846 11892@end smallexample
535233a8
NS
11893
11894@noindent
11895In the body of @code{fn}, @var{rptr} points to an unaliased integer and
11896@var{rref} refers to a (different) unaliased integer.
11897
11898You may also specify whether a member function's @var{this} pointer is
11899unaliased by using @code{__restrict__} as a member function qualifier.
11900
3ab51846 11901@smallexample
535233a8
NS
11902void T::fn () __restrict__
11903@{
0d893a63 11904 /* @r{@dots{}} */
535233a8 11905@}
3ab51846 11906@end smallexample
535233a8
NS
11907
11908@noindent
11909Within the body of @code{T::fn}, @var{this} will have the effective
767094dd 11910definition @code{T *__restrict__ const this}. Notice that the
535233a8
NS
11911interpretation of a @code{__restrict__} member function qualifier is
11912different to that of @code{const} or @code{volatile} qualifier, in that it
767094dd 11913is applied to the pointer rather than the object. This is consistent with
535233a8
NS
11914other compilers which implement restricted pointers.
11915
11916As with all outermost parameter qualifiers, @code{__restrict__} is
767094dd 11917ignored in function definition matching. This means you only need to
535233a8
NS
11918specify @code{__restrict__} in a function definition, rather than
11919in a function prototype as well.
11920
7a81cf7f
JM
11921@node Vague Linkage
11922@section Vague Linkage
11923@cindex vague linkage
11924
11925There are several constructs in C++ which require space in the object
11926file but are not clearly tied to a single translation unit. We say that
11927these constructs have ``vague linkage''. Typically such constructs are
11928emitted wherever they are needed, though sometimes we can be more
11929clever.
11930
11931@table @asis
11932@item Inline Functions
11933Inline functions are typically defined in a header file which can be
11934included in many different compilations. Hopefully they can usually be
11935inlined, but sometimes an out-of-line copy is necessary, if the address
11936of the function is taken or if inlining fails. In general, we emit an
11937out-of-line copy in all translation units where one is needed. As an
11938exception, we only emit inline virtual functions with the vtable, since
11939it will always require a copy.
11940
11941Local static variables and string constants used in an inline function
11942are also considered to have vague linkage, since they must be shared
11943between all inlined and out-of-line instances of the function.
11944
11945@item VTables
11946@cindex vtable
11947C++ virtual functions are implemented in most compilers using a lookup
11948table, known as a vtable. The vtable contains pointers to the virtual
11949functions provided by a class, and each object of the class contains a
11950pointer to its vtable (or vtables, in some multiple-inheritance
11951situations). If the class declares any non-inline, non-pure virtual
11952functions, the first one is chosen as the ``key method'' for the class,
11953and the vtable is only emitted in the translation unit where the key
11954method is defined.
11955
11956@emph{Note:} If the chosen key method is later defined as inline, the
11957vtable will still be emitted in every translation unit which defines it.
11958Make sure that any inline virtuals are declared inline in the class
11959body, even if they are not defined there.
11960
11961@item type_info objects
11962@cindex type_info
11963@cindex RTTI
11964C++ requires information about types to be written out in order to
11965implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
11966For polymorphic classes (classes with virtual functions), the type_info
11967object is written out along with the vtable so that @samp{dynamic_cast}
11968can determine the dynamic type of a class object at runtime. For all
11969other types, we write out the type_info object when it is used: when
11970applying @samp{typeid} to an expression, throwing an object, or
11971referring to a type in a catch clause or exception specification.
11972
11973@item Template Instantiations
11974Most everything in this section also applies to template instantiations,
11975but there are other options as well.
11976@xref{Template Instantiation,,Where's the Template?}.
11977
11978@end table
11979
11980When used with GNU ld version 2.8 or later on an ELF system such as
95fef11f 11981GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
7a81cf7f
JM
11982these constructs will be discarded at link time. This is known as
11983COMDAT support.
11984
11985On targets that don't support COMDAT, but do support weak symbols, GCC
11986will use them. This way one copy will override all the others, but
11987the unused copies will still take up space in the executable.
11988
11989For targets which do not support either COMDAT or weak symbols,
11990most entities with vague linkage will be emitted as local symbols to
11991avoid duplicate definition errors from the linker. This will not happen
11992for local statics in inlines, however, as having multiple copies will
11993almost certainly break things.
11994
11995@xref{C++ Interface,,Declarations and Definitions in One Header}, for
11996another way to control placement of these constructs.
11997
c1f7febf 11998@node C++ Interface
fc72b380 11999@section #pragma interface and implementation
c1f7febf
RK
12000
12001@cindex interface and implementation headers, C++
12002@cindex C++ interface and implementation headers
c1f7febf 12003@cindex pragmas, interface and implementation
c1f7febf 12004
fc72b380
JM
12005@code{#pragma interface} and @code{#pragma implementation} provide the
12006user with a way of explicitly directing the compiler to emit entities
12007with vague linkage (and debugging information) in a particular
12008translation unit.
c1f7febf 12009
fc72b380
JM
12010@emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
12011most cases, because of COMDAT support and the ``key method'' heuristic
12012mentioned in @ref{Vague Linkage}. Using them can actually cause your
27ef2cdd 12013program to grow due to unnecessary out-of-line copies of inline
fc72b380
JM
12014functions. Currently (3.4) the only benefit of these
12015@code{#pragma}s is reduced duplication of debugging information, and
12016that should be addressed soon on DWARF 2 targets with the use of
12017COMDAT groups.
c1f7febf
RK
12018
12019@table @code
12020@item #pragma interface
12021@itemx #pragma interface "@var{subdir}/@var{objects}.h"
12022@kindex #pragma interface
12023Use this directive in @emph{header files} that define object classes, to save
12024space in most of the object files that use those classes. Normally,
12025local copies of certain information (backup copies of inline member
12026functions, debugging information, and the internal tables that implement
12027virtual functions) must be kept in each object file that includes class
12028definitions. You can use this pragma to avoid such duplication. When a
12029header file containing @samp{#pragma interface} is included in a
12030compilation, this auxiliary information will not be generated (unless
12031the main input source file itself uses @samp{#pragma implementation}).
12032Instead, the object files will contain references to be resolved at link
12033time.
12034
12035The second form of this directive is useful for the case where you have
12036multiple headers with the same name in different directories. If you
12037use this form, you must specify the same string to @samp{#pragma
12038implementation}.
12039
12040@item #pragma implementation
12041@itemx #pragma implementation "@var{objects}.h"
12042@kindex #pragma implementation
12043Use this pragma in a @emph{main input file}, when you want full output from
12044included header files to be generated (and made globally visible). The
12045included header file, in turn, should use @samp{#pragma interface}.
12046Backup copies of inline member functions, debugging information, and the
12047internal tables used to implement virtual functions are all generated in
12048implementation files.
12049
12050@cindex implied @code{#pragma implementation}
12051@cindex @code{#pragma implementation}, implied
12052@cindex naming convention, implementation headers
12053If you use @samp{#pragma implementation} with no argument, it applies to
12054an include file with the same basename@footnote{A file's @dfn{basename}
12055was the name stripped of all leading path information and of trailing
12056suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
12057file. For example, in @file{allclass.cc}, giving just
12058@samp{#pragma implementation}
12059by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
12060
12061In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
12062an implementation file whenever you would include it from
12063@file{allclass.cc} even if you never specified @samp{#pragma
12064implementation}. This was deemed to be more trouble than it was worth,
12065however, and disabled.
12066
c1f7febf
RK
12067Use the string argument if you want a single implementation file to
12068include code from multiple header files. (You must also use
12069@samp{#include} to include the header file; @samp{#pragma
12070implementation} only specifies how to use the file---it doesn't actually
12071include it.)
12072
12073There is no way to split up the contents of a single header file into
12074multiple implementation files.
12075@end table
12076
12077@cindex inlining and C++ pragmas
12078@cindex C++ pragmas, effect on inlining
12079@cindex pragmas in C++, effect on inlining
12080@samp{#pragma implementation} and @samp{#pragma interface} also have an
12081effect on function inlining.
12082
12083If you define a class in a header file marked with @samp{#pragma
fc72b380
JM
12084interface}, the effect on an inline function defined in that class is
12085similar to an explicit @code{extern} declaration---the compiler emits
12086no code at all to define an independent version of the function. Its
12087definition is used only for inlining with its callers.
c1f7febf 12088
84330467 12089@opindex fno-implement-inlines
c1f7febf
RK
12090Conversely, when you include the same header file in a main source file
12091that declares it as @samp{#pragma implementation}, the compiler emits
12092code for the function itself; this defines a version of the function
12093that can be found via pointers (or by callers compiled without
12094inlining). If all calls to the function can be inlined, you can avoid
84330467 12095emitting the function by compiling with @option{-fno-implement-inlines}.
c1f7febf
RK
12096If any calls were not inlined, you will get linker errors.
12097
12098@node Template Instantiation
12099@section Where's the Template?
c1f7febf
RK
12100@cindex template instantiation
12101
12102C++ templates are the first language feature to require more
12103intelligence from the environment than one usually finds on a UNIX
12104system. Somehow the compiler and linker have to make sure that each
12105template instance occurs exactly once in the executable if it is needed,
12106and not at all otherwise. There are two basic approaches to this
962e6e00 12107problem, which are referred to as the Borland model and the Cfront model.
c1f7febf
RK
12108
12109@table @asis
12110@item Borland model
12111Borland C++ solved the template instantiation problem by adding the code
469b759e
JM
12112equivalent of common blocks to their linker; the compiler emits template
12113instances in each translation unit that uses them, and the linker
12114collapses them together. The advantage of this model is that the linker
12115only has to consider the object files themselves; there is no external
12116complexity to worry about. This disadvantage is that compilation time
12117is increased because the template code is being compiled repeatedly.
12118Code written for this model tends to include definitions of all
12119templates in the header file, since they must be seen to be
12120instantiated.
c1f7febf
RK
12121
12122@item Cfront model
12123The AT&T C++ translator, Cfront, solved the template instantiation
12124problem by creating the notion of a template repository, an
469b759e
JM
12125automatically maintained place where template instances are stored. A
12126more modern version of the repository works as follows: As individual
12127object files are built, the compiler places any template definitions and
12128instantiations encountered in the repository. At link time, the link
12129wrapper adds in the objects in the repository and compiles any needed
12130instances that were not previously emitted. The advantages of this
12131model are more optimal compilation speed and the ability to use the
12132system linker; to implement the Borland model a compiler vendor also
c1f7febf 12133needs to replace the linker. The disadvantages are vastly increased
469b759e
JM
12134complexity, and thus potential for error; for some code this can be
12135just as transparent, but in practice it can been very difficult to build
c1f7febf 12136multiple programs in one directory and one program in multiple
469b759e
JM
12137directories. Code written for this model tends to separate definitions
12138of non-inline member templates into a separate file, which should be
12139compiled separately.
c1f7febf
RK
12140@end table
12141
469b759e 12142When used with GNU ld version 2.8 or later on an ELF system such as
2dd76960
JM
12143GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
12144Borland model. On other systems, G++ implements neither automatic
a4b3b54a 12145model.
469b759e 12146
2dd76960 12147A future version of G++ will support a hybrid model whereby the compiler
469b759e
JM
12148will emit any instantiations for which the template definition is
12149included in the compile, and store template definitions and
12150instantiation context information into the object file for the rest.
12151The link wrapper will extract that information as necessary and invoke
12152the compiler to produce the remaining instantiations. The linker will
12153then combine duplicate instantiations.
12154
12155In the mean time, you have the following options for dealing with
12156template instantiations:
c1f7febf
RK
12157
12158@enumerate
d863830b 12159@item
84330467
JM
12160@opindex frepo
12161Compile your template-using code with @option{-frepo}. The compiler will
d863830b
JL
12162generate files with the extension @samp{.rpo} listing all of the
12163template instantiations used in the corresponding object files which
12164could be instantiated there; the link wrapper, @samp{collect2}, will
12165then update the @samp{.rpo} files to tell the compiler where to place
12166those instantiations and rebuild any affected object files. The
12167link-time overhead is negligible after the first pass, as the compiler
12168will continue to place the instantiations in the same files.
12169
12170This is your best option for application code written for the Borland
12171model, as it will just work. Code written for the Cfront model will
12172need to be modified so that the template definitions are available at
12173one or more points of instantiation; usually this is as simple as adding
12174@code{#include <tmethods.cc>} to the end of each template header.
12175
12176For library code, if you want the library to provide all of the template
12177instantiations it needs, just try to link all of its object files
12178together; the link will fail, but cause the instantiations to be
12179generated as a side effect. Be warned, however, that this may cause
12180conflicts if multiple libraries try to provide the same instantiations.
12181For greater control, use explicit instantiation as described in the next
12182option.
12183
c1f7febf 12184@item
84330467
JM
12185@opindex fno-implicit-templates
12186Compile your code with @option{-fno-implicit-templates} to disable the
c1f7febf
RK
12187implicit generation of template instances, and explicitly instantiate
12188all the ones you use. This approach requires more knowledge of exactly
12189which instances you need than do the others, but it's less
12190mysterious and allows greater control. You can scatter the explicit
12191instantiations throughout your program, perhaps putting them in the
12192translation units where the instances are used or the translation units
12193that define the templates themselves; you can put all of the explicit
12194instantiations you need into one big file; or you can create small files
12195like
12196
3ab51846 12197@smallexample
c1f7febf
RK
12198#include "Foo.h"
12199#include "Foo.cc"
12200
12201template class Foo<int>;
12202template ostream& operator <<
12203 (ostream&, const Foo<int>&);
3ab51846 12204@end smallexample
c1f7febf
RK
12205
12206for each of the instances you need, and create a template instantiation
12207library from those.
12208
12209If you are using Cfront-model code, you can probably get away with not
84330467 12210using @option{-fno-implicit-templates} when compiling files that don't
c1f7febf
RK
12211@samp{#include} the member template definitions.
12212
12213If you use one big file to do the instantiations, you may want to
84330467 12214compile it without @option{-fno-implicit-templates} so you get all of the
c1f7febf
RK
12215instances required by your explicit instantiations (but not by any
12216other files) without having to specify them as well.
12217
2dd76960 12218G++ has extended the template instantiation syntax given in the ISO
6d9c4c83 12219standard to allow forward declaration of explicit instantiations
4003d7f9 12220(with @code{extern}), instantiation of the compiler support data for a
e979f9e8 12221template class (i.e.@: the vtable) without instantiating any of its
4003d7f9
JM
12222members (with @code{inline}), and instantiation of only the static data
12223members of a template class, without the support data or member
12224functions (with (@code{static}):
c1f7febf 12225
3ab51846 12226@smallexample
c1f7febf 12227extern template int max (int, int);
c1f7febf 12228inline template class Foo<int>;
4003d7f9 12229static template class Foo<int>;
3ab51846 12230@end smallexample
c1f7febf
RK
12231
12232@item
2dd76960 12233Do nothing. Pretend G++ does implement automatic instantiation
c1f7febf
RK
12234management. Code written for the Borland model will work fine, but
12235each translation unit will contain instances of each of the templates it
12236uses. In a large program, this can lead to an unacceptable amount of code
12237duplication.
c1f7febf
RK
12238@end enumerate
12239
0ded1f18
JM
12240@node Bound member functions
12241@section Extracting the function pointer from a bound pointer to member function
0ded1f18
JM
12242@cindex pmf
12243@cindex pointer to member function
12244@cindex bound pointer to member function
12245
12246In C++, pointer to member functions (PMFs) are implemented using a wide
12247pointer of sorts to handle all the possible call mechanisms; the PMF
12248needs to store information about how to adjust the @samp{this} pointer,
12249and if the function pointed to is virtual, where to find the vtable, and
12250where in the vtable to look for the member function. If you are using
12251PMFs in an inner loop, you should really reconsider that decision. If
12252that is not an option, you can extract the pointer to the function that
12253would be called for a given object/PMF pair and call it directly inside
12254the inner loop, to save a bit of time.
12255
12256Note that you will still be paying the penalty for the call through a
12257function pointer; on most modern architectures, such a call defeats the
161d7b59 12258branch prediction features of the CPU@. This is also true of normal
0ded1f18
JM
12259virtual function calls.
12260
12261The syntax for this extension is
12262
3ab51846 12263@smallexample
0ded1f18
JM
12264extern A a;
12265extern int (A::*fp)();
12266typedef int (*fptr)(A *);
12267
12268fptr p = (fptr)(a.*fp);
3ab51846 12269@end smallexample
0ded1f18 12270
e979f9e8 12271For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
767094dd 12272no object is needed to obtain the address of the function. They can be
0fb6bbf5
ML
12273converted to function pointers directly:
12274
3ab51846 12275@smallexample
0fb6bbf5 12276fptr p1 = (fptr)(&A::foo);
3ab51846 12277@end smallexample
0fb6bbf5 12278
84330467
JM
12279@opindex Wno-pmf-conversions
12280You must specify @option{-Wno-pmf-conversions} to use this extension.
0ded1f18 12281
5c25e11d
PE
12282@node C++ Attributes
12283@section C++-Specific Variable, Function, and Type Attributes
12284
12285Some attributes only make sense for C++ programs.
12286
12287@table @code
12288@item init_priority (@var{priority})
12289@cindex init_priority attribute
12290
12291
12292In Standard C++, objects defined at namespace scope are guaranteed to be
12293initialized in an order in strict accordance with that of their definitions
12294@emph{in a given translation unit}. No guarantee is made for initializations
12295across translation units. However, GNU C++ allows users to control the
3844cd2e 12296order of initialization of objects defined at namespace scope with the
5c25e11d
PE
12297@code{init_priority} attribute by specifying a relative @var{priority},
12298a constant integral expression currently bounded between 101 and 65535
12299inclusive. Lower numbers indicate a higher priority.
12300
12301In the following example, @code{A} would normally be created before
12302@code{B}, but the @code{init_priority} attribute has reversed that order:
12303
478c9e72 12304@smallexample
5c25e11d
PE
12305Some_Class A __attribute__ ((init_priority (2000)));
12306Some_Class B __attribute__ ((init_priority (543)));
478c9e72 12307@end smallexample
5c25e11d
PE
12308
12309@noindent
12310Note that the particular values of @var{priority} do not matter; only their
12311relative ordering.
12312
60c87482
BM
12313@item java_interface
12314@cindex java_interface attribute
12315
02f52e19 12316This type attribute informs C++ that the class is a Java interface. It may
60c87482 12317only be applied to classes declared within an @code{extern "Java"} block.
02f52e19
AJ
12318Calls to methods declared in this interface will be dispatched using GCJ's
12319interface table mechanism, instead of regular virtual table dispatch.
60c87482 12320
5c25e11d
PE
12321@end table
12322
38bb2b65 12323See also @ref{Namespace Association}.
86098eb8 12324
664a90c0
JM
12325@node Namespace Association
12326@section Namespace Association
86098eb8 12327
fea77ed9
MM
12328@strong{Caution:} The semantics of this extension are not fully
12329defined. Users should refrain from using this extension as its
12330semantics may change subtly over time. It is possible that this
664a90c0 12331extension will be removed in future versions of G++.
fea77ed9 12332
86098eb8
JM
12333A using-directive with @code{__attribute ((strong))} is stronger
12334than a normal using-directive in two ways:
12335
12336@itemize @bullet
12337@item
664a90c0
JM
12338Templates from the used namespace can be specialized and explicitly
12339instantiated as though they were members of the using namespace.
86098eb8
JM
12340
12341@item
12342The using namespace is considered an associated namespace of all
12343templates in the used namespace for purposes of argument-dependent
12344name lookup.
12345@end itemize
12346
664a90c0
JM
12347The used namespace must be nested within the using namespace so that
12348normal unqualified lookup works properly.
12349
86098eb8
JM
12350This is useful for composing a namespace transparently from
12351implementation namespaces. For example:
12352
12353@smallexample
12354namespace std @{
12355 namespace debug @{
12356 template <class T> struct A @{ @};
12357 @}
12358 using namespace debug __attribute ((__strong__));
cd1a8088 12359 template <> struct A<int> @{ @}; // @r{ok to specialize}
86098eb8
JM
12360
12361 template <class T> void f (A<T>);
12362@}
12363
12364int main()
12365@{
cd1a8088 12366 f (std::A<float>()); // @r{lookup finds} std::f
86098eb8
JM
12367 f (std::A<int>());
12368@}
12369@end smallexample
12370
cb68ec50
PC
12371@node Type Traits
12372@section Type Traits
12373
12374The C++ front-end implements syntactic extensions that allow to
12375determine at compile time various characteristics of a type (or of a
12376pair of types).
12377
12378@table @code
12379@item __has_nothrow_assign (type)
b29441ec
PC
12380If @code{type} is const qualified or is a reference type then the trait is
12381false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
12382is true, else if @code{type} is a cv class or union type with copy assignment
12383operators that are known not to throw an exception then the trait is true,
12384else it is false. Requires: @code{type} shall be a complete type, an array
12385type of unknown bound, or is a @code{void} type.
cb68ec50
PC
12386
12387@item __has_nothrow_copy (type)
12388If @code{__has_trivial_copy (type)} is true then the trait is true, else if
12389@code{type} is a cv class or union type with copy constructors that
12390are known not to throw an exception then the trait is true, else it is false.
12391Requires: @code{type} shall be a complete type, an array type of
12392unknown bound, or is a @code{void} type.
12393
12394@item __has_nothrow_constructor (type)
12395If @code{__has_trivial_constructor (type)} is true then the trait is
12396true, else if @code{type} is a cv class or union type (or array
12397thereof) with a default constructor that is known not to throw an
12398exception then the trait is true, else it is false. Requires:
12399@code{type} shall be a complete type, an array type of unknown bound,
12400or is a @code{void} type.
12401
12402@item __has_trivial_assign (type)
12403If @code{type} is const qualified or is a reference type then the trait is
12404false. Otherwise if @code{__is_pod (type)} is true then the trait is
12405true, else if @code{type} is a cv class or union type with a trivial
12406copy assignment ([class.copy]) then the trait is true, else it is
12407false. Requires: @code{type} shall be a complete type, an array type
12408of unknown bound, or is a @code{void} type.
12409
12410@item __has_trivial_copy (type)
12411If @code{__is_pod (type)} is true or @code{type} is a reference type
12412then the trait is true, else if @code{type} is a cv class or union type
12413with a trivial copy constructor ([class.copy]) then the trait
12414is true, else it is false. Requires: @code{type} shall be a complete
12415type, an array type of unknown bound, or is a @code{void} type.
12416
12417@item __has_trivial_constructor (type)
12418If @code{__is_pod (type)} is true then the trait is true, else if
12419@code{type} is a cv class or union type (or array thereof) with a
12420trivial default constructor ([class.ctor]) then the trait is true,
12421else it is false. Requires: @code{type} shall be a complete type, an
12422array type of unknown bound, or is a @code{void} type.
12423
12424@item __has_trivial_destructor (type)
12425If @code{__is_pod (type)} is true or @code{type} is a reference type then
12426the trait is true, else if @code{type} is a cv class or union type (or
12427array thereof) with a trivial destructor ([class.dtor]) then the trait
12428is true, else it is false. Requires: @code{type} shall be a complete
12429type, an array type of unknown bound, or is a @code{void} type.
12430
12431@item __has_virtual_destructor (type)
12432If @code{type} is a class type with a virtual destructor
12433([class.dtor]) then the trait is true, else it is false. Requires:
12434@code{type} shall be a complete type, an array type of unknown bound,
12435or is a @code{void} type.
12436
12437@item __is_abstract (type)
12438If @code{type} is an abstract class ([class.abstract]) then the trait
12439is true, else it is false. Requires: @code{type} shall be a complete
12440type, an array type of unknown bound, or is a @code{void} type.
12441
12442@item __is_base_of (base_type, derived_type)
12443If @code{base_type} is a base class of @code{derived_type}
12444([class.derived]) then the trait is true, otherwise it is false.
12445Top-level cv qualifications of @code{base_type} and
12446@code{derived_type} are ignored. For the purposes of this trait, a
12447class type is considered is own base. Requires: if @code{__is_class
12448(base_type)} and @code{__is_class (derived_type)} are true and
12449@code{base_type} and @code{derived_type} are not the same type
12450(disregarding cv-qualifiers), @code{derived_type} shall be a complete
12451type. Diagnostic is produced if this requirement is not met.
12452
12453@item __is_class (type)
12454If @code{type} is a cv class type, and not a union type
12455([basic.compound]) the the trait is true, else it is false.
12456
12457@item __is_empty (type)
12458If @code{__is_class (type)} is false then the trait is false.
12459Otherwise @code{type} is considered empty if and only if: @code{type}
12460has no non-static data members, or all non-static data members, if
12461any, are bit-fields of lenght 0, and @code{type} has no virtual
12462members, and @code{type} has no virtual base classes, and @code{type}
12463has no base classes @code{base_type} for which
12464@code{__is_empty (base_type)} is false. Requires: @code{type} shall
12465be a complete type, an array type of unknown bound, or is a
12466@code{void} type.
12467
12468@item __is_enum (type)
12469If @code{type} is a cv enumeration type ([basic.compound]) the the trait is
12470true, else it is false.
12471
12472@item __is_pod (type)
12473If @code{type} is a cv POD type ([basic.types]) then the trait is true,
12474else it is false. Requires: @code{type} shall be a complete type,
12475an array type of unknown bound, or is a @code{void} type.
12476
12477@item __is_polymorphic (type)
12478If @code{type} is a polymorphic class ([class.virtual]) then the trait
12479is true, else it is false. Requires: @code{type} shall be a complete
12480type, an array type of unknown bound, or is a @code{void} type.
12481
12482@item __is_union (type)
12483If @code{type} is a cv union type ([basic.compound]) the the trait is
12484true, else it is false.
12485
12486@end table
12487
1f730ff7
ZW
12488@node Java Exceptions
12489@section Java Exceptions
12490
12491The Java language uses a slightly different exception handling model
12492from C++. Normally, GNU C++ will automatically detect when you are
12493writing C++ code that uses Java exceptions, and handle them
12494appropriately. However, if C++ code only needs to execute destructors
12495when Java exceptions are thrown through it, GCC will guess incorrectly.
9c34dbbf 12496Sample problematic code is:
1f730ff7 12497
478c9e72 12498@smallexample
1f730ff7 12499 struct S @{ ~S(); @};
cd1a8088 12500 extern void bar(); // @r{is written in Java, and may throw exceptions}
1f730ff7
ZW
12501 void foo()
12502 @{
12503 S s;
12504 bar();
12505 @}
478c9e72 12506@end smallexample
1f730ff7
ZW
12507
12508@noindent
12509The usual effect of an incorrect guess is a link failure, complaining of
12510a missing routine called @samp{__gxx_personality_v0}.
12511
12512You can inform the compiler that Java exceptions are to be used in a
12513translation unit, irrespective of what it might think, by writing
12514@samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
12515@samp{#pragma} must appear before any functions that throw or catch
12516exceptions, or run destructors when exceptions are thrown through them.
12517
12518You cannot mix Java and C++ exceptions in the same translation unit. It
12519is believed to be safe to throw a C++ exception from one file through
9c34dbbf
ZW
12520another file compiled for the Java exception model, or vice versa, but
12521there may be bugs in this area.
1f730ff7 12522
e6f3b89d
PE
12523@node Deprecated Features
12524@section Deprecated Features
12525
12526In the past, the GNU C++ compiler was extended to experiment with new
767094dd 12527features, at a time when the C++ language was still evolving. Now that
e6f3b89d 12528the C++ standard is complete, some of those features are superseded by
767094dd
JM
12529superior alternatives. Using the old features might cause a warning in
12530some cases that the feature will be dropped in the future. In other
e6f3b89d
PE
12531cases, the feature might be gone already.
12532
12533While the list below is not exhaustive, it documents some of the options
12534that are now deprecated:
12535
12536@table @code
12537@item -fexternal-templates
12538@itemx -falt-external-templates
2dd76960 12539These are two of the many ways for G++ to implement template
767094dd 12540instantiation. @xref{Template Instantiation}. The C++ standard clearly
e6f3b89d 12541defines how template definitions have to be organized across
2dd76960 12542implementation units. G++ has an implicit instantiation mechanism that
e6f3b89d
PE
12543should work just fine for standard-conforming code.
12544
12545@item -fstrict-prototype
12546@itemx -fno-strict-prototype
12547Previously it was possible to use an empty prototype parameter list to
12548indicate an unspecified number of parameters (like C), rather than no
767094dd 12549parameters, as C++ demands. This feature has been removed, except where
38bb2b65 12550it is required for backwards compatibility. @xref{Backwards Compatibility}.
e6f3b89d
PE
12551@end table
12552
ae209f28
NS
12553G++ allows a virtual function returning @samp{void *} to be overridden
12554by one returning a different pointer type. This extension to the
12555covariant return type rules is now deprecated and will be removed from a
12556future version.
12557
8ff24a79
MM
12558The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
12559their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
32e26ece
GK
12560and are now removed from G++. Code using these operators should be
12561modified to use @code{std::min} and @code{std::max} instead.
8ff24a79 12562
ad1a6d45 12563The named return value extension has been deprecated, and is now
2dd76960 12564removed from G++.
e6f3b89d 12565
82c18d5c 12566The use of initializer lists with new expressions has been deprecated,
2dd76960 12567and is now removed from G++.
ad1a6d45
NS
12568
12569Floating and complex non-type template parameters have been deprecated,
2dd76960 12570and are now removed from G++.
ad1a6d45 12571
90ea7324 12572The implicit typename extension has been deprecated and is now
2dd76960 12573removed from G++.
90ea7324 12574
1eaf20ec 12575The use of default arguments in function pointers, function typedefs
90ea7324 12576and other places where they are not permitted by the standard is
2dd76960 12577deprecated and will be removed from a future version of G++.
82c18d5c 12578
6871294a
JW
12579G++ allows floating-point literals to appear in integral constant expressions,
12580e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
12581This extension is deprecated and will be removed from a future version.
12582
12583G++ allows static data members of const floating-point type to be declared
12584with an initializer in a class definition. The standard only allows
12585initializers for static members of const integral types and const
12586enumeration types so this extension has been deprecated and will be removed
12587from a future version.
12588
e6f3b89d
PE
12589@node Backwards Compatibility
12590@section Backwards Compatibility
12591@cindex Backwards Compatibility
12592@cindex ARM [Annotated C++ Reference Manual]
12593
aee96fe9 12594Now that there is a definitive ISO standard C++, G++ has a specification
767094dd 12595to adhere to. The C++ language evolved over time, and features that
e6f3b89d 12596used to be acceptable in previous drafts of the standard, such as the ARM
767094dd 12597[Annotated C++ Reference Manual], are no longer accepted. In order to allow
aee96fe9 12598compilation of C++ written to such drafts, G++ contains some backwards
767094dd 12599compatibilities. @emph{All such backwards compatibility features are
aee96fe9 12600liable to disappear in future versions of G++.} They should be considered
38bb2b65 12601deprecated. @xref{Deprecated Features}.
e6f3b89d
PE
12602
12603@table @code
12604@item For scope
12605If a variable is declared at for scope, it used to remain in scope until
12606the end of the scope which contained the for statement (rather than just
aee96fe9 12607within the for scope). G++ retains this, but issues a warning, if such a
e6f3b89d
PE
12608variable is accessed outside the for scope.
12609
ad1a6d45 12610@item Implicit C language
630d3d5a 12611Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
767094dd
JM
12612scope to set the language. On such systems, all header files are
12613implicitly scoped inside a C language scope. Also, an empty prototype
e6f3b89d
PE
12614@code{()} will be treated as an unspecified number of arguments, rather
12615than no arguments, as C++ demands.
12616@end table