]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/doc/extend.texi
Adding GCC port for National Semicondutor's CR16 architecture
[thirdparty/gcc.git] / gcc / doc / extend.texi
CommitLineData
8d8da227 1@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
770da00a 2@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
66647d44 3@c Free Software Foundation, Inc.
9a8ce21f 4
c1f7febf
RK
5@c This is part of the GCC manual.
6@c For copying conditions, see the file gcc.texi.
7
8@node C Extensions
9@chapter Extensions to the C Language Family
10@cindex extensions, C language
11@cindex C language extensions
12
84330467 13@opindex pedantic
161d7b59 14GNU C provides several language features not found in ISO standard C@.
f0523f02 15(The @option{-pedantic} option directs GCC to print a warning message if
c1f7febf
RK
16any of these features is used.) To test for the availability of these
17features in conditional compilation, check for a predefined macro
161d7b59 18@code{__GNUC__}, which is always defined under GCC@.
c1f7febf 19
161d7b59 20These extensions are available in C and Objective-C@. Most of them are
c1f7febf
RK
21also available in C++. @xref{C++ Extensions,,Extensions to the
22C++ Language}, for extensions that apply @emph{only} to C++.
23
7e1542b9
MLI
24Some features that are in ISO C99 but not C90 or C++ are also, as
25extensions, accepted by GCC in C90 mode and in C++.
5490d604 26
c1f7febf
RK
27@menu
28* Statement Exprs:: Putting statements and declarations inside expressions.
14e33ee8 29* Local Labels:: Labels local to a block.
c1f7febf
RK
30* Labels as Values:: Getting pointers to labels, and computed gotos.
31* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
6ccde948 32* Constructing Calls:: Dispatching a call to another function.
c1f7febf 33* Typeof:: @code{typeof}: referring to the type of an expression.
c1f7febf 34* Conditionals:: Omitting the middle operand of a @samp{?:} expression.
6ccde948 35* Long Long:: Double-word integers---@code{long long int}.
a6766312 36* __int128:: 128-bit integers---@code{__int128}.
c1f7febf 37* Complex:: Data types for complex numbers.
c77cd3d1 38* Floating Types:: Additional Floating Types.
0fd8c3ad 39* Half-Precision:: Half-Precision Floating Point.
ff2ce160 40* Decimal Float:: Decimal Floating Types.
6f4d7222 41* Hex Floats:: Hexadecimal floating-point constants.
0f996086 42* Fixed-Point:: Fixed-Point Types.
09e881c9 43* Named Address Spaces::Named address spaces.
c1f7febf
RK
44* Zero Length:: Zero-length arrays.
45* Variable Length:: Arrays whose length is computed at run time.
ba05abd3 46* Empty Structures:: Structures with no members.
6ccde948 47* Variadic Macros:: Macros with a variable number of arguments.
ccd96f0a 48* Escaped Newlines:: Slightly looser rules for escaped newlines.
c1f7febf
RK
49* Subscripting:: Any array can be subscripted, even if not an lvalue.
50* Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
51* Initializers:: Non-constant initializers.
4b404517 52* Compound Literals:: Compound literals give structures, unions
6ccde948
RW
53 or arrays as values.
54* Designated Inits:: Labeling elements of initializers.
c1f7febf 55* Cast to Union:: Casting to union type from any member of the union.
6ccde948
RW
56* Case Ranges:: `case 1 ... 9' and such.
57* Mixed Declarations:: Mixing declarations and code.
c1f7febf 58* Function Attributes:: Declaring that functions have no side effects,
6ccde948 59 or that they can never return.
2c5e91d2 60* Attribute Syntax:: Formal syntax for attributes.
c1f7febf
RK
61* Function Prototypes:: Prototype declarations and old-style definitions.
62* C++ Comments:: C++ comments are recognized.
63* Dollar Signs:: Dollar sign is allowed in identifiers.
64* Character Escapes:: @samp{\e} stands for the character @key{ESC}.
6ccde948
RW
65* Variable Attributes:: Specifying attributes of variables.
66* Type Attributes:: Specifying attributes of types.
c1f7febf
RK
67* Alignment:: Inquiring about the alignment of a type or variable.
68* Inline:: Defining inline functions (as fast as macros).
8f0fe813 69* Volatiles:: What constitutes an access to a volatile object.
c1f7febf 70* Extended Asm:: Assembler instructions with C expressions as operands.
6ccde948 71 (With them you can define ``built-in'' functions.)
c1f7febf
RK
72* Constraints:: Constraints for asm operands
73* Asm Labels:: Specifying the assembler name to use for a C symbol.
74* Explicit Reg Vars:: Defining variables residing in specified registers.
75* Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
76* Incomplete Enums:: @code{enum foo;}, with details to follow.
6ccde948
RW
77* Function Names:: Printable strings which are the name of the current
78 function.
c1f7febf 79* Return Address:: Getting the return or frame address of a function.
1255c85c 80* Vector Extensions:: Using vector instructions through built-in functions.
7a3ea201 81* Offsetof:: Special syntax for implementing @code{offsetof}.
86951993
AM
82* __sync Builtins:: Legacy built-in functions for atomic memory access.
83* __atomic Builtins:: Atomic built-in functions with memory model.
10a0d495
JJ
84* Object Size Checking:: Built-in functions for limited buffer overflow
85 checking.
c5c76735 86* Other Builtins:: Other built-in functions.
0975678f 87* Target Builtins:: Built-in functions specific to particular targets.
a2bec818 88* Target Format Checks:: Format checks specific to particular targets.
0168a849 89* Pragmas:: Pragmas accepted by GCC.
b11cc610 90* Unnamed Fields:: Unnamed struct/union fields within structs/unions.
3d78f2e9 91* Thread-Local:: Per-thread variables.
f7fd775f 92* Binary constants:: Binary constants using the @samp{0b} prefix.
c1f7febf 93@end menu
c1f7febf
RK
94
95@node Statement Exprs
96@section Statements and Declarations in Expressions
97@cindex statements inside expressions
98@cindex declarations inside expressions
99@cindex expressions containing statements
100@cindex macros, statements in expressions
101
102@c the above section title wrapped and causes an underfull hbox.. i
103@c changed it from "within" to "in". --mew 4feb93
c1f7febf 104A compound statement enclosed in parentheses may appear as an expression
161d7b59 105in GNU C@. This allows you to use loops, switches, and local variables
c1f7febf
RK
106within an expression.
107
108Recall that a compound statement is a sequence of statements surrounded
109by braces; in this construct, parentheses go around the braces. For
110example:
111
3ab51846 112@smallexample
c1f7febf
RK
113(@{ int y = foo (); int z;
114 if (y > 0) z = y;
115 else z = - y;
116 z; @})
3ab51846 117@end smallexample
c1f7febf
RK
118
119@noindent
120is a valid (though slightly more complex than necessary) expression
121for the absolute value of @code{foo ()}.
122
123The last thing in the compound statement should be an expression
124followed by a semicolon; the value of this subexpression serves as the
125value of the entire construct. (If you use some other kind of statement
126last within the braces, the construct has type @code{void}, and thus
127effectively no value.)
128
129This feature is especially useful in making macro definitions ``safe'' (so
130that they evaluate each operand exactly once). For example, the
131``maximum'' function is commonly defined as a macro in standard C as
132follows:
133
3ab51846 134@smallexample
c1f7febf 135#define max(a,b) ((a) > (b) ? (a) : (b))
3ab51846 136@end smallexample
c1f7febf
RK
137
138@noindent
139@cindex side effects, macro argument
140But this definition computes either @var{a} or @var{b} twice, with bad
141results if the operand has side effects. In GNU C, if you know the
962e6e00 142type of the operands (here taken as @code{int}), you can define
c1f7febf
RK
143the macro safely as follows:
144
3ab51846 145@smallexample
c1f7febf
RK
146#define maxint(a,b) \
147 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
3ab51846 148@end smallexample
c1f7febf
RK
149
150Embedded statements are not allowed in constant expressions, such as
c771326b 151the value of an enumeration constant, the width of a bit-field, or
c1f7febf
RK
152the initial value of a static variable.
153
154If you don't know the type of the operand, you can still do this, but you
95f79357 155must use @code{typeof} (@pxref{Typeof}).
c1f7febf 156
a5bcc582
NS
157In G++, the result value of a statement expression undergoes array and
158function pointer decay, and is returned by value to the enclosing
8a36672b 159expression. For instance, if @code{A} is a class, then
b98e139b 160
a5bcc582
NS
161@smallexample
162 A a;
b98e139b 163
a5bcc582
NS
164 (@{a;@}).Foo ()
165@end smallexample
b98e139b
MM
166
167@noindent
a5bcc582
NS
168will construct a temporary @code{A} object to hold the result of the
169statement expression, and that will be used to invoke @code{Foo}.
170Therefore the @code{this} pointer observed by @code{Foo} will not be the
171address of @code{a}.
172
173Any temporaries created within a statement within a statement expression
174will be destroyed at the statement's end. This makes statement
175expressions inside macros slightly different from function calls. In
176the latter case temporaries introduced during argument evaluation will
177be destroyed at the end of the statement that includes the function
178call. In the statement expression case they will be destroyed during
179the statement expression. For instance,
b98e139b 180
a5bcc582
NS
181@smallexample
182#define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
183template<typename T> T function(T a) @{ T b = a; return b + 3; @}
184
185void foo ()
186@{
187 macro (X ());
188 function (X ());
189@}
190@end smallexample
b98e139b
MM
191
192@noindent
a5bcc582
NS
193will have different places where temporaries are destroyed. For the
194@code{macro} case, the temporary @code{X} will be destroyed just after
195the initialization of @code{b}. In the @code{function} case that
196temporary will be destroyed when the function returns.
b98e139b
MM
197
198These considerations mean that it is probably a bad idea to use
199statement-expressions of this form in header files that are designed to
54e1d3a6
MM
200work with C++. (Note that some versions of the GNU C Library contained
201header files using statement-expression that lead to precisely this
202bug.)
b98e139b 203
16ef3acc
JM
204Jumping into a statement expression with @code{goto} or using a
205@code{switch} statement outside the statement expression with a
206@code{case} or @code{default} label inside the statement expression is
207not permitted. Jumping into a statement expression with a computed
208@code{goto} (@pxref{Labels as Values}) yields undefined behavior.
209Jumping out of a statement expression is permitted, but if the
210statement expression is part of a larger expression then it is
211unspecified which other subexpressions of that expression have been
212evaluated except where the language definition requires certain
213subexpressions to be evaluated before or after the statement
214expression. In any case, as with a function call the evaluation of a
215statement expression is not interleaved with the evaluation of other
216parts of the containing expression. For example,
217
218@smallexample
219 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
220@end smallexample
221
222@noindent
223will call @code{foo} and @code{bar1} and will not call @code{baz} but
224may or may not call @code{bar2}. If @code{bar2} is called, it will be
225called after @code{foo} and before @code{bar1}
226
c1f7febf
RK
227@node Local Labels
228@section Locally Declared Labels
229@cindex local labels
230@cindex macros, local labels
231
14e33ee8 232GCC allows you to declare @dfn{local labels} in any nested block
8a36672b 233scope. A local label is just like an ordinary label, but you can
14e33ee8 234only reference it (with a @code{goto} statement, or by taking its
daf2f129 235address) within the block in which it was declared.
c1f7febf
RK
236
237A local label declaration looks like this:
238
3ab51846 239@smallexample
c1f7febf 240__label__ @var{label};
3ab51846 241@end smallexample
c1f7febf
RK
242
243@noindent
244or
245
3ab51846 246@smallexample
0d893a63 247__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
3ab51846 248@end smallexample
c1f7febf 249
14e33ee8
ZW
250Local label declarations must come at the beginning of the block,
251before any ordinary declarations or statements.
c1f7febf
RK
252
253The label declaration defines the label @emph{name}, but does not define
254the label itself. You must do this in the usual way, with
255@code{@var{label}:}, within the statements of the statement expression.
256
14e33ee8
ZW
257The local label feature is useful for complex macros. If a macro
258contains nested loops, a @code{goto} can be useful for breaking out of
259them. However, an ordinary label whose scope is the whole function
260cannot be used: if the macro can be expanded several times in one
261function, the label will be multiply defined in that function. A
262local label avoids this problem. For example:
263
3ab51846 264@smallexample
14e33ee8
ZW
265#define SEARCH(value, array, target) \
266do @{ \
267 __label__ found; \
268 typeof (target) _SEARCH_target = (target); \
269 typeof (*(array)) *_SEARCH_array = (array); \
270 int i, j; \
271 int value; \
272 for (i = 0; i < max; i++) \
273 for (j = 0; j < max; j++) \
274 if (_SEARCH_array[i][j] == _SEARCH_target) \
275 @{ (value) = i; goto found; @} \
276 (value) = -1; \
277 found:; \
278@} while (0)
3ab51846 279@end smallexample
14e33ee8
ZW
280
281This could also be written using a statement-expression:
c1f7febf 282
3ab51846 283@smallexample
c1f7febf 284#define SEARCH(array, target) \
310668e8 285(@{ \
c1f7febf
RK
286 __label__ found; \
287 typeof (target) _SEARCH_target = (target); \
288 typeof (*(array)) *_SEARCH_array = (array); \
289 int i, j; \
290 int value; \
291 for (i = 0; i < max; i++) \
292 for (j = 0; j < max; j++) \
293 if (_SEARCH_array[i][j] == _SEARCH_target) \
310668e8 294 @{ value = i; goto found; @} \
c1f7febf
RK
295 value = -1; \
296 found: \
297 value; \
298@})
3ab51846 299@end smallexample
c1f7febf 300
14e33ee8
ZW
301Local label declarations also make the labels they declare visible to
302nested functions, if there are any. @xref{Nested Functions}, for details.
303
c1f7febf
RK
304@node Labels as Values
305@section Labels as Values
306@cindex labels as values
307@cindex computed gotos
308@cindex goto with computed label
309@cindex address of a label
310
311You can get the address of a label defined in the current function
312(or a containing function) with the unary operator @samp{&&}. The
313value has type @code{void *}. This value is a constant and can be used
314wherever a constant of that type is valid. For example:
315
3ab51846 316@smallexample
c1f7febf 317void *ptr;
0d893a63 318/* @r{@dots{}} */
c1f7febf 319ptr = &&foo;
3ab51846 320@end smallexample
c1f7febf
RK
321
322To use these values, you need to be able to jump to one. This is done
323with the computed goto statement@footnote{The analogous feature in
324Fortran is called an assigned goto, but that name seems inappropriate in
325C, where one can do more than simply store label addresses in label
326variables.}, @code{goto *@var{exp};}. For example,
327
3ab51846 328@smallexample
c1f7febf 329goto *ptr;
3ab51846 330@end smallexample
c1f7febf
RK
331
332@noindent
333Any expression of type @code{void *} is allowed.
334
335One way of using these constants is in initializing a static array that
336will serve as a jump table:
337
3ab51846 338@smallexample
c1f7febf 339static void *array[] = @{ &&foo, &&bar, &&hack @};
3ab51846 340@end smallexample
c1f7febf
RK
341
342Then you can select a label with indexing, like this:
343
3ab51846 344@smallexample
c1f7febf 345goto *array[i];
3ab51846 346@end smallexample
c1f7febf
RK
347
348@noindent
349Note that this does not check whether the subscript is in bounds---array
350indexing in C never does that.
351
352Such an array of label values serves a purpose much like that of the
353@code{switch} statement. The @code{switch} statement is cleaner, so
354use that rather than an array unless the problem does not fit a
355@code{switch} statement very well.
356
357Another use of label values is in an interpreter for threaded code.
358The labels within the interpreter function can be stored in the
359threaded code for super-fast dispatching.
360
02f52e19 361You may not use this mechanism to jump to code in a different function.
47620e09 362If you do that, totally unpredictable things will happen. The best way to
c1f7febf
RK
363avoid this is to store the label address only in automatic variables and
364never pass it as an argument.
365
47620e09
RH
366An alternate way to write the above example is
367
3ab51846 368@smallexample
310668e8
JM
369static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
370 &&hack - &&foo @};
47620e09 371goto *(&&foo + array[i]);
3ab51846 372@end smallexample
47620e09
RH
373
374@noindent
375This is more friendly to code living in shared libraries, as it reduces
376the number of dynamic relocations that are needed, and by consequence,
377allows the data to be read-only.
378
86631ea3
MJ
379The @code{&&foo} expressions for the same label might have different
380values if the containing function is inlined or cloned. If a program
381relies on them being always the same,
382@code{__attribute__((__noinline__,__noclone__))} should be used to
383prevent inlining and cloning. If @code{&&foo} is used in a static
384variable initializer, inlining and cloning is forbidden.
2092ee7d 385
c1f7febf
RK
386@node Nested Functions
387@section Nested Functions
388@cindex nested functions
389@cindex downward funargs
390@cindex thunks
391
392A @dfn{nested function} is a function defined inside another function.
393(Nested functions are not supported for GNU C++.) The nested function's
394name is local to the block where it is defined. For example, here we
395define a nested function named @code{square}, and call it twice:
396
3ab51846 397@smallexample
c1f7febf
RK
398@group
399foo (double a, double b)
400@{
401 double square (double z) @{ return z * z; @}
402
403 return square (a) + square (b);
404@}
405@end group
3ab51846 406@end smallexample
c1f7febf
RK
407
408The nested function can access all the variables of the containing
409function that are visible at the point of its definition. This is
410called @dfn{lexical scoping}. For example, here we show a nested
411function which uses an inherited variable named @code{offset}:
412
3ab51846 413@smallexample
aee96fe9 414@group
c1f7febf
RK
415bar (int *array, int offset, int size)
416@{
417 int access (int *array, int index)
418 @{ return array[index + offset]; @}
419 int i;
0d893a63 420 /* @r{@dots{}} */
c1f7febf 421 for (i = 0; i < size; i++)
0d893a63 422 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
c1f7febf 423@}
aee96fe9 424@end group
3ab51846 425@end smallexample
c1f7febf
RK
426
427Nested function definitions are permitted within functions in the places
475b6e22
JM
428where variable definitions are allowed; that is, in any block, mixed
429with the other declarations and statements in the block.
c1f7febf
RK
430
431It is possible to call the nested function from outside the scope of its
432name by storing its address or passing the address to another function:
433
3ab51846 434@smallexample
c1f7febf
RK
435hack (int *array, int size)
436@{
437 void store (int index, int value)
438 @{ array[index] = value; @}
439
440 intermediate (store, size);
441@}
3ab51846 442@end smallexample
c1f7febf
RK
443
444Here, the function @code{intermediate} receives the address of
445@code{store} as an argument. If @code{intermediate} calls @code{store},
446the arguments given to @code{store} are used to store into @code{array}.
447But this technique works only so long as the containing function
448(@code{hack}, in this example) does not exit.
449
450If you try to call the nested function through its address after the
451containing function has exited, all hell will break loose. If you try
452to call it after a containing scope level has exited, and if it refers
453to some of the variables that are no longer in scope, you may be lucky,
454but it's not wise to take the risk. If, however, the nested function
455does not refer to anything that has gone out of scope, you should be
456safe.
457
9c34dbbf 458GCC implements taking the address of a nested function using a technique
ff2ce160 459called @dfn{trampolines}. This technique was described in
63a26b78
SL
460@cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
461C++ Conference Proceedings, October 17-21, 1988).
c1f7febf
RK
462
463A nested function can jump to a label inherited from a containing
464function, provided the label was explicitly declared in the containing
465function (@pxref{Local Labels}). Such a jump returns instantly to the
466containing function, exiting the nested function which did the
467@code{goto} and any intermediate functions as well. Here is an example:
468
3ab51846 469@smallexample
c1f7febf
RK
470@group
471bar (int *array, int offset, int size)
472@{
473 __label__ failure;
474 int access (int *array, int index)
475 @{
476 if (index > size)
477 goto failure;
478 return array[index + offset];
479 @}
480 int i;
0d893a63 481 /* @r{@dots{}} */
c1f7febf 482 for (i = 0; i < size; i++)
0d893a63
MK
483 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
484 /* @r{@dots{}} */
c1f7febf
RK
485 return 0;
486
487 /* @r{Control comes here from @code{access}
488 if it detects an error.} */
489 failure:
490 return -1;
491@}
492@end group
3ab51846 493@end smallexample
c1f7febf 494
28697267
DJ
495A nested function always has no linkage. Declaring one with
496@code{extern} or @code{static} is erroneous. If you need to declare the nested function
c1f7febf
RK
497before its definition, use @code{auto} (which is otherwise meaningless
498for function declarations).
499
3ab51846 500@smallexample
c1f7febf
RK
501bar (int *array, int offset, int size)
502@{
503 __label__ failure;
504 auto int access (int *, int);
0d893a63 505 /* @r{@dots{}} */
c1f7febf
RK
506 int access (int *array, int index)
507 @{
508 if (index > size)
509 goto failure;
510 return array[index + offset];
511 @}
0d893a63 512 /* @r{@dots{}} */
c1f7febf 513@}
3ab51846 514@end smallexample
c1f7febf
RK
515
516@node Constructing Calls
517@section Constructing Function Calls
518@cindex constructing calls
519@cindex forwarding calls
520
521Using the built-in functions described below, you can record
522the arguments a function received, and call another function
523with the same arguments, without knowing the number or types
524of the arguments.
525
526You can also record the return value of that function call,
527and later return that value, without knowing what data type
528the function tried to return (as long as your caller expects
529that data type).
530
6429bc7c
EB
531However, these built-in functions may interact badly with some
532sophisticated features or other extensions of the language. It
533is, therefore, not recommended to use them outside very simple
534functions acting as mere forwarders for their arguments.
535
84330467
JM
536@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
537This built-in function returns a pointer to data
c1f7febf
RK
538describing how to perform a call with the same arguments as were passed
539to the current function.
540
541The function saves the arg pointer register, structure value address,
542and all registers that might be used to pass arguments to a function
543into a block of memory allocated on the stack. Then it returns the
544address of that block.
84330467 545@end deftypefn
c1f7febf 546
84330467
JM
547@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
548This built-in function invokes @var{function}
549with a copy of the parameters described by @var{arguments}
550and @var{size}.
c1f7febf
RK
551
552The value of @var{arguments} should be the value returned by
553@code{__builtin_apply_args}. The argument @var{size} specifies the size
554of the stack argument data, in bytes.
555
84330467 556This function returns a pointer to data describing
c1f7febf
RK
557how to return whatever value was returned by @var{function}. The data
558is saved in a block of memory allocated on the stack.
559
560It is not always simple to compute the proper value for @var{size}. The
561value is used by @code{__builtin_apply} to compute the amount of data
562that should be pushed on the stack and copied from the incoming argument
563area.
84330467 564@end deftypefn
c1f7febf 565
84330467 566@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
c1f7febf
RK
567This built-in function returns the value described by @var{result} from
568the containing function. You should specify, for @var{result}, a value
569returned by @code{__builtin_apply}.
84330467 570@end deftypefn
c1f7febf 571
ab940b73 572@deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
6ef5231b
JJ
573This built-in function represents all anonymous arguments of an inline
574function. It can be used only in inline functions which will be always
575inlined, never compiled as a separate function, such as those using
576@code{__attribute__ ((__always_inline__))} or
577@code{__attribute__ ((__gnu_inline__))} extern inline functions.
578It must be only passed as last argument to some other function
579with variable arguments. This is useful for writing small wrapper
580inlines for variable argument functions, when using preprocessor
581macros is undesirable. For example:
582@smallexample
583extern int myprintf (FILE *f, const char *format, ...);
584extern inline __attribute__ ((__gnu_inline__)) int
585myprintf (FILE *f, const char *format, ...)
586@{
587 int r = fprintf (f, "myprintf: ");
588 if (r < 0)
589 return r;
590 int s = fprintf (f, format, __builtin_va_arg_pack ());
591 if (s < 0)
592 return s;
593 return r + s;
594@}
595@end smallexample
596@end deftypefn
597
ab940b73 598@deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
ab0e176c
JJ
599This built-in function returns the number of anonymous arguments of
600an inline function. It can be used only in inline functions which
601will be always inlined, never compiled as a separate function, such
602as those using @code{__attribute__ ((__always_inline__))} or
603@code{__attribute__ ((__gnu_inline__))} extern inline functions.
604For example following will do link or runtime checking of open
605arguments for optimized code:
606@smallexample
607#ifdef __OPTIMIZE__
608extern inline __attribute__((__gnu_inline__)) int
609myopen (const char *path, int oflag, ...)
610@{
611 if (__builtin_va_arg_pack_len () > 1)
612 warn_open_too_many_arguments ();
613
614 if (__builtin_constant_p (oflag))
615 @{
616 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
617 @{
618 warn_open_missing_mode ();
619 return __open_2 (path, oflag);
620 @}
621 return open (path, oflag, __builtin_va_arg_pack ());
622 @}
ff2ce160 623
ab0e176c
JJ
624 if (__builtin_va_arg_pack_len () < 1)
625 return __open_2 (path, oflag);
626
627 return open (path, oflag, __builtin_va_arg_pack ());
628@}
629#endif
630@end smallexample
631@end deftypefn
632
c1f7febf
RK
633@node Typeof
634@section Referring to a Type with @code{typeof}
635@findex typeof
636@findex sizeof
637@cindex macros, types of arguments
638
639Another way to refer to the type of an expression is with @code{typeof}.
640The syntax of using of this keyword looks like @code{sizeof}, but the
641construct acts semantically like a type name defined with @code{typedef}.
642
643There are two ways of writing the argument to @code{typeof}: with an
644expression or with a type. Here is an example with an expression:
645
3ab51846 646@smallexample
c1f7febf 647typeof (x[0](1))
3ab51846 648@end smallexample
c1f7febf
RK
649
650@noindent
89aed483
JM
651This assumes that @code{x} is an array of pointers to functions;
652the type described is that of the values of the functions.
c1f7febf
RK
653
654Here is an example with a typename as the argument:
655
3ab51846 656@smallexample
c1f7febf 657typeof (int *)
3ab51846 658@end smallexample
c1f7febf
RK
659
660@noindent
661Here the type described is that of pointers to @code{int}.
662
5490d604 663If you are writing a header file that must work when included in ISO C
c1f7febf
RK
664programs, write @code{__typeof__} instead of @code{typeof}.
665@xref{Alternate Keywords}.
666
667A @code{typeof}-construct can be used anywhere a typedef name could be
668used. For example, you can use it in a declaration, in a cast, or inside
669of @code{sizeof} or @code{typeof}.
670
928c19bb
JM
671The operand of @code{typeof} is evaluated for its side effects if and
672only if it is an expression of variably modified type or the name of
673such a type.
674
95f79357
ZW
675@code{typeof} is often useful in conjunction with the
676statements-within-expressions feature. Here is how the two together can
677be used to define a safe ``maximum'' macro that operates on any
678arithmetic type and evaluates each of its arguments exactly once:
679
3ab51846 680@smallexample
95f79357
ZW
681#define max(a,b) \
682 (@{ typeof (a) _a = (a); \
683 typeof (b) _b = (b); \
684 _a > _b ? _a : _b; @})
3ab51846 685@end smallexample
95f79357 686
526278c9
VR
687@cindex underscores in variables in macros
688@cindex @samp{_} in variables in macros
689@cindex local variables in macros
690@cindex variables, local, in macros
691@cindex macros, local variables in
692
693The reason for using names that start with underscores for the local
694variables is to avoid conflicts with variable names that occur within the
695expressions that are substituted for @code{a} and @code{b}. Eventually we
696hope to design a new form of declaration syntax that allows you to declare
697variables whose scopes start only after their initializers; this will be a
698more reliable way to prevent such conflicts.
699
95f79357
ZW
700@noindent
701Some more examples of the use of @code{typeof}:
702
c1f7febf
RK
703@itemize @bullet
704@item
705This declares @code{y} with the type of what @code{x} points to.
706
3ab51846 707@smallexample
c1f7febf 708typeof (*x) y;
3ab51846 709@end smallexample
c1f7febf
RK
710
711@item
712This declares @code{y} as an array of such values.
713
3ab51846 714@smallexample
c1f7febf 715typeof (*x) y[4];
3ab51846 716@end smallexample
c1f7febf
RK
717
718@item
719This declares @code{y} as an array of pointers to characters:
720
3ab51846 721@smallexample
c1f7febf 722typeof (typeof (char *)[4]) y;
3ab51846 723@end smallexample
c1f7febf
RK
724
725@noindent
726It is equivalent to the following traditional C declaration:
727
3ab51846 728@smallexample
c1f7febf 729char *y[4];
3ab51846 730@end smallexample
c1f7febf
RK
731
732To see the meaning of the declaration using @code{typeof}, and why it
962e6e00 733might be a useful way to write, rewrite it with these macros:
c1f7febf 734
3ab51846 735@smallexample
c1f7febf
RK
736#define pointer(T) typeof(T *)
737#define array(T, N) typeof(T [N])
3ab51846 738@end smallexample
c1f7febf
RK
739
740@noindent
741Now the declaration can be rewritten this way:
742
3ab51846 743@smallexample
c1f7febf 744array (pointer (char), 4) y;
3ab51846 745@end smallexample
c1f7febf
RK
746
747@noindent
748Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
749pointers to @code{char}.
750@end itemize
751
95f79357
ZW
752@emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
753a more limited extension which permitted one to write
754
3ab51846 755@smallexample
95f79357 756typedef @var{T} = @var{expr};
3ab51846 757@end smallexample
95f79357
ZW
758
759@noindent
760with the effect of declaring @var{T} to have the type of the expression
761@var{expr}. This extension does not work with GCC 3 (versions between
7623.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
763relies on it should be rewritten to use @code{typeof}:
764
3ab51846 765@smallexample
95f79357 766typedef typeof(@var{expr}) @var{T};
3ab51846 767@end smallexample
95f79357
ZW
768
769@noindent
770This will work with all versions of GCC@.
771
c1f7febf
RK
772@node Conditionals
773@section Conditionals with Omitted Operands
774@cindex conditional expressions, extensions
775@cindex omitted middle-operands
776@cindex middle-operands, omitted
777@cindex extensions, @code{?:}
778@cindex @code{?:} extensions
779
780The middle operand in a conditional expression may be omitted. Then
781if the first operand is nonzero, its value is the value of the conditional
782expression.
783
784Therefore, the expression
785
3ab51846 786@smallexample
c1f7febf 787x ? : y
3ab51846 788@end smallexample
c1f7febf
RK
789
790@noindent
791has the value of @code{x} if that is nonzero; otherwise, the value of
792@code{y}.
793
794This example is perfectly equivalent to
795
3ab51846 796@smallexample
c1f7febf 797x ? x : y
3ab51846 798@end smallexample
c1f7febf 799
ab940b73
RW
800@cindex side effect in @code{?:}
801@cindex @code{?:} side effect
c1f7febf
RK
802@noindent
803In this simple case, the ability to omit the middle operand is not
804especially useful. When it becomes useful is when the first operand does,
805or may (if it is a macro argument), contain a side effect. Then repeating
806the operand in the middle would perform the side effect twice. Omitting
807the middle operand uses the value already computed without the undesirable
808effects of recomputing it.
809
a6766312
KT
810@node __int128
811@section 128-bits integers
812@cindex @code{__int128} data types
813
814As an extension the integer scalar type @code{__int128} is supported for
815targets having an integer mode wide enough to hold 128-bit.
816Simply write @code{__int128} for a signed 128-bit integer, or
817@code{unsigned __int128} for an unsigned 128-bit integer. There is no
818support in GCC to express an integer constant of type @code{__int128}
819for targets having @code{long long} integer with less then 128 bit width.
820
c1f7febf
RK
821@node Long Long
822@section Double-Word Integers
823@cindex @code{long long} data types
824@cindex double-word arithmetic
825@cindex multiprecision arithmetic
4b404517
JM
826@cindex @code{LL} integer suffix
827@cindex @code{ULL} integer suffix
c1f7febf 828
4b404517 829ISO C99 supports data types for integers that are at least 64 bits wide,
7e1542b9 830and as an extension GCC supports them in C90 mode and in C++.
4b404517 831Simply write @code{long long int} for a signed integer, or
c1f7febf 832@code{unsigned long long int} for an unsigned integer. To make an
84330467 833integer constant of type @code{long long int}, add the suffix @samp{LL}
c1f7febf 834to the integer. To make an integer constant of type @code{unsigned long
84330467 835long int}, add the suffix @samp{ULL} to the integer.
c1f7febf
RK
836
837You can use these types in arithmetic like any other integer types.
838Addition, subtraction, and bitwise boolean operations on these types
839are open-coded on all types of machines. Multiplication is open-coded
840if the machine supports fullword-to-doubleword a widening multiply
841instruction. Division and shifts are open-coded only on machines that
842provide special support. The operations that are not open-coded use
161d7b59 843special library routines that come with GCC@.
c1f7febf
RK
844
845There may be pitfalls when you use @code{long long} types for function
846arguments, unless you declare function prototypes. If a function
847expects type @code{int} for its argument, and you pass a value of type
848@code{long long int}, confusion will result because the caller and the
849subroutine will disagree about the number of bytes for the argument.
850Likewise, if the function expects @code{long long int} and you pass
851@code{int}. The best way to avoid such problems is to use prototypes.
852
853@node Complex
854@section Complex Numbers
855@cindex complex numbers
4b404517
JM
856@cindex @code{_Complex} keyword
857@cindex @code{__complex__} keyword
c1f7febf 858
4b404517 859ISO C99 supports complex floating data types, and as an extension GCC
7e1542b9 860supports them in C90 mode and in C++, and supports complex integer data
4b404517
JM
861types which are not part of ISO C99. You can declare complex types
862using the keyword @code{_Complex}. As an extension, the older GNU
863keyword @code{__complex__} is also supported.
c1f7febf 864
4b404517 865For example, @samp{_Complex double x;} declares @code{x} as a
c1f7febf 866variable whose real part and imaginary part are both of type
4b404517 867@code{double}. @samp{_Complex short int y;} declares @code{y} to
c1f7febf
RK
868have real and imaginary parts of type @code{short int}; this is not
869likely to be useful, but it shows that the set of complex types is
870complete.
871
872To write a constant with a complex data type, use the suffix @samp{i} or
873@samp{j} (either one; they are equivalent). For example, @code{2.5fi}
4b404517
JM
874has type @code{_Complex float} and @code{3i} has type
875@code{_Complex int}. Such a constant always has a pure imaginary
c1f7febf 876value, but you can form any complex value you like by adding one to a
4b404517
JM
877real constant. This is a GNU extension; if you have an ISO C99
878conforming C library (such as GNU libc), and want to construct complex
879constants of floating type, you should include @code{<complex.h>} and
880use the macros @code{I} or @code{_Complex_I} instead.
c1f7febf 881
4b404517
JM
882@cindex @code{__real__} keyword
883@cindex @code{__imag__} keyword
c1f7febf
RK
884To extract the real part of a complex-valued expression @var{exp}, write
885@code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
4b404517
JM
886extract the imaginary part. This is a GNU extension; for values of
887floating type, you should use the ISO C99 functions @code{crealf},
888@code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
889@code{cimagl}, declared in @code{<complex.h>} and also provided as
161d7b59 890built-in functions by GCC@.
c1f7febf 891
4b404517 892@cindex complex conjugation
c1f7febf 893The operator @samp{~} performs complex conjugation when used on a value
4b404517
JM
894with a complex type. This is a GNU extension; for values of
895floating type, you should use the ISO C99 functions @code{conjf},
896@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
161d7b59 897provided as built-in functions by GCC@.
c1f7febf 898
f0523f02 899GCC can allocate complex automatic variables in a noncontiguous
c1f7febf 900fashion; it's even possible for the real part to be in a register while
580fb356
JW
901the imaginary part is on the stack (or vice-versa). Only the DWARF2
902debug info format can represent this, so use of DWARF2 is recommended.
903If you are using the stabs debug info format, GCC describes a noncontiguous
904complex variable as if it were two separate variables of noncomplex type.
c1f7febf
RK
905If the variable's actual name is @code{foo}, the two fictitious
906variables are named @code{foo$real} and @code{foo$imag}. You can
907examine and set these two fictitious variables with your debugger.
908
c77cd3d1
UB
909@node Floating Types
910@section Additional Floating Types
911@cindex additional floating types
912@cindex @code{__float80} data type
913@cindex @code{__float128} data type
914@cindex @code{w} floating point suffix
915@cindex @code{q} floating point suffix
916@cindex @code{W} floating point suffix
917@cindex @code{Q} floating point suffix
918
919As an extension, the GNU C compiler supports additional floating
920types, @code{__float80} and @code{__float128} to support 80bit
921(@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
922Support for additional types includes the arithmetic operators:
923add, subtract, multiply, divide; unary arithmetic operators;
924relational operators; equality operators; and conversions to and from
925integer and other floating types. Use a suffix @samp{w} or @samp{W}
926in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
927for @code{_float128}. You can declare complex types using the
928corresponding internal complex type, @code{XCmode} for @code{__float80}
929type and @code{TCmode} for @code{__float128} type:
930
931@smallexample
932typedef _Complex float __attribute__((mode(TC))) _Complex128;
933typedef _Complex float __attribute__((mode(XC))) _Complex80;
934@end smallexample
935
936Not all targets support additional floating point types. @code{__float80}
897eef7b 937and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
41a1208a 938The @code{__float128} type is supported on hppa HP-UX targets.
c77cd3d1 939
0fd8c3ad
SL
940@node Half-Precision
941@section Half-Precision Floating Point
942@cindex half-precision floating point
943@cindex @code{__fp16} data type
944
945On ARM targets, GCC supports half-precision (16-bit) floating point via
ff2ce160 946the @code{__fp16} type. You must enable this type explicitly
0fd8c3ad
SL
947with the @option{-mfp16-format} command-line option in order to use it.
948
949ARM supports two incompatible representations for half-precision
950floating-point values. You must choose one of the representations and
951use it consistently in your program.
952
953Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
954This format can represent normalized values in the range of @math{2^{-14}} to 65504.
955There are 11 bits of significand precision, approximately 3
956decimal digits.
957
958Specifying @option{-mfp16-format=alternative} selects the ARM
959alternative format. This representation is similar to the IEEE
960format, but does not support infinities or NaNs. Instead, the range
961of exponents is extended, so that this format can represent normalized
962values in the range of @math{2^{-14}} to 131008.
963
964The @code{__fp16} type is a storage format only. For purposes
965of arithmetic and other operations, @code{__fp16} values in C or C++
966expressions are automatically promoted to @code{float}. In addition,
ff2ce160 967you cannot declare a function with a return value or parameters
0fd8c3ad
SL
968of type @code{__fp16}.
969
970Note that conversions from @code{double} to @code{__fp16}
971involve an intermediate conversion to @code{float}. Because
972of rounding, this can sometimes produce a different result than a
973direct conversion.
974
ff2ce160 975ARM provides hardware support for conversions between
0fd8c3ad
SL
976@code{__fp16} and @code{float} values
977as an extension to VFP and NEON (Advanced SIMD). GCC generates
e0dc3601 978code using these hardware instructions if you compile with
ff2ce160 979options to select an FPU that provides them;
e0dc3601 980for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
0fd8c3ad 981in addition to the @option{-mfp16-format} option to select
ff2ce160 982a half-precision format.
0fd8c3ad
SL
983
984Language-level support for the @code{__fp16} data type is
985independent of whether GCC generates code using hardware floating-point
986instructions. In cases where hardware support is not specified, GCC
987implements conversions between @code{__fp16} and @code{float} values
988as library calls.
989
9a8ce21f 990@node Decimal Float
85a92f7e
JJ
991@section Decimal Floating Types
992@cindex decimal floating types
9a8ce21f
JG
993@cindex @code{_Decimal32} data type
994@cindex @code{_Decimal64} data type
995@cindex @code{_Decimal128} data type
996@cindex @code{df} integer suffix
997@cindex @code{dd} integer suffix
998@cindex @code{dl} integer suffix
999@cindex @code{DF} integer suffix
1000@cindex @code{DD} integer suffix
1001@cindex @code{DL} integer suffix
1002
85a92f7e 1003As an extension, the GNU C compiler supports decimal floating types as
853eda8d 1004defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
85a92f7e
JJ
1005floating types in GCC will evolve as the draft technical report changes.
1006Calling conventions for any target might also change. Not all targets
1007support decimal floating types.
9a8ce21f 1008
85a92f7e
JJ
1009The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1010@code{_Decimal128}. They use a radix of ten, unlike the floating types
1011@code{float}, @code{double}, and @code{long double} whose radix is not
1012specified by the C standard but is usually two.
1013
1014Support for decimal floating types includes the arithmetic operators
9a8ce21f
JG
1015add, subtract, multiply, divide; unary arithmetic operators;
1016relational operators; equality operators; and conversions to and from
85a92f7e 1017integer and other floating types. Use a suffix @samp{df} or
9a8ce21f
JG
1018@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1019or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1020@code{_Decimal128}.
1021
85a92f7e
JJ
1022GCC support of decimal float as specified by the draft technical report
1023is incomplete:
1024
1025@itemize @bullet
85a92f7e
JJ
1026@item
1027When the value of a decimal floating type cannot be represented in the
1028integer type to which it is being converted, the result is undefined
1029rather than the result value specified by the draft technical report.
853eda8d
JJ
1030
1031@item
1032GCC does not provide the C library functionality associated with
1033@file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1034@file{wchar.h}, which must come from a separate C library implementation.
1035Because of this the GNU C compiler does not define macro
1036@code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1037the technical report.
85a92f7e 1038@end itemize
9a8ce21f
JG
1039
1040Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1041are supported by the DWARF2 debug information format.
1042
6f4d7222 1043@node Hex Floats
6b42b9ea
UD
1044@section Hex Floats
1045@cindex hex floats
c5c76735 1046
4b404517 1047ISO C99 supports floating-point numbers written not only in the usual
6f4d7222 1048decimal notation, such as @code{1.55e1}, but also numbers such as
4b404517 1049@code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
7e1542b9 1050supports this in C90 mode (except in some cases when strictly
4b404517 1051conforming) and in C++. In that format the
84330467 1052@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
6f4d7222 1053mandatory. The exponent is a decimal number that indicates the power of
84330467 10542 by which the significant part will be multiplied. Thus @samp{0x1.f} is
aee96fe9
JM
1055@tex
1056$1 {15\over16}$,
1057@end tex
1058@ifnottex
10591 15/16,
1060@end ifnottex
1061@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
6f4d7222
UD
1062is the same as @code{1.55e1}.
1063
1064Unlike for floating-point numbers in the decimal notation the exponent
1065is always required in the hexadecimal notation. Otherwise the compiler
1066would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
84330467 1067could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
6f4d7222
UD
1068extension for floating-point constants of type @code{float}.
1069
0f996086
CF
1070@node Fixed-Point
1071@section Fixed-Point Types
1072@cindex fixed-point types
1073@cindex @code{_Fract} data type
1074@cindex @code{_Accum} data type
1075@cindex @code{_Sat} data type
1076@cindex @code{hr} fixed-suffix
1077@cindex @code{r} fixed-suffix
1078@cindex @code{lr} fixed-suffix
1079@cindex @code{llr} fixed-suffix
1080@cindex @code{uhr} fixed-suffix
1081@cindex @code{ur} fixed-suffix
1082@cindex @code{ulr} fixed-suffix
1083@cindex @code{ullr} fixed-suffix
1084@cindex @code{hk} fixed-suffix
1085@cindex @code{k} fixed-suffix
1086@cindex @code{lk} fixed-suffix
1087@cindex @code{llk} fixed-suffix
1088@cindex @code{uhk} fixed-suffix
1089@cindex @code{uk} fixed-suffix
1090@cindex @code{ulk} fixed-suffix
1091@cindex @code{ullk} fixed-suffix
1092@cindex @code{HR} fixed-suffix
1093@cindex @code{R} fixed-suffix
1094@cindex @code{LR} fixed-suffix
1095@cindex @code{LLR} fixed-suffix
1096@cindex @code{UHR} fixed-suffix
1097@cindex @code{UR} fixed-suffix
1098@cindex @code{ULR} fixed-suffix
1099@cindex @code{ULLR} fixed-suffix
1100@cindex @code{HK} fixed-suffix
1101@cindex @code{K} fixed-suffix
1102@cindex @code{LK} fixed-suffix
1103@cindex @code{LLK} fixed-suffix
1104@cindex @code{UHK} fixed-suffix
1105@cindex @code{UK} fixed-suffix
1106@cindex @code{ULK} fixed-suffix
1107@cindex @code{ULLK} fixed-suffix
1108
1109As an extension, the GNU C compiler supports fixed-point types as
1110defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1111types in GCC will evolve as the draft technical report changes.
1112Calling conventions for any target might also change. Not all targets
1113support fixed-point types.
1114
1115The fixed-point types are
1116@code{short _Fract},
1117@code{_Fract},
1118@code{long _Fract},
1119@code{long long _Fract},
1120@code{unsigned short _Fract},
1121@code{unsigned _Fract},
1122@code{unsigned long _Fract},
1123@code{unsigned long long _Fract},
1124@code{_Sat short _Fract},
1125@code{_Sat _Fract},
1126@code{_Sat long _Fract},
1127@code{_Sat long long _Fract},
1128@code{_Sat unsigned short _Fract},
1129@code{_Sat unsigned _Fract},
1130@code{_Sat unsigned long _Fract},
1131@code{_Sat unsigned long long _Fract},
1132@code{short _Accum},
1133@code{_Accum},
1134@code{long _Accum},
1135@code{long long _Accum},
1136@code{unsigned short _Accum},
1137@code{unsigned _Accum},
1138@code{unsigned long _Accum},
1139@code{unsigned long long _Accum},
1140@code{_Sat short _Accum},
1141@code{_Sat _Accum},
1142@code{_Sat long _Accum},
1143@code{_Sat long long _Accum},
1144@code{_Sat unsigned short _Accum},
1145@code{_Sat unsigned _Accum},
1146@code{_Sat unsigned long _Accum},
1147@code{_Sat unsigned long long _Accum}.
8fd94bda 1148
0f996086
CF
1149Fixed-point data values contain fractional and optional integral parts.
1150The format of fixed-point data varies and depends on the target machine.
1151
8fd94bda
JJ
1152Support for fixed-point types includes:
1153@itemize @bullet
1154@item
1155prefix and postfix increment and decrement operators (@code{++}, @code{--})
1156@item
1157unary arithmetic operators (@code{+}, @code{-}, @code{!})
1158@item
1159binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1160@item
1161binary shift operators (@code{<<}, @code{>>})
1162@item
1163relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1164@item
1165equality operators (@code{==}, @code{!=})
1166@item
1167assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1168@code{<<=}, @code{>>=})
1169@item
1170conversions to and from integer, floating-point, or fixed-point types
1171@end itemize
1172
1173Use a suffix in a fixed-point literal constant:
1174@itemize
1175@item @samp{hr} or @samp{HR} for @code{short _Fract} and
1176@code{_Sat short _Fract}
1177@item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1178@item @samp{lr} or @samp{LR} for @code{long _Fract} and
1179@code{_Sat long _Fract}
1180@item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1181@code{_Sat long long _Fract}
1182@item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1183@code{_Sat unsigned short _Fract}
1184@item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1185@code{_Sat unsigned _Fract}
1186@item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1187@code{_Sat unsigned long _Fract}
1188@item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1189and @code{_Sat unsigned long long _Fract}
1190@item @samp{hk} or @samp{HK} for @code{short _Accum} and
1191@code{_Sat short _Accum}
1192@item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1193@item @samp{lk} or @samp{LK} for @code{long _Accum} and
1194@code{_Sat long _Accum}
1195@item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1196@code{_Sat long long _Accum}
1197@item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1198@code{_Sat unsigned short _Accum}
1199@item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1200@code{_Sat unsigned _Accum}
1201@item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1202@code{_Sat unsigned long _Accum}
1203@item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1204and @code{_Sat unsigned long long _Accum}
1205@end itemize
0f996086
CF
1206
1207GCC support of fixed-point types as specified by the draft technical report
1208is incomplete:
1209
1210@itemize @bullet
1211@item
1212Pragmas to control overflow and rounding behaviors are not implemented.
1213@end itemize
1214
1215Fixed-point types are supported by the DWARF2 debug information format.
1216
09e881c9 1217@node Named Address Spaces
542bf446
GJL
1218@section Named Address Spaces
1219@cindex Named Address Spaces
09e881c9
BE
1220
1221As an extension, the GNU C compiler supports named address spaces as
1222defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
85b8555e
DD
1223address spaces in GCC will evolve as the draft technical report
1224changes. Calling conventions for any target might also change. At
542bf446
GJL
1225present, only the AVR, SPU, M32C, and RL78 targets support address
1226spaces other than the generic address space.
1227
1228Address space identifiers may be used exactly like any other C type
1229qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1230document for more details.
1231
1232@anchor{AVR Named Address Spaces}
1233@subsection AVR Named Address Spaces
1234
1235On the AVR target, there are several address spaces that can be used
1236in order to put read-only data into the flash memory and access that
1237data by means of the special instructions @code{LPM} or @code{ELPM}
1238needed to read from flash.
1239
aa9ec4db
GJL
1240Per default, any data including read-only data is located in RAM
1241(the generic address space) so that non-generic address spaces are
1242needed to locate read-only data in flash memory
1243@emph{and} to generate the right instructions to access this data
542bf446
GJL
1244without using (inline) assembler code.
1245
1246@table @code
3a840863
GJL
1247@item __flash
1248@cindex @code{__flash} AVR Named Address Spaces
1249The @code{__flash} qualifier will locate data in the
542bf446
GJL
1250@code{.progmem.data} section. Data will be read using the @code{LPM}
1251instruction. Pointers to this address space are 16 bits wide.
1252
3a840863
GJL
1253@item __flash1
1254@item __flash2
1255@item __flash3
1256@item __flash4
1257@item __flash5
1258@cindex @code{__flash1} AVR Named Address Spaces
1259@cindex @code{__flash2} AVR Named Address Spaces
1260@cindex @code{__flash3} AVR Named Address Spaces
1261@cindex @code{__flash4} AVR Named Address Spaces
1262@cindex @code{__flash5} AVR Named Address Spaces
542bf446
GJL
1263These are 16-bit address spaces locating data in section
1264@code{.progmem@var{N}.data} where @var{N} refers to
3a840863 1265address space @code{__flash@var{N}}.
542bf446
GJL
1266The compiler will set the @code{RAMPZ} segment register approptiately
1267before reading data by means of the @code{ELPM} instruction.
1268
aa9ec4db 1269On devices with less 64@tie{}kiB flash segments as indicated by the address
542bf446 1270space, the compiler will cut down the segment number to a number the
aa9ec4db 1271device actually supports. Counting starts at@tie{}@code{0}
3a840863
GJL
1272for space @code{__flash}. For example, if you access address space
1273@code{__flash3} on an ATmega128 device with two 64@tie{}kiB flash segments,
1274the compiler will generate a read from @code{__flash1}, i.e.@: it
542bf446
GJL
1275will load @code{RAMPZ} with@tie{}@code{1} before reading.
1276
3a840863
GJL
1277@item __memx
1278@cindex @code{__memx} AVR Named Address Spaces
542bf446
GJL
1279This is a 24-bit address space that linearizes flash and RAM:
1280If the high bit of the address is set, data is read from
1281RAM using the lower two bytes as RAM address.
1282If the high bit of the address is clear, data is read from flash
1283with @code{RAMPZ} set according to the high byte of the address.
1284
1285Objects in this address space will be located in @code{.progmem.data}.
1286@end table
1287
aa9ec4db
GJL
1288@b{Example}
1289
1290@example
3a840863 1291char my_read (const __flash char ** p)
aa9ec4db
GJL
1292@{
1293 /* p is a pointer to RAM that points to a pointer to flash.
1294 The first indirection of p will read that flash pointer
1295 from RAM and the second indirection reads a char from this
1296 flash address. */
1297
1298 return **p;
1299@}
1300
1301/* Locate array[] in flash memory */
3a840863 1302const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
aa9ec4db
GJL
1303
1304int i = 1;
1305
1306int main (void)
1307@{
1308 /* Return 17 by reading from flash memory */
1309 return array[array[i]];
1310@}
1311@end example
1312
542bf446
GJL
1313For each named address space supported by avr-gcc there is an equally
1314named but uppercase built-in macro defined.
1315The purpose is to facilitate testing if respective address space
1316support is available or not:
1317
1318@example
3a840863
GJL
1319#ifdef __FLASH
1320const __flash int var = 1;
542bf446
GJL
1321
1322int read_i (void)
1323@{
1324 return i;
1325@}
1326#else
1327#include <avr/pgmspace.h> /* From avr-libc */
1328
1329const int var PROGMEM = 1;
1330
1331int read_i (void)
1332@{
1333 return (int) pgm_read_word (&i);
1334@}
3a840863 1335#endif /* __FLASH */
542bf446
GJL
1336@end example
1337
1338Notice that attribute @ref{AVR Variable Attributes,@code{progmem}}
1339locates data in flash but
aa9ec4db
GJL
1340accesses to these data will read from generic address space, i.e.@:
1341from RAM,
1342so that you need special accessors like @code{pgm_read_byte}
542bf446
GJL
1343from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}}.
1344
1345@b{Limitations and caveats}
1346
1347@itemize
1348@item
1349Reading across the 64@tie{}KiB section boundary of
3a840863 1350the @code{__flash} or @code{__flash@var{N}} address spaces
542bf446
GJL
1351will show undefined behaviour. The only address space that
1352supports reading across the 64@tie{}KiB flash segment boundaries is
3a840863 1353@code{__memx}.
542bf446
GJL
1354
1355@item
3a840863 1356If you use one if the @code{__flash@var{N}} address spaces
542bf446
GJL
1357you will have to arrange your linker skript to locate the
1358@code{.progmem@var{N}.data} sections according to your needs.
1359
1360@item
aa9ec4db
GJL
1361Any data or pointers to the non-generic address spaces must
1362be qualified as @code{const}, i.e.@: as read-only data.
542bf446 1363This still applies if the data in one of these address
aa9ec4db 1364spaces like software version number or calibration lookup table are intended to
542bf446
GJL
1365be changed after load time by, say, a boot loader. In this case
1366the right qualification is @code{const} @code{volatile} so that the compiler
1367must not optimize away known values or insert them
1368as immediates into operands of instructions.
1369
1370@item
1371Code like the following is not yet supported because of missing
1372support in avr-binutils,
1373see @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1374@example
3a840863
GJL
1375extern const __memx char foo;
1376const __memx void *pfoo = &foo;
542bf446
GJL
1377@end example
1378The code will throw an assembler warning and the high byte of
aa9ec4db 1379@code{pfoo} will be initialized with@tie{}@code{0}, i.e.@: the
542bf446
GJL
1380initialization will be as if @code{foo} was located in the first
138164@tie{}KiB chunk of flash.
1382
542bf446
GJL
1383@end itemize
1384
542bf446
GJL
1385@subsection M32C Named Address Spaces
1386@cindex @code{__far} M32C Named Address Spaces
1387
1388On the M32C target, with the R8C and M16C cpu variants, variables
1389qualified with @code{__far} are accessed using 32-bit addresses in
1390order to access memory beyond the first 64@tie{}Ki bytes. If
1391@code{__far} is used with the M32CM or M32C cpu variants, it has no
1392effect.
1393
1394@subsection RL78 Named Address Spaces
1395@cindex @code{__far} RL78 Named Address Spaces
1396
1397On the RL78 target, variables qualified with @code{__far} are accessed
1398with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1399addresses. Non-far variables are assumed to appear in the topmost
140064@tie{}KiB of the address space.
1401
1402@subsection SPU Named Address Spaces
1403@cindex @code{__ea} SPU Named Address Spaces
1404
1405On the SPU target variables may be declared as
85b8555e
DD
1406belonging to another address space by qualifying the type with the
1407@code{__ea} address space identifier:
09e881c9
BE
1408
1409@smallexample
1410extern int __ea i;
1411@end smallexample
1412
1413When the variable @code{i} is accessed, the compiler will generate
1414special code to access this variable. It may use runtime library
1415support, or generate special machine instructions to access that address
1416space.
1417
c1f7febf
RK
1418@node Zero Length
1419@section Arrays of Length Zero
1420@cindex arrays of length zero
1421@cindex zero-length arrays
1422@cindex length-zero arrays
ffc5c6a9 1423@cindex flexible array members
c1f7febf 1424
161d7b59 1425Zero-length arrays are allowed in GNU C@. They are very useful as the
584ef5fe 1426last element of a structure which is really a header for a variable-length
c1f7febf
RK
1427object:
1428
3ab51846 1429@smallexample
c1f7febf
RK
1430struct line @{
1431 int length;
1432 char contents[0];
1433@};
1434
584ef5fe
RH
1435struct line *thisline = (struct line *)
1436 malloc (sizeof (struct line) + this_length);
1437thisline->length = this_length;
3ab51846 1438@end smallexample
c1f7febf 1439
3764f879 1440In ISO C90, you would have to give @code{contents} a length of 1, which
c1f7febf
RK
1441means either you waste space or complicate the argument to @code{malloc}.
1442
02f52e19 1443In ISO C99, you would use a @dfn{flexible array member}, which is
584ef5fe
RH
1444slightly different in syntax and semantics:
1445
1446@itemize @bullet
1447@item
1448Flexible array members are written as @code{contents[]} without
1449the @code{0}.
1450
1451@item
1452Flexible array members have incomplete type, and so the @code{sizeof}
1453operator may not be applied. As a quirk of the original implementation
1454of zero-length arrays, @code{sizeof} evaluates to zero.
1455
1456@item
1457Flexible array members may only appear as the last member of a
e7b6a0ee 1458@code{struct} that is otherwise non-empty.
2984fe64
JM
1459
1460@item
1461A structure containing a flexible array member, or a union containing
1462such a structure (possibly recursively), may not be a member of a
1463structure or an element of an array. (However, these uses are
1464permitted by GCC as extensions.)
ffc5c6a9 1465@end itemize
a25f1211 1466
ffc5c6a9 1467GCC versions before 3.0 allowed zero-length arrays to be statically
e7b6a0ee
DD
1468initialized, as if they were flexible arrays. In addition to those
1469cases that were useful, it also allowed initializations in situations
1470that would corrupt later data. Non-empty initialization of zero-length
1471arrays is now treated like any case where there are more initializer
1472elements than the array holds, in that a suitable warning about "excess
1473elements in array" is given, and the excess elements (all of them, in
1474this case) are ignored.
ffc5c6a9
RH
1475
1476Instead GCC allows static initialization of flexible array members.
1477This is equivalent to defining a new structure containing the original
1478structure followed by an array of sufficient size to contain the data.
e979f9e8 1479I.e.@: in the following, @code{f1} is constructed as if it were declared
ffc5c6a9 1480like @code{f2}.
a25f1211 1481
3ab51846 1482@smallexample
ffc5c6a9
RH
1483struct f1 @{
1484 int x; int y[];
1485@} f1 = @{ 1, @{ 2, 3, 4 @} @};
1486
1487struct f2 @{
1488 struct f1 f1; int data[3];
1489@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
3ab51846 1490@end smallexample
584ef5fe 1491
ffc5c6a9
RH
1492@noindent
1493The convenience of this extension is that @code{f1} has the desired
1494type, eliminating the need to consistently refer to @code{f2.f1}.
1495
1496This has symmetry with normal static arrays, in that an array of
1497unknown size is also written with @code{[]}.
a25f1211 1498
ffc5c6a9
RH
1499Of course, this extension only makes sense if the extra data comes at
1500the end of a top-level object, as otherwise we would be overwriting
1501data at subsequent offsets. To avoid undue complication and confusion
1502with initialization of deeply nested arrays, we simply disallow any
1503non-empty initialization except when the structure is the top-level
1504object. For example:
584ef5fe 1505
3ab51846 1506@smallexample
ffc5c6a9
RH
1507struct foo @{ int x; int y[]; @};
1508struct bar @{ struct foo z; @};
1509
13ba36b4
JM
1510struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1511struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1512struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1513struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
3ab51846 1514@end smallexample
4b606faf 1515
ba05abd3
GK
1516@node Empty Structures
1517@section Structures With No Members
1518@cindex empty structures
1519@cindex zero-size structures
1520
1521GCC permits a C structure to have no members:
1522
3ab51846 1523@smallexample
ba05abd3
GK
1524struct empty @{
1525@};
3ab51846 1526@end smallexample
ba05abd3
GK
1527
1528The structure will have size zero. In C++, empty structures are part
db0b376e
MM
1529of the language. G++ treats empty structures as if they had a single
1530member of type @code{char}.
ba05abd3 1531
c1f7febf
RK
1532@node Variable Length
1533@section Arrays of Variable Length
1534@cindex variable-length arrays
1535@cindex arrays of variable length
4b404517 1536@cindex VLAs
c1f7febf 1537
4b404517 1538Variable-length automatic arrays are allowed in ISO C99, and as an
fbdaa0b2 1539extension GCC accepts them in C90 mode and in C++. These arrays are
c1f7febf
RK
1540declared like any other automatic arrays, but with a length that is not
1541a constant expression. The storage is allocated at the point of
1542declaration and deallocated when the brace-level is exited. For
1543example:
1544
3ab51846 1545@smallexample
c1f7febf
RK
1546FILE *
1547concat_fopen (char *s1, char *s2, char *mode)
1548@{
1549 char str[strlen (s1) + strlen (s2) + 1];
1550 strcpy (str, s1);
1551 strcat (str, s2);
1552 return fopen (str, mode);
1553@}
3ab51846 1554@end smallexample
c1f7febf
RK
1555
1556@cindex scope of a variable length array
1557@cindex variable-length array scope
1558@cindex deallocating variable length arrays
1559Jumping or breaking out of the scope of the array name deallocates the
1560storage. Jumping into the scope is not allowed; you get an error
1561message for it.
1562
1563@cindex @code{alloca} vs variable-length arrays
1564You can use the function @code{alloca} to get an effect much like
1565variable-length arrays. The function @code{alloca} is available in
1566many other C implementations (but not in all). On the other hand,
1567variable-length arrays are more elegant.
1568
1569There are other differences between these two methods. Space allocated
1570with @code{alloca} exists until the containing @emph{function} returns.
1571The space for a variable-length array is deallocated as soon as the array
1572name's scope ends. (If you use both variable-length arrays and
1573@code{alloca} in the same function, deallocation of a variable-length array
1574will also deallocate anything more recently allocated with @code{alloca}.)
1575
1576You can also use variable-length arrays as arguments to functions:
1577
3ab51846 1578@smallexample
c1f7febf
RK
1579struct entry
1580tester (int len, char data[len][len])
1581@{
0d893a63 1582 /* @r{@dots{}} */
c1f7febf 1583@}
3ab51846 1584@end smallexample
c1f7febf
RK
1585
1586The length of an array is computed once when the storage is allocated
1587and is remembered for the scope of the array in case you access it with
1588@code{sizeof}.
1589
1590If you want to pass the array first and the length afterward, you can
1591use a forward declaration in the parameter list---another GNU extension.
1592
3ab51846 1593@smallexample
c1f7febf
RK
1594struct entry
1595tester (int len; char data[len][len], int len)
1596@{
0d893a63 1597 /* @r{@dots{}} */
c1f7febf 1598@}
3ab51846 1599@end smallexample
c1f7febf
RK
1600
1601@cindex parameter forward declaration
1602The @samp{int len} before the semicolon is a @dfn{parameter forward
1603declaration}, and it serves the purpose of making the name @code{len}
1604known when the declaration of @code{data} is parsed.
1605
1606You can write any number of such parameter forward declarations in the
1607parameter list. They can be separated by commas or semicolons, but the
1608last one must end with a semicolon, which is followed by the ``real''
1609parameter declarations. Each forward declaration must match a ``real''
4b404517
JM
1610declaration in parameter name and data type. ISO C99 does not support
1611parameter forward declarations.
c1f7febf 1612
ccd96f0a
NB
1613@node Variadic Macros
1614@section Macros with a Variable Number of Arguments.
c1f7febf
RK
1615@cindex variable number of arguments
1616@cindex macro with variable arguments
1617@cindex rest argument (in macro)
ccd96f0a 1618@cindex variadic macros
c1f7febf 1619
ccd96f0a
NB
1620In the ISO C standard of 1999, a macro can be declared to accept a
1621variable number of arguments much as a function can. The syntax for
1622defining the macro is similar to that of a function. Here is an
1623example:
c1f7febf 1624
478c9e72 1625@smallexample
ccd96f0a 1626#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
478c9e72 1627@end smallexample
c1f7febf 1628
ccd96f0a
NB
1629Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1630such a macro, it represents the zero or more tokens until the closing
1631parenthesis that ends the invocation, including any commas. This set of
1632tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1633wherever it appears. See the CPP manual for more information.
1634
1635GCC has long supported variadic macros, and used a different syntax that
1636allowed you to give a name to the variable arguments just like any other
1637argument. Here is an example:
c1f7febf 1638
3ab51846 1639@smallexample
ccd96f0a 1640#define debug(format, args...) fprintf (stderr, format, args)
3ab51846 1641@end smallexample
c1f7febf 1642
ccd96f0a
NB
1643This is in all ways equivalent to the ISO C example above, but arguably
1644more readable and descriptive.
c1f7febf 1645
ccd96f0a
NB
1646GNU CPP has two further variadic macro extensions, and permits them to
1647be used with either of the above forms of macro definition.
1648
1649In standard C, you are not allowed to leave the variable argument out
1650entirely; but you are allowed to pass an empty argument. For example,
1651this invocation is invalid in ISO C, because there is no comma after
1652the string:
c1f7febf 1653
3ab51846 1654@smallexample
ccd96f0a 1655debug ("A message")
3ab51846 1656@end smallexample
c1f7febf 1657
ccd96f0a
NB
1658GNU CPP permits you to completely omit the variable arguments in this
1659way. In the above examples, the compiler would complain, though since
1660the expansion of the macro still has the extra comma after the format
1661string.
1662
1663To help solve this problem, CPP behaves specially for variable arguments
1664used with the token paste operator, @samp{##}. If instead you write
c1f7febf 1665
478c9e72 1666@smallexample
ccd96f0a 1667#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
478c9e72 1668@end smallexample
c1f7febf 1669
ccd96f0a
NB
1670and if the variable arguments are omitted or empty, the @samp{##}
1671operator causes the preprocessor to remove the comma before it. If you
1672do provide some variable arguments in your macro invocation, GNU CPP
1673does not complain about the paste operation and instead places the
1674variable arguments after the comma. Just like any other pasted macro
1675argument, these arguments are not macro expanded.
1676
1677@node Escaped Newlines
1678@section Slightly Looser Rules for Escaped Newlines
1679@cindex escaped newlines
1680@cindex newlines (escaped)
1681
f458d1d5
ZW
1682Recently, the preprocessor has relaxed its treatment of escaped
1683newlines. Previously, the newline had to immediately follow a
e6cc3a24
ZW
1684backslash. The current implementation allows whitespace in the form
1685of spaces, horizontal and vertical tabs, and form feeds between the
ccd96f0a
NB
1686backslash and the subsequent newline. The preprocessor issues a
1687warning, but treats it as a valid escaped newline and combines the two
1688lines to form a single logical line. This works within comments and
e6cc3a24
ZW
1689tokens, as well as between tokens. Comments are @emph{not} treated as
1690whitespace for the purposes of this relaxation, since they have not
1691yet been replaced with spaces.
c1f7febf
RK
1692
1693@node Subscripting
1694@section Non-Lvalue Arrays May Have Subscripts
1695@cindex subscripting
1696@cindex arrays, non-lvalue
1697
1698@cindex subscripting and function values
207bf485
JM
1699In ISO C99, arrays that are not lvalues still decay to pointers, and
1700may be subscripted, although they may not be modified or used after
1701the next sequence point and the unary @samp{&} operator may not be
1702applied to them. As an extension, GCC allows such arrays to be
7e1542b9 1703subscripted in C90 mode, though otherwise they do not decay to
207bf485 1704pointers outside C99 mode. For example,
7e1542b9 1705this is valid in GNU C though not valid in C90:
c1f7febf 1706
3ab51846 1707@smallexample
c1f7febf
RK
1708@group
1709struct foo @{int a[4];@};
1710
1711struct foo f();
1712
1713bar (int index)
1714@{
1715 return f().a[index];
1716@}
1717@end group
3ab51846 1718@end smallexample
c1f7febf
RK
1719
1720@node Pointer Arith
1721@section Arithmetic on @code{void}- and Function-Pointers
1722@cindex void pointers, arithmetic
1723@cindex void, size of pointer to
1724@cindex function pointers, arithmetic
1725@cindex function, size of pointer to
1726
1727In GNU C, addition and subtraction operations are supported on pointers to
1728@code{void} and on pointers to functions. This is done by treating the
1729size of a @code{void} or of a function as 1.
1730
1731A consequence of this is that @code{sizeof} is also allowed on @code{void}
1732and on function types, and returns 1.
1733
84330467
JM
1734@opindex Wpointer-arith
1735The option @option{-Wpointer-arith} requests a warning if these extensions
c1f7febf
RK
1736are used.
1737
1738@node Initializers
1739@section Non-Constant Initializers
1740@cindex initializers, non-constant
1741@cindex non-constant initializers
1742
4b404517 1743As in standard C++ and ISO C99, the elements of an aggregate initializer for an
161d7b59 1744automatic variable are not required to be constant expressions in GNU C@.
c1f7febf
RK
1745Here is an example of an initializer with run-time varying elements:
1746
3ab51846 1747@smallexample
c1f7febf
RK
1748foo (float f, float g)
1749@{
1750 float beat_freqs[2] = @{ f-g, f+g @};
0d893a63 1751 /* @r{@dots{}} */
c1f7febf 1752@}
3ab51846 1753@end smallexample
c1f7febf 1754
4b404517
JM
1755@node Compound Literals
1756@section Compound Literals
c1f7febf
RK
1757@cindex constructor expressions
1758@cindex initializations in expressions
1759@cindex structures, constructor expression
1760@cindex expressions, constructor
4b404517
JM
1761@cindex compound literals
1762@c The GNU C name for what C99 calls compound literals was "constructor expressions".
c1f7febf 1763
4b404517 1764ISO C99 supports compound literals. A compound literal looks like
c1f7febf
RK
1765a cast containing an initializer. Its value is an object of the
1766type specified in the cast, containing the elements specified in
db3acfa5 1767the initializer; it is an lvalue. As an extension, GCC supports
7e1542b9 1768compound literals in C90 mode and in C++.
c1f7febf
RK
1769
1770Usually, the specified type is a structure. Assume that
1771@code{struct foo} and @code{structure} are declared as shown:
1772
3ab51846 1773@smallexample
c1f7febf 1774struct foo @{int a; char b[2];@} structure;
3ab51846 1775@end smallexample
c1f7febf
RK
1776
1777@noindent
4b404517 1778Here is an example of constructing a @code{struct foo} with a compound literal:
c1f7febf 1779
3ab51846 1780@smallexample
c1f7febf 1781structure = ((struct foo) @{x + y, 'a', 0@});
3ab51846 1782@end smallexample
c1f7febf
RK
1783
1784@noindent
1785This is equivalent to writing the following:
1786
3ab51846 1787@smallexample
c1f7febf
RK
1788@{
1789 struct foo temp = @{x + y, 'a', 0@};
1790 structure = temp;
1791@}
3ab51846 1792@end smallexample
c1f7febf 1793
4b404517 1794You can also construct an array. If all the elements of the compound literal
c1f7febf 1795are (made up of) simple constant expressions, suitable for use in
db3acfa5
JM
1796initializers of objects of static storage duration, then the compound
1797literal can be coerced to a pointer to its first element and used in
1798such an initializer, as shown here:
c1f7febf 1799
3ab51846 1800@smallexample
c1f7febf 1801char **foo = (char *[]) @{ "x", "y", "z" @};
3ab51846 1802@end smallexample
c1f7febf 1803
49d6830d 1804Compound literals for scalar types and union types are
4b404517 1805also allowed, but then the compound literal is equivalent
c1f7febf
RK
1806to a cast.
1807
59c83dbf
JJ
1808As a GNU extension, GCC allows initialization of objects with static storage
1809duration by compound literals (which is not possible in ISO C99, because
1810the initializer is not a constant).
1811It is handled as if the object was initialized only with the bracket
1eaf20ec 1812enclosed list if the types of the compound literal and the object match.
59c83dbf
JJ
1813The initializer list of the compound literal must be constant.
1814If the object being initialized has array type of unknown size, the size is
ad47f1e5 1815determined by compound literal size.
59c83dbf 1816
3ab51846 1817@smallexample
59c83dbf
JJ
1818static struct foo x = (struct foo) @{1, 'a', 'b'@};
1819static int y[] = (int []) @{1, 2, 3@};
1820static int z[] = (int [3]) @{1@};
3ab51846 1821@end smallexample
59c83dbf
JJ
1822
1823@noindent
1824The above lines are equivalent to the following:
3ab51846 1825@smallexample
59c83dbf
JJ
1826static struct foo x = @{1, 'a', 'b'@};
1827static int y[] = @{1, 2, 3@};
ad47f1e5 1828static int z[] = @{1, 0, 0@};
3ab51846 1829@end smallexample
59c83dbf 1830
4b404517
JM
1831@node Designated Inits
1832@section Designated Initializers
c1f7febf
RK
1833@cindex initializers with labeled elements
1834@cindex labeled elements in initializers
1835@cindex case labels in initializers
4b404517 1836@cindex designated initializers
c1f7febf 1837
7e1542b9 1838Standard C90 requires the elements of an initializer to appear in a fixed
c1f7febf
RK
1839order, the same as the order of the elements in the array or structure
1840being initialized.
1841
26d4fec7
JM
1842In ISO C99 you can give the elements in any order, specifying the array
1843indices or structure field names they apply to, and GNU C allows this as
7e1542b9 1844an extension in C90 mode as well. This extension is not
c1f7febf
RK
1845implemented in GNU C++.
1846
26d4fec7 1847To specify an array index, write
c1f7febf
RK
1848@samp{[@var{index}] =} before the element value. For example,
1849
3ab51846 1850@smallexample
26d4fec7 1851int a[6] = @{ [4] = 29, [2] = 15 @};
3ab51846 1852@end smallexample
c1f7febf
RK
1853
1854@noindent
1855is equivalent to
1856
3ab51846 1857@smallexample
c1f7febf 1858int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
3ab51846 1859@end smallexample
c1f7febf
RK
1860
1861@noindent
1862The index values must be constant expressions, even if the array being
1863initialized is automatic.
1864
26d4fec7
JM
1865An alternative syntax for this which has been obsolete since GCC 2.5 but
1866GCC still accepts is to write @samp{[@var{index}]} before the element
1867value, with no @samp{=}.
1868
c1f7febf 1869To initialize a range of elements to the same value, write
26d4fec7
JM
1870@samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1871extension. For example,
c1f7febf 1872
3ab51846 1873@smallexample
c1f7febf 1874int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
3ab51846 1875@end smallexample
c1f7febf 1876
8b6a5902
JJ
1877@noindent
1878If the value in it has side-effects, the side-effects will happen only once,
1879not for each initialized field by the range initializer.
1880
c1f7febf
RK
1881@noindent
1882Note that the length of the array is the highest value specified
1883plus one.
1884
1885In a structure initializer, specify the name of a field to initialize
26d4fec7 1886with @samp{.@var{fieldname} =} before the element value. For example,
c1f7febf
RK
1887given the following structure,
1888
3ab51846 1889@smallexample
c1f7febf 1890struct point @{ int x, y; @};
3ab51846 1891@end smallexample
c1f7febf
RK
1892
1893@noindent
1894the following initialization
1895
3ab51846 1896@smallexample
26d4fec7 1897struct point p = @{ .y = yvalue, .x = xvalue @};
3ab51846 1898@end smallexample
c1f7febf
RK
1899
1900@noindent
1901is equivalent to
1902
3ab51846 1903@smallexample
c1f7febf 1904struct point p = @{ xvalue, yvalue @};
3ab51846 1905@end smallexample
c1f7febf 1906
26d4fec7
JM
1907Another syntax which has the same meaning, obsolete since GCC 2.5, is
1908@samp{@var{fieldname}:}, as shown here:
c1f7febf 1909
3ab51846 1910@smallexample
26d4fec7 1911struct point p = @{ y: yvalue, x: xvalue @};
3ab51846 1912@end smallexample
c1f7febf 1913
4b404517
JM
1914@cindex designators
1915The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1916@dfn{designator}. You can also use a designator (or the obsolete colon
1917syntax) when initializing a union, to specify which element of the union
1918should be used. For example,
c1f7febf 1919
3ab51846 1920@smallexample
c1f7febf
RK
1921union foo @{ int i; double d; @};
1922
26d4fec7 1923union foo f = @{ .d = 4 @};
3ab51846 1924@end smallexample
c1f7febf
RK
1925
1926@noindent
1927will convert 4 to a @code{double} to store it in the union using
1928the second element. By contrast, casting 4 to type @code{union foo}
1929would store it into the union as the integer @code{i}, since it is
1930an integer. (@xref{Cast to Union}.)
1931
1932You can combine this technique of naming elements with ordinary C
1933initialization of successive elements. Each initializer element that
4b404517 1934does not have a designator applies to the next consecutive element of the
c1f7febf
RK
1935array or structure. For example,
1936
3ab51846 1937@smallexample
c1f7febf 1938int a[6] = @{ [1] = v1, v2, [4] = v4 @};
3ab51846 1939@end smallexample
c1f7febf
RK
1940
1941@noindent
1942is equivalent to
1943
3ab51846 1944@smallexample
c1f7febf 1945int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
3ab51846 1946@end smallexample
c1f7febf
RK
1947
1948Labeling the elements of an array initializer is especially useful
1949when the indices are characters or belong to an @code{enum} type.
1950For example:
1951
3ab51846 1952@smallexample
c1f7febf
RK
1953int whitespace[256]
1954 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1955 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
3ab51846 1956@end smallexample
c1f7febf 1957
4b404517 1958@cindex designator lists
26d4fec7 1959You can also write a series of @samp{.@var{fieldname}} and
4b404517 1960@samp{[@var{index}]} designators before an @samp{=} to specify a
26d4fec7
JM
1961nested subobject to initialize; the list is taken relative to the
1962subobject corresponding to the closest surrounding brace pair. For
1963example, with the @samp{struct point} declaration above:
1964
478c9e72 1965@smallexample
26d4fec7 1966struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
478c9e72 1967@end smallexample
26d4fec7 1968
8b6a5902
JJ
1969@noindent
1970If the same field is initialized multiple times, it will have value from
1971the last initialization. If any such overridden initialization has
1972side-effect, it is unspecified whether the side-effect happens or not.
2dd76960 1973Currently, GCC will discard them and issue a warning.
8b6a5902 1974
c1f7febf
RK
1975@node Case Ranges
1976@section Case Ranges
1977@cindex case ranges
1978@cindex ranges in case statements
1979
1980You can specify a range of consecutive values in a single @code{case} label,
1981like this:
1982
3ab51846 1983@smallexample
c1f7febf 1984case @var{low} ... @var{high}:
3ab51846 1985@end smallexample
c1f7febf
RK
1986
1987@noindent
1988This has the same effect as the proper number of individual @code{case}
1989labels, one for each integer value from @var{low} to @var{high}, inclusive.
1990
1991This feature is especially useful for ranges of ASCII character codes:
1992
3ab51846 1993@smallexample
c1f7febf 1994case 'A' ... 'Z':
3ab51846 1995@end smallexample
c1f7febf
RK
1996
1997@strong{Be careful:} Write spaces around the @code{...}, for otherwise
1998it may be parsed wrong when you use it with integer values. For example,
1999write this:
2000
3ab51846 2001@smallexample
c1f7febf 2002case 1 ... 5:
3ab51846 2003@end smallexample
c1f7febf
RK
2004
2005@noindent
2006rather than this:
2007
3ab51846 2008@smallexample
c1f7febf 2009case 1...5:
3ab51846 2010@end smallexample
c1f7febf
RK
2011
2012@node Cast to Union
2013@section Cast to a Union Type
2014@cindex cast to a union
2015@cindex union, casting to a
2016
2017A cast to union type is similar to other casts, except that the type
2018specified is a union type. You can specify the type either with
2019@code{union @var{tag}} or with a typedef name. A cast to union is actually
2020a constructor though, not a cast, and hence does not yield an lvalue like
4b404517 2021normal casts. (@xref{Compound Literals}.)
c1f7febf
RK
2022
2023The types that may be cast to the union type are those of the members
2024of the union. Thus, given the following union and variables:
2025
3ab51846 2026@smallexample
c1f7febf
RK
2027union foo @{ int i; double d; @};
2028int x;
2029double y;
3ab51846 2030@end smallexample
c1f7febf
RK
2031
2032@noindent
aee96fe9 2033both @code{x} and @code{y} can be cast to type @code{union foo}.
c1f7febf
RK
2034
2035Using the cast as the right-hand side of an assignment to a variable of
2036union type is equivalent to storing in a member of the union:
2037
3ab51846 2038@smallexample
c1f7febf 2039union foo u;
0d893a63 2040/* @r{@dots{}} */
c1f7febf
RK
2041u = (union foo) x @equiv{} u.i = x
2042u = (union foo) y @equiv{} u.d = y
3ab51846 2043@end smallexample
c1f7febf
RK
2044
2045You can also use the union cast as a function argument:
2046
3ab51846 2047@smallexample
c1f7febf 2048void hack (union foo);
0d893a63 2049/* @r{@dots{}} */
c1f7febf 2050hack ((union foo) x);
3ab51846 2051@end smallexample
c1f7febf 2052
4b404517
JM
2053@node Mixed Declarations
2054@section Mixed Declarations and Code
2055@cindex mixed declarations and code
2056@cindex declarations, mixed with code
2057@cindex code, mixed with declarations
2058
2059ISO C99 and ISO C++ allow declarations and code to be freely mixed
2060within compound statements. As an extension, GCC also allows this in
7e1542b9 2061C90 mode. For example, you could do:
4b404517 2062
3ab51846 2063@smallexample
4b404517 2064int i;
0d893a63 2065/* @r{@dots{}} */
4b404517
JM
2066i++;
2067int j = i + 2;
3ab51846 2068@end smallexample
4b404517
JM
2069
2070Each identifier is visible from where it is declared until the end of
2071the enclosing block.
2072
c1f7febf
RK
2073@node Function Attributes
2074@section Declaring Attributes of Functions
2075@cindex function attributes
2076@cindex declaring attributes of functions
2077@cindex functions that never return
6e9a3221 2078@cindex functions that return more than once
c1f7febf
RK
2079@cindex functions that have no side effects
2080@cindex functions in arbitrary sections
2a59078d 2081@cindex functions that behave like malloc
c1f7febf
RK
2082@cindex @code{volatile} applied to function
2083@cindex @code{const} applied to function
26f6672d 2084@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
b34c7881 2085@cindex functions with non-null pointer arguments
c1f7febf
RK
2086@cindex functions that are passed arguments in registers on the 386
2087@cindex functions that pop the argument stack on the 386
2088@cindex functions that do not pop the argument stack on the 386
ab442df7
MM
2089@cindex functions that have different compilation options on the 386
2090@cindex functions that have different optimization options
ba885ec5 2091@cindex functions that are dynamically resolved
c1f7febf
RK
2092
2093In GNU C, you declare certain things about functions called in your program
2094which help the compiler optimize function calls and check your code more
2095carefully.
2096
2097The keyword @code{__attribute__} allows you to specify special
2098attributes when making a declaration. This keyword is followed by an
9162542e 2099attribute specification inside double parentheses. The following
eacecf96 2100attributes are currently defined for functions on all targets:
837edd5f 2101@code{aligned}, @code{alloc_size}, @code{noreturn},
86631ea3
MJ
2102@code{returns_twice}, @code{noinline}, @code{noclone},
2103@code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2104@code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
7458026b
ILT
2105@code{no_instrument_function}, @code{no_split_stack},
2106@code{section}, @code{constructor},
51bc54a6 2107@code{destructor}, @code{used}, @code{unused}, @code{deprecated},
ba885ec5
NS
2108@code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2109@code{warn_unused_result}, @code{nonnull}, @code{gnu_inline},
2110@code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2111@code{error} and @code{warning}. Several other attributes are defined
2112for functions on particular target systems. Other attributes,
2113including @code{section} are supported for variables declarations
2114(@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
c1f7febf 2115
110532c8
BS
2116GCC plugins may provide their own attributes.
2117
c1f7febf
RK
2118You may also specify attributes with @samp{__} preceding and following
2119each keyword. This allows you to use them in header files without
2120being concerned about a possible macro of the same name. For example,
2121you may use @code{__noreturn__} instead of @code{noreturn}.
2122
2c5e91d2
JM
2123@xref{Attribute Syntax}, for details of the exact syntax for using
2124attributes.
2125
c1f7febf 2126@table @code
8a36672b 2127@c Keep this table alphabetized by attribute name. Treat _ as space.
c1f7febf 2128
c8619b90
NS
2129@item alias ("@var{target}")
2130@cindex @code{alias} attribute
2131The @code{alias} attribute causes the declaration to be emitted as an
2132alias for another symbol, which must be specified. For instance,
c1f7febf
RK
2133
2134@smallexample
c8619b90
NS
2135void __f () @{ /* @r{Do something.} */; @}
2136void f () __attribute__ ((weak, alias ("__f")));
c1f7febf
RK
2137@end smallexample
2138
a9b0b825 2139defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
52eb57df
RH
2140mangled name for the target must be used. It is an error if @samp{__f}
2141is not defined in the same translation unit.
c8619b90
NS
2142
2143Not all target machines support this attribute.
9162542e 2144
837edd5f
GK
2145@item aligned (@var{alignment})
2146@cindex @code{aligned} attribute
2147This attribute specifies a minimum alignment for the function,
2148measured in bytes.
2149
2150You cannot use this attribute to decrease the alignment of a function,
2151only to increase it. However, when you explicitly specify a function
2152alignment this will override the effect of the
2153@option{-falign-functions} (@pxref{Optimize Options}) option for this
2154function.
2155
2156Note that the effectiveness of @code{aligned} attributes may be
2157limited by inherent limitations in your linker. On many systems, the
2158linker is only able to arrange for functions to be aligned up to a
2159certain maximum alignment. (For some linkers, the maximum supported
2160alignment may be very very small.) See your linker documentation for
2161further information.
2162
2163The @code{aligned} attribute can also be used for variables and fields
2164(@pxref{Variable Attributes}.)
2165
51bc54a6
DM
2166@item alloc_size
2167@cindex @code{alloc_size} attribute
2168The @code{alloc_size} attribute is used to tell the compiler that the
2169function return value points to memory, where the size is given by
ff2ce160 2170one or two of the functions parameters. GCC uses this
51bc54a6
DM
2171information to improve the correctness of @code{__builtin_object_size}.
2172
2173The function parameter(s) denoting the allocated size are specified by
2174one or two integer arguments supplied to the attribute. The allocated size
2175is either the value of the single function argument specified or the product
2176of the two function arguments specified. Argument numbering starts at
2177one.
2178
ff2ce160 2179For instance,
51bc54a6
DM
2180
2181@smallexample
2182void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
1c42f5c6 2183void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
51bc54a6
DM
2184@end smallexample
2185
2186declares that my_calloc will return memory of the size given by
2187the product of parameter 1 and 2 and that my_realloc will return memory
2188of the size given by parameter 2.
2189
6aa77e6c 2190@item always_inline
c8619b90 2191@cindex @code{always_inline} function attribute
6aa77e6c
AH
2192Generally, functions are not inlined unless optimization is specified.
2193For functions declared inline, this attribute inlines the function even
2194if no optimization level was specified.
2195
4eb7fd83
JJ
2196@item gnu_inline
2197@cindex @code{gnu_inline} function attribute
da1c7394
ILT
2198This attribute should be used with a function which is also declared
2199with the @code{inline} keyword. It directs GCC to treat the function
7e1542b9 2200as if it were defined in gnu90 mode even when compiling in C99 or
da1c7394
ILT
2201gnu99 mode.
2202
2203If the function is declared @code{extern}, then this definition of the
2204function is used only for inlining. In no case is the function
2205compiled as a standalone function, not even if you take its address
2206explicitly. Such an address becomes an external reference, as if you
2207had only declared the function, and had not defined it. This has
2208almost the effect of a macro. The way to use this is to put a
2209function definition in a header file with this attribute, and put
2210another copy of the function, without @code{extern}, in a library
2211file. The definition in the header file will cause most calls to the
2212function to be inlined. If any uses of the function remain, they will
2213refer to the single copy in the library. Note that the two
2214definitions of the functions need not be precisely the same, although
2215if they do not have the same effect your program may behave oddly.
2216
3a47c4e4
AO
2217In C, if the function is neither @code{extern} nor @code{static}, then
2218the function is compiled as a standalone function, as well as being
da1c7394
ILT
2219inlined where possible.
2220
2221This is how GCC traditionally handled functions declared
2222@code{inline}. Since ISO C99 specifies a different semantics for
2223@code{inline}, this function attribute is provided as a transition
2224measure and as a useful feature in its own right. This attribute is
2225available in GCC 4.1.3 and later. It is available if either of the
2226preprocessor macros @code{__GNUC_GNU_INLINE__} or
2227@code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2228Function is As Fast As a Macro}.
4eb7fd83 2229
3a47c4e4
AO
2230In C++, this attribute does not depend on @code{extern} in any way,
2231but it still requires the @code{inline} keyword to enable its special
2232behavior.
2233
d752cfdb 2234@item artificial
1df48f5c 2235@cindex @code{artificial} function attribute
d752cfdb
JJ
2236This attribute is useful for small inline wrappers which if possible
2237should appear during debugging as a unit, depending on the debug
2238info format it will either mean marking the function as artificial
2239or using the caller location for all instructions within the inlined
2240body.
2241
65655f79
DD
2242@item bank_switch
2243@cindex interrupt handler functions
2244When added to an interrupt handler with the M32C port, causes the
2245prologue and epilogue to use bank switching to preserve the registers
2246rather than saving them on the stack.
2247
0691d1d4 2248@item flatten
1df48f5c 2249@cindex @code{flatten} function attribute
0691d1d4
RG
2250Generally, inlining into a function is limited. For a function marked with
2251this attribute, every call inside this function will be inlined, if possible.
2252Whether the function itself is considered for inlining depends on its size and
d6cc6ec9 2253the current inlining parameters.
0691d1d4 2254
d2af6a68
JJ
2255@item error ("@var{message}")
2256@cindex @code{error} function attribute
2257If this attribute is used on a function declaration and a call to such a function
2258is not eliminated through dead code elimination or other optimizations, an error
2259which will include @var{message} will be diagnosed. This is useful
2260for compile time checking, especially together with @code{__builtin_constant_p}
2261and inline functions where checking the inline function arguments is not
2262possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2263While it is possible to leave the function undefined and thus invoke
2264a link failure, when using this attribute the problem will be diagnosed
2265earlier and with exact location of the call even in presence of inline
2266functions or when not emitting debugging information.
2267
2268@item warning ("@var{message}")
2269@cindex @code{warning} function attribute
2270If this attribute is used on a function declaration and a call to such a function
2271is not eliminated through dead code elimination or other optimizations, a warning
2272which will include @var{message} will be diagnosed. This is useful
2273for compile time checking, especially together with @code{__builtin_constant_p}
2274and inline functions. While it is possible to define the function with
2275a message in @code{.gnu.warning*} section, when using this attribute the problem
2276will be diagnosed earlier and with exact location of the call even in presence
2277of inline functions or when not emitting debugging information.
2278
c8619b90
NS
2279@item cdecl
2280@cindex functions that do pop the argument stack on the 386
2281@opindex mrtd
2282On the Intel 386, the @code{cdecl} attribute causes the compiler to
2283assume that the calling function will pop off the stack space used to
2284pass arguments. This is
2285useful to override the effects of the @option{-mrtd} switch.
2a8f6b90 2286
2a8f6b90 2287@item const
c8619b90 2288@cindex @code{const} function attribute
2a8f6b90
JH
2289Many functions do not examine any values except their arguments, and
2290have no effects except the return value. Basically this is just slightly
50c177f7 2291more strict class than the @code{pure} attribute below, since function is not
2a59078d 2292allowed to read global memory.
2a8f6b90
JH
2293
2294@cindex pointer arguments
2295Note that a function that has pointer arguments and examines the data
2296pointed to must @emph{not} be declared @code{const}. Likewise, a
2297function that calls a non-@code{const} function usually must not be
2298@code{const}. It does not make sense for a @code{const} function to
2299return @code{void}.
2300
f0523f02 2301The attribute @code{const} is not implemented in GCC versions earlier
c1f7febf
RK
2302than 2.5. An alternative way to declare that a function has no side
2303effects, which works in the current version and in some older versions,
2304is as follows:
2305
2306@smallexample
2307typedef int intfn ();
2308
2309extern const intfn square;
2310@end smallexample
2311
2312This approach does not work in GNU C++ from 2.6.0 on, since the language
2313specifies that the @samp{const} must be attached to the return value.
2314
c8619b90
NS
2315@item constructor
2316@itemx destructor
fc8600f9
MM
2317@itemx constructor (@var{priority})
2318@itemx destructor (@var{priority})
c8619b90
NS
2319@cindex @code{constructor} function attribute
2320@cindex @code{destructor} function attribute
2321The @code{constructor} attribute causes the function to be called
2322automatically before execution enters @code{main ()}. Similarly, the
2323@code{destructor} attribute causes the function to be called
2324automatically after @code{main ()} has completed or @code{exit ()} has
2325been called. Functions with these attributes are useful for
2326initializing data that will be used implicitly during the execution of
2327the program.
2328
fc8600f9
MM
2329You may provide an optional integer priority to control the order in
2330which constructor and destructor functions are run. A constructor
2331with a smaller priority number runs before a constructor with a larger
2332priority number; the opposite relationship holds for destructors. So,
2333if you have a constructor that allocates a resource and a destructor
2334that deallocates the same resource, both functions typically have the
2335same priority. The priorities for constructor and destructor
2336functions are the same as those specified for namespace-scope C++
2337objects (@pxref{C++ Attributes}).
2338
c8619b90
NS
2339These attributes are not currently implemented for Objective-C@.
2340
2341@item deprecated
9b86d6bb 2342@itemx deprecated (@var{msg})
c8619b90
NS
2343@cindex @code{deprecated} attribute.
2344The @code{deprecated} attribute results in a warning if the function
2345is used anywhere in the source file. This is useful when identifying
2346functions that are expected to be removed in a future version of a
2347program. The warning also includes the location of the declaration
2348of the deprecated function, to enable users to easily find further
2349information about why the function is deprecated, or what they should
2350do instead. Note that the warnings only occurs for uses:
2351
2352@smallexample
2353int old_fn () __attribute__ ((deprecated));
2354int old_fn ();
2355int (*fn_ptr)() = old_fn;
2356@end smallexample
2357
9b86d6bb
L
2358results in a warning on line 3 but not line 2. The optional msg
2359argument, which must be a string, will be printed in the warning if
2360present.
c8619b90
NS
2361
2362The @code{deprecated} attribute can also be used for variables and
2363types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2364
e2491744
DD
2365@item disinterrupt
2366@cindex @code{disinterrupt} attribute
feeeff5c 2367On Epiphany and MeP targets, this attribute causes the compiler to emit
e2491744
DD
2368instructions to disable interrupts for the duration of the given
2369function.
2370
c8619b90
NS
2371@item dllexport
2372@cindex @code{__declspec(dllexport)}
b2ca3702
MM
2373On Microsoft Windows targets and Symbian OS targets the
2374@code{dllexport} attribute causes the compiler to provide a global
2375pointer to a pointer in a DLL, so that it can be referenced with the
2376@code{dllimport} attribute. On Microsoft Windows targets, the pointer
2377name is formed by combining @code{_imp__} and the function or variable
2378name.
2379
2380You can use @code{__declspec(dllexport)} as a synonym for
2381@code{__attribute__ ((dllexport))} for compatibility with other
2382compilers.
2383
2384On systems that support the @code{visibility} attribute, this
3a687f8b
MM
2385attribute also implies ``default'' visibility. It is an error to
2386explicitly specify any other visibility.
c8619b90 2387
ff2ce160 2388In previous versions of GCC, the @code{dllexport} attribute was ignored
47ea1edf
DK
2389for inlined functions, unless the @option{-fkeep-inline-functions} flag
2390had been used. The default behaviour now is to emit all dllexported
2391inline functions; however, this can cause object file-size bloat, in
2392which case the old behaviour can be restored by using
2393@option{-fno-keep-inline-dllexport}.
2394
2395The attribute is also ignored for undefined symbols.
c8619b90 2396
8a36672b
JM
2397When applied to C++ classes, the attribute marks defined non-inlined
2398member functions and static data members as exports. Static consts
c8619b90
NS
2399initialized in-class are not marked unless they are also defined
2400out-of-class.
2401
b55e3aad 2402For Microsoft Windows targets there are alternative methods for
b2ca3702 2403including the symbol in the DLL's export table such as using a
b55e3aad
NC
2404@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2405the @option{--export-all} linker flag.
c8619b90
NS
2406
2407@item dllimport
2408@cindex @code{__declspec(dllimport)}
b2ca3702 2409On Microsoft Windows and Symbian OS targets, the @code{dllimport}
b55e3aad 2410attribute causes the compiler to reference a function or variable via
b2ca3702 2411a global pointer to a pointer that is set up by the DLL exporting the
3a687f8b
MM
2412symbol. The attribute implies @code{extern}. On Microsoft Windows
2413targets, the pointer name is formed by combining @code{_imp__} and the
2414function or variable name.
b2ca3702
MM
2415
2416You can use @code{__declspec(dllimport)} as a synonym for
2417@code{__attribute__ ((dllimport))} for compatibility with other
2418compilers.
c8619b90 2419
3a687f8b
MM
2420On systems that support the @code{visibility} attribute, this
2421attribute also implies ``default'' visibility. It is an error to
2422explicitly specify any other visibility.
2423
8a36672b 2424Currently, the attribute is ignored for inlined functions. If the
c8619b90
NS
2425attribute is applied to a symbol @emph{definition}, an error is reported.
2426If a symbol previously declared @code{dllimport} is later defined, the
2427attribute is ignored in subsequent references, and a warning is emitted.
2428The attribute is also overridden by a subsequent declaration as
2429@code{dllexport}.
2430
2431When applied to C++ classes, the attribute marks non-inlined
2432member functions and static data members as imports. However, the
2433attribute is ignored for virtual methods to allow creation of vtables
2434using thunks.
2435
b2ca3702 2436On the SH Symbian OS target the @code{dllimport} attribute also has
78466c0e 2437another affect---it can cause the vtable and run-time type information
b2ca3702
MM
2438for a class to be exported. This happens when the class has a
2439dllimport'ed constructor or a non-inline, non-pure virtual function
e4ae5e77 2440and, for either of those two conditions, the class also has an inline
b2ca3702
MM
2441constructor or destructor and has a key function that is defined in
2442the current translation unit.
b55e3aad
NC
2443
2444For Microsoft Windows based targets the use of the @code{dllimport}
2445attribute on functions is not necessary, but provides a small
8a36672b 2446performance benefit by eliminating a thunk in the DLL@. The use of the
b55e3aad 2447@code{dllimport} attribute on imported variables was required on older
b2ca3702 2448versions of the GNU linker, but can now be avoided by passing the
8a36672b 2449@option{--enable-auto-import} switch to the GNU linker. As with
b2ca3702 2450functions, using the attribute for a variable eliminates a thunk in
8a36672b 2451the DLL@.
b2ca3702 2452
d32034a7
DS
2453One drawback to using this attribute is that a pointer to a
2454@emph{variable} marked as @code{dllimport} cannot be used as a constant
2455address. However, a pointer to a @emph{function} with the
2456@code{dllimport} attribute can be used as a constant initializer; in
2457this case, the address of a stub function in the import lib is
2458referenced. On Microsoft Windows targets, the attribute can be disabled
b2ca3702 2459for functions by setting the @option{-mnop-fun-dllimport} flag.
c8619b90
NS
2460
2461@item eightbit_data
2462@cindex eight bit data on the H8/300, H8/300H, and H8S
2463Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2464variable should be placed into the eight bit data section.
2465The compiler will generate more efficient code for certain operations
2466on data in the eight bit data area. Note the eight bit data area is limited to
2467256 bytes of data.
2468
2469You must use GAS and GLD from GNU binutils version 2.7 or later for
2470this attribute to work correctly.
2471
0d4a78eb
BS
2472@item exception_handler
2473@cindex exception handler functions on the Blackfin processor
2474Use this attribute on the Blackfin to indicate that the specified function
2475is an exception handler. The compiler will generate function entry and
2476exit sequences suitable for use in an exception handler when this
2477attribute is present.
2478
1df48f5c
JW
2479@item externally_visible
2480@cindex @code{externally_visible} attribute.
2481This attribute, attached to a global variable or function, nullifies
2482the effect of the @option{-fwhole-program} command-line option, so the
6d41cd02 2483object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}. For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary.
1df48f5c 2484
c8619b90
NS
2485@item far
2486@cindex functions which handle memory bank switching
2487On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2488use a calling convention that takes care of switching memory banks when
2489entering and leaving a function. This calling convention is also the
2490default when using the @option{-mlong-calls} option.
2491
2492On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2493to call and return from a function.
2494
2495On 68HC11 the compiler will generate a sequence of instructions
2496to invoke a board-specific routine to switch the memory bank and call the
8a36672b 2497real function. The board-specific routine simulates a @code{call}.
c8619b90 2498At the end of a function, it will jump to a board-specific routine
8a36672b 2499instead of using @code{rts}. The board-specific return routine simulates
c8619b90
NS
2500the @code{rtc}.
2501
e2491744
DD
2502On MeP targets this causes the compiler to use a calling convention
2503which assumes the called function is too far away for the built-in
2504addressing modes.
2505
65655f79
DD
2506@item fast_interrupt
2507@cindex interrupt handler functions
65a324b4 2508Use this attribute on the M32C and RX ports to indicate that the specified
65655f79
DD
2509function is a fast interrupt handler. This is just like the
2510@code{interrupt} attribute, except that @code{freit} is used to return
2511instead of @code{reit}.
2512
c8619b90
NS
2513@item fastcall
2514@cindex functions that pop the argument stack on the 386
2515On the Intel 386, the @code{fastcall} attribute causes the compiler to
2f84b963
RG
2516pass the first argument (if of integral type) in the register ECX and
2517the second argument (if of integral type) in the register EDX@. Subsequent
2518and other typed arguments are passed on the stack. The called function will
2519pop the arguments off the stack. If the number of arguments is variable all
c8619b90 2520arguments are pushed on the stack.
c1f7febf 2521
3e65f251
KT
2522@item thiscall
2523@cindex functions that pop the argument stack on the 386
2524On the Intel 386, the @code{thiscall} attribute causes the compiler to
2525pass the first argument (if of integral type) in the register ECX.
2526Subsequent and other typed arguments are passed on the stack. The called
2527function will pop the arguments off the stack.
2528If the number of arguments is variable all arguments are pushed on the
2529stack.
2530The @code{thiscall} attribute is intended for C++ non-static member functions.
2531As gcc extension this calling convention can be used for C-functions
2532and for static member methods.
2533
c1f7febf
RK
2534@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2535@cindex @code{format} function attribute
84330467 2536@opindex Wformat
bb72a084 2537The @code{format} attribute specifies that a function takes @code{printf},
26f6672d
JM
2538@code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2539should be type-checked against a format string. For example, the
2540declaration:
c1f7febf
RK
2541
2542@smallexample
2543extern int
2544my_printf (void *my_object, const char *my_format, ...)
2545 __attribute__ ((format (printf, 2, 3)));
2546@end smallexample
2547
2548@noindent
2549causes the compiler to check the arguments in calls to @code{my_printf}
2550for consistency with the @code{printf} style format string argument
2551@code{my_format}.
2552
2553The parameter @var{archetype} determines how the format string is
6590fc9f
KT
2554interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2555@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2556@code{strfmon}. (You can also use @code{__printf__},
2557@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2558MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2559@code{ms_strftime} are also present.
2560@var{archtype} values such as @code{printf} refer to the formats accepted
2561by the system's C run-time library, while @code{gnu_} values always refer
2562to the formats accepted by the GNU C Library. On Microsoft Windows
2563targets, @code{ms_} values refer to the formats accepted by the
2564@file{msvcrt.dll} library.
2565The parameter @var{string-index}
2566specifies which argument is the format string argument (starting
2567from 1), while @var{first-to-check} is the number of the first
2568argument to check against the format string. For functions
2569where the arguments are not available to be checked (such as
c1f7febf 2570@code{vprintf}), specify the third parameter as zero. In this case the
b722c82c
JM
2571compiler only checks the format string for consistency. For
2572@code{strftime} formats, the third parameter is required to be zero.
f57a2e3a
BE
2573Since non-static C++ methods have an implicit @code{this} argument, the
2574arguments of such methods should be counted from two, not one, when
2575giving values for @var{string-index} and @var{first-to-check}.
c1f7febf
RK
2576
2577In the example above, the format string (@code{my_format}) is the second
2578argument of the function @code{my_print}, and the arguments to check
2579start with the third argument, so the correct parameters for the format
2580attribute are 2 and 3.
2581
84330467 2582@opindex ffreestanding
e6e931b7 2583@opindex fno-builtin
c1f7febf 2584The @code{format} attribute allows you to identify your own functions
f0523f02 2585which take format strings as arguments, so that GCC can check the
b722c82c 2586calls to these functions for errors. The compiler always (unless
e6e931b7 2587@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
b722c82c 2588for the standard library functions @code{printf}, @code{fprintf},
bb72a084 2589@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
c1f7febf 2590@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
84330467 2591warnings are requested (using @option{-Wformat}), so there is no need to
b722c82c
JM
2592modify the header file @file{stdio.h}. In C99 mode, the functions
2593@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
26f6672d 2594@code{vsscanf} are also checked. Except in strictly conforming C
b4c984fb
KG
2595standard modes, the X/Open function @code{strfmon} is also checked as
2596are @code{printf_unlocked} and @code{fprintf_unlocked}.
b722c82c 2597@xref{C Dialect Options,,Options Controlling C Dialect}.
c1f7febf 2598
ff2ce160 2599For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
91ebb981
IS
2600recognized in the same context. Declarations including these format attributes
2601will be parsed for correct syntax, however the result of checking of such format
ff2ce160 2602strings is not yet defined, and will not be carried out by this version of the
91ebb981
IS
2603compiler.
2604
2605The target may also provide additional types of format checks.
a2bec818
DJ
2606@xref{Target Format Checks,,Format Checks Specific to Particular
2607Target Machines}.
2608
c1f7febf
RK
2609@item format_arg (@var{string-index})
2610@cindex @code{format_arg} function attribute
84330467 2611@opindex Wformat-nonliteral
26f6672d
JM
2612The @code{format_arg} attribute specifies that a function takes a format
2613string for a @code{printf}, @code{scanf}, @code{strftime} or
2614@code{strfmon} style function and modifies it (for example, to translate
2615it into another language), so the result can be passed to a
2616@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2617function (with the remaining arguments to the format function the same
2618as they would have been for the unmodified string). For example, the
2619declaration:
c1f7febf
RK
2620
2621@smallexample
2622extern char *
2623my_dgettext (char *my_domain, const char *my_format)
2624 __attribute__ ((format_arg (2)));
2625@end smallexample
2626
2627@noindent
26f6672d
JM
2628causes the compiler to check the arguments in calls to a @code{printf},
2629@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2630format string argument is a call to the @code{my_dgettext} function, for
2631consistency with the format string argument @code{my_format}. If the
2632@code{format_arg} attribute had not been specified, all the compiler
2633could tell in such calls to format functions would be that the format
2634string argument is not constant; this would generate a warning when
84330467 2635@option{-Wformat-nonliteral} is used, but the calls could not be checked
26f6672d 2636without the attribute.
c1f7febf
RK
2637
2638The parameter @var{string-index} specifies which argument is the format
f57a2e3a
BE
2639string argument (starting from one). Since non-static C++ methods have
2640an implicit @code{this} argument, the arguments of such methods should
2641be counted from two.
c1f7febf
RK
2642
2643The @code{format-arg} attribute allows you to identify your own
f0523f02 2644functions which modify format strings, so that GCC can check the
26f6672d
JM
2645calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2646type function whose operands are a call to one of your own function.
2647The compiler always treats @code{gettext}, @code{dgettext}, and
2648@code{dcgettext} in this manner except when strict ISO C support is
84330467 2649requested by @option{-ansi} or an appropriate @option{-std} option, or
e6e931b7
JM
2650@option{-ffreestanding} or @option{-fno-builtin}
2651is used. @xref{C Dialect Options,,Options
26f6672d 2652Controlling C Dialect}.
c1f7febf 2653
91ebb981
IS
2654For Objective-C dialects, the @code{format-arg} attribute may refer to an
2655@code{NSString} reference for compatibility with the @code{format} attribute
2656above.
2657
2658The target may also allow additional types in @code{format-arg} attributes.
2659@xref{Target Format Checks,,Format Checks Specific to Particular
2660Target Machines}.
2661
c8619b90 2662@item function_vector
561642fa 2663@cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
c8619b90
NS
2664Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2665function should be called through the function vector. Calling a
2666function through the function vector will reduce code size, however;
2667the function vector has a limited size (maximum 128 entries on the H8/300
2668and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
b34c7881 2669
561642fa
AP
2670In SH2A target, this attribute declares a function to be called using the
2671TBR relative addressing mode. The argument to this attribute is the entry
2672number of the same function in a vector table containing all the TBR
2673relative addressable functions. For the successful jump, register TBR
2674should contain the start address of this TBR relative vector table.
2675In the startup routine of the user application, user needs to care of this
2676TBR register initialization. The TBR relative vector table can have at
2677max 256 function entries. The jumps to these functions will be generated
2678using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
c8619b90
NS
2679You must use GAS and GLD from GNU binutils version 2.7 or later for
2680this attribute to work correctly.
b34c7881 2681
561642fa
AP
2682Please refer the example of M16C target, to see the use of this
2683attribute while declaring a function,
2684
2685In an application, for a function being called once, this attribute will
2686save at least 8 bytes of code; and if other successive calls are being
2687made to the same function, it will save 2 bytes of code per each of these
2688calls.
2689
5abd2125
JS
2690On M16C/M32C targets, the @code{function_vector} attribute declares a
2691special page subroutine call function. Use of this attribute reduces
2692the code size by 2 bytes for each call generated to the
2693subroutine. The argument to the attribute is the vector number entry
2694from the special page vector table which contains the 16 low-order
2695bits of the subroutine's entry address. Each vector table has special
2696page number (18 to 255) which are used in @code{jsrs} instruction.
2697Jump addresses of the routines are generated by adding 0x0F0000 (in
2698case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2699byte addresses set in the vector table. Therefore you need to ensure
2700that all the special page vector routines should get mapped within the
2701address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2702(for M32C).
2703
2704In the following example 2 bytes will be saved for each call to
2705function @code{foo}.
2706
2707@smallexample
2708void foo (void) __attribute__((function_vector(0x18)));
2709void foo (void)
2710@{
2711@}
2712
2713void bar (void)
2714@{
2715 foo();
2716@}
2717@end smallexample
2718
2719If functions are defined in one file and are called in another file,
2720then be sure to write this declaration in both files.
2721
2722This attribute is ignored for R8C target.
2723
c8619b90
NS
2724@item interrupt
2725@cindex interrupt handler functions
b25364a0 2726Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS,
85b8555e 2727RL78, RX and Xstormy16 ports to indicate that the specified function is an
2bccb817
KH
2728interrupt handler. The compiler will generate function entry and exit
2729sequences suitable for use in an interrupt handler when this attribute
2730is present.
b34c7881 2731
80920132
ME
2732Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2733and SH processors can be specified via the @code{interrupt_handler} attribute.
b34c7881 2734
c8619b90 2735Note, on the AVR, interrupts will be enabled inside the function.
9162542e 2736
c8619b90
NS
2737Note, for the ARM, you can specify the kind of interrupt to be handled by
2738adding an optional parameter to the interrupt attribute like this:
e23bd218
IR
2739
2740@smallexample
c8619b90 2741void f () __attribute__ ((interrupt ("IRQ")));
e23bd218
IR
2742@end smallexample
2743
c8619b90 2744Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
e23bd218 2745
7a085dce 2746On ARMv7-M the interrupt type is ignored, and the attribute means the function
5b3e6663
PB
2747may be called with a word aligned stack pointer.
2748
e19da24c
CF
2749On MIPS targets, you can use the following attributes to modify the behavior
2750of an interrupt handler:
2751@table @code
2752@item use_shadow_register_set
2753@cindex @code{use_shadow_register_set} attribute
2754Assume that the handler uses a shadow register set, instead of
2755the main general-purpose registers.
2756
2757@item keep_interrupts_masked
2758@cindex @code{keep_interrupts_masked} attribute
2759Keep interrupts masked for the whole function. Without this attribute,
2760GCC tries to reenable interrupts for as much of the function as it can.
2761
2762@item use_debug_exception_return
2763@cindex @code{use_debug_exception_return} attribute
2764Return using the @code{deret} instruction. Interrupt handlers that don't
2765have this attribute return using @code{eret} instead.
2766@end table
2767
2768You can use any combination of these attributes, as shown below:
2769@smallexample
2770void __attribute__ ((interrupt)) v0 ();
2771void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
2772void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
2773void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
2774void __attribute__ ((interrupt, use_shadow_register_set,
73b8bfe1 2775 keep_interrupts_masked)) v4 ();
e19da24c 2776void __attribute__ ((interrupt, use_shadow_register_set,
73b8bfe1 2777 use_debug_exception_return)) v5 ();
e19da24c 2778void __attribute__ ((interrupt, keep_interrupts_masked,
73b8bfe1 2779 use_debug_exception_return)) v6 ();
e19da24c 2780void __attribute__ ((interrupt, use_shadow_register_set,
73b8bfe1
RW
2781 keep_interrupts_masked,
2782 use_debug_exception_return)) v7 ();
e19da24c
CF
2783@end smallexample
2784
85b8555e
DD
2785On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
2786handlers intended to be used with the @code{BRK} opcode (i.e. those
2787that must end with @code{RETB} instead of @code{RETI}).
2788
ba885ec5
NS
2789@item ifunc ("@var{resolver}")
2790@cindex @code{ifunc} attribute
2791The @code{ifunc} attribute is used to mark a function as an indirect
2792function using the STT_GNU_IFUNC symbol type extension to the ELF
2793standard. This allows the resolution of the symbol value to be
2794determined dynamically at load time, and an optimized version of the
2795routine can be selected for the particular processor or other system
2796characteristics determined then. To use this attribute, first define
2797the implementation functions available, and a resolver function that
2798returns a pointer to the selected implementation function. The
2799implementation functions' declarations must match the API of the
2800function being implemented, the resolver's declaration is be a
2801function returning pointer to void function returning void:
2802
2803@smallexample
2804void *my_memcpy (void *dst, const void *src, size_t len)
2805@{
2806 @dots{}
2807@}
2808
2809static void (*resolve_memcpy (void)) (void)
2810@{
2811 return my_memcpy; // we'll just always select this routine
2812@}
2813@end smallexample
2814
2815The exported header file declaring the function the user calls would
2816contain:
2817
2818@smallexample
2819extern void *memcpy (void *, const void *, size_t);
2820@end smallexample
2821
2822allowing the user to call this as a regular function, unaware of the
2823implementation. Finally, the indirect function needs to be defined in
2824the same translation unit as the resolver function:
2825
2826@smallexample
2827void *memcpy (void *, const void *, size_t)
2828 __attribute__ ((ifunc ("resolve_memcpy")));
2829@end smallexample
2830
2831Indirect functions cannot be weak, and require a recent binutils (at
2832least version 2.20.1), and GNU C library (at least version 2.11.1).
2833
c8619b90 2834@item interrupt_handler
0d4a78eb
BS
2835@cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2836Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2837indicate that the specified function is an interrupt handler. The compiler
2838will generate function entry and exit sequences suitable for use in an
2839interrupt handler when this attribute is present.
2840
a4242737
KH
2841@item interrupt_thread
2842@cindex interrupt thread functions on fido
2843Use this attribute on fido, a subarchitecture of the m68k, to indicate
2844that the specified function is an interrupt handler that is designed
2845to run as a thread. The compiler omits generate prologue/epilogue
2846sequences and replaces the return instruction with a @code{sleep}
2847instruction. This attribute is available only on fido.
2848
d8f8ca80
RR
2849@item isr
2850@cindex interrupt service routines on ARM
2851Use this attribute on ARM to write Interrupt Service Routines. This is an
2852alias to the @code{interrupt} attribute above.
2853
0d4a78eb
BS
2854@item kspisusp
2855@cindex User stack pointer in interrupts on the Blackfin
2856When used together with @code{interrupt_handler}, @code{exception_handler}
2857or @code{nmi_handler}, code will be generated to load the stack pointer
2858from the USP register in the function prologue.
72954a4f 2859
4af797b5
JZ
2860@item l1_text
2861@cindex @code{l1_text} function attribute
2862This attribute specifies a function to be placed into L1 Instruction
0ee2ea09 2863SRAM@. The function will be put into a specific section named @code{.l1.text}.
4af797b5
JZ
2864With @option{-mfdpic}, function calls with a such function as the callee
2865or caller will use inlined PLT.
2866
603bb63e
BS
2867@item l2
2868@cindex @code{l2} function attribute
2869On the Blackfin, this attribute specifies a function to be placed into L2
2870SRAM. The function will be put into a specific section named
2871@code{.l1.text}. With @option{-mfdpic}, callers of such functions will use
2872an inlined PLT.
2873
46a4da10
JH
2874@item leaf
2875@cindex @code{leaf} function attribute
2876Calls to external functions with this attribute must return to the current
2b0d3573
RW
2877compilation unit only by return or by exception handling. In particular, leaf
2878functions are not allowed to call callback function passed to it from the current
46a4da10 2879compilation unit or directly call functions exported by the unit or longjmp
2b0d3573
RW
2880into the unit. Leaf function might still call functions from other compilation
2881units and thus they are not necessarily leaf in the sense that they contain no
46a4da10
JH
2882function calls at all.
2883
2884The attribute is intended for library functions to improve dataflow analysis.
2b0d3573
RW
2885The compiler takes the hint that any data not escaping the current compilation unit can
2886not be used or modified by the leaf function. For example, the @code{sin} function
2887is a leaf function, but @code{qsort} is not.
46a4da10 2888
2b0d3573
RW
2889Note that leaf functions might invoke signals and signal handlers might be
2890defined in the current compilation unit and use static variables. The only
46a4da10
JH
2891compliant way to write such a signal handler is to declare such variables
2892@code{volatile}.
2893
2b0d3573 2894The attribute has no effect on functions defined within the current compilation
46a4da10
JH
2895unit. This is to allow easy merging of multiple compilation units into one,
2896for example, by using the link time optimization. For this reason the
2897attribute is not allowed on types to annotate indirect calls.
2898
c8619b90
NS
2899@item long_call/short_call
2900@cindex indirect calls on ARM
2901This attribute specifies how a particular function is called on
feeeff5c
JR
2902ARM and Epiphany. Both attributes override the
2903@option{-mlong-calls} (@pxref{ARM Options})
bcbc9564 2904command-line switch and @code{#pragma long_calls} settings. The
87c365a4
NS
2905@code{long_call} attribute indicates that the function might be far
2906away from the call site and require a different (more expensive)
2907calling sequence. The @code{short_call} attribute always places
c8619b90
NS
2908the offset to the function from the call site into the @samp{BL}
2909instruction directly.
72954a4f 2910
c8619b90
NS
2911@item longcall/shortcall
2912@cindex functions called via pointer on the RS/6000 and PowerPC
87c365a4
NS
2913On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2914indicates that the function might be far away from the call site and
2915require a different (more expensive) calling sequence. The
2916@code{shortcall} attribute indicates that the function is always close
2917enough for the shorter calling sequence to be used. These attributes
2918override both the @option{-mlongcall} switch and, on the RS/6000 and
2919PowerPC, the @code{#pragma longcall} setting.
72954a4f 2920
c8619b90
NS
2921@xref{RS/6000 and PowerPC Options}, for more information on whether long
2922calls are necessary.
c1f7febf 2923
cd3a59b3 2924@item long_call/near/far
4dbdb061 2925@cindex indirect calls on MIPS
cd3a59b3
SL
2926These attributes specify how a particular function is called on MIPS@.
2927The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2928command-line switch. The @code{long_call} and @code{far} attributes are
2929synonyms, and cause the compiler to always call
4dbdb061 2930the function by first loading its address into a register, and then using
cd3a59b3 2931the contents of that register. The @code{near} attribute has the opposite
ff2ce160 2932effect; it specifies that non-PIC calls should be made using the more
cd3a59b3 2933efficient @code{jal} instruction.
4dbdb061 2934
140592a0
AG
2935@item malloc
2936@cindex @code{malloc} attribute
2937The @code{malloc} attribute is used to tell the compiler that a function
928a5ba9 2938may be treated as if any non-@code{NULL} pointer it returns cannot
65d5c485
RG
2939alias any other pointer valid when the function returns and that the memory
2940has undefined content.
140592a0 2941This will often improve optimization.
928a5ba9 2942Standard functions with this property include @code{malloc} and
65d5c485
RG
2943@code{calloc}. @code{realloc}-like functions do not have this
2944property as the memory pointed to does not have undefined content.
140592a0 2945
f9e4a411
SL
2946@item mips16/nomips16
2947@cindex @code{mips16} attribute
2948@cindex @code{nomips16} attribute
2949
2950On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2951function attributes to locally select or turn off MIPS16 code generation.
ff2ce160
MS
2952A function with the @code{mips16} attribute is emitted as MIPS16 code,
2953while MIPS16 code generation is disabled for functions with the
2954@code{nomips16} attribute. These attributes override the
f9e4a411 2955@option{-mips16} and @option{-mno-mips16} options on the command line
ff2ce160 2956(@pxref{MIPS Options}).
f9e4a411
SL
2957
2958When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2959preprocessor symbol @code{__mips16} reflects the setting on the command line,
2960not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2961may interact badly with some GCC extensions such as @code{__builtin_apply}
2962(@pxref{Constructing Calls}).
2963
c8619b90
NS
2964@item model (@var{model-name})
2965@cindex function addressability on the M32R/D
2966@cindex variable addressability on the IA-64
2967
2968On the M32R/D, use this attribute to set the addressability of an
2969object, and of the code generated for a function. The identifier
2970@var{model-name} is one of @code{small}, @code{medium}, or
2971@code{large}, representing each of the code models.
2972
2973Small model objects live in the lower 16MB of memory (so that their
2974addresses can be loaded with the @code{ld24} instruction), and are
2975callable with the @code{bl} instruction.
2976
2977Medium model objects may live anywhere in the 32-bit address space (the
2978compiler will generate @code{seth/add3} instructions to load their addresses),
2979and are callable with the @code{bl} instruction.
2980
2981Large model objects may live anywhere in the 32-bit address space (the
2982compiler will generate @code{seth/add3} instructions to load their addresses),
2983and may not be reachable with the @code{bl} instruction (the compiler will
2984generate the much slower @code{seth/add3/jl} instruction sequence).
2985
2986On IA-64, use this attribute to set the addressability of an object.
2987At present, the only supported identifier for @var{model-name} is
2988@code{small}, indicating addressability via ``small'' (22-bit)
2989addresses (so that their addresses can be loaded with the @code{addl}
2990instruction). Caveat: such addressing is by definition not position
2991independent and hence this attribute must not be used for objects
2992defined by shared libraries.
2993
7c800926 2994@item ms_abi/sysv_abi
f9ac6b1e 2995@cindex @code{ms_abi} attribute
7c800926
KT
2996@cindex @code{sysv_abi} attribute
2997
2fe83a0c
KT
2998On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
2999to indicate which calling convention should be used for a function. The
3000@code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
3001while the @code{sysv_abi} attribute tells the compiler to use the ABI
3002used on GNU/Linux and other systems. The default is to use the Microsoft ABI
3003when targeting Windows. On all other systems, the default is the x86/AMD ABI.
7c800926 3004
2fe83a0c
KT
3005Note, the @code{ms_abi} attribute for Windows 64-bit targets currently
3006requires the @option{-maccumulate-outgoing-args} option.
7c800926 3007
628c4eee
KT
3008@item callee_pop_aggregate_return (@var{number})
3009@cindex @code{callee_pop_aggregate_return} attribute
3010
3011On 32-bit i?86-*-* targets, you can control by those attribute for
3012aggregate return in memory, if the caller is responsible to pop the hidden
3013pointer together with the rest of the arguments - @var{number} equal to
3014zero -, or if the callee is responsible to pop hidden pointer - @var{number}
e44dbbe1
RO
3015equal to one. The default i386 ABI assumes that the callee pops the
3016stack for hidden pointer.
628c4eee 3017
2fe83a0c
KT
3018Note, that on 32-bit i386 Windows targets the compiler assumes that the
3019caller pops the stack for hidden pointer.
3020
afd2c302
SD
3021@item ms_hook_prologue
3022@cindex @code{ms_hook_prologue} attribute
3023
135a687e
KT
3024On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
3025this function attribute to make gcc generate the "hot-patching" function
3026prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3027and newer.
afd2c302 3028
c8619b90
NS
3029@item naked
3030@cindex function without a prologue/epilogue code
ed3100b2 3031Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
85d9c13c 3032the specified function does not need prologue/epilogue sequences generated by
ff2ce160
MS
3033the compiler. It is up to the programmer to provide these sequences. The
3034only statements that can be safely included in naked functions are
007e61c2 3035@code{asm} statements that do not have operands. All other statements,
ff2ce160
MS
3036including declarations of local variables, @code{if} statements, and so
3037forth, should be avoided. Naked functions should be used to implement the
007e61c2
PB
3038body of an assembly function, while allowing the compiler to construct
3039the requisite function declaration for the assembler.
c8619b90
NS
3040
3041@item near
3042@cindex functions which do not handle memory bank switching on 68HC11/68HC12
3043On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3044use the normal calling convention based on @code{jsr} and @code{rts}.
3045This attribute can be used to cancel the effect of the @option{-mlong-calls}
3046option.
3047
e2491744
DD
3048On MeP targets this attribute causes the compiler to assume the called
3049function is close enough to use the normal calling convention,
3050overriding the @code{-mtf} command line option.
3051
0d4a78eb
BS
3052@item nesting
3053@cindex Allow nesting in an interrupt handler on the Blackfin processor.
3054Use this attribute together with @code{interrupt_handler},
3055@code{exception_handler} or @code{nmi_handler} to indicate that the function
3056entry code should enable nested interrupts or exceptions.
3057
3058@item nmi_handler
3059@cindex NMI handler functions on the Blackfin processor
3060Use this attribute on the Blackfin to indicate that the specified function
3061is an NMI handler. The compiler will generate function entry and
3062exit sequences suitable for use in an NMI handler when this
3063attribute is present.
3064
c8619b90
NS
3065@item no_instrument_function
3066@cindex @code{no_instrument_function} function attribute
3067@opindex finstrument-functions
3068If @option{-finstrument-functions} is given, profiling function calls will
3069be generated at entry and exit of most user-compiled functions.
3070Functions with this attribute will not be so instrumented.
3071
7458026b
ILT
3072@item no_split_stack
3073@cindex @code{no_split_stack} function attribute
3074@opindex fsplit-stack
3075If @option{-fsplit-stack} is given, functions will have a small
3076prologue which decides whether to split the stack. Functions with the
3077@code{no_split_stack} attribute will not have that prologue, and thus
3078may run with only a small amount of stack space available.
3079
c8619b90
NS
3080@item noinline
3081@cindex @code{noinline} function attribute
3082This function attribute prevents a function from being considered for
3083inlining.
ccd2a21e
HPN
3084@c Don't enumerate the optimizations by name here; we try to be
3085@c future-compatible with this mechanism.
3086If the function does not have side-effects, there are optimizations
3087other than inlining that causes function calls to be optimized away,
3088although the function call is live. To keep such calls from being
3089optimized away, put
3090@smallexample
3091asm ("");
3092@end smallexample
3093(@pxref{Extended Asm}) in the called function, to serve as a special
3094side-effect.
c8619b90 3095
86631ea3
MJ
3096@item noclone
3097@cindex @code{noclone} function attribute
3098This function attribute prevents a function from being considered for
3099cloning - a mechanism which produces specialized copies of functions
3100and which is (currently) performed by interprocedural constant
3101propagation.
3102
c8619b90
NS
3103@item nonnull (@var{arg-index}, @dots{})
3104@cindex @code{nonnull} function attribute
3105The @code{nonnull} attribute specifies that some function parameters should
3106be non-null pointers. For instance, the declaration:
c1f7febf
RK
3107
3108@smallexample
c8619b90
NS
3109extern void *
3110my_memcpy (void *dest, const void *src, size_t len)
6ccde948 3111 __attribute__((nonnull (1, 2)));
c1f7febf
RK
3112@end smallexample
3113
c8619b90
NS
3114@noindent
3115causes the compiler to check that, in calls to @code{my_memcpy},
3116arguments @var{dest} and @var{src} are non-null. If the compiler
3117determines that a null pointer is passed in an argument slot marked
3118as non-null, and the @option{-Wnonnull} option is enabled, a warning
3119is issued. The compiler may also choose to make optimizations based
3120on the knowledge that certain function arguments will not be null.
af3e86c2 3121
c8619b90
NS
3122If no argument index list is given to the @code{nonnull} attribute,
3123all pointer arguments are marked as non-null. To illustrate, the
3124following declaration is equivalent to the previous example:
47bd70b5
JJ
3125
3126@smallexample
c8619b90
NS
3127extern void *
3128my_memcpy (void *dest, const void *src, size_t len)
6ccde948 3129 __attribute__((nonnull));
47bd70b5
JJ
3130@end smallexample
3131
c8619b90
NS
3132@item noreturn
3133@cindex @code{noreturn} function attribute
3134A few standard library functions, such as @code{abort} and @code{exit},
3135cannot return. GCC knows this automatically. Some programs define
3136their own functions that never return. You can declare them
3137@code{noreturn} to tell the compiler this fact. For example,
9e8aab55 3138
c8619b90
NS
3139@smallexample
3140@group
3141void fatal () __attribute__ ((noreturn));
d5c4db17 3142
c8619b90
NS
3143void
3144fatal (/* @r{@dots{}} */)
3145@{
3146 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3147 exit (1);
3148@}
3149@end group
3150@end smallexample
9e8aab55 3151
c8619b90
NS
3152The @code{noreturn} keyword tells the compiler to assume that
3153@code{fatal} cannot return. It can then optimize without regard to what
3154would happen if @code{fatal} ever did return. This makes slightly
3155better code. More importantly, it helps avoid spurious warnings of
3156uninitialized variables.
9e8aab55 3157
c8619b90
NS
3158The @code{noreturn} keyword does not affect the exceptional path when that
3159applies: a @code{noreturn}-marked function may still return to the caller
2e9522f4 3160by throwing an exception or calling @code{longjmp}.
9e8aab55 3161
c8619b90
NS
3162Do not assume that registers saved by the calling function are
3163restored before calling the @code{noreturn} function.
47bd70b5 3164
c8619b90
NS
3165It does not make sense for a @code{noreturn} function to have a return
3166type other than @code{void}.
c1f7febf 3167
c8619b90
NS
3168The attribute @code{noreturn} is not implemented in GCC versions
3169earlier than 2.5. An alternative way to declare that a function does
3170not return, which works in the current version and in some older
3171versions, is as follows:
5d34c8e9 3172
c8619b90
NS
3173@smallexample
3174typedef void voidfn ();
c1f7febf 3175
c8619b90
NS
3176volatile voidfn fatal;
3177@end smallexample
e91f04de 3178
a1e73046
PC
3179This approach does not work in GNU C++.
3180
c8619b90
NS
3181@item nothrow
3182@cindex @code{nothrow} function attribute
3183The @code{nothrow} attribute is used to inform the compiler that a
3184function cannot throw an exception. For example, most functions in
3185the standard C library can be guaranteed not to throw an exception
3186with the notable exceptions of @code{qsort} and @code{bsearch} that
3187take function pointer arguments. The @code{nothrow} attribute is not
3f3174b6 3188implemented in GCC versions earlier than 3.3.
c1f7febf 3189
ab442df7
MM
3190@item optimize
3191@cindex @code{optimize} function attribute
3192The @code{optimize} attribute is used to specify that a function is to
3193be compiled with different optimization options than specified on the
3194command line. Arguments can either be numbers or strings. Numbers
3195are assumed to be an optimization level. Strings that begin with
3196@code{O} are assumed to be an optimization option, while other options
3197are assumed to be used with a @code{-f} prefix. You can also use the
3198@samp{#pragma GCC optimize} pragma to set the optimization options
3199that affect more than one function.
3200@xref{Function Specific Option Pragmas}, for details about the
e3606f3b 3201@samp{#pragma GCC optimize} pragma.
ab442df7
MM
3202
3203This can be used for instance to have frequently executed functions
3204compiled with more aggressive optimization options that produce faster
3205and larger code, while other functions can be called with less
5779e713 3206aggressive options.
ab442df7 3207
3d33d151
AS
3208@item OS_main/OS_task
3209@cindex @code{OS_main} AVR function attribute
3210@cindex @code{OS_task} AVR function attribute
3211On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3212do not save/restore any call-saved register in their prologue/epilogue.
3213
3214The @code{OS_main} attribute can be used when there @emph{is
3215guarantee} that interrupts are disabled at the time when the function
3216is entered. This will save resources when the stack pointer has to be
3217changed to set up a frame for local variables.
3218
3219The @code{OS_task} attribute can be used when there is @emph{no
3220guarantee} that interrupts are disabled at that time when the function
3221is entered like for, e@.g@. task functions in a multi-threading operating
3222system. In that case, changing the stack pointer register will be
3223guarded by save/clear/restore of the global interrupt enable flag.
3224
aa9ec4db 3225The differences to the @code{naked} function attribute are:
3d33d151
AS
3226@itemize @bullet
3227@item @code{naked} functions do not have a return instruction whereas
3228@code{OS_main} and @code{OS_task} functions will have a @code{RET} or
3229@code{RETI} return instruction.
3230@item @code{naked} functions do not set up a frame for local variables
3231or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3232as needed.
3233@end itemize
3234
14a782c8
RE
3235@item pcs
3236@cindex @code{pcs} function attribute
3237
3238The @code{pcs} attribute can be used to control the calling convention
3239used for a function on ARM. The attribute takes an argument that specifies
3240the calling convention to use.
3241
3242When compiling using the AAPCS ABI (or a variant of that) then valid
3243values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3244order to use a variant other than @code{"aapcs"} then the compiler must
3245be permitted to use the appropriate co-processor registers (i.e., the
3246VFP registers must be available in order to use @code{"aapcs-vfp"}).
3247For example,
3248
3249@smallexample
3250/* Argument passed in r0, and result returned in r0+r1. */
3251double f2d (float) __attribute__((pcs("aapcs")));
3252@end smallexample
3253
3254Variadic functions always use the @code{"aapcs"} calling convention and
3255the compiler will reject attempts to specify an alternative.
3256
c8619b90
NS
3257@item pure
3258@cindex @code{pure} function attribute
3259Many functions have no effects except the return value and their
3260return value depends only on the parameters and/or global variables.
3261Such a function can be subject
3262to common subexpression elimination and loop optimization just as an
3263arithmetic operator would be. These functions should be declared
3264with the attribute @code{pure}. For example,
a5c76ee6 3265
c8619b90
NS
3266@smallexample
3267int square (int) __attribute__ ((pure));
3268@end smallexample
c1f7febf 3269
c8619b90
NS
3270@noindent
3271says that the hypothetical function @code{square} is safe to call
3272fewer times than the program says.
c27ba912 3273
c8619b90
NS
3274Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3275Interesting non-pure functions are functions with infinite loops or those
3276depending on volatile memory or other system resource, that may change between
3277two consecutive calls (such as @code{feof} in a multithreading environment).
c1f7febf 3278
c8619b90
NS
3279The attribute @code{pure} is not implemented in GCC versions earlier
3280than 2.96.
c1f7febf 3281
52bf96d2
JH
3282@item hot
3283@cindex @code{hot} function attribute
3284The @code{hot} attribute is used to inform the compiler that a function is a
3285hot spot of the compiled program. The function is optimized more aggressively
3286and on many target it is placed into special subsection of the text section so
3287all hot functions appears close together improving locality.
3288
3289When profile feedback is available, via @option{-fprofile-use}, hot functions
3290are automatically detected and this attribute is ignored.
3291
ab442df7
MM
3292The @code{hot} attribute is not implemented in GCC versions earlier
3293than 4.3.
3294
52bf96d2
JH
3295@item cold
3296@cindex @code{cold} function attribute
3297The @code{cold} attribute is used to inform the compiler that a function is
3298unlikely executed. The function is optimized for size rather than speed and on
3299many targets it is placed into special subsection of the text section so all
3300cold functions appears close together improving code locality of non-cold parts
3301of program. The paths leading to call of cold functions within code are marked
44c7bd63 3302as unlikely by the branch prediction mechanism. It is thus useful to mark
52bf96d2
JH
3303functions used to handle unlikely conditions, such as @code{perror}, as cold to
3304improve optimization of hot functions that do call marked functions in rare
3305occasions.
3306
3307When profile feedback is available, via @option{-fprofile-use}, hot functions
3308are automatically detected and this attribute is ignored.
3309
ab442df7
MM
3310The @code{cold} attribute is not implemented in GCC versions earlier than 4.3.
3311
c8619b90
NS
3312@item regparm (@var{number})
3313@cindex @code{regparm} attribute
3314@cindex functions that are passed arguments in registers on the 386
3315On the Intel 386, the @code{regparm} attribute causes the compiler to
2f84b963
RG
3316pass arguments number one to @var{number} if they are of integral type
3317in registers EAX, EDX, and ECX instead of on the stack. Functions that
3318take a variable number of arguments will continue to be passed all of their
c8619b90 3319arguments on the stack.
6d3d9133 3320
c8619b90
NS
3321Beware that on some ELF systems this attribute is unsuitable for
3322global functions in shared libraries with lazy binding (which is the
3323default). Lazy binding will send the first call via resolving code in
3324the loader, which might assume EAX, EDX and ECX can be clobbered, as
3325per the standard calling conventions. Solaris 8 is affected by this.
3326GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
21440b2d 3327safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
c8619b90
NS
3328disabled with the linker or the loader if desired, to avoid the
3329problem.)
6d3d9133 3330
2f84b963
RG
3331@item sseregparm
3332@cindex @code{sseregparm} attribute
3333On the Intel 386 with SSE support, the @code{sseregparm} attribute
56829cae 3334causes the compiler to pass up to 3 floating point arguments in
2f84b963
RG
3335SSE registers instead of on the stack. Functions that take a
3336variable number of arguments will continue to pass all of their
3337floating point arguments on the stack.
3338
33932946
SH
3339@item force_align_arg_pointer
3340@cindex @code{force_align_arg_pointer} attribute
3341On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3342applied to individual function definitions, generating an alternate
2e3f842f
L
3343prologue and epilogue that realigns the runtime stack if necessary.
3344This supports mixing legacy codes that run with a 4-byte aligned stack
3345with modern codes that keep a 16-byte stack for SSE compatibility.
33932946 3346
561642fa
AP
3347@item resbank
3348@cindex @code{resbank} attribute
3349On the SH2A target, this attribute enables the high-speed register
3350saving and restoration using a register bank for @code{interrupt_handler}
a640c13b 3351routines. Saving to the bank is performed automatically after the CPU
561642fa
AP
3352accepts an interrupt that uses a register bank.
3353
3354The nineteen 32-bit registers comprising general register R0 to R14,
3355control register GBR, and system registers MACH, MACL, and PR and the
3356vector table address offset are saved into a register bank. Register
3357banks are stacked in first-in last-out (FILO) sequence. Restoration
3358from the bank is executed by issuing a RESBANK instruction.
3359
6e9a3221
AN
3360@item returns_twice
3361@cindex @code{returns_twice} attribute
3362The @code{returns_twice} attribute tells the compiler that a function may
3363return more than one time. The compiler will ensure that all registers
3364are dead before calling such a function and will emit a warning about
3365the variables that may be clobbered after the second return from the
3366function. Examples of such functions are @code{setjmp} and @code{vfork}.
3367The @code{longjmp}-like counterpart of such function, if any, might need
3368to be marked with the @code{noreturn} attribute.
3369
c8619b90 3370@item saveall
0d4a78eb
BS
3371@cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3372Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
c8619b90
NS
3373all registers except the stack pointer should be saved in the prologue
3374regardless of whether they are used or not.
6d3d9133 3375
80920132
ME
3376@item save_volatiles
3377@cindex save volatile registers on the MicroBlaze
3378Use this attribute on the MicroBlaze to indicate that the function is
ff2ce160
MS
3379an interrupt handler. All volatile registers (in addition to non-volatile
3380registers) will be saved in the function prologue. If the function is a leaf
3381function, only volatiles used by the function are saved. A normal function
3382return is generated instead of a return from interrupt.
80920132 3383
c8619b90
NS
3384@item section ("@var{section-name}")
3385@cindex @code{section} function attribute
3386Normally, the compiler places the code it generates in the @code{text} section.
3387Sometimes, however, you need additional sections, or you need certain
3388particular functions to appear in special sections. The @code{section}
3389attribute specifies that a function lives in a particular section.
3390For example, the declaration:
6d3d9133
NC
3391
3392@smallexample
c8619b90 3393extern void foobar (void) __attribute__ ((section ("bar")));
6d3d9133
NC
3394@end smallexample
3395
c8619b90
NS
3396@noindent
3397puts the function @code{foobar} in the @code{bar} section.
6d3d9133 3398
c8619b90
NS
3399Some file formats do not support arbitrary sections so the @code{section}
3400attribute is not available on all platforms.
3401If you need to map the entire contents of a module to a particular
3402section, consider using the facilities of the linker instead.
3403
3d091dac
KG
3404@item sentinel
3405@cindex @code{sentinel} function attribute
254986c7
KG
3406This function attribute ensures that a parameter in a function call is
3407an explicit @code{NULL}. The attribute is only valid on variadic
3408functions. By default, the sentinel is located at position zero, the
3409last parameter of the function call. If an optional integer position
3410argument P is supplied to the attribute, the sentinel must be located at
3411position P counting backwards from the end of the argument list.
3412
3413@smallexample
3414__attribute__ ((sentinel))
3415is equivalent to
3416__attribute__ ((sentinel(0)))
3417@end smallexample
3418
3419The attribute is automatically set with a position of 0 for the built-in
3420functions @code{execl} and @code{execlp}. The built-in function
254ea84c 3421@code{execle} has the attribute set with a position of 1.
254986c7
KG
3422
3423A valid @code{NULL} in this context is defined as zero with any pointer
3424type. If your system defines the @code{NULL} macro with an integer type
3425then you need to add an explicit cast. GCC replaces @code{stddef.h}
3426with a copy that redefines NULL appropriately.
3427
3428The warnings for missing or incorrect sentinels are enabled with
3429@option{-Wformat}.
3d091dac 3430
c8619b90
NS
3431@item short_call
3432See long_call/short_call.
3433
3434@item shortcall
3435See longcall/shortcall.
3436
3437@item signal
3438@cindex signal handler functions on the AVR processors
3439Use this attribute on the AVR to indicate that the specified
3440function is a signal handler. The compiler will generate function
3441entry and exit sequences suitable for use in a signal handler when this
3442attribute is present. Interrupts will be disabled inside the function.
b93e3893
AO
3443
3444@item sp_switch
88ab0d1c 3445Use this attribute on the SH to indicate an @code{interrupt_handler}
b93e3893
AO
3446function should switch to an alternate stack. It expects a string
3447argument that names a global variable holding the address of the
3448alternate stack.
3449
3450@smallexample
3451void *alt_stack;
aee96fe9
JM
3452void f () __attribute__ ((interrupt_handler,
3453 sp_switch ("alt_stack")));
b93e3893
AO
3454@end smallexample
3455
c8619b90
NS
3456@item stdcall
3457@cindex functions that pop the argument stack on the 386
3458On the Intel 386, the @code{stdcall} attribute causes the compiler to
3459assume that the called function will pop off the stack space used to
3460pass arguments, unless it takes a variable number of arguments.
c1f7febf 3461
4b84f3de
SE
3462@item syscall_linkage
3463@cindex @code{syscall_linkage} attribute
3464This attribute is used to modify the IA64 calling convention by marking
3465all input registers as live at all function exits. This makes it possible
3466to restart a system call after an interrupt without having to save/restore
3467the input registers. This also prevents kernel data from leaking into
3468application code.
3469
1df48f5c
JW
3470@item target
3471@cindex @code{target} function attribute
3472The @code{target} attribute is used to specify that a function is to
3473be compiled with different target options than specified on the
3474command line. This can be used for instance to have functions
3475compiled with a different ISA (instruction set architecture) than the
3476default. You can also use the @samp{#pragma GCC target} pragma to set
3477more than one function to be compiled with specific target options.
3478@xref{Function Specific Option Pragmas}, for details about the
3479@samp{#pragma GCC target} pragma.
3480
3481For instance on a 386, you could compile one function with
3482@code{target("sse4.1,arch=core2")} and another with
3483@code{target("sse4a,arch=amdfam10")} that would be equivalent to
3484compiling the first function with @option{-msse4.1} and
3485@option{-march=core2} options, and the second function with
3486@option{-msse4a} and @option{-march=amdfam10} options. It is up to the
3487user to make sure that a function is only invoked on a machine that
3488supports the particular ISA it was compiled for (for example by using
3489@code{cpuid} on 386 to determine what feature bits and architecture
3490family are used).
3491
3492@smallexample
3493int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3494int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3495@end smallexample
3496
3497On the 386, the following options are allowed:
3498
3499@table @samp
3500@item abm
3501@itemx no-abm
3502@cindex @code{target("abm")} attribute
3503Enable/disable the generation of the advanced bit instructions.
3504
3505@item aes
3506@itemx no-aes
3507@cindex @code{target("aes")} attribute
3508Enable/disable the generation of the AES instructions.
3509
3510@item mmx
3511@itemx no-mmx
3512@cindex @code{target("mmx")} attribute
3513Enable/disable the generation of the MMX instructions.
3514
3515@item pclmul
3516@itemx no-pclmul
3517@cindex @code{target("pclmul")} attribute
3518Enable/disable the generation of the PCLMUL instructions.
3519
3520@item popcnt
3521@itemx no-popcnt
3522@cindex @code{target("popcnt")} attribute
3523Enable/disable the generation of the POPCNT instruction.
3524
3525@item sse
3526@itemx no-sse
3527@cindex @code{target("sse")} attribute
3528Enable/disable the generation of the SSE instructions.
3529
3530@item sse2
3531@itemx no-sse2
3532@cindex @code{target("sse2")} attribute
3533Enable/disable the generation of the SSE2 instructions.
3534
3535@item sse3
3536@itemx no-sse3
3537@cindex @code{target("sse3")} attribute
3538Enable/disable the generation of the SSE3 instructions.
3539
3540@item sse4
3541@itemx no-sse4
3542@cindex @code{target("sse4")} attribute
3543Enable/disable the generation of the SSE4 instructions (both SSE4.1
3544and SSE4.2).
3545
3546@item sse4.1
3547@itemx no-sse4.1
3548@cindex @code{target("sse4.1")} attribute
3549Enable/disable the generation of the sse4.1 instructions.
3550
3551@item sse4.2
3552@itemx no-sse4.2
3553@cindex @code{target("sse4.2")} attribute
3554Enable/disable the generation of the sse4.2 instructions.
3555
3556@item sse4a
3557@itemx no-sse4a
3558@cindex @code{target("sse4a")} attribute
3559Enable/disable the generation of the SSE4A instructions.
3560
cbf2e4d4
HJ
3561@item fma4
3562@itemx no-fma4
3563@cindex @code{target("fma4")} attribute
3564Enable/disable the generation of the FMA4 instructions.
3565
43a8b705
HJ
3566@item xop
3567@itemx no-xop
3568@cindex @code{target("xop")} attribute
3569Enable/disable the generation of the XOP instructions.
3570
3e901069
HJ
3571@item lwp
3572@itemx no-lwp
3573@cindex @code{target("lwp")} attribute
3574Enable/disable the generation of the LWP instructions.
3575
1df48f5c
JW
3576@item ssse3
3577@itemx no-ssse3
3578@cindex @code{target("ssse3")} attribute
3579Enable/disable the generation of the SSSE3 instructions.
3580
3581@item cld
3582@itemx no-cld
3583@cindex @code{target("cld")} attribute
3584Enable/disable the generation of the CLD before string moves.
3585
3586@item fancy-math-387
3587@itemx no-fancy-math-387
3588@cindex @code{target("fancy-math-387")} attribute
3589Enable/disable the generation of the @code{sin}, @code{cos}, and
3590@code{sqrt} instructions on the 387 floating point unit.
3591
3592@item fused-madd
3593@itemx no-fused-madd
3594@cindex @code{target("fused-madd")} attribute
3595Enable/disable the generation of the fused multiply/add instructions.
3596
3597@item ieee-fp
3598@itemx no-ieee-fp
3599@cindex @code{target("ieee-fp")} attribute
3600Enable/disable the generation of floating point that depends on IEEE arithmetic.
3601
3602@item inline-all-stringops
3603@itemx no-inline-all-stringops
3604@cindex @code{target("inline-all-stringops")} attribute
3605Enable/disable inlining of string operations.
3606
3607@item inline-stringops-dynamically
3608@itemx no-inline-stringops-dynamically
3609@cindex @code{target("inline-stringops-dynamically")} attribute
3610Enable/disable the generation of the inline code to do small string
3611operations and calling the library routines for large operations.
3612
3613@item align-stringops
3614@itemx no-align-stringops
3615@cindex @code{target("align-stringops")} attribute
3616Do/do not align destination of inlined string operations.
3617
3618@item recip
3619@itemx no-recip
3620@cindex @code{target("recip")} attribute
3621Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
048fd785 3622instructions followed an additional Newton-Raphson step instead of
1df48f5c
JW
3623doing a floating point division.
3624
3625@item arch=@var{ARCH}
3626@cindex @code{target("arch=@var{ARCH}")} attribute
3627Specify the architecture to generate code for in compiling the function.
3628
3629@item tune=@var{TUNE}
3630@cindex @code{target("tune=@var{TUNE}")} attribute
3631Specify the architecture to tune for in compiling the function.
3632
3633@item fpmath=@var{FPMATH}
3634@cindex @code{target("fpmath=@var{FPMATH}")} attribute
3635Specify which floating point unit to use. The
3636@code{target("fpmath=sse,387")} option must be specified as
3637@code{target("fpmath=sse+387")} because the comma would separate
3638different options.
15bf6f3a 3639@end table
fd438373 3640
fd438373
MM
3641On the PowerPC, the following options are allowed:
3642
3643@table @samp
3644@item altivec
3645@itemx no-altivec
3646@cindex @code{target("altivec")} attribute
3647Generate code that uses (does not use) AltiVec instructions. In
364832-bit code, you cannot enable Altivec instructions unless
3649@option{-mabi=altivec} was used on the command line.
3650
3651@item cmpb
3652@itemx no-cmpb
3653@cindex @code{target("cmpb")} attribute
3654Generate code that uses (does not use) the compare bytes instruction
3655implemented on the POWER6 processor and other processors that support
3656the PowerPC V2.05 architecture.
3657
3658@item dlmzb
3659@itemx no-dlmzb
3660@cindex @code{target("dlmzb")} attribute
3661Generate code that uses (does not use) the string-search @samp{dlmzb}
3662instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
3663generated by default when targetting those processors.
3664
3665@item fprnd
3666@itemx no-fprnd
3667@cindex @code{target("fprnd")} attribute
3668Generate code that uses (does not use) the FP round to integer
3669instructions implemented on the POWER5+ processor and other processors
3670that support the PowerPC V2.03 architecture.
3671
3672@item hard-dfp
3673@itemx no-hard-dfp
3674@cindex @code{target("hard-dfp")} attribute
3675Generate code that uses (does not use) the decimal floating point
3676instructions implemented on some POWER processors.
3677
3678@item isel
3679@itemx no-isel
3680@cindex @code{target("isel")} attribute
3681Generate code that uses (does not use) ISEL instruction.
3682
3683@item mfcrf
3684@itemx no-mfcrf
3685@cindex @code{target("mfcrf")} attribute
3686Generate code that uses (does not use) the move from condition
3687register field instruction implemented on the POWER4 processor and
3688other processors that support the PowerPC V2.01 architecture.
3689
3690@item mfpgpr
3691@itemx no-mfpgpr
3692@cindex @code{target("mfpgpr")} attribute
3693Generate code that uses (does not use) the FP move to/from general
3694purpose register instructions implemented on the POWER6X processor and
3695other processors that support the extended PowerPC V2.05 architecture.
3696
3697@item mulhw
3698@itemx no-mulhw
3699@cindex @code{target("mulhw")} attribute
3700Generate code that uses (does not use) the half-word multiply and
3701multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
3702These instructions are generated by default when targetting those
3703processors.
3704
3705@item multiple
3706@itemx no-multiple
3707@cindex @code{target("multiple")} attribute
3708Generate code that uses (does not use) the load multiple word
3709instructions and the store multiple word instructions.
3710
3711@item update
3712@itemx no-update
3713@cindex @code{target("update")} attribute
3714Generate code that uses (does not use) the load or store instructions
3715that update the base register to the address of the calculated memory
3716location.
3717
3718@item popcntb
3719@itemx no-popcntb
3720@cindex @code{target("popcntb")} attribute
3721Generate code that uses (does not use) the popcount and double
3722precision FP reciprocal estimate instruction implemented on the POWER5
3723processor and other processors that support the PowerPC V2.02
3724architecture.
3725
3726@item popcntd
3727@itemx no-popcntd
3728@cindex @code{target("popcntd")} attribute
3729Generate code that uses (does not use) the popcount instruction
3730implemented on the POWER7 processor and other processors that support
3731the PowerPC V2.06 architecture.
3732
3733@item powerpc-gfxopt
3734@itemx no-powerpc-gfxopt
3735@cindex @code{target("powerpc-gfxopt")} attribute
3736Generate code that uses (does not use) the optional PowerPC
3737architecture instructions in the Graphics group, including
3738floating-point select.
3739
3740@item powerpc-gpopt
3741@itemx no-powerpc-gpopt
3742@cindex @code{target("powerpc-gpopt")} attribute
3743Generate code that uses (does not use) the optional PowerPC
3744architecture instructions in the General Purpose group, including
3745floating-point square root.
3746
3747@item recip-precision
3748@itemx no-recip-precision
3749@cindex @code{target("recip-precision")} attribute
3750Assume (do not assume) that the reciprocal estimate instructions
3751provide higher precision estimates than is mandated by the powerpc
3752ABI.
3753
3754@item string
3755@itemx no-string
3756@cindex @code{target("string")} attribute
3757Generate code that uses (does not use) the load string instructions
3758and the store string word instructions to save multiple registers and
3759do small block moves.
3760
3761@item vsx
3762@itemx no-vsx
3763@cindex @code{target("vsx")} attribute
3764Generate code that uses (does not use) vector/scalar (VSX)
3765instructions, and also enable the use of built-in functions that allow
3766more direct access to the VSX instruction set. In 32-bit code, you
3767cannot enable VSX or Altivec instructions unless
3768@option{-mabi=altivec} was used on the command line.
3769
3770@item friz
3771@itemx no-friz
3772@cindex @code{target("friz")} attribute
3773Generate (do not generate) the @code{friz} instruction when the
3774@option{-funsafe-math-optimizations} option is used to optimize
3775rounding a floating point value to 64-bit integer and back to floating
3776point. The @code{friz} instruction does not return the same value if
3777the floating point number is too large to fit in an integer.
3778
3779@item avoid-indexed-addresses
3780@itemx no-avoid-indexed-addresses
3781@cindex @code{target("avoid-indexed-addresses")} attribute
3782Generate code that tries to avoid (not avoid) the use of indexed load
3783or store instructions.
3784
3785@item paired
3786@itemx no-paired
3787@cindex @code{target("paired")} attribute
3788Generate code that uses (does not use) the generation of PAIRED simd
3789instructions.
3790
3791@item longcall
3792@itemx no-longcall
3793@cindex @code{target("longcall")} attribute
3794Generate code that assumes (does not assume) that all calls are far
3795away so that a longer more expensive calling sequence is required.
3796
3797@item cpu=@var{CPU}
3798@cindex @code{target("cpu=@var{CPU}")} attribute
2b0d3573 3799Specify the architecture to generate code for when compiling the
76f59013 3800function. If you select the @code{target("cpu=power7")} attribute when
fd438373
MM
3801generating 32-bit code, VSX and Altivec instructions are not generated
3802unless you use the @option{-mabi=altivec} option on the command line.
3803
3804@item tune=@var{TUNE}
3805@cindex @code{target("tune=@var{TUNE}")} attribute
2b0d3573 3806Specify the architecture to tune for when compiling the function. If
fd438373 3807you do not specify the @code{target("tune=@var{TUNE}")} attribute and
2b0d3573 3808you do specify the @code{target("cpu=@var{CPU}")} attribute,
fd438373
MM
3809compilation will tune for the @var{CPU} architecture, and not the
3810default tuning specified on the command line.
3811@end table
1df48f5c 3812
fd438373
MM
3813On the 386/x86_64 and PowerPC backends, you can use either multiple
3814strings to specify multiple options, or you can separate the option
3815with a comma (@code{,}).
1df48f5c 3816
fd438373
MM
3817On the 386/x86_64 and PowerPC backends, the inliner will not inline a
3818function that has different target options than the caller, unless the
3819callee has a subset of the target options of the caller. For example
3820a function declared with @code{target("sse3")} can inline a function
3821with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
1df48f5c
JW
3822
3823The @code{target} attribute is not implemented in GCC versions earlier
fd438373
MM
3824than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. It is
3825not currently implemented for other backends.
1df48f5c 3826
c1f7febf 3827@item tiny_data
dbacaa98
KH
3828@cindex tiny data section on the H8/300H and H8S
3829Use this attribute on the H8/300H and H8S to indicate that the specified
c1f7febf
RK
3830variable should be placed into the tiny data section.
3831The compiler will generate more efficient code for loads and stores
3832on data in the tiny data section. Note the tiny data area is limited to
3833slightly under 32kbytes of data.
845da534 3834
c8619b90
NS
3835@item trap_exit
3836Use this attribute on the SH for an @code{interrupt_handler} to return using
3837@code{trapa} instead of @code{rte}. This attribute expects an integer
3838argument specifying the trap number to be used.
845da534 3839
c8619b90
NS
3840@item unused
3841@cindex @code{unused} attribute.
3842This attribute, attached to a function, means that the function is meant
3843to be possibly unused. GCC will not produce a warning for this
3844function.
a32767e4 3845
c8619b90
NS
3846@item used
3847@cindex @code{used} attribute.
3848This attribute, attached to a function, means that code must be emitted
3849for the function even if it appears that the function is not referenced.
3850This is useful, for example, when the function is referenced only in
3851inline assembly.
5936c7e7 3852
4951efb6
JM
3853When applied to a member function of a C++ class template, the
3854attribute also means that the function will be instantiated if the
3855class itself is instantiated.
3856
812b587e 3857@item version_id
4b84f3de
SE
3858@cindex @code{version_id} attribute
3859This IA64 HP-UX attribute, attached to a global variable or function, renames a
812b587e
SE
3860symbol to contain a version string, thus allowing for function level
3861versioning. HP-UX system header files may use version level functioning
3862for some system calls.
3863
3864@smallexample
3865extern int foo () __attribute__((version_id ("20040821")));
3866@end smallexample
3867
3868Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
3869
c8619b90
NS
3870@item visibility ("@var{visibility_type}")
3871@cindex @code{visibility} attribute
46bdbc00
GK
3872This attribute affects the linkage of the declaration to which it is attached.
3873There are four supported @var{visibility_type} values: default,
3874hidden, protected or internal visibility.
5936c7e7 3875
c8619b90
NS
3876@smallexample
3877void __attribute__ ((visibility ("protected")))
3878f () @{ /* @r{Do something.} */; @}
3879int i __attribute__ ((visibility ("hidden")));
3880@end smallexample
5936c7e7 3881
46bdbc00
GK
3882The possible values of @var{visibility_type} correspond to the
3883visibility settings in the ELF gABI.
5936c7e7 3884
c8619b90 3885@table @dfn
63c5b495 3886@c keep this list of visibilities in alphabetical order.
6b6cb52e 3887
c8619b90 3888@item default
46bdbc00
GK
3889Default visibility is the normal case for the object file format.
3890This value is available for the visibility attribute to override other
3891options that may change the assumed visibility of entities.
3892
3893On ELF, default visibility means that the declaration is visible to other
3894modules and, in shared libraries, means that the declared entity may be
3895overridden.
3896
3897On Darwin, default visibility means that the declaration is visible to
3898other modules.
3899
3900Default visibility corresponds to ``external linkage'' in the language.
6b6cb52e 3901
c8619b90 3902@item hidden
46bdbc00
GK
3903Hidden visibility indicates that the entity declared will have a new
3904form of linkage, which we'll call ``hidden linkage''. Two
3905declarations of an object with hidden linkage refer to the same object
3906if they are in the same shared object.
6b6cb52e 3907
c8619b90
NS
3908@item internal
3909Internal visibility is like hidden visibility, but with additional
46bdbc00
GK
3910processor specific semantics. Unless otherwise specified by the
3911psABI, GCC defines internal visibility to mean that a function is
3912@emph{never} called from another module. Compare this with hidden
3913functions which, while they cannot be referenced directly by other
3914modules, can be referenced indirectly via function pointers. By
3915indicating that a function cannot be called from outside the module,
3916GCC may for instance omit the load of a PIC register since it is known
3917that the calling function loaded the correct value.
6b6cb52e 3918
c8619b90 3919@item protected
46bdbc00
GK
3920Protected visibility is like default visibility except that it
3921indicates that references within the defining module will bind to the
3922definition in that module. That is, the declared entity cannot be
3923overridden by another module.
6b6cb52e 3924
c8619b90 3925@end table
6b6cb52e 3926
46bdbc00
GK
3927All visibilities are supported on many, but not all, ELF targets
3928(supported when the assembler supports the @samp{.visibility}
3929pseudo-op). Default visibility is supported everywhere. Hidden
3930visibility is supported on Darwin targets.
3931
3932The visibility attribute should be applied only to declarations which
3933would otherwise have external linkage. The attribute should be applied
3934consistently, so that the same entity should not be declared with
3935different settings of the attribute.
3936
3937In C++, the visibility attribute applies to types as well as functions
b9e75696
JM
3938and objects, because in C++ types have linkage. A class must not have
3939greater visibility than its non-static data member types and bases,
3940and class members default to the visibility of their class. Also, a
b70f0f48
JM
3941declaration without explicit visibility is limited to the visibility
3942of its type.
46bdbc00
GK
3943
3944In C++, you can mark member functions and static member variables of a
d1facce0 3945class with the visibility attribute. This is useful if you know a
46bdbc00
GK
3946particular method or static member variable should only be used from
3947one shared object; then you can mark it hidden while the rest of the
3948class has default visibility. Care must be taken to avoid breaking
b70f0f48
JM
3949the One Definition Rule; for example, it is usually not useful to mark
3950an inline method as hidden without marking the whole class as hidden.
6b6cb52e 3951
b9e75696
JM
3952A C++ namespace declaration can also have the visibility attribute.
3953This attribute applies only to the particular namespace body, not to
3954other definitions of the same namespace; it is equivalent to using
3955@samp{#pragma GCC visibility} before and after the namespace
3956definition (@pxref{Visibility Pragmas}).
3957
3958In C++, if a template argument has limited visibility, this
3959restriction is implicitly propagated to the template instantiation.
3960Otherwise, template instantiations and specializations default to the
3961visibility of their template.
3962
b70f0f48
JM
3963If both the template and enclosing class have explicit visibility, the
3964visibility from the template is used.
3965
e2491744
DD
3966@item vliw
3967@cindex @code{vliw} attribute
3968On MeP, the @code{vliw} attribute tells the compiler to emit
3969instructions in VLIW mode instead of core mode. Note that this
3970attribute is not allowed unless a VLIW coprocessor has been configured
3971and enabled through command line options.
3972
c8619b90
NS
3973@item warn_unused_result
3974@cindex @code{warn_unused_result} attribute
3975The @code{warn_unused_result} attribute causes a warning to be emitted
3976if a caller of the function with this attribute does not use its
3977return value. This is useful for functions where not checking
3978the result is either a security problem or always a bug, such as
3979@code{realloc}.
6b6cb52e 3980
c8619b90
NS
3981@smallexample
3982int fn () __attribute__ ((warn_unused_result));
3983int foo ()
3984@{
3985 if (fn () < 0) return -1;
3986 fn ();
3987 return 0;
3988@}
3989@end smallexample
6b6cb52e 3990
c8619b90 3991results in warning on line 5.
6b6cb52e 3992
c8619b90
NS
3993@item weak
3994@cindex @code{weak} attribute
3995The @code{weak} attribute causes the declaration to be emitted as a weak
3996symbol rather than a global. This is primarily useful in defining
3997library functions which can be overridden in user code, though it can
3998also be used with non-function declarations. Weak symbols are supported
3999for ELF targets, and also for a.out targets when using the GNU assembler
4000and linker.
6b6cb52e 4001
a0203ca7
AO
4002@item weakref
4003@itemx weakref ("@var{target}")
4004@cindex @code{weakref} attribute
4005The @code{weakref} attribute marks a declaration as a weak reference.
4006Without arguments, it should be accompanied by an @code{alias} attribute
4007naming the target symbol. Optionally, the @var{target} may be given as
4008an argument to @code{weakref} itself. In either case, @code{weakref}
4009implicitly marks the declaration as @code{weak}. Without a
4010@var{target}, given as an argument to @code{weakref} or to @code{alias},
4011@code{weakref} is equivalent to @code{weak}.
4012
4013@smallexample
a9b0b825 4014static int x() __attribute__ ((weakref ("y")));
a0203ca7 4015/* is equivalent to... */
a9b0b825 4016static int x() __attribute__ ((weak, weakref, alias ("y")));
a0203ca7 4017/* and to... */
a9b0b825
GK
4018static int x() __attribute__ ((weakref));
4019static int x() __attribute__ ((alias ("y")));
a0203ca7
AO
4020@end smallexample
4021
4022A weak reference is an alias that does not by itself require a
4023definition to be given for the target symbol. If the target symbol is
4896c7b8 4024only referenced through weak references, then it becomes a @code{weak}
a0203ca7
AO
4025undefined symbol. If it is directly referenced, however, then such
4026strong references prevail, and a definition will be required for the
4027symbol, not necessarily in the same translation unit.
4028
4029The effect is equivalent to moving all references to the alias to a
4030separate translation unit, renaming the alias to the aliased symbol,
4031declaring it as weak, compiling the two separate translation units and
4032performing a reloadable link on them.
4033
a9b0b825
GK
4034At present, a declaration to which @code{weakref} is attached can
4035only be @code{static}.
4036
c1f7febf
RK
4037@end table
4038
4039You can specify multiple attributes in a declaration by separating them
4040by commas within the double parentheses or by immediately following an
4041attribute declaration with another attribute declaration.
4042
4043@cindex @code{#pragma}, reason for not using
4044@cindex pragma, reason for not using
9f1bbeaa
JM
4045Some people object to the @code{__attribute__} feature, suggesting that
4046ISO C's @code{#pragma} should be used instead. At the time
4047@code{__attribute__} was designed, there were two reasons for not doing
4048this.
c1f7febf
RK
4049
4050@enumerate
4051@item
4052It is impossible to generate @code{#pragma} commands from a macro.
4053
4054@item
4055There is no telling what the same @code{#pragma} might mean in another
4056compiler.
4057@end enumerate
4058
9f1bbeaa
JM
4059These two reasons applied to almost any application that might have been
4060proposed for @code{#pragma}. It was basically a mistake to use
4061@code{#pragma} for @emph{anything}.
4062
4063The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4064to be generated from macros. In addition, a @code{#pragma GCC}
4065namespace is now in use for GCC-specific pragmas. However, it has been
4066found convenient to use @code{__attribute__} to achieve a natural
4067attachment of attributes to their corresponding declarations, whereas
4068@code{#pragma GCC} is of use for constructs that do not naturally form
4069part of the grammar. @xref{Other Directives,,Miscellaneous
48795525 4070Preprocessing Directives, cpp, The GNU C Preprocessor}.
c1f7febf 4071
2c5e91d2
JM
4072@node Attribute Syntax
4073@section Attribute Syntax
4074@cindex attribute syntax
4075
4076This section describes the syntax with which @code{__attribute__} may be
4077used, and the constructs to which attribute specifiers bind, for the C
161d7b59 4078language. Some details may vary for C++ and Objective-C@. Because of
2c5e91d2
JM
4079infelicities in the grammar for attributes, some forms described here
4080may not be successfully parsed in all cases.
4081
91d231cb
JM
4082There are some problems with the semantics of attributes in C++. For
4083example, there are no manglings for attributes, although they may affect
4084code generation, so problems may arise when attributed types are used in
4085conjunction with templates or overloading. Similarly, @code{typeid}
4086does not distinguish between types with different attributes. Support
4087for attributes in C++ may be restricted in future to attributes on
4088declarations only, but not on nested declarators.
4089
2c5e91d2
JM
4090@xref{Function Attributes}, for details of the semantics of attributes
4091applying to functions. @xref{Variable Attributes}, for details of the
4092semantics of attributes applying to variables. @xref{Type Attributes},
4093for details of the semantics of attributes applying to structure, union
4094and enumerated types.
4095
4096An @dfn{attribute specifier} is of the form
4097@code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
4098is a possibly empty comma-separated sequence of @dfn{attributes}, where
4099each attribute is one of the following:
4100
4101@itemize @bullet
4102@item
4103Empty. Empty attributes are ignored.
4104
4105@item
4106A word (which may be an identifier such as @code{unused}, or a reserved
4107word such as @code{const}).
4108
4109@item
4110A word, followed by, in parentheses, parameters for the attribute.
4111These parameters take one of the following forms:
4112
4113@itemize @bullet
4114@item
4115An identifier. For example, @code{mode} attributes use this form.
4116
4117@item
4118An identifier followed by a comma and a non-empty comma-separated list
4119of expressions. For example, @code{format} attributes use this form.
4120
4121@item
4122A possibly empty comma-separated list of expressions. For example,
4123@code{format_arg} attributes use this form with the list being a single
4124integer constant expression, and @code{alias} attributes use this form
4125with the list being a single string constant.
4126@end itemize
4127@end itemize
4128
4129An @dfn{attribute specifier list} is a sequence of one or more attribute
4130specifiers, not separated by any other tokens.
4131
50fc59e7 4132In GNU C, an attribute specifier list may appear after the colon following a
2c5e91d2
JM
4133label, other than a @code{case} or @code{default} label. The only
4134attribute it makes sense to use after a label is @code{unused}. This
4135feature is intended for code generated by programs which contains labels
4136that may be unused but which is compiled with @option{-Wall}. It would
4137not normally be appropriate to use in it human-written code, though it
4138could be useful in cases where the code that jumps to the label is
5bca4e80
ILT
4139contained within an @code{#ifdef} conditional. GNU C++ only permits
4140attributes on labels if the attribute specifier is immediately
4141followed by a semicolon (i.e., the label applies to an empty
4142statement). If the semicolon is missing, C++ label attributes are
4143ambiguous, as it is permissible for a declaration, which could begin
4144with an attribute list, to be labelled in C++. Declarations cannot be
4145labelled in C90 or C99, so the ambiguity does not arise there.
2c5e91d2
JM
4146
4147An attribute specifier list may appear as part of a @code{struct},
4148@code{union} or @code{enum} specifier. It may go either immediately
4149after the @code{struct}, @code{union} or @code{enum} keyword, or after
b9e75696 4150the closing brace. The former syntax is preferred.
2c5e91d2
JM
4151Where attribute specifiers follow the closing brace, they are considered
4152to relate to the structure, union or enumerated type defined, not to any
4153enclosing declaration the type specifier appears in, and the type
4154defined is not complete until after the attribute specifiers.
4155@c Otherwise, there would be the following problems: a shift/reduce
4fe9b91c 4156@c conflict between attributes binding the struct/union/enum and
2c5e91d2
JM
4157@c binding to the list of specifiers/qualifiers; and "aligned"
4158@c attributes could use sizeof for the structure, but the size could be
4159@c changed later by "packed" attributes.
4160
4161Otherwise, an attribute specifier appears as part of a declaration,
4162counting declarations of unnamed parameters and type names, and relates
4163to that declaration (which may be nested in another declaration, for
91d231cb
JM
4164example in the case of a parameter declaration), or to a particular declarator
4165within a declaration. Where an
ff867905
JM
4166attribute specifier is applied to a parameter declared as a function or
4167an array, it should apply to the function or array rather than the
4168pointer to which the parameter is implicitly converted, but this is not
4169yet correctly implemented.
2c5e91d2
JM
4170
4171Any list of specifiers and qualifiers at the start of a declaration may
4172contain attribute specifiers, whether or not such a list may in that
4173context contain storage class specifiers. (Some attributes, however,
4174are essentially in the nature of storage class specifiers, and only make
4175sense where storage class specifiers may be used; for example,
4176@code{section}.) There is one necessary limitation to this syntax: the
4177first old-style parameter declaration in a function definition cannot
4178begin with an attribute specifier, because such an attribute applies to
4179the function instead by syntax described below (which, however, is not
4180yet implemented in this case). In some other cases, attribute
4181specifiers are permitted by this grammar but not yet supported by the
4182compiler. All attribute specifiers in this place relate to the
c771326b 4183declaration as a whole. In the obsolescent usage where a type of
2c5e91d2
JM
4184@code{int} is implied by the absence of type specifiers, such a list of
4185specifiers and qualifiers may be an attribute specifier list with no
4186other specifiers or qualifiers.
4187
7dcb0442
JM
4188At present, the first parameter in a function prototype must have some
4189type specifier which is not an attribute specifier; this resolves an
4190ambiguity in the interpretation of @code{void f(int
4191(__attribute__((foo)) x))}, but is subject to change. At present, if
4192the parentheses of a function declarator contain only attributes then
4193those attributes are ignored, rather than yielding an error or warning
4194or implying a single parameter of type int, but this is subject to
4195change.
4196
2c5e91d2
JM
4197An attribute specifier list may appear immediately before a declarator
4198(other than the first) in a comma-separated list of declarators in a
4199declaration of more than one identifier using a single list of
4b01f8d8 4200specifiers and qualifiers. Such attribute specifiers apply
9c34dbbf
ZW
4201only to the identifier before whose declarator they appear. For
4202example, in
4203
4204@smallexample
4205__attribute__((noreturn)) void d0 (void),
4206 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4207 d2 (void)
4208@end smallexample
4209
4210@noindent
4211the @code{noreturn} attribute applies to all the functions
4b01f8d8 4212declared; the @code{format} attribute only applies to @code{d1}.
2c5e91d2
JM
4213
4214An attribute specifier list may appear immediately before the comma,
4215@code{=} or semicolon terminating the declaration of an identifier other
770a9950
JM
4216than a function definition. Such attribute specifiers apply
4217to the declared object or function. Where an
9c34dbbf 4218assembler name for an object or function is specified (@pxref{Asm
770a9950
JM
4219Labels}), the attribute must follow the @code{asm}
4220specification.
2c5e91d2
JM
4221
4222An attribute specifier list may, in future, be permitted to appear after
4223the declarator in a function definition (before any old-style parameter
4224declarations or the function body).
4225
0e03329a
JM
4226Attribute specifiers may be mixed with type qualifiers appearing inside
4227the @code{[]} of a parameter array declarator, in the C99 construct by
4228which such qualifiers are applied to the pointer to which the array is
4229implicitly converted. Such attribute specifiers apply to the pointer,
4230not to the array, but at present this is not implemented and they are
4231ignored.
4232
2c5e91d2
JM
4233An attribute specifier list may appear at the start of a nested
4234declarator. At present, there are some limitations in this usage: the
91d231cb
JM
4235attributes correctly apply to the declarator, but for most individual
4236attributes the semantics this implies are not implemented.
4237When attribute specifiers follow the @code{*} of a pointer
4b01f8d8 4238declarator, they may be mixed with any type qualifiers present.
91d231cb 4239The following describes the formal semantics of this syntax. It will make the
2c5e91d2
JM
4240most sense if you are familiar with the formal specification of
4241declarators in the ISO C standard.
4242
4243Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4244D1}, where @code{T} contains declaration specifiers that specify a type
4245@var{Type} (such as @code{int}) and @code{D1} is a declarator that
4246contains an identifier @var{ident}. The type specified for @var{ident}
4247for derived declarators whose type does not include an attribute
4248specifier is as in the ISO C standard.
4249
4250If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4251and the declaration @code{T D} specifies the type
4252``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4253@code{T D1} specifies the type ``@var{derived-declarator-type-list}
4254@var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4255
4256If @code{D1} has the form @code{*
4257@var{type-qualifier-and-attribute-specifier-list} D}, and the
4258declaration @code{T D} specifies the type
4259``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4260@code{T D1} specifies the type ``@var{derived-declarator-type-list}
197ef306 4261@var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
2c5e91d2
JM
4262@var{ident}.
4263
f282ffb3 4264For example,
9c34dbbf
ZW
4265
4266@smallexample
4267void (__attribute__((noreturn)) ****f) (void);
4268@end smallexample
4269
4270@noindent
4271specifies the type ``pointer to pointer to pointer to pointer to
4272non-returning function returning @code{void}''. As another example,
4273
4274@smallexample
4275char *__attribute__((aligned(8))) *f;
4276@end smallexample
4277
4278@noindent
4279specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
91d231cb
JM
4280Note again that this does not work with most attributes; for example,
4281the usage of @samp{aligned} and @samp{noreturn} attributes given above
4282is not yet supported.
4283
4284For compatibility with existing code written for compiler versions that
4285did not implement attributes on nested declarators, some laxity is
4286allowed in the placing of attributes. If an attribute that only applies
4287to types is applied to a declaration, it will be treated as applying to
4288the type of that declaration. If an attribute that only applies to
4289declarations is applied to the type of a declaration, it will be treated
4290as applying to that declaration; and, for compatibility with code
4291placing the attributes immediately before the identifier declared, such
4292an attribute applied to a function return type will be treated as
4293applying to the function type, and such an attribute applied to an array
4294element type will be treated as applying to the array type. If an
4295attribute that only applies to function types is applied to a
4296pointer-to-function type, it will be treated as applying to the pointer
4297target type; if such an attribute is applied to a function return type
4298that is not a pointer-to-function type, it will be treated as applying
4299to the function type.
2c5e91d2 4300
c1f7febf
RK
4301@node Function Prototypes
4302@section Prototypes and Old-Style Function Definitions
4303@cindex function prototype declarations
4304@cindex old-style function definitions
4305@cindex promotion of formal parameters
4306
5490d604 4307GNU C extends ISO C to allow a function prototype to override a later
c1f7febf
RK
4308old-style non-prototype definition. Consider the following example:
4309
3ab51846 4310@smallexample
c1f7febf 4311/* @r{Use prototypes unless the compiler is old-fashioned.} */
d863830b 4312#ifdef __STDC__
c1f7febf
RK
4313#define P(x) x
4314#else
4315#define P(x) ()
4316#endif
4317
4318/* @r{Prototype function declaration.} */
4319int isroot P((uid_t));
4320
4321/* @r{Old-style function definition.} */
4322int
12bcfaa1 4323isroot (x) /* @r{??? lossage here ???} */
c1f7febf
RK
4324 uid_t x;
4325@{
4326 return x == 0;
4327@}
3ab51846 4328@end smallexample
c1f7febf 4329
5490d604 4330Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
c1f7febf
RK
4331not allow this example, because subword arguments in old-style
4332non-prototype definitions are promoted. Therefore in this example the
4333function definition's argument is really an @code{int}, which does not
4334match the prototype argument type of @code{short}.
4335
5490d604 4336This restriction of ISO C makes it hard to write code that is portable
c1f7febf
RK
4337to traditional C compilers, because the programmer does not know
4338whether the @code{uid_t} type is @code{short}, @code{int}, or
4339@code{long}. Therefore, in cases like these GNU C allows a prototype
4340to override a later old-style definition. More precisely, in GNU C, a
4341function prototype argument type overrides the argument type specified
4342by a later old-style definition if the former type is the same as the
4343latter type before promotion. Thus in GNU C the above example is
4344equivalent to the following:
4345
3ab51846 4346@smallexample
c1f7febf
RK
4347int isroot (uid_t);
4348
4349int
4350isroot (uid_t x)
4351@{
4352 return x == 0;
4353@}
3ab51846 4354@end smallexample
c1f7febf 4355
9c34dbbf 4356@noindent
c1f7febf
RK
4357GNU C++ does not support old-style function definitions, so this
4358extension is irrelevant.
4359
4360@node C++ Comments
4361@section C++ Style Comments
ab940b73 4362@cindex @code{//}
c1f7febf
RK
4363@cindex C++ comments
4364@cindex comments, C++ style
4365
4366In GNU C, you may use C++ style comments, which start with @samp{//} and
4367continue until the end of the line. Many other C implementations allow
f458d1d5
ZW
4368such comments, and they are included in the 1999 C standard. However,
4369C++ style comments are not recognized if you specify an @option{-std}
4370option specifying a version of ISO C before C99, or @option{-ansi}
7e1542b9 4371(equivalent to @option{-std=c90}).
c1f7febf
RK
4372
4373@node Dollar Signs
4374@section Dollar Signs in Identifier Names
4375@cindex $
4376@cindex dollar signs in identifier names
4377@cindex identifier names, dollar signs in
4378
79188db9
RK
4379In GNU C, you may normally use dollar signs in identifier names.
4380This is because many traditional C implementations allow such identifiers.
4381However, dollar signs in identifiers are not supported on a few target
4382machines, typically because the target assembler does not allow them.
c1f7febf
RK
4383
4384@node Character Escapes
4385@section The Character @key{ESC} in Constants
4386
4387You can use the sequence @samp{\e} in a string or character constant to
4388stand for the ASCII character @key{ESC}.
4389
c1f7febf
RK
4390@node Variable Attributes
4391@section Specifying Attributes of Variables
4392@cindex attribute of variables
4393@cindex variable attributes
4394
4395The keyword @code{__attribute__} allows you to specify special
4396attributes of variables or structure fields. This keyword is followed
905e8651
RH
4397by an attribute specification inside double parentheses. Some
4398attributes are currently defined generically for variables.
4399Other attributes are defined for variables on particular target
4400systems. Other attributes are available for functions
4401(@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4402Other front ends might define more attributes
4403(@pxref{C++ Extensions,,Extensions to the C++ Language}).
c1f7febf
RK
4404
4405You may also specify attributes with @samp{__} preceding and following
4406each keyword. This allows you to use them in header files without
4407being concerned about a possible macro of the same name. For example,
4408you may use @code{__aligned__} instead of @code{aligned}.
4409
2c5e91d2
JM
4410@xref{Attribute Syntax}, for details of the exact syntax for using
4411attributes.
4412
c1f7febf
RK
4413@table @code
4414@cindex @code{aligned} attribute
4415@item aligned (@var{alignment})
4416This attribute specifies a minimum alignment for the variable or
4417structure field, measured in bytes. For example, the declaration:
4418
4419@smallexample
4420int x __attribute__ ((aligned (16))) = 0;
4421@end smallexample
4422
4423@noindent
4424causes the compiler to allocate the global variable @code{x} on a
442516-byte boundary. On a 68040, this could be used in conjunction with
4426an @code{asm} expression to access the @code{move16} instruction which
4427requires 16-byte aligned operands.
4428
4429You can also specify the alignment of structure fields. For example, to
4430create a double-word aligned @code{int} pair, you could write:
4431
4432@smallexample
4433struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4434@end smallexample
4435
4436@noindent
4437This is an alternative to creating a union with a @code{double} member
4438that forces the union to be double-word aligned.
4439
c1f7febf
RK
4440As in the preceding examples, you can explicitly specify the alignment
4441(in bytes) that you wish the compiler to use for a given variable or
4442structure field. Alternatively, you can leave out the alignment factor
6e4f1168
L
4443and just ask the compiler to align a variable or field to the
4444default alignment for the target architecture you are compiling for.
4445The default alignment is sufficient for all scalar types, but may not be
4446enough for all vector types on a target which supports vector operations.
4447The default alignment is fixed for a particular target ABI.
4448
4449Gcc also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4450which is the largest alignment ever used for any data type on the
4451target machine you are compiling for. For example, you could write:
c1f7febf
RK
4452
4453@smallexample
6e4f1168 4454short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
c1f7febf
RK
4455@end smallexample
4456
6e4f1168
L
4457The compiler automatically sets the alignment for the declared
4458variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
4459often make copy operations more efficient, because the compiler can
4460use whatever instructions copy the biggest chunks of memory when
4461performing copies to or from the variables or fields that you have
4462aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
4463may change depending on command line options.
c1f7febf 4464
e9f9692b
MW
4465When used on a struct, or struct member, the @code{aligned} attribute can
4466only increase the alignment; in order to decrease it, the @code{packed}
4467attribute must be specified as well. When used as part of a typedef, the
4468@code{aligned} attribute can both increase and decrease alignment, and
4469specifying the @code{packed} attribute will generate a warning.
c1f7febf
RK
4470
4471Note that the effectiveness of @code{aligned} attributes may be limited
4472by inherent limitations in your linker. On many systems, the linker is
4473only able to arrange for variables to be aligned up to a certain maximum
4474alignment. (For some linkers, the maximum supported alignment may
4475be very very small.) If your linker is only able to align variables
4476up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4477in an @code{__attribute__} will still only provide you with 8 byte
4478alignment. See your linker documentation for further information.
4479
ff2ce160 4480The @code{aligned} attribute can also be used for functions
837edd5f
GK
4481(@pxref{Function Attributes}.)
4482
0bfa5f65
RH
4483@item cleanup (@var{cleanup_function})
4484@cindex @code{cleanup} attribute
4485The @code{cleanup} attribute runs a function when the variable goes
4486out of scope. This attribute can only be applied to auto function
4487scope variables; it may not be applied to parameters or variables
4488with static storage duration. The function must take one parameter,
4489a pointer to a type compatible with the variable. The return value
4490of the function (if any) is ignored.
4491
4492If @option{-fexceptions} is enabled, then @var{cleanup_function}
4493will be run during the stack unwinding that happens during the
4494processing of the exception. Note that the @code{cleanup} attribute
4495does not allow the exception to be caught, only to perform an action.
4496It is undefined what happens if @var{cleanup_function} does not
4497return normally.
4498
905e8651
RH
4499@item common
4500@itemx nocommon
4501@cindex @code{common} attribute
4502@cindex @code{nocommon} attribute
4503@opindex fcommon
4504@opindex fno-common
4505The @code{common} attribute requests GCC to place a variable in
4506``common'' storage. The @code{nocommon} attribute requests the
78466c0e 4507opposite---to allocate space for it directly.
905e8651 4508
daf2f129 4509These attributes override the default chosen by the
905e8651
RH
4510@option{-fno-common} and @option{-fcommon} flags respectively.
4511
4512@item deprecated
9b86d6bb 4513@itemx deprecated (@var{msg})
905e8651
RH
4514@cindex @code{deprecated} attribute
4515The @code{deprecated} attribute results in a warning if the variable
4516is used anywhere in the source file. This is useful when identifying
4517variables that are expected to be removed in a future version of a
4518program. The warning also includes the location of the declaration
4519of the deprecated variable, to enable users to easily find further
4520information about why the variable is deprecated, or what they should
64c18e57 4521do instead. Note that the warning only occurs for uses:
905e8651
RH
4522
4523@smallexample
4524extern int old_var __attribute__ ((deprecated));
4525extern int old_var;
4526int new_fn () @{ return old_var; @}
4527@end smallexample
4528
9b86d6bb
L
4529results in a warning on line 3 but not line 2. The optional msg
4530argument, which must be a string, will be printed in the warning if
4531present.
905e8651
RH
4532
4533The @code{deprecated} attribute can also be used for functions and
4534types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4535
c1f7febf
RK
4536@item mode (@var{mode})
4537@cindex @code{mode} attribute
4538This attribute specifies the data type for the declaration---whichever
4539type corresponds to the mode @var{mode}. This in effect lets you
4540request an integer or floating point type according to its width.
4541
4542You may also specify a mode of @samp{byte} or @samp{__byte__} to
4543indicate the mode corresponding to a one-byte integer, @samp{word} or
4544@samp{__word__} for the mode of a one-word integer, and @samp{pointer}
4545or @samp{__pointer__} for the mode used to represent pointers.
4546
c1f7febf
RK
4547@item packed
4548@cindex @code{packed} attribute
4549The @code{packed} attribute specifies that a variable or structure field
4550should have the smallest possible alignment---one byte for a variable,
4551and one bit for a field, unless you specify a larger value with the
4552@code{aligned} attribute.
4553
4554Here is a structure in which the field @code{x} is packed, so that it
4555immediately follows @code{a}:
4556
3ab51846 4557@smallexample
c1f7febf
RK
4558struct foo
4559@{
4560 char a;
4561 int x[2] __attribute__ ((packed));
4562@};
3ab51846 4563@end smallexample
c1f7febf 4564
2cd36c22
AN
4565@emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
4566@code{packed} attribute on bit-fields of type @code{char}. This has
4567been fixed in GCC 4.4 but the change can lead to differences in the
048fd785 4568structure layout. See the documentation of
2cd36c22
AN
4569@option{-Wpacked-bitfield-compat} for more information.
4570
84330467 4571@item section ("@var{section-name}")
c1f7febf
RK
4572@cindex @code{section} variable attribute
4573Normally, the compiler places the objects it generates in sections like
4574@code{data} and @code{bss}. Sometimes, however, you need additional sections,
4575or you need certain particular variables to appear in special sections,
4576for example to map to special hardware. The @code{section}
4577attribute specifies that a variable (or function) lives in a particular
4578section. For example, this small program uses several specific section names:
4579
4580@smallexample
4581struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
4582struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
4583char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
8b9d598f 4584int init_data __attribute__ ((section ("INITDATA")));
c1f7febf
RK
4585
4586main()
4587@{
12bcfaa1 4588 /* @r{Initialize stack pointer} */
c1f7febf
RK
4589 init_sp (stack + sizeof (stack));
4590
12bcfaa1 4591 /* @r{Initialize initialized data} */
c1f7febf
RK
4592 memcpy (&init_data, &data, &edata - &data);
4593
12bcfaa1 4594 /* @r{Turn on the serial ports} */
c1f7febf
RK
4595 init_duart (&a);
4596 init_duart (&b);
4597@}
4598@end smallexample
4599
4600@noindent
8b9d598f
SE
4601Use the @code{section} attribute with
4602@emph{global} variables and not @emph{local} variables,
4603as shown in the example.
c1f7febf 4604
8b9d598f
SE
4605You may use the @code{section} attribute with initialized or
4606uninitialized global variables but the linker requires
c1f7febf
RK
4607each object be defined once, with the exception that uninitialized
4608variables tentatively go in the @code{common} (or @code{bss}) section
8b9d598f
SE
4609and can be multiply ``defined''. Using the @code{section} attribute
4610will change what section the variable goes into and may cause the
4611linker to issue an error if an uninitialized variable has multiple
4612definitions. You can force a variable to be initialized with the
4613@option{-fno-common} flag or the @code{nocommon} attribute.
c1f7febf
RK
4614
4615Some file formats do not support arbitrary sections so the @code{section}
4616attribute is not available on all platforms.
4617If you need to map the entire contents of a module to a particular
4618section, consider using the facilities of the linker instead.
4619
593d3a34
MK
4620@item shared
4621@cindex @code{shared} variable attribute
95fef11f 4622On Microsoft Windows, in addition to putting variable definitions in a named
02f52e19 4623section, the section can also be shared among all running copies of an
161d7b59 4624executable or DLL@. For example, this small program defines shared data
84330467 4625by putting it in a named section @code{shared} and marking the section
593d3a34
MK
4626shareable:
4627
4628@smallexample
4629int foo __attribute__((section ("shared"), shared)) = 0;
4630
4631int
4632main()
4633@{
12bcfaa1
JM
4634 /* @r{Read and write foo. All running
4635 copies see the same value.} */
593d3a34
MK
4636 return 0;
4637@}
4638@end smallexample
4639
4640@noindent
4641You may only use the @code{shared} attribute along with @code{section}
02f52e19 4642attribute with a fully initialized global definition because of the way
593d3a34
MK
4643linkers work. See @code{section} attribute for more information.
4644
95fef11f 4645The @code{shared} attribute is only available on Microsoft Windows@.
593d3a34 4646
905e8651
RH
4647@item tls_model ("@var{tls_model}")
4648@cindex @code{tls_model} attribute
4649The @code{tls_model} attribute sets thread-local storage model
4650(@pxref{Thread-Local}) of a particular @code{__thread} variable,
bcbc9564 4651overriding @option{-ftls-model=} command-line switch on a per-variable
905e8651
RH
4652basis.
4653The @var{tls_model} argument should be one of @code{global-dynamic},
4654@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
4655
4656Not all targets support this attribute.
4657
c1f7febf
RK
4658@item unused
4659This attribute, attached to a variable, means that the variable is meant
f0523f02 4660to be possibly unused. GCC will not produce a warning for this
c1f7febf
RK
4661variable.
4662
5f79d643
RM
4663@item used
4664This attribute, attached to a variable, means that the variable must be
4665emitted even if it appears that the variable is not referenced.
4666
4951efb6
JM
4667When applied to a static data member of a C++ class template, the
4668attribute also means that the member will be instantiated if the
4669class itself is instantiated.
4670
1b9191d2
AH
4671@item vector_size (@var{bytes})
4672This attribute specifies the vector size for the variable, measured in
4673bytes. For example, the declaration:
4674
4675@smallexample
4676int foo __attribute__ ((vector_size (16)));
4677@end smallexample
4678
4679@noindent
4680causes the compiler to set the mode for @code{foo}, to be 16 bytes,
4681divided into @code{int} sized units. Assuming a 32-bit int (a vector of
46824 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
4683
4684This attribute is only applicable to integral and float scalars,
4685although arrays, pointers, and function return values are allowed in
4686conjunction with this construct.
4687
4688Aggregates with this attribute are invalid, even if they are of the same
4689size as a corresponding scalar. For example, the declaration:
4690
4691@smallexample
ad706f54 4692struct S @{ int a; @};
1b9191d2
AH
4693struct S __attribute__ ((vector_size (16))) foo;
4694@end smallexample
4695
4696@noindent
4697is invalid even if the size of the structure is the same as the size of
4698the @code{int}.
4699
a20f6f00
DS
4700@item selectany
4701The @code{selectany} attribute causes an initialized global variable to
4702have link-once semantics. When multiple definitions of the variable are
4703encountered by the linker, the first is selected and the remainder are
4704discarded. Following usage by the Microsoft compiler, the linker is told
4705@emph{not} to warn about size or content differences of the multiple
4706definitions.
4707
4708Although the primary usage of this attribute is for POD types, the
4709attribute can also be applied to global C++ objects that are initialized
4710by a constructor. In this case, the static initialization and destruction
4711code for the object is emitted in each translation defining the object,
4712but the calls to the constructor and destructor are protected by a
0ac11108 4713link-once guard variable.
a20f6f00
DS
4714
4715The @code{selectany} attribute is only available on Microsoft Windows
4716targets. You can use @code{__declspec (selectany)} as a synonym for
4717@code{__attribute__ ((selectany))} for compatibility with other
4718compilers.
4719
c1f7febf 4720@item weak
38bb2b65 4721The @code{weak} attribute is described in @ref{Function Attributes}.
6b6cb52e
DS
4722
4723@item dllimport
38bb2b65 4724The @code{dllimport} attribute is described in @ref{Function Attributes}.
6b6cb52e 4725
9baf8aea 4726@item dllexport
38bb2b65 4727The @code{dllexport} attribute is described in @ref{Function Attributes}.
6b6cb52e 4728
905e8651
RH
4729@end table
4730
542bf446 4731@anchor{AVR Variable Attributes}
3d33d151
AS
4732@subsection AVR Variable Attributes
4733
4734@table @code
4735@item progmem
4736@cindex @code{progmem} AVR variable attribute
542bf446
GJL
4737The @code{progmem} attribute is used on the AVR to place read-only
4738data in the non-volatile program memory (flash). The @code{progmem}
4739attribute accomplishes this by putting respective variables into a
4740section whose name starts with @code{.progmem}.
4741
aa9ec4db 4742This attribute works similar to the @code{section} attribute
542bf446
GJL
4743but adds additional checking. Notice that just like the
4744@code{section} attribute, @code{progmem} affects the location
4745of the data but not how this data is accessed.
4746
aa9ec4db
GJL
4747In order to read data located with the @code{progmem} attribute
4748(inline) assembler must be used.
4749@example
4750/* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}} */
4751#include <avr/pgmspace.h>
4752
4753/* Locate var in flash memory */
4754const int var[2] PROGMEM = @{ 1, 2 @};
4755
4756int read_var (int i)
4757@{
4758 /* Access var[] by accessor macro from avr/pgmspace.h */
4759 return (int) pgm_read_word (& var[i]);
4760@}
4761@end example
4762
542bf446
GJL
4763AVR is a Harvard architecture processor and data and read-only data
4764normally resides in the data memory (RAM).
aa9ec4db
GJL
4765
4766See also the @ref{AVR Named Address Spaces} section for
4767an alternate way to locate and access data in flash memory.
3d33d151
AS
4768@end table
4769
4af797b5
JZ
4770@subsection Blackfin Variable Attributes
4771
4772Three attributes are currently defined for the Blackfin.
4773
4774@table @code
4775@item l1_data
1588fb31
RW
4776@itemx l1_data_A
4777@itemx l1_data_B
4af797b5
JZ
4778@cindex @code{l1_data} variable attribute
4779@cindex @code{l1_data_A} variable attribute
4780@cindex @code{l1_data_B} variable attribute
4781Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
4782Variables with @code{l1_data} attribute will be put into the specific section
4783named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
4784the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
4785attribute will be put into the specific section named @code{.l1.data.B}.
603bb63e
BS
4786
4787@item l2
4788@cindex @code{l2} variable attribute
4789Use this attribute on the Blackfin to place the variable into L2 SRAM.
4790Variables with @code{l2} attribute will be put into the specific section
4791named @code{.l2.data}.
4af797b5
JZ
4792@end table
4793
905e8651 4794@subsection M32R/D Variable Attributes
845da534 4795
8a36672b 4796One attribute is currently defined for the M32R/D@.
905e8651
RH
4797
4798@table @code
845da534
DE
4799@item model (@var{model-name})
4800@cindex variable addressability on the M32R/D
4801Use this attribute on the M32R/D to set the addressability of an object.
4802The identifier @var{model-name} is one of @code{small}, @code{medium},
4803or @code{large}, representing each of the code models.
4804
4805Small model objects live in the lower 16MB of memory (so that their
4806addresses can be loaded with the @code{ld24} instruction).
4807
02f52e19 4808Medium and large model objects may live anywhere in the 32-bit address space
845da534
DE
4809(the compiler will generate @code{seth/add3} instructions to load their
4810addresses).
905e8651 4811@end table
845da534 4812
e2491744
DD
4813@anchor{MeP Variable Attributes}
4814@subsection MeP Variable Attributes
4815
4816The MeP target has a number of addressing modes and busses. The
4817@code{near} space spans the standard memory space's first 16 megabytes
4818(24 bits). The @code{far} space spans the entire 32-bit memory space.
4819The @code{based} space is a 128 byte region in the memory space which
4820is addressed relative to the @code{$tp} register. The @code{tiny}
4821space is a 65536 byte region relative to the @code{$gp} register. In
4822addition to these memory regions, the MeP target has a separate 16-bit
4823control bus which is specified with @code{cb} attributes.
4824
4825@table @code
4826
4827@item based
4828Any variable with the @code{based} attribute will be assigned to the
4829@code{.based} section, and will be accessed with relative to the
4830@code{$tp} register.
4831
4832@item tiny
4833Likewise, the @code{tiny} attribute assigned variables to the
4834@code{.tiny} section, relative to the @code{$gp} register.
4835
4836@item near
4837Variables with the @code{near} attribute are assumed to have addresses
4838that fit in a 24-bit addressing mode. This is the default for large
4839variables (@code{-mtiny=4} is the default) but this attribute can
4840override @code{-mtiny=} for small variables, or override @code{-ml}.
4841
4842@item far
4843Variables with the @code{far} attribute are addressed using a full
484432-bit address. Since this covers the entire memory space, this
4845allows modules to make no assumptions about where variables might be
4846stored.
4847
4848@item io
1588fb31 4849@itemx io (@var{addr})
e2491744
DD
4850Variables with the @code{io} attribute are used to address
4851memory-mapped peripherals. If an address is specified, the variable
4852is assigned that address, else it is not assigned an address (it is
4853assumed some other module will assign an address). Example:
4854
4855@example
4856int timer_count __attribute__((io(0x123)));
4857@end example
4858
4859@item cb
1588fb31 4860@itemx cb (@var{addr})
e2491744
DD
4861Variables with the @code{cb} attribute are used to access the control
4862bus, using special instructions. @code{addr} indicates the control bus
4863address. Example:
4864
4865@example
4866int cpu_clock __attribute__((cb(0x123)));
4867@end example
4868
4869@end table
4870
1ccbef77 4871@anchor{i386 Variable Attributes}
fe77449a
DR
4872@subsection i386 Variable Attributes
4873
4874Two attributes are currently defined for i386 configurations:
4875@code{ms_struct} and @code{gcc_struct}
4876
905e8651 4877@table @code
fe77449a
DR
4878@item ms_struct
4879@itemx gcc_struct
905e8651
RH
4880@cindex @code{ms_struct} attribute
4881@cindex @code{gcc_struct} attribute
fe77449a
DR
4882
4883If @code{packed} is used on a structure, or if bit-fields are used
4884it may be that the Microsoft ABI packs them differently
4885than GCC would normally pack them. Particularly when moving packed
4886data between functions compiled with GCC and the native Microsoft compiler
4887(either via function call or as data in a file), it may be necessary to access
4888either format.
4889
95fef11f 4890Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
fe77449a 4891compilers to match the native Microsoft compiler.
0ac11108
EC
4892
4893The Microsoft structure layout algorithm is fairly simple with the exception
4894of the bitfield packing:
4895
4896The padding and alignment of members of structures and whether a bit field
4897can straddle a storage-unit boundary
4898
4899@enumerate
4900@item Structure members are stored sequentially in the order in which they are
4901declared: the first member has the lowest memory address and the last member
4902the highest.
4903
4904@item Every data object has an alignment-requirement. The alignment-requirement
4905for all data except structures, unions, and arrays is either the size of the
4906object or the current packing size (specified with either the aligned attribute
4907or the pack pragma), whichever is less. For structures, unions, and arrays,
4908the alignment-requirement is the largest alignment-requirement of its members.
4909Every object is allocated an offset so that:
4910
4911offset % alignment-requirement == 0
4912
4913@item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
4914unit if the integral types are the same size and if the next bit field fits
4915into the current allocation unit without crossing the boundary imposed by the
4916common alignment requirements of the bit fields.
4917@end enumerate
4918
4919Handling of zero-length bitfields:
4920
4921MSVC interprets zero-length bitfields in the following ways:
4922
4923@enumerate
4924@item If a zero-length bitfield is inserted between two bitfields that would
4925normally be coalesced, the bitfields will not be coalesced.
4926
4927For example:
4928
4929@smallexample
4930struct
4931 @{
4932 unsigned long bf_1 : 12;
4933 unsigned long : 0;
4934 unsigned long bf_2 : 12;
4935 @} t1;
4936@end smallexample
4937
4938The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
4939zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
4940
4941@item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
4942alignment of the zero-length bitfield is greater than the member that follows it,
4943@code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
4944
4945For example:
4946
4947@smallexample
4948struct
4949 @{
4950 char foo : 4;
4951 short : 0;
4952 char bar;
4953 @} t2;
4954
4955struct
4956 @{
4957 char foo : 4;
4958 short : 0;
4959 double bar;
4960 @} t3;
4961@end smallexample
4962
4963For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
4964Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
4965bitfield will not affect the alignment of @code{bar} or, as a result, the size
4966of the structure.
4967
4968Taking this into account, it is important to note the following:
4969
4970@enumerate
4971@item If a zero-length bitfield follows a normal bitfield, the type of the
4972zero-length bitfield may affect the alignment of the structure as whole. For
4973example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
4974normal bitfield, and is of type short.
4975
4976@item Even if a zero-length bitfield is not followed by a normal bitfield, it may
4977still affect the alignment of the structure:
4978
4979@smallexample
4980struct
4981 @{
4982 char foo : 6;
4983 long : 0;
4984 @} t4;
4985@end smallexample
4986
4987Here, @code{t4} will take up 4 bytes.
4988@end enumerate
4989
4990@item Zero-length bitfields following non-bitfield members are ignored:
4991
4992@smallexample
4993struct
4994 @{
4995 char foo;
4996 long : 0;
4997 char bar;
4998 @} t5;
4999@end smallexample
5000
5001Here, @code{t5} will take up 2 bytes.
5002@end enumerate
c1f7febf
RK
5003@end table
5004
1ccbef77
EC
5005@subsection PowerPC Variable Attributes
5006
63d0dca4
DE
5007Three attributes currently are defined for PowerPC configurations:
5008@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
1ccbef77 5009
63d0dca4 5010For full documentation of the struct attributes please see the
38bb2b65 5011documentation in @ref{i386 Variable Attributes}.
63d0dca4
DE
5012
5013For documentation of @code{altivec} attribute please see the
38bb2b65 5014documentation in @ref{PowerPC Type Attributes}.
1ccbef77 5015
85d9c13c
TS
5016@subsection SPU Variable Attributes
5017
5018The SPU supports the @code{spu_vector} attribute for variables. For
38bb2b65
SL
5019documentation of this attribute please see the documentation in
5020@ref{SPU Type Attributes}.
85d9c13c 5021
54e9a19d
DD
5022@subsection Xstormy16 Variable Attributes
5023
5024One attribute is currently defined for xstormy16 configurations:
38bb2b65 5025@code{below100}.
54e9a19d
DD
5026
5027@table @code
5028@item below100
5029@cindex @code{below100} attribute
5030
5031If a variable has the @code{below100} attribute (@code{BELOW100} is
5032allowed also), GCC will place the variable in the first 0x100 bytes of
5033memory and use special opcodes to access it. Such variables will be
5034placed in either the @code{.bss_below100} section or the
5035@code{.data_below100} section.
5036
5037@end table
5038
c1f7febf
RK
5039@node Type Attributes
5040@section Specifying Attributes of Types
5041@cindex attribute of types
5042@cindex type attributes
5043
5044The keyword @code{__attribute__} allows you to specify special
b9e75696
JM
5045attributes of @code{struct} and @code{union} types when you define
5046such types. This keyword is followed by an attribute specification
5047inside double parentheses. Seven attributes are currently defined for
5048types: @code{aligned}, @code{packed}, @code{transparent_union},
5049@code{unused}, @code{deprecated}, @code{visibility}, and
5050@code{may_alias}. Other attributes are defined for functions
5051(@pxref{Function Attributes}) and for variables (@pxref{Variable
5052Attributes}).
c1f7febf
RK
5053
5054You may also specify any one of these attributes with @samp{__}
5055preceding and following its keyword. This allows you to use these
5056attributes in header files without being concerned about a possible
5057macro of the same name. For example, you may use @code{__aligned__}
5058instead of @code{aligned}.
5059
4009f2e7
JM
5060You may specify type attributes in an enum, struct or union type
5061declaration or definition, or for other types in a @code{typedef}
5062declaration.
c1f7febf 5063
b9e75696
JM
5064For an enum, struct or union type, you may specify attributes either
5065between the enum, struct or union tag and the name of the type, or
5066just past the closing curly brace of the @emph{definition}. The
5067former syntax is preferred.
4051959b 5068
2c5e91d2
JM
5069@xref{Attribute Syntax}, for details of the exact syntax for using
5070attributes.
5071
c1f7febf
RK
5072@table @code
5073@cindex @code{aligned} attribute
5074@item aligned (@var{alignment})
5075This attribute specifies a minimum alignment (in bytes) for variables
5076of the specified type. For example, the declarations:
5077
5078@smallexample
f69eecfb
JL
5079struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5080typedef int more_aligned_int __attribute__ ((aligned (8)));
c1f7febf
RK
5081@end smallexample
5082
5083@noindent
d863830b 5084force the compiler to insure (as far as it can) that each variable whose
c1f7febf 5085type is @code{struct S} or @code{more_aligned_int} will be allocated and
981f6289 5086aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
c1f7febf
RK
5087variables of type @code{struct S} aligned to 8-byte boundaries allows
5088the compiler to use the @code{ldd} and @code{std} (doubleword load and
5089store) instructions when copying one variable of type @code{struct S} to
5090another, thus improving run-time efficiency.
5091
5092Note that the alignment of any given @code{struct} or @code{union} type
5490d604 5093is required by the ISO C standard to be at least a perfect multiple of
c1f7febf
RK
5094the lowest common multiple of the alignments of all of the members of
5095the @code{struct} or @code{union} in question. This means that you @emph{can}
5096effectively adjust the alignment of a @code{struct} or @code{union}
5097type by attaching an @code{aligned} attribute to any one of the members
5098of such a type, but the notation illustrated in the example above is a
5099more obvious, intuitive, and readable way to request the compiler to
5100adjust the alignment of an entire @code{struct} or @code{union} type.
5101
5102As in the preceding example, you can explicitly specify the alignment
5103(in bytes) that you wish the compiler to use for a given @code{struct}
5104or @code{union} type. Alternatively, you can leave out the alignment factor
5105and just ask the compiler to align a type to the maximum
5106useful alignment for the target machine you are compiling for. For
5107example, you could write:
5108
5109@smallexample
5110struct S @{ short f[3]; @} __attribute__ ((aligned));
5111@end smallexample
5112
5113Whenever you leave out the alignment factor in an @code{aligned}
5114attribute specification, the compiler automatically sets the alignment
5115for the type to the largest alignment which is ever used for any data
5116type on the target machine you are compiling for. Doing this can often
5117make copy operations more efficient, because the compiler can use
5118whatever instructions copy the biggest chunks of memory when performing
5119copies to or from the variables which have types that you have aligned
5120this way.
5121
5122In the example above, if the size of each @code{short} is 2 bytes, then
5123the size of the entire @code{struct S} type is 6 bytes. The smallest
5124power of two which is greater than or equal to that is 8, so the
5125compiler sets the alignment for the entire @code{struct S} type to 8
5126bytes.
5127
5128Note that although you can ask the compiler to select a time-efficient
5129alignment for a given type and then declare only individual stand-alone
5130objects of that type, the compiler's ability to select a time-efficient
5131alignment is primarily useful only when you plan to create arrays of
5132variables having the relevant (efficiently aligned) type. If you
5133declare or use arrays of variables of an efficiently-aligned type, then
5134it is likely that your program will also be doing pointer arithmetic (or
5135subscripting, which amounts to the same thing) on pointers to the
5136relevant type, and the code that the compiler generates for these
5137pointer arithmetic operations will often be more efficient for
5138efficiently-aligned types than for other types.
5139
5140The @code{aligned} attribute can only increase the alignment; but you
5141can decrease it by specifying @code{packed} as well. See below.
5142
5143Note that the effectiveness of @code{aligned} attributes may be limited
5144by inherent limitations in your linker. On many systems, the linker is
5145only able to arrange for variables to be aligned up to a certain maximum
5146alignment. (For some linkers, the maximum supported alignment may
5147be very very small.) If your linker is only able to align variables
5148up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
5149in an @code{__attribute__} will still only provide you with 8 byte
5150alignment. See your linker documentation for further information.
5151
5152@item packed
a5bcc582 5153This attribute, attached to @code{struct} or @code{union} type
d1a701eb
MM
5154definition, specifies that each member (other than zero-width bitfields)
5155of the structure or union is placed to minimize the memory required. When
5156attached to an @code{enum} definition, it indicates that the smallest
5157integral type should be used.
c1f7febf 5158
84330467 5159@opindex fshort-enums
c1f7febf
RK
5160Specifying this attribute for @code{struct} and @code{union} types is
5161equivalent to specifying the @code{packed} attribute on each of the
84330467 5162structure or union members. Specifying the @option{-fshort-enums}
c1f7febf
RK
5163flag on the line is equivalent to specifying the @code{packed}
5164attribute on all @code{enum} definitions.
5165
a5bcc582
NS
5166In the following example @code{struct my_packed_struct}'s members are
5167packed closely together, but the internal layout of its @code{s} member
78466c0e 5168is not packed---to do that, @code{struct my_unpacked_struct} would need to
a5bcc582
NS
5169be packed too.
5170
5171@smallexample
5172struct my_unpacked_struct
5173 @{
5174 char c;
5175 int i;
5176 @};
5177
75b66a16 5178struct __attribute__ ((__packed__)) my_packed_struct
a5bcc582
NS
5179 @{
5180 char c;
5181 int i;
5182 struct my_unpacked_struct s;
5183 @};
5184@end smallexample
5185
e4ae5e77 5186You may only specify this attribute on the definition of an @code{enum},
a5bcc582
NS
5187@code{struct} or @code{union}, not on a @code{typedef} which does not
5188also define the enumerated type, structure or union.
c1f7febf
RK
5189
5190@item transparent_union
5191This attribute, attached to a @code{union} type definition, indicates
5192that any function parameter having that union type causes calls to that
5193function to be treated in a special way.
5194
5195First, the argument corresponding to a transparent union type can be of
5196any type in the union; no cast is required. Also, if the union contains
5197a pointer type, the corresponding argument can be a null pointer
5198constant or a void pointer expression; and if the union contains a void
5199pointer type, the corresponding argument can be any pointer expression.
5200If the union member type is a pointer, qualifiers like @code{const} on
5201the referenced type must be respected, just as with normal pointer
5202conversions.
5203
5204Second, the argument is passed to the function using the calling
64c18e57 5205conventions of the first member of the transparent union, not the calling
c1f7febf
RK
5206conventions of the union itself. All members of the union must have the
5207same machine representation; this is necessary for this argument passing
5208to work properly.
5209
5210Transparent unions are designed for library functions that have multiple
5211interfaces for compatibility reasons. For example, suppose the
5212@code{wait} function must accept either a value of type @code{int *} to
5213comply with Posix, or a value of type @code{union wait *} to comply with
5214the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
5215@code{wait} would accept both kinds of arguments, but it would also
5216accept any other pointer type and this would make argument type checking
5217less useful. Instead, @code{<sys/wait.h>} might define the interface
5218as follows:
5219
5220@smallexample
4009f2e7 5221typedef union __attribute__ ((__transparent_union__))
c1f7febf
RK
5222 @{
5223 int *__ip;
5224 union wait *__up;
4009f2e7 5225 @} wait_status_ptr_t;
c1f7febf
RK
5226
5227pid_t wait (wait_status_ptr_t);
5228@end smallexample
5229
5230This interface allows either @code{int *} or @code{union wait *}
5231arguments to be passed, using the @code{int *} calling convention.
5232The program can call @code{wait} with arguments of either type:
5233
3ab51846 5234@smallexample
c1f7febf
RK
5235int w1 () @{ int w; return wait (&w); @}
5236int w2 () @{ union wait w; return wait (&w); @}
3ab51846 5237@end smallexample
c1f7febf
RK
5238
5239With this interface, @code{wait}'s implementation might look like this:
5240
3ab51846 5241@smallexample
c1f7febf
RK
5242pid_t wait (wait_status_ptr_t p)
5243@{
5244 return waitpid (-1, p.__ip, 0);
5245@}
3ab51846 5246@end smallexample
d863830b
JL
5247
5248@item unused
5249When attached to a type (including a @code{union} or a @code{struct}),
5250this attribute means that variables of that type are meant to appear
f0523f02 5251possibly unused. GCC will not produce a warning for any variables of
d863830b
JL
5252that type, even if the variable appears to do nothing. This is often
5253the case with lock or thread classes, which are usually defined and then
5254not referenced, but contain constructors and destructors that have
956d6950 5255nontrivial bookkeeping functions.
d863830b 5256
e23bd218 5257@item deprecated
9b86d6bb 5258@itemx deprecated (@var{msg})
e23bd218
IR
5259The @code{deprecated} attribute results in a warning if the type
5260is used anywhere in the source file. This is useful when identifying
5261types that are expected to be removed in a future version of a program.
5262If possible, the warning also includes the location of the declaration
5263of the deprecated type, to enable users to easily find further
5264information about why the type is deprecated, or what they should do
5265instead. Note that the warnings only occur for uses and then only
adc9fe67 5266if the type is being applied to an identifier that itself is not being
e23bd218
IR
5267declared as deprecated.
5268
5269@smallexample
5270typedef int T1 __attribute__ ((deprecated));
5271T1 x;
5272typedef T1 T2;
5273T2 y;
5274typedef T1 T3 __attribute__ ((deprecated));
5275T3 z __attribute__ ((deprecated));
5276@end smallexample
5277
5278results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
5279warning is issued for line 4 because T2 is not explicitly
5280deprecated. Line 5 has no warning because T3 is explicitly
9b86d6bb
L
5281deprecated. Similarly for line 6. The optional msg
5282argument, which must be a string, will be printed in the warning if
5283present.
e23bd218
IR
5284
5285The @code{deprecated} attribute can also be used for functions and
5286variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5287
d18b1ed8 5288@item may_alias
ac7ee6ad
RG
5289Accesses through pointers to types with this attribute are not subject
5290to type-based alias analysis, but are instead assumed to be able to alias
5291any other type of objects. In the context of 6.5/7 an lvalue expression
5292dereferencing such a pointer is treated like having a character type.
5293See @option{-fstrict-aliasing} for more information on aliasing issues.
5294This extension exists to support some vector APIs, in which pointers to
5295one vector type are permitted to alias pointers to a different vector type.
5296
5297Note that an object of a type with this attribute does not have any
5298special semantics.
d18b1ed8
OS
5299
5300Example of use:
5301
478c9e72 5302@smallexample
d18b1ed8
OS
5303typedef short __attribute__((__may_alias__)) short_a;
5304
5305int
5306main (void)
5307@{
5308 int a = 0x12345678;
5309 short_a *b = (short_a *) &a;
5310
5311 b[1] = 0;
5312
5313 if (a == 0x12345678)
5314 abort();
5315
5316 exit(0);
5317@}
478c9e72 5318@end smallexample
d18b1ed8
OS
5319
5320If you replaced @code{short_a} with @code{short} in the variable
5321declaration, the above program would abort when compiled with
5322@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5323above in recent GCC versions.
fe77449a 5324
b9e75696 5325@item visibility
b9e75696
JM
5326In C++, attribute visibility (@pxref{Function Attributes}) can also be
5327applied to class, struct, union and enum types. Unlike other type
5328attributes, the attribute must appear between the initial keyword and
5329the name of the type; it cannot appear after the body of the type.
5330
b70f0f48
JM
5331Note that the type visibility is applied to vague linkage entities
5332associated with the class (vtable, typeinfo node, etc.). In
5333particular, if a class is thrown as an exception in one shared object
5334and caught in another, the class must have default visibility.
5335Otherwise the two shared objects will be unable to use the same
5336typeinfo node and exception handling will break.
5337
38bb2b65
SL
5338@end table
5339
04fb56d5
MM
5340@subsection ARM Type Attributes
5341
5342On those ARM targets that support @code{dllimport} (such as Symbian
f0eb93a8 5343OS), you can use the @code{notshared} attribute to indicate that the
04fb56d5 5344virtual table and other similar data for a class should not be
8a36672b 5345exported from a DLL@. For example:
04fb56d5
MM
5346
5347@smallexample
5348class __declspec(notshared) C @{
5349public:
f0eb93a8 5350 __declspec(dllimport) C();
04fb56d5
MM
5351 virtual void f();
5352@}
5353
5354__declspec(dllexport)
5355C::C() @{@}
5356@end smallexample
5357
5358In this code, @code{C::C} is exported from the current DLL, but the
5359virtual table for @code{C} is not exported. (You can use
5360@code{__attribute__} instead of @code{__declspec} if you prefer, but
5361most Symbian OS code uses @code{__declspec}.)
5362
e2491744
DD
5363@anchor{MeP Type Attributes}
5364@subsection MeP Type Attributes
5365
5366Many of the MeP variable attributes may be applied to types as well.
5367Specifically, the @code{based}, @code{tiny}, @code{near}, and
5368@code{far} attributes may be applied to either. The @code{io} and
5369@code{cb} attributes may not be applied to types.
5370
63d0dca4 5371@anchor{i386 Type Attributes}
fe77449a
DR
5372@subsection i386 Type Attributes
5373
5374Two attributes are currently defined for i386 configurations:
38bb2b65
SL
5375@code{ms_struct} and @code{gcc_struct}.
5376
5377@table @code
fe77449a
DR
5378
5379@item ms_struct
5380@itemx gcc_struct
5381@cindex @code{ms_struct}
5382@cindex @code{gcc_struct}
5383
5384If @code{packed} is used on a structure, or if bit-fields are used
5385it may be that the Microsoft ABI packs them differently
5386than GCC would normally pack them. Particularly when moving packed
5387data between functions compiled with GCC and the native Microsoft compiler
5388(either via function call or as data in a file), it may be necessary to access
5389either format.
5390
95fef11f 5391Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
fe77449a 5392compilers to match the native Microsoft compiler.
c1f7febf
RK
5393@end table
5394
5395To specify multiple attributes, separate them by commas within the
5396double parentheses: for example, @samp{__attribute__ ((aligned (16),
5397packed))}.
5398
63d0dca4
DE
5399@anchor{PowerPC Type Attributes}
5400@subsection PowerPC Type Attributes
5401
5402Three attributes currently are defined for PowerPC configurations:
5403@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5404
ff2ce160 5405For full documentation of the @code{ms_struct} and @code{gcc_struct}
38bb2b65 5406attributes please see the documentation in @ref{i386 Type Attributes}.
63d0dca4
DE
5407
5408The @code{altivec} attribute allows one to declare AltiVec vector data
5409types supported by the AltiVec Programming Interface Manual. The
5410attribute requires an argument to specify one of three vector types:
5411@code{vector__}, @code{pixel__} (always followed by unsigned short),
5412and @code{bool__} (always followed by unsigned).
5413
5414@smallexample
5415__attribute__((altivec(vector__)))
5416__attribute__((altivec(pixel__))) unsigned short
5417__attribute__((altivec(bool__))) unsigned
5418@end smallexample
5419
5420These attributes mainly are intended to support the @code{__vector},
5421@code{__pixel}, and @code{__bool} AltiVec keywords.
5422
85d9c13c
TS
5423@anchor{SPU Type Attributes}
5424@subsection SPU Type Attributes
5425
5426The SPU supports the @code{spu_vector} attribute for types. This attribute
5427allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5428Language Extensions Specification. It is intended to support the
5429@code{__vector} keyword.
5430
2be478a2
JW
5431@node Alignment
5432@section Inquiring on Alignment of Types or Variables
5433@cindex alignment
5434@cindex type alignment
5435@cindex variable alignment
5436
5437The keyword @code{__alignof__} allows you to inquire about how an object
5438is aligned, or the minimum alignment usually required by a type. Its
5439syntax is just like @code{sizeof}.
5440
5441For example, if the target machine requires a @code{double} value to be
5442aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5443This is true on many RISC machines. On more traditional machine
5444designs, @code{__alignof__ (double)} is 4 or even 2.
5445
5446Some machines never actually require alignment; they allow reference to any
5447data type even at an odd address. For these machines, @code{__alignof__}
5448reports the smallest alignment that GCC will give the data type, usually as
5449mandated by the target ABI.
5450
5451If the operand of @code{__alignof__} is an lvalue rather than a type,
5452its value is the required alignment for its type, taking into account
5453any minimum alignment specified with GCC's @code{__attribute__}
5454extension (@pxref{Variable Attributes}). For example, after this
5455declaration:
5456
5457@smallexample
5458struct foo @{ int x; char y; @} foo1;
5459@end smallexample
5460
5461@noindent
5462the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5463alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5464
5465It is an error to ask for the alignment of an incomplete type.
5466
85d9c13c 5467
c1f7febf
RK
5468@node Inline
5469@section An Inline Function is As Fast As a Macro
5470@cindex inline functions
5471@cindex integrating function code
5472@cindex open coding
5473@cindex macros, inline alternative
5474
0a052b16
GK
5475By declaring a function inline, you can direct GCC to make
5476calls to that function faster. One way GCC can achieve this is to
c1f7febf
RK
5477integrate that function's code into the code for its callers. This
5478makes execution faster by eliminating the function-call overhead; in
0a052b16
GK
5479addition, if any of the actual argument values are constant, their
5480known values may permit simplifications at compile time so that not
5481all of the inline function's code needs to be included. The effect on
5482code size is less predictable; object code may be larger or smaller
5483with function inlining, depending on the particular case. You can
5484also direct GCC to try to integrate all ``simple enough'' functions
5485into their callers with the option @option{-finline-functions}.
5486
5487GCC implements three different semantics of declaring a function
da1c7394
ILT
5488inline. One is available with @option{-std=gnu89} or
5489@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
2778d766 5490on all inline declarations, another when
48b0b196
JM
5491@option{-std=c99}, @option{-std=c11},
5492@option{-std=gnu99} or @option{-std=gnu11}
2778d766 5493(without @option{-fgnu89-inline}), and the third
da1c7394 5494is used when compiling C++.
4b404517 5495
c1f7febf
RK
5496To declare a function inline, use the @code{inline} keyword in its
5497declaration, like this:
5498
3ab51846 5499@smallexample
0a052b16 5500static inline int
c1f7febf
RK
5501inc (int *a)
5502@{
bcbc9564 5503 return (*a)++;
c1f7febf 5504@}
3ab51846 5505@end smallexample
c1f7febf 5506
7e1542b9 5507If you are writing a header file to be included in ISO C90 programs, write
0a052b16 5508@code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
247b14bd 5509
0a052b16
GK
5510The three types of inlining behave similarly in two important cases:
5511when the @code{inline} keyword is used on a @code{static} function,
5512like the example above, and when a function is first declared without
5513using the @code{inline} keyword and then is defined with
5514@code{inline}, like this:
c1f7febf 5515
0a052b16
GK
5516@smallexample
5517extern int inc (int *a);
5518inline int
5519inc (int *a)
5520@{
bcbc9564 5521 return (*a)++;
0a052b16
GK
5522@}
5523@end smallexample
c1f7febf 5524
0a052b16
GK
5525In both of these common cases, the program behaves the same as if you
5526had not used the @code{inline} keyword, except for its speed.
c1f7febf
RK
5527
5528@cindex inline functions, omission of
84330467 5529@opindex fkeep-inline-functions
c1f7febf
RK
5530When a function is both inline and @code{static}, if all calls to the
5531function are integrated into the caller, and the function's address is
5532never used, then the function's own assembler code is never referenced.
f0523f02 5533In this case, GCC does not actually output assembler code for the
84330467 5534function, unless you specify the option @option{-fkeep-inline-functions}.
c1f7febf
RK
5535Some calls cannot be integrated for various reasons (in particular,
5536calls that precede the function's definition cannot be integrated, and
5537neither can recursive calls within the definition). If there is a
5538nonintegrated call, then the function is compiled to assembler code as
5539usual. The function must also be compiled as usual if the program
5540refers to its address, because that can't be inlined.
5541
0a052b16
GK
5542@opindex Winline
5543Note that certain usages in a function definition can make it unsuitable
5544for inline substitution. Among these usages are: use of varargs, use of
5545alloca, use of variable sized data types (@pxref{Variable Length}),
5546use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
5547and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
5548will warn when a function marked @code{inline} could not be substituted,
5549and will give the reason for the failure.
5550
5551@cindex automatic @code{inline} for C++ member fns
5552@cindex @code{inline} automatic for C++ member fns
5553@cindex member fns, automatically @code{inline}
5554@cindex C++ member fns, automatically @code{inline}
5555@opindex fno-default-inline
5556As required by ISO C++, GCC considers member functions defined within
5557the body of a class to be marked inline even if they are
5558not explicitly declared with the @code{inline} keyword. You can
5559override this with @option{-fno-default-inline}; @pxref{C++ Dialect
5560Options,,Options Controlling C++ Dialect}.
5561
5562GCC does not inline any functions when not optimizing unless you specify
5563the @samp{always_inline} attribute for the function, like this:
5564
5565@smallexample
5566/* @r{Prototype.} */
5567inline void foo (const char) __attribute__((always_inline));
5568@end smallexample
5569
7e1542b9 5570The remainder of this section is specific to GNU C90 inlining.
0a052b16 5571
c1f7febf
RK
5572@cindex non-static inline function
5573When an inline function is not @code{static}, then the compiler must assume
5574that there may be calls from other source files; since a global symbol can
5575be defined only once in any program, the function must not be defined in
5576the other source files, so the calls therein cannot be integrated.
5577Therefore, a non-@code{static} inline function is always compiled on its
5578own in the usual fashion.
5579
5580If you specify both @code{inline} and @code{extern} in the function
5581definition, then the definition is used only for inlining. In no case
5582is the function compiled on its own, not even if you refer to its
5583address explicitly. Such an address becomes an external reference, as
5584if you had only declared the function, and had not defined it.
5585
5586This combination of @code{inline} and @code{extern} has almost the
5587effect of a macro. The way to use it is to put a function definition in
5588a header file with these keywords, and put another copy of the
5589definition (lacking @code{inline} and @code{extern}) in a library file.
5590The definition in the header file will cause most calls to the function
5591to be inlined. If any uses of the function remain, they will refer to
5592the single copy in the library.
5593
8f0fe813
NS
5594@node Volatiles
5595@section When is a Volatile Object Accessed?
5596@cindex accessing volatiles
5597@cindex volatile read
5598@cindex volatile write
5599@cindex volatile access
5600
5601C has the concept of volatile objects. These are normally accessed by
5602pointers and used for accessing hardware or inter-thread
2b0d3573 5603communication. The standard encourages compilers to refrain from
8f0fe813
NS
5604optimizations concerning accesses to volatile objects, but leaves it
5605implementation defined as to what constitutes a volatile access. The
5606minimum requirement is that at a sequence point all previous accesses
5607to volatile objects have stabilized and no subsequent accesses have
5608occurred. Thus an implementation is free to reorder and combine
5609volatile accesses which occur between sequence points, but cannot do
2b0d3573 5610so for accesses across a sequence point. The use of volatile does
8f0fe813
NS
5611not allow you to violate the restriction on updating objects multiple
5612times between two sequence points.
5613
5614Accesses to non-volatile objects are not ordered with respect to
5615volatile accesses. You cannot use a volatile object as a memory
5616barrier to order a sequence of writes to non-volatile memory. For
5617instance:
5618
5619@smallexample
5620int *ptr = @var{something};
5621volatile int vobj;
5622*ptr = @var{something};
5623vobj = 1;
5624@end smallexample
5625
5626Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
5627that the write to @var{*ptr} will have occurred by the time the update
5628of @var{vobj} has happened. If you need this guarantee, you must use
5629a stronger memory barrier such as:
5630
5631@smallexample
5632int *ptr = @var{something};
5633volatile int vobj;
5634*ptr = @var{something};
5635asm volatile ("" : : : "memory");
5636vobj = 1;
5637@end smallexample
5638
2b0d3573 5639A scalar volatile object is read when it is accessed in a void context:
8f0fe813
NS
5640
5641@smallexample
5642volatile int *src = @var{somevalue};
5643*src;
5644@end smallexample
5645
5646Such expressions are rvalues, and GCC implements this as a
5647read of the volatile object being pointed to.
5648
5649Assignments are also expressions and have an rvalue. However when
5650assigning to a scalar volatile, the volatile object is not reread,
5651regardless of whether the assignment expression's rvalue is used or
5652not. If the assignment's rvalue is used, the value is that assigned
5653to the volatile object. For instance, there is no read of @var{vobj}
5654in all the following cases:
5655
5656@smallexample
5657int obj;
5658volatile int vobj;
5659vobj = @var{something};
5660obj = vobj = @var{something};
5661obj ? vobj = @var{onething} : vobj = @var{anotherthing};
5662obj = (@var{something}, vobj = @var{anotherthing});
5663@end smallexample
5664
5665If you need to read the volatile object after an assignment has
5666occurred, you must use a separate expression with an intervening
5667sequence point.
5668
5669As bitfields are not individually addressable, volatile bitfields may
5670be implicitly read when written to, or when adjacent bitfields are
5671accessed. Bitfield operations may be optimized such that adjacent
5672bitfields are only partially accessed, if they straddle a storage unit
5673boundary. For these reasons it is unwise to use volatile bitfields to
5674access hardware.
5675
c1f7febf
RK
5676@node Extended Asm
5677@section Assembler Instructions with C Expression Operands
5678@cindex extended @code{asm}
5679@cindex @code{asm} expressions
5680@cindex assembler instructions
5681@cindex registers
5682
c85f7c16
JL
5683In an assembler instruction using @code{asm}, you can specify the
5684operands of the instruction using C expressions. This means you need not
5685guess which registers or memory locations will contain the data you want
c1f7febf
RK
5686to use.
5687
c85f7c16
JL
5688You must specify an assembler instruction template much like what
5689appears in a machine description, plus an operand constraint string for
5690each operand.
c1f7febf
RK
5691
5692For example, here is how to use the 68881's @code{fsinx} instruction:
5693
3ab51846 5694@smallexample
c1f7febf 5695asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
3ab51846 5696@end smallexample
c1f7febf
RK
5697
5698@noindent
5699Here @code{angle} is the C expression for the input operand while
5700@code{result} is that of the output operand. Each has @samp{"f"} as its
c85f7c16
JL
5701operand constraint, saying that a floating point register is required.
5702The @samp{=} in @samp{=f} indicates that the operand is an output; all
5703output operands' constraints must use @samp{=}. The constraints use the
5704same language used in the machine description (@pxref{Constraints}).
5705
5706Each operand is described by an operand-constraint string followed by
5707the C expression in parentheses. A colon separates the assembler
5708template from the first output operand and another separates the last
5709output operand from the first input, if any. Commas separate the
84b72302
RH
5710operands within each group. The total number of operands is currently
5711limited to 30; this limitation may be lifted in some future version of
8a36672b 5712GCC@.
c85f7c16
JL
5713
5714If there are no output operands but there are input operands, you must
5715place two consecutive colons surrounding the place where the output
c1f7febf
RK
5716operands would go.
5717
84b72302
RH
5718As of GCC version 3.1, it is also possible to specify input and output
5719operands using symbolic names which can be referenced within the
5720assembler code. These names are specified inside square brackets
5721preceding the constraint string, and can be referenced inside the
5722assembler code using @code{%[@var{name}]} instead of a percentage sign
5723followed by the operand number. Using named operands the above example
5724could look like:
5725
3ab51846 5726@smallexample
84b72302
RH
5727asm ("fsinx %[angle],%[output]"
5728 : [output] "=f" (result)
5729 : [angle] "f" (angle));
3ab51846 5730@end smallexample
84b72302
RH
5731
5732@noindent
5733Note that the symbolic operand names have no relation whatsoever to
5734other C identifiers. You may use any name you like, even those of
64c18e57 5735existing C symbols, but you must ensure that no two operands within the same
84b72302
RH
5736assembler construct use the same symbolic name.
5737
c1f7febf 5738Output operand expressions must be lvalues; the compiler can check this.
c85f7c16
JL
5739The input operands need not be lvalues. The compiler cannot check
5740whether the operands have data types that are reasonable for the
5741instruction being executed. It does not parse the assembler instruction
5742template and does not know what it means or even whether it is valid
5743assembler input. The extended @code{asm} feature is most often used for
5744machine instructions the compiler itself does not know exist. If
5745the output expression cannot be directly addressed (for example, it is a
f0523f02 5746bit-field), your constraint must allow a register. In that case, GCC
c85f7c16
JL
5747will use the register as the output of the @code{asm}, and then store
5748that register into the output.
5749
f0523f02 5750The ordinary output operands must be write-only; GCC will assume that
c85f7c16
JL
5751the values in these operands before the instruction are dead and need
5752not be generated. Extended asm supports input-output or read-write
5753operands. Use the constraint character @samp{+} to indicate such an
373a04f1
JM
5754operand and list it with the output operands. You should only use
5755read-write operands when the constraints for the operand (or the
5756operand in which only some of the bits are to be changed) allow a
5757register.
5758
5759You may, as an alternative, logically split its function into two
5760separate operands, one input operand and one write-only output
5761operand. The connection between them is expressed by constraints
5762which say they need to be in the same location when the instruction
5763executes. You can use the same C expression for both operands, or
5764different expressions. For example, here we write the (fictitious)
5765@samp{combine} instruction with @code{bar} as its read-only source
5766operand and @code{foo} as its read-write destination:
c1f7febf 5767
3ab51846 5768@smallexample
c1f7febf 5769asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
3ab51846 5770@end smallexample
c1f7febf
RK
5771
5772@noindent
c85f7c16 5773The constraint @samp{"0"} for operand 1 says that it must occupy the
84b72302
RH
5774same location as operand 0. A number in constraint is allowed only in
5775an input operand and it must refer to an output operand.
c1f7febf 5776
84b72302 5777Only a number in the constraint can guarantee that one operand will be in
c85f7c16
JL
5778the same place as another. The mere fact that @code{foo} is the value
5779of both operands is not enough to guarantee that they will be in the
5780same place in the generated assembler code. The following would not
5781work reliably:
c1f7febf 5782
3ab51846 5783@smallexample
c1f7febf 5784asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
3ab51846 5785@end smallexample
c1f7febf
RK
5786
5787Various optimizations or reloading could cause operands 0 and 1 to be in
f0523f02 5788different registers; GCC knows no reason not to do so. For example, the
c1f7febf
RK
5789compiler might find a copy of the value of @code{foo} in one register and
5790use it for operand 1, but generate the output operand 0 in a different
5791register (copying it afterward to @code{foo}'s own address). Of course,
5792since the register for operand 1 is not even mentioned in the assembler
f0523f02 5793code, the result will not work, but GCC can't tell that.
c1f7febf 5794
84b72302
RH
5795As of GCC version 3.1, one may write @code{[@var{name}]} instead of
5796the operand number for a matching constraint. For example:
5797
3ab51846 5798@smallexample
84b72302
RH
5799asm ("cmoveq %1,%2,%[result]"
5800 : [result] "=r"(result)
5801 : "r" (test), "r"(new), "[result]"(old));
3ab51846 5802@end smallexample
84b72302 5803
805c33df
HPN
5804Sometimes you need to make an @code{asm} operand be a specific register,
5805but there's no matching constraint letter for that register @emph{by
5806itself}. To force the operand into that register, use a local variable
5807for the operand and specify the register in the variable declaration.
5808@xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
5809register constraint letter that matches the register:
5810
5811@smallexample
5812register int *p1 asm ("r0") = @dots{};
5813register int *p2 asm ("r1") = @dots{};
5814register int *result asm ("r0");
5815asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5816@end smallexample
5817
b55d5746
HPN
5818@anchor{Example of asm with clobbered asm reg}
5819In the above example, beware that a register that is call-clobbered by
5820the target ABI will be overwritten by any function call in the
5821assignment, including library calls for arithmetic operators.
0c6390fa
L
5822Also a register may be clobbered when generating some operations,
5823like variable shift, memory copy or memory move on x86.
b55d5746
HPN
5824Assuming it is a call-clobbered register, this may happen to @code{r0}
5825above by the assignment to @code{p2}. If you have to use such a
5826register, use temporary variables for expressions between the register
5827assignment and use:
5828
5829@smallexample
5830int t1 = @dots{};
5831register int *p1 asm ("r0") = @dots{};
5832register int *p2 asm ("r1") = t1;
5833register int *result asm ("r0");
5834asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5835@end smallexample
5836
c85f7c16
JL
5837Some instructions clobber specific hard registers. To describe this,
5838write a third colon after the input operands, followed by the names of
5839the clobbered hard registers (given as strings). Here is a realistic
5840example for the VAX:
c1f7febf 5841
3ab51846 5842@smallexample
c1f7febf 5843asm volatile ("movc3 %0,%1,%2"
12bcfaa1 5844 : /* @r{no outputs} */
c1f7febf
RK
5845 : "g" (from), "g" (to), "g" (count)
5846 : "r0", "r1", "r2", "r3", "r4", "r5");
3ab51846 5847@end smallexample
c1f7febf 5848
c5c76735
JL
5849You may not write a clobber description in a way that overlaps with an
5850input or output operand. For example, you may not have an operand
5851describing a register class with one member if you mention that register
acb5d088
HPN
5852in the clobber list. Variables declared to live in specific registers
5853(@pxref{Explicit Reg Vars}), and used as asm input or output operands must
5854have no part mentioned in the clobber description.
5855There is no way for you to specify that an input
c5c76735
JL
5856operand is modified without also specifying it as an output
5857operand. Note that if all the output operands you specify are for this
5858purpose (and hence unused), you will then also need to specify
5859@code{volatile} for the @code{asm} construct, as described below, to
f0523f02 5860prevent GCC from deleting the @code{asm} statement as unused.
8fe1938e 5861
c1f7febf 5862If you refer to a particular hardware register from the assembler code,
c85f7c16
JL
5863you will probably have to list the register after the third colon to
5864tell the compiler the register's value is modified. In some assemblers,
5865the register names begin with @samp{%}; to produce one @samp{%} in the
5866assembler code, you must write @samp{%%} in the input.
5867
5868If your assembler instruction can alter the condition code register, add
f0523f02 5869@samp{cc} to the list of clobbered registers. GCC on some machines
c85f7c16
JL
5870represents the condition codes as a specific hardware register;
5871@samp{cc} serves to name this register. On other machines, the
5872condition code is handled differently, and specifying @samp{cc} has no
5873effect. But it is valid no matter what the machine.
c1f7febf 5874
bbf5a54d 5875If your assembler instructions access memory in an unpredictable
c85f7c16 5876fashion, add @samp{memory} to the list of clobbered registers. This
bbf5a54d
AJ
5877will cause GCC to not keep memory values cached in registers across the
5878assembler instruction and not optimize stores or loads to that memory.
5879You will also want to add the @code{volatile} keyword if the memory
5880affected is not listed in the inputs or outputs of the @code{asm}, as
5881the @samp{memory} clobber does not count as a side-effect of the
5882@code{asm}. If you know how large the accessed memory is, you can add
5883it as input or output but if this is not known, you should add
5884@samp{memory}. As an example, if you access ten bytes of a string, you
5885can use a memory input like:
5886
cd1a8088 5887@smallexample
bbf5a54d 5888@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
cd1a8088 5889@end smallexample
bbf5a54d
AJ
5890
5891Note that in the following example the memory input is necessary,
5892otherwise GCC might optimize the store to @code{x} away:
cd1a8088 5893@smallexample
bbf5a54d
AJ
5894int foo ()
5895@{
5896 int x = 42;
5897 int *y = &x;
5898 int result;
5899 asm ("magic stuff accessing an 'int' pointed to by '%1'"
5900 "=&d" (r) : "a" (y), "m" (*y));
f0eb93a8 5901 return result;
bbf5a54d 5902@}
cd1a8088 5903@end smallexample
c1f7febf 5904
c85f7c16 5905You can put multiple assembler instructions together in a single
8720914b
HPN
5906@code{asm} template, separated by the characters normally used in assembly
5907code for the system. A combination that works in most places is a newline
5908to break the line, plus a tab character to move to the instruction field
5909(written as @samp{\n\t}). Sometimes semicolons can be used, if the
5910assembler allows semicolons as a line-breaking character. Note that some
5911assembler dialects use semicolons to start a comment.
5912The input operands are guaranteed not to use any of the clobbered
c85f7c16
JL
5913registers, and neither will the output operands' addresses, so you can
5914read and write the clobbered registers as many times as you like. Here
5915is an example of multiple instructions in a template; it assumes the
5916subroutine @code{_foo} accepts arguments in registers 9 and 10:
c1f7febf 5917
3ab51846 5918@smallexample
8720914b 5919asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
c1f7febf
RK
5920 : /* no outputs */
5921 : "g" (from), "g" (to)
5922 : "r9", "r10");
3ab51846 5923@end smallexample
c1f7febf 5924
f0523f02 5925Unless an output operand has the @samp{&} constraint modifier, GCC
c85f7c16
JL
5926may allocate it in the same register as an unrelated input operand, on
5927the assumption the inputs are consumed before the outputs are produced.
c1f7febf
RK
5928This assumption may be false if the assembler code actually consists of
5929more than one instruction. In such a case, use @samp{&} for each output
c85f7c16 5930operand that may not overlap an input. @xref{Modifiers}.
c1f7febf 5931
c85f7c16
JL
5932If you want to test the condition code produced by an assembler
5933instruction, you must include a branch and a label in the @code{asm}
5934construct, as follows:
c1f7febf 5935
3ab51846 5936@smallexample
8720914b 5937asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
c1f7febf
RK
5938 : "g" (result)
5939 : "g" (input));
3ab51846 5940@end smallexample
c1f7febf
RK
5941
5942@noindent
5943This assumes your assembler supports local labels, as the GNU assembler
5944and most Unix assemblers do.
5945
5946Speaking of labels, jumps from one @code{asm} to another are not
c85f7c16
JL
5947supported. The compiler's optimizers do not know about these jumps, and
5948therefore they cannot take account of them when deciding how to
1c384bf1 5949optimize. @xref{Extended asm with goto}.
c1f7febf
RK
5950
5951@cindex macros containing @code{asm}
5952Usually the most convenient way to use these @code{asm} instructions is to
5953encapsulate them in macros that look like functions. For example,
5954
3ab51846 5955@smallexample
c1f7febf
RK
5956#define sin(x) \
5957(@{ double __value, __arg = (x); \
5958 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
5959 __value; @})
3ab51846 5960@end smallexample
c1f7febf
RK
5961
5962@noindent
5963Here the variable @code{__arg} is used to make sure that the instruction
5964operates on a proper @code{double} value, and to accept only those
5965arguments @code{x} which can convert automatically to a @code{double}.
5966
c85f7c16
JL
5967Another way to make sure the instruction operates on the correct data
5968type is to use a cast in the @code{asm}. This is different from using a
c1f7febf
RK
5969variable @code{__arg} in that it converts more different types. For
5970example, if the desired type were @code{int}, casting the argument to
5971@code{int} would accept a pointer with no complaint, while assigning the
5972argument to an @code{int} variable named @code{__arg} would warn about
5973using a pointer unless the caller explicitly casts it.
5974
f0523f02 5975If an @code{asm} has output operands, GCC assumes for optimization
c85f7c16
JL
5976purposes the instruction has no side effects except to change the output
5977operands. This does not mean instructions with a side effect cannot be
5978used, but you must be careful, because the compiler may eliminate them
5979if the output operands aren't used, or move them out of loops, or
5980replace two with one if they constitute a common subexpression. Also,
5981if your instruction does have a side effect on a variable that otherwise
5982appears not to change, the old value of the variable may be reused later
5983if it happens to be found in a register.
c1f7febf 5984
2f59e40e
DJ
5985You can prevent an @code{asm} instruction from being deleted
5986by writing the keyword @code{volatile} after
c1f7febf
RK
5987the @code{asm}. For example:
5988
3ab51846 5989@smallexample
310668e8
JM
5990#define get_and_set_priority(new) \
5991(@{ int __old; \
5992 asm volatile ("get_and_set_priority %0, %1" \
5993 : "=g" (__old) : "g" (new)); \
c85f7c16 5994 __old; @})
3ab51846 5995@end smallexample
c1f7febf
RK
5996
5997@noindent
e71b34aa
MM
5998The @code{volatile} keyword indicates that the instruction has
5999important side-effects. GCC will not delete a volatile @code{asm} if
6000it is reachable. (The instruction can still be deleted if GCC can
6001prove that control-flow will never reach the location of the
f0eb93a8 6002instruction.) Note that even a volatile @code{asm} instruction
2f59e40e 6003can be moved relative to other code, including across jump
f0eb93a8
JM
6004instructions. For example, on many targets there is a system
6005register which can be set to control the rounding mode of
2f59e40e
DJ
6006floating point operations. You might try
6007setting it with a volatile @code{asm}, like this PowerPC example:
e71b34aa 6008
3ab51846 6009@smallexample
2f59e40e
DJ
6010 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
6011 sum = x + y;
3ab51846 6012@end smallexample
e71b34aa 6013
ebb48a4d 6014@noindent
2f59e40e
DJ
6015This will not work reliably, as the compiler may move the addition back
6016before the volatile @code{asm}. To make it work you need to add an
6017artificial dependency to the @code{asm} referencing a variable in the code
6018you don't want moved, for example:
6019
6020@smallexample
6021 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
6022 sum = x + y;
6023@end smallexample
6024
6025Similarly, you can't expect a
6026sequence of volatile @code{asm} instructions to remain perfectly
6027consecutive. If you want consecutive output, use a single @code{asm}.
6028Also, GCC will perform some optimizations across a volatile @code{asm}
6029instruction; GCC does not ``forget everything'' when it encounters
6030a volatile @code{asm} instruction the way some other compilers do.
6031
6032An @code{asm} instruction without any output operands will be treated
6033identically to a volatile @code{asm} instruction.
c1f7febf
RK
6034
6035It is a natural idea to look for a way to give access to the condition
6036code left by the assembler instruction. However, when we attempted to
6037implement this, we found no way to make it work reliably. The problem
6038is that output operands might need reloading, which would result in
6039additional following ``store'' instructions. On most machines, these
6040instructions would alter the condition code before there was time to
6041test it. This problem doesn't arise for ordinary ``test'' and
6042``compare'' instructions because they don't have any output operands.
6043
eda3fbbe
GB
6044For reasons similar to those described above, it is not possible to give
6045an assembler instruction access to the condition code left by previous
6046instructions.
6047
1c384bf1
RH
6048@anchor{Extended asm with goto}
6049As of GCC version 4.5, @code{asm goto} may be used to have the assembly
6050jump to one or more C labels. In this form, a fifth section after the
6051clobber list contains a list of all C labels to which the assembly may jump.
6052Each label operand is implicitly self-named. The @code{asm} is also assumed
6053to fall through to the next statement.
6054
6055This form of @code{asm} is restricted to not have outputs. This is due
6056to a internal restriction in the compiler that control transfer instructions
6057cannot have outputs. This restriction on @code{asm goto} may be lifted
6058in some future version of the compiler. In the mean time, @code{asm goto}
6059may include a memory clobber, and so leave outputs in memory.
6060
6061@smallexample
6062int frob(int x)
6063@{
6064 int y;
6065 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
6066 : : "r"(x), "r"(&y) : "r5", "memory" : error);
6067 return y;
6068 error:
6069 return -1;
6070@}
6071@end smallexample
6072
6073In this (inefficient) example, the @code{frob} instruction sets the
6074carry bit to indicate an error. The @code{jc} instruction detects
ff2ce160 6075this and branches to the @code{error} label. Finally, the output
1c384bf1
RH
6076of the @code{frob} instruction (@code{%r5}) is stored into the memory
6077for variable @code{y}, which is later read by the @code{return} statement.
6078
6079@smallexample
6080void doit(void)
6081@{
6082 int i = 0;
6083 asm goto ("mfsr %%r1, 123; jmp %%r1;"
6084 ".pushsection doit_table;"
73b8bfe1
RW
6085 ".long %l0, %l1, %l2, %l3;"
6086 ".popsection"
6087 : : : "r1" : label1, label2, label3, label4);
1c384bf1
RH
6088 __builtin_unreachable ();
6089
6090 label1:
6091 f1();
6092 return;
6093 label2:
6094 f2();
6095 return;
6096 label3:
6097 i = 1;
6098 label4:
6099 f3(i);
6100@}
6101@end smallexample
6102
6103In this (also inefficient) example, the @code{mfsr} instruction reads
6104an address from some out-of-band machine register, and the following
6105@code{jmp} instruction branches to that address. The address read by
6106the @code{mfsr} instruction is assumed to have been previously set via
6107some application-specific mechanism to be one of the four values stored
6108in the @code{doit_table} section. Finally, the @code{asm} is followed
6109by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
6110does not in fact fall through.
6111
6112@smallexample
6113#define TRACE1(NUM) \
6114 do @{ \
6115 asm goto ("0: nop;" \
6116 ".pushsection trace_table;" \
6117 ".long 0b, %l0;" \
6118 ".popsection" \
6119 : : : : trace#NUM); \
6120 if (0) @{ trace#NUM: trace(); @} \
6121 @} while (0)
6122#define TRACE TRACE1(__COUNTER__)
6123@end smallexample
6124
6125In this example (which in fact inspired the @code{asm goto} feature)
6126we want on rare occasions to call the @code{trace} function; on other
6127occasions we'd like to keep the overhead to the absolute minimum.
6128The normal code path consists of a single @code{nop} instruction.
6129However, we record the address of this @code{nop} together with the
6130address of a label that calls the @code{trace} function. This allows
ff2ce160 6131the @code{nop} instruction to be patched at runtime to be an
1c384bf1
RH
6132unconditional branch to the stored label. It is assumed that an
6133optimizing compiler will move the labeled block out of line, to
6134optimize the fall through path from the @code{asm}.
6135
5490d604 6136If you are writing a header file that should be includable in ISO C
c1f7febf
RK
6137programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
6138Keywords}.
6139
ece7fc1c
RE
6140@subsection Size of an @code{asm}
6141
6142Some targets require that GCC track the size of each instruction used in
6143order to generate correct code. Because the final length of an
6144@code{asm} is only known by the assembler, GCC must make an estimate as
6145to how big it will be. The estimate is formed by counting the number of
6146statements in the pattern of the @code{asm} and multiplying that by the
6147length of the longest instruction on that processor. Statements in the
6148@code{asm} are identified by newline characters and whatever statement
6149separator characters are supported by the assembler; on most processors
6150this is the `@code{;}' character.
6151
6152Normally, GCC's estimate is perfectly adequate to ensure that correct
6153code is generated, but it is possible to confuse the compiler if you use
6154pseudo instructions or assembler macros that expand into multiple real
6155instructions or if you use assembler directives that expand to more
6156space in the object file than would be needed for a single instruction.
6157If this happens then the assembler will produce a diagnostic saying that
6158a label is unreachable.
6159
fe0ce426
JH
6160@subsection i386 floating point asm operands
6161
6162There are several rules on the usage of stack-like regs in
6163asm_operands insns. These rules apply only to the operands that are
6164stack-like regs:
6165
6166@enumerate
6167@item
6168Given a set of input regs that die in an asm_operands, it is
6169necessary to know which are implicitly popped by the asm, and
6170which must be explicitly popped by gcc.
6171
6172An input reg that is implicitly popped by the asm must be
6173explicitly clobbered, unless it is constrained to match an
6174output operand.
6175
6176@item
6177For any input reg that is implicitly popped by an asm, it is
6178necessary to know how to adjust the stack to compensate for the pop.
6179If any non-popped input is closer to the top of the reg-stack than
6180the implicitly popped reg, it would not be possible to know what the
84330467 6181stack looked like---it's not clear how the rest of the stack ``slides
fe0ce426
JH
6182up''.
6183
6184All implicitly popped input regs must be closer to the top of
6185the reg-stack than any input that is not implicitly popped.
6186
6187It is possible that if an input dies in an insn, reload might
6188use the input reg for an output reload. Consider this example:
6189
3ab51846 6190@smallexample
fe0ce426 6191asm ("foo" : "=t" (a) : "f" (b));
3ab51846 6192@end smallexample
fe0ce426
JH
6193
6194This asm says that input B is not popped by the asm, and that
c771326b 6195the asm pushes a result onto the reg-stack, i.e., the stack is one
fe0ce426
JH
6196deeper after the asm than it was before. But, it is possible that
6197reload will think that it can use the same reg for both the input and
6198the output, if input B dies in this insn.
6199
6200If any input operand uses the @code{f} constraint, all output reg
6201constraints must use the @code{&} earlyclobber.
6202
6203The asm above would be written as
6204
3ab51846 6205@smallexample
fe0ce426 6206asm ("foo" : "=&t" (a) : "f" (b));
3ab51846 6207@end smallexample
fe0ce426
JH
6208
6209@item
6210Some operands need to be in particular places on the stack. All
84330467 6211output operands fall in this category---there is no other way to
fe0ce426
JH
6212know which regs the outputs appear in unless the user indicates
6213this in the constraints.
6214
6215Output operands must specifically indicate which reg an output
6216appears in after an asm. @code{=f} is not allowed: the operand
6217constraints must select a class with a single reg.
6218
6219@item
6220Output operands may not be ``inserted'' between existing stack regs.
6221Since no 387 opcode uses a read/write operand, all output operands
6222are dead before the asm_operands, and are pushed by the asm_operands.
6223It makes no sense to push anywhere but the top of the reg-stack.
6224
6225Output operands must start at the top of the reg-stack: output
6226operands may not ``skip'' a reg.
6227
6228@item
6229Some asm statements may need extra stack space for internal
6230calculations. This can be guaranteed by clobbering stack registers
6231unrelated to the inputs and outputs.
6232
6233@end enumerate
6234
6235Here are a couple of reasonable asms to want to write. This asm
6236takes one input, which is internally popped, and produces two outputs.
6237
3ab51846 6238@smallexample
fe0ce426 6239asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
3ab51846 6240@end smallexample
fe0ce426
JH
6241
6242This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6243and replaces them with one output. The user must code the @code{st(1)}
6244clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
6245
3ab51846 6246@smallexample
fe0ce426 6247asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
3ab51846 6248@end smallexample
fe0ce426 6249
c1f7febf 6250@include md.texi
c1f7febf
RK
6251
6252@node Asm Labels
6253@section Controlling Names Used in Assembler Code
6254@cindex assembler names for identifiers
6255@cindex names used in assembler code
6256@cindex identifiers, names in assembler code
6257
6258You can specify the name to be used in the assembler code for a C
6259function or variable by writing the @code{asm} (or @code{__asm__})
6260keyword after the declarator as follows:
6261
3ab51846 6262@smallexample
c1f7febf 6263int foo asm ("myfoo") = 2;
3ab51846 6264@end smallexample
c1f7febf
RK
6265
6266@noindent
6267This specifies that the name to be used for the variable @code{foo} in
6268the assembler code should be @samp{myfoo} rather than the usual
6269@samp{_foo}.
6270
6271On systems where an underscore is normally prepended to the name of a C
6272function or variable, this feature allows you to define names for the
6273linker that do not start with an underscore.
6274
0adc3c19
MM
6275It does not make sense to use this feature with a non-static local
6276variable since such variables do not have assembler names. If you are
6277trying to put the variable in a particular register, see @ref{Explicit
6278Reg Vars}. GCC presently accepts such code with a warning, but will
6279probably be changed to issue an error, rather than a warning, in the
6280future.
6281
c1f7febf
RK
6282You cannot use @code{asm} in this way in a function @emph{definition}; but
6283you can get the same effect by writing a declaration for the function
6284before its definition and putting @code{asm} there, like this:
6285
3ab51846 6286@smallexample
c1f7febf
RK
6287extern func () asm ("FUNC");
6288
6289func (x, y)
6290 int x, y;
0d893a63 6291/* @r{@dots{}} */
3ab51846 6292@end smallexample
c1f7febf
RK
6293
6294It is up to you to make sure that the assembler names you choose do not
6295conflict with any other assembler symbols. Also, you must not use a
f0523f02
JM
6296register name; that would produce completely invalid assembler code. GCC
6297does not as yet have the ability to store static variables in registers.
c1f7febf
RK
6298Perhaps that will be added.
6299
6300@node Explicit Reg Vars
6301@section Variables in Specified Registers
6302@cindex explicit register variables
6303@cindex variables in specified registers
6304@cindex specified registers
6305@cindex registers, global allocation
6306
6307GNU C allows you to put a few global variables into specified hardware
6308registers. You can also specify the register in which an ordinary
6309register variable should be allocated.
6310
6311@itemize @bullet
6312@item
6313Global register variables reserve registers throughout the program.
6314This may be useful in programs such as programming language
6315interpreters which have a couple of global variables that are accessed
6316very often.
6317
6318@item
6319Local register variables in specific registers do not reserve the
805c33df
HPN
6320registers, except at the point where they are used as input or output
6321operands in an @code{asm} statement and the @code{asm} statement itself is
6322not deleted. The compiler's data flow analysis is capable of determining
c1f7febf 6323where the specified registers contain live values, and where they are
8d344fbc 6324available for other uses. Stores into local register variables may be deleted
0deaf590
JL
6325when they appear to be dead according to dataflow analysis. References
6326to local register variables may be deleted or moved or simplified.
c1f7febf
RK
6327
6328These local variables are sometimes convenient for use with the extended
6329@code{asm} feature (@pxref{Extended Asm}), if you want to write one
6330output of the assembler instruction directly into a particular register.
6331(This will work provided the register you specify fits the constraints
6332specified for that operand in the @code{asm}.)
6333@end itemize
6334
6335@menu
6336* Global Reg Vars::
6337* Local Reg Vars::
6338@end menu
6339
6340@node Global Reg Vars
6341@subsection Defining Global Register Variables
6342@cindex global register variables
6343@cindex registers, global variables in
6344
6345You can define a global register variable in GNU C like this:
6346
3ab51846 6347@smallexample
c1f7febf 6348register int *foo asm ("a5");
3ab51846 6349@end smallexample
c1f7febf
RK
6350
6351@noindent
6352Here @code{a5} is the name of the register which should be used. Choose a
6353register which is normally saved and restored by function calls on your
6354machine, so that library routines will not clobber it.
6355
6356Naturally the register name is cpu-dependent, so you would need to
6357conditionalize your program according to cpu type. The register
6358@code{a5} would be a good choice on a 68000 for a variable of pointer
6359type. On machines with register windows, be sure to choose a ``global''
6360register that is not affected magically by the function call mechanism.
6361
6362In addition, operating systems on one type of cpu may differ in how they
6363name the registers; then you would need additional conditionals. For
6364example, some 68000 operating systems call this register @code{%a5}.
6365
6366Eventually there may be a way of asking the compiler to choose a register
6367automatically, but first we need to figure out how it should choose and
6368how to enable you to guide the choice. No solution is evident.
6369
6370Defining a global register variable in a certain register reserves that
6371register entirely for this use, at least within the current compilation.
6372The register will not be allocated for any other purpose in the functions
6373in the current compilation. The register will not be saved and restored by
6374these functions. Stores into this register are never deleted even if they
6375would appear to be dead, but references may be deleted or moved or
6376simplified.
6377
6378It is not safe to access the global register variables from signal
6379handlers, or from more than one thread of control, because the system
6380library routines may temporarily use the register for other things (unless
6381you recompile them specially for the task at hand).
6382
6383@cindex @code{qsort}, and global register variables
6384It is not safe for one function that uses a global register variable to
6385call another such function @code{foo} by way of a third function
e979f9e8 6386@code{lose} that was compiled without knowledge of this variable (i.e.@: in a
c1f7febf
RK
6387different source file in which the variable wasn't declared). This is
6388because @code{lose} might save the register and put some other value there.
6389For example, you can't expect a global register variable to be available in
6390the comparison-function that you pass to @code{qsort}, since @code{qsort}
6391might have put something else in that register. (If you are prepared to
6392recompile @code{qsort} with the same global register variable, you can
6393solve this problem.)
6394
6395If you want to recompile @code{qsort} or other source files which do not
6396actually use your global register variable, so that they will not use that
6397register for any other purpose, then it suffices to specify the compiler
84330467 6398option @option{-ffixed-@var{reg}}. You need not actually add a global
c1f7febf
RK
6399register declaration to their source code.
6400
6401A function which can alter the value of a global register variable cannot
6402safely be called from a function compiled without this variable, because it
6403could clobber the value the caller expects to find there on return.
6404Therefore, the function which is the entry point into the part of the
6405program that uses the global register variable must explicitly save and
6406restore the value which belongs to its caller.
6407
6408@cindex register variable after @code{longjmp}
6409@cindex global register after @code{longjmp}
6410@cindex value after @code{longjmp}
6411@findex longjmp
6412@findex setjmp
6413On most machines, @code{longjmp} will restore to each global register
6414variable the value it had at the time of the @code{setjmp}. On some
6415machines, however, @code{longjmp} will not change the value of global
6416register variables. To be portable, the function that called @code{setjmp}
6417should make other arrangements to save the values of the global register
6418variables, and to restore them in a @code{longjmp}. This way, the same
6419thing will happen regardless of what @code{longjmp} does.
6420
6421All global register variable declarations must precede all function
6422definitions. If such a declaration could appear after function
6423definitions, the declaration would be too late to prevent the register from
6424being used for other purposes in the preceding functions.
6425
6426Global register variables may not have initial values, because an
6427executable file has no means to supply initial contents for a register.
6428
981f6289 6429On the SPARC, there are reports that g3 @dots{} g7 are suitable
c1f7febf
RK
6430registers, but certain library functions, such as @code{getwd}, as well
6431as the subroutines for division and remainder, modify g3 and g4. g1 and
6432g2 are local temporaries.
6433
6434On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6435Of course, it will not do to use more than a few of those.
6436
6437@node Local Reg Vars
6438@subsection Specifying Registers for Local Variables
6439@cindex local variables, specifying registers
6440@cindex specifying registers for local variables
6441@cindex registers for local variables
6442
6443You can define a local register variable with a specified register
6444like this:
6445
3ab51846 6446@smallexample
c1f7febf 6447register int *foo asm ("a5");
3ab51846 6448@end smallexample
c1f7febf
RK
6449
6450@noindent
6451Here @code{a5} is the name of the register which should be used. Note
6452that this is the same syntax used for defining global register
6453variables, but for a local variable it would appear within a function.
6454
6455Naturally the register name is cpu-dependent, but this is not a
6456problem, since specific registers are most often useful with explicit
6457assembler instructions (@pxref{Extended Asm}). Both of these things
6458generally require that you conditionalize your program according to
6459cpu type.
6460
6461In addition, operating systems on one type of cpu may differ in how they
6462name the registers; then you would need additional conditionals. For
6463example, some 68000 operating systems call this register @code{%a5}.
6464
c1f7febf
RK
6465Defining such a register variable does not reserve the register; it
6466remains available for other uses in places where flow control determines
d754127f 6467the variable's value is not live.
e5e809f4 6468
f0523f02 6469This option does not guarantee that GCC will generate code that has
e5e809f4 6470this variable in the register you specify at all times. You may not
805c33df
HPN
6471code an explicit reference to this register in the @emph{assembler
6472instruction template} part of an @code{asm} statement and assume it will
6473always refer to this variable. However, using the variable as an
6474@code{asm} @emph{operand} guarantees that the specified register is used
6475for the operand.
c1f7febf 6476
8d344fbc 6477Stores into local register variables may be deleted when they appear to be dead
0deaf590
JL
6478according to dataflow analysis. References to local register variables may
6479be deleted or moved or simplified.
6480
b55d5746
HPN
6481As for global register variables, it's recommended that you choose a
6482register which is normally saved and restored by function calls on
6483your machine, so that library routines will not clobber it. A common
6484pitfall is to initialize multiple call-clobbered registers with
6485arbitrary expressions, where a function call or library call for an
6486arithmetic operator will overwrite a register value from a previous
6487assignment, for example @code{r0} below:
6488@smallexample
6489register int *p1 asm ("r0") = @dots{};
6490register int *p2 asm ("r1") = @dots{};
6491@end smallexample
6492In those cases, a solution is to use a temporary variable for
6493each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
6494
c1f7febf
RK
6495@node Alternate Keywords
6496@section Alternate Keywords
6497@cindex alternate keywords
6498@cindex keywords, alternate
6499
5490d604 6500@option{-ansi} and the various @option{-std} options disable certain
f458d1d5
ZW
6501keywords. This causes trouble when you want to use GNU C extensions, or
6502a general-purpose header file that should be usable by all programs,
6503including ISO C programs. The keywords @code{asm}, @code{typeof} and
6504@code{inline} are not available in programs compiled with
6505@option{-ansi} or @option{-std} (although @code{inline} can be used in a
48b0b196 6506program compiled with @option{-std=c99} or @option{-std=c11}). The
2778d766 6507ISO C99 keyword
5490d604
JM
6508@code{restrict} is only available when @option{-std=gnu99} (which will
6509eventually be the default) or @option{-std=c99} (or the equivalent
2778d766
JM
6510@option{-std=iso9899:1999}), or an option for a later standard
6511version, is used.
c1f7febf
RK
6512
6513The way to solve these problems is to put @samp{__} at the beginning and
6514end of each problematical keyword. For example, use @code{__asm__}
f458d1d5 6515instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
c1f7febf
RK
6516
6517Other C compilers won't accept these alternative keywords; if you want to
6518compile with another compiler, you can define the alternate keywords as
6519macros to replace them with the customary keywords. It looks like this:
6520
3ab51846 6521@smallexample
c1f7febf
RK
6522#ifndef __GNUC__
6523#define __asm__ asm
6524#endif
3ab51846 6525@end smallexample
c1f7febf 6526
6e6b0525 6527@findex __extension__
84330467
JM
6528@opindex pedantic
6529@option{-pedantic} and other options cause warnings for many GNU C extensions.
dbe519e0 6530You can
c1f7febf
RK
6531prevent such warnings within one expression by writing
6532@code{__extension__} before the expression. @code{__extension__} has no
6533effect aside from this.
6534
6535@node Incomplete Enums
6536@section Incomplete @code{enum} Types
6537
6538You can define an @code{enum} tag without specifying its possible values.
6539This results in an incomplete type, much like what you get if you write
6540@code{struct foo} without describing the elements. A later declaration
6541which does specify the possible values completes the type.
6542
6543You can't allocate variables or storage using the type while it is
6544incomplete. However, you can work with pointers to that type.
6545
6546This extension may not be very useful, but it makes the handling of
6547@code{enum} more consistent with the way @code{struct} and @code{union}
6548are handled.
6549
6550This extension is not supported by GNU C++.
6551
6552@node Function Names
6553@section Function Names as Strings
e6cc3a24 6554@cindex @code{__func__} identifier
4b404517
JM
6555@cindex @code{__FUNCTION__} identifier
6556@cindex @code{__PRETTY_FUNCTION__} identifier
c1f7febf 6557
e6cc3a24
ZW
6558GCC provides three magic variables which hold the name of the current
6559function, as a string. The first of these is @code{__func__}, which
6560is part of the C99 standard:
6561
e6cc3a24
ZW
6562The identifier @code{__func__} is implicitly declared by the translator
6563as if, immediately following the opening brace of each function
6564definition, the declaration
6565
6566@smallexample
6567static const char __func__[] = "function-name";
6568@end smallexample
c1f7febf 6569
38bb2b65 6570@noindent
e6cc3a24
ZW
6571appeared, where function-name is the name of the lexically-enclosing
6572function. This name is the unadorned name of the function.
e6cc3a24
ZW
6573
6574@code{__FUNCTION__} is another name for @code{__func__}. Older
6575versions of GCC recognize only this name. However, it is not
6576standardized. For maximum portability, we recommend you use
6577@code{__func__}, but provide a fallback definition with the
6578preprocessor:
6579
6580@smallexample
6581#if __STDC_VERSION__ < 199901L
6582# if __GNUC__ >= 2
6583# define __func__ __FUNCTION__
6584# else
6585# define __func__ "<unknown>"
6586# endif
6587#endif
6588@end smallexample
6589
6590In C, @code{__PRETTY_FUNCTION__} is yet another name for
6591@code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
6592the type signature of the function as well as its bare name. For
6593example, this program:
c1f7febf
RK
6594
6595@smallexample
6596extern "C" @{
6597extern int printf (char *, ...);
6598@}
6599
6600class a @{
6601 public:
a721a601 6602 void sub (int i)
c1f7febf
RK
6603 @{
6604 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
6605 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
6606 @}
6607@};
6608
6609int
6610main (void)
6611@{
6612 a ax;
6613 ax.sub (0);
6614 return 0;
6615@}
6616@end smallexample
6617
6618@noindent
6619gives this output:
6620
6621@smallexample
6622__FUNCTION__ = sub
e6cc3a24 6623__PRETTY_FUNCTION__ = void a::sub(int)
22acfb79
NM
6624@end smallexample
6625
e6cc3a24
ZW
6626These identifiers are not preprocessor macros. In GCC 3.3 and
6627earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
6628were treated as string literals; they could be used to initialize
6629@code{char} arrays, and they could be concatenated with other string
6630literals. GCC 3.4 and later treat them as variables, like
6631@code{__func__}. In C++, @code{__FUNCTION__} and
6632@code{__PRETTY_FUNCTION__} have always been variables.
22acfb79 6633
c1f7febf
RK
6634@node Return Address
6635@section Getting the Return or Frame Address of a Function
6636
6637These functions may be used to get information about the callers of a
6638function.
6639
84330467 6640@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
c1f7febf
RK
6641This function returns the return address of the current function, or of
6642one of its callers. The @var{level} argument is number of frames to
6643scan up the call stack. A value of @code{0} yields the return address
6644of the current function, a value of @code{1} yields the return address
8a36672b 6645of the caller of the current function, and so forth. When inlining
95b1627e
EC
6646the expected behavior is that the function will return the address of
6647the function that will be returned to. To work around this behavior use
6648the @code{noinline} function attribute.
c1f7febf
RK
6649
6650The @var{level} argument must be a constant integer.
6651
6652On some machines it may be impossible to determine the return address of
6653any function other than the current one; in such cases, or when the top
dd96fbc5 6654of the stack has been reached, this function will return @code{0} or a
8a36672b 6655random value. In addition, @code{__builtin_frame_address} may be used
dd96fbc5 6656to determine if the top of the stack has been reached.
c1f7febf 6657
48c4de16
TS
6658Additional post-processing of the returned value may be needed, see
6659@code{__builtin_extract_return_address}.
6660
df2a54e9 6661This function should only be used with a nonzero argument for debugging
c1f7febf 6662purposes.
84330467 6663@end deftypefn
c1f7febf 6664
48c4de16
TS
6665@deftypefn {Built-in Function} {void *} __builtin_extract_return_address (void *@var{addr})
6666The address as returned by @code{__builtin_return_address} may have to be fed
6667through this function to get the actual encoded address. For example, on the
666831-bit S/390 platform the highest bit has to be masked out, or on SPARC
6669platforms an offset has to be added for the true next instruction to be
6670executed.
6671
6672If no fixup is needed, this function simply passes through @var{addr}.
6673@end deftypefn
6674
6675@deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
6676This function does the reverse of @code{__builtin_extract_return_address}.
6677@end deftypefn
6678
84330467 6679@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
c1f7febf
RK
6680This function is similar to @code{__builtin_return_address}, but it
6681returns the address of the function frame rather than the return address
6682of the function. Calling @code{__builtin_frame_address} with a value of
6683@code{0} yields the frame address of the current function, a value of
6684@code{1} yields the frame address of the caller of the current function,
6685and so forth.
6686
6687The frame is the area on the stack which holds local variables and saved
6688registers. The frame address is normally the address of the first word
6689pushed on to the stack by the function. However, the exact definition
6690depends upon the processor and the calling convention. If the processor
6691has a dedicated frame pointer register, and the function has a frame,
6692then @code{__builtin_frame_address} will return the value of the frame
6693pointer register.
6694
dd96fbc5
L
6695On some machines it may be impossible to determine the frame address of
6696any function other than the current one; in such cases, or when the top
6697of the stack has been reached, this function will return @code{0} if
6698the first frame pointer is properly initialized by the startup code.
6699
df2a54e9 6700This function should only be used with a nonzero argument for debugging
dd96fbc5 6701purposes.
84330467 6702@end deftypefn
c1f7febf 6703
1255c85c
BS
6704@node Vector Extensions
6705@section Using vector instructions through built-in functions
6706
6707On some targets, the instruction set contains SIMD vector instructions that
6708operate on multiple values contained in one large register at the same time.
f8723eb6 6709For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
1255c85c
BS
6710this way.
6711
6712The first step in using these extensions is to provide the necessary data
6713types. This should be done using an appropriate @code{typedef}:
6714
3ab51846 6715@smallexample
4a5eab38 6716typedef int v4si __attribute__ ((vector_size (16)));
3ab51846 6717@end smallexample
1255c85c 6718
4a5eab38
PB
6719The @code{int} type specifies the base type, while the attribute specifies
6720the vector size for the variable, measured in bytes. For example, the
6721declaration above causes the compiler to set the mode for the @code{v4si}
6722type to be 16 bytes wide and divided into @code{int} sized units. For
6723a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
6724corresponding mode of @code{foo} will be @acronym{V4SI}.
1255c85c 6725
4a5eab38
PB
6726The @code{vector_size} attribute is only applicable to integral and
6727float scalars, although arrays, pointers, and function return values
6728are allowed in conjunction with this construct.
6729
6730All the basic integer types can be used as base types, both as signed
6731and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
6732@code{long long}. In addition, @code{float} and @code{double} can be
6733used to build floating-point vector types.
1255c85c 6734
cb2a532e 6735Specifying a combination that is not valid for the current architecture
2dd76960 6736will cause GCC to synthesize the instructions using a narrower mode.
cb2a532e 6737For example, if you specify a variable of type @code{V4SI} and your
2dd76960 6738architecture does not allow for this specific SIMD type, GCC will
cb2a532e
AH
6739produce code that uses 4 @code{SIs}.
6740
6741The types defined in this manner can be used with a subset of normal C
2dd76960 6742operations. Currently, GCC will allow using the following operators
5cfd5d9b 6743on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
cb2a532e
AH
6744
6745The operations behave like C++ @code{valarrays}. Addition is defined as
6746the addition of the corresponding elements of the operands. For
6747example, in the code below, each of the 4 elements in @var{a} will be
6748added to the corresponding 4 elements in @var{b} and the resulting
6749vector will be stored in @var{c}.
6750
3ab51846 6751@smallexample
4a5eab38 6752typedef int v4si __attribute__ ((vector_size (16)));
cb2a532e
AH
6753
6754v4si a, b, c;
6755
6756c = a + b;
3ab51846 6757@end smallexample
cb2a532e 6758
3a3e1600
GK
6759Subtraction, multiplication, division, and the logical operations
6760operate in a similar manner. Likewise, the result of using the unary
6761minus or complement operators on a vector type is a vector whose
6762elements are the negative or complemented values of the corresponding
cb2a532e
AH
6763elements in the operand.
6764
f87bd04b
AS
6765In C it is possible to use shifting operators @code{<<}, @code{>>} on
6766integer-type vectors. The operation is defined as following: @code{@{a0,
6767a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
6768@dots{}, an >> bn@}}@. Vector operands must have the same number of
0e3a99ae
AS
6769elements.
6770
6771For the convenience in C it is allowed to use a binary vector operation
6772where one operand is a scalar. In that case the compiler will transform
6773the scalar operand into a vector where each element is the scalar from
6774the operation. The transformation will happen only if the scalar could be
6775safely converted to the vector-element type.
f87bd04b
AS
6776Consider the following code.
6777
6778@smallexample
6779typedef int v4si __attribute__ ((vector_size (16)));
6780
0e3a99ae
AS
6781v4si a, b, c;
6782long l;
6783
6784a = b + 1; /* a = b + @{1,1,1,1@}; */
6785a = 2 * b; /* a = @{2,2,2,2@} * b; */
f87bd04b 6786
0e3a99ae 6787a = l + a; /* Error, cannot convert long to int. */
f87bd04b
AS
6788@end smallexample
6789
30cd1c5d
AS
6790In C vectors can be subscripted as if the vector were an array with
6791the same number of elements and base type. Out of bound accesses
6792invoke undefined behavior at runtime. Warnings for out of bound
6793accesses for vector subscription can be enabled with
6794@option{-Warray-bounds}.
6795
d246ab4f
AS
6796In GNU C vector comparison is supported within standard comparison
6797operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
6798vector expressions of integer-type or real-type. Comparison between
6799integer-type vectors and real-type vectors are not supported. The
6800result of the comparison is a vector of the same width and number of
6801elements as the comparison operands with a signed integral element
6802type.
6803
6804Vectors are compared element-wise producing 0 when comparison is false
6805and -1 (constant of the appropriate type where all bits are set)
6806otherwise. Consider the following example.
6807
6808@smallexample
6809typedef int v4si __attribute__ ((vector_size (16)));
6810
6811v4si a = @{1,2,3,4@};
6812v4si b = @{3,2,1,4@};
6813v4si c;
6814
6815c = a > b; /* The result would be @{0, 0,-1, 0@} */
6816c = a == b; /* The result would be @{0,-1, 0,-1@} */
6817@end smallexample
6818
f90e8e2e
AS
6819Vector shuffling is available using functions
6820@code{__builtin_shuffle (vec, mask)} and
2205ed25
RH
6821@code{__builtin_shuffle (vec0, vec1, mask)}.
6822Both functions construct a permutation of elements from one or two
6823vectors and return a vector of the same type as the input vector(s).
6824The @var{mask} is an integral vector with the same width (@var{W})
6825and element count (@var{N}) as the output vector.
f90e8e2e 6826
2205ed25
RH
6827The elements of the input vectors are numbered in memory ordering of
6828@var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
6829elements of @var{mask} are considered modulo @var{N} in the single-operand
6830case and modulo @math{2*@var{N}} in the two-operand case.
6831
6832Consider the following example,
f90e8e2e
AS
6833
6834@smallexample
6835typedef int v4si __attribute__ ((vector_size (16)));
6836
6837v4si a = @{1,2,3,4@};
6838v4si b = @{5,6,7,8@};
6839v4si mask1 = @{0,1,1,3@};
6840v4si mask2 = @{0,4,2,5@};
6841v4si res;
6842
6843res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
6844res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
6845@end smallexample
6846
2205ed25
RH
6847Note that @code{__builtin_shuffle} is intentionally semantically
6848compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
6849
cb2a532e
AH
6850You can declare variables and use them in function calls and returns, as
6851well as in assignments and some casts. You can specify a vector type as
6852a return type for a function. Vector types can also be used as function
6853arguments. It is possible to cast from one vector type to another,
6854provided they are of the same size (in fact, you can also cast vectors
6855to and from other datatypes of the same size).
6856
6857You cannot operate between vectors of different lengths or different
90a21764 6858signedness without a cast.
cb2a532e 6859
7a3ea201
RH
6860@node Offsetof
6861@section Offsetof
6862@findex __builtin_offsetof
6863
6864GCC implements for both C and C++ a syntactic extension to implement
6865the @code{offsetof} macro.
6866
6867@smallexample
6868primary:
6ccde948 6869 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
7a3ea201
RH
6870
6871offsetof_member_designator:
6ccde948
RW
6872 @code{identifier}
6873 | offsetof_member_designator "." @code{identifier}
6874 | offsetof_member_designator "[" @code{expr} "]"
7a3ea201
RH
6875@end smallexample
6876
6877This extension is sufficient such that
6878
6879@smallexample
6880#define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
6881@end smallexample
6882
6883is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
6884may be dependent. In either case, @var{member} may consist of a single
6885identifier, or a sequence of member accesses and array references.
6886
86951993
AM
6887@node __sync Builtins
6888@section Legacy __sync built-in functions for atomic memory access
48ae6c13
RH
6889
6890The following builtins are intended to be compatible with those described
6891in the @cite{Intel Itanium Processor-specific Application Binary Interface},
6892section 7.4. As such, they depart from the normal GCC practice of using
6893the ``__builtin_'' prefix, and further that they are overloaded such that
6894they work on multiple types.
6895
6896The definition given in the Intel documentation allows only for the use of
6897the types @code{int}, @code{long}, @code{long long} as well as their unsigned
6898counterparts. GCC will allow any integral scalar or pointer type that is
68991, 2, 4 or 8 bytes in length.
6900
6901Not all operations are supported by all target processors. If a particular
6902operation cannot be implemented on the target processor, a warning will be
6903generated and a call an external function will be generated. The external
6904function will carry the same name as the builtin, with an additional suffix
6905@samp{_@var{n}} where @var{n} is the size of the data type.
6906
6907@c ??? Should we have a mechanism to suppress this warning? This is almost
6908@c useful for implementing the operation under the control of an external
6909@c mutex.
6910
6911In most cases, these builtins are considered a @dfn{full barrier}. That is,
6912no memory operand will be moved across the operation, either forward or
6913backward. Further, instructions will be issued as necessary to prevent the
6914processor from speculating loads across the operation and from queuing stores
6915after the operation.
6916
d1facce0 6917All of the routines are described in the Intel documentation to take
48ae6c13
RH
6918``an optional list of variables protected by the memory barrier''. It's
6919not clear what is meant by that; it could mean that @emph{only} the
6920following variables are protected, or it could mean that these variables
6921should in addition be protected. At present GCC ignores this list and
6922protects all variables which are globally accessible. If in the future
6923we make some use of this list, an empty list will continue to mean all
6924globally accessible variables.
6925
6926@table @code
6927@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
6928@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
6929@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
6930@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
6931@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
6932@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
6933@findex __sync_fetch_and_add
6934@findex __sync_fetch_and_sub
6935@findex __sync_fetch_and_or
6936@findex __sync_fetch_and_and
6937@findex __sync_fetch_and_xor
6938@findex __sync_fetch_and_nand
6939These builtins perform the operation suggested by the name, and
6940returns the value that had previously been in memory. That is,
6941
6942@smallexample
6943@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
23462d4d 6944@{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
48ae6c13
RH
6945@end smallexample
6946
23462d4d
UB
6947@emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
6948builtin as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
6949
48ae6c13
RH
6950@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
6951@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
6952@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
6953@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
6954@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
6955@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
6956@findex __sync_add_and_fetch
6957@findex __sync_sub_and_fetch
6958@findex __sync_or_and_fetch
6959@findex __sync_and_and_fetch
6960@findex __sync_xor_and_fetch
6961@findex __sync_nand_and_fetch
6962These builtins perform the operation suggested by the name, and
6963return the new value. That is,
6964
6965@smallexample
6966@{ *ptr @var{op}= value; return *ptr; @}
23462d4d 6967@{ *ptr = ~(*ptr & value); return *ptr; @} // nand
48ae6c13
RH
6968@end smallexample
6969
23462d4d
UB
6970@emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
6971builtin as @code{*ptr = ~(*ptr & value)} instead of
6972@code{*ptr = ~*ptr & value}.
6973
06ef8c2e
L
6974@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
6975@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
48ae6c13
RH
6976@findex __sync_bool_compare_and_swap
6977@findex __sync_val_compare_and_swap
6978These builtins perform an atomic compare and swap. That is, if the current
6979value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
6980@code{*@var{ptr}}.
6981
0ac11108 6982The ``bool'' version returns true if the comparison is successful and
48ae6c13 6983@var{newval} was written. The ``val'' version returns the contents
f12b785d 6984of @code{*@var{ptr}} before the operation.
48ae6c13
RH
6985
6986@item __sync_synchronize (...)
6987@findex __sync_synchronize
6988This builtin issues a full memory barrier.
6989
6990@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
6991@findex __sync_lock_test_and_set
6992This builtin, as described by Intel, is not a traditional test-and-set
6993operation, but rather an atomic exchange operation. It writes @var{value}
6994into @code{*@var{ptr}}, and returns the previous contents of
6995@code{*@var{ptr}}.
6996
6997Many targets have only minimal support for such locks, and do not support
6998a full exchange operation. In this case, a target may support reduced
6999functionality here by which the @emph{only} valid value to store is the
7000immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
7001is implementation defined.
7002
7003This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
7004This means that references after the builtin cannot move to (or be
7005speculated to) before the builtin, but previous memory stores may not
0ac11108 7006be globally visible yet, and previous memory loads may not yet be
48ae6c13
RH
7007satisfied.
7008
7009@item void __sync_lock_release (@var{type} *ptr, ...)
7010@findex __sync_lock_release
7011This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
7012Normally this means writing the constant 0 to @code{*@var{ptr}}.
7013
7014This builtin is not a full barrier, but rather a @dfn{release barrier}.
7015This means that all previous memory stores are globally visible, and all
7016previous memory loads have been satisfied, but following memory reads
7017are not prevented from being speculated to before the barrier.
7018@end table
7019
86951993
AM
7020@node __atomic Builtins
7021@section Built-in functions for memory model aware atomic operations
7022
7023The following built-in functions approximately match the requirements for
7024C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
7025functions, but all also have a memory model parameter. These are all
7026identified by being prefixed with @samp{__atomic}, and most are overloaded
7027such that they work with multiple types.
7028
7029GCC will allow any integral scalar or pointer type that is 1, 2, 4, or 8
7030bytes in length. 16-byte integral types are also allowed if
7031@samp{__int128} (@pxref{__int128}) is supported by the architecture.
7032
7033Target architectures are encouraged to provide their own patterns for
7034each of these built-in functions. If no target is provided, the original
7035non-memory model set of @samp{__sync} atomic built-in functions will be
7036utilized, along with any required synchronization fences surrounding it in
7037order to achieve the proper behaviour. Execution in this case is subject
7038to the same restrictions as those built-in functions.
7039
7040If there is no pattern or mechanism to provide a lock free instruction
7041sequence, a call is made to an external routine with the same parameters
7042to be resolved at runtime.
7043
7044The four non-arithmetic functions (load, store, exchange, and
7045compare_exchange) all have a generic version as well. This generic
7046version will work on any data type. If the data type size maps to one
7047of the integral sizes which may have lock free support, the generic
7048version will utilize the lock free built-in function. Otherwise an
7049external call is left to be resolved at runtime. This external call will
7050be the same format with the addition of a @samp{size_t} parameter inserted
7051as the first parameter indicating the size of the object being pointed to.
7052All objects must be the same size.
7053
7054There are 6 different memory models which can be specified. These map
7055to the same names in the C++11 standard. Refer there or to the
7056@uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
7057atomic synchronization} for more detailed definitions. These memory
7058models integrate both barriers to code motion as well as synchronization
7059requirements with other threads. These are listed in approximately
7060ascending order of strength.
7061
7062@table @code
7063@item __ATOMIC_RELAXED
7064No barriers or synchronization.
7065@item __ATOMIC_CONSUME
7066Data dependency only for both barrier and synchronization with another
7067thread.
7068@item __ATOMIC_ACQUIRE
7069Barrier to hoisting of code and synchronizes with release (or stronger)
7070semantic stores from another thread.
7071@item __ATOMIC_RELEASE
7072Barrier to sinking of code and synchronizes with acquire (or stronger)
7073semantic loads from another thread.
7074@item __ATOMIC_ACQ_REL
7075Full barrier in both directions and synchronizes with acquire loads and
7076release stores in another thread.
7077@item __ATOMIC_SEQ_CST
7078Full barrier in both directions and synchronizes with acquire loads and
7079release stores in all threads.
7080@end table
7081
7082When implementing patterns for these built-in functions , the memory model
7083parameter can be ignored as long as the pattern implements the most
7084restrictive @code{__ATOMIC_SEQ_CST} model. Any of the other memory models
7085will execute correctly with this memory model but they may not execute as
7086efficiently as they could with a more appropriate implemention of the
7087relaxed requirements.
7088
7089Note that the C++11 standard allows for the memory model parameter to be
7090determined at runtime rather than at compile time. These built-in
7091functions will map any runtime value to @code{__ATOMIC_SEQ_CST} rather
7092than invoke a runtime library call or inline a switch statement. This is
7093standard compliant, safe, and the simplest approach for now.
7094
7095@deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
7096This built-in function implements an atomic load operation. It returns the
7097contents of @code{*@var{ptr}}.
7098
7099The valid memory model variants are
7100@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7101and @code{__ATOMIC_CONSUME}.
7102
7103@end deftypefn
7104
7105@deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
7106This is the generic version of an atomic load. It will return the
7107contents of @code{*@var{ptr}} in @code{*@var{ret}}.
7108
7109@end deftypefn
7110
7111@deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
7112This built-in function implements an atomic store operation. It writes
0669295b 7113@code{@var{val}} into @code{*@var{ptr}}.
86951993
AM
7114
7115The valid memory model variants are
7116@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
7117
7118@end deftypefn
7119
7120@deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
7121This is the generic version of an atomic store. It will store the value
7122of @code{*@var{val}} into @code{*@var{ptr}}.
7123
7124@end deftypefn
7125
7126@deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
7127This built-in function implements an atomic exchange operation. It writes
7128@var{val} into @code{*@var{ptr}}, and returns the previous contents of
7129@code{*@var{ptr}}.
7130
86951993
AM
7131The valid memory model variants are
7132@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7133@code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
7134
7135@end deftypefn
7136
7137@deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
7138This is the generic version of an atomic exchange. It will store the
7139contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
7140of @code{*@var{ptr}} will be copied into @code{*@var{ret}}.
7141
7142@end deftypefn
7143
7144@deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
7145This built-in function implements an atomic compare and exchange operation.
7146This compares the contents of @code{*@var{ptr}} with the contents of
7147@code{*@var{expected}} and if equal, writes @var{desired} into
7148@code{*@var{ptr}}. If they are not equal, the current contents of
7149@code{*@var{ptr}} is written into @code{*@var{expected}}.
7150
7151True is returned if @code{*@var{desired}} is written into
7152@code{*@var{ptr}} and the execution is considered to conform to the
7153memory model specified by @var{success_memmodel}. There are no
7154restrictions on what memory model can be used here.
7155
7156False is returned otherwise, and the execution is considered to conform
7157to @var{failure_memmodel}. This memory model cannot be
7158@code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
7159stronger model than that specified by @var{success_memmodel}.
7160
7161@end deftypefn
7162
7163@deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
7164This built-in function implements the generic version of
7165@code{__atomic_compare_exchange}. The function is virtually identical to
7166@code{__atomic_compare_exchange_n}, except the desired value is also a
7167pointer.
7168
7169@end deftypefn
7170
7171@deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7172@deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7173@deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7174@deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7175@deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7176@deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7177These built-in functions perform the operation suggested by the name, and
7178return the result of the operation. That is,
7179
7180@smallexample
7181@{ *ptr @var{op}= val; return *ptr; @}
7182@end smallexample
7183
7184All memory models are valid.
7185
7186@end deftypefn
7187
7188@deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
7189@deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
7190@deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
7191@deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
7192@deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
7193@deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
7194These built-in functions perform the operation suggested by the name, and
7195return the value that had previously been in @code{*@var{ptr}}. That is,
7196
7197@smallexample
7198@{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
7199@end smallexample
7200
7201All memory models are valid.
7202
7203@end deftypefn
7204
f8a27aa6 7205@deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
1aabd05e
AM
7206
7207This built-in function performs an atomic test-and-set operation on
f8a27aa6
RH
7208the byte at @code{*@var{ptr}}. The byte is set to some implementation
7209defined non-zero "set" value and the return value is @code{true} if and only
7210if the previous contents were "set".
1aabd05e
AM
7211
7212All memory models are valid.
7213
7214@end deftypefn
7215
7216@deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
7217
7218This built-in function performs an atomic clear operation on
7219@code{*@var{ptr}}. After the operation, @code{*@var{ptr}} will contain 0.
7220
7221The valid memory model variants are
7222@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
7223@code{__ATOMIC_RELEASE}.
7224
7225@end deftypefn
7226
86951993
AM
7227@deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
7228
7229This built-in function acts as a synchronization fence between threads
7230based on the specified memory model.
7231
7232All memory orders are valid.
7233
7234@end deftypefn
7235
7236@deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
7237
7238This built-in function acts as a synchronization fence between a thread
7239and signal handlers based in the same thread.
7240
7241All memory orders are valid.
7242
7243@end deftypefn
7244
7245@deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size)
7246
7247This built-in function returns true if objects of size bytes will always
7248generate lock free atomic instructions for the target architecture.
7249Otherwise false is returned.
7250
7251size must resolve to a compile time constant.
7252
7253@smallexample
7254if (_atomic_always_lock_free (sizeof (long long)))
7255@end smallexample
7256
7257@end deftypefn
7258
7259@deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size)
7260
7261This built-in function returns true if objects of size bytes will always
7262generate lock free atomic instructions for the target architecture. If
7263it is not known to be lock free a call is made to a runtime routine named
7264@code{__atomic_is_lock_free}.
7265
7266@end deftypefn
7267
10a0d495
JJ
7268@node Object Size Checking
7269@section Object Size Checking Builtins
7270@findex __builtin_object_size
7271@findex __builtin___memcpy_chk
7272@findex __builtin___mempcpy_chk
7273@findex __builtin___memmove_chk
7274@findex __builtin___memset_chk
7275@findex __builtin___strcpy_chk
7276@findex __builtin___stpcpy_chk
7277@findex __builtin___strncpy_chk
7278@findex __builtin___strcat_chk
7279@findex __builtin___strncat_chk
7280@findex __builtin___sprintf_chk
7281@findex __builtin___snprintf_chk
7282@findex __builtin___vsprintf_chk
7283@findex __builtin___vsnprintf_chk
7284@findex __builtin___printf_chk
7285@findex __builtin___vprintf_chk
7286@findex __builtin___fprintf_chk
7287@findex __builtin___vfprintf_chk
7288
7289GCC implements a limited buffer overflow protection mechanism
7290that can prevent some buffer overflow attacks.
7291
7292@deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
7293is a built-in construct that returns a constant number of bytes from
7294@var{ptr} to the end of the object @var{ptr} pointer points to
7295(if known at compile time). @code{__builtin_object_size} never evaluates
7296its arguments for side-effects. If there are any side-effects in them, it
7297returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7298for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
7299point to and all of them are known at compile time, the returned number
7300is the maximum of remaining byte counts in those objects if @var{type} & 2 is
a4d05547 73010 and minimum if nonzero. If it is not possible to determine which objects
10a0d495
JJ
7302@var{ptr} points to at compile time, @code{__builtin_object_size} should
7303return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7304for @var{type} 2 or 3.
7305
7306@var{type} is an integer constant from 0 to 3. If the least significant
7307bit is clear, objects are whole variables, if it is set, a closest
7308surrounding subobject is considered the object a pointer points to.
7309The second bit determines if maximum or minimum of remaining bytes
7310is computed.
7311
7312@smallexample
7313struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
7314char *p = &var.buf1[1], *q = &var.b;
7315
7316/* Here the object p points to is var. */
7317assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
7318/* The subobject p points to is var.buf1. */
7319assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
7320/* The object q points to is var. */
7321assert (__builtin_object_size (q, 0)
6ccde948 7322 == (char *) (&var + 1) - (char *) &var.b);
10a0d495
JJ
7323/* The subobject q points to is var.b. */
7324assert (__builtin_object_size (q, 1) == sizeof (var.b));
7325@end smallexample
7326@end deftypefn
7327
7328There are built-in functions added for many common string operation
021efafc 7329functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10a0d495
JJ
7330built-in is provided. This built-in has an additional last argument,
7331which is the number of bytes remaining in object the @var{dest}
7332argument points to or @code{(size_t) -1} if the size is not known.
7333
7334The built-in functions are optimized into the normal string functions
7335like @code{memcpy} if the last argument is @code{(size_t) -1} or if
7336it is known at compile time that the destination object will not
7337be overflown. If the compiler can determine at compile time the
7338object will be always overflown, it issues a warning.
7339
7340The intended use can be e.g.
7341
7342@smallexample
7343#undef memcpy
7344#define bos0(dest) __builtin_object_size (dest, 0)
7345#define memcpy(dest, src, n) \
7346 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
7347
7348char *volatile p;
7349char buf[10];
7350/* It is unknown what object p points to, so this is optimized
7351 into plain memcpy - no checking is possible. */
7352memcpy (p, "abcde", n);
7353/* Destination is known and length too. It is known at compile
7354 time there will be no overflow. */
7355memcpy (&buf[5], "abcde", 5);
7356/* Destination is known, but the length is not known at compile time.
7357 This will result in __memcpy_chk call that can check for overflow
7358 at runtime. */
7359memcpy (&buf[5], "abcde", n);
7360/* Destination is known and it is known at compile time there will
7361 be overflow. There will be a warning and __memcpy_chk call that
7362 will abort the program at runtime. */
7363memcpy (&buf[6], "abcde", 5);
7364@end smallexample
7365
7366Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
7367@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
7368@code{strcat} and @code{strncat}.
7369
7370There are also checking built-in functions for formatted output functions.
7371@smallexample
7372int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
7373int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6ccde948 7374 const char *fmt, ...);
10a0d495 7375int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
6ccde948 7376 va_list ap);
10a0d495 7377int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6ccde948 7378 const char *fmt, va_list ap);
10a0d495
JJ
7379@end smallexample
7380
7381The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
021efafc 7382etc.@: functions and can contain implementation specific flags on what
10a0d495
JJ
7383additional security measures the checking function might take, such as
7384handling @code{%n} differently.
7385
7386The @var{os} argument is the object size @var{s} points to, like in the
a4d05547 7387other built-in functions. There is a small difference in the behavior
10a0d495
JJ
7388though, if @var{os} is @code{(size_t) -1}, the built-in functions are
7389optimized into the non-checking functions only if @var{flag} is 0, otherwise
7390the checking function is called with @var{os} argument set to
7391@code{(size_t) -1}.
7392
7393In addition to this, there are checking built-in functions
7394@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
7395@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
7396These have just one additional argument, @var{flag}, right before
7397format string @var{fmt}. If the compiler is able to optimize them to
021efafc 7398@code{fputc} etc.@: functions, it will, otherwise the checking function
10a0d495
JJ
7399should be called and the @var{flag} argument passed to it.
7400
185ebd6c 7401@node Other Builtins
f0523f02 7402@section Other built-in functions provided by GCC
c771326b 7403@cindex built-in functions
3bf5906b 7404@findex __builtin_fpclassify
0c8d3c2b 7405@findex __builtin_isfinite
8a91c45b 7406@findex __builtin_isnormal
01702459
JM
7407@findex __builtin_isgreater
7408@findex __builtin_isgreaterequal
05f41289 7409@findex __builtin_isinf_sign
01702459
JM
7410@findex __builtin_isless
7411@findex __builtin_islessequal
7412@findex __builtin_islessgreater
7413@findex __builtin_isunordered
17684d46
RG
7414@findex __builtin_powi
7415@findex __builtin_powif
7416@findex __builtin_powil
98ff7c4d
KG
7417@findex _Exit
7418@findex _exit
01702459
JM
7419@findex abort
7420@findex abs
98ff7c4d
KG
7421@findex acos
7422@findex acosf
7423@findex acosh
7424@findex acoshf
7425@findex acoshl
7426@findex acosl
01702459 7427@findex alloca
98ff7c4d
KG
7428@findex asin
7429@findex asinf
7430@findex asinh
7431@findex asinhf
7432@findex asinhl
7433@findex asinl
29f523be 7434@findex atan
46847aa6
RS
7435@findex atan2
7436@findex atan2f
7437@findex atan2l
29f523be 7438@findex atanf
98ff7c4d
KG
7439@findex atanh
7440@findex atanhf
7441@findex atanhl
29f523be 7442@findex atanl
01702459
JM
7443@findex bcmp
7444@findex bzero
075ec276
RS
7445@findex cabs
7446@findex cabsf
7447@findex cabsl
11bf0eb0
KG
7448@findex cacos
7449@findex cacosf
7450@findex cacosh
7451@findex cacoshf
7452@findex cacoshl
7453@findex cacosl
1331d16f 7454@findex calloc
11bf0eb0
KG
7455@findex carg
7456@findex cargf
7457@findex cargl
7458@findex casin
7459@findex casinf
7460@findex casinh
7461@findex casinhf
7462@findex casinhl
7463@findex casinl
7464@findex catan
7465@findex catanf
7466@findex catanh
7467@findex catanhf
7468@findex catanhl
7469@findex catanl
98ff7c4d
KG
7470@findex cbrt
7471@findex cbrtf
7472@findex cbrtl
11bf0eb0
KG
7473@findex ccos
7474@findex ccosf
7475@findex ccosh
7476@findex ccoshf
7477@findex ccoshl
7478@findex ccosl
b052d8ee
RS
7479@findex ceil
7480@findex ceilf
7481@findex ceill
11bf0eb0
KG
7482@findex cexp
7483@findex cexpf
7484@findex cexpl
341e3d11
JM
7485@findex cimag
7486@findex cimagf
7487@findex cimagl
c3887ef2
PC
7488@findex clog
7489@findex clogf
7490@findex clogl
341e3d11
JM
7491@findex conj
7492@findex conjf
7493@findex conjl
98ff7c4d
KG
7494@findex copysign
7495@findex copysignf
7496@findex copysignl
01702459
JM
7497@findex cos
7498@findex cosf
98ff7c4d
KG
7499@findex cosh
7500@findex coshf
7501@findex coshl
01702459 7502@findex cosl
11bf0eb0
KG
7503@findex cpow
7504@findex cpowf
7505@findex cpowl
7506@findex cproj
7507@findex cprojf
7508@findex cprojl
341e3d11
JM
7509@findex creal
7510@findex crealf
7511@findex creall
11bf0eb0
KG
7512@findex csin
7513@findex csinf
7514@findex csinh
7515@findex csinhf
7516@findex csinhl
7517@findex csinl
7518@findex csqrt
7519@findex csqrtf
7520@findex csqrtl
7521@findex ctan
7522@findex ctanf
7523@findex ctanh
7524@findex ctanhf
7525@findex ctanhl
7526@findex ctanl
178b2b9f
RS
7527@findex dcgettext
7528@findex dgettext
98ff7c4d
KG
7529@findex drem
7530@findex dremf
7531@findex dreml
488f17e1
KG
7532@findex erf
7533@findex erfc
7534@findex erfcf
7535@findex erfcl
7536@findex erff
7537@findex erfl
01702459 7538@findex exit
e7b489c8 7539@findex exp
98ff7c4d
KG
7540@findex exp10
7541@findex exp10f
7542@findex exp10l
7543@findex exp2
7544@findex exp2f
7545@findex exp2l
e7b489c8
RS
7546@findex expf
7547@findex expl
98ff7c4d
KG
7548@findex expm1
7549@findex expm1f
7550@findex expm1l
01702459
JM
7551@findex fabs
7552@findex fabsf
7553@findex fabsl
98ff7c4d
KG
7554@findex fdim
7555@findex fdimf
7556@findex fdiml
01702459 7557@findex ffs
b052d8ee
RS
7558@findex floor
7559@findex floorf
7560@findex floorl
98ff7c4d
KG
7561@findex fma
7562@findex fmaf
7563@findex fmal
7564@findex fmax
7565@findex fmaxf
7566@findex fmaxl
7567@findex fmin
7568@findex fminf
7569@findex fminl
b052d8ee
RS
7570@findex fmod
7571@findex fmodf
7572@findex fmodl
18f988a0 7573@findex fprintf
b4c984fb 7574@findex fprintf_unlocked
01702459 7575@findex fputs
b4c984fb 7576@findex fputs_unlocked
a2a919aa
KG
7577@findex frexp
7578@findex frexpf
7579@findex frexpl
178b2b9f 7580@findex fscanf
488f17e1
KG
7581@findex gamma
7582@findex gammaf
7583@findex gammal
bf460eec
KG
7584@findex gamma_r
7585@findex gammaf_r
7586@findex gammal_r
178b2b9f 7587@findex gettext
98ff7c4d
KG
7588@findex hypot
7589@findex hypotf
7590@findex hypotl
7591@findex ilogb
7592@findex ilogbf
7593@findex ilogbl
e78f4a97 7594@findex imaxabs
c7b6c6cd 7595@findex index
740e5b6f
KG
7596@findex isalnum
7597@findex isalpha
7598@findex isascii
7599@findex isblank
7600@findex iscntrl
7601@findex isdigit
7602@findex isgraph
7603@findex islower
7604@findex isprint
7605@findex ispunct
7606@findex isspace
7607@findex isupper
ca4944e1
KG
7608@findex iswalnum
7609@findex iswalpha
7610@findex iswblank
7611@findex iswcntrl
7612@findex iswdigit
7613@findex iswgraph
7614@findex iswlower
7615@findex iswprint
7616@findex iswpunct
7617@findex iswspace
7618@findex iswupper
7619@findex iswxdigit
740e5b6f 7620@findex isxdigit
488f17e1
KG
7621@findex j0
7622@findex j0f
7623@findex j0l
7624@findex j1
7625@findex j1f
7626@findex j1l
7627@findex jn
7628@findex jnf
7629@findex jnl
01702459 7630@findex labs
98ff7c4d
KG
7631@findex ldexp
7632@findex ldexpf
7633@findex ldexpl
488f17e1
KG
7634@findex lgamma
7635@findex lgammaf
7636@findex lgammal
bf460eec
KG
7637@findex lgamma_r
7638@findex lgammaf_r
7639@findex lgammal_r
01702459 7640@findex llabs
98ff7c4d
KG
7641@findex llrint
7642@findex llrintf
7643@findex llrintl
7644@findex llround
7645@findex llroundf
7646@findex llroundl
e7b489c8 7647@findex log
98ff7c4d
KG
7648@findex log10
7649@findex log10f
7650@findex log10l
7651@findex log1p
7652@findex log1pf
7653@findex log1pl
7654@findex log2
7655@findex log2f
7656@findex log2l
7657@findex logb
7658@findex logbf
7659@findex logbl
e7b489c8
RS
7660@findex logf
7661@findex logl
98ff7c4d
KG
7662@findex lrint
7663@findex lrintf
7664@findex lrintl
7665@findex lround
7666@findex lroundf
7667@findex lroundl
1331d16f 7668@findex malloc
2a5fce6d 7669@findex memchr
01702459
JM
7670@findex memcmp
7671@findex memcpy
9cb65f92 7672@findex mempcpy
01702459 7673@findex memset
a2a919aa
KG
7674@findex modf
7675@findex modff
7676@findex modfl
b052d8ee
RS
7677@findex nearbyint
7678@findex nearbyintf
7679@findex nearbyintl
98ff7c4d
KG
7680@findex nextafter
7681@findex nextafterf
7682@findex nextafterl
7683@findex nexttoward
7684@findex nexttowardf
7685@findex nexttowardl
46847aa6 7686@findex pow
98ff7c4d
KG
7687@findex pow10
7688@findex pow10f
7689@findex pow10l
46847aa6
RS
7690@findex powf
7691@findex powl
01702459 7692@findex printf
b4c984fb 7693@findex printf_unlocked
08291658
RS
7694@findex putchar
7695@findex puts
98ff7c4d
KG
7696@findex remainder
7697@findex remainderf
7698@findex remainderl
a2a919aa
KG
7699@findex remquo
7700@findex remquof
7701@findex remquol
c7b6c6cd 7702@findex rindex
98ff7c4d
KG
7703@findex rint
7704@findex rintf
7705@findex rintl
b052d8ee
RS
7706@findex round
7707@findex roundf
7708@findex roundl
98ff7c4d
KG
7709@findex scalb
7710@findex scalbf
7711@findex scalbl
7712@findex scalbln
7713@findex scalblnf
7714@findex scalblnf
7715@findex scalbn
7716@findex scalbnf
7717@findex scanfnl
ef79730c
RS
7718@findex signbit
7719@findex signbitf
7720@findex signbitl
44aea9ac
JJ
7721@findex signbitd32
7722@findex signbitd64
7723@findex signbitd128
488f17e1
KG
7724@findex significand
7725@findex significandf
7726@findex significandl
01702459 7727@findex sin
a2a919aa
KG
7728@findex sincos
7729@findex sincosf
7730@findex sincosl
01702459 7731@findex sinf
98ff7c4d
KG
7732@findex sinh
7733@findex sinhf
7734@findex sinhl
01702459 7735@findex sinl
08291658
RS
7736@findex snprintf
7737@findex sprintf
01702459
JM
7738@findex sqrt
7739@findex sqrtf
7740@findex sqrtl
08291658 7741@findex sscanf
9cb65f92 7742@findex stpcpy
e905ac64
KG
7743@findex stpncpy
7744@findex strcasecmp
d118937d 7745@findex strcat
01702459
JM
7746@findex strchr
7747@findex strcmp
7748@findex strcpy
d118937d 7749@findex strcspn
1331d16f 7750@findex strdup
178b2b9f
RS
7751@findex strfmon
7752@findex strftime
01702459 7753@findex strlen
e905ac64 7754@findex strncasecmp
d118937d 7755@findex strncat
da9e9f08
KG
7756@findex strncmp
7757@findex strncpy
e905ac64 7758@findex strndup
01702459
JM
7759@findex strpbrk
7760@findex strrchr
d118937d 7761@findex strspn
01702459 7762@findex strstr
29f523be
RS
7763@findex tan
7764@findex tanf
98ff7c4d
KG
7765@findex tanh
7766@findex tanhf
7767@findex tanhl
29f523be 7768@findex tanl
488f17e1
KG
7769@findex tgamma
7770@findex tgammaf
7771@findex tgammal
740e5b6f
KG
7772@findex toascii
7773@findex tolower
7774@findex toupper
ca4944e1
KG
7775@findex towlower
7776@findex towupper
4977bab6
ZW
7777@findex trunc
7778@findex truncf
7779@findex truncl
178b2b9f
RS
7780@findex vfprintf
7781@findex vfscanf
08291658
RS
7782@findex vprintf
7783@findex vscanf
7784@findex vsnprintf
7785@findex vsprintf
7786@findex vsscanf
488f17e1
KG
7787@findex y0
7788@findex y0f
7789@findex y0l
7790@findex y1
7791@findex y1f
7792@findex y1l
7793@findex yn
7794@findex ynf
7795@findex ynl
185ebd6c 7796
f0523f02 7797GCC provides a large number of built-in functions other than the ones
185ebd6c
RH
7798mentioned above. Some of these are for internal use in the processing
7799of exceptions or variable-length argument lists and will not be
7800documented here because they may change from time to time; we do not
7801recommend general use of these functions.
7802
7803The remaining functions are provided for optimization purposes.
7804
84330467 7805@opindex fno-builtin
9c34dbbf
ZW
7806GCC includes built-in versions of many of the functions in the standard
7807C library. The versions prefixed with @code{__builtin_} will always be
7808treated as having the same meaning as the C library function even if you
8a36672b 7809specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
9c34dbbf 7810Many of these functions are only optimized in certain cases; if they are
01702459
JM
7811not optimized in a particular case, a call to the library function will
7812be emitted.
7813
84330467
JM
7814@opindex ansi
7815@opindex std
2778d766 7816Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
48b0b196 7817@option{-std=c99} or @option{-std=c11}), the functions
98ff7c4d
KG
7818@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
7819@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
7820@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
bf460eec
KG
7821@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
7822@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
7823@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
740e5b6f
KG
7824@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
7825@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
bf460eec
KG
7826@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
7827@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
7828@code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
7829@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
7830@code{signbitd64}, @code{signbitd128}, @code{significandf},
7831@code{significandl}, @code{significand}, @code{sincosf},
7832@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
7833@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
7834@code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
7835@code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
7836@code{yn}
1331d16f 7837may be handled as built-in functions.
b052d8ee 7838All these functions have corresponding versions
7e1542b9 7839prefixed with @code{__builtin_}, which may be used even in strict C90
9c34dbbf 7840mode.
01702459 7841
075ec276 7842The ISO C99 functions
98ff7c4d
KG
7843@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
7844@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11bf0eb0
KG
7845@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
7846@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
7847@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
7848@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
7849@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
7850@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
7851@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
7852@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
c3887ef2
PC
7853@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
7854@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
7855@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
7856@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
7857@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
7858@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
7859@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
7860@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
7861@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
7862@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
7863@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
7864@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
7865@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
7866@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
7867@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
ca4944e1
KG
7868@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
7869@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
7870@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
7871@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
7872@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
740e5b6f
KG
7873@code{nextafterf}, @code{nextafterl}, @code{nextafter},
7874@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
7875@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
7876@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
7877@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
7878@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
7879@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
7880@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
7881@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
08291658 7882are handled as built-in functions
7e1542b9 7883except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
46847aa6 7884
98ff7c4d
KG
7885There are also built-in versions of the ISO C99 functions
7886@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
29f523be 7887@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
98ff7c4d
KG
7888@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
7889@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
a2a919aa
KG
7890@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
7891@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
7892@code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
7893@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
7894@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
46847aa6
RS
7895that are recognized in any mode since ISO C90 reserves these names for
7896the purpose to which ISO C99 puts them. All these functions have
7897corresponding versions prefixed with @code{__builtin_}.
7898
ca4944e1
KG
7899The ISO C94 functions
7900@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
7901@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
7902@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
7903@code{towupper}
7904are handled as built-in functions
7e1542b9 7905except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
ca4944e1 7906
98ff7c4d
KG
7907The ISO C90 functions
7908@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
7909@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
7910@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
740e5b6f
KG
7911@code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
7912@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
7913@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
7914@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
7915@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
2a5fce6d
PC
7916@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
7917@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
7918@code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
7919@code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
7920@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
7921@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
7922@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
7923@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
08291658 7924are all recognized as built-in functions unless
46847aa6
RS
7925@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
7926is specified for an individual function). All of these functions have
4977bab6 7927corresponding versions prefixed with @code{__builtin_}.
9c34dbbf
ZW
7928
7929GCC provides built-in versions of the ISO C99 floating point comparison
7930macros that avoid raising exceptions for unordered operands. They have
7931the same names as the standard macros ( @code{isgreater},
7932@code{isgreaterequal}, @code{isless}, @code{islessequal},
7933@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
7934prefixed. We intend for a library implementor to be able to simply
7935@code{#define} each standard macro to its built-in equivalent.
3bf5906b
KG
7936In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
7937@code{isinf_sign} and @code{isnormal} built-ins used with
7938@code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
7939builtins appear both with and without the @code{__builtin_} prefix.
185ebd6c 7940
ecbcf7b3
AH
7941@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
7942
7943You can use the built-in function @code{__builtin_types_compatible_p} to
7944determine whether two types are the same.
7945
7946This built-in function returns 1 if the unqualified versions of the
7947types @var{type1} and @var{type2} (which are types, not expressions) are
7948compatible, 0 otherwise. The result of this built-in function can be
7949used in integer constant expressions.
7950
7951This built-in function ignores top level qualifiers (e.g., @code{const},
7952@code{volatile}). For example, @code{int} is equivalent to @code{const
7953int}.
7954
7955The type @code{int[]} and @code{int[5]} are compatible. On the other
7956hand, @code{int} and @code{char *} are not compatible, even if the size
7957of their types, on the particular architecture are the same. Also, the
7958amount of pointer indirection is taken into account when determining
7959similarity. Consequently, @code{short *} is not similar to
7960@code{short **}. Furthermore, two types that are typedefed are
7961considered compatible if their underlying types are compatible.
7962
bca63328
JM
7963An @code{enum} type is not considered to be compatible with another
7964@code{enum} type even if both are compatible with the same integer
7965type; this is what the C standard specifies.
7966For example, @code{enum @{foo, bar@}} is not similar to
ecbcf7b3
AH
7967@code{enum @{hot, dog@}}.
7968
7969You would typically use this function in code whose execution varies
7970depending on the arguments' types. For example:
7971
7972@smallexample
6e5bb5ad
JM
7973#define foo(x) \
7974 (@{ \
b7886f14 7975 typeof (x) tmp = (x); \
6e5bb5ad
JM
7976 if (__builtin_types_compatible_p (typeof (x), long double)) \
7977 tmp = foo_long_double (tmp); \
7978 else if (__builtin_types_compatible_p (typeof (x), double)) \
7979 tmp = foo_double (tmp); \
7980 else if (__builtin_types_compatible_p (typeof (x), float)) \
7981 tmp = foo_float (tmp); \
7982 else \
7983 abort (); \
7984 tmp; \
ecbcf7b3
AH
7985 @})
7986@end smallexample
7987
8a36672b 7988@emph{Note:} This construct is only available for C@.
ecbcf7b3
AH
7989
7990@end deftypefn
7991
7992@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
7993
7994You can use the built-in function @code{__builtin_choose_expr} to
7995evaluate code depending on the value of a constant expression. This
928c19bb 7996built-in function returns @var{exp1} if @var{const_exp}, which is an
6cea734d 7997integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
ecbcf7b3
AH
7998
7999This built-in function is analogous to the @samp{? :} operator in C,
8000except that the expression returned has its type unaltered by promotion
8001rules. Also, the built-in function does not evaluate the expression
8002that was not chosen. For example, if @var{const_exp} evaluates to true,
8003@var{exp2} is not evaluated even if it has side-effects.
8004
8005This built-in function can return an lvalue if the chosen argument is an
8006lvalue.
8007
8008If @var{exp1} is returned, the return type is the same as @var{exp1}'s
8009type. Similarly, if @var{exp2} is returned, its return type is the same
8010as @var{exp2}.
8011
8012Example:
8013
8014@smallexample
478c9e72
JJ
8015#define foo(x) \
8016 __builtin_choose_expr ( \
8017 __builtin_types_compatible_p (typeof (x), double), \
8018 foo_double (x), \
8019 __builtin_choose_expr ( \
8020 __builtin_types_compatible_p (typeof (x), float), \
8021 foo_float (x), \
8022 /* @r{The void expression results in a compile-time error} \
8023 @r{when assigning the result to something.} */ \
ecbcf7b3
AH
8024 (void)0))
8025@end smallexample
8026
8a36672b 8027@emph{Note:} This construct is only available for C@. Furthermore, the
ecbcf7b3
AH
8028unused expression (@var{exp1} or @var{exp2} depending on the value of
8029@var{const_exp}) may still generate syntax errors. This may change in
8030future revisions.
8031
8032@end deftypefn
8033
d4a83c10
JM
8034@deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
8035
8036The built-in function @code{__builtin_complex} is provided for use in
48b0b196 8037implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
d4a83c10
JM
8038@code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
8039real binary floating-point type, and the result has the corresponding
8040complex type with real and imaginary parts @var{real} and @var{imag}.
8041Unlike @samp{@var{real} + I * @var{imag}}, this works even when
8042infinities, NaNs and negative zeros are involved.
8043
8044@end deftypefn
8045
84330467
JM
8046@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
8047You can use the built-in function @code{__builtin_constant_p} to
185ebd6c 8048determine if a value is known to be constant at compile-time and hence
f0523f02 8049that GCC can perform constant-folding on expressions involving that
185ebd6c
RH
8050value. The argument of the function is the value to test. The function
8051returns the integer 1 if the argument is known to be a compile-time
8052constant and 0 if it is not known to be a compile-time constant. A
8053return of 0 does not indicate that the value is @emph{not} a constant,
f0523f02 8054but merely that GCC cannot prove it is a constant with the specified
84330467 8055value of the @option{-O} option.
185ebd6c
RH
8056
8057You would typically use this function in an embedded application where
8058memory was a critical resource. If you have some complex calculation,
8059you may want it to be folded if it involves constants, but need to call
8060a function if it does not. For example:
8061
4d390518 8062@smallexample
310668e8
JM
8063#define Scale_Value(X) \
8064 (__builtin_constant_p (X) \
8065 ? ((X) * SCALE + OFFSET) : Scale (X))
185ebd6c
RH
8066@end smallexample
8067
84330467 8068You may use this built-in function in either a macro or an inline
185ebd6c 8069function. However, if you use it in an inlined function and pass an
f0523f02 8070argument of the function as the argument to the built-in, GCC will
185ebd6c 8071never return 1 when you call the inline function with a string constant
4b404517 8072or compound literal (@pxref{Compound Literals}) and will not return 1
185ebd6c 8073when you pass a constant numeric value to the inline function unless you
84330467 8074specify the @option{-O} option.
13104975
ZW
8075
8076You may also use @code{__builtin_constant_p} in initializers for static
8077data. For instance, you can write
8078
8079@smallexample
79323c50 8080static const int table[] = @{
13104975 8081 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
0d893a63 8082 /* @r{@dots{}} */
79323c50 8083@};
13104975
ZW
8084@end smallexample
8085
8086@noindent
8087This is an acceptable initializer even if @var{EXPRESSION} is not a
928c19bb
JM
8088constant expression, including the case where
8089@code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
8090folded to a constant but @var{EXPRESSION} contains operands that would
c782f1dd 8091not otherwise be permitted in a static initializer (for example,
928c19bb 8092@code{0 && foo ()}). GCC must be more conservative about evaluating the
13104975
ZW
8093built-in in this case, because it has no opportunity to perform
8094optimization.
8095
8096Previous versions of GCC did not accept this built-in in data
8097initializers. The earliest version where it is completely safe is
80983.0.1.
84330467 8099@end deftypefn
185ebd6c 8100
84330467
JM
8101@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
8102@opindex fprofile-arcs
02f52e19 8103You may use @code{__builtin_expect} to provide the compiler with
994a57cd 8104branch prediction information. In general, you should prefer to
84330467 8105use actual profile feedback for this (@option{-fprofile-arcs}), as
994a57cd 8106programmers are notoriously bad at predicting how their programs
60b6e1f5 8107actually perform. However, there are applications in which this
994a57cd
RH
8108data is hard to collect.
8109
ef950eba
JH
8110The return value is the value of @var{exp}, which should be an integral
8111expression. The semantics of the built-in are that it is expected that
8112@var{exp} == @var{c}. For example:
994a57cd
RH
8113
8114@smallexample
8115if (__builtin_expect (x, 0))
8116 foo ();
8117@end smallexample
8118
8119@noindent
8120would indicate that we do not expect to call @code{foo}, since
8121we expect @code{x} to be zero. Since you are limited to integral
8122expressions for @var{exp}, you should use constructions such as
8123
8124@smallexample
8125if (__builtin_expect (ptr != NULL, 1))
e2724fd2 8126 foo (*ptr);
994a57cd
RH
8127@end smallexample
8128
8129@noindent
8130when testing pointer or floating-point values.
84330467 8131@end deftypefn
994a57cd 8132
a18c20ec
AP
8133@deftypefn {Built-in Function} void __builtin_trap (void)
8134This function causes the program to exit abnormally. GCC implements
8135this function by using a target-dependent mechanism (such as
8136intentionally executing an illegal instruction) or by calling
8137@code{abort}. The mechanism used may vary from release to release so
8138you should not rely on any particular implementation.
8139@end deftypefn
8140
468059bc
DD
8141@deftypefn {Built-in Function} void __builtin_unreachable (void)
8142If control flow reaches the point of the @code{__builtin_unreachable},
8143the program is undefined. It is useful in situations where the
8144compiler cannot deduce the unreachability of the code.
8145
8146One such case is immediately following an @code{asm} statement that
8147will either never terminate, or one that transfers control elsewhere
8148and never returns. In this example, without the
8149@code{__builtin_unreachable}, GCC would issue a warning that control
8150reaches the end of a non-void function. It would also generate code
8151to return after the @code{asm}.
8152
8153@smallexample
8154int f (int c, int v)
8155@{
8156 if (c)
8157 @{
8158 return v;
8159 @}
8160 else
8161 @{
8162 asm("jmp error_handler");
8163 __builtin_unreachable ();
8164 @}
8165@}
8166@end smallexample
8167
8168Because the @code{asm} statement unconditionally transfers control out
8169of the function, control will never reach the end of the function
8170body. The @code{__builtin_unreachable} is in fact unreachable and
8171communicates this fact to the compiler.
8172
8173Another use for @code{__builtin_unreachable} is following a call a
8174function that never returns but that is not declared
8175@code{__attribute__((noreturn))}, as in this example:
8176
8177@smallexample
8178void function_that_never_returns (void);
8179
8180int g (int c)
8181@{
8182 if (c)
8183 @{
8184 return 1;
8185 @}
8186 else
8187 @{
8188 function_that_never_returns ();
8189 __builtin_unreachable ();
8190 @}
8191@}
8192@end smallexample
8193
8194@end deftypefn
8195
45d439ac
JJ
8196@deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
8197This function returns its first argument, and allows the compiler
8198to assume that the returned pointer is at least @var{align} bytes
8199aligned. This built-in can have either two or three arguments,
8200if it has three, the third argument should have integer type, and
8201if it is non-zero means misalignment offset. For example:
8202
8203@smallexample
8204void *x = __builtin_assume_aligned (arg, 16);
8205@end smallexample
8206
8207means that the compiler can assume x, set to arg, is at least
820816 byte aligned, while:
8209
8210@smallexample
8211void *x = __builtin_assume_aligned (arg, 32, 8);
8212@end smallexample
8213
8214means that the compiler can assume for x, set to arg, that
8215(char *) x - 8 is 32 byte aligned.
8216@end deftypefn
8217
677feb77
DD
8218@deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
8219This function is used to flush the processor's instruction cache for
8220the region of memory between @var{begin} inclusive and @var{end}
8221exclusive. Some targets require that the instruction cache be
8222flushed, after modifying memory containing code, in order to obtain
8223deterministic behavior.
8224
8225If the target does not require instruction cache flushes,
8226@code{__builtin___clear_cache} has no effect. Otherwise either
8227instructions are emitted in-line to clear the instruction cache or a
8228call to the @code{__clear_cache} function in libgcc is made.
8229@end deftypefn
8230
3bca17dd 8231@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
a9ccbb60
JJ
8232This function is used to minimize cache-miss latency by moving data into
8233a cache before it is accessed.
8234You can insert calls to @code{__builtin_prefetch} into code for which
8235you know addresses of data in memory that is likely to be accessed soon.
8236If the target supports them, data prefetch instructions will be generated.
8237If the prefetch is done early enough before the access then the data will
8238be in the cache by the time it is accessed.
8239
8240The value of @var{addr} is the address of the memory to prefetch.
e83d297b 8241There are two optional arguments, @var{rw} and @var{locality}.
a9ccbb60 8242The value of @var{rw} is a compile-time constant one or zero; one
e83d297b
JJ
8243means that the prefetch is preparing for a write to the memory address
8244and zero, the default, means that the prefetch is preparing for a read.
a9ccbb60
JJ
8245The value @var{locality} must be a compile-time constant integer between
8246zero and three. A value of zero means that the data has no temporal
8247locality, so it need not be left in the cache after the access. A value
8248of three means that the data has a high degree of temporal locality and
8249should be left in all levels of cache possible. Values of one and two
e83d297b
JJ
8250mean, respectively, a low or moderate degree of temporal locality. The
8251default is three.
a9ccbb60
JJ
8252
8253@smallexample
8254for (i = 0; i < n; i++)
8255 @{
8256 a[i] = a[i] + b[i];
8257 __builtin_prefetch (&a[i+j], 1, 1);
8258 __builtin_prefetch (&b[i+j], 0, 1);
0d893a63 8259 /* @r{@dots{}} */
a9ccbb60
JJ
8260 @}
8261@end smallexample
8262
f282ffb3 8263Data prefetch does not generate faults if @var{addr} is invalid, but
a9ccbb60
JJ
8264the address expression itself must be valid. For example, a prefetch
8265of @code{p->next} will not fault if @code{p->next} is not a valid
8266address, but evaluation will fault if @code{p} is not a valid address.
8267
8268If the target does not support data prefetch, the address expression
8269is evaluated if it includes side effects but no other code is generated
8270and GCC does not issue a warning.
8271@end deftypefn
8272
ab5e2615
RH
8273@deftypefn {Built-in Function} double __builtin_huge_val (void)
8274Returns a positive infinity, if supported by the floating-point format,
8275else @code{DBL_MAX}. This function is suitable for implementing the
8276ISO C macro @code{HUGE_VAL}.
8277@end deftypefn
8278
8279@deftypefn {Built-in Function} float __builtin_huge_valf (void)
8280Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
8281@end deftypefn
8282
dad78426 8283@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
ab5e2615
RH
8284Similar to @code{__builtin_huge_val}, except the return
8285type is @code{long double}.
8286@end deftypefn
8287
3bf5906b
KG
8288@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
8289This built-in implements the C99 fpclassify functionality. The first
8290five int arguments should be the target library's notion of the
8291possible FP classes and are used for return values. They must be
8292constant values and they must appear in this order: @code{FP_NAN},
32101f99 8293@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
3bf5906b
KG
8294@code{FP_ZERO}. The ellipsis is for exactly one floating point value
8295to classify. GCC treats the last argument as type-generic, which
8296means it does not do default promotion from float to double.
8297@end deftypefn
8298
ab5e2615
RH
8299@deftypefn {Built-in Function} double __builtin_inf (void)
8300Similar to @code{__builtin_huge_val}, except a warning is generated
8301if the target floating-point format does not support infinities.
ab5e2615
RH
8302@end deftypefn
8303
9a8ce21f
JG
8304@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
8305Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
8306@end deftypefn
8307
8308@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
8309Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
8310@end deftypefn
8311
8312@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
8313Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
8314@end deftypefn
8315
ab5e2615
RH
8316@deftypefn {Built-in Function} float __builtin_inff (void)
8317Similar to @code{__builtin_inf}, except the return type is @code{float}.
9c86fc0b 8318This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
ab5e2615
RH
8319@end deftypefn
8320
dad78426 8321@deftypefn {Built-in Function} {long double} __builtin_infl (void)
ab5e2615
RH
8322Similar to @code{__builtin_inf}, except the return
8323type is @code{long double}.
8324@end deftypefn
8325
05f41289
KG
8326@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
8327Similar to @code{isinf}, except the return value will be negative for
8328an argument of @code{-Inf}. Note while the parameter list is an
8329ellipsis, this function only accepts exactly one floating point
8330argument. GCC treats this parameter as type-generic, which means it
8331does not do default promotion from float to double.
8332@end deftypefn
8333
1472e41c
RH
8334@deftypefn {Built-in Function} double __builtin_nan (const char *str)
8335This is an implementation of the ISO C99 function @code{nan}.
8336
8337Since ISO C99 defines this function in terms of @code{strtod}, which we
c0478a66 8338do not implement, a description of the parsing is in order. The string
1472e41c
RH
8339is parsed as by @code{strtol}; that is, the base is recognized by
8340leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
8341in the significand such that the least significant bit of the number
daf2f129 8342is at the least significant bit of the significand. The number is
1472e41c 8343truncated to fit the significand field provided. The significand is
8a36672b 8344forced to be a quiet NaN@.
1472e41c 8345
a7d37464
GK
8346This function, if given a string literal all of which would have been
8347consumed by strtol, is evaluated early enough that it is considered a
8348compile-time constant.
1472e41c
RH
8349@end deftypefn
8350
9a8ce21f
JG
8351@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
8352Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
8353@end deftypefn
8354
8355@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
8356Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
8357@end deftypefn
8358
8359@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
8360Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
8361@end deftypefn
8362
1472e41c
RH
8363@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
8364Similar to @code{__builtin_nan}, except the return type is @code{float}.
8365@end deftypefn
8366
dad78426 8367@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
1472e41c
RH
8368Similar to @code{__builtin_nan}, except the return type is @code{long double}.
8369@end deftypefn
8370
8371@deftypefn {Built-in Function} double __builtin_nans (const char *str)
daf2f129 8372Similar to @code{__builtin_nan}, except the significand is forced
8a36672b 8373to be a signaling NaN@. The @code{nans} function is proposed by
aaa67502 8374@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
1472e41c
RH
8375@end deftypefn
8376
8377@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
8378Similar to @code{__builtin_nans}, except the return type is @code{float}.
8379@end deftypefn
8380
dad78426 8381@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
1472e41c
RH
8382Similar to @code{__builtin_nans}, except the return type is @code{long double}.
8383@end deftypefn
8384
2928cd7a
RH
8385@deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
8386Returns one plus the index of the least significant 1-bit of @var{x}, or
8387if @var{x} is zero, returns zero.
8388@end deftypefn
8389
8390@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
8391Returns the number of leading 0-bits in @var{x}, starting at the most
8392significant bit position. If @var{x} is 0, the result is undefined.
8393@end deftypefn
8394
8395@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
8396Returns the number of trailing 0-bits in @var{x}, starting at the least
8397significant bit position. If @var{x} is 0, the result is undefined.
8398@end deftypefn
8399
3801c801
BS
8400@deftypefn {Built-in Function} int __builtin_clrsb (int x)
8401Returns the number of leading redundant sign bits in @var{x}, i.e. the
8402number of bits following the most significant bit which are identical
8403to it. There are no special cases for 0 or other values.
8404@end deftypefn
8405
2928cd7a
RH
8406@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
8407Returns the number of 1-bits in @var{x}.
8408@end deftypefn
8409
8410@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
8a36672b 8411Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
2928cd7a
RH
8412modulo 2.
8413@end deftypefn
8414
8415@deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
8416Similar to @code{__builtin_ffs}, except the argument type is
8417@code{unsigned long}.
8418@end deftypefn
8419
8420@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
8421Similar to @code{__builtin_clz}, except the argument type is
8422@code{unsigned long}.
8423@end deftypefn
8424
8425@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
8426Similar to @code{__builtin_ctz}, except the argument type is
8427@code{unsigned long}.
8428@end deftypefn
8429
3801c801
BS
8430@deftypefn {Built-in Function} int __builtin_clrsbl (long)
8431Similar to @code{__builtin_clrsb}, except the argument type is
8432@code{long}.
8433@end deftypefn
8434
2928cd7a
RH
8435@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
8436Similar to @code{__builtin_popcount}, except the argument type is
8437@code{unsigned long}.
8438@end deftypefn
8439
8440@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
8441Similar to @code{__builtin_parity}, except the argument type is
8442@code{unsigned long}.
8443@end deftypefn
8444
8445@deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
8446Similar to @code{__builtin_ffs}, except the argument type is
8447@code{unsigned long long}.
8448@end deftypefn
8449
8450@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
8451Similar to @code{__builtin_clz}, except the argument type is
8452@code{unsigned long long}.
8453@end deftypefn
8454
8455@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
8456Similar to @code{__builtin_ctz}, except the argument type is
8457@code{unsigned long long}.
8458@end deftypefn
8459
3801c801
BS
8460@deftypefn {Built-in Function} int __builtin_clrsbll (long long)
8461Similar to @code{__builtin_clrsb}, except the argument type is
8462@code{long long}.
8463@end deftypefn
8464
2928cd7a
RH
8465@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
8466Similar to @code{__builtin_popcount}, except the argument type is
8467@code{unsigned long long}.
8468@end deftypefn
8469
8470@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
8471Similar to @code{__builtin_parity}, except the argument type is
8472@code{unsigned long long}.
8473@end deftypefn
8474
17684d46
RG
8475@deftypefn {Built-in Function} double __builtin_powi (double, int)
8476Returns the first argument raised to the power of the second. Unlike the
8477@code{pow} function no guarantees about precision and rounding are made.
8478@end deftypefn
8479
8480@deftypefn {Built-in Function} float __builtin_powif (float, int)
8481Similar to @code{__builtin_powi}, except the argument and return types
8482are @code{float}.
8483@end deftypefn
8484
8485@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
8486Similar to @code{__builtin_powi}, except the argument and return types
8487are @code{long double}.
8488@end deftypefn
8489
167fa32c
EC
8490@deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
8491Returns @var{x} with the order of the bytes reversed; for example,
8492@code{0xaabbccdd} becomes @code{0xddccbbaa}. Byte here always means
8493exactly 8 bits.
8494@end deftypefn
8495
8496@deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
8497Similar to @code{__builtin_bswap32}, except the argument and return types
8498are 64-bit.
8499@end deftypefn
2928cd7a 8500
0975678f
JM
8501@node Target Builtins
8502@section Built-in Functions Specific to Particular Target Machines
8503
8504On some target machines, GCC supports many built-in functions specific
8505to those machines. Generally these generate calls to specific machine
8506instructions, but allow the compiler to schedule those calls.
8507
8508@menu
6d8fd7bb 8509* Alpha Built-in Functions::
88f77cba
JB
8510* ARM iWMMXt Built-in Functions::
8511* ARM NEON Intrinsics::
43ea6502 8512* AVR Built-in Functions::
161c21b6 8513* Blackfin Built-in Functions::
c3ee0579 8514* FR-V Built-in Functions::
0975678f 8515* X86 Built-in Functions::
118ea793 8516* MIPS DSP Built-in Functions::
d840bfd3 8517* MIPS Paired-Single Support::
93581857 8518* MIPS Loongson Built-in Functions::
4d210b07 8519* Other MIPS Built-in Functions::
358da97e 8520* picoChip Built-in Functions::
29e6733c 8521* PowerPC AltiVec/VSX Built-in Functions::
65a324b4 8522* RX Built-in Functions::
c5145ceb 8523* SPARC VIS Built-in Functions::
85d9c13c 8524* SPU Built-in Functions::
bcead286 8525* TI C6X Built-in Functions::
0975678f
JM
8526@end menu
8527
6d8fd7bb
RH
8528@node Alpha Built-in Functions
8529@subsection Alpha Built-in Functions
8530
8531These built-in functions are available for the Alpha family of
8532processors, depending on the command-line switches used.
8533
95b1627e 8534The following built-in functions are always available. They
6d8fd7bb
RH
8535all generate the machine instruction that is part of the name.
8536
3ab51846 8537@smallexample
6d8fd7bb
RH
8538long __builtin_alpha_implver (void)
8539long __builtin_alpha_rpcc (void)
8540long __builtin_alpha_amask (long)
8541long __builtin_alpha_cmpbge (long, long)
c4b50f1a
RH
8542long __builtin_alpha_extbl (long, long)
8543long __builtin_alpha_extwl (long, long)
8544long __builtin_alpha_extll (long, long)
6d8fd7bb 8545long __builtin_alpha_extql (long, long)
c4b50f1a
RH
8546long __builtin_alpha_extwh (long, long)
8547long __builtin_alpha_extlh (long, long)
6d8fd7bb 8548long __builtin_alpha_extqh (long, long)
c4b50f1a
RH
8549long __builtin_alpha_insbl (long, long)
8550long __builtin_alpha_inswl (long, long)
8551long __builtin_alpha_insll (long, long)
8552long __builtin_alpha_insql (long, long)
8553long __builtin_alpha_inswh (long, long)
8554long __builtin_alpha_inslh (long, long)
8555long __builtin_alpha_insqh (long, long)
8556long __builtin_alpha_mskbl (long, long)
8557long __builtin_alpha_mskwl (long, long)
8558long __builtin_alpha_mskll (long, long)
8559long __builtin_alpha_mskql (long, long)
8560long __builtin_alpha_mskwh (long, long)
8561long __builtin_alpha_msklh (long, long)
8562long __builtin_alpha_mskqh (long, long)
8563long __builtin_alpha_umulh (long, long)
6d8fd7bb
RH
8564long __builtin_alpha_zap (long, long)
8565long __builtin_alpha_zapnot (long, long)
3ab51846 8566@end smallexample
6d8fd7bb
RH
8567
8568The following built-in functions are always with @option{-mmax}
8569or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
8570later. They all generate the machine instruction that is part
8571of the name.
8572
3ab51846 8573@smallexample
6d8fd7bb
RH
8574long __builtin_alpha_pklb (long)
8575long __builtin_alpha_pkwb (long)
8576long __builtin_alpha_unpkbl (long)
8577long __builtin_alpha_unpkbw (long)
8578long __builtin_alpha_minub8 (long, long)
8579long __builtin_alpha_minsb8 (long, long)
8580long __builtin_alpha_minuw4 (long, long)
8581long __builtin_alpha_minsw4 (long, long)
8582long __builtin_alpha_maxub8 (long, long)
8583long __builtin_alpha_maxsb8 (long, long)
8584long __builtin_alpha_maxuw4 (long, long)
8585long __builtin_alpha_maxsw4 (long, long)
8586long __builtin_alpha_perr (long, long)
3ab51846 8587@end smallexample
6d8fd7bb 8588
c4b50f1a
RH
8589The following built-in functions are always with @option{-mcix}
8590or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
8591later. They all generate the machine instruction that is part
8592of the name.
8593
3ab51846 8594@smallexample
c4b50f1a
RH
8595long __builtin_alpha_cttz (long)
8596long __builtin_alpha_ctlz (long)
8597long __builtin_alpha_ctpop (long)
3ab51846 8598@end smallexample
c4b50f1a 8599
116b7a5e
RH
8600The following builtins are available on systems that use the OSF/1
8601PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
8602PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
8603@code{rdval} and @code{wrval}.
8604
3ab51846 8605@smallexample
116b7a5e
RH
8606void *__builtin_thread_pointer (void)
8607void __builtin_set_thread_pointer (void *)
3ab51846 8608@end smallexample
116b7a5e 8609
88f77cba
JB
8610@node ARM iWMMXt Built-in Functions
8611@subsection ARM iWMMXt Built-in Functions
4bc73018
NC
8612
8613These built-in functions are available for the ARM family of
88f77cba 8614processors when the @option{-mcpu=iwmmxt} switch is used:
4bc73018 8615
3ab51846 8616@smallexample
d63851eb
ILT
8617typedef int v2si __attribute__ ((vector_size (8)));
8618typedef short v4hi __attribute__ ((vector_size (8)));
8619typedef char v8qi __attribute__ ((vector_size (8)));
8620
8621int __builtin_arm_getwcx (int)
8622void __builtin_arm_setwcx (int, int)
8623int __builtin_arm_textrmsb (v8qi, int)
8624int __builtin_arm_textrmsh (v4hi, int)
8625int __builtin_arm_textrmsw (v2si, int)
8626int __builtin_arm_textrmub (v8qi, int)
8627int __builtin_arm_textrmuh (v4hi, int)
8628int __builtin_arm_textrmuw (v2si, int)
8629v8qi __builtin_arm_tinsrb (v8qi, int)
8630v4hi __builtin_arm_tinsrh (v4hi, int)
8631v2si __builtin_arm_tinsrw (v2si, int)
8632long long __builtin_arm_tmia (long long, int, int)
8633long long __builtin_arm_tmiabb (long long, int, int)
8634long long __builtin_arm_tmiabt (long long, int, int)
8635long long __builtin_arm_tmiaph (long long, int, int)
8636long long __builtin_arm_tmiatb (long long, int, int)
8637long long __builtin_arm_tmiatt (long long, int, int)
8638int __builtin_arm_tmovmskb (v8qi)
8639int __builtin_arm_tmovmskh (v4hi)
8640int __builtin_arm_tmovmskw (v2si)
8641long long __builtin_arm_waccb (v8qi)
8642long long __builtin_arm_wacch (v4hi)
8643long long __builtin_arm_waccw (v2si)
8644v8qi __builtin_arm_waddb (v8qi, v8qi)
8645v8qi __builtin_arm_waddbss (v8qi, v8qi)
8646v8qi __builtin_arm_waddbus (v8qi, v8qi)
8647v4hi __builtin_arm_waddh (v4hi, v4hi)
8648v4hi __builtin_arm_waddhss (v4hi, v4hi)
8649v4hi __builtin_arm_waddhus (v4hi, v4hi)
4bc73018 8650v2si __builtin_arm_waddw (v2si, v2si)
4bc73018 8651v2si __builtin_arm_waddwss (v2si, v2si)
4bc73018 8652v2si __builtin_arm_waddwus (v2si, v2si)
d63851eb
ILT
8653v8qi __builtin_arm_walign (v8qi, v8qi, int)
8654long long __builtin_arm_wand(long long, long long)
8655long long __builtin_arm_wandn (long long, long long)
8656v8qi __builtin_arm_wavg2b (v8qi, v8qi)
8657v8qi __builtin_arm_wavg2br (v8qi, v8qi)
8658v4hi __builtin_arm_wavg2h (v4hi, v4hi)
8659v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
8660v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
8661v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
4bc73018 8662v2si __builtin_arm_wcmpeqw (v2si, v2si)
d63851eb
ILT
8663v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
8664v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
4bc73018 8665v2si __builtin_arm_wcmpgtsw (v2si, v2si)
d63851eb
ILT
8666v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
8667v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
8668v2si __builtin_arm_wcmpgtuw (v2si, v2si)
8669long long __builtin_arm_wmacs (long long, v4hi, v4hi)
8670long long __builtin_arm_wmacsz (v4hi, v4hi)
8671long long __builtin_arm_wmacu (long long, v4hi, v4hi)
8672long long __builtin_arm_wmacuz (v4hi, v4hi)
8673v4hi __builtin_arm_wmadds (v4hi, v4hi)
8674v4hi __builtin_arm_wmaddu (v4hi, v4hi)
8675v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
8676v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
4bc73018 8677v2si __builtin_arm_wmaxsw (v2si, v2si)
d63851eb
ILT
8678v8qi __builtin_arm_wmaxub (v8qi, v8qi)
8679v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
4bc73018 8680v2si __builtin_arm_wmaxuw (v2si, v2si)
d63851eb
ILT
8681v8qi __builtin_arm_wminsb (v8qi, v8qi)
8682v4hi __builtin_arm_wminsh (v4hi, v4hi)
4bc73018 8683v2si __builtin_arm_wminsw (v2si, v2si)
d63851eb
ILT
8684v8qi __builtin_arm_wminub (v8qi, v8qi)
8685v4hi __builtin_arm_wminuh (v4hi, v4hi)
4bc73018 8686v2si __builtin_arm_wminuw (v2si, v2si)
d63851eb
ILT
8687v4hi __builtin_arm_wmulsm (v4hi, v4hi)
8688v4hi __builtin_arm_wmulul (v4hi, v4hi)
8689v4hi __builtin_arm_wmulum (v4hi, v4hi)
8690long long __builtin_arm_wor (long long, long long)
8691v2si __builtin_arm_wpackdss (long long, long long)
8692v2si __builtin_arm_wpackdus (long long, long long)
8693v8qi __builtin_arm_wpackhss (v4hi, v4hi)
8694v8qi __builtin_arm_wpackhus (v4hi, v4hi)
8695v4hi __builtin_arm_wpackwss (v2si, v2si)
8696v4hi __builtin_arm_wpackwus (v2si, v2si)
8697long long __builtin_arm_wrord (long long, long long)
8698long long __builtin_arm_wrordi (long long, int)
8699v4hi __builtin_arm_wrorh (v4hi, long long)
8700v4hi __builtin_arm_wrorhi (v4hi, int)
8701v2si __builtin_arm_wrorw (v2si, long long)
8702v2si __builtin_arm_wrorwi (v2si, int)
8703v2si __builtin_arm_wsadb (v8qi, v8qi)
8704v2si __builtin_arm_wsadbz (v8qi, v8qi)
8705v2si __builtin_arm_wsadh (v4hi, v4hi)
8706v2si __builtin_arm_wsadhz (v4hi, v4hi)
8707v4hi __builtin_arm_wshufh (v4hi, int)
8708long long __builtin_arm_wslld (long long, long long)
8709long long __builtin_arm_wslldi (long long, int)
8710v4hi __builtin_arm_wsllh (v4hi, long long)
8711v4hi __builtin_arm_wsllhi (v4hi, int)
8712v2si __builtin_arm_wsllw (v2si, long long)
4bc73018 8713v2si __builtin_arm_wsllwi (v2si, int)
d63851eb
ILT
8714long long __builtin_arm_wsrad (long long, long long)
8715long long __builtin_arm_wsradi (long long, int)
8716v4hi __builtin_arm_wsrah (v4hi, long long)
8717v4hi __builtin_arm_wsrahi (v4hi, int)
8718v2si __builtin_arm_wsraw (v2si, long long)
4bc73018 8719v2si __builtin_arm_wsrawi (v2si, int)
d63851eb
ILT
8720long long __builtin_arm_wsrld (long long, long long)
8721long long __builtin_arm_wsrldi (long long, int)
8722v4hi __builtin_arm_wsrlh (v4hi, long long)
8723v4hi __builtin_arm_wsrlhi (v4hi, int)
8724v2si __builtin_arm_wsrlw (v2si, long long)
4bc73018 8725v2si __builtin_arm_wsrlwi (v2si, int)
d63851eb
ILT
8726v8qi __builtin_arm_wsubb (v8qi, v8qi)
8727v8qi __builtin_arm_wsubbss (v8qi, v8qi)
8728v8qi __builtin_arm_wsubbus (v8qi, v8qi)
8729v4hi __builtin_arm_wsubh (v4hi, v4hi)
8730v4hi __builtin_arm_wsubhss (v4hi, v4hi)
8731v4hi __builtin_arm_wsubhus (v4hi, v4hi)
8732v2si __builtin_arm_wsubw (v2si, v2si)
8733v2si __builtin_arm_wsubwss (v2si, v2si)
8734v2si __builtin_arm_wsubwus (v2si, v2si)
8735v4hi __builtin_arm_wunpckehsb (v8qi)
8736v2si __builtin_arm_wunpckehsh (v4hi)
8737long long __builtin_arm_wunpckehsw (v2si)
8738v4hi __builtin_arm_wunpckehub (v8qi)
8739v2si __builtin_arm_wunpckehuh (v4hi)
8740long long __builtin_arm_wunpckehuw (v2si)
8741v4hi __builtin_arm_wunpckelsb (v8qi)
8742v2si __builtin_arm_wunpckelsh (v4hi)
8743long long __builtin_arm_wunpckelsw (v2si)
8744v4hi __builtin_arm_wunpckelub (v8qi)
8745v2si __builtin_arm_wunpckeluh (v4hi)
8746long long __builtin_arm_wunpckeluw (v2si)
8747v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
8748v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
4bc73018 8749v2si __builtin_arm_wunpckihw (v2si, v2si)
d63851eb
ILT
8750v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
8751v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
4bc73018 8752v2si __builtin_arm_wunpckilw (v2si, v2si)
d63851eb
ILT
8753long long __builtin_arm_wxor (long long, long long)
8754long long __builtin_arm_wzero ()
3ab51846 8755@end smallexample
4bc73018 8756
88f77cba
JB
8757@node ARM NEON Intrinsics
8758@subsection ARM NEON Intrinsics
8759
8760These built-in intrinsics for the ARM Advanced SIMD extension are available
8761when the @option{-mfpu=neon} switch is used:
8762
8763@include arm-neon-intrinsics.texi
8764
43ea6502
AS
8765@node AVR Built-in Functions
8766@subsection AVR Built-in Functions
8767
8768For each built-in function for AVR, there is an equally named,
8769uppercase built-in macro defined. That way users can easily query if
8770or if not a specific built-in is implemented or not. For example, if
8771@code{__builtin_avr_nop} is available the macro
8772@code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
8773
8774The following built-in functions map to the respective machine
8775instruction, i.e. @code{nop}, @code{sei}, @code{cli}, @code{sleep},
8776@code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
f451d14d
GJL
8777resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
8778as library call if no hardware multiplier is available.
43ea6502
AS
8779
8780@smallexample
8781void __builtin_avr_nop (void)
8782void __builtin_avr_sei (void)
8783void __builtin_avr_cli (void)
8784void __builtin_avr_sleep (void)
8785void __builtin_avr_wdr (void)
8786unsigned char __builtin_avr_swap (unsigned char)
8787unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
8788int __builtin_avr_fmuls (char, char)
8789int __builtin_avr_fmulsu (char, unsigned char)
8790@end smallexample
8791
8792In order to delay execution for a specific number of cycles, GCC
8793implements
8794@smallexample
8795void __builtin_avr_delay_cycles (unsigned long ticks)
8796@end smallexample
8797
49b2772e 8798@noindent
43ea6502
AS
8799@code{ticks} is the number of ticks to delay execution. Note that this
8800built-in does not take into account the effect of interrupts which
8801might increase delay time. @code{ticks} must be a compile time
8802integer constant; delays with a variable number of cycles are not supported.
8803
49b2772e
GJL
8804@smallexample
8805 unsigned char __builtin_avr_map8 (unsigned long map, unsigned char val)
8806@end smallexample
8807
8808@noindent
8809Each bit of the result is copied from a specific bit of @code{val}.
8810@code{map} is a compile time constant that represents a map composed
8811of 8 nibbles (4-bit groups):
8812The @var{n}-th nibble of @code{map} specifies which bit of @code{val}
8813is to be moved to the @var{n}-th bit of the result.
8814For example, @code{map = 0x76543210} represents identity: The MSB of
8815the result is read from the 7-th bit of @code{val}, the LSB is
8816read from the 0-th bit to @code{val}, etc.
8817Two more examples: @code{0x01234567} reverses the bit order and
8818@code{0x32107654} is equivalent to a @code{swap} instruction.
8819
8820@noindent
8821One typical use case for this and the following built-in is adjusting input and
8822output values to non-contiguous port layouts.
8823
8824@smallexample
8825 unsigned int __builtin_avr_map16 (unsigned long long map, unsigned int val)
8826@end smallexample
8827
8828@noindent
8829Similar to the previous built-in except that it operates on @code{int}
8830and thus 16 bits are involved. Again, @code{map} must be a compile
8831time constant.
8832
161c21b6
BS
8833@node Blackfin Built-in Functions
8834@subsection Blackfin Built-in Functions
8835
8836Currently, there are two Blackfin-specific built-in functions. These are
8837used for generating @code{CSYNC} and @code{SSYNC} machine insns without
8838using inline assembly; by using these built-in functions the compiler can
8839automatically add workarounds for hardware errata involving these
8840instructions. These functions are named as follows:
8841
8842@smallexample
8843void __builtin_bfin_csync (void)
8844void __builtin_bfin_ssync (void)
8845@end smallexample
8846
c3ee0579
RS
8847@node FR-V Built-in Functions
8848@subsection FR-V Built-in Functions
8849
8850GCC provides many FR-V-specific built-in functions. In general,
8851these functions are intended to be compatible with those described
8852by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
8853Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
8854@code{__MBTOHE}, the gcc forms of which pass 128-bit values by
8855pointer rather than by value.
8856
8857Most of the functions are named after specific FR-V instructions.
27ef2cdd 8858Such functions are said to be ``directly mapped'' and are summarized
c3ee0579
RS
8859here in tabular form.
8860
8861@menu
8862* Argument Types::
8863* Directly-mapped Integer Functions::
8864* Directly-mapped Media Functions::
c14ff86e 8865* Raw read/write Functions::
c3ee0579
RS
8866* Other Built-in Functions::
8867@end menu
8868
8869@node Argument Types
8870@subsubsection Argument Types
8871
8872The arguments to the built-in functions can be divided into three groups:
8873register numbers, compile-time constants and run-time values. In order
8874to make this classification clear at a glance, the arguments and return
8875values are given the following pseudo types:
8876
8877@multitable @columnfractions .20 .30 .15 .35
8878@item Pseudo type @tab Real C type @tab Constant? @tab Description
8879@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
8880@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
8881@item @code{sw1} @tab @code{int} @tab No @tab a signed word
8882@item @code{uw2} @tab @code{unsigned long long} @tab No
8883@tab an unsigned doubleword
8884@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
8885@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
8886@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
8887@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
8888@end multitable
8889
8890These pseudo types are not defined by GCC, they are simply a notational
8891convenience used in this manual.
8892
8893Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
8894and @code{sw2} are evaluated at run time. They correspond to
8895register operands in the underlying FR-V instructions.
8896
8897@code{const} arguments represent immediate operands in the underlying
8898FR-V instructions. They must be compile-time constants.
8899
8900@code{acc} arguments are evaluated at compile time and specify the number
8901of an accumulator register. For example, an @code{acc} argument of 2
8902will select the ACC2 register.
8903
8904@code{iacc} arguments are similar to @code{acc} arguments but specify the
8905number of an IACC register. See @pxref{Other Built-in Functions}
8906for more details.
8907
8908@node Directly-mapped Integer Functions
8909@subsubsection Directly-mapped Integer Functions
8910
8911The functions listed below map directly to FR-V I-type instructions.
8912
8913@multitable @columnfractions .45 .32 .23
8914@item Function prototype @tab Example usage @tab Assembly output
8915@item @code{sw1 __ADDSS (sw1, sw1)}
8916@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
8917@tab @code{ADDSS @var{a},@var{b},@var{c}}
8918@item @code{sw1 __SCAN (sw1, sw1)}
8919@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
8920@tab @code{SCAN @var{a},@var{b},@var{c}}
8921@item @code{sw1 __SCUTSS (sw1)}
8922@tab @code{@var{b} = __SCUTSS (@var{a})}
8923@tab @code{SCUTSS @var{a},@var{b}}
8924@item @code{sw1 __SLASS (sw1, sw1)}
8925@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
8926@tab @code{SLASS @var{a},@var{b},@var{c}}
8927@item @code{void __SMASS (sw1, sw1)}
8928@tab @code{__SMASS (@var{a}, @var{b})}
8929@tab @code{SMASS @var{a},@var{b}}
8930@item @code{void __SMSSS (sw1, sw1)}
8931@tab @code{__SMSSS (@var{a}, @var{b})}
8932@tab @code{SMSSS @var{a},@var{b}}
8933@item @code{void __SMU (sw1, sw1)}
8934@tab @code{__SMU (@var{a}, @var{b})}
8935@tab @code{SMU @var{a},@var{b}}
8936@item @code{sw2 __SMUL (sw1, sw1)}
8937@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
8938@tab @code{SMUL @var{a},@var{b},@var{c}}
8939@item @code{sw1 __SUBSS (sw1, sw1)}
8940@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
8941@tab @code{SUBSS @var{a},@var{b},@var{c}}
8942@item @code{uw2 __UMUL (uw1, uw1)}
8943@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
8944@tab @code{UMUL @var{a},@var{b},@var{c}}
8945@end multitable
8946
8947@node Directly-mapped Media Functions
8948@subsubsection Directly-mapped Media Functions
8949
8950The functions listed below map directly to FR-V M-type instructions.
8951
8952@multitable @columnfractions .45 .32 .23
8953@item Function prototype @tab Example usage @tab Assembly output
8954@item @code{uw1 __MABSHS (sw1)}
8955@tab @code{@var{b} = __MABSHS (@var{a})}
8956@tab @code{MABSHS @var{a},@var{b}}
8957@item @code{void __MADDACCS (acc, acc)}
8958@tab @code{__MADDACCS (@var{b}, @var{a})}
8959@tab @code{MADDACCS @var{a},@var{b}}
8960@item @code{sw1 __MADDHSS (sw1, sw1)}
8961@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
8962@tab @code{MADDHSS @var{a},@var{b},@var{c}}
8963@item @code{uw1 __MADDHUS (uw1, uw1)}
8964@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
8965@tab @code{MADDHUS @var{a},@var{b},@var{c}}
8966@item @code{uw1 __MAND (uw1, uw1)}
8967@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
8968@tab @code{MAND @var{a},@var{b},@var{c}}
8969@item @code{void __MASACCS (acc, acc)}
8970@tab @code{__MASACCS (@var{b}, @var{a})}
8971@tab @code{MASACCS @var{a},@var{b}}
8972@item @code{uw1 __MAVEH (uw1, uw1)}
8973@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
8974@tab @code{MAVEH @var{a},@var{b},@var{c}}
8975@item @code{uw2 __MBTOH (uw1)}
8976@tab @code{@var{b} = __MBTOH (@var{a})}
8977@tab @code{MBTOH @var{a},@var{b}}
8978@item @code{void __MBTOHE (uw1 *, uw1)}
8979@tab @code{__MBTOHE (&@var{b}, @var{a})}
8980@tab @code{MBTOHE @var{a},@var{b}}
8981@item @code{void __MCLRACC (acc)}
8982@tab @code{__MCLRACC (@var{a})}
8983@tab @code{MCLRACC @var{a}}
8984@item @code{void __MCLRACCA (void)}
8985@tab @code{__MCLRACCA ()}
8986@tab @code{MCLRACCA}
8987@item @code{uw1 __Mcop1 (uw1, uw1)}
8988@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
8989@tab @code{Mcop1 @var{a},@var{b},@var{c}}
8990@item @code{uw1 __Mcop2 (uw1, uw1)}
8991@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
8992@tab @code{Mcop2 @var{a},@var{b},@var{c}}
8993@item @code{uw1 __MCPLHI (uw2, const)}
8994@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
8995@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
8996@item @code{uw1 __MCPLI (uw2, const)}
8997@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
8998@tab @code{MCPLI @var{a},#@var{b},@var{c}}
8999@item @code{void __MCPXIS (acc, sw1, sw1)}
9000@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
9001@tab @code{MCPXIS @var{a},@var{b},@var{c}}
9002@item @code{void __MCPXIU (acc, uw1, uw1)}
9003@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
9004@tab @code{MCPXIU @var{a},@var{b},@var{c}}
9005@item @code{void __MCPXRS (acc, sw1, sw1)}
9006@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
9007@tab @code{MCPXRS @var{a},@var{b},@var{c}}
9008@item @code{void __MCPXRU (acc, uw1, uw1)}
9009@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
9010@tab @code{MCPXRU @var{a},@var{b},@var{c}}
9011@item @code{uw1 __MCUT (acc, uw1)}
9012@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
9013@tab @code{MCUT @var{a},@var{b},@var{c}}
9014@item @code{uw1 __MCUTSS (acc, sw1)}
9015@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
9016@tab @code{MCUTSS @var{a},@var{b},@var{c}}
9017@item @code{void __MDADDACCS (acc, acc)}
9018@tab @code{__MDADDACCS (@var{b}, @var{a})}
9019@tab @code{MDADDACCS @var{a},@var{b}}
9020@item @code{void __MDASACCS (acc, acc)}
9021@tab @code{__MDASACCS (@var{b}, @var{a})}
9022@tab @code{MDASACCS @var{a},@var{b}}
9023@item @code{uw2 __MDCUTSSI (acc, const)}
9024@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
9025@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
9026@item @code{uw2 __MDPACKH (uw2, uw2)}
9027@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
9028@tab @code{MDPACKH @var{a},@var{b},@var{c}}
9029@item @code{uw2 __MDROTLI (uw2, const)}
9030@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
9031@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
9032@item @code{void __MDSUBACCS (acc, acc)}
9033@tab @code{__MDSUBACCS (@var{b}, @var{a})}
9034@tab @code{MDSUBACCS @var{a},@var{b}}
9035@item @code{void __MDUNPACKH (uw1 *, uw2)}
9036@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
9037@tab @code{MDUNPACKH @var{a},@var{b}}
9038@item @code{uw2 __MEXPDHD (uw1, const)}
9039@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
9040@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
9041@item @code{uw1 __MEXPDHW (uw1, const)}
9042@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
9043@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
9044@item @code{uw1 __MHDSETH (uw1, const)}
9045@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
9046@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
9047@item @code{sw1 __MHDSETS (const)}
9048@tab @code{@var{b} = __MHDSETS (@var{a})}
9049@tab @code{MHDSETS #@var{a},@var{b}}
9050@item @code{uw1 __MHSETHIH (uw1, const)}
9051@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
9052@tab @code{MHSETHIH #@var{a},@var{b}}
9053@item @code{sw1 __MHSETHIS (sw1, const)}
9054@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
9055@tab @code{MHSETHIS #@var{a},@var{b}}
9056@item @code{uw1 __MHSETLOH (uw1, const)}
9057@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
9058@tab @code{MHSETLOH #@var{a},@var{b}}
9059@item @code{sw1 __MHSETLOS (sw1, const)}
9060@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
9061@tab @code{MHSETLOS #@var{a},@var{b}}
9062@item @code{uw1 __MHTOB (uw2)}
9063@tab @code{@var{b} = __MHTOB (@var{a})}
9064@tab @code{MHTOB @var{a},@var{b}}
9065@item @code{void __MMACHS (acc, sw1, sw1)}
9066@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
9067@tab @code{MMACHS @var{a},@var{b},@var{c}}
9068@item @code{void __MMACHU (acc, uw1, uw1)}
9069@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
9070@tab @code{MMACHU @var{a},@var{b},@var{c}}
9071@item @code{void __MMRDHS (acc, sw1, sw1)}
9072@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
9073@tab @code{MMRDHS @var{a},@var{b},@var{c}}
9074@item @code{void __MMRDHU (acc, uw1, uw1)}
9075@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
9076@tab @code{MMRDHU @var{a},@var{b},@var{c}}
9077@item @code{void __MMULHS (acc, sw1, sw1)}
9078@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
9079@tab @code{MMULHS @var{a},@var{b},@var{c}}
9080@item @code{void __MMULHU (acc, uw1, uw1)}
9081@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
9082@tab @code{MMULHU @var{a},@var{b},@var{c}}
9083@item @code{void __MMULXHS (acc, sw1, sw1)}
9084@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
9085@tab @code{MMULXHS @var{a},@var{b},@var{c}}
9086@item @code{void __MMULXHU (acc, uw1, uw1)}
9087@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
9088@tab @code{MMULXHU @var{a},@var{b},@var{c}}
9089@item @code{uw1 __MNOT (uw1)}
9090@tab @code{@var{b} = __MNOT (@var{a})}
9091@tab @code{MNOT @var{a},@var{b}}
9092@item @code{uw1 __MOR (uw1, uw1)}
9093@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
9094@tab @code{MOR @var{a},@var{b},@var{c}}
9095@item @code{uw1 __MPACKH (uh, uh)}
9096@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
9097@tab @code{MPACKH @var{a},@var{b},@var{c}}
9098@item @code{sw2 __MQADDHSS (sw2, sw2)}
9099@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
9100@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
9101@item @code{uw2 __MQADDHUS (uw2, uw2)}
9102@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
9103@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
9104@item @code{void __MQCPXIS (acc, sw2, sw2)}
9105@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
9106@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
9107@item @code{void __MQCPXIU (acc, uw2, uw2)}
9108@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
9109@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
9110@item @code{void __MQCPXRS (acc, sw2, sw2)}
9111@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
9112@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
9113@item @code{void __MQCPXRU (acc, uw2, uw2)}
9114@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
9115@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
9116@item @code{sw2 __MQLCLRHS (sw2, sw2)}
9117@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
9118@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
9119@item @code{sw2 __MQLMTHS (sw2, sw2)}
9120@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
9121@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
9122@item @code{void __MQMACHS (acc, sw2, sw2)}
9123@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
9124@tab @code{MQMACHS @var{a},@var{b},@var{c}}
9125@item @code{void __MQMACHU (acc, uw2, uw2)}
9126@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
9127@tab @code{MQMACHU @var{a},@var{b},@var{c}}
9128@item @code{void __MQMACXHS (acc, sw2, sw2)}
9129@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
9130@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
9131@item @code{void __MQMULHS (acc, sw2, sw2)}
9132@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
9133@tab @code{MQMULHS @var{a},@var{b},@var{c}}
9134@item @code{void __MQMULHU (acc, uw2, uw2)}
9135@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
9136@tab @code{MQMULHU @var{a},@var{b},@var{c}}
9137@item @code{void __MQMULXHS (acc, sw2, sw2)}
9138@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
9139@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
9140@item @code{void __MQMULXHU (acc, uw2, uw2)}
9141@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
9142@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
9143@item @code{sw2 __MQSATHS (sw2, sw2)}
9144@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
9145@tab @code{MQSATHS @var{a},@var{b},@var{c}}
9146@item @code{uw2 __MQSLLHI (uw2, int)}
9147@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
9148@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
9149@item @code{sw2 __MQSRAHI (sw2, int)}
9150@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
9151@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
9152@item @code{sw2 __MQSUBHSS (sw2, sw2)}
9153@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
9154@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
9155@item @code{uw2 __MQSUBHUS (uw2, uw2)}
9156@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
9157@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
9158@item @code{void __MQXMACHS (acc, sw2, sw2)}
9159@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
9160@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
9161@item @code{void __MQXMACXHS (acc, sw2, sw2)}
9162@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
9163@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
9164@item @code{uw1 __MRDACC (acc)}
9165@tab @code{@var{b} = __MRDACC (@var{a})}
9166@tab @code{MRDACC @var{a},@var{b}}
9167@item @code{uw1 __MRDACCG (acc)}
9168@tab @code{@var{b} = __MRDACCG (@var{a})}
9169@tab @code{MRDACCG @var{a},@var{b}}
9170@item @code{uw1 __MROTLI (uw1, const)}
9171@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
9172@tab @code{MROTLI @var{a},#@var{b},@var{c}}
9173@item @code{uw1 __MROTRI (uw1, const)}
9174@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
9175@tab @code{MROTRI @var{a},#@var{b},@var{c}}
9176@item @code{sw1 __MSATHS (sw1, sw1)}
9177@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
9178@tab @code{MSATHS @var{a},@var{b},@var{c}}
9179@item @code{uw1 __MSATHU (uw1, uw1)}
9180@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
9181@tab @code{MSATHU @var{a},@var{b},@var{c}}
9182@item @code{uw1 __MSLLHI (uw1, const)}
9183@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
9184@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
9185@item @code{sw1 __MSRAHI (sw1, const)}
9186@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
9187@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
9188@item @code{uw1 __MSRLHI (uw1, const)}
9189@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
9190@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
9191@item @code{void __MSUBACCS (acc, acc)}
9192@tab @code{__MSUBACCS (@var{b}, @var{a})}
9193@tab @code{MSUBACCS @var{a},@var{b}}
9194@item @code{sw1 __MSUBHSS (sw1, sw1)}
9195@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
9196@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
9197@item @code{uw1 __MSUBHUS (uw1, uw1)}
9198@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
9199@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
9200@item @code{void __MTRAP (void)}
9201@tab @code{__MTRAP ()}
9202@tab @code{MTRAP}
9203@item @code{uw2 __MUNPACKH (uw1)}
9204@tab @code{@var{b} = __MUNPACKH (@var{a})}
9205@tab @code{MUNPACKH @var{a},@var{b}}
9206@item @code{uw1 __MWCUT (uw2, uw1)}
9207@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
9208@tab @code{MWCUT @var{a},@var{b},@var{c}}
9209@item @code{void __MWTACC (acc, uw1)}
9210@tab @code{__MWTACC (@var{b}, @var{a})}
9211@tab @code{MWTACC @var{a},@var{b}}
9212@item @code{void __MWTACCG (acc, uw1)}
9213@tab @code{__MWTACCG (@var{b}, @var{a})}
9214@tab @code{MWTACCG @var{a},@var{b}}
9215@item @code{uw1 __MXOR (uw1, uw1)}
9216@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
9217@tab @code{MXOR @var{a},@var{b},@var{c}}
9218@end multitable
9219
c14ff86e
AH
9220@node Raw read/write Functions
9221@subsubsection Raw read/write Functions
9222
9223This sections describes built-in functions related to read and write
9224instructions to access memory. These functions generate
9225@code{membar} instructions to flush the I/O load and stores where
9226appropriate, as described in Fujitsu's manual described above.
9227
9228@table @code
9229
9230@item unsigned char __builtin_read8 (void *@var{data})
9231@item unsigned short __builtin_read16 (void *@var{data})
9232@item unsigned long __builtin_read32 (void *@var{data})
9233@item unsigned long long __builtin_read64 (void *@var{data})
9234
9235@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
9236@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
9237@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
9238@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
9239@end table
9240
c3ee0579
RS
9241@node Other Built-in Functions
9242@subsubsection Other Built-in Functions
9243
9244This section describes built-in functions that are not named after
9245a specific FR-V instruction.
9246
9247@table @code
9248@item sw2 __IACCreadll (iacc @var{reg})
9249Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
9250for future expansion and must be 0.
9251
9252@item sw1 __IACCreadl (iacc @var{reg})
9253Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
9254Other values of @var{reg} are rejected as invalid.
9255
9256@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
9257Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
9258is reserved for future expansion and must be 0.
9259
9260@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
9261Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
9262is 1. Other values of @var{reg} are rejected as invalid.
9263
9264@item void __data_prefetch0 (const void *@var{x})
9265Use the @code{dcpl} instruction to load the contents of address @var{x}
9266into the data cache.
9267
9268@item void __data_prefetch (const void *@var{x})
9269Use the @code{nldub} instruction to load the contents of address @var{x}
9270into the data cache. The instruction will be issued in slot I1@.
9271@end table
9272
0975678f
JM
9273@node X86 Built-in Functions
9274@subsection X86 Built-in Functions
9275
9276These built-in functions are available for the i386 and x86-64 family
9277of computers, depending on the command-line switches used.
9278
75576871
BB
9279Note that, if you specify command-line switches such as @option{-msse},
9280the compiler could use the extended instruction sets even if the built-ins
9281are not used explicitly in the program. For this reason, applications
9282which perform runtime CPU detection must compile separate files for each
9283supported architecture, using the appropriate flags. In particular,
9284the file containing the CPU detection code should be compiled without
9285these options.
9286
0975678f 9287The following machine modes are available for use with MMX built-in functions
333c8841
AH
9288(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
9289@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
9290vector of eight 8-bit integers. Some of the built-in functions operate on
75d8b30e 9291MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
0975678f 9292
f8723eb6 9293If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
333c8841 9294of two 32-bit floating point values.
0975678f 9295
333c8841
AH
9296If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
9297floating point values. Some instructions use a vector of four 32-bit
0975678f 9298integers, these use @code{V4SI}. Finally, some instructions operate on an
333c8841 9299entire vector register, interpreting it as a 128-bit integer, these use mode
0975678f
JM
9300@code{TI}.
9301
27f56cb1 9302In 64-bit mode, the x86-64 family of processors uses additional built-in
5513e239
UB
9303functions for efficient use of @code{TF} (@code{__float128}) 128-bit
9304floating point and @code{TC} 128-bit complex floating point values.
9305
27f56cb1
GP
9306The following floating point built-in functions are available in 64-bit
9307mode. All of them implement the function that is part of the name.
5513e239
UB
9308
9309@smallexample
9310__float128 __builtin_fabsq (__float128)
9311__float128 __builtin_copysignq (__float128, __float128)
9312@end smallexample
9313
74838de3
L
9314The following built-in function is always available.
9315
9316@table @code
9317@item void __builtin_ia32_pause (void)
6c81b2bc
L
9318Generates the @code{pause} machine instruction with a compiler memory
9319barrier.
74838de3
L
9320@end table
9321
5513e239
UB
9322The following floating point built-in functions are made available in the
932364-bit mode.
9324
9325@table @code
9326@item __float128 __builtin_infq (void)
9327Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
593812b6
BE
9328@findex __builtin_infq
9329
9330@item __float128 __builtin_huge_valq (void)
9331Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
9332@findex __builtin_huge_valq
5513e239
UB
9333@end table
9334
0975678f
JM
9335The following built-in functions are made available by @option{-mmmx}.
9336All of them generate the machine instruction that is part of the name.
9337
3ab51846 9338@smallexample
0975678f
JM
9339v8qi __builtin_ia32_paddb (v8qi, v8qi)
9340v4hi __builtin_ia32_paddw (v4hi, v4hi)
9341v2si __builtin_ia32_paddd (v2si, v2si)
9342v8qi __builtin_ia32_psubb (v8qi, v8qi)
9343v4hi __builtin_ia32_psubw (v4hi, v4hi)
9344v2si __builtin_ia32_psubd (v2si, v2si)
9345v8qi __builtin_ia32_paddsb (v8qi, v8qi)
9346v4hi __builtin_ia32_paddsw (v4hi, v4hi)
9347v8qi __builtin_ia32_psubsb (v8qi, v8qi)
9348v4hi __builtin_ia32_psubsw (v4hi, v4hi)
9349v8qi __builtin_ia32_paddusb (v8qi, v8qi)
9350v4hi __builtin_ia32_paddusw (v4hi, v4hi)
9351v8qi __builtin_ia32_psubusb (v8qi, v8qi)
9352v4hi __builtin_ia32_psubusw (v4hi, v4hi)
9353v4hi __builtin_ia32_pmullw (v4hi, v4hi)
9354v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
9355di __builtin_ia32_pand (di, di)
9356di __builtin_ia32_pandn (di,di)
9357di __builtin_ia32_por (di, di)
9358di __builtin_ia32_pxor (di, di)
9359v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
9360v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
9361v2si __builtin_ia32_pcmpeqd (v2si, v2si)
9362v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
9363v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
9364v2si __builtin_ia32_pcmpgtd (v2si, v2si)
9365v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
9366v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
9367v2si __builtin_ia32_punpckhdq (v2si, v2si)
9368v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
9369v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
9370v2si __builtin_ia32_punpckldq (v2si, v2si)
9371v8qi __builtin_ia32_packsswb (v4hi, v4hi)
9372v4hi __builtin_ia32_packssdw (v2si, v2si)
9373v8qi __builtin_ia32_packuswb (v4hi, v4hi)
10a97ae6 9374
52eaae97
UB
9375v4hi __builtin_ia32_psllw (v4hi, v4hi)
9376v2si __builtin_ia32_pslld (v2si, v2si)
9377v1di __builtin_ia32_psllq (v1di, v1di)
9378v4hi __builtin_ia32_psrlw (v4hi, v4hi)
9379v2si __builtin_ia32_psrld (v2si, v2si)
9380v1di __builtin_ia32_psrlq (v1di, v1di)
9381v4hi __builtin_ia32_psraw (v4hi, v4hi)
9382v2si __builtin_ia32_psrad (v2si, v2si)
9383v4hi __builtin_ia32_psllwi (v4hi, int)
9384v2si __builtin_ia32_pslldi (v2si, int)
9385v1di __builtin_ia32_psllqi (v1di, int)
9386v4hi __builtin_ia32_psrlwi (v4hi, int)
9387v2si __builtin_ia32_psrldi (v2si, int)
9388v1di __builtin_ia32_psrlqi (v1di, int)
9389v4hi __builtin_ia32_psrawi (v4hi, int)
9390v2si __builtin_ia32_psradi (v2si, int)
10a97ae6 9391
3ab51846 9392@end smallexample
0975678f
JM
9393
9394The following built-in functions are made available either with
9395@option{-msse}, or with a combination of @option{-m3dnow} and
9396@option{-march=athlon}. All of them generate the machine
9397instruction that is part of the name.
9398
3ab51846 9399@smallexample
0975678f
JM
9400v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
9401v8qi __builtin_ia32_pavgb (v8qi, v8qi)
9402v4hi __builtin_ia32_pavgw (v4hi, v4hi)
ab555a5b 9403v1di __builtin_ia32_psadbw (v8qi, v8qi)
0975678f
JM
9404v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
9405v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
9406v8qi __builtin_ia32_pminub (v8qi, v8qi)
9407v4hi __builtin_ia32_pminsw (v4hi, v4hi)
9408int __builtin_ia32_pextrw (v4hi, int)
9409v4hi __builtin_ia32_pinsrw (v4hi, int, int)
9410int __builtin_ia32_pmovmskb (v8qi)
9411void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
9412void __builtin_ia32_movntq (di *, di)
9413void __builtin_ia32_sfence (void)
3ab51846 9414@end smallexample
0975678f
JM
9415
9416The following built-in functions are available when @option{-msse} is used.
9417All of them generate the machine instruction that is part of the name.
9418
3ab51846 9419@smallexample
0975678f
JM
9420int __builtin_ia32_comieq (v4sf, v4sf)
9421int __builtin_ia32_comineq (v4sf, v4sf)
9422int __builtin_ia32_comilt (v4sf, v4sf)
9423int __builtin_ia32_comile (v4sf, v4sf)
9424int __builtin_ia32_comigt (v4sf, v4sf)
9425int __builtin_ia32_comige (v4sf, v4sf)
9426int __builtin_ia32_ucomieq (v4sf, v4sf)
9427int __builtin_ia32_ucomineq (v4sf, v4sf)
9428int __builtin_ia32_ucomilt (v4sf, v4sf)
9429int __builtin_ia32_ucomile (v4sf, v4sf)
9430int __builtin_ia32_ucomigt (v4sf, v4sf)
9431int __builtin_ia32_ucomige (v4sf, v4sf)
9432v4sf __builtin_ia32_addps (v4sf, v4sf)
9433v4sf __builtin_ia32_subps (v4sf, v4sf)
9434v4sf __builtin_ia32_mulps (v4sf, v4sf)
9435v4sf __builtin_ia32_divps (v4sf, v4sf)
9436v4sf __builtin_ia32_addss (v4sf, v4sf)
9437v4sf __builtin_ia32_subss (v4sf, v4sf)
9438v4sf __builtin_ia32_mulss (v4sf, v4sf)
9439v4sf __builtin_ia32_divss (v4sf, v4sf)
9440v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
9441v4si __builtin_ia32_cmpltps (v4sf, v4sf)
9442v4si __builtin_ia32_cmpleps (v4sf, v4sf)
9443v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
9444v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
9445v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
9446v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
9447v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
9448v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
9449v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
9450v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
9451v4si __builtin_ia32_cmpordps (v4sf, v4sf)
9452v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
9453v4si __builtin_ia32_cmpltss (v4sf, v4sf)
9454v4si __builtin_ia32_cmpless (v4sf, v4sf)
0975678f
JM
9455v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
9456v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
9457v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
9458v4si __builtin_ia32_cmpnless (v4sf, v4sf)
0975678f
JM
9459v4si __builtin_ia32_cmpordss (v4sf, v4sf)
9460v4sf __builtin_ia32_maxps (v4sf, v4sf)
9461v4sf __builtin_ia32_maxss (v4sf, v4sf)
9462v4sf __builtin_ia32_minps (v4sf, v4sf)
9463v4sf __builtin_ia32_minss (v4sf, v4sf)
9464v4sf __builtin_ia32_andps (v4sf, v4sf)
9465v4sf __builtin_ia32_andnps (v4sf, v4sf)
9466v4sf __builtin_ia32_orps (v4sf, v4sf)
9467v4sf __builtin_ia32_xorps (v4sf, v4sf)
9468v4sf __builtin_ia32_movss (v4sf, v4sf)
9469v4sf __builtin_ia32_movhlps (v4sf, v4sf)
9470v4sf __builtin_ia32_movlhps (v4sf, v4sf)
9471v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
9472v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
9473v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
9474v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
9475v2si __builtin_ia32_cvtps2pi (v4sf)
9476int __builtin_ia32_cvtss2si (v4sf)
9477v2si __builtin_ia32_cvttps2pi (v4sf)
9478int __builtin_ia32_cvttss2si (v4sf)
9479v4sf __builtin_ia32_rcpps (v4sf)
9480v4sf __builtin_ia32_rsqrtps (v4sf)
9481v4sf __builtin_ia32_sqrtps (v4sf)
9482v4sf __builtin_ia32_rcpss (v4sf)
9483v4sf __builtin_ia32_rsqrtss (v4sf)
9484v4sf __builtin_ia32_sqrtss (v4sf)
9485v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
9486void __builtin_ia32_movntps (float *, v4sf)
9487int __builtin_ia32_movmskps (v4sf)
3ab51846 9488@end smallexample
0975678f
JM
9489
9490The following built-in functions are available when @option{-msse} is used.
9491
9492@table @code
9493@item v4sf __builtin_ia32_loadaps (float *)
9494Generates the @code{movaps} machine instruction as a load from memory.
9495@item void __builtin_ia32_storeaps (float *, v4sf)
9496Generates the @code{movaps} machine instruction as a store to memory.
9497@item v4sf __builtin_ia32_loadups (float *)
9498Generates the @code{movups} machine instruction as a load from memory.
9499@item void __builtin_ia32_storeups (float *, v4sf)
9500Generates the @code{movups} machine instruction as a store to memory.
9501@item v4sf __builtin_ia32_loadsss (float *)
9502Generates the @code{movss} machine instruction as a load from memory.
9503@item void __builtin_ia32_storess (float *, v4sf)
9504Generates the @code{movss} machine instruction as a store to memory.
bb1418c1 9505@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
0975678f 9506Generates the @code{movhps} machine instruction as a load from memory.
bb1418c1 9507@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
0975678f 9508Generates the @code{movlps} machine instruction as a load from memory
bb1418c1 9509@item void __builtin_ia32_storehps (v2sf *, v4sf)
0975678f 9510Generates the @code{movhps} machine instruction as a store to memory.
bb1418c1 9511@item void __builtin_ia32_storelps (v2sf *, v4sf)
0975678f
JM
9512Generates the @code{movlps} machine instruction as a store to memory.
9513@end table
9514
d7aa4788
RG
9515The following built-in functions are available when @option{-msse2} is used.
9516All of them generate the machine instruction that is part of the name.
9517
9518@smallexample
9519int __builtin_ia32_comisdeq (v2df, v2df)
9520int __builtin_ia32_comisdlt (v2df, v2df)
9521int __builtin_ia32_comisdle (v2df, v2df)
9522int __builtin_ia32_comisdgt (v2df, v2df)
9523int __builtin_ia32_comisdge (v2df, v2df)
9524int __builtin_ia32_comisdneq (v2df, v2df)
9525int __builtin_ia32_ucomisdeq (v2df, v2df)
9526int __builtin_ia32_ucomisdlt (v2df, v2df)
9527int __builtin_ia32_ucomisdle (v2df, v2df)
9528int __builtin_ia32_ucomisdgt (v2df, v2df)
9529int __builtin_ia32_ucomisdge (v2df, v2df)
9530int __builtin_ia32_ucomisdneq (v2df, v2df)
9531v2df __builtin_ia32_cmpeqpd (v2df, v2df)
9532v2df __builtin_ia32_cmpltpd (v2df, v2df)
9533v2df __builtin_ia32_cmplepd (v2df, v2df)
9534v2df __builtin_ia32_cmpgtpd (v2df, v2df)
9535v2df __builtin_ia32_cmpgepd (v2df, v2df)
9536v2df __builtin_ia32_cmpunordpd (v2df, v2df)
9537v2df __builtin_ia32_cmpneqpd (v2df, v2df)
9538v2df __builtin_ia32_cmpnltpd (v2df, v2df)
9539v2df __builtin_ia32_cmpnlepd (v2df, v2df)
9540v2df __builtin_ia32_cmpngtpd (v2df, v2df)
9541v2df __builtin_ia32_cmpngepd (v2df, v2df)
9542v2df __builtin_ia32_cmpordpd (v2df, v2df)
9543v2df __builtin_ia32_cmpeqsd (v2df, v2df)
9544v2df __builtin_ia32_cmpltsd (v2df, v2df)
9545v2df __builtin_ia32_cmplesd (v2df, v2df)
9546v2df __builtin_ia32_cmpunordsd (v2df, v2df)
9547v2df __builtin_ia32_cmpneqsd (v2df, v2df)
9548v2df __builtin_ia32_cmpnltsd (v2df, v2df)
9549v2df __builtin_ia32_cmpnlesd (v2df, v2df)
9550v2df __builtin_ia32_cmpordsd (v2df, v2df)
9551v2di __builtin_ia32_paddq (v2di, v2di)
9552v2di __builtin_ia32_psubq (v2di, v2di)
9553v2df __builtin_ia32_addpd (v2df, v2df)
9554v2df __builtin_ia32_subpd (v2df, v2df)
9555v2df __builtin_ia32_mulpd (v2df, v2df)
9556v2df __builtin_ia32_divpd (v2df, v2df)
9557v2df __builtin_ia32_addsd (v2df, v2df)
9558v2df __builtin_ia32_subsd (v2df, v2df)
9559v2df __builtin_ia32_mulsd (v2df, v2df)
9560v2df __builtin_ia32_divsd (v2df, v2df)
9561v2df __builtin_ia32_minpd (v2df, v2df)
9562v2df __builtin_ia32_maxpd (v2df, v2df)
9563v2df __builtin_ia32_minsd (v2df, v2df)
9564v2df __builtin_ia32_maxsd (v2df, v2df)
9565v2df __builtin_ia32_andpd (v2df, v2df)
9566v2df __builtin_ia32_andnpd (v2df, v2df)
9567v2df __builtin_ia32_orpd (v2df, v2df)
9568v2df __builtin_ia32_xorpd (v2df, v2df)
9569v2df __builtin_ia32_movsd (v2df, v2df)
9570v2df __builtin_ia32_unpckhpd (v2df, v2df)
9571v2df __builtin_ia32_unpcklpd (v2df, v2df)
9572v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
9573v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
9574v4si __builtin_ia32_paddd128 (v4si, v4si)
9575v2di __builtin_ia32_paddq128 (v2di, v2di)
9576v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
9577v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
9578v4si __builtin_ia32_psubd128 (v4si, v4si)
9579v2di __builtin_ia32_psubq128 (v2di, v2di)
9580v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
9581v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
9582v2di __builtin_ia32_pand128 (v2di, v2di)
9583v2di __builtin_ia32_pandn128 (v2di, v2di)
9584v2di __builtin_ia32_por128 (v2di, v2di)
9585v2di __builtin_ia32_pxor128 (v2di, v2di)
9586v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
9587v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
9588v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
9589v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
9590v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
9591v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
9592v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
9593v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
9594v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
9595v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
9596v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
9597v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
9598v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
9599v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
9600v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
9601v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
9602v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
9603v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
9604v4si __builtin_ia32_punpckldq128 (v4si, v4si)
9605v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
1b667c82
L
9606v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
9607v8hi __builtin_ia32_packssdw128 (v4si, v4si)
9608v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
d7aa4788
RG
9609v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
9610void __builtin_ia32_maskmovdqu (v16qi, v16qi)
9611v2df __builtin_ia32_loadupd (double *)
9612void __builtin_ia32_storeupd (double *, v2df)
bb1418c1
L
9613v2df __builtin_ia32_loadhpd (v2df, double const *)
9614v2df __builtin_ia32_loadlpd (v2df, double const *)
d7aa4788
RG
9615int __builtin_ia32_movmskpd (v2df)
9616int __builtin_ia32_pmovmskb128 (v16qi)
9617void __builtin_ia32_movnti (int *, int)
f32c951e 9618void __builtin_ia32_movnti64 (long long int *, long long int)
d7aa4788
RG
9619void __builtin_ia32_movntpd (double *, v2df)
9620void __builtin_ia32_movntdq (v2df *, v2df)
9621v4si __builtin_ia32_pshufd (v4si, int)
9622v8hi __builtin_ia32_pshuflw (v8hi, int)
9623v8hi __builtin_ia32_pshufhw (v8hi, int)
9624v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
9625v2df __builtin_ia32_sqrtpd (v2df)
9626v2df __builtin_ia32_sqrtsd (v2df)
9627v2df __builtin_ia32_shufpd (v2df, v2df, int)
9628v2df __builtin_ia32_cvtdq2pd (v4si)
9629v4sf __builtin_ia32_cvtdq2ps (v4si)
9630v4si __builtin_ia32_cvtpd2dq (v2df)
9631v2si __builtin_ia32_cvtpd2pi (v2df)
9632v4sf __builtin_ia32_cvtpd2ps (v2df)
9633v4si __builtin_ia32_cvttpd2dq (v2df)
9634v2si __builtin_ia32_cvttpd2pi (v2df)
9635v2df __builtin_ia32_cvtpi2pd (v2si)
9636int __builtin_ia32_cvtsd2si (v2df)
9637int __builtin_ia32_cvttsd2si (v2df)
9638long long __builtin_ia32_cvtsd2si64 (v2df)
9639long long __builtin_ia32_cvttsd2si64 (v2df)
9640v4si __builtin_ia32_cvtps2dq (v4sf)
9641v2df __builtin_ia32_cvtps2pd (v4sf)
9642v4si __builtin_ia32_cvttps2dq (v4sf)
9643v2df __builtin_ia32_cvtsi2sd (v2df, int)
9644v2df __builtin_ia32_cvtsi642sd (v2df, long long)
9645v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
9646v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
9647void __builtin_ia32_clflush (const void *)
9648void __builtin_ia32_lfence (void)
9649void __builtin_ia32_mfence (void)
9650v16qi __builtin_ia32_loaddqu (const char *)
9651void __builtin_ia32_storedqu (char *, v16qi)
ab555a5b 9652v1di __builtin_ia32_pmuludq (v2si, v2si)
d7aa4788 9653v2di __builtin_ia32_pmuludq128 (v4si, v4si)
52eaae97
UB
9654v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
9655v4si __builtin_ia32_pslld128 (v4si, v4si)
9656v2di __builtin_ia32_psllq128 (v2di, v2di)
9657v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
9658v4si __builtin_ia32_psrld128 (v4si, v4si)
d7aa4788 9659v2di __builtin_ia32_psrlq128 (v2di, v2di)
52eaae97
UB
9660v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
9661v4si __builtin_ia32_psrad128 (v4si, v4si)
d7aa4788
RG
9662v2di __builtin_ia32_pslldqi128 (v2di, int)
9663v8hi __builtin_ia32_psllwi128 (v8hi, int)
9664v4si __builtin_ia32_pslldi128 (v4si, int)
9665v2di __builtin_ia32_psllqi128 (v2di, int)
9666v2di __builtin_ia32_psrldqi128 (v2di, int)
9667v8hi __builtin_ia32_psrlwi128 (v8hi, int)
9668v4si __builtin_ia32_psrldi128 (v4si, int)
9669v2di __builtin_ia32_psrlqi128 (v2di, int)
9670v8hi __builtin_ia32_psrawi128 (v8hi, int)
9671v4si __builtin_ia32_psradi128 (v4si, int)
9672v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
b53b23dc 9673v2di __builtin_ia32_movq128 (v2di)
d7aa4788
RG
9674@end smallexample
9675
9e200aaf 9676The following built-in functions are available when @option{-msse3} is used.
22c7c85e
L
9677All of them generate the machine instruction that is part of the name.
9678
3ab51846 9679@smallexample
22c7c85e 9680v2df __builtin_ia32_addsubpd (v2df, v2df)
d7aa4788 9681v4sf __builtin_ia32_addsubps (v4sf, v4sf)
22c7c85e 9682v2df __builtin_ia32_haddpd (v2df, v2df)
d7aa4788 9683v4sf __builtin_ia32_haddps (v4sf, v4sf)
22c7c85e 9684v2df __builtin_ia32_hsubpd (v2df, v2df)
d7aa4788 9685v4sf __builtin_ia32_hsubps (v4sf, v4sf)
22c7c85e
L
9686v16qi __builtin_ia32_lddqu (char const *)
9687void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
9688v2df __builtin_ia32_movddup (v2df)
9689v4sf __builtin_ia32_movshdup (v4sf)
9690v4sf __builtin_ia32_movsldup (v4sf)
9691void __builtin_ia32_mwait (unsigned int, unsigned int)
3ab51846 9692@end smallexample
22c7c85e 9693
9e200aaf 9694The following built-in functions are available when @option{-msse3} is used.
22c7c85e
L
9695
9696@table @code
9697@item v2df __builtin_ia32_loadddup (double const *)
9698Generates the @code{movddup} machine instruction as a load from memory.
9699@end table
9700
b1875f52
L
9701The following built-in functions are available when @option{-mssse3} is used.
9702All of them generate the machine instruction that is part of the name
9703with MMX registers.
9704
9705@smallexample
9706v2si __builtin_ia32_phaddd (v2si, v2si)
9707v4hi __builtin_ia32_phaddw (v4hi, v4hi)
9708v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
9709v2si __builtin_ia32_phsubd (v2si, v2si)
9710v4hi __builtin_ia32_phsubw (v4hi, v4hi)
9711v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
1b667c82 9712v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
b1875f52
L
9713v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
9714v8qi __builtin_ia32_pshufb (v8qi, v8qi)
9715v8qi __builtin_ia32_psignb (v8qi, v8qi)
9716v2si __builtin_ia32_psignd (v2si, v2si)
9717v4hi __builtin_ia32_psignw (v4hi, v4hi)
99c25ac1 9718v1di __builtin_ia32_palignr (v1di, v1di, int)
b1875f52
L
9719v8qi __builtin_ia32_pabsb (v8qi)
9720v2si __builtin_ia32_pabsd (v2si)
9721v4hi __builtin_ia32_pabsw (v4hi)
9722@end smallexample
9723
9724The following built-in functions are available when @option{-mssse3} is used.
9725All of them generate the machine instruction that is part of the name
9726with SSE registers.
9727
9728@smallexample
9729v4si __builtin_ia32_phaddd128 (v4si, v4si)
9730v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
9731v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
9732v4si __builtin_ia32_phsubd128 (v4si, v4si)
9733v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
9734v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
1b667c82 9735v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
b1875f52
L
9736v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
9737v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
9738v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
9739v4si __builtin_ia32_psignd128 (v4si, v4si)
9740v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
858e5e79 9741v2di __builtin_ia32_palignr128 (v2di, v2di, int)
b1875f52
L
9742v16qi __builtin_ia32_pabsb128 (v16qi)
9743v4si __builtin_ia32_pabsd128 (v4si)
9744v8hi __builtin_ia32_pabsw128 (v8hi)
9745@end smallexample
9746
9a5cee02
L
9747The following built-in functions are available when @option{-msse4.1} is
9748used. All of them generate the machine instruction that is part of the
9749name.
9750
9751@smallexample
9752v2df __builtin_ia32_blendpd (v2df, v2df, const int)
9753v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
9754v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
9755v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
291d9a2d 9756v2df __builtin_ia32_dppd (v2df, v2df, const int)
9a5cee02
L
9757v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
9758v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
9759v2di __builtin_ia32_movntdqa (v2di *);
9760v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
9761v8hi __builtin_ia32_packusdw128 (v4si, v4si)
9762v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
9763v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
9764v2di __builtin_ia32_pcmpeqq (v2di, v2di)
9765v8hi __builtin_ia32_phminposuw128 (v8hi)
9766v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
9767v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
9768v4si __builtin_ia32_pmaxud128 (v4si, v4si)
9769v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
9770v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
9771v4si __builtin_ia32_pminsd128 (v4si, v4si)
9772v4si __builtin_ia32_pminud128 (v4si, v4si)
9773v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
9774v4si __builtin_ia32_pmovsxbd128 (v16qi)
9775v2di __builtin_ia32_pmovsxbq128 (v16qi)
9776v8hi __builtin_ia32_pmovsxbw128 (v16qi)
9777v2di __builtin_ia32_pmovsxdq128 (v4si)
9778v4si __builtin_ia32_pmovsxwd128 (v8hi)
9779v2di __builtin_ia32_pmovsxwq128 (v8hi)
9780v4si __builtin_ia32_pmovzxbd128 (v16qi)
9781v2di __builtin_ia32_pmovzxbq128 (v16qi)
9782v8hi __builtin_ia32_pmovzxbw128 (v16qi)
9783v2di __builtin_ia32_pmovzxdq128 (v4si)
9784v4si __builtin_ia32_pmovzxwd128 (v8hi)
9785v2di __builtin_ia32_pmovzxwq128 (v8hi)
9786v2di __builtin_ia32_pmuldq128 (v4si, v4si)
9787v4si __builtin_ia32_pmulld128 (v4si, v4si)
9788int __builtin_ia32_ptestc128 (v2di, v2di)
9789int __builtin_ia32_ptestnzc128 (v2di, v2di)
9790int __builtin_ia32_ptestz128 (v2di, v2di)
9791v2df __builtin_ia32_roundpd (v2df, const int)
9792v4sf __builtin_ia32_roundps (v4sf, const int)
9793v2df __builtin_ia32_roundsd (v2df, v2df, const int)
9794v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
9795@end smallexample
9796
9797The following built-in functions are available when @option{-msse4.1} is
9798used.
9799
9800@table @code
9801@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
9802Generates the @code{insertps} machine instruction.
9803@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
9804Generates the @code{pextrb} machine instruction.
9805@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
9806Generates the @code{pinsrb} machine instruction.
9807@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
9808Generates the @code{pinsrd} machine instruction.
9809@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
9810Generates the @code{pinsrq} machine instruction in 64bit mode.
9811@end table
9812
9813The following built-in functions are changed to generate new SSE4.1
9814instructions when @option{-msse4.1} is used.
9815
9816@table @code
9817@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
9818Generates the @code{extractps} machine instruction.
9819@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
9820Generates the @code{pextrd} machine instruction.
9821@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
9822Generates the @code{pextrq} machine instruction in 64bit mode.
9823@end table
9824
3b8dd071
L
9825The following built-in functions are available when @option{-msse4.2} is
9826used. All of them generate the machine instruction that is part of the
9827name.
9828
9829@smallexample
9830v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
9831int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
9832int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
9833int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
9834int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
9835int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
9836int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
9837v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
9838int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
9839int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
9840int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
9841int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
9842int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
9843int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
291d9a2d 9844v2di __builtin_ia32_pcmpgtq (v2di, v2di)
3b8dd071
L
9845@end smallexample
9846
9847The following built-in functions are available when @option{-msse4.2} is
9848used.
9849
9850@table @code
291d9a2d 9851@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
3b8dd071 9852Generates the @code{crc32b} machine instruction.
291d9a2d 9853@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
3b8dd071 9854Generates the @code{crc32w} machine instruction.
291d9a2d 9855@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
3b8dd071 9856Generates the @code{crc32l} machine instruction.
a44acfb9 9857@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
412ac8d5 9858Generates the @code{crc32q} machine instruction.
3b8dd071
L
9859@end table
9860
9861The following built-in functions are changed to generate new SSE4.2
9862instructions when @option{-msse4.2} is used.
9863
9864@table @code
291d9a2d 9865@item int __builtin_popcount (unsigned int)
3b8dd071 9866Generates the @code{popcntl} machine instruction.
291d9a2d 9867@item int __builtin_popcountl (unsigned long)
3b8dd071
L
9868Generates the @code{popcntl} or @code{popcntq} machine instruction,
9869depending on the size of @code{unsigned long}.
291d9a2d 9870@item int __builtin_popcountll (unsigned long long)
3b8dd071
L
9871Generates the @code{popcntq} machine instruction.
9872@end table
9873
31cb596a
JY
9874The following built-in functions are available when @option{-mavx} is
9875used. All of them generate the machine instruction that is part of the
9876name.
9877
9878@smallexample
9879v4df __builtin_ia32_addpd256 (v4df,v4df)
9880v8sf __builtin_ia32_addps256 (v8sf,v8sf)
9881v4df __builtin_ia32_addsubpd256 (v4df,v4df)
9882v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
9883v4df __builtin_ia32_andnpd256 (v4df,v4df)
9884v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
9885v4df __builtin_ia32_andpd256 (v4df,v4df)
9886v8sf __builtin_ia32_andps256 (v8sf,v8sf)
9887v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
9888v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
9889v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
9890v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
9891v2df __builtin_ia32_cmppd (v2df,v2df,int)
9892v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
9893v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
9894v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
9895v2df __builtin_ia32_cmpsd (v2df,v2df,int)
9896v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
9897v4df __builtin_ia32_cvtdq2pd256 (v4si)
9898v8sf __builtin_ia32_cvtdq2ps256 (v8si)
9899v4si __builtin_ia32_cvtpd2dq256 (v4df)
9900v4sf __builtin_ia32_cvtpd2ps256 (v4df)
9901v8si __builtin_ia32_cvtps2dq256 (v8sf)
9902v4df __builtin_ia32_cvtps2pd256 (v4sf)
9903v4si __builtin_ia32_cvttpd2dq256 (v4df)
9904v8si __builtin_ia32_cvttps2dq256 (v8sf)
9905v4df __builtin_ia32_divpd256 (v4df,v4df)
9906v8sf __builtin_ia32_divps256 (v8sf,v8sf)
9907v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
9908v4df __builtin_ia32_haddpd256 (v4df,v4df)
9909v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
9910v4df __builtin_ia32_hsubpd256 (v4df,v4df)
9911v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
9912v32qi __builtin_ia32_lddqu256 (pcchar)
9913v32qi __builtin_ia32_loaddqu256 (pcchar)
9914v4df __builtin_ia32_loadupd256 (pcdouble)
9915v8sf __builtin_ia32_loadups256 (pcfloat)
9916v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
9917v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
9918v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
9919v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
9920void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
9921void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
9922void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
9923void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
9924v4df __builtin_ia32_maxpd256 (v4df,v4df)
9925v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
9926v4df __builtin_ia32_minpd256 (v4df,v4df)
9927v8sf __builtin_ia32_minps256 (v8sf,v8sf)
9928v4df __builtin_ia32_movddup256 (v4df)
9929int __builtin_ia32_movmskpd256 (v4df)
9930int __builtin_ia32_movmskps256 (v8sf)
9931v8sf __builtin_ia32_movshdup256 (v8sf)
9932v8sf __builtin_ia32_movsldup256 (v8sf)
9933v4df __builtin_ia32_mulpd256 (v4df,v4df)
9934v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
9935v4df __builtin_ia32_orpd256 (v4df,v4df)
9936v8sf __builtin_ia32_orps256 (v8sf,v8sf)
9937v2df __builtin_ia32_pd_pd256 (v4df)
9938v4df __builtin_ia32_pd256_pd (v2df)
9939v4sf __builtin_ia32_ps_ps256 (v8sf)
9940v8sf __builtin_ia32_ps256_ps (v4sf)
9941int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
9942int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
9943int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
9944v8sf __builtin_ia32_rcpps256 (v8sf)
9945v4df __builtin_ia32_roundpd256 (v4df,int)
9946v8sf __builtin_ia32_roundps256 (v8sf,int)
9947v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
9948v8sf __builtin_ia32_rsqrtps256 (v8sf)
9949v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
9950v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
9951v4si __builtin_ia32_si_si256 (v8si)
9952v8si __builtin_ia32_si256_si (v4si)
9953v4df __builtin_ia32_sqrtpd256 (v4df)
9954v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
9955v8sf __builtin_ia32_sqrtps256 (v8sf)
9956void __builtin_ia32_storedqu256 (pchar,v32qi)
9957void __builtin_ia32_storeupd256 (pdouble,v4df)
9958void __builtin_ia32_storeups256 (pfloat,v8sf)
9959v4df __builtin_ia32_subpd256 (v4df,v4df)
9960v8sf __builtin_ia32_subps256 (v8sf,v8sf)
9961v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
9962v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
9963v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
9964v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
9965v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
9966v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
9967v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
9968v4sf __builtin_ia32_vbroadcastss (pcfloat)
9969v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
9970v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
9971v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
9972v4si __builtin_ia32_vextractf128_si256 (v8si,int)
9973v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
9974v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
9975v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
9976v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
9977v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
9978v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
9979v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
9980v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
9981v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
9982v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
9983v2df __builtin_ia32_vpermilpd (v2df,int)
9984v4df __builtin_ia32_vpermilpd256 (v4df,int)
9985v4sf __builtin_ia32_vpermilps (v4sf,int)
9986v8sf __builtin_ia32_vpermilps256 (v8sf,int)
9987v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
9988v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
9989v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
9990v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
9991int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
9992int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
9993int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
9994int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
9995int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
9996int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
9997int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
9998int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
9999int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
10000int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
10001int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
10002int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
10003void __builtin_ia32_vzeroall (void)
10004void __builtin_ia32_vzeroupper (void)
10005v4df __builtin_ia32_xorpd256 (v4df,v4df)
10006v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
10007@end smallexample
10008
977e83a3
KY
10009The following built-in functions are available when @option{-mavx2} is
10010used. All of them generate the machine instruction that is part of the
10011name.
10012
10013@smallexample
10014v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
10015v32qi __builtin_ia32_pabsb256 (v32qi)
10016v16hi __builtin_ia32_pabsw256 (v16hi)
10017v8si __builtin_ia32_pabsd256 (v8si)
10018v16hi builtin_ia32_packssdw256 (v8si,v8si)
10019v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
10020v16hi __builtin_ia32_packusdw256 (v8si,v8si)
10021v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
10022v32qi__builtin_ia32_paddb256 (v32qi,v32qi)
10023v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
10024v8si __builtin_ia32_paddd256 (v8si,v8si)
10025v4di __builtin_ia32_paddq256 (v4di,v4di)
10026v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
10027v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
10028v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
10029v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
10030v4di __builtin_ia32_palignr256 (v4di,v4di,int)
10031v4di __builtin_ia32_andsi256 (v4di,v4di)
10032v4di __builtin_ia32_andnotsi256 (v4di,v4di)
10033v32qi__builtin_ia32_pavgb256 (v32qi,v32qi)
10034v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
10035v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
10036v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
10037v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
10038v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
10039v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
10040v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
10041v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
10042v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
10043v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
10044v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
10045v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
10046v8si __builtin_ia32_phaddd256 (v8si,v8si)
10047v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
10048v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
10049v8si __builtin_ia32_phsubd256 (v8si,v8si)
10050v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
10051v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
10052v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
10053v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
10054v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
10055v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
10056v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
10057v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
10058v8si __builtin_ia32_pmaxud256 (v8si,v8si)
10059v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
10060v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
10061v8si __builtin_ia32_pminsd256 (v8si,v8si)
10062v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
10063v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
10064v8si __builtin_ia32_pminud256 (v8si,v8si)
10065int __builtin_ia32_pmovmskb256 (v32qi)
10066v16hi __builtin_ia32_pmovsxbw256 (v16qi)
10067v8si __builtin_ia32_pmovsxbd256 (v16qi)
10068v4di __builtin_ia32_pmovsxbq256 (v16qi)
10069v8si __builtin_ia32_pmovsxwd256 (v8hi)
10070v4di __builtin_ia32_pmovsxwq256 (v8hi)
10071v4di __builtin_ia32_pmovsxdq256 (v4si)
10072v16hi __builtin_ia32_pmovzxbw256 (v16qi)
10073v8si __builtin_ia32_pmovzxbd256 (v16qi)
10074v4di __builtin_ia32_pmovzxbq256 (v16qi)
10075v8si __builtin_ia32_pmovzxwd256 (v8hi)
10076v4di __builtin_ia32_pmovzxwq256 (v8hi)
10077v4di __builtin_ia32_pmovzxdq256 (v4si)
10078v4di __builtin_ia32_pmuldq256 (v8si,v8si)
10079v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
10080v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
10081v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
10082v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
10083v8si __builtin_ia32_pmulld256 (v8si,v8si)
10084v4di __builtin_ia32_pmuludq256 (v8si,v8si)
10085v4di __builtin_ia32_por256 (v4di,v4di)
10086v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
10087v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
10088v8si __builtin_ia32_pshufd256 (v8si,int)
10089v16hi __builtin_ia32_pshufhw256 (v16hi,int)
10090v16hi __builtin_ia32_pshuflw256 (v16hi,int)
10091v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
10092v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
10093v8si __builtin_ia32_psignd256 (v8si,v8si)
10094v4di __builtin_ia32_pslldqi256 (v4di,int)
10095v16hi __builtin_ia32_psllwi256 (16hi,int)
10096v16hi __builtin_ia32_psllw256(v16hi,v8hi)
10097v8si __builtin_ia32_pslldi256 (v8si,int)
10098v8si __builtin_ia32_pslld256(v8si,v4si)
10099v4di __builtin_ia32_psllqi256 (v4di,int)
10100v4di __builtin_ia32_psllq256(v4di,v2di)
10101v16hi __builtin_ia32_psrawi256 (v16hi,int)
10102v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
10103v8si __builtin_ia32_psradi256 (v8si,int)
10104v8si __builtin_ia32_psrad256 (v8si,v4si)
10105v4di __builtin_ia32_psrldqi256 (v4di, int)
10106v16hi __builtin_ia32_psrlwi256 (v16hi,int)
10107v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
10108v8si __builtin_ia32_psrldi256 (v8si,int)
10109v8si __builtin_ia32_psrld256 (v8si,v4si)
10110v4di __builtin_ia32_psrlqi256 (v4di,int)
10111v4di __builtin_ia32_psrlq256(v4di,v2di)
10112v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
10113v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
10114v8si __builtin_ia32_psubd256 (v8si,v8si)
10115v4di __builtin_ia32_psubq256 (v4di,v4di)
10116v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
10117v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
10118v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
10119v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
10120v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
10121v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
10122v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
10123v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
10124v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
10125v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
10126v8si __builtin_ia32_punpckldq256 (v8si,v8si)
10127v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
10128v4di __builtin_ia32_pxor256 (v4di,v4di)
10129v4di __builtin_ia32_movntdqa256 (pv4di)
10130v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
10131v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
10132v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
10133v4di __builtin_ia32_vbroadcastsi256 (v2di)
10134v4si __builtin_ia32_pblendd128 (v4si,v4si)
10135v8si __builtin_ia32_pblendd256 (v8si,v8si)
10136v32qi __builtin_ia32_pbroadcastb256 (v16qi)
10137v16hi __builtin_ia32_pbroadcastw256 (v8hi)
10138v8si __builtin_ia32_pbroadcastd256 (v4si)
10139v4di __builtin_ia32_pbroadcastq256 (v2di)
10140v16qi __builtin_ia32_pbroadcastb128 (v16qi)
10141v8hi __builtin_ia32_pbroadcastw128 (v8hi)
10142v4si __builtin_ia32_pbroadcastd128 (v4si)
10143v2di __builtin_ia32_pbroadcastq128 (v2di)
10144v8si __builtin_ia32_permvarsi256 (v8si,v8si)
10145v4df __builtin_ia32_permdf256 (v4df,int)
10146v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
10147v4di __builtin_ia32_permdi256 (v4di,int)
10148v4di __builtin_ia32_permti256 (v4di,v4di,int)
10149v4di __builtin_ia32_extract128i256 (v4di,int)
10150v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
10151v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
10152v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
10153v4si __builtin_ia32_maskloadd (pcv4si,v4si)
10154v2di __builtin_ia32_maskloadq (pcv2di,v2di)
10155void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
10156void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
10157void __builtin_ia32_maskstored (pv4si,v4si,v4si)
10158void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
10159v8si __builtin_ia32_psllv8si (v8si,v8si)
10160v4si __builtin_ia32_psllv4si (v4si,v4si)
10161v4di __builtin_ia32_psllv4di (v4di,v4di)
10162v2di __builtin_ia32_psllv2di (v2di,v2di)
10163v8si __builtin_ia32_psrav8si (v8si,v8si)
10164v4si __builtin_ia32_psrav4si (v4si,v4si)
10165v8si __builtin_ia32_psrlv8si (v8si,v8si)
10166v4si __builtin_ia32_psrlv4si (v4si,v4si)
10167v4di __builtin_ia32_psrlv4di (v4di,v4di)
10168v2di __builtin_ia32_psrlv2di (v2di,v2di)
10169v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
10170v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
10171v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
10172v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
10173v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
10174v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
10175v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
10176v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
10177v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
10178v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
10179v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
10180v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
10181v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
10182v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
10183v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
10184v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
10185@end smallexample
10186
8b96a312
L
10187The following built-in functions are available when @option{-maes} is
10188used. All of them generate the machine instruction that is part of the
10189name.
10190
10191@smallexample
10192v2di __builtin_ia32_aesenc128 (v2di, v2di)
10193v2di __builtin_ia32_aesenclast128 (v2di, v2di)
10194v2di __builtin_ia32_aesdec128 (v2di, v2di)
10195v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
10196v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
10197v2di __builtin_ia32_aesimc128 (v2di)
10198@end smallexample
10199
10200The following built-in function is available when @option{-mpclmul} is
10201used.
10202
10203@table @code
10204@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
10205Generates the @code{pclmulqdq} machine instruction.
10206@end table
10207
4ee89d5f
L
10208The following built-in function is available when @option{-mfsgsbase} is
10209used. All of them generate the machine instruction that is part of the
10210name.
10211
10212@smallexample
10213unsigned int __builtin_ia32_rdfsbase32 (void)
10214unsigned long long __builtin_ia32_rdfsbase64 (void)
10215unsigned int __builtin_ia32_rdgsbase32 (void)
10216unsigned long long __builtin_ia32_rdgsbase64 (void)
10217void _writefsbase_u32 (unsigned int)
10218void _writefsbase_u64 (unsigned long long)
10219void _writegsbase_u32 (unsigned int)
10220void _writegsbase_u64 (unsigned long long)
10221@end smallexample
10222
10223The following built-in function is available when @option{-mrdrnd} is
10224used. All of them generate the machine instruction that is part of the
10225name.
10226
10227@smallexample
11c4a1c0
L
10228unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
10229unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
10230unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
4ee89d5f
L
10231@end smallexample
10232
21efb4d4 10233The following built-in functions are available when @option{-msse4a} is used.
291d9a2d 10234All of them generate the machine instruction that is part of the name.
21efb4d4
HJ
10235
10236@smallexample
291d9a2d
UB
10237void __builtin_ia32_movntsd (double *, v2df)
10238void __builtin_ia32_movntss (float *, v4sf)
10239v2di __builtin_ia32_extrq (v2di, v16qi)
10240v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
10241v2di __builtin_ia32_insertq (v2di, v2di)
10242v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
21efb4d4
HJ
10243@end smallexample
10244
43a8b705
HJ
10245The following built-in functions are available when @option{-mxop} is used.
10246@smallexample
10247v2df __builtin_ia32_vfrczpd (v2df)
10248v4sf __builtin_ia32_vfrczps (v4sf)
10249v2df __builtin_ia32_vfrczsd (v2df, v2df)
10250v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
10251v4df __builtin_ia32_vfrczpd256 (v4df)
10252v8sf __builtin_ia32_vfrczps256 (v8sf)
10253v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
10254v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
10255v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
10256v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
10257v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
10258v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
10259v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
10260v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
10261v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
10262v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
10263v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
10264v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
10265v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
10266v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
10267v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10268v4si __builtin_ia32_vpcomeqd (v4si, v4si)
10269v2di __builtin_ia32_vpcomeqq (v2di, v2di)
10270v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
10271v4si __builtin_ia32_vpcomequd (v4si, v4si)
10272v2di __builtin_ia32_vpcomequq (v2di, v2di)
10273v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
10274v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10275v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
10276v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
10277v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
10278v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
10279v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
10280v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
10281v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
10282v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
10283v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
10284v4si __builtin_ia32_vpcomged (v4si, v4si)
10285v2di __builtin_ia32_vpcomgeq (v2di, v2di)
10286v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
10287v4si __builtin_ia32_vpcomgeud (v4si, v4si)
10288v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
10289v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
10290v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
10291v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
10292v4si __builtin_ia32_vpcomgtd (v4si, v4si)
10293v2di __builtin_ia32_vpcomgtq (v2di, v2di)
10294v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
10295v4si __builtin_ia32_vpcomgtud (v4si, v4si)
10296v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
10297v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
10298v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
10299v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
10300v4si __builtin_ia32_vpcomled (v4si, v4si)
10301v2di __builtin_ia32_vpcomleq (v2di, v2di)
10302v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
10303v4si __builtin_ia32_vpcomleud (v4si, v4si)
10304v2di __builtin_ia32_vpcomleuq (v2di, v2di)
10305v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
10306v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
10307v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
10308v4si __builtin_ia32_vpcomltd (v4si, v4si)
10309v2di __builtin_ia32_vpcomltq (v2di, v2di)
10310v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
10311v4si __builtin_ia32_vpcomltud (v4si, v4si)
10312v2di __builtin_ia32_vpcomltuq (v2di, v2di)
10313v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
10314v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
10315v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
10316v4si __builtin_ia32_vpcomned (v4si, v4si)
10317v2di __builtin_ia32_vpcomneq (v2di, v2di)
10318v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
10319v4si __builtin_ia32_vpcomneud (v4si, v4si)
10320v2di __builtin_ia32_vpcomneuq (v2di, v2di)
10321v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
10322v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
10323v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
10324v4si __builtin_ia32_vpcomtrued (v4si, v4si)
10325v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
10326v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
10327v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
10328v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
10329v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
10330v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
10331v4si __builtin_ia32_vphaddbd (v16qi)
10332v2di __builtin_ia32_vphaddbq (v16qi)
10333v8hi __builtin_ia32_vphaddbw (v16qi)
10334v2di __builtin_ia32_vphadddq (v4si)
10335v4si __builtin_ia32_vphaddubd (v16qi)
10336v2di __builtin_ia32_vphaddubq (v16qi)
10337v8hi __builtin_ia32_vphaddubw (v16qi)
10338v2di __builtin_ia32_vphaddudq (v4si)
10339v4si __builtin_ia32_vphadduwd (v8hi)
10340v2di __builtin_ia32_vphadduwq (v8hi)
10341v4si __builtin_ia32_vphaddwd (v8hi)
10342v2di __builtin_ia32_vphaddwq (v8hi)
10343v8hi __builtin_ia32_vphsubbw (v16qi)
10344v2di __builtin_ia32_vphsubdq (v4si)
10345v4si __builtin_ia32_vphsubwd (v8hi)
10346v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
10347v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
10348v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
10349v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
10350v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
10351v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
10352v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
10353v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
10354v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
10355v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
10356v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
10357v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
10358v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
10359v16qi __builtin_ia32_vprotb (v16qi, v16qi)
10360v4si __builtin_ia32_vprotd (v4si, v4si)
10361v2di __builtin_ia32_vprotq (v2di, v2di)
10362v8hi __builtin_ia32_vprotw (v8hi, v8hi)
10363v16qi __builtin_ia32_vpshab (v16qi, v16qi)
10364v4si __builtin_ia32_vpshad (v4si, v4si)
10365v2di __builtin_ia32_vpshaq (v2di, v2di)
10366v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
10367v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
10368v4si __builtin_ia32_vpshld (v4si, v4si)
10369v2di __builtin_ia32_vpshlq (v2di, v2di)
10370v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
10371@end smallexample
10372
cbf2e4d4
HJ
10373The following built-in functions are available when @option{-mfma4} is used.
10374All of them generate the machine instruction that is part of the name
10375with MMX registers.
10376
10377@smallexample
10378v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
10379v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
10380v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
10381v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
10382v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
10383v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
10384v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
10385v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
10386v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
10387v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
10388v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
10389v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
10390v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
10391v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
10392v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
10393v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
10394v2df __builtin_ia32_fmaddsubpd (v2df, v2df, v2df)
10395v4sf __builtin_ia32_fmaddsubps (v4sf, v4sf, v4sf)
10396v2df __builtin_ia32_fmsubaddpd (v2df, v2df, v2df)
10397v4sf __builtin_ia32_fmsubaddps (v4sf, v4sf, v4sf)
10398v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
10399v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
10400v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
10401v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
10402v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
10403v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
10404v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
10405v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
10406v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
10407v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
10408v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
10409v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
10410
10411@end smallexample
3e901069
HJ
10412
10413The following built-in functions are available when @option{-mlwp} is used.
10414
10415@smallexample
10416void __builtin_ia32_llwpcb16 (void *);
10417void __builtin_ia32_llwpcb32 (void *);
10418void __builtin_ia32_llwpcb64 (void *);
10419void * __builtin_ia32_llwpcb16 (void);
10420void * __builtin_ia32_llwpcb32 (void);
10421void * __builtin_ia32_llwpcb64 (void);
10422void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
10423void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
10424void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
10425unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
10426unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
10427unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
10428@end smallexample
cbf2e4d4 10429
91afcfa3
QN
10430The following built-in functions are available when @option{-mbmi} is used.
10431All of them generate the machine instruction that is part of the name.
10432@smallexample
10433unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
10434unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
5fcafa60
KY
10435@end smallexample
10436
82feeb8d
L
10437The following built-in functions are available when @option{-mbmi2} is used.
10438All of them generate the machine instruction that is part of the name.
10439@smallexample
10440unsigned int _bzhi_u32 (unsigned int, unsigned int)
10441unsigned int _pdep_u32 (unsigned int, unsigned int)
10442unsigned int _pext_u32 (unsigned int, unsigned int)
10443unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
10444unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
10445unsigned long long _pext_u64 (unsigned long long, unsigned long long)
10446@end smallexample
10447
5fcafa60
KY
10448The following built-in functions are available when @option{-mlzcnt} is used.
10449All of them generate the machine instruction that is part of the name.
10450@smallexample
91afcfa3
QN
10451unsigned short __builtin_ia32_lzcnt_16(unsigned short);
10452unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
10453unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
10454@end smallexample
10455
94d13ad1
QN
10456The following built-in functions are available when @option{-mtbm} is used.
10457Both of them generate the immediate form of the bextr machine instruction.
10458@smallexample
10459unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
10460unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
10461@end smallexample
10462
10463
0975678f
JM
10464The following built-in functions are available when @option{-m3dnow} is used.
10465All of them generate the machine instruction that is part of the name.
10466
3ab51846 10467@smallexample
0975678f
JM
10468void __builtin_ia32_femms (void)
10469v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
10470v2si __builtin_ia32_pf2id (v2sf)
10471v2sf __builtin_ia32_pfacc (v2sf, v2sf)
10472v2sf __builtin_ia32_pfadd (v2sf, v2sf)
10473v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
10474v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
10475v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
10476v2sf __builtin_ia32_pfmax (v2sf, v2sf)
10477v2sf __builtin_ia32_pfmin (v2sf, v2sf)
10478v2sf __builtin_ia32_pfmul (v2sf, v2sf)
10479v2sf __builtin_ia32_pfrcp (v2sf)
10480v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
10481v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
10482v2sf __builtin_ia32_pfrsqrt (v2sf)
10483v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
10484v2sf __builtin_ia32_pfsub (v2sf, v2sf)
10485v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
10486v2sf __builtin_ia32_pi2fd (v2si)
10487v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
3ab51846 10488@end smallexample
0975678f
JM
10489
10490The following built-in functions are available when both @option{-m3dnow}
10491and @option{-march=athlon} are used. All of them generate the machine
10492instruction that is part of the name.
10493
3ab51846 10494@smallexample
0975678f
JM
10495v2si __builtin_ia32_pf2iw (v2sf)
10496v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
10497v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
10498v2sf __builtin_ia32_pi2fw (v2si)
10499v2sf __builtin_ia32_pswapdsf (v2sf)
10500v2si __builtin_ia32_pswapdsi (v2si)
3ab51846 10501@end smallexample
0975678f 10502
118ea793
CF
10503@node MIPS DSP Built-in Functions
10504@subsection MIPS DSP Built-in Functions
10505
10506The MIPS DSP Application-Specific Extension (ASE) includes new
10507instructions that are designed to improve the performance of DSP and
10508media applications. It provides instructions that operate on packed
32041385 105098-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
118ea793
CF
10510
10511GCC supports MIPS DSP operations using both the generic
10512vector extensions (@pxref{Vector Extensions}) and a collection of
10513MIPS-specific built-in functions. Both kinds of support are
10514enabled by the @option{-mdsp} command-line option.
10515
32041385
CF
10516Revision 2 of the ASE was introduced in the second half of 2006.
10517This revision adds extra instructions to the original ASE, but is
10518otherwise backwards-compatible with it. You can select revision 2
10519using the command-line option @option{-mdspr2}; this option implies
10520@option{-mdsp}.
10521
1e27273f
CM
10522The SCOUNT and POS bits of the DSP control register are global. The
10523WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
10524POS bits. During optimization, the compiler will not delete these
10525instructions and it will not delete calls to functions containing
10526these instructions.
10527
118ea793
CF
10528At present, GCC only provides support for operations on 32-bit
10529vectors. The vector type associated with 8-bit integer data is
32041385
CF
10530usually called @code{v4i8}, the vector type associated with Q7
10531is usually called @code{v4q7}, the vector type associated with 16-bit
10532integer data is usually called @code{v2i16}, and the vector type
10533associated with Q15 is usually called @code{v2q15}. They can be
10534defined in C as follows:
118ea793
CF
10535
10536@smallexample
32041385
CF
10537typedef signed char v4i8 __attribute__ ((vector_size(4)));
10538typedef signed char v4q7 __attribute__ ((vector_size(4)));
10539typedef short v2i16 __attribute__ ((vector_size(4)));
118ea793
CF
10540typedef short v2q15 __attribute__ ((vector_size(4)));
10541@end smallexample
10542
32041385
CF
10543@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
10544initialized in the same way as aggregates. For example:
118ea793
CF
10545
10546@smallexample
10547v4i8 a = @{1, 2, 3, 4@};
10548v4i8 b;
10549b = (v4i8) @{5, 6, 7, 8@};
10550
10551v2q15 c = @{0x0fcb, 0x3a75@};
10552v2q15 d;
10553d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
10554@end smallexample
10555
10556@emph{Note:} The CPU's endianness determines the order in which values
10557are packed. On little-endian targets, the first value is the least
10558significant and the last value is the most significant. The opposite
10559order applies to big-endian targets. For example, the code above will
10560set the lowest byte of @code{a} to @code{1} on little-endian targets
10561and @code{4} on big-endian targets.
10562
32041385 10563@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
118ea793 10564representation. As shown in this example, the integer representation
32041385
CF
10565of a Q7 value can be obtained by multiplying the fractional value by
10566@code{0x1.0p7}. The equivalent for Q15 values is to multiply by
118ea793
CF
10567@code{0x1.0p15}. The equivalent for Q31 values is to multiply by
10568@code{0x1.0p31}.
10569
10570The table below lists the @code{v4i8} and @code{v2q15} operations for which
10571hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
10572and @code{c} and @code{d} are @code{v2q15} values.
10573
10574@multitable @columnfractions .50 .50
10575@item C code @tab MIPS instruction
10576@item @code{a + b} @tab @code{addu.qb}
10577@item @code{c + d} @tab @code{addq.ph}
10578@item @code{a - b} @tab @code{subu.qb}
10579@item @code{c - d} @tab @code{subq.ph}
10580@end multitable
10581
32041385
CF
10582The table below lists the @code{v2i16} operation for which
10583hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
10584@code{v2i16} values.
10585
10586@multitable @columnfractions .50 .50
10587@item C code @tab MIPS instruction
10588@item @code{e * f} @tab @code{mul.ph}
10589@end multitable
10590
118ea793
CF
10591It is easier to describe the DSP built-in functions if we first define
10592the following types:
10593
10594@smallexample
10595typedef int q31;
10596typedef int i32;
32041385 10597typedef unsigned int ui32;
118ea793
CF
10598typedef long long a64;
10599@end smallexample
10600
10601@code{q31} and @code{i32} are actually the same as @code{int}, but we
10602use @code{q31} to indicate a Q31 fractional value and @code{i32} to
10603indicate a 32-bit integer value. Similarly, @code{a64} is the same as
10604@code{long long}, but we use @code{a64} to indicate values that will
10605be placed in one of the four DSP accumulators (@code{$ac0},
10606@code{$ac1}, @code{$ac2} or @code{$ac3}).
10607
10608Also, some built-in functions prefer or require immediate numbers as
10609parameters, because the corresponding DSP instructions accept both immediate
10610numbers and register operands, or accept immediate numbers only. The
10611immediate parameters are listed as follows.
10612
10613@smallexample
32041385 10614imm0_3: 0 to 3.
118ea793
CF
10615imm0_7: 0 to 7.
10616imm0_15: 0 to 15.
10617imm0_31: 0 to 31.
10618imm0_63: 0 to 63.
10619imm0_255: 0 to 255.
10620imm_n32_31: -32 to 31.
10621imm_n512_511: -512 to 511.
10622@end smallexample
10623
10624The following built-in functions map directly to a particular MIPS DSP
10625instruction. Please refer to the architecture specification
10626for details on what each instruction does.
10627
10628@smallexample
10629v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
10630v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
10631q31 __builtin_mips_addq_s_w (q31, q31)
10632v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
10633v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
10634v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
10635v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
10636q31 __builtin_mips_subq_s_w (q31, q31)
10637v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
10638v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
10639i32 __builtin_mips_addsc (i32, i32)
10640i32 __builtin_mips_addwc (i32, i32)
10641i32 __builtin_mips_modsub (i32, i32)
10642i32 __builtin_mips_raddu_w_qb (v4i8)
10643v2q15 __builtin_mips_absq_s_ph (v2q15)
10644q31 __builtin_mips_absq_s_w (q31)
10645v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
10646v2q15 __builtin_mips_precrq_ph_w (q31, q31)
10647v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
10648v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
10649q31 __builtin_mips_preceq_w_phl (v2q15)
10650q31 __builtin_mips_preceq_w_phr (v2q15)
10651v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
10652v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
10653v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
10654v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
10655v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
10656v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
10657v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
10658v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
10659v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
10660v4i8 __builtin_mips_shll_qb (v4i8, i32)
10661v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
10662v2q15 __builtin_mips_shll_ph (v2q15, i32)
10663v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
10664v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
10665q31 __builtin_mips_shll_s_w (q31, imm0_31)
10666q31 __builtin_mips_shll_s_w (q31, i32)
10667v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
10668v4i8 __builtin_mips_shrl_qb (v4i8, i32)
10669v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
10670v2q15 __builtin_mips_shra_ph (v2q15, i32)
10671v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
10672v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
10673q31 __builtin_mips_shra_r_w (q31, imm0_31)
10674q31 __builtin_mips_shra_r_w (q31, i32)
10675v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
10676v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
10677v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
10678q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
10679q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
10680a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
10681a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
10682a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
10683a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
10684a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
10685a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
10686a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
10687a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
10688a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
10689a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
10690a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
10691a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
10692a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
10693i32 __builtin_mips_bitrev (i32)
10694i32 __builtin_mips_insv (i32, i32)
10695v4i8 __builtin_mips_repl_qb (imm0_255)
10696v4i8 __builtin_mips_repl_qb (i32)
10697v2q15 __builtin_mips_repl_ph (imm_n512_511)
10698v2q15 __builtin_mips_repl_ph (i32)
10699void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
10700void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
10701void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
10702i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
10703i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
10704i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
10705void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
10706void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
10707void __builtin_mips_cmp_le_ph (v2q15, v2q15)
10708v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
10709v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
10710v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
10711i32 __builtin_mips_extr_w (a64, imm0_31)
10712i32 __builtin_mips_extr_w (a64, i32)
10713i32 __builtin_mips_extr_r_w (a64, imm0_31)
10714i32 __builtin_mips_extr_s_h (a64, i32)
10715i32 __builtin_mips_extr_rs_w (a64, imm0_31)
10716i32 __builtin_mips_extr_rs_w (a64, i32)
10717i32 __builtin_mips_extr_s_h (a64, imm0_31)
10718i32 __builtin_mips_extr_r_w (a64, i32)
10719i32 __builtin_mips_extp (a64, imm0_31)
10720i32 __builtin_mips_extp (a64, i32)
10721i32 __builtin_mips_extpdp (a64, imm0_31)
10722i32 __builtin_mips_extpdp (a64, i32)
10723a64 __builtin_mips_shilo (a64, imm_n32_31)
10724a64 __builtin_mips_shilo (a64, i32)
10725a64 __builtin_mips_mthlip (a64, i32)
10726void __builtin_mips_wrdsp (i32, imm0_63)
10727i32 __builtin_mips_rddsp (imm0_63)
10728i32 __builtin_mips_lbux (void *, i32)
10729i32 __builtin_mips_lhx (void *, i32)
10730i32 __builtin_mips_lwx (void *, i32)
770da00a 10731a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
118ea793 10732i32 __builtin_mips_bposge32 (void)
293b77b0
CF
10733a64 __builtin_mips_madd (a64, i32, i32);
10734a64 __builtin_mips_maddu (a64, ui32, ui32);
10735a64 __builtin_mips_msub (a64, i32, i32);
10736a64 __builtin_mips_msubu (a64, ui32, ui32);
10737a64 __builtin_mips_mult (i32, i32);
10738a64 __builtin_mips_multu (ui32, ui32);
118ea793
CF
10739@end smallexample
10740
32041385
CF
10741The following built-in functions map directly to a particular MIPS DSP REV 2
10742instruction. Please refer to the architecture specification
10743for details on what each instruction does.
10744
10745@smallexample
10746v4q7 __builtin_mips_absq_s_qb (v4q7);
10747v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
10748v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
10749v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
10750v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
10751i32 __builtin_mips_append (i32, i32, imm0_31);
10752i32 __builtin_mips_balign (i32, i32, imm0_3);
10753i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
10754i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
10755i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
10756a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
10757a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
32041385
CF
10758v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
10759v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
10760q31 __builtin_mips_mulq_rs_w (q31, q31);
10761v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
10762q31 __builtin_mips_mulq_s_w (q31, q31);
10763a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
32041385
CF
10764v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
10765v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
10766v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
10767i32 __builtin_mips_prepend (i32, i32, imm0_31);
10768v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
10769v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
10770v4i8 __builtin_mips_shra_qb (v4i8, i32);
10771v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
10772v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
10773v2i16 __builtin_mips_shrl_ph (v2i16, i32);
10774v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
10775v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
10776v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
10777v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
10778v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
10779v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
10780q31 __builtin_mips_addqh_w (q31, q31);
10781q31 __builtin_mips_addqh_r_w (q31, q31);
10782v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
10783v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
10784q31 __builtin_mips_subqh_w (q31, q31);
10785q31 __builtin_mips_subqh_r_w (q31, q31);
10786a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
10787a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
10788a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
10789a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
10790a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
10791a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
10792@end smallexample
10793
10794
d840bfd3
CF
10795@node MIPS Paired-Single Support
10796@subsection MIPS Paired-Single Support
10797
10798The MIPS64 architecture includes a number of instructions that
10799operate on pairs of single-precision floating-point values.
10800Each pair is packed into a 64-bit floating-point register,
10801with one element being designated the ``upper half'' and
10802the other being designated the ``lower half''.
10803
10804GCC supports paired-single operations using both the generic
10805vector extensions (@pxref{Vector Extensions}) and a collection of
10806MIPS-specific built-in functions. Both kinds of support are
10807enabled by the @option{-mpaired-single} command-line option.
10808
10809The vector type associated with paired-single values is usually
10810called @code{v2sf}. It can be defined in C as follows:
10811
10812@smallexample
10813typedef float v2sf __attribute__ ((vector_size (8)));
10814@end smallexample
10815
10816@code{v2sf} values are initialized in the same way as aggregates.
10817For example:
10818
10819@smallexample
10820v2sf a = @{1.5, 9.1@};
10821v2sf b;
10822float e, f;
10823b = (v2sf) @{e, f@};
10824@end smallexample
10825
10826@emph{Note:} The CPU's endianness determines which value is stored in
10827the upper half of a register and which value is stored in the lower half.
10828On little-endian targets, the first value is the lower one and the second
10829value is the upper one. The opposite order applies to big-endian targets.
10830For example, the code above will set the lower half of @code{a} to
10831@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
10832
93581857
MS
10833@node MIPS Loongson Built-in Functions
10834@subsection MIPS Loongson Built-in Functions
10835
10836GCC provides intrinsics to access the SIMD instructions provided by the
10837ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
10838available after inclusion of the @code{loongson.h} header file,
10839operate on the following 64-bit vector types:
10840
10841@itemize
10842@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
10843@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
10844@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
10845@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
10846@item @code{int16x4_t}, a vector of four signed 16-bit integers;
10847@item @code{int32x2_t}, a vector of two signed 32-bit integers.
10848@end itemize
10849
10850The intrinsics provided are listed below; each is named after the
10851machine instruction to which it corresponds, with suffixes added as
10852appropriate to distinguish intrinsics that expand to the same machine
10853instruction yet have different argument types. Refer to the architecture
10854documentation for a description of the functionality of each
10855instruction.
10856
10857@smallexample
10858int16x4_t packsswh (int32x2_t s, int32x2_t t);
10859int8x8_t packsshb (int16x4_t s, int16x4_t t);
10860uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
10861uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
10862uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
10863uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
10864int32x2_t paddw_s (int32x2_t s, int32x2_t t);
10865int16x4_t paddh_s (int16x4_t s, int16x4_t t);
10866int8x8_t paddb_s (int8x8_t s, int8x8_t t);
10867uint64_t paddd_u (uint64_t s, uint64_t t);
10868int64_t paddd_s (int64_t s, int64_t t);
10869int16x4_t paddsh (int16x4_t s, int16x4_t t);
10870int8x8_t paddsb (int8x8_t s, int8x8_t t);
10871uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
10872uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
10873uint64_t pandn_ud (uint64_t s, uint64_t t);
10874uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
10875uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
10876uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
10877int64_t pandn_sd (int64_t s, int64_t t);
10878int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
10879int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
10880int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
10881uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
10882uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
10883uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
10884uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
10885uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
10886int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
10887int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
10888int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
10889uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
10890uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
10891uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
10892int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
10893int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
10894int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
10895uint16x4_t pextrh_u (uint16x4_t s, int field);
10896int16x4_t pextrh_s (int16x4_t s, int field);
10897uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
10898uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
10899uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
10900uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
10901int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
10902int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
10903int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
10904int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
10905int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
10906int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
10907uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
10908int16x4_t pminsh (int16x4_t s, int16x4_t t);
10909uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
10910uint8x8_t pmovmskb_u (uint8x8_t s);
10911int8x8_t pmovmskb_s (int8x8_t s);
10912uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
10913int16x4_t pmulhh (int16x4_t s, int16x4_t t);
10914int16x4_t pmullh (int16x4_t s, int16x4_t t);
10915int64_t pmuluw (uint32x2_t s, uint32x2_t t);
10916uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
10917uint16x4_t biadd (uint8x8_t s);
10918uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
10919uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
10920int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
10921uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
10922int16x4_t psllh_s (int16x4_t s, uint8_t amount);
10923uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
10924int32x2_t psllw_s (int32x2_t s, uint8_t amount);
10925uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
10926int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
10927uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
10928int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
10929uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
10930int16x4_t psrah_s (int16x4_t s, uint8_t amount);
10931uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
10932int32x2_t psraw_s (int32x2_t s, uint8_t amount);
10933uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
10934uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
10935uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
10936int32x2_t psubw_s (int32x2_t s, int32x2_t t);
10937int16x4_t psubh_s (int16x4_t s, int16x4_t t);
10938int8x8_t psubb_s (int8x8_t s, int8x8_t t);
10939uint64_t psubd_u (uint64_t s, uint64_t t);
10940int64_t psubd_s (int64_t s, int64_t t);
10941int16x4_t psubsh (int16x4_t s, int16x4_t t);
10942int8x8_t psubsb (int8x8_t s, int8x8_t t);
10943uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
10944uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
10945uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
10946uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
10947uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
10948int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
10949int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
10950int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
10951uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
10952uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
10953uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
10954int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
10955int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
10956int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
10957@end smallexample
10958
d840bfd3
CF
10959@menu
10960* Paired-Single Arithmetic::
10961* Paired-Single Built-in Functions::
10962* MIPS-3D Built-in Functions::
10963@end menu
10964
10965@node Paired-Single Arithmetic
10966@subsubsection Paired-Single Arithmetic
10967
10968The table below lists the @code{v2sf} operations for which hardware
10969support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
10970values and @code{x} is an integral value.
10971
10972@multitable @columnfractions .50 .50
10973@item C code @tab MIPS instruction
10974@item @code{a + b} @tab @code{add.ps}
10975@item @code{a - b} @tab @code{sub.ps}
10976@item @code{-a} @tab @code{neg.ps}
10977@item @code{a * b} @tab @code{mul.ps}
10978@item @code{a * b + c} @tab @code{madd.ps}
10979@item @code{a * b - c} @tab @code{msub.ps}
10980@item @code{-(a * b + c)} @tab @code{nmadd.ps}
10981@item @code{-(a * b - c)} @tab @code{nmsub.ps}
10982@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
10983@end multitable
10984
10985Note that the multiply-accumulate instructions can be disabled
10986using the command-line option @code{-mno-fused-madd}.
10987
10988@node Paired-Single Built-in Functions
10989@subsubsection Paired-Single Built-in Functions
10990
10991The following paired-single functions map directly to a particular
10992MIPS instruction. Please refer to the architecture specification
10993for details on what each instruction does.
10994
10995@table @code
10996@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
10997Pair lower lower (@code{pll.ps}).
10998
10999@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
11000Pair upper lower (@code{pul.ps}).
11001
11002@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
11003Pair lower upper (@code{plu.ps}).
11004
11005@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
11006Pair upper upper (@code{puu.ps}).
11007
11008@item v2sf __builtin_mips_cvt_ps_s (float, float)
11009Convert pair to paired single (@code{cvt.ps.s}).
11010
11011@item float __builtin_mips_cvt_s_pl (v2sf)
11012Convert pair lower to single (@code{cvt.s.pl}).
11013
11014@item float __builtin_mips_cvt_s_pu (v2sf)
11015Convert pair upper to single (@code{cvt.s.pu}).
11016
11017@item v2sf __builtin_mips_abs_ps (v2sf)
11018Absolute value (@code{abs.ps}).
11019
11020@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
11021Align variable (@code{alnv.ps}).
11022
11023@emph{Note:} The value of the third parameter must be 0 or 4
11024modulo 8, otherwise the result will be unpredictable. Please read the
11025instruction description for details.
11026@end table
11027
11028The following multi-instruction functions are also available.
11029In each case, @var{cond} can be any of the 16 floating-point conditions:
11030@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11031@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
11032@code{lt}, @code{nge}, @code{le} or @code{ngt}.
11033
11034@table @code
11035@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11036@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11037Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
11038@code{movt.ps}/@code{movf.ps}).
11039
11040The @code{movt} functions return the value @var{x} computed by:
11041
11042@smallexample
11043c.@var{cond}.ps @var{cc},@var{a},@var{b}
11044mov.ps @var{x},@var{c}
11045movt.ps @var{x},@var{d},@var{cc}
11046@end smallexample
11047
11048The @code{movf} functions are similar but use @code{movf.ps} instead
11049of @code{movt.ps}.
11050
11051@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11052@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11053Comparison of two paired-single values (@code{c.@var{cond}.ps},
11054@code{bc1t}/@code{bc1f}).
11055
11056These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11057and return either the upper or lower half of the result. For example:
11058
11059@smallexample
11060v2sf a, b;
11061if (__builtin_mips_upper_c_eq_ps (a, b))
11062 upper_halves_are_equal ();
11063else
11064 upper_halves_are_unequal ();
11065
11066if (__builtin_mips_lower_c_eq_ps (a, b))
11067 lower_halves_are_equal ();
11068else
11069 lower_halves_are_unequal ();
11070@end smallexample
11071@end table
11072
11073@node MIPS-3D Built-in Functions
11074@subsubsection MIPS-3D Built-in Functions
11075
11076The MIPS-3D Application-Specific Extension (ASE) includes additional
11077paired-single instructions that are designed to improve the performance
11078of 3D graphics operations. Support for these instructions is controlled
11079by the @option{-mips3d} command-line option.
11080
11081The functions listed below map directly to a particular MIPS-3D
11082instruction. Please refer to the architecture specification for
11083more details on what each instruction does.
11084
11085@table @code
11086@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
11087Reduction add (@code{addr.ps}).
11088
11089@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
11090Reduction multiply (@code{mulr.ps}).
11091
11092@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
11093Convert paired single to paired word (@code{cvt.pw.ps}).
11094
11095@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
11096Convert paired word to paired single (@code{cvt.ps.pw}).
11097
11098@item float __builtin_mips_recip1_s (float)
11099@itemx double __builtin_mips_recip1_d (double)
11100@itemx v2sf __builtin_mips_recip1_ps (v2sf)
11101Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
11102
11103@item float __builtin_mips_recip2_s (float, float)
11104@itemx double __builtin_mips_recip2_d (double, double)
11105@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
11106Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
11107
11108@item float __builtin_mips_rsqrt1_s (float)
11109@itemx double __builtin_mips_rsqrt1_d (double)
11110@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
11111Reduced precision reciprocal square root (sequence step 1)
11112(@code{rsqrt1.@var{fmt}}).
11113
11114@item float __builtin_mips_rsqrt2_s (float, float)
11115@itemx double __builtin_mips_rsqrt2_d (double, double)
11116@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
11117Reduced precision reciprocal square root (sequence step 2)
11118(@code{rsqrt2.@var{fmt}}).
11119@end table
11120
11121The following multi-instruction functions are also available.
11122In each case, @var{cond} can be any of the 16 floating-point conditions:
11123@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11124@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
11125@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
11126
11127@table @code
11128@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
11129@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
11130Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
11131@code{bc1t}/@code{bc1f}).
11132
11133These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
11134or @code{cabs.@var{cond}.d} and return the result as a boolean value.
11135For example:
11136
11137@smallexample
11138float a, b;
11139if (__builtin_mips_cabs_eq_s (a, b))
11140 true ();
11141else
11142 false ();
11143@end smallexample
11144
11145@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11146@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11147Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
11148@code{bc1t}/@code{bc1f}).
11149
11150These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
11151and return either the upper or lower half of the result. For example:
11152
11153@smallexample
11154v2sf a, b;
11155if (__builtin_mips_upper_cabs_eq_ps (a, b))
11156 upper_halves_are_equal ();
11157else
11158 upper_halves_are_unequal ();
11159
11160if (__builtin_mips_lower_cabs_eq_ps (a, b))
11161 lower_halves_are_equal ();
11162else
11163 lower_halves_are_unequal ();
11164@end smallexample
11165
11166@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11167@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11168Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
11169@code{movt.ps}/@code{movf.ps}).
11170
11171The @code{movt} functions return the value @var{x} computed by:
11172
11173@smallexample
11174cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
11175mov.ps @var{x},@var{c}
11176movt.ps @var{x},@var{d},@var{cc}
11177@end smallexample
11178
11179The @code{movf} functions are similar but use @code{movf.ps} instead
11180of @code{movt.ps}.
11181
11182@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11183@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11184@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11185@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11186Comparison of two paired-single values
11187(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11188@code{bc1any2t}/@code{bc1any2f}).
11189
11190These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11191or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
11192result is true and the @code{all} forms return true if both results are true.
11193For example:
11194
11195@smallexample
11196v2sf a, b;
11197if (__builtin_mips_any_c_eq_ps (a, b))
11198 one_is_true ();
11199else
11200 both_are_false ();
11201
11202if (__builtin_mips_all_c_eq_ps (a, b))
11203 both_are_true ();
11204else
11205 one_is_false ();
11206@end smallexample
11207
11208@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11209@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11210@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11211@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11212Comparison of four paired-single values
11213(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11214@code{bc1any4t}/@code{bc1any4f}).
11215
11216These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
11217to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
11218The @code{any} forms return true if any of the four results are true
11219and the @code{all} forms return true if all four results are true.
11220For example:
11221
11222@smallexample
11223v2sf a, b, c, d;
11224if (__builtin_mips_any_c_eq_4s (a, b, c, d))
11225 some_are_true ();
11226else
11227 all_are_false ();
11228
11229if (__builtin_mips_all_c_eq_4s (a, b, c, d))
11230 all_are_true ();
11231else
11232 some_are_false ();
11233@end smallexample
11234@end table
11235
358da97e
HS
11236@node picoChip Built-in Functions
11237@subsection picoChip Built-in Functions
11238
11239GCC provides an interface to selected machine instructions from the
11240picoChip instruction set.
11241
11242@table @code
11243@item int __builtin_sbc (int @var{value})
11244Sign bit count. Return the number of consecutive bits in @var{value}
11245which have the same value as the sign-bit. The result is the number of
11246leading sign bits minus one, giving the number of redundant sign bits in
11247@var{value}.
11248
11249@item int __builtin_byteswap (int @var{value})
11250Byte swap. Return the result of swapping the upper and lower bytes of
11251@var{value}.
11252
11253@item int __builtin_brev (int @var{value})
11254Bit reversal. Return the result of reversing the bits in
11255@var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
11256and so on.
11257
11258@item int __builtin_adds (int @var{x}, int @var{y})
11259Saturating addition. Return the result of adding @var{x} and @var{y},
11260storing the value 32767 if the result overflows.
11261
11262@item int __builtin_subs (int @var{x}, int @var{y})
11263Saturating subtraction. Return the result of subtracting @var{y} from
8ad1dde7 11264@var{x}, storing the value @minus{}32768 if the result overflows.
358da97e
HS
11265
11266@item void __builtin_halt (void)
11267Halt. The processor will stop execution. This built-in is useful for
11268implementing assertions.
11269
11270@end table
11271
4d210b07
RS
11272@node Other MIPS Built-in Functions
11273@subsection Other MIPS Built-in Functions
11274
11275GCC provides other MIPS-specific built-in functions:
11276
11277@table @code
11278@item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
11279Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
11280GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
11281when this function is available.
11282@end table
11283
29e6733c 11284@node PowerPC AltiVec/VSX Built-in Functions
333c8841
AH
11285@subsection PowerPC AltiVec Built-in Functions
11286
b0b343db
JJ
11287GCC provides an interface for the PowerPC family of processors to access
11288the AltiVec operations described in Motorola's AltiVec Programming
11289Interface Manual. The interface is made available by including
11290@code{<altivec.h>} and using @option{-maltivec} and
11291@option{-mabi=altivec}. The interface supports the following vector
11292types.
333c8841 11293
b0b343db
JJ
11294@smallexample
11295vector unsigned char
11296vector signed char
11297vector bool char
333c8841 11298
b0b343db
JJ
11299vector unsigned short
11300vector signed short
11301vector bool short
11302vector pixel
11303
11304vector unsigned int
11305vector signed int
11306vector bool int
11307vector float
11308@end smallexample
11309
29e6733c
MM
11310If @option{-mvsx} is used the following additional vector types are
11311implemented.
11312
11313@smallexample
11314vector unsigned long
11315vector signed long
11316vector double
11317@end smallexample
11318
11319The long types are only implemented for 64-bit code generation, and
11320the long type is only used in the floating point/integer conversion
11321instructions.
11322
b0b343db
JJ
11323GCC's implementation of the high-level language interface available from
11324C and C++ code differs from Motorola's documentation in several ways.
11325
11326@itemize @bullet
11327
11328@item
11329A vector constant is a list of constant expressions within curly braces.
11330
11331@item
11332A vector initializer requires no cast if the vector constant is of the
11333same type as the variable it is initializing.
333c8841 11334
b0b343db 11335@item
5edea4c6
JJ
11336If @code{signed} or @code{unsigned} is omitted, the signedness of the
11337vector type is the default signedness of the base type. The default
11338varies depending on the operating system, so a portable program should
11339always specify the signedness.
4e6e4e4c
JJ
11340
11341@item
11342Compiling with @option{-maltivec} adds keywords @code{__vector},
5950c3c9
BE
11343@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
11344@code{bool}. When compiling ISO C, the context-sensitive substitution
11345of the keywords @code{vector}, @code{pixel} and @code{bool} is
11346disabled. To use them, you must include @code{<altivec.h>} instead.
4e6e4e4c
JJ
11347
11348@item
11349GCC allows using a @code{typedef} name as the type specifier for a
11350vector type.
b0b343db
JJ
11351
11352@item
11353For C, overloaded functions are implemented with macros so the following
11354does not work:
90989b26
AH
11355
11356@smallexample
8254cb45 11357 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
90989b26
AH
11358@end smallexample
11359
b0b343db
JJ
11360Since @code{vec_add} is a macro, the vector constant in the example
11361is treated as four separate arguments. Wrap the entire argument in
11362parentheses for this to work.
11363@end itemize
90989b26 11364
ae4b4a02
AH
11365@emph{Note:} Only the @code{<altivec.h>} interface is supported.
11366Internally, GCC uses built-in functions to achieve the functionality in
11367the aforementioned header file, but they are not supported and are
11368subject to change without notice.
11369
b0b343db
JJ
11370The following interfaces are supported for the generic and specific
11371AltiVec operations and the AltiVec predicates. In cases where there
11372is a direct mapping between generic and specific operations, only the
11373generic names are shown here, although the specific operations can also
11374be used.
333c8841 11375
b0b343db
JJ
11376Arguments that are documented as @code{const int} require literal
11377integral values within the range required for that operation.
333c8841 11378
b0b343db
JJ
11379@smallexample
11380vector signed char vec_abs (vector signed char);
11381vector signed short vec_abs (vector signed short);
11382vector signed int vec_abs (vector signed int);
11383vector float vec_abs (vector float);
333c8841 11384
b0b343db
JJ
11385vector signed char vec_abss (vector signed char);
11386vector signed short vec_abss (vector signed short);
11387vector signed int vec_abss (vector signed int);
333c8841 11388
b0b343db
JJ
11389vector signed char vec_add (vector bool char, vector signed char);
11390vector signed char vec_add (vector signed char, vector bool char);
11391vector signed char vec_add (vector signed char, vector signed char);
11392vector unsigned char vec_add (vector bool char, vector unsigned char);
11393vector unsigned char vec_add (vector unsigned char, vector bool char);
924fcc4e
JM
11394vector unsigned char vec_add (vector unsigned char,
11395 vector unsigned char);
b0b343db
JJ
11396vector signed short vec_add (vector bool short, vector signed short);
11397vector signed short vec_add (vector signed short, vector bool short);
333c8841 11398vector signed short vec_add (vector signed short, vector signed short);
b0b343db 11399vector unsigned short vec_add (vector bool short,
924fcc4e
JM
11400 vector unsigned short);
11401vector unsigned short vec_add (vector unsigned short,
b0b343db 11402 vector bool short);
6e5bb5ad
JM
11403vector unsigned short vec_add (vector unsigned short,
11404 vector unsigned short);
b0b343db
JJ
11405vector signed int vec_add (vector bool int, vector signed int);
11406vector signed int vec_add (vector signed int, vector bool int);
333c8841 11407vector signed int vec_add (vector signed int, vector signed int);
b0b343db
JJ
11408vector unsigned int vec_add (vector bool int, vector unsigned int);
11409vector unsigned int vec_add (vector unsigned int, vector bool int);
333c8841
AH
11410vector unsigned int vec_add (vector unsigned int, vector unsigned int);
11411vector float vec_add (vector float, vector float);
11412
b0b343db
JJ
11413vector float vec_vaddfp (vector float, vector float);
11414
11415vector signed int vec_vadduwm (vector bool int, vector signed int);
11416vector signed int vec_vadduwm (vector signed int, vector bool int);
11417vector signed int vec_vadduwm (vector signed int, vector signed int);
11418vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
11419vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
11420vector unsigned int vec_vadduwm (vector unsigned int,
11421 vector unsigned int);
11422
11423vector signed short vec_vadduhm (vector bool short,
11424 vector signed short);
11425vector signed short vec_vadduhm (vector signed short,
11426 vector bool short);
11427vector signed short vec_vadduhm (vector signed short,
11428 vector signed short);
11429vector unsigned short vec_vadduhm (vector bool short,
11430 vector unsigned short);
11431vector unsigned short vec_vadduhm (vector unsigned short,
11432 vector bool short);
11433vector unsigned short vec_vadduhm (vector unsigned short,
11434 vector unsigned short);
11435
11436vector signed char vec_vaddubm (vector bool char, vector signed char);
11437vector signed char vec_vaddubm (vector signed char, vector bool char);
11438vector signed char vec_vaddubm (vector signed char, vector signed char);
11439vector unsigned char vec_vaddubm (vector bool char,
11440 vector unsigned char);
11441vector unsigned char vec_vaddubm (vector unsigned char,
11442 vector bool char);
11443vector unsigned char vec_vaddubm (vector unsigned char,
11444 vector unsigned char);
11445
333c8841
AH
11446vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
11447
b0b343db
JJ
11448vector unsigned char vec_adds (vector bool char, vector unsigned char);
11449vector unsigned char vec_adds (vector unsigned char, vector bool char);
924fcc4e
JM
11450vector unsigned char vec_adds (vector unsigned char,
11451 vector unsigned char);
b0b343db
JJ
11452vector signed char vec_adds (vector bool char, vector signed char);
11453vector signed char vec_adds (vector signed char, vector bool char);
333c8841 11454vector signed char vec_adds (vector signed char, vector signed char);
b0b343db 11455vector unsigned short vec_adds (vector bool short,
924fcc4e
JM
11456 vector unsigned short);
11457vector unsigned short vec_adds (vector unsigned short,
b0b343db 11458 vector bool short);
6e5bb5ad
JM
11459vector unsigned short vec_adds (vector unsigned short,
11460 vector unsigned short);
b0b343db
JJ
11461vector signed short vec_adds (vector bool short, vector signed short);
11462vector signed short vec_adds (vector signed short, vector bool short);
333c8841 11463vector signed short vec_adds (vector signed short, vector signed short);
b0b343db
JJ
11464vector unsigned int vec_adds (vector bool int, vector unsigned int);
11465vector unsigned int vec_adds (vector unsigned int, vector bool int);
333c8841 11466vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
b0b343db
JJ
11467vector signed int vec_adds (vector bool int, vector signed int);
11468vector signed int vec_adds (vector signed int, vector bool int);
333c8841
AH
11469vector signed int vec_adds (vector signed int, vector signed int);
11470
b0b343db
JJ
11471vector signed int vec_vaddsws (vector bool int, vector signed int);
11472vector signed int vec_vaddsws (vector signed int, vector bool int);
11473vector signed int vec_vaddsws (vector signed int, vector signed int);
11474
11475vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
11476vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
11477vector unsigned int vec_vadduws (vector unsigned int,
11478 vector unsigned int);
11479
11480vector signed short vec_vaddshs (vector bool short,
11481 vector signed short);
11482vector signed short vec_vaddshs (vector signed short,
11483 vector bool short);
11484vector signed short vec_vaddshs (vector signed short,
11485 vector signed short);
11486
11487vector unsigned short vec_vadduhs (vector bool short,
11488 vector unsigned short);
11489vector unsigned short vec_vadduhs (vector unsigned short,
11490 vector bool short);
11491vector unsigned short vec_vadduhs (vector unsigned short,
11492 vector unsigned short);
11493
11494vector signed char vec_vaddsbs (vector bool char, vector signed char);
11495vector signed char vec_vaddsbs (vector signed char, vector bool char);
11496vector signed char vec_vaddsbs (vector signed char, vector signed char);
11497
11498vector unsigned char vec_vaddubs (vector bool char,
11499 vector unsigned char);
11500vector unsigned char vec_vaddubs (vector unsigned char,
11501 vector bool char);
11502vector unsigned char vec_vaddubs (vector unsigned char,
11503 vector unsigned char);
11504
333c8841 11505vector float vec_and (vector float, vector float);
b0b343db
JJ
11506vector float vec_and (vector float, vector bool int);
11507vector float vec_and (vector bool int, vector float);
11508vector bool int vec_and (vector bool int, vector bool int);
11509vector signed int vec_and (vector bool int, vector signed int);
11510vector signed int vec_and (vector signed int, vector bool int);
333c8841 11511vector signed int vec_and (vector signed int, vector signed int);
b0b343db
JJ
11512vector unsigned int vec_and (vector bool int, vector unsigned int);
11513vector unsigned int vec_and (vector unsigned int, vector bool int);
333c8841 11514vector unsigned int vec_and (vector unsigned int, vector unsigned int);
b0b343db
JJ
11515vector bool short vec_and (vector bool short, vector bool short);
11516vector signed short vec_and (vector bool short, vector signed short);
11517vector signed short vec_and (vector signed short, vector bool short);
333c8841 11518vector signed short vec_and (vector signed short, vector signed short);
b0b343db 11519vector unsigned short vec_and (vector bool short,
924fcc4e
JM
11520 vector unsigned short);
11521vector unsigned short vec_and (vector unsigned short,
b0b343db 11522 vector bool short);
6e5bb5ad
JM
11523vector unsigned short vec_and (vector unsigned short,
11524 vector unsigned short);
b0b343db
JJ
11525vector signed char vec_and (vector bool char, vector signed char);
11526vector bool char vec_and (vector bool char, vector bool char);
11527vector signed char vec_and (vector signed char, vector bool char);
333c8841 11528vector signed char vec_and (vector signed char, vector signed char);
b0b343db
JJ
11529vector unsigned char vec_and (vector bool char, vector unsigned char);
11530vector unsigned char vec_and (vector unsigned char, vector bool char);
924fcc4e
JM
11531vector unsigned char vec_and (vector unsigned char,
11532 vector unsigned char);
333c8841
AH
11533
11534vector float vec_andc (vector float, vector float);
b0b343db
JJ
11535vector float vec_andc (vector float, vector bool int);
11536vector float vec_andc (vector bool int, vector float);
11537vector bool int vec_andc (vector bool int, vector bool int);
11538vector signed int vec_andc (vector bool int, vector signed int);
11539vector signed int vec_andc (vector signed int, vector bool int);
333c8841 11540vector signed int vec_andc (vector signed int, vector signed int);
b0b343db
JJ
11541vector unsigned int vec_andc (vector bool int, vector unsigned int);
11542vector unsigned int vec_andc (vector unsigned int, vector bool int);
333c8841 11543vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
b0b343db
JJ
11544vector bool short vec_andc (vector bool short, vector bool short);
11545vector signed short vec_andc (vector bool short, vector signed short);
11546vector signed short vec_andc (vector signed short, vector bool short);
333c8841 11547vector signed short vec_andc (vector signed short, vector signed short);
b0b343db 11548vector unsigned short vec_andc (vector bool short,
924fcc4e
JM
11549 vector unsigned short);
11550vector unsigned short vec_andc (vector unsigned short,
b0b343db 11551 vector bool short);
6e5bb5ad
JM
11552vector unsigned short vec_andc (vector unsigned short,
11553 vector unsigned short);
b0b343db
JJ
11554vector signed char vec_andc (vector bool char, vector signed char);
11555vector bool char vec_andc (vector bool char, vector bool char);
11556vector signed char vec_andc (vector signed char, vector bool char);
333c8841 11557vector signed char vec_andc (vector signed char, vector signed char);
b0b343db
JJ
11558vector unsigned char vec_andc (vector bool char, vector unsigned char);
11559vector unsigned char vec_andc (vector unsigned char, vector bool char);
924fcc4e
JM
11560vector unsigned char vec_andc (vector unsigned char,
11561 vector unsigned char);
333c8841 11562
924fcc4e
JM
11563vector unsigned char vec_avg (vector unsigned char,
11564 vector unsigned char);
333c8841 11565vector signed char vec_avg (vector signed char, vector signed char);
6e5bb5ad
JM
11566vector unsigned short vec_avg (vector unsigned short,
11567 vector unsigned short);
333c8841
AH
11568vector signed short vec_avg (vector signed short, vector signed short);
11569vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
11570vector signed int vec_avg (vector signed int, vector signed int);
11571
b0b343db
JJ
11572vector signed int vec_vavgsw (vector signed int, vector signed int);
11573
11574vector unsigned int vec_vavguw (vector unsigned int,
11575 vector unsigned int);
11576
11577vector signed short vec_vavgsh (vector signed short,
11578 vector signed short);
11579
11580vector unsigned short vec_vavguh (vector unsigned short,
11581 vector unsigned short);
11582
11583vector signed char vec_vavgsb (vector signed char, vector signed char);
11584
11585vector unsigned char vec_vavgub (vector unsigned char,
11586 vector unsigned char);
11587
29e6733c
MM
11588vector float vec_copysign (vector float);
11589
333c8841
AH
11590vector float vec_ceil (vector float);
11591
11592vector signed int vec_cmpb (vector float, vector float);
11593
b0b343db
JJ
11594vector bool char vec_cmpeq (vector signed char, vector signed char);
11595vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
11596vector bool short vec_cmpeq (vector signed short, vector signed short);
11597vector bool short vec_cmpeq (vector unsigned short,
11598 vector unsigned short);
11599vector bool int vec_cmpeq (vector signed int, vector signed int);
11600vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
11601vector bool int vec_cmpeq (vector float, vector float);
333c8841 11602
b0b343db 11603vector bool int vec_vcmpeqfp (vector float, vector float);
333c8841 11604
b0b343db
JJ
11605vector bool int vec_vcmpequw (vector signed int, vector signed int);
11606vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
11607
11608vector bool short vec_vcmpequh (vector signed short,
11609 vector signed short);
11610vector bool short vec_vcmpequh (vector unsigned short,
11611 vector unsigned short);
333c8841 11612
b0b343db
JJ
11613vector bool char vec_vcmpequb (vector signed char, vector signed char);
11614vector bool char vec_vcmpequb (vector unsigned char,
11615 vector unsigned char);
333c8841 11616
b0b343db 11617vector bool int vec_cmpge (vector float, vector float);
333c8841 11618
b0b343db
JJ
11619vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
11620vector bool char vec_cmpgt (vector signed char, vector signed char);
11621vector bool short vec_cmpgt (vector unsigned short,
11622 vector unsigned short);
11623vector bool short vec_cmpgt (vector signed short, vector signed short);
11624vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
11625vector bool int vec_cmpgt (vector signed int, vector signed int);
11626vector bool int vec_cmpgt (vector float, vector float);
11627
11628vector bool int vec_vcmpgtfp (vector float, vector float);
11629
11630vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
11631
11632vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
333c8841 11633
b0b343db
JJ
11634vector bool short vec_vcmpgtsh (vector signed short,
11635 vector signed short);
11636
11637vector bool short vec_vcmpgtuh (vector unsigned short,
11638 vector unsigned short);
11639
11640vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
11641
11642vector bool char vec_vcmpgtub (vector unsigned char,
11643 vector unsigned char);
11644
11645vector bool int vec_cmple (vector float, vector float);
11646
11647vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
11648vector bool char vec_cmplt (vector signed char, vector signed char);
11649vector bool short vec_cmplt (vector unsigned short,
11650 vector unsigned short);
11651vector bool short vec_cmplt (vector signed short, vector signed short);
11652vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
11653vector bool int vec_cmplt (vector signed int, vector signed int);
11654vector bool int vec_cmplt (vector float, vector float);
333c8841 11655
b0b343db
JJ
11656vector float vec_ctf (vector unsigned int, const int);
11657vector float vec_ctf (vector signed int, const int);
333c8841 11658
b0b343db
JJ
11659vector float vec_vcfsx (vector signed int, const int);
11660
11661vector float vec_vcfux (vector unsigned int, const int);
11662
11663vector signed int vec_cts (vector float, const int);
11664
11665vector unsigned int vec_ctu (vector float, const int);
11666
11667void vec_dss (const int);
333c8841
AH
11668
11669void vec_dssall (void);
11670
b0b343db
JJ
11671void vec_dst (const vector unsigned char *, int, const int);
11672void vec_dst (const vector signed char *, int, const int);
11673void vec_dst (const vector bool char *, int, const int);
11674void vec_dst (const vector unsigned short *, int, const int);
11675void vec_dst (const vector signed short *, int, const int);
11676void vec_dst (const vector bool short *, int, const int);
11677void vec_dst (const vector pixel *, int, const int);
11678void vec_dst (const vector unsigned int *, int, const int);
11679void vec_dst (const vector signed int *, int, const int);
11680void vec_dst (const vector bool int *, int, const int);
11681void vec_dst (const vector float *, int, const int);
11682void vec_dst (const unsigned char *, int, const int);
11683void vec_dst (const signed char *, int, const int);
11684void vec_dst (const unsigned short *, int, const int);
11685void vec_dst (const short *, int, const int);
11686void vec_dst (const unsigned int *, int, const int);
11687void vec_dst (const int *, int, const int);
11688void vec_dst (const unsigned long *, int, const int);
11689void vec_dst (const long *, int, const int);
11690void vec_dst (const float *, int, const int);
11691
11692void vec_dstst (const vector unsigned char *, int, const int);
11693void vec_dstst (const vector signed char *, int, const int);
11694void vec_dstst (const vector bool char *, int, const int);
11695void vec_dstst (const vector unsigned short *, int, const int);
11696void vec_dstst (const vector signed short *, int, const int);
11697void vec_dstst (const vector bool short *, int, const int);
11698void vec_dstst (const vector pixel *, int, const int);
11699void vec_dstst (const vector unsigned int *, int, const int);
11700void vec_dstst (const vector signed int *, int, const int);
11701void vec_dstst (const vector bool int *, int, const int);
11702void vec_dstst (const vector float *, int, const int);
11703void vec_dstst (const unsigned char *, int, const int);
11704void vec_dstst (const signed char *, int, const int);
11705void vec_dstst (const unsigned short *, int, const int);
11706void vec_dstst (const short *, int, const int);
11707void vec_dstst (const unsigned int *, int, const int);
11708void vec_dstst (const int *, int, const int);
11709void vec_dstst (const unsigned long *, int, const int);
11710void vec_dstst (const long *, int, const int);
11711void vec_dstst (const float *, int, const int);
11712
11713void vec_dststt (const vector unsigned char *, int, const int);
11714void vec_dststt (const vector signed char *, int, const int);
11715void vec_dststt (const vector bool char *, int, const int);
11716void vec_dststt (const vector unsigned short *, int, const int);
11717void vec_dststt (const vector signed short *, int, const int);
11718void vec_dststt (const vector bool short *, int, const int);
11719void vec_dststt (const vector pixel *, int, const int);
11720void vec_dststt (const vector unsigned int *, int, const int);
11721void vec_dststt (const vector signed int *, int, const int);
11722void vec_dststt (const vector bool int *, int, const int);
11723void vec_dststt (const vector float *, int, const int);
11724void vec_dststt (const unsigned char *, int, const int);
11725void vec_dststt (const signed char *, int, const int);
11726void vec_dststt (const unsigned short *, int, const int);
11727void vec_dststt (const short *, int, const int);
11728void vec_dststt (const unsigned int *, int, const int);
11729void vec_dststt (const int *, int, const int);
11730void vec_dststt (const unsigned long *, int, const int);
11731void vec_dststt (const long *, int, const int);
11732void vec_dststt (const float *, int, const int);
11733
11734void vec_dstt (const vector unsigned char *, int, const int);
11735void vec_dstt (const vector signed char *, int, const int);
11736void vec_dstt (const vector bool char *, int, const int);
11737void vec_dstt (const vector unsigned short *, int, const int);
11738void vec_dstt (const vector signed short *, int, const int);
11739void vec_dstt (const vector bool short *, int, const int);
11740void vec_dstt (const vector pixel *, int, const int);
11741void vec_dstt (const vector unsigned int *, int, const int);
11742void vec_dstt (const vector signed int *, int, const int);
11743void vec_dstt (const vector bool int *, int, const int);
11744void vec_dstt (const vector float *, int, const int);
11745void vec_dstt (const unsigned char *, int, const int);
11746void vec_dstt (const signed char *, int, const int);
11747void vec_dstt (const unsigned short *, int, const int);
11748void vec_dstt (const short *, int, const int);
11749void vec_dstt (const unsigned int *, int, const int);
11750void vec_dstt (const int *, int, const int);
11751void vec_dstt (const unsigned long *, int, const int);
11752void vec_dstt (const long *, int, const int);
11753void vec_dstt (const float *, int, const int);
11754
11755vector float vec_expte (vector float);
11756
11757vector float vec_floor (vector float);
11758
11759vector float vec_ld (int, const vector float *);
11760vector float vec_ld (int, const float *);
11761vector bool int vec_ld (int, const vector bool int *);
11762vector signed int vec_ld (int, const vector signed int *);
11763vector signed int vec_ld (int, const int *);
11764vector signed int vec_ld (int, const long *);
11765vector unsigned int vec_ld (int, const vector unsigned int *);
11766vector unsigned int vec_ld (int, const unsigned int *);
11767vector unsigned int vec_ld (int, const unsigned long *);
11768vector bool short vec_ld (int, const vector bool short *);
11769vector pixel vec_ld (int, const vector pixel *);
11770vector signed short vec_ld (int, const vector signed short *);
11771vector signed short vec_ld (int, const short *);
11772vector unsigned short vec_ld (int, const vector unsigned short *);
11773vector unsigned short vec_ld (int, const unsigned short *);
11774vector bool char vec_ld (int, const vector bool char *);
11775vector signed char vec_ld (int, const vector signed char *);
11776vector signed char vec_ld (int, const signed char *);
11777vector unsigned char vec_ld (int, const vector unsigned char *);
11778vector unsigned char vec_ld (int, const unsigned char *);
11779
11780vector signed char vec_lde (int, const signed char *);
11781vector unsigned char vec_lde (int, const unsigned char *);
11782vector signed short vec_lde (int, const short *);
11783vector unsigned short vec_lde (int, const unsigned short *);
11784vector float vec_lde (int, const float *);
11785vector signed int vec_lde (int, const int *);
11786vector unsigned int vec_lde (int, const unsigned int *);
11787vector signed int vec_lde (int, const long *);
11788vector unsigned int vec_lde (int, const unsigned long *);
11789
11790vector float vec_lvewx (int, float *);
11791vector signed int vec_lvewx (int, int *);
11792vector unsigned int vec_lvewx (int, unsigned int *);
11793vector signed int vec_lvewx (int, long *);
11794vector unsigned int vec_lvewx (int, unsigned long *);
11795
11796vector signed short vec_lvehx (int, short *);
11797vector unsigned short vec_lvehx (int, unsigned short *);
11798
11799vector signed char vec_lvebx (int, char *);
11800vector unsigned char vec_lvebx (int, unsigned char *);
11801
11802vector float vec_ldl (int, const vector float *);
11803vector float vec_ldl (int, const float *);
11804vector bool int vec_ldl (int, const vector bool int *);
11805vector signed int vec_ldl (int, const vector signed int *);
11806vector signed int vec_ldl (int, const int *);
11807vector signed int vec_ldl (int, const long *);
11808vector unsigned int vec_ldl (int, const vector unsigned int *);
11809vector unsigned int vec_ldl (int, const unsigned int *);
11810vector unsigned int vec_ldl (int, const unsigned long *);
11811vector bool short vec_ldl (int, const vector bool short *);
11812vector pixel vec_ldl (int, const vector pixel *);
11813vector signed short vec_ldl (int, const vector signed short *);
11814vector signed short vec_ldl (int, const short *);
11815vector unsigned short vec_ldl (int, const vector unsigned short *);
11816vector unsigned short vec_ldl (int, const unsigned short *);
11817vector bool char vec_ldl (int, const vector bool char *);
11818vector signed char vec_ldl (int, const vector signed char *);
11819vector signed char vec_ldl (int, const signed char *);
11820vector unsigned char vec_ldl (int, const vector unsigned char *);
11821vector unsigned char vec_ldl (int, const unsigned char *);
333c8841
AH
11822
11823vector float vec_loge (vector float);
11824
b0b343db
JJ
11825vector unsigned char vec_lvsl (int, const volatile unsigned char *);
11826vector unsigned char vec_lvsl (int, const volatile signed char *);
11827vector unsigned char vec_lvsl (int, const volatile unsigned short *);
11828vector unsigned char vec_lvsl (int, const volatile short *);
11829vector unsigned char vec_lvsl (int, const volatile unsigned int *);
11830vector unsigned char vec_lvsl (int, const volatile int *);
11831vector unsigned char vec_lvsl (int, const volatile unsigned long *);
11832vector unsigned char vec_lvsl (int, const volatile long *);
11833vector unsigned char vec_lvsl (int, const volatile float *);
11834
11835vector unsigned char vec_lvsr (int, const volatile unsigned char *);
11836vector unsigned char vec_lvsr (int, const volatile signed char *);
11837vector unsigned char vec_lvsr (int, const volatile unsigned short *);
11838vector unsigned char vec_lvsr (int, const volatile short *);
11839vector unsigned char vec_lvsr (int, const volatile unsigned int *);
11840vector unsigned char vec_lvsr (int, const volatile int *);
11841vector unsigned char vec_lvsr (int, const volatile unsigned long *);
11842vector unsigned char vec_lvsr (int, const volatile long *);
11843vector unsigned char vec_lvsr (int, const volatile float *);
333c8841
AH
11844
11845vector float vec_madd (vector float, vector float, vector float);
11846
b0b343db
JJ
11847vector signed short vec_madds (vector signed short,
11848 vector signed short,
6e5bb5ad 11849 vector signed short);
333c8841 11850
b0b343db
JJ
11851vector unsigned char vec_max (vector bool char, vector unsigned char);
11852vector unsigned char vec_max (vector unsigned char, vector bool char);
924fcc4e
JM
11853vector unsigned char vec_max (vector unsigned char,
11854 vector unsigned char);
b0b343db
JJ
11855vector signed char vec_max (vector bool char, vector signed char);
11856vector signed char vec_max (vector signed char, vector bool char);
333c8841 11857vector signed char vec_max (vector signed char, vector signed char);
b0b343db 11858vector unsigned short vec_max (vector bool short,
924fcc4e
JM
11859 vector unsigned short);
11860vector unsigned short vec_max (vector unsigned short,
b0b343db 11861 vector bool short);
6e5bb5ad
JM
11862vector unsigned short vec_max (vector unsigned short,
11863 vector unsigned short);
b0b343db
JJ
11864vector signed short vec_max (vector bool short, vector signed short);
11865vector signed short vec_max (vector signed short, vector bool short);
333c8841 11866vector signed short vec_max (vector signed short, vector signed short);
b0b343db
JJ
11867vector unsigned int vec_max (vector bool int, vector unsigned int);
11868vector unsigned int vec_max (vector unsigned int, vector bool int);
333c8841 11869vector unsigned int vec_max (vector unsigned int, vector unsigned int);
b0b343db
JJ
11870vector signed int vec_max (vector bool int, vector signed int);
11871vector signed int vec_max (vector signed int, vector bool int);
333c8841
AH
11872vector signed int vec_max (vector signed int, vector signed int);
11873vector float vec_max (vector float, vector float);
11874
b0b343db
JJ
11875vector float vec_vmaxfp (vector float, vector float);
11876
11877vector signed int vec_vmaxsw (vector bool int, vector signed int);
11878vector signed int vec_vmaxsw (vector signed int, vector bool int);
11879vector signed int vec_vmaxsw (vector signed int, vector signed int);
11880
11881vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
11882vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
11883vector unsigned int vec_vmaxuw (vector unsigned int,
11884 vector unsigned int);
11885
11886vector signed short vec_vmaxsh (vector bool short, vector signed short);
11887vector signed short vec_vmaxsh (vector signed short, vector bool short);
11888vector signed short vec_vmaxsh (vector signed short,
11889 vector signed short);
11890
11891vector unsigned short vec_vmaxuh (vector bool short,
11892 vector unsigned short);
11893vector unsigned short vec_vmaxuh (vector unsigned short,
11894 vector bool short);
11895vector unsigned short vec_vmaxuh (vector unsigned short,
11896 vector unsigned short);
11897
11898vector signed char vec_vmaxsb (vector bool char, vector signed char);
11899vector signed char vec_vmaxsb (vector signed char, vector bool char);
11900vector signed char vec_vmaxsb (vector signed char, vector signed char);
11901
11902vector unsigned char vec_vmaxub (vector bool char,
11903 vector unsigned char);
11904vector unsigned char vec_vmaxub (vector unsigned char,
11905 vector bool char);
11906vector unsigned char vec_vmaxub (vector unsigned char,
11907 vector unsigned char);
11908
11909vector bool char vec_mergeh (vector bool char, vector bool char);
333c8841 11910vector signed char vec_mergeh (vector signed char, vector signed char);
6e5bb5ad
JM
11911vector unsigned char vec_mergeh (vector unsigned char,
11912 vector unsigned char);
b0b343db
JJ
11913vector bool short vec_mergeh (vector bool short, vector bool short);
11914vector pixel vec_mergeh (vector pixel, vector pixel);
924fcc4e
JM
11915vector signed short vec_mergeh (vector signed short,
11916 vector signed short);
6e5bb5ad
JM
11917vector unsigned short vec_mergeh (vector unsigned short,
11918 vector unsigned short);
333c8841 11919vector float vec_mergeh (vector float, vector float);
b0b343db 11920vector bool int vec_mergeh (vector bool int, vector bool int);
333c8841 11921vector signed int vec_mergeh (vector signed int, vector signed int);
924fcc4e
JM
11922vector unsigned int vec_mergeh (vector unsigned int,
11923 vector unsigned int);
333c8841 11924
b0b343db
JJ
11925vector float vec_vmrghw (vector float, vector float);
11926vector bool int vec_vmrghw (vector bool int, vector bool int);
11927vector signed int vec_vmrghw (vector signed int, vector signed int);
11928vector unsigned int vec_vmrghw (vector unsigned int,
11929 vector unsigned int);
11930
11931vector bool short vec_vmrghh (vector bool short, vector bool short);
11932vector signed short vec_vmrghh (vector signed short,
11933 vector signed short);
11934vector unsigned short vec_vmrghh (vector unsigned short,
11935 vector unsigned short);
11936vector pixel vec_vmrghh (vector pixel, vector pixel);
11937
11938vector bool char vec_vmrghb (vector bool char, vector bool char);
11939vector signed char vec_vmrghb (vector signed char, vector signed char);
11940vector unsigned char vec_vmrghb (vector unsigned char,
11941 vector unsigned char);
11942
11943vector bool char vec_mergel (vector bool char, vector bool char);
333c8841 11944vector signed char vec_mergel (vector signed char, vector signed char);
6e5bb5ad
JM
11945vector unsigned char vec_mergel (vector unsigned char,
11946 vector unsigned char);
b0b343db
JJ
11947vector bool short vec_mergel (vector bool short, vector bool short);
11948vector pixel vec_mergel (vector pixel, vector pixel);
924fcc4e
JM
11949vector signed short vec_mergel (vector signed short,
11950 vector signed short);
6e5bb5ad
JM
11951vector unsigned short vec_mergel (vector unsigned short,
11952 vector unsigned short);
333c8841 11953vector float vec_mergel (vector float, vector float);
b0b343db 11954vector bool int vec_mergel (vector bool int, vector bool int);
333c8841 11955vector signed int vec_mergel (vector signed int, vector signed int);
924fcc4e
JM
11956vector unsigned int vec_mergel (vector unsigned int,
11957 vector unsigned int);
333c8841 11958
b0b343db
JJ
11959vector float vec_vmrglw (vector float, vector float);
11960vector signed int vec_vmrglw (vector signed int, vector signed int);
11961vector unsigned int vec_vmrglw (vector unsigned int,
11962 vector unsigned int);
11963vector bool int vec_vmrglw (vector bool int, vector bool int);
333c8841 11964
b0b343db
JJ
11965vector bool short vec_vmrglh (vector bool short, vector bool short);
11966vector signed short vec_vmrglh (vector signed short,
11967 vector signed short);
11968vector unsigned short vec_vmrglh (vector unsigned short,
11969 vector unsigned short);
11970vector pixel vec_vmrglh (vector pixel, vector pixel);
11971
11972vector bool char vec_vmrglb (vector bool char, vector bool char);
11973vector signed char vec_vmrglb (vector signed char, vector signed char);
11974vector unsigned char vec_vmrglb (vector unsigned char,
11975 vector unsigned char);
333c8841 11976
b0b343db 11977vector unsigned short vec_mfvscr (void);
333c8841 11978
b0b343db
JJ
11979vector unsigned char vec_min (vector bool char, vector unsigned char);
11980vector unsigned char vec_min (vector unsigned char, vector bool char);
924fcc4e
JM
11981vector unsigned char vec_min (vector unsigned char,
11982 vector unsigned char);
b0b343db
JJ
11983vector signed char vec_min (vector bool char, vector signed char);
11984vector signed char vec_min (vector signed char, vector bool char);
333c8841 11985vector signed char vec_min (vector signed char, vector signed char);
b0b343db 11986vector unsigned short vec_min (vector bool short,
924fcc4e
JM
11987 vector unsigned short);
11988vector unsigned short vec_min (vector unsigned short,
b0b343db 11989 vector bool short);
6e5bb5ad
JM
11990vector unsigned short vec_min (vector unsigned short,
11991 vector unsigned short);
b0b343db
JJ
11992vector signed short vec_min (vector bool short, vector signed short);
11993vector signed short vec_min (vector signed short, vector bool short);
333c8841 11994vector signed short vec_min (vector signed short, vector signed short);
b0b343db
JJ
11995vector unsigned int vec_min (vector bool int, vector unsigned int);
11996vector unsigned int vec_min (vector unsigned int, vector bool int);
333c8841 11997vector unsigned int vec_min (vector unsigned int, vector unsigned int);
b0b343db
JJ
11998vector signed int vec_min (vector bool int, vector signed int);
11999vector signed int vec_min (vector signed int, vector bool int);
333c8841
AH
12000vector signed int vec_min (vector signed int, vector signed int);
12001vector float vec_min (vector float, vector float);
12002
b0b343db
JJ
12003vector float vec_vminfp (vector float, vector float);
12004
12005vector signed int vec_vminsw (vector bool int, vector signed int);
12006vector signed int vec_vminsw (vector signed int, vector bool int);
12007vector signed int vec_vminsw (vector signed int, vector signed int);
12008
12009vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
12010vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
12011vector unsigned int vec_vminuw (vector unsigned int,
12012 vector unsigned int);
12013
12014vector signed short vec_vminsh (vector bool short, vector signed short);
12015vector signed short vec_vminsh (vector signed short, vector bool short);
12016vector signed short vec_vminsh (vector signed short,
12017 vector signed short);
12018
12019vector unsigned short vec_vminuh (vector bool short,
12020 vector unsigned short);
12021vector unsigned short vec_vminuh (vector unsigned short,
12022 vector bool short);
12023vector unsigned short vec_vminuh (vector unsigned short,
12024 vector unsigned short);
12025
12026vector signed char vec_vminsb (vector bool char, vector signed char);
12027vector signed char vec_vminsb (vector signed char, vector bool char);
12028vector signed char vec_vminsb (vector signed char, vector signed char);
12029
12030vector unsigned char vec_vminub (vector bool char,
12031 vector unsigned char);
12032vector unsigned char vec_vminub (vector unsigned char,
12033 vector bool char);
12034vector unsigned char vec_vminub (vector unsigned char,
12035 vector unsigned char);
12036
12037vector signed short vec_mladd (vector signed short,
12038 vector signed short,
6e5bb5ad 12039 vector signed short);
924fcc4e
JM
12040vector signed short vec_mladd (vector signed short,
12041 vector unsigned short,
6e5bb5ad 12042 vector unsigned short);
924fcc4e
JM
12043vector signed short vec_mladd (vector unsigned short,
12044 vector signed short,
6e5bb5ad
JM
12045 vector signed short);
12046vector unsigned short vec_mladd (vector unsigned short,
12047 vector unsigned short,
12048 vector unsigned short);
12049
924fcc4e
JM
12050vector signed short vec_mradds (vector signed short,
12051 vector signed short,
6e5bb5ad
JM
12052 vector signed short);
12053
924fcc4e
JM
12054vector unsigned int vec_msum (vector unsigned char,
12055 vector unsigned char,
6e5bb5ad 12056 vector unsigned int);
b0b343db
JJ
12057vector signed int vec_msum (vector signed char,
12058 vector unsigned char,
6e5bb5ad 12059 vector signed int);
924fcc4e
JM
12060vector unsigned int vec_msum (vector unsigned short,
12061 vector unsigned short,
6e5bb5ad 12062 vector unsigned int);
b0b343db
JJ
12063vector signed int vec_msum (vector signed short,
12064 vector signed short,
6e5bb5ad
JM
12065 vector signed int);
12066
b0b343db
JJ
12067vector signed int vec_vmsumshm (vector signed short,
12068 vector signed short,
12069 vector signed int);
12070
12071vector unsigned int vec_vmsumuhm (vector unsigned short,
12072 vector unsigned short,
12073 vector unsigned int);
12074
12075vector signed int vec_vmsummbm (vector signed char,
12076 vector unsigned char,
12077 vector signed int);
12078
12079vector unsigned int vec_vmsumubm (vector unsigned char,
12080 vector unsigned char,
12081 vector unsigned int);
12082
6e5bb5ad 12083vector unsigned int vec_msums (vector unsigned short,
924fcc4e
JM
12084 vector unsigned short,
12085 vector unsigned int);
b0b343db
JJ
12086vector signed int vec_msums (vector signed short,
12087 vector signed short,
6e5bb5ad 12088 vector signed int);
333c8841 12089
b0b343db
JJ
12090vector signed int vec_vmsumshs (vector signed short,
12091 vector signed short,
12092 vector signed int);
12093
12094vector unsigned int vec_vmsumuhs (vector unsigned short,
12095 vector unsigned short,
12096 vector unsigned int);
12097
333c8841
AH
12098void vec_mtvscr (vector signed int);
12099void vec_mtvscr (vector unsigned int);
b0b343db 12100void vec_mtvscr (vector bool int);
333c8841
AH
12101void vec_mtvscr (vector signed short);
12102void vec_mtvscr (vector unsigned short);
b0b343db
JJ
12103void vec_mtvscr (vector bool short);
12104void vec_mtvscr (vector pixel);
333c8841
AH
12105void vec_mtvscr (vector signed char);
12106void vec_mtvscr (vector unsigned char);
b0b343db 12107void vec_mtvscr (vector bool char);
333c8841 12108
924fcc4e
JM
12109vector unsigned short vec_mule (vector unsigned char,
12110 vector unsigned char);
b0b343db
JJ
12111vector signed short vec_mule (vector signed char,
12112 vector signed char);
924fcc4e
JM
12113vector unsigned int vec_mule (vector unsigned short,
12114 vector unsigned short);
333c8841
AH
12115vector signed int vec_mule (vector signed short, vector signed short);
12116
b0b343db
JJ
12117vector signed int vec_vmulesh (vector signed short,
12118 vector signed short);
12119
12120vector unsigned int vec_vmuleuh (vector unsigned short,
12121 vector unsigned short);
12122
12123vector signed short vec_vmulesb (vector signed char,
12124 vector signed char);
12125
12126vector unsigned short vec_vmuleub (vector unsigned char,
12127 vector unsigned char);
12128
924fcc4e
JM
12129vector unsigned short vec_mulo (vector unsigned char,
12130 vector unsigned char);
333c8841 12131vector signed short vec_mulo (vector signed char, vector signed char);
924fcc4e
JM
12132vector unsigned int vec_mulo (vector unsigned short,
12133 vector unsigned short);
333c8841
AH
12134vector signed int vec_mulo (vector signed short, vector signed short);
12135
b0b343db
JJ
12136vector signed int vec_vmulosh (vector signed short,
12137 vector signed short);
12138
12139vector unsigned int vec_vmulouh (vector unsigned short,
12140 vector unsigned short);
12141
12142vector signed short vec_vmulosb (vector signed char,
12143 vector signed char);
12144
12145vector unsigned short vec_vmuloub (vector unsigned char,
12146 vector unsigned char);
12147
333c8841
AH
12148vector float vec_nmsub (vector float, vector float, vector float);
12149
12150vector float vec_nor (vector float, vector float);
12151vector signed int vec_nor (vector signed int, vector signed int);
12152vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
b0b343db 12153vector bool int vec_nor (vector bool int, vector bool int);
333c8841 12154vector signed short vec_nor (vector signed short, vector signed short);
6e5bb5ad
JM
12155vector unsigned short vec_nor (vector unsigned short,
12156 vector unsigned short);
b0b343db 12157vector bool short vec_nor (vector bool short, vector bool short);
333c8841 12158vector signed char vec_nor (vector signed char, vector signed char);
924fcc4e
JM
12159vector unsigned char vec_nor (vector unsigned char,
12160 vector unsigned char);
b0b343db 12161vector bool char vec_nor (vector bool char, vector bool char);
333c8841
AH
12162
12163vector float vec_or (vector float, vector float);
b0b343db
JJ
12164vector float vec_or (vector float, vector bool int);
12165vector float vec_or (vector bool int, vector float);
12166vector bool int vec_or (vector bool int, vector bool int);
12167vector signed int vec_or (vector bool int, vector signed int);
12168vector signed int vec_or (vector signed int, vector bool int);
333c8841 12169vector signed int vec_or (vector signed int, vector signed int);
b0b343db
JJ
12170vector unsigned int vec_or (vector bool int, vector unsigned int);
12171vector unsigned int vec_or (vector unsigned int, vector bool int);
333c8841 12172vector unsigned int vec_or (vector unsigned int, vector unsigned int);
b0b343db
JJ
12173vector bool short vec_or (vector bool short, vector bool short);
12174vector signed short vec_or (vector bool short, vector signed short);
12175vector signed short vec_or (vector signed short, vector bool short);
333c8841 12176vector signed short vec_or (vector signed short, vector signed short);
b0b343db
JJ
12177vector unsigned short vec_or (vector bool short, vector unsigned short);
12178vector unsigned short vec_or (vector unsigned short, vector bool short);
924fcc4e
JM
12179vector unsigned short vec_or (vector unsigned short,
12180 vector unsigned short);
b0b343db
JJ
12181vector signed char vec_or (vector bool char, vector signed char);
12182vector bool char vec_or (vector bool char, vector bool char);
12183vector signed char vec_or (vector signed char, vector bool char);
333c8841 12184vector signed char vec_or (vector signed char, vector signed char);
b0b343db
JJ
12185vector unsigned char vec_or (vector bool char, vector unsigned char);
12186vector unsigned char vec_or (vector unsigned char, vector bool char);
924fcc4e
JM
12187vector unsigned char vec_or (vector unsigned char,
12188 vector unsigned char);
333c8841
AH
12189
12190vector signed char vec_pack (vector signed short, vector signed short);
6e5bb5ad
JM
12191vector unsigned char vec_pack (vector unsigned short,
12192 vector unsigned short);
b0b343db 12193vector bool char vec_pack (vector bool short, vector bool short);
333c8841 12194vector signed short vec_pack (vector signed int, vector signed int);
924fcc4e
JM
12195vector unsigned short vec_pack (vector unsigned int,
12196 vector unsigned int);
b0b343db 12197vector bool short vec_pack (vector bool int, vector bool int);
333c8841 12198
b0b343db
JJ
12199vector bool short vec_vpkuwum (vector bool int, vector bool int);
12200vector signed short vec_vpkuwum (vector signed int, vector signed int);
12201vector unsigned short vec_vpkuwum (vector unsigned int,
12202 vector unsigned int);
12203
12204vector bool char vec_vpkuhum (vector bool short, vector bool short);
12205vector signed char vec_vpkuhum (vector signed short,
12206 vector signed short);
12207vector unsigned char vec_vpkuhum (vector unsigned short,
12208 vector unsigned short);
12209
12210vector pixel vec_packpx (vector unsigned int, vector unsigned int);
333c8841 12211
6e5bb5ad
JM
12212vector unsigned char vec_packs (vector unsigned short,
12213 vector unsigned short);
333c8841 12214vector signed char vec_packs (vector signed short, vector signed short);
924fcc4e
JM
12215vector unsigned short vec_packs (vector unsigned int,
12216 vector unsigned int);
333c8841
AH
12217vector signed short vec_packs (vector signed int, vector signed int);
12218
b0b343db
JJ
12219vector signed short vec_vpkswss (vector signed int, vector signed int);
12220
12221vector unsigned short vec_vpkuwus (vector unsigned int,
12222 vector unsigned int);
12223
12224vector signed char vec_vpkshss (vector signed short,
12225 vector signed short);
12226
12227vector unsigned char vec_vpkuhus (vector unsigned short,
12228 vector unsigned short);
12229
6e5bb5ad
JM
12230vector unsigned char vec_packsu (vector unsigned short,
12231 vector unsigned short);
924fcc4e
JM
12232vector unsigned char vec_packsu (vector signed short,
12233 vector signed short);
12234vector unsigned short vec_packsu (vector unsigned int,
12235 vector unsigned int);
333c8841
AH
12236vector unsigned short vec_packsu (vector signed int, vector signed int);
12237
b0b343db
JJ
12238vector unsigned short vec_vpkswus (vector signed int,
12239 vector signed int);
12240
12241vector unsigned char vec_vpkshus (vector signed short,
12242 vector signed short);
12243
12244vector float vec_perm (vector float,
12245 vector float,
924fcc4e 12246 vector unsigned char);
b0b343db
JJ
12247vector signed int vec_perm (vector signed int,
12248 vector signed int,
6e5bb5ad 12249 vector unsigned char);
b0b343db
JJ
12250vector unsigned int vec_perm (vector unsigned int,
12251 vector unsigned int,
6e5bb5ad 12252 vector unsigned char);
b0b343db
JJ
12253vector bool int vec_perm (vector bool int,
12254 vector bool int,
12255 vector unsigned char);
12256vector signed short vec_perm (vector signed short,
12257 vector signed short,
6e5bb5ad
JM
12258 vector unsigned char);
12259vector unsigned short vec_perm (vector unsigned short,
12260 vector unsigned short,
12261 vector unsigned char);
b0b343db
JJ
12262vector bool short vec_perm (vector bool short,
12263 vector bool short,
12264 vector unsigned char);
12265vector pixel vec_perm (vector pixel,
12266 vector pixel,
12267 vector unsigned char);
12268vector signed char vec_perm (vector signed char,
12269 vector signed char,
6e5bb5ad 12270 vector unsigned char);
924fcc4e
JM
12271vector unsigned char vec_perm (vector unsigned char,
12272 vector unsigned char,
6e5bb5ad 12273 vector unsigned char);
b0b343db
JJ
12274vector bool char vec_perm (vector bool char,
12275 vector bool char,
12276 vector unsigned char);
333c8841
AH
12277
12278vector float vec_re (vector float);
12279
b0b343db
JJ
12280vector signed char vec_rl (vector signed char,
12281 vector unsigned char);
924fcc4e
JM
12282vector unsigned char vec_rl (vector unsigned char,
12283 vector unsigned char);
333c8841 12284vector signed short vec_rl (vector signed short, vector unsigned short);
924fcc4e
JM
12285vector unsigned short vec_rl (vector unsigned short,
12286 vector unsigned short);
333c8841
AH
12287vector signed int vec_rl (vector signed int, vector unsigned int);
12288vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
12289
b0b343db
JJ
12290vector signed int vec_vrlw (vector signed int, vector unsigned int);
12291vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
12292
12293vector signed short vec_vrlh (vector signed short,
12294 vector unsigned short);
12295vector unsigned short vec_vrlh (vector unsigned short,
12296 vector unsigned short);
12297
12298vector signed char vec_vrlb (vector signed char, vector unsigned char);
12299vector unsigned char vec_vrlb (vector unsigned char,
12300 vector unsigned char);
12301
333c8841
AH
12302vector float vec_round (vector float);
12303
92902797
MM
12304vector float vec_recip (vector float, vector float);
12305
12306vector float vec_rsqrt (vector float);
12307
333c8841
AH
12308vector float vec_rsqrte (vector float);
12309
b0b343db 12310vector float vec_sel (vector float, vector float, vector bool int);
333c8841 12311vector float vec_sel (vector float, vector float, vector unsigned int);
b0b343db
JJ
12312vector signed int vec_sel (vector signed int,
12313 vector signed int,
12314 vector bool int);
12315vector signed int vec_sel (vector signed int,
12316 vector signed int,
6e5bb5ad 12317 vector unsigned int);
b0b343db
JJ
12318vector unsigned int vec_sel (vector unsigned int,
12319 vector unsigned int,
12320 vector bool int);
12321vector unsigned int vec_sel (vector unsigned int,
12322 vector unsigned int,
6e5bb5ad 12323 vector unsigned int);
b0b343db
JJ
12324vector bool int vec_sel (vector bool int,
12325 vector bool int,
12326 vector bool int);
12327vector bool int vec_sel (vector bool int,
12328 vector bool int,
12329 vector unsigned int);
12330vector signed short vec_sel (vector signed short,
12331 vector signed short,
12332 vector bool short);
12333vector signed short vec_sel (vector signed short,
12334 vector signed short,
6e5bb5ad
JM
12335 vector unsigned short);
12336vector unsigned short vec_sel (vector unsigned short,
924fcc4e 12337 vector unsigned short,
b0b343db 12338 vector bool short);
6e5bb5ad
JM
12339vector unsigned short vec_sel (vector unsigned short,
12340 vector unsigned short,
12341 vector unsigned short);
b0b343db
JJ
12342vector bool short vec_sel (vector bool short,
12343 vector bool short,
12344 vector bool short);
12345vector bool short vec_sel (vector bool short,
12346 vector bool short,
12347 vector unsigned short);
12348vector signed char vec_sel (vector signed char,
12349 vector signed char,
12350 vector bool char);
12351vector signed char vec_sel (vector signed char,
12352 vector signed char,
6e5bb5ad 12353 vector unsigned char);
924fcc4e
JM
12354vector unsigned char vec_sel (vector unsigned char,
12355 vector unsigned char,
b0b343db 12356 vector bool char);
924fcc4e
JM
12357vector unsigned char vec_sel (vector unsigned char,
12358 vector unsigned char,
6e5bb5ad 12359 vector unsigned char);
b0b343db
JJ
12360vector bool char vec_sel (vector bool char,
12361 vector bool char,
12362 vector bool char);
12363vector bool char vec_sel (vector bool char,
12364 vector bool char,
12365 vector unsigned char);
12366
12367vector signed char vec_sl (vector signed char,
12368 vector unsigned char);
924fcc4e
JM
12369vector unsigned char vec_sl (vector unsigned char,
12370 vector unsigned char);
333c8841 12371vector signed short vec_sl (vector signed short, vector unsigned short);
924fcc4e
JM
12372vector unsigned short vec_sl (vector unsigned short,
12373 vector unsigned short);
333c8841
AH
12374vector signed int vec_sl (vector signed int, vector unsigned int);
12375vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
12376
b0b343db
JJ
12377vector signed int vec_vslw (vector signed int, vector unsigned int);
12378vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
12379
12380vector signed short vec_vslh (vector signed short,
12381 vector unsigned short);
12382vector unsigned short vec_vslh (vector unsigned short,
12383 vector unsigned short);
12384
12385vector signed char vec_vslb (vector signed char, vector unsigned char);
12386vector unsigned char vec_vslb (vector unsigned char,
12387 vector unsigned char);
12388
12389vector float vec_sld (vector float, vector float, const int);
12390vector signed int vec_sld (vector signed int,
12391 vector signed int,
12392 const int);
12393vector unsigned int vec_sld (vector unsigned int,
12394 vector unsigned int,
12395 const int);
12396vector bool int vec_sld (vector bool int,
12397 vector bool int,
12398 const int);
12399vector signed short vec_sld (vector signed short,
12400 vector signed short,
12401 const int);
6e5bb5ad 12402vector unsigned short vec_sld (vector unsigned short,
b0b343db
JJ
12403 vector unsigned short,
12404 const int);
12405vector bool short vec_sld (vector bool short,
12406 vector bool short,
12407 const int);
12408vector pixel vec_sld (vector pixel,
12409 vector pixel,
12410 const int);
12411vector signed char vec_sld (vector signed char,
12412 vector signed char,
12413 const int);
924fcc4e
JM
12414vector unsigned char vec_sld (vector unsigned char,
12415 vector unsigned char,
b0b343db
JJ
12416 const int);
12417vector bool char vec_sld (vector bool char,
12418 vector bool char,
12419 const int);
333c8841 12420
b0b343db
JJ
12421vector signed int vec_sll (vector signed int,
12422 vector unsigned int);
12423vector signed int vec_sll (vector signed int,
12424 vector unsigned short);
12425vector signed int vec_sll (vector signed int,
12426 vector unsigned char);
12427vector unsigned int vec_sll (vector unsigned int,
12428 vector unsigned int);
924fcc4e
JM
12429vector unsigned int vec_sll (vector unsigned int,
12430 vector unsigned short);
b0b343db
JJ
12431vector unsigned int vec_sll (vector unsigned int,
12432 vector unsigned char);
12433vector bool int vec_sll (vector bool int,
12434 vector unsigned int);
12435vector bool int vec_sll (vector bool int,
12436 vector unsigned short);
12437vector bool int vec_sll (vector bool int,
12438 vector unsigned char);
12439vector signed short vec_sll (vector signed short,
12440 vector unsigned int);
924fcc4e
JM
12441vector signed short vec_sll (vector signed short,
12442 vector unsigned short);
b0b343db
JJ
12443vector signed short vec_sll (vector signed short,
12444 vector unsigned char);
924fcc4e
JM
12445vector unsigned short vec_sll (vector unsigned short,
12446 vector unsigned int);
6e5bb5ad
JM
12447vector unsigned short vec_sll (vector unsigned short,
12448 vector unsigned short);
924fcc4e
JM
12449vector unsigned short vec_sll (vector unsigned short,
12450 vector unsigned char);
b0b343db
JJ
12451vector bool short vec_sll (vector bool short, vector unsigned int);
12452vector bool short vec_sll (vector bool short, vector unsigned short);
12453vector bool short vec_sll (vector bool short, vector unsigned char);
12454vector pixel vec_sll (vector pixel, vector unsigned int);
12455vector pixel vec_sll (vector pixel, vector unsigned short);
12456vector pixel vec_sll (vector pixel, vector unsigned char);
333c8841
AH
12457vector signed char vec_sll (vector signed char, vector unsigned int);
12458vector signed char vec_sll (vector signed char, vector unsigned short);
12459vector signed char vec_sll (vector signed char, vector unsigned char);
924fcc4e
JM
12460vector unsigned char vec_sll (vector unsigned char,
12461 vector unsigned int);
12462vector unsigned char vec_sll (vector unsigned char,
12463 vector unsigned short);
12464vector unsigned char vec_sll (vector unsigned char,
12465 vector unsigned char);
b0b343db
JJ
12466vector bool char vec_sll (vector bool char, vector unsigned int);
12467vector bool char vec_sll (vector bool char, vector unsigned short);
12468vector bool char vec_sll (vector bool char, vector unsigned char);
333c8841
AH
12469
12470vector float vec_slo (vector float, vector signed char);
12471vector float vec_slo (vector float, vector unsigned char);
12472vector signed int vec_slo (vector signed int, vector signed char);
12473vector signed int vec_slo (vector signed int, vector unsigned char);
12474vector unsigned int vec_slo (vector unsigned int, vector signed char);
12475vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
333c8841
AH
12476vector signed short vec_slo (vector signed short, vector signed char);
12477vector signed short vec_slo (vector signed short, vector unsigned char);
924fcc4e
JM
12478vector unsigned short vec_slo (vector unsigned short,
12479 vector signed char);
12480vector unsigned short vec_slo (vector unsigned short,
12481 vector unsigned char);
b0b343db
JJ
12482vector pixel vec_slo (vector pixel, vector signed char);
12483vector pixel vec_slo (vector pixel, vector unsigned char);
333c8841
AH
12484vector signed char vec_slo (vector signed char, vector signed char);
12485vector signed char vec_slo (vector signed char, vector unsigned char);
12486vector unsigned char vec_slo (vector unsigned char, vector signed char);
924fcc4e
JM
12487vector unsigned char vec_slo (vector unsigned char,
12488 vector unsigned char);
333c8841 12489
b0b343db
JJ
12490vector signed char vec_splat (vector signed char, const int);
12491vector unsigned char vec_splat (vector unsigned char, const int);
12492vector bool char vec_splat (vector bool char, const int);
12493vector signed short vec_splat (vector signed short, const int);
12494vector unsigned short vec_splat (vector unsigned short, const int);
12495vector bool short vec_splat (vector bool short, const int);
12496vector pixel vec_splat (vector pixel, const int);
12497vector float vec_splat (vector float, const int);
12498vector signed int vec_splat (vector signed int, const int);
12499vector unsigned int vec_splat (vector unsigned int, const int);
12500vector bool int vec_splat (vector bool int, const int);
12501
12502vector float vec_vspltw (vector float, const int);
12503vector signed int vec_vspltw (vector signed int, const int);
12504vector unsigned int vec_vspltw (vector unsigned int, const int);
12505vector bool int vec_vspltw (vector bool int, const int);
12506
12507vector bool short vec_vsplth (vector bool short, const int);
12508vector signed short vec_vsplth (vector signed short, const int);
12509vector unsigned short vec_vsplth (vector unsigned short, const int);
12510vector pixel vec_vsplth (vector pixel, const int);
12511
12512vector signed char vec_vspltb (vector signed char, const int);
12513vector unsigned char vec_vspltb (vector unsigned char, const int);
12514vector bool char vec_vspltb (vector bool char, const int);
333c8841 12515
b0b343db 12516vector signed char vec_splat_s8 (const int);
333c8841 12517
b0b343db 12518vector signed short vec_splat_s16 (const int);
333c8841 12519
b0b343db 12520vector signed int vec_splat_s32 (const int);
333c8841 12521
b0b343db 12522vector unsigned char vec_splat_u8 (const int);
333c8841 12523
b0b343db 12524vector unsigned short vec_splat_u16 (const int);
333c8841 12525
b0b343db 12526vector unsigned int vec_splat_u32 (const int);
333c8841
AH
12527
12528vector signed char vec_sr (vector signed char, vector unsigned char);
924fcc4e
JM
12529vector unsigned char vec_sr (vector unsigned char,
12530 vector unsigned char);
b0b343db
JJ
12531vector signed short vec_sr (vector signed short,
12532 vector unsigned short);
924fcc4e
JM
12533vector unsigned short vec_sr (vector unsigned short,
12534 vector unsigned short);
333c8841
AH
12535vector signed int vec_sr (vector signed int, vector unsigned int);
12536vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
12537
b0b343db
JJ
12538vector signed int vec_vsrw (vector signed int, vector unsigned int);
12539vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
12540
12541vector signed short vec_vsrh (vector signed short,
12542 vector unsigned short);
12543vector unsigned short vec_vsrh (vector unsigned short,
12544 vector unsigned short);
12545
12546vector signed char vec_vsrb (vector signed char, vector unsigned char);
12547vector unsigned char vec_vsrb (vector unsigned char,
12548 vector unsigned char);
12549
333c8841 12550vector signed char vec_sra (vector signed char, vector unsigned char);
924fcc4e
JM
12551vector unsigned char vec_sra (vector unsigned char,
12552 vector unsigned char);
12553vector signed short vec_sra (vector signed short,
12554 vector unsigned short);
6e5bb5ad
JM
12555vector unsigned short vec_sra (vector unsigned short,
12556 vector unsigned short);
333c8841
AH
12557vector signed int vec_sra (vector signed int, vector unsigned int);
12558vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
12559
b0b343db
JJ
12560vector signed int vec_vsraw (vector signed int, vector unsigned int);
12561vector unsigned int vec_vsraw (vector unsigned int,
12562 vector unsigned int);
12563
12564vector signed short vec_vsrah (vector signed short,
12565 vector unsigned short);
12566vector unsigned short vec_vsrah (vector unsigned short,
12567 vector unsigned short);
12568
12569vector signed char vec_vsrab (vector signed char, vector unsigned char);
12570vector unsigned char vec_vsrab (vector unsigned char,
12571 vector unsigned char);
12572
333c8841
AH
12573vector signed int vec_srl (vector signed int, vector unsigned int);
12574vector signed int vec_srl (vector signed int, vector unsigned short);
12575vector signed int vec_srl (vector signed int, vector unsigned char);
12576vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
924fcc4e
JM
12577vector unsigned int vec_srl (vector unsigned int,
12578 vector unsigned short);
333c8841 12579vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
b0b343db
JJ
12580vector bool int vec_srl (vector bool int, vector unsigned int);
12581vector bool int vec_srl (vector bool int, vector unsigned short);
12582vector bool int vec_srl (vector bool int, vector unsigned char);
333c8841 12583vector signed short vec_srl (vector signed short, vector unsigned int);
924fcc4e
JM
12584vector signed short vec_srl (vector signed short,
12585 vector unsigned short);
333c8841 12586vector signed short vec_srl (vector signed short, vector unsigned char);
924fcc4e
JM
12587vector unsigned short vec_srl (vector unsigned short,
12588 vector unsigned int);
6e5bb5ad
JM
12589vector unsigned short vec_srl (vector unsigned short,
12590 vector unsigned short);
924fcc4e
JM
12591vector unsigned short vec_srl (vector unsigned short,
12592 vector unsigned char);
b0b343db
JJ
12593vector bool short vec_srl (vector bool short, vector unsigned int);
12594vector bool short vec_srl (vector bool short, vector unsigned short);
12595vector bool short vec_srl (vector bool short, vector unsigned char);
12596vector pixel vec_srl (vector pixel, vector unsigned int);
12597vector pixel vec_srl (vector pixel, vector unsigned short);
12598vector pixel vec_srl (vector pixel, vector unsigned char);
333c8841
AH
12599vector signed char vec_srl (vector signed char, vector unsigned int);
12600vector signed char vec_srl (vector signed char, vector unsigned short);
12601vector signed char vec_srl (vector signed char, vector unsigned char);
924fcc4e
JM
12602vector unsigned char vec_srl (vector unsigned char,
12603 vector unsigned int);
12604vector unsigned char vec_srl (vector unsigned char,
12605 vector unsigned short);
12606vector unsigned char vec_srl (vector unsigned char,
12607 vector unsigned char);
b0b343db
JJ
12608vector bool char vec_srl (vector bool char, vector unsigned int);
12609vector bool char vec_srl (vector bool char, vector unsigned short);
12610vector bool char vec_srl (vector bool char, vector unsigned char);
333c8841
AH
12611
12612vector float vec_sro (vector float, vector signed char);
12613vector float vec_sro (vector float, vector unsigned char);
12614vector signed int vec_sro (vector signed int, vector signed char);
12615vector signed int vec_sro (vector signed int, vector unsigned char);
12616vector unsigned int vec_sro (vector unsigned int, vector signed char);
12617vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
333c8841
AH
12618vector signed short vec_sro (vector signed short, vector signed char);
12619vector signed short vec_sro (vector signed short, vector unsigned char);
924fcc4e
JM
12620vector unsigned short vec_sro (vector unsigned short,
12621 vector signed char);
12622vector unsigned short vec_sro (vector unsigned short,
12623 vector unsigned char);
b0b343db
JJ
12624vector pixel vec_sro (vector pixel, vector signed char);
12625vector pixel vec_sro (vector pixel, vector unsigned char);
333c8841
AH
12626vector signed char vec_sro (vector signed char, vector signed char);
12627vector signed char vec_sro (vector signed char, vector unsigned char);
12628vector unsigned char vec_sro (vector unsigned char, vector signed char);
924fcc4e
JM
12629vector unsigned char vec_sro (vector unsigned char,
12630 vector unsigned char);
333c8841 12631
333c8841 12632void vec_st (vector float, int, vector float *);
b0b343db
JJ
12633void vec_st (vector float, int, float *);
12634void vec_st (vector signed int, int, vector signed int *);
333c8841 12635void vec_st (vector signed int, int, int *);
333c8841 12636void vec_st (vector unsigned int, int, vector unsigned int *);
b0b343db
JJ
12637void vec_st (vector unsigned int, int, unsigned int *);
12638void vec_st (vector bool int, int, vector bool int *);
12639void vec_st (vector bool int, int, unsigned int *);
12640void vec_st (vector bool int, int, int *);
333c8841 12641void vec_st (vector signed short, int, vector signed short *);
b0b343db 12642void vec_st (vector signed short, int, short *);
333c8841 12643void vec_st (vector unsigned short, int, vector unsigned short *);
b0b343db
JJ
12644void vec_st (vector unsigned short, int, unsigned short *);
12645void vec_st (vector bool short, int, vector bool short *);
12646void vec_st (vector bool short, int, unsigned short *);
12647void vec_st (vector pixel, int, vector pixel *);
12648void vec_st (vector pixel, int, unsigned short *);
12649void vec_st (vector pixel, int, short *);
12650void vec_st (vector bool short, int, short *);
333c8841 12651void vec_st (vector signed char, int, vector signed char *);
b0b343db 12652void vec_st (vector signed char, int, signed char *);
333c8841 12653void vec_st (vector unsigned char, int, vector unsigned char *);
b0b343db
JJ
12654void vec_st (vector unsigned char, int, unsigned char *);
12655void vec_st (vector bool char, int, vector bool char *);
12656void vec_st (vector bool char, int, unsigned char *);
12657void vec_st (vector bool char, int, signed char *);
333c8841 12658
333c8841
AH
12659void vec_ste (vector signed char, int, signed char *);
12660void vec_ste (vector unsigned char, int, unsigned char *);
b0b343db
JJ
12661void vec_ste (vector bool char, int, signed char *);
12662void vec_ste (vector bool char, int, unsigned char *);
333c8841 12663void vec_ste (vector signed short, int, short *);
b0b343db
JJ
12664void vec_ste (vector unsigned short, int, unsigned short *);
12665void vec_ste (vector bool short, int, short *);
12666void vec_ste (vector bool short, int, unsigned short *);
12667void vec_ste (vector pixel, int, short *);
12668void vec_ste (vector pixel, int, unsigned short *);
12669void vec_ste (vector float, int, float *);
333c8841
AH
12670void vec_ste (vector signed int, int, int *);
12671void vec_ste (vector unsigned int, int, unsigned int *);
b0b343db
JJ
12672void vec_ste (vector bool int, int, int *);
12673void vec_ste (vector bool int, int, unsigned int *);
12674
12675void vec_stvewx (vector float, int, float *);
12676void vec_stvewx (vector signed int, int, int *);
12677void vec_stvewx (vector unsigned int, int, unsigned int *);
12678void vec_stvewx (vector bool int, int, int *);
12679void vec_stvewx (vector bool int, int, unsigned int *);
12680
12681void vec_stvehx (vector signed short, int, short *);
12682void vec_stvehx (vector unsigned short, int, unsigned short *);
12683void vec_stvehx (vector bool short, int, short *);
12684void vec_stvehx (vector bool short, int, unsigned short *);
12685void vec_stvehx (vector pixel, int, short *);
12686void vec_stvehx (vector pixel, int, unsigned short *);
12687
12688void vec_stvebx (vector signed char, int, signed char *);
12689void vec_stvebx (vector unsigned char, int, unsigned char *);
12690void vec_stvebx (vector bool char, int, signed char *);
12691void vec_stvebx (vector bool char, int, unsigned char *);
333c8841
AH
12692
12693void vec_stl (vector float, int, vector float *);
12694void vec_stl (vector float, int, float *);
12695void vec_stl (vector signed int, int, vector signed int *);
12696void vec_stl (vector signed int, int, int *);
333c8841
AH
12697void vec_stl (vector unsigned int, int, vector unsigned int *);
12698void vec_stl (vector unsigned int, int, unsigned int *);
b0b343db
JJ
12699void vec_stl (vector bool int, int, vector bool int *);
12700void vec_stl (vector bool int, int, unsigned int *);
12701void vec_stl (vector bool int, int, int *);
333c8841 12702void vec_stl (vector signed short, int, vector signed short *);
b0b343db
JJ
12703void vec_stl (vector signed short, int, short *);
12704void vec_stl (vector unsigned short, int, vector unsigned short *);
333c8841 12705void vec_stl (vector unsigned short, int, unsigned short *);
b0b343db
JJ
12706void vec_stl (vector bool short, int, vector bool short *);
12707void vec_stl (vector bool short, int, unsigned short *);
12708void vec_stl (vector bool short, int, short *);
12709void vec_stl (vector pixel, int, vector pixel *);
12710void vec_stl (vector pixel, int, unsigned short *);
12711void vec_stl (vector pixel, int, short *);
333c8841 12712void vec_stl (vector signed char, int, vector signed char *);
b0b343db 12713void vec_stl (vector signed char, int, signed char *);
333c8841 12714void vec_stl (vector unsigned char, int, vector unsigned char *);
b0b343db
JJ
12715void vec_stl (vector unsigned char, int, unsigned char *);
12716void vec_stl (vector bool char, int, vector bool char *);
12717void vec_stl (vector bool char, int, unsigned char *);
12718void vec_stl (vector bool char, int, signed char *);
333c8841 12719
b0b343db
JJ
12720vector signed char vec_sub (vector bool char, vector signed char);
12721vector signed char vec_sub (vector signed char, vector bool char);
333c8841 12722vector signed char vec_sub (vector signed char, vector signed char);
b0b343db
JJ
12723vector unsigned char vec_sub (vector bool char, vector unsigned char);
12724vector unsigned char vec_sub (vector unsigned char, vector bool char);
924fcc4e
JM
12725vector unsigned char vec_sub (vector unsigned char,
12726 vector unsigned char);
b0b343db
JJ
12727vector signed short vec_sub (vector bool short, vector signed short);
12728vector signed short vec_sub (vector signed short, vector bool short);
333c8841 12729vector signed short vec_sub (vector signed short, vector signed short);
b0b343db 12730vector unsigned short vec_sub (vector bool short,
924fcc4e
JM
12731 vector unsigned short);
12732vector unsigned short vec_sub (vector unsigned short,
b0b343db 12733 vector bool short);
6e5bb5ad
JM
12734vector unsigned short vec_sub (vector unsigned short,
12735 vector unsigned short);
b0b343db
JJ
12736vector signed int vec_sub (vector bool int, vector signed int);
12737vector signed int vec_sub (vector signed int, vector bool int);
333c8841 12738vector signed int vec_sub (vector signed int, vector signed int);
b0b343db
JJ
12739vector unsigned int vec_sub (vector bool int, vector unsigned int);
12740vector unsigned int vec_sub (vector unsigned int, vector bool int);
333c8841
AH
12741vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
12742vector float vec_sub (vector float, vector float);
12743
b0b343db
JJ
12744vector float vec_vsubfp (vector float, vector float);
12745
12746vector signed int vec_vsubuwm (vector bool int, vector signed int);
12747vector signed int vec_vsubuwm (vector signed int, vector bool int);
12748vector signed int vec_vsubuwm (vector signed int, vector signed int);
12749vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
12750vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
12751vector unsigned int vec_vsubuwm (vector unsigned int,
12752 vector unsigned int);
12753
12754vector signed short vec_vsubuhm (vector bool short,
12755 vector signed short);
12756vector signed short vec_vsubuhm (vector signed short,
12757 vector bool short);
12758vector signed short vec_vsubuhm (vector signed short,
12759 vector signed short);
12760vector unsigned short vec_vsubuhm (vector bool short,
12761 vector unsigned short);
12762vector unsigned short vec_vsubuhm (vector unsigned short,
12763 vector bool short);
12764vector unsigned short vec_vsubuhm (vector unsigned short,
12765 vector unsigned short);
12766
12767vector signed char vec_vsububm (vector bool char, vector signed char);
12768vector signed char vec_vsububm (vector signed char, vector bool char);
12769vector signed char vec_vsububm (vector signed char, vector signed char);
12770vector unsigned char vec_vsububm (vector bool char,
12771 vector unsigned char);
12772vector unsigned char vec_vsububm (vector unsigned char,
12773 vector bool char);
12774vector unsigned char vec_vsububm (vector unsigned char,
12775 vector unsigned char);
12776
333c8841
AH
12777vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
12778
b0b343db
JJ
12779vector unsigned char vec_subs (vector bool char, vector unsigned char);
12780vector unsigned char vec_subs (vector unsigned char, vector bool char);
924fcc4e
JM
12781vector unsigned char vec_subs (vector unsigned char,
12782 vector unsigned char);
b0b343db
JJ
12783vector signed char vec_subs (vector bool char, vector signed char);
12784vector signed char vec_subs (vector signed char, vector bool char);
333c8841 12785vector signed char vec_subs (vector signed char, vector signed char);
b0b343db 12786vector unsigned short vec_subs (vector bool short,
924fcc4e
JM
12787 vector unsigned short);
12788vector unsigned short vec_subs (vector unsigned short,
b0b343db 12789 vector bool short);
6e5bb5ad
JM
12790vector unsigned short vec_subs (vector unsigned short,
12791 vector unsigned short);
b0b343db
JJ
12792vector signed short vec_subs (vector bool short, vector signed short);
12793vector signed short vec_subs (vector signed short, vector bool short);
333c8841 12794vector signed short vec_subs (vector signed short, vector signed short);
b0b343db
JJ
12795vector unsigned int vec_subs (vector bool int, vector unsigned int);
12796vector unsigned int vec_subs (vector unsigned int, vector bool int);
333c8841 12797vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
b0b343db
JJ
12798vector signed int vec_subs (vector bool int, vector signed int);
12799vector signed int vec_subs (vector signed int, vector bool int);
333c8841
AH
12800vector signed int vec_subs (vector signed int, vector signed int);
12801
b0b343db
JJ
12802vector signed int vec_vsubsws (vector bool int, vector signed int);
12803vector signed int vec_vsubsws (vector signed int, vector bool int);
12804vector signed int vec_vsubsws (vector signed int, vector signed int);
12805
12806vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
12807vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
12808vector unsigned int vec_vsubuws (vector unsigned int,
12809 vector unsigned int);
12810
12811vector signed short vec_vsubshs (vector bool short,
12812 vector signed short);
12813vector signed short vec_vsubshs (vector signed short,
12814 vector bool short);
12815vector signed short vec_vsubshs (vector signed short,
12816 vector signed short);
12817
12818vector unsigned short vec_vsubuhs (vector bool short,
12819 vector unsigned short);
12820vector unsigned short vec_vsubuhs (vector unsigned short,
12821 vector bool short);
12822vector unsigned short vec_vsubuhs (vector unsigned short,
12823 vector unsigned short);
12824
12825vector signed char vec_vsubsbs (vector bool char, vector signed char);
12826vector signed char vec_vsubsbs (vector signed char, vector bool char);
12827vector signed char vec_vsubsbs (vector signed char, vector signed char);
12828
12829vector unsigned char vec_vsububs (vector bool char,
12830 vector unsigned char);
12831vector unsigned char vec_vsububs (vector unsigned char,
12832 vector bool char);
12833vector unsigned char vec_vsububs (vector unsigned char,
12834 vector unsigned char);
12835
924fcc4e
JM
12836vector unsigned int vec_sum4s (vector unsigned char,
12837 vector unsigned int);
333c8841
AH
12838vector signed int vec_sum4s (vector signed char, vector signed int);
12839vector signed int vec_sum4s (vector signed short, vector signed int);
12840
b0b343db
JJ
12841vector signed int vec_vsum4shs (vector signed short, vector signed int);
12842
12843vector signed int vec_vsum4sbs (vector signed char, vector signed int);
12844
12845vector unsigned int vec_vsum4ubs (vector unsigned char,
12846 vector unsigned int);
12847
333c8841
AH
12848vector signed int vec_sum2s (vector signed int, vector signed int);
12849
12850vector signed int vec_sums (vector signed int, vector signed int);
12851
12852vector float vec_trunc (vector float);
12853
12854vector signed short vec_unpackh (vector signed char);
b0b343db 12855vector bool short vec_unpackh (vector bool char);
333c8841 12856vector signed int vec_unpackh (vector signed short);
b0b343db
JJ
12857vector bool int vec_unpackh (vector bool short);
12858vector unsigned int vec_unpackh (vector pixel);
12859
12860vector bool int vec_vupkhsh (vector bool short);
12861vector signed int vec_vupkhsh (vector signed short);
12862
12863vector unsigned int vec_vupkhpx (vector pixel);
12864
12865vector bool short vec_vupkhsb (vector bool char);
12866vector signed short vec_vupkhsb (vector signed char);
333c8841
AH
12867
12868vector signed short vec_unpackl (vector signed char);
b0b343db
JJ
12869vector bool short vec_unpackl (vector bool char);
12870vector unsigned int vec_unpackl (vector pixel);
333c8841 12871vector signed int vec_unpackl (vector signed short);
b0b343db
JJ
12872vector bool int vec_unpackl (vector bool short);
12873
12874vector unsigned int vec_vupklpx (vector pixel);
12875
12876vector bool int vec_vupklsh (vector bool short);
12877vector signed int vec_vupklsh (vector signed short);
12878
12879vector bool short vec_vupklsb (vector bool char);
12880vector signed short vec_vupklsb (vector signed char);
333c8841
AH
12881
12882vector float vec_xor (vector float, vector float);
b0b343db
JJ
12883vector float vec_xor (vector float, vector bool int);
12884vector float vec_xor (vector bool int, vector float);
12885vector bool int vec_xor (vector bool int, vector bool int);
12886vector signed int vec_xor (vector bool int, vector signed int);
12887vector signed int vec_xor (vector signed int, vector bool int);
333c8841 12888vector signed int vec_xor (vector signed int, vector signed int);
b0b343db
JJ
12889vector unsigned int vec_xor (vector bool int, vector unsigned int);
12890vector unsigned int vec_xor (vector unsigned int, vector bool int);
333c8841 12891vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
b0b343db
JJ
12892vector bool short vec_xor (vector bool short, vector bool short);
12893vector signed short vec_xor (vector bool short, vector signed short);
12894vector signed short vec_xor (vector signed short, vector bool short);
333c8841 12895vector signed short vec_xor (vector signed short, vector signed short);
b0b343db 12896vector unsigned short vec_xor (vector bool short,
924fcc4e
JM
12897 vector unsigned short);
12898vector unsigned short vec_xor (vector unsigned short,
b0b343db 12899 vector bool short);
6e5bb5ad
JM
12900vector unsigned short vec_xor (vector unsigned short,
12901 vector unsigned short);
b0b343db
JJ
12902vector signed char vec_xor (vector bool char, vector signed char);
12903vector bool char vec_xor (vector bool char, vector bool char);
12904vector signed char vec_xor (vector signed char, vector bool char);
333c8841 12905vector signed char vec_xor (vector signed char, vector signed char);
b0b343db
JJ
12906vector unsigned char vec_xor (vector bool char, vector unsigned char);
12907vector unsigned char vec_xor (vector unsigned char, vector bool char);
924fcc4e
JM
12908vector unsigned char vec_xor (vector unsigned char,
12909 vector unsigned char);
333c8841 12910
b0b343db
JJ
12911int vec_all_eq (vector signed char, vector bool char);
12912int vec_all_eq (vector signed char, vector signed char);
12913int vec_all_eq (vector unsigned char, vector bool char);
12914int vec_all_eq (vector unsigned char, vector unsigned char);
12915int vec_all_eq (vector bool char, vector bool char);
12916int vec_all_eq (vector bool char, vector unsigned char);
12917int vec_all_eq (vector bool char, vector signed char);
12918int vec_all_eq (vector signed short, vector bool short);
12919int vec_all_eq (vector signed short, vector signed short);
12920int vec_all_eq (vector unsigned short, vector bool short);
12921int vec_all_eq (vector unsigned short, vector unsigned short);
12922int vec_all_eq (vector bool short, vector bool short);
12923int vec_all_eq (vector bool short, vector unsigned short);
12924int vec_all_eq (vector bool short, vector signed short);
12925int vec_all_eq (vector pixel, vector pixel);
12926int vec_all_eq (vector signed int, vector bool int);
12927int vec_all_eq (vector signed int, vector signed int);
12928int vec_all_eq (vector unsigned int, vector bool int);
12929int vec_all_eq (vector unsigned int, vector unsigned int);
12930int vec_all_eq (vector bool int, vector bool int);
12931int vec_all_eq (vector bool int, vector unsigned int);
12932int vec_all_eq (vector bool int, vector signed int);
12933int vec_all_eq (vector float, vector float);
12934
12935int vec_all_ge (vector bool char, vector unsigned char);
12936int vec_all_ge (vector unsigned char, vector bool char);
12937int vec_all_ge (vector unsigned char, vector unsigned char);
12938int vec_all_ge (vector bool char, vector signed char);
12939int vec_all_ge (vector signed char, vector bool char);
12940int vec_all_ge (vector signed char, vector signed char);
12941int vec_all_ge (vector bool short, vector unsigned short);
12942int vec_all_ge (vector unsigned short, vector bool short);
12943int vec_all_ge (vector unsigned short, vector unsigned short);
12944int vec_all_ge (vector signed short, vector signed short);
12945int vec_all_ge (vector bool short, vector signed short);
12946int vec_all_ge (vector signed short, vector bool short);
12947int vec_all_ge (vector bool int, vector unsigned int);
12948int vec_all_ge (vector unsigned int, vector bool int);
12949int vec_all_ge (vector unsigned int, vector unsigned int);
12950int vec_all_ge (vector bool int, vector signed int);
12951int vec_all_ge (vector signed int, vector bool int);
12952int vec_all_ge (vector signed int, vector signed int);
12953int vec_all_ge (vector float, vector float);
12954
12955int vec_all_gt (vector bool char, vector unsigned char);
12956int vec_all_gt (vector unsigned char, vector bool char);
12957int vec_all_gt (vector unsigned char, vector unsigned char);
12958int vec_all_gt (vector bool char, vector signed char);
12959int vec_all_gt (vector signed char, vector bool char);
12960int vec_all_gt (vector signed char, vector signed char);
12961int vec_all_gt (vector bool short, vector unsigned short);
12962int vec_all_gt (vector unsigned short, vector bool short);
12963int vec_all_gt (vector unsigned short, vector unsigned short);
12964int vec_all_gt (vector bool short, vector signed short);
12965int vec_all_gt (vector signed short, vector bool short);
12966int vec_all_gt (vector signed short, vector signed short);
12967int vec_all_gt (vector bool int, vector unsigned int);
12968int vec_all_gt (vector unsigned int, vector bool int);
12969int vec_all_gt (vector unsigned int, vector unsigned int);
12970int vec_all_gt (vector bool int, vector signed int);
12971int vec_all_gt (vector signed int, vector bool int);
12972int vec_all_gt (vector signed int, vector signed int);
12973int vec_all_gt (vector float, vector float);
12974
12975int vec_all_in (vector float, vector float);
12976
12977int vec_all_le (vector bool char, vector unsigned char);
12978int vec_all_le (vector unsigned char, vector bool char);
12979int vec_all_le (vector unsigned char, vector unsigned char);
12980int vec_all_le (vector bool char, vector signed char);
12981int vec_all_le (vector signed char, vector bool char);
12982int vec_all_le (vector signed char, vector signed char);
12983int vec_all_le (vector bool short, vector unsigned short);
12984int vec_all_le (vector unsigned short, vector bool short);
12985int vec_all_le (vector unsigned short, vector unsigned short);
12986int vec_all_le (vector bool short, vector signed short);
12987int vec_all_le (vector signed short, vector bool short);
12988int vec_all_le (vector signed short, vector signed short);
12989int vec_all_le (vector bool int, vector unsigned int);
12990int vec_all_le (vector unsigned int, vector bool int);
12991int vec_all_le (vector unsigned int, vector unsigned int);
12992int vec_all_le (vector bool int, vector signed int);
12993int vec_all_le (vector signed int, vector bool int);
12994int vec_all_le (vector signed int, vector signed int);
12995int vec_all_le (vector float, vector float);
12996
12997int vec_all_lt (vector bool char, vector unsigned char);
12998int vec_all_lt (vector unsigned char, vector bool char);
12999int vec_all_lt (vector unsigned char, vector unsigned char);
13000int vec_all_lt (vector bool char, vector signed char);
13001int vec_all_lt (vector signed char, vector bool char);
13002int vec_all_lt (vector signed char, vector signed char);
13003int vec_all_lt (vector bool short, vector unsigned short);
13004int vec_all_lt (vector unsigned short, vector bool short);
13005int vec_all_lt (vector unsigned short, vector unsigned short);
13006int vec_all_lt (vector bool short, vector signed short);
13007int vec_all_lt (vector signed short, vector bool short);
13008int vec_all_lt (vector signed short, vector signed short);
13009int vec_all_lt (vector bool int, vector unsigned int);
13010int vec_all_lt (vector unsigned int, vector bool int);
13011int vec_all_lt (vector unsigned int, vector unsigned int);
13012int vec_all_lt (vector bool int, vector signed int);
13013int vec_all_lt (vector signed int, vector bool int);
13014int vec_all_lt (vector signed int, vector signed int);
13015int vec_all_lt (vector float, vector float);
13016
13017int vec_all_nan (vector float);
13018
13019int vec_all_ne (vector signed char, vector bool char);
13020int vec_all_ne (vector signed char, vector signed char);
13021int vec_all_ne (vector unsigned char, vector bool char);
13022int vec_all_ne (vector unsigned char, vector unsigned char);
13023int vec_all_ne (vector bool char, vector bool char);
13024int vec_all_ne (vector bool char, vector unsigned char);
13025int vec_all_ne (vector bool char, vector signed char);
13026int vec_all_ne (vector signed short, vector bool short);
13027int vec_all_ne (vector signed short, vector signed short);
13028int vec_all_ne (vector unsigned short, vector bool short);
13029int vec_all_ne (vector unsigned short, vector unsigned short);
13030int vec_all_ne (vector bool short, vector bool short);
13031int vec_all_ne (vector bool short, vector unsigned short);
13032int vec_all_ne (vector bool short, vector signed short);
13033int vec_all_ne (vector pixel, vector pixel);
13034int vec_all_ne (vector signed int, vector bool int);
13035int vec_all_ne (vector signed int, vector signed int);
13036int vec_all_ne (vector unsigned int, vector bool int);
13037int vec_all_ne (vector unsigned int, vector unsigned int);
13038int vec_all_ne (vector bool int, vector bool int);
13039int vec_all_ne (vector bool int, vector unsigned int);
13040int vec_all_ne (vector bool int, vector signed int);
13041int vec_all_ne (vector float, vector float);
13042
13043int vec_all_nge (vector float, vector float);
13044
13045int vec_all_ngt (vector float, vector float);
13046
13047int vec_all_nle (vector float, vector float);
13048
13049int vec_all_nlt (vector float, vector float);
13050
13051int vec_all_numeric (vector float);
13052
13053int vec_any_eq (vector signed char, vector bool char);
13054int vec_any_eq (vector signed char, vector signed char);
13055int vec_any_eq (vector unsigned char, vector bool char);
13056int vec_any_eq (vector unsigned char, vector unsigned char);
13057int vec_any_eq (vector bool char, vector bool char);
13058int vec_any_eq (vector bool char, vector unsigned char);
13059int vec_any_eq (vector bool char, vector signed char);
13060int vec_any_eq (vector signed short, vector bool short);
13061int vec_any_eq (vector signed short, vector signed short);
13062int vec_any_eq (vector unsigned short, vector bool short);
13063int vec_any_eq (vector unsigned short, vector unsigned short);
13064int vec_any_eq (vector bool short, vector bool short);
13065int vec_any_eq (vector bool short, vector unsigned short);
13066int vec_any_eq (vector bool short, vector signed short);
13067int vec_any_eq (vector pixel, vector pixel);
13068int vec_any_eq (vector signed int, vector bool int);
13069int vec_any_eq (vector signed int, vector signed int);
13070int vec_any_eq (vector unsigned int, vector bool int);
13071int vec_any_eq (vector unsigned int, vector unsigned int);
13072int vec_any_eq (vector bool int, vector bool int);
13073int vec_any_eq (vector bool int, vector unsigned int);
13074int vec_any_eq (vector bool int, vector signed int);
13075int vec_any_eq (vector float, vector float);
13076
13077int vec_any_ge (vector signed char, vector bool char);
13078int vec_any_ge (vector unsigned char, vector bool char);
13079int vec_any_ge (vector unsigned char, vector unsigned char);
13080int vec_any_ge (vector signed char, vector signed char);
13081int vec_any_ge (vector bool char, vector unsigned char);
13082int vec_any_ge (vector bool char, vector signed char);
13083int vec_any_ge (vector unsigned short, vector bool short);
13084int vec_any_ge (vector unsigned short, vector unsigned short);
13085int vec_any_ge (vector signed short, vector signed short);
13086int vec_any_ge (vector signed short, vector bool short);
13087int vec_any_ge (vector bool short, vector unsigned short);
13088int vec_any_ge (vector bool short, vector signed short);
13089int vec_any_ge (vector signed int, vector bool int);
13090int vec_any_ge (vector unsigned int, vector bool int);
13091int vec_any_ge (vector unsigned int, vector unsigned int);
13092int vec_any_ge (vector signed int, vector signed int);
13093int vec_any_ge (vector bool int, vector unsigned int);
13094int vec_any_ge (vector bool int, vector signed int);
13095int vec_any_ge (vector float, vector float);
13096
13097int vec_any_gt (vector bool char, vector unsigned char);
13098int vec_any_gt (vector unsigned char, vector bool char);
13099int vec_any_gt (vector unsigned char, vector unsigned char);
13100int vec_any_gt (vector bool char, vector signed char);
13101int vec_any_gt (vector signed char, vector bool char);
13102int vec_any_gt (vector signed char, vector signed char);
13103int vec_any_gt (vector bool short, vector unsigned short);
13104int vec_any_gt (vector unsigned short, vector bool short);
13105int vec_any_gt (vector unsigned short, vector unsigned short);
13106int vec_any_gt (vector bool short, vector signed short);
13107int vec_any_gt (vector signed short, vector bool short);
13108int vec_any_gt (vector signed short, vector signed short);
13109int vec_any_gt (vector bool int, vector unsigned int);
13110int vec_any_gt (vector unsigned int, vector bool int);
13111int vec_any_gt (vector unsigned int, vector unsigned int);
13112int vec_any_gt (vector bool int, vector signed int);
13113int vec_any_gt (vector signed int, vector bool int);
13114int vec_any_gt (vector signed int, vector signed int);
13115int vec_any_gt (vector float, vector float);
13116
13117int vec_any_le (vector bool char, vector unsigned char);
13118int vec_any_le (vector unsigned char, vector bool char);
13119int vec_any_le (vector unsigned char, vector unsigned char);
13120int vec_any_le (vector bool char, vector signed char);
13121int vec_any_le (vector signed char, vector bool char);
13122int vec_any_le (vector signed char, vector signed char);
13123int vec_any_le (vector bool short, vector unsigned short);
13124int vec_any_le (vector unsigned short, vector bool short);
13125int vec_any_le (vector unsigned short, vector unsigned short);
13126int vec_any_le (vector bool short, vector signed short);
13127int vec_any_le (vector signed short, vector bool short);
13128int vec_any_le (vector signed short, vector signed short);
13129int vec_any_le (vector bool int, vector unsigned int);
13130int vec_any_le (vector unsigned int, vector bool int);
13131int vec_any_le (vector unsigned int, vector unsigned int);
13132int vec_any_le (vector bool int, vector signed int);
13133int vec_any_le (vector signed int, vector bool int);
13134int vec_any_le (vector signed int, vector signed int);
13135int vec_any_le (vector float, vector float);
13136
13137int vec_any_lt (vector bool char, vector unsigned char);
13138int vec_any_lt (vector unsigned char, vector bool char);
13139int vec_any_lt (vector unsigned char, vector unsigned char);
13140int vec_any_lt (vector bool char, vector signed char);
13141int vec_any_lt (vector signed char, vector bool char);
13142int vec_any_lt (vector signed char, vector signed char);
13143int vec_any_lt (vector bool short, vector unsigned short);
13144int vec_any_lt (vector unsigned short, vector bool short);
13145int vec_any_lt (vector unsigned short, vector unsigned short);
13146int vec_any_lt (vector bool short, vector signed short);
13147int vec_any_lt (vector signed short, vector bool short);
13148int vec_any_lt (vector signed short, vector signed short);
13149int vec_any_lt (vector bool int, vector unsigned int);
13150int vec_any_lt (vector unsigned int, vector bool int);
13151int vec_any_lt (vector unsigned int, vector unsigned int);
13152int vec_any_lt (vector bool int, vector signed int);
13153int vec_any_lt (vector signed int, vector bool int);
13154int vec_any_lt (vector signed int, vector signed int);
13155int vec_any_lt (vector float, vector float);
13156
13157int vec_any_nan (vector float);
13158
13159int vec_any_ne (vector signed char, vector bool char);
13160int vec_any_ne (vector signed char, vector signed char);
13161int vec_any_ne (vector unsigned char, vector bool char);
13162int vec_any_ne (vector unsigned char, vector unsigned char);
13163int vec_any_ne (vector bool char, vector bool char);
13164int vec_any_ne (vector bool char, vector unsigned char);
13165int vec_any_ne (vector bool char, vector signed char);
13166int vec_any_ne (vector signed short, vector bool short);
13167int vec_any_ne (vector signed short, vector signed short);
13168int vec_any_ne (vector unsigned short, vector bool short);
13169int vec_any_ne (vector unsigned short, vector unsigned short);
13170int vec_any_ne (vector bool short, vector bool short);
13171int vec_any_ne (vector bool short, vector unsigned short);
13172int vec_any_ne (vector bool short, vector signed short);
13173int vec_any_ne (vector pixel, vector pixel);
13174int vec_any_ne (vector signed int, vector bool int);
13175int vec_any_ne (vector signed int, vector signed int);
13176int vec_any_ne (vector unsigned int, vector bool int);
13177int vec_any_ne (vector unsigned int, vector unsigned int);
13178int vec_any_ne (vector bool int, vector bool int);
13179int vec_any_ne (vector bool int, vector unsigned int);
13180int vec_any_ne (vector bool int, vector signed int);
13181int vec_any_ne (vector float, vector float);
13182
13183int vec_any_nge (vector float, vector float);
13184
13185int vec_any_ngt (vector float, vector float);
13186
13187int vec_any_nle (vector float, vector float);
13188
13189int vec_any_nlt (vector float, vector float);
13190
13191int vec_any_numeric (vector float);
13192
13193int vec_any_out (vector float, vector float);
333c8841
AH
13194@end smallexample
13195
29e6733c
MM
13196If the vector/scalar (VSX) instruction set is available, the following
13197additional functions are available:
13198
13199@smallexample
13200vector double vec_abs (vector double);
13201vector double vec_add (vector double, vector double);
13202vector double vec_and (vector double, vector double);
13203vector double vec_and (vector double, vector bool long);
13204vector double vec_and (vector bool long, vector double);
13205vector double vec_andc (vector double, vector double);
13206vector double vec_andc (vector double, vector bool long);
13207vector double vec_andc (vector bool long, vector double);
13208vector double vec_ceil (vector double);
13209vector bool long vec_cmpeq (vector double, vector double);
13210vector bool long vec_cmpge (vector double, vector double);
13211vector bool long vec_cmpgt (vector double, vector double);
13212vector bool long vec_cmple (vector double, vector double);
13213vector bool long vec_cmplt (vector double, vector double);
13214vector float vec_div (vector float, vector float);
13215vector double vec_div (vector double, vector double);
13216vector double vec_floor (vector double);
c9485473
MM
13217vector double vec_ld (int, const vector double *);
13218vector double vec_ld (int, const double *);
13219vector double vec_ldl (int, const vector double *);
13220vector double vec_ldl (int, const double *);
13221vector unsigned char vec_lvsl (int, const volatile double *);
13222vector unsigned char vec_lvsr (int, const volatile double *);
29e6733c
MM
13223vector double vec_madd (vector double, vector double, vector double);
13224vector double vec_max (vector double, vector double);
13225vector double vec_min (vector double, vector double);
13226vector float vec_msub (vector float, vector float, vector float);
13227vector double vec_msub (vector double, vector double, vector double);
13228vector float vec_mul (vector float, vector float);
13229vector double vec_mul (vector double, vector double);
13230vector float vec_nearbyint (vector float);
13231vector double vec_nearbyint (vector double);
13232vector float vec_nmadd (vector float, vector float, vector float);
13233vector double vec_nmadd (vector double, vector double, vector double);
13234vector double vec_nmsub (vector double, vector double, vector double);
13235vector double vec_nor (vector double, vector double);
13236vector double vec_or (vector double, vector double);
13237vector double vec_or (vector double, vector bool long);
13238vector double vec_or (vector bool long, vector double);
13239vector double vec_perm (vector double,
13240 vector double,
13241 vector unsigned char);
29e6733c 13242vector double vec_rint (vector double);
92902797
MM
13243vector double vec_recip (vector double, vector double);
13244vector double vec_rsqrt (vector double);
13245vector double vec_rsqrte (vector double);
29e6733c
MM
13246vector double vec_sel (vector double, vector double, vector bool long);
13247vector double vec_sel (vector double, vector double, vector unsigned long);
13248vector double vec_sub (vector double, vector double);
13249vector float vec_sqrt (vector float);
13250vector double vec_sqrt (vector double);
c9485473
MM
13251void vec_st (vector double, int, vector double *);
13252void vec_st (vector double, int, double *);
29e6733c
MM
13253vector double vec_trunc (vector double);
13254vector double vec_xor (vector double, vector double);
13255vector double vec_xor (vector double, vector bool long);
13256vector double vec_xor (vector bool long, vector double);
13257int vec_all_eq (vector double, vector double);
13258int vec_all_ge (vector double, vector double);
13259int vec_all_gt (vector double, vector double);
13260int vec_all_le (vector double, vector double);
13261int vec_all_lt (vector double, vector double);
13262int vec_all_nan (vector double);
13263int vec_all_ne (vector double, vector double);
13264int vec_all_nge (vector double, vector double);
13265int vec_all_ngt (vector double, vector double);
13266int vec_all_nle (vector double, vector double);
13267int vec_all_nlt (vector double, vector double);
13268int vec_all_numeric (vector double);
13269int vec_any_eq (vector double, vector double);
13270int vec_any_ge (vector double, vector double);
13271int vec_any_gt (vector double, vector double);
13272int vec_any_le (vector double, vector double);
13273int vec_any_lt (vector double, vector double);
13274int vec_any_nan (vector double);
13275int vec_any_ne (vector double, vector double);
13276int vec_any_nge (vector double, vector double);
13277int vec_any_ngt (vector double, vector double);
13278int vec_any_nle (vector double, vector double);
13279int vec_any_nlt (vector double, vector double);
13280int vec_any_numeric (vector double);
c9485473
MM
13281
13282vector double vec_vsx_ld (int, const vector double *);
13283vector double vec_vsx_ld (int, const double *);
13284vector float vec_vsx_ld (int, const vector float *);
13285vector float vec_vsx_ld (int, const float *);
13286vector bool int vec_vsx_ld (int, const vector bool int *);
13287vector signed int vec_vsx_ld (int, const vector signed int *);
13288vector signed int vec_vsx_ld (int, const int *);
13289vector signed int vec_vsx_ld (int, const long *);
13290vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
13291vector unsigned int vec_vsx_ld (int, const unsigned int *);
13292vector unsigned int vec_vsx_ld (int, const unsigned long *);
13293vector bool short vec_vsx_ld (int, const vector bool short *);
13294vector pixel vec_vsx_ld (int, const vector pixel *);
13295vector signed short vec_vsx_ld (int, const vector signed short *);
13296vector signed short vec_vsx_ld (int, const short *);
13297vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
13298vector unsigned short vec_vsx_ld (int, const unsigned short *);
13299vector bool char vec_vsx_ld (int, const vector bool char *);
13300vector signed char vec_vsx_ld (int, const vector signed char *);
13301vector signed char vec_vsx_ld (int, const signed char *);
13302vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
13303vector unsigned char vec_vsx_ld (int, const unsigned char *);
13304
13305void vec_vsx_st (vector double, int, vector double *);
13306void vec_vsx_st (vector double, int, double *);
13307void vec_vsx_st (vector float, int, vector float *);
13308void vec_vsx_st (vector float, int, float *);
13309void vec_vsx_st (vector signed int, int, vector signed int *);
13310void vec_vsx_st (vector signed int, int, int *);
13311void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
13312void vec_vsx_st (vector unsigned int, int, unsigned int *);
13313void vec_vsx_st (vector bool int, int, vector bool int *);
13314void vec_vsx_st (vector bool int, int, unsigned int *);
13315void vec_vsx_st (vector bool int, int, int *);
13316void vec_vsx_st (vector signed short, int, vector signed short *);
13317void vec_vsx_st (vector signed short, int, short *);
13318void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
13319void vec_vsx_st (vector unsigned short, int, unsigned short *);
13320void vec_vsx_st (vector bool short, int, vector bool short *);
13321void vec_vsx_st (vector bool short, int, unsigned short *);
13322void vec_vsx_st (vector pixel, int, vector pixel *);
13323void vec_vsx_st (vector pixel, int, unsigned short *);
13324void vec_vsx_st (vector pixel, int, short *);
13325void vec_vsx_st (vector bool short, int, short *);
13326void vec_vsx_st (vector signed char, int, vector signed char *);
13327void vec_vsx_st (vector signed char, int, signed char *);
13328void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
13329void vec_vsx_st (vector unsigned char, int, unsigned char *);
13330void vec_vsx_st (vector bool char, int, vector bool char *);
13331void vec_vsx_st (vector bool char, int, unsigned char *);
13332void vec_vsx_st (vector bool char, int, signed char *);
13333@end smallexample
13334
13335Note that the @samp{vec_ld} and @samp{vec_st} builtins will always
13336generate the Altivec @samp{LVX} and @samp{STVX} instructions even
13337if the VSX instruction set is available. The @samp{vec_vsx_ld} and
13338@samp{vec_vsx_st} builtins will always generate the VSX @samp{LXVD2X},
13339@samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
29e6733c
MM
13340
13341GCC provides a few other builtins on Powerpc to access certain instructions:
13342@smallexample
13343float __builtin_recipdivf (float, float);
13344float __builtin_rsqrtf (float);
13345double __builtin_recipdiv (double, double);
92902797 13346double __builtin_rsqrt (double);
29e6733c
MM
13347long __builtin_bpermd (long, long);
13348int __builtin_bswap16 (int);
13349@end smallexample
13350
92902797
MM
13351The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13352@code{__builtin_rsqrtf} functions generate multiple instructions to
13353implement the reciprocal sqrt functionality using reciprocal sqrt
13354estimate instructions.
13355
13356The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13357functions generate multiple instructions to implement division using
13358the reciprocal estimate instructions.
13359
65a324b4
NC
13360@node RX Built-in Functions
13361@subsection RX Built-in Functions
13362GCC supports some of the RX instructions which cannot be expressed in
13363the C programming language via the use of built-in functions. The
13364following functions are supported:
13365
13366@deftypefn {Built-in Function} void __builtin_rx_brk (void)
13367Generates the @code{brk} machine instruction.
13368@end deftypefn
13369
13370@deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
13371Generates the @code{clrpsw} machine instruction to clear the specified
13372bit in the processor status word.
13373@end deftypefn
13374
13375@deftypefn {Built-in Function} void __builtin_rx_int (int)
13376Generates the @code{int} machine instruction to generate an interrupt
13377with the specified value.
13378@end deftypefn
13379
13380@deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
13381Generates the @code{machi} machine instruction to add the result of
13382multiplying the top 16-bits of the two arguments into the
13383accumulator.
13384@end deftypefn
13385
13386@deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
13387Generates the @code{maclo} machine instruction to add the result of
13388multiplying the bottom 16-bits of the two arguments into the
13389accumulator.
13390@end deftypefn
13391
13392@deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
13393Generates the @code{mulhi} machine instruction to place the result of
13394multiplying the top 16-bits of the two arguments into the
13395accumulator.
13396@end deftypefn
13397
13398@deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
13399Generates the @code{mullo} machine instruction to place the result of
13400multiplying the bottom 16-bits of the two arguments into the
13401accumulator.
13402@end deftypefn
13403
13404@deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
13405Generates the @code{mvfachi} machine instruction to read the top
1340632-bits of the accumulator.
13407@end deftypefn
13408
13409@deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
13410Generates the @code{mvfacmi} machine instruction to read the middle
1341132-bits of the accumulator.
13412@end deftypefn
13413
13414@deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
13415Generates the @code{mvfc} machine instruction which reads the control
13416register specified in its argument and returns its value.
13417@end deftypefn
13418
13419@deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
13420Generates the @code{mvtachi} machine instruction to set the top
1342132-bits of the accumulator.
13422@end deftypefn
13423
13424@deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
13425Generates the @code{mvtaclo} machine instruction to set the bottom
1342632-bits of the accumulator.
13427@end deftypefn
13428
13429@deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
13430Generates the @code{mvtc} machine instruction which sets control
13431register number @code{reg} to @code{val}.
13432@end deftypefn
13433
13434@deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
13435Generates the @code{mvtipl} machine instruction set the interrupt
13436priority level.
13437@end deftypefn
13438
13439@deftypefn {Built-in Function} void __builtin_rx_racw (int)
13440Generates the @code{racw} machine instruction to round the accumulator
13441according to the specified mode.
13442@end deftypefn
13443
13444@deftypefn {Built-in Function} int __builtin_rx_revw (int)
13445Generates the @code{revw} machine instruction which swaps the bytes in
13446the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
13447and also bits 16--23 occupy bits 24--31 and vice versa.
13448@end deftypefn
13449
13450@deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
13451Generates the @code{rmpa} machine instruction which initiates a
13452repeated multiply and accumulate sequence.
13453@end deftypefn
13454
13455@deftypefn {Built-in Function} void __builtin_rx_round (float)
13456Generates the @code{round} machine instruction which returns the
13457floating point argument rounded according to the current rounding mode
13458set in the floating point status word register.
13459@end deftypefn
13460
13461@deftypefn {Built-in Function} int __builtin_rx_sat (int)
13462Generates the @code{sat} machine instruction which returns the
13463saturated value of the argument.
13464@end deftypefn
13465
13466@deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
13467Generates the @code{setpsw} machine instruction to set the specified
13468bit in the processor status word.
13469@end deftypefn
13470
13471@deftypefn {Built-in Function} void __builtin_rx_wait (void)
13472Generates the @code{wait} machine instruction.
13473@end deftypefn
13474
c5145ceb
JM
13475@node SPARC VIS Built-in Functions
13476@subsection SPARC VIS Built-in Functions
13477
13478GCC supports SIMD operations on the SPARC using both the generic vector
2fd13506 13479extensions (@pxref{Vector Extensions}) as well as built-in functions for
c5145ceb
JM
13480the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
13481switch, the VIS extension is exposed as the following built-in functions:
13482
13483@smallexample
f14e0262 13484typedef int v1si __attribute__ ((vector_size (4)));
c5145ceb
JM
13485typedef int v2si __attribute__ ((vector_size (8)));
13486typedef short v4hi __attribute__ ((vector_size (8)));
13487typedef short v2hi __attribute__ ((vector_size (4)));
47640f40
DM
13488typedef unsigned char v8qi __attribute__ ((vector_size (8)));
13489typedef unsigned char v4qi __attribute__ ((vector_size (4)));
c5145ceb 13490
10b859c0
DM
13491void __builtin_vis_write_gsr (int64_t);
13492int64_t __builtin_vis_read_gsr (void);
13493
c5145ceb 13494void * __builtin_vis_alignaddr (void *, long);
47640f40 13495void * __builtin_vis_alignaddrl (void *, long);
c5145ceb
JM
13496int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
13497v2si __builtin_vis_faligndatav2si (v2si, v2si);
13498v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
13499v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
13500
13501v4hi __builtin_vis_fexpand (v4qi);
13502
13503v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
47640f40
DM
13504v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
13505v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
c5145ceb
JM
13506v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
13507v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
13508v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
13509v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
13510
13511v4qi __builtin_vis_fpack16 (v4hi);
47640f40 13512v8qi __builtin_vis_fpack32 (v2si, v8qi);
c5145ceb
JM
13513v2hi __builtin_vis_fpackfix (v2si);
13514v8qi __builtin_vis_fpmerge (v4qi, v4qi);
13515
13516int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
b1e4f4dd 13517
cb8bbba8
DM
13518long __builtin_vis_edge8 (void *, void *);
13519long __builtin_vis_edge8l (void *, void *);
13520long __builtin_vis_edge16 (void *, void *);
13521long __builtin_vis_edge16l (void *, void *);
13522long __builtin_vis_edge32 (void *, void *);
13523long __builtin_vis_edge32l (void *, void *);
13524
13525long __builtin_vis_fcmple16 (v4hi, v4hi);
13526long __builtin_vis_fcmple32 (v2si, v2si);
13527long __builtin_vis_fcmpne16 (v4hi, v4hi);
13528long __builtin_vis_fcmpne32 (v2si, v2si);
13529long __builtin_vis_fcmpgt16 (v4hi, v4hi);
13530long __builtin_vis_fcmpgt32 (v2si, v2si);
13531long __builtin_vis_fcmpeq16 (v4hi, v4hi);
13532long __builtin_vis_fcmpeq32 (v2si, v2si);
f14e0262
DM
13533
13534v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
13535v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
13536v2si __builtin_vis_fpadd32 (v2si, v2si);
13537v1si __builtin_vis_fpadd32s (v1si, v1si);
13538v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
13539v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
13540v2si __builtin_vis_fpsub32 (v2si, v2si);
13541v1si __builtin_vis_fpsub32s (v1si, v1si);
1ec01ab2
DM
13542
13543long __builtin_vis_array8 (long, long);
13544long __builtin_vis_array16 (long, long);
13545long __builtin_vis_array32 (long, long);
c5145ceb
JM
13546@end smallexample
13547
96d7b15f
DM
13548When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
13549functions also become available:
c4728c6b
DM
13550
13551@smallexample
13552long __builtin_vis_bmask (long, long);
13553int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
13554v2si __builtin_vis_bshufflev2si (v2si, v2si);
13555v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
13556v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
13557
13558long __builtin_vis_edge8n (void *, void *);
13559long __builtin_vis_edge8ln (void *, void *);
13560long __builtin_vis_edge16n (void *, void *);
13561long __builtin_vis_edge16ln (void *, void *);
13562long __builtin_vis_edge32n (void *, void *);
13563long __builtin_vis_edge32ln (void *, void *);
13564@end smallexample
13565
96d7b15f
DM
13566When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
13567functions also become available:
13568
13569@smallexample
13570void __builtin_vis_cmask8 (long);
13571void __builtin_vis_cmask16 (long);
13572void __builtin_vis_cmask32 (long);
13573
13574v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
13575
13576v4hi __builtin_vis_fsll16 (v4hi, v4hi);
13577v4hi __builtin_vis_fslas16 (v4hi, v4hi);
13578v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
13579v4hi __builtin_vis_fsra16 (v4hi, v4hi);
13580v2si __builtin_vis_fsll16 (v2si, v2si);
13581v2si __builtin_vis_fslas16 (v2si, v2si);
13582v2si __builtin_vis_fsrl16 (v2si, v2si);
13583v2si __builtin_vis_fsra16 (v2si, v2si);
13584
13585long __builtin_vis_pdistn (v8qi, v8qi);
13586
13587v4hi __builtin_vis_fmean16 (v4hi, v4hi);
13588
13589int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
13590int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
13591
13592v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
13593v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
13594v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
13595v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
13596v2si __builtin_vis_fpadds32 (v2si, v2si);
13597v1si __builtin_vis_fpadds32s (v1si, v1si);
13598v2si __builtin_vis_fpsubs32 (v2si, v2si);
13599v1si __builtin_vis_fpsubs32s (v1si, v1si);
13600
13601long __builtin_vis_fucmple8 (v8qi, v8qi);
13602long __builtin_vis_fucmpne8 (v8qi, v8qi);
13603long __builtin_vis_fucmpgt8 (v8qi, v8qi);
13604long __builtin_vis_fucmpeq8 (v8qi, v8qi);
facb3fd7
DM
13605
13606float __builtin_vis_fhadds (float, float);
13607double __builtin_vis_fhaddd (double, double);
13608float __builtin_vis_fhsubs (float, float);
13609double __builtin_vis_fhsubd (double, double);
13610float __builtin_vis_fnhadds (float, float);
13611double __builtin_vis_fnhaddd (double, double);
13612
13613int64_t __builtin_vis_umulxhi (int64_t, int64_t);
13614int64_t __builtin_vis_xmulx (int64_t, int64_t);
13615int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
96d7b15f
DM
13616@end smallexample
13617
85d9c13c
TS
13618@node SPU Built-in Functions
13619@subsection SPU Built-in Functions
13620
13621GCC provides extensions for the SPU processor as described in the
13622Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
13623found at @uref{http://cell.scei.co.jp/} or
13624@uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
13625implementation differs in several ways.
13626
13627@itemize @bullet
13628
13629@item
13630The optional extension of specifying vector constants in parentheses is
13631not supported.
13632
13633@item
13634A vector initializer requires no cast if the vector constant is of the
13635same type as the variable it is initializing.
13636
13637@item
13638If @code{signed} or @code{unsigned} is omitted, the signedness of the
13639vector type is the default signedness of the base type. The default
13640varies depending on the operating system, so a portable program should
13641always specify the signedness.
13642
13643@item
13644By default, the keyword @code{__vector} is added. The macro
13645@code{vector} is defined in @code{<spu_intrinsics.h>} and can be
13646undefined.
13647
13648@item
13649GCC allows using a @code{typedef} name as the type specifier for a
13650vector type.
13651
13652@item
13653For C, overloaded functions are implemented with macros so the following
13654does not work:
13655
13656@smallexample
13657 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13658@end smallexample
13659
13660Since @code{spu_add} is a macro, the vector constant in the example
13661is treated as four separate arguments. Wrap the entire argument in
13662parentheses for this to work.
13663
13664@item
13665The extended version of @code{__builtin_expect} is not supported.
13666
13667@end itemize
13668
5681c208 13669@emph{Note:} Only the interface described in the aforementioned
85d9c13c
TS
13670specification is supported. Internally, GCC uses built-in functions to
13671implement the required functionality, but these are not supported and
13672are subject to change without notice.
13673
bcead286
BS
13674@node TI C6X Built-in Functions
13675@subsection TI C6X Built-in Functions
13676
13677GCC provides intrinsics to access certain instructions of the TI C6X
13678processors. These intrinsics, listed below, are available after
13679inclusion of the @code{c6x_intrinsics.h} header file. They map directly
13680to C6X instructions.
13681
13682@smallexample
13683
13684int _sadd (int, int)
13685int _ssub (int, int)
13686int _sadd2 (int, int)
13687int _ssub2 (int, int)
13688long long _mpy2 (int, int)
13689long long _smpy2 (int, int)
13690int _add4 (int, int)
13691int _sub4 (int, int)
13692int _saddu4 (int, int)
13693
13694int _smpy (int, int)
13695int _smpyh (int, int)
13696int _smpyhl (int, int)
13697int _smpylh (int, int)
13698
13699int _sshl (int, int)
13700int _subc (int, int)
13701
13702int _avg2 (int, int)
13703int _avgu4 (int, int)
13704
13705int _clrr (int, int)
13706int _extr (int, int)
13707int _extru (int, int)
13708int _abs (int)
13709int _abs2 (int)
13710
13711@end smallexample
13712
a2bec818
DJ
13713@node Target Format Checks
13714@section Format Checks Specific to Particular Target Machines
13715
13716For some target machines, GCC supports additional options to the
13717format attribute
13718(@pxref{Function Attributes,,Declaring Attributes of Functions}).
13719
13720@menu
13721* Solaris Format Checks::
91ebb981 13722* Darwin Format Checks::
a2bec818
DJ
13723@end menu
13724
13725@node Solaris Format Checks
13726@subsection Solaris Format Checks
13727
13728Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
13729check. @code{cmn_err} accepts a subset of the standard @code{printf}
13730conversions, and the two-argument @code{%b} conversion for displaying
13731bit-fields. See the Solaris man page for @code{cmn_err} for more information.
13732
91ebb981
IS
13733@node Darwin Format Checks
13734@subsection Darwin Format Checks
13735
ff2ce160 13736Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
91ebb981
IS
13737attribute context. Declarations made with such attribution will be parsed for correct syntax
13738and format argument types. However, parsing of the format string itself is currently undefined
ff2ce160 13739and will not be carried out by this version of the compiler.
91ebb981
IS
13740
13741Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
13742also be used as format arguments. Note that the relevant headers are only likely to be
13743available on Darwin (OSX) installations. On such installations, the XCode and system
13744documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
13745associated functions.
13746
0168a849
SS
13747@node Pragmas
13748@section Pragmas Accepted by GCC
13749@cindex pragmas
ab940b73 13750@cindex @code{#pragma}
0168a849
SS
13751
13752GCC supports several types of pragmas, primarily in order to compile
13753code originally written for other compilers. Note that in general
13754we do not recommend the use of pragmas; @xref{Function Attributes},
13755for further explanation.
13756
13757@menu
13758* ARM Pragmas::
38b2d076 13759* M32C Pragmas::
e2491744 13760* MeP Pragmas::
a5c76ee6 13761* RS/6000 and PowerPC Pragmas::
0168a849 13762* Darwin Pragmas::
07a43492 13763* Solaris Pragmas::
84b8b0e0 13764* Symbol-Renaming Pragmas::
467cecf3 13765* Structure-Packing Pragmas::
52eb57df 13766* Weak Pragmas::
79cf5994 13767* Diagnostic Pragmas::
b9e75696 13768* Visibility Pragmas::
20cef83a 13769* Push/Pop Macro Pragmas::
ab442df7 13770* Function Specific Option Pragmas::
0168a849
SS
13771@end menu
13772
13773@node ARM Pragmas
13774@subsection ARM Pragmas
13775
13776The ARM target defines pragmas for controlling the default addition of
13777@code{long_call} and @code{short_call} attributes to functions.
13778@xref{Function Attributes}, for information about the effects of these
13779attributes.
13780
13781@table @code
13782@item long_calls
13783@cindex pragma, long_calls
13784Set all subsequent functions to have the @code{long_call} attribute.
13785
13786@item no_long_calls
13787@cindex pragma, no_long_calls
13788Set all subsequent functions to have the @code{short_call} attribute.
13789
13790@item long_calls_off
13791@cindex pragma, long_calls_off
13792Do not affect the @code{long_call} or @code{short_call} attributes of
13793subsequent functions.
13794@end table
13795
38b2d076
DD
13796@node M32C Pragmas
13797@subsection M32C Pragmas
13798
13799@table @code
f6052f86 13800@item GCC memregs @var{number}
38b2d076 13801@cindex pragma, memregs
bcbc9564 13802Overrides the command-line option @code{-memregs=} for the current
38b2d076
DD
13803file. Use with care! This pragma must be before any function in the
13804file, and mixing different memregs values in different objects may
13805make them incompatible. This pragma is useful when a
13806performance-critical function uses a memreg for temporary values,
13807as it may allow you to reduce the number of memregs used.
13808
f6052f86
DD
13809@item ADDRESS @var{name} @var{address}
13810@cindex pragma, address
13811For any declared symbols matching @var{name}, this does three things
13812to that symbol: it forces the symbol to be located at the given
13813address (a number), it forces the symbol to be volatile, and it
13814changes the symbol's scope to be static. This pragma exists for
13815compatibility with other compilers, but note that the common
13816@code{1234H} numeric syntax is not supported (use @code{0x1234}
13817instead). Example:
13818
13819@example
13820#pragma ADDRESS port3 0x103
13821char port3;
13822@end example
13823
38b2d076
DD
13824@end table
13825
e2491744
DD
13826@node MeP Pragmas
13827@subsection MeP Pragmas
13828
13829@table @code
13830
13831@item custom io_volatile (on|off)
13832@cindex pragma, custom io_volatile
13833Overrides the command line option @code{-mio-volatile} for the current
13834file. Note that for compatibility with future GCC releases, this
13835option should only be used once before any @code{io} variables in each
13836file.
13837
13838@item GCC coprocessor available @var{registers}
13839@cindex pragma, coprocessor available
13840Specifies which coprocessor registers are available to the register
13841allocator. @var{registers} may be a single register, register range
13842separated by ellipses, or comma-separated list of those. Example:
13843
13844@example
13845#pragma GCC coprocessor available $c0...$c10, $c28
13846@end example
13847
13848@item GCC coprocessor call_saved @var{registers}
13849@cindex pragma, coprocessor call_saved
13850Specifies which coprocessor registers are to be saved and restored by
13851any function using them. @var{registers} may be a single register,
13852register range separated by ellipses, or comma-separated list of
13853those. Example:
13854
13855@example
13856#pragma GCC coprocessor call_saved $c4...$c6, $c31
13857@end example
13858
13859@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
13860@cindex pragma, coprocessor subclass
13861Creates and defines a register class. These register classes can be
13862used by inline @code{asm} constructs. @var{registers} may be a single
13863register, register range separated by ellipses, or comma-separated
13864list of those. Example:
13865
13866@example
13867#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
13868
13869asm ("cpfoo %0" : "=B" (x));
13870@end example
13871
13872@item GCC disinterrupt @var{name} , @var{name} @dots{}
13873@cindex pragma, disinterrupt
13874For the named functions, the compiler adds code to disable interrupts
13875for the duration of those functions. Any functions so named, which
13876are not encountered in the source, cause a warning that the pragma was
13877not used. Examples:
13878
13879@example
13880#pragma disinterrupt foo
13881#pragma disinterrupt bar, grill
ddaa3488 13882int foo () @{ @dots{} @}
e2491744
DD
13883@end example
13884
13885@item GCC call @var{name} , @var{name} @dots{}
13886@cindex pragma, call
13887For the named functions, the compiler always uses a register-indirect
13888call model when calling the named functions. Examples:
13889
13890@example
13891extern int foo ();
13892#pragma call foo
13893@end example
13894
13895@end table
13896
a5c76ee6
ZW
13897@node RS/6000 and PowerPC Pragmas
13898@subsection RS/6000 and PowerPC Pragmas
13899
13900The RS/6000 and PowerPC targets define one pragma for controlling
13901whether or not the @code{longcall} attribute is added to function
13902declarations by default. This pragma overrides the @option{-mlongcall}
95b1627e 13903option, but not the @code{longcall} and @code{shortcall} attributes.
a5c76ee6
ZW
13904@xref{RS/6000 and PowerPC Options}, for more information about when long
13905calls are and are not necessary.
13906
13907@table @code
13908@item longcall (1)
13909@cindex pragma, longcall
13910Apply the @code{longcall} attribute to all subsequent function
13911declarations.
13912
13913@item longcall (0)
13914Do not apply the @code{longcall} attribute to subsequent function
13915declarations.
13916@end table
13917
0168a849 13918@c Describe h8300 pragmas here.
0168a849
SS
13919@c Describe sh pragmas here.
13920@c Describe v850 pragmas here.
13921
13922@node Darwin Pragmas
13923@subsection Darwin Pragmas
13924
13925The following pragmas are available for all architectures running the
13926Darwin operating system. These are useful for compatibility with other
85ebf0c6 13927Mac OS compilers.
0168a849
SS
13928
13929@table @code
13930@item mark @var{tokens}@dots{}
13931@cindex pragma, mark
13932This pragma is accepted, but has no effect.
13933
13934@item options align=@var{alignment}
13935@cindex pragma, options align
13936This pragma sets the alignment of fields in structures. The values of
13937@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
13938@code{power}, to emulate PowerPC alignment. Uses of this pragma nest
13939properly; to restore the previous setting, use @code{reset} for the
13940@var{alignment}.
13941
13942@item segment @var{tokens}@dots{}
13943@cindex pragma, segment
13944This pragma is accepted, but has no effect.
13945
13946@item unused (@var{var} [, @var{var}]@dots{})
13947@cindex pragma, unused
13948This pragma declares variables to be possibly unused. GCC will not
13949produce warnings for the listed variables. The effect is similar to
13950that of the @code{unused} attribute, except that this pragma may appear
13951anywhere within the variables' scopes.
13952@end table
13953
07a43492
DJ
13954@node Solaris Pragmas
13955@subsection Solaris Pragmas
13956
13957The Solaris target supports @code{#pragma redefine_extname}
13958(@pxref{Symbol-Renaming Pragmas}). It also supports additional
13959@code{#pragma} directives for compatibility with the system compiler.
13960
13961@table @code
13962@item align @var{alignment} (@var{variable} [, @var{variable}]...)
13963@cindex pragma, align
13964
13965Increase the minimum alignment of each @var{variable} to @var{alignment}.
13966This is the same as GCC's @code{aligned} attribute @pxref{Variable
b5b3e36a 13967Attributes}). Macro expansion occurs on the arguments to this pragma
0ee2ea09 13968when compiling C and Objective-C@. It does not currently occur when
b5b3e36a
DJ
13969compiling C++, but this is a bug which may be fixed in a future
13970release.
07a43492
DJ
13971
13972@item fini (@var{function} [, @var{function}]...)
13973@cindex pragma, fini
13974
13975This pragma causes each listed @var{function} to be called after
13976main, or during shared module unloading, by adding a call to the
13977@code{.fini} section.
13978
13979@item init (@var{function} [, @var{function}]...)
13980@cindex pragma, init
13981
13982This pragma causes each listed @var{function} to be called during
13983initialization (before @code{main}) or during shared module loading, by
13984adding a call to the @code{.init} section.
13985
13986@end table
13987
84b8b0e0
ZW
13988@node Symbol-Renaming Pragmas
13989@subsection Symbol-Renaming Pragmas
41c64394 13990
84b8b0e0
ZW
13991For compatibility with the Solaris and Tru64 UNIX system headers, GCC
13992supports two @code{#pragma} directives which change the name used in
ff2ce160
MS
13993assembly for a given declaration. @code{#pragma extern_prefix} is only
13994available on platforms whose system headers need it. To get this effect
c54d7dc9 13995on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
84b8b0e0 13996Labels}).
41c64394
RH
13997
13998@table @code
13999@item redefine_extname @var{oldname} @var{newname}
14000@cindex pragma, redefine_extname
14001
84b8b0e0
ZW
14002This pragma gives the C function @var{oldname} the assembly symbol
14003@var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
c54d7dc9 14004will be defined if this pragma is available (currently on all platforms).
41c64394 14005
41c64394
RH
14006@item extern_prefix @var{string}
14007@cindex pragma, extern_prefix
14008
84b8b0e0
ZW
14009This pragma causes all subsequent external function and variable
14010declarations to have @var{string} prepended to their assembly symbols.
14011This effect may be terminated with another @code{extern_prefix} pragma
14012whose argument is an empty string. The preprocessor macro
14013@code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
8a36672b 14014available (currently only on Tru64 UNIX)@.
41c64394
RH
14015@end table
14016
84b8b0e0
ZW
14017These pragmas and the asm labels extension interact in a complicated
14018manner. Here are some corner cases you may want to be aware of.
14019
14020@enumerate
14021@item Both pragmas silently apply only to declarations with external
14022linkage. Asm labels do not have this restriction.
14023
14024@item In C++, both pragmas silently apply only to declarations with
14025``C'' linkage. Again, asm labels do not have this restriction.
14026
14027@item If any of the three ways of changing the assembly name of a
14028declaration is applied to a declaration whose assembly name has
14029already been determined (either by a previous use of one of these
14030features, or because the compiler needed the assembly name in order to
14031generate code), and the new name is different, a warning issues and
14032the name does not change.
14033
14034@item The @var{oldname} used by @code{#pragma redefine_extname} is
14035always the C-language name.
14036
14037@item If @code{#pragma extern_prefix} is in effect, and a declaration
14038occurs with an asm label attached, the prefix is silently ignored for
14039that declaration.
14040
14041@item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
14042apply to the same declaration, whichever triggered first wins, and a
14043warning issues if they contradict each other. (We would like to have
14044@code{#pragma redefine_extname} always win, for consistency with asm
14045labels, but if @code{#pragma extern_prefix} triggers first we have no
14046way of knowing that that happened.)
14047@end enumerate
14048
467cecf3
JB
14049@node Structure-Packing Pragmas
14050@subsection Structure-Packing Pragmas
14051
20cef83a
DS
14052For compatibility with Microsoft Windows compilers, GCC supports a
14053set of @code{#pragma} directives which change the maximum alignment of
14054members of structures (other than zero-width bitfields), unions, and
14055classes subsequently defined. The @var{n} value below always is required
14056to be a small power of two and specifies the new alignment in bytes.
467cecf3
JB
14057
14058@enumerate
14059@item @code{#pragma pack(@var{n})} simply sets the new alignment.
14060@item @code{#pragma pack()} sets the alignment to the one that was in
bcbc9564 14061effect when compilation started (see also command-line option
917e11d7 14062@option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
467cecf3
JB
14063@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
14064setting on an internal stack and then optionally sets the new alignment.
14065@item @code{#pragma pack(pop)} restores the alignment setting to the one
14066saved at the top of the internal stack (and removes that stack entry).
14067Note that @code{#pragma pack([@var{n}])} does not influence this internal
14068stack; thus it is possible to have @code{#pragma pack(push)} followed by
14069multiple @code{#pragma pack(@var{n})} instances and finalized by a single
14070@code{#pragma pack(pop)}.
14071@end enumerate
14072
021efafc 14073Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
6bb7beac
EC
14074@code{#pragma} which lays out a structure as the documented
14075@code{__attribute__ ((ms_struct))}.
14076@enumerate
14077@item @code{#pragma ms_struct on} turns on the layout for structures
14078declared.
14079@item @code{#pragma ms_struct off} turns off the layout for structures
14080declared.
14081@item @code{#pragma ms_struct reset} goes back to the default layout.
14082@end enumerate
14083
52eb57df
RH
14084@node Weak Pragmas
14085@subsection Weak Pragmas
14086
14087For compatibility with SVR4, GCC supports a set of @code{#pragma}
14088directives for declaring symbols to be weak, and defining weak
14089aliases.
14090
14091@table @code
14092@item #pragma weak @var{symbol}
14093@cindex pragma, weak
14094This pragma declares @var{symbol} to be weak, as if the declaration
14095had the attribute of the same name. The pragma may appear before
e8ba94fc 14096or after the declaration of @var{symbol}. It is not an error for
52eb57df
RH
14097@var{symbol} to never be defined at all.
14098
14099@item #pragma weak @var{symbol1} = @var{symbol2}
14100This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
14101It is an error if @var{symbol2} is not defined in the current
14102translation unit.
14103@end table
14104
79cf5994
DD
14105@node Diagnostic Pragmas
14106@subsection Diagnostic Pragmas
14107
14108GCC allows the user to selectively enable or disable certain types of
14109diagnostics, and change the kind of the diagnostic. For example, a
14110project's policy might require that all sources compile with
14111@option{-Werror} but certain files might have exceptions allowing
14112specific types of warnings. Or, a project might selectively enable
14113diagnostics and treat them as errors depending on which preprocessor
14114macros are defined.
14115
14116@table @code
14117@item #pragma GCC diagnostic @var{kind} @var{option}
14118@cindex pragma, diagnostic
14119
14120Modifies the disposition of a diagnostic. Note that not all
1eaf20ec 14121diagnostics are modifiable; at the moment only warnings (normally
923158be 14122controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
79cf5994
DD
14123Use @option{-fdiagnostics-show-option} to determine which diagnostics
14124are controllable and which option controls them.
14125
14126@var{kind} is @samp{error} to treat this diagnostic as an error,
14127@samp{warning} to treat it like a warning (even if @option{-Werror} is
14128in effect), or @samp{ignored} if the diagnostic is to be ignored.
bcbc9564 14129@var{option} is a double quoted string which matches the command-line
79cf5994
DD
14130option.
14131
14132@example
14133#pragma GCC diagnostic warning "-Wformat"
c116cd05
MLI
14134#pragma GCC diagnostic error "-Wformat"
14135#pragma GCC diagnostic ignored "-Wformat"
79cf5994
DD
14136@end example
14137
cd7fe53b
DD
14138Note that these pragmas override any command-line options. GCC keeps
14139track of the location of each pragma, and issues diagnostics according
14140to the state as of that point in the source file. Thus, pragmas occurring
14141after a line do not affect diagnostics caused by that line.
14142
14143@item #pragma GCC diagnostic push
14144@itemx #pragma GCC diagnostic pop
14145
14146Causes GCC to remember the state of the diagnostics as of each
14147@code{push}, and restore to that point at each @code{pop}. If a
14148@code{pop} has no matching @code{push}, the command line options are
14149restored.
14150
14151@example
14152#pragma GCC diagnostic error "-Wuninitialized"
14153 foo(a); /* error is given for this one */
14154#pragma GCC diagnostic push
14155#pragma GCC diagnostic ignored "-Wuninitialized"
14156 foo(b); /* no diagnostic for this one */
14157#pragma GCC diagnostic pop
14158 foo(c); /* error is given for this one */
14159#pragma GCC diagnostic pop
14160 foo(d); /* depends on command line options */
14161@end example
79cf5994
DD
14162
14163@end table
14164
0d48657d
SB
14165GCC also offers a simple mechanism for printing messages during
14166compilation.
14167
14168@table @code
14169@item #pragma message @var{string}
14170@cindex pragma, diagnostic
14171
14172Prints @var{string} as a compiler message on compilation. The message
14173is informational only, and is neither a compilation warning nor an error.
14174
14175@smallexample
14176#pragma message "Compiling " __FILE__ "..."
14177@end smallexample
14178
14179@var{string} may be parenthesized, and is printed with location
14180information. For example,
14181
14182@smallexample
14183#define DO_PRAGMA(x) _Pragma (#x)
14184#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
14185
14186TODO(Remember to fix this)
14187@end smallexample
14188
14189prints @samp{/tmp/file.c:4: note: #pragma message:
14190TODO - Remember to fix this}.
14191
14192@end table
14193
b9e75696
JM
14194@node Visibility Pragmas
14195@subsection Visibility Pragmas
14196
14197@table @code
14198@item #pragma GCC visibility push(@var{visibility})
14199@itemx #pragma GCC visibility pop
14200@cindex pragma, visibility
14201
14202This pragma allows the user to set the visibility for multiple
14203declarations without having to give each a visibility attribute
14204@xref{Function Attributes}, for more information about visibility and
14205the attribute syntax.
14206
14207In C++, @samp{#pragma GCC visibility} affects only namespace-scope
14208declarations. Class members and template specializations are not
14209affected; if you want to override the visibility for a particular
14210member or instantiation, you must use an attribute.
14211
14212@end table
14213
20cef83a
DS
14214
14215@node Push/Pop Macro Pragmas
14216@subsection Push/Pop Macro Pragmas
14217
14218For compatibility with Microsoft Windows compilers, GCC supports
14219@samp{#pragma push_macro(@var{"macro_name"})}
14220and @samp{#pragma pop_macro(@var{"macro_name"})}.
14221
14222@table @code
14223@item #pragma push_macro(@var{"macro_name"})
14224@cindex pragma, push_macro
14225This pragma saves the value of the macro named as @var{macro_name} to
14226the top of the stack for this macro.
14227
14228@item #pragma pop_macro(@var{"macro_name"})
14229@cindex pragma, pop_macro
14230This pragma sets the value of the macro named as @var{macro_name} to
14231the value on top of the stack for this macro. If the stack for
14232@var{macro_name} is empty, the value of the macro remains unchanged.
14233@end table
14234
14235For example:
14236
14237@smallexample
14238#define X 1
14239#pragma push_macro("X")
14240#undef X
14241#define X -1
14242#pragma pop_macro("X")
ff2ce160 14243int x [X];
20cef83a
DS
14244@end smallexample
14245
14246In this example, the definition of X as 1 is saved by @code{#pragma
14247push_macro} and restored by @code{#pragma pop_macro}.
14248
ab442df7
MM
14249@node Function Specific Option Pragmas
14250@subsection Function Specific Option Pragmas
14251
14252@table @code
5779e713
MM
14253@item #pragma GCC target (@var{"string"}...)
14254@cindex pragma GCC target
ab442df7
MM
14255
14256This pragma allows you to set target specific options for functions
14257defined later in the source file. One or more strings can be
14258specified. Each function that is defined after this point will be as
5779e713 14259if @code{attribute((target("STRING")))} was specified for that
ab442df7
MM
14260function. The parenthesis around the options is optional.
14261@xref{Function Attributes}, for more information about the
5779e713 14262@code{target} attribute and the attribute syntax.
ab442df7 14263
fd438373
MM
14264The @code{#pragma GCC target} attribute is not implemented in GCC versions earlier
14265than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. At
14266present, it is not implemented for other backends.
ab442df7
MM
14267@end table
14268
ab442df7
MM
14269@table @code
14270@item #pragma GCC optimize (@var{"string"}...)
14271@cindex pragma GCC optimize
14272
14273This pragma allows you to set global optimization options for functions
14274defined later in the source file. One or more strings can be
14275specified. Each function that is defined after this point will be as
14276if @code{attribute((optimize("STRING")))} was specified for that
14277function. The parenthesis around the options is optional.
14278@xref{Function Attributes}, for more information about the
14279@code{optimize} attribute and the attribute syntax.
14280
14281The @samp{#pragma GCC optimize} pragma is not implemented in GCC
14282versions earlier than 4.4.
14283@end table
14284
14285@table @code
5779e713
MM
14286@item #pragma GCC push_options
14287@itemx #pragma GCC pop_options
14288@cindex pragma GCC push_options
14289@cindex pragma GCC pop_options
14290
14291These pragmas maintain a stack of the current target and optimization
14292options. It is intended for include files where you temporarily want
14293to switch to using a different @samp{#pragma GCC target} or
14294@samp{#pragma GCC optimize} and then to pop back to the previous
14295options.
14296
14297The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
14298pragmas are not implemented in GCC versions earlier than 4.4.
ab442df7
MM
14299@end table
14300
14301@table @code
5779e713
MM
14302@item #pragma GCC reset_options
14303@cindex pragma GCC reset_options
ab442df7 14304
5779e713
MM
14305This pragma clears the current @code{#pragma GCC target} and
14306@code{#pragma GCC optimize} to use the default switches as specified
14307on the command line.
14308
14309The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
14310versions earlier than 4.4.
ab442df7
MM
14311@end table
14312
3e96a2fd 14313@node Unnamed Fields
2fbebc71 14314@section Unnamed struct/union fields within structs/unions
ab940b73
RW
14315@cindex @code{struct}
14316@cindex @code{union}
3e96a2fd 14317
48b0b196 14318As permitted by ISO C11 and for compatibility with other compilers,
4bdd0a60 14319GCC allows you to define
3e96a2fd
DD
14320a structure or union that contains, as fields, structures and unions
14321without names. For example:
14322
3ab51846 14323@smallexample
3e96a2fd
DD
14324struct @{
14325 int a;
14326 union @{
14327 int b;
14328 float c;
14329 @};
14330 int d;
14331@} foo;
3ab51846 14332@end smallexample
3e96a2fd
DD
14333
14334In this example, the user would be able to access members of the unnamed
14335union with code like @samp{foo.b}. Note that only unnamed structs and
14336unions are allowed, you may not have, for example, an unnamed
14337@code{int}.
14338
14339You must never create such structures that cause ambiguous field definitions.
14340For example, this structure:
14341
3ab51846 14342@smallexample
3e96a2fd
DD
14343struct @{
14344 int a;
14345 struct @{
14346 int a;
14347 @};
14348@} foo;
3ab51846 14349@end smallexample
3e96a2fd
DD
14350
14351It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
492fc0ee 14352The compiler gives errors for such constructs.
3e96a2fd 14353
2fbebc71
JM
14354@opindex fms-extensions
14355Unless @option{-fms-extensions} is used, the unnamed field must be a
14356structure or union definition without a tag (for example, @samp{struct
ff8e2159 14357@{ int a; @};}). If @option{-fms-extensions} is used, the field may
2fbebc71
JM
14358also be a definition with a tag such as @samp{struct foo @{ int a;
14359@};}, a reference to a previously defined structure or union such as
14360@samp{struct foo;}, or a reference to a @code{typedef} name for a
ff8e2159 14361previously defined structure or union type.
2fbebc71 14362
478a1c5b
ILT
14363@opindex fplan9-extensions
14364The option @option{-fplan9-extensions} enables
14365@option{-fms-extensions} as well as two other extensions. First, a
14366pointer to a structure is automatically converted to a pointer to an
14367anonymous field for assignments and function calls. For example:
14368
14369@smallexample
14370struct s1 @{ int a; @};
14371struct s2 @{ struct s1; @};
14372extern void f1 (struct s1 *);
14373void f2 (struct s2 *p) @{ f1 (p); @}
14374@end smallexample
14375
14376In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
14377converted into a pointer to the anonymous field.
14378
14379Second, when the type of an anonymous field is a @code{typedef} for a
14380@code{struct} or @code{union}, code may refer to the field using the
14381name of the @code{typedef}.
14382
14383@smallexample
14384typedef struct @{ int a; @} s1;
14385struct s2 @{ s1; @};
14386s1 f1 (struct s2 *p) @{ return p->s1; @}
14387@end smallexample
14388
14389These usages are only permitted when they are not ambiguous.
14390
3d78f2e9
RH
14391@node Thread-Local
14392@section Thread-Local Storage
14393@cindex Thread-Local Storage
9217ef40 14394@cindex @acronym{TLS}
ab940b73 14395@cindex @code{__thread}
3d78f2e9 14396
9217ef40
RH
14397Thread-local storage (@acronym{TLS}) is a mechanism by which variables
14398are allocated such that there is one instance of the variable per extant
3d78f2e9
RH
14399thread. The run-time model GCC uses to implement this originates
14400in the IA-64 processor-specific ABI, but has since been migrated
14401to other processors as well. It requires significant support from
14402the linker (@command{ld}), dynamic linker (@command{ld.so}), and
14403system libraries (@file{libc.so} and @file{libpthread.so}), so it
9217ef40 14404is not available everywhere.
3d78f2e9
RH
14405
14406At the user level, the extension is visible with a new storage
14407class keyword: @code{__thread}. For example:
14408
3ab51846 14409@smallexample
3d78f2e9
RH
14410__thread int i;
14411extern __thread struct state s;
14412static __thread char *p;
3ab51846 14413@end smallexample
3d78f2e9
RH
14414
14415The @code{__thread} specifier may be used alone, with the @code{extern}
14416or @code{static} specifiers, but with no other storage class specifier.
14417When used with @code{extern} or @code{static}, @code{__thread} must appear
14418immediately after the other storage class specifier.
14419
14420The @code{__thread} specifier may be applied to any global, file-scoped
244c2241
RH
14421static, function-scoped static, or static data member of a class. It may
14422not be applied to block-scoped automatic or non-static data member.
3d78f2e9
RH
14423
14424When the address-of operator is applied to a thread-local variable, it is
14425evaluated at run-time and returns the address of the current thread's
14426instance of that variable. An address so obtained may be used by any
14427thread. When a thread terminates, any pointers to thread-local variables
14428in that thread become invalid.
14429
14430No static initialization may refer to the address of a thread-local variable.
14431
244c2241
RH
14432In C++, if an initializer is present for a thread-local variable, it must
14433be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
14434standard.
3d78f2e9 14435
419d1d37 14436See @uref{http://www.akkadia.org/drepper/tls.pdf,
3d78f2e9
RH
14437ELF Handling For Thread-Local Storage} for a detailed explanation of
14438the four thread-local storage addressing models, and how the run-time
14439is expected to function.
14440
9217ef40
RH
14441@menu
14442* C99 Thread-Local Edits::
14443* C++98 Thread-Local Edits::
14444@end menu
14445
14446@node C99 Thread-Local Edits
14447@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
14448
14449The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
14450that document the exact semantics of the language extension.
14451
14452@itemize @bullet
14453@item
14454@cite{5.1.2 Execution environments}
14455
14456Add new text after paragraph 1
14457
14458@quotation
14459Within either execution environment, a @dfn{thread} is a flow of
14460control within a program. It is implementation defined whether
14461or not there may be more than one thread associated with a program.
14462It is implementation defined how threads beyond the first are
14463created, the name and type of the function called at thread
14464startup, and how threads may be terminated. However, objects
14465with thread storage duration shall be initialized before thread
14466startup.
14467@end quotation
14468
14469@item
14470@cite{6.2.4 Storage durations of objects}
14471
14472Add new text before paragraph 3
14473
14474@quotation
14475An object whose identifier is declared with the storage-class
14476specifier @w{@code{__thread}} has @dfn{thread storage duration}.
14477Its lifetime is the entire execution of the thread, and its
14478stored value is initialized only once, prior to thread startup.
14479@end quotation
14480
14481@item
14482@cite{6.4.1 Keywords}
14483
14484Add @code{__thread}.
14485
14486@item
14487@cite{6.7.1 Storage-class specifiers}
14488
14489Add @code{__thread} to the list of storage class specifiers in
14490paragraph 1.
14491
14492Change paragraph 2 to
14493
14494@quotation
14495With the exception of @code{__thread}, at most one storage-class
14496specifier may be given [@dots{}]. The @code{__thread} specifier may
14497be used alone, or immediately following @code{extern} or
14498@code{static}.
14499@end quotation
14500
14501Add new text after paragraph 6
14502
14503@quotation
14504The declaration of an identifier for a variable that has
14505block scope that specifies @code{__thread} shall also
14506specify either @code{extern} or @code{static}.
14507
14508The @code{__thread} specifier shall be used only with
14509variables.
14510@end quotation
14511@end itemize
14512
14513@node C++98 Thread-Local Edits
14514@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
14515
14516The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
14517that document the exact semantics of the language extension.
14518
14519@itemize @bullet
8d23a2c8 14520@item
9217ef40
RH
14521@b{[intro.execution]}
14522
14523New text after paragraph 4
14524
14525@quotation
14526A @dfn{thread} is a flow of control within the abstract machine.
14527It is implementation defined whether or not there may be more than
14528one thread.
14529@end quotation
14530
14531New text after paragraph 7
14532
14533@quotation
95b1627e 14534It is unspecified whether additional action must be taken to
9217ef40
RH
14535ensure when and whether side effects are visible to other threads.
14536@end quotation
14537
14538@item
14539@b{[lex.key]}
14540
14541Add @code{__thread}.
14542
14543@item
14544@b{[basic.start.main]}
14545
14546Add after paragraph 5
14547
14548@quotation
14549The thread that begins execution at the @code{main} function is called
95b1627e 14550the @dfn{main thread}. It is implementation defined how functions
9217ef40
RH
14551beginning threads other than the main thread are designated or typed.
14552A function so designated, as well as the @code{main} function, is called
14553a @dfn{thread startup function}. It is implementation defined what
14554happens if a thread startup function returns. It is implementation
14555defined what happens to other threads when any thread calls @code{exit}.
14556@end quotation
14557
14558@item
14559@b{[basic.start.init]}
14560
14561Add after paragraph 4
14562
14563@quotation
14564The storage for an object of thread storage duration shall be
c0478a66 14565statically initialized before the first statement of the thread startup
9217ef40
RH
14566function. An object of thread storage duration shall not require
14567dynamic initialization.
14568@end quotation
14569
14570@item
14571@b{[basic.start.term]}
14572
14573Add after paragraph 3
14574
14575@quotation
244c2241
RH
14576The type of an object with thread storage duration shall not have a
14577non-trivial destructor, nor shall it be an array type whose elements
14578(directly or indirectly) have non-trivial destructors.
9217ef40
RH
14579@end quotation
14580
14581@item
14582@b{[basic.stc]}
14583
14584Add ``thread storage duration'' to the list in paragraph 1.
14585
14586Change paragraph 2
14587
14588@quotation
14589Thread, static, and automatic storage durations are associated with
14590objects introduced by declarations [@dots{}].
14591@end quotation
14592
14593Add @code{__thread} to the list of specifiers in paragraph 3.
14594
14595@item
14596@b{[basic.stc.thread]}
14597
14598New section before @b{[basic.stc.static]}
14599
14600@quotation
63519d23 14601The keyword @code{__thread} applied to a non-local object gives the
9217ef40
RH
14602object thread storage duration.
14603
14604A local variable or class data member declared both @code{static}
14605and @code{__thread} gives the variable or member thread storage
14606duration.
14607@end quotation
14608
14609@item
14610@b{[basic.stc.static]}
14611
14612Change paragraph 1
14613
14614@quotation
14615All objects which have neither thread storage duration, dynamic
14616storage duration nor are local [@dots{}].
14617@end quotation
14618
14619@item
14620@b{[dcl.stc]}
14621
14622Add @code{__thread} to the list in paragraph 1.
14623
14624Change paragraph 1
14625
14626@quotation
14627With the exception of @code{__thread}, at most one
14628@var{storage-class-specifier} shall appear in a given
14629@var{decl-specifier-seq}. The @code{__thread} specifier may
14630be used alone, or immediately following the @code{extern} or
14631@code{static} specifiers. [@dots{}]
14632@end quotation
14633
14634Add after paragraph 5
14635
14636@quotation
14637The @code{__thread} specifier can be applied only to the names of objects
14638and to anonymous unions.
14639@end quotation
14640
14641@item
14642@b{[class.mem]}
14643
14644Add after paragraph 6
14645
14646@quotation
14647Non-@code{static} members shall not be @code{__thread}.
14648@end quotation
14649@end itemize
14650
f7fd775f
JW
14651@node Binary constants
14652@section Binary constants using the @samp{0b} prefix
14653@cindex Binary constants using the @samp{0b} prefix
14654
14655Integer constants can be written as binary constants, consisting of a
14656sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
14657@samp{0B}. This is particularly useful in environments that operate a
14658lot on the bit-level (like microcontrollers).
14659
14660The following statements are identical:
14661
14662@smallexample
14663i = 42;
14664i = 0x2a;
14665i = 052;
14666i = 0b101010;
14667@end smallexample
14668
14669The type of these constants follows the same rules as for octal or
14670hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
14671can be applied.
14672
c1f7febf
RK
14673@node C++ Extensions
14674@chapter Extensions to the C++ Language
14675@cindex extensions, C++ language
14676@cindex C++ language extensions
14677
14678The GNU compiler provides these extensions to the C++ language (and you
14679can also use most of the C language extensions in your C++ programs). If you
14680want to write code that checks whether these features are available, you can
14681test for the GNU compiler the same way as for C programs: check for a
14682predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
48795525
GP
14683test specifically for GNU C++ (@pxref{Common Predefined Macros,,
14684Predefined Macros,cpp,The GNU C Preprocessor}).
c1f7febf
RK
14685
14686@menu
8f0fe813 14687* C++ Volatiles:: What constitutes an access to a volatile object.
49419c8f 14688* Restricted Pointers:: C99 restricted pointers and references.
7a81cf7f 14689* Vague Linkage:: Where G++ puts inlines, vtables and such.
c1f7febf 14690* C++ Interface:: You can use a single C++ header file for both
e6f3b89d 14691 declarations and definitions.
c1f7febf 14692* Template Instantiation:: Methods for ensuring that exactly one copy of
e6f3b89d 14693 each needed template instantiation is emitted.
0ded1f18
JM
14694* Bound member functions:: You can extract a function pointer to the
14695 method denoted by a @samp{->*} or @samp{.*} expression.
e6f3b89d 14696* C++ Attributes:: Variable, function, and type attributes for C++ only.
664a90c0 14697* Namespace Association:: Strong using-directives for namespace association.
cb68ec50 14698* Type Traits:: Compiler support for type traits
1f730ff7 14699* Java Exceptions:: Tweaking exception handling to work with Java.
90ea7324 14700* Deprecated Features:: Things will disappear from g++.
e6f3b89d 14701* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
c1f7febf
RK
14702@end menu
14703
8f0fe813
NS
14704@node C++ Volatiles
14705@section When is a Volatile C++ Object Accessed?
02cac427
NS
14706@cindex accessing volatiles
14707@cindex volatile read
14708@cindex volatile write
14709@cindex volatile access
14710
8f0fe813
NS
14711The C++ standard differs from the C standard in its treatment of
14712volatile objects. It fails to specify what constitutes a volatile
14713access, except to say that C++ should behave in a similar manner to C
14714with respect to volatiles, where possible. However, the different
c4c8962b 14715lvalueness of expressions between C and C++ complicate the behavior.
8f0fe813 14716G++ behaves the same as GCC for volatile access, @xref{C
c4c8962b 14717Extensions,,Volatiles}, for a description of GCC's behavior.
02cac427 14718
8f0fe813
NS
14719The C and C++ language specifications differ when an object is
14720accessed in a void context:
02cac427 14721
3ab51846 14722@smallexample
c771326b 14723volatile int *src = @var{somevalue};
02cac427 14724*src;
3ab51846 14725@end smallexample
02cac427 14726
8f0fe813
NS
14727The C++ standard specifies that such expressions do not undergo lvalue
14728to rvalue conversion, and that the type of the dereferenced object may
14729be incomplete. The C++ standard does not specify explicitly that it
14730is lvalue to rvalue conversion which is responsible for causing an
14731access. There is reason to believe that it is, because otherwise
14732certain simple expressions become undefined. However, because it
14733would surprise most programmers, G++ treats dereferencing a pointer to
14734volatile object of complete type as GCC would do for an equivalent
14735type in C@. When the object has incomplete type, G++ issues a
14736warning; if you wish to force an error, you must force a conversion to
14737rvalue with, for instance, a static cast.
02cac427 14738
f0523f02 14739When using a reference to volatile, G++ does not treat equivalent
02cac427 14740expressions as accesses to volatiles, but instead issues a warning that
767094dd 14741no volatile is accessed. The rationale for this is that otherwise it
02cac427
NS
14742becomes difficult to determine where volatile access occur, and not
14743possible to ignore the return value from functions returning volatile
767094dd 14744references. Again, if you wish to force a read, cast the reference to
02cac427
NS
14745an rvalue.
14746
c4c8962b 14747G++ implements the same behavior as GCC does when assigning to a
8f0fe813
NS
14748volatile object -- there is no reread of the assigned-to object, the
14749assigned rvalue is reused. Note that in C++ assignment expressions
14750are lvalues, and if used as an lvalue, the volatile object will be
14751referred to. For instance, @var{vref} will refer to @var{vobj}, as
14752expected, in the following example:
14753
14754@smallexample
14755volatile int vobj;
14756volatile int &vref = vobj = @var{something};
14757@end smallexample
14758
535233a8
NS
14759@node Restricted Pointers
14760@section Restricting Pointer Aliasing
14761@cindex restricted pointers
14762@cindex restricted references
14763@cindex restricted this pointer
14764
2dd76960 14765As with the C front end, G++ understands the C99 feature of restricted pointers,
535233a8 14766specified with the @code{__restrict__}, or @code{__restrict} type
767094dd 14767qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
535233a8
NS
14768language flag, @code{restrict} is not a keyword in C++.
14769
14770In addition to allowing restricted pointers, you can specify restricted
14771references, which indicate that the reference is not aliased in the local
14772context.
14773
3ab51846 14774@smallexample
535233a8
NS
14775void fn (int *__restrict__ rptr, int &__restrict__ rref)
14776@{
0d893a63 14777 /* @r{@dots{}} */
535233a8 14778@}
3ab51846 14779@end smallexample
535233a8
NS
14780
14781@noindent
14782In the body of @code{fn}, @var{rptr} points to an unaliased integer and
14783@var{rref} refers to a (different) unaliased integer.
14784
14785You may also specify whether a member function's @var{this} pointer is
14786unaliased by using @code{__restrict__} as a member function qualifier.
14787
3ab51846 14788@smallexample
535233a8
NS
14789void T::fn () __restrict__
14790@{
0d893a63 14791 /* @r{@dots{}} */
535233a8 14792@}
3ab51846 14793@end smallexample
535233a8
NS
14794
14795@noindent
14796Within the body of @code{T::fn}, @var{this} will have the effective
767094dd 14797definition @code{T *__restrict__ const this}. Notice that the
535233a8
NS
14798interpretation of a @code{__restrict__} member function qualifier is
14799different to that of @code{const} or @code{volatile} qualifier, in that it
767094dd 14800is applied to the pointer rather than the object. This is consistent with
535233a8
NS
14801other compilers which implement restricted pointers.
14802
14803As with all outermost parameter qualifiers, @code{__restrict__} is
767094dd 14804ignored in function definition matching. This means you only need to
535233a8
NS
14805specify @code{__restrict__} in a function definition, rather than
14806in a function prototype as well.
14807
7a81cf7f
JM
14808@node Vague Linkage
14809@section Vague Linkage
14810@cindex vague linkage
14811
14812There are several constructs in C++ which require space in the object
14813file but are not clearly tied to a single translation unit. We say that
14814these constructs have ``vague linkage''. Typically such constructs are
14815emitted wherever they are needed, though sometimes we can be more
14816clever.
14817
14818@table @asis
14819@item Inline Functions
14820Inline functions are typically defined in a header file which can be
14821included in many different compilations. Hopefully they can usually be
14822inlined, but sometimes an out-of-line copy is necessary, if the address
14823of the function is taken or if inlining fails. In general, we emit an
14824out-of-line copy in all translation units where one is needed. As an
14825exception, we only emit inline virtual functions with the vtable, since
14826it will always require a copy.
14827
14828Local static variables and string constants used in an inline function
14829are also considered to have vague linkage, since they must be shared
14830between all inlined and out-of-line instances of the function.
14831
14832@item VTables
14833@cindex vtable
14834C++ virtual functions are implemented in most compilers using a lookup
14835table, known as a vtable. The vtable contains pointers to the virtual
14836functions provided by a class, and each object of the class contains a
14837pointer to its vtable (or vtables, in some multiple-inheritance
14838situations). If the class declares any non-inline, non-pure virtual
14839functions, the first one is chosen as the ``key method'' for the class,
14840and the vtable is only emitted in the translation unit where the key
14841method is defined.
14842
14843@emph{Note:} If the chosen key method is later defined as inline, the
14844vtable will still be emitted in every translation unit which defines it.
14845Make sure that any inline virtuals are declared inline in the class
14846body, even if they are not defined there.
14847
ab940b73
RW
14848@item @code{type_info} objects
14849@cindex @code{type_info}
7a81cf7f
JM
14850@cindex RTTI
14851C++ requires information about types to be written out in order to
14852implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
ab940b73 14853For polymorphic classes (classes with virtual functions), the @samp{type_info}
7a81cf7f
JM
14854object is written out along with the vtable so that @samp{dynamic_cast}
14855can determine the dynamic type of a class object at runtime. For all
ab940b73 14856other types, we write out the @samp{type_info} object when it is used: when
7a81cf7f
JM
14857applying @samp{typeid} to an expression, throwing an object, or
14858referring to a type in a catch clause or exception specification.
14859
14860@item Template Instantiations
14861Most everything in this section also applies to template instantiations,
14862but there are other options as well.
14863@xref{Template Instantiation,,Where's the Template?}.
14864
14865@end table
14866
14867When used with GNU ld version 2.8 or later on an ELF system such as
95fef11f 14868GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
7a81cf7f
JM
14869these constructs will be discarded at link time. This is known as
14870COMDAT support.
14871
14872On targets that don't support COMDAT, but do support weak symbols, GCC
14873will use them. This way one copy will override all the others, but
14874the unused copies will still take up space in the executable.
14875
14876For targets which do not support either COMDAT or weak symbols,
14877most entities with vague linkage will be emitted as local symbols to
14878avoid duplicate definition errors from the linker. This will not happen
14879for local statics in inlines, however, as having multiple copies will
14880almost certainly break things.
14881
14882@xref{C++ Interface,,Declarations and Definitions in One Header}, for
14883another way to control placement of these constructs.
14884
c1f7febf 14885@node C++ Interface
fc72b380 14886@section #pragma interface and implementation
c1f7febf
RK
14887
14888@cindex interface and implementation headers, C++
14889@cindex C++ interface and implementation headers
c1f7febf 14890@cindex pragmas, interface and implementation
c1f7febf 14891
fc72b380
JM
14892@code{#pragma interface} and @code{#pragma implementation} provide the
14893user with a way of explicitly directing the compiler to emit entities
14894with vague linkage (and debugging information) in a particular
14895translation unit.
c1f7febf 14896
fc72b380
JM
14897@emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
14898most cases, because of COMDAT support and the ``key method'' heuristic
14899mentioned in @ref{Vague Linkage}. Using them can actually cause your
27ef2cdd 14900program to grow due to unnecessary out-of-line copies of inline
fc72b380
JM
14901functions. Currently (3.4) the only benefit of these
14902@code{#pragma}s is reduced duplication of debugging information, and
14903that should be addressed soon on DWARF 2 targets with the use of
14904COMDAT groups.
c1f7febf
RK
14905
14906@table @code
14907@item #pragma interface
14908@itemx #pragma interface "@var{subdir}/@var{objects}.h"
14909@kindex #pragma interface
14910Use this directive in @emph{header files} that define object classes, to save
14911space in most of the object files that use those classes. Normally,
14912local copies of certain information (backup copies of inline member
14913functions, debugging information, and the internal tables that implement
14914virtual functions) must be kept in each object file that includes class
14915definitions. You can use this pragma to avoid such duplication. When a
14916header file containing @samp{#pragma interface} is included in a
14917compilation, this auxiliary information will not be generated (unless
14918the main input source file itself uses @samp{#pragma implementation}).
14919Instead, the object files will contain references to be resolved at link
14920time.
14921
14922The second form of this directive is useful for the case where you have
14923multiple headers with the same name in different directories. If you
14924use this form, you must specify the same string to @samp{#pragma
14925implementation}.
14926
14927@item #pragma implementation
14928@itemx #pragma implementation "@var{objects}.h"
14929@kindex #pragma implementation
14930Use this pragma in a @emph{main input file}, when you want full output from
14931included header files to be generated (and made globally visible). The
14932included header file, in turn, should use @samp{#pragma interface}.
14933Backup copies of inline member functions, debugging information, and the
14934internal tables used to implement virtual functions are all generated in
14935implementation files.
14936
14937@cindex implied @code{#pragma implementation}
14938@cindex @code{#pragma implementation}, implied
14939@cindex naming convention, implementation headers
14940If you use @samp{#pragma implementation} with no argument, it applies to
14941an include file with the same basename@footnote{A file's @dfn{basename}
14942was the name stripped of all leading path information and of trailing
14943suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
14944file. For example, in @file{allclass.cc}, giving just
14945@samp{#pragma implementation}
14946by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
14947
14948In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
14949an implementation file whenever you would include it from
14950@file{allclass.cc} even if you never specified @samp{#pragma
14951implementation}. This was deemed to be more trouble than it was worth,
14952however, and disabled.
14953
c1f7febf
RK
14954Use the string argument if you want a single implementation file to
14955include code from multiple header files. (You must also use
14956@samp{#include} to include the header file; @samp{#pragma
14957implementation} only specifies how to use the file---it doesn't actually
14958include it.)
14959
14960There is no way to split up the contents of a single header file into
14961multiple implementation files.
14962@end table
14963
14964@cindex inlining and C++ pragmas
14965@cindex C++ pragmas, effect on inlining
14966@cindex pragmas in C++, effect on inlining
14967@samp{#pragma implementation} and @samp{#pragma interface} also have an
14968effect on function inlining.
14969
14970If you define a class in a header file marked with @samp{#pragma
fc72b380
JM
14971interface}, the effect on an inline function defined in that class is
14972similar to an explicit @code{extern} declaration---the compiler emits
14973no code at all to define an independent version of the function. Its
14974definition is used only for inlining with its callers.
c1f7febf 14975
84330467 14976@opindex fno-implement-inlines
c1f7febf
RK
14977Conversely, when you include the same header file in a main source file
14978that declares it as @samp{#pragma implementation}, the compiler emits
14979code for the function itself; this defines a version of the function
14980that can be found via pointers (or by callers compiled without
14981inlining). If all calls to the function can be inlined, you can avoid
84330467 14982emitting the function by compiling with @option{-fno-implement-inlines}.
c1f7febf
RK
14983If any calls were not inlined, you will get linker errors.
14984
14985@node Template Instantiation
14986@section Where's the Template?
c1f7febf
RK
14987@cindex template instantiation
14988
14989C++ templates are the first language feature to require more
14990intelligence from the environment than one usually finds on a UNIX
14991system. Somehow the compiler and linker have to make sure that each
14992template instance occurs exactly once in the executable if it is needed,
14993and not at all otherwise. There are two basic approaches to this
962e6e00 14994problem, which are referred to as the Borland model and the Cfront model.
c1f7febf
RK
14995
14996@table @asis
14997@item Borland model
14998Borland C++ solved the template instantiation problem by adding the code
469b759e
JM
14999equivalent of common blocks to their linker; the compiler emits template
15000instances in each translation unit that uses them, and the linker
15001collapses them together. The advantage of this model is that the linker
15002only has to consider the object files themselves; there is no external
15003complexity to worry about. This disadvantage is that compilation time
15004is increased because the template code is being compiled repeatedly.
15005Code written for this model tends to include definitions of all
15006templates in the header file, since they must be seen to be
15007instantiated.
c1f7febf
RK
15008
15009@item Cfront model
15010The AT&T C++ translator, Cfront, solved the template instantiation
15011problem by creating the notion of a template repository, an
469b759e
JM
15012automatically maintained place where template instances are stored. A
15013more modern version of the repository works as follows: As individual
15014object files are built, the compiler places any template definitions and
15015instantiations encountered in the repository. At link time, the link
15016wrapper adds in the objects in the repository and compiles any needed
15017instances that were not previously emitted. The advantages of this
15018model are more optimal compilation speed and the ability to use the
15019system linker; to implement the Borland model a compiler vendor also
c1f7febf 15020needs to replace the linker. The disadvantages are vastly increased
469b759e
JM
15021complexity, and thus potential for error; for some code this can be
15022just as transparent, but in practice it can been very difficult to build
c1f7febf 15023multiple programs in one directory and one program in multiple
469b759e
JM
15024directories. Code written for this model tends to separate definitions
15025of non-inline member templates into a separate file, which should be
15026compiled separately.
c1f7febf
RK
15027@end table
15028
469b759e 15029When used with GNU ld version 2.8 or later on an ELF system such as
2dd76960
JM
15030GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
15031Borland model. On other systems, G++ implements neither automatic
a4b3b54a 15032model.
469b759e 15033
2dd76960 15034A future version of G++ will support a hybrid model whereby the compiler
469b759e
JM
15035will emit any instantiations for which the template definition is
15036included in the compile, and store template definitions and
15037instantiation context information into the object file for the rest.
15038The link wrapper will extract that information as necessary and invoke
15039the compiler to produce the remaining instantiations. The linker will
15040then combine duplicate instantiations.
15041
15042In the mean time, you have the following options for dealing with
15043template instantiations:
c1f7febf
RK
15044
15045@enumerate
d863830b 15046@item
84330467
JM
15047@opindex frepo
15048Compile your template-using code with @option{-frepo}. The compiler will
d863830b
JL
15049generate files with the extension @samp{.rpo} listing all of the
15050template instantiations used in the corresponding object files which
15051could be instantiated there; the link wrapper, @samp{collect2}, will
15052then update the @samp{.rpo} files to tell the compiler where to place
15053those instantiations and rebuild any affected object files. The
15054link-time overhead is negligible after the first pass, as the compiler
15055will continue to place the instantiations in the same files.
15056
15057This is your best option for application code written for the Borland
15058model, as it will just work. Code written for the Cfront model will
15059need to be modified so that the template definitions are available at
15060one or more points of instantiation; usually this is as simple as adding
15061@code{#include <tmethods.cc>} to the end of each template header.
15062
15063For library code, if you want the library to provide all of the template
15064instantiations it needs, just try to link all of its object files
15065together; the link will fail, but cause the instantiations to be
15066generated as a side effect. Be warned, however, that this may cause
15067conflicts if multiple libraries try to provide the same instantiations.
15068For greater control, use explicit instantiation as described in the next
15069option.
15070
c1f7febf 15071@item
84330467
JM
15072@opindex fno-implicit-templates
15073Compile your code with @option{-fno-implicit-templates} to disable the
c1f7febf
RK
15074implicit generation of template instances, and explicitly instantiate
15075all the ones you use. This approach requires more knowledge of exactly
15076which instances you need than do the others, but it's less
15077mysterious and allows greater control. You can scatter the explicit
15078instantiations throughout your program, perhaps putting them in the
15079translation units where the instances are used or the translation units
15080that define the templates themselves; you can put all of the explicit
15081instantiations you need into one big file; or you can create small files
15082like
15083
3ab51846 15084@smallexample
c1f7febf
RK
15085#include "Foo.h"
15086#include "Foo.cc"
15087
15088template class Foo<int>;
15089template ostream& operator <<
15090 (ostream&, const Foo<int>&);
3ab51846 15091@end smallexample
c1f7febf
RK
15092
15093for each of the instances you need, and create a template instantiation
15094library from those.
15095
15096If you are using Cfront-model code, you can probably get away with not
84330467 15097using @option{-fno-implicit-templates} when compiling files that don't
c1f7febf
RK
15098@samp{#include} the member template definitions.
15099
15100If you use one big file to do the instantiations, you may want to
84330467 15101compile it without @option{-fno-implicit-templates} so you get all of the
c1f7febf
RK
15102instances required by your explicit instantiations (but not by any
15103other files) without having to specify them as well.
15104
2dd76960 15105G++ has extended the template instantiation syntax given in the ISO
6d9c4c83 15106standard to allow forward declaration of explicit instantiations
4003d7f9 15107(with @code{extern}), instantiation of the compiler support data for a
e979f9e8 15108template class (i.e.@: the vtable) without instantiating any of its
4003d7f9
JM
15109members (with @code{inline}), and instantiation of only the static data
15110members of a template class, without the support data or member
15111functions (with (@code{static}):
c1f7febf 15112
3ab51846 15113@smallexample
c1f7febf 15114extern template int max (int, int);
c1f7febf 15115inline template class Foo<int>;
4003d7f9 15116static template class Foo<int>;
3ab51846 15117@end smallexample
c1f7febf
RK
15118
15119@item
2dd76960 15120Do nothing. Pretend G++ does implement automatic instantiation
c1f7febf
RK
15121management. Code written for the Borland model will work fine, but
15122each translation unit will contain instances of each of the templates it
15123uses. In a large program, this can lead to an unacceptable amount of code
15124duplication.
c1f7febf
RK
15125@end enumerate
15126
0ded1f18
JM
15127@node Bound member functions
15128@section Extracting the function pointer from a bound pointer to member function
0ded1f18
JM
15129@cindex pmf
15130@cindex pointer to member function
15131@cindex bound pointer to member function
15132
15133In C++, pointer to member functions (PMFs) are implemented using a wide
15134pointer of sorts to handle all the possible call mechanisms; the PMF
15135needs to store information about how to adjust the @samp{this} pointer,
15136and if the function pointed to is virtual, where to find the vtable, and
15137where in the vtable to look for the member function. If you are using
15138PMFs in an inner loop, you should really reconsider that decision. If
15139that is not an option, you can extract the pointer to the function that
15140would be called for a given object/PMF pair and call it directly inside
15141the inner loop, to save a bit of time.
15142
15143Note that you will still be paying the penalty for the call through a
15144function pointer; on most modern architectures, such a call defeats the
161d7b59 15145branch prediction features of the CPU@. This is also true of normal
0ded1f18
JM
15146virtual function calls.
15147
15148The syntax for this extension is
15149
3ab51846 15150@smallexample
0ded1f18
JM
15151extern A a;
15152extern int (A::*fp)();
15153typedef int (*fptr)(A *);
15154
15155fptr p = (fptr)(a.*fp);
3ab51846 15156@end smallexample
0ded1f18 15157
e979f9e8 15158For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
767094dd 15159no object is needed to obtain the address of the function. They can be
0fb6bbf5
ML
15160converted to function pointers directly:
15161
3ab51846 15162@smallexample
0fb6bbf5 15163fptr p1 = (fptr)(&A::foo);
3ab51846 15164@end smallexample
0fb6bbf5 15165
84330467
JM
15166@opindex Wno-pmf-conversions
15167You must specify @option{-Wno-pmf-conversions} to use this extension.
0ded1f18 15168
5c25e11d
PE
15169@node C++ Attributes
15170@section C++-Specific Variable, Function, and Type Attributes
15171
15172Some attributes only make sense for C++ programs.
15173
15174@table @code
15175@item init_priority (@var{priority})
ab940b73 15176@cindex @code{init_priority} attribute
5c25e11d
PE
15177
15178
15179In Standard C++, objects defined at namespace scope are guaranteed to be
15180initialized in an order in strict accordance with that of their definitions
15181@emph{in a given translation unit}. No guarantee is made for initializations
15182across translation units. However, GNU C++ allows users to control the
3844cd2e 15183order of initialization of objects defined at namespace scope with the
5c25e11d
PE
15184@code{init_priority} attribute by specifying a relative @var{priority},
15185a constant integral expression currently bounded between 101 and 65535
15186inclusive. Lower numbers indicate a higher priority.
15187
15188In the following example, @code{A} would normally be created before
15189@code{B}, but the @code{init_priority} attribute has reversed that order:
15190
478c9e72 15191@smallexample
5c25e11d
PE
15192Some_Class A __attribute__ ((init_priority (2000)));
15193Some_Class B __attribute__ ((init_priority (543)));
478c9e72 15194@end smallexample
5c25e11d
PE
15195
15196@noindent
15197Note that the particular values of @var{priority} do not matter; only their
15198relative ordering.
15199
60c87482 15200@item java_interface
ab940b73 15201@cindex @code{java_interface} attribute
60c87482 15202
02f52e19 15203This type attribute informs C++ that the class is a Java interface. It may
60c87482 15204only be applied to classes declared within an @code{extern "Java"} block.
02f52e19
AJ
15205Calls to methods declared in this interface will be dispatched using GCJ's
15206interface table mechanism, instead of regular virtual table dispatch.
60c87482 15207
5c25e11d
PE
15208@end table
15209
38bb2b65 15210See also @ref{Namespace Association}.
86098eb8 15211
664a90c0
JM
15212@node Namespace Association
15213@section Namespace Association
86098eb8 15214
fea77ed9
MM
15215@strong{Caution:} The semantics of this extension are not fully
15216defined. Users should refrain from using this extension as its
15217semantics may change subtly over time. It is possible that this
664a90c0 15218extension will be removed in future versions of G++.
fea77ed9 15219
86098eb8
JM
15220A using-directive with @code{__attribute ((strong))} is stronger
15221than a normal using-directive in two ways:
15222
15223@itemize @bullet
15224@item
664a90c0
JM
15225Templates from the used namespace can be specialized and explicitly
15226instantiated as though they were members of the using namespace.
86098eb8
JM
15227
15228@item
15229The using namespace is considered an associated namespace of all
15230templates in the used namespace for purposes of argument-dependent
15231name lookup.
15232@end itemize
15233
664a90c0
JM
15234The used namespace must be nested within the using namespace so that
15235normal unqualified lookup works properly.
15236
86098eb8
JM
15237This is useful for composing a namespace transparently from
15238implementation namespaces. For example:
15239
15240@smallexample
15241namespace std @{
15242 namespace debug @{
15243 template <class T> struct A @{ @};
15244 @}
15245 using namespace debug __attribute ((__strong__));
cd1a8088 15246 template <> struct A<int> @{ @}; // @r{ok to specialize}
86098eb8
JM
15247
15248 template <class T> void f (A<T>);
15249@}
15250
15251int main()
15252@{
cd1a8088 15253 f (std::A<float>()); // @r{lookup finds} std::f
86098eb8
JM
15254 f (std::A<int>());
15255@}
15256@end smallexample
15257
cb68ec50
PC
15258@node Type Traits
15259@section Type Traits
15260
15261The C++ front-end implements syntactic extensions that allow to
15262determine at compile time various characteristics of a type (or of a
15263pair of types).
15264
15265@table @code
15266@item __has_nothrow_assign (type)
b29441ec
PC
15267If @code{type} is const qualified or is a reference type then the trait is
15268false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
15269is true, else if @code{type} is a cv class or union type with copy assignment
15270operators that are known not to throw an exception then the trait is true,
ff2ce160 15271else it is false. Requires: @code{type} shall be a complete type,
5307cbaa 15272(possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15273
15274@item __has_nothrow_copy (type)
15275If @code{__has_trivial_copy (type)} is true then the trait is true, else if
15276@code{type} is a cv class or union type with copy constructors that
15277are known not to throw an exception then the trait is true, else it is false.
5307cbaa
PC
15278Requires: @code{type} shall be a complete type, (possibly cv-qualified)
15279@code{void}, or an array of unknown bound.
cb68ec50
PC
15280
15281@item __has_nothrow_constructor (type)
15282If @code{__has_trivial_constructor (type)} is true then the trait is
15283true, else if @code{type} is a cv class or union type (or array
15284thereof) with a default constructor that is known not to throw an
ff2ce160
MS
15285exception then the trait is true, else it is false. Requires:
15286@code{type} shall be a complete type, (possibly cv-qualified)
5307cbaa 15287@code{void}, or an array of unknown bound.
cb68ec50
PC
15288
15289@item __has_trivial_assign (type)
15290If @code{type} is const qualified or is a reference type then the trait is
15291false. Otherwise if @code{__is_pod (type)} is true then the trait is
15292true, else if @code{type} is a cv class or union type with a trivial
15293copy assignment ([class.copy]) then the trait is true, else it is
ff2ce160 15294false. Requires: @code{type} shall be a complete type, (possibly
5307cbaa 15295cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15296
15297@item __has_trivial_copy (type)
ff2ce160 15298If @code{__is_pod (type)} is true or @code{type} is a reference type
cb68ec50
PC
15299then the trait is true, else if @code{type} is a cv class or union type
15300with a trivial copy constructor ([class.copy]) then the trait
15301is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa 15302type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15303
15304@item __has_trivial_constructor (type)
15305If @code{__is_pod (type)} is true then the trait is true, else if
15306@code{type} is a cv class or union type (or array thereof) with a
15307trivial default constructor ([class.ctor]) then the trait is true,
5307cbaa
PC
15308else it is false. Requires: @code{type} shall be a complete
15309type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15310
15311@item __has_trivial_destructor (type)
15312If @code{__is_pod (type)} is true or @code{type} is a reference type then
15313the trait is true, else if @code{type} is a cv class or union type (or
15314array thereof) with a trivial destructor ([class.dtor]) then the trait
15315is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa 15316type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15317
15318@item __has_virtual_destructor (type)
15319If @code{type} is a class type with a virtual destructor
15320([class.dtor]) then the trait is true, else it is false. Requires:
5307cbaa
PC
15321@code{type} shall be a complete type, (possibly cv-qualified)
15322@code{void}, or an array of unknown bound.
cb68ec50
PC
15323
15324@item __is_abstract (type)
15325If @code{type} is an abstract class ([class.abstract]) then the trait
15326is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa 15327type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15328
15329@item __is_base_of (base_type, derived_type)
15330If @code{base_type} is a base class of @code{derived_type}
15331([class.derived]) then the trait is true, otherwise it is false.
15332Top-level cv qualifications of @code{base_type} and
15333@code{derived_type} are ignored. For the purposes of this trait, a
15334class type is considered is own base. Requires: if @code{__is_class
15335(base_type)} and @code{__is_class (derived_type)} are true and
15336@code{base_type} and @code{derived_type} are not the same type
15337(disregarding cv-qualifiers), @code{derived_type} shall be a complete
15338type. Diagnostic is produced if this requirement is not met.
15339
15340@item __is_class (type)
15341If @code{type} is a cv class type, and not a union type
d1facce0 15342([basic.compound]) the trait is true, else it is false.
cb68ec50
PC
15343
15344@item __is_empty (type)
15345If @code{__is_class (type)} is false then the trait is false.
15346Otherwise @code{type} is considered empty if and only if: @code{type}
15347has no non-static data members, or all non-static data members, if
d1facce0 15348any, are bit-fields of length 0, and @code{type} has no virtual
cb68ec50 15349members, and @code{type} has no virtual base classes, and @code{type}
ff2ce160 15350has no base classes @code{base_type} for which
cb68ec50 15351@code{__is_empty (base_type)} is false. Requires: @code{type} shall
5307cbaa
PC
15352be a complete type, (possibly cv-qualified) @code{void}, or an array
15353of unknown bound.
cb68ec50
PC
15354
15355@item __is_enum (type)
d1facce0 15356If @code{type} is a cv enumeration type ([basic.compound]) the trait is
cb68ec50
PC
15357true, else it is false.
15358
5307cbaa
PC
15359@item __is_literal_type (type)
15360If @code{type} is a literal type ([basic.types]) the trait is
15361true, else it is false. Requires: @code{type} shall be a complete type,
15362(possibly cv-qualified) @code{void}, or an array of unknown bound.
15363
cb68ec50
PC
15364@item __is_pod (type)
15365If @code{type} is a cv POD type ([basic.types]) then the trait is true,
5307cbaa
PC
15366else it is false. Requires: @code{type} shall be a complete type,
15367(possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15368
15369@item __is_polymorphic (type)
15370If @code{type} is a polymorphic class ([class.virtual]) then the trait
15371is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa
PC
15372type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15373
15374@item __is_standard_layout (type)
15375If @code{type} is a standard-layout type ([basic.types]) the trait is
15376true, else it is false. Requires: @code{type} shall be a complete
15377type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15378
15379@item __is_trivial (type)
15380If @code{type} is a trivial type ([basic.types]) the trait is
15381true, else it is false. Requires: @code{type} shall be a complete
15382type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15383
15384@item __is_union (type)
d1facce0 15385If @code{type} is a cv union type ([basic.compound]) the trait is
cb68ec50
PC
15386true, else it is false.
15387
74e883ce
PC
15388@item __underlying_type (type)
15389The underlying type of @code{type}. Requires: @code{type} shall be
15390an enumeration type ([dcl.enum]).
15391
cb68ec50
PC
15392@end table
15393
1f730ff7
ZW
15394@node Java Exceptions
15395@section Java Exceptions
15396
15397The Java language uses a slightly different exception handling model
15398from C++. Normally, GNU C++ will automatically detect when you are
15399writing C++ code that uses Java exceptions, and handle them
15400appropriately. However, if C++ code only needs to execute destructors
15401when Java exceptions are thrown through it, GCC will guess incorrectly.
9c34dbbf 15402Sample problematic code is:
1f730ff7 15403
478c9e72 15404@smallexample
1f730ff7 15405 struct S @{ ~S(); @};
cd1a8088 15406 extern void bar(); // @r{is written in Java, and may throw exceptions}
1f730ff7
ZW
15407 void foo()
15408 @{
15409 S s;
15410 bar();
15411 @}
478c9e72 15412@end smallexample
1f730ff7
ZW
15413
15414@noindent
15415The usual effect of an incorrect guess is a link failure, complaining of
15416a missing routine called @samp{__gxx_personality_v0}.
15417
15418You can inform the compiler that Java exceptions are to be used in a
15419translation unit, irrespective of what it might think, by writing
15420@samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
15421@samp{#pragma} must appear before any functions that throw or catch
15422exceptions, or run destructors when exceptions are thrown through them.
15423
15424You cannot mix Java and C++ exceptions in the same translation unit. It
15425is believed to be safe to throw a C++ exception from one file through
9c34dbbf
ZW
15426another file compiled for the Java exception model, or vice versa, but
15427there may be bugs in this area.
1f730ff7 15428
e6f3b89d
PE
15429@node Deprecated Features
15430@section Deprecated Features
15431
15432In the past, the GNU C++ compiler was extended to experiment with new
767094dd 15433features, at a time when the C++ language was still evolving. Now that
e6f3b89d 15434the C++ standard is complete, some of those features are superseded by
767094dd
JM
15435superior alternatives. Using the old features might cause a warning in
15436some cases that the feature will be dropped in the future. In other
e6f3b89d
PE
15437cases, the feature might be gone already.
15438
15439While the list below is not exhaustive, it documents some of the options
15440that are now deprecated:
15441
15442@table @code
15443@item -fexternal-templates
15444@itemx -falt-external-templates
2dd76960 15445These are two of the many ways for G++ to implement template
767094dd 15446instantiation. @xref{Template Instantiation}. The C++ standard clearly
e6f3b89d 15447defines how template definitions have to be organized across
2dd76960 15448implementation units. G++ has an implicit instantiation mechanism that
e6f3b89d
PE
15449should work just fine for standard-conforming code.
15450
15451@item -fstrict-prototype
15452@itemx -fno-strict-prototype
15453Previously it was possible to use an empty prototype parameter list to
15454indicate an unspecified number of parameters (like C), rather than no
767094dd 15455parameters, as C++ demands. This feature has been removed, except where
38bb2b65 15456it is required for backwards compatibility. @xref{Backwards Compatibility}.
e6f3b89d
PE
15457@end table
15458
ae209f28
NS
15459G++ allows a virtual function returning @samp{void *} to be overridden
15460by one returning a different pointer type. This extension to the
15461covariant return type rules is now deprecated and will be removed from a
15462future version.
15463
8ff24a79
MM
15464The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
15465their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
32e26ece
GK
15466and are now removed from G++. Code using these operators should be
15467modified to use @code{std::min} and @code{std::max} instead.
8ff24a79 15468
ad1a6d45 15469The named return value extension has been deprecated, and is now
2dd76960 15470removed from G++.
e6f3b89d 15471
82c18d5c 15472The use of initializer lists with new expressions has been deprecated,
2dd76960 15473and is now removed from G++.
ad1a6d45
NS
15474
15475Floating and complex non-type template parameters have been deprecated,
2dd76960 15476and are now removed from G++.
ad1a6d45 15477
90ea7324 15478The implicit typename extension has been deprecated and is now
2dd76960 15479removed from G++.
90ea7324 15480
1eaf20ec 15481The use of default arguments in function pointers, function typedefs
90ea7324 15482and other places where they are not permitted by the standard is
2dd76960 15483deprecated and will be removed from a future version of G++.
82c18d5c 15484
6871294a
JW
15485G++ allows floating-point literals to appear in integral constant expressions,
15486e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
15487This extension is deprecated and will be removed from a future version.
15488
15489G++ allows static data members of const floating-point type to be declared
15490with an initializer in a class definition. The standard only allows
15491initializers for static members of const integral types and const
15492enumeration types so this extension has been deprecated and will be removed
15493from a future version.
15494
e6f3b89d
PE
15495@node Backwards Compatibility
15496@section Backwards Compatibility
15497@cindex Backwards Compatibility
15498@cindex ARM [Annotated C++ Reference Manual]
15499
aee96fe9 15500Now that there is a definitive ISO standard C++, G++ has a specification
767094dd 15501to adhere to. The C++ language evolved over time, and features that
e6f3b89d 15502used to be acceptable in previous drafts of the standard, such as the ARM
767094dd 15503[Annotated C++ Reference Manual], are no longer accepted. In order to allow
aee96fe9 15504compilation of C++ written to such drafts, G++ contains some backwards
767094dd 15505compatibilities. @emph{All such backwards compatibility features are
aee96fe9 15506liable to disappear in future versions of G++.} They should be considered
38bb2b65 15507deprecated. @xref{Deprecated Features}.
e6f3b89d
PE
15508
15509@table @code
15510@item For scope
15511If a variable is declared at for scope, it used to remain in scope until
15512the end of the scope which contained the for statement (rather than just
aee96fe9 15513within the for scope). G++ retains this, but issues a warning, if such a
e6f3b89d
PE
15514variable is accessed outside the for scope.
15515
ad1a6d45 15516@item Implicit C language
630d3d5a 15517Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
767094dd
JM
15518scope to set the language. On such systems, all header files are
15519implicitly scoped inside a C language scope. Also, an empty prototype
e6f3b89d
PE
15520@code{()} will be treated as an unspecified number of arguments, rather
15521than no arguments, as C++ demands.
15522@end table