]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
c-pragma.c (apply_pragma_weak): Don't use warning_with_decl.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
7080f735 2 Copyright (C) 2000, 2003 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688
MM
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
42#include "basic-block.h"
8a67e083 43#include "errors.h"
355be0dc 44#include "et-forest.h"
f8032688 45
355be0dc
JH
46struct dominance_info
47{
48 et_forest_t forest;
49 varray_type varray;
50};
51
52#define BB_NODE(info, bb) \
53 ((et_forest_node_t)VARRAY_GENERIC_PTR ((info)->varray, (bb)->index + 2))
54#define SET_BB_NODE(info, bb, node) \
55 (VARRAY_GENERIC_PTR ((info)->varray, (bb)->index + 2) = (node))
f8032688
MM
56
57/* We name our nodes with integers, beginning with 1. Zero is reserved for
58 'undefined' or 'end of list'. The name of each node is given by the dfs
59 number of the corresponding basic block. Please note, that we include the
60 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
61 support multiple entry points. As it has no real basic block index we use
d55bc081 62 'last_basic_block' for that. Its dfs number is of course 1. */
f8032688
MM
63
64/* Type of Basic Block aka. TBB */
65typedef unsigned int TBB;
66
67/* We work in a poor-mans object oriented fashion, and carry an instance of
68 this structure through all our 'methods'. It holds various arrays
69 reflecting the (sub)structure of the flowgraph. Most of them are of type
70 TBB and are also indexed by TBB. */
71
72struct dom_info
73{
74 /* The parent of a node in the DFS tree. */
75 TBB *dfs_parent;
76 /* For a node x key[x] is roughly the node nearest to the root from which
77 exists a way to x only over nodes behind x. Such a node is also called
78 semidominator. */
79 TBB *key;
80 /* The value in path_min[x] is the node y on the path from x to the root of
81 the tree x is in with the smallest key[y]. */
82 TBB *path_min;
83 /* bucket[x] points to the first node of the set of nodes having x as key. */
84 TBB *bucket;
85 /* And next_bucket[x] points to the next node. */
86 TBB *next_bucket;
87 /* After the algorithm is done, dom[x] contains the immediate dominator
88 of x. */
89 TBB *dom;
90
91 /* The following few fields implement the structures needed for disjoint
92 sets. */
93 /* set_chain[x] is the next node on the path from x to the representant
94 of the set containing x. If set_chain[x]==0 then x is a root. */
95 TBB *set_chain;
96 /* set_size[x] is the number of elements in the set named by x. */
97 unsigned int *set_size;
98 /* set_child[x] is used for balancing the tree representing a set. It can
99 be understood as the next sibling of x. */
100 TBB *set_child;
101
102 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
103 number of that node in DFS order counted from 1. This is an index
104 into most of the other arrays in this structure. */
105 TBB *dfs_order;
09da1532 106 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
107 dfs_to_bb[x] is that basic block. Note, that in our structure there are
108 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
109 is true for every basic block bb, but not the opposite. */
110 basic_block *dfs_to_bb;
111
30f7a378 112 /* This is the next free DFS number when creating the DFS tree or forest. */
f8032688
MM
113 unsigned int dfsnum;
114 /* The number of nodes in the DFS tree (==dfsnum-1). */
115 unsigned int nodes;
116};
117
7080f735
AJ
118static void init_dom_info (struct dom_info *);
119static void free_dom_info (struct dom_info *);
120static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
121 enum cdi_direction);
122static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
123static void compress (struct dom_info *, TBB);
124static TBB eval (struct dom_info *, TBB);
125static void link_roots (struct dom_info *, TBB, TBB);
126static void calc_idoms (struct dom_info *, enum cdi_direction);
127void debug_dominance_info (dominance_info);
f8032688
MM
128
129/* Helper macro for allocating and initializing an array,
130 for aesthetic reasons. */
131#define init_ar(var, type, num, content) \
3a538a66
KH
132 do \
133 { \
134 unsigned int i = 1; /* Catch content == i. */ \
135 if (! (content)) \
136 (var) = (type *) xcalloc ((num), sizeof (type)); \
137 else \
138 { \
139 (var) = (type *) xmalloc ((num) * sizeof (type)); \
140 for (i = 0; i < num; i++) \
141 (var)[i] = (content); \
142 } \
143 } \
144 while (0)
f8032688
MM
145
146/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 147 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
148
149static void
7080f735 150init_dom_info (struct dom_info *di)
f8032688 151{
0b17ab2f 152 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
f8032688 153 EXIT_BLOCK. */
0b17ab2f 154 unsigned int num = n_basic_blocks + 1 + 1;
f8032688
MM
155 init_ar (di->dfs_parent, TBB, num, 0);
156 init_ar (di->path_min, TBB, num, i);
157 init_ar (di->key, TBB, num, i);
158 init_ar (di->dom, TBB, num, 0);
159
160 init_ar (di->bucket, TBB, num, 0);
161 init_ar (di->next_bucket, TBB, num, 0);
162
163 init_ar (di->set_chain, TBB, num, 0);
164 init_ar (di->set_size, unsigned int, num, 1);
165 init_ar (di->set_child, TBB, num, 0);
166
d55bc081 167 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
168 init_ar (di->dfs_to_bb, basic_block, num, 0);
169
170 di->dfsnum = 1;
171 di->nodes = 0;
172}
173
174#undef init_ar
175
176/* Free all allocated memory in DI, but not DI itself. */
177
178static void
7080f735 179free_dom_info (struct dom_info *di)
f8032688
MM
180{
181 free (di->dfs_parent);
182 free (di->path_min);
183 free (di->key);
184 free (di->dom);
185 free (di->bucket);
186 free (di->next_bucket);
187 free (di->set_chain);
188 free (di->set_size);
189 free (di->set_child);
190 free (di->dfs_order);
191 free (di->dfs_to_bb);
192}
193
194/* The nonrecursive variant of creating a DFS tree. DI is our working
195 structure, BB the starting basic block for this tree and REVERSE
196 is true, if predecessors should be visited instead of successors of a
197 node. After this is done all nodes reachable from BB were visited, have
198 assigned their dfs number and are linked together to form a tree. */
199
200static void
7080f735 201calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, enum cdi_direction reverse)
f8032688 202{
30f7a378 203 /* We never call this with bb==EXIT_BLOCK_PTR (ENTRY_BLOCK_PTR if REVERSE). */
f8032688
MM
204 /* We call this _only_ if bb is not already visited. */
205 edge e;
206 TBB child_i, my_i = 0;
207 edge *stack;
208 int sp;
209 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
210 problem). */
211 basic_block en_block;
212 /* Ending block. */
213 basic_block ex_block;
214
0b17ab2f 215 stack = (edge *) xmalloc ((n_basic_blocks + 3) * sizeof (edge));
f8032688
MM
216 sp = 0;
217
218 /* Initialize our border blocks, and the first edge. */
219 if (reverse)
220 {
221 e = bb->pred;
222 en_block = EXIT_BLOCK_PTR;
223 ex_block = ENTRY_BLOCK_PTR;
224 }
225 else
226 {
227 e = bb->succ;
228 en_block = ENTRY_BLOCK_PTR;
229 ex_block = EXIT_BLOCK_PTR;
230 }
231
232 /* When the stack is empty we break out of this loop. */
233 while (1)
234 {
235 basic_block bn;
236
237 /* This loop traverses edges e in depth first manner, and fills the
238 stack. */
239 while (e)
240 {
241 edge e_next;
242
243 /* Deduce from E the current and the next block (BB and BN), and the
244 next edge. */
245 if (reverse)
246 {
247 bn = e->src;
248
249 /* If the next node BN is either already visited or a border
250 block the current edge is useless, and simply overwritten
251 with the next edge out of the current node. */
0b17ab2f 252 if (bn == ex_block || di->dfs_order[bn->index])
f8032688
MM
253 {
254 e = e->pred_next;
255 continue;
256 }
257 bb = e->dest;
258 e_next = bn->pred;
259 }
260 else
261 {
262 bn = e->dest;
0b17ab2f 263 if (bn == ex_block || di->dfs_order[bn->index])
f8032688
MM
264 {
265 e = e->succ_next;
266 continue;
267 }
268 bb = e->src;
269 e_next = bn->succ;
270 }
271
272 if (bn == en_block)
273 abort ();
274
275 /* Fill the DFS tree info calculatable _before_ recursing. */
276 if (bb != en_block)
0b17ab2f 277 my_i = di->dfs_order[bb->index];
f8032688 278 else
d55bc081 279 my_i = di->dfs_order[last_basic_block];
0b17ab2f 280 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
281 di->dfs_to_bb[child_i] = bn;
282 di->dfs_parent[child_i] = my_i;
283
284 /* Save the current point in the CFG on the stack, and recurse. */
285 stack[sp++] = e;
286 e = e_next;
287 }
288
289 if (!sp)
290 break;
291 e = stack[--sp];
292
293 /* OK. The edge-list was exhausted, meaning normally we would
294 end the recursion. After returning from the recursive call,
295 there were (may be) other statements which were run after a
296 child node was completely considered by DFS. Here is the
297 point to do it in the non-recursive variant.
298 E.g. The block just completed is in e->dest for forward DFS,
299 the block not yet completed (the parent of the one above)
300 in e->src. This could be used e.g. for computing the number of
301 descendants or the tree depth. */
302 if (reverse)
303 e = e->pred_next;
304 else
305 e = e->succ_next;
306 }
307 free (stack);
308}
309
310/* The main entry for calculating the DFS tree or forest. DI is our working
311 structure and REVERSE is true, if we are interested in the reverse flow
312 graph. In that case the result is not necessarily a tree but a forest,
313 because there may be nodes from which the EXIT_BLOCK is unreachable. */
314
315static void
7080f735 316calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
317{
318 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
319 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 320 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
321 di->dfs_to_bb[di->dfsnum] = begin;
322 di->dfsnum++;
323
324 calc_dfs_tree_nonrec (di, begin, reverse);
325
326 if (reverse)
327 {
328 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
329 They are reverse-unreachable. In the dom-case we disallow such
330 nodes, but in post-dom we have to deal with them, so we simply
331 include them in the DFS tree which actually becomes a forest. */
e0082a72
ZD
332 basic_block b;
333 FOR_EACH_BB_REVERSE (b)
f8032688 334 {
0b17ab2f 335 if (di->dfs_order[b->index])
f8032688 336 continue;
0b17ab2f 337 di->dfs_order[b->index] = di->dfsnum;
f8032688
MM
338 di->dfs_to_bb[di->dfsnum] = b;
339 di->dfsnum++;
340 calc_dfs_tree_nonrec (di, b, reverse);
341 }
342 }
343
344 di->nodes = di->dfsnum - 1;
345
346 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
0b17ab2f 347 if (di->nodes != (unsigned int) n_basic_blocks + 1)
f8032688
MM
348 abort ();
349}
350
351/* Compress the path from V to the root of its set and update path_min at the
352 same time. After compress(di, V) set_chain[V] is the root of the set V is
353 in and path_min[V] is the node with the smallest key[] value on the path
354 from V to that root. */
355
356static void
7080f735 357compress (struct dom_info *di, TBB v)
f8032688
MM
358{
359 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
360 greater than 5 even for huge graphs (I've not seen call depth > 4).
361 Also performance wise compress() ranges _far_ behind eval(). */
362 TBB parent = di->set_chain[v];
363 if (di->set_chain[parent])
364 {
365 compress (di, parent);
366 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
367 di->path_min[v] = di->path_min[parent];
368 di->set_chain[v] = di->set_chain[parent];
369 }
370}
371
372/* Compress the path from V to the set root of V if needed (when the root has
373 changed since the last call). Returns the node with the smallest key[]
374 value on the path from V to the root. */
375
376static inline TBB
7080f735 377eval (struct dom_info *di, TBB v)
f8032688
MM
378{
379 /* The representant of the set V is in, also called root (as the set
380 representation is a tree). */
381 TBB rep = di->set_chain[v];
382
383 /* V itself is the root. */
384 if (!rep)
385 return di->path_min[v];
386
387 /* Compress only if necessary. */
388 if (di->set_chain[rep])
389 {
390 compress (di, v);
391 rep = di->set_chain[v];
392 }
393
394 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
395 return di->path_min[v];
396 else
397 return di->path_min[rep];
398}
399
400/* This essentially merges the two sets of V and W, giving a single set with
401 the new root V. The internal representation of these disjoint sets is a
402 balanced tree. Currently link(V,W) is only used with V being the parent
403 of W. */
404
405static void
7080f735 406link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
407{
408 TBB s = w;
409
410 /* Rebalance the tree. */
411 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
412 {
413 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
414 >= 2 * di->set_size[di->set_child[s]])
415 {
416 di->set_chain[di->set_child[s]] = s;
417 di->set_child[s] = di->set_child[di->set_child[s]];
418 }
419 else
420 {
421 di->set_size[di->set_child[s]] = di->set_size[s];
422 s = di->set_chain[s] = di->set_child[s];
423 }
424 }
425
426 di->path_min[s] = di->path_min[w];
427 di->set_size[v] += di->set_size[w];
428 if (di->set_size[v] < 2 * di->set_size[w])
429 {
430 TBB tmp = s;
431 s = di->set_child[v];
432 di->set_child[v] = tmp;
433 }
434
435 /* Merge all subtrees. */
436 while (s)
437 {
438 di->set_chain[s] = v;
439 s = di->set_child[s];
440 }
441}
442
443/* This calculates the immediate dominators (or post-dominators if REVERSE is
444 true). DI is our working structure and should hold the DFS forest.
445 On return the immediate dominator to node V is in di->dom[V]. */
446
447static void
7080f735 448calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
449{
450 TBB v, w, k, par;
451 basic_block en_block;
452 if (reverse)
453 en_block = EXIT_BLOCK_PTR;
454 else
455 en_block = ENTRY_BLOCK_PTR;
456
457 /* Go backwards in DFS order, to first look at the leafs. */
458 v = di->nodes;
459 while (v > 1)
460 {
461 basic_block bb = di->dfs_to_bb[v];
462 edge e, e_next;
463
464 par = di->dfs_parent[v];
465 k = v;
466 if (reverse)
467 e = bb->succ;
468 else
469 e = bb->pred;
470
471 /* Search all direct predecessors for the smallest node with a path
472 to them. That way we have the smallest node with also a path to
473 us only over nodes behind us. In effect we search for our
474 semidominator. */
475 for (; e; e = e_next)
476 {
477 TBB k1;
478 basic_block b;
479
480 if (reverse)
481 {
482 b = e->dest;
483 e_next = e->succ_next;
484 }
485 else
486 {
487 b = e->src;
488 e_next = e->pred_next;
489 }
490 if (b == en_block)
d55bc081 491 k1 = di->dfs_order[last_basic_block];
f8032688 492 else
0b17ab2f 493 k1 = di->dfs_order[b->index];
f8032688
MM
494
495 /* Call eval() only if really needed. If k1 is above V in DFS tree,
496 then we know, that eval(k1) == k1 and key[k1] == k1. */
497 if (k1 > v)
498 k1 = di->key[eval (di, k1)];
499 if (k1 < k)
500 k = k1;
501 }
502
503 di->key[v] = k;
504 link_roots (di, par, v);
505 di->next_bucket[v] = di->bucket[k];
506 di->bucket[k] = v;
507
508 /* Transform semidominators into dominators. */
509 for (w = di->bucket[par]; w; w = di->next_bucket[w])
510 {
511 k = eval (di, w);
512 if (di->key[k] < di->key[w])
513 di->dom[w] = k;
514 else
515 di->dom[w] = par;
516 }
517 /* We don't need to cleanup next_bucket[]. */
518 di->bucket[par] = 0;
519 v--;
520 }
521
a1f300c0 522 /* Explicitly define the dominators. */
f8032688
MM
523 di->dom[1] = 0;
524 for (v = 2; v <= di->nodes; v++)
525 if (di->dom[v] != di->key[v])
526 di->dom[v] = di->dom[di->dom[v]];
527}
528
f8032688 529/* The main entry point into this module. IDOM is an integer array with room
d55bc081
ZD
530 for last_basic_block integers, DOMS is a preallocated sbitmap array having
531 room for last_basic_block^2 bits, and POST is true if the caller wants to
f8032688
MM
532 know post-dominators.
533
534 On return IDOM[i] will be the BB->index of the immediate (post) dominator
535 of basic block i, and DOMS[i] will have set bit j if basic block j is a
536 (post)dominator for block i.
537
538 Either IDOM or DOMS may be NULL (meaning the caller is not interested in
539 immediate resp. all dominators). */
540
355be0dc 541dominance_info
7080f735 542calculate_dominance_info (enum cdi_direction reverse)
f8032688
MM
543{
544 struct dom_info di;
355be0dc
JH
545 dominance_info info;
546 basic_block b;
547
548 /* allocate structure for dominance information. */
549 info = xmalloc (sizeof (struct dominance_info));
550 info->forest = et_forest_create ();
551 VARRAY_GENERIC_PTR_INIT (info->varray, last_basic_block + 3, "dominance info");
552
553 /* Add the two well-known basic blocks. */
554 SET_BB_NODE (info, ENTRY_BLOCK_PTR, et_forest_add_node (info->forest,
555 ENTRY_BLOCK_PTR));
556 SET_BB_NODE (info, EXIT_BLOCK_PTR, et_forest_add_node (info->forest,
557 EXIT_BLOCK_PTR));
558 FOR_EACH_BB (b)
559 SET_BB_NODE (info, b, et_forest_add_node (info->forest, b));
f8032688 560
f8032688
MM
561 init_dom_info (&di);
562 calc_dfs_tree (&di, reverse);
563 calc_idoms (&di, reverse);
564
355be0dc
JH
565
566 FOR_EACH_BB (b)
f8032688 567 {
355be0dc 568 TBB d = di.dom[di.dfs_order[b->index]];
e0082a72 569
355be0dc
JH
570 if (di.dfs_to_bb[d])
571 et_forest_add_edge (info->forest, BB_NODE (info, di.dfs_to_bb[d]), BB_NODE (info, b));
572 }
573
574 free_dom_info (&di);
575 return info;
576}
577
578/* Free dominance information. */
579void
7080f735 580free_dominance_info (dominance_info info)
355be0dc
JH
581{
582 basic_block bb;
583
584 /* Allow users to create new basic block without setting up the dominance
585 information for them. */
586 FOR_EACH_BB (bb)
587 if (bb->index < (int)(info->varray->num_elements - 2)
588 && BB_NODE (info, bb))
589 delete_from_dominance_info (info, bb);
590 delete_from_dominance_info (info, ENTRY_BLOCK_PTR);
591 delete_from_dominance_info (info, EXIT_BLOCK_PTR);
592 et_forest_delete (info->forest);
593 VARRAY_GROW (info->varray, 0);
594 free (info);
595}
596
597/* Return the immediate dominator of basic block BB. */
598basic_block
7080f735 599get_immediate_dominator (dominance_info dom, basic_block bb)
355be0dc
JH
600{
601 return et_forest_node_value (dom->forest,
602 et_forest_parent (dom->forest,
603 BB_NODE (dom, bb)));
604}
605
606/* Set the immediate dominator of the block possibly removing
607 existing edge. NULL can be used to remove any edge. */
608inline void
7080f735 609set_immediate_dominator (dominance_info dom, basic_block bb, basic_block dominated_by)
355be0dc
JH
610{
611 void *aux_bb_node;
612 et_forest_node_t bb_node = BB_NODE (dom, bb);
613
614 aux_bb_node = et_forest_parent (dom->forest, bb_node);
615 if (aux_bb_node)
616 et_forest_remove_edge (dom->forest, aux_bb_node, bb_node);
617 if (dominated_by != NULL)
618 {
619 if (bb == dominated_by)
620 abort ();
621 if (!et_forest_add_edge (dom->forest, BB_NODE (dom, dominated_by), bb_node))
622 abort ();
623 }
624}
625
626/* Store all basic blocks dominated by BB into BBS and return their number. */
627int
7080f735 628get_dominated_by (dominance_info dom, basic_block bb, basic_block **bbs)
355be0dc
JH
629{
630 int n, i;
631
632 *bbs = xmalloc (n_basic_blocks * sizeof (basic_block));
633 n = et_forest_enumerate_sons (dom->forest, BB_NODE (dom, bb), (et_forest_node_t *)*bbs);
634 for (i = 0; i < n; i++)
635 (*bbs)[i] = et_forest_node_value (dom->forest, (et_forest_node_t)(*bbs)[i]);
636 return n;
637}
638
639/* Redirect all edges pointing to BB to TO. */
640void
7080f735 641redirect_immediate_dominators (dominance_info dom, basic_block bb, basic_block to)
355be0dc
JH
642{
643 et_forest_node_t *bbs = xmalloc (n_basic_blocks * sizeof (basic_block));
644 et_forest_node_t node = BB_NODE (dom, bb);
645 et_forest_node_t node2 = BB_NODE (dom, to);
646 int n = et_forest_enumerate_sons (dom->forest, node, bbs);
647 int i;
648
649 for (i = 0; i < n; i++)
650 {
651 et_forest_remove_edge (dom->forest, node, bbs[i]);
652 et_forest_add_edge (dom->forest, node2, bbs[i]);
653 }
654 free (bbs);
655}
656
657/* Find first basic block in the tree dominating both BB1 and BB2. */
658basic_block
7080f735 659nearest_common_dominator (dominance_info dom, basic_block bb1, basic_block bb2)
355be0dc
JH
660{
661 if (!bb1)
662 return bb2;
663 if (!bb2)
664 return bb1;
665 return et_forest_node_value (dom->forest,
666 et_forest_common_ancestor (dom->forest,
667 BB_NODE (dom, bb1),
668 BB_NODE (dom,
669 bb2)));
670}
671
672/* Return TRUE in case BB1 is dominated by BB2. */
673bool
7080f735 674dominated_by_p (dominance_info dom, basic_block bb1, basic_block bb2)
355be0dc
JH
675{
676 return nearest_common_dominator (dom, bb1, bb2) == bb2;
677}
678
679/* Verify invariants of dominator structure. */
680void
7080f735 681verify_dominators (dominance_info dom)
355be0dc
JH
682{
683 int err = 0;
684 basic_block bb;
685
686 FOR_EACH_BB (bb)
687 {
688 basic_block dom_bb;
689
690 dom_bb = recount_dominator (dom, bb);
691 if (dom_bb != get_immediate_dominator (dom, bb))
f8032688 692 {
355be0dc
JH
693 error ("dominator of %d should be %d, not %d",
694 bb->index, dom_bb->index, get_immediate_dominator(dom, bb)->index);
695 err = 1;
696 }
697 }
698 if (err)
699 abort ();
700}
701
702/* Recount dominator of BB. */
703basic_block
7080f735 704recount_dominator (dominance_info dom, basic_block bb)
355be0dc
JH
705{
706 basic_block dom_bb = NULL;
707 edge e;
708
709 for (e = bb->pred; e; e = e->pred_next)
710 {
711 if (!dominated_by_p (dom, e->src, bb))
712 dom_bb = nearest_common_dominator (dom, dom_bb, e->src);
713 }
f8032688 714
355be0dc
JH
715 return dom_bb;
716}
717
718/* Iteratively recount dominators of BBS. The change is supposed to be local
719 and not to grow further. */
720void
7080f735 721iterate_fix_dominators (dominance_info dom, basic_block *bbs, int n)
355be0dc
JH
722{
723 int i, changed = 1;
724 basic_block old_dom, new_dom;
725
726 while (changed)
727 {
728 changed = 0;
729 for (i = 0; i < n; i++)
730 {
731 old_dom = get_immediate_dominator (dom, bbs[i]);
732 new_dom = recount_dominator (dom, bbs[i]);
733 if (old_dom != new_dom)
734 {
735 changed = 1;
736 set_immediate_dominator (dom, bbs[i], new_dom);
737 }
f8032688
MM
738 }
739 }
355be0dc 740}
f8032688 741
355be0dc 742void
7080f735 743add_to_dominance_info (dominance_info dom, basic_block bb)
355be0dc
JH
744{
745 VARRAY_GROW (dom->varray, last_basic_block + 3);
746#ifdef ENABLE_CHECKING
747 if (BB_NODE (dom, bb))
748 abort ();
749#endif
750 SET_BB_NODE (dom, bb, et_forest_add_node (dom->forest, bb));
751}
752
753void
7080f735 754delete_from_dominance_info (dominance_info dom, basic_block bb)
355be0dc
JH
755{
756 et_forest_remove_node (dom->forest, BB_NODE (dom, bb));
757 SET_BB_NODE (dom, bb, NULL);
758}
759
760void
7080f735 761debug_dominance_info (dominance_info dom)
355be0dc
JH
762{
763 basic_block bb, bb2;
764 FOR_EACH_BB (bb)
765 if ((bb2 = get_immediate_dominator (dom, bb)))
766 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 767}