]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
* dbxout.c (dbxout_type, dbxout_type_name, dbxout_symbol): Use
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
4794f989 1/* Calculate (post)dominators in slightly super-linear time.
a8349c62 2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
4794f989 3 Contributed by Michael Matz (matz@ifh.de).
1eefe280 4
f12b58b3 5 This file is part of GCC.
1eefe280 6
f12b58b3 7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
4794f989 9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
f12b58b3 12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
4794f989 16
17 You should have received a copy of the GNU General Public License
f12b58b3 18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
4794f989 21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
3fb1e43b 31 The algorithm computes this dominator tree implicitly by computing for
4794f989 32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
805e22b2 38#include "coretypes.h"
39#include "tm.h"
4794f989 40#include "rtl.h"
41#include "hard-reg-set.h"
42#include "basic-block.h"
a2f397fb 43#include "errors.h"
89d75d78 44#include "et-forest.h"
4794f989 45
0051c76a 46/* Whether the dominators and the postdominators are available. */
47enum dom_state dom_computed[2];
4794f989 48
49/* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
f20183e6 54 'last_basic_block' for that. Its dfs number is of course 1. */
4794f989 55
56/* Type of Basic Block aka. TBB */
57typedef unsigned int TBB;
58
59/* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64struct dom_info
65{
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
edc2a478 98 /* If x is the DFS-index of a node which corresponds with a basic block,
4794f989 99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
8828f7b7 104 /* This is the next free DFS number when creating the DFS tree. */
4794f989 105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
8828f7b7 108
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
4794f989 112};
113
8828f7b7 114static void init_dom_info (struct dom_info *, enum cdi_direction);
8ec3a57b 115static void free_dom_info (struct dom_info *);
116static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119static void compress (struct dom_info *, TBB);
120static TBB eval (struct dom_info *, TBB);
121static void link_roots (struct dom_info *, TBB, TBB);
122static void calc_idoms (struct dom_info *, enum cdi_direction);
0051c76a 123void debug_dominance_info (enum cdi_direction);
4794f989 124
4ee9c684 125/* Keeps track of the*/
126static unsigned n_bbs_in_dom_tree[2];
127
4794f989 128/* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130#define init_ar(var, type, num, content) \
1eefe280 131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
f0af5a88 135 (var) = xcalloc ((num), sizeof (type)); \
1eefe280 136 else \
137 { \
f0af5a88 138 (var) = xmalloc ((num) * sizeof (type)); \
1eefe280 139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
4794f989 144
145/* Allocate all needed memory in a pessimistic fashion (so we round up).
457275b6 146 This initializes the contents of DI, which already must be allocated. */
4794f989 147
148static void
8828f7b7 149init_dom_info (struct dom_info *di, enum cdi_direction dir)
4794f989 150{
b3d6de89 151 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
4794f989 152 EXIT_BLOCK. */
b3d6de89 153 unsigned int num = n_basic_blocks + 1 + 1;
4794f989 154 init_ar (di->dfs_parent, TBB, num, 0);
155 init_ar (di->path_min, TBB, num, i);
156 init_ar (di->key, TBB, num, i);
157 init_ar (di->dom, TBB, num, 0);
158
159 init_ar (di->bucket, TBB, num, 0);
160 init_ar (di->next_bucket, TBB, num, 0);
161
162 init_ar (di->set_chain, TBB, num, 0);
163 init_ar (di->set_size, unsigned int, num, 1);
164 init_ar (di->set_child, TBB, num, 0);
165
f20183e6 166 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
4794f989 167 init_ar (di->dfs_to_bb, basic_block, num, 0);
168
169 di->dfsnum = 1;
170 di->nodes = 0;
8828f7b7 171
172 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
4794f989 173}
174
175#undef init_ar
176
177/* Free all allocated memory in DI, but not DI itself. */
178
179static void
8ec3a57b 180free_dom_info (struct dom_info *di)
4794f989 181{
182 free (di->dfs_parent);
183 free (di->path_min);
184 free (di->key);
185 free (di->dom);
186 free (di->bucket);
187 free (di->next_bucket);
188 free (di->set_chain);
189 free (di->set_size);
190 free (di->set_child);
191 free (di->dfs_order);
192 free (di->dfs_to_bb);
8828f7b7 193 BITMAP_XFREE (di->fake_exit_edge);
4794f989 194}
195
196/* The nonrecursive variant of creating a DFS tree. DI is our working
197 structure, BB the starting basic block for this tree and REVERSE
198 is true, if predecessors should be visited instead of successors of a
199 node. After this is done all nodes reachable from BB were visited, have
200 assigned their dfs number and are linked together to form a tree. */
201
202static void
8828f7b7 203calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
204 enum cdi_direction reverse)
4794f989 205{
4794f989 206 /* We call this _only_ if bb is not already visited. */
207 edge e;
208 TBB child_i, my_i = 0;
209 edge *stack;
210 int sp;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212 problem). */
213 basic_block en_block;
214 /* Ending block. */
215 basic_block ex_block;
216
f0af5a88 217 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge));
4794f989 218 sp = 0;
219
220 /* Initialize our border blocks, and the first edge. */
221 if (reverse)
222 {
223 e = bb->pred;
224 en_block = EXIT_BLOCK_PTR;
225 ex_block = ENTRY_BLOCK_PTR;
226 }
227 else
228 {
229 e = bb->succ;
230 en_block = ENTRY_BLOCK_PTR;
231 ex_block = EXIT_BLOCK_PTR;
232 }
233
234 /* When the stack is empty we break out of this loop. */
235 while (1)
236 {
237 basic_block bn;
238
239 /* This loop traverses edges e in depth first manner, and fills the
240 stack. */
241 while (e)
242 {
243 edge e_next;
244
245 /* Deduce from E the current and the next block (BB and BN), and the
246 next edge. */
247 if (reverse)
248 {
249 bn = e->src;
250
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
b3d6de89 254 if (bn == ex_block || di->dfs_order[bn->index])
4794f989 255 {
256 e = e->pred_next;
257 continue;
258 }
259 bb = e->dest;
260 e_next = bn->pred;
261 }
262 else
263 {
264 bn = e->dest;
b3d6de89 265 if (bn == ex_block || di->dfs_order[bn->index])
4794f989 266 {
267 e = e->succ_next;
268 continue;
269 }
270 bb = e->src;
271 e_next = bn->succ;
272 }
273
7bd4f6b6 274 gcc_assert (bn != en_block);
4794f989 275
276 /* Fill the DFS tree info calculatable _before_ recursing. */
277 if (bb != en_block)
b3d6de89 278 my_i = di->dfs_order[bb->index];
4794f989 279 else
f20183e6 280 my_i = di->dfs_order[last_basic_block];
b3d6de89 281 child_i = di->dfs_order[bn->index] = di->dfsnum++;
4794f989 282 di->dfs_to_bb[child_i] = bn;
283 di->dfs_parent[child_i] = my_i;
284
285 /* Save the current point in the CFG on the stack, and recurse. */
286 stack[sp++] = e;
287 e = e_next;
288 }
289
290 if (!sp)
291 break;
292 e = stack[--sp];
293
294 /* OK. The edge-list was exhausted, meaning normally we would
295 end the recursion. After returning from the recursive call,
296 there were (may be) other statements which were run after a
297 child node was completely considered by DFS. Here is the
298 point to do it in the non-recursive variant.
299 E.g. The block just completed is in e->dest for forward DFS,
300 the block not yet completed (the parent of the one above)
301 in e->src. This could be used e.g. for computing the number of
302 descendants or the tree depth. */
303 if (reverse)
304 e = e->pred_next;
305 else
306 e = e->succ_next;
307 }
308 free (stack);
309}
310
311/* The main entry for calculating the DFS tree or forest. DI is our working
312 structure and REVERSE is true, if we are interested in the reverse flow
313 graph. In that case the result is not necessarily a tree but a forest,
314 because there may be nodes from which the EXIT_BLOCK is unreachable. */
315
316static void
8ec3a57b 317calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
4794f989 318{
319 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
320 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
f20183e6 321 di->dfs_order[last_basic_block] = di->dfsnum;
4794f989 322 di->dfs_to_bb[di->dfsnum] = begin;
323 di->dfsnum++;
324
325 calc_dfs_tree_nonrec (di, begin, reverse);
326
327 if (reverse)
328 {
329 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
330 They are reverse-unreachable. In the dom-case we disallow such
8828f7b7 331 nodes, but in post-dom we have to deal with them.
332
333 There are two situations in which this occurs. First, noreturn
334 functions. Second, infinite loops. In the first case we need to
335 pretend that there is an edge to the exit block. In the second
336 case, we wind up with a forest. We need to process all noreturn
337 blocks before we know if we've got any infinite loops. */
338
4c26117a 339 basic_block b;
8828f7b7 340 bool saw_unconnected = false;
341
4c26117a 342 FOR_EACH_BB_REVERSE (b)
4794f989 343 {
8828f7b7 344 if (b->succ)
345 {
346 if (di->dfs_order[b->index] == 0)
347 saw_unconnected = true;
348 continue;
349 }
350 bitmap_set_bit (di->fake_exit_edge, b->index);
b3d6de89 351 di->dfs_order[b->index] = di->dfsnum;
4794f989 352 di->dfs_to_bb[di->dfsnum] = b;
8828f7b7 353 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
4794f989 354 di->dfsnum++;
355 calc_dfs_tree_nonrec (di, b, reverse);
356 }
8828f7b7 357
358 if (saw_unconnected)
359 {
360 FOR_EACH_BB_REVERSE (b)
361 {
362 if (di->dfs_order[b->index])
363 continue;
364 bitmap_set_bit (di->fake_exit_edge, b->index);
365 di->dfs_order[b->index] = di->dfsnum;
366 di->dfs_to_bb[di->dfsnum] = b;
367 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
368 di->dfsnum++;
369 calc_dfs_tree_nonrec (di, b, reverse);
370 }
371 }
4794f989 372 }
373
374 di->nodes = di->dfsnum - 1;
375
376 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
7bd4f6b6 377 gcc_assert (di->nodes == (unsigned int) n_basic_blocks + 1);
4794f989 378}
379
380/* Compress the path from V to the root of its set and update path_min at the
381 same time. After compress(di, V) set_chain[V] is the root of the set V is
382 in and path_min[V] is the node with the smallest key[] value on the path
383 from V to that root. */
384
385static void
8ec3a57b 386compress (struct dom_info *di, TBB v)
4794f989 387{
388 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
389 greater than 5 even for huge graphs (I've not seen call depth > 4).
390 Also performance wise compress() ranges _far_ behind eval(). */
391 TBB parent = di->set_chain[v];
392 if (di->set_chain[parent])
393 {
394 compress (di, parent);
395 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
396 di->path_min[v] = di->path_min[parent];
397 di->set_chain[v] = di->set_chain[parent];
398 }
399}
400
401/* Compress the path from V to the set root of V if needed (when the root has
402 changed since the last call). Returns the node with the smallest key[]
403 value on the path from V to the root. */
404
405static inline TBB
8ec3a57b 406eval (struct dom_info *di, TBB v)
4794f989 407{
408 /* The representant of the set V is in, also called root (as the set
409 representation is a tree). */
410 TBB rep = di->set_chain[v];
411
412 /* V itself is the root. */
413 if (!rep)
414 return di->path_min[v];
415
416 /* Compress only if necessary. */
417 if (di->set_chain[rep])
418 {
419 compress (di, v);
420 rep = di->set_chain[v];
421 }
422
423 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
424 return di->path_min[v];
425 else
426 return di->path_min[rep];
427}
428
429/* This essentially merges the two sets of V and W, giving a single set with
430 the new root V. The internal representation of these disjoint sets is a
431 balanced tree. Currently link(V,W) is only used with V being the parent
432 of W. */
433
434static void
8ec3a57b 435link_roots (struct dom_info *di, TBB v, TBB w)
4794f989 436{
437 TBB s = w;
438
439 /* Rebalance the tree. */
440 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
441 {
442 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
443 >= 2 * di->set_size[di->set_child[s]])
444 {
445 di->set_chain[di->set_child[s]] = s;
446 di->set_child[s] = di->set_child[di->set_child[s]];
447 }
448 else
449 {
450 di->set_size[di->set_child[s]] = di->set_size[s];
451 s = di->set_chain[s] = di->set_child[s];
452 }
453 }
454
455 di->path_min[s] = di->path_min[w];
456 di->set_size[v] += di->set_size[w];
457 if (di->set_size[v] < 2 * di->set_size[w])
458 {
459 TBB tmp = s;
460 s = di->set_child[v];
461 di->set_child[v] = tmp;
462 }
463
464 /* Merge all subtrees. */
465 while (s)
466 {
467 di->set_chain[s] = v;
468 s = di->set_child[s];
469 }
470}
471
472/* This calculates the immediate dominators (or post-dominators if REVERSE is
473 true). DI is our working structure and should hold the DFS forest.
474 On return the immediate dominator to node V is in di->dom[V]. */
475
476static void
8ec3a57b 477calc_idoms (struct dom_info *di, enum cdi_direction reverse)
4794f989 478{
479 TBB v, w, k, par;
480 basic_block en_block;
481 if (reverse)
482 en_block = EXIT_BLOCK_PTR;
483 else
484 en_block = ENTRY_BLOCK_PTR;
485
486 /* Go backwards in DFS order, to first look at the leafs. */
487 v = di->nodes;
488 while (v > 1)
489 {
490 basic_block bb = di->dfs_to_bb[v];
491 edge e, e_next;
492
493 par = di->dfs_parent[v];
494 k = v;
495 if (reverse)
8828f7b7 496 {
497 e = bb->succ;
498
499 /* If this block has a fake edge to exit, process that first. */
500 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501 {
502 e_next = e;
503 goto do_fake_exit_edge;
504 }
505 }
4794f989 506 else
507 e = bb->pred;
508
509 /* Search all direct predecessors for the smallest node with a path
510 to them. That way we have the smallest node with also a path to
511 us only over nodes behind us. In effect we search for our
512 semidominator. */
8828f7b7 513 for (; e ; e = e_next)
4794f989 514 {
515 TBB k1;
516 basic_block b;
517
518 if (reverse)
519 {
520 b = e->dest;
521 e_next = e->succ_next;
522 }
523 else
524 {
525 b = e->src;
526 e_next = e->pred_next;
527 }
528 if (b == en_block)
8828f7b7 529 {
530 do_fake_exit_edge:
531 k1 = di->dfs_order[last_basic_block];
532 }
4794f989 533 else
b3d6de89 534 k1 = di->dfs_order[b->index];
4794f989 535
536 /* Call eval() only if really needed. If k1 is above V in DFS tree,
537 then we know, that eval(k1) == k1 and key[k1] == k1. */
538 if (k1 > v)
539 k1 = di->key[eval (di, k1)];
540 if (k1 < k)
541 k = k1;
542 }
543
544 di->key[v] = k;
545 link_roots (di, par, v);
546 di->next_bucket[v] = di->bucket[k];
547 di->bucket[k] = v;
548
549 /* Transform semidominators into dominators. */
550 for (w = di->bucket[par]; w; w = di->next_bucket[w])
551 {
552 k = eval (di, w);
553 if (di->key[k] < di->key[w])
554 di->dom[w] = k;
555 else
556 di->dom[w] = par;
557 }
558 /* We don't need to cleanup next_bucket[]. */
559 di->bucket[par] = 0;
560 v--;
561 }
562
3fb1e43b 563 /* Explicitly define the dominators. */
4794f989 564 di->dom[1] = 0;
565 for (v = 2; v <= di->nodes; v++)
566 if (di->dom[v] != di->key[v])
567 di->dom[v] = di->dom[di->dom[v]];
568}
569
0051c76a 570/* Assign dfs numbers starting from NUM to NODE and its sons. */
571
572static void
573assign_dfs_numbers (struct et_node *node, int *num)
574{
575 struct et_node *son;
576
577 node->dfs_num_in = (*num)++;
578
579 if (node->son)
580 {
581 assign_dfs_numbers (node->son, num);
582 for (son = node->son->right; son != node->son; son = son->right)
4ee9c684 583 assign_dfs_numbers (son, num);
0051c76a 584 }
4794f989 585
0051c76a 586 node->dfs_num_out = (*num)++;
587}
4794f989 588
d632b59a 589/* Compute the data necessary for fast resolving of dominator queries in a
0051c76a 590 static dominator tree. */
4794f989 591
0051c76a 592static void
593compute_dom_fast_query (enum cdi_direction dir)
594{
595 int num = 0;
596 basic_block bb;
597
7bd4f6b6 598 gcc_assert (dom_computed[dir] >= DOM_NO_FAST_QUERY);
0051c76a 599
600 if (dom_computed[dir] == DOM_OK)
601 return;
602
603 FOR_ALL_BB (bb)
604 {
605 if (!bb->dom[dir]->father)
4ee9c684 606 assign_dfs_numbers (bb->dom[dir], &num);
0051c76a 607 }
608
609 dom_computed[dir] = DOM_OK;
610}
611
612/* The main entry point into this module. DIR is set depending on whether
613 we want to compute dominators or postdominators. */
614
615void
616calculate_dominance_info (enum cdi_direction dir)
4794f989 617{
618 struct dom_info di;
89d75d78 619 basic_block b;
620
0051c76a 621 if (dom_computed[dir] == DOM_OK)
622 return;
89d75d78 623
0051c76a 624 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
625 {
626 if (dom_computed[dir] != DOM_NONE)
4ee9c684 627 free_dominance_info (dir);
628
7bd4f6b6 629 gcc_assert (!n_bbs_in_dom_tree[dir]);
4794f989 630
0051c76a 631 FOR_ALL_BB (b)
632 {
633 b->dom[dir] = et_new_tree (b);
634 }
4ee9c684 635 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
4794f989 636
8828f7b7 637 init_dom_info (&di, dir);
0051c76a 638 calc_dfs_tree (&di, dir);
639 calc_idoms (&di, dir);
89d75d78 640
0051c76a 641 FOR_EACH_BB (b)
642 {
643 TBB d = di.dom[di.dfs_order[b->index]];
644
645 if (di.dfs_to_bb[d])
646 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
647 }
4c26117a 648
0051c76a 649 free_dom_info (&di);
650 dom_computed[dir] = DOM_NO_FAST_QUERY;
89d75d78 651 }
652
0051c76a 653 compute_dom_fast_query (dir);
89d75d78 654}
655
0051c76a 656/* Free dominance information for direction DIR. */
89d75d78 657void
0051c76a 658free_dominance_info (enum cdi_direction dir)
89d75d78 659{
660 basic_block bb;
661
0051c76a 662 if (!dom_computed[dir])
663 return;
664
665 FOR_ALL_BB (bb)
666 {
667 delete_from_dominance_info (dir, bb);
668 }
669
4ee9c684 670 /* If there are any nodes left, something is wrong. */
7bd4f6b6 671 gcc_assert (!n_bbs_in_dom_tree[dir]);
4ee9c684 672
0051c76a 673 dom_computed[dir] = DOM_NONE;
89d75d78 674}
675
676/* Return the immediate dominator of basic block BB. */
677basic_block
0051c76a 678get_immediate_dominator (enum cdi_direction dir, basic_block bb)
89d75d78 679{
0051c76a 680 struct et_node *node = bb->dom[dir];
681
7bd4f6b6 682 gcc_assert (dom_computed[dir]);
0051c76a 683
684 if (!node->father)
685 return NULL;
686
4ee9c684 687 return node->father->data;
89d75d78 688}
689
690/* Set the immediate dominator of the block possibly removing
691 existing edge. NULL can be used to remove any edge. */
692inline void
0051c76a 693set_immediate_dominator (enum cdi_direction dir, basic_block bb,
694 basic_block dominated_by)
89d75d78 695{
0051c76a 696 struct et_node *node = bb->dom[dir];
697
7bd4f6b6 698 gcc_assert (dom_computed[dir]);
89d75d78 699
0051c76a 700 if (node->father)
89d75d78 701 {
0051c76a 702 if (node->father->data == dominated_by)
4ee9c684 703 return;
0051c76a 704 et_split (node);
89d75d78 705 }
0051c76a 706
707 if (dominated_by)
708 et_set_father (node, dominated_by->dom[dir]);
709
710 if (dom_computed[dir] == DOM_OK)
711 dom_computed[dir] = DOM_NO_FAST_QUERY;
89d75d78 712}
713
d632b59a 714/* Store all basic blocks immediately dominated by BB into BBS and return
0051c76a 715 their number. */
89d75d78 716int
0051c76a 717get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
89d75d78 718{
0051c76a 719 int n;
720 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
721
7bd4f6b6 722 gcc_assert (dom_computed[dir]);
0051c76a 723
724 if (!son)
725 {
726 *bbs = NULL;
727 return 0;
728 }
729
730 for (ason = son->right, n = 1; ason != son; ason = ason->right)
731 n++;
732
733 *bbs = xmalloc (n * sizeof (basic_block));
734 (*bbs)[0] = son->data;
735 for (ason = son->right, n = 1; ason != son; ason = ason->right)
736 (*bbs)[n++] = ason->data;
89d75d78 737
89d75d78 738 return n;
739}
740
741/* Redirect all edges pointing to BB to TO. */
742void
0051c76a 743redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
744 basic_block to)
89d75d78 745{
0051c76a 746 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
747
7bd4f6b6 748 gcc_assert (dom_computed[dir]);
89d75d78 749
0051c76a 750 if (!bb_node->son)
751 return;
752
753 while (bb_node->son)
89d75d78 754 {
0051c76a 755 son = bb_node->son;
756
757 et_split (son);
758 et_set_father (son, to_node);
89d75d78 759 }
0051c76a 760
761 if (dom_computed[dir] == DOM_OK)
762 dom_computed[dir] = DOM_NO_FAST_QUERY;
89d75d78 763}
764
765/* Find first basic block in the tree dominating both BB1 and BB2. */
766basic_block
0051c76a 767nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
89d75d78 768{
7bd4f6b6 769 gcc_assert (dom_computed[dir]);
0051c76a 770
89d75d78 771 if (!bb1)
772 return bb2;
773 if (!bb2)
774 return bb1;
0051c76a 775
776 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
89d75d78 777}
778
779/* Return TRUE in case BB1 is dominated by BB2. */
780bool
0051c76a 781dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
4ee9c684 782{
0051c76a 783 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
784
7bd4f6b6 785 gcc_assert (dom_computed[dir]);
0051c76a 786
787 if (dom_computed[dir] == DOM_OK)
788 return (n1->dfs_num_in >= n2->dfs_num_in
4ee9c684 789 && n1->dfs_num_out <= n2->dfs_num_out);
0051c76a 790
791 return et_below (n1, n2);
89d75d78 792}
793
794/* Verify invariants of dominator structure. */
795void
0051c76a 796verify_dominators (enum cdi_direction dir)
89d75d78 797{
798 int err = 0;
799 basic_block bb;
800
7bd4f6b6 801 gcc_assert (dom_computed[dir]);
0051c76a 802
89d75d78 803 FOR_EACH_BB (bb)
804 {
805 basic_block dom_bb;
806
0051c76a 807 dom_bb = recount_dominator (dir, bb);
808 if (dom_bb != get_immediate_dominator (dir, bb))
4794f989 809 {
89d75d78 810 error ("dominator of %d should be %d, not %d",
0051c76a 811 bb->index, dom_bb->index, get_immediate_dominator(dir, bb)->index);
89d75d78 812 err = 1;
813 }
814 }
e7f5d6c3 815
816 if (dir == CDI_DOMINATORS
817 && dom_computed[dir] >= DOM_NO_FAST_QUERY)
818 {
819 FOR_EACH_BB (bb)
820 {
821 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
822 {
823 error ("ENTRY does not dominate bb %d", bb->index);
824 err = 1;
825 }
826 }
827 }
828
7bd4f6b6 829 gcc_assert (!err);
89d75d78 830}
831
3745d6a0 832/* Determine immediate dominator (or postdominator, according to DIR) of BB,
833 assuming that dominators of other blocks are correct. We also use it to
834 recompute the dominators in a restricted area, by iterating it until it
5aedf60c 835 reaches a fixed point. */
3745d6a0 836
89d75d78 837basic_block
0051c76a 838recount_dominator (enum cdi_direction dir, basic_block bb)
89d75d78 839{
3745d6a0 840 basic_block dom_bb = NULL;
841 edge e;
89d75d78 842
7bd4f6b6 843 gcc_assert (dom_computed[dir]);
0051c76a 844
3745d6a0 845 if (dir == CDI_DOMINATORS)
846 {
847 for (e = bb->pred; e; e = e->pred_next)
848 {
e7f5d6c3 849 /* Ignore the predecessors that either are not reachable from
850 the entry block, or whose dominator was not determined yet. */
851 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
852 continue;
853
3745d6a0 854 if (!dominated_by_p (dir, e->src, bb))
855 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
856 }
857 }
858 else
859 {
860 for (e = bb->succ; e; e = e->succ_next)
861 {
862 if (!dominated_by_p (dir, e->dest, bb))
863 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
864 }
865 }
4794f989 866
3745d6a0 867 return dom_bb;
89d75d78 868}
869
870/* Iteratively recount dominators of BBS. The change is supposed to be local
871 and not to grow further. */
872void
0051c76a 873iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
89d75d78 874{
875 int i, changed = 1;
876 basic_block old_dom, new_dom;
877
7bd4f6b6 878 gcc_assert (dom_computed[dir]);
0051c76a 879
e7f5d6c3 880 for (i = 0; i < n; i++)
881 set_immediate_dominator (dir, bbs[i], NULL);
882
89d75d78 883 while (changed)
884 {
885 changed = 0;
886 for (i = 0; i < n; i++)
887 {
0051c76a 888 old_dom = get_immediate_dominator (dir, bbs[i]);
889 new_dom = recount_dominator (dir, bbs[i]);
89d75d78 890 if (old_dom != new_dom)
891 {
892 changed = 1;
0051c76a 893 set_immediate_dominator (dir, bbs[i], new_dom);
89d75d78 894 }
4794f989 895 }
896 }
e7f5d6c3 897
898 for (i = 0; i < n; i++)
7bd4f6b6 899 gcc_assert (get_immediate_dominator (dir, bbs[i]));
89d75d78 900}
4794f989 901
89d75d78 902void
0051c76a 903add_to_dominance_info (enum cdi_direction dir, basic_block bb)
89d75d78 904{
7bd4f6b6 905 gcc_assert (dom_computed[dir]);
906 gcc_assert (!bb->dom[dir]);
0051c76a 907
4ee9c684 908 n_bbs_in_dom_tree[dir]++;
909
0051c76a 910 bb->dom[dir] = et_new_tree (bb);
911
912 if (dom_computed[dir] == DOM_OK)
913 dom_computed[dir] = DOM_NO_FAST_QUERY;
89d75d78 914}
915
916void
0051c76a 917delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
918{
7bd4f6b6 919 gcc_assert (dom_computed[dir]);
0051c76a 920
921 et_free_tree (bb->dom[dir]);
922 bb->dom[dir] = NULL;
4ee9c684 923 n_bbs_in_dom_tree[dir]--;
0051c76a 924
925 if (dom_computed[dir] == DOM_OK)
926 dom_computed[dir] = DOM_NO_FAST_QUERY;
927}
928
929/* Returns the first son of BB in the dominator or postdominator tree
930 as determined by DIR. */
931
932basic_block
933first_dom_son (enum cdi_direction dir, basic_block bb)
89d75d78 934{
0051c76a 935 struct et_node *son = bb->dom[dir]->son;
936
937 return son ? son->data : NULL;
938}
939
940/* Returns the next dominance son after BB in the dominator or postdominator
941 tree as determined by DIR, or NULL if it was the last one. */
942
943basic_block
944next_dom_son (enum cdi_direction dir, basic_block bb)
945{
946 struct et_node *next = bb->dom[dir]->right;
947
948 return next->father->son == next ? NULL : next->data;
89d75d78 949}
950
951void
0051c76a 952debug_dominance_info (enum cdi_direction dir)
89d75d78 953{
954 basic_block bb, bb2;
955 FOR_EACH_BB (bb)
0051c76a 956 if ((bb2 = get_immediate_dominator (dir, bb)))
89d75d78 957 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
4794f989 958}