]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
Daily bump.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
d9221e01 2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688
MM
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
42#include "basic-block.h"
8a67e083 43#include "errors.h"
355be0dc 44#include "et-forest.h"
f8032688 45
d47cc544
SB
46/* Whether the dominators and the postdominators are available. */
47enum dom_state dom_computed[2];
f8032688
MM
48
49/* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
d55bc081 54 'last_basic_block' for that. Its dfs number is of course 1. */
f8032688
MM
55
56/* Type of Basic Block aka. TBB */
57typedef unsigned int TBB;
58
59/* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64struct dom_info
65{
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
09da1532 98 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
30f7a378 104 /* This is the next free DFS number when creating the DFS tree or forest. */
f8032688
MM
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
108};
109
7080f735
AJ
110static void init_dom_info (struct dom_info *);
111static void free_dom_info (struct dom_info *);
112static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
113 enum cdi_direction);
114static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
115static void compress (struct dom_info *, TBB);
116static TBB eval (struct dom_info *, TBB);
117static void link_roots (struct dom_info *, TBB, TBB);
118static void calc_idoms (struct dom_info *, enum cdi_direction);
d47cc544 119void debug_dominance_info (enum cdi_direction);
f8032688
MM
120
121/* Helper macro for allocating and initializing an array,
122 for aesthetic reasons. */
123#define init_ar(var, type, num, content) \
3a538a66
KH
124 do \
125 { \
126 unsigned int i = 1; /* Catch content == i. */ \
127 if (! (content)) \
703ad42b 128 (var) = xcalloc ((num), sizeof (type)); \
3a538a66
KH
129 else \
130 { \
703ad42b 131 (var) = xmalloc ((num) * sizeof (type)); \
3a538a66
KH
132 for (i = 0; i < num; i++) \
133 (var)[i] = (content); \
134 } \
135 } \
136 while (0)
f8032688
MM
137
138/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 139 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
140
141static void
7080f735 142init_dom_info (struct dom_info *di)
f8032688 143{
0b17ab2f 144 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
f8032688 145 EXIT_BLOCK. */
0b17ab2f 146 unsigned int num = n_basic_blocks + 1 + 1;
f8032688
MM
147 init_ar (di->dfs_parent, TBB, num, 0);
148 init_ar (di->path_min, TBB, num, i);
149 init_ar (di->key, TBB, num, i);
150 init_ar (di->dom, TBB, num, 0);
151
152 init_ar (di->bucket, TBB, num, 0);
153 init_ar (di->next_bucket, TBB, num, 0);
154
155 init_ar (di->set_chain, TBB, num, 0);
156 init_ar (di->set_size, unsigned int, num, 1);
157 init_ar (di->set_child, TBB, num, 0);
158
d55bc081 159 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
160 init_ar (di->dfs_to_bb, basic_block, num, 0);
161
162 di->dfsnum = 1;
163 di->nodes = 0;
164}
165
166#undef init_ar
167
168/* Free all allocated memory in DI, but not DI itself. */
169
170static void
7080f735 171free_dom_info (struct dom_info *di)
f8032688
MM
172{
173 free (di->dfs_parent);
174 free (di->path_min);
175 free (di->key);
176 free (di->dom);
177 free (di->bucket);
178 free (di->next_bucket);
179 free (di->set_chain);
180 free (di->set_size);
181 free (di->set_child);
182 free (di->dfs_order);
183 free (di->dfs_to_bb);
184}
185
186/* The nonrecursive variant of creating a DFS tree. DI is our working
187 structure, BB the starting basic block for this tree and REVERSE
188 is true, if predecessors should be visited instead of successors of a
189 node. After this is done all nodes reachable from BB were visited, have
190 assigned their dfs number and are linked together to form a tree. */
191
192static void
7080f735 193calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, enum cdi_direction reverse)
f8032688 194{
30f7a378 195 /* We never call this with bb==EXIT_BLOCK_PTR (ENTRY_BLOCK_PTR if REVERSE). */
f8032688
MM
196 /* We call this _only_ if bb is not already visited. */
197 edge e;
198 TBB child_i, my_i = 0;
199 edge *stack;
200 int sp;
201 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
202 problem). */
203 basic_block en_block;
204 /* Ending block. */
205 basic_block ex_block;
206
703ad42b 207 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge));
f8032688
MM
208 sp = 0;
209
210 /* Initialize our border blocks, and the first edge. */
211 if (reverse)
212 {
213 e = bb->pred;
214 en_block = EXIT_BLOCK_PTR;
215 ex_block = ENTRY_BLOCK_PTR;
216 }
217 else
218 {
219 e = bb->succ;
220 en_block = ENTRY_BLOCK_PTR;
221 ex_block = EXIT_BLOCK_PTR;
222 }
223
224 /* When the stack is empty we break out of this loop. */
225 while (1)
226 {
227 basic_block bn;
228
229 /* This loop traverses edges e in depth first manner, and fills the
230 stack. */
231 while (e)
232 {
233 edge e_next;
234
235 /* Deduce from E the current and the next block (BB and BN), and the
236 next edge. */
237 if (reverse)
238 {
239 bn = e->src;
240
241 /* If the next node BN is either already visited or a border
242 block the current edge is useless, and simply overwritten
243 with the next edge out of the current node. */
0b17ab2f 244 if (bn == ex_block || di->dfs_order[bn->index])
f8032688
MM
245 {
246 e = e->pred_next;
247 continue;
248 }
249 bb = e->dest;
250 e_next = bn->pred;
251 }
252 else
253 {
254 bn = e->dest;
0b17ab2f 255 if (bn == ex_block || di->dfs_order[bn->index])
f8032688
MM
256 {
257 e = e->succ_next;
258 continue;
259 }
260 bb = e->src;
261 e_next = bn->succ;
262 }
263
264 if (bn == en_block)
265 abort ();
266
267 /* Fill the DFS tree info calculatable _before_ recursing. */
268 if (bb != en_block)
0b17ab2f 269 my_i = di->dfs_order[bb->index];
f8032688 270 else
d55bc081 271 my_i = di->dfs_order[last_basic_block];
0b17ab2f 272 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
273 di->dfs_to_bb[child_i] = bn;
274 di->dfs_parent[child_i] = my_i;
275
276 /* Save the current point in the CFG on the stack, and recurse. */
277 stack[sp++] = e;
278 e = e_next;
279 }
280
281 if (!sp)
282 break;
283 e = stack[--sp];
284
285 /* OK. The edge-list was exhausted, meaning normally we would
286 end the recursion. After returning from the recursive call,
287 there were (may be) other statements which were run after a
288 child node was completely considered by DFS. Here is the
289 point to do it in the non-recursive variant.
290 E.g. The block just completed is in e->dest for forward DFS,
291 the block not yet completed (the parent of the one above)
292 in e->src. This could be used e.g. for computing the number of
293 descendants or the tree depth. */
294 if (reverse)
295 e = e->pred_next;
296 else
297 e = e->succ_next;
298 }
299 free (stack);
300}
301
302/* The main entry for calculating the DFS tree or forest. DI is our working
303 structure and REVERSE is true, if we are interested in the reverse flow
304 graph. In that case the result is not necessarily a tree but a forest,
305 because there may be nodes from which the EXIT_BLOCK is unreachable. */
306
307static void
7080f735 308calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
309{
310 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
311 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 312 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
313 di->dfs_to_bb[di->dfsnum] = begin;
314 di->dfsnum++;
315
316 calc_dfs_tree_nonrec (di, begin, reverse);
317
318 if (reverse)
319 {
320 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
321 They are reverse-unreachable. In the dom-case we disallow such
322 nodes, but in post-dom we have to deal with them, so we simply
323 include them in the DFS tree which actually becomes a forest. */
e0082a72
ZD
324 basic_block b;
325 FOR_EACH_BB_REVERSE (b)
f8032688 326 {
0b17ab2f 327 if (di->dfs_order[b->index])
f8032688 328 continue;
0b17ab2f 329 di->dfs_order[b->index] = di->dfsnum;
f8032688
MM
330 di->dfs_to_bb[di->dfsnum] = b;
331 di->dfsnum++;
332 calc_dfs_tree_nonrec (di, b, reverse);
333 }
334 }
335
336 di->nodes = di->dfsnum - 1;
337
338 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
0b17ab2f 339 if (di->nodes != (unsigned int) n_basic_blocks + 1)
f8032688
MM
340 abort ();
341}
342
343/* Compress the path from V to the root of its set and update path_min at the
344 same time. After compress(di, V) set_chain[V] is the root of the set V is
345 in and path_min[V] is the node with the smallest key[] value on the path
346 from V to that root. */
347
348static void
7080f735 349compress (struct dom_info *di, TBB v)
f8032688
MM
350{
351 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
352 greater than 5 even for huge graphs (I've not seen call depth > 4).
353 Also performance wise compress() ranges _far_ behind eval(). */
354 TBB parent = di->set_chain[v];
355 if (di->set_chain[parent])
356 {
357 compress (di, parent);
358 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
359 di->path_min[v] = di->path_min[parent];
360 di->set_chain[v] = di->set_chain[parent];
361 }
362}
363
364/* Compress the path from V to the set root of V if needed (when the root has
365 changed since the last call). Returns the node with the smallest key[]
366 value on the path from V to the root. */
367
368static inline TBB
7080f735 369eval (struct dom_info *di, TBB v)
f8032688
MM
370{
371 /* The representant of the set V is in, also called root (as the set
372 representation is a tree). */
373 TBB rep = di->set_chain[v];
374
375 /* V itself is the root. */
376 if (!rep)
377 return di->path_min[v];
378
379 /* Compress only if necessary. */
380 if (di->set_chain[rep])
381 {
382 compress (di, v);
383 rep = di->set_chain[v];
384 }
385
386 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
387 return di->path_min[v];
388 else
389 return di->path_min[rep];
390}
391
392/* This essentially merges the two sets of V and W, giving a single set with
393 the new root V. The internal representation of these disjoint sets is a
394 balanced tree. Currently link(V,W) is only used with V being the parent
395 of W. */
396
397static void
7080f735 398link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
399{
400 TBB s = w;
401
402 /* Rebalance the tree. */
403 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
404 {
405 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
406 >= 2 * di->set_size[di->set_child[s]])
407 {
408 di->set_chain[di->set_child[s]] = s;
409 di->set_child[s] = di->set_child[di->set_child[s]];
410 }
411 else
412 {
413 di->set_size[di->set_child[s]] = di->set_size[s];
414 s = di->set_chain[s] = di->set_child[s];
415 }
416 }
417
418 di->path_min[s] = di->path_min[w];
419 di->set_size[v] += di->set_size[w];
420 if (di->set_size[v] < 2 * di->set_size[w])
421 {
422 TBB tmp = s;
423 s = di->set_child[v];
424 di->set_child[v] = tmp;
425 }
426
427 /* Merge all subtrees. */
428 while (s)
429 {
430 di->set_chain[s] = v;
431 s = di->set_child[s];
432 }
433}
434
435/* This calculates the immediate dominators (or post-dominators if REVERSE is
436 true). DI is our working structure and should hold the DFS forest.
437 On return the immediate dominator to node V is in di->dom[V]. */
438
439static void
7080f735 440calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
441{
442 TBB v, w, k, par;
443 basic_block en_block;
444 if (reverse)
445 en_block = EXIT_BLOCK_PTR;
446 else
447 en_block = ENTRY_BLOCK_PTR;
448
449 /* Go backwards in DFS order, to first look at the leafs. */
450 v = di->nodes;
451 while (v > 1)
452 {
453 basic_block bb = di->dfs_to_bb[v];
454 edge e, e_next;
455
456 par = di->dfs_parent[v];
457 k = v;
458 if (reverse)
459 e = bb->succ;
460 else
461 e = bb->pred;
462
463 /* Search all direct predecessors for the smallest node with a path
464 to them. That way we have the smallest node with also a path to
465 us only over nodes behind us. In effect we search for our
466 semidominator. */
467 for (; e; e = e_next)
468 {
469 TBB k1;
470 basic_block b;
471
472 if (reverse)
473 {
474 b = e->dest;
475 e_next = e->succ_next;
476 }
477 else
478 {
479 b = e->src;
480 e_next = e->pred_next;
481 }
482 if (b == en_block)
d55bc081 483 k1 = di->dfs_order[last_basic_block];
f8032688 484 else
0b17ab2f 485 k1 = di->dfs_order[b->index];
f8032688
MM
486
487 /* Call eval() only if really needed. If k1 is above V in DFS tree,
488 then we know, that eval(k1) == k1 and key[k1] == k1. */
489 if (k1 > v)
490 k1 = di->key[eval (di, k1)];
491 if (k1 < k)
492 k = k1;
493 }
494
495 di->key[v] = k;
496 link_roots (di, par, v);
497 di->next_bucket[v] = di->bucket[k];
498 di->bucket[k] = v;
499
500 /* Transform semidominators into dominators. */
501 for (w = di->bucket[par]; w; w = di->next_bucket[w])
502 {
503 k = eval (di, w);
504 if (di->key[k] < di->key[w])
505 di->dom[w] = k;
506 else
507 di->dom[w] = par;
508 }
509 /* We don't need to cleanup next_bucket[]. */
510 di->bucket[par] = 0;
511 v--;
512 }
513
a1f300c0 514 /* Explicitly define the dominators. */
f8032688
MM
515 di->dom[1] = 0;
516 for (v = 2; v <= di->nodes; v++)
517 if (di->dom[v] != di->key[v])
518 di->dom[v] = di->dom[di->dom[v]];
519}
520
d47cc544
SB
521/* Assign dfs numbers starting from NUM to NODE and its sons. */
522
523static void
524assign_dfs_numbers (struct et_node *node, int *num)
525{
526 struct et_node *son;
527
528 node->dfs_num_in = (*num)++;
529
530 if (node->son)
531 {
532 assign_dfs_numbers (node->son, num);
533 for (son = node->son->right; son != node->son; son = son->right)
534 assign_dfs_numbers (son, num);
535 }
f8032688 536
d47cc544
SB
537 node->dfs_num_out = (*num)++;
538}
f8032688 539
5d3cc252 540/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 541 static dominator tree. */
f8032688 542
d47cc544
SB
543static void
544compute_dom_fast_query (enum cdi_direction dir)
545{
546 int num = 0;
547 basic_block bb;
548
549 if (dom_computed[dir] < DOM_NO_FAST_QUERY)
550 abort ();
551
552 if (dom_computed[dir] == DOM_OK)
553 return;
554
555 FOR_ALL_BB (bb)
556 {
557 if (!bb->dom[dir]->father)
558 assign_dfs_numbers (bb->dom[dir], &num);
559 }
560
561 dom_computed[dir] = DOM_OK;
562}
563
564/* The main entry point into this module. DIR is set depending on whether
565 we want to compute dominators or postdominators. */
566
567void
568calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
569{
570 struct dom_info di;
355be0dc
JH
571 basic_block b;
572
d47cc544
SB
573 if (dom_computed[dir] == DOM_OK)
574 return;
355be0dc 575
d47cc544
SB
576 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
577 {
578 if (dom_computed[dir] != DOM_NONE)
579 free_dominance_info (dir);
f8032688 580
d47cc544
SB
581 FOR_ALL_BB (b)
582 {
583 b->dom[dir] = et_new_tree (b);
584 }
f8032688 585
d47cc544
SB
586 init_dom_info (&di);
587 calc_dfs_tree (&di, dir);
588 calc_idoms (&di, dir);
355be0dc 589
d47cc544
SB
590 FOR_EACH_BB (b)
591 {
592 TBB d = di.dom[di.dfs_order[b->index]];
593
594 if (di.dfs_to_bb[d])
595 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
596 }
e0082a72 597
d47cc544
SB
598 free_dom_info (&di);
599 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
600 }
601
d47cc544 602 compute_dom_fast_query (dir);
355be0dc
JH
603}
604
d47cc544 605/* Free dominance information for direction DIR. */
355be0dc 606void
d47cc544 607free_dominance_info (enum cdi_direction dir)
355be0dc
JH
608{
609 basic_block bb;
610
d47cc544
SB
611 if (!dom_computed[dir])
612 return;
613
614 FOR_ALL_BB (bb)
615 {
616 delete_from_dominance_info (dir, bb);
617 }
618
619 dom_computed[dir] = DOM_NONE;
355be0dc
JH
620}
621
622/* Return the immediate dominator of basic block BB. */
623basic_block
d47cc544 624get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 625{
d47cc544
SB
626 struct et_node *node = bb->dom[dir];
627
628 if (!dom_computed[dir])
629 abort ();
630
631 if (!node->father)
632 return NULL;
633
634 return node->father->data;
355be0dc
JH
635}
636
637/* Set the immediate dominator of the block possibly removing
638 existing edge. NULL can be used to remove any edge. */
639inline void
d47cc544
SB
640set_immediate_dominator (enum cdi_direction dir, basic_block bb,
641 basic_block dominated_by)
355be0dc 642{
d47cc544
SB
643 struct et_node *node = bb->dom[dir];
644
645 if (!dom_computed[dir])
646 abort ();
355be0dc 647
d47cc544 648 if (node->father)
355be0dc 649 {
d47cc544
SB
650 if (node->father->data == dominated_by)
651 return;
652 et_split (node);
355be0dc 653 }
d47cc544
SB
654
655 if (dominated_by)
656 et_set_father (node, dominated_by->dom[dir]);
657
658 if (dom_computed[dir] == DOM_OK)
659 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
660}
661
5d3cc252 662/* Store all basic blocks immediately dominated by BB into BBS and return
d47cc544 663 their number. */
355be0dc 664int
d47cc544 665get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
355be0dc 666{
d47cc544
SB
667 int n;
668 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
669
670 if (!dom_computed[dir])
671 abort ();
672
673 if (!son)
674 {
675 *bbs = NULL;
676 return 0;
677 }
678
679 for (ason = son->right, n = 1; ason != son; ason = ason->right)
680 n++;
681
682 *bbs = xmalloc (n * sizeof (basic_block));
683 (*bbs)[0] = son->data;
684 for (ason = son->right, n = 1; ason != son; ason = ason->right)
685 (*bbs)[n++] = ason->data;
355be0dc 686
355be0dc
JH
687 return n;
688}
689
690/* Redirect all edges pointing to BB to TO. */
691void
d47cc544
SB
692redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
693 basic_block to)
355be0dc 694{
d47cc544
SB
695 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
696
697 if (!dom_computed[dir])
698 abort ();
355be0dc 699
d47cc544
SB
700 if (!bb_node->son)
701 return;
702
703 while (bb_node->son)
355be0dc 704 {
d47cc544
SB
705 son = bb_node->son;
706
707 et_split (son);
708 et_set_father (son, to_node);
355be0dc 709 }
d47cc544
SB
710
711 if (dom_computed[dir] == DOM_OK)
712 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
713}
714
715/* Find first basic block in the tree dominating both BB1 and BB2. */
716basic_block
d47cc544 717nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 718{
d47cc544
SB
719 if (!dom_computed[dir])
720 abort ();
721
355be0dc
JH
722 if (!bb1)
723 return bb2;
724 if (!bb2)
725 return bb1;
d47cc544
SB
726
727 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
355be0dc
JH
728}
729
730/* Return TRUE in case BB1 is dominated by BB2. */
731bool
d47cc544 732dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 733{
d47cc544
SB
734 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
735
736 if (!dom_computed[dir])
737 abort ();
738
739 if (dom_computed[dir] == DOM_OK)
740 return (n1->dfs_num_in >= n2->dfs_num_in
741 && n1->dfs_num_out <= n2->dfs_num_out);
742
743 return et_below (n1, n2);
355be0dc
JH
744}
745
746/* Verify invariants of dominator structure. */
747void
d47cc544 748verify_dominators (enum cdi_direction dir)
355be0dc
JH
749{
750 int err = 0;
751 basic_block bb;
752
d47cc544
SB
753 if (!dom_computed[dir])
754 abort ();
755
355be0dc
JH
756 FOR_EACH_BB (bb)
757 {
758 basic_block dom_bb;
759
d47cc544
SB
760 dom_bb = recount_dominator (dir, bb);
761 if (dom_bb != get_immediate_dominator (dir, bb))
f8032688 762 {
355be0dc 763 error ("dominator of %d should be %d, not %d",
d47cc544 764 bb->index, dom_bb->index, get_immediate_dominator(dir, bb)->index);
355be0dc
JH
765 err = 1;
766 }
767 }
768 if (err)
769 abort ();
770}
771
738ed977
ZD
772/* Determine immediate dominator (or postdominator, according to DIR) of BB,
773 assuming that dominators of other blocks are correct. We also use it to
774 recompute the dominators in a restricted area, by iterating it until it
71cc389b 775 reaches a fixed point. */
738ed977 776
355be0dc 777basic_block
d47cc544 778recount_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 779{
738ed977
ZD
780 basic_block dom_bb = NULL;
781 edge e;
355be0dc 782
d47cc544
SB
783 if (!dom_computed[dir])
784 abort ();
785
738ed977
ZD
786 if (dir == CDI_DOMINATORS)
787 {
788 for (e = bb->pred; e; e = e->pred_next)
789 {
790 if (!dominated_by_p (dir, e->src, bb))
791 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
792 }
793 }
794 else
795 {
796 for (e = bb->succ; e; e = e->succ_next)
797 {
798 if (!dominated_by_p (dir, e->dest, bb))
799 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
800 }
801 }
f8032688 802
738ed977 803 return dom_bb;
355be0dc
JH
804}
805
806/* Iteratively recount dominators of BBS. The change is supposed to be local
807 and not to grow further. */
808void
d47cc544 809iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
355be0dc
JH
810{
811 int i, changed = 1;
812 basic_block old_dom, new_dom;
813
d47cc544
SB
814 if (!dom_computed[dir])
815 abort ();
816
355be0dc
JH
817 while (changed)
818 {
819 changed = 0;
820 for (i = 0; i < n; i++)
821 {
d47cc544
SB
822 old_dom = get_immediate_dominator (dir, bbs[i]);
823 new_dom = recount_dominator (dir, bbs[i]);
355be0dc
JH
824 if (old_dom != new_dom)
825 {
826 changed = 1;
d47cc544 827 set_immediate_dominator (dir, bbs[i], new_dom);
355be0dc 828 }
f8032688
MM
829 }
830 }
355be0dc 831}
f8032688 832
355be0dc 833void
d47cc544 834add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 835{
d47cc544 836 if (!dom_computed[dir])
355be0dc 837 abort ();
d47cc544
SB
838
839 if (bb->dom[dir])
840 abort ();
841
842 bb->dom[dir] = et_new_tree (bb);
843
844 if (dom_computed[dir] == DOM_OK)
845 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
846}
847
848void
d47cc544
SB
849delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
850{
851 if (!dom_computed[dir])
852 abort ();
853
854 et_free_tree (bb->dom[dir]);
855 bb->dom[dir] = NULL;
856
857 if (dom_computed[dir] == DOM_OK)
858 dom_computed[dir] = DOM_NO_FAST_QUERY;
859}
860
861/* Returns the first son of BB in the dominator or postdominator tree
862 as determined by DIR. */
863
864basic_block
865first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 866{
d47cc544
SB
867 struct et_node *son = bb->dom[dir]->son;
868
869 return son ? son->data : NULL;
870}
871
872/* Returns the next dominance son after BB in the dominator or postdominator
873 tree as determined by DIR, or NULL if it was the last one. */
874
875basic_block
876next_dom_son (enum cdi_direction dir, basic_block bb)
877{
878 struct et_node *next = bb->dom[dir]->right;
879
880 return next->father->son == next ? NULL : next->data;
355be0dc
JH
881}
882
883void
d47cc544 884debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
885{
886 basic_block bb, bb2;
887 FOR_EACH_BB (bb)
d47cc544 888 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 889 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 890}