]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.c
configure.ac (cygwin noconfigdirs): Remove libgcj.
[thirdparty/gcc.git] / gcc / dse.c
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
8f5929e1 2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
28#include "hashtab.h"
29#include "tm.h"
30#include "rtl.h"
31#include "tree.h"
18b526e8 32#include "tm_p.h"
6fb5fa3c
DB
33#include "regs.h"
34#include "hard-reg-set.h"
35#include "flags.h"
36#include "df.h"
37#include "cselib.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "alloc-pool.h"
41#include "alias.h"
42#include "insn-config.h"
43#include "expr.h"
44#include "recog.h"
45#include "dse.h"
8660aaae 46#include "optabs.h"
6fb5fa3c 47#include "dbgcnt.h"
67d0afe9 48#include "target.h"
6fb5fa3c
DB
49
50/* This file contains three techniques for performing Dead Store
51 Elimination (dse).
52
53 * The first technique performs dse locally on any base address. It
54 is based on the cselib which is a local value numbering technique.
55 This technique is local to a basic block but deals with a fairly
56 general addresses.
57
58 * The second technique performs dse globally but is restricted to
59 base addresses that are either constant or are relative to the
60 frame_pointer.
61
62 * The third technique, (which is only done after register allocation)
63 processes the spill spill slots. This differs from the second
64 technique because it takes advantage of the fact that spilling is
65 completely free from the effects of aliasing.
66
67 Logically, dse is a backwards dataflow problem. A store can be
68 deleted if it if cannot be reached in the backward direction by any
69 use of the value being stored. However, the local technique uses a
70 forwards scan of the basic block because cselib requires that the
71 block be processed in that order.
72
73 The pass is logically broken into 7 steps:
74
75 0) Initialization.
76
77 1) The local algorithm, as well as scanning the insns for the two
78 global algorithms.
79
80 2) Analysis to see if the global algs are necessary. In the case
81 of stores base on a constant address, there must be at least two
82 stores to that address, to make it possible to delete some of the
83 stores. In the case of stores off of the frame or spill related
84 stores, only one store to an address is necessary because those
85 stores die at the end of the function.
86
87 3) Set up the global dataflow equations based on processing the
88 info parsed in the first step.
89
90 4) Solve the dataflow equations.
91
92 5) Delete the insns that the global analysis has indicated are
93 unnecessary.
94
8dd5516b
JJ
95 6) Delete insns that store the same value as preceeding store
96 where the earlier store couldn't be eliminated.
97
98 7) Cleanup.
6fb5fa3c
DB
99
100 This step uses cselib and canon_rtx to build the largest expression
101 possible for each address. This pass is a forwards pass through
102 each basic block. From the point of view of the global technique,
103 the first pass could examine a block in either direction. The
0d52bcc1 104 forwards ordering is to accommodate cselib.
6fb5fa3c
DB
105
106 We a simplifying assumption: addresses fall into four broad
107 categories:
108
109 1) base has rtx_varies_p == false, offset is constant.
110 2) base has rtx_varies_p == false, offset variable.
111 3) base has rtx_varies_p == true, offset constant.
112 4) base has rtx_varies_p == true, offset variable.
113
114 The local passes are able to process all 4 kinds of addresses. The
115 global pass only handles (1).
116
117 The global problem is formulated as follows:
118
119 A store, S1, to address A, where A is not relative to the stack
120 frame, can be eliminated if all paths from S1 to the end of the
121 of the function contain another store to A before a read to A.
122
123 If the address A is relative to the stack frame, a store S2 to A
124 can be eliminated if there are no paths from S1 that reach the
125 end of the function that read A before another store to A. In
126 this case S2 can be deleted if there are paths to from S2 to the
127 end of the function that have no reads or writes to A. This
128 second case allows stores to the stack frame to be deleted that
129 would otherwise die when the function returns. This cannot be
130 done if stores_off_frame_dead_at_return is not true. See the doc
131 for that variable for when this variable is false.
132
133 The global problem is formulated as a backwards set union
134 dataflow problem where the stores are the gens and reads are the
135 kills. Set union problems are rare and require some special
136 handling given our representation of bitmaps. A straightforward
137 implementation of requires a lot of bitmaps filled with 1s.
138 These are expensive and cumbersome in our bitmap formulation so
139 care has been taken to avoid large vectors filled with 1s. See
140 the comments in bb_info and in the dataflow confluence functions
141 for details.
142
143 There are two places for further enhancements to this algorithm:
144
145 1) The original dse which was embedded in a pass called flow also
146 did local address forwarding. For example in
147
148 A <- r100
149 ... <- A
150
151 flow would replace the right hand side of the second insn with a
6ed3da00 152 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
153 to this pass. It has not done it because it is a lot of work in
154 the case that either r100 is assigned to between the first and
155 second insn and/or the second insn is a load of part of the value
156 stored by the first insn.
157
158 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
159 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
160 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
161 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
162
163 2) The cleaning up of spill code is quite profitable. It currently
164 depends on reading tea leaves and chicken entrails left by reload.
165 This pass depends on reload creating a singleton alias set for each
166 spill slot and telling the next dse pass which of these alias sets
167 are the singletons. Rather than analyze the addresses of the
168 spills, dse's spill processing just does analysis of the loads and
169 stores that use those alias sets. There are three cases where this
170 falls short:
171
172 a) Reload sometimes creates the slot for one mode of access, and
173 then inserts loads and/or stores for a smaller mode. In this
174 case, the current code just punts on the slot. The proper thing
175 to do is to back out and use one bit vector position for each
176 byte of the entity associated with the slot. This depends on
177 KNOWING that reload always generates the accesses for each of the
178 bytes in some canonical (read that easy to understand several
179 passes after reload happens) way.
180
181 b) Reload sometimes decides that spill slot it allocated was not
182 large enough for the mode and goes back and allocates more slots
183 with the same mode and alias set. The backout in this case is a
184 little more graceful than (a). In this case the slot is unmarked
185 as being a spill slot and if final address comes out to be based
186 off the frame pointer, the global algorithm handles this slot.
187
188 c) For any pass that may prespill, there is currently no
189 mechanism to tell the dse pass that the slot being used has the
190 special properties that reload uses. It may be that all that is
0d52bcc1 191 required is to have those passes make the same calls that reload
6fb5fa3c
DB
192 does, assuming that the alias sets can be manipulated in the same
193 way. */
194
195/* There are limits to the size of constant offsets we model for the
196 global problem. There are certainly test cases, that exceed this
197 limit, however, it is unlikely that there are important programs
198 that really have constant offsets this size. */
199#define MAX_OFFSET (64 * 1024)
200
201
202static bitmap scratch = NULL;
203struct insn_info;
204
205/* This structure holds information about a candidate store. */
206struct store_info
207{
208
209 /* False means this is a clobber. */
210 bool is_set;
211
8dd5516b
JJ
212 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
213 bool is_large;
214
6fb5fa3c
DB
215 /* The id of the mem group of the base address. If rtx_varies_p is
216 true, this is -1. Otherwise, it is the index into the group
217 table. */
218 int group_id;
219
220 /* This is the cselib value. */
221 cselib_val *cse_base;
222
223 /* This canonized mem. */
224 rtx mem;
225
6216f94e 226 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
227 rtx mem_addr;
228
229 /* If this is non-zero, it is the alias set of a spill location. */
4862826d 230 alias_set_type alias_set;
6fb5fa3c
DB
231
232 /* The offset of the first and byte before the last byte associated
233 with the operation. */
8dd5516b
JJ
234 HOST_WIDE_INT begin, end;
235
236 union
237 {
238 /* A bitmask as wide as the number of bytes in the word that
239 contains a 1 if the byte may be needed. The store is unused if
240 all of the bits are 0. This is used if IS_LARGE is false. */
241 unsigned HOST_WIDE_INT small_bitmask;
242
243 struct
244 {
245 /* A bitmap with one bit per byte. Cleared bit means the position
246 is needed. Used if IS_LARGE is false. */
247 bitmap bitmap;
6fb5fa3c 248
8dd5516b
JJ
249 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
250 equal to END - BEGIN, the whole store is unused. */
251 int count;
252 } large;
253 } positions_needed;
6fb5fa3c
DB
254
255 /* The next store info for this insn. */
256 struct store_info *next;
257
258 /* The right hand side of the store. This is used if there is a
259 subsequent reload of the mems address somewhere later in the
260 basic block. */
8dd5516b
JJ
261 rtx rhs;
262
263 /* If rhs is or holds a constant, this contains that constant,
264 otherwise NULL. */
265 rtx const_rhs;
266
267 /* Set if this store stores the same constant value as REDUNDANT_REASON
268 insn stored. These aren't eliminated early, because doing that
269 might prevent the earlier larger store to be eliminated. */
270 struct insn_info *redundant_reason;
6fb5fa3c
DB
271};
272
4fe663b0
L
273/* Return a bitmask with the first N low bits set. */
274
275static unsigned HOST_WIDE_INT
276lowpart_bitmask (int n)
277{
278 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
279 return mask >> (HOST_BITS_PER_WIDE_INT - n);
280}
281
6fb5fa3c
DB
282typedef struct store_info *store_info_t;
283static alloc_pool cse_store_info_pool;
284static alloc_pool rtx_store_info_pool;
285
286/* This structure holds information about a load. These are only
287 built for rtx bases. */
288struct read_info
289{
290 /* The id of the mem group of the base address. */
291 int group_id;
292
293 /* If this is non-zero, it is the alias set of a spill location. */
4862826d 294 alias_set_type alias_set;
6fb5fa3c
DB
295
296 /* The offset of the first and byte after the last byte associated
297 with the operation. If begin == end == 0, the read did not have
298 a constant offset. */
299 int begin, end;
300
301 /* The mem being read. */
302 rtx mem;
303
304 /* The next read_info for this insn. */
305 struct read_info *next;
306};
307typedef struct read_info *read_info_t;
308static alloc_pool read_info_pool;
309
310
311/* One of these records is created for each insn. */
312
313struct insn_info
314{
315 /* Set true if the insn contains a store but the insn itself cannot
316 be deleted. This is set if the insn is a parallel and there is
317 more than one non dead output or if the insn is in some way
318 volatile. */
319 bool cannot_delete;
320
321 /* This field is only used by the global algorithm. It is set true
322 if the insn contains any read of mem except for a (1). This is
323 also set if the insn is a call or has a clobber mem. If the insn
324 contains a wild read, the use_rec will be null. */
325 bool wild_read;
326
50f0f366
EB
327 /* This field is only used for the processing of const functions.
328 These functions cannot read memory, but they can read the stack
64520bdc
EB
329 because that is where they may get their parms. We need to be
330 this conservative because, like the store motion pass, we don't
331 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
332 Moreover, we need to distinguish two cases:
333 1. Before reload (register elimination), the stores related to
334 outgoing arguments are stack pointer based and thus deemed
335 of non-constant base in this pass. This requires special
336 handling but also means that the frame pointer based stores
337 need not be killed upon encountering a const function call.
338 2. After reload, the stores related to outgoing arguments can be
339 either stack pointer or hard frame pointer based. This means
340 that we have no other choice than also killing all the frame
341 pointer based stores upon encountering a const function call.
342 This field is set after reload for const function calls. Having
343 this set is less severe than a wild read, it just means that all
344 the frame related stores are killed rather than all the stores. */
345 bool frame_read;
346
347 /* This field is only used for the processing of const functions.
348 It is set if the insn may contain a stack pointer based store. */
50f0f366 349 bool stack_pointer_based;
6fb5fa3c
DB
350
351 /* This is true if any of the sets within the store contains a
352 cselib base. Such stores can only be deleted by the local
353 algorithm. */
354 bool contains_cselib_groups;
355
356 /* The insn. */
357 rtx insn;
358
359 /* The list of mem sets or mem clobbers that are contained in this
360 insn. If the insn is deletable, it contains only one mem set.
361 But it could also contain clobbers. Insns that contain more than
362 one mem set are not deletable, but each of those mems are here in
6ed3da00 363 order to provide info to delete other insns. */
6fb5fa3c
DB
364 store_info_t store_rec;
365
366 /* The linked list of mem uses in this insn. Only the reads from
367 rtx bases are listed here. The reads to cselib bases are
368 completely processed during the first scan and so are never
369 created. */
370 read_info_t read_rec;
371
372 /* The prev insn in the basic block. */
373 struct insn_info * prev_insn;
374
375 /* The linked list of insns that are in consideration for removal in
376 the forwards pass thru the basic block. This pointer may be
377 trash as it is not cleared when a wild read occurs. The only
fa10beec 378 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c
DB
379 at active_local_stores. */
380 struct insn_info * next_local_store;
381};
382
383typedef struct insn_info *insn_info_t;
384static alloc_pool insn_info_pool;
385
386/* The linked list of stores that are under consideration in this
387 basic block. */
388static insn_info_t active_local_stores;
389
390struct bb_info
391{
392
393 /* Pointer to the insn info for the last insn in the block. These
394 are linked so this is how all of the insns are reached. During
395 scanning this is the current insn being scanned. */
396 insn_info_t last_insn;
397
398 /* The info for the global dataflow problem. */
399
400
401 /* This is set if the transfer function should and in the wild_read
402 bitmap before applying the kill and gen sets. That vector knocks
403 out most of the bits in the bitmap and thus speeds up the
404 operations. */
405 bool apply_wild_read;
406
02b47899
KZ
407 /* The following 4 bitvectors hold information about which positions
408 of which stores are live or dead. They are indexed by
409 get_bitmap_index. */
410
6fb5fa3c
DB
411 /* The set of store positions that exist in this block before a wild read. */
412 bitmap gen;
413
414 /* The set of load positions that exist in this block above the
415 same position of a store. */
416 bitmap kill;
417
418 /* The set of stores that reach the top of the block without being
419 killed by a read.
420
421 Do not represent the in if it is all ones. Note that this is
422 what the bitvector should logically be initialized to for a set
423 intersection problem. However, like the kill set, this is too
424 expensive. So initially, the in set will only be created for the
425 exit block and any block that contains a wild read. */
426 bitmap in;
427
428 /* The set of stores that reach the bottom of the block from it's
429 successors.
430
431 Do not represent the in if it is all ones. Note that this is
432 what the bitvector should logically be initialized to for a set
433 intersection problem. However, like the kill and in set, this is
434 too expensive. So what is done is that the confluence operator
435 just initializes the vector from one of the out sets of the
436 successors of the block. */
437 bitmap out;
02b47899
KZ
438
439 /* The following bitvector is indexed by the reg number. It
440 contains the set of regs that are live at the current instruction
441 being processed. While it contains info for all of the
442 registers, only the pseudos are actually examined. It is used to
443 assure that shift sequences that are inserted do not accidently
444 clobber live hard regs. */
445 bitmap regs_live;
6fb5fa3c
DB
446};
447
448typedef struct bb_info *bb_info_t;
449static alloc_pool bb_info_pool;
450
451/* Table to hold all bb_infos. */
452static bb_info_t *bb_table;
453
454/* There is a group_info for each rtx base that is used to reference
455 memory. There are also not many of the rtx bases because they are
456 very limited in scope. */
457
458struct group_info
459{
460 /* The actual base of the address. */
461 rtx rtx_base;
462
463 /* The sequential id of the base. This allows us to have a
464 canonical ordering of these that is not based on addresses. */
465 int id;
466
8f5929e1
JJ
467 /* True if there are any positions that are to be processed
468 globally. */
469 bool process_globally;
470
471 /* True if the base of this group is either the frame_pointer or
472 hard_frame_pointer. */
473 bool frame_related;
474
6fb5fa3c
DB
475 /* A mem wrapped around the base pointer for the group in order to
476 do read dependency. */
477 rtx base_mem;
478
6216f94e
JJ
479 /* Canonized version of base_mem's address. */
480 rtx canon_base_addr;
6fb5fa3c
DB
481
482 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 483 stores are actually referencing that position from this base. We
6fb5fa3c 484 only do this for rtx bases as this will be used to assign
6ed3da00 485 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
486 store1 on the first store for offset N. Bit N is set in store2
487 for the second store to offset N. This is all we need since we
488 only care about offsets that have two or more stores for them.
489
490 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
491 for 0 and greater offsets.
492
493 There is one special case here, for stores into the stack frame,
494 we will or store1 into store2 before deciding which stores look
495 at globally. This is because stores to the stack frame that have
496 no other reads before the end of the function can also be
497 deleted. */
498 bitmap store1_n, store1_p, store2_n, store2_p;
499
6ed3da00 500 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 501 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 502 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
503 bitmap group_kill;
504
6fb5fa3c 505 /* The offset_map is used to map the offsets from this base into
6ed3da00 506 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
507 the all of stores have been scanned and we know which ones we
508 care about. */
509 int *offset_map_n, *offset_map_p;
510 int offset_map_size_n, offset_map_size_p;
511};
512typedef struct group_info *group_info_t;
5f754896 513typedef const struct group_info *const_group_info_t;
6fb5fa3c
DB
514static alloc_pool rtx_group_info_pool;
515
516/* Tables of group_info structures, hashed by base value. */
517static htab_t rtx_group_table;
518
519/* Index into the rtx_group_vec. */
520static int rtx_group_next_id;
521
522DEF_VEC_P(group_info_t);
523DEF_VEC_ALLOC_P(group_info_t,heap);
524
525static VEC(group_info_t,heap) *rtx_group_vec;
526
527
528/* This structure holds the set of changes that are being deferred
529 when removing read operation. See replace_read. */
530struct deferred_change
531{
532
533 /* The mem that is being replaced. */
534 rtx *loc;
535
536 /* The reg it is being replaced with. */
537 rtx reg;
538
539 struct deferred_change *next;
540};
541
542typedef struct deferred_change *deferred_change_t;
543static alloc_pool deferred_change_pool;
544
545static deferred_change_t deferred_change_list = NULL;
546
547/* This are used to hold the alias sets of spill variables. Since
548 these are never aliased and there may be a lot of them, it makes
549 sense to treat them specially. This bitvector is only allocated in
550 calls from dse_record_singleton_alias_set which currently is only
551 made during reload1. So when dse is called before reload this
552 mechanism does nothing. */
553
554static bitmap clear_alias_sets = NULL;
555
556/* The set of clear_alias_sets that have been disqualified because
557 there are loads or stores using a different mode than the alias set
558 was registered with. */
559static bitmap disqualified_clear_alias_sets = NULL;
560
561/* The group that holds all of the clear_alias_sets. */
562static group_info_t clear_alias_group;
563
564/* The modes of the clear_alias_sets. */
565static htab_t clear_alias_mode_table;
566
567/* Hash table element to look up the mode for an alias set. */
568struct clear_alias_mode_holder
569{
4862826d 570 alias_set_type alias_set;
6fb5fa3c
DB
571 enum machine_mode mode;
572};
573
574static alloc_pool clear_alias_mode_pool;
575
e3b5732b 576/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 577 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
578static bool stores_off_frame_dead_at_return;
579
580/* Counter for stats. */
581static int globally_deleted;
582static int locally_deleted;
583static int spill_deleted;
584
585static bitmap all_blocks;
586
587/* The number of bits used in the global bitmaps. */
588static unsigned int current_position;
589
590
591static bool gate_dse (void);
7d817ebc
DE
592static bool gate_dse1 (void);
593static bool gate_dse2 (void);
6fb5fa3c
DB
594
595\f
596/*----------------------------------------------------------------------------
597 Zeroth step.
598
599 Initialization.
600----------------------------------------------------------------------------*/
601
602/* Hashtable callbacks for maintaining the "bases" field of
603 store_group_info, given that the addresses are function invariants. */
604
605static int
606clear_alias_mode_eq (const void *p1, const void *p2)
607{
608 const struct clear_alias_mode_holder * h1
609 = (const struct clear_alias_mode_holder *) p1;
610 const struct clear_alias_mode_holder * h2
611 = (const struct clear_alias_mode_holder *) p2;
612 return h1->alias_set == h2->alias_set;
613}
614
615
616static hashval_t
617clear_alias_mode_hash (const void *p)
618{
619 const struct clear_alias_mode_holder *holder
620 = (const struct clear_alias_mode_holder *) p;
621 return holder->alias_set;
622}
623
624
625/* Find the entry associated with ALIAS_SET. */
626
627static struct clear_alias_mode_holder *
4862826d 628clear_alias_set_lookup (alias_set_type alias_set)
6fb5fa3c
DB
629{
630 struct clear_alias_mode_holder tmp_holder;
631 void **slot;
632
633 tmp_holder.alias_set = alias_set;
634 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
635 gcc_assert (*slot);
636
f883e0a7 637 return (struct clear_alias_mode_holder *) *slot;
6fb5fa3c
DB
638}
639
640
641/* Hashtable callbacks for maintaining the "bases" field of
642 store_group_info, given that the addresses are function invariants. */
643
644static int
645invariant_group_base_eq (const void *p1, const void *p2)
646{
5f754896
KG
647 const_group_info_t gi1 = (const_group_info_t) p1;
648 const_group_info_t gi2 = (const_group_info_t) p2;
6fb5fa3c
DB
649 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
650}
651
652
653static hashval_t
654invariant_group_base_hash (const void *p)
655{
5f754896 656 const_group_info_t gi = (const_group_info_t) p;
6fb5fa3c
DB
657 int do_not_record;
658 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
659}
660
661
662/* Get the GROUP for BASE. Add a new group if it is not there. */
663
664static group_info_t
665get_group_info (rtx base)
666{
667 struct group_info tmp_gi;
668 group_info_t gi;
669 void **slot;
670
671 if (base)
672 {
673 /* Find the store_base_info structure for BASE, creating a new one
674 if necessary. */
675 tmp_gi.rtx_base = base;
676 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
677 gi = (group_info_t) *slot;
678 }
679 else
680 {
681 if (!clear_alias_group)
682 {
f883e0a7
KG
683 clear_alias_group = gi =
684 (group_info_t) pool_alloc (rtx_group_info_pool);
6fb5fa3c
DB
685 memset (gi, 0, sizeof (struct group_info));
686 gi->id = rtx_group_next_id++;
687 gi->store1_n = BITMAP_ALLOC (NULL);
688 gi->store1_p = BITMAP_ALLOC (NULL);
689 gi->store2_n = BITMAP_ALLOC (NULL);
690 gi->store2_p = BITMAP_ALLOC (NULL);
691 gi->group_kill = BITMAP_ALLOC (NULL);
692 gi->process_globally = false;
693 gi->offset_map_size_n = 0;
694 gi->offset_map_size_p = 0;
695 gi->offset_map_n = NULL;
696 gi->offset_map_p = NULL;
697 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
698 }
699 return clear_alias_group;
700 }
701
702 if (gi == NULL)
703 {
f883e0a7 704 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
6fb5fa3c
DB
705 gi->rtx_base = base;
706 gi->id = rtx_group_next_id++;
707 gi->base_mem = gen_rtx_MEM (QImode, base);
6216f94e 708 gi->canon_base_addr = canon_rtx (base);
6fb5fa3c
DB
709 gi->store1_n = BITMAP_ALLOC (NULL);
710 gi->store1_p = BITMAP_ALLOC (NULL);
711 gi->store2_n = BITMAP_ALLOC (NULL);
712 gi->store2_p = BITMAP_ALLOC (NULL);
713 gi->group_kill = BITMAP_ALLOC (NULL);
714 gi->process_globally = false;
715 gi->frame_related =
716 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
717 gi->offset_map_size_n = 0;
718 gi->offset_map_size_p = 0;
719 gi->offset_map_n = NULL;
720 gi->offset_map_p = NULL;
721 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
722 }
723
724 return gi;
725}
726
727
728/* Initialization of data structures. */
729
730static void
731dse_step0 (void)
732{
733 locally_deleted = 0;
734 globally_deleted = 0;
735 spill_deleted = 0;
736
737 scratch = BITMAP_ALLOC (NULL);
738
739 rtx_store_info_pool
740 = create_alloc_pool ("rtx_store_info_pool",
741 sizeof (struct store_info), 100);
742 read_info_pool
743 = create_alloc_pool ("read_info_pool",
744 sizeof (struct read_info), 100);
745 insn_info_pool
746 = create_alloc_pool ("insn_info_pool",
747 sizeof (struct insn_info), 100);
748 bb_info_pool
749 = create_alloc_pool ("bb_info_pool",
750 sizeof (struct bb_info), 100);
751 rtx_group_info_pool
752 = create_alloc_pool ("rtx_group_info_pool",
753 sizeof (struct group_info), 100);
754 deferred_change_pool
755 = create_alloc_pool ("deferred_change_pool",
756 sizeof (struct deferred_change), 10);
757
758 rtx_group_table = htab_create (11, invariant_group_base_hash,
759 invariant_group_base_eq, NULL);
760
761 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
762 rtx_group_next_id = 0;
763
e3b5732b 764 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
765
766 init_alias_analysis ();
767
768 if (clear_alias_sets)
769 clear_alias_group = get_group_info (NULL);
770 else
771 clear_alias_group = NULL;
772}
773
774
775\f
776/*----------------------------------------------------------------------------
777 First step.
778
779 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 780 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
781 is used to remove stores with non-constant bases.
782----------------------------------------------------------------------------*/
783
784/* Delete all of the store_info recs from INSN_INFO. */
785
786static void
787free_store_info (insn_info_t insn_info)
788{
789 store_info_t store_info = insn_info->store_rec;
790 while (store_info)
791 {
792 store_info_t next = store_info->next;
8dd5516b
JJ
793 if (store_info->is_large)
794 BITMAP_FREE (store_info->positions_needed.large.bitmap);
6fb5fa3c
DB
795 if (store_info->cse_base)
796 pool_free (cse_store_info_pool, store_info);
797 else
798 pool_free (rtx_store_info_pool, store_info);
799 store_info = next;
800 }
801
802 insn_info->cannot_delete = true;
803 insn_info->contains_cselib_groups = false;
804 insn_info->store_rec = NULL;
805}
806
807
808struct insn_size {
809 int size;
810 rtx insn;
811};
812
813
814/* Add an insn to do the add inside a x if it is a
815 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
816 the size of the mode of the MEM that this is inside of. */
817
818static int
819replace_inc_dec (rtx *r, void *d)
820{
821 rtx x = *r;
822 struct insn_size *data = (struct insn_size *)d;
823 switch (GET_CODE (x))
824 {
825 case PRE_INC:
826 case POST_INC:
827 {
828 rtx r1 = XEXP (x, 0);
bbbbb16a 829 rtx c = gen_int_mode (data->size, Pmode);
22129589
AS
830 emit_insn_before (gen_rtx_SET (Pmode, r1,
831 gen_rtx_PLUS (Pmode, r1, c)),
832 data->insn);
6fb5fa3c
DB
833 return -1;
834 }
835
836 case PRE_DEC:
837 case POST_DEC:
838 {
839 rtx r1 = XEXP (x, 0);
bbbbb16a 840 rtx c = gen_int_mode (-data->size, Pmode);
22129589
AS
841 emit_insn_before (gen_rtx_SET (Pmode, r1,
842 gen_rtx_PLUS (Pmode, r1, c)),
843 data->insn);
6fb5fa3c
DB
844 return -1;
845 }
846
847 case PRE_MODIFY:
848 case POST_MODIFY:
849 {
0d52bcc1 850 /* We can reuse the add because we are about to delete the
6fb5fa3c
DB
851 insn that contained it. */
852 rtx add = XEXP (x, 0);
853 rtx r1 = XEXP (add, 0);
22129589 854 emit_insn_before (gen_rtx_SET (Pmode, r1, add), data->insn);
6fb5fa3c
DB
855 return -1;
856 }
857
858 default:
859 return 0;
860 }
861}
862
863
864/* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
865 and generate an add to replace that. */
866
867static int
868replace_inc_dec_mem (rtx *r, void *d)
869{
870 rtx x = *r;
22129589 871 if (x != NULL_RTX && MEM_P (x))
6fb5fa3c
DB
872 {
873 struct insn_size data;
874
875 data.size = GET_MODE_SIZE (GET_MODE (x));
22129589 876 data.insn = (rtx) d;
6fb5fa3c
DB
877
878 for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
879
880 return -1;
881 }
882 return 0;
883}
884
885/* Before we delete INSN, make sure that the auto inc/dec, if it is
886 there, is split into a separate insn. */
887
888static void
889check_for_inc_dec (rtx insn)
890{
891 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
892 if (note)
893 for_each_rtx (&insn, replace_inc_dec_mem, insn);
894}
895
896
897/* Delete the insn and free all of the fields inside INSN_INFO. */
898
899static void
900delete_dead_store_insn (insn_info_t insn_info)
901{
902 read_info_t read_info;
903
904 if (!dbg_cnt (dse))
905 return;
906
907 check_for_inc_dec (insn_info->insn);
908 if (dump_file)
909 {
910 fprintf (dump_file, "Locally deleting insn %d ",
911 INSN_UID (insn_info->insn));
912 if (insn_info->store_rec->alias_set)
913 fprintf (dump_file, "alias set %d\n",
4862826d 914 (int) insn_info->store_rec->alias_set);
6fb5fa3c
DB
915 else
916 fprintf (dump_file, "\n");
917 }
918
919 free_store_info (insn_info);
920 read_info = insn_info->read_rec;
921
922 while (read_info)
923 {
924 read_info_t next = read_info->next;
925 pool_free (read_info_pool, read_info);
926 read_info = next;
927 }
928 insn_info->read_rec = NULL;
929
930 delete_insn (insn_info->insn);
931 locally_deleted++;
932 insn_info->insn = NULL;
933
934 insn_info->wild_read = false;
935}
936
937
938/* Set the store* bitmaps offset_map_size* fields in GROUP based on
939 OFFSET and WIDTH. */
940
941static void
942set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
943{
944 HOST_WIDE_INT i;
945
8dd5516b 946 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
6fb5fa3c
DB
947 for (i=offset; i<offset+width; i++)
948 {
949 bitmap store1;
950 bitmap store2;
951 int ai;
952 if (i < 0)
953 {
954 store1 = group->store1_n;
955 store2 = group->store2_n;
956 ai = -i;
957 }
958 else
959 {
960 store1 = group->store1_p;
961 store2 = group->store2_p;
962 ai = i;
963 }
964
965 if (bitmap_bit_p (store1, ai))
966 bitmap_set_bit (store2, ai);
967 else
968 {
969 bitmap_set_bit (store1, ai);
970 if (i < 0)
971 {
972 if (group->offset_map_size_n < ai)
973 group->offset_map_size_n = ai;
974 }
975 else
976 {
977 if (group->offset_map_size_p < ai)
978 group->offset_map_size_p = ai;
979 }
980 }
981 }
982}
983
984
985/* Set the BB_INFO so that the last insn is marked as a wild read. */
986
987static void
988add_wild_read (bb_info_t bb_info)
989{
990 insn_info_t insn_info = bb_info->last_insn;
991 read_info_t *ptr = &insn_info->read_rec;
992
993 while (*ptr)
994 {
995 read_info_t next = (*ptr)->next;
4862826d 996 if ((*ptr)->alias_set == 0)
6fb5fa3c
DB
997 {
998 pool_free (read_info_pool, *ptr);
999 *ptr = next;
1000 }
1001 else
1002 ptr = &(*ptr)->next;
1003 }
1004 insn_info->wild_read = true;
1005 active_local_stores = NULL;
1006}
1007
1008
50f0f366
EB
1009/* Return true if X is a constant or one of the registers that behave
1010 as a constant over the life of a function. This is equivalent to
1011 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1012
1013static bool
1014const_or_frame_p (rtx x)
1015{
1016 switch (GET_CODE (x))
1017 {
1018 case MEM:
1019 return MEM_READONLY_P (x);
1020
1021 case CONST:
1022 case CONST_INT:
1023 case CONST_DOUBLE:
1024 case CONST_VECTOR:
1025 case SYMBOL_REF:
1026 case LABEL_REF:
1027 return true;
1028
1029 case REG:
1030 /* Note that we have to test for the actual rtx used for the frame
1031 and arg pointers and not just the register number in case we have
1032 eliminated the frame and/or arg pointer and are using it
1033 for pseudos. */
1034 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1035 /* The arg pointer varies if it is not a fixed register. */
1036 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1037 || x == pic_offset_table_rtx)
1038 return true;
1039 return false;
1040
1041 default:
1042 return false;
1043 }
1044}
1045
1046/* Take all reasonable action to put the address of MEM into the form
1047 that we can do analysis on.
1048
1049 The gold standard is to get the address into the form: address +
1050 OFFSET where address is something that rtx_varies_p considers a
1051 constant. When we can get the address in this form, we can do
1052 global analysis on it. Note that for constant bases, address is
1053 not actually returned, only the group_id. The address can be
1054 obtained from that.
1055
1056 If that fails, we try cselib to get a value we can at least use
1057 locally. If that fails we return false.
1058
1059 The GROUP_ID is set to -1 for cselib bases and the index of the
1060 group for non_varying bases.
1061
1062 FOR_READ is true if this is a mem read and false if not. */
1063
1064static bool
1065canon_address (rtx mem,
4862826d 1066 alias_set_type *alias_set_out,
6fb5fa3c
DB
1067 int *group_id,
1068 HOST_WIDE_INT *offset,
1069 cselib_val **base)
1070{
1071 rtx mem_address = XEXP (mem, 0);
1072 rtx expanded_address, address;
1073 /* Make sure that cselib is has initialized all of the operands of
1074 the address before asking it to do the subst. */
1075
1076 if (clear_alias_sets)
1077 {
1078 /* If this is a spill, do not do any further processing. */
4862826d 1079 alias_set_type alias_set = MEM_ALIAS_SET (mem);
6fb5fa3c 1080 if (dump_file)
4862826d 1081 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
6fb5fa3c
DB
1082 if (bitmap_bit_p (clear_alias_sets, alias_set))
1083 {
1084 struct clear_alias_mode_holder *entry
1085 = clear_alias_set_lookup (alias_set);
1086
1087 /* If the modes do not match, we cannot process this set. */
1088 if (entry->mode != GET_MODE (mem))
1089 {
1090 if (dump_file)
1091 fprintf (dump_file,
1092 "disqualifying alias set %d, (%s) != (%s)\n",
4862826d 1093 (int) alias_set, GET_MODE_NAME (entry->mode),
6fb5fa3c
DB
1094 GET_MODE_NAME (GET_MODE (mem)));
1095
1096 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1097 return false;
1098 }
1099
1100 *alias_set_out = alias_set;
1101 *group_id = clear_alias_group->id;
1102 return true;
1103 }
1104 }
1105
1106 *alias_set_out = 0;
1107
1108 cselib_lookup (mem_address, Pmode, 1);
1109
1110 if (dump_file)
1111 {
1112 fprintf (dump_file, " mem: ");
1113 print_inline_rtx (dump_file, mem_address, 0);
1114 fprintf (dump_file, "\n");
1115 }
1116
1117 /* Use cselib to replace all of the reg references with the full
1118 expression. This will take care of the case where we have
1119
1120 r_x = base + offset;
1121 val = *r_x;
1122
1123 by making it into
1124
1125 val = *(base + offset);
1126 */
1127
1128 expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5);
1129
1130 /* If this fails, just go with the mem_address. */
1131 if (!expanded_address)
1132 expanded_address = mem_address;
1133
1134 /* Split the address into canonical BASE + OFFSET terms. */
1135 address = canon_rtx (expanded_address);
1136
1137 *offset = 0;
1138
1139 if (dump_file)
1140 {
1141 fprintf (dump_file, "\n after cselib_expand address: ");
1142 print_inline_rtx (dump_file, expanded_address, 0);
1143 fprintf (dump_file, "\n");
1144
1145 fprintf (dump_file, "\n after canon_rtx address: ");
1146 print_inline_rtx (dump_file, address, 0);
1147 fprintf (dump_file, "\n");
1148 }
1149
1150 if (GET_CODE (address) == CONST)
1151 address = XEXP (address, 0);
1152
1153 if (GET_CODE (address) == PLUS && GET_CODE (XEXP (address, 1)) == CONST_INT)
1154 {
1155 *offset = INTVAL (XEXP (address, 1));
1156 address = XEXP (address, 0);
1157 }
1158
1159 if (const_or_frame_p (address))
1160 {
1161 group_info_t group = get_group_info (address);
1162
1163 if (dump_file)
1164 fprintf (dump_file, " gid=%d offset=%d \n", group->id, (int)*offset);
1165 *base = NULL;
1166 *group_id = group->id;
1167 }
1168 else
1169 {
1170 *base = cselib_lookup (address, Pmode, true);
1171 *group_id = -1;
1172
1173 if (*base == NULL)
1174 {
1175 if (dump_file)
1176 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1177 return false;
1178 }
1179 if (dump_file)
1180 fprintf (dump_file, " varying cselib base=%d offset = %d\n",
1181 (*base)->value, (int)*offset);
1182 }
1183 return true;
1184}
1185
1186
1187/* Clear the rhs field from the active_local_stores array. */
1188
1189static void
1190clear_rhs_from_active_local_stores (void)
1191{
1192 insn_info_t ptr = active_local_stores;
1193
1194 while (ptr)
1195 {
1196 store_info_t store_info = ptr->store_rec;
1197 /* Skip the clobbers. */
1198 while (!store_info->is_set)
1199 store_info = store_info->next;
1200
1201 store_info->rhs = NULL;
8dd5516b 1202 store_info->const_rhs = NULL;
6fb5fa3c
DB
1203
1204 ptr = ptr->next_local_store;
1205 }
1206}
1207
1208
8dd5516b
JJ
1209/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1210
1211static inline void
1212set_position_unneeded (store_info_t s_info, int pos)
1213{
1214 if (__builtin_expect (s_info->is_large, false))
1215 {
1216 if (!bitmap_bit_p (s_info->positions_needed.large.bitmap, pos))
1217 {
1218 s_info->positions_needed.large.count++;
1219 bitmap_set_bit (s_info->positions_needed.large.bitmap, pos);
1220 }
1221 }
1222 else
1223 s_info->positions_needed.small_bitmask
1224 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1225}
1226
1227/* Mark the whole store S_INFO as unneeded. */
1228
1229static inline void
1230set_all_positions_unneeded (store_info_t s_info)
1231{
1232 if (__builtin_expect (s_info->is_large, false))
1233 {
1234 int pos, end = s_info->end - s_info->begin;
1235 for (pos = 0; pos < end; pos++)
1236 bitmap_set_bit (s_info->positions_needed.large.bitmap, pos);
1237 s_info->positions_needed.large.count = end;
1238 }
1239 else
1240 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1241}
1242
1243/* Return TRUE if any bytes from S_INFO store are needed. */
1244
1245static inline bool
1246any_positions_needed_p (store_info_t s_info)
1247{
1248 if (__builtin_expect (s_info->is_large, false))
1249 return (s_info->positions_needed.large.count
1250 < s_info->end - s_info->begin);
1251 else
1252 return (s_info->positions_needed.small_bitmask
1253 != (unsigned HOST_WIDE_INT) 0);
1254}
1255
1256/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1257 store are needed. */
1258
1259static inline bool
1260all_positions_needed_p (store_info_t s_info, int start, int width)
1261{
1262 if (__builtin_expect (s_info->is_large, false))
1263 {
1264 int end = start + width;
1265 while (start < end)
1266 if (bitmap_bit_p (s_info->positions_needed.large.bitmap, start++))
1267 return false;
1268 return true;
1269 }
1270 else
1271 {
1272 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1273 return (s_info->positions_needed.small_bitmask & mask) == mask;
1274 }
1275}
1276
1277
1278static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1279 HOST_WIDE_INT, basic_block, bool);
1280
1281
6fb5fa3c
DB
1282/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1283 there is a candidate store, after adding it to the appropriate
1284 local store group if so. */
1285
1286static int
1287record_store (rtx body, bb_info_t bb_info)
1288{
6216f94e 1289 rtx mem, rhs, const_rhs, mem_addr;
6fb5fa3c
DB
1290 HOST_WIDE_INT offset = 0;
1291 HOST_WIDE_INT width = 0;
4862826d 1292 alias_set_type spill_alias_set;
6fb5fa3c
DB
1293 insn_info_t insn_info = bb_info->last_insn;
1294 store_info_t store_info = NULL;
1295 int group_id;
1296 cselib_val *base = NULL;
8dd5516b 1297 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1298 bool store_is_unused;
1299
1300 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1301 return 0;
1302
8dd5516b
JJ
1303 mem = SET_DEST (body);
1304
6fb5fa3c
DB
1305 /* If this is not used, then this cannot be used to keep the insn
1306 from being deleted. On the other hand, it does provide something
1307 that can be used to prove that another store is dead. */
1308 store_is_unused
8dd5516b 1309 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1310
1311 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1312 if (!MEM_P (mem))
1313 {
1314 /* If the set or clobber is unused, then it does not effect our
1315 ability to get rid of the entire insn. */
1316 if (!store_is_unused)
1317 insn_info->cannot_delete = true;
1318 return 0;
1319 }
1320
1321 /* At this point we know mem is a mem. */
1322 if (GET_MODE (mem) == BLKmode)
1323 {
1324 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1325 {
1326 if (dump_file)
1327 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1328 add_wild_read (bb_info);
1329 insn_info->cannot_delete = true;
8dd5516b 1330 return 0;
6fb5fa3c 1331 }
8dd5516b
JJ
1332 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1333 as memset (addr, 0, 36); */
1334 else if (!MEM_SIZE (mem)
1335 || !CONST_INT_P (MEM_SIZE (mem))
1336 || GET_CODE (body) != SET
1337 || INTVAL (MEM_SIZE (mem)) <= 0
1338 || INTVAL (MEM_SIZE (mem)) > MAX_OFFSET
1339 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1340 {
8dd5516b
JJ
1341 if (!store_is_unused)
1342 {
1343 /* If the set or clobber is unused, then it does not effect our
1344 ability to get rid of the entire insn. */
1345 insn_info->cannot_delete = true;
1346 clear_rhs_from_active_local_stores ();
1347 }
1348 return 0;
6fb5fa3c 1349 }
6fb5fa3c
DB
1350 }
1351
1352 /* We can still process a volatile mem, we just cannot delete it. */
1353 if (MEM_VOLATILE_P (mem))
8dd5516b 1354 insn_info->cannot_delete = true;
6fb5fa3c
DB
1355
1356 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1357 {
1358 clear_rhs_from_active_local_stores ();
1359 return 0;
1360 }
1361
8dd5516b
JJ
1362 if (GET_MODE (mem) == BLKmode)
1363 width = INTVAL (MEM_SIZE (mem));
1364 else
1365 {
1366 width = GET_MODE_SIZE (GET_MODE (mem));
1367 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1368 }
6fb5fa3c
DB
1369
1370 if (spill_alias_set)
1371 {
1372 bitmap store1 = clear_alias_group->store1_p;
1373 bitmap store2 = clear_alias_group->store2_p;
8dd5516b
JJ
1374
1375 gcc_assert (GET_MODE (mem) != BLKmode);
6fb5fa3c
DB
1376
1377 if (bitmap_bit_p (store1, spill_alias_set))
1378 bitmap_set_bit (store2, spill_alias_set);
1379 else
1380 bitmap_set_bit (store1, spill_alias_set);
1381
1382 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1383 clear_alias_group->offset_map_size_p = spill_alias_set;
1384
f883e0a7 1385 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
6fb5fa3c
DB
1386
1387 if (dump_file)
1388 fprintf (dump_file, " processing spill store %d(%s)\n",
4862826d 1389 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
6fb5fa3c
DB
1390 }
1391 else if (group_id >= 0)
1392 {
1393 /* In the restrictive case where the base is a constant or the
1394 frame pointer we can do global analysis. */
1395
1396 group_info_t group
1397 = VEC_index (group_info_t, rtx_group_vec, group_id);
1398
f883e0a7 1399 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
6fb5fa3c
DB
1400 set_usage_bits (group, offset, width);
1401
1402 if (dump_file)
1403 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1404 group_id, (int)offset, (int)(offset+width));
1405 }
1406 else
1407 {
50f0f366
EB
1408 rtx base_term = find_base_term (XEXP (mem, 0));
1409 if (!base_term
1410 || (GET_CODE (base_term) == ADDRESS
1411 && GET_MODE (base_term) == Pmode
1412 && XEXP (base_term, 0) == stack_pointer_rtx))
1413 insn_info->stack_pointer_based = true;
6fb5fa3c 1414 insn_info->contains_cselib_groups = true;
50f0f366 1415
f883e0a7 1416 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
6fb5fa3c
DB
1417 group_id = -1;
1418
1419 if (dump_file)
1420 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1421 (int)offset, (int)(offset+width));
1422 }
1423
8dd5516b
JJ
1424 const_rhs = rhs = NULL_RTX;
1425 if (GET_CODE (body) == SET
1426 /* No place to keep the value after ra. */
1427 && !reload_completed
1428 && (REG_P (SET_SRC (body))
1429 || GET_CODE (SET_SRC (body)) == SUBREG
1430 || CONSTANT_P (SET_SRC (body)))
1431 && !MEM_VOLATILE_P (mem)
1432 /* Sometimes the store and reload is used for truncation and
1433 rounding. */
1434 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1435 {
1436 rhs = SET_SRC (body);
1437 if (CONSTANT_P (rhs))
1438 const_rhs = rhs;
1439 else if (body == PATTERN (insn_info->insn))
1440 {
1441 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1442 if (tem && CONSTANT_P (XEXP (tem, 0)))
1443 const_rhs = XEXP (tem, 0);
1444 }
1445 if (const_rhs == NULL_RTX && REG_P (rhs))
1446 {
1447 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1448
1449 if (tem && CONSTANT_P (tem))
1450 const_rhs = tem;
1451 }
1452 }
1453
6fb5fa3c
DB
1454 /* Check to see if this stores causes some other stores to be
1455 dead. */
1456 ptr = active_local_stores;
1457 last = NULL;
8dd5516b 1458 redundant_reason = NULL;
6216f94e
JJ
1459 mem = canon_rtx (mem);
1460 /* For alias_set != 0 canon_true_dependence should be never called. */
1461 if (spill_alias_set)
1462 mem_addr = NULL_RTX;
1463 else
1464 {
1465 if (group_id < 0)
1466 mem_addr = base->val_rtx;
1467 else
1468 {
1469 group_info_t group
1470 = VEC_index (group_info_t, rtx_group_vec, group_id);
1471 mem_addr = group->canon_base_addr;
1472 }
1473 if (offset)
1474 mem_addr = plus_constant (mem_addr, offset);
1475 }
6fb5fa3c
DB
1476
1477 while (ptr)
1478 {
1479 insn_info_t next = ptr->next_local_store;
1480 store_info_t s_info = ptr->store_rec;
60564289 1481 bool del = true;
6fb5fa3c
DB
1482
1483 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1484 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1485 has exactly on set. */
1486 while (!s_info->is_set)
1487 s_info = s_info->next;
1488
1489 if (s_info->alias_set != spill_alias_set)
60564289 1490 del = false;
6fb5fa3c
DB
1491 else if (s_info->alias_set)
1492 {
1493 struct clear_alias_mode_holder *entry
1494 = clear_alias_set_lookup (s_info->alias_set);
1495 /* Generally, spills cannot be processed if and of the
1496 references to the slot have a different mode. But if
1497 we are in the same block and mode is exactly the same
1498 between this store and one before in the same block,
1499 we can still delete it. */
1500 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1501 && (GET_MODE (mem) == entry->mode))
1502 {
60564289 1503 del = true;
8dd5516b 1504 set_all_positions_unneeded (s_info);
6fb5fa3c
DB
1505 }
1506 if (dump_file)
1507 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
4862826d 1508 INSN_UID (ptr->insn), (int) s_info->alias_set);
6fb5fa3c
DB
1509 }
1510 else if ((s_info->group_id == group_id)
1511 && (s_info->cse_base == base))
1512 {
1513 HOST_WIDE_INT i;
1514 if (dump_file)
1515 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1516 INSN_UID (ptr->insn), s_info->group_id,
1517 (int)s_info->begin, (int)s_info->end);
8dd5516b
JJ
1518
1519 /* Even if PTR won't be eliminated as unneeded, if both
1520 PTR and this insn store the same constant value, we might
1521 eliminate this insn instead. */
1522 if (s_info->const_rhs
1523 && const_rhs
1524 && offset >= s_info->begin
1525 && offset + width <= s_info->end
1526 && all_positions_needed_p (s_info, offset - s_info->begin,
1527 width))
1528 {
1529 if (GET_MODE (mem) == BLKmode)
1530 {
1531 if (GET_MODE (s_info->mem) == BLKmode
1532 && s_info->const_rhs == const_rhs)
1533 redundant_reason = ptr;
1534 }
1535 else if (s_info->const_rhs == const0_rtx
1536 && const_rhs == const0_rtx)
1537 redundant_reason = ptr;
1538 else
1539 {
1540 rtx val;
1541 start_sequence ();
1542 val = get_stored_val (s_info, GET_MODE (mem),
1543 offset, offset + width,
1544 BLOCK_FOR_INSN (insn_info->insn),
1545 true);
1546 if (get_insns () != NULL)
1547 val = NULL_RTX;
1548 end_sequence ();
1549 if (val && rtx_equal_p (val, const_rhs))
1550 redundant_reason = ptr;
1551 }
1552 }
1553
1554 for (i = MAX (offset, s_info->begin);
1555 i < offset + width && i < s_info->end;
1556 i++)
1557 set_position_unneeded (s_info, i - s_info->begin);
6fb5fa3c
DB
1558 }
1559 else if (s_info->rhs)
1560 /* Need to see if it is possible for this store to overwrite
1561 the value of store_info. If it is, set the rhs to NULL to
1562 keep it from being used to remove a load. */
1563 {
1564 if (canon_true_dependence (s_info->mem,
1565 GET_MODE (s_info->mem),
1566 s_info->mem_addr,
6216f94e 1567 mem, mem_addr, rtx_varies_p))
8dd5516b
JJ
1568 {
1569 s_info->rhs = NULL;
1570 s_info->const_rhs = NULL;
1571 }
6fb5fa3c 1572 }
6216f94e 1573
6fb5fa3c
DB
1574 /* An insn can be deleted if every position of every one of
1575 its s_infos is zero. */
8dd5516b
JJ
1576 if (any_positions_needed_p (s_info)
1577 || ptr->cannot_delete)
60564289 1578 del = false;
8dd5516b 1579
60564289 1580 if (del)
6fb5fa3c
DB
1581 {
1582 insn_info_t insn_to_delete = ptr;
1583
1584 if (last)
1585 last->next_local_store = ptr->next_local_store;
1586 else
1587 active_local_stores = ptr->next_local_store;
1588
1589 delete_dead_store_insn (insn_to_delete);
1590 }
1591 else
1592 last = ptr;
1593
1594 ptr = next;
1595 }
1596
6fb5fa3c
DB
1597 /* Finish filling in the store_info. */
1598 store_info->next = insn_info->store_rec;
1599 insn_info->store_rec = store_info;
6216f94e 1600 store_info->mem = mem;
6fb5fa3c 1601 store_info->alias_set = spill_alias_set;
6216f94e 1602 store_info->mem_addr = mem_addr;
6fb5fa3c 1603 store_info->cse_base = base;
8dd5516b
JJ
1604 if (width > HOST_BITS_PER_WIDE_INT)
1605 {
1606 store_info->is_large = true;
1607 store_info->positions_needed.large.count = 0;
1608 store_info->positions_needed.large.bitmap = BITMAP_ALLOC (NULL);
1609 }
1610 else
1611 {
1612 store_info->is_large = false;
1613 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1614 }
6fb5fa3c
DB
1615 store_info->group_id = group_id;
1616 store_info->begin = offset;
1617 store_info->end = offset + width;
1618 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1619 store_info->rhs = rhs;
1620 store_info->const_rhs = const_rhs;
1621 store_info->redundant_reason = redundant_reason;
6fb5fa3c 1622
6fb5fa3c
DB
1623 /* If this is a clobber, we return 0. We will only be able to
1624 delete this insn if there is only one store USED store, but we
1625 can use the clobber to delete other stores earlier. */
1626 return store_info->is_set ? 1 : 0;
1627}
1628
1629
1630static void
1631dump_insn_info (const char * start, insn_info_t insn_info)
1632{
1633 fprintf (dump_file, "%s insn=%d %s\n", start,
1634 INSN_UID (insn_info->insn),
1635 insn_info->store_rec ? "has store" : "naked");
1636}
1637
1638
8660aaae
EC
1639/* If the modes are different and the value's source and target do not
1640 line up, we need to extract the value from lower part of the rhs of
1641 the store, shift it, and then put it into a form that can be shoved
1642 into the read_insn. This function generates a right SHIFT of a
1643 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1644 shift sequence is returned or NULL if we failed to find a
1645 shift. */
1646
1647static rtx
18b526e8 1648find_shift_sequence (int access_size,
8660aaae 1649 store_info_t store_info,
8dd5516b
JJ
1650 enum machine_mode read_mode,
1651 int shift, bool speed, bool require_cst)
8660aaae
EC
1652{
1653 enum machine_mode store_mode = GET_MODE (store_info->mem);
18b526e8
RS
1654 enum machine_mode new_mode;
1655 rtx read_reg = NULL;
8660aaae
EC
1656
1657 /* Some machines like the x86 have shift insns for each size of
1658 operand. Other machines like the ppc or the ia-64 may only have
1659 shift insns that shift values within 32 or 64 bit registers.
1660 This loop tries to find the smallest shift insn that will right
1661 justify the value we want to read but is available in one insn on
1662 the machine. */
1663
18b526e8
RS
1664 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1665 MODE_INT);
1666 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1667 new_mode = GET_MODE_WIDER_MODE (new_mode))
8660aaae 1668 {
18b526e8 1669 rtx target, new_reg, shift_seq, insn, new_lhs;
d898d29b 1670 int cost;
348eea5f 1671
72a2609f
JJ
1672 /* If a constant was stored into memory, try to simplify it here,
1673 otherwise the cost of the shift might preclude this optimization
1674 e.g. at -Os, even when no actual shift will be needed. */
8dd5516b 1675 if (store_info->const_rhs)
72a2609f
JJ
1676 {
1677 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
8dd5516b
JJ
1678 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1679 store_mode, byte);
72a2609f
JJ
1680 if (ret && CONSTANT_P (ret))
1681 {
1682 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1683 ret, GEN_INT (shift));
1684 if (ret && CONSTANT_P (ret))
1685 {
1686 byte = subreg_lowpart_offset (read_mode, new_mode);
1687 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1688 if (ret && CONSTANT_P (ret)
1689 && rtx_cost (ret, SET, speed) <= COSTS_N_INSNS (1))
1690 return ret;
1691 }
1692 }
1693 }
1694
8dd5516b
JJ
1695 if (require_cst)
1696 return NULL_RTX;
1697
18b526e8
RS
1698 /* Try a wider mode if truncating the store mode to NEW_MODE
1699 requires a real instruction. */
1700 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1701 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
348eea5f
RS
1702 GET_MODE_BITSIZE (store_mode)))
1703 continue;
1704
18b526e8
RS
1705 /* Also try a wider mode if the necessary punning is either not
1706 desirable or not possible. */
1707 if (!CONSTANT_P (store_info->rhs)
1708 && !MODES_TIEABLE_P (new_mode, store_mode))
1709 continue;
18b526e8 1710
348eea5f 1711 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1712
1713 start_sequence ();
1714
1715 /* In theory we could also check for an ashr. Ian Taylor knows
1716 of one dsp where the cost of these two was not the same. But
1717 this really is a rare case anyway. */
1718 target = expand_binop (new_mode, lshr_optab, new_reg,
1719 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1720
c6f3019a
RS
1721 shift_seq = get_insns ();
1722 end_sequence ();
8660aaae 1723
c6f3019a
RS
1724 if (target != new_reg || shift_seq == NULL)
1725 continue;
1726
1727 cost = 0;
1728 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1729 if (INSN_P (insn))
f40751dd 1730 cost += insn_rtx_cost (PATTERN (insn), speed);
c6f3019a
RS
1731
1732 /* The computation up to here is essentially independent
1733 of the arguments and could be precomputed. It may
1734 not be worth doing so. We could precompute if
1735 worthwhile or at least cache the results. The result
06acf7d0
RS
1736 technically depends on both SHIFT and ACCESS_SIZE,
1737 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1738
1739 if (cost > COSTS_N_INSNS (1))
1740 continue;
1741
d898d29b
JJ
1742 new_lhs = extract_low_bits (new_mode, store_mode,
1743 copy_rtx (store_info->rhs));
1744 if (new_lhs == NULL_RTX)
1745 continue;
1746
c6f3019a
RS
1747 /* We found an acceptable shift. Generate a move to
1748 take the value from the store and put it into the
1749 shift pseudo, then shift it, then generate another
1750 move to put in into the target of the read. */
18b526e8 1751 emit_move_insn (new_reg, new_lhs);
c6f3019a 1752 emit_insn (shift_seq);
18b526e8 1753 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1754 break;
8660aaae
EC
1755 }
1756
18b526e8 1757 return read_reg;
8660aaae
EC
1758}
1759
1760
02b47899
KZ
1761/* Call back for note_stores to find the hard regs set or clobbered by
1762 insn. Data is a bitmap of the hardregs set so far. */
1763
1764static void
1765look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1766{
1767 bitmap regs_set = (bitmap) data;
1768
1769 if (REG_P (x)
1770 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1771 {
1772 int regno = REGNO (x);
1773 int n = hard_regno_nregs[regno][GET_MODE (x)];
1774 while (--n >= 0)
1775 bitmap_set_bit (regs_set, regno + n);
1776 }
1777}
1778
8dd5516b
JJ
1779/* Helper function for replace_read and record_store.
1780 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1781 to one before READ_END bytes read in READ_MODE. Return NULL
1782 if not successful. If REQUIRE_CST is true, return always constant. */
1783
1784static rtx
1785get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1786 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1787 basic_block bb, bool require_cst)
1788{
1789 enum machine_mode store_mode = GET_MODE (store_info->mem);
1790 int shift;
1791 int access_size; /* In bytes. */
1792 rtx read_reg;
1793
1794 /* To get here the read is within the boundaries of the write so
1795 shift will never be negative. Start out with the shift being in
1796 bytes. */
1797 if (store_mode == BLKmode)
1798 shift = 0;
1799 else if (BYTES_BIG_ENDIAN)
1800 shift = store_info->end - read_end;
1801 else
1802 shift = read_begin - store_info->begin;
1803
1804 access_size = shift + GET_MODE_SIZE (read_mode);
1805
1806 /* From now on it is bits. */
1807 shift *= BITS_PER_UNIT;
1808
1809 if (shift)
1810 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1811 optimize_bb_for_speed_p (bb),
1812 require_cst);
1813 else if (store_mode == BLKmode)
1814 {
1815 /* The store is a memset (addr, const_val, const_size). */
1816 gcc_assert (CONST_INT_P (store_info->rhs));
1817 store_mode = int_mode_for_mode (read_mode);
1818 if (store_mode == BLKmode)
1819 read_reg = NULL_RTX;
1820 else if (store_info->rhs == const0_rtx)
1821 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1822 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1823 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1824 read_reg = NULL_RTX;
1825 else
1826 {
1827 unsigned HOST_WIDE_INT c
1828 = INTVAL (store_info->rhs)
1829 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1830 int shift = BITS_PER_UNIT;
1831 while (shift < HOST_BITS_PER_WIDE_INT)
1832 {
1833 c |= (c << shift);
1834 shift <<= 1;
1835 }
1836 read_reg = GEN_INT (trunc_int_for_mode (c, store_mode));
1837 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1838 }
1839 }
1840 else if (store_info->const_rhs
1841 && (require_cst
1842 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1843 read_reg = extract_low_bits (read_mode, store_mode,
1844 copy_rtx (store_info->const_rhs));
1845 else
1846 read_reg = extract_low_bits (read_mode, store_mode,
1847 copy_rtx (store_info->rhs));
1848 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1849 read_reg = NULL_RTX;
1850 return read_reg;
1851}
02b47899 1852
6fb5fa3c
DB
1853/* Take a sequence of:
1854 A <- r1
1855 ...
1856 ... <- A
1857
1858 and change it into
1859 r2 <- r1
1860 A <- r1
1861 ...
1862 ... <- r2
1863
8660aaae
EC
1864 or
1865
1866 r3 <- extract (r1)
1867 r3 <- r3 >> shift
1868 r2 <- extract (r3)
1869 ... <- r2
1870
1871 or
1872
1873 r2 <- extract (r1)
1874 ... <- r2
1875
1876 Depending on the alignment and the mode of the store and
1877 subsequent load.
1878
1879
1880 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1881 and READ_INSN are for the read. Return true if the replacement
1882 went ok. */
1883
1884static bool
1885replace_read (store_info_t store_info, insn_info_t store_insn,
8dd5516b
JJ
1886 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1887 bitmap regs_live)
6fb5fa3c 1888{
8660aaae
EC
1889 enum machine_mode store_mode = GET_MODE (store_info->mem);
1890 enum machine_mode read_mode = GET_MODE (read_info->mem);
02b47899 1891 rtx insns, this_insn, read_reg;
8dd5516b 1892 basic_block bb;
8660aaae 1893
6fb5fa3c
DB
1894 if (!dbg_cnt (dse))
1895 return false;
1896
18b526e8
RS
1897 /* Create a sequence of instructions to set up the read register.
1898 This sequence goes immediately before the store and its result
1899 is read by the load.
1900
1901 We need to keep this in perspective. We are replacing a read
8660aaae
EC
1902 with a sequence of insns, but the read will almost certainly be
1903 in cache, so it is not going to be an expensive one. Thus, we
1904 are not willing to do a multi insn shift or worse a subroutine
1905 call to get rid of the read. */
18b526e8
RS
1906 if (dump_file)
1907 fprintf (dump_file, "trying to replace %smode load in insn %d"
1908 " from %smode store in insn %d\n",
1909 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1910 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1911 start_sequence ();
8dd5516b
JJ
1912 bb = BLOCK_FOR_INSN (read_insn->insn);
1913 read_reg = get_stored_val (store_info,
1914 read_mode, read_info->begin, read_info->end,
1915 bb, false);
18b526e8 1916 if (read_reg == NULL_RTX)
8660aaae 1917 {
18b526e8
RS
1918 end_sequence ();
1919 if (dump_file)
1920 fprintf (dump_file, " -- could not extract bits of stored value\n");
1921 return false;
8660aaae 1922 }
18b526e8
RS
1923 /* Force the value into a new register so that it won't be clobbered
1924 between the store and the load. */
1925 read_reg = copy_to_mode_reg (read_mode, read_reg);
1926 insns = get_insns ();
1927 end_sequence ();
8660aaae 1928
02b47899
KZ
1929 if (insns != NULL_RTX)
1930 {
1931 /* Now we have to scan the set of new instructions to see if the
1932 sequence contains and sets of hardregs that happened to be
1933 live at this point. For instance, this can happen if one of
1934 the insns sets the CC and the CC happened to be live at that
1935 point. This does occasionally happen, see PR 37922. */
1936 bitmap regs_set = BITMAP_ALLOC (NULL);
1937
1938 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1939 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1940
1941 bitmap_and_into (regs_set, regs_live);
1942 if (!bitmap_empty_p (regs_set))
1943 {
1944 if (dump_file)
1945 {
1946 fprintf (dump_file,
1947 "abandoning replacement because sequence clobbers live hardregs:");
1948 df_print_regset (dump_file, regs_set);
1949 }
1950
1951 BITMAP_FREE (regs_set);
1952 return false;
1953 }
1954 BITMAP_FREE (regs_set);
1955 }
1956
8660aaae 1957 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 1958 {
f883e0a7
KG
1959 deferred_change_t deferred_change =
1960 (deferred_change_t) pool_alloc (deferred_change_pool);
8660aaae 1961
8660aaae
EC
1962 /* Insert this right before the store insn where it will be safe
1963 from later insns that might change it before the read. */
1964 emit_insn_before (insns, store_insn->insn);
1965
1966 /* And now for the kludge part: cselib croaks if you just
1967 return at this point. There are two reasons for this:
1968
1969 1) Cselib has an idea of how many pseudos there are and
1970 that does not include the new ones we just added.
1971
1972 2) Cselib does not know about the move insn we added
1973 above the store_info, and there is no way to tell it
1974 about it, because it has "moved on".
1975
1976 Problem (1) is fixable with a certain amount of engineering.
1977 Problem (2) is requires starting the bb from scratch. This
1978 could be expensive.
1979
1980 So we are just going to have to lie. The move/extraction
1981 insns are not really an issue, cselib did not see them. But
1982 the use of the new pseudo read_insn is a real problem because
1983 cselib has not scanned this insn. The way that we solve this
1984 problem is that we are just going to put the mem back for now
1985 and when we are finished with the block, we undo this. We
1986 keep a table of mems to get rid of. At the end of the basic
1987 block we can put them back. */
1988
1989 *loc = read_info->mem;
1990 deferred_change->next = deferred_change_list;
1991 deferred_change_list = deferred_change;
1992 deferred_change->loc = loc;
1993 deferred_change->reg = read_reg;
1994
1995 /* Get rid of the read_info, from the point of view of the
1996 rest of dse, play like this read never happened. */
1997 read_insn->read_rec = read_info->next;
1998 pool_free (read_info_pool, read_info);
18b526e8
RS
1999 if (dump_file)
2000 {
2001 fprintf (dump_file, " -- replaced the loaded MEM with ");
2002 print_simple_rtl (dump_file, read_reg);
2003 fprintf (dump_file, "\n");
2004 }
8660aaae 2005 return true;
6fb5fa3c 2006 }
8660aaae 2007 else
6fb5fa3c 2008 {
6fb5fa3c 2009 if (dump_file)
18b526e8
RS
2010 {
2011 fprintf (dump_file, " -- replacing the loaded MEM with ");
2012 print_simple_rtl (dump_file, read_reg);
2013 fprintf (dump_file, " led to an invalid instruction\n");
2014 }
6fb5fa3c
DB
2015 return false;
2016 }
2017}
2018
6fb5fa3c
DB
2019/* A for_each_rtx callback in which DATA is the bb_info. Check to see
2020 if LOC is a mem and if it is look at the address and kill any
2021 appropriate stores that may be active. */
2022
2023static int
2024check_mem_read_rtx (rtx *loc, void *data)
2025{
6216f94e 2026 rtx mem = *loc, mem_addr;
6fb5fa3c
DB
2027 bb_info_t bb_info;
2028 insn_info_t insn_info;
2029 HOST_WIDE_INT offset = 0;
2030 HOST_WIDE_INT width = 0;
4862826d 2031 alias_set_type spill_alias_set = 0;
6fb5fa3c
DB
2032 cselib_val *base = NULL;
2033 int group_id;
2034 read_info_t read_info;
2035
2036 if (!mem || !MEM_P (mem))
2037 return 0;
2038
2039 bb_info = (bb_info_t) data;
2040 insn_info = bb_info->last_insn;
2041
2042 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2043 || (MEM_VOLATILE_P (mem)))
2044 {
2045 if (dump_file)
2046 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2047 add_wild_read (bb_info);
2048 insn_info->cannot_delete = true;
2049 return 0;
2050 }
2051
2052 /* If it is reading readonly mem, then there can be no conflict with
2053 another write. */
2054 if (MEM_READONLY_P (mem))
2055 return 0;
2056
2057 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2058 {
2059 if (dump_file)
2060 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2061 add_wild_read (bb_info);
2062 return 0;
2063 }
2064
2065 if (GET_MODE (mem) == BLKmode)
2066 width = -1;
2067 else
2068 width = GET_MODE_SIZE (GET_MODE (mem));
2069
f883e0a7 2070 read_info = (read_info_t) pool_alloc (read_info_pool);
6fb5fa3c
DB
2071 read_info->group_id = group_id;
2072 read_info->mem = mem;
2073 read_info->alias_set = spill_alias_set;
2074 read_info->begin = offset;
2075 read_info->end = offset + width;
2076 read_info->next = insn_info->read_rec;
2077 insn_info->read_rec = read_info;
6216f94e
JJ
2078 /* For alias_set != 0 canon_true_dependence should be never called. */
2079 if (spill_alias_set)
2080 mem_addr = NULL_RTX;
2081 else
2082 {
2083 if (group_id < 0)
2084 mem_addr = base->val_rtx;
2085 else
2086 {
2087 group_info_t group
2088 = VEC_index (group_info_t, rtx_group_vec, group_id);
2089 mem_addr = group->canon_base_addr;
2090 }
2091 if (offset)
2092 mem_addr = plus_constant (mem_addr, offset);
2093 }
6fb5fa3c 2094
0d52bcc1 2095 /* We ignore the clobbers in store_info. The is mildly aggressive,
6fb5fa3c
DB
2096 but there really should not be a clobber followed by a read. */
2097
2098 if (spill_alias_set)
2099 {
2100 insn_info_t i_ptr = active_local_stores;
2101 insn_info_t last = NULL;
2102
2103 if (dump_file)
2104 fprintf (dump_file, " processing spill load %d\n",
4862826d 2105 (int) spill_alias_set);
6fb5fa3c
DB
2106
2107 while (i_ptr)
2108 {
2109 store_info_t store_info = i_ptr->store_rec;
2110
2111 /* Skip the clobbers. */
2112 while (!store_info->is_set)
2113 store_info = store_info->next;
2114
2115 if (store_info->alias_set == spill_alias_set)
2116 {
2117 if (dump_file)
2118 dump_insn_info ("removing from active", i_ptr);
2119
2120 if (last)
2121 last->next_local_store = i_ptr->next_local_store;
2122 else
2123 active_local_stores = i_ptr->next_local_store;
2124 }
2125 else
2126 last = i_ptr;
2127 i_ptr = i_ptr->next_local_store;
2128 }
2129 }
2130 else if (group_id >= 0)
2131 {
2132 /* This is the restricted case where the base is a constant or
2133 the frame pointer and offset is a constant. */
2134 insn_info_t i_ptr = active_local_stores;
2135 insn_info_t last = NULL;
2136
2137 if (dump_file)
2138 {
2139 if (width == -1)
2140 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2141 group_id);
2142 else
2143 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2144 group_id, (int)offset, (int)(offset+width));
2145 }
2146
2147 while (i_ptr)
2148 {
2149 bool remove = false;
2150 store_info_t store_info = i_ptr->store_rec;
2151
2152 /* Skip the clobbers. */
2153 while (!store_info->is_set)
2154 store_info = store_info->next;
2155
2156 /* There are three cases here. */
2157 if (store_info->group_id < 0)
2158 /* We have a cselib store followed by a read from a
2159 const base. */
2160 remove
2161 = canon_true_dependence (store_info->mem,
2162 GET_MODE (store_info->mem),
2163 store_info->mem_addr,
6216f94e 2164 mem, mem_addr, rtx_varies_p);
6fb5fa3c
DB
2165
2166 else if (group_id == store_info->group_id)
2167 {
2168 /* This is a block mode load. We may get lucky and
2169 canon_true_dependence may save the day. */
2170 if (width == -1)
2171 remove
2172 = canon_true_dependence (store_info->mem,
2173 GET_MODE (store_info->mem),
2174 store_info->mem_addr,
6216f94e 2175 mem, mem_addr, rtx_varies_p);
6fb5fa3c
DB
2176
2177 /* If this read is just reading back something that we just
2178 stored, rewrite the read. */
2179 else
2180 {
2181 if (store_info->rhs
8dd5516b
JJ
2182 && offset >= store_info->begin
2183 && offset + width <= store_info->end
2184 && all_positions_needed_p (store_info,
2185 offset - store_info->begin,
2186 width)
2187 && replace_read (store_info, i_ptr, read_info,
2188 insn_info, loc, bb_info->regs_live))
2189 return 0;
2190
6fb5fa3c
DB
2191 /* The bases are the same, just see if the offsets
2192 overlap. */
2193 if ((offset < store_info->end)
2194 && (offset + width > store_info->begin))
2195 remove = true;
2196 }
2197 }
2198
2199 /* else
2200 The else case that is missing here is that the
2201 bases are constant but different. There is nothing
2202 to do here because there is no overlap. */
2203
2204 if (remove)
2205 {
2206 if (dump_file)
2207 dump_insn_info ("removing from active", i_ptr);
2208
2209 if (last)
2210 last->next_local_store = i_ptr->next_local_store;
2211 else
2212 active_local_stores = i_ptr->next_local_store;
2213 }
2214 else
2215 last = i_ptr;
2216 i_ptr = i_ptr->next_local_store;
2217 }
2218 }
2219 else
2220 {
2221 insn_info_t i_ptr = active_local_stores;
2222 insn_info_t last = NULL;
2223 if (dump_file)
2224 {
2225 fprintf (dump_file, " processing cselib load mem:");
2226 print_inline_rtx (dump_file, mem, 0);
2227 fprintf (dump_file, "\n");
2228 }
2229
2230 while (i_ptr)
2231 {
2232 bool remove = false;
2233 store_info_t store_info = i_ptr->store_rec;
2234
2235 if (dump_file)
2236 fprintf (dump_file, " processing cselib load against insn %d\n",
2237 INSN_UID (i_ptr->insn));
2238
2239 /* Skip the clobbers. */
2240 while (!store_info->is_set)
2241 store_info = store_info->next;
2242
2243 /* If this read is just reading back something that we just
2244 stored, rewrite the read. */
2245 if (store_info->rhs
2246 && store_info->group_id == -1
2247 && store_info->cse_base == base
efc3527a 2248 && width != -1
8dd5516b
JJ
2249 && offset >= store_info->begin
2250 && offset + width <= store_info->end
2251 && all_positions_needed_p (store_info,
2252 offset - store_info->begin, width)
2253 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2254 bb_info->regs_live))
2255 return 0;
6fb5fa3c
DB
2256
2257 if (!store_info->alias_set)
2258 remove = canon_true_dependence (store_info->mem,
2259 GET_MODE (store_info->mem),
2260 store_info->mem_addr,
6216f94e 2261 mem, mem_addr, rtx_varies_p);
6fb5fa3c
DB
2262
2263 if (remove)
2264 {
2265 if (dump_file)
2266 dump_insn_info ("removing from active", i_ptr);
2267
2268 if (last)
2269 last->next_local_store = i_ptr->next_local_store;
2270 else
2271 active_local_stores = i_ptr->next_local_store;
2272 }
2273 else
2274 last = i_ptr;
2275 i_ptr = i_ptr->next_local_store;
2276 }
2277 }
2278 return 0;
2279}
2280
2281/* A for_each_rtx callback in which DATA points the INSN_INFO for
2282 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2283 true for any part of *LOC. */
2284
2285static void
2286check_mem_read_use (rtx *loc, void *data)
2287{
2288 for_each_rtx (loc, check_mem_read_rtx, data);
2289}
2290
8dd5516b
JJ
2291
2292/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2293 So far it only handles arguments passed in registers. */
2294
2295static bool
2296get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2297{
2298 CUMULATIVE_ARGS args_so_far;
2299 tree arg;
2300 int idx;
2301
2302 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
2303
2304 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2305 for (idx = 0;
2306 arg != void_list_node && idx < nargs;
2307 arg = TREE_CHAIN (arg), idx++)
2308 {
2309 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2310 rtx reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1), link, tmp;
2311 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2312 || GET_MODE_CLASS (mode) != MODE_INT)
2313 return false;
2314
2315 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2316 link;
2317 link = XEXP (link, 1))
2318 if (GET_CODE (XEXP (link, 0)) == USE)
2319 {
2320 args[idx] = XEXP (XEXP (link, 0), 0);
2321 if (REG_P (args[idx])
2322 && REGNO (args[idx]) == REGNO (reg)
2323 && (GET_MODE (args[idx]) == mode
2324 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2325 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2326 <= UNITS_PER_WORD)
2327 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2328 > GET_MODE_SIZE (mode)))))
2329 break;
2330 }
2331 if (!link)
2332 return false;
2333
2334 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2335 if (GET_MODE (args[idx]) != mode)
2336 {
2337 if (!tmp || !CONST_INT_P (tmp))
2338 return false;
2339 tmp = GEN_INT (trunc_int_for_mode (INTVAL (tmp), mode));
2340 }
2341 if (tmp)
2342 args[idx] = tmp;
2343
2344 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
2345 }
2346 if (arg != void_list_node || idx != nargs)
2347 return false;
2348 return true;
2349}
2350
2351
6fb5fa3c
DB
2352/* Apply record_store to all candidate stores in INSN. Mark INSN
2353 if some part of it is not a candidate store and assigns to a
2354 non-register target. */
2355
2356static void
2357scan_insn (bb_info_t bb_info, rtx insn)
2358{
2359 rtx body;
f883e0a7 2360 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
6fb5fa3c
DB
2361 int mems_found = 0;
2362 memset (insn_info, 0, sizeof (struct insn_info));
2363
2364 if (dump_file)
2365 fprintf (dump_file, "\n**scanning insn=%d\n",
2366 INSN_UID (insn));
2367
2368 insn_info->prev_insn = bb_info->last_insn;
2369 insn_info->insn = insn;
2370 bb_info->last_insn = insn_info;
2371
2372
0d52bcc1 2373 /* Cselib clears the table for this case, so we have to essentially
6fb5fa3c
DB
2374 do the same. */
2375 if (NONJUMP_INSN_P (insn)
2376 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2377 && MEM_VOLATILE_P (PATTERN (insn)))
2378 {
2379 add_wild_read (bb_info);
2380 insn_info->cannot_delete = true;
2381 return;
2382 }
2383
2384 /* Look at all of the uses in the insn. */
2385 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2386
2387 if (CALL_P (insn))
2388 {
8dd5516b
JJ
2389 bool const_call;
2390 tree memset_call = NULL_TREE;
2391
6fb5fa3c 2392 insn_info->cannot_delete = true;
50f0f366 2393
6fb5fa3c 2394 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2395 however, they can read their parameters which may have
8dd5516b
JJ
2396 been pushed onto the stack.
2397 memset and bzero don't read memory either. */
2398 const_call = RTL_CONST_CALL_P (insn);
2399 if (!const_call)
2400 {
2401 rtx call = PATTERN (insn);
2402 if (GET_CODE (call) == PARALLEL)
2403 call = XVECEXP (call, 0, 0);
2404 if (GET_CODE (call) == SET)
2405 call = SET_SRC (call);
2406 if (GET_CODE (call) == CALL
2407 && MEM_P (XEXP (call, 0))
2408 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2409 {
2410 rtx symbol = XEXP (XEXP (call, 0), 0);
2411 if (SYMBOL_REF_DECL (symbol)
2412 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2413 {
2414 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2415 == BUILT_IN_NORMAL
2416 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2417 == BUILT_IN_MEMSET))
2418 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2419 memset_call = SYMBOL_REF_DECL (symbol);
2420 }
2421 }
2422 }
2423 if (const_call || memset_call)
6fb5fa3c
DB
2424 {
2425 insn_info_t i_ptr = active_local_stores;
2426 insn_info_t last = NULL;
2427
2428 if (dump_file)
8dd5516b
JJ
2429 fprintf (dump_file, "%s call %d\n",
2430 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2431
64520bdc
EB
2432 /* See the head comment of the frame_read field. */
2433 if (reload_completed)
2434 insn_info->frame_read = true;
2435
2436 /* Loop over the active stores and remove those which are
2437 killed by the const function call. */
6fb5fa3c
DB
2438 while (i_ptr)
2439 {
64520bdc
EB
2440 bool remove_store = false;
2441
2442 /* The stack pointer based stores are always killed. */
50f0f366 2443 if (i_ptr->stack_pointer_based)
64520bdc
EB
2444 remove_store = true;
2445
2446 /* If the frame is read, the frame related stores are killed. */
2447 else if (insn_info->frame_read)
2448 {
2449 store_info_t store_info = i_ptr->store_rec;
2450
2451 /* Skip the clobbers. */
2452 while (!store_info->is_set)
2453 store_info = store_info->next;
2454
2455 if (store_info->group_id >= 0
2456 && VEC_index (group_info_t, rtx_group_vec,
2457 store_info->group_id)->frame_related)
2458 remove_store = true;
2459 }
2460
2461 if (remove_store)
6fb5fa3c
DB
2462 {
2463 if (dump_file)
2464 dump_insn_info ("removing from active", i_ptr);
2465
2466 if (last)
2467 last->next_local_store = i_ptr->next_local_store;
2468 else
2469 active_local_stores = i_ptr->next_local_store;
2470 }
2471 else
2472 last = i_ptr;
64520bdc 2473
6fb5fa3c
DB
2474 i_ptr = i_ptr->next_local_store;
2475 }
8dd5516b
JJ
2476
2477 if (memset_call)
2478 {
2479 rtx args[3];
2480 if (get_call_args (insn, memset_call, args, 3)
2481 && CONST_INT_P (args[1])
2482 && CONST_INT_P (args[2])
2483 && INTVAL (args[2]) > 0)
2484 {
2485 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2486 set_mem_size (mem, args[2]);
2487 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2488 mems_found += record_store (body, bb_info);
2489 if (dump_file)
2490 fprintf (dump_file, "handling memset as BLKmode store\n");
2491 if (mems_found == 1)
2492 {
2493 insn_info->next_local_store = active_local_stores;
2494 active_local_stores = insn_info;
2495 }
2496 }
2497 }
6fb5fa3c
DB
2498 }
2499
50f0f366
EB
2500 else
2501 /* Every other call, including pure functions, may read memory. */
2502 add_wild_read (bb_info);
2503
6fb5fa3c
DB
2504 return;
2505 }
2506
2507 /* Assuming that there are sets in these insns, we cannot delete
2508 them. */
2509 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2510 || volatile_refs_p (PATTERN (insn))
6fb5fa3c
DB
2511 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
2512 || (RTX_FRAME_RELATED_P (insn))
2513 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2514 insn_info->cannot_delete = true;
2515
2516 body = PATTERN (insn);
2517 if (GET_CODE (body) == PARALLEL)
2518 {
2519 int i;
2520 for (i = 0; i < XVECLEN (body, 0); i++)
2521 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2522 }
2523 else
2524 mems_found += record_store (body, bb_info);
2525
2526 if (dump_file)
2527 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2528 mems_found, insn_info->cannot_delete ? "true" : "false");
2529
8dd5516b
JJ
2530 /* If we found some sets of mems, add it into the active_local_stores so
2531 that it can be locally deleted if found dead or used for
2532 replace_read and redundant constant store elimination. Otherwise mark
2533 it as cannot delete. This simplifies the processing later. */
2534 if (mems_found == 1)
6fb5fa3c
DB
2535 {
2536 insn_info->next_local_store = active_local_stores;
2537 active_local_stores = insn_info;
2538 }
2539 else
2540 insn_info->cannot_delete = true;
2541}
2542
2543
2544/* Remove BASE from the set of active_local_stores. This is a
2545 callback from cselib that is used to get rid of the stores in
2546 active_local_stores. */
2547
2548static void
2549remove_useless_values (cselib_val *base)
2550{
2551 insn_info_t insn_info = active_local_stores;
2552 insn_info_t last = NULL;
2553
2554 while (insn_info)
2555 {
2556 store_info_t store_info = insn_info->store_rec;
60564289 2557 bool del = false;
6fb5fa3c
DB
2558
2559 /* If ANY of the store_infos match the cselib group that is
2560 being deleted, then the insn can not be deleted. */
2561 while (store_info)
2562 {
2563 if ((store_info->group_id == -1)
2564 && (store_info->cse_base == base))
2565 {
60564289 2566 del = true;
6fb5fa3c
DB
2567 break;
2568 }
2569 store_info = store_info->next;
2570 }
2571
60564289 2572 if (del)
6fb5fa3c
DB
2573 {
2574 if (last)
2575 last->next_local_store = insn_info->next_local_store;
2576 else
2577 active_local_stores = insn_info->next_local_store;
2578 free_store_info (insn_info);
2579 }
2580 else
2581 last = insn_info;
2582
2583 insn_info = insn_info->next_local_store;
2584 }
2585}
2586
2587
2588/* Do all of step 1. */
2589
2590static void
2591dse_step1 (void)
2592{
2593 basic_block bb;
02b47899
KZ
2594 bitmap regs_live = BITMAP_ALLOC (NULL);
2595
6fb5fa3c
DB
2596 cselib_init (false);
2597 all_blocks = BITMAP_ALLOC (NULL);
2598 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2599 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2600
2601 FOR_ALL_BB (bb)
2602 {
2603 insn_info_t ptr;
f883e0a7 2604 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
6fb5fa3c
DB
2605
2606 memset (bb_info, 0, sizeof (struct bb_info));
2607 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2608 bb_info->regs_live = regs_live;
2609
2610 bitmap_copy (regs_live, DF_LR_IN (bb));
2611 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2612
2613 bb_table[bb->index] = bb_info;
2614 cselib_discard_hook = remove_useless_values;
2615
2616 if (bb->index >= NUM_FIXED_BLOCKS)
2617 {
2618 rtx insn;
2619
2620 cse_store_info_pool
2621 = create_alloc_pool ("cse_store_info_pool",
2622 sizeof (struct store_info), 100);
2623 active_local_stores = NULL;
2624 cselib_clear_table ();
2625
2626 /* Scan the insns. */
2627 FOR_BB_INSNS (bb, insn)
2628 {
2629 if (INSN_P (insn))
2630 scan_insn (bb_info, insn);
2631 cselib_process_insn (insn);
02b47899
KZ
2632 if (INSN_P (insn))
2633 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c
DB
2634 }
2635
2636 /* This is something of a hack, because the global algorithm
2637 is supposed to take care of the case where stores go dead
2638 at the end of the function. However, the global
2639 algorithm must take a more conservative view of block
2640 mode reads than the local alg does. So to get the case
2641 where you have a store to the frame followed by a non
0d52bcc1 2642 overlapping block more read, we look at the active local
6fb5fa3c
DB
2643 stores at the end of the function and delete all of the
2644 frame and spill based ones. */
2645 if (stores_off_frame_dead_at_return
2646 && (EDGE_COUNT (bb->succs) == 0
2647 || (single_succ_p (bb)
2648 && single_succ (bb) == EXIT_BLOCK_PTR
e3b5732b 2649 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2650 {
2651 insn_info_t i_ptr = active_local_stores;
2652 while (i_ptr)
2653 {
2654 store_info_t store_info = i_ptr->store_rec;
2655
2656 /* Skip the clobbers. */
2657 while (!store_info->is_set)
2658 store_info = store_info->next;
8dd5516b 2659 if (store_info->alias_set && !i_ptr->cannot_delete)
6fb5fa3c
DB
2660 delete_dead_store_insn (i_ptr);
2661 else
2662 if (store_info->group_id >= 0)
2663 {
2664 group_info_t group
2665 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
8dd5516b 2666 if (group->frame_related && !i_ptr->cannot_delete)
6fb5fa3c
DB
2667 delete_dead_store_insn (i_ptr);
2668 }
2669
2670 i_ptr = i_ptr->next_local_store;
2671 }
2672 }
2673
2674 /* Get rid of the loads that were discovered in
2675 replace_read. Cselib is finished with this block. */
2676 while (deferred_change_list)
2677 {
2678 deferred_change_t next = deferred_change_list->next;
2679
2680 /* There is no reason to validate this change. That was
2681 done earlier. */
2682 *deferred_change_list->loc = deferred_change_list->reg;
2683 pool_free (deferred_change_pool, deferred_change_list);
2684 deferred_change_list = next;
2685 }
2686
2687 /* Get rid of all of the cselib based store_infos in this
2688 block and mark the containing insns as not being
2689 deletable. */
2690 ptr = bb_info->last_insn;
2691 while (ptr)
2692 {
2693 if (ptr->contains_cselib_groups)
8dd5516b
JJ
2694 {
2695 store_info_t s_info = ptr->store_rec;
2696 while (s_info && !s_info->is_set)
2697 s_info = s_info->next;
2698 if (s_info
2699 && s_info->redundant_reason
2700 && s_info->redundant_reason->insn
2701 && !ptr->cannot_delete)
2702 {
2703 if (dump_file)
2704 fprintf (dump_file, "Locally deleting insn %d "
2705 "because insn %d stores the "
2706 "same value and couldn't be "
2707 "eliminated\n",
2708 INSN_UID (ptr->insn),
2709 INSN_UID (s_info->redundant_reason->insn));
2710 delete_dead_store_insn (ptr);
2711 }
2712 if (s_info)
2713 s_info->redundant_reason = NULL;
2714 free_store_info (ptr);
2715 }
2716 else
2717 {
2718 store_info_t s_info;
2719
2720 /* Free at least positions_needed bitmaps. */
2721 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2722 if (s_info->is_large)
2723 {
2724 BITMAP_FREE (s_info->positions_needed.large.bitmap);
2725 s_info->is_large = false;
2726 }
2727 }
6fb5fa3c
DB
2728 ptr = ptr->prev_insn;
2729 }
2730
2731 free_alloc_pool (cse_store_info_pool);
2732 }
02b47899 2733 bb_info->regs_live = NULL;
6fb5fa3c
DB
2734 }
2735
02b47899 2736 BITMAP_FREE (regs_live);
6fb5fa3c
DB
2737 cselib_finish ();
2738 htab_empty (rtx_group_table);
2739}
2740
2741\f
2742/*----------------------------------------------------------------------------
2743 Second step.
2744
2745 Assign each byte position in the stores that we are going to
2746 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2747 there are any bit positions assigned.
6fb5fa3c
DB
2748----------------------------------------------------------------------------*/
2749
2750static void
2751dse_step2_init (void)
2752{
2753 unsigned int i;
2754 group_info_t group;
2755
2756 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2757 {
2758 /* For all non stack related bases, we only consider a store to
2759 be deletable if there are two or more stores for that
2760 position. This is because it takes one store to make the
2761 other store redundant. However, for the stores that are
2762 stack related, we consider them if there is only one store
2763 for the position. We do this because the stack related
2764 stores can be deleted if their is no read between them and
2765 the end of the function.
2766
2767 To make this work in the current framework, we take the stack
2768 related bases add all of the bits from store1 into store2.
2769 This has the effect of making the eligible even if there is
2770 only one store. */
2771
2772 if (stores_off_frame_dead_at_return && group->frame_related)
2773 {
2774 bitmap_ior_into (group->store2_n, group->store1_n);
2775 bitmap_ior_into (group->store2_p, group->store1_p);
2776 if (dump_file)
2777 fprintf (dump_file, "group %d is frame related ", i);
2778 }
2779
2780 group->offset_map_size_n++;
2781 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2782 group->offset_map_size_p++;
2783 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2784 group->process_globally = false;
2785 if (dump_file)
2786 {
2787 fprintf (dump_file, "group %d(%d+%d): ", i,
2788 (int)bitmap_count_bits (group->store2_n),
2789 (int)bitmap_count_bits (group->store2_p));
2790 bitmap_print (dump_file, group->store2_n, "n ", " ");
2791 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2792 }
2793 }
2794}
2795
2796
2797/* Init the offset tables for the normal case. */
2798
2799static bool
2800dse_step2_nospill (void)
2801{
2802 unsigned int i;
2803 group_info_t group;
2804 /* Position 0 is unused because 0 is used in the maps to mean
2805 unused. */
2806 current_position = 1;
2807
2808 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2809 {
2810 bitmap_iterator bi;
2811 unsigned int j;
2812
2813 if (group == clear_alias_group)
2814 continue;
2815
2816 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2817 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2818 bitmap_clear (group->group_kill);
2819
2820 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2821 {
2822 bitmap_set_bit (group->group_kill, current_position);
2823 group->offset_map_n[j] = current_position++;
2824 group->process_globally = true;
2825 }
2826 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2827 {
2828 bitmap_set_bit (group->group_kill, current_position);
2829 group->offset_map_p[j] = current_position++;
2830 group->process_globally = true;
2831 }
2832 }
2833 return current_position != 1;
2834}
2835
2836
2837/* Init the offset tables for the spill case. */
2838
2839static bool
2840dse_step2_spill (void)
2841{
2842 unsigned int j;
2843 group_info_t group = clear_alias_group;
2844 bitmap_iterator bi;
2845
2846 /* Position 0 is unused because 0 is used in the maps to mean
2847 unused. */
2848 current_position = 1;
2849
2850 if (dump_file)
2851 {
2852 bitmap_print (dump_file, clear_alias_sets,
2853 "clear alias sets ", "\n");
2854 bitmap_print (dump_file, disqualified_clear_alias_sets,
2855 "disqualified clear alias sets ", "\n");
2856 }
2857
2858 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2859 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2860 bitmap_clear (group->group_kill);
2861
2862 /* Remove the disqualified positions from the store2_p set. */
2863 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2864
2865 /* We do not need to process the store2_n set because
2866 alias_sets are always positive. */
2867 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2868 {
2869 bitmap_set_bit (group->group_kill, current_position);
2870 group->offset_map_p[j] = current_position++;
2871 group->process_globally = true;
2872 }
2873
2874 return current_position != 1;
2875}
2876
2877
2878\f
2879/*----------------------------------------------------------------------------
2880 Third step.
2881
2882 Build the bit vectors for the transfer functions.
2883----------------------------------------------------------------------------*/
2884
2885
2886/* Note that this is NOT a general purpose function. Any mem that has
2887 an alias set registered here expected to be COMPLETELY unaliased:
2888 i.e it's addresses are not and need not be examined.
2889
2890 It is known that all references to this address will have this
2891 alias set and there are NO other references to this address in the
2892 function.
2893
2894 Currently the only place that is known to be clean enough to use
2895 this interface is the code that assigns the spill locations.
2896
2897 All of the mems that have alias_sets registered are subjected to a
2898 very powerful form of dse where function calls, volatile reads and
2899 writes, and reads from random location are not taken into account.
2900
2901 It is also assumed that these locations go dead when the function
2902 returns. This assumption could be relaxed if there were found to
2903 be places that this assumption was not correct.
2904
2905 The MODE is passed in and saved. The mode of each load or store to
2906 a mem with ALIAS_SET is checked against MEM. If the size of that
2907 load or store is different from MODE, processing is halted on this
2908 alias set. For the vast majority of aliases sets, all of the loads
2909 and stores will use the same mode. But vectors are treated
2910 differently: the alias set is established for the entire vector,
2911 but reload will insert loads and stores for individual elements and
2912 we do not necessarily have the information to track those separate
2913 elements. So when we see a mode mismatch, we just bail. */
2914
2915
2916void
4862826d 2917dse_record_singleton_alias_set (alias_set_type alias_set,
6fb5fa3c
DB
2918 enum machine_mode mode)
2919{
2920 struct clear_alias_mode_holder tmp_holder;
2921 struct clear_alias_mode_holder *entry;
2922 void **slot;
2923
2924 /* If we are not going to run dse, we need to return now or there
2925 will be problems with allocating the bitmaps. */
2926 if ((!gate_dse()) || !alias_set)
2927 return;
2928
2929 if (!clear_alias_sets)
2930 {
2931 clear_alias_sets = BITMAP_ALLOC (NULL);
2932 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
2933 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
2934 clear_alias_mode_eq, NULL);
2935 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2936 sizeof (struct clear_alias_mode_holder), 100);
2937 }
2938
2939 bitmap_set_bit (clear_alias_sets, alias_set);
2940
2941 tmp_holder.alias_set = alias_set;
2942
2943 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
2944 gcc_assert (*slot == NULL);
2945
f883e0a7
KG
2946 *slot = entry =
2947 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
6fb5fa3c
DB
2948 entry->alias_set = alias_set;
2949 entry->mode = mode;
2950}
2951
2952
2953/* Remove ALIAS_SET from the sets of stack slots being considered. */
2954
2955void
4862826d 2956dse_invalidate_singleton_alias_set (alias_set_type alias_set)
6fb5fa3c
DB
2957{
2958 if ((!gate_dse()) || !alias_set)
2959 return;
2960
2961 bitmap_clear_bit (clear_alias_sets, alias_set);
2962}
2963
2964
2965/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2966 there, return 0. */
2967
2968static int
2969get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2970{
2971 if (offset < 0)
2972 {
2973 HOST_WIDE_INT offset_p = -offset;
2974 if (offset_p >= group_info->offset_map_size_n)
2975 return 0;
2976 return group_info->offset_map_n[offset_p];
2977 }
2978 else
2979 {
2980 if (offset >= group_info->offset_map_size_p)
2981 return 0;
2982 return group_info->offset_map_p[offset];
2983 }
2984}
2985
2986
2987/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2988 may be NULL. */
2989
2990static void
2991scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2992{
2993 while (store_info)
2994 {
2995 HOST_WIDE_INT i;
2996 group_info_t group_info
2997 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2998 if (group_info->process_globally)
2999 for (i = store_info->begin; i < store_info->end; i++)
3000 {
3001 int index = get_bitmap_index (group_info, i);
3002 if (index != 0)
3003 {
3004 bitmap_set_bit (gen, index);
3005 if (kill)
3006 bitmap_clear_bit (kill, index);
3007 }
3008 }
3009 store_info = store_info->next;
3010 }
3011}
3012
3013
3014/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3015 may be NULL. */
3016
3017static void
3018scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3019{
3020 while (store_info)
3021 {
3022 if (store_info->alias_set)
3023 {
3024 int index = get_bitmap_index (clear_alias_group,
3025 store_info->alias_set);
3026 if (index != 0)
3027 {
3028 bitmap_set_bit (gen, index);
3029 if (kill)
3030 bitmap_clear_bit (kill, index);
3031 }
3032 }
3033 store_info = store_info->next;
3034 }
3035}
3036
3037
3038/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3039 may be NULL. */
3040
3041static void
3042scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3043{
3044 read_info_t read_info = insn_info->read_rec;
3045 int i;
3046 group_info_t group;
3047
64520bdc
EB
3048 /* If this insn reads the frame, kill all the frame related stores. */
3049 if (insn_info->frame_read)
3050 {
3051 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3052 if (group->process_globally && group->frame_related)
3053 {
3054 if (kill)
3055 bitmap_ior_into (kill, group->group_kill);
3056 bitmap_and_compl_into (gen, group->group_kill);
3057 }
3058 }
3059
6fb5fa3c
DB
3060 while (read_info)
3061 {
3062 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3063 {
3064 if (group->process_globally)
3065 {
3066 if (i == read_info->group_id)
3067 {
3068 if (read_info->begin > read_info->end)
3069 {
3070 /* Begin > end for block mode reads. */
3071 if (kill)
3072 bitmap_ior_into (kill, group->group_kill);
3073 bitmap_and_compl_into (gen, group->group_kill);
3074 }
3075 else
3076 {
3077 /* The groups are the same, just process the
3078 offsets. */
3079 HOST_WIDE_INT j;
3080 for (j = read_info->begin; j < read_info->end; j++)
3081 {
3082 int index = get_bitmap_index (group, j);
3083 if (index != 0)
3084 {
3085 if (kill)
3086 bitmap_set_bit (kill, index);
3087 bitmap_clear_bit (gen, index);
3088 }
3089 }
3090 }
3091 }
3092 else
3093 {
3094 /* The groups are different, if the alias sets
3095 conflict, clear the entire group. We only need
3096 to apply this test if the read_info is a cselib
3097 read. Anything with a constant base cannot alias
3098 something else with a different constant
3099 base. */
3100 if ((read_info->group_id < 0)
3101 && canon_true_dependence (group->base_mem,
3102 QImode,
6216f94e
JJ
3103 group->canon_base_addr,
3104 read_info->mem, NULL_RTX,
3105 rtx_varies_p))
6fb5fa3c
DB
3106 {
3107 if (kill)
3108 bitmap_ior_into (kill, group->group_kill);
3109 bitmap_and_compl_into (gen, group->group_kill);
3110 }
3111 }
3112 }
3113 }
3114
3115 read_info = read_info->next;
3116 }
3117}
3118
3119/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3120 may be NULL. */
3121
3122static void
3123scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3124{
3125 while (read_info)
3126 {
3127 if (read_info->alias_set)
3128 {
3129 int index = get_bitmap_index (clear_alias_group,
3130 read_info->alias_set);
3131 if (index != 0)
3132 {
3133 if (kill)
3134 bitmap_set_bit (kill, index);
3135 bitmap_clear_bit (gen, index);
3136 }
3137 }
3138
3139 read_info = read_info->next;
3140 }
3141}
3142
3143
3144/* Return the insn in BB_INFO before the first wild read or if there
3145 are no wild reads in the block, return the last insn. */
3146
3147static insn_info_t
3148find_insn_before_first_wild_read (bb_info_t bb_info)
3149{
3150 insn_info_t insn_info = bb_info->last_insn;
3151 insn_info_t last_wild_read = NULL;
3152
3153 while (insn_info)
3154 {
3155 if (insn_info->wild_read)
3156 {
3157 last_wild_read = insn_info->prev_insn;
3158 /* Block starts with wild read. */
3159 if (!last_wild_read)
3160 return NULL;
3161 }
3162
3163 insn_info = insn_info->prev_insn;
3164 }
3165
3166 if (last_wild_read)
3167 return last_wild_read;
3168 else
3169 return bb_info->last_insn;
3170}
3171
3172
3173/* Scan the insns in BB_INFO starting at PTR and going to the top of
3174 the block in order to build the gen and kill sets for the block.
3175 We start at ptr which may be the last insn in the block or may be
3176 the first insn with a wild read. In the latter case we are able to
3177 skip the rest of the block because it just does not matter:
3178 anything that happens is hidden by the wild read. */
3179
3180static void
3181dse_step3_scan (bool for_spills, basic_block bb)
3182{
3183 bb_info_t bb_info = bb_table[bb->index];
3184 insn_info_t insn_info;
3185
3186 if (for_spills)
3187 /* There are no wild reads in the spill case. */
3188 insn_info = bb_info->last_insn;
3189 else
3190 insn_info = find_insn_before_first_wild_read (bb_info);
3191
3192 /* In the spill case or in the no_spill case if there is no wild
3193 read in the block, we will need a kill set. */
3194 if (insn_info == bb_info->last_insn)
3195 {
3196 if (bb_info->kill)
3197 bitmap_clear (bb_info->kill);
3198 else
3199 bb_info->kill = BITMAP_ALLOC (NULL);
3200 }
3201 else
3202 if (bb_info->kill)
3203 BITMAP_FREE (bb_info->kill);
3204
3205 while (insn_info)
3206 {
3207 /* There may have been code deleted by the dce pass run before
3208 this phase. */
3209 if (insn_info->insn && INSN_P (insn_info->insn))
3210 {
3211 /* Process the read(s) last. */
3212 if (for_spills)
3213 {
3214 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3215 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3216 }
3217 else
3218 {
3219 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3220 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3221 }
3222 }
3223
3224 insn_info = insn_info->prev_insn;
3225 }
3226}
3227
3228
3229/* Set the gen set of the exit block, and also any block with no
3230 successors that does not have a wild read. */
3231
3232static void
3233dse_step3_exit_block_scan (bb_info_t bb_info)
3234{
3235 /* The gen set is all 0's for the exit block except for the
3236 frame_pointer_group. */
3237
3238 if (stores_off_frame_dead_at_return)
3239 {
3240 unsigned int i;
3241 group_info_t group;
3242
3243 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3244 {
3245 if (group->process_globally && group->frame_related)
3246 bitmap_ior_into (bb_info->gen, group->group_kill);
3247 }
3248 }
3249}
3250
3251
3252/* Find all of the blocks that are not backwards reachable from the
3253 exit block or any block with no successors (BB). These are the
3254 infinite loops or infinite self loops. These blocks will still
3255 have their bits set in UNREACHABLE_BLOCKS. */
3256
3257static void
3258mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3259{
3260 edge e;
3261 edge_iterator ei;
3262
3263 if (TEST_BIT (unreachable_blocks, bb->index))
3264 {
3265 RESET_BIT (unreachable_blocks, bb->index);
3266 FOR_EACH_EDGE (e, ei, bb->preds)
3267 {
3268 mark_reachable_blocks (unreachable_blocks, e->src);
3269 }
3270 }
3271}
3272
3273/* Build the transfer functions for the function. */
3274
3275static void
3276dse_step3 (bool for_spills)
3277{
3278 basic_block bb;
3279 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3280 sbitmap_iterator sbi;
3281 bitmap all_ones = NULL;
3282 unsigned int i;
3283
3284 sbitmap_ones (unreachable_blocks);
3285
3286 FOR_ALL_BB (bb)
3287 {
3288 bb_info_t bb_info = bb_table[bb->index];
3289 if (bb_info->gen)
3290 bitmap_clear (bb_info->gen);
3291 else
3292 bb_info->gen = BITMAP_ALLOC (NULL);
3293
3294 if (bb->index == ENTRY_BLOCK)
3295 ;
3296 else if (bb->index == EXIT_BLOCK)
3297 dse_step3_exit_block_scan (bb_info);
3298 else
3299 dse_step3_scan (for_spills, bb);
3300 if (EDGE_COUNT (bb->succs) == 0)
3301 mark_reachable_blocks (unreachable_blocks, bb);
3302
3303 /* If this is the second time dataflow is run, delete the old
3304 sets. */
3305 if (bb_info->in)
3306 BITMAP_FREE (bb_info->in);
3307 if (bb_info->out)
3308 BITMAP_FREE (bb_info->out);
3309 }
3310
3311 /* For any block in an infinite loop, we must initialize the out set
3312 to all ones. This could be expensive, but almost never occurs in
3313 practice. However, it is common in regression tests. */
3314 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3315 {
3316 if (bitmap_bit_p (all_blocks, i))
3317 {
3318 bb_info_t bb_info = bb_table[i];
3319 if (!all_ones)
3320 {
3321 unsigned int j;
3322 group_info_t group;
3323
3324 all_ones = BITMAP_ALLOC (NULL);
3325 for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
3326 bitmap_ior_into (all_ones, group->group_kill);
3327 }
3328 if (!bb_info->out)
3329 {
3330 bb_info->out = BITMAP_ALLOC (NULL);
3331 bitmap_copy (bb_info->out, all_ones);
3332 }
3333 }
3334 }
3335
3336 if (all_ones)
3337 BITMAP_FREE (all_ones);
3338 sbitmap_free (unreachable_blocks);
3339}
3340
3341
3342\f
3343/*----------------------------------------------------------------------------
3344 Fourth step.
3345
3346 Solve the bitvector equations.
3347----------------------------------------------------------------------------*/
3348
3349
3350/* Confluence function for blocks with no successors. Create an out
3351 set from the gen set of the exit block. This block logically has
3352 the exit block as a successor. */
3353
3354
3355
3356static void
3357dse_confluence_0 (basic_block bb)
3358{
3359 bb_info_t bb_info = bb_table[bb->index];
3360
3361 if (bb->index == EXIT_BLOCK)
3362 return;
3363
3364 if (!bb_info->out)
3365 {
3366 bb_info->out = BITMAP_ALLOC (NULL);
3367 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3368 }
3369}
3370
3371/* Propagate the information from the in set of the dest of E to the
3372 out set of the src of E. If the various in or out sets are not
3373 there, that means they are all ones. */
3374
3375static void
3376dse_confluence_n (edge e)
3377{
3378 bb_info_t src_info = bb_table[e->src->index];
3379 bb_info_t dest_info = bb_table[e->dest->index];
3380
3381 if (dest_info->in)
3382 {
3383 if (src_info->out)
3384 bitmap_and_into (src_info->out, dest_info->in);
3385 else
3386 {
3387 src_info->out = BITMAP_ALLOC (NULL);
3388 bitmap_copy (src_info->out, dest_info->in);
3389 }
3390 }
3391}
3392
3393
3394/* Propagate the info from the out to the in set of BB_INDEX's basic
3395 block. There are three cases:
3396
3397 1) The block has no kill set. In this case the kill set is all
3398 ones. It does not matter what the out set of the block is, none of
3399 the info can reach the top. The only thing that reaches the top is
3400 the gen set and we just copy the set.
3401
3402 2) There is a kill set but no out set and bb has successors. In
3403 this case we just return. Eventually an out set will be created and
3404 it is better to wait than to create a set of ones.
3405
3406 3) There is both a kill and out set. We apply the obvious transfer
3407 function.
3408*/
3409
3410static bool
3411dse_transfer_function (int bb_index)
3412{
3413 bb_info_t bb_info = bb_table[bb_index];
3414
3415 if (bb_info->kill)
3416 {
3417 if (bb_info->out)
3418 {
3419 /* Case 3 above. */
3420 if (bb_info->in)
3421 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3422 bb_info->out, bb_info->kill);
3423 else
3424 {
3425 bb_info->in = BITMAP_ALLOC (NULL);
3426 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3427 bb_info->out, bb_info->kill);
3428 return true;
3429 }
3430 }
3431 else
3432 /* Case 2 above. */
3433 return false;
3434 }
3435 else
3436 {
3437 /* Case 1 above. If there is already an in set, nothing
3438 happens. */
3439 if (bb_info->in)
3440 return false;
3441 else
3442 {
3443 bb_info->in = BITMAP_ALLOC (NULL);
3444 bitmap_copy (bb_info->in, bb_info->gen);
3445 return true;
3446 }
3447 }
3448}
3449
3450/* Solve the dataflow equations. */
3451
3452static void
3453dse_step4 (void)
3454{
3455 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3456 dse_confluence_n, dse_transfer_function,
3457 all_blocks, df_get_postorder (DF_BACKWARD),
3458 df_get_n_blocks (DF_BACKWARD));
3459 if (dump_file)
3460 {
3461 basic_block bb;
3462
3463 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3464 FOR_ALL_BB (bb)
3465 {
3466 bb_info_t bb_info = bb_table[bb->index];
3467
3468 df_print_bb_index (bb, dump_file);
3469 if (bb_info->in)
3470 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3471 else
3472 fprintf (dump_file, " in: *MISSING*\n");
3473 if (bb_info->gen)
3474 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3475 else
3476 fprintf (dump_file, " gen: *MISSING*\n");
3477 if (bb_info->kill)
3478 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3479 else
3480 fprintf (dump_file, " kill: *MISSING*\n");
3481 if (bb_info->out)
3482 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3483 else
3484 fprintf (dump_file, " out: *MISSING*\n\n");
3485 }
3486 }
3487}
3488
3489
3490\f
3491/*----------------------------------------------------------------------------
3492 Fifth step.
3493
0d52bcc1 3494 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3495----------------------------------------------------------------------------*/
3496
3497
3498static void
3499dse_step5_nospill (void)
3500{
3501 basic_block bb;
3502 FOR_EACH_BB (bb)
3503 {
3504 bb_info_t bb_info = bb_table[bb->index];
3505 insn_info_t insn_info = bb_info->last_insn;
3506 bitmap v = bb_info->out;
3507
3508 while (insn_info)
3509 {
3510 bool deleted = false;
3511 if (dump_file && insn_info->insn)
3512 {
3513 fprintf (dump_file, "starting to process insn %d\n",
3514 INSN_UID (insn_info->insn));
3515 bitmap_print (dump_file, v, " v: ", "\n");
3516 }
3517
3518 /* There may have been code deleted by the dce pass run before
3519 this phase. */
3520 if (insn_info->insn
3521 && INSN_P (insn_info->insn)
3522 && (!insn_info->cannot_delete)
3523 && (!bitmap_empty_p (v)))
3524 {
3525 store_info_t store_info = insn_info->store_rec;
3526
3527 /* Try to delete the current insn. */
3528 deleted = true;
3529
3530 /* Skip the clobbers. */
3531 while (!store_info->is_set)
3532 store_info = store_info->next;
3533
3534 if (store_info->alias_set)
3535 deleted = false;
3536 else
3537 {
3538 HOST_WIDE_INT i;
3539 group_info_t group_info
3540 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3541
3542 for (i = store_info->begin; i < store_info->end; i++)
3543 {
3544 int index = get_bitmap_index (group_info, i);
3545
3546 if (dump_file)
3547 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3548 if (index == 0 || !bitmap_bit_p (v, index))
3549 {
3550 if (dump_file)
3551 fprintf (dump_file, "failing at i = %d\n", (int)i);
3552 deleted = false;
3553 break;
3554 }
3555 }
3556 }
3557 if (deleted)
3558 {
3559 if (dbg_cnt (dse))
3560 {
3561 check_for_inc_dec (insn_info->insn);
3562 delete_insn (insn_info->insn);
3563 insn_info->insn = NULL;
3564 globally_deleted++;
3565 }
3566 }
3567 }
3568 /* We do want to process the local info if the insn was
6ed3da00 3569 deleted. For instance, if the insn did a wild read, we
6fb5fa3c
DB
3570 no longer need to trash the info. */
3571 if (insn_info->insn
3572 && INSN_P (insn_info->insn)
3573 && (!deleted))
3574 {
3575 scan_stores_nospill (insn_info->store_rec, v, NULL);
3576 if (insn_info->wild_read)
3577 {
3578 if (dump_file)
3579 fprintf (dump_file, "wild read\n");
3580 bitmap_clear (v);
3581 }
3582 else if (insn_info->read_rec)
3583 {
3584 if (dump_file)
3585 fprintf (dump_file, "regular read\n");
3586 scan_reads_nospill (insn_info, v, NULL);
3587 }
3588 }
3589
3590 insn_info = insn_info->prev_insn;
3591 }
3592 }
3593}
3594
3595
3596static void
3597dse_step5_spill (void)
3598{
3599 basic_block bb;
3600 FOR_EACH_BB (bb)
3601 {
3602 bb_info_t bb_info = bb_table[bb->index];
3603 insn_info_t insn_info = bb_info->last_insn;
3604 bitmap v = bb_info->out;
3605
3606 while (insn_info)
3607 {
3608 bool deleted = false;
3609 /* There may have been code deleted by the dce pass run before
3610 this phase. */
3611 if (insn_info->insn
3612 && INSN_P (insn_info->insn)
3613 && (!insn_info->cannot_delete)
3614 && (!bitmap_empty_p (v)))
3615 {
3616 /* Try to delete the current insn. */
3617 store_info_t store_info = insn_info->store_rec;
3618 deleted = true;
3619
3620 while (store_info)
3621 {
3622 if (store_info->alias_set)
3623 {
3624 int index = get_bitmap_index (clear_alias_group,
3625 store_info->alias_set);
3626 if (index == 0 || !bitmap_bit_p (v, index))
3627 {
3628 deleted = false;
3629 break;
3630 }
3631 }
3632 else
3633 deleted = false;
3634 store_info = store_info->next;
3635 }
3636 if (deleted && dbg_cnt (dse))
3637 {
3638 if (dump_file)
3639 fprintf (dump_file, "Spill deleting insn %d\n",
3640 INSN_UID (insn_info->insn));
3641 check_for_inc_dec (insn_info->insn);
3642 delete_insn (insn_info->insn);
3643 spill_deleted++;
3644 insn_info->insn = NULL;
3645 }
3646 }
3647
3648 if (insn_info->insn
3649 && INSN_P (insn_info->insn)
3650 && (!deleted))
3651 {
3652 scan_stores_spill (insn_info->store_rec, v, NULL);
3653 scan_reads_spill (insn_info->read_rec, v, NULL);
3654 }
3655
3656 insn_info = insn_info->prev_insn;
3657 }
3658 }
3659}
3660
3661
3662\f
3663/*----------------------------------------------------------------------------
3664 Sixth step.
3665
8dd5516b
JJ
3666 Delete stores made redundant by earlier stores (which store the same
3667 value) that couldn't be eliminated.
3668----------------------------------------------------------------------------*/
3669
3670static void
3671dse_step6 (void)
3672{
3673 basic_block bb;
3674
3675 FOR_ALL_BB (bb)
3676 {
3677 bb_info_t bb_info = bb_table[bb->index];
3678 insn_info_t insn_info = bb_info->last_insn;
3679
3680 while (insn_info)
3681 {
3682 /* There may have been code deleted by the dce pass run before
3683 this phase. */
3684 if (insn_info->insn
3685 && INSN_P (insn_info->insn)
3686 && !insn_info->cannot_delete)
3687 {
3688 store_info_t s_info = insn_info->store_rec;
3689
3690 while (s_info && !s_info->is_set)
3691 s_info = s_info->next;
3692 if (s_info
3693 && s_info->redundant_reason
3694 && s_info->redundant_reason->insn
3695 && INSN_P (s_info->redundant_reason->insn))
3696 {
3697 rtx rinsn = s_info->redundant_reason->insn;
3698 if (dump_file)
3699 fprintf (dump_file, "Locally deleting insn %d "
3700 "because insn %d stores the "
3701 "same value and couldn't be "
3702 "eliminated\n",
3703 INSN_UID (insn_info->insn),
3704 INSN_UID (rinsn));
3705 delete_dead_store_insn (insn_info);
3706 }
3707 }
3708 insn_info = insn_info->prev_insn;
3709 }
3710 }
3711}
3712\f
3713/*----------------------------------------------------------------------------
3714 Seventh step.
3715
6fb5fa3c
DB
3716 Destroy everything left standing.
3717----------------------------------------------------------------------------*/
3718
3719static void
8dd5516b 3720dse_step7 (bool global_done)
6fb5fa3c
DB
3721{
3722 unsigned int i;
3723 group_info_t group;
3724 basic_block bb;
3725
370f38e8 3726 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
6fb5fa3c 3727 {
370f38e8
KZ
3728 free (group->offset_map_n);
3729 free (group->offset_map_p);
3730 BITMAP_FREE (group->store1_n);
3731 BITMAP_FREE (group->store1_p);
3732 BITMAP_FREE (group->store2_n);
3733 BITMAP_FREE (group->store2_p);
3734 BITMAP_FREE (group->group_kill);
6fb5fa3c
DB
3735 }
3736
370f38e8
KZ
3737 if (global_done)
3738 FOR_ALL_BB (bb)
3739 {
3740 bb_info_t bb_info = bb_table[bb->index];
3741 BITMAP_FREE (bb_info->gen);
3742 if (bb_info->kill)
3743 BITMAP_FREE (bb_info->kill);
3744 if (bb_info->in)
3745 BITMAP_FREE (bb_info->in);
3746 if (bb_info->out)
3747 BITMAP_FREE (bb_info->out);
3748 }
3749
6fb5fa3c
DB
3750 if (clear_alias_sets)
3751 {
3752 BITMAP_FREE (clear_alias_sets);
3753 BITMAP_FREE (disqualified_clear_alias_sets);
3754 free_alloc_pool (clear_alias_mode_pool);
3755 htab_delete (clear_alias_mode_table);
3756 }
3757
3758 end_alias_analysis ();
3759 free (bb_table);
3760 htab_delete (rtx_group_table);
3761 VEC_free (group_info_t, heap, rtx_group_vec);
3762 BITMAP_FREE (all_blocks);
3763 BITMAP_FREE (scratch);
3764
3765 free_alloc_pool (rtx_store_info_pool);
3766 free_alloc_pool (read_info_pool);
3767 free_alloc_pool (insn_info_pool);
3768 free_alloc_pool (bb_info_pool);
3769 free_alloc_pool (rtx_group_info_pool);
3770 free_alloc_pool (deferred_change_pool);
3771}
3772
3773
6fb5fa3c
DB
3774/* -------------------------------------------------------------------------
3775 DSE
3776 ------------------------------------------------------------------------- */
3777
3778/* Callback for running pass_rtl_dse. */
3779
3780static unsigned int
3781rest_of_handle_dse (void)
3782{
3783 bool did_global = false;
3784
3785 df_set_flags (DF_DEFER_INSN_RESCAN);
3786
02b47899
KZ
3787 /* Need the notes since we must track live hardregs in the forwards
3788 direction. */
3789 df_note_add_problem ();
3790 df_analyze ();
3791
6fb5fa3c
DB
3792 dse_step0 ();
3793 dse_step1 ();
3794 dse_step2_init ();
3795 if (dse_step2_nospill ())
3796 {
3797 df_set_flags (DF_LR_RUN_DCE);
3798 df_analyze ();
3799 did_global = true;
3800 if (dump_file)
3801 fprintf (dump_file, "doing global processing\n");
3802 dse_step3 (false);
3803 dse_step4 ();
3804 dse_step5_nospill ();
3805 }
3806
3807 /* For the instance of dse that runs after reload, we make a special
3808 pass to process the spills. These are special in that they are
3809 totally transparent, i.e, there is no aliasing issues that need
3810 to be considered. This means that the wild reads that kill
3811 everything else do not apply here. */
3812 if (clear_alias_sets && dse_step2_spill ())
3813 {
3814 if (!did_global)
3815 {
3816 df_set_flags (DF_LR_RUN_DCE);
3817 df_analyze ();
3818 }
3819 did_global = true;
3820 if (dump_file)
3821 fprintf (dump_file, "doing global spill processing\n");
3822 dse_step3 (true);
3823 dse_step4 ();
3824 dse_step5_spill ();
3825 }
8dd5516b
JJ
3826
3827 dse_step6 ();
3828 dse_step7 (did_global);
6fb5fa3c
DB
3829
3830 if (dump_file)
3831 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3832 locally_deleted, globally_deleted, spill_deleted);
3833 return 0;
3834}
3835
3836static bool
3837gate_dse (void)
3838{
7d817ebc
DE
3839 return gate_dse1 () || gate_dse2 ();
3840}
3841
3842static bool
3843gate_dse1 (void)
3844{
3845 return optimize > 0 && flag_dse
3846 && dbg_cnt (dse1);
3847}
3848
3849static bool
3850gate_dse2 (void)
3851{
3852 return optimize > 0 && flag_dse
3853 && dbg_cnt (dse2);
6fb5fa3c
DB
3854}
3855
8ddbbcae 3856struct rtl_opt_pass pass_rtl_dse1 =
6fb5fa3c 3857{
8ddbbcae
JH
3858 {
3859 RTL_PASS,
6fb5fa3c 3860 "dse1", /* name */
7d817ebc 3861 gate_dse1, /* gate */
6fb5fa3c
DB
3862 rest_of_handle_dse, /* execute */
3863 NULL, /* sub */
3864 NULL, /* next */
3865 0, /* static_pass_number */
3866 TV_DSE1, /* tv_id */
3867 0, /* properties_required */
3868 0, /* properties_provided */
3869 0, /* properties_destroyed */
3870 0, /* todo_flags_start */
3871 TODO_dump_func |
a36b8a1e 3872 TODO_df_finish | TODO_verify_rtl_sharing |
8ddbbcae
JH
3873 TODO_ggc_collect /* todo_flags_finish */
3874 }
6fb5fa3c
DB
3875};
3876
8ddbbcae 3877struct rtl_opt_pass pass_rtl_dse2 =
6fb5fa3c 3878{
8ddbbcae
JH
3879 {
3880 RTL_PASS,
6fb5fa3c 3881 "dse2", /* name */
7d817ebc 3882 gate_dse2, /* gate */
6fb5fa3c
DB
3883 rest_of_handle_dse, /* execute */
3884 NULL, /* sub */
3885 NULL, /* next */
3886 0, /* static_pass_number */
3887 TV_DSE2, /* tv_id */
3888 0, /* properties_required */
3889 0, /* properties_provided */
3890 0, /* properties_destroyed */
3891 0, /* todo_flags_start */
3892 TODO_dump_func |
a36b8a1e 3893 TODO_df_finish | TODO_verify_rtl_sharing |
8ddbbcae
JH
3894 TODO_ggc_collect /* todo_flags_finish */
3895 }
6fb5fa3c 3896};