]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.c
re PR tree-optimization/91114 (ICE in vect_analyze_loop, at tree-vect-loop.c:2415)
[thirdparty/gcc.git] / gcc / dse.c
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
a5544970 2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "target.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5 33#include "predict.h"
c7131fb2 34#include "df.h"
4d0cdd0c 35#include "memmodel.h"
957060b5
AM
36#include "tm_p.h"
37#include "gimple-ssa.h"
38#include "expmed.h"
39#include "optabs.h"
957060b5
AM
40#include "emit-rtl.h"
41#include "recog.h"
40e23961 42#include "alias.h"
d8a2d370 43#include "stor-layout.h"
60393bbc 44#include "cfgrtl.h"
6fb5fa3c 45#include "cselib.h"
6fb5fa3c 46#include "tree-pass.h"
36566b39 47#include "explow.h"
6fb5fa3c 48#include "expr.h"
6fb5fa3c 49#include "dbgcnt.h"
dabd47e7 50#include "params.h"
d7111da8 51#include "rtl-iter.h"
6c5ed3f1 52#include "cfgcleanup.h"
6fb5fa3c
DB
53
54/* This file contains three techniques for performing Dead Store
b8698a0f 55 Elimination (dse).
6fb5fa3c
DB
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
b8698a0f 61
6fb5fa3c
DB
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
026c3cfd 67 processes the spill slots. This differs from the second
6fb5fa3c
DB
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
b8698a0f 91 3) Set up the global dataflow equations based on processing the
6fb5fa3c
DB
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
073a8998 99 6) Delete insns that store the same value as preceding store
8dd5516b
JJ
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
6fb5fa3c
DB
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
0d52bcc1 108 forwards ordering is to accommodate cselib.
6fb5fa3c 109
5ef0b50d 110 We make a simplifying assumption: addresses fall into four broad
6fb5fa3c
DB
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
5ef0b50d 119 global pass only handles 1).
6fb5fa3c
DB
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
5ef0b50d 125 function contain another store to A before a read to A.
6fb5fa3c
DB
126
127 If the address A is relative to the stack frame, a store S2 to A
5ef0b50d 128 can be eliminated if there are no paths from S2 that reach the
6fb5fa3c 129 end of the function that read A before another store to A. In
5ef0b50d 130 this case S2 can be deleted if there are paths from S2 to the
6fb5fa3c
DB
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
5ef0b50d 141 implementation requires a lot of bitmaps filled with 1s.
6fb5fa3c
DB
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
b8698a0f 145 for details.
6fb5fa3c
DB
146
147 There are two places for further enhancements to this algorithm:
b8698a0f 148
6fb5fa3c
DB
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
6ed3da00 156 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
b8698a0f 190 off the frame pointer, the global algorithm handles this slot.
6fb5fa3c
DB
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
0d52bcc1 195 required is to have those passes make the same calls that reload
6fb5fa3c
DB
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199/* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203#define MAX_OFFSET (64 * 1024)
204
3f9b14ff
SB
205/* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211static bitmap_obstack dse_bitmap_obstack;
212
213/* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215static struct obstack dse_obstack;
216
217/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
6fb5fa3c 218static bitmap scratch = NULL;
3f9b14ff 219
da6603c6 220struct insn_info_type;
6fb5fa3c
DB
221
222/* This structure holds information about a candidate store. */
b8698a0f 223struct store_info
6fb5fa3c
DB
224{
225
226 /* False means this is a clobber. */
227 bool is_set;
228
8dd5516b
JJ
229 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
230 bool is_large;
231
6fb5fa3c
DB
232 /* The id of the mem group of the base address. If rtx_varies_p is
233 true, this is -1. Otherwise, it is the index into the group
234 table. */
235 int group_id;
b8698a0f 236
6fb5fa3c
DB
237 /* This is the cselib value. */
238 cselib_val *cse_base;
239
240 /* This canonized mem. */
241 rtx mem;
242
6216f94e 243 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
244 rtx mem_addr;
245
71d6a386 246 /* The offset of the first byte associated with the operation. */
02ce5d90 247 poly_int64 offset;
71d6a386
RS
248
249 /* The number of bytes covered by the operation. This is always exact
250 and known (rather than -1). */
02ce5d90 251 poly_int64 width;
8dd5516b
JJ
252
253 union
254 {
255 /* A bitmask as wide as the number of bytes in the word that
256 contains a 1 if the byte may be needed. The store is unused if
257 all of the bits are 0. This is used if IS_LARGE is false. */
258 unsigned HOST_WIDE_INT small_bitmask;
259
260 struct
261 {
02ce5d90
RS
262 /* A bitmap with one bit per byte, or null if the number of
263 bytes isn't known at compile time. A cleared bit means
264 the position is needed. Used if IS_LARGE is true. */
dc491a25 265 bitmap bmap;
6fb5fa3c 266
02ce5d90
RS
267 /* When BITMAP is nonnull, this counts the number of set bits
268 (i.e. unneeded bytes) in the bitmap. If it is equal to
269 WIDTH, the whole store is unused.
270
271 When BITMAP is null:
272 - the store is definitely not needed when COUNT == 1
273 - all the store is needed when COUNT == 0 and RHS is nonnull
274 - otherwise we don't know which parts of the store are needed. */
8dd5516b
JJ
275 int count;
276 } large;
277 } positions_needed;
6fb5fa3c
DB
278
279 /* The next store info for this insn. */
280 struct store_info *next;
281
282 /* The right hand side of the store. This is used if there is a
283 subsequent reload of the mems address somewhere later in the
284 basic block. */
8dd5516b
JJ
285 rtx rhs;
286
287 /* If rhs is or holds a constant, this contains that constant,
288 otherwise NULL. */
289 rtx const_rhs;
290
291 /* Set if this store stores the same constant value as REDUNDANT_REASON
292 insn stored. These aren't eliminated early, because doing that
293 might prevent the earlier larger store to be eliminated. */
da6603c6 294 struct insn_info_type *redundant_reason;
6fb5fa3c
DB
295};
296
4fe663b0
L
297/* Return a bitmask with the first N low bits set. */
298
299static unsigned HOST_WIDE_INT
300lowpart_bitmask (int n)
301{
dd4786fe 302 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
4fe663b0
L
303 return mask >> (HOST_BITS_PER_WIDE_INT - n);
304}
305
fcb87c50 306static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
da6603c6 307
fcb87c50 308static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
6fb5fa3c
DB
309
310/* This structure holds information about a load. These are only
311 built for rtx bases. */
da6603c6 312struct read_info_type
6fb5fa3c
DB
313{
314 /* The id of the mem group of the base address. */
315 int group_id;
316
71d6a386 317 /* The offset of the first byte associated with the operation. */
02ce5d90 318 poly_int64 offset;
71d6a386
RS
319
320 /* The number of bytes covered by the operation, or -1 if not known. */
02ce5d90 321 poly_int64 width;
6fb5fa3c
DB
322
323 /* The mem being read. */
324 rtx mem;
325
326 /* The next read_info for this insn. */
da6603c6 327 struct read_info_type *next;
6fb5fa3c 328};
da6603c6 329typedef struct read_info_type *read_info_t;
6fb5fa3c 330
fcb87c50 331static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
6fb5fa3c
DB
332
333/* One of these records is created for each insn. */
334
da6603c6 335struct insn_info_type
6fb5fa3c
DB
336{
337 /* Set true if the insn contains a store but the insn itself cannot
338 be deleted. This is set if the insn is a parallel and there is
339 more than one non dead output or if the insn is in some way
340 volatile. */
341 bool cannot_delete;
342
343 /* This field is only used by the global algorithm. It is set true
344 if the insn contains any read of mem except for a (1). This is
345 also set if the insn is a call or has a clobber mem. If the insn
346 contains a wild read, the use_rec will be null. */
347 bool wild_read;
348
d26c7090
ER
349 /* This is true only for CALL instructions which could potentially read
350 any non-frame memory location. This field is used by the global
351 algorithm. */
352 bool non_frame_wild_read;
353
50f0f366
EB
354 /* This field is only used for the processing of const functions.
355 These functions cannot read memory, but they can read the stack
64520bdc
EB
356 because that is where they may get their parms. We need to be
357 this conservative because, like the store motion pass, we don't
358 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
359 Moreover, we need to distinguish two cases:
360 1. Before reload (register elimination), the stores related to
361 outgoing arguments are stack pointer based and thus deemed
362 of non-constant base in this pass. This requires special
363 handling but also means that the frame pointer based stores
364 need not be killed upon encountering a const function call.
365 2. After reload, the stores related to outgoing arguments can be
366 either stack pointer or hard frame pointer based. This means
367 that we have no other choice than also killing all the frame
368 pointer based stores upon encountering a const function call.
57534689
JJ
369 This field is set after reload for const function calls and before
370 reload for const tail function calls on targets where arg pointer
371 is the frame pointer. Having this set is less severe than a wild
372 read, it just means that all the frame related stores are killed
373 rather than all the stores. */
64520bdc
EB
374 bool frame_read;
375
376 /* This field is only used for the processing of const functions.
377 It is set if the insn may contain a stack pointer based store. */
50f0f366 378 bool stack_pointer_based;
6fb5fa3c
DB
379
380 /* This is true if any of the sets within the store contains a
381 cselib base. Such stores can only be deleted by the local
382 algorithm. */
383 bool contains_cselib_groups;
384
385 /* The insn. */
dd60a84c 386 rtx_insn *insn;
6fb5fa3c
DB
387
388 /* The list of mem sets or mem clobbers that are contained in this
389 insn. If the insn is deletable, it contains only one mem set.
390 But it could also contain clobbers. Insns that contain more than
391 one mem set are not deletable, but each of those mems are here in
6ed3da00 392 order to provide info to delete other insns. */
fd6daec9 393 store_info *store_rec;
6fb5fa3c
DB
394
395 /* The linked list of mem uses in this insn. Only the reads from
396 rtx bases are listed here. The reads to cselib bases are
397 completely processed during the first scan and so are never
398 created. */
399 read_info_t read_rec;
400
9e582b1d
JR
401 /* The live fixed registers. We assume only fixed registers can
402 cause trouble by being clobbered from an expanded pattern;
403 storing only the live fixed registers (rather than all registers)
404 means less memory needs to be allocated / copied for the individual
405 stores. */
406 regset fixed_regs_live;
407
6fb5fa3c 408 /* The prev insn in the basic block. */
da6603c6 409 struct insn_info_type * prev_insn;
6fb5fa3c
DB
410
411 /* The linked list of insns that are in consideration for removal in
073a8998 412 the forwards pass through the basic block. This pointer may be
6fb5fa3c 413 trash as it is not cleared when a wild read occurs. The only
fa10beec 414 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c 415 at active_local_stores. */
da6603c6 416 struct insn_info_type * next_local_store;
6fb5fa3c 417};
da6603c6 418typedef struct insn_info_type *insn_info_t;
6fb5fa3c 419
fcb87c50 420static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
6fb5fa3c
DB
421
422/* The linked list of stores that are under consideration in this
b8698a0f 423 basic block. */
6fb5fa3c 424static insn_info_t active_local_stores;
dabd47e7 425static int active_local_stores_len;
6fb5fa3c 426
da6603c6 427struct dse_bb_info_type
6fb5fa3c 428{
6fb5fa3c
DB
429 /* Pointer to the insn info for the last insn in the block. These
430 are linked so this is how all of the insns are reached. During
431 scanning this is the current insn being scanned. */
432 insn_info_t last_insn;
433
434 /* The info for the global dataflow problem. */
435
436
437 /* This is set if the transfer function should and in the wild_read
438 bitmap before applying the kill and gen sets. That vector knocks
439 out most of the bits in the bitmap and thus speeds up the
440 operations. */
441 bool apply_wild_read;
442
02b47899
KZ
443 /* The following 4 bitvectors hold information about which positions
444 of which stores are live or dead. They are indexed by
445 get_bitmap_index. */
446
6fb5fa3c
DB
447 /* The set of store positions that exist in this block before a wild read. */
448 bitmap gen;
b8698a0f 449
6fb5fa3c
DB
450 /* The set of load positions that exist in this block above the
451 same position of a store. */
452 bitmap kill;
453
454 /* The set of stores that reach the top of the block without being
455 killed by a read.
456
457 Do not represent the in if it is all ones. Note that this is
458 what the bitvector should logically be initialized to for a set
459 intersection problem. However, like the kill set, this is too
460 expensive. So initially, the in set will only be created for the
461 exit block and any block that contains a wild read. */
462 bitmap in;
463
464 /* The set of stores that reach the bottom of the block from it's
465 successors.
466
467 Do not represent the in if it is all ones. Note that this is
468 what the bitvector should logically be initialized to for a set
469 intersection problem. However, like the kill and in set, this is
470 too expensive. So what is done is that the confluence operator
471 just initializes the vector from one of the out sets of the
472 successors of the block. */
473 bitmap out;
02b47899
KZ
474
475 /* The following bitvector is indexed by the reg number. It
476 contains the set of regs that are live at the current instruction
477 being processed. While it contains info for all of the
9e582b1d
JR
478 registers, only the hard registers are actually examined. It is used
479 to assure that shift and/or add sequences that are inserted do not
073a8998 480 accidentally clobber live hard regs. */
02b47899 481 bitmap regs_live;
6fb5fa3c
DB
482};
483
da6603c6 484typedef struct dse_bb_info_type *bb_info_t;
fb0b2914
ML
485
486static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
fcb87c50 487 ("bb_info_pool");
6fb5fa3c
DB
488
489/* Table to hold all bb_infos. */
490static bb_info_t *bb_table;
491
492/* There is a group_info for each rtx base that is used to reference
493 memory. There are also not many of the rtx bases because they are
494 very limited in scope. */
495
b8698a0f 496struct group_info
6fb5fa3c
DB
497{
498 /* The actual base of the address. */
499 rtx rtx_base;
500
501 /* The sequential id of the base. This allows us to have a
502 canonical ordering of these that is not based on addresses. */
503 int id;
504
8f5929e1
JJ
505 /* True if there are any positions that are to be processed
506 globally. */
507 bool process_globally;
508
509 /* True if the base of this group is either the frame_pointer or
510 hard_frame_pointer. */
511 bool frame_related;
512
d32f725a
OH
513 /* A mem wrapped around the base pointer for the group in order to do
514 read dependency. It must be given BLKmode in order to encompass all
515 the possible offsets from the base. */
6fb5fa3c 516 rtx base_mem;
b8698a0f 517
6216f94e
JJ
518 /* Canonized version of base_mem's address. */
519 rtx canon_base_addr;
6fb5fa3c
DB
520
521 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 522 stores are actually referencing that position from this base. We
6fb5fa3c 523 only do this for rtx bases as this will be used to assign
6ed3da00 524 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
525 store1 on the first store for offset N. Bit N is set in store2
526 for the second store to offset N. This is all we need since we
527 only care about offsets that have two or more stores for them.
528
529 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
530 for 0 and greater offsets.
531
532 There is one special case here, for stores into the stack frame,
533 we will or store1 into store2 before deciding which stores look
534 at globally. This is because stores to the stack frame that have
535 no other reads before the end of the function can also be
536 deleted. */
537 bitmap store1_n, store1_p, store2_n, store2_p;
538
d26c7090
ER
539 /* These bitmaps keep track of offsets in this group escape this function.
540 An offset escapes if it corresponds to a named variable whose
541 addressable flag is set. */
542 bitmap escaped_n, escaped_p;
543
6ed3da00 544 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 545 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 546 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
547 bitmap group_kill;
548
6fb5fa3c 549 /* The offset_map is used to map the offsets from this base into
6ed3da00 550 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
551 the all of stores have been scanned and we know which ones we
552 care about. */
b8698a0f
L
553 int *offset_map_n, *offset_map_p;
554 int offset_map_size_n, offset_map_size_p;
6fb5fa3c 555};
da6603c6 556
fcb87c50 557static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
6fb5fa3c 558
6fb5fa3c
DB
559/* Index into the rtx_group_vec. */
560static int rtx_group_next_id;
561
6fb5fa3c 562
fd6daec9 563static vec<group_info *> rtx_group_vec;
6fb5fa3c
DB
564
565
566/* This structure holds the set of changes that are being deferred
567 when removing read operation. See replace_read. */
b8698a0f 568struct deferred_change
6fb5fa3c
DB
569{
570
571 /* The mem that is being replaced. */
572 rtx *loc;
573
574 /* The reg it is being replaced with. */
575 rtx reg;
576
577 struct deferred_change *next;
578};
579
fb0b2914 580static object_allocator<deferred_change> deferred_change_pool
fcb87c50 581 ("deferred_change_pool");
6fb5fa3c 582
fd6daec9 583static deferred_change *deferred_change_list = NULL;
6fb5fa3c 584
e3b5732b 585/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 586 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
587static bool stores_off_frame_dead_at_return;
588
589/* Counter for stats. */
b8698a0f
L
590static int globally_deleted;
591static int locally_deleted;
b8698a0f 592
6fb5fa3c
DB
593static bitmap all_blocks;
594
d26c7090
ER
595/* Locations that are killed by calls in the global phase. */
596static bitmap kill_on_calls;
597
6fb5fa3c
DB
598/* The number of bits used in the global bitmaps. */
599static unsigned int current_position;
71d6a386
RS
600
601/* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
602
603static void
604print_range (FILE *file, poly_int64 offset, poly_int64 width)
605{
606 fprintf (file, "[");
607 print_dec (offset, file, SIGNED);
608 fprintf (file, "..");
609 print_dec (offset + width, file, SIGNED);
610 fprintf (file, ")");
611}
6fb5fa3c
DB
612\f
613/*----------------------------------------------------------------------------
614 Zeroth step.
615
b8698a0f 616 Initialization.
6fb5fa3c
DB
617----------------------------------------------------------------------------*/
618
6fb5fa3c 619
6fb5fa3c
DB
620/* Hashtable callbacks for maintaining the "bases" field of
621 store_group_info, given that the addresses are function invariants. */
622
8d67ee55 623struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
703c8606 624{
67f58944
TS
625 static inline hashval_t hash (const group_info *);
626 static inline bool equal (const group_info *, const group_info *);
703c8606
LC
627};
628
629inline bool
67f58944
TS
630invariant_group_base_hasher::equal (const group_info *gi1,
631 const group_info *gi2)
6fb5fa3c 632{
6fb5fa3c
DB
633 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
634}
635
703c8606 636inline hashval_t
67f58944 637invariant_group_base_hasher::hash (const group_info *gi)
6fb5fa3c 638{
6fb5fa3c
DB
639 int do_not_record;
640 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
641}
642
703c8606 643/* Tables of group_info structures, hashed by base value. */
c203e8a7 644static hash_table<invariant_group_base_hasher> *rtx_group_table;
703c8606 645
6fb5fa3c
DB
646
647/* Get the GROUP for BASE. Add a new group if it is not there. */
648
fd6daec9 649static group_info *
6fb5fa3c
DB
650get_group_info (rtx base)
651{
b8698a0f 652 struct group_info tmp_gi;
fd6daec9 653 group_info *gi;
703c8606 654 group_info **slot;
6fb5fa3c 655
ac6929b5
RB
656 gcc_assert (base != NULL_RTX);
657
658 /* Find the store_base_info structure for BASE, creating a new one
659 if necessary. */
660 tmp_gi.rtx_base = base;
661 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
662 gi = *slot;
6fb5fa3c
DB
663
664 if (gi == NULL)
665 {
fb0b2914 666 *slot = gi = group_info_pool.allocate ();
6fb5fa3c
DB
667 gi->rtx_base = base;
668 gi->id = rtx_group_next_id++;
d32f725a 669 gi->base_mem = gen_rtx_MEM (BLKmode, base);
6216f94e 670 gi->canon_base_addr = canon_rtx (base);
3f9b14ff
SB
671 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
672 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
673 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 678 gi->process_globally = false;
b8698a0f 679 gi->frame_related =
6fb5fa3c
DB
680 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
681 gi->offset_map_size_n = 0;
682 gi->offset_map_size_p = 0;
683 gi->offset_map_n = NULL;
684 gi->offset_map_p = NULL;
9771b263 685 rtx_group_vec.safe_push (gi);
6fb5fa3c
DB
686 }
687
688 return gi;
689}
690
691
692/* Initialization of data structures. */
693
694static void
695dse_step0 (void)
696{
697 locally_deleted = 0;
698 globally_deleted = 0;
6fb5fa3c 699
3f9b14ff
SB
700 bitmap_obstack_initialize (&dse_bitmap_obstack);
701 gcc_obstack_init (&dse_obstack);
702
703 scratch = BITMAP_ALLOC (&reg_obstack);
704 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 705
6fb5fa3c 706
c203e8a7 707 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
6fb5fa3c 708
8b1c6fd7 709 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
710 rtx_group_next_id = 0;
711
e3b5732b 712 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
713
714 init_alias_analysis ();
6fb5fa3c
DB
715}
716
717
718\f
719/*----------------------------------------------------------------------------
720 First step.
721
722 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 723 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
724 is used to remove stores with non-constant bases.
725----------------------------------------------------------------------------*/
726
727/* Delete all of the store_info recs from INSN_INFO. */
728
b8698a0f 729static void
6fb5fa3c
DB
730free_store_info (insn_info_t insn_info)
731{
fd6daec9
TS
732 store_info *cur = insn_info->store_rec;
733 while (cur)
6fb5fa3c 734 {
fd6daec9
TS
735 store_info *next = cur->next;
736 if (cur->is_large)
737 BITMAP_FREE (cur->positions_needed.large.bmap);
738 if (cur->cse_base)
739 cse_store_info_pool.remove (cur);
6fb5fa3c 740 else
fd6daec9
TS
741 rtx_store_info_pool.remove (cur);
742 cur = next;
6fb5fa3c
DB
743 }
744
745 insn_info->cannot_delete = true;
746 insn_info->contains_cselib_groups = false;
747 insn_info->store_rec = NULL;
748}
749
a79683d5 750struct note_add_store_info
9e582b1d 751{
dc01c3d1 752 rtx_insn *first, *current;
9e582b1d
JR
753 regset fixed_regs_live;
754 bool failure;
a79683d5 755};
9e582b1d
JR
756
757/* Callback for emit_inc_dec_insn_before via note_stores.
758 Check if a register is clobbered which is live afterwards. */
759
760static void
761note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
762{
dc01c3d1 763 rtx_insn *insn;
9e582b1d 764 note_add_store_info *info = (note_add_store_info *) data;
9e582b1d
JR
765
766 if (!REG_P (loc))
767 return;
768
769 /* If this register is referenced by the current or an earlier insn,
770 that's OK. E.g. this applies to the register that is being incremented
771 with this addition. */
772 for (insn = info->first;
773 insn != NEXT_INSN (info->current);
774 insn = NEXT_INSN (insn))
775 if (reg_referenced_p (loc, PATTERN (insn)))
776 return;
777
778 /* If we come here, we have a clobber of a register that's only OK
779 if that register is not live. If we don't have liveness information
780 available, fail now. */
781 if (!info->fixed_regs_live)
782 {
53d1bae9 783 info->failure = true;
9e582b1d
JR
784 return;
785 }
786 /* Now check if this is a live fixed register. */
53d1bae9
RS
787 unsigned int end_regno = END_REGNO (loc);
788 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
789 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
790 info->failure = true;
9e582b1d
JR
791}
792
4deef538
AO
793/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
794 SRC + SRCOFF before insn ARG. */
6fb5fa3c
DB
795
796static int
4deef538
AO
797emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
798 rtx op ATTRIBUTE_UNUSED,
799 rtx dest, rtx src, rtx srcoff, void *arg)
6fb5fa3c 800{
9e582b1d 801 insn_info_t insn_info = (insn_info_t) arg;
dc01c3d1 802 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
9e582b1d 803 note_add_store_info info;
b8698a0f 804
4deef538
AO
805 /* We can reuse all operands without copying, because we are about
806 to delete the insn that contained it. */
9e582b1d 807 if (srcoff)
ed079c4b
JJ
808 {
809 start_sequence ();
810 emit_insn (gen_add3_insn (dest, src, srcoff));
811 new_insn = get_insns ();
812 end_sequence ();
813 }
9e582b1d 814 else
1476d1bd 815 new_insn = gen_move_insn (dest, src);
9e582b1d
JR
816 info.first = new_insn;
817 info.fixed_regs_live = insn_info->fixed_regs_live;
818 info.failure = false;
819 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
820 {
821 info.current = cur;
822 note_stores (PATTERN (cur), note_add_store, &info);
823 }
6fb5fa3c 824
9e582b1d
JR
825 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
826 return it immediately, communicating the failure to its caller. */
827 if (info.failure)
828 return 1;
829
830 emit_insn_before (new_insn, insn);
6fb5fa3c 831
8d8e205b 832 return 0;
6fb5fa3c
DB
833}
834
9e582b1d
JR
835/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
836 is there, is split into a separate insn.
837 Return true on success (or if there was nothing to do), false on failure. */
6fb5fa3c 838
9e582b1d
JR
839static bool
840check_for_inc_dec_1 (insn_info_t insn_info)
6fb5fa3c 841{
dd60a84c 842 rtx_insn *insn = insn_info->insn;
6fb5fa3c
DB
843 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
844 if (note)
8d8e205b
RS
845 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
846 insn_info) == 0;
9e582b1d 847 return true;
6fb5fa3c
DB
848}
849
850
9e582b1d
JR
851/* Entry point for postreload. If you work on reload_cse, or you need this
852 anywhere else, consider if you can provide register liveness information
853 and add a parameter to this function so that it can be passed down in
854 insn_info.fixed_regs_live. */
855bool
dd60a84c 856check_for_inc_dec (rtx_insn *insn)
9e582b1d 857{
da6603c6 858 insn_info_type insn_info;
9e582b1d
JR
859 rtx note;
860
861 insn_info.insn = insn;
862 insn_info.fixed_regs_live = NULL;
863 note = find_reg_note (insn, REG_INC, NULL_RTX);
864 if (note)
8d8e205b
RS
865 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
866 &insn_info) == 0;
9e582b1d
JR
867 return true;
868}
869
b8698a0f 870/* Delete the insn and free all of the fields inside INSN_INFO. */
6fb5fa3c
DB
871
872static void
873delete_dead_store_insn (insn_info_t insn_info)
874{
875 read_info_t read_info;
876
877 if (!dbg_cnt (dse))
878 return;
879
9e582b1d
JR
880 if (!check_for_inc_dec_1 (insn_info))
881 return;
456610d3 882 if (dump_file && (dump_flags & TDF_DETAILS))
ac6929b5
RB
883 fprintf (dump_file, "Locally deleting insn %d\n",
884 INSN_UID (insn_info->insn));
6fb5fa3c
DB
885
886 free_store_info (insn_info);
887 read_info = insn_info->read_rec;
b8698a0f 888
6fb5fa3c
DB
889 while (read_info)
890 {
891 read_info_t next = read_info->next;
fb0b2914 892 read_info_type_pool.remove (read_info);
6fb5fa3c
DB
893 read_info = next;
894 }
895 insn_info->read_rec = NULL;
896
897 delete_insn (insn_info->insn);
898 locally_deleted++;
899 insn_info->insn = NULL;
900
901 insn_info->wild_read = false;
902}
903
88d8330d
EB
904/* Return whether DECL, a local variable, can possibly escape the current
905 function scope. */
906
907static bool
908local_variable_can_escape (tree decl)
909{
910 if (TREE_ADDRESSABLE (decl))
911 return true;
912
913 /* If this is a partitioned variable, we need to consider all the variables
914 in the partition. This is necessary because a store into one of them can
915 be replaced with a store into another and this may not change the outcome
916 of the escape analysis. */
917 if (cfun->gimple_df->decls_to_pointers != NULL)
918 {
39c8aaa4 919 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
88d8330d 920 if (namep)
39c8aaa4 921 return TREE_ADDRESSABLE (*namep);
88d8330d
EB
922 }
923
924 return false;
925}
926
927/* Return whether EXPR can possibly escape the current function scope. */
928
d26c7090
ER
929static bool
930can_escape (tree expr)
931{
932 tree base;
933 if (!expr)
934 return true;
935 base = get_base_address (expr);
936 if (DECL_P (base)
88d8330d 937 && !may_be_aliased (base)
8813a647 938 && !(VAR_P (base)
88d8330d
EB
939 && !DECL_EXTERNAL (base)
940 && !TREE_STATIC (base)
941 && local_variable_can_escape (base)))
d26c7090
ER
942 return false;
943 return true;
944}
6fb5fa3c
DB
945
946/* Set the store* bitmaps offset_map_size* fields in GROUP based on
947 OFFSET and WIDTH. */
948
949static void
02ce5d90 950set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
d26c7090 951 tree expr)
6fb5fa3c 952{
02ce5d90
RS
953 /* Non-constant offsets and widths act as global kills, so there's no point
954 trying to use them to derive global DSE candidates. */
955 HOST_WIDE_INT i, const_offset, const_width;
d26c7090 956 bool expr_escapes = can_escape (expr);
02ce5d90
RS
957 if (offset.is_constant (&const_offset)
958 && width.is_constant (&const_width)
959 && const_offset > -MAX_OFFSET
960 && const_offset + const_width < MAX_OFFSET)
961 for (i = const_offset; i < const_offset + const_width; ++i)
6fb5fa3c
DB
962 {
963 bitmap store1;
964 bitmap store2;
d26c7090 965 bitmap escaped;
6fb5fa3c
DB
966 int ai;
967 if (i < 0)
968 {
969 store1 = group->store1_n;
970 store2 = group->store2_n;
d26c7090 971 escaped = group->escaped_n;
6fb5fa3c
DB
972 ai = -i;
973 }
974 else
975 {
976 store1 = group->store1_p;
977 store2 = group->store2_p;
d26c7090 978 escaped = group->escaped_p;
6fb5fa3c
DB
979 ai = i;
980 }
b8698a0f 981
fcaa4ca4 982 if (!bitmap_set_bit (store1, ai))
6fb5fa3c 983 bitmap_set_bit (store2, ai);
b8698a0f 984 else
6fb5fa3c 985 {
6fb5fa3c
DB
986 if (i < 0)
987 {
988 if (group->offset_map_size_n < ai)
989 group->offset_map_size_n = ai;
990 }
991 else
992 {
993 if (group->offset_map_size_p < ai)
994 group->offset_map_size_p = ai;
995 }
996 }
d26c7090
ER
997 if (expr_escapes)
998 bitmap_set_bit (escaped, ai);
6fb5fa3c
DB
999 }
1000}
1001
d26c7090
ER
1002static void
1003reset_active_stores (void)
1004{
1005 active_local_stores = NULL;
1006 active_local_stores_len = 0;
1007}
6fb5fa3c 1008
d26c7090 1009/* Free all READ_REC of the LAST_INSN of BB_INFO. */
6fb5fa3c
DB
1010
1011static void
d26c7090 1012free_read_records (bb_info_t bb_info)
6fb5fa3c
DB
1013{
1014 insn_info_t insn_info = bb_info->last_insn;
1015 read_info_t *ptr = &insn_info->read_rec;
6fb5fa3c
DB
1016 while (*ptr)
1017 {
1018 read_info_t next = (*ptr)->next;
ac6929b5
RB
1019 read_info_type_pool.remove (*ptr);
1020 *ptr = next;
6fb5fa3c 1021 }
d26c7090
ER
1022}
1023
1024/* Set the BB_INFO so that the last insn is marked as a wild read. */
1025
1026static void
1027add_wild_read (bb_info_t bb_info)
1028{
1029 insn_info_t insn_info = bb_info->last_insn;
6fb5fa3c 1030 insn_info->wild_read = true;
d26c7090
ER
1031 free_read_records (bb_info);
1032 reset_active_stores ();
6fb5fa3c
DB
1033}
1034
d26c7090
ER
1035/* Set the BB_INFO so that the last insn is marked as a wild read of
1036 non-frame locations. */
1037
1038static void
1039add_non_frame_wild_read (bb_info_t bb_info)
1040{
1041 insn_info_t insn_info = bb_info->last_insn;
1042 insn_info->non_frame_wild_read = true;
1043 free_read_records (bb_info);
1044 reset_active_stores ();
1045}
6fb5fa3c 1046
50f0f366
EB
1047/* Return true if X is a constant or one of the registers that behave
1048 as a constant over the life of a function. This is equivalent to
1049 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1050
1051static bool
1052const_or_frame_p (rtx x)
1053{
d8116890
KZ
1054 if (CONSTANT_P (x))
1055 return true;
1056
1057 if (GET_CODE (x) == REG)
6fb5fa3c 1058 {
6fb5fa3c
DB
1059 /* Note that we have to test for the actual rtx used for the frame
1060 and arg pointers and not just the register number in case we have
1061 eliminated the frame and/or arg pointer and are using it
1062 for pseudos. */
1063 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1064 /* The arg pointer varies if it is not a fixed register. */
1065 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1066 || x == pic_offset_table_rtx)
1067 return true;
1068 return false;
6fb5fa3c 1069 }
da6603c6 1070
d8116890 1071 return false;
6fb5fa3c
DB
1072}
1073
b8698a0f
L
1074/* Take all reasonable action to put the address of MEM into the form
1075 that we can do analysis on.
6fb5fa3c
DB
1076
1077 The gold standard is to get the address into the form: address +
1078 OFFSET where address is something that rtx_varies_p considers a
1079 constant. When we can get the address in this form, we can do
1080 global analysis on it. Note that for constant bases, address is
1081 not actually returned, only the group_id. The address can be
1082 obtained from that.
1083
1084 If that fails, we try cselib to get a value we can at least use
b8698a0f
L
1085 locally. If that fails we return false.
1086
6fb5fa3c
DB
1087 The GROUP_ID is set to -1 for cselib bases and the index of the
1088 group for non_varying bases.
1089
1090 FOR_READ is true if this is a mem read and false if not. */
1091
1092static bool
1093canon_address (rtx mem,
6fb5fa3c 1094 int *group_id,
02ce5d90 1095 poly_int64 *offset,
6fb5fa3c
DB
1096 cselib_val **base)
1097{
ef4bddc2 1098 machine_mode address_mode = get_address_mode (mem);
6fb5fa3c
DB
1099 rtx mem_address = XEXP (mem, 0);
1100 rtx expanded_address, address;
403c7520
JJ
1101 int expanded;
1102
4deef538 1103 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
6fb5fa3c 1104
456610d3 1105 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1106 {
1107 fprintf (dump_file, " mem: ");
1108 print_inline_rtx (dump_file, mem_address, 0);
1109 fprintf (dump_file, "\n");
1110 }
1111
403c7520
JJ
1112 /* First see if just canon_rtx (mem_address) is const or frame,
1113 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1114 address = NULL_RTX;
1115 for (expanded = 0; expanded < 2; expanded++)
1116 {
1117 if (expanded)
1118 {
1119 /* Use cselib to replace all of the reg references with the full
b8698a0f 1120 expression. This will take care of the case where we have
6fb5fa3c 1121
403c7520
JJ
1122 r_x = base + offset;
1123 val = *r_x;
b8698a0f
L
1124
1125 by making it into
6fb5fa3c 1126
403c7520 1127 val = *(base + offset); */
6fb5fa3c 1128
403c7520
JJ
1129 expanded_address = cselib_expand_value_rtx (mem_address,
1130 scratch, 5);
6fb5fa3c 1131
403c7520
JJ
1132 /* If this fails, just go with the address from first
1133 iteration. */
1134 if (!expanded_address)
1135 break;
1136 }
1137 else
1138 expanded_address = mem_address;
6fb5fa3c 1139
403c7520
JJ
1140 /* Split the address into canonical BASE + OFFSET terms. */
1141 address = canon_rtx (expanded_address);
6fb5fa3c 1142
403c7520 1143 *offset = 0;
6fb5fa3c 1144
456610d3 1145 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1146 {
1147 if (expanded)
1148 {
1149 fprintf (dump_file, "\n after cselib_expand address: ");
1150 print_inline_rtx (dump_file, expanded_address, 0);
1151 fprintf (dump_file, "\n");
1152 }
6fb5fa3c 1153
403c7520
JJ
1154 fprintf (dump_file, "\n after canon_rtx address: ");
1155 print_inline_rtx (dump_file, address, 0);
1156 fprintf (dump_file, "\n");
1157 }
6fb5fa3c 1158
403c7520
JJ
1159 if (GET_CODE (address) == CONST)
1160 address = XEXP (address, 0);
6fb5fa3c 1161
02ce5d90 1162 address = strip_offset_and_add (address, offset);
6fb5fa3c 1163
09e881c9
BE
1164 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1165 && const_or_frame_p (address))
6fb5fa3c 1166 {
fd6daec9 1167 group_info *group = get_group_info (address);
403c7520 1168
456610d3 1169 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1170 {
1171 fprintf (dump_file, " gid=%d offset=", group->id);
1172 print_dec (*offset, dump_file);
1173 fprintf (dump_file, "\n");
1174 }
403c7520
JJ
1175 *base = NULL;
1176 *group_id = group->id;
1177 return true;
6fb5fa3c 1178 }
403c7520
JJ
1179 }
1180
4deef538 1181 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
403c7520
JJ
1182 *group_id = -1;
1183
1184 if (*base == NULL)
1185 {
456610d3 1186 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1187 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1188 return false;
6fb5fa3c 1189 }
456610d3 1190 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1191 {
1192 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1193 (*base)->uid, (*base)->hash);
1194 print_dec (*offset, dump_file);
1195 fprintf (dump_file, "\n");
1196 }
6fb5fa3c
DB
1197 return true;
1198}
1199
1200
1201/* Clear the rhs field from the active_local_stores array. */
1202
1203static void
1204clear_rhs_from_active_local_stores (void)
1205{
1206 insn_info_t ptr = active_local_stores;
1207
1208 while (ptr)
1209 {
fd6daec9 1210 store_info *store_info = ptr->store_rec;
6fb5fa3c
DB
1211 /* Skip the clobbers. */
1212 while (!store_info->is_set)
1213 store_info = store_info->next;
1214
1215 store_info->rhs = NULL;
8dd5516b 1216 store_info->const_rhs = NULL;
6fb5fa3c
DB
1217
1218 ptr = ptr->next_local_store;
1219 }
1220}
1221
1222
8dd5516b
JJ
1223/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1224
1225static inline void
fd6daec9 1226set_position_unneeded (store_info *s_info, int pos)
8dd5516b
JJ
1227{
1228 if (__builtin_expect (s_info->is_large, false))
1229 {
fcaa4ca4
NF
1230 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1231 s_info->positions_needed.large.count++;
8dd5516b
JJ
1232 }
1233 else
1234 s_info->positions_needed.small_bitmask
fecfbfa4 1235 &= ~(HOST_WIDE_INT_1U << pos);
8dd5516b
JJ
1236}
1237
1238/* Mark the whole store S_INFO as unneeded. */
1239
1240static inline void
fd6daec9 1241set_all_positions_unneeded (store_info *s_info)
8dd5516b
JJ
1242{
1243 if (__builtin_expect (s_info->is_large, false))
1244 {
02ce5d90
RS
1245 HOST_WIDE_INT width;
1246 if (s_info->width.is_constant (&width))
1247 {
1248 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1249 s_info->positions_needed.large.count = width;
1250 }
1251 else
1252 {
1253 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1254 s_info->positions_needed.large.count = 1;
1255 }
8dd5516b
JJ
1256 }
1257 else
07e96250 1258 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
8dd5516b
JJ
1259}
1260
1261/* Return TRUE if any bytes from S_INFO store are needed. */
1262
1263static inline bool
fd6daec9 1264any_positions_needed_p (store_info *s_info)
8dd5516b
JJ
1265{
1266 if (__builtin_expect (s_info->is_large, false))
02ce5d90
RS
1267 {
1268 HOST_WIDE_INT width;
1269 if (s_info->width.is_constant (&width))
1270 {
1271 gcc_checking_assert (s_info->positions_needed.large.bmap);
1272 return s_info->positions_needed.large.count < width;
1273 }
1274 else
1275 {
1276 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1277 return s_info->positions_needed.large.count == 0;
1278 }
1279 }
8dd5516b 1280 else
07e96250 1281 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
8dd5516b
JJ
1282}
1283
1284/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
02ce5d90 1285 store are known to be needed. */
8dd5516b
JJ
1286
1287static inline bool
02ce5d90
RS
1288all_positions_needed_p (store_info *s_info, poly_int64 start,
1289 poly_int64 width)
8dd5516b 1290{
02ce5d90
RS
1291 gcc_assert (s_info->rhs);
1292 if (!s_info->width.is_constant ())
1293 {
1294 gcc_assert (s_info->is_large
1295 && !s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count == 0;
1297 }
1298
1299 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1300 a non-constant region of a constant-sized store. We can't say for
1301 sure that all positions are needed. */
1302 HOST_WIDE_INT const_start, const_width;
1303 if (!start.is_constant (&const_start)
1304 || !width.is_constant (&const_width))
1305 return false;
1306
8dd5516b
JJ
1307 if (__builtin_expect (s_info->is_large, false))
1308 {
02ce5d90
RS
1309 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1310 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
8dd5516b
JJ
1311 return false;
1312 return true;
1313 }
1314 else
1315 {
02ce5d90
RS
1316 unsigned HOST_WIDE_INT mask
1317 = lowpart_bitmask (const_width) << const_start;
8dd5516b
JJ
1318 return (s_info->positions_needed.small_bitmask & mask) == mask;
1319 }
1320}
1321
1322
02ce5d90
RS
1323static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1324 poly_int64, basic_block, bool);
8dd5516b
JJ
1325
1326
6fb5fa3c
DB
1327/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1328 there is a candidate store, after adding it to the appropriate
1329 local store group if so. */
1330
1331static int
1332record_store (rtx body, bb_info_t bb_info)
1333{
6216f94e 1334 rtx mem, rhs, const_rhs, mem_addr;
02ce5d90
RS
1335 poly_int64 offset = 0;
1336 poly_int64 width = 0;
6fb5fa3c 1337 insn_info_t insn_info = bb_info->last_insn;
fd6daec9 1338 store_info *store_info = NULL;
6fb5fa3c
DB
1339 int group_id;
1340 cselib_val *base = NULL;
8dd5516b 1341 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1342 bool store_is_unused;
1343
1344 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1345 return 0;
1346
8dd5516b
JJ
1347 mem = SET_DEST (body);
1348
6fb5fa3c
DB
1349 /* If this is not used, then this cannot be used to keep the insn
1350 from being deleted. On the other hand, it does provide something
1351 that can be used to prove that another store is dead. */
1352 store_is_unused
8dd5516b 1353 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1354
1355 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1356 if (!MEM_P (mem))
1357 {
1358 /* If the set or clobber is unused, then it does not effect our
1359 ability to get rid of the entire insn. */
1360 if (!store_is_unused)
1361 insn_info->cannot_delete = true;
1362 return 0;
1363 }
1364
1365 /* At this point we know mem is a mem. */
1366 if (GET_MODE (mem) == BLKmode)
1367 {
d05d7551 1368 HOST_WIDE_INT const_size;
6fb5fa3c
DB
1369 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1370 {
456610d3 1371 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1372 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1373 add_wild_read (bb_info);
1374 insn_info->cannot_delete = true;
8dd5516b 1375 return 0;
6fb5fa3c 1376 }
8dd5516b
JJ
1377 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1378 as memset (addr, 0, 36); */
f5541398 1379 else if (!MEM_SIZE_KNOWN_P (mem)
d05d7551
RS
1380 || maybe_le (MEM_SIZE (mem), 0)
1381 /* This is a limit on the bitmap size, which is only relevant
1382 for constant-sized MEMs. */
1383 || (MEM_SIZE (mem).is_constant (&const_size)
1384 && const_size > MAX_OFFSET)
8dd5516b 1385 || GET_CODE (body) != SET
8dd5516b 1386 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1387 {
8dd5516b
JJ
1388 if (!store_is_unused)
1389 {
1390 /* If the set or clobber is unused, then it does not effect our
1391 ability to get rid of the entire insn. */
1392 insn_info->cannot_delete = true;
1393 clear_rhs_from_active_local_stores ();
1394 }
1395 return 0;
6fb5fa3c 1396 }
6fb5fa3c
DB
1397 }
1398
1399 /* We can still process a volatile mem, we just cannot delete it. */
1400 if (MEM_VOLATILE_P (mem))
8dd5516b 1401 insn_info->cannot_delete = true;
6fb5fa3c 1402
ac6929b5 1403 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c
DB
1404 {
1405 clear_rhs_from_active_local_stores ();
1406 return 0;
1407 }
1408
8dd5516b 1409 if (GET_MODE (mem) == BLKmode)
f5541398 1410 width = MEM_SIZE (mem);
8dd5516b 1411 else
6f557e0e 1412 width = GET_MODE_SIZE (GET_MODE (mem));
6fb5fa3c 1413
02ce5d90 1414 if (!endpoint_representable_p (offset, width))
213ffde2
JJ
1415 {
1416 clear_rhs_from_active_local_stores ();
1417 return 0;
1418 }
1419
cbe679a4
JJ
1420 if (known_eq (width, 0))
1421 return 0;
1422
ac6929b5 1423 if (group_id >= 0)
6fb5fa3c
DB
1424 {
1425 /* In the restrictive case where the base is a constant or the
1426 frame pointer we can do global analysis. */
b8698a0f 1427
fd6daec9 1428 group_info *group
9771b263 1429 = rtx_group_vec[group_id];
d26c7090 1430 tree expr = MEM_EXPR (mem);
b8698a0f 1431
da6603c6 1432 store_info = rtx_store_info_pool.allocate ();
d26c7090 1433 set_usage_bits (group, offset, width, expr);
6fb5fa3c 1434
456610d3 1435 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1436 {
1437 fprintf (dump_file, " processing const base store gid=%d",
1438 group_id);
1439 print_range (dump_file, offset, width);
1440 fprintf (dump_file, "\n");
1441 }
6fb5fa3c
DB
1442 }
1443 else
1444 {
9e412ca3 1445 if (may_be_sp_based_p (XEXP (mem, 0)))
50f0f366 1446 insn_info->stack_pointer_based = true;
6fb5fa3c 1447 insn_info->contains_cselib_groups = true;
50f0f366 1448
da6603c6 1449 store_info = cse_store_info_pool.allocate ();
6fb5fa3c
DB
1450 group_id = -1;
1451
456610d3 1452 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1453 {
1454 fprintf (dump_file, " processing cselib store ");
1455 print_range (dump_file, offset, width);
1456 fprintf (dump_file, "\n");
1457 }
6fb5fa3c
DB
1458 }
1459
8dd5516b
JJ
1460 const_rhs = rhs = NULL_RTX;
1461 if (GET_CODE (body) == SET
1462 /* No place to keep the value after ra. */
1463 && !reload_completed
1464 && (REG_P (SET_SRC (body))
1465 || GET_CODE (SET_SRC (body)) == SUBREG
1466 || CONSTANT_P (SET_SRC (body)))
1467 && !MEM_VOLATILE_P (mem)
1468 /* Sometimes the store and reload is used for truncation and
1469 rounding. */
1470 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1471 {
1472 rhs = SET_SRC (body);
1473 if (CONSTANT_P (rhs))
1474 const_rhs = rhs;
1475 else if (body == PATTERN (insn_info->insn))
1476 {
1477 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1478 if (tem && CONSTANT_P (XEXP (tem, 0)))
1479 const_rhs = XEXP (tem, 0);
1480 }
1481 if (const_rhs == NULL_RTX && REG_P (rhs))
1482 {
1483 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1484
1485 if (tem && CONSTANT_P (tem))
1486 const_rhs = tem;
1487 }
1488 }
1489
6fb5fa3c
DB
1490 /* Check to see if this stores causes some other stores to be
1491 dead. */
1492 ptr = active_local_stores;
1493 last = NULL;
8dd5516b 1494 redundant_reason = NULL;
6216f94e 1495 mem = canon_rtx (mem);
ac6929b5
RB
1496
1497 if (group_id < 0)
1498 mem_addr = base->val_rtx;
6216f94e
JJ
1499 else
1500 {
ac6929b5
RB
1501 group_info *group = rtx_group_vec[group_id];
1502 mem_addr = group->canon_base_addr;
6216f94e 1503 }
02ce5d90 1504 if (maybe_ne (offset, 0))
ac6929b5 1505 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c
DB
1506
1507 while (ptr)
1508 {
1509 insn_info_t next = ptr->next_local_store;
fd6daec9 1510 struct store_info *s_info = ptr->store_rec;
60564289 1511 bool del = true;
6fb5fa3c
DB
1512
1513 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1514 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1515 has exactly on set. */
1516 while (!s_info->is_set)
1517 s_info = s_info->next;
1518
ac6929b5 1519 if (s_info->group_id == group_id && s_info->cse_base == base)
6fb5fa3c
DB
1520 {
1521 HOST_WIDE_INT i;
456610d3 1522 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1523 {
1524 fprintf (dump_file, " trying store in insn=%d gid=%d",
1525 INSN_UID (ptr->insn), s_info->group_id);
1526 print_range (dump_file, s_info->offset, s_info->width);
1527 fprintf (dump_file, "\n");
1528 }
8dd5516b
JJ
1529
1530 /* Even if PTR won't be eliminated as unneeded, if both
1531 PTR and this insn store the same constant value, we might
1532 eliminate this insn instead. */
1533 if (s_info->const_rhs
1534 && const_rhs
71d6a386
RS
1535 && known_subrange_p (offset, width,
1536 s_info->offset, s_info->width)
1537 && all_positions_needed_p (s_info, offset - s_info->offset,
d7e1f499
RB
1538 width)
1539 /* We can only remove the later store if the earlier aliases
1540 at least all accesses the later one. */
1541 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1542 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1543 MEM_ALIAS_SET (s_info->mem))))
8dd5516b
JJ
1544 {
1545 if (GET_MODE (mem) == BLKmode)
1546 {
1547 if (GET_MODE (s_info->mem) == BLKmode
1548 && s_info->const_rhs == const_rhs)
1549 redundant_reason = ptr;
1550 }
1551 else if (s_info->const_rhs == const0_rtx
1552 && const_rhs == const0_rtx)
1553 redundant_reason = ptr;
1554 else
1555 {
1556 rtx val;
1557 start_sequence ();
71d6a386 1558 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
8dd5516b
JJ
1559 BLOCK_FOR_INSN (insn_info->insn),
1560 true);
1561 if (get_insns () != NULL)
1562 val = NULL_RTX;
1563 end_sequence ();
1564 if (val && rtx_equal_p (val, const_rhs))
1565 redundant_reason = ptr;
1566 }
1567 }
1568
02ce5d90 1569 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
71d6a386
RS
1570 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1571 /* The new store touches every byte that S_INFO does. */
1572 set_all_positions_unneeded (s_info);
02ce5d90
RS
1573 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1574 && s_info->width.is_constant (&const_s_width)
1575 && width.is_constant (&const_width))
71d6a386 1576 {
02ce5d90 1577 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
71d6a386 1578 begin_unneeded = MAX (begin_unneeded, 0);
02ce5d90 1579 end_unneeded = MIN (end_unneeded, const_s_width);
71d6a386
RS
1580 for (i = begin_unneeded; i < end_unneeded; ++i)
1581 set_position_unneeded (s_info, i);
1582 }
02ce5d90
RS
1583 else
1584 {
1585 /* We don't know which parts of S_INFO are needed and
1586 which aren't, so invalidate the RHS. */
1587 s_info->rhs = NULL;
1588 s_info->const_rhs = NULL;
1589 }
6fb5fa3c
DB
1590 }
1591 else if (s_info->rhs)
1592 /* Need to see if it is possible for this store to overwrite
1593 the value of store_info. If it is, set the rhs to NULL to
1594 keep it from being used to remove a load. */
1595 {
43b9f499
RB
1596 if (canon_output_dependence (s_info->mem, true,
1597 mem, GET_MODE (mem),
1598 mem_addr))
8dd5516b
JJ
1599 {
1600 s_info->rhs = NULL;
1601 s_info->const_rhs = NULL;
1602 }
6fb5fa3c 1603 }
6216f94e 1604
6fb5fa3c
DB
1605 /* An insn can be deleted if every position of every one of
1606 its s_infos is zero. */
1b6fa860 1607 if (any_positions_needed_p (s_info))
60564289 1608 del = false;
8dd5516b 1609
60564289 1610 if (del)
6fb5fa3c
DB
1611 {
1612 insn_info_t insn_to_delete = ptr;
b8698a0f 1613
dabd47e7 1614 active_local_stores_len--;
6fb5fa3c
DB
1615 if (last)
1616 last->next_local_store = ptr->next_local_store;
1617 else
1618 active_local_stores = ptr->next_local_store;
b8698a0f 1619
1b6fa860
JJ
1620 if (!insn_to_delete->cannot_delete)
1621 delete_dead_store_insn (insn_to_delete);
6fb5fa3c
DB
1622 }
1623 else
1624 last = ptr;
b8698a0f 1625
6fb5fa3c
DB
1626 ptr = next;
1627 }
b8698a0f 1628
6fb5fa3c
DB
1629 /* Finish filling in the store_info. */
1630 store_info->next = insn_info->store_rec;
1631 insn_info->store_rec = store_info;
6216f94e 1632 store_info->mem = mem;
6216f94e 1633 store_info->mem_addr = mem_addr;
6fb5fa3c 1634 store_info->cse_base = base;
02ce5d90
RS
1635 HOST_WIDE_INT const_width;
1636 if (!width.is_constant (&const_width))
1637 {
1638 store_info->is_large = true;
1639 store_info->positions_needed.large.count = 0;
1640 store_info->positions_needed.large.bmap = NULL;
1641 }
1642 else if (const_width > HOST_BITS_PER_WIDE_INT)
8dd5516b
JJ
1643 {
1644 store_info->is_large = true;
1645 store_info->positions_needed.large.count = 0;
3f9b14ff 1646 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
8dd5516b
JJ
1647 }
1648 else
1649 {
1650 store_info->is_large = false;
02ce5d90
RS
1651 store_info->positions_needed.small_bitmask
1652 = lowpart_bitmask (const_width);
8dd5516b 1653 }
6fb5fa3c 1654 store_info->group_id = group_id;
71d6a386
RS
1655 store_info->offset = offset;
1656 store_info->width = width;
6fb5fa3c 1657 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1658 store_info->rhs = rhs;
1659 store_info->const_rhs = const_rhs;
1660 store_info->redundant_reason = redundant_reason;
6fb5fa3c 1661
6fb5fa3c
DB
1662 /* If this is a clobber, we return 0. We will only be able to
1663 delete this insn if there is only one store USED store, but we
1664 can use the clobber to delete other stores earlier. */
1665 return store_info->is_set ? 1 : 0;
1666}
1667
1668
1669static void
1670dump_insn_info (const char * start, insn_info_t insn_info)
1671{
b8698a0f 1672 fprintf (dump_file, "%s insn=%d %s\n", start,
6fb5fa3c
DB
1673 INSN_UID (insn_info->insn),
1674 insn_info->store_rec ? "has store" : "naked");
1675}
1676
1677
8660aaae
EC
1678/* If the modes are different and the value's source and target do not
1679 line up, we need to extract the value from lower part of the rhs of
1680 the store, shift it, and then put it into a form that can be shoved
1681 into the read_insn. This function generates a right SHIFT of a
1682 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1683 shift sequence is returned or NULL if we failed to find a
1684 shift. */
1685
1686static rtx
02ce5d90 1687find_shift_sequence (poly_int64 access_size,
fd6daec9 1688 store_info *store_info,
ef4bddc2 1689 machine_mode read_mode,
02ce5d90 1690 poly_int64 shift, bool speed, bool require_cst)
8660aaae 1691{
ef4bddc2 1692 machine_mode store_mode = GET_MODE (store_info->mem);
f67f4dff 1693 scalar_int_mode new_mode;
18b526e8 1694 rtx read_reg = NULL;
8660aaae
EC
1695
1696 /* Some machines like the x86 have shift insns for each size of
1697 operand. Other machines like the ppc or the ia-64 may only have
1698 shift insns that shift values within 32 or 64 bit registers.
1699 This loop tries to find the smallest shift insn that will right
1700 justify the value we want to read but is available in one insn on
1701 the machine. */
1702
f67f4dff
RS
1703 opt_scalar_int_mode new_mode_iter;
1704 FOR_EACH_MODE_FROM (new_mode_iter,
1705 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
8660aaae 1706 {
dc01c3d1
DM
1707 rtx target, new_reg, new_lhs;
1708 rtx_insn *shift_seq, *insn;
d898d29b 1709 int cost;
348eea5f 1710
f67f4dff 1711 new_mode = new_mode_iter.require ();
c94843d2
RS
1712 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1713 break;
1714
72a2609f
JJ
1715 /* If a constant was stored into memory, try to simplify it here,
1716 otherwise the cost of the shift might preclude this optimization
1717 e.g. at -Os, even when no actual shift will be needed. */
8dd5516b 1718 if (store_info->const_rhs)
72a2609f 1719 {
91914e56 1720 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
8dd5516b
JJ
1721 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1722 store_mode, byte);
72a2609f
JJ
1723 if (ret && CONSTANT_P (ret))
1724 {
abd3c800 1725 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
72a2609f 1726 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
abd3c800 1727 ret, shift_rtx);
72a2609f
JJ
1728 if (ret && CONSTANT_P (ret))
1729 {
1730 byte = subreg_lowpart_offset (read_mode, new_mode);
1731 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1732 if (ret && CONSTANT_P (ret)
e548c9df
AM
1733 && (set_src_cost (ret, read_mode, speed)
1734 <= COSTS_N_INSNS (1)))
72a2609f
JJ
1735 return ret;
1736 }
1737 }
1738 }
1739
8dd5516b
JJ
1740 if (require_cst)
1741 return NULL_RTX;
1742
18b526e8
RS
1743 /* Try a wider mode if truncating the store mode to NEW_MODE
1744 requires a real instruction. */
73a699ae 1745 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
d0edd768 1746 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
348eea5f
RS
1747 continue;
1748
18b526e8
RS
1749 /* Also try a wider mode if the necessary punning is either not
1750 desirable or not possible. */
1751 if (!CONSTANT_P (store_info->rhs)
99e1629f 1752 && !targetm.modes_tieable_p (new_mode, store_mode))
18b526e8 1753 continue;
18b526e8 1754
348eea5f 1755 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1756
1757 start_sequence ();
1758
1759 /* In theory we could also check for an ashr. Ian Taylor knows
1760 of one dsp where the cost of these two was not the same. But
1761 this really is a rare case anyway. */
1762 target = expand_binop (new_mode, lshr_optab, new_reg,
abd3c800
RS
1763 gen_int_shift_amount (new_mode, shift),
1764 new_reg, 1, OPTAB_DIRECT);
8660aaae 1765
c6f3019a
RS
1766 shift_seq = get_insns ();
1767 end_sequence ();
8660aaae 1768
c6f3019a
RS
1769 if (target != new_reg || shift_seq == NULL)
1770 continue;
1771
1772 cost = 0;
1773 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1774 if (INSN_P (insn))
d09e78e8 1775 cost += insn_cost (insn, speed);
c6f3019a
RS
1776
1777 /* The computation up to here is essentially independent
1778 of the arguments and could be precomputed. It may
1779 not be worth doing so. We could precompute if
1780 worthwhile or at least cache the results. The result
06acf7d0
RS
1781 technically depends on both SHIFT and ACCESS_SIZE,
1782 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1783
1784 if (cost > COSTS_N_INSNS (1))
1785 continue;
1786
d898d29b
JJ
1787 new_lhs = extract_low_bits (new_mode, store_mode,
1788 copy_rtx (store_info->rhs));
1789 if (new_lhs == NULL_RTX)
1790 continue;
1791
c6f3019a
RS
1792 /* We found an acceptable shift. Generate a move to
1793 take the value from the store and put it into the
1794 shift pseudo, then shift it, then generate another
1795 move to put in into the target of the read. */
18b526e8 1796 emit_move_insn (new_reg, new_lhs);
c6f3019a 1797 emit_insn (shift_seq);
18b526e8 1798 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1799 break;
8660aaae
EC
1800 }
1801
18b526e8 1802 return read_reg;
8660aaae
EC
1803}
1804
1805
02b47899
KZ
1806/* Call back for note_stores to find the hard regs set or clobbered by
1807 insn. Data is a bitmap of the hardregs set so far. */
1808
1809static void
1810look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1811{
1812 bitmap regs_set = (bitmap) data;
1813
1814 if (REG_P (x)
f773c2bd 1815 && HARD_REGISTER_P (x))
dc8afb70 1816 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
02b47899
KZ
1817}
1818
8dd5516b 1819/* Helper function for replace_read and record_store.
71d6a386
RS
1820 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1821 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
8dd5516b
JJ
1822 if not successful. If REQUIRE_CST is true, return always constant. */
1823
1824static rtx
fd6daec9 1825get_stored_val (store_info *store_info, machine_mode read_mode,
02ce5d90 1826 poly_int64 read_offset, poly_int64 read_width,
8dd5516b
JJ
1827 basic_block bb, bool require_cst)
1828{
ef4bddc2 1829 machine_mode store_mode = GET_MODE (store_info->mem);
02ce5d90 1830 poly_int64 gap;
8dd5516b
JJ
1831 rtx read_reg;
1832
1833 /* To get here the read is within the boundaries of the write so
1834 shift will never be negative. Start out with the shift being in
1835 bytes. */
1836 if (store_mode == BLKmode)
71d6a386 1837 gap = 0;
8dd5516b 1838 else if (BYTES_BIG_ENDIAN)
71d6a386
RS
1839 gap = ((store_info->offset + store_info->width)
1840 - (read_offset + read_width));
8dd5516b 1841 else
71d6a386 1842 gap = read_offset - store_info->offset;
8dd5516b 1843
e6575643 1844 if (gap.is_constant () && maybe_ne (gap, 0))
71d6a386 1845 {
02ce5d90
RS
1846 poly_int64 shift = gap * BITS_PER_UNIT;
1847 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
71d6a386
RS
1848 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1849 shift, optimize_bb_for_speed_p (bb),
1850 require_cst);
1851 }
8dd5516b
JJ
1852 else if (store_mode == BLKmode)
1853 {
1854 /* The store is a memset (addr, const_val, const_size). */
1855 gcc_assert (CONST_INT_P (store_info->rhs));
304b9962
RS
1856 scalar_int_mode int_store_mode;
1857 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
8dd5516b
JJ
1858 read_reg = NULL_RTX;
1859 else if (store_info->rhs == const0_rtx)
304b9962
RS
1860 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1861 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
8dd5516b
JJ
1862 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1863 read_reg = NULL_RTX;
1864 else
1865 {
1866 unsigned HOST_WIDE_INT c
1867 = INTVAL (store_info->rhs)
fecfbfa4 1868 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
8dd5516b
JJ
1869 int shift = BITS_PER_UNIT;
1870 while (shift < HOST_BITS_PER_WIDE_INT)
1871 {
1872 c |= (c << shift);
1873 shift <<= 1;
1874 }
304b9962
RS
1875 read_reg = gen_int_mode (c, int_store_mode);
1876 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
8dd5516b
JJ
1877 }
1878 }
1879 else if (store_info->const_rhs
1880 && (require_cst
1881 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1882 read_reg = extract_low_bits (read_mode, store_mode,
1883 copy_rtx (store_info->const_rhs));
1884 else
1885 read_reg = extract_low_bits (read_mode, store_mode,
1886 copy_rtx (store_info->rhs));
1887 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1888 read_reg = NULL_RTX;
1889 return read_reg;
1890}
02b47899 1891
6fb5fa3c
DB
1892/* Take a sequence of:
1893 A <- r1
1894 ...
1895 ... <- A
1896
b8698a0f 1897 and change it into
6fb5fa3c
DB
1898 r2 <- r1
1899 A <- r1
1900 ...
1901 ... <- r2
1902
8660aaae
EC
1903 or
1904
1905 r3 <- extract (r1)
1906 r3 <- r3 >> shift
1907 r2 <- extract (r3)
1908 ... <- r2
1909
1910 or
1911
1912 r2 <- extract (r1)
1913 ... <- r2
1914
1915 Depending on the alignment and the mode of the store and
1916 subsequent load.
1917
1918
1919 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1920 and READ_INSN are for the read. Return true if the replacement
1921 went ok. */
1922
1923static bool
fd6daec9 1924replace_read (store_info *store_info, insn_info_t store_insn,
8dd5516b
JJ
1925 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1926 bitmap regs_live)
6fb5fa3c 1927{
ef4bddc2
RS
1928 machine_mode store_mode = GET_MODE (store_info->mem);
1929 machine_mode read_mode = GET_MODE (read_info->mem);
dc01c3d1
DM
1930 rtx_insn *insns, *this_insn;
1931 rtx read_reg;
8dd5516b 1932 basic_block bb;
8660aaae 1933
6fb5fa3c
DB
1934 if (!dbg_cnt (dse))
1935 return false;
1936
18b526e8
RS
1937 /* Create a sequence of instructions to set up the read register.
1938 This sequence goes immediately before the store and its result
1939 is read by the load.
1940
1941 We need to keep this in perspective. We are replacing a read
8660aaae
EC
1942 with a sequence of insns, but the read will almost certainly be
1943 in cache, so it is not going to be an expensive one. Thus, we
1944 are not willing to do a multi insn shift or worse a subroutine
1945 call to get rid of the read. */
456610d3 1946 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1947 fprintf (dump_file, "trying to replace %smode load in insn %d"
1948 " from %smode store in insn %d\n",
1949 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1950 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1951 start_sequence ();
8dd5516b
JJ
1952 bb = BLOCK_FOR_INSN (read_insn->insn);
1953 read_reg = get_stored_val (store_info,
71d6a386 1954 read_mode, read_info->offset, read_info->width,
8dd5516b 1955 bb, false);
18b526e8 1956 if (read_reg == NULL_RTX)
8660aaae 1957 {
18b526e8 1958 end_sequence ();
456610d3 1959 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1960 fprintf (dump_file, " -- could not extract bits of stored value\n");
1961 return false;
8660aaae 1962 }
18b526e8
RS
1963 /* Force the value into a new register so that it won't be clobbered
1964 between the store and the load. */
1965 read_reg = copy_to_mode_reg (read_mode, read_reg);
1966 insns = get_insns ();
1967 end_sequence ();
8660aaae 1968
02b47899
KZ
1969 if (insns != NULL_RTX)
1970 {
1971 /* Now we have to scan the set of new instructions to see if the
1972 sequence contains and sets of hardregs that happened to be
1973 live at this point. For instance, this can happen if one of
1974 the insns sets the CC and the CC happened to be live at that
1975 point. This does occasionally happen, see PR 37922. */
3f9b14ff 1976 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
02b47899
KZ
1977
1978 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1979 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
b8698a0f 1980
02b47899
KZ
1981 bitmap_and_into (regs_set, regs_live);
1982 if (!bitmap_empty_p (regs_set))
1983 {
456610d3 1984 if (dump_file && (dump_flags & TDF_DETAILS))
02b47899 1985 {
b8698a0f 1986 fprintf (dump_file,
02b47899
KZ
1987 "abandoning replacement because sequence clobbers live hardregs:");
1988 df_print_regset (dump_file, regs_set);
1989 }
b8698a0f 1990
02b47899
KZ
1991 BITMAP_FREE (regs_set);
1992 return false;
1993 }
1994 BITMAP_FREE (regs_set);
1995 }
1996
8660aaae 1997 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 1998 {
fd6daec9 1999 deferred_change *change = deferred_change_pool.allocate ();
b8698a0f 2000
8660aaae
EC
2001 /* Insert this right before the store insn where it will be safe
2002 from later insns that might change it before the read. */
2003 emit_insn_before (insns, store_insn->insn);
b8698a0f 2004
8660aaae
EC
2005 /* And now for the kludge part: cselib croaks if you just
2006 return at this point. There are two reasons for this:
b8698a0f 2007
8660aaae
EC
2008 1) Cselib has an idea of how many pseudos there are and
2009 that does not include the new ones we just added.
b8698a0f 2010
8660aaae
EC
2011 2) Cselib does not know about the move insn we added
2012 above the store_info, and there is no way to tell it
2013 about it, because it has "moved on".
b8698a0f 2014
8660aaae
EC
2015 Problem (1) is fixable with a certain amount of engineering.
2016 Problem (2) is requires starting the bb from scratch. This
2017 could be expensive.
b8698a0f 2018
8660aaae
EC
2019 So we are just going to have to lie. The move/extraction
2020 insns are not really an issue, cselib did not see them. But
2021 the use of the new pseudo read_insn is a real problem because
2022 cselib has not scanned this insn. The way that we solve this
2023 problem is that we are just going to put the mem back for now
2024 and when we are finished with the block, we undo this. We
2025 keep a table of mems to get rid of. At the end of the basic
2026 block we can put them back. */
b8698a0f 2027
8660aaae 2028 *loc = read_info->mem;
da6603c6
ML
2029 change->next = deferred_change_list;
2030 deferred_change_list = change;
2031 change->loc = loc;
2032 change->reg = read_reg;
b8698a0f 2033
8660aaae
EC
2034 /* Get rid of the read_info, from the point of view of the
2035 rest of dse, play like this read never happened. */
2036 read_insn->read_rec = read_info->next;
fb0b2914 2037 read_info_type_pool.remove (read_info);
456610d3 2038 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2039 {
2040 fprintf (dump_file, " -- replaced the loaded MEM with ");
2041 print_simple_rtl (dump_file, read_reg);
2042 fprintf (dump_file, "\n");
2043 }
8660aaae 2044 return true;
6fb5fa3c 2045 }
b8698a0f 2046 else
6fb5fa3c 2047 {
456610d3 2048 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2049 {
2050 fprintf (dump_file, " -- replacing the loaded MEM with ");
2051 print_simple_rtl (dump_file, read_reg);
2052 fprintf (dump_file, " led to an invalid instruction\n");
2053 }
6fb5fa3c
DB
2054 return false;
2055 }
2056}
2057
d7111da8
RS
2058/* Check the address of MEM *LOC and kill any appropriate stores that may
2059 be active. */
6fb5fa3c 2060
d7111da8
RS
2061static void
2062check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
6fb5fa3c 2063{
6216f94e 2064 rtx mem = *loc, mem_addr;
6fb5fa3c 2065 insn_info_t insn_info;
02ce5d90
RS
2066 poly_int64 offset = 0;
2067 poly_int64 width = 0;
b8698a0f 2068 cselib_val *base = NULL;
6fb5fa3c
DB
2069 int group_id;
2070 read_info_t read_info;
2071
6fb5fa3c
DB
2072 insn_info = bb_info->last_insn;
2073
2074 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
a49a975f 2075 || MEM_VOLATILE_P (mem))
6fb5fa3c 2076 {
a49a975f
JJ
2077 if (crtl->stack_protect_guard
2078 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2079 || (crtl->stack_protect_guard_decl
2080 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2081 && MEM_VOLATILE_P (mem))
2082 {
2083 /* This is either the stack protector canary on the stack,
2084 which ought to be written by a MEM_VOLATILE_P store and
2085 thus shouldn't be deleted and is read at the very end of
2086 function, but shouldn't conflict with any other store.
2087 Or it is __stack_chk_guard variable or TLS or whatever else
2088 MEM holding the canary value, which really shouldn't be
2089 ever modified in -fstack-protector* protected functions,
2090 otherwise the prologue store wouldn't match the epilogue
2091 check. */
2092 if (dump_file && (dump_flags & TDF_DETAILS))
2093 fprintf (dump_file, " stack protector canary read ignored.\n");
2094 insn_info->cannot_delete = true;
2095 return;
2096 }
2097
456610d3 2098 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2099 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2100 add_wild_read (bb_info);
2101 insn_info->cannot_delete = true;
d7111da8 2102 return;
6fb5fa3c
DB
2103 }
2104
2105 /* If it is reading readonly mem, then there can be no conflict with
2106 another write. */
2107 if (MEM_READONLY_P (mem))
d7111da8 2108 return;
6fb5fa3c 2109
ac6929b5 2110 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c 2111 {
456610d3 2112 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2113 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2114 add_wild_read (bb_info);
d7111da8 2115 return;
6fb5fa3c
DB
2116 }
2117
2118 if (GET_MODE (mem) == BLKmode)
2119 width = -1;
2120 else
2121 width = GET_MODE_SIZE (GET_MODE (mem));
2122
02ce5d90 2123 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
938f9248 2124 {
213ffde2
JJ
2125 if (dump_file && (dump_flags & TDF_DETAILS))
2126 fprintf (dump_file, " adding wild read, due to overflow.\n");
2127 add_wild_read (bb_info);
938f9248
ML
2128 return;
2129 }
2130
fb0b2914 2131 read_info = read_info_type_pool.allocate ();
6fb5fa3c
DB
2132 read_info->group_id = group_id;
2133 read_info->mem = mem;
71d6a386
RS
2134 read_info->offset = offset;
2135 read_info->width = width;
6fb5fa3c
DB
2136 read_info->next = insn_info->read_rec;
2137 insn_info->read_rec = read_info;
ac6929b5
RB
2138 if (group_id < 0)
2139 mem_addr = base->val_rtx;
6216f94e
JJ
2140 else
2141 {
ac6929b5
RB
2142 group_info *group = rtx_group_vec[group_id];
2143 mem_addr = group->canon_base_addr;
6216f94e 2144 }
02ce5d90 2145 if (maybe_ne (offset, 0))
ac6929b5 2146 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c 2147
ac6929b5 2148 if (group_id >= 0)
6fb5fa3c
DB
2149 {
2150 /* This is the restricted case where the base is a constant or
2151 the frame pointer and offset is a constant. */
2152 insn_info_t i_ptr = active_local_stores;
2153 insn_info_t last = NULL;
b8698a0f 2154
456610d3 2155 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2156 {
02ce5d90 2157 if (!known_size_p (width))
6fb5fa3c
DB
2158 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2159 group_id);
2160 else
71d6a386
RS
2161 {
2162 fprintf (dump_file, " processing const load gid=%d", group_id);
2163 print_range (dump_file, offset, width);
2164 fprintf (dump_file, "\n");
2165 }
6fb5fa3c
DB
2166 }
2167
2168 while (i_ptr)
2169 {
2170 bool remove = false;
fd6daec9 2171 store_info *store_info = i_ptr->store_rec;
b8698a0f 2172
6fb5fa3c
DB
2173 /* Skip the clobbers. */
2174 while (!store_info->is_set)
2175 store_info = store_info->next;
b8698a0f 2176
6fb5fa3c
DB
2177 /* There are three cases here. */
2178 if (store_info->group_id < 0)
2179 /* We have a cselib store followed by a read from a
2180 const base. */
b8698a0f
L
2181 remove
2182 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2183 GET_MODE (store_info->mem),
2184 store_info->mem_addr,
53d9622b 2185 mem, mem_addr);
b8698a0f 2186
6fb5fa3c
DB
2187 else if (group_id == store_info->group_id)
2188 {
2189 /* This is a block mode load. We may get lucky and
2190 canon_true_dependence may save the day. */
02ce5d90 2191 if (!known_size_p (width))
b8698a0f
L
2192 remove
2193 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2194 GET_MODE (store_info->mem),
2195 store_info->mem_addr,
53d9622b 2196 mem, mem_addr);
b8698a0f 2197
6fb5fa3c
DB
2198 /* If this read is just reading back something that we just
2199 stored, rewrite the read. */
b8698a0f 2200 else
6fb5fa3c
DB
2201 {
2202 if (store_info->rhs
71d6a386
RS
2203 && known_subrange_p (offset, width, store_info->offset,
2204 store_info->width)
8dd5516b 2205 && all_positions_needed_p (store_info,
71d6a386 2206 offset - store_info->offset,
8dd5516b
JJ
2207 width)
2208 && replace_read (store_info, i_ptr, read_info,
2209 insn_info, loc, bb_info->regs_live))
d7111da8 2210 return;
8dd5516b 2211
6fb5fa3c 2212 /* The bases are the same, just see if the offsets
71d6a386
RS
2213 could overlap. */
2214 if (ranges_maybe_overlap_p (offset, width,
2215 store_info->offset,
2216 store_info->width))
6fb5fa3c
DB
2217 remove = true;
2218 }
2219 }
b8698a0f
L
2220
2221 /* else
6fb5fa3c
DB
2222 The else case that is missing here is that the
2223 bases are constant but different. There is nothing
2224 to do here because there is no overlap. */
b8698a0f 2225
6fb5fa3c
DB
2226 if (remove)
2227 {
456610d3 2228 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2229 dump_insn_info ("removing from active", i_ptr);
2230
dabd47e7 2231 active_local_stores_len--;
6fb5fa3c
DB
2232 if (last)
2233 last->next_local_store = i_ptr->next_local_store;
2234 else
2235 active_local_stores = i_ptr->next_local_store;
2236 }
2237 else
2238 last = i_ptr;
2239 i_ptr = i_ptr->next_local_store;
2240 }
2241 }
b8698a0f 2242 else
6fb5fa3c
DB
2243 {
2244 insn_info_t i_ptr = active_local_stores;
2245 insn_info_t last = NULL;
456610d3 2246 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2247 {
2248 fprintf (dump_file, " processing cselib load mem:");
2249 print_inline_rtx (dump_file, mem, 0);
2250 fprintf (dump_file, "\n");
2251 }
2252
2253 while (i_ptr)
2254 {
2255 bool remove = false;
fd6daec9 2256 store_info *store_info = i_ptr->store_rec;
b8698a0f 2257
456610d3 2258 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2259 fprintf (dump_file, " processing cselib load against insn %d\n",
2260 INSN_UID (i_ptr->insn));
2261
2262 /* Skip the clobbers. */
2263 while (!store_info->is_set)
2264 store_info = store_info->next;
2265
2266 /* If this read is just reading back something that we just
2267 stored, rewrite the read. */
2268 if (store_info->rhs
2269 && store_info->group_id == -1
2270 && store_info->cse_base == base
71d6a386
RS
2271 && known_subrange_p (offset, width, store_info->offset,
2272 store_info->width)
8dd5516b 2273 && all_positions_needed_p (store_info,
71d6a386 2274 offset - store_info->offset, width)
8dd5516b
JJ
2275 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2276 bb_info->regs_live))
d7111da8 2277 return;
6fb5fa3c 2278
ac6929b5
RB
2279 remove = canon_true_dependence (store_info->mem,
2280 GET_MODE (store_info->mem),
2281 store_info->mem_addr,
2282 mem, mem_addr);
b8698a0f 2283
6fb5fa3c
DB
2284 if (remove)
2285 {
456610d3 2286 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2287 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2288
dabd47e7 2289 active_local_stores_len--;
6fb5fa3c
DB
2290 if (last)
2291 last->next_local_store = i_ptr->next_local_store;
2292 else
2293 active_local_stores = i_ptr->next_local_store;
2294 }
2295 else
2296 last = i_ptr;
2297 i_ptr = i_ptr->next_local_store;
2298 }
2299 }
6fb5fa3c
DB
2300}
2301
d7111da8 2302/* A note_uses callback in which DATA points the INSN_INFO for
6fb5fa3c
DB
2303 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2304 true for any part of *LOC. */
2305
2306static void
2307check_mem_read_use (rtx *loc, void *data)
2308{
d7111da8
RS
2309 subrtx_ptr_iterator::array_type array;
2310 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2311 {
2312 rtx *loc = *iter;
2313 if (MEM_P (*loc))
2314 check_mem_read_rtx (loc, (bb_info_t) data);
2315 }
6fb5fa3c
DB
2316}
2317
8dd5516b
JJ
2318
2319/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2320 So far it only handles arguments passed in registers. */
2321
2322static bool
2323get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2324{
d5cc9181
JR
2325 CUMULATIVE_ARGS args_so_far_v;
2326 cumulative_args_t args_so_far;
8dd5516b
JJ
2327 tree arg;
2328 int idx;
2329
d5cc9181
JR
2330 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2331 args_so_far = pack_cumulative_args (&args_so_far_v);
8dd5516b
JJ
2332
2333 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2334 for (idx = 0;
2335 arg != void_list_node && idx < nargs;
2336 arg = TREE_CHAIN (arg), idx++)
2337 {
b4206259 2338 scalar_int_mode mode;
3c07301f 2339 rtx reg, link, tmp;
b4206259
RS
2340
2341 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2342 return false;
2343
d5cc9181 2344 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
b4206259 2345 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
8dd5516b
JJ
2346 return false;
2347
2348 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2349 link;
2350 link = XEXP (link, 1))
2351 if (GET_CODE (XEXP (link, 0)) == USE)
2352 {
b4206259 2353 scalar_int_mode arg_mode;
8dd5516b
JJ
2354 args[idx] = XEXP (XEXP (link, 0), 0);
2355 if (REG_P (args[idx])
2356 && REGNO (args[idx]) == REGNO (reg)
2357 && (GET_MODE (args[idx]) == mode
b4206259
RS
2358 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2359 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2360 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
8dd5516b
JJ
2361 break;
2362 }
2363 if (!link)
2364 return false;
2365
2366 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2367 if (GET_MODE (args[idx]) != mode)
2368 {
2369 if (!tmp || !CONST_INT_P (tmp))
2370 return false;
6d26322f 2371 tmp = gen_int_mode (INTVAL (tmp), mode);
8dd5516b
JJ
2372 }
2373 if (tmp)
2374 args[idx] = tmp;
2375
d5cc9181 2376 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
8dd5516b
JJ
2377 }
2378 if (arg != void_list_node || idx != nargs)
2379 return false;
2380 return true;
2381}
2382
9e582b1d
JR
2383/* Return a bitmap of the fixed registers contained in IN. */
2384
2385static bitmap
2386copy_fixed_regs (const_bitmap in)
2387{
2388 bitmap ret;
2389
2390 ret = ALLOC_REG_SET (NULL);
2391 bitmap_and (ret, in, fixed_reg_set_regset);
2392 return ret;
2393}
8dd5516b 2394
6fb5fa3c
DB
2395/* Apply record_store to all candidate stores in INSN. Mark INSN
2396 if some part of it is not a candidate store and assigns to a
2397 non-register target. */
2398
2399static void
dd60a84c 2400scan_insn (bb_info_t bb_info, rtx_insn *insn)
6fb5fa3c
DB
2401{
2402 rtx body;
fb0b2914 2403 insn_info_type *insn_info = insn_info_type_pool.allocate ();
6fb5fa3c 2404 int mems_found = 0;
da6603c6 2405 memset (insn_info, 0, sizeof (struct insn_info_type));
6fb5fa3c 2406
456610d3 2407 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2408 fprintf (dump_file, "\n**scanning insn=%d\n",
2409 INSN_UID (insn));
2410
2411 insn_info->prev_insn = bb_info->last_insn;
2412 insn_info->insn = insn;
2413 bb_info->last_insn = insn_info;
b8698a0f 2414
b5b8b0ac
AO
2415 if (DEBUG_INSN_P (insn))
2416 {
2417 insn_info->cannot_delete = true;
2418 return;
2419 }
6fb5fa3c 2420
6fb5fa3c
DB
2421 /* Look at all of the uses in the insn. */
2422 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2423
2424 if (CALL_P (insn))
2425 {
8dd5516b 2426 bool const_call;
ee516de9 2427 rtx call, sym;
8dd5516b
JJ
2428 tree memset_call = NULL_TREE;
2429
6fb5fa3c 2430 insn_info->cannot_delete = true;
50f0f366 2431
6fb5fa3c 2432 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2433 however, they can read their parameters which may have
8dd5516b
JJ
2434 been pushed onto the stack.
2435 memset and bzero don't read memory either. */
2436 const_call = RTL_CONST_CALL_P (insn);
ee516de9
EB
2437 if (!const_call
2438 && (call = get_call_rtx_from (insn))
2439 && (sym = XEXP (XEXP (call, 0), 0))
2440 && GET_CODE (sym) == SYMBOL_REF
2441 && SYMBOL_REF_DECL (sym)
2442 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
3d78e008 2443 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
ee516de9
EB
2444 memset_call = SYMBOL_REF_DECL (sym);
2445
8dd5516b 2446 if (const_call || memset_call)
6fb5fa3c
DB
2447 {
2448 insn_info_t i_ptr = active_local_stores;
2449 insn_info_t last = NULL;
2450
456610d3 2451 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2452 fprintf (dump_file, "%s call %d\n",
2453 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2454
64520bdc 2455 /* See the head comment of the frame_read field. */
57534689
JJ
2456 if (reload_completed
2457 /* Tail calls are storing their arguments using
2458 arg pointer. If it is a frame pointer on the target,
2459 even before reload we need to kill frame pointer based
2460 stores. */
2461 || (SIBLING_CALL_P (insn)
2462 && HARD_FRAME_POINTER_IS_ARG_POINTER))
64520bdc
EB
2463 insn_info->frame_read = true;
2464
2465 /* Loop over the active stores and remove those which are
2466 killed by the const function call. */
6fb5fa3c
DB
2467 while (i_ptr)
2468 {
64520bdc
EB
2469 bool remove_store = false;
2470
2471 /* The stack pointer based stores are always killed. */
50f0f366 2472 if (i_ptr->stack_pointer_based)
64520bdc
EB
2473 remove_store = true;
2474
2475 /* If the frame is read, the frame related stores are killed. */
2476 else if (insn_info->frame_read)
2477 {
fd6daec9 2478 store_info *store_info = i_ptr->store_rec;
64520bdc
EB
2479
2480 /* Skip the clobbers. */
2481 while (!store_info->is_set)
2482 store_info = store_info->next;
2483
2484 if (store_info->group_id >= 0
9771b263 2485 && rtx_group_vec[store_info->group_id]->frame_related)
64520bdc
EB
2486 remove_store = true;
2487 }
2488
2489 if (remove_store)
6fb5fa3c 2490 {
456610d3 2491 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2492 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2493
dabd47e7 2494 active_local_stores_len--;
6fb5fa3c
DB
2495 if (last)
2496 last->next_local_store = i_ptr->next_local_store;
2497 else
2498 active_local_stores = i_ptr->next_local_store;
2499 }
2500 else
2501 last = i_ptr;
64520bdc 2502
6fb5fa3c
DB
2503 i_ptr = i_ptr->next_local_store;
2504 }
8dd5516b
JJ
2505
2506 if (memset_call)
2507 {
2508 rtx args[3];
2509 if (get_call_args (insn, memset_call, args, 3)
2510 && CONST_INT_P (args[1])
2511 && CONST_INT_P (args[2])
2512 && INTVAL (args[2]) > 0)
2513 {
2514 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
f5541398 2515 set_mem_size (mem, INTVAL (args[2]));
f7df4a84 2516 body = gen_rtx_SET (mem, args[1]);
8dd5516b 2517 mems_found += record_store (body, bb_info);
456610d3 2518 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2519 fprintf (dump_file, "handling memset as BLKmode store\n");
2520 if (mems_found == 1)
2521 {
dabd47e7
JJ
2522 if (active_local_stores_len++
2523 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2524 {
2525 active_local_stores_len = 1;
2526 active_local_stores = NULL;
2527 }
9e582b1d
JR
2528 insn_info->fixed_regs_live
2529 = copy_fixed_regs (bb_info->regs_live);
8dd5516b
JJ
2530 insn_info->next_local_store = active_local_stores;
2531 active_local_stores = insn_info;
2532 }
2533 }
a2ad54a0
JJ
2534 else
2535 clear_rhs_from_active_local_stores ();
8dd5516b 2536 }
6fb5fa3c 2537 }
57534689
JJ
2538 else if (SIBLING_CALL_P (insn) && reload_completed)
2539 /* Arguments for a sibling call that are pushed to memory are passed
2540 using the incoming argument pointer of the current function. After
2541 reload that might be (and likely is) frame pointer based. */
2542 add_wild_read (bb_info);
50f0f366 2543 else
d26c7090
ER
2544 /* Every other call, including pure functions, may read any memory
2545 that is not relative to the frame. */
2546 add_non_frame_wild_read (bb_info);
50f0f366 2547
6fb5fa3c
DB
2548 return;
2549 }
2550
2551 /* Assuming that there are sets in these insns, we cannot delete
2552 them. */
2553 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2554 || volatile_refs_p (PATTERN (insn))
2da02156 2555 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6fb5fa3c
DB
2556 || (RTX_FRAME_RELATED_P (insn))
2557 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2558 insn_info->cannot_delete = true;
b8698a0f 2559
6fb5fa3c
DB
2560 body = PATTERN (insn);
2561 if (GET_CODE (body) == PARALLEL)
2562 {
2563 int i;
2564 for (i = 0; i < XVECLEN (body, 0); i++)
2565 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2566 }
2567 else
2568 mems_found += record_store (body, bb_info);
2569
456610d3 2570 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2571 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
6fb5fa3c
DB
2572 mems_found, insn_info->cannot_delete ? "true" : "false");
2573
8dd5516b
JJ
2574 /* If we found some sets of mems, add it into the active_local_stores so
2575 that it can be locally deleted if found dead or used for
2576 replace_read and redundant constant store elimination. Otherwise mark
2577 it as cannot delete. This simplifies the processing later. */
2578 if (mems_found == 1)
6fb5fa3c 2579 {
dabd47e7
JJ
2580 if (active_local_stores_len++
2581 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2582 {
2583 active_local_stores_len = 1;
2584 active_local_stores = NULL;
2585 }
9e582b1d 2586 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
6fb5fa3c
DB
2587 insn_info->next_local_store = active_local_stores;
2588 active_local_stores = insn_info;
2589 }
2590 else
2591 insn_info->cannot_delete = true;
2592}
2593
2594
2595/* Remove BASE from the set of active_local_stores. This is a
2596 callback from cselib that is used to get rid of the stores in
2597 active_local_stores. */
2598
2599static void
2600remove_useless_values (cselib_val *base)
2601{
2602 insn_info_t insn_info = active_local_stores;
2603 insn_info_t last = NULL;
2604
2605 while (insn_info)
2606 {
fd6daec9 2607 store_info *store_info = insn_info->store_rec;
60564289 2608 bool del = false;
6fb5fa3c
DB
2609
2610 /* If ANY of the store_infos match the cselib group that is
67914693 2611 being deleted, then the insn cannot be deleted. */
6fb5fa3c
DB
2612 while (store_info)
2613 {
b8698a0f 2614 if ((store_info->group_id == -1)
6fb5fa3c
DB
2615 && (store_info->cse_base == base))
2616 {
60564289 2617 del = true;
6fb5fa3c
DB
2618 break;
2619 }
2620 store_info = store_info->next;
2621 }
2622
60564289 2623 if (del)
6fb5fa3c 2624 {
dabd47e7 2625 active_local_stores_len--;
6fb5fa3c
DB
2626 if (last)
2627 last->next_local_store = insn_info->next_local_store;
2628 else
2629 active_local_stores = insn_info->next_local_store;
2630 free_store_info (insn_info);
2631 }
2632 else
2633 last = insn_info;
b8698a0f 2634
6fb5fa3c
DB
2635 insn_info = insn_info->next_local_store;
2636 }
2637}
2638
2639
2640/* Do all of step 1. */
2641
2642static void
2643dse_step1 (void)
2644{
2645 basic_block bb;
3f9b14ff 2646 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
b8698a0f 2647
457eeaae 2648 cselib_init (0);
6fb5fa3c
DB
2649 all_blocks = BITMAP_ALLOC (NULL);
2650 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2651 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2652
04a90bec 2653 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2654 {
2655 insn_info_t ptr;
fb0b2914 2656 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
6fb5fa3c 2657
da6603c6 2658 memset (bb_info, 0, sizeof (dse_bb_info_type));
6fb5fa3c 2659 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2660 bb_info->regs_live = regs_live;
2661
2662 bitmap_copy (regs_live, DF_LR_IN (bb));
2663 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2664
2665 bb_table[bb->index] = bb_info;
2666 cselib_discard_hook = remove_useless_values;
2667
2668 if (bb->index >= NUM_FIXED_BLOCKS)
2669 {
dd60a84c 2670 rtx_insn *insn;
6fb5fa3c 2671
6fb5fa3c 2672 active_local_stores = NULL;
dabd47e7 2673 active_local_stores_len = 0;
6fb5fa3c 2674 cselib_clear_table ();
b8698a0f 2675
6fb5fa3c
DB
2676 /* Scan the insns. */
2677 FOR_BB_INSNS (bb, insn)
2678 {
2679 if (INSN_P (insn))
2680 scan_insn (bb_info, insn);
2681 cselib_process_insn (insn);
02b47899
KZ
2682 if (INSN_P (insn))
2683 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c 2684 }
b8698a0f 2685
6fb5fa3c
DB
2686 /* This is something of a hack, because the global algorithm
2687 is supposed to take care of the case where stores go dead
2688 at the end of the function. However, the global
2689 algorithm must take a more conservative view of block
2690 mode reads than the local alg does. So to get the case
2691 where you have a store to the frame followed by a non
0d52bcc1 2692 overlapping block more read, we look at the active local
6fb5fa3c
DB
2693 stores at the end of the function and delete all of the
2694 frame and spill based ones. */
2695 if (stores_off_frame_dead_at_return
2696 && (EDGE_COUNT (bb->succs) == 0
2697 || (single_succ_p (bb)
fefa31b5 2698 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
e3b5732b 2699 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2700 {
2701 insn_info_t i_ptr = active_local_stores;
2702 while (i_ptr)
2703 {
fd6daec9 2704 store_info *store_info = i_ptr->store_rec;
6fb5fa3c
DB
2705
2706 /* Skip the clobbers. */
2707 while (!store_info->is_set)
2708 store_info = store_info->next;
ac6929b5
RB
2709 if (store_info->group_id >= 0)
2710 {
2711 group_info *group = rtx_group_vec[store_info->group_id];
2712 if (group->frame_related && !i_ptr->cannot_delete)
2713 delete_dead_store_insn (i_ptr);
2714 }
6fb5fa3c
DB
2715
2716 i_ptr = i_ptr->next_local_store;
2717 }
2718 }
2719
2720 /* Get rid of the loads that were discovered in
2721 replace_read. Cselib is finished with this block. */
2722 while (deferred_change_list)
2723 {
fd6daec9 2724 deferred_change *next = deferred_change_list->next;
6fb5fa3c
DB
2725
2726 /* There is no reason to validate this change. That was
2727 done earlier. */
2728 *deferred_change_list->loc = deferred_change_list->reg;
fb0b2914 2729 deferred_change_pool.remove (deferred_change_list);
6fb5fa3c
DB
2730 deferred_change_list = next;
2731 }
2732
2733 /* Get rid of all of the cselib based store_infos in this
2734 block and mark the containing insns as not being
2735 deletable. */
2736 ptr = bb_info->last_insn;
2737 while (ptr)
2738 {
2739 if (ptr->contains_cselib_groups)
8dd5516b 2740 {
fd6daec9 2741 store_info *s_info = ptr->store_rec;
8dd5516b
JJ
2742 while (s_info && !s_info->is_set)
2743 s_info = s_info->next;
2744 if (s_info
2745 && s_info->redundant_reason
2746 && s_info->redundant_reason->insn
2747 && !ptr->cannot_delete)
2748 {
456610d3 2749 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2750 fprintf (dump_file, "Locally deleting insn %d "
2751 "because insn %d stores the "
2752 "same value and couldn't be "
2753 "eliminated\n",
2754 INSN_UID (ptr->insn),
2755 INSN_UID (s_info->redundant_reason->insn));
2756 delete_dead_store_insn (ptr);
2757 }
8dd5516b
JJ
2758 free_store_info (ptr);
2759 }
2760 else
2761 {
fd6daec9 2762 store_info *s_info;
8dd5516b
JJ
2763
2764 /* Free at least positions_needed bitmaps. */
2765 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2766 if (s_info->is_large)
2767 {
dc491a25 2768 BITMAP_FREE (s_info->positions_needed.large.bmap);
8dd5516b
JJ
2769 s_info->is_large = false;
2770 }
2771 }
6fb5fa3c
DB
2772 ptr = ptr->prev_insn;
2773 }
2774
da6603c6 2775 cse_store_info_pool.release ();
6fb5fa3c 2776 }
02b47899 2777 bb_info->regs_live = NULL;
6fb5fa3c
DB
2778 }
2779
02b47899 2780 BITMAP_FREE (regs_live);
6fb5fa3c 2781 cselib_finish ();
c203e8a7 2782 rtx_group_table->empty ();
6fb5fa3c
DB
2783}
2784
2785\f
2786/*----------------------------------------------------------------------------
2787 Second step.
2788
2789 Assign each byte position in the stores that we are going to
2790 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2791 there are any bit positions assigned.
6fb5fa3c
DB
2792----------------------------------------------------------------------------*/
2793
2794static void
2795dse_step2_init (void)
2796{
2797 unsigned int i;
fd6daec9 2798 group_info *group;
6fb5fa3c 2799
9771b263 2800 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2801 {
2802 /* For all non stack related bases, we only consider a store to
2803 be deletable if there are two or more stores for that
2804 position. This is because it takes one store to make the
2805 other store redundant. However, for the stores that are
2806 stack related, we consider them if there is only one store
2807 for the position. We do this because the stack related
2808 stores can be deleted if their is no read between them and
2809 the end of the function.
b8698a0f 2810
6fb5fa3c
DB
2811 To make this work in the current framework, we take the stack
2812 related bases add all of the bits from store1 into store2.
2813 This has the effect of making the eligible even if there is
2814 only one store. */
2815
2816 if (stores_off_frame_dead_at_return && group->frame_related)
2817 {
2818 bitmap_ior_into (group->store2_n, group->store1_n);
2819 bitmap_ior_into (group->store2_p, group->store1_p);
456610d3 2820 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2821 fprintf (dump_file, "group %d is frame related ", i);
6fb5fa3c
DB
2822 }
2823
2824 group->offset_map_size_n++;
3f9b14ff
SB
2825 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2826 group->offset_map_size_n);
6fb5fa3c 2827 group->offset_map_size_p++;
3f9b14ff
SB
2828 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2829 group->offset_map_size_p);
6fb5fa3c 2830 group->process_globally = false;
456610d3 2831 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2832 {
b8698a0f 2833 fprintf (dump_file, "group %d(%d+%d): ", i,
6fb5fa3c
DB
2834 (int)bitmap_count_bits (group->store2_n),
2835 (int)bitmap_count_bits (group->store2_p));
2836 bitmap_print (dump_file, group->store2_n, "n ", " ");
2837 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2838 }
2839 }
2840}
2841
2842
ac6929b5 2843/* Init the offset tables. */
6fb5fa3c
DB
2844
2845static bool
ac6929b5 2846dse_step2 (void)
6fb5fa3c
DB
2847{
2848 unsigned int i;
fd6daec9 2849 group_info *group;
6fb5fa3c
DB
2850 /* Position 0 is unused because 0 is used in the maps to mean
2851 unused. */
2852 current_position = 1;
9771b263 2853 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2854 {
2855 bitmap_iterator bi;
2856 unsigned int j;
2857
c3284718
RS
2858 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2859 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
6fb5fa3c
DB
2860 bitmap_clear (group->group_kill);
2861
2862 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2863 {
2864 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2865 if (bitmap_bit_p (group->escaped_n, j))
2866 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2867 group->offset_map_n[j] = current_position++;
2868 group->process_globally = true;
2869 }
2870 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2871 {
b8698a0f 2872 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2873 if (bitmap_bit_p (group->escaped_p, j))
2874 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2875 group->offset_map_p[j] = current_position++;
2876 group->process_globally = true;
2877 }
2878 }
2879 return current_position != 1;
2880}
2881
2882
6fb5fa3c
DB
2883\f
2884/*----------------------------------------------------------------------------
2885 Third step.
b8698a0f 2886
6fb5fa3c
DB
2887 Build the bit vectors for the transfer functions.
2888----------------------------------------------------------------------------*/
2889
2890
6fb5fa3c
DB
2891/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2892 there, return 0. */
2893
2894static int
fd6daec9 2895get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
6fb5fa3c
DB
2896{
2897 if (offset < 0)
2898 {
2899 HOST_WIDE_INT offset_p = -offset;
2900 if (offset_p >= group_info->offset_map_size_n)
2901 return 0;
2902 return group_info->offset_map_n[offset_p];
2903 }
2904 else
2905 {
2906 if (offset >= group_info->offset_map_size_p)
2907 return 0;
2908 return group_info->offset_map_p[offset];
2909 }
2910}
2911
2912
2913/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2914 may be NULL. */
2915
b8698a0f 2916static void
ac6929b5 2917scan_stores (store_info *store_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
2918{
2919 while (store_info)
2920 {
02ce5d90 2921 HOST_WIDE_INT i, offset, width;
fd6daec9 2922 group_info *group_info
9771b263 2923 = rtx_group_vec[store_info->group_id];
02ce5d90
RS
2924 /* We can (conservatively) ignore stores whose bounds aren't known;
2925 they simply don't generate new global dse opportunities. */
2926 if (group_info->process_globally
2927 && store_info->offset.is_constant (&offset)
2928 && store_info->width.is_constant (&width))
71d6a386 2929 {
02ce5d90
RS
2930 HOST_WIDE_INT end = offset + width;
2931 for (i = offset; i < end; i++)
71d6a386
RS
2932 {
2933 int index = get_bitmap_index (group_info, i);
2934 if (index != 0)
2935 {
2936 bitmap_set_bit (gen, index);
2937 if (kill)
2938 bitmap_clear_bit (kill, index);
2939 }
2940 }
2941 }
6fb5fa3c
DB
2942 store_info = store_info->next;
2943 }
2944}
2945
2946
6fb5fa3c
DB
2947/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2948 may be NULL. */
2949
2950static void
ac6929b5 2951scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
2952{
2953 read_info_t read_info = insn_info->read_rec;
2954 int i;
fd6daec9 2955 group_info *group;
6fb5fa3c 2956
64520bdc
EB
2957 /* If this insn reads the frame, kill all the frame related stores. */
2958 if (insn_info->frame_read)
2959 {
9771b263 2960 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
64520bdc
EB
2961 if (group->process_globally && group->frame_related)
2962 {
2963 if (kill)
2964 bitmap_ior_into (kill, group->group_kill);
b8698a0f 2965 bitmap_and_compl_into (gen, group->group_kill);
64520bdc
EB
2966 }
2967 }
d26c7090
ER
2968 if (insn_info->non_frame_wild_read)
2969 {
2970 /* Kill all non-frame related stores. Kill all stores of variables that
2971 escape. */
2972 if (kill)
2973 bitmap_ior_into (kill, kill_on_calls);
2974 bitmap_and_compl_into (gen, kill_on_calls);
9771b263 2975 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
d26c7090
ER
2976 if (group->process_globally && !group->frame_related)
2977 {
2978 if (kill)
2979 bitmap_ior_into (kill, group->group_kill);
2980 bitmap_and_compl_into (gen, group->group_kill);
2981 }
2982 }
6fb5fa3c
DB
2983 while (read_info)
2984 {
9771b263 2985 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2986 {
2987 if (group->process_globally)
2988 {
2989 if (i == read_info->group_id)
2990 {
02ce5d90
RS
2991 HOST_WIDE_INT offset, width;
2992 /* Reads with non-constant size kill all DSE opportunities
2993 in the group. */
2994 if (!read_info->offset.is_constant (&offset)
2995 || !read_info->width.is_constant (&width)
2996 || !known_size_p (width))
6fb5fa3c 2997 {
71d6a386 2998 /* Handle block mode reads. */
6fb5fa3c
DB
2999 if (kill)
3000 bitmap_ior_into (kill, group->group_kill);
3001 bitmap_and_compl_into (gen, group->group_kill);
3002 }
3003 else
3004 {
3005 /* The groups are the same, just process the
3006 offsets. */
3007 HOST_WIDE_INT j;
02ce5d90
RS
3008 HOST_WIDE_INT end = offset + width;
3009 for (j = offset; j < end; j++)
6fb5fa3c
DB
3010 {
3011 int index = get_bitmap_index (group, j);
3012 if (index != 0)
3013 {
3014 if (kill)
3015 bitmap_set_bit (kill, index);
3016 bitmap_clear_bit (gen, index);
3017 }
3018 }
3019 }
3020 }
3021 else
3022 {
3023 /* The groups are different, if the alias sets
3024 conflict, clear the entire group. We only need
3025 to apply this test if the read_info is a cselib
3026 read. Anything with a constant base cannot alias
3027 something else with a different constant
3028 base. */
3029 if ((read_info->group_id < 0)
b8698a0f 3030 && canon_true_dependence (group->base_mem,
d32f725a 3031 GET_MODE (group->base_mem),
6216f94e 3032 group->canon_base_addr,
53d9622b 3033 read_info->mem, NULL_RTX))
6fb5fa3c
DB
3034 {
3035 if (kill)
3036 bitmap_ior_into (kill, group->group_kill);
3037 bitmap_and_compl_into (gen, group->group_kill);
3038 }
3039 }
3040 }
3041 }
b8698a0f 3042
6fb5fa3c
DB
3043 read_info = read_info->next;
3044 }
3045}
3046
6fb5fa3c
DB
3047
3048/* Return the insn in BB_INFO before the first wild read or if there
3049 are no wild reads in the block, return the last insn. */
3050
3051static insn_info_t
3052find_insn_before_first_wild_read (bb_info_t bb_info)
3053{
3054 insn_info_t insn_info = bb_info->last_insn;
3055 insn_info_t last_wild_read = NULL;
3056
3057 while (insn_info)
3058 {
3059 if (insn_info->wild_read)
3060 {
3061 last_wild_read = insn_info->prev_insn;
3062 /* Block starts with wild read. */
3063 if (!last_wild_read)
3064 return NULL;
3065 }
3066
3067 insn_info = insn_info->prev_insn;
3068 }
3069
3070 if (last_wild_read)
3071 return last_wild_read;
3072 else
3073 return bb_info->last_insn;
3074}
3075
3076
3077/* Scan the insns in BB_INFO starting at PTR and going to the top of
3078 the block in order to build the gen and kill sets for the block.
3079 We start at ptr which may be the last insn in the block or may be
3080 the first insn with a wild read. In the latter case we are able to
3081 skip the rest of the block because it just does not matter:
3082 anything that happens is hidden by the wild read. */
3083
3084static void
ac6929b5 3085dse_step3_scan (basic_block bb)
6fb5fa3c
DB
3086{
3087 bb_info_t bb_info = bb_table[bb->index];
3088 insn_info_t insn_info;
3089
ac6929b5 3090 insn_info = find_insn_before_first_wild_read (bb_info);
b8698a0f 3091
6fb5fa3c
DB
3092 /* In the spill case or in the no_spill case if there is no wild
3093 read in the block, we will need a kill set. */
3094 if (insn_info == bb_info->last_insn)
3095 {
3096 if (bb_info->kill)
3097 bitmap_clear (bb_info->kill);
3098 else
3f9b14ff 3099 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 3100 }
b8698a0f 3101 else
6fb5fa3c
DB
3102 if (bb_info->kill)
3103 BITMAP_FREE (bb_info->kill);
3104
3105 while (insn_info)
3106 {
3107 /* There may have been code deleted by the dce pass run before
3108 this phase. */
3109 if (insn_info->insn && INSN_P (insn_info->insn))
3110 {
ac6929b5
RB
3111 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3112 scan_reads (insn_info, bb_info->gen, bb_info->kill);
b8698a0f 3113 }
6fb5fa3c
DB
3114
3115 insn_info = insn_info->prev_insn;
3116 }
3117}
3118
3119
3120/* Set the gen set of the exit block, and also any block with no
3121 successors that does not have a wild read. */
3122
3123static void
3124dse_step3_exit_block_scan (bb_info_t bb_info)
3125{
3126 /* The gen set is all 0's for the exit block except for the
3127 frame_pointer_group. */
b8698a0f 3128
6fb5fa3c
DB
3129 if (stores_off_frame_dead_at_return)
3130 {
3131 unsigned int i;
fd6daec9 3132 group_info *group;
b8698a0f 3133
9771b263 3134 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3135 {
3136 if (group->process_globally && group->frame_related)
3137 bitmap_ior_into (bb_info->gen, group->group_kill);
3138 }
3139 }
3140}
3141
3142
3143/* Find all of the blocks that are not backwards reachable from the
3144 exit block or any block with no successors (BB). These are the
3145 infinite loops or infinite self loops. These blocks will still
3146 have their bits set in UNREACHABLE_BLOCKS. */
3147
3148static void
3149mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3150{
3151 edge e;
3152 edge_iterator ei;
3153
d7c028c0 3154 if (bitmap_bit_p (unreachable_blocks, bb->index))
6fb5fa3c 3155 {
d7c028c0 3156 bitmap_clear_bit (unreachable_blocks, bb->index);
6fb5fa3c 3157 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 3158 {
6fb5fa3c 3159 mark_reachable_blocks (unreachable_blocks, e->src);
b8698a0f 3160 }
6fb5fa3c
DB
3161 }
3162}
3163
3164/* Build the transfer functions for the function. */
3165
3166static void
ac6929b5 3167dse_step3 ()
6fb5fa3c
DB
3168{
3169 basic_block bb;
6fb5fa3c
DB
3170 sbitmap_iterator sbi;
3171 bitmap all_ones = NULL;
3172 unsigned int i;
b8698a0f 3173
7ba9e72d 3174 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
f61e445a 3175 bitmap_ones (unreachable_blocks);
6fb5fa3c 3176
04a90bec 3177 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3178 {
3179 bb_info_t bb_info = bb_table[bb->index];
3180 if (bb_info->gen)
3181 bitmap_clear (bb_info->gen);
3182 else
3f9b14ff 3183 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3184
3185 if (bb->index == ENTRY_BLOCK)
3186 ;
3187 else if (bb->index == EXIT_BLOCK)
3188 dse_step3_exit_block_scan (bb_info);
3189 else
ac6929b5 3190 dse_step3_scan (bb);
6fb5fa3c
DB
3191 if (EDGE_COUNT (bb->succs) == 0)
3192 mark_reachable_blocks (unreachable_blocks, bb);
3193
3194 /* If this is the second time dataflow is run, delete the old
3195 sets. */
3196 if (bb_info->in)
3197 BITMAP_FREE (bb_info->in);
3198 if (bb_info->out)
3199 BITMAP_FREE (bb_info->out);
3200 }
3201
3202 /* For any block in an infinite loop, we must initialize the out set
3203 to all ones. This could be expensive, but almost never occurs in
3204 practice. However, it is common in regression tests. */
d4ac4ce2 3205 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
6fb5fa3c
DB
3206 {
3207 if (bitmap_bit_p (all_blocks, i))
3208 {
3209 bb_info_t bb_info = bb_table[i];
3210 if (!all_ones)
3211 {
3212 unsigned int j;
fd6daec9 3213 group_info *group;
6fb5fa3c 3214
3f9b14ff 3215 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
9771b263 3216 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
6fb5fa3c
DB
3217 bitmap_ior_into (all_ones, group->group_kill);
3218 }
3219 if (!bb_info->out)
3220 {
3f9b14ff 3221 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3222 bitmap_copy (bb_info->out, all_ones);
3223 }
3224 }
3225 }
3226
3227 if (all_ones)
3228 BITMAP_FREE (all_ones);
6fb5fa3c
DB
3229}
3230
3231
3232\f
3233/*----------------------------------------------------------------------------
3234 Fourth step.
3235
3236 Solve the bitvector equations.
3237----------------------------------------------------------------------------*/
3238
3239
3240/* Confluence function for blocks with no successors. Create an out
3241 set from the gen set of the exit block. This block logically has
3242 the exit block as a successor. */
3243
3244
3245
3246static void
3247dse_confluence_0 (basic_block bb)
3248{
3249 bb_info_t bb_info = bb_table[bb->index];
3250
3251 if (bb->index == EXIT_BLOCK)
3252 return;
3253
3254 if (!bb_info->out)
3255 {
3f9b14ff 3256 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3257 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3258 }
3259}
3260
3261/* Propagate the information from the in set of the dest of E to the
3262 out set of the src of E. If the various in or out sets are not
3263 there, that means they are all ones. */
3264
1a0f3fa1 3265static bool
6fb5fa3c
DB
3266dse_confluence_n (edge e)
3267{
3268 bb_info_t src_info = bb_table[e->src->index];
3269 bb_info_t dest_info = bb_table[e->dest->index];
3270
3271 if (dest_info->in)
3272 {
3273 if (src_info->out)
3274 bitmap_and_into (src_info->out, dest_info->in);
3275 else
3276 {
3f9b14ff 3277 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3278 bitmap_copy (src_info->out, dest_info->in);
3279 }
3280 }
1a0f3fa1 3281 return true;
6fb5fa3c
DB
3282}
3283
3284
3285/* Propagate the info from the out to the in set of BB_INDEX's basic
b8698a0f 3286 block. There are three cases:
6fb5fa3c
DB
3287
3288 1) The block has no kill set. In this case the kill set is all
3289 ones. It does not matter what the out set of the block is, none of
3290 the info can reach the top. The only thing that reaches the top is
3291 the gen set and we just copy the set.
3292
3293 2) There is a kill set but no out set and bb has successors. In
3294 this case we just return. Eventually an out set will be created and
3295 it is better to wait than to create a set of ones.
3296
3297 3) There is both a kill and out set. We apply the obvious transfer
3298 function.
3299*/
3300
3301static bool
3302dse_transfer_function (int bb_index)
3303{
3304 bb_info_t bb_info = bb_table[bb_index];
3305
3306 if (bb_info->kill)
3307 {
3308 if (bb_info->out)
3309 {
3310 /* Case 3 above. */
3311 if (bb_info->in)
b8698a0f 3312 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3313 bb_info->out, bb_info->kill);
3314 else
3315 {
3f9b14ff 3316 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
b8698a0f 3317 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3318 bb_info->out, bb_info->kill);
3319 return true;
3320 }
3321 }
3322 else
3323 /* Case 2 above. */
3324 return false;
3325 }
3326 else
3327 {
3328 /* Case 1 above. If there is already an in set, nothing
3329 happens. */
3330 if (bb_info->in)
3331 return false;
3332 else
3333 {
3f9b14ff 3334 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3335 bitmap_copy (bb_info->in, bb_info->gen);
3336 return true;
3337 }
3338 }
3339}
3340
3341/* Solve the dataflow equations. */
3342
3343static void
3344dse_step4 (void)
3345{
b8698a0f
L
3346 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3347 dse_confluence_n, dse_transfer_function,
3348 all_blocks, df_get_postorder (DF_BACKWARD),
6fb5fa3c 3349 df_get_n_blocks (DF_BACKWARD));
456610d3 3350 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3351 {
3352 basic_block bb;
3353
3354 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
04a90bec 3355 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3356 {
3357 bb_info_t bb_info = bb_table[bb->index];
3358
3359 df_print_bb_index (bb, dump_file);
3360 if (bb_info->in)
3361 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3362 else
3363 fprintf (dump_file, " in: *MISSING*\n");
3364 if (bb_info->gen)
3365 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3366 else
3367 fprintf (dump_file, " gen: *MISSING*\n");
3368 if (bb_info->kill)
3369 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3370 else
3371 fprintf (dump_file, " kill: *MISSING*\n");
3372 if (bb_info->out)
3373 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3374 else
3375 fprintf (dump_file, " out: *MISSING*\n\n");
3376 }
3377 }
3378}
3379
3380
3381\f
3382/*----------------------------------------------------------------------------
3383 Fifth step.
3384
0d52bcc1 3385 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3386----------------------------------------------------------------------------*/
3387
3388
3389static void
ac6929b5 3390dse_step5 (void)
6fb5fa3c
DB
3391{
3392 basic_block bb;
11cd3bed 3393 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c
DB
3394 {
3395 bb_info_t bb_info = bb_table[bb->index];
3396 insn_info_t insn_info = bb_info->last_insn;
3397 bitmap v = bb_info->out;
3398
3399 while (insn_info)
3400 {
3401 bool deleted = false;
3402 if (dump_file && insn_info->insn)
3403 {
3404 fprintf (dump_file, "starting to process insn %d\n",
3405 INSN_UID (insn_info->insn));
3406 bitmap_print (dump_file, v, " v: ", "\n");
3407 }
3408
3409 /* There may have been code deleted by the dce pass run before
3410 this phase. */
b8698a0f 3411 if (insn_info->insn
6fb5fa3c
DB
3412 && INSN_P (insn_info->insn)
3413 && (!insn_info->cannot_delete)
3414 && (!bitmap_empty_p (v)))
3415 {
fd6daec9 3416 store_info *store_info = insn_info->store_rec;
6fb5fa3c
DB
3417
3418 /* Try to delete the current insn. */
3419 deleted = true;
b8698a0f 3420
6fb5fa3c
DB
3421 /* Skip the clobbers. */
3422 while (!store_info->is_set)
3423 store_info = store_info->next;
3424
02ce5d90 3425 HOST_WIDE_INT i, offset, width;
ac6929b5
RB
3426 group_info *group_info = rtx_group_vec[store_info->group_id];
3427
02ce5d90
RS
3428 if (!store_info->offset.is_constant (&offset)
3429 || !store_info->width.is_constant (&width))
3430 deleted = false;
3431 else
6fb5fa3c 3432 {
02ce5d90
RS
3433 HOST_WIDE_INT end = offset + width;
3434 for (i = offset; i < end; i++)
6fb5fa3c 3435 {
02ce5d90
RS
3436 int index = get_bitmap_index (group_info, i);
3437
456610d3 3438 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
3439 fprintf (dump_file, "i = %d, index = %d\n",
3440 (int) i, index);
3441 if (index == 0 || !bitmap_bit_p (v, index))
3442 {
3443 if (dump_file && (dump_flags & TDF_DETAILS))
3444 fprintf (dump_file, "failing at i = %d\n",
3445 (int) i);
3446 deleted = false;
3447 break;
3448 }
6fb5fa3c
DB
3449 }
3450 }
3451 if (deleted)
3452 {
9e582b1d
JR
3453 if (dbg_cnt (dse)
3454 && check_for_inc_dec_1 (insn_info))
6fb5fa3c 3455 {
6fb5fa3c
DB
3456 delete_insn (insn_info->insn);
3457 insn_info->insn = NULL;
3458 globally_deleted++;
3459 }
3460 }
3461 }
3462 /* We do want to process the local info if the insn was
6ed3da00 3463 deleted. For instance, if the insn did a wild read, we
6fb5fa3c 3464 no longer need to trash the info. */
b8698a0f 3465 if (insn_info->insn
6fb5fa3c
DB
3466 && INSN_P (insn_info->insn)
3467 && (!deleted))
3468 {
ac6929b5 3469 scan_stores (insn_info->store_rec, v, NULL);
6fb5fa3c
DB
3470 if (insn_info->wild_read)
3471 {
456610d3 3472 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3473 fprintf (dump_file, "wild read\n");
3474 bitmap_clear (v);
3475 }
d26c7090 3476 else if (insn_info->read_rec
a8404b9a
JJ
3477 || insn_info->non_frame_wild_read
3478 || insn_info->frame_read)
6fb5fa3c 3479 {
a8404b9a
JJ
3480 if (dump_file && (dump_flags & TDF_DETAILS))
3481 {
3482 if (!insn_info->non_frame_wild_read
3483 && !insn_info->frame_read)
3484 fprintf (dump_file, "regular read\n");
3485 if (insn_info->non_frame_wild_read)
3486 fprintf (dump_file, "non-frame wild read\n");
3487 if (insn_info->frame_read)
3488 fprintf (dump_file, "frame read\n");
3489 }
ac6929b5 3490 scan_reads (insn_info, v, NULL);
6fb5fa3c
DB
3491 }
3492 }
b8698a0f 3493
6fb5fa3c
DB
3494 insn_info = insn_info->prev_insn;
3495 }
3496 }
3497}
3498
3499
6fb5fa3c
DB
3500\f
3501/*----------------------------------------------------------------------------
3502 Sixth step.
3503
8dd5516b
JJ
3504 Delete stores made redundant by earlier stores (which store the same
3505 value) that couldn't be eliminated.
3506----------------------------------------------------------------------------*/
3507
3508static void
3509dse_step6 (void)
3510{
3511 basic_block bb;
3512
04a90bec 3513 FOR_ALL_BB_FN (bb, cfun)
8dd5516b
JJ
3514 {
3515 bb_info_t bb_info = bb_table[bb->index];
3516 insn_info_t insn_info = bb_info->last_insn;
3517
3518 while (insn_info)
3519 {
3520 /* There may have been code deleted by the dce pass run before
3521 this phase. */
3522 if (insn_info->insn
3523 && INSN_P (insn_info->insn)
3524 && !insn_info->cannot_delete)
3525 {
fd6daec9 3526 store_info *s_info = insn_info->store_rec;
8dd5516b
JJ
3527
3528 while (s_info && !s_info->is_set)
3529 s_info = s_info->next;
3530 if (s_info
3531 && s_info->redundant_reason
3532 && s_info->redundant_reason->insn
3533 && INSN_P (s_info->redundant_reason->insn))
3534 {
eb92d49a 3535 rtx_insn *rinsn = s_info->redundant_reason->insn;
456610d3 3536 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
3537 fprintf (dump_file, "Locally deleting insn %d "
3538 "because insn %d stores the "
3539 "same value and couldn't be "
3540 "eliminated\n",
3541 INSN_UID (insn_info->insn),
3542 INSN_UID (rinsn));
3543 delete_dead_store_insn (insn_info);
3544 }
3545 }
3546 insn_info = insn_info->prev_insn;
3547 }
3548 }
3549}
3550\f
3551/*----------------------------------------------------------------------------
3552 Seventh step.
3553
b8698a0f 3554 Destroy everything left standing.
6fb5fa3c
DB
3555----------------------------------------------------------------------------*/
3556
b8698a0f 3557static void
3f9b14ff 3558dse_step7 (void)
6fb5fa3c 3559{
3f9b14ff
SB
3560 bitmap_obstack_release (&dse_bitmap_obstack);
3561 obstack_free (&dse_obstack, NULL);
370f38e8 3562
6fb5fa3c
DB
3563 end_alias_analysis ();
3564 free (bb_table);
c203e8a7
TS
3565 delete rtx_group_table;
3566 rtx_group_table = NULL;
9771b263 3567 rtx_group_vec.release ();
6fb5fa3c
DB
3568 BITMAP_FREE (all_blocks);
3569 BITMAP_FREE (scratch);
3570
da6603c6 3571 rtx_store_info_pool.release ();
fb0b2914
ML
3572 read_info_type_pool.release ();
3573 insn_info_type_pool.release ();
3574 dse_bb_info_type_pool.release ();
3575 group_info_pool.release ();
3576 deferred_change_pool.release ();
6fb5fa3c
DB
3577}
3578
3579
6fb5fa3c
DB
3580/* -------------------------------------------------------------------------
3581 DSE
3582 ------------------------------------------------------------------------- */
3583
3584/* Callback for running pass_rtl_dse. */
3585
3586static unsigned int
3587rest_of_handle_dse (void)
3588{
6fb5fa3c
DB
3589 df_set_flags (DF_DEFER_INSN_RESCAN);
3590
02b47899
KZ
3591 /* Need the notes since we must track live hardregs in the forwards
3592 direction. */
3593 df_note_add_problem ();
3594 df_analyze ();
3595
6fb5fa3c
DB
3596 dse_step0 ();
3597 dse_step1 ();
3598 dse_step2_init ();
ac6929b5 3599 if (dse_step2 ())
6fb5fa3c
DB
3600 {
3601 df_set_flags (DF_LR_RUN_DCE);
3602 df_analyze ();
456610d3 3603 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 3604 fprintf (dump_file, "doing global processing\n");
ac6929b5 3605 dse_step3 ();
6fb5fa3c 3606 dse_step4 ();
ac6929b5 3607 dse_step5 ();
6fb5fa3c
DB
3608 }
3609
8dd5516b 3610 dse_step6 ();
3f9b14ff 3611 dse_step7 ();
6fb5fa3c
DB
3612
3613 if (dump_file)
ac6929b5
RB
3614 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3615 locally_deleted, globally_deleted);
6c5ed3f1
JJ
3616
3617 /* DSE can eliminate potentially-trapping MEMs.
3618 Remove any EH edges associated with them. */
3619 if ((locally_deleted || globally_deleted)
3620 && cfun->can_throw_non_call_exceptions
3621 && purge_all_dead_edges ())
3622 cleanup_cfg (0);
3623
6fb5fa3c
DB
3624 return 0;
3625}
3626
17795822
TS
3627namespace {
3628
3629const pass_data pass_data_rtl_dse1 =
27a4cd48
DM
3630{
3631 RTL_PASS, /* type */
3632 "dse1", /* name */
3633 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3634 TV_DSE1, /* tv_id */
3635 0, /* properties_required */
3636 0, /* properties_provided */
3637 0, /* properties_destroyed */
3638 0, /* todo_flags_start */
3bea341f 3639 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c
DB
3640};
3641
17795822 3642class pass_rtl_dse1 : public rtl_opt_pass
27a4cd48
DM
3643{
3644public:
c3284718
RS
3645 pass_rtl_dse1 (gcc::context *ctxt)
3646 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
27a4cd48
DM
3647 {}
3648
3649 /* opt_pass methods: */
1a3d085c
TS
3650 virtual bool gate (function *)
3651 {
3652 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3653 }
3654
be55bfe6 3655 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
27a4cd48
DM
3656
3657}; // class pass_rtl_dse1
3658
17795822
TS
3659} // anon namespace
3660
27a4cd48
DM
3661rtl_opt_pass *
3662make_pass_rtl_dse1 (gcc::context *ctxt)
3663{
3664 return new pass_rtl_dse1 (ctxt);
3665}
3666
17795822
TS
3667namespace {
3668
3669const pass_data pass_data_rtl_dse2 =
27a4cd48
DM
3670{
3671 RTL_PASS, /* type */
3672 "dse2", /* name */
3673 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3674 TV_DSE2, /* tv_id */
3675 0, /* properties_required */
3676 0, /* properties_provided */
3677 0, /* properties_destroyed */
3678 0, /* todo_flags_start */
3bea341f 3679 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c 3680};
27a4cd48 3681
17795822 3682class pass_rtl_dse2 : public rtl_opt_pass
27a4cd48
DM
3683{
3684public:
c3284718
RS
3685 pass_rtl_dse2 (gcc::context *ctxt)
3686 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
27a4cd48
DM
3687 {}
3688
3689 /* opt_pass methods: */
1a3d085c
TS
3690 virtual bool gate (function *)
3691 {
3692 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3693 }
3694
be55bfe6 3695 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
27a4cd48
DM
3696
3697}; // class pass_rtl_dse2
3698
17795822
TS
3699} // anon namespace
3700
27a4cd48
DM
3701rtl_opt_pass *
3702make_pass_rtl_dse2 (gcc::context *ctxt)
3703{
3704 return new pass_rtl_dse2 (ctxt);
3705}