]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.c
gcc/
[thirdparty/gcc.git] / gcc / dse.c
CommitLineData
3072d30e 1/* RTL dead store elimination.
d353bf18 2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3072d30e 3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
8c4c00c1 11Software Foundation; either version 3, or (at your option) any later
3072d30e 12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
8c4c00c1 20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
3072d30e 22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
3072d30e 28#include "tm.h"
29#include "rtl.h"
b20a8bb4 30#include "alias.h"
31#include "symtab.h"
3072d30e 32#include "tree.h"
b20a8bb4 33#include "fold-const.h"
9ed99284 34#include "stor-layout.h"
10d4de0e 35#include "tm_p.h"
3072d30e 36#include "regs.h"
37#include "hard-reg-set.h"
5a9ecd4a 38#include "regset.h"
3072d30e 39#include "flags.h"
94ea8568 40#include "dominance.h"
41#include "cfg.h"
42#include "cfgrtl.h"
43#include "predict.h"
44#include "basic-block.h"
3072d30e 45#include "df.h"
46#include "cselib.h"
3072d30e 47#include "tree-pass.h"
48#include "alloc-pool.h"
3072d30e 49#include "insn-config.h"
d53441c8 50#include "function.h"
d53441c8 51#include "expmed.h"
52#include "dojump.h"
53#include "explow.h"
54#include "calls.h"
55#include "emit-rtl.h"
56#include "varasm.h"
57#include "stmt.h"
3072d30e 58#include "expr.h"
59#include "recog.h"
34517c64 60#include "insn-codes.h"
5c9051a4 61#include "optabs.h"
3072d30e 62#include "dbgcnt.h"
9311ed8a 63#include "target.h"
1242bee6 64#include "params.h"
bc61cadb 65#include "tree-ssa-alias.h"
66#include "internal-fn.h"
67#include "gimple-expr.h"
073c1fd5 68#include "gimple.h"
69#include "gimple-ssa.h"
ec1203cd 70#include "rtl-iter.h"
1f91a12d 71#include "cfgcleanup.h"
3072d30e 72
73/* This file contains three techniques for performing Dead Store
48e1416a 74 Elimination (dse).
3072d30e 75
76 * The first technique performs dse locally on any base address. It
77 is based on the cselib which is a local value numbering technique.
78 This technique is local to a basic block but deals with a fairly
79 general addresses.
48e1416a 80
3072d30e 81 * The second technique performs dse globally but is restricted to
82 base addresses that are either constant or are relative to the
83 frame_pointer.
84
85 * The third technique, (which is only done after register allocation)
86 processes the spill spill slots. This differs from the second
87 technique because it takes advantage of the fact that spilling is
88 completely free from the effects of aliasing.
89
90 Logically, dse is a backwards dataflow problem. A store can be
91 deleted if it if cannot be reached in the backward direction by any
92 use of the value being stored. However, the local technique uses a
93 forwards scan of the basic block because cselib requires that the
94 block be processed in that order.
95
96 The pass is logically broken into 7 steps:
97
98 0) Initialization.
99
100 1) The local algorithm, as well as scanning the insns for the two
101 global algorithms.
102
103 2) Analysis to see if the global algs are necessary. In the case
104 of stores base on a constant address, there must be at least two
105 stores to that address, to make it possible to delete some of the
106 stores. In the case of stores off of the frame or spill related
107 stores, only one store to an address is necessary because those
108 stores die at the end of the function.
109
48e1416a 110 3) Set up the global dataflow equations based on processing the
3072d30e 111 info parsed in the first step.
112
113 4) Solve the dataflow equations.
114
115 5) Delete the insns that the global analysis has indicated are
116 unnecessary.
117
9d75589a 118 6) Delete insns that store the same value as preceding store
aa140b76 119 where the earlier store couldn't be eliminated.
120
121 7) Cleanup.
3072d30e 122
123 This step uses cselib and canon_rtx to build the largest expression
124 possible for each address. This pass is a forwards pass through
125 each basic block. From the point of view of the global technique,
126 the first pass could examine a block in either direction. The
bef304b8 127 forwards ordering is to accommodate cselib.
3072d30e 128
2d0fd66d 129 We make a simplifying assumption: addresses fall into four broad
3072d30e 130 categories:
131
132 1) base has rtx_varies_p == false, offset is constant.
133 2) base has rtx_varies_p == false, offset variable.
134 3) base has rtx_varies_p == true, offset constant.
135 4) base has rtx_varies_p == true, offset variable.
136
137 The local passes are able to process all 4 kinds of addresses. The
2d0fd66d 138 global pass only handles 1).
3072d30e 139
140 The global problem is formulated as follows:
141
142 A store, S1, to address A, where A is not relative to the stack
143 frame, can be eliminated if all paths from S1 to the end of the
2d0fd66d 144 function contain another store to A before a read to A.
3072d30e 145
146 If the address A is relative to the stack frame, a store S2 to A
2d0fd66d 147 can be eliminated if there are no paths from S2 that reach the
3072d30e 148 end of the function that read A before another store to A. In
2d0fd66d 149 this case S2 can be deleted if there are paths from S2 to the
3072d30e 150 end of the function that have no reads or writes to A. This
151 second case allows stores to the stack frame to be deleted that
152 would otherwise die when the function returns. This cannot be
153 done if stores_off_frame_dead_at_return is not true. See the doc
154 for that variable for when this variable is false.
155
156 The global problem is formulated as a backwards set union
157 dataflow problem where the stores are the gens and reads are the
158 kills. Set union problems are rare and require some special
159 handling given our representation of bitmaps. A straightforward
2d0fd66d 160 implementation requires a lot of bitmaps filled with 1s.
3072d30e 161 These are expensive and cumbersome in our bitmap formulation so
162 care has been taken to avoid large vectors filled with 1s. See
163 the comments in bb_info and in the dataflow confluence functions
48e1416a 164 for details.
3072d30e 165
166 There are two places for further enhancements to this algorithm:
48e1416a 167
3072d30e 168 1) The original dse which was embedded in a pass called flow also
169 did local address forwarding. For example in
170
171 A <- r100
172 ... <- A
173
174 flow would replace the right hand side of the second insn with a
6dfdc153 175 reference to r100. Most of the information is available to add this
3072d30e 176 to this pass. It has not done it because it is a lot of work in
177 the case that either r100 is assigned to between the first and
178 second insn and/or the second insn is a load of part of the value
179 stored by the first insn.
180
181 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
182 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
183 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
184 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
185
186 2) The cleaning up of spill code is quite profitable. It currently
187 depends on reading tea leaves and chicken entrails left by reload.
188 This pass depends on reload creating a singleton alias set for each
189 spill slot and telling the next dse pass which of these alias sets
190 are the singletons. Rather than analyze the addresses of the
191 spills, dse's spill processing just does analysis of the loads and
192 stores that use those alias sets. There are three cases where this
193 falls short:
194
195 a) Reload sometimes creates the slot for one mode of access, and
196 then inserts loads and/or stores for a smaller mode. In this
197 case, the current code just punts on the slot. The proper thing
198 to do is to back out and use one bit vector position for each
199 byte of the entity associated with the slot. This depends on
200 KNOWING that reload always generates the accesses for each of the
201 bytes in some canonical (read that easy to understand several
202 passes after reload happens) way.
203
204 b) Reload sometimes decides that spill slot it allocated was not
205 large enough for the mode and goes back and allocates more slots
206 with the same mode and alias set. The backout in this case is a
207 little more graceful than (a). In this case the slot is unmarked
208 as being a spill slot and if final address comes out to be based
48e1416a 209 off the frame pointer, the global algorithm handles this slot.
3072d30e 210
211 c) For any pass that may prespill, there is currently no
212 mechanism to tell the dse pass that the slot being used has the
213 special properties that reload uses. It may be that all that is
bef304b8 214 required is to have those passes make the same calls that reload
3072d30e 215 does, assuming that the alias sets can be manipulated in the same
216 way. */
217
218/* There are limits to the size of constant offsets we model for the
219 global problem. There are certainly test cases, that exceed this
220 limit, however, it is unlikely that there are important programs
221 that really have constant offsets this size. */
222#define MAX_OFFSET (64 * 1024)
223
4fb07d00 224/* Obstack for the DSE dataflow bitmaps. We don't want to put these
225 on the default obstack because these bitmaps can grow quite large
226 (~2GB for the small (!) test case of PR54146) and we'll hold on to
227 all that memory until the end of the compiler run.
228 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
229 releasing the whole obstack. */
230static bitmap_obstack dse_bitmap_obstack;
231
232/* Obstack for other data. As for above: Kinda nice to be able to
233 throw it all away at the end in one big sweep. */
234static struct obstack dse_obstack;
235
236/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
3072d30e 237static bitmap scratch = NULL;
4fb07d00 238
55c5ac9f 239struct insn_info_type;
3072d30e 240
241/* This structure holds information about a candidate store. */
48e1416a 242struct store_info
3072d30e 243{
244
245 /* False means this is a clobber. */
246 bool is_set;
247
aa140b76 248 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
249 bool is_large;
250
3072d30e 251 /* The id of the mem group of the base address. If rtx_varies_p is
252 true, this is -1. Otherwise, it is the index into the group
253 table. */
254 int group_id;
48e1416a 255
3072d30e 256 /* This is the cselib value. */
257 cselib_val *cse_base;
258
259 /* This canonized mem. */
260 rtx mem;
261
82d2c88b 262 /* Canonized MEM address for use by canon_true_dependence. */
3072d30e 263 rtx mem_addr;
264
265 /* If this is non-zero, it is the alias set of a spill location. */
32c2fdea 266 alias_set_type alias_set;
3072d30e 267
268 /* The offset of the first and byte before the last byte associated
269 with the operation. */
aa140b76 270 HOST_WIDE_INT begin, end;
271
272 union
273 {
274 /* A bitmask as wide as the number of bytes in the word that
275 contains a 1 if the byte may be needed. The store is unused if
276 all of the bits are 0. This is used if IS_LARGE is false. */
277 unsigned HOST_WIDE_INT small_bitmask;
278
279 struct
280 {
281 /* A bitmap with one bit per byte. Cleared bit means the position
282 is needed. Used if IS_LARGE is false. */
843bd2fa 283 bitmap bmap;
3072d30e 284
aa140b76 285 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
286 equal to END - BEGIN, the whole store is unused. */
287 int count;
288 } large;
289 } positions_needed;
3072d30e 290
291 /* The next store info for this insn. */
292 struct store_info *next;
293
294 /* The right hand side of the store. This is used if there is a
295 subsequent reload of the mems address somewhere later in the
296 basic block. */
aa140b76 297 rtx rhs;
298
299 /* If rhs is or holds a constant, this contains that constant,
300 otherwise NULL. */
301 rtx const_rhs;
302
303 /* Set if this store stores the same constant value as REDUNDANT_REASON
304 insn stored. These aren't eliminated early, because doing that
305 might prevent the earlier larger store to be eliminated. */
55c5ac9f 306 struct insn_info_type *redundant_reason;
3072d30e 307};
308
4e43e20a 309/* Return a bitmask with the first N low bits set. */
310
311static unsigned HOST_WIDE_INT
312lowpart_bitmask (int n)
313{
314 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
315 return mask >> (HOST_BITS_PER_WIDE_INT - n);
316}
317
3072d30e 318typedef struct store_info *store_info_t;
55c5ac9f 319static pool_allocator<store_info> cse_store_info_pool ("cse_store_info_pool",
320 100);
321
322static pool_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool",
323 100);
3072d30e 324
325/* This structure holds information about a load. These are only
326 built for rtx bases. */
55c5ac9f 327struct read_info_type
3072d30e 328{
329 /* The id of the mem group of the base address. */
330 int group_id;
331
332 /* If this is non-zero, it is the alias set of a spill location. */
32c2fdea 333 alias_set_type alias_set;
3072d30e 334
335 /* The offset of the first and byte after the last byte associated
336 with the operation. If begin == end == 0, the read did not have
337 a constant offset. */
338 int begin, end;
339
340 /* The mem being read. */
341 rtx mem;
342
343 /* The next read_info for this insn. */
55c5ac9f 344 struct read_info_type *next;
345
346 /* Pool allocation new operator. */
347 inline void *operator new (size_t)
348 {
349 return pool.allocate ();
350 }
351
352 /* Delete operator utilizing pool allocation. */
353 inline void operator delete (void *ptr)
354 {
355 pool.remove ((read_info_type *) ptr);
356 }
357
358 /* Memory allocation pool. */
359 static pool_allocator<read_info_type> pool;
3072d30e 360};
55c5ac9f 361typedef struct read_info_type *read_info_t;
3072d30e 362
55c5ac9f 363pool_allocator<read_info_type> read_info_type::pool ("read_info_pool", 100);
3072d30e 364
365/* One of these records is created for each insn. */
366
55c5ac9f 367struct insn_info_type
3072d30e 368{
369 /* Set true if the insn contains a store but the insn itself cannot
370 be deleted. This is set if the insn is a parallel and there is
371 more than one non dead output or if the insn is in some way
372 volatile. */
373 bool cannot_delete;
374
375 /* This field is only used by the global algorithm. It is set true
376 if the insn contains any read of mem except for a (1). This is
377 also set if the insn is a call or has a clobber mem. If the insn
378 contains a wild read, the use_rec will be null. */
379 bool wild_read;
380
b4a708fb 381 /* This is true only for CALL instructions which could potentially read
382 any non-frame memory location. This field is used by the global
383 algorithm. */
384 bool non_frame_wild_read;
385
17e1318c 386 /* This field is only used for the processing of const functions.
387 These functions cannot read memory, but they can read the stack
16bf64db 388 because that is where they may get their parms. We need to be
389 this conservative because, like the store motion pass, we don't
390 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
391 Moreover, we need to distinguish two cases:
392 1. Before reload (register elimination), the stores related to
393 outgoing arguments are stack pointer based and thus deemed
394 of non-constant base in this pass. This requires special
395 handling but also means that the frame pointer based stores
396 need not be killed upon encountering a const function call.
397 2. After reload, the stores related to outgoing arguments can be
398 either stack pointer or hard frame pointer based. This means
399 that we have no other choice than also killing all the frame
400 pointer based stores upon encountering a const function call.
17853422 401 This field is set after reload for const function calls and before
402 reload for const tail function calls on targets where arg pointer
403 is the frame pointer. Having this set is less severe than a wild
404 read, it just means that all the frame related stores are killed
405 rather than all the stores. */
16bf64db 406 bool frame_read;
407
408 /* This field is only used for the processing of const functions.
409 It is set if the insn may contain a stack pointer based store. */
17e1318c 410 bool stack_pointer_based;
3072d30e 411
412 /* This is true if any of the sets within the store contains a
413 cselib base. Such stores can only be deleted by the local
414 algorithm. */
415 bool contains_cselib_groups;
416
417 /* The insn. */
ebabb7a3 418 rtx_insn *insn;
3072d30e 419
420 /* The list of mem sets or mem clobbers that are contained in this
421 insn. If the insn is deletable, it contains only one mem set.
422 But it could also contain clobbers. Insns that contain more than
423 one mem set are not deletable, but each of those mems are here in
6dfdc153 424 order to provide info to delete other insns. */
3072d30e 425 store_info_t store_rec;
426
427 /* The linked list of mem uses in this insn. Only the reads from
428 rtx bases are listed here. The reads to cselib bases are
429 completely processed during the first scan and so are never
430 created. */
431 read_info_t read_rec;
432
5a9ecd4a 433 /* The live fixed registers. We assume only fixed registers can
434 cause trouble by being clobbered from an expanded pattern;
435 storing only the live fixed registers (rather than all registers)
436 means less memory needs to be allocated / copied for the individual
437 stores. */
438 regset fixed_regs_live;
439
3072d30e 440 /* The prev insn in the basic block. */
55c5ac9f 441 struct insn_info_type * prev_insn;
3072d30e 442
443 /* The linked list of insns that are in consideration for removal in
9d75589a 444 the forwards pass through the basic block. This pointer may be
3072d30e 445 trash as it is not cleared when a wild read occurs. The only
f0b5f617 446 time it is guaranteed to be correct is when the traversal starts
3072d30e 447 at active_local_stores. */
55c5ac9f 448 struct insn_info_type * next_local_store;
449
450 /* Pool allocation new operator. */
451 inline void *operator new (size_t)
452 {
453 return pool.allocate ();
454 }
455
456 /* Delete operator utilizing pool allocation. */
457 inline void operator delete (void *ptr)
458 {
459 pool.remove ((insn_info_type *) ptr);
460 }
461
462 /* Memory allocation pool. */
463 static pool_allocator<insn_info_type> pool;
3072d30e 464};
55c5ac9f 465typedef struct insn_info_type *insn_info_t;
3072d30e 466
55c5ac9f 467pool_allocator<insn_info_type> insn_info_type::pool ("insn_info_pool", 100);
3072d30e 468
469/* The linked list of stores that are under consideration in this
48e1416a 470 basic block. */
3072d30e 471static insn_info_t active_local_stores;
1242bee6 472static int active_local_stores_len;
3072d30e 473
55c5ac9f 474struct dse_bb_info_type
3072d30e 475{
3072d30e 476 /* Pointer to the insn info for the last insn in the block. These
477 are linked so this is how all of the insns are reached. During
478 scanning this is the current insn being scanned. */
479 insn_info_t last_insn;
480
481 /* The info for the global dataflow problem. */
482
483
484 /* This is set if the transfer function should and in the wild_read
485 bitmap before applying the kill and gen sets. That vector knocks
486 out most of the bits in the bitmap and thus speeds up the
487 operations. */
488 bool apply_wild_read;
489
a1b0a968 490 /* The following 4 bitvectors hold information about which positions
491 of which stores are live or dead. They are indexed by
492 get_bitmap_index. */
493
3072d30e 494 /* The set of store positions that exist in this block before a wild read. */
495 bitmap gen;
48e1416a 496
3072d30e 497 /* The set of load positions that exist in this block above the
498 same position of a store. */
499 bitmap kill;
500
501 /* The set of stores that reach the top of the block without being
502 killed by a read.
503
504 Do not represent the in if it is all ones. Note that this is
505 what the bitvector should logically be initialized to for a set
506 intersection problem. However, like the kill set, this is too
507 expensive. So initially, the in set will only be created for the
508 exit block and any block that contains a wild read. */
509 bitmap in;
510
511 /* The set of stores that reach the bottom of the block from it's
512 successors.
513
514 Do not represent the in if it is all ones. Note that this is
515 what the bitvector should logically be initialized to for a set
516 intersection problem. However, like the kill and in set, this is
517 too expensive. So what is done is that the confluence operator
518 just initializes the vector from one of the out sets of the
519 successors of the block. */
520 bitmap out;
a1b0a968 521
522 /* The following bitvector is indexed by the reg number. It
523 contains the set of regs that are live at the current instruction
524 being processed. While it contains info for all of the
5a9ecd4a 525 registers, only the hard registers are actually examined. It is used
526 to assure that shift and/or add sequences that are inserted do not
9d75589a 527 accidentally clobber live hard regs. */
a1b0a968 528 bitmap regs_live;
55c5ac9f 529
530 /* Pool allocation new operator. */
531 inline void *operator new (size_t)
532 {
533 return pool.allocate ();
534 }
535
536 /* Delete operator utilizing pool allocation. */
537 inline void operator delete (void *ptr)
538 {
539 pool.remove ((dse_bb_info_type *) ptr);
540 }
541
542 /* Memory allocation pool. */
543 static pool_allocator<dse_bb_info_type> pool;
3072d30e 544};
545
55c5ac9f 546typedef struct dse_bb_info_type *bb_info_t;
547pool_allocator<dse_bb_info_type> dse_bb_info_type::pool ("bb_info_pool", 100);
3072d30e 548
549/* Table to hold all bb_infos. */
550static bb_info_t *bb_table;
551
552/* There is a group_info for each rtx base that is used to reference
553 memory. There are also not many of the rtx bases because they are
554 very limited in scope. */
555
48e1416a 556struct group_info
3072d30e 557{
558 /* The actual base of the address. */
559 rtx rtx_base;
560
561 /* The sequential id of the base. This allows us to have a
562 canonical ordering of these that is not based on addresses. */
563 int id;
564
0ac758f7 565 /* True if there are any positions that are to be processed
566 globally. */
567 bool process_globally;
568
569 /* True if the base of this group is either the frame_pointer or
570 hard_frame_pointer. */
571 bool frame_related;
572
ec410bf1 573 /* A mem wrapped around the base pointer for the group in order to do
574 read dependency. It must be given BLKmode in order to encompass all
575 the possible offsets from the base. */
3072d30e 576 rtx base_mem;
48e1416a 577
82d2c88b 578 /* Canonized version of base_mem's address. */
579 rtx canon_base_addr;
3072d30e 580
581 /* These two sets of two bitmaps are used to keep track of how many
6dfdc153 582 stores are actually referencing that position from this base. We
3072d30e 583 only do this for rtx bases as this will be used to assign
6dfdc153 584 positions in the bitmaps for the global problem. Bit N is set in
3072d30e 585 store1 on the first store for offset N. Bit N is set in store2
586 for the second store to offset N. This is all we need since we
587 only care about offsets that have two or more stores for them.
588
589 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
590 for 0 and greater offsets.
591
592 There is one special case here, for stores into the stack frame,
593 we will or store1 into store2 before deciding which stores look
594 at globally. This is because stores to the stack frame that have
595 no other reads before the end of the function can also be
596 deleted. */
597 bitmap store1_n, store1_p, store2_n, store2_p;
598
b4a708fb 599 /* These bitmaps keep track of offsets in this group escape this function.
600 An offset escapes if it corresponds to a named variable whose
601 addressable flag is set. */
602 bitmap escaped_n, escaped_p;
603
6dfdc153 604 /* The positions in this bitmap have the same assignments as the in,
3072d30e 605 out, gen and kill bitmaps. This bitmap is all zeros except for
6dfdc153 606 the positions that are occupied by stores for this group. */
3072d30e 607 bitmap group_kill;
608
3072d30e 609 /* The offset_map is used to map the offsets from this base into
6dfdc153 610 positions in the global bitmaps. It is only created after all of
3072d30e 611 the all of stores have been scanned and we know which ones we
612 care about. */
48e1416a 613 int *offset_map_n, *offset_map_p;
614 int offset_map_size_n, offset_map_size_p;
55c5ac9f 615
616 /* Pool allocation new operator. */
617 inline void *operator new (size_t)
618 {
619 return pool.allocate ();
620 }
621
622 /* Delete operator utilizing pool allocation. */
623 inline void operator delete (void *ptr)
624 {
625 pool.remove ((group_info *) ptr);
626 }
627
628 /* Memory allocation pool. */
629 static pool_allocator<group_info> pool;
3072d30e 630};
631typedef struct group_info *group_info_t;
c1fdef8e 632typedef const struct group_info *const_group_info_t;
55c5ac9f 633
634pool_allocator<group_info> group_info::pool ("rtx_group_info_pool", 100);
3072d30e 635
3072d30e 636/* Index into the rtx_group_vec. */
637static int rtx_group_next_id;
638
3072d30e 639
f1f41a6c 640static vec<group_info_t> rtx_group_vec;
3072d30e 641
642
643/* This structure holds the set of changes that are being deferred
644 when removing read operation. See replace_read. */
48e1416a 645struct deferred_change
3072d30e 646{
647
648 /* The mem that is being replaced. */
649 rtx *loc;
650
651 /* The reg it is being replaced with. */
652 rtx reg;
653
654 struct deferred_change *next;
55c5ac9f 655
656 /* Pool allocation new operator. */
657 inline void *operator new (size_t)
658 {
659 return pool.allocate ();
660 }
661
662 /* Delete operator utilizing pool allocation. */
663 inline void operator delete (void *ptr)
664 {
665 pool.remove ((deferred_change *) ptr);
666 }
667
668 /* Memory allocation pool. */
669 static pool_allocator<deferred_change> pool;
3072d30e 670};
671
672typedef struct deferred_change *deferred_change_t;
55c5ac9f 673
674pool_allocator<deferred_change> deferred_change::pool
675 ("deferred_change_pool", 10);
3072d30e 676
677static deferred_change_t deferred_change_list = NULL;
678
3072d30e 679/* The group that holds all of the clear_alias_sets. */
680static group_info_t clear_alias_group;
681
682/* The modes of the clear_alias_sets. */
683static htab_t clear_alias_mode_table;
684
685/* Hash table element to look up the mode for an alias set. */
686struct clear_alias_mode_holder
687{
32c2fdea 688 alias_set_type alias_set;
3754d046 689 machine_mode mode;
3072d30e 690};
691
18d50ae6 692/* This is true except if cfun->stdarg -- i.e. we cannot do
ff3ae375 693 this for vararg functions because they play games with the frame. */
3072d30e 694static bool stores_off_frame_dead_at_return;
695
696/* Counter for stats. */
48e1416a 697static int globally_deleted;
698static int locally_deleted;
699static int spill_deleted;
700
3072d30e 701static bitmap all_blocks;
702
b4a708fb 703/* Locations that are killed by calls in the global phase. */
704static bitmap kill_on_calls;
705
3072d30e 706/* The number of bits used in the global bitmaps. */
707static unsigned int current_position;
3072d30e 708\f
709/*----------------------------------------------------------------------------
710 Zeroth step.
711
48e1416a 712 Initialization.
3072d30e 713----------------------------------------------------------------------------*/
714
3072d30e 715
716/* Find the entry associated with ALIAS_SET. */
717
718static struct clear_alias_mode_holder *
32c2fdea 719clear_alias_set_lookup (alias_set_type alias_set)
3072d30e 720{
721 struct clear_alias_mode_holder tmp_holder;
722 void **slot;
48e1416a 723
3072d30e 724 tmp_holder.alias_set = alias_set;
725 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
726 gcc_assert (*slot);
48e1416a 727
364c0c59 728 return (struct clear_alias_mode_holder *) *slot;
3072d30e 729}
730
731
732/* Hashtable callbacks for maintaining the "bases" field of
733 store_group_info, given that the addresses are function invariants. */
734
770ff93b 735struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
d1455aa3 736{
9969c043 737 static inline hashval_t hash (const group_info *);
738 static inline bool equal (const group_info *, const group_info *);
d1455aa3 739};
740
741inline bool
9969c043 742invariant_group_base_hasher::equal (const group_info *gi1,
743 const group_info *gi2)
3072d30e 744{
3072d30e 745 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
746}
747
d1455aa3 748inline hashval_t
9969c043 749invariant_group_base_hasher::hash (const group_info *gi)
3072d30e 750{
3072d30e 751 int do_not_record;
752 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
753}
754
d1455aa3 755/* Tables of group_info structures, hashed by base value. */
c1f445d2 756static hash_table<invariant_group_base_hasher> *rtx_group_table;
d1455aa3 757
3072d30e 758
759/* Get the GROUP for BASE. Add a new group if it is not there. */
760
761static group_info_t
762get_group_info (rtx base)
763{
48e1416a 764 struct group_info tmp_gi;
765 group_info_t gi;
d1455aa3 766 group_info **slot;
3072d30e 767
768 if (base)
769 {
770 /* Find the store_base_info structure for BASE, creating a new one
771 if necessary. */
772 tmp_gi.rtx_base = base;
c1f445d2 773 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
3072d30e 774 gi = (group_info_t) *slot;
775 }
776 else
777 {
778 if (!clear_alias_group)
779 {
55c5ac9f 780 clear_alias_group = gi = new group_info;
3072d30e 781 memset (gi, 0, sizeof (struct group_info));
782 gi->id = rtx_group_next_id++;
4fb07d00 783 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
784 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
785 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
786 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
787 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
788 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
789 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 790 gi->process_globally = false;
791 gi->offset_map_size_n = 0;
792 gi->offset_map_size_p = 0;
793 gi->offset_map_n = NULL;
794 gi->offset_map_p = NULL;
f1f41a6c 795 rtx_group_vec.safe_push (gi);
3072d30e 796 }
797 return clear_alias_group;
798 }
799
800 if (gi == NULL)
801 {
55c5ac9f 802 *slot = gi = new group_info;
3072d30e 803 gi->rtx_base = base;
804 gi->id = rtx_group_next_id++;
ec410bf1 805 gi->base_mem = gen_rtx_MEM (BLKmode, base);
82d2c88b 806 gi->canon_base_addr = canon_rtx (base);
4fb07d00 807 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
808 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
809 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
810 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
811 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
812 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
813 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 814 gi->process_globally = false;
48e1416a 815 gi->frame_related =
3072d30e 816 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
817 gi->offset_map_size_n = 0;
818 gi->offset_map_size_p = 0;
819 gi->offset_map_n = NULL;
820 gi->offset_map_p = NULL;
f1f41a6c 821 rtx_group_vec.safe_push (gi);
3072d30e 822 }
823
824 return gi;
825}
826
827
828/* Initialization of data structures. */
829
830static void
831dse_step0 (void)
832{
833 locally_deleted = 0;
834 globally_deleted = 0;
835 spill_deleted = 0;
836
4fb07d00 837 bitmap_obstack_initialize (&dse_bitmap_obstack);
838 gcc_obstack_init (&dse_obstack);
839
840 scratch = BITMAP_ALLOC (&reg_obstack);
841 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 842
3072d30e 843
c1f445d2 844 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
3072d30e 845
fe672ac0 846 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
3072d30e 847 rtx_group_next_id = 0;
848
18d50ae6 849 stores_off_frame_dead_at_return = !cfun->stdarg;
3072d30e 850
851 init_alias_analysis ();
48e1416a 852
e85eaec5 853 clear_alias_group = NULL;
3072d30e 854}
855
856
857\f
858/*----------------------------------------------------------------------------
859 First step.
860
861 Scan all of the insns. Any random ordering of the blocks is fine.
bef304b8 862 Each block is scanned in forward order to accommodate cselib which
3072d30e 863 is used to remove stores with non-constant bases.
864----------------------------------------------------------------------------*/
865
866/* Delete all of the store_info recs from INSN_INFO. */
867
48e1416a 868static void
3072d30e 869free_store_info (insn_info_t insn_info)
870{
871 store_info_t store_info = insn_info->store_rec;
872 while (store_info)
873 {
874 store_info_t next = store_info->next;
aa140b76 875 if (store_info->is_large)
843bd2fa 876 BITMAP_FREE (store_info->positions_needed.large.bmap);
3072d30e 877 if (store_info->cse_base)
55c5ac9f 878 cse_store_info_pool.remove (store_info);
3072d30e 879 else
55c5ac9f 880 rtx_store_info_pool.remove (store_info);
3072d30e 881 store_info = next;
882 }
883
884 insn_info->cannot_delete = true;
885 insn_info->contains_cselib_groups = false;
886 insn_info->store_rec = NULL;
887}
888
5a9ecd4a 889typedef struct
890{
4cd001d5 891 rtx_insn *first, *current;
5a9ecd4a 892 regset fixed_regs_live;
893 bool failure;
894} note_add_store_info;
895
896/* Callback for emit_inc_dec_insn_before via note_stores.
897 Check if a register is clobbered which is live afterwards. */
898
899static void
900note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
901{
4cd001d5 902 rtx_insn *insn;
5a9ecd4a 903 note_add_store_info *info = (note_add_store_info *) data;
5a9ecd4a 904
905 if (!REG_P (loc))
906 return;
907
908 /* If this register is referenced by the current or an earlier insn,
909 that's OK. E.g. this applies to the register that is being incremented
910 with this addition. */
911 for (insn = info->first;
912 insn != NEXT_INSN (info->current);
913 insn = NEXT_INSN (insn))
914 if (reg_referenced_p (loc, PATTERN (insn)))
915 return;
916
917 /* If we come here, we have a clobber of a register that's only OK
918 if that register is not live. If we don't have liveness information
919 available, fail now. */
920 if (!info->fixed_regs_live)
921 {
6a298741 922 info->failure = true;
5a9ecd4a 923 return;
924 }
925 /* Now check if this is a live fixed register. */
6a298741 926 unsigned int end_regno = END_REGNO (loc);
927 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
928 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
929 info->failure = true;
5a9ecd4a 930}
931
1f864115 932/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
933 SRC + SRCOFF before insn ARG. */
3072d30e 934
935static int
1f864115 936emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
937 rtx op ATTRIBUTE_UNUSED,
938 rtx dest, rtx src, rtx srcoff, void *arg)
3072d30e 939{
5a9ecd4a 940 insn_info_t insn_info = (insn_info_t) arg;
4cd001d5 941 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
5a9ecd4a 942 note_add_store_info info;
48e1416a 943
1f864115 944 /* We can reuse all operands without copying, because we are about
945 to delete the insn that contained it. */
5a9ecd4a 946 if (srcoff)
a280a5da 947 {
948 start_sequence ();
949 emit_insn (gen_add3_insn (dest, src, srcoff));
950 new_insn = get_insns ();
951 end_sequence ();
952 }
5a9ecd4a 953 else
f9a00e9e 954 new_insn = gen_move_insn (dest, src);
5a9ecd4a 955 info.first = new_insn;
956 info.fixed_regs_live = insn_info->fixed_regs_live;
957 info.failure = false;
958 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
959 {
960 info.current = cur;
961 note_stores (PATTERN (cur), note_add_store, &info);
962 }
3072d30e 963
5a9ecd4a 964 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
965 return it immediately, communicating the failure to its caller. */
966 if (info.failure)
967 return 1;
968
969 emit_insn_before (new_insn, insn);
3072d30e 970
623ad592 971 return 0;
3072d30e 972}
973
5a9ecd4a 974/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
975 is there, is split into a separate insn.
976 Return true on success (or if there was nothing to do), false on failure. */
3072d30e 977
5a9ecd4a 978static bool
979check_for_inc_dec_1 (insn_info_t insn_info)
3072d30e 980{
ebabb7a3 981 rtx_insn *insn = insn_info->insn;
3072d30e 982 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
983 if (note)
623ad592 984 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
985 insn_info) == 0;
5a9ecd4a 986 return true;
3072d30e 987}
988
989
5a9ecd4a 990/* Entry point for postreload. If you work on reload_cse, or you need this
991 anywhere else, consider if you can provide register liveness information
992 and add a parameter to this function so that it can be passed down in
993 insn_info.fixed_regs_live. */
994bool
ebabb7a3 995check_for_inc_dec (rtx_insn *insn)
5a9ecd4a 996{
55c5ac9f 997 insn_info_type insn_info;
5a9ecd4a 998 rtx note;
999
1000 insn_info.insn = insn;
1001 insn_info.fixed_regs_live = NULL;
1002 note = find_reg_note (insn, REG_INC, NULL_RTX);
1003 if (note)
623ad592 1004 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
1005 &insn_info) == 0;
5a9ecd4a 1006 return true;
1007}
1008
48e1416a 1009/* Delete the insn and free all of the fields inside INSN_INFO. */
3072d30e 1010
1011static void
1012delete_dead_store_insn (insn_info_t insn_info)
1013{
1014 read_info_t read_info;
1015
1016 if (!dbg_cnt (dse))
1017 return;
1018
5a9ecd4a 1019 if (!check_for_inc_dec_1 (insn_info))
1020 return;
1ca59310 1021 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1022 {
48e1416a 1023 fprintf (dump_file, "Locally deleting insn %d ",
3072d30e 1024 INSN_UID (insn_info->insn));
1025 if (insn_info->store_rec->alias_set)
48e1416a 1026 fprintf (dump_file, "alias set %d\n",
32c2fdea 1027 (int) insn_info->store_rec->alias_set);
3072d30e 1028 else
1029 fprintf (dump_file, "\n");
1030 }
1031
1032 free_store_info (insn_info);
1033 read_info = insn_info->read_rec;
48e1416a 1034
3072d30e 1035 while (read_info)
1036 {
1037 read_info_t next = read_info->next;
55c5ac9f 1038 delete read_info;
3072d30e 1039 read_info = next;
1040 }
1041 insn_info->read_rec = NULL;
1042
1043 delete_insn (insn_info->insn);
1044 locally_deleted++;
1045 insn_info->insn = NULL;
1046
1047 insn_info->wild_read = false;
1048}
1049
f7b5f694 1050/* Return whether DECL, a local variable, can possibly escape the current
1051 function scope. */
1052
1053static bool
1054local_variable_can_escape (tree decl)
1055{
1056 if (TREE_ADDRESSABLE (decl))
1057 return true;
1058
1059 /* If this is a partitioned variable, we need to consider all the variables
1060 in the partition. This is necessary because a store into one of them can
1061 be replaced with a store into another and this may not change the outcome
1062 of the escape analysis. */
1063 if (cfun->gimple_df->decls_to_pointers != NULL)
1064 {
5f8841a5 1065 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
f7b5f694 1066 if (namep)
5f8841a5 1067 return TREE_ADDRESSABLE (*namep);
f7b5f694 1068 }
1069
1070 return false;
1071}
1072
1073/* Return whether EXPR can possibly escape the current function scope. */
1074
b4a708fb 1075static bool
1076can_escape (tree expr)
1077{
1078 tree base;
1079 if (!expr)
1080 return true;
1081 base = get_base_address (expr);
1082 if (DECL_P (base)
f7b5f694 1083 && !may_be_aliased (base)
1084 && !(TREE_CODE (base) == VAR_DECL
1085 && !DECL_EXTERNAL (base)
1086 && !TREE_STATIC (base)
1087 && local_variable_can_escape (base)))
b4a708fb 1088 return false;
1089 return true;
1090}
3072d30e 1091
1092/* Set the store* bitmaps offset_map_size* fields in GROUP based on
1093 OFFSET and WIDTH. */
1094
1095static void
b4a708fb 1096set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1097 tree expr)
3072d30e 1098{
1099 HOST_WIDE_INT i;
b4a708fb 1100 bool expr_escapes = can_escape (expr);
aa140b76 1101 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
3072d30e 1102 for (i=offset; i<offset+width; i++)
1103 {
1104 bitmap store1;
1105 bitmap store2;
b4a708fb 1106 bitmap escaped;
3072d30e 1107 int ai;
1108 if (i < 0)
1109 {
1110 store1 = group->store1_n;
1111 store2 = group->store2_n;
b4a708fb 1112 escaped = group->escaped_n;
3072d30e 1113 ai = -i;
1114 }
1115 else
1116 {
1117 store1 = group->store1_p;
1118 store2 = group->store2_p;
b4a708fb 1119 escaped = group->escaped_p;
3072d30e 1120 ai = i;
1121 }
48e1416a 1122
6ef9bbe0 1123 if (!bitmap_set_bit (store1, ai))
3072d30e 1124 bitmap_set_bit (store2, ai);
48e1416a 1125 else
3072d30e 1126 {
3072d30e 1127 if (i < 0)
1128 {
1129 if (group->offset_map_size_n < ai)
1130 group->offset_map_size_n = ai;
1131 }
1132 else
1133 {
1134 if (group->offset_map_size_p < ai)
1135 group->offset_map_size_p = ai;
1136 }
1137 }
b4a708fb 1138 if (expr_escapes)
1139 bitmap_set_bit (escaped, ai);
3072d30e 1140 }
1141}
1142
b4a708fb 1143static void
1144reset_active_stores (void)
1145{
1146 active_local_stores = NULL;
1147 active_local_stores_len = 0;
1148}
3072d30e 1149
b4a708fb 1150/* Free all READ_REC of the LAST_INSN of BB_INFO. */
3072d30e 1151
1152static void
b4a708fb 1153free_read_records (bb_info_t bb_info)
3072d30e 1154{
1155 insn_info_t insn_info = bb_info->last_insn;
1156 read_info_t *ptr = &insn_info->read_rec;
3072d30e 1157 while (*ptr)
1158 {
1159 read_info_t next = (*ptr)->next;
32c2fdea 1160 if ((*ptr)->alias_set == 0)
3072d30e 1161 {
55c5ac9f 1162 delete *ptr;
3072d30e 1163 *ptr = next;
b4a708fb 1164 }
48e1416a 1165 else
b4a708fb 1166 ptr = &(*ptr)->next;
3072d30e 1167 }
b4a708fb 1168}
1169
1170/* Set the BB_INFO so that the last insn is marked as a wild read. */
1171
1172static void
1173add_wild_read (bb_info_t bb_info)
1174{
1175 insn_info_t insn_info = bb_info->last_insn;
3072d30e 1176 insn_info->wild_read = true;
b4a708fb 1177 free_read_records (bb_info);
1178 reset_active_stores ();
3072d30e 1179}
1180
b4a708fb 1181/* Set the BB_INFO so that the last insn is marked as a wild read of
1182 non-frame locations. */
1183
1184static void
1185add_non_frame_wild_read (bb_info_t bb_info)
1186{
1187 insn_info_t insn_info = bb_info->last_insn;
1188 insn_info->non_frame_wild_read = true;
1189 free_read_records (bb_info);
1190 reset_active_stores ();
1191}
3072d30e 1192
17e1318c 1193/* Return true if X is a constant or one of the registers that behave
1194 as a constant over the life of a function. This is equivalent to
1195 !rtx_varies_p for memory addresses. */
3072d30e 1196
1197static bool
1198const_or_frame_p (rtx x)
1199{
0349edce 1200 if (CONSTANT_P (x))
1201 return true;
1202
1203 if (GET_CODE (x) == REG)
3072d30e 1204 {
3072d30e 1205 /* Note that we have to test for the actual rtx used for the frame
1206 and arg pointers and not just the register number in case we have
1207 eliminated the frame and/or arg pointer and are using it
1208 for pseudos. */
1209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1210 /* The arg pointer varies if it is not a fixed register. */
1211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1212 || x == pic_offset_table_rtx)
1213 return true;
1214 return false;
3072d30e 1215 }
55c5ac9f 1216
0349edce 1217 return false;
3072d30e 1218}
1219
48e1416a 1220/* Take all reasonable action to put the address of MEM into the form
1221 that we can do analysis on.
3072d30e 1222
1223 The gold standard is to get the address into the form: address +
1224 OFFSET where address is something that rtx_varies_p considers a
1225 constant. When we can get the address in this form, we can do
1226 global analysis on it. Note that for constant bases, address is
1227 not actually returned, only the group_id. The address can be
1228 obtained from that.
1229
1230 If that fails, we try cselib to get a value we can at least use
48e1416a 1231 locally. If that fails we return false.
1232
3072d30e 1233 The GROUP_ID is set to -1 for cselib bases and the index of the
1234 group for non_varying bases.
1235
1236 FOR_READ is true if this is a mem read and false if not. */
1237
1238static bool
1239canon_address (rtx mem,
32c2fdea 1240 alias_set_type *alias_set_out,
3072d30e 1241 int *group_id,
48e1416a 1242 HOST_WIDE_INT *offset,
3072d30e 1243 cselib_val **base)
1244{
3754d046 1245 machine_mode address_mode = get_address_mode (mem);
3072d30e 1246 rtx mem_address = XEXP (mem, 0);
1247 rtx expanded_address, address;
627540ce 1248 int expanded;
1249
3072d30e 1250 *alias_set_out = 0;
1251
1f864115 1252 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
3072d30e 1253
1ca59310 1254 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1255 {
1256 fprintf (dump_file, " mem: ");
1257 print_inline_rtx (dump_file, mem_address, 0);
1258 fprintf (dump_file, "\n");
1259 }
1260
627540ce 1261 /* First see if just canon_rtx (mem_address) is const or frame,
1262 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1263 address = NULL_RTX;
1264 for (expanded = 0; expanded < 2; expanded++)
1265 {
1266 if (expanded)
1267 {
1268 /* Use cselib to replace all of the reg references with the full
48e1416a 1269 expression. This will take care of the case where we have
3072d30e 1270
627540ce 1271 r_x = base + offset;
1272 val = *r_x;
48e1416a 1273
1274 by making it into
3072d30e 1275
627540ce 1276 val = *(base + offset); */
3072d30e 1277
627540ce 1278 expanded_address = cselib_expand_value_rtx (mem_address,
1279 scratch, 5);
3072d30e 1280
627540ce 1281 /* If this fails, just go with the address from first
1282 iteration. */
1283 if (!expanded_address)
1284 break;
1285 }
1286 else
1287 expanded_address = mem_address;
3072d30e 1288
627540ce 1289 /* Split the address into canonical BASE + OFFSET terms. */
1290 address = canon_rtx (expanded_address);
3072d30e 1291
627540ce 1292 *offset = 0;
3072d30e 1293
1ca59310 1294 if (dump_file && (dump_flags & TDF_DETAILS))
627540ce 1295 {
1296 if (expanded)
1297 {
1298 fprintf (dump_file, "\n after cselib_expand address: ");
1299 print_inline_rtx (dump_file, expanded_address, 0);
1300 fprintf (dump_file, "\n");
1301 }
3072d30e 1302
627540ce 1303 fprintf (dump_file, "\n after canon_rtx address: ");
1304 print_inline_rtx (dump_file, address, 0);
1305 fprintf (dump_file, "\n");
1306 }
3072d30e 1307
627540ce 1308 if (GET_CODE (address) == CONST)
1309 address = XEXP (address, 0);
3072d30e 1310
627540ce 1311 if (GET_CODE (address) == PLUS
1312 && CONST_INT_P (XEXP (address, 1)))
1313 {
1314 *offset = INTVAL (XEXP (address, 1));
1315 address = XEXP (address, 0);
1316 }
3072d30e 1317
bd1a81f7 1318 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1319 && const_or_frame_p (address))
3072d30e 1320 {
627540ce 1321 group_info_t group = get_group_info (address);
1322
1ca59310 1323 if (dump_file && (dump_flags & TDF_DETAILS))
627540ce 1324 fprintf (dump_file, " gid=%d offset=%d \n",
1325 group->id, (int)*offset);
1326 *base = NULL;
1327 *group_id = group->id;
1328 return true;
3072d30e 1329 }
627540ce 1330 }
1331
1f864115 1332 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
627540ce 1333 *group_id = -1;
1334
1335 if (*base == NULL)
1336 {
1ca59310 1337 if (dump_file && (dump_flags & TDF_DETAILS))
627540ce 1338 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1339 return false;
3072d30e 1340 }
1ca59310 1341 if (dump_file && (dump_flags & TDF_DETAILS))
01df1184 1342 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1343 (*base)->uid, (*base)->hash, (int)*offset);
3072d30e 1344 return true;
1345}
1346
1347
1348/* Clear the rhs field from the active_local_stores array. */
1349
1350static void
1351clear_rhs_from_active_local_stores (void)
1352{
1353 insn_info_t ptr = active_local_stores;
1354
1355 while (ptr)
1356 {
1357 store_info_t store_info = ptr->store_rec;
1358 /* Skip the clobbers. */
1359 while (!store_info->is_set)
1360 store_info = store_info->next;
1361
1362 store_info->rhs = NULL;
aa140b76 1363 store_info->const_rhs = NULL;
3072d30e 1364
1365 ptr = ptr->next_local_store;
1366 }
1367}
1368
1369
aa140b76 1370/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1371
1372static inline void
1373set_position_unneeded (store_info_t s_info, int pos)
1374{
1375 if (__builtin_expect (s_info->is_large, false))
1376 {
6ef9bbe0 1377 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1378 s_info->positions_needed.large.count++;
aa140b76 1379 }
1380 else
1381 s_info->positions_needed.small_bitmask
1382 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1383}
1384
1385/* Mark the whole store S_INFO as unneeded. */
1386
1387static inline void
1388set_all_positions_unneeded (store_info_t s_info)
1389{
1390 if (__builtin_expect (s_info->is_large, false))
1391 {
1392 int pos, end = s_info->end - s_info->begin;
1393 for (pos = 0; pos < end; pos++)
843bd2fa 1394 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
aa140b76 1395 s_info->positions_needed.large.count = end;
1396 }
1397 else
1398 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1399}
1400
1401/* Return TRUE if any bytes from S_INFO store are needed. */
1402
1403static inline bool
1404any_positions_needed_p (store_info_t s_info)
1405{
1406 if (__builtin_expect (s_info->is_large, false))
1407 return (s_info->positions_needed.large.count
1408 < s_info->end - s_info->begin);
1409 else
1410 return (s_info->positions_needed.small_bitmask
1411 != (unsigned HOST_WIDE_INT) 0);
1412}
1413
1414/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1415 store are needed. */
1416
1417static inline bool
1418all_positions_needed_p (store_info_t s_info, int start, int width)
1419{
1420 if (__builtin_expect (s_info->is_large, false))
1421 {
1422 int end = start + width;
1423 while (start < end)
843bd2fa 1424 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
aa140b76 1425 return false;
1426 return true;
1427 }
1428 else
1429 {
1430 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1431 return (s_info->positions_needed.small_bitmask & mask) == mask;
1432 }
1433}
1434
1435
3754d046 1436static rtx get_stored_val (store_info_t, machine_mode, HOST_WIDE_INT,
aa140b76 1437 HOST_WIDE_INT, basic_block, bool);
1438
1439
3072d30e 1440/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1441 there is a candidate store, after adding it to the appropriate
1442 local store group if so. */
1443
1444static int
1445record_store (rtx body, bb_info_t bb_info)
1446{
82d2c88b 1447 rtx mem, rhs, const_rhs, mem_addr;
3072d30e 1448 HOST_WIDE_INT offset = 0;
1449 HOST_WIDE_INT width = 0;
32c2fdea 1450 alias_set_type spill_alias_set;
3072d30e 1451 insn_info_t insn_info = bb_info->last_insn;
1452 store_info_t store_info = NULL;
1453 int group_id;
1454 cselib_val *base = NULL;
aa140b76 1455 insn_info_t ptr, last, redundant_reason;
3072d30e 1456 bool store_is_unused;
1457
1458 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1459 return 0;
1460
aa140b76 1461 mem = SET_DEST (body);
1462
3072d30e 1463 /* If this is not used, then this cannot be used to keep the insn
1464 from being deleted. On the other hand, it does provide something
1465 that can be used to prove that another store is dead. */
1466 store_is_unused
aa140b76 1467 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
3072d30e 1468
1469 /* Check whether that value is a suitable memory location. */
3072d30e 1470 if (!MEM_P (mem))
1471 {
1472 /* If the set or clobber is unused, then it does not effect our
1473 ability to get rid of the entire insn. */
1474 if (!store_is_unused)
1475 insn_info->cannot_delete = true;
1476 return 0;
1477 }
1478
1479 /* At this point we know mem is a mem. */
1480 if (GET_MODE (mem) == BLKmode)
1481 {
1482 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1483 {
1ca59310 1484 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1485 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1486 add_wild_read (bb_info);
1487 insn_info->cannot_delete = true;
aa140b76 1488 return 0;
3072d30e 1489 }
aa140b76 1490 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1491 as memset (addr, 0, 36); */
5b2a69fa 1492 else if (!MEM_SIZE_KNOWN_P (mem)
1493 || MEM_SIZE (mem) <= 0
1494 || MEM_SIZE (mem) > MAX_OFFSET
aa140b76 1495 || GET_CODE (body) != SET
aa140b76 1496 || !CONST_INT_P (SET_SRC (body)))
3072d30e 1497 {
aa140b76 1498 if (!store_is_unused)
1499 {
1500 /* If the set or clobber is unused, then it does not effect our
1501 ability to get rid of the entire insn. */
1502 insn_info->cannot_delete = true;
1503 clear_rhs_from_active_local_stores ();
1504 }
1505 return 0;
3072d30e 1506 }
3072d30e 1507 }
1508
1509 /* We can still process a volatile mem, we just cannot delete it. */
1510 if (MEM_VOLATILE_P (mem))
aa140b76 1511 insn_info->cannot_delete = true;
3072d30e 1512
1513 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1514 {
1515 clear_rhs_from_active_local_stores ();
1516 return 0;
1517 }
1518
aa140b76 1519 if (GET_MODE (mem) == BLKmode)
5b2a69fa 1520 width = MEM_SIZE (mem);
aa140b76 1521 else
e4209874 1522 width = GET_MODE_SIZE (GET_MODE (mem));
3072d30e 1523
1524 if (spill_alias_set)
1525 {
1526 bitmap store1 = clear_alias_group->store1_p;
1527 bitmap store2 = clear_alias_group->store2_p;
aa140b76 1528
1529 gcc_assert (GET_MODE (mem) != BLKmode);
48e1416a 1530
6ef9bbe0 1531 if (!bitmap_set_bit (store1, spill_alias_set))
3072d30e 1532 bitmap_set_bit (store2, spill_alias_set);
48e1416a 1533
3072d30e 1534 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1535 clear_alias_group->offset_map_size_p = spill_alias_set;
48e1416a 1536
55c5ac9f 1537 store_info = rtx_store_info_pool.allocate ();
3072d30e 1538
1ca59310 1539 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1540 fprintf (dump_file, " processing spill store %d(%s)\n",
32c2fdea 1541 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
3072d30e 1542 }
1543 else if (group_id >= 0)
1544 {
1545 /* In the restrictive case where the base is a constant or the
1546 frame pointer we can do global analysis. */
48e1416a 1547
1548 group_info_t group
f1f41a6c 1549 = rtx_group_vec[group_id];
b4a708fb 1550 tree expr = MEM_EXPR (mem);
48e1416a 1551
55c5ac9f 1552 store_info = rtx_store_info_pool.allocate ();
b4a708fb 1553 set_usage_bits (group, offset, width, expr);
3072d30e 1554
1ca59310 1555 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1556 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1557 group_id, (int)offset, (int)(offset+width));
1558 }
1559 else
1560 {
86e87ef6 1561 if (may_be_sp_based_p (XEXP (mem, 0)))
17e1318c 1562 insn_info->stack_pointer_based = true;
3072d30e 1563 insn_info->contains_cselib_groups = true;
17e1318c 1564
55c5ac9f 1565 store_info = cse_store_info_pool.allocate ();
3072d30e 1566 group_id = -1;
1567
1ca59310 1568 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1569 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1570 (int)offset, (int)(offset+width));
1571 }
1572
aa140b76 1573 const_rhs = rhs = NULL_RTX;
1574 if (GET_CODE (body) == SET
1575 /* No place to keep the value after ra. */
1576 && !reload_completed
1577 && (REG_P (SET_SRC (body))
1578 || GET_CODE (SET_SRC (body)) == SUBREG
1579 || CONSTANT_P (SET_SRC (body)))
1580 && !MEM_VOLATILE_P (mem)
1581 /* Sometimes the store and reload is used for truncation and
1582 rounding. */
1583 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1584 {
1585 rhs = SET_SRC (body);
1586 if (CONSTANT_P (rhs))
1587 const_rhs = rhs;
1588 else if (body == PATTERN (insn_info->insn))
1589 {
1590 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1591 if (tem && CONSTANT_P (XEXP (tem, 0)))
1592 const_rhs = XEXP (tem, 0);
1593 }
1594 if (const_rhs == NULL_RTX && REG_P (rhs))
1595 {
1596 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1597
1598 if (tem && CONSTANT_P (tem))
1599 const_rhs = tem;
1600 }
1601 }
1602
3072d30e 1603 /* Check to see if this stores causes some other stores to be
1604 dead. */
1605 ptr = active_local_stores;
1606 last = NULL;
aa140b76 1607 redundant_reason = NULL;
82d2c88b 1608 mem = canon_rtx (mem);
1609 /* For alias_set != 0 canon_true_dependence should be never called. */
1610 if (spill_alias_set)
1611 mem_addr = NULL_RTX;
1612 else
1613 {
1614 if (group_id < 0)
1615 mem_addr = base->val_rtx;
1616 else
1617 {
1618 group_info_t group
f1f41a6c 1619 = rtx_group_vec[group_id];
82d2c88b 1620 mem_addr = group->canon_base_addr;
1621 }
90f3e775 1622 /* get_addr can only handle VALUE but cannot handle expr like:
1623 VALUE + OFFSET, so call get_addr to get original addr for
1624 mem_addr before plus_constant. */
1625 mem_addr = get_addr (mem_addr);
82d2c88b 1626 if (offset)
87cf5753 1627 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
82d2c88b 1628 }
3072d30e 1629
1630 while (ptr)
1631 {
1632 insn_info_t next = ptr->next_local_store;
1633 store_info_t s_info = ptr->store_rec;
9ce37fa7 1634 bool del = true;
3072d30e 1635
1636 /* Skip the clobbers. We delete the active insn if this insn
6dfdc153 1637 shadows the set. To have been put on the active list, it
3072d30e 1638 has exactly on set. */
1639 while (!s_info->is_set)
1640 s_info = s_info->next;
1641
1642 if (s_info->alias_set != spill_alias_set)
9ce37fa7 1643 del = false;
3072d30e 1644 else if (s_info->alias_set)
1645 {
48e1416a 1646 struct clear_alias_mode_holder *entry
3072d30e 1647 = clear_alias_set_lookup (s_info->alias_set);
1648 /* Generally, spills cannot be processed if and of the
1649 references to the slot have a different mode. But if
1650 we are in the same block and mode is exactly the same
1651 between this store and one before in the same block,
1652 we can still delete it. */
1653 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1654 && (GET_MODE (mem) == entry->mode))
1655 {
9ce37fa7 1656 del = true;
aa140b76 1657 set_all_positions_unneeded (s_info);
3072d30e 1658 }
1ca59310 1659 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1660 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
32c2fdea 1661 INSN_UID (ptr->insn), (int) s_info->alias_set);
3072d30e 1662 }
48e1416a 1663 else if ((s_info->group_id == group_id)
3072d30e 1664 && (s_info->cse_base == base))
1665 {
1666 HOST_WIDE_INT i;
1ca59310 1667 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 1668 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
48e1416a 1669 INSN_UID (ptr->insn), s_info->group_id,
3072d30e 1670 (int)s_info->begin, (int)s_info->end);
aa140b76 1671
1672 /* Even if PTR won't be eliminated as unneeded, if both
1673 PTR and this insn store the same constant value, we might
1674 eliminate this insn instead. */
1675 if (s_info->const_rhs
1676 && const_rhs
1677 && offset >= s_info->begin
1678 && offset + width <= s_info->end
1679 && all_positions_needed_p (s_info, offset - s_info->begin,
1680 width))
1681 {
1682 if (GET_MODE (mem) == BLKmode)
1683 {
1684 if (GET_MODE (s_info->mem) == BLKmode
1685 && s_info->const_rhs == const_rhs)
1686 redundant_reason = ptr;
1687 }
1688 else if (s_info->const_rhs == const0_rtx
1689 && const_rhs == const0_rtx)
1690 redundant_reason = ptr;
1691 else
1692 {
1693 rtx val;
1694 start_sequence ();
1695 val = get_stored_val (s_info, GET_MODE (mem),
1696 offset, offset + width,
1697 BLOCK_FOR_INSN (insn_info->insn),
1698 true);
1699 if (get_insns () != NULL)
1700 val = NULL_RTX;
1701 end_sequence ();
1702 if (val && rtx_equal_p (val, const_rhs))
1703 redundant_reason = ptr;
1704 }
1705 }
1706
1707 for (i = MAX (offset, s_info->begin);
1708 i < offset + width && i < s_info->end;
1709 i++)
1710 set_position_unneeded (s_info, i - s_info->begin);
3072d30e 1711 }
1712 else if (s_info->rhs)
1713 /* Need to see if it is possible for this store to overwrite
1714 the value of store_info. If it is, set the rhs to NULL to
1715 keep it from being used to remove a load. */
1716 {
48e1416a 1717 if (canon_true_dependence (s_info->mem,
3072d30e 1718 GET_MODE (s_info->mem),
1719 s_info->mem_addr,
376a287d 1720 mem, mem_addr))
aa140b76 1721 {
1722 s_info->rhs = NULL;
1723 s_info->const_rhs = NULL;
1724 }
3072d30e 1725 }
82d2c88b 1726
3072d30e 1727 /* An insn can be deleted if every position of every one of
1728 its s_infos is zero. */
c75be2fe 1729 if (any_positions_needed_p (s_info))
9ce37fa7 1730 del = false;
aa140b76 1731
9ce37fa7 1732 if (del)
3072d30e 1733 {
1734 insn_info_t insn_to_delete = ptr;
48e1416a 1735
1242bee6 1736 active_local_stores_len--;
3072d30e 1737 if (last)
1738 last->next_local_store = ptr->next_local_store;
1739 else
1740 active_local_stores = ptr->next_local_store;
48e1416a 1741
c75be2fe 1742 if (!insn_to_delete->cannot_delete)
1743 delete_dead_store_insn (insn_to_delete);
3072d30e 1744 }
1745 else
1746 last = ptr;
48e1416a 1747
3072d30e 1748 ptr = next;
1749 }
48e1416a 1750
3072d30e 1751 /* Finish filling in the store_info. */
1752 store_info->next = insn_info->store_rec;
1753 insn_info->store_rec = store_info;
82d2c88b 1754 store_info->mem = mem;
3072d30e 1755 store_info->alias_set = spill_alias_set;
82d2c88b 1756 store_info->mem_addr = mem_addr;
3072d30e 1757 store_info->cse_base = base;
aa140b76 1758 if (width > HOST_BITS_PER_WIDE_INT)
1759 {
1760 store_info->is_large = true;
1761 store_info->positions_needed.large.count = 0;
4fb07d00 1762 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
aa140b76 1763 }
1764 else
1765 {
1766 store_info->is_large = false;
1767 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1768 }
3072d30e 1769 store_info->group_id = group_id;
1770 store_info->begin = offset;
1771 store_info->end = offset + width;
1772 store_info->is_set = GET_CODE (body) == SET;
aa140b76 1773 store_info->rhs = rhs;
1774 store_info->const_rhs = const_rhs;
1775 store_info->redundant_reason = redundant_reason;
3072d30e 1776
3072d30e 1777 /* If this is a clobber, we return 0. We will only be able to
1778 delete this insn if there is only one store USED store, but we
1779 can use the clobber to delete other stores earlier. */
1780 return store_info->is_set ? 1 : 0;
1781}
1782
1783
1784static void
1785dump_insn_info (const char * start, insn_info_t insn_info)
1786{
48e1416a 1787 fprintf (dump_file, "%s insn=%d %s\n", start,
3072d30e 1788 INSN_UID (insn_info->insn),
1789 insn_info->store_rec ? "has store" : "naked");
1790}
1791
1792
5c9051a4 1793/* If the modes are different and the value's source and target do not
1794 line up, we need to extract the value from lower part of the rhs of
1795 the store, shift it, and then put it into a form that can be shoved
1796 into the read_insn. This function generates a right SHIFT of a
1797 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1798 shift sequence is returned or NULL if we failed to find a
1799 shift. */
1800
1801static rtx
10d4de0e 1802find_shift_sequence (int access_size,
5c9051a4 1803 store_info_t store_info,
3754d046 1804 machine_mode read_mode,
aa140b76 1805 int shift, bool speed, bool require_cst)
5c9051a4 1806{
3754d046 1807 machine_mode store_mode = GET_MODE (store_info->mem);
1808 machine_mode new_mode;
10d4de0e 1809 rtx read_reg = NULL;
5c9051a4 1810
1811 /* Some machines like the x86 have shift insns for each size of
1812 operand. Other machines like the ppc or the ia-64 may only have
1813 shift insns that shift values within 32 or 64 bit registers.
1814 This loop tries to find the smallest shift insn that will right
1815 justify the value we want to read but is available in one insn on
1816 the machine. */
1817
10d4de0e 1818 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1819 MODE_INT);
1820 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1821 new_mode = GET_MODE_WIDER_MODE (new_mode))
5c9051a4 1822 {
4cd001d5 1823 rtx target, new_reg, new_lhs;
1824 rtx_insn *shift_seq, *insn;
171557e8 1825 int cost;
af97461e 1826
4ed4afb9 1827 /* If a constant was stored into memory, try to simplify it here,
1828 otherwise the cost of the shift might preclude this optimization
1829 e.g. at -Os, even when no actual shift will be needed. */
aa140b76 1830 if (store_info->const_rhs)
4ed4afb9 1831 {
1832 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
aa140b76 1833 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1834 store_mode, byte);
4ed4afb9 1835 if (ret && CONSTANT_P (ret))
1836 {
1837 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1838 ret, GEN_INT (shift));
1839 if (ret && CONSTANT_P (ret))
1840 {
1841 byte = subreg_lowpart_offset (read_mode, new_mode);
1842 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1843 if (ret && CONSTANT_P (ret)
7013e87c 1844 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
4ed4afb9 1845 return ret;
1846 }
1847 }
1848 }
1849
aa140b76 1850 if (require_cst)
1851 return NULL_RTX;
1852
10d4de0e 1853 /* Try a wider mode if truncating the store mode to NEW_MODE
1854 requires a real instruction. */
1855 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
396f2130 1856 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
af97461e 1857 continue;
1858
10d4de0e 1859 /* Also try a wider mode if the necessary punning is either not
1860 desirable or not possible. */
1861 if (!CONSTANT_P (store_info->rhs)
1862 && !MODES_TIEABLE_P (new_mode, store_mode))
1863 continue;
10d4de0e 1864
af97461e 1865 new_reg = gen_reg_rtx (new_mode);
5c9051a4 1866
1867 start_sequence ();
1868
1869 /* In theory we could also check for an ashr. Ian Taylor knows
1870 of one dsp where the cost of these two was not the same. But
1871 this really is a rare case anyway. */
1872 target = expand_binop (new_mode, lshr_optab, new_reg,
1873 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1874
597d5470 1875 shift_seq = get_insns ();
1876 end_sequence ();
5c9051a4 1877
597d5470 1878 if (target != new_reg || shift_seq == NULL)
1879 continue;
1880
1881 cost = 0;
1882 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1883 if (INSN_P (insn))
f529eb25 1884 cost += insn_rtx_cost (PATTERN (insn), speed);
597d5470 1885
1886 /* The computation up to here is essentially independent
1887 of the arguments and could be precomputed. It may
1888 not be worth doing so. We could precompute if
1889 worthwhile or at least cache the results. The result
5133fd21 1890 technically depends on both SHIFT and ACCESS_SIZE,
1891 but in practice the answer will depend only on ACCESS_SIZE. */
597d5470 1892
1893 if (cost > COSTS_N_INSNS (1))
1894 continue;
1895
171557e8 1896 new_lhs = extract_low_bits (new_mode, store_mode,
1897 copy_rtx (store_info->rhs));
1898 if (new_lhs == NULL_RTX)
1899 continue;
1900
597d5470 1901 /* We found an acceptable shift. Generate a move to
1902 take the value from the store and put it into the
1903 shift pseudo, then shift it, then generate another
1904 move to put in into the target of the read. */
10d4de0e 1905 emit_move_insn (new_reg, new_lhs);
597d5470 1906 emit_insn (shift_seq);
10d4de0e 1907 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
597d5470 1908 break;
5c9051a4 1909 }
1910
10d4de0e 1911 return read_reg;
5c9051a4 1912}
1913
1914
a1b0a968 1915/* Call back for note_stores to find the hard regs set or clobbered by
1916 insn. Data is a bitmap of the hardregs set so far. */
1917
1918static void
1919look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1920{
1921 bitmap regs_set = (bitmap) data;
1922
1923 if (REG_P (x)
771d4616 1924 && HARD_REGISTER_P (x))
0933f1d9 1925 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
a1b0a968 1926}
1927
aa140b76 1928/* Helper function for replace_read and record_store.
1929 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1930 to one before READ_END bytes read in READ_MODE. Return NULL
1931 if not successful. If REQUIRE_CST is true, return always constant. */
1932
1933static rtx
3754d046 1934get_stored_val (store_info_t store_info, machine_mode read_mode,
aa140b76 1935 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1936 basic_block bb, bool require_cst)
1937{
3754d046 1938 machine_mode store_mode = GET_MODE (store_info->mem);
aa140b76 1939 int shift;
1940 int access_size; /* In bytes. */
1941 rtx read_reg;
1942
1943 /* To get here the read is within the boundaries of the write so
1944 shift will never be negative. Start out with the shift being in
1945 bytes. */
1946 if (store_mode == BLKmode)
1947 shift = 0;
1948 else if (BYTES_BIG_ENDIAN)
1949 shift = store_info->end - read_end;
1950 else
1951 shift = read_begin - store_info->begin;
1952
1953 access_size = shift + GET_MODE_SIZE (read_mode);
1954
1955 /* From now on it is bits. */
1956 shift *= BITS_PER_UNIT;
1957
1958 if (shift)
1959 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1960 optimize_bb_for_speed_p (bb),
1961 require_cst);
1962 else if (store_mode == BLKmode)
1963 {
1964 /* The store is a memset (addr, const_val, const_size). */
1965 gcc_assert (CONST_INT_P (store_info->rhs));
1966 store_mode = int_mode_for_mode (read_mode);
1967 if (store_mode == BLKmode)
1968 read_reg = NULL_RTX;
1969 else if (store_info->rhs == const0_rtx)
1970 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1971 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1972 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1973 read_reg = NULL_RTX;
1974 else
1975 {
1976 unsigned HOST_WIDE_INT c
1977 = INTVAL (store_info->rhs)
1978 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1979 int shift = BITS_PER_UNIT;
1980 while (shift < HOST_BITS_PER_WIDE_INT)
1981 {
1982 c |= (c << shift);
1983 shift <<= 1;
1984 }
f62058c3 1985 read_reg = gen_int_mode (c, store_mode);
aa140b76 1986 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1987 }
1988 }
1989 else if (store_info->const_rhs
1990 && (require_cst
1991 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1992 read_reg = extract_low_bits (read_mode, store_mode,
1993 copy_rtx (store_info->const_rhs));
1994 else
1995 read_reg = extract_low_bits (read_mode, store_mode,
1996 copy_rtx (store_info->rhs));
1997 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1998 read_reg = NULL_RTX;
1999 return read_reg;
2000}
a1b0a968 2001
3072d30e 2002/* Take a sequence of:
2003 A <- r1
2004 ...
2005 ... <- A
2006
48e1416a 2007 and change it into
3072d30e 2008 r2 <- r1
2009 A <- r1
2010 ...
2011 ... <- r2
2012
5c9051a4 2013 or
2014
2015 r3 <- extract (r1)
2016 r3 <- r3 >> shift
2017 r2 <- extract (r3)
2018 ... <- r2
2019
2020 or
2021
2022 r2 <- extract (r1)
2023 ... <- r2
2024
2025 Depending on the alignment and the mode of the store and
2026 subsequent load.
2027
2028
2029 The STORE_INFO and STORE_INSN are for the store and READ_INFO
3072d30e 2030 and READ_INSN are for the read. Return true if the replacement
2031 went ok. */
2032
2033static bool
48e1416a 2034replace_read (store_info_t store_info, insn_info_t store_insn,
aa140b76 2035 read_info_t read_info, insn_info_t read_insn, rtx *loc,
2036 bitmap regs_live)
3072d30e 2037{
3754d046 2038 machine_mode store_mode = GET_MODE (store_info->mem);
2039 machine_mode read_mode = GET_MODE (read_info->mem);
4cd001d5 2040 rtx_insn *insns, *this_insn;
2041 rtx read_reg;
aa140b76 2042 basic_block bb;
5c9051a4 2043
3072d30e 2044 if (!dbg_cnt (dse))
2045 return false;
2046
10d4de0e 2047 /* Create a sequence of instructions to set up the read register.
2048 This sequence goes immediately before the store and its result
2049 is read by the load.
2050
2051 We need to keep this in perspective. We are replacing a read
5c9051a4 2052 with a sequence of insns, but the read will almost certainly be
2053 in cache, so it is not going to be an expensive one. Thus, we
2054 are not willing to do a multi insn shift or worse a subroutine
2055 call to get rid of the read. */
1ca59310 2056 if (dump_file && (dump_flags & TDF_DETAILS))
10d4de0e 2057 fprintf (dump_file, "trying to replace %smode load in insn %d"
2058 " from %smode store in insn %d\n",
2059 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2060 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2061 start_sequence ();
aa140b76 2062 bb = BLOCK_FOR_INSN (read_insn->insn);
2063 read_reg = get_stored_val (store_info,
2064 read_mode, read_info->begin, read_info->end,
2065 bb, false);
10d4de0e 2066 if (read_reg == NULL_RTX)
5c9051a4 2067 {
10d4de0e 2068 end_sequence ();
1ca59310 2069 if (dump_file && (dump_flags & TDF_DETAILS))
10d4de0e 2070 fprintf (dump_file, " -- could not extract bits of stored value\n");
2071 return false;
5c9051a4 2072 }
10d4de0e 2073 /* Force the value into a new register so that it won't be clobbered
2074 between the store and the load. */
2075 read_reg = copy_to_mode_reg (read_mode, read_reg);
2076 insns = get_insns ();
2077 end_sequence ();
5c9051a4 2078
a1b0a968 2079 if (insns != NULL_RTX)
2080 {
2081 /* Now we have to scan the set of new instructions to see if the
2082 sequence contains and sets of hardregs that happened to be
2083 live at this point. For instance, this can happen if one of
2084 the insns sets the CC and the CC happened to be live at that
2085 point. This does occasionally happen, see PR 37922. */
4fb07d00 2086 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
a1b0a968 2087
2088 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2089 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
48e1416a 2090
a1b0a968 2091 bitmap_and_into (regs_set, regs_live);
2092 if (!bitmap_empty_p (regs_set))
2093 {
1ca59310 2094 if (dump_file && (dump_flags & TDF_DETAILS))
a1b0a968 2095 {
48e1416a 2096 fprintf (dump_file,
a1b0a968 2097 "abandoning replacement because sequence clobbers live hardregs:");
2098 df_print_regset (dump_file, regs_set);
2099 }
48e1416a 2100
a1b0a968 2101 BITMAP_FREE (regs_set);
2102 return false;
2103 }
2104 BITMAP_FREE (regs_set);
2105 }
2106
5c9051a4 2107 if (validate_change (read_insn->insn, loc, read_reg, 0))
3072d30e 2108 {
55c5ac9f 2109 deferred_change_t change = new deferred_change;
48e1416a 2110
5c9051a4 2111 /* Insert this right before the store insn where it will be safe
2112 from later insns that might change it before the read. */
2113 emit_insn_before (insns, store_insn->insn);
48e1416a 2114
5c9051a4 2115 /* And now for the kludge part: cselib croaks if you just
2116 return at this point. There are two reasons for this:
48e1416a 2117
5c9051a4 2118 1) Cselib has an idea of how many pseudos there are and
2119 that does not include the new ones we just added.
48e1416a 2120
5c9051a4 2121 2) Cselib does not know about the move insn we added
2122 above the store_info, and there is no way to tell it
2123 about it, because it has "moved on".
48e1416a 2124
5c9051a4 2125 Problem (1) is fixable with a certain amount of engineering.
2126 Problem (2) is requires starting the bb from scratch. This
2127 could be expensive.
48e1416a 2128
5c9051a4 2129 So we are just going to have to lie. The move/extraction
2130 insns are not really an issue, cselib did not see them. But
2131 the use of the new pseudo read_insn is a real problem because
2132 cselib has not scanned this insn. The way that we solve this
2133 problem is that we are just going to put the mem back for now
2134 and when we are finished with the block, we undo this. We
2135 keep a table of mems to get rid of. At the end of the basic
2136 block we can put them back. */
48e1416a 2137
5c9051a4 2138 *loc = read_info->mem;
55c5ac9f 2139 change->next = deferred_change_list;
2140 deferred_change_list = change;
2141 change->loc = loc;
2142 change->reg = read_reg;
48e1416a 2143
5c9051a4 2144 /* Get rid of the read_info, from the point of view of the
2145 rest of dse, play like this read never happened. */
2146 read_insn->read_rec = read_info->next;
55c5ac9f 2147 delete read_info;
1ca59310 2148 if (dump_file && (dump_flags & TDF_DETAILS))
10d4de0e 2149 {
2150 fprintf (dump_file, " -- replaced the loaded MEM with ");
2151 print_simple_rtl (dump_file, read_reg);
2152 fprintf (dump_file, "\n");
2153 }
5c9051a4 2154 return true;
3072d30e 2155 }
48e1416a 2156 else
3072d30e 2157 {
1ca59310 2158 if (dump_file && (dump_flags & TDF_DETAILS))
10d4de0e 2159 {
2160 fprintf (dump_file, " -- replacing the loaded MEM with ");
2161 print_simple_rtl (dump_file, read_reg);
2162 fprintf (dump_file, " led to an invalid instruction\n");
2163 }
3072d30e 2164 return false;
2165 }
2166}
2167
ec1203cd 2168/* Check the address of MEM *LOC and kill any appropriate stores that may
2169 be active. */
3072d30e 2170
ec1203cd 2171static void
2172check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
3072d30e 2173{
82d2c88b 2174 rtx mem = *loc, mem_addr;
3072d30e 2175 insn_info_t insn_info;
2176 HOST_WIDE_INT offset = 0;
2177 HOST_WIDE_INT width = 0;
32c2fdea 2178 alias_set_type spill_alias_set = 0;
48e1416a 2179 cselib_val *base = NULL;
3072d30e 2180 int group_id;
2181 read_info_t read_info;
2182
3072d30e 2183 insn_info = bb_info->last_insn;
2184
2185 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2186 || (MEM_VOLATILE_P (mem)))
2187 {
1ca59310 2188 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2189 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2190 add_wild_read (bb_info);
2191 insn_info->cannot_delete = true;
ec1203cd 2192 return;
3072d30e 2193 }
2194
2195 /* If it is reading readonly mem, then there can be no conflict with
2196 another write. */
2197 if (MEM_READONLY_P (mem))
ec1203cd 2198 return;
3072d30e 2199
2200 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2201 {
1ca59310 2202 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2203 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2204 add_wild_read (bb_info);
ec1203cd 2205 return;
3072d30e 2206 }
2207
2208 if (GET_MODE (mem) == BLKmode)
2209 width = -1;
2210 else
2211 width = GET_MODE_SIZE (GET_MODE (mem));
2212
55c5ac9f 2213 read_info = new read_info_type;
3072d30e 2214 read_info->group_id = group_id;
2215 read_info->mem = mem;
2216 read_info->alias_set = spill_alias_set;
2217 read_info->begin = offset;
2218 read_info->end = offset + width;
2219 read_info->next = insn_info->read_rec;
2220 insn_info->read_rec = read_info;
82d2c88b 2221 /* For alias_set != 0 canon_true_dependence should be never called. */
2222 if (spill_alias_set)
2223 mem_addr = NULL_RTX;
2224 else
2225 {
2226 if (group_id < 0)
2227 mem_addr = base->val_rtx;
2228 else
2229 {
2230 group_info_t group
f1f41a6c 2231 = rtx_group_vec[group_id];
82d2c88b 2232 mem_addr = group->canon_base_addr;
2233 }
90f3e775 2234 /* get_addr can only handle VALUE but cannot handle expr like:
2235 VALUE + OFFSET, so call get_addr to get original addr for
2236 mem_addr before plus_constant. */
2237 mem_addr = get_addr (mem_addr);
82d2c88b 2238 if (offset)
87cf5753 2239 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
82d2c88b 2240 }
3072d30e 2241
bef304b8 2242 /* We ignore the clobbers in store_info. The is mildly aggressive,
3072d30e 2243 but there really should not be a clobber followed by a read. */
2244
2245 if (spill_alias_set)
2246 {
2247 insn_info_t i_ptr = active_local_stores;
2248 insn_info_t last = NULL;
2249
1ca59310 2250 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2251 fprintf (dump_file, " processing spill load %d\n",
32c2fdea 2252 (int) spill_alias_set);
3072d30e 2253
2254 while (i_ptr)
2255 {
2256 store_info_t store_info = i_ptr->store_rec;
2257
2258 /* Skip the clobbers. */
2259 while (!store_info->is_set)
2260 store_info = store_info->next;
48e1416a 2261
3072d30e 2262 if (store_info->alias_set == spill_alias_set)
2263 {
1ca59310 2264 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2265 dump_insn_info ("removing from active", i_ptr);
2266
1242bee6 2267 active_local_stores_len--;
3072d30e 2268 if (last)
2269 last->next_local_store = i_ptr->next_local_store;
2270 else
2271 active_local_stores = i_ptr->next_local_store;
2272 }
2273 else
2274 last = i_ptr;
2275 i_ptr = i_ptr->next_local_store;
2276 }
2277 }
2278 else if (group_id >= 0)
2279 {
2280 /* This is the restricted case where the base is a constant or
2281 the frame pointer and offset is a constant. */
2282 insn_info_t i_ptr = active_local_stores;
2283 insn_info_t last = NULL;
48e1416a 2284
1ca59310 2285 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2286 {
2287 if (width == -1)
2288 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2289 group_id);
2290 else
2291 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2292 group_id, (int)offset, (int)(offset+width));
2293 }
2294
2295 while (i_ptr)
2296 {
2297 bool remove = false;
2298 store_info_t store_info = i_ptr->store_rec;
48e1416a 2299
3072d30e 2300 /* Skip the clobbers. */
2301 while (!store_info->is_set)
2302 store_info = store_info->next;
48e1416a 2303
3072d30e 2304 /* There are three cases here. */
2305 if (store_info->group_id < 0)
2306 /* We have a cselib store followed by a read from a
2307 const base. */
48e1416a 2308 remove
2309 = canon_true_dependence (store_info->mem,
3072d30e 2310 GET_MODE (store_info->mem),
2311 store_info->mem_addr,
376a287d 2312 mem, mem_addr);
48e1416a 2313
3072d30e 2314 else if (group_id == store_info->group_id)
2315 {
2316 /* This is a block mode load. We may get lucky and
2317 canon_true_dependence may save the day. */
2318 if (width == -1)
48e1416a 2319 remove
2320 = canon_true_dependence (store_info->mem,
3072d30e 2321 GET_MODE (store_info->mem),
2322 store_info->mem_addr,
376a287d 2323 mem, mem_addr);
48e1416a 2324
3072d30e 2325 /* If this read is just reading back something that we just
2326 stored, rewrite the read. */
48e1416a 2327 else
3072d30e 2328 {
2329 if (store_info->rhs
aa140b76 2330 && offset >= store_info->begin
2331 && offset + width <= store_info->end
2332 && all_positions_needed_p (store_info,
2333 offset - store_info->begin,
2334 width)
2335 && replace_read (store_info, i_ptr, read_info,
2336 insn_info, loc, bb_info->regs_live))
ec1203cd 2337 return;
aa140b76 2338
3072d30e 2339 /* The bases are the same, just see if the offsets
2340 overlap. */
48e1416a 2341 if ((offset < store_info->end)
3072d30e 2342 && (offset + width > store_info->begin))
2343 remove = true;
2344 }
2345 }
48e1416a 2346
2347 /* else
3072d30e 2348 The else case that is missing here is that the
2349 bases are constant but different. There is nothing
2350 to do here because there is no overlap. */
48e1416a 2351
3072d30e 2352 if (remove)
2353 {
1ca59310 2354 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2355 dump_insn_info ("removing from active", i_ptr);
2356
1242bee6 2357 active_local_stores_len--;
3072d30e 2358 if (last)
2359 last->next_local_store = i_ptr->next_local_store;
2360 else
2361 active_local_stores = i_ptr->next_local_store;
2362 }
2363 else
2364 last = i_ptr;
2365 i_ptr = i_ptr->next_local_store;
2366 }
2367 }
48e1416a 2368 else
3072d30e 2369 {
2370 insn_info_t i_ptr = active_local_stores;
2371 insn_info_t last = NULL;
1ca59310 2372 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2373 {
2374 fprintf (dump_file, " processing cselib load mem:");
2375 print_inline_rtx (dump_file, mem, 0);
2376 fprintf (dump_file, "\n");
2377 }
2378
2379 while (i_ptr)
2380 {
2381 bool remove = false;
2382 store_info_t store_info = i_ptr->store_rec;
48e1416a 2383
1ca59310 2384 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2385 fprintf (dump_file, " processing cselib load against insn %d\n",
2386 INSN_UID (i_ptr->insn));
2387
2388 /* Skip the clobbers. */
2389 while (!store_info->is_set)
2390 store_info = store_info->next;
2391
2392 /* If this read is just reading back something that we just
2393 stored, rewrite the read. */
2394 if (store_info->rhs
2395 && store_info->group_id == -1
2396 && store_info->cse_base == base
2ffe5515 2397 && width != -1
aa140b76 2398 && offset >= store_info->begin
2399 && offset + width <= store_info->end
2400 && all_positions_needed_p (store_info,
2401 offset - store_info->begin, width)
2402 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2403 bb_info->regs_live))
ec1203cd 2404 return;
3072d30e 2405
2406 if (!store_info->alias_set)
48e1416a 2407 remove = canon_true_dependence (store_info->mem,
3072d30e 2408 GET_MODE (store_info->mem),
2409 store_info->mem_addr,
376a287d 2410 mem, mem_addr);
48e1416a 2411
3072d30e 2412 if (remove)
2413 {
1ca59310 2414 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2415 dump_insn_info ("removing from active", i_ptr);
48e1416a 2416
1242bee6 2417 active_local_stores_len--;
3072d30e 2418 if (last)
2419 last->next_local_store = i_ptr->next_local_store;
2420 else
2421 active_local_stores = i_ptr->next_local_store;
2422 }
2423 else
2424 last = i_ptr;
2425 i_ptr = i_ptr->next_local_store;
2426 }
2427 }
3072d30e 2428}
2429
ec1203cd 2430/* A note_uses callback in which DATA points the INSN_INFO for
3072d30e 2431 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2432 true for any part of *LOC. */
2433
2434static void
2435check_mem_read_use (rtx *loc, void *data)
2436{
ec1203cd 2437 subrtx_ptr_iterator::array_type array;
2438 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2439 {
2440 rtx *loc = *iter;
2441 if (MEM_P (*loc))
2442 check_mem_read_rtx (loc, (bb_info_t) data);
2443 }
3072d30e 2444}
2445
aa140b76 2446
2447/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2448 So far it only handles arguments passed in registers. */
2449
2450static bool
2451get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2452{
39cba157 2453 CUMULATIVE_ARGS args_so_far_v;
2454 cumulative_args_t args_so_far;
aa140b76 2455 tree arg;
2456 int idx;
2457
39cba157 2458 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2459 args_so_far = pack_cumulative_args (&args_so_far_v);
aa140b76 2460
2461 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2462 for (idx = 0;
2463 arg != void_list_node && idx < nargs;
2464 arg = TREE_CHAIN (arg), idx++)
2465 {
3754d046 2466 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
f387af4f 2467 rtx reg, link, tmp;
39cba157 2468 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
aa140b76 2469 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2470 || GET_MODE_CLASS (mode) != MODE_INT)
2471 return false;
2472
2473 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2474 link;
2475 link = XEXP (link, 1))
2476 if (GET_CODE (XEXP (link, 0)) == USE)
2477 {
2478 args[idx] = XEXP (XEXP (link, 0), 0);
2479 if (REG_P (args[idx])
2480 && REGNO (args[idx]) == REGNO (reg)
2481 && (GET_MODE (args[idx]) == mode
2482 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2483 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2484 <= UNITS_PER_WORD)
2485 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2486 > GET_MODE_SIZE (mode)))))
2487 break;
2488 }
2489 if (!link)
2490 return false;
2491
2492 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2493 if (GET_MODE (args[idx]) != mode)
2494 {
2495 if (!tmp || !CONST_INT_P (tmp))
2496 return false;
f62058c3 2497 tmp = gen_int_mode (INTVAL (tmp), mode);
aa140b76 2498 }
2499 if (tmp)
2500 args[idx] = tmp;
2501
39cba157 2502 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
aa140b76 2503 }
2504 if (arg != void_list_node || idx != nargs)
2505 return false;
2506 return true;
2507}
2508
5a9ecd4a 2509/* Return a bitmap of the fixed registers contained in IN. */
2510
2511static bitmap
2512copy_fixed_regs (const_bitmap in)
2513{
2514 bitmap ret;
2515
2516 ret = ALLOC_REG_SET (NULL);
2517 bitmap_and (ret, in, fixed_reg_set_regset);
2518 return ret;
2519}
aa140b76 2520
3072d30e 2521/* Apply record_store to all candidate stores in INSN. Mark INSN
2522 if some part of it is not a candidate store and assigns to a
2523 non-register target. */
2524
2525static void
ebabb7a3 2526scan_insn (bb_info_t bb_info, rtx_insn *insn)
3072d30e 2527{
2528 rtx body;
55c5ac9f 2529 insn_info_type *insn_info = new insn_info_type;
3072d30e 2530 int mems_found = 0;
55c5ac9f 2531 memset (insn_info, 0, sizeof (struct insn_info_type));
3072d30e 2532
1ca59310 2533 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2534 fprintf (dump_file, "\n**scanning insn=%d\n",
2535 INSN_UID (insn));
2536
2537 insn_info->prev_insn = bb_info->last_insn;
2538 insn_info->insn = insn;
2539 bb_info->last_insn = insn_info;
48e1416a 2540
9845d120 2541 if (DEBUG_INSN_P (insn))
2542 {
2543 insn_info->cannot_delete = true;
2544 return;
2545 }
3072d30e 2546
3072d30e 2547 /* Look at all of the uses in the insn. */
2548 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2549
2550 if (CALL_P (insn))
2551 {
aa140b76 2552 bool const_call;
2553 tree memset_call = NULL_TREE;
2554
3072d30e 2555 insn_info->cannot_delete = true;
17e1318c 2556
3072d30e 2557 /* Const functions cannot do anything bad i.e. read memory,
17e1318c 2558 however, they can read their parameters which may have
aa140b76 2559 been pushed onto the stack.
2560 memset and bzero don't read memory either. */
2561 const_call = RTL_CONST_CALL_P (insn);
2562 if (!const_call)
2563 {
cf7fb72d 2564 rtx call = get_call_rtx_from (insn);
2565 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
aa140b76 2566 {
2567 rtx symbol = XEXP (XEXP (call, 0), 0);
2568 if (SYMBOL_REF_DECL (symbol)
2569 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2570 {
2571 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2572 == BUILT_IN_NORMAL
2573 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2574 == BUILT_IN_MEMSET))
2575 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2576 memset_call = SYMBOL_REF_DECL (symbol);
2577 }
2578 }
2579 }
2580 if (const_call || memset_call)
3072d30e 2581 {
2582 insn_info_t i_ptr = active_local_stores;
2583 insn_info_t last = NULL;
2584
1ca59310 2585 if (dump_file && (dump_flags & TDF_DETAILS))
aa140b76 2586 fprintf (dump_file, "%s call %d\n",
2587 const_call ? "const" : "memset", INSN_UID (insn));
3072d30e 2588
16bf64db 2589 /* See the head comment of the frame_read field. */
17853422 2590 if (reload_completed
2591 /* Tail calls are storing their arguments using
2592 arg pointer. If it is a frame pointer on the target,
2593 even before reload we need to kill frame pointer based
2594 stores. */
2595 || (SIBLING_CALL_P (insn)
2596 && HARD_FRAME_POINTER_IS_ARG_POINTER))
16bf64db 2597 insn_info->frame_read = true;
2598
2599 /* Loop over the active stores and remove those which are
2600 killed by the const function call. */
3072d30e 2601 while (i_ptr)
2602 {
16bf64db 2603 bool remove_store = false;
2604
2605 /* The stack pointer based stores are always killed. */
17e1318c 2606 if (i_ptr->stack_pointer_based)
16bf64db 2607 remove_store = true;
2608
2609 /* If the frame is read, the frame related stores are killed. */
2610 else if (insn_info->frame_read)
2611 {
2612 store_info_t store_info = i_ptr->store_rec;
2613
2614 /* Skip the clobbers. */
2615 while (!store_info->is_set)
2616 store_info = store_info->next;
2617
2618 if (store_info->group_id >= 0
f1f41a6c 2619 && rtx_group_vec[store_info->group_id]->frame_related)
16bf64db 2620 remove_store = true;
2621 }
2622
2623 if (remove_store)
3072d30e 2624 {
1ca59310 2625 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2626 dump_insn_info ("removing from active", i_ptr);
48e1416a 2627
1242bee6 2628 active_local_stores_len--;
3072d30e 2629 if (last)
2630 last->next_local_store = i_ptr->next_local_store;
2631 else
2632 active_local_stores = i_ptr->next_local_store;
2633 }
2634 else
2635 last = i_ptr;
16bf64db 2636
3072d30e 2637 i_ptr = i_ptr->next_local_store;
2638 }
aa140b76 2639
2640 if (memset_call)
2641 {
2642 rtx args[3];
2643 if (get_call_args (insn, memset_call, args, 3)
2644 && CONST_INT_P (args[1])
2645 && CONST_INT_P (args[2])
2646 && INTVAL (args[2]) > 0)
2647 {
2648 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
5b2a69fa 2649 set_mem_size (mem, INTVAL (args[2]));
d1f9b275 2650 body = gen_rtx_SET (mem, args[1]);
aa140b76 2651 mems_found += record_store (body, bb_info);
1ca59310 2652 if (dump_file && (dump_flags & TDF_DETAILS))
aa140b76 2653 fprintf (dump_file, "handling memset as BLKmode store\n");
2654 if (mems_found == 1)
2655 {
1242bee6 2656 if (active_local_stores_len++
2657 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2658 {
2659 active_local_stores_len = 1;
2660 active_local_stores = NULL;
2661 }
5a9ecd4a 2662 insn_info->fixed_regs_live
2663 = copy_fixed_regs (bb_info->regs_live);
aa140b76 2664 insn_info->next_local_store = active_local_stores;
2665 active_local_stores = insn_info;
2666 }
2667 }
2668 }
3072d30e 2669 }
17853422 2670 else if (SIBLING_CALL_P (insn) && reload_completed)
2671 /* Arguments for a sibling call that are pushed to memory are passed
2672 using the incoming argument pointer of the current function. After
2673 reload that might be (and likely is) frame pointer based. */
2674 add_wild_read (bb_info);
17e1318c 2675 else
b4a708fb 2676 /* Every other call, including pure functions, may read any memory
2677 that is not relative to the frame. */
2678 add_non_frame_wild_read (bb_info);
17e1318c 2679
3072d30e 2680 return;
2681 }
2682
2683 /* Assuming that there are sets in these insns, we cannot delete
2684 them. */
2685 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
4aafe72f 2686 || volatile_refs_p (PATTERN (insn))
bc0dfc8d 2687 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
3072d30e 2688 || (RTX_FRAME_RELATED_P (insn))
2689 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2690 insn_info->cannot_delete = true;
48e1416a 2691
3072d30e 2692 body = PATTERN (insn);
2693 if (GET_CODE (body) == PARALLEL)
2694 {
2695 int i;
2696 for (i = 0; i < XVECLEN (body, 0); i++)
2697 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2698 }
2699 else
2700 mems_found += record_store (body, bb_info);
2701
1ca59310 2702 if (dump_file && (dump_flags & TDF_DETAILS))
48e1416a 2703 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
3072d30e 2704 mems_found, insn_info->cannot_delete ? "true" : "false");
2705
aa140b76 2706 /* If we found some sets of mems, add it into the active_local_stores so
2707 that it can be locally deleted if found dead or used for
2708 replace_read and redundant constant store elimination. Otherwise mark
2709 it as cannot delete. This simplifies the processing later. */
2710 if (mems_found == 1)
3072d30e 2711 {
1242bee6 2712 if (active_local_stores_len++
2713 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2714 {
2715 active_local_stores_len = 1;
2716 active_local_stores = NULL;
2717 }
5a9ecd4a 2718 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
3072d30e 2719 insn_info->next_local_store = active_local_stores;
2720 active_local_stores = insn_info;
2721 }
2722 else
2723 insn_info->cannot_delete = true;
2724}
2725
2726
2727/* Remove BASE from the set of active_local_stores. This is a
2728 callback from cselib that is used to get rid of the stores in
2729 active_local_stores. */
2730
2731static void
2732remove_useless_values (cselib_val *base)
2733{
2734 insn_info_t insn_info = active_local_stores;
2735 insn_info_t last = NULL;
2736
2737 while (insn_info)
2738 {
2739 store_info_t store_info = insn_info->store_rec;
9ce37fa7 2740 bool del = false;
3072d30e 2741
2742 /* If ANY of the store_infos match the cselib group that is
2743 being deleted, then the insn can not be deleted. */
2744 while (store_info)
2745 {
48e1416a 2746 if ((store_info->group_id == -1)
3072d30e 2747 && (store_info->cse_base == base))
2748 {
9ce37fa7 2749 del = true;
3072d30e 2750 break;
2751 }
2752 store_info = store_info->next;
2753 }
2754
9ce37fa7 2755 if (del)
3072d30e 2756 {
1242bee6 2757 active_local_stores_len--;
3072d30e 2758 if (last)
2759 last->next_local_store = insn_info->next_local_store;
2760 else
2761 active_local_stores = insn_info->next_local_store;
2762 free_store_info (insn_info);
2763 }
2764 else
2765 last = insn_info;
48e1416a 2766
3072d30e 2767 insn_info = insn_info->next_local_store;
2768 }
2769}
2770
2771
2772/* Do all of step 1. */
2773
2774static void
2775dse_step1 (void)
2776{
2777 basic_block bb;
4fb07d00 2778 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
48e1416a 2779
35af0188 2780 cselib_init (0);
3072d30e 2781 all_blocks = BITMAP_ALLOC (NULL);
2782 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2783 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2784
ed7d889a 2785 FOR_ALL_BB_FN (bb, cfun)
3072d30e 2786 {
2787 insn_info_t ptr;
55c5ac9f 2788 bb_info_t bb_info = new dse_bb_info_type;
3072d30e 2789
55c5ac9f 2790 memset (bb_info, 0, sizeof (dse_bb_info_type));
3072d30e 2791 bitmap_set_bit (all_blocks, bb->index);
a1b0a968 2792 bb_info->regs_live = regs_live;
2793
2794 bitmap_copy (regs_live, DF_LR_IN (bb));
2795 df_simulate_initialize_forwards (bb, regs_live);
3072d30e 2796
2797 bb_table[bb->index] = bb_info;
2798 cselib_discard_hook = remove_useless_values;
2799
2800 if (bb->index >= NUM_FIXED_BLOCKS)
2801 {
ebabb7a3 2802 rtx_insn *insn;
3072d30e 2803
3072d30e 2804 active_local_stores = NULL;
1242bee6 2805 active_local_stores_len = 0;
3072d30e 2806 cselib_clear_table ();
48e1416a 2807
3072d30e 2808 /* Scan the insns. */
2809 FOR_BB_INSNS (bb, insn)
2810 {
2811 if (INSN_P (insn))
2812 scan_insn (bb_info, insn);
2813 cselib_process_insn (insn);
a1b0a968 2814 if (INSN_P (insn))
2815 df_simulate_one_insn_forwards (bb, insn, regs_live);
3072d30e 2816 }
48e1416a 2817
3072d30e 2818 /* This is something of a hack, because the global algorithm
2819 is supposed to take care of the case where stores go dead
2820 at the end of the function. However, the global
2821 algorithm must take a more conservative view of block
2822 mode reads than the local alg does. So to get the case
2823 where you have a store to the frame followed by a non
bef304b8 2824 overlapping block more read, we look at the active local
3072d30e 2825 stores at the end of the function and delete all of the
2826 frame and spill based ones. */
2827 if (stores_off_frame_dead_at_return
2828 && (EDGE_COUNT (bb->succs) == 0
2829 || (single_succ_p (bb)
34154e27 2830 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
18d50ae6 2831 && ! crtl->calls_eh_return)))
3072d30e 2832 {
2833 insn_info_t i_ptr = active_local_stores;
2834 while (i_ptr)
2835 {
2836 store_info_t store_info = i_ptr->store_rec;
2837
2838 /* Skip the clobbers. */
2839 while (!store_info->is_set)
2840 store_info = store_info->next;
aa140b76 2841 if (store_info->alias_set && !i_ptr->cannot_delete)
3072d30e 2842 delete_dead_store_insn (i_ptr);
48e1416a 2843 else
3072d30e 2844 if (store_info->group_id >= 0)
2845 {
48e1416a 2846 group_info_t group
f1f41a6c 2847 = rtx_group_vec[store_info->group_id];
aa140b76 2848 if (group->frame_related && !i_ptr->cannot_delete)
3072d30e 2849 delete_dead_store_insn (i_ptr);
2850 }
2851
2852 i_ptr = i_ptr->next_local_store;
2853 }
2854 }
2855
2856 /* Get rid of the loads that were discovered in
2857 replace_read. Cselib is finished with this block. */
2858 while (deferred_change_list)
2859 {
2860 deferred_change_t next = deferred_change_list->next;
2861
2862 /* There is no reason to validate this change. That was
2863 done earlier. */
2864 *deferred_change_list->loc = deferred_change_list->reg;
55c5ac9f 2865 delete deferred_change_list;
3072d30e 2866 deferred_change_list = next;
2867 }
2868
2869 /* Get rid of all of the cselib based store_infos in this
2870 block and mark the containing insns as not being
2871 deletable. */
2872 ptr = bb_info->last_insn;
2873 while (ptr)
2874 {
2875 if (ptr->contains_cselib_groups)
aa140b76 2876 {
2877 store_info_t s_info = ptr->store_rec;
2878 while (s_info && !s_info->is_set)
2879 s_info = s_info->next;
2880 if (s_info
2881 && s_info->redundant_reason
2882 && s_info->redundant_reason->insn
2883 && !ptr->cannot_delete)
2884 {
1ca59310 2885 if (dump_file && (dump_flags & TDF_DETAILS))
aa140b76 2886 fprintf (dump_file, "Locally deleting insn %d "
2887 "because insn %d stores the "
2888 "same value and couldn't be "
2889 "eliminated\n",
2890 INSN_UID (ptr->insn),
2891 INSN_UID (s_info->redundant_reason->insn));
2892 delete_dead_store_insn (ptr);
2893 }
aa140b76 2894 free_store_info (ptr);
2895 }
2896 else
2897 {
2898 store_info_t s_info;
2899
2900 /* Free at least positions_needed bitmaps. */
2901 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2902 if (s_info->is_large)
2903 {
843bd2fa 2904 BITMAP_FREE (s_info->positions_needed.large.bmap);
aa140b76 2905 s_info->is_large = false;
2906 }
2907 }
3072d30e 2908 ptr = ptr->prev_insn;
2909 }
2910
55c5ac9f 2911 cse_store_info_pool.release ();
3072d30e 2912 }
a1b0a968 2913 bb_info->regs_live = NULL;
3072d30e 2914 }
2915
a1b0a968 2916 BITMAP_FREE (regs_live);
3072d30e 2917 cselib_finish ();
c1f445d2 2918 rtx_group_table->empty ();
3072d30e 2919}
2920
2921\f
2922/*----------------------------------------------------------------------------
2923 Second step.
2924
2925 Assign each byte position in the stores that we are going to
2926 analyze globally to a position in the bitmaps. Returns true if
6dfdc153 2927 there are any bit positions assigned.
3072d30e 2928----------------------------------------------------------------------------*/
2929
2930static void
2931dse_step2_init (void)
2932{
2933 unsigned int i;
2934 group_info_t group;
2935
f1f41a6c 2936 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3072d30e 2937 {
2938 /* For all non stack related bases, we only consider a store to
2939 be deletable if there are two or more stores for that
2940 position. This is because it takes one store to make the
2941 other store redundant. However, for the stores that are
2942 stack related, we consider them if there is only one store
2943 for the position. We do this because the stack related
2944 stores can be deleted if their is no read between them and
2945 the end of the function.
48e1416a 2946
3072d30e 2947 To make this work in the current framework, we take the stack
2948 related bases add all of the bits from store1 into store2.
2949 This has the effect of making the eligible even if there is
2950 only one store. */
2951
2952 if (stores_off_frame_dead_at_return && group->frame_related)
2953 {
2954 bitmap_ior_into (group->store2_n, group->store1_n);
2955 bitmap_ior_into (group->store2_p, group->store1_p);
1ca59310 2956 if (dump_file && (dump_flags & TDF_DETAILS))
48e1416a 2957 fprintf (dump_file, "group %d is frame related ", i);
3072d30e 2958 }
2959
2960 group->offset_map_size_n++;
4fb07d00 2961 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2962 group->offset_map_size_n);
3072d30e 2963 group->offset_map_size_p++;
4fb07d00 2964 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2965 group->offset_map_size_p);
3072d30e 2966 group->process_globally = false;
1ca59310 2967 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 2968 {
48e1416a 2969 fprintf (dump_file, "group %d(%d+%d): ", i,
3072d30e 2970 (int)bitmap_count_bits (group->store2_n),
2971 (int)bitmap_count_bits (group->store2_p));
2972 bitmap_print (dump_file, group->store2_n, "n ", " ");
2973 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2974 }
2975 }
2976}
2977
2978
2979/* Init the offset tables for the normal case. */
2980
2981static bool
2982dse_step2_nospill (void)
2983{
2984 unsigned int i;
2985 group_info_t group;
2986 /* Position 0 is unused because 0 is used in the maps to mean
2987 unused. */
2988 current_position = 1;
f1f41a6c 2989 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3072d30e 2990 {
2991 bitmap_iterator bi;
2992 unsigned int j;
2993
2994 if (group == clear_alias_group)
2995 continue;
2996
9af5ce0c 2997 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2998 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
3072d30e 2999 bitmap_clear (group->group_kill);
3000
3001 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
3002 {
3003 bitmap_set_bit (group->group_kill, current_position);
b4a708fb 3004 if (bitmap_bit_p (group->escaped_n, j))
3005 bitmap_set_bit (kill_on_calls, current_position);
3072d30e 3006 group->offset_map_n[j] = current_position++;
3007 group->process_globally = true;
3008 }
3009 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3010 {
48e1416a 3011 bitmap_set_bit (group->group_kill, current_position);
b4a708fb 3012 if (bitmap_bit_p (group->escaped_p, j))
3013 bitmap_set_bit (kill_on_calls, current_position);
3072d30e 3014 group->offset_map_p[j] = current_position++;
3015 group->process_globally = true;
3016 }
3017 }
3018 return current_position != 1;
3019}
3020
3021
3072d30e 3022\f
3023/*----------------------------------------------------------------------------
3024 Third step.
48e1416a 3025
3072d30e 3026 Build the bit vectors for the transfer functions.
3027----------------------------------------------------------------------------*/
3028
3029
3072d30e 3030/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3031 there, return 0. */
3032
3033static int
3034get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3035{
3036 if (offset < 0)
3037 {
3038 HOST_WIDE_INT offset_p = -offset;
3039 if (offset_p >= group_info->offset_map_size_n)
3040 return 0;
3041 return group_info->offset_map_n[offset_p];
3042 }
3043 else
3044 {
3045 if (offset >= group_info->offset_map_size_p)
3046 return 0;
3047 return group_info->offset_map_p[offset];
3048 }
3049}
3050
3051
3052/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3053 may be NULL. */
3054
48e1416a 3055static void
3072d30e 3056scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3057{
3058 while (store_info)
3059 {
3060 HOST_WIDE_INT i;
48e1416a 3061 group_info_t group_info
f1f41a6c 3062 = rtx_group_vec[store_info->group_id];
3072d30e 3063 if (group_info->process_globally)
3064 for (i = store_info->begin; i < store_info->end; i++)
3065 {
3066 int index = get_bitmap_index (group_info, i);
3067 if (index != 0)
3068 {
3069 bitmap_set_bit (gen, index);
3070 if (kill)
3071 bitmap_clear_bit (kill, index);
3072 }
3073 }
3074 store_info = store_info->next;
3075 }
3076}
3077
3078
3079/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3080 may be NULL. */
3081
48e1416a 3082static void
3072d30e 3083scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3084{
3085 while (store_info)
3086 {
3087 if (store_info->alias_set)
3088 {
48e1416a 3089 int index = get_bitmap_index (clear_alias_group,
3072d30e 3090 store_info->alias_set);
3091 if (index != 0)
3092 {
3093 bitmap_set_bit (gen, index);
3094 if (kill)
3095 bitmap_clear_bit (kill, index);
3096 }
3097 }
3098 store_info = store_info->next;
3099 }
3100}
3101
3102
3103/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3104 may be NULL. */
3105
3106static void
3107scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3108{
3109 read_info_t read_info = insn_info->read_rec;
3110 int i;
3111 group_info_t group;
3112
16bf64db 3113 /* If this insn reads the frame, kill all the frame related stores. */
3114 if (insn_info->frame_read)
3115 {
f1f41a6c 3116 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
16bf64db 3117 if (group->process_globally && group->frame_related)
3118 {
3119 if (kill)
3120 bitmap_ior_into (kill, group->group_kill);
48e1416a 3121 bitmap_and_compl_into (gen, group->group_kill);
16bf64db 3122 }
3123 }
b4a708fb 3124 if (insn_info->non_frame_wild_read)
3125 {
3126 /* Kill all non-frame related stores. Kill all stores of variables that
3127 escape. */
3128 if (kill)
3129 bitmap_ior_into (kill, kill_on_calls);
3130 bitmap_and_compl_into (gen, kill_on_calls);
f1f41a6c 3131 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
b4a708fb 3132 if (group->process_globally && !group->frame_related)
3133 {
3134 if (kill)
3135 bitmap_ior_into (kill, group->group_kill);
3136 bitmap_and_compl_into (gen, group->group_kill);
3137 }
3138 }
3072d30e 3139 while (read_info)
3140 {
f1f41a6c 3141 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3072d30e 3142 {
3143 if (group->process_globally)
3144 {
3145 if (i == read_info->group_id)
3146 {
3147 if (read_info->begin > read_info->end)
3148 {
3149 /* Begin > end for block mode reads. */
3150 if (kill)
3151 bitmap_ior_into (kill, group->group_kill);
3152 bitmap_and_compl_into (gen, group->group_kill);
3153 }
3154 else
3155 {
3156 /* The groups are the same, just process the
3157 offsets. */
3158 HOST_WIDE_INT j;
3159 for (j = read_info->begin; j < read_info->end; j++)
3160 {
3161 int index = get_bitmap_index (group, j);
3162 if (index != 0)
3163 {
3164 if (kill)
3165 bitmap_set_bit (kill, index);
3166 bitmap_clear_bit (gen, index);
3167 }
3168 }
3169 }
3170 }
3171 else
3172 {
3173 /* The groups are different, if the alias sets
3174 conflict, clear the entire group. We only need
3175 to apply this test if the read_info is a cselib
3176 read. Anything with a constant base cannot alias
3177 something else with a different constant
3178 base. */
3179 if ((read_info->group_id < 0)
48e1416a 3180 && canon_true_dependence (group->base_mem,
ec410bf1 3181 GET_MODE (group->base_mem),
82d2c88b 3182 group->canon_base_addr,
376a287d 3183 read_info->mem, NULL_RTX))
3072d30e 3184 {
3185 if (kill)
3186 bitmap_ior_into (kill, group->group_kill);
3187 bitmap_and_compl_into (gen, group->group_kill);
3188 }
3189 }
3190 }
3191 }
48e1416a 3192
3072d30e 3193 read_info = read_info->next;
3194 }
3195}
3196
3197/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3198 may be NULL. */
3199
3200static void
3201scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3202{
3203 while (read_info)
3204 {
3205 if (read_info->alias_set)
3206 {
48e1416a 3207 int index = get_bitmap_index (clear_alias_group,
3072d30e 3208 read_info->alias_set);
3209 if (index != 0)
3210 {
3211 if (kill)
3212 bitmap_set_bit (kill, index);
3213 bitmap_clear_bit (gen, index);
3214 }
3215 }
48e1416a 3216
3072d30e 3217 read_info = read_info->next;
3218 }
3219}
3220
3221
3222/* Return the insn in BB_INFO before the first wild read or if there
3223 are no wild reads in the block, return the last insn. */
3224
3225static insn_info_t
3226find_insn_before_first_wild_read (bb_info_t bb_info)
3227{
3228 insn_info_t insn_info = bb_info->last_insn;
3229 insn_info_t last_wild_read = NULL;
3230
3231 while (insn_info)
3232 {
3233 if (insn_info->wild_read)
3234 {
3235 last_wild_read = insn_info->prev_insn;
3236 /* Block starts with wild read. */
3237 if (!last_wild_read)
3238 return NULL;
3239 }
3240
3241 insn_info = insn_info->prev_insn;
3242 }
3243
3244 if (last_wild_read)
3245 return last_wild_read;
3246 else
3247 return bb_info->last_insn;
3248}
3249
3250
3251/* Scan the insns in BB_INFO starting at PTR and going to the top of
3252 the block in order to build the gen and kill sets for the block.
3253 We start at ptr which may be the last insn in the block or may be
3254 the first insn with a wild read. In the latter case we are able to
3255 skip the rest of the block because it just does not matter:
3256 anything that happens is hidden by the wild read. */
3257
3258static void
3259dse_step3_scan (bool for_spills, basic_block bb)
3260{
3261 bb_info_t bb_info = bb_table[bb->index];
3262 insn_info_t insn_info;
3263
3264 if (for_spills)
3265 /* There are no wild reads in the spill case. */
3266 insn_info = bb_info->last_insn;
3267 else
3268 insn_info = find_insn_before_first_wild_read (bb_info);
48e1416a 3269
3072d30e 3270 /* In the spill case or in the no_spill case if there is no wild
3271 read in the block, we will need a kill set. */
3272 if (insn_info == bb_info->last_insn)
3273 {
3274 if (bb_info->kill)
3275 bitmap_clear (bb_info->kill);
3276 else
4fb07d00 3277 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 3278 }
48e1416a 3279 else
3072d30e 3280 if (bb_info->kill)
3281 BITMAP_FREE (bb_info->kill);
3282
3283 while (insn_info)
3284 {
3285 /* There may have been code deleted by the dce pass run before
3286 this phase. */
3287 if (insn_info->insn && INSN_P (insn_info->insn))
3288 {
48e1416a 3289 /* Process the read(s) last. */
3072d30e 3290 if (for_spills)
3291 {
3292 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3293 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3294 }
3295 else
3296 {
3297 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3298 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3299 }
48e1416a 3300 }
3072d30e 3301
3302 insn_info = insn_info->prev_insn;
3303 }
3304}
3305
3306
3307/* Set the gen set of the exit block, and also any block with no
3308 successors that does not have a wild read. */
3309
3310static void
3311dse_step3_exit_block_scan (bb_info_t bb_info)
3312{
3313 /* The gen set is all 0's for the exit block except for the
3314 frame_pointer_group. */
48e1416a 3315
3072d30e 3316 if (stores_off_frame_dead_at_return)
3317 {
3318 unsigned int i;
3319 group_info_t group;
48e1416a 3320
f1f41a6c 3321 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3072d30e 3322 {
3323 if (group->process_globally && group->frame_related)
3324 bitmap_ior_into (bb_info->gen, group->group_kill);
3325 }
3326 }
3327}
3328
3329
3330/* Find all of the blocks that are not backwards reachable from the
3331 exit block or any block with no successors (BB). These are the
3332 infinite loops or infinite self loops. These blocks will still
3333 have their bits set in UNREACHABLE_BLOCKS. */
3334
3335static void
3336mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3337{
3338 edge e;
3339 edge_iterator ei;
3340
08b7917c 3341 if (bitmap_bit_p (unreachable_blocks, bb->index))
3072d30e 3342 {
08b7917c 3343 bitmap_clear_bit (unreachable_blocks, bb->index);
3072d30e 3344 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 3345 {
3072d30e 3346 mark_reachable_blocks (unreachable_blocks, e->src);
48e1416a 3347 }
3072d30e 3348 }
3349}
3350
3351/* Build the transfer functions for the function. */
3352
3353static void
3354dse_step3 (bool for_spills)
3355{
3356 basic_block bb;
fe672ac0 3357 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3072d30e 3358 sbitmap_iterator sbi;
3359 bitmap all_ones = NULL;
3360 unsigned int i;
48e1416a 3361
53c5d9d4 3362 bitmap_ones (unreachable_blocks);
3072d30e 3363
ed7d889a 3364 FOR_ALL_BB_FN (bb, cfun)
3072d30e 3365 {
3366 bb_info_t bb_info = bb_table[bb->index];
3367 if (bb_info->gen)
3368 bitmap_clear (bb_info->gen);
3369 else
4fb07d00 3370 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 3371
3372 if (bb->index == ENTRY_BLOCK)
3373 ;
3374 else if (bb->index == EXIT_BLOCK)
3375 dse_step3_exit_block_scan (bb_info);
3376 else
3377 dse_step3_scan (for_spills, bb);
3378 if (EDGE_COUNT (bb->succs) == 0)
3379 mark_reachable_blocks (unreachable_blocks, bb);
3380
3381 /* If this is the second time dataflow is run, delete the old
3382 sets. */
3383 if (bb_info->in)
3384 BITMAP_FREE (bb_info->in);
3385 if (bb_info->out)
3386 BITMAP_FREE (bb_info->out);
3387 }
3388
3389 /* For any block in an infinite loop, we must initialize the out set
3390 to all ones. This could be expensive, but almost never occurs in
3391 practice. However, it is common in regression tests. */
0d211963 3392 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3072d30e 3393 {
3394 if (bitmap_bit_p (all_blocks, i))
3395 {
3396 bb_info_t bb_info = bb_table[i];
3397 if (!all_ones)
3398 {
3399 unsigned int j;
3400 group_info_t group;
3401
4fb07d00 3402 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
f1f41a6c 3403 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3072d30e 3404 bitmap_ior_into (all_ones, group->group_kill);
3405 }
3406 if (!bb_info->out)
3407 {
4fb07d00 3408 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 3409 bitmap_copy (bb_info->out, all_ones);
3410 }
3411 }
3412 }
3413
3414 if (all_ones)
3415 BITMAP_FREE (all_ones);
3416 sbitmap_free (unreachable_blocks);
3417}
3418
3419
3420\f
3421/*----------------------------------------------------------------------------
3422 Fourth step.
3423
3424 Solve the bitvector equations.
3425----------------------------------------------------------------------------*/
3426
3427
3428/* Confluence function for blocks with no successors. Create an out
3429 set from the gen set of the exit block. This block logically has
3430 the exit block as a successor. */
3431
3432
3433
3434static void
3435dse_confluence_0 (basic_block bb)
3436{
3437 bb_info_t bb_info = bb_table[bb->index];
3438
3439 if (bb->index == EXIT_BLOCK)
3440 return;
3441
3442 if (!bb_info->out)
3443 {
4fb07d00 3444 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 3445 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3446 }
3447}
3448
3449/* Propagate the information from the in set of the dest of E to the
3450 out set of the src of E. If the various in or out sets are not
3451 there, that means they are all ones. */
3452
a703ca31 3453static bool
3072d30e 3454dse_confluence_n (edge e)
3455{
3456 bb_info_t src_info = bb_table[e->src->index];
3457 bb_info_t dest_info = bb_table[e->dest->index];
3458
3459 if (dest_info->in)
3460 {
3461 if (src_info->out)
3462 bitmap_and_into (src_info->out, dest_info->in);
3463 else
3464 {
4fb07d00 3465 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 3466 bitmap_copy (src_info->out, dest_info->in);
3467 }
3468 }
a703ca31 3469 return true;
3072d30e 3470}
3471
3472
3473/* Propagate the info from the out to the in set of BB_INDEX's basic
48e1416a 3474 block. There are three cases:
3072d30e 3475
3476 1) The block has no kill set. In this case the kill set is all
3477 ones. It does not matter what the out set of the block is, none of
3478 the info can reach the top. The only thing that reaches the top is
3479 the gen set and we just copy the set.
3480
3481 2) There is a kill set but no out set and bb has successors. In
3482 this case we just return. Eventually an out set will be created and
3483 it is better to wait than to create a set of ones.
3484
3485 3) There is both a kill and out set. We apply the obvious transfer
3486 function.
3487*/
3488
3489static bool
3490dse_transfer_function (int bb_index)
3491{
3492 bb_info_t bb_info = bb_table[bb_index];
3493
3494 if (bb_info->kill)
3495 {
3496 if (bb_info->out)
3497 {
3498 /* Case 3 above. */
3499 if (bb_info->in)
48e1416a 3500 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3072d30e 3501 bb_info->out, bb_info->kill);
3502 else
3503 {
4fb07d00 3504 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
48e1416a 3505 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3072d30e 3506 bb_info->out, bb_info->kill);
3507 return true;
3508 }
3509 }
3510 else
3511 /* Case 2 above. */
3512 return false;
3513 }
3514 else
3515 {
3516 /* Case 1 above. If there is already an in set, nothing
3517 happens. */
3518 if (bb_info->in)
3519 return false;
3520 else
3521 {
4fb07d00 3522 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3072d30e 3523 bitmap_copy (bb_info->in, bb_info->gen);
3524 return true;
3525 }
3526 }
3527}
3528
3529/* Solve the dataflow equations. */
3530
3531static void
3532dse_step4 (void)
3533{
48e1416a 3534 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3535 dse_confluence_n, dse_transfer_function,
3536 all_blocks, df_get_postorder (DF_BACKWARD),
3072d30e 3537 df_get_n_blocks (DF_BACKWARD));
1ca59310 3538 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 3539 {
3540 basic_block bb;
3541
3542 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
ed7d889a 3543 FOR_ALL_BB_FN (bb, cfun)
3072d30e 3544 {
3545 bb_info_t bb_info = bb_table[bb->index];
3546
3547 df_print_bb_index (bb, dump_file);
3548 if (bb_info->in)
3549 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3550 else
3551 fprintf (dump_file, " in: *MISSING*\n");
3552 if (bb_info->gen)
3553 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3554 else
3555 fprintf (dump_file, " gen: *MISSING*\n");
3556 if (bb_info->kill)
3557 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3558 else
3559 fprintf (dump_file, " kill: *MISSING*\n");
3560 if (bb_info->out)
3561 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3562 else
3563 fprintf (dump_file, " out: *MISSING*\n\n");
3564 }
3565 }
3566}
3567
3568
3569\f
3570/*----------------------------------------------------------------------------
3571 Fifth step.
3572
bef304b8 3573 Delete the stores that can only be deleted using the global information.
3072d30e 3574----------------------------------------------------------------------------*/
3575
3576
3577static void
3578dse_step5_nospill (void)
3579{
3580 basic_block bb;
fc00614f 3581 FOR_EACH_BB_FN (bb, cfun)
3072d30e 3582 {
3583 bb_info_t bb_info = bb_table[bb->index];
3584 insn_info_t insn_info = bb_info->last_insn;
3585 bitmap v = bb_info->out;
3586
3587 while (insn_info)
3588 {
3589 bool deleted = false;
3590 if (dump_file && insn_info->insn)
3591 {
3592 fprintf (dump_file, "starting to process insn %d\n",
3593 INSN_UID (insn_info->insn));
3594 bitmap_print (dump_file, v, " v: ", "\n");
3595 }
3596
3597 /* There may have been code deleted by the dce pass run before
3598 this phase. */
48e1416a 3599 if (insn_info->insn
3072d30e 3600 && INSN_P (insn_info->insn)
3601 && (!insn_info->cannot_delete)
3602 && (!bitmap_empty_p (v)))
3603 {
3604 store_info_t store_info = insn_info->store_rec;
3605
3606 /* Try to delete the current insn. */
3607 deleted = true;
48e1416a 3608
3072d30e 3609 /* Skip the clobbers. */
3610 while (!store_info->is_set)
3611 store_info = store_info->next;
3612
3613 if (store_info->alias_set)
3614 deleted = false;
3615 else
3616 {
3617 HOST_WIDE_INT i;
48e1416a 3618 group_info_t group_info
f1f41a6c 3619 = rtx_group_vec[store_info->group_id];
48e1416a 3620
3072d30e 3621 for (i = store_info->begin; i < store_info->end; i++)
3622 {
3623 int index = get_bitmap_index (group_info, i);
48e1416a 3624
1ca59310 3625 if (dump_file && (dump_flags & TDF_DETAILS))
48e1416a 3626 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3072d30e 3627 if (index == 0 || !bitmap_bit_p (v, index))
3628 {
1ca59310 3629 if (dump_file && (dump_flags & TDF_DETAILS))
48e1416a 3630 fprintf (dump_file, "failing at i = %d\n", (int)i);
3072d30e 3631 deleted = false;
3632 break;
3633 }
3634 }
3635 }
3636 if (deleted)
3637 {
5a9ecd4a 3638 if (dbg_cnt (dse)
3639 && check_for_inc_dec_1 (insn_info))
3072d30e 3640 {
3072d30e 3641 delete_insn (insn_info->insn);
3642 insn_info->insn = NULL;
3643 globally_deleted++;
3644 }
3645 }
3646 }
3647 /* We do want to process the local info if the insn was
6dfdc153 3648 deleted. For instance, if the insn did a wild read, we
3072d30e 3649 no longer need to trash the info. */
48e1416a 3650 if (insn_info->insn
3072d30e 3651 && INSN_P (insn_info->insn)
3652 && (!deleted))
3653 {
3654 scan_stores_nospill (insn_info->store_rec, v, NULL);
3655 if (insn_info->wild_read)
3656 {
1ca59310 3657 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 3658 fprintf (dump_file, "wild read\n");
3659 bitmap_clear (v);
3660 }
b4a708fb 3661 else if (insn_info->read_rec
3662 || insn_info->non_frame_wild_read)
3072d30e 3663 {
b4a708fb 3664 if (dump_file && !insn_info->non_frame_wild_read)
3072d30e 3665 fprintf (dump_file, "regular read\n");
1ca59310 3666 else if (dump_file && (dump_flags & TDF_DETAILS))
b4a708fb 3667 fprintf (dump_file, "non-frame wild read\n");
3072d30e 3668 scan_reads_nospill (insn_info, v, NULL);
3669 }
3670 }
48e1416a 3671
3072d30e 3672 insn_info = insn_info->prev_insn;
3673 }
3674 }
3675}
3676
3677
3072d30e 3678\f
3679/*----------------------------------------------------------------------------
3680 Sixth step.
3681
aa140b76 3682 Delete stores made redundant by earlier stores (which store the same
3683 value) that couldn't be eliminated.
3684----------------------------------------------------------------------------*/
3685
3686static void
3687dse_step6 (void)
3688{
3689 basic_block bb;
3690
ed7d889a 3691 FOR_ALL_BB_FN (bb, cfun)
aa140b76 3692 {
3693 bb_info_t bb_info = bb_table[bb->index];
3694 insn_info_t insn_info = bb_info->last_insn;
3695
3696 while (insn_info)
3697 {
3698 /* There may have been code deleted by the dce pass run before
3699 this phase. */
3700 if (insn_info->insn
3701 && INSN_P (insn_info->insn)
3702 && !insn_info->cannot_delete)
3703 {
3704 store_info_t s_info = insn_info->store_rec;
3705
3706 while (s_info && !s_info->is_set)
3707 s_info = s_info->next;
3708 if (s_info
3709 && s_info->redundant_reason
3710 && s_info->redundant_reason->insn
3711 && INSN_P (s_info->redundant_reason->insn))
3712 {
cccc26f6 3713 rtx_insn *rinsn = s_info->redundant_reason->insn;
1ca59310 3714 if (dump_file && (dump_flags & TDF_DETAILS))
aa140b76 3715 fprintf (dump_file, "Locally deleting insn %d "
3716 "because insn %d stores the "
3717 "same value and couldn't be "
3718 "eliminated\n",
3719 INSN_UID (insn_info->insn),
3720 INSN_UID (rinsn));
3721 delete_dead_store_insn (insn_info);
3722 }
3723 }
3724 insn_info = insn_info->prev_insn;
3725 }
3726 }
3727}
3728\f
3729/*----------------------------------------------------------------------------
3730 Seventh step.
3731
48e1416a 3732 Destroy everything left standing.
3072d30e 3733----------------------------------------------------------------------------*/
3734
48e1416a 3735static void
4fb07d00 3736dse_step7 (void)
3072d30e 3737{
4fb07d00 3738 bitmap_obstack_release (&dse_bitmap_obstack);
3739 obstack_free (&dse_obstack, NULL);
ce299759 3740
3072d30e 3741 end_alias_analysis ();
3742 free (bb_table);
c1f445d2 3743 delete rtx_group_table;
3744 rtx_group_table = NULL;
f1f41a6c 3745 rtx_group_vec.release ();
3072d30e 3746 BITMAP_FREE (all_blocks);
3747 BITMAP_FREE (scratch);
3748
55c5ac9f 3749 rtx_store_info_pool.release ();
3750 read_info_type::pool.release ();
3751 insn_info_type::pool.release ();
3752 dse_bb_info_type::pool.release ();
3753 group_info::pool.release ();
3754 deferred_change::pool.release ();
3072d30e 3755}
3756
3757
3072d30e 3758/* -------------------------------------------------------------------------
3759 DSE
3760 ------------------------------------------------------------------------- */
3761
3762/* Callback for running pass_rtl_dse. */
3763
3764static unsigned int
3765rest_of_handle_dse (void)
3766{
3072d30e 3767 df_set_flags (DF_DEFER_INSN_RESCAN);
3768
a1b0a968 3769 /* Need the notes since we must track live hardregs in the forwards
3770 direction. */
3771 df_note_add_problem ();
3772 df_analyze ();
3773
3072d30e 3774 dse_step0 ();
3775 dse_step1 ();
3776 dse_step2_init ();
3777 if (dse_step2_nospill ())
3778 {
3779 df_set_flags (DF_LR_RUN_DCE);
3780 df_analyze ();
1ca59310 3781 if (dump_file && (dump_flags & TDF_DETAILS))
3072d30e 3782 fprintf (dump_file, "doing global processing\n");
3783 dse_step3 (false);
3784 dse_step4 ();
3785 dse_step5_nospill ();
3786 }
3787
aa140b76 3788 dse_step6 ();
4fb07d00 3789 dse_step7 ();
3072d30e 3790
3791 if (dump_file)
3792 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3793 locally_deleted, globally_deleted, spill_deleted);
1f91a12d 3794
3795 /* DSE can eliminate potentially-trapping MEMs.
3796 Remove any EH edges associated with them. */
3797 if ((locally_deleted || globally_deleted)
3798 && cfun->can_throw_non_call_exceptions
3799 && purge_all_dead_edges ())
3800 cleanup_cfg (0);
3801
3072d30e 3802 return 0;
3803}
3804
cbe8bda8 3805namespace {
3806
3807const pass_data pass_data_rtl_dse1 =
3808{
3809 RTL_PASS, /* type */
3810 "dse1", /* name */
3811 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3812 TV_DSE1, /* tv_id */
3813 0, /* properties_required */
3814 0, /* properties_provided */
3815 0, /* properties_destroyed */
3816 0, /* todo_flags_start */
8b88439e 3817 TODO_df_finish, /* todo_flags_finish */
3072d30e 3818};
3819
cbe8bda8 3820class pass_rtl_dse1 : public rtl_opt_pass
3821{
3822public:
9af5ce0c 3823 pass_rtl_dse1 (gcc::context *ctxt)
3824 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
cbe8bda8 3825 {}
3826
3827 /* opt_pass methods: */
31315c24 3828 virtual bool gate (function *)
3829 {
3830 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3831 }
3832
65b0537f 3833 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
cbe8bda8 3834
3835}; // class pass_rtl_dse1
3836
3837} // anon namespace
3838
3839rtl_opt_pass *
3840make_pass_rtl_dse1 (gcc::context *ctxt)
3841{
3842 return new pass_rtl_dse1 (ctxt);
3843}
3844
3845namespace {
3846
3847const pass_data pass_data_rtl_dse2 =
3848{
3849 RTL_PASS, /* type */
3850 "dse2", /* name */
3851 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3852 TV_DSE2, /* tv_id */
3853 0, /* properties_required */
3854 0, /* properties_provided */
3855 0, /* properties_destroyed */
3856 0, /* todo_flags_start */
8b88439e 3857 TODO_df_finish, /* todo_flags_finish */
3072d30e 3858};
cbe8bda8 3859
3860class pass_rtl_dse2 : public rtl_opt_pass
3861{
3862public:
9af5ce0c 3863 pass_rtl_dse2 (gcc::context *ctxt)
3864 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
cbe8bda8 3865 {}
3866
3867 /* opt_pass methods: */
31315c24 3868 virtual bool gate (function *)
3869 {
3870 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3871 }
3872
65b0537f 3873 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
cbe8bda8 3874
3875}; // class pass_rtl_dse2
3876
3877} // anon namespace
3878
3879rtl_opt_pass *
3880make_pass_rtl_dse2 (gcc::context *ctxt)
3881{
3882 return new pass_rtl_dse2 (ctxt);
3883}