]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.c
PR c++/61339 - add mismatch between struct and class [-Wmismatched-tags] to non-bugs
[thirdparty/gcc.git] / gcc / dse.c
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
a5544970 2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "target.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5 33#include "predict.h"
c7131fb2 34#include "df.h"
4d0cdd0c 35#include "memmodel.h"
957060b5
AM
36#include "tm_p.h"
37#include "gimple-ssa.h"
38#include "expmed.h"
39#include "optabs.h"
957060b5
AM
40#include "emit-rtl.h"
41#include "recog.h"
40e23961 42#include "alias.h"
d8a2d370 43#include "stor-layout.h"
60393bbc 44#include "cfgrtl.h"
6fb5fa3c 45#include "cselib.h"
6fb5fa3c 46#include "tree-pass.h"
36566b39 47#include "explow.h"
6fb5fa3c 48#include "expr.h"
6fb5fa3c 49#include "dbgcnt.h"
dabd47e7 50#include "params.h"
d7111da8 51#include "rtl-iter.h"
6c5ed3f1 52#include "cfgcleanup.h"
6fb5fa3c
DB
53
54/* This file contains three techniques for performing Dead Store
b8698a0f 55 Elimination (dse).
6fb5fa3c
DB
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
b8698a0f 61
6fb5fa3c
DB
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
026c3cfd 67 processes the spill slots. This differs from the second
6fb5fa3c
DB
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
b8698a0f 91 3) Set up the global dataflow equations based on processing the
6fb5fa3c
DB
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
073a8998 99 6) Delete insns that store the same value as preceding store
8dd5516b
JJ
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
6fb5fa3c
DB
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
0d52bcc1 108 forwards ordering is to accommodate cselib.
6fb5fa3c 109
5ef0b50d 110 We make a simplifying assumption: addresses fall into four broad
6fb5fa3c
DB
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
5ef0b50d 119 global pass only handles 1).
6fb5fa3c
DB
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
5ef0b50d 125 function contain another store to A before a read to A.
6fb5fa3c
DB
126
127 If the address A is relative to the stack frame, a store S2 to A
5ef0b50d 128 can be eliminated if there are no paths from S2 that reach the
6fb5fa3c 129 end of the function that read A before another store to A. In
5ef0b50d 130 this case S2 can be deleted if there are paths from S2 to the
6fb5fa3c
DB
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
5ef0b50d 141 implementation requires a lot of bitmaps filled with 1s.
6fb5fa3c
DB
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
b8698a0f 145 for details.
6fb5fa3c
DB
146
147 There are two places for further enhancements to this algorithm:
b8698a0f 148
6fb5fa3c
DB
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
6ed3da00 156 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
b8698a0f 190 off the frame pointer, the global algorithm handles this slot.
6fb5fa3c
DB
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
0d52bcc1 195 required is to have those passes make the same calls that reload
6fb5fa3c
DB
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199/* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203#define MAX_OFFSET (64 * 1024)
204
3f9b14ff
SB
205/* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211static bitmap_obstack dse_bitmap_obstack;
212
213/* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215static struct obstack dse_obstack;
216
217/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
6fb5fa3c 218static bitmap scratch = NULL;
3f9b14ff 219
da6603c6 220struct insn_info_type;
6fb5fa3c
DB
221
222/* This structure holds information about a candidate store. */
6c1dae73 223class store_info
6fb5fa3c 224{
6c1dae73 225public:
6fb5fa3c
DB
226
227 /* False means this is a clobber. */
228 bool is_set;
229
8dd5516b
JJ
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
232
6fb5fa3c
DB
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
b8698a0f 237
6fb5fa3c
DB
238 /* This is the cselib value. */
239 cselib_val *cse_base;
240
241 /* This canonized mem. */
242 rtx mem;
243
6216f94e 244 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
245 rtx mem_addr;
246
71d6a386 247 /* The offset of the first byte associated with the operation. */
02ce5d90 248 poly_int64 offset;
71d6a386
RS
249
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
02ce5d90 252 poly_int64 width;
8dd5516b
JJ
253
254 union
255 {
256 /* A bitmask as wide as the number of bytes in the word that
257 contains a 1 if the byte may be needed. The store is unused if
258 all of the bits are 0. This is used if IS_LARGE is false. */
259 unsigned HOST_WIDE_INT small_bitmask;
260
261 struct
262 {
02ce5d90
RS
263 /* A bitmap with one bit per byte, or null if the number of
264 bytes isn't known at compile time. A cleared bit means
265 the position is needed. Used if IS_LARGE is true. */
dc491a25 266 bitmap bmap;
6fb5fa3c 267
02ce5d90
RS
268 /* When BITMAP is nonnull, this counts the number of set bits
269 (i.e. unneeded bytes) in the bitmap. If it is equal to
270 WIDTH, the whole store is unused.
271
272 When BITMAP is null:
273 - the store is definitely not needed when COUNT == 1
274 - all the store is needed when COUNT == 0 and RHS is nonnull
275 - otherwise we don't know which parts of the store are needed. */
8dd5516b
JJ
276 int count;
277 } large;
278 } positions_needed;
6fb5fa3c
DB
279
280 /* The next store info for this insn. */
99b1c316 281 class store_info *next;
6fb5fa3c
DB
282
283 /* The right hand side of the store. This is used if there is a
284 subsequent reload of the mems address somewhere later in the
285 basic block. */
8dd5516b
JJ
286 rtx rhs;
287
288 /* If rhs is or holds a constant, this contains that constant,
289 otherwise NULL. */
290 rtx const_rhs;
291
292 /* Set if this store stores the same constant value as REDUNDANT_REASON
293 insn stored. These aren't eliminated early, because doing that
294 might prevent the earlier larger store to be eliminated. */
da6603c6 295 struct insn_info_type *redundant_reason;
6fb5fa3c
DB
296};
297
4fe663b0
L
298/* Return a bitmask with the first N low bits set. */
299
300static unsigned HOST_WIDE_INT
301lowpart_bitmask (int n)
302{
dd4786fe 303 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
4fe663b0
L
304 return mask >> (HOST_BITS_PER_WIDE_INT - n);
305}
306
fcb87c50 307static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
da6603c6 308
fcb87c50 309static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
6fb5fa3c
DB
310
311/* This structure holds information about a load. These are only
312 built for rtx bases. */
6c1dae73 313class read_info_type
6fb5fa3c 314{
6c1dae73 315public:
6fb5fa3c
DB
316 /* The id of the mem group of the base address. */
317 int group_id;
318
71d6a386 319 /* The offset of the first byte associated with the operation. */
02ce5d90 320 poly_int64 offset;
71d6a386
RS
321
322 /* The number of bytes covered by the operation, or -1 if not known. */
02ce5d90 323 poly_int64 width;
6fb5fa3c
DB
324
325 /* The mem being read. */
326 rtx mem;
327
328 /* The next read_info for this insn. */
99b1c316 329 class read_info_type *next;
6fb5fa3c 330};
99b1c316 331typedef class read_info_type *read_info_t;
6fb5fa3c 332
fcb87c50 333static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
6fb5fa3c
DB
334
335/* One of these records is created for each insn. */
336
da6603c6 337struct insn_info_type
6fb5fa3c
DB
338{
339 /* Set true if the insn contains a store but the insn itself cannot
340 be deleted. This is set if the insn is a parallel and there is
341 more than one non dead output or if the insn is in some way
342 volatile. */
343 bool cannot_delete;
344
345 /* This field is only used by the global algorithm. It is set true
346 if the insn contains any read of mem except for a (1). This is
347 also set if the insn is a call or has a clobber mem. If the insn
348 contains a wild read, the use_rec will be null. */
349 bool wild_read;
350
d26c7090
ER
351 /* This is true only for CALL instructions which could potentially read
352 any non-frame memory location. This field is used by the global
353 algorithm. */
354 bool non_frame_wild_read;
355
50f0f366
EB
356 /* This field is only used for the processing of const functions.
357 These functions cannot read memory, but they can read the stack
64520bdc
EB
358 because that is where they may get their parms. We need to be
359 this conservative because, like the store motion pass, we don't
360 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
361 Moreover, we need to distinguish two cases:
362 1. Before reload (register elimination), the stores related to
363 outgoing arguments are stack pointer based and thus deemed
364 of non-constant base in this pass. This requires special
365 handling but also means that the frame pointer based stores
366 need not be killed upon encountering a const function call.
367 2. After reload, the stores related to outgoing arguments can be
368 either stack pointer or hard frame pointer based. This means
369 that we have no other choice than also killing all the frame
370 pointer based stores upon encountering a const function call.
57534689
JJ
371 This field is set after reload for const function calls and before
372 reload for const tail function calls on targets where arg pointer
373 is the frame pointer. Having this set is less severe than a wild
374 read, it just means that all the frame related stores are killed
375 rather than all the stores. */
64520bdc
EB
376 bool frame_read;
377
378 /* This field is only used for the processing of const functions.
379 It is set if the insn may contain a stack pointer based store. */
50f0f366 380 bool stack_pointer_based;
6fb5fa3c
DB
381
382 /* This is true if any of the sets within the store contains a
383 cselib base. Such stores can only be deleted by the local
384 algorithm. */
385 bool contains_cselib_groups;
386
387 /* The insn. */
dd60a84c 388 rtx_insn *insn;
6fb5fa3c
DB
389
390 /* The list of mem sets or mem clobbers that are contained in this
391 insn. If the insn is deletable, it contains only one mem set.
392 But it could also contain clobbers. Insns that contain more than
393 one mem set are not deletable, but each of those mems are here in
6ed3da00 394 order to provide info to delete other insns. */
fd6daec9 395 store_info *store_rec;
6fb5fa3c
DB
396
397 /* The linked list of mem uses in this insn. Only the reads from
398 rtx bases are listed here. The reads to cselib bases are
399 completely processed during the first scan and so are never
400 created. */
401 read_info_t read_rec;
402
9e582b1d
JR
403 /* The live fixed registers. We assume only fixed registers can
404 cause trouble by being clobbered from an expanded pattern;
405 storing only the live fixed registers (rather than all registers)
406 means less memory needs to be allocated / copied for the individual
407 stores. */
408 regset fixed_regs_live;
409
6fb5fa3c 410 /* The prev insn in the basic block. */
da6603c6 411 struct insn_info_type * prev_insn;
6fb5fa3c
DB
412
413 /* The linked list of insns that are in consideration for removal in
073a8998 414 the forwards pass through the basic block. This pointer may be
6fb5fa3c 415 trash as it is not cleared when a wild read occurs. The only
fa10beec 416 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c 417 at active_local_stores. */
da6603c6 418 struct insn_info_type * next_local_store;
6fb5fa3c 419};
da6603c6 420typedef struct insn_info_type *insn_info_t;
6fb5fa3c 421
fcb87c50 422static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
6fb5fa3c
DB
423
424/* The linked list of stores that are under consideration in this
b8698a0f 425 basic block. */
6fb5fa3c 426static insn_info_t active_local_stores;
dabd47e7 427static int active_local_stores_len;
6fb5fa3c 428
da6603c6 429struct dse_bb_info_type
6fb5fa3c 430{
6fb5fa3c
DB
431 /* Pointer to the insn info for the last insn in the block. These
432 are linked so this is how all of the insns are reached. During
433 scanning this is the current insn being scanned. */
434 insn_info_t last_insn;
435
436 /* The info for the global dataflow problem. */
437
438
439 /* This is set if the transfer function should and in the wild_read
440 bitmap before applying the kill and gen sets. That vector knocks
441 out most of the bits in the bitmap and thus speeds up the
442 operations. */
443 bool apply_wild_read;
444
02b47899
KZ
445 /* The following 4 bitvectors hold information about which positions
446 of which stores are live or dead. They are indexed by
447 get_bitmap_index. */
448
6fb5fa3c
DB
449 /* The set of store positions that exist in this block before a wild read. */
450 bitmap gen;
b8698a0f 451
6fb5fa3c
DB
452 /* The set of load positions that exist in this block above the
453 same position of a store. */
454 bitmap kill;
455
456 /* The set of stores that reach the top of the block without being
457 killed by a read.
458
459 Do not represent the in if it is all ones. Note that this is
460 what the bitvector should logically be initialized to for a set
461 intersection problem. However, like the kill set, this is too
462 expensive. So initially, the in set will only be created for the
463 exit block and any block that contains a wild read. */
464 bitmap in;
465
466 /* The set of stores that reach the bottom of the block from it's
467 successors.
468
469 Do not represent the in if it is all ones. Note that this is
470 what the bitvector should logically be initialized to for a set
471 intersection problem. However, like the kill and in set, this is
472 too expensive. So what is done is that the confluence operator
473 just initializes the vector from one of the out sets of the
474 successors of the block. */
475 bitmap out;
02b47899
KZ
476
477 /* The following bitvector is indexed by the reg number. It
478 contains the set of regs that are live at the current instruction
479 being processed. While it contains info for all of the
9e582b1d
JR
480 registers, only the hard registers are actually examined. It is used
481 to assure that shift and/or add sequences that are inserted do not
073a8998 482 accidentally clobber live hard regs. */
02b47899 483 bitmap regs_live;
6fb5fa3c
DB
484};
485
da6603c6 486typedef struct dse_bb_info_type *bb_info_t;
fb0b2914
ML
487
488static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
fcb87c50 489 ("bb_info_pool");
6fb5fa3c
DB
490
491/* Table to hold all bb_infos. */
492static bb_info_t *bb_table;
493
494/* There is a group_info for each rtx base that is used to reference
495 memory. There are also not many of the rtx bases because they are
496 very limited in scope. */
497
b8698a0f 498struct group_info
6fb5fa3c
DB
499{
500 /* The actual base of the address. */
501 rtx rtx_base;
502
503 /* The sequential id of the base. This allows us to have a
504 canonical ordering of these that is not based on addresses. */
505 int id;
506
8f5929e1
JJ
507 /* True if there are any positions that are to be processed
508 globally. */
509 bool process_globally;
510
511 /* True if the base of this group is either the frame_pointer or
512 hard_frame_pointer. */
513 bool frame_related;
514
d32f725a
OH
515 /* A mem wrapped around the base pointer for the group in order to do
516 read dependency. It must be given BLKmode in order to encompass all
517 the possible offsets from the base. */
6fb5fa3c 518 rtx base_mem;
b8698a0f 519
6216f94e
JJ
520 /* Canonized version of base_mem's address. */
521 rtx canon_base_addr;
6fb5fa3c
DB
522
523 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 524 stores are actually referencing that position from this base. We
6fb5fa3c 525 only do this for rtx bases as this will be used to assign
6ed3da00 526 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
527 store1 on the first store for offset N. Bit N is set in store2
528 for the second store to offset N. This is all we need since we
529 only care about offsets that have two or more stores for them.
530
531 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
532 for 0 and greater offsets.
533
534 There is one special case here, for stores into the stack frame,
535 we will or store1 into store2 before deciding which stores look
536 at globally. This is because stores to the stack frame that have
537 no other reads before the end of the function can also be
538 deleted. */
539 bitmap store1_n, store1_p, store2_n, store2_p;
540
d26c7090
ER
541 /* These bitmaps keep track of offsets in this group escape this function.
542 An offset escapes if it corresponds to a named variable whose
543 addressable flag is set. */
544 bitmap escaped_n, escaped_p;
545
6ed3da00 546 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 547 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 548 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
549 bitmap group_kill;
550
6fb5fa3c 551 /* The offset_map is used to map the offsets from this base into
6ed3da00 552 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
553 the all of stores have been scanned and we know which ones we
554 care about. */
b8698a0f
L
555 int *offset_map_n, *offset_map_p;
556 int offset_map_size_n, offset_map_size_p;
6fb5fa3c 557};
da6603c6 558
fcb87c50 559static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
6fb5fa3c 560
6fb5fa3c
DB
561/* Index into the rtx_group_vec. */
562static int rtx_group_next_id;
563
6fb5fa3c 564
fd6daec9 565static vec<group_info *> rtx_group_vec;
6fb5fa3c
DB
566
567
568/* This structure holds the set of changes that are being deferred
569 when removing read operation. See replace_read. */
b8698a0f 570struct deferred_change
6fb5fa3c
DB
571{
572
573 /* The mem that is being replaced. */
574 rtx *loc;
575
576 /* The reg it is being replaced with. */
577 rtx reg;
578
579 struct deferred_change *next;
580};
581
fb0b2914 582static object_allocator<deferred_change> deferred_change_pool
fcb87c50 583 ("deferred_change_pool");
6fb5fa3c 584
fd6daec9 585static deferred_change *deferred_change_list = NULL;
6fb5fa3c 586
e3b5732b 587/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 588 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
589static bool stores_off_frame_dead_at_return;
590
591/* Counter for stats. */
b8698a0f
L
592static int globally_deleted;
593static int locally_deleted;
b8698a0f 594
6fb5fa3c
DB
595static bitmap all_blocks;
596
d26c7090
ER
597/* Locations that are killed by calls in the global phase. */
598static bitmap kill_on_calls;
599
6fb5fa3c
DB
600/* The number of bits used in the global bitmaps. */
601static unsigned int current_position;
71d6a386
RS
602
603/* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
604
605static void
606print_range (FILE *file, poly_int64 offset, poly_int64 width)
607{
608 fprintf (file, "[");
609 print_dec (offset, file, SIGNED);
610 fprintf (file, "..");
611 print_dec (offset + width, file, SIGNED);
612 fprintf (file, ")");
613}
6fb5fa3c
DB
614\f
615/*----------------------------------------------------------------------------
616 Zeroth step.
617
b8698a0f 618 Initialization.
6fb5fa3c
DB
619----------------------------------------------------------------------------*/
620
6fb5fa3c 621
6fb5fa3c
DB
622/* Hashtable callbacks for maintaining the "bases" field of
623 store_group_info, given that the addresses are function invariants. */
624
8d67ee55 625struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
703c8606 626{
67f58944
TS
627 static inline hashval_t hash (const group_info *);
628 static inline bool equal (const group_info *, const group_info *);
703c8606
LC
629};
630
631inline bool
67f58944
TS
632invariant_group_base_hasher::equal (const group_info *gi1,
633 const group_info *gi2)
6fb5fa3c 634{
6fb5fa3c
DB
635 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
636}
637
703c8606 638inline hashval_t
67f58944 639invariant_group_base_hasher::hash (const group_info *gi)
6fb5fa3c 640{
6fb5fa3c
DB
641 int do_not_record;
642 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
643}
644
703c8606 645/* Tables of group_info structures, hashed by base value. */
c203e8a7 646static hash_table<invariant_group_base_hasher> *rtx_group_table;
703c8606 647
6fb5fa3c
DB
648
649/* Get the GROUP for BASE. Add a new group if it is not there. */
650
fd6daec9 651static group_info *
6fb5fa3c
DB
652get_group_info (rtx base)
653{
b8698a0f 654 struct group_info tmp_gi;
fd6daec9 655 group_info *gi;
703c8606 656 group_info **slot;
6fb5fa3c 657
ac6929b5
RB
658 gcc_assert (base != NULL_RTX);
659
660 /* Find the store_base_info structure for BASE, creating a new one
661 if necessary. */
662 tmp_gi.rtx_base = base;
663 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
664 gi = *slot;
6fb5fa3c
DB
665
666 if (gi == NULL)
667 {
fb0b2914 668 *slot = gi = group_info_pool.allocate ();
6fb5fa3c
DB
669 gi->rtx_base = base;
670 gi->id = rtx_group_next_id++;
d32f725a 671 gi->base_mem = gen_rtx_MEM (BLKmode, base);
6216f94e 672 gi->canon_base_addr = canon_rtx (base);
3f9b14ff
SB
673 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 680 gi->process_globally = false;
b8698a0f 681 gi->frame_related =
6fb5fa3c
DB
682 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
683 gi->offset_map_size_n = 0;
684 gi->offset_map_size_p = 0;
685 gi->offset_map_n = NULL;
686 gi->offset_map_p = NULL;
9771b263 687 rtx_group_vec.safe_push (gi);
6fb5fa3c
DB
688 }
689
690 return gi;
691}
692
693
694/* Initialization of data structures. */
695
696static void
697dse_step0 (void)
698{
699 locally_deleted = 0;
700 globally_deleted = 0;
6fb5fa3c 701
3f9b14ff
SB
702 bitmap_obstack_initialize (&dse_bitmap_obstack);
703 gcc_obstack_init (&dse_obstack);
704
705 scratch = BITMAP_ALLOC (&reg_obstack);
706 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 707
6fb5fa3c 708
c203e8a7 709 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
6fb5fa3c 710
8b1c6fd7 711 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
712 rtx_group_next_id = 0;
713
e3b5732b 714 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
715
716 init_alias_analysis ();
6fb5fa3c
DB
717}
718
719
720\f
721/*----------------------------------------------------------------------------
722 First step.
723
724 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 725 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
726 is used to remove stores with non-constant bases.
727----------------------------------------------------------------------------*/
728
729/* Delete all of the store_info recs from INSN_INFO. */
730
b8698a0f 731static void
6fb5fa3c
DB
732free_store_info (insn_info_t insn_info)
733{
fd6daec9
TS
734 store_info *cur = insn_info->store_rec;
735 while (cur)
6fb5fa3c 736 {
fd6daec9
TS
737 store_info *next = cur->next;
738 if (cur->is_large)
739 BITMAP_FREE (cur->positions_needed.large.bmap);
740 if (cur->cse_base)
741 cse_store_info_pool.remove (cur);
6fb5fa3c 742 else
fd6daec9
TS
743 rtx_store_info_pool.remove (cur);
744 cur = next;
6fb5fa3c
DB
745 }
746
747 insn_info->cannot_delete = true;
748 insn_info->contains_cselib_groups = false;
749 insn_info->store_rec = NULL;
750}
751
a79683d5 752struct note_add_store_info
9e582b1d 753{
dc01c3d1 754 rtx_insn *first, *current;
9e582b1d
JR
755 regset fixed_regs_live;
756 bool failure;
a79683d5 757};
9e582b1d
JR
758
759/* Callback for emit_inc_dec_insn_before via note_stores.
760 Check if a register is clobbered which is live afterwards. */
761
762static void
763note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
764{
dc01c3d1 765 rtx_insn *insn;
9e582b1d 766 note_add_store_info *info = (note_add_store_info *) data;
9e582b1d
JR
767
768 if (!REG_P (loc))
769 return;
770
771 /* If this register is referenced by the current or an earlier insn,
772 that's OK. E.g. this applies to the register that is being incremented
773 with this addition. */
774 for (insn = info->first;
775 insn != NEXT_INSN (info->current);
776 insn = NEXT_INSN (insn))
777 if (reg_referenced_p (loc, PATTERN (insn)))
778 return;
779
780 /* If we come here, we have a clobber of a register that's only OK
781 if that register is not live. If we don't have liveness information
782 available, fail now. */
783 if (!info->fixed_regs_live)
784 {
53d1bae9 785 info->failure = true;
9e582b1d
JR
786 return;
787 }
788 /* Now check if this is a live fixed register. */
53d1bae9
RS
789 unsigned int end_regno = END_REGNO (loc);
790 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
791 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
792 info->failure = true;
9e582b1d
JR
793}
794
4deef538
AO
795/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
796 SRC + SRCOFF before insn ARG. */
6fb5fa3c
DB
797
798static int
4deef538
AO
799emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
800 rtx op ATTRIBUTE_UNUSED,
801 rtx dest, rtx src, rtx srcoff, void *arg)
6fb5fa3c 802{
9e582b1d 803 insn_info_t insn_info = (insn_info_t) arg;
dc01c3d1 804 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
9e582b1d 805 note_add_store_info info;
b8698a0f 806
4deef538
AO
807 /* We can reuse all operands without copying, because we are about
808 to delete the insn that contained it. */
9e582b1d 809 if (srcoff)
ed079c4b
JJ
810 {
811 start_sequence ();
812 emit_insn (gen_add3_insn (dest, src, srcoff));
813 new_insn = get_insns ();
814 end_sequence ();
815 }
9e582b1d 816 else
1476d1bd 817 new_insn = gen_move_insn (dest, src);
9e582b1d
JR
818 info.first = new_insn;
819 info.fixed_regs_live = insn_info->fixed_regs_live;
820 info.failure = false;
821 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
822 {
823 info.current = cur;
824 note_stores (PATTERN (cur), note_add_store, &info);
825 }
6fb5fa3c 826
9e582b1d
JR
827 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
828 return it immediately, communicating the failure to its caller. */
829 if (info.failure)
830 return 1;
831
832 emit_insn_before (new_insn, insn);
6fb5fa3c 833
8d8e205b 834 return 0;
6fb5fa3c
DB
835}
836
9e582b1d
JR
837/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
838 is there, is split into a separate insn.
839 Return true on success (or if there was nothing to do), false on failure. */
6fb5fa3c 840
9e582b1d
JR
841static bool
842check_for_inc_dec_1 (insn_info_t insn_info)
6fb5fa3c 843{
dd60a84c 844 rtx_insn *insn = insn_info->insn;
6fb5fa3c
DB
845 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
846 if (note)
8d8e205b
RS
847 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
848 insn_info) == 0;
9e582b1d 849 return true;
6fb5fa3c
DB
850}
851
852
9e582b1d
JR
853/* Entry point for postreload. If you work on reload_cse, or you need this
854 anywhere else, consider if you can provide register liveness information
855 and add a parameter to this function so that it can be passed down in
856 insn_info.fixed_regs_live. */
857bool
dd60a84c 858check_for_inc_dec (rtx_insn *insn)
9e582b1d 859{
da6603c6 860 insn_info_type insn_info;
9e582b1d
JR
861 rtx note;
862
863 insn_info.insn = insn;
864 insn_info.fixed_regs_live = NULL;
865 note = find_reg_note (insn, REG_INC, NULL_RTX);
866 if (note)
8d8e205b
RS
867 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
868 &insn_info) == 0;
9e582b1d
JR
869 return true;
870}
871
b8698a0f 872/* Delete the insn and free all of the fields inside INSN_INFO. */
6fb5fa3c
DB
873
874static void
875delete_dead_store_insn (insn_info_t insn_info)
876{
877 read_info_t read_info;
878
879 if (!dbg_cnt (dse))
880 return;
881
9e582b1d
JR
882 if (!check_for_inc_dec_1 (insn_info))
883 return;
456610d3 884 if (dump_file && (dump_flags & TDF_DETAILS))
ac6929b5
RB
885 fprintf (dump_file, "Locally deleting insn %d\n",
886 INSN_UID (insn_info->insn));
6fb5fa3c
DB
887
888 free_store_info (insn_info);
889 read_info = insn_info->read_rec;
b8698a0f 890
6fb5fa3c
DB
891 while (read_info)
892 {
893 read_info_t next = read_info->next;
fb0b2914 894 read_info_type_pool.remove (read_info);
6fb5fa3c
DB
895 read_info = next;
896 }
897 insn_info->read_rec = NULL;
898
899 delete_insn (insn_info->insn);
900 locally_deleted++;
901 insn_info->insn = NULL;
902
903 insn_info->wild_read = false;
904}
905
88d8330d
EB
906/* Return whether DECL, a local variable, can possibly escape the current
907 function scope. */
908
909static bool
910local_variable_can_escape (tree decl)
911{
912 if (TREE_ADDRESSABLE (decl))
913 return true;
914
915 /* If this is a partitioned variable, we need to consider all the variables
916 in the partition. This is necessary because a store into one of them can
917 be replaced with a store into another and this may not change the outcome
918 of the escape analysis. */
919 if (cfun->gimple_df->decls_to_pointers != NULL)
920 {
39c8aaa4 921 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
88d8330d 922 if (namep)
39c8aaa4 923 return TREE_ADDRESSABLE (*namep);
88d8330d
EB
924 }
925
926 return false;
927}
928
929/* Return whether EXPR can possibly escape the current function scope. */
930
d26c7090
ER
931static bool
932can_escape (tree expr)
933{
934 tree base;
935 if (!expr)
936 return true;
937 base = get_base_address (expr);
938 if (DECL_P (base)
88d8330d 939 && !may_be_aliased (base)
8813a647 940 && !(VAR_P (base)
88d8330d
EB
941 && !DECL_EXTERNAL (base)
942 && !TREE_STATIC (base)
943 && local_variable_can_escape (base)))
d26c7090
ER
944 return false;
945 return true;
946}
6fb5fa3c
DB
947
948/* Set the store* bitmaps offset_map_size* fields in GROUP based on
949 OFFSET and WIDTH. */
950
951static void
02ce5d90 952set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
d26c7090 953 tree expr)
6fb5fa3c 954{
02ce5d90
RS
955 /* Non-constant offsets and widths act as global kills, so there's no point
956 trying to use them to derive global DSE candidates. */
957 HOST_WIDE_INT i, const_offset, const_width;
d26c7090 958 bool expr_escapes = can_escape (expr);
02ce5d90
RS
959 if (offset.is_constant (&const_offset)
960 && width.is_constant (&const_width)
961 && const_offset > -MAX_OFFSET
962 && const_offset + const_width < MAX_OFFSET)
963 for (i = const_offset; i < const_offset + const_width; ++i)
6fb5fa3c
DB
964 {
965 bitmap store1;
966 bitmap store2;
d26c7090 967 bitmap escaped;
6fb5fa3c
DB
968 int ai;
969 if (i < 0)
970 {
971 store1 = group->store1_n;
972 store2 = group->store2_n;
d26c7090 973 escaped = group->escaped_n;
6fb5fa3c
DB
974 ai = -i;
975 }
976 else
977 {
978 store1 = group->store1_p;
979 store2 = group->store2_p;
d26c7090 980 escaped = group->escaped_p;
6fb5fa3c
DB
981 ai = i;
982 }
b8698a0f 983
fcaa4ca4 984 if (!bitmap_set_bit (store1, ai))
6fb5fa3c 985 bitmap_set_bit (store2, ai);
b8698a0f 986 else
6fb5fa3c 987 {
6fb5fa3c
DB
988 if (i < 0)
989 {
990 if (group->offset_map_size_n < ai)
991 group->offset_map_size_n = ai;
992 }
993 else
994 {
995 if (group->offset_map_size_p < ai)
996 group->offset_map_size_p = ai;
997 }
998 }
d26c7090
ER
999 if (expr_escapes)
1000 bitmap_set_bit (escaped, ai);
6fb5fa3c
DB
1001 }
1002}
1003
d26c7090
ER
1004static void
1005reset_active_stores (void)
1006{
1007 active_local_stores = NULL;
1008 active_local_stores_len = 0;
1009}
6fb5fa3c 1010
d26c7090 1011/* Free all READ_REC of the LAST_INSN of BB_INFO. */
6fb5fa3c
DB
1012
1013static void
d26c7090 1014free_read_records (bb_info_t bb_info)
6fb5fa3c
DB
1015{
1016 insn_info_t insn_info = bb_info->last_insn;
1017 read_info_t *ptr = &insn_info->read_rec;
6fb5fa3c
DB
1018 while (*ptr)
1019 {
1020 read_info_t next = (*ptr)->next;
ac6929b5
RB
1021 read_info_type_pool.remove (*ptr);
1022 *ptr = next;
6fb5fa3c 1023 }
d26c7090
ER
1024}
1025
1026/* Set the BB_INFO so that the last insn is marked as a wild read. */
1027
1028static void
1029add_wild_read (bb_info_t bb_info)
1030{
1031 insn_info_t insn_info = bb_info->last_insn;
6fb5fa3c 1032 insn_info->wild_read = true;
d26c7090
ER
1033 free_read_records (bb_info);
1034 reset_active_stores ();
6fb5fa3c
DB
1035}
1036
d26c7090
ER
1037/* Set the BB_INFO so that the last insn is marked as a wild read of
1038 non-frame locations. */
1039
1040static void
1041add_non_frame_wild_read (bb_info_t bb_info)
1042{
1043 insn_info_t insn_info = bb_info->last_insn;
1044 insn_info->non_frame_wild_read = true;
1045 free_read_records (bb_info);
1046 reset_active_stores ();
1047}
6fb5fa3c 1048
50f0f366
EB
1049/* Return true if X is a constant or one of the registers that behave
1050 as a constant over the life of a function. This is equivalent to
1051 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1052
1053static bool
1054const_or_frame_p (rtx x)
1055{
d8116890
KZ
1056 if (CONSTANT_P (x))
1057 return true;
1058
1059 if (GET_CODE (x) == REG)
6fb5fa3c 1060 {
6fb5fa3c
DB
1061 /* Note that we have to test for the actual rtx used for the frame
1062 and arg pointers and not just the register number in case we have
1063 eliminated the frame and/or arg pointer and are using it
1064 for pseudos. */
1065 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1066 /* The arg pointer varies if it is not a fixed register. */
1067 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1068 || x == pic_offset_table_rtx)
1069 return true;
1070 return false;
6fb5fa3c 1071 }
da6603c6 1072
d8116890 1073 return false;
6fb5fa3c
DB
1074}
1075
b8698a0f
L
1076/* Take all reasonable action to put the address of MEM into the form
1077 that we can do analysis on.
6fb5fa3c
DB
1078
1079 The gold standard is to get the address into the form: address +
1080 OFFSET where address is something that rtx_varies_p considers a
1081 constant. When we can get the address in this form, we can do
1082 global analysis on it. Note that for constant bases, address is
1083 not actually returned, only the group_id. The address can be
1084 obtained from that.
1085
1086 If that fails, we try cselib to get a value we can at least use
b8698a0f
L
1087 locally. If that fails we return false.
1088
6fb5fa3c
DB
1089 The GROUP_ID is set to -1 for cselib bases and the index of the
1090 group for non_varying bases.
1091
1092 FOR_READ is true if this is a mem read and false if not. */
1093
1094static bool
1095canon_address (rtx mem,
6fb5fa3c 1096 int *group_id,
02ce5d90 1097 poly_int64 *offset,
6fb5fa3c
DB
1098 cselib_val **base)
1099{
ef4bddc2 1100 machine_mode address_mode = get_address_mode (mem);
6fb5fa3c
DB
1101 rtx mem_address = XEXP (mem, 0);
1102 rtx expanded_address, address;
403c7520
JJ
1103 int expanded;
1104
4deef538 1105 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
6fb5fa3c 1106
456610d3 1107 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1108 {
1109 fprintf (dump_file, " mem: ");
1110 print_inline_rtx (dump_file, mem_address, 0);
1111 fprintf (dump_file, "\n");
1112 }
1113
403c7520
JJ
1114 /* First see if just canon_rtx (mem_address) is const or frame,
1115 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1116 address = NULL_RTX;
1117 for (expanded = 0; expanded < 2; expanded++)
1118 {
1119 if (expanded)
1120 {
1121 /* Use cselib to replace all of the reg references with the full
b8698a0f 1122 expression. This will take care of the case where we have
6fb5fa3c 1123
403c7520
JJ
1124 r_x = base + offset;
1125 val = *r_x;
b8698a0f
L
1126
1127 by making it into
6fb5fa3c 1128
403c7520 1129 val = *(base + offset); */
6fb5fa3c 1130
403c7520
JJ
1131 expanded_address = cselib_expand_value_rtx (mem_address,
1132 scratch, 5);
6fb5fa3c 1133
403c7520
JJ
1134 /* If this fails, just go with the address from first
1135 iteration. */
1136 if (!expanded_address)
1137 break;
1138 }
1139 else
1140 expanded_address = mem_address;
6fb5fa3c 1141
403c7520
JJ
1142 /* Split the address into canonical BASE + OFFSET terms. */
1143 address = canon_rtx (expanded_address);
6fb5fa3c 1144
403c7520 1145 *offset = 0;
6fb5fa3c 1146
456610d3 1147 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1148 {
1149 if (expanded)
1150 {
1151 fprintf (dump_file, "\n after cselib_expand address: ");
1152 print_inline_rtx (dump_file, expanded_address, 0);
1153 fprintf (dump_file, "\n");
1154 }
6fb5fa3c 1155
403c7520
JJ
1156 fprintf (dump_file, "\n after canon_rtx address: ");
1157 print_inline_rtx (dump_file, address, 0);
1158 fprintf (dump_file, "\n");
1159 }
6fb5fa3c 1160
403c7520
JJ
1161 if (GET_CODE (address) == CONST)
1162 address = XEXP (address, 0);
6fb5fa3c 1163
02ce5d90 1164 address = strip_offset_and_add (address, offset);
6fb5fa3c 1165
09e881c9
BE
1166 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1167 && const_or_frame_p (address))
6fb5fa3c 1168 {
fd6daec9 1169 group_info *group = get_group_info (address);
403c7520 1170
456610d3 1171 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1172 {
1173 fprintf (dump_file, " gid=%d offset=", group->id);
1174 print_dec (*offset, dump_file);
1175 fprintf (dump_file, "\n");
1176 }
403c7520
JJ
1177 *base = NULL;
1178 *group_id = group->id;
1179 return true;
6fb5fa3c 1180 }
403c7520
JJ
1181 }
1182
4deef538 1183 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
403c7520
JJ
1184 *group_id = -1;
1185
1186 if (*base == NULL)
1187 {
456610d3 1188 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1189 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1190 return false;
6fb5fa3c 1191 }
456610d3 1192 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1193 {
1194 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1195 (*base)->uid, (*base)->hash);
1196 print_dec (*offset, dump_file);
1197 fprintf (dump_file, "\n");
1198 }
6fb5fa3c
DB
1199 return true;
1200}
1201
1202
1203/* Clear the rhs field from the active_local_stores array. */
1204
1205static void
1206clear_rhs_from_active_local_stores (void)
1207{
1208 insn_info_t ptr = active_local_stores;
1209
1210 while (ptr)
1211 {
fd6daec9 1212 store_info *store_info = ptr->store_rec;
6fb5fa3c
DB
1213 /* Skip the clobbers. */
1214 while (!store_info->is_set)
1215 store_info = store_info->next;
1216
1217 store_info->rhs = NULL;
8dd5516b 1218 store_info->const_rhs = NULL;
6fb5fa3c
DB
1219
1220 ptr = ptr->next_local_store;
1221 }
1222}
1223
1224
8dd5516b
JJ
1225/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1226
1227static inline void
fd6daec9 1228set_position_unneeded (store_info *s_info, int pos)
8dd5516b
JJ
1229{
1230 if (__builtin_expect (s_info->is_large, false))
1231 {
fcaa4ca4
NF
1232 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1233 s_info->positions_needed.large.count++;
8dd5516b
JJ
1234 }
1235 else
1236 s_info->positions_needed.small_bitmask
fecfbfa4 1237 &= ~(HOST_WIDE_INT_1U << pos);
8dd5516b
JJ
1238}
1239
1240/* Mark the whole store S_INFO as unneeded. */
1241
1242static inline void
fd6daec9 1243set_all_positions_unneeded (store_info *s_info)
8dd5516b
JJ
1244{
1245 if (__builtin_expect (s_info->is_large, false))
1246 {
02ce5d90
RS
1247 HOST_WIDE_INT width;
1248 if (s_info->width.is_constant (&width))
1249 {
1250 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1251 s_info->positions_needed.large.count = width;
1252 }
1253 else
1254 {
1255 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1256 s_info->positions_needed.large.count = 1;
1257 }
8dd5516b
JJ
1258 }
1259 else
07e96250 1260 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
8dd5516b
JJ
1261}
1262
1263/* Return TRUE if any bytes from S_INFO store are needed. */
1264
1265static inline bool
fd6daec9 1266any_positions_needed_p (store_info *s_info)
8dd5516b
JJ
1267{
1268 if (__builtin_expect (s_info->is_large, false))
02ce5d90
RS
1269 {
1270 HOST_WIDE_INT width;
1271 if (s_info->width.is_constant (&width))
1272 {
1273 gcc_checking_assert (s_info->positions_needed.large.bmap);
1274 return s_info->positions_needed.large.count < width;
1275 }
1276 else
1277 {
1278 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1279 return s_info->positions_needed.large.count == 0;
1280 }
1281 }
8dd5516b 1282 else
07e96250 1283 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
8dd5516b
JJ
1284}
1285
1286/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
02ce5d90 1287 store are known to be needed. */
8dd5516b
JJ
1288
1289static inline bool
02ce5d90
RS
1290all_positions_needed_p (store_info *s_info, poly_int64 start,
1291 poly_int64 width)
8dd5516b 1292{
02ce5d90
RS
1293 gcc_assert (s_info->rhs);
1294 if (!s_info->width.is_constant ())
1295 {
1296 gcc_assert (s_info->is_large
1297 && !s_info->positions_needed.large.bmap);
1298 return s_info->positions_needed.large.count == 0;
1299 }
1300
1301 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1302 a non-constant region of a constant-sized store. We can't say for
1303 sure that all positions are needed. */
1304 HOST_WIDE_INT const_start, const_width;
1305 if (!start.is_constant (&const_start)
1306 || !width.is_constant (&const_width))
1307 return false;
1308
8dd5516b
JJ
1309 if (__builtin_expect (s_info->is_large, false))
1310 {
02ce5d90
RS
1311 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1312 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
8dd5516b
JJ
1313 return false;
1314 return true;
1315 }
1316 else
1317 {
02ce5d90
RS
1318 unsigned HOST_WIDE_INT mask
1319 = lowpart_bitmask (const_width) << const_start;
8dd5516b
JJ
1320 return (s_info->positions_needed.small_bitmask & mask) == mask;
1321 }
1322}
1323
1324
02ce5d90
RS
1325static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1326 poly_int64, basic_block, bool);
8dd5516b
JJ
1327
1328
6fb5fa3c
DB
1329/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1330 there is a candidate store, after adding it to the appropriate
1331 local store group if so. */
1332
1333static int
1334record_store (rtx body, bb_info_t bb_info)
1335{
6216f94e 1336 rtx mem, rhs, const_rhs, mem_addr;
02ce5d90
RS
1337 poly_int64 offset = 0;
1338 poly_int64 width = 0;
6fb5fa3c 1339 insn_info_t insn_info = bb_info->last_insn;
fd6daec9 1340 store_info *store_info = NULL;
6fb5fa3c
DB
1341 int group_id;
1342 cselib_val *base = NULL;
8dd5516b 1343 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1344 bool store_is_unused;
1345
1346 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1347 return 0;
1348
8dd5516b
JJ
1349 mem = SET_DEST (body);
1350
6fb5fa3c
DB
1351 /* If this is not used, then this cannot be used to keep the insn
1352 from being deleted. On the other hand, it does provide something
1353 that can be used to prove that another store is dead. */
1354 store_is_unused
8dd5516b 1355 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1356
1357 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1358 if (!MEM_P (mem))
1359 {
1360 /* If the set or clobber is unused, then it does not effect our
1361 ability to get rid of the entire insn. */
1362 if (!store_is_unused)
1363 insn_info->cannot_delete = true;
1364 return 0;
1365 }
1366
1367 /* At this point we know mem is a mem. */
1368 if (GET_MODE (mem) == BLKmode)
1369 {
d05d7551 1370 HOST_WIDE_INT const_size;
6fb5fa3c
DB
1371 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1372 {
456610d3 1373 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1374 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1375 add_wild_read (bb_info);
1376 insn_info->cannot_delete = true;
8dd5516b 1377 return 0;
6fb5fa3c 1378 }
8dd5516b
JJ
1379 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1380 as memset (addr, 0, 36); */
f5541398 1381 else if (!MEM_SIZE_KNOWN_P (mem)
d05d7551
RS
1382 || maybe_le (MEM_SIZE (mem), 0)
1383 /* This is a limit on the bitmap size, which is only relevant
1384 for constant-sized MEMs. */
1385 || (MEM_SIZE (mem).is_constant (&const_size)
1386 && const_size > MAX_OFFSET)
8dd5516b 1387 || GET_CODE (body) != SET
8dd5516b 1388 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1389 {
8dd5516b
JJ
1390 if (!store_is_unused)
1391 {
1392 /* If the set or clobber is unused, then it does not effect our
1393 ability to get rid of the entire insn. */
1394 insn_info->cannot_delete = true;
1395 clear_rhs_from_active_local_stores ();
1396 }
1397 return 0;
6fb5fa3c 1398 }
6fb5fa3c
DB
1399 }
1400
1401 /* We can still process a volatile mem, we just cannot delete it. */
1402 if (MEM_VOLATILE_P (mem))
8dd5516b 1403 insn_info->cannot_delete = true;
6fb5fa3c 1404
ac6929b5 1405 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c
DB
1406 {
1407 clear_rhs_from_active_local_stores ();
1408 return 0;
1409 }
1410
8dd5516b 1411 if (GET_MODE (mem) == BLKmode)
f5541398 1412 width = MEM_SIZE (mem);
8dd5516b 1413 else
6f557e0e 1414 width = GET_MODE_SIZE (GET_MODE (mem));
6fb5fa3c 1415
02ce5d90 1416 if (!endpoint_representable_p (offset, width))
213ffde2
JJ
1417 {
1418 clear_rhs_from_active_local_stores ();
1419 return 0;
1420 }
1421
cbe679a4
JJ
1422 if (known_eq (width, 0))
1423 return 0;
1424
ac6929b5 1425 if (group_id >= 0)
6fb5fa3c
DB
1426 {
1427 /* In the restrictive case where the base is a constant or the
1428 frame pointer we can do global analysis. */
b8698a0f 1429
fd6daec9 1430 group_info *group
9771b263 1431 = rtx_group_vec[group_id];
d26c7090 1432 tree expr = MEM_EXPR (mem);
b8698a0f 1433
da6603c6 1434 store_info = rtx_store_info_pool.allocate ();
d26c7090 1435 set_usage_bits (group, offset, width, expr);
6fb5fa3c 1436
456610d3 1437 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1438 {
1439 fprintf (dump_file, " processing const base store gid=%d",
1440 group_id);
1441 print_range (dump_file, offset, width);
1442 fprintf (dump_file, "\n");
1443 }
6fb5fa3c
DB
1444 }
1445 else
1446 {
9e412ca3 1447 if (may_be_sp_based_p (XEXP (mem, 0)))
50f0f366 1448 insn_info->stack_pointer_based = true;
6fb5fa3c 1449 insn_info->contains_cselib_groups = true;
50f0f366 1450
da6603c6 1451 store_info = cse_store_info_pool.allocate ();
6fb5fa3c
DB
1452 group_id = -1;
1453
456610d3 1454 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1455 {
1456 fprintf (dump_file, " processing cselib store ");
1457 print_range (dump_file, offset, width);
1458 fprintf (dump_file, "\n");
1459 }
6fb5fa3c
DB
1460 }
1461
8dd5516b
JJ
1462 const_rhs = rhs = NULL_RTX;
1463 if (GET_CODE (body) == SET
1464 /* No place to keep the value after ra. */
1465 && !reload_completed
1466 && (REG_P (SET_SRC (body))
1467 || GET_CODE (SET_SRC (body)) == SUBREG
1468 || CONSTANT_P (SET_SRC (body)))
1469 && !MEM_VOLATILE_P (mem)
1470 /* Sometimes the store and reload is used for truncation and
1471 rounding. */
1472 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1473 {
1474 rhs = SET_SRC (body);
1475 if (CONSTANT_P (rhs))
1476 const_rhs = rhs;
1477 else if (body == PATTERN (insn_info->insn))
1478 {
1479 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1480 if (tem && CONSTANT_P (XEXP (tem, 0)))
1481 const_rhs = XEXP (tem, 0);
1482 }
1483 if (const_rhs == NULL_RTX && REG_P (rhs))
1484 {
1485 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1486
1487 if (tem && CONSTANT_P (tem))
1488 const_rhs = tem;
1489 }
1490 }
1491
6fb5fa3c
DB
1492 /* Check to see if this stores causes some other stores to be
1493 dead. */
1494 ptr = active_local_stores;
1495 last = NULL;
8dd5516b 1496 redundant_reason = NULL;
6216f94e 1497 mem = canon_rtx (mem);
ac6929b5
RB
1498
1499 if (group_id < 0)
1500 mem_addr = base->val_rtx;
6216f94e
JJ
1501 else
1502 {
ac6929b5
RB
1503 group_info *group = rtx_group_vec[group_id];
1504 mem_addr = group->canon_base_addr;
6216f94e 1505 }
02ce5d90 1506 if (maybe_ne (offset, 0))
ac6929b5 1507 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c
DB
1508
1509 while (ptr)
1510 {
1511 insn_info_t next = ptr->next_local_store;
99b1c316 1512 class store_info *s_info = ptr->store_rec;
60564289 1513 bool del = true;
6fb5fa3c
DB
1514
1515 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1516 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1517 has exactly on set. */
1518 while (!s_info->is_set)
1519 s_info = s_info->next;
1520
ac6929b5 1521 if (s_info->group_id == group_id && s_info->cse_base == base)
6fb5fa3c
DB
1522 {
1523 HOST_WIDE_INT i;
456610d3 1524 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1525 {
1526 fprintf (dump_file, " trying store in insn=%d gid=%d",
1527 INSN_UID (ptr->insn), s_info->group_id);
1528 print_range (dump_file, s_info->offset, s_info->width);
1529 fprintf (dump_file, "\n");
1530 }
8dd5516b
JJ
1531
1532 /* Even if PTR won't be eliminated as unneeded, if both
1533 PTR and this insn store the same constant value, we might
1534 eliminate this insn instead. */
1535 if (s_info->const_rhs
1536 && const_rhs
71d6a386
RS
1537 && known_subrange_p (offset, width,
1538 s_info->offset, s_info->width)
1539 && all_positions_needed_p (s_info, offset - s_info->offset,
d7e1f499
RB
1540 width)
1541 /* We can only remove the later store if the earlier aliases
1542 at least all accesses the later one. */
1543 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1544 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1545 MEM_ALIAS_SET (s_info->mem))))
8dd5516b
JJ
1546 {
1547 if (GET_MODE (mem) == BLKmode)
1548 {
1549 if (GET_MODE (s_info->mem) == BLKmode
1550 && s_info->const_rhs == const_rhs)
1551 redundant_reason = ptr;
1552 }
1553 else if (s_info->const_rhs == const0_rtx
1554 && const_rhs == const0_rtx)
1555 redundant_reason = ptr;
1556 else
1557 {
1558 rtx val;
1559 start_sequence ();
71d6a386 1560 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
8dd5516b
JJ
1561 BLOCK_FOR_INSN (insn_info->insn),
1562 true);
1563 if (get_insns () != NULL)
1564 val = NULL_RTX;
1565 end_sequence ();
1566 if (val && rtx_equal_p (val, const_rhs))
1567 redundant_reason = ptr;
1568 }
1569 }
1570
02ce5d90 1571 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
71d6a386
RS
1572 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1573 /* The new store touches every byte that S_INFO does. */
1574 set_all_positions_unneeded (s_info);
02ce5d90
RS
1575 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1576 && s_info->width.is_constant (&const_s_width)
1577 && width.is_constant (&const_width))
71d6a386 1578 {
02ce5d90 1579 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
71d6a386 1580 begin_unneeded = MAX (begin_unneeded, 0);
02ce5d90 1581 end_unneeded = MIN (end_unneeded, const_s_width);
71d6a386
RS
1582 for (i = begin_unneeded; i < end_unneeded; ++i)
1583 set_position_unneeded (s_info, i);
1584 }
02ce5d90
RS
1585 else
1586 {
1587 /* We don't know which parts of S_INFO are needed and
1588 which aren't, so invalidate the RHS. */
1589 s_info->rhs = NULL;
1590 s_info->const_rhs = NULL;
1591 }
6fb5fa3c
DB
1592 }
1593 else if (s_info->rhs)
1594 /* Need to see if it is possible for this store to overwrite
1595 the value of store_info. If it is, set the rhs to NULL to
1596 keep it from being used to remove a load. */
1597 {
43b9f499
RB
1598 if (canon_output_dependence (s_info->mem, true,
1599 mem, GET_MODE (mem),
1600 mem_addr))
8dd5516b
JJ
1601 {
1602 s_info->rhs = NULL;
1603 s_info->const_rhs = NULL;
1604 }
6fb5fa3c 1605 }
6216f94e 1606
6fb5fa3c
DB
1607 /* An insn can be deleted if every position of every one of
1608 its s_infos is zero. */
1b6fa860 1609 if (any_positions_needed_p (s_info))
60564289 1610 del = false;
8dd5516b 1611
60564289 1612 if (del)
6fb5fa3c
DB
1613 {
1614 insn_info_t insn_to_delete = ptr;
b8698a0f 1615
dabd47e7 1616 active_local_stores_len--;
6fb5fa3c
DB
1617 if (last)
1618 last->next_local_store = ptr->next_local_store;
1619 else
1620 active_local_stores = ptr->next_local_store;
b8698a0f 1621
1b6fa860
JJ
1622 if (!insn_to_delete->cannot_delete)
1623 delete_dead_store_insn (insn_to_delete);
6fb5fa3c
DB
1624 }
1625 else
1626 last = ptr;
b8698a0f 1627
6fb5fa3c
DB
1628 ptr = next;
1629 }
b8698a0f 1630
6fb5fa3c
DB
1631 /* Finish filling in the store_info. */
1632 store_info->next = insn_info->store_rec;
1633 insn_info->store_rec = store_info;
6216f94e 1634 store_info->mem = mem;
6216f94e 1635 store_info->mem_addr = mem_addr;
6fb5fa3c 1636 store_info->cse_base = base;
02ce5d90
RS
1637 HOST_WIDE_INT const_width;
1638 if (!width.is_constant (&const_width))
1639 {
1640 store_info->is_large = true;
1641 store_info->positions_needed.large.count = 0;
1642 store_info->positions_needed.large.bmap = NULL;
1643 }
1644 else if (const_width > HOST_BITS_PER_WIDE_INT)
8dd5516b
JJ
1645 {
1646 store_info->is_large = true;
1647 store_info->positions_needed.large.count = 0;
3f9b14ff 1648 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
8dd5516b
JJ
1649 }
1650 else
1651 {
1652 store_info->is_large = false;
02ce5d90
RS
1653 store_info->positions_needed.small_bitmask
1654 = lowpart_bitmask (const_width);
8dd5516b 1655 }
6fb5fa3c 1656 store_info->group_id = group_id;
71d6a386
RS
1657 store_info->offset = offset;
1658 store_info->width = width;
6fb5fa3c 1659 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1660 store_info->rhs = rhs;
1661 store_info->const_rhs = const_rhs;
1662 store_info->redundant_reason = redundant_reason;
6fb5fa3c 1663
6fb5fa3c
DB
1664 /* If this is a clobber, we return 0. We will only be able to
1665 delete this insn if there is only one store USED store, but we
1666 can use the clobber to delete other stores earlier. */
1667 return store_info->is_set ? 1 : 0;
1668}
1669
1670
1671static void
1672dump_insn_info (const char * start, insn_info_t insn_info)
1673{
b8698a0f 1674 fprintf (dump_file, "%s insn=%d %s\n", start,
6fb5fa3c
DB
1675 INSN_UID (insn_info->insn),
1676 insn_info->store_rec ? "has store" : "naked");
1677}
1678
1679
8660aaae
EC
1680/* If the modes are different and the value's source and target do not
1681 line up, we need to extract the value from lower part of the rhs of
1682 the store, shift it, and then put it into a form that can be shoved
1683 into the read_insn. This function generates a right SHIFT of a
1684 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1685 shift sequence is returned or NULL if we failed to find a
1686 shift. */
1687
1688static rtx
02ce5d90 1689find_shift_sequence (poly_int64 access_size,
fd6daec9 1690 store_info *store_info,
ef4bddc2 1691 machine_mode read_mode,
02ce5d90 1692 poly_int64 shift, bool speed, bool require_cst)
8660aaae 1693{
ef4bddc2 1694 machine_mode store_mode = GET_MODE (store_info->mem);
f67f4dff 1695 scalar_int_mode new_mode;
18b526e8 1696 rtx read_reg = NULL;
8660aaae
EC
1697
1698 /* Some machines like the x86 have shift insns for each size of
1699 operand. Other machines like the ppc or the ia-64 may only have
1700 shift insns that shift values within 32 or 64 bit registers.
1701 This loop tries to find the smallest shift insn that will right
1702 justify the value we want to read but is available in one insn on
1703 the machine. */
1704
f67f4dff
RS
1705 opt_scalar_int_mode new_mode_iter;
1706 FOR_EACH_MODE_FROM (new_mode_iter,
1707 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
8660aaae 1708 {
dc01c3d1
DM
1709 rtx target, new_reg, new_lhs;
1710 rtx_insn *shift_seq, *insn;
d898d29b 1711 int cost;
348eea5f 1712
f67f4dff 1713 new_mode = new_mode_iter.require ();
c94843d2
RS
1714 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1715 break;
1716
72a2609f
JJ
1717 /* If a constant was stored into memory, try to simplify it here,
1718 otherwise the cost of the shift might preclude this optimization
1719 e.g. at -Os, even when no actual shift will be needed. */
8dd5516b 1720 if (store_info->const_rhs)
72a2609f 1721 {
91914e56 1722 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
8dd5516b
JJ
1723 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1724 store_mode, byte);
72a2609f
JJ
1725 if (ret && CONSTANT_P (ret))
1726 {
abd3c800 1727 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
72a2609f 1728 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
abd3c800 1729 ret, shift_rtx);
72a2609f
JJ
1730 if (ret && CONSTANT_P (ret))
1731 {
1732 byte = subreg_lowpart_offset (read_mode, new_mode);
1733 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1734 if (ret && CONSTANT_P (ret)
e548c9df
AM
1735 && (set_src_cost (ret, read_mode, speed)
1736 <= COSTS_N_INSNS (1)))
72a2609f
JJ
1737 return ret;
1738 }
1739 }
1740 }
1741
8dd5516b
JJ
1742 if (require_cst)
1743 return NULL_RTX;
1744
18b526e8
RS
1745 /* Try a wider mode if truncating the store mode to NEW_MODE
1746 requires a real instruction. */
73a699ae 1747 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
d0edd768 1748 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
348eea5f
RS
1749 continue;
1750
18b526e8
RS
1751 /* Also try a wider mode if the necessary punning is either not
1752 desirable or not possible. */
1753 if (!CONSTANT_P (store_info->rhs)
99e1629f 1754 && !targetm.modes_tieable_p (new_mode, store_mode))
18b526e8 1755 continue;
18b526e8 1756
348eea5f 1757 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1758
1759 start_sequence ();
1760
1761 /* In theory we could also check for an ashr. Ian Taylor knows
1762 of one dsp where the cost of these two was not the same. But
1763 this really is a rare case anyway. */
1764 target = expand_binop (new_mode, lshr_optab, new_reg,
abd3c800
RS
1765 gen_int_shift_amount (new_mode, shift),
1766 new_reg, 1, OPTAB_DIRECT);
8660aaae 1767
c6f3019a
RS
1768 shift_seq = get_insns ();
1769 end_sequence ();
8660aaae 1770
c6f3019a
RS
1771 if (target != new_reg || shift_seq == NULL)
1772 continue;
1773
1774 cost = 0;
1775 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1776 if (INSN_P (insn))
d09e78e8 1777 cost += insn_cost (insn, speed);
c6f3019a
RS
1778
1779 /* The computation up to here is essentially independent
1780 of the arguments and could be precomputed. It may
1781 not be worth doing so. We could precompute if
1782 worthwhile or at least cache the results. The result
06acf7d0
RS
1783 technically depends on both SHIFT and ACCESS_SIZE,
1784 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1785
1786 if (cost > COSTS_N_INSNS (1))
1787 continue;
1788
d898d29b
JJ
1789 new_lhs = extract_low_bits (new_mode, store_mode,
1790 copy_rtx (store_info->rhs));
1791 if (new_lhs == NULL_RTX)
1792 continue;
1793
c6f3019a
RS
1794 /* We found an acceptable shift. Generate a move to
1795 take the value from the store and put it into the
1796 shift pseudo, then shift it, then generate another
1797 move to put in into the target of the read. */
18b526e8 1798 emit_move_insn (new_reg, new_lhs);
c6f3019a 1799 emit_insn (shift_seq);
18b526e8 1800 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1801 break;
8660aaae
EC
1802 }
1803
18b526e8 1804 return read_reg;
8660aaae
EC
1805}
1806
1807
02b47899
KZ
1808/* Call back for note_stores to find the hard regs set or clobbered by
1809 insn. Data is a bitmap of the hardregs set so far. */
1810
1811static void
1812look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1813{
1814 bitmap regs_set = (bitmap) data;
1815
1816 if (REG_P (x)
f773c2bd 1817 && HARD_REGISTER_P (x))
dc8afb70 1818 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
02b47899
KZ
1819}
1820
8dd5516b 1821/* Helper function for replace_read and record_store.
71d6a386
RS
1822 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1823 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
8dd5516b
JJ
1824 if not successful. If REQUIRE_CST is true, return always constant. */
1825
1826static rtx
fd6daec9 1827get_stored_val (store_info *store_info, machine_mode read_mode,
02ce5d90 1828 poly_int64 read_offset, poly_int64 read_width,
8dd5516b
JJ
1829 basic_block bb, bool require_cst)
1830{
ef4bddc2 1831 machine_mode store_mode = GET_MODE (store_info->mem);
02ce5d90 1832 poly_int64 gap;
8dd5516b
JJ
1833 rtx read_reg;
1834
1835 /* To get here the read is within the boundaries of the write so
1836 shift will never be negative. Start out with the shift being in
1837 bytes. */
1838 if (store_mode == BLKmode)
71d6a386 1839 gap = 0;
8dd5516b 1840 else if (BYTES_BIG_ENDIAN)
71d6a386
RS
1841 gap = ((store_info->offset + store_info->width)
1842 - (read_offset + read_width));
8dd5516b 1843 else
71d6a386 1844 gap = read_offset - store_info->offset;
8dd5516b 1845
e6575643 1846 if (gap.is_constant () && maybe_ne (gap, 0))
71d6a386 1847 {
02ce5d90
RS
1848 poly_int64 shift = gap * BITS_PER_UNIT;
1849 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
71d6a386
RS
1850 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1851 shift, optimize_bb_for_speed_p (bb),
1852 require_cst);
1853 }
8dd5516b
JJ
1854 else if (store_mode == BLKmode)
1855 {
1856 /* The store is a memset (addr, const_val, const_size). */
1857 gcc_assert (CONST_INT_P (store_info->rhs));
304b9962
RS
1858 scalar_int_mode int_store_mode;
1859 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
8dd5516b
JJ
1860 read_reg = NULL_RTX;
1861 else if (store_info->rhs == const0_rtx)
304b9962
RS
1862 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1863 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
8dd5516b
JJ
1864 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1865 read_reg = NULL_RTX;
1866 else
1867 {
1868 unsigned HOST_WIDE_INT c
1869 = INTVAL (store_info->rhs)
fecfbfa4 1870 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
8dd5516b
JJ
1871 int shift = BITS_PER_UNIT;
1872 while (shift < HOST_BITS_PER_WIDE_INT)
1873 {
1874 c |= (c << shift);
1875 shift <<= 1;
1876 }
304b9962
RS
1877 read_reg = gen_int_mode (c, int_store_mode);
1878 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
8dd5516b
JJ
1879 }
1880 }
1881 else if (store_info->const_rhs
1882 && (require_cst
1883 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1884 read_reg = extract_low_bits (read_mode, store_mode,
1885 copy_rtx (store_info->const_rhs));
1886 else
1887 read_reg = extract_low_bits (read_mode, store_mode,
1888 copy_rtx (store_info->rhs));
1889 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1890 read_reg = NULL_RTX;
1891 return read_reg;
1892}
02b47899 1893
6fb5fa3c
DB
1894/* Take a sequence of:
1895 A <- r1
1896 ...
1897 ... <- A
1898
b8698a0f 1899 and change it into
6fb5fa3c
DB
1900 r2 <- r1
1901 A <- r1
1902 ...
1903 ... <- r2
1904
8660aaae
EC
1905 or
1906
1907 r3 <- extract (r1)
1908 r3 <- r3 >> shift
1909 r2 <- extract (r3)
1910 ... <- r2
1911
1912 or
1913
1914 r2 <- extract (r1)
1915 ... <- r2
1916
1917 Depending on the alignment and the mode of the store and
1918 subsequent load.
1919
1920
1921 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1922 and READ_INSN are for the read. Return true if the replacement
1923 went ok. */
1924
1925static bool
fd6daec9 1926replace_read (store_info *store_info, insn_info_t store_insn,
8dd5516b
JJ
1927 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1928 bitmap regs_live)
6fb5fa3c 1929{
ef4bddc2
RS
1930 machine_mode store_mode = GET_MODE (store_info->mem);
1931 machine_mode read_mode = GET_MODE (read_info->mem);
dc01c3d1
DM
1932 rtx_insn *insns, *this_insn;
1933 rtx read_reg;
8dd5516b 1934 basic_block bb;
8660aaae 1935
6fb5fa3c
DB
1936 if (!dbg_cnt (dse))
1937 return false;
1938
18b526e8
RS
1939 /* Create a sequence of instructions to set up the read register.
1940 This sequence goes immediately before the store and its result
1941 is read by the load.
1942
1943 We need to keep this in perspective. We are replacing a read
8660aaae
EC
1944 with a sequence of insns, but the read will almost certainly be
1945 in cache, so it is not going to be an expensive one. Thus, we
1946 are not willing to do a multi insn shift or worse a subroutine
1947 call to get rid of the read. */
456610d3 1948 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1949 fprintf (dump_file, "trying to replace %smode load in insn %d"
1950 " from %smode store in insn %d\n",
1951 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1952 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1953 start_sequence ();
8dd5516b
JJ
1954 bb = BLOCK_FOR_INSN (read_insn->insn);
1955 read_reg = get_stored_val (store_info,
71d6a386 1956 read_mode, read_info->offset, read_info->width,
8dd5516b 1957 bb, false);
18b526e8 1958 if (read_reg == NULL_RTX)
8660aaae 1959 {
18b526e8 1960 end_sequence ();
456610d3 1961 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1962 fprintf (dump_file, " -- could not extract bits of stored value\n");
1963 return false;
8660aaae 1964 }
18b526e8
RS
1965 /* Force the value into a new register so that it won't be clobbered
1966 between the store and the load. */
1967 read_reg = copy_to_mode_reg (read_mode, read_reg);
1968 insns = get_insns ();
1969 end_sequence ();
8660aaae 1970
02b47899
KZ
1971 if (insns != NULL_RTX)
1972 {
1973 /* Now we have to scan the set of new instructions to see if the
1974 sequence contains and sets of hardregs that happened to be
1975 live at this point. For instance, this can happen if one of
1976 the insns sets the CC and the CC happened to be live at that
1977 point. This does occasionally happen, see PR 37922. */
3f9b14ff 1978 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
02b47899
KZ
1979
1980 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1981 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
b8698a0f 1982
02b47899
KZ
1983 bitmap_and_into (regs_set, regs_live);
1984 if (!bitmap_empty_p (regs_set))
1985 {
456610d3 1986 if (dump_file && (dump_flags & TDF_DETAILS))
02b47899 1987 {
b8698a0f 1988 fprintf (dump_file,
02b47899
KZ
1989 "abandoning replacement because sequence clobbers live hardregs:");
1990 df_print_regset (dump_file, regs_set);
1991 }
b8698a0f 1992
02b47899
KZ
1993 BITMAP_FREE (regs_set);
1994 return false;
1995 }
1996 BITMAP_FREE (regs_set);
1997 }
1998
8660aaae 1999 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 2000 {
fd6daec9 2001 deferred_change *change = deferred_change_pool.allocate ();
b8698a0f 2002
8660aaae
EC
2003 /* Insert this right before the store insn where it will be safe
2004 from later insns that might change it before the read. */
2005 emit_insn_before (insns, store_insn->insn);
b8698a0f 2006
8660aaae
EC
2007 /* And now for the kludge part: cselib croaks if you just
2008 return at this point. There are two reasons for this:
b8698a0f 2009
8660aaae
EC
2010 1) Cselib has an idea of how many pseudos there are and
2011 that does not include the new ones we just added.
b8698a0f 2012
8660aaae
EC
2013 2) Cselib does not know about the move insn we added
2014 above the store_info, and there is no way to tell it
2015 about it, because it has "moved on".
b8698a0f 2016
8660aaae
EC
2017 Problem (1) is fixable with a certain amount of engineering.
2018 Problem (2) is requires starting the bb from scratch. This
2019 could be expensive.
b8698a0f 2020
8660aaae
EC
2021 So we are just going to have to lie. The move/extraction
2022 insns are not really an issue, cselib did not see them. But
2023 the use of the new pseudo read_insn is a real problem because
2024 cselib has not scanned this insn. The way that we solve this
2025 problem is that we are just going to put the mem back for now
2026 and when we are finished with the block, we undo this. We
2027 keep a table of mems to get rid of. At the end of the basic
2028 block we can put them back. */
b8698a0f 2029
8660aaae 2030 *loc = read_info->mem;
da6603c6
ML
2031 change->next = deferred_change_list;
2032 deferred_change_list = change;
2033 change->loc = loc;
2034 change->reg = read_reg;
b8698a0f 2035
8660aaae
EC
2036 /* Get rid of the read_info, from the point of view of the
2037 rest of dse, play like this read never happened. */
2038 read_insn->read_rec = read_info->next;
fb0b2914 2039 read_info_type_pool.remove (read_info);
456610d3 2040 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2041 {
2042 fprintf (dump_file, " -- replaced the loaded MEM with ");
2043 print_simple_rtl (dump_file, read_reg);
2044 fprintf (dump_file, "\n");
2045 }
8660aaae 2046 return true;
6fb5fa3c 2047 }
b8698a0f 2048 else
6fb5fa3c 2049 {
456610d3 2050 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2051 {
2052 fprintf (dump_file, " -- replacing the loaded MEM with ");
2053 print_simple_rtl (dump_file, read_reg);
2054 fprintf (dump_file, " led to an invalid instruction\n");
2055 }
6fb5fa3c
DB
2056 return false;
2057 }
2058}
2059
d7111da8
RS
2060/* Check the address of MEM *LOC and kill any appropriate stores that may
2061 be active. */
6fb5fa3c 2062
d7111da8
RS
2063static void
2064check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
6fb5fa3c 2065{
6216f94e 2066 rtx mem = *loc, mem_addr;
6fb5fa3c 2067 insn_info_t insn_info;
02ce5d90
RS
2068 poly_int64 offset = 0;
2069 poly_int64 width = 0;
b8698a0f 2070 cselib_val *base = NULL;
6fb5fa3c
DB
2071 int group_id;
2072 read_info_t read_info;
2073
6fb5fa3c
DB
2074 insn_info = bb_info->last_insn;
2075
2076 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
a49a975f 2077 || MEM_VOLATILE_P (mem))
6fb5fa3c 2078 {
a49a975f
JJ
2079 if (crtl->stack_protect_guard
2080 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2081 || (crtl->stack_protect_guard_decl
2082 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2083 && MEM_VOLATILE_P (mem))
2084 {
2085 /* This is either the stack protector canary on the stack,
2086 which ought to be written by a MEM_VOLATILE_P store and
2087 thus shouldn't be deleted and is read at the very end of
2088 function, but shouldn't conflict with any other store.
2089 Or it is __stack_chk_guard variable or TLS or whatever else
2090 MEM holding the canary value, which really shouldn't be
2091 ever modified in -fstack-protector* protected functions,
2092 otherwise the prologue store wouldn't match the epilogue
2093 check. */
2094 if (dump_file && (dump_flags & TDF_DETAILS))
2095 fprintf (dump_file, " stack protector canary read ignored.\n");
2096 insn_info->cannot_delete = true;
2097 return;
2098 }
2099
456610d3 2100 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2101 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2102 add_wild_read (bb_info);
2103 insn_info->cannot_delete = true;
d7111da8 2104 return;
6fb5fa3c
DB
2105 }
2106
2107 /* If it is reading readonly mem, then there can be no conflict with
2108 another write. */
2109 if (MEM_READONLY_P (mem))
d7111da8 2110 return;
6fb5fa3c 2111
ac6929b5 2112 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c 2113 {
456610d3 2114 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2115 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2116 add_wild_read (bb_info);
d7111da8 2117 return;
6fb5fa3c
DB
2118 }
2119
2120 if (GET_MODE (mem) == BLKmode)
2121 width = -1;
2122 else
2123 width = GET_MODE_SIZE (GET_MODE (mem));
2124
02ce5d90 2125 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
938f9248 2126 {
213ffde2
JJ
2127 if (dump_file && (dump_flags & TDF_DETAILS))
2128 fprintf (dump_file, " adding wild read, due to overflow.\n");
2129 add_wild_read (bb_info);
938f9248
ML
2130 return;
2131 }
2132
fb0b2914 2133 read_info = read_info_type_pool.allocate ();
6fb5fa3c
DB
2134 read_info->group_id = group_id;
2135 read_info->mem = mem;
71d6a386
RS
2136 read_info->offset = offset;
2137 read_info->width = width;
6fb5fa3c
DB
2138 read_info->next = insn_info->read_rec;
2139 insn_info->read_rec = read_info;
ac6929b5
RB
2140 if (group_id < 0)
2141 mem_addr = base->val_rtx;
6216f94e
JJ
2142 else
2143 {
ac6929b5
RB
2144 group_info *group = rtx_group_vec[group_id];
2145 mem_addr = group->canon_base_addr;
6216f94e 2146 }
02ce5d90 2147 if (maybe_ne (offset, 0))
ac6929b5 2148 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c 2149
ac6929b5 2150 if (group_id >= 0)
6fb5fa3c
DB
2151 {
2152 /* This is the restricted case where the base is a constant or
2153 the frame pointer and offset is a constant. */
2154 insn_info_t i_ptr = active_local_stores;
2155 insn_info_t last = NULL;
b8698a0f 2156
456610d3 2157 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2158 {
02ce5d90 2159 if (!known_size_p (width))
6fb5fa3c
DB
2160 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2161 group_id);
2162 else
71d6a386
RS
2163 {
2164 fprintf (dump_file, " processing const load gid=%d", group_id);
2165 print_range (dump_file, offset, width);
2166 fprintf (dump_file, "\n");
2167 }
6fb5fa3c
DB
2168 }
2169
2170 while (i_ptr)
2171 {
2172 bool remove = false;
fd6daec9 2173 store_info *store_info = i_ptr->store_rec;
b8698a0f 2174
6fb5fa3c
DB
2175 /* Skip the clobbers. */
2176 while (!store_info->is_set)
2177 store_info = store_info->next;
b8698a0f 2178
6fb5fa3c
DB
2179 /* There are three cases here. */
2180 if (store_info->group_id < 0)
2181 /* We have a cselib store followed by a read from a
2182 const base. */
b8698a0f
L
2183 remove
2184 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2185 GET_MODE (store_info->mem),
2186 store_info->mem_addr,
53d9622b 2187 mem, mem_addr);
b8698a0f 2188
6fb5fa3c
DB
2189 else if (group_id == store_info->group_id)
2190 {
2191 /* This is a block mode load. We may get lucky and
2192 canon_true_dependence may save the day. */
02ce5d90 2193 if (!known_size_p (width))
b8698a0f
L
2194 remove
2195 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2196 GET_MODE (store_info->mem),
2197 store_info->mem_addr,
53d9622b 2198 mem, mem_addr);
b8698a0f 2199
6fb5fa3c
DB
2200 /* If this read is just reading back something that we just
2201 stored, rewrite the read. */
b8698a0f 2202 else
6fb5fa3c
DB
2203 {
2204 if (store_info->rhs
71d6a386
RS
2205 && known_subrange_p (offset, width, store_info->offset,
2206 store_info->width)
8dd5516b 2207 && all_positions_needed_p (store_info,
71d6a386 2208 offset - store_info->offset,
8dd5516b
JJ
2209 width)
2210 && replace_read (store_info, i_ptr, read_info,
2211 insn_info, loc, bb_info->regs_live))
d7111da8 2212 return;
8dd5516b 2213
6fb5fa3c 2214 /* The bases are the same, just see if the offsets
71d6a386
RS
2215 could overlap. */
2216 if (ranges_maybe_overlap_p (offset, width,
2217 store_info->offset,
2218 store_info->width))
6fb5fa3c
DB
2219 remove = true;
2220 }
2221 }
b8698a0f
L
2222
2223 /* else
6fb5fa3c
DB
2224 The else case that is missing here is that the
2225 bases are constant but different. There is nothing
2226 to do here because there is no overlap. */
b8698a0f 2227
6fb5fa3c
DB
2228 if (remove)
2229 {
456610d3 2230 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2231 dump_insn_info ("removing from active", i_ptr);
2232
dabd47e7 2233 active_local_stores_len--;
6fb5fa3c
DB
2234 if (last)
2235 last->next_local_store = i_ptr->next_local_store;
2236 else
2237 active_local_stores = i_ptr->next_local_store;
2238 }
2239 else
2240 last = i_ptr;
2241 i_ptr = i_ptr->next_local_store;
2242 }
2243 }
b8698a0f 2244 else
6fb5fa3c
DB
2245 {
2246 insn_info_t i_ptr = active_local_stores;
2247 insn_info_t last = NULL;
456610d3 2248 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2249 {
2250 fprintf (dump_file, " processing cselib load mem:");
2251 print_inline_rtx (dump_file, mem, 0);
2252 fprintf (dump_file, "\n");
2253 }
2254
2255 while (i_ptr)
2256 {
2257 bool remove = false;
fd6daec9 2258 store_info *store_info = i_ptr->store_rec;
b8698a0f 2259
456610d3 2260 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2261 fprintf (dump_file, " processing cselib load against insn %d\n",
2262 INSN_UID (i_ptr->insn));
2263
2264 /* Skip the clobbers. */
2265 while (!store_info->is_set)
2266 store_info = store_info->next;
2267
2268 /* If this read is just reading back something that we just
2269 stored, rewrite the read. */
2270 if (store_info->rhs
2271 && store_info->group_id == -1
2272 && store_info->cse_base == base
71d6a386
RS
2273 && known_subrange_p (offset, width, store_info->offset,
2274 store_info->width)
8dd5516b 2275 && all_positions_needed_p (store_info,
71d6a386 2276 offset - store_info->offset, width)
8dd5516b
JJ
2277 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2278 bb_info->regs_live))
d7111da8 2279 return;
6fb5fa3c 2280
ac6929b5
RB
2281 remove = canon_true_dependence (store_info->mem,
2282 GET_MODE (store_info->mem),
2283 store_info->mem_addr,
2284 mem, mem_addr);
b8698a0f 2285
6fb5fa3c
DB
2286 if (remove)
2287 {
456610d3 2288 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2289 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2290
dabd47e7 2291 active_local_stores_len--;
6fb5fa3c
DB
2292 if (last)
2293 last->next_local_store = i_ptr->next_local_store;
2294 else
2295 active_local_stores = i_ptr->next_local_store;
2296 }
2297 else
2298 last = i_ptr;
2299 i_ptr = i_ptr->next_local_store;
2300 }
2301 }
6fb5fa3c
DB
2302}
2303
d7111da8 2304/* A note_uses callback in which DATA points the INSN_INFO for
6fb5fa3c
DB
2305 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2306 true for any part of *LOC. */
2307
2308static void
2309check_mem_read_use (rtx *loc, void *data)
2310{
d7111da8
RS
2311 subrtx_ptr_iterator::array_type array;
2312 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2313 {
2314 rtx *loc = *iter;
2315 if (MEM_P (*loc))
2316 check_mem_read_rtx (loc, (bb_info_t) data);
2317 }
6fb5fa3c
DB
2318}
2319
8dd5516b
JJ
2320
2321/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2322 So far it only handles arguments passed in registers. */
2323
2324static bool
2325get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2326{
d5cc9181
JR
2327 CUMULATIVE_ARGS args_so_far_v;
2328 cumulative_args_t args_so_far;
8dd5516b
JJ
2329 tree arg;
2330 int idx;
2331
d5cc9181
JR
2332 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2333 args_so_far = pack_cumulative_args (&args_so_far_v);
8dd5516b
JJ
2334
2335 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2336 for (idx = 0;
2337 arg != void_list_node && idx < nargs;
2338 arg = TREE_CHAIN (arg), idx++)
2339 {
b4206259 2340 scalar_int_mode mode;
3c07301f 2341 rtx reg, link, tmp;
b4206259
RS
2342
2343 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2344 return false;
2345
d5cc9181 2346 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
b4206259 2347 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
8dd5516b
JJ
2348 return false;
2349
2350 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2351 link;
2352 link = XEXP (link, 1))
2353 if (GET_CODE (XEXP (link, 0)) == USE)
2354 {
b4206259 2355 scalar_int_mode arg_mode;
8dd5516b
JJ
2356 args[idx] = XEXP (XEXP (link, 0), 0);
2357 if (REG_P (args[idx])
2358 && REGNO (args[idx]) == REGNO (reg)
2359 && (GET_MODE (args[idx]) == mode
b4206259
RS
2360 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2361 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2362 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
8dd5516b
JJ
2363 break;
2364 }
2365 if (!link)
2366 return false;
2367
2368 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2369 if (GET_MODE (args[idx]) != mode)
2370 {
2371 if (!tmp || !CONST_INT_P (tmp))
2372 return false;
6d26322f 2373 tmp = gen_int_mode (INTVAL (tmp), mode);
8dd5516b
JJ
2374 }
2375 if (tmp)
2376 args[idx] = tmp;
2377
d5cc9181 2378 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
8dd5516b
JJ
2379 }
2380 if (arg != void_list_node || idx != nargs)
2381 return false;
2382 return true;
2383}
2384
9e582b1d
JR
2385/* Return a bitmap of the fixed registers contained in IN. */
2386
2387static bitmap
2388copy_fixed_regs (const_bitmap in)
2389{
2390 bitmap ret;
2391
2392 ret = ALLOC_REG_SET (NULL);
2393 bitmap_and (ret, in, fixed_reg_set_regset);
2394 return ret;
2395}
8dd5516b 2396
6fb5fa3c
DB
2397/* Apply record_store to all candidate stores in INSN. Mark INSN
2398 if some part of it is not a candidate store and assigns to a
2399 non-register target. */
2400
2401static void
dd60a84c 2402scan_insn (bb_info_t bb_info, rtx_insn *insn)
6fb5fa3c
DB
2403{
2404 rtx body;
fb0b2914 2405 insn_info_type *insn_info = insn_info_type_pool.allocate ();
6fb5fa3c 2406 int mems_found = 0;
da6603c6 2407 memset (insn_info, 0, sizeof (struct insn_info_type));
6fb5fa3c 2408
456610d3 2409 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2410 fprintf (dump_file, "\n**scanning insn=%d\n",
2411 INSN_UID (insn));
2412
2413 insn_info->prev_insn = bb_info->last_insn;
2414 insn_info->insn = insn;
2415 bb_info->last_insn = insn_info;
b8698a0f 2416
b5b8b0ac
AO
2417 if (DEBUG_INSN_P (insn))
2418 {
2419 insn_info->cannot_delete = true;
2420 return;
2421 }
6fb5fa3c 2422
6fb5fa3c
DB
2423 /* Look at all of the uses in the insn. */
2424 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2425
2426 if (CALL_P (insn))
2427 {
8dd5516b 2428 bool const_call;
ee516de9 2429 rtx call, sym;
8dd5516b
JJ
2430 tree memset_call = NULL_TREE;
2431
6fb5fa3c 2432 insn_info->cannot_delete = true;
50f0f366 2433
6fb5fa3c 2434 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2435 however, they can read their parameters which may have
8dd5516b
JJ
2436 been pushed onto the stack.
2437 memset and bzero don't read memory either. */
2438 const_call = RTL_CONST_CALL_P (insn);
ee516de9
EB
2439 if (!const_call
2440 && (call = get_call_rtx_from (insn))
2441 && (sym = XEXP (XEXP (call, 0), 0))
2442 && GET_CODE (sym) == SYMBOL_REF
2443 && SYMBOL_REF_DECL (sym)
2444 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
3d78e008 2445 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
ee516de9
EB
2446 memset_call = SYMBOL_REF_DECL (sym);
2447
8dd5516b 2448 if (const_call || memset_call)
6fb5fa3c
DB
2449 {
2450 insn_info_t i_ptr = active_local_stores;
2451 insn_info_t last = NULL;
2452
456610d3 2453 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2454 fprintf (dump_file, "%s call %d\n",
2455 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2456
64520bdc 2457 /* See the head comment of the frame_read field. */
57534689
JJ
2458 if (reload_completed
2459 /* Tail calls are storing their arguments using
2460 arg pointer. If it is a frame pointer on the target,
2461 even before reload we need to kill frame pointer based
2462 stores. */
2463 || (SIBLING_CALL_P (insn)
2464 && HARD_FRAME_POINTER_IS_ARG_POINTER))
64520bdc
EB
2465 insn_info->frame_read = true;
2466
2467 /* Loop over the active stores and remove those which are
2468 killed by the const function call. */
6fb5fa3c
DB
2469 while (i_ptr)
2470 {
64520bdc
EB
2471 bool remove_store = false;
2472
2473 /* The stack pointer based stores are always killed. */
50f0f366 2474 if (i_ptr->stack_pointer_based)
64520bdc
EB
2475 remove_store = true;
2476
2477 /* If the frame is read, the frame related stores are killed. */
2478 else if (insn_info->frame_read)
2479 {
fd6daec9 2480 store_info *store_info = i_ptr->store_rec;
64520bdc
EB
2481
2482 /* Skip the clobbers. */
2483 while (!store_info->is_set)
2484 store_info = store_info->next;
2485
2486 if (store_info->group_id >= 0
9771b263 2487 && rtx_group_vec[store_info->group_id]->frame_related)
64520bdc
EB
2488 remove_store = true;
2489 }
2490
2491 if (remove_store)
6fb5fa3c 2492 {
456610d3 2493 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2494 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2495
dabd47e7 2496 active_local_stores_len--;
6fb5fa3c
DB
2497 if (last)
2498 last->next_local_store = i_ptr->next_local_store;
2499 else
2500 active_local_stores = i_ptr->next_local_store;
2501 }
2502 else
2503 last = i_ptr;
64520bdc 2504
6fb5fa3c
DB
2505 i_ptr = i_ptr->next_local_store;
2506 }
8dd5516b
JJ
2507
2508 if (memset_call)
2509 {
2510 rtx args[3];
2511 if (get_call_args (insn, memset_call, args, 3)
2512 && CONST_INT_P (args[1])
2513 && CONST_INT_P (args[2])
2514 && INTVAL (args[2]) > 0)
2515 {
2516 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
f5541398 2517 set_mem_size (mem, INTVAL (args[2]));
f7df4a84 2518 body = gen_rtx_SET (mem, args[1]);
8dd5516b 2519 mems_found += record_store (body, bb_info);
456610d3 2520 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2521 fprintf (dump_file, "handling memset as BLKmode store\n");
2522 if (mems_found == 1)
2523 {
dabd47e7
JJ
2524 if (active_local_stores_len++
2525 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2526 {
2527 active_local_stores_len = 1;
2528 active_local_stores = NULL;
2529 }
9e582b1d
JR
2530 insn_info->fixed_regs_live
2531 = copy_fixed_regs (bb_info->regs_live);
8dd5516b
JJ
2532 insn_info->next_local_store = active_local_stores;
2533 active_local_stores = insn_info;
2534 }
2535 }
a2ad54a0
JJ
2536 else
2537 clear_rhs_from_active_local_stores ();
8dd5516b 2538 }
6fb5fa3c 2539 }
57534689
JJ
2540 else if (SIBLING_CALL_P (insn) && reload_completed)
2541 /* Arguments for a sibling call that are pushed to memory are passed
2542 using the incoming argument pointer of the current function. After
2543 reload that might be (and likely is) frame pointer based. */
2544 add_wild_read (bb_info);
50f0f366 2545 else
d26c7090
ER
2546 /* Every other call, including pure functions, may read any memory
2547 that is not relative to the frame. */
2548 add_non_frame_wild_read (bb_info);
50f0f366 2549
6fb5fa3c
DB
2550 return;
2551 }
2552
2553 /* Assuming that there are sets in these insns, we cannot delete
2554 them. */
2555 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2556 || volatile_refs_p (PATTERN (insn))
2da02156 2557 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6fb5fa3c
DB
2558 || (RTX_FRAME_RELATED_P (insn))
2559 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2560 insn_info->cannot_delete = true;
b8698a0f 2561
6fb5fa3c
DB
2562 body = PATTERN (insn);
2563 if (GET_CODE (body) == PARALLEL)
2564 {
2565 int i;
2566 for (i = 0; i < XVECLEN (body, 0); i++)
2567 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2568 }
2569 else
2570 mems_found += record_store (body, bb_info);
2571
456610d3 2572 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2573 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
6fb5fa3c
DB
2574 mems_found, insn_info->cannot_delete ? "true" : "false");
2575
8dd5516b
JJ
2576 /* If we found some sets of mems, add it into the active_local_stores so
2577 that it can be locally deleted if found dead or used for
2578 replace_read and redundant constant store elimination. Otherwise mark
2579 it as cannot delete. This simplifies the processing later. */
2580 if (mems_found == 1)
6fb5fa3c 2581 {
dabd47e7
JJ
2582 if (active_local_stores_len++
2583 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2584 {
2585 active_local_stores_len = 1;
2586 active_local_stores = NULL;
2587 }
9e582b1d 2588 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
6fb5fa3c
DB
2589 insn_info->next_local_store = active_local_stores;
2590 active_local_stores = insn_info;
2591 }
2592 else
2593 insn_info->cannot_delete = true;
2594}
2595
2596
2597/* Remove BASE from the set of active_local_stores. This is a
2598 callback from cselib that is used to get rid of the stores in
2599 active_local_stores. */
2600
2601static void
2602remove_useless_values (cselib_val *base)
2603{
2604 insn_info_t insn_info = active_local_stores;
2605 insn_info_t last = NULL;
2606
2607 while (insn_info)
2608 {
fd6daec9 2609 store_info *store_info = insn_info->store_rec;
60564289 2610 bool del = false;
6fb5fa3c
DB
2611
2612 /* If ANY of the store_infos match the cselib group that is
67914693 2613 being deleted, then the insn cannot be deleted. */
6fb5fa3c
DB
2614 while (store_info)
2615 {
b8698a0f 2616 if ((store_info->group_id == -1)
6fb5fa3c
DB
2617 && (store_info->cse_base == base))
2618 {
60564289 2619 del = true;
6fb5fa3c
DB
2620 break;
2621 }
2622 store_info = store_info->next;
2623 }
2624
60564289 2625 if (del)
6fb5fa3c 2626 {
dabd47e7 2627 active_local_stores_len--;
6fb5fa3c
DB
2628 if (last)
2629 last->next_local_store = insn_info->next_local_store;
2630 else
2631 active_local_stores = insn_info->next_local_store;
2632 free_store_info (insn_info);
2633 }
2634 else
2635 last = insn_info;
b8698a0f 2636
6fb5fa3c
DB
2637 insn_info = insn_info->next_local_store;
2638 }
2639}
2640
2641
2642/* Do all of step 1. */
2643
2644static void
2645dse_step1 (void)
2646{
2647 basic_block bb;
3f9b14ff 2648 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
b8698a0f 2649
457eeaae 2650 cselib_init (0);
6fb5fa3c
DB
2651 all_blocks = BITMAP_ALLOC (NULL);
2652 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2653 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2654
04a90bec 2655 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2656 {
2657 insn_info_t ptr;
fb0b2914 2658 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
6fb5fa3c 2659
da6603c6 2660 memset (bb_info, 0, sizeof (dse_bb_info_type));
6fb5fa3c 2661 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2662 bb_info->regs_live = regs_live;
2663
2664 bitmap_copy (regs_live, DF_LR_IN (bb));
2665 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2666
2667 bb_table[bb->index] = bb_info;
2668 cselib_discard_hook = remove_useless_values;
2669
2670 if (bb->index >= NUM_FIXED_BLOCKS)
2671 {
dd60a84c 2672 rtx_insn *insn;
6fb5fa3c 2673
6fb5fa3c 2674 active_local_stores = NULL;
dabd47e7 2675 active_local_stores_len = 0;
6fb5fa3c 2676 cselib_clear_table ();
b8698a0f 2677
6fb5fa3c
DB
2678 /* Scan the insns. */
2679 FOR_BB_INSNS (bb, insn)
2680 {
2681 if (INSN_P (insn))
2682 scan_insn (bb_info, insn);
2683 cselib_process_insn (insn);
02b47899
KZ
2684 if (INSN_P (insn))
2685 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c 2686 }
b8698a0f 2687
6fb5fa3c
DB
2688 /* This is something of a hack, because the global algorithm
2689 is supposed to take care of the case where stores go dead
2690 at the end of the function. However, the global
2691 algorithm must take a more conservative view of block
2692 mode reads than the local alg does. So to get the case
2693 where you have a store to the frame followed by a non
0d52bcc1 2694 overlapping block more read, we look at the active local
6fb5fa3c
DB
2695 stores at the end of the function and delete all of the
2696 frame and spill based ones. */
2697 if (stores_off_frame_dead_at_return
2698 && (EDGE_COUNT (bb->succs) == 0
2699 || (single_succ_p (bb)
fefa31b5 2700 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
e3b5732b 2701 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2702 {
2703 insn_info_t i_ptr = active_local_stores;
2704 while (i_ptr)
2705 {
fd6daec9 2706 store_info *store_info = i_ptr->store_rec;
6fb5fa3c
DB
2707
2708 /* Skip the clobbers. */
2709 while (!store_info->is_set)
2710 store_info = store_info->next;
ac6929b5
RB
2711 if (store_info->group_id >= 0)
2712 {
2713 group_info *group = rtx_group_vec[store_info->group_id];
2714 if (group->frame_related && !i_ptr->cannot_delete)
2715 delete_dead_store_insn (i_ptr);
2716 }
6fb5fa3c
DB
2717
2718 i_ptr = i_ptr->next_local_store;
2719 }
2720 }
2721
2722 /* Get rid of the loads that were discovered in
2723 replace_read. Cselib is finished with this block. */
2724 while (deferred_change_list)
2725 {
fd6daec9 2726 deferred_change *next = deferred_change_list->next;
6fb5fa3c
DB
2727
2728 /* There is no reason to validate this change. That was
2729 done earlier. */
2730 *deferred_change_list->loc = deferred_change_list->reg;
fb0b2914 2731 deferred_change_pool.remove (deferred_change_list);
6fb5fa3c
DB
2732 deferred_change_list = next;
2733 }
2734
2735 /* Get rid of all of the cselib based store_infos in this
2736 block and mark the containing insns as not being
2737 deletable. */
2738 ptr = bb_info->last_insn;
2739 while (ptr)
2740 {
2741 if (ptr->contains_cselib_groups)
8dd5516b 2742 {
fd6daec9 2743 store_info *s_info = ptr->store_rec;
8dd5516b
JJ
2744 while (s_info && !s_info->is_set)
2745 s_info = s_info->next;
2746 if (s_info
2747 && s_info->redundant_reason
2748 && s_info->redundant_reason->insn
2749 && !ptr->cannot_delete)
2750 {
456610d3 2751 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2752 fprintf (dump_file, "Locally deleting insn %d "
2753 "because insn %d stores the "
2754 "same value and couldn't be "
2755 "eliminated\n",
2756 INSN_UID (ptr->insn),
2757 INSN_UID (s_info->redundant_reason->insn));
2758 delete_dead_store_insn (ptr);
2759 }
8dd5516b
JJ
2760 free_store_info (ptr);
2761 }
2762 else
2763 {
fd6daec9 2764 store_info *s_info;
8dd5516b
JJ
2765
2766 /* Free at least positions_needed bitmaps. */
2767 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2768 if (s_info->is_large)
2769 {
dc491a25 2770 BITMAP_FREE (s_info->positions_needed.large.bmap);
8dd5516b
JJ
2771 s_info->is_large = false;
2772 }
2773 }
6fb5fa3c
DB
2774 ptr = ptr->prev_insn;
2775 }
2776
da6603c6 2777 cse_store_info_pool.release ();
6fb5fa3c 2778 }
02b47899 2779 bb_info->regs_live = NULL;
6fb5fa3c
DB
2780 }
2781
02b47899 2782 BITMAP_FREE (regs_live);
6fb5fa3c 2783 cselib_finish ();
c203e8a7 2784 rtx_group_table->empty ();
6fb5fa3c
DB
2785}
2786
2787\f
2788/*----------------------------------------------------------------------------
2789 Second step.
2790
2791 Assign each byte position in the stores that we are going to
2792 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2793 there are any bit positions assigned.
6fb5fa3c
DB
2794----------------------------------------------------------------------------*/
2795
2796static void
2797dse_step2_init (void)
2798{
2799 unsigned int i;
fd6daec9 2800 group_info *group;
6fb5fa3c 2801
9771b263 2802 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2803 {
2804 /* For all non stack related bases, we only consider a store to
2805 be deletable if there are two or more stores for that
2806 position. This is because it takes one store to make the
2807 other store redundant. However, for the stores that are
2808 stack related, we consider them if there is only one store
2809 for the position. We do this because the stack related
2810 stores can be deleted if their is no read between them and
2811 the end of the function.
b8698a0f 2812
6fb5fa3c
DB
2813 To make this work in the current framework, we take the stack
2814 related bases add all of the bits from store1 into store2.
2815 This has the effect of making the eligible even if there is
2816 only one store. */
2817
2818 if (stores_off_frame_dead_at_return && group->frame_related)
2819 {
2820 bitmap_ior_into (group->store2_n, group->store1_n);
2821 bitmap_ior_into (group->store2_p, group->store1_p);
456610d3 2822 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2823 fprintf (dump_file, "group %d is frame related ", i);
6fb5fa3c
DB
2824 }
2825
2826 group->offset_map_size_n++;
3f9b14ff
SB
2827 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2828 group->offset_map_size_n);
6fb5fa3c 2829 group->offset_map_size_p++;
3f9b14ff
SB
2830 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2831 group->offset_map_size_p);
6fb5fa3c 2832 group->process_globally = false;
456610d3 2833 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2834 {
b8698a0f 2835 fprintf (dump_file, "group %d(%d+%d): ", i,
6fb5fa3c
DB
2836 (int)bitmap_count_bits (group->store2_n),
2837 (int)bitmap_count_bits (group->store2_p));
2838 bitmap_print (dump_file, group->store2_n, "n ", " ");
2839 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2840 }
2841 }
2842}
2843
2844
ac6929b5 2845/* Init the offset tables. */
6fb5fa3c
DB
2846
2847static bool
ac6929b5 2848dse_step2 (void)
6fb5fa3c
DB
2849{
2850 unsigned int i;
fd6daec9 2851 group_info *group;
6fb5fa3c
DB
2852 /* Position 0 is unused because 0 is used in the maps to mean
2853 unused. */
2854 current_position = 1;
9771b263 2855 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2856 {
2857 bitmap_iterator bi;
2858 unsigned int j;
2859
c3284718
RS
2860 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2861 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
6fb5fa3c
DB
2862 bitmap_clear (group->group_kill);
2863
2864 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2865 {
2866 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2867 if (bitmap_bit_p (group->escaped_n, j))
2868 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2869 group->offset_map_n[j] = current_position++;
2870 group->process_globally = true;
2871 }
2872 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2873 {
b8698a0f 2874 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2875 if (bitmap_bit_p (group->escaped_p, j))
2876 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2877 group->offset_map_p[j] = current_position++;
2878 group->process_globally = true;
2879 }
2880 }
2881 return current_position != 1;
2882}
2883
2884
6fb5fa3c
DB
2885\f
2886/*----------------------------------------------------------------------------
2887 Third step.
b8698a0f 2888
6fb5fa3c
DB
2889 Build the bit vectors for the transfer functions.
2890----------------------------------------------------------------------------*/
2891
2892
6fb5fa3c
DB
2893/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2894 there, return 0. */
2895
2896static int
fd6daec9 2897get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
6fb5fa3c
DB
2898{
2899 if (offset < 0)
2900 {
2901 HOST_WIDE_INT offset_p = -offset;
2902 if (offset_p >= group_info->offset_map_size_n)
2903 return 0;
2904 return group_info->offset_map_n[offset_p];
2905 }
2906 else
2907 {
2908 if (offset >= group_info->offset_map_size_p)
2909 return 0;
2910 return group_info->offset_map_p[offset];
2911 }
2912}
2913
2914
2915/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2916 may be NULL. */
2917
b8698a0f 2918static void
ac6929b5 2919scan_stores (store_info *store_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
2920{
2921 while (store_info)
2922 {
02ce5d90 2923 HOST_WIDE_INT i, offset, width;
fd6daec9 2924 group_info *group_info
9771b263 2925 = rtx_group_vec[store_info->group_id];
02ce5d90
RS
2926 /* We can (conservatively) ignore stores whose bounds aren't known;
2927 they simply don't generate new global dse opportunities. */
2928 if (group_info->process_globally
2929 && store_info->offset.is_constant (&offset)
2930 && store_info->width.is_constant (&width))
71d6a386 2931 {
02ce5d90
RS
2932 HOST_WIDE_INT end = offset + width;
2933 for (i = offset; i < end; i++)
71d6a386
RS
2934 {
2935 int index = get_bitmap_index (group_info, i);
2936 if (index != 0)
2937 {
2938 bitmap_set_bit (gen, index);
2939 if (kill)
2940 bitmap_clear_bit (kill, index);
2941 }
2942 }
2943 }
6fb5fa3c
DB
2944 store_info = store_info->next;
2945 }
2946}
2947
2948
6fb5fa3c
DB
2949/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2950 may be NULL. */
2951
2952static void
ac6929b5 2953scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
2954{
2955 read_info_t read_info = insn_info->read_rec;
2956 int i;
fd6daec9 2957 group_info *group;
6fb5fa3c 2958
64520bdc
EB
2959 /* If this insn reads the frame, kill all the frame related stores. */
2960 if (insn_info->frame_read)
2961 {
9771b263 2962 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
64520bdc
EB
2963 if (group->process_globally && group->frame_related)
2964 {
2965 if (kill)
2966 bitmap_ior_into (kill, group->group_kill);
b8698a0f 2967 bitmap_and_compl_into (gen, group->group_kill);
64520bdc
EB
2968 }
2969 }
d26c7090
ER
2970 if (insn_info->non_frame_wild_read)
2971 {
2972 /* Kill all non-frame related stores. Kill all stores of variables that
2973 escape. */
2974 if (kill)
2975 bitmap_ior_into (kill, kill_on_calls);
2976 bitmap_and_compl_into (gen, kill_on_calls);
9771b263 2977 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
d26c7090
ER
2978 if (group->process_globally && !group->frame_related)
2979 {
2980 if (kill)
2981 bitmap_ior_into (kill, group->group_kill);
2982 bitmap_and_compl_into (gen, group->group_kill);
2983 }
2984 }
6fb5fa3c
DB
2985 while (read_info)
2986 {
9771b263 2987 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2988 {
2989 if (group->process_globally)
2990 {
2991 if (i == read_info->group_id)
2992 {
02ce5d90
RS
2993 HOST_WIDE_INT offset, width;
2994 /* Reads with non-constant size kill all DSE opportunities
2995 in the group. */
2996 if (!read_info->offset.is_constant (&offset)
2997 || !read_info->width.is_constant (&width)
2998 || !known_size_p (width))
6fb5fa3c 2999 {
71d6a386 3000 /* Handle block mode reads. */
6fb5fa3c
DB
3001 if (kill)
3002 bitmap_ior_into (kill, group->group_kill);
3003 bitmap_and_compl_into (gen, group->group_kill);
3004 }
3005 else
3006 {
3007 /* The groups are the same, just process the
3008 offsets. */
3009 HOST_WIDE_INT j;
02ce5d90
RS
3010 HOST_WIDE_INT end = offset + width;
3011 for (j = offset; j < end; j++)
6fb5fa3c
DB
3012 {
3013 int index = get_bitmap_index (group, j);
3014 if (index != 0)
3015 {
3016 if (kill)
3017 bitmap_set_bit (kill, index);
3018 bitmap_clear_bit (gen, index);
3019 }
3020 }
3021 }
3022 }
3023 else
3024 {
3025 /* The groups are different, if the alias sets
3026 conflict, clear the entire group. We only need
3027 to apply this test if the read_info is a cselib
3028 read. Anything with a constant base cannot alias
3029 something else with a different constant
3030 base. */
3031 if ((read_info->group_id < 0)
b8698a0f 3032 && canon_true_dependence (group->base_mem,
d32f725a 3033 GET_MODE (group->base_mem),
6216f94e 3034 group->canon_base_addr,
53d9622b 3035 read_info->mem, NULL_RTX))
6fb5fa3c
DB
3036 {
3037 if (kill)
3038 bitmap_ior_into (kill, group->group_kill);
3039 bitmap_and_compl_into (gen, group->group_kill);
3040 }
3041 }
3042 }
3043 }
b8698a0f 3044
6fb5fa3c
DB
3045 read_info = read_info->next;
3046 }
3047}
3048
6fb5fa3c
DB
3049
3050/* Return the insn in BB_INFO before the first wild read or if there
3051 are no wild reads in the block, return the last insn. */
3052
3053static insn_info_t
3054find_insn_before_first_wild_read (bb_info_t bb_info)
3055{
3056 insn_info_t insn_info = bb_info->last_insn;
3057 insn_info_t last_wild_read = NULL;
3058
3059 while (insn_info)
3060 {
3061 if (insn_info->wild_read)
3062 {
3063 last_wild_read = insn_info->prev_insn;
3064 /* Block starts with wild read. */
3065 if (!last_wild_read)
3066 return NULL;
3067 }
3068
3069 insn_info = insn_info->prev_insn;
3070 }
3071
3072 if (last_wild_read)
3073 return last_wild_read;
3074 else
3075 return bb_info->last_insn;
3076}
3077
3078
3079/* Scan the insns in BB_INFO starting at PTR and going to the top of
3080 the block in order to build the gen and kill sets for the block.
3081 We start at ptr which may be the last insn in the block or may be
3082 the first insn with a wild read. In the latter case we are able to
3083 skip the rest of the block because it just does not matter:
3084 anything that happens is hidden by the wild read. */
3085
3086static void
ac6929b5 3087dse_step3_scan (basic_block bb)
6fb5fa3c
DB
3088{
3089 bb_info_t bb_info = bb_table[bb->index];
3090 insn_info_t insn_info;
3091
ac6929b5 3092 insn_info = find_insn_before_first_wild_read (bb_info);
b8698a0f 3093
6fb5fa3c
DB
3094 /* In the spill case or in the no_spill case if there is no wild
3095 read in the block, we will need a kill set. */
3096 if (insn_info == bb_info->last_insn)
3097 {
3098 if (bb_info->kill)
3099 bitmap_clear (bb_info->kill);
3100 else
3f9b14ff 3101 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 3102 }
b8698a0f 3103 else
6fb5fa3c
DB
3104 if (bb_info->kill)
3105 BITMAP_FREE (bb_info->kill);
3106
3107 while (insn_info)
3108 {
3109 /* There may have been code deleted by the dce pass run before
3110 this phase. */
3111 if (insn_info->insn && INSN_P (insn_info->insn))
3112 {
ac6929b5
RB
3113 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3114 scan_reads (insn_info, bb_info->gen, bb_info->kill);
b8698a0f 3115 }
6fb5fa3c
DB
3116
3117 insn_info = insn_info->prev_insn;
3118 }
3119}
3120
3121
3122/* Set the gen set of the exit block, and also any block with no
3123 successors that does not have a wild read. */
3124
3125static void
3126dse_step3_exit_block_scan (bb_info_t bb_info)
3127{
3128 /* The gen set is all 0's for the exit block except for the
3129 frame_pointer_group. */
b8698a0f 3130
6fb5fa3c
DB
3131 if (stores_off_frame_dead_at_return)
3132 {
3133 unsigned int i;
fd6daec9 3134 group_info *group;
b8698a0f 3135
9771b263 3136 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3137 {
3138 if (group->process_globally && group->frame_related)
3139 bitmap_ior_into (bb_info->gen, group->group_kill);
3140 }
3141 }
3142}
3143
3144
3145/* Find all of the blocks that are not backwards reachable from the
3146 exit block or any block with no successors (BB). These are the
3147 infinite loops or infinite self loops. These blocks will still
3148 have their bits set in UNREACHABLE_BLOCKS. */
3149
3150static void
3151mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3152{
3153 edge e;
3154 edge_iterator ei;
3155
d7c028c0 3156 if (bitmap_bit_p (unreachable_blocks, bb->index))
6fb5fa3c 3157 {
d7c028c0 3158 bitmap_clear_bit (unreachable_blocks, bb->index);
6fb5fa3c 3159 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 3160 {
6fb5fa3c 3161 mark_reachable_blocks (unreachable_blocks, e->src);
b8698a0f 3162 }
6fb5fa3c
DB
3163 }
3164}
3165
3166/* Build the transfer functions for the function. */
3167
3168static void
ac6929b5 3169dse_step3 ()
6fb5fa3c
DB
3170{
3171 basic_block bb;
6fb5fa3c
DB
3172 sbitmap_iterator sbi;
3173 bitmap all_ones = NULL;
3174 unsigned int i;
b8698a0f 3175
7ba9e72d 3176 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
f61e445a 3177 bitmap_ones (unreachable_blocks);
6fb5fa3c 3178
04a90bec 3179 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3180 {
3181 bb_info_t bb_info = bb_table[bb->index];
3182 if (bb_info->gen)
3183 bitmap_clear (bb_info->gen);
3184 else
3f9b14ff 3185 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3186
3187 if (bb->index == ENTRY_BLOCK)
3188 ;
3189 else if (bb->index == EXIT_BLOCK)
3190 dse_step3_exit_block_scan (bb_info);
3191 else
ac6929b5 3192 dse_step3_scan (bb);
6fb5fa3c
DB
3193 if (EDGE_COUNT (bb->succs) == 0)
3194 mark_reachable_blocks (unreachable_blocks, bb);
3195
3196 /* If this is the second time dataflow is run, delete the old
3197 sets. */
3198 if (bb_info->in)
3199 BITMAP_FREE (bb_info->in);
3200 if (bb_info->out)
3201 BITMAP_FREE (bb_info->out);
3202 }
3203
3204 /* For any block in an infinite loop, we must initialize the out set
3205 to all ones. This could be expensive, but almost never occurs in
3206 practice. However, it is common in regression tests. */
d4ac4ce2 3207 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
6fb5fa3c
DB
3208 {
3209 if (bitmap_bit_p (all_blocks, i))
3210 {
3211 bb_info_t bb_info = bb_table[i];
3212 if (!all_ones)
3213 {
3214 unsigned int j;
fd6daec9 3215 group_info *group;
6fb5fa3c 3216
3f9b14ff 3217 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
9771b263 3218 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
6fb5fa3c
DB
3219 bitmap_ior_into (all_ones, group->group_kill);
3220 }
3221 if (!bb_info->out)
3222 {
3f9b14ff 3223 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3224 bitmap_copy (bb_info->out, all_ones);
3225 }
3226 }
3227 }
3228
3229 if (all_ones)
3230 BITMAP_FREE (all_ones);
6fb5fa3c
DB
3231}
3232
3233
3234\f
3235/*----------------------------------------------------------------------------
3236 Fourth step.
3237
3238 Solve the bitvector equations.
3239----------------------------------------------------------------------------*/
3240
3241
3242/* Confluence function for blocks with no successors. Create an out
3243 set from the gen set of the exit block. This block logically has
3244 the exit block as a successor. */
3245
3246
3247
3248static void
3249dse_confluence_0 (basic_block bb)
3250{
3251 bb_info_t bb_info = bb_table[bb->index];
3252
3253 if (bb->index == EXIT_BLOCK)
3254 return;
3255
3256 if (!bb_info->out)
3257 {
3f9b14ff 3258 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3259 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3260 }
3261}
3262
3263/* Propagate the information from the in set of the dest of E to the
3264 out set of the src of E. If the various in or out sets are not
3265 there, that means they are all ones. */
3266
1a0f3fa1 3267static bool
6fb5fa3c
DB
3268dse_confluence_n (edge e)
3269{
3270 bb_info_t src_info = bb_table[e->src->index];
3271 bb_info_t dest_info = bb_table[e->dest->index];
3272
3273 if (dest_info->in)
3274 {
3275 if (src_info->out)
3276 bitmap_and_into (src_info->out, dest_info->in);
3277 else
3278 {
3f9b14ff 3279 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3280 bitmap_copy (src_info->out, dest_info->in);
3281 }
3282 }
1a0f3fa1 3283 return true;
6fb5fa3c
DB
3284}
3285
3286
3287/* Propagate the info from the out to the in set of BB_INDEX's basic
b8698a0f 3288 block. There are three cases:
6fb5fa3c
DB
3289
3290 1) The block has no kill set. In this case the kill set is all
3291 ones. It does not matter what the out set of the block is, none of
3292 the info can reach the top. The only thing that reaches the top is
3293 the gen set and we just copy the set.
3294
3295 2) There is a kill set but no out set and bb has successors. In
3296 this case we just return. Eventually an out set will be created and
3297 it is better to wait than to create a set of ones.
3298
3299 3) There is both a kill and out set. We apply the obvious transfer
3300 function.
3301*/
3302
3303static bool
3304dse_transfer_function (int bb_index)
3305{
3306 bb_info_t bb_info = bb_table[bb_index];
3307
3308 if (bb_info->kill)
3309 {
3310 if (bb_info->out)
3311 {
3312 /* Case 3 above. */
3313 if (bb_info->in)
b8698a0f 3314 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3315 bb_info->out, bb_info->kill);
3316 else
3317 {
3f9b14ff 3318 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
b8698a0f 3319 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3320 bb_info->out, bb_info->kill);
3321 return true;
3322 }
3323 }
3324 else
3325 /* Case 2 above. */
3326 return false;
3327 }
3328 else
3329 {
3330 /* Case 1 above. If there is already an in set, nothing
3331 happens. */
3332 if (bb_info->in)
3333 return false;
3334 else
3335 {
3f9b14ff 3336 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3337 bitmap_copy (bb_info->in, bb_info->gen);
3338 return true;
3339 }
3340 }
3341}
3342
3343/* Solve the dataflow equations. */
3344
3345static void
3346dse_step4 (void)
3347{
b8698a0f
L
3348 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3349 dse_confluence_n, dse_transfer_function,
3350 all_blocks, df_get_postorder (DF_BACKWARD),
6fb5fa3c 3351 df_get_n_blocks (DF_BACKWARD));
456610d3 3352 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3353 {
3354 basic_block bb;
3355
3356 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
04a90bec 3357 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3358 {
3359 bb_info_t bb_info = bb_table[bb->index];
3360
3361 df_print_bb_index (bb, dump_file);
3362 if (bb_info->in)
3363 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3364 else
3365 fprintf (dump_file, " in: *MISSING*\n");
3366 if (bb_info->gen)
3367 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3368 else
3369 fprintf (dump_file, " gen: *MISSING*\n");
3370 if (bb_info->kill)
3371 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3372 else
3373 fprintf (dump_file, " kill: *MISSING*\n");
3374 if (bb_info->out)
3375 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3376 else
3377 fprintf (dump_file, " out: *MISSING*\n\n");
3378 }
3379 }
3380}
3381
3382
3383\f
3384/*----------------------------------------------------------------------------
3385 Fifth step.
3386
0d52bcc1 3387 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3388----------------------------------------------------------------------------*/
3389
3390
3391static void
ac6929b5 3392dse_step5 (void)
6fb5fa3c
DB
3393{
3394 basic_block bb;
11cd3bed 3395 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c
DB
3396 {
3397 bb_info_t bb_info = bb_table[bb->index];
3398 insn_info_t insn_info = bb_info->last_insn;
3399 bitmap v = bb_info->out;
3400
3401 while (insn_info)
3402 {
3403 bool deleted = false;
3404 if (dump_file && insn_info->insn)
3405 {
3406 fprintf (dump_file, "starting to process insn %d\n",
3407 INSN_UID (insn_info->insn));
3408 bitmap_print (dump_file, v, " v: ", "\n");
3409 }
3410
3411 /* There may have been code deleted by the dce pass run before
3412 this phase. */
b8698a0f 3413 if (insn_info->insn
6fb5fa3c
DB
3414 && INSN_P (insn_info->insn)
3415 && (!insn_info->cannot_delete)
3416 && (!bitmap_empty_p (v)))
3417 {
fd6daec9 3418 store_info *store_info = insn_info->store_rec;
6fb5fa3c
DB
3419
3420 /* Try to delete the current insn. */
3421 deleted = true;
b8698a0f 3422
6fb5fa3c
DB
3423 /* Skip the clobbers. */
3424 while (!store_info->is_set)
3425 store_info = store_info->next;
3426
02ce5d90 3427 HOST_WIDE_INT i, offset, width;
ac6929b5
RB
3428 group_info *group_info = rtx_group_vec[store_info->group_id];
3429
02ce5d90
RS
3430 if (!store_info->offset.is_constant (&offset)
3431 || !store_info->width.is_constant (&width))
3432 deleted = false;
3433 else
6fb5fa3c 3434 {
02ce5d90
RS
3435 HOST_WIDE_INT end = offset + width;
3436 for (i = offset; i < end; i++)
6fb5fa3c 3437 {
02ce5d90
RS
3438 int index = get_bitmap_index (group_info, i);
3439
456610d3 3440 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
3441 fprintf (dump_file, "i = %d, index = %d\n",
3442 (int) i, index);
3443 if (index == 0 || !bitmap_bit_p (v, index))
3444 {
3445 if (dump_file && (dump_flags & TDF_DETAILS))
3446 fprintf (dump_file, "failing at i = %d\n",
3447 (int) i);
3448 deleted = false;
3449 break;
3450 }
6fb5fa3c
DB
3451 }
3452 }
3453 if (deleted)
3454 {
9e582b1d
JR
3455 if (dbg_cnt (dse)
3456 && check_for_inc_dec_1 (insn_info))
6fb5fa3c 3457 {
6fb5fa3c
DB
3458 delete_insn (insn_info->insn);
3459 insn_info->insn = NULL;
3460 globally_deleted++;
3461 }
3462 }
3463 }
3464 /* We do want to process the local info if the insn was
6ed3da00 3465 deleted. For instance, if the insn did a wild read, we
6fb5fa3c 3466 no longer need to trash the info. */
b8698a0f 3467 if (insn_info->insn
6fb5fa3c
DB
3468 && INSN_P (insn_info->insn)
3469 && (!deleted))
3470 {
ac6929b5 3471 scan_stores (insn_info->store_rec, v, NULL);
6fb5fa3c
DB
3472 if (insn_info->wild_read)
3473 {
456610d3 3474 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3475 fprintf (dump_file, "wild read\n");
3476 bitmap_clear (v);
3477 }
d26c7090 3478 else if (insn_info->read_rec
a8404b9a
JJ
3479 || insn_info->non_frame_wild_read
3480 || insn_info->frame_read)
6fb5fa3c 3481 {
a8404b9a
JJ
3482 if (dump_file && (dump_flags & TDF_DETAILS))
3483 {
3484 if (!insn_info->non_frame_wild_read
3485 && !insn_info->frame_read)
3486 fprintf (dump_file, "regular read\n");
3487 if (insn_info->non_frame_wild_read)
3488 fprintf (dump_file, "non-frame wild read\n");
3489 if (insn_info->frame_read)
3490 fprintf (dump_file, "frame read\n");
3491 }
ac6929b5 3492 scan_reads (insn_info, v, NULL);
6fb5fa3c
DB
3493 }
3494 }
b8698a0f 3495
6fb5fa3c
DB
3496 insn_info = insn_info->prev_insn;
3497 }
3498 }
3499}
3500
3501
6fb5fa3c
DB
3502\f
3503/*----------------------------------------------------------------------------
3504 Sixth step.
3505
8dd5516b
JJ
3506 Delete stores made redundant by earlier stores (which store the same
3507 value) that couldn't be eliminated.
3508----------------------------------------------------------------------------*/
3509
3510static void
3511dse_step6 (void)
3512{
3513 basic_block bb;
3514
04a90bec 3515 FOR_ALL_BB_FN (bb, cfun)
8dd5516b
JJ
3516 {
3517 bb_info_t bb_info = bb_table[bb->index];
3518 insn_info_t insn_info = bb_info->last_insn;
3519
3520 while (insn_info)
3521 {
3522 /* There may have been code deleted by the dce pass run before
3523 this phase. */
3524 if (insn_info->insn
3525 && INSN_P (insn_info->insn)
3526 && !insn_info->cannot_delete)
3527 {
fd6daec9 3528 store_info *s_info = insn_info->store_rec;
8dd5516b
JJ
3529
3530 while (s_info && !s_info->is_set)
3531 s_info = s_info->next;
3532 if (s_info
3533 && s_info->redundant_reason
3534 && s_info->redundant_reason->insn
3535 && INSN_P (s_info->redundant_reason->insn))
3536 {
eb92d49a 3537 rtx_insn *rinsn = s_info->redundant_reason->insn;
456610d3 3538 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
3539 fprintf (dump_file, "Locally deleting insn %d "
3540 "because insn %d stores the "
3541 "same value and couldn't be "
3542 "eliminated\n",
3543 INSN_UID (insn_info->insn),
3544 INSN_UID (rinsn));
3545 delete_dead_store_insn (insn_info);
3546 }
3547 }
3548 insn_info = insn_info->prev_insn;
3549 }
3550 }
3551}
3552\f
3553/*----------------------------------------------------------------------------
3554 Seventh step.
3555
b8698a0f 3556 Destroy everything left standing.
6fb5fa3c
DB
3557----------------------------------------------------------------------------*/
3558
b8698a0f 3559static void
3f9b14ff 3560dse_step7 (void)
6fb5fa3c 3561{
3f9b14ff
SB
3562 bitmap_obstack_release (&dse_bitmap_obstack);
3563 obstack_free (&dse_obstack, NULL);
370f38e8 3564
6fb5fa3c
DB
3565 end_alias_analysis ();
3566 free (bb_table);
c203e8a7
TS
3567 delete rtx_group_table;
3568 rtx_group_table = NULL;
9771b263 3569 rtx_group_vec.release ();
6fb5fa3c
DB
3570 BITMAP_FREE (all_blocks);
3571 BITMAP_FREE (scratch);
3572
da6603c6 3573 rtx_store_info_pool.release ();
fb0b2914
ML
3574 read_info_type_pool.release ();
3575 insn_info_type_pool.release ();
3576 dse_bb_info_type_pool.release ();
3577 group_info_pool.release ();
3578 deferred_change_pool.release ();
6fb5fa3c
DB
3579}
3580
3581
6fb5fa3c
DB
3582/* -------------------------------------------------------------------------
3583 DSE
3584 ------------------------------------------------------------------------- */
3585
3586/* Callback for running pass_rtl_dse. */
3587
3588static unsigned int
3589rest_of_handle_dse (void)
3590{
6fb5fa3c
DB
3591 df_set_flags (DF_DEFER_INSN_RESCAN);
3592
02b47899
KZ
3593 /* Need the notes since we must track live hardregs in the forwards
3594 direction. */
3595 df_note_add_problem ();
3596 df_analyze ();
3597
6fb5fa3c
DB
3598 dse_step0 ();
3599 dse_step1 ();
3600 dse_step2_init ();
ac6929b5 3601 if (dse_step2 ())
6fb5fa3c
DB
3602 {
3603 df_set_flags (DF_LR_RUN_DCE);
3604 df_analyze ();
456610d3 3605 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 3606 fprintf (dump_file, "doing global processing\n");
ac6929b5 3607 dse_step3 ();
6fb5fa3c 3608 dse_step4 ();
ac6929b5 3609 dse_step5 ();
6fb5fa3c
DB
3610 }
3611
8dd5516b 3612 dse_step6 ();
3f9b14ff 3613 dse_step7 ();
6fb5fa3c
DB
3614
3615 if (dump_file)
ac6929b5
RB
3616 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3617 locally_deleted, globally_deleted);
6c5ed3f1
JJ
3618
3619 /* DSE can eliminate potentially-trapping MEMs.
3620 Remove any EH edges associated with them. */
3621 if ((locally_deleted || globally_deleted)
3622 && cfun->can_throw_non_call_exceptions
3623 && purge_all_dead_edges ())
3624 cleanup_cfg (0);
3625
6fb5fa3c
DB
3626 return 0;
3627}
3628
17795822
TS
3629namespace {
3630
3631const pass_data pass_data_rtl_dse1 =
27a4cd48
DM
3632{
3633 RTL_PASS, /* type */
3634 "dse1", /* name */
3635 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3636 TV_DSE1, /* tv_id */
3637 0, /* properties_required */
3638 0, /* properties_provided */
3639 0, /* properties_destroyed */
3640 0, /* todo_flags_start */
3bea341f 3641 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c
DB
3642};
3643
17795822 3644class pass_rtl_dse1 : public rtl_opt_pass
27a4cd48
DM
3645{
3646public:
c3284718
RS
3647 pass_rtl_dse1 (gcc::context *ctxt)
3648 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
27a4cd48
DM
3649 {}
3650
3651 /* opt_pass methods: */
1a3d085c
TS
3652 virtual bool gate (function *)
3653 {
3654 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3655 }
3656
be55bfe6 3657 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
27a4cd48
DM
3658
3659}; // class pass_rtl_dse1
3660
17795822
TS
3661} // anon namespace
3662
27a4cd48
DM
3663rtl_opt_pass *
3664make_pass_rtl_dse1 (gcc::context *ctxt)
3665{
3666 return new pass_rtl_dse1 (ctxt);
3667}
3668
17795822
TS
3669namespace {
3670
3671const pass_data pass_data_rtl_dse2 =
27a4cd48
DM
3672{
3673 RTL_PASS, /* type */
3674 "dse2", /* name */
3675 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3676 TV_DSE2, /* tv_id */
3677 0, /* properties_required */
3678 0, /* properties_provided */
3679 0, /* properties_destroyed */
3680 0, /* todo_flags_start */
3bea341f 3681 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c 3682};
27a4cd48 3683
17795822 3684class pass_rtl_dse2 : public rtl_opt_pass
27a4cd48
DM
3685{
3686public:
c3284718
RS
3687 pass_rtl_dse2 (gcc::context *ctxt)
3688 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
27a4cd48
DM
3689 {}
3690
3691 /* opt_pass methods: */
1a3d085c
TS
3692 virtual bool gate (function *)
3693 {
3694 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3695 }
3696
be55bfe6 3697 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
27a4cd48
DM
3698
3699}; // class pass_rtl_dse2
3700
17795822
TS
3701} // anon namespace
3702
27a4cd48
DM
3703rtl_opt_pass *
3704make_pass_rtl_dse2 (gcc::context *ctxt)
3705{
3706 return new pass_rtl_dse2 (ctxt);
3707}