]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.cc
Don't build readline/libreadline.a, when --with-system-readline is supplied
[thirdparty/gcc.git] / gcc / dse.cc
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
7adcbafe 2 Copyright (C) 2005-2022 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "target.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5 33#include "predict.h"
c7131fb2 34#include "df.h"
4d0cdd0c 35#include "memmodel.h"
957060b5
AM
36#include "tm_p.h"
37#include "gimple-ssa.h"
38#include "expmed.h"
39#include "optabs.h"
957060b5
AM
40#include "emit-rtl.h"
41#include "recog.h"
40e23961 42#include "alias.h"
d8a2d370 43#include "stor-layout.h"
60393bbc 44#include "cfgrtl.h"
6fb5fa3c 45#include "cselib.h"
6fb5fa3c 46#include "tree-pass.h"
36566b39 47#include "explow.h"
6fb5fa3c 48#include "expr.h"
6fb5fa3c 49#include "dbgcnt.h"
d7111da8 50#include "rtl-iter.h"
6c5ed3f1 51#include "cfgcleanup.h"
6783fdb7 52#include "calls.h"
6fb5fa3c
DB
53
54/* This file contains three techniques for performing Dead Store
b8698a0f 55 Elimination (dse).
6fb5fa3c
DB
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
b8698a0f 61
6fb5fa3c
DB
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
026c3cfd 67 processes the spill slots. This differs from the second
6fb5fa3c
DB
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
b8698a0f 91 3) Set up the global dataflow equations based on processing the
6fb5fa3c
DB
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
073a8998 99 6) Delete insns that store the same value as preceding store
8dd5516b
JJ
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
6fb5fa3c
DB
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
0d52bcc1 108 forwards ordering is to accommodate cselib.
6fb5fa3c 109
5ef0b50d 110 We make a simplifying assumption: addresses fall into four broad
6fb5fa3c
DB
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
5ef0b50d 119 global pass only handles 1).
6fb5fa3c
DB
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
5ef0b50d 125 function contain another store to A before a read to A.
6fb5fa3c
DB
126
127 If the address A is relative to the stack frame, a store S2 to A
5ef0b50d 128 can be eliminated if there are no paths from S2 that reach the
6fb5fa3c 129 end of the function that read A before another store to A. In
5ef0b50d 130 this case S2 can be deleted if there are paths from S2 to the
6fb5fa3c
DB
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
5ef0b50d 141 implementation requires a lot of bitmaps filled with 1s.
6fb5fa3c
DB
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
b8698a0f 145 for details.
6fb5fa3c
DB
146
147 There are two places for further enhancements to this algorithm:
b8698a0f 148
6fb5fa3c
DB
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
6ed3da00 156 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
b8698a0f 190 off the frame pointer, the global algorithm handles this slot.
6fb5fa3c
DB
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
0d52bcc1 195 required is to have those passes make the same calls that reload
6fb5fa3c
DB
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199/* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203#define MAX_OFFSET (64 * 1024)
204
3f9b14ff
SB
205/* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211static bitmap_obstack dse_bitmap_obstack;
212
213/* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215static struct obstack dse_obstack;
216
217/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
6fb5fa3c 218static bitmap scratch = NULL;
3f9b14ff 219
da6603c6 220struct insn_info_type;
6fb5fa3c
DB
221
222/* This structure holds information about a candidate store. */
6c1dae73 223class store_info
6fb5fa3c 224{
6c1dae73 225public:
6fb5fa3c
DB
226
227 /* False means this is a clobber. */
228 bool is_set;
229
8dd5516b
JJ
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
232
6fb5fa3c
DB
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
b8698a0f 237
6fb5fa3c
DB
238 /* This is the cselib value. */
239 cselib_val *cse_base;
240
241 /* This canonized mem. */
242 rtx mem;
243
6216f94e 244 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
245 rtx mem_addr;
246
71d6a386 247 /* The offset of the first byte associated with the operation. */
02ce5d90 248 poly_int64 offset;
71d6a386
RS
249
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
02ce5d90 252 poly_int64 width;
8dd5516b
JJ
253
254 union
255 {
256 /* A bitmask as wide as the number of bytes in the word that
257 contains a 1 if the byte may be needed. The store is unused if
258 all of the bits are 0. This is used if IS_LARGE is false. */
259 unsigned HOST_WIDE_INT small_bitmask;
260
261 struct
262 {
02ce5d90
RS
263 /* A bitmap with one bit per byte, or null if the number of
264 bytes isn't known at compile time. A cleared bit means
265 the position is needed. Used if IS_LARGE is true. */
dc491a25 266 bitmap bmap;
6fb5fa3c 267
02ce5d90
RS
268 /* When BITMAP is nonnull, this counts the number of set bits
269 (i.e. unneeded bytes) in the bitmap. If it is equal to
270 WIDTH, the whole store is unused.
271
272 When BITMAP is null:
273 - the store is definitely not needed when COUNT == 1
274 - all the store is needed when COUNT == 0 and RHS is nonnull
275 - otherwise we don't know which parts of the store are needed. */
8dd5516b
JJ
276 int count;
277 } large;
278 } positions_needed;
6fb5fa3c
DB
279
280 /* The next store info for this insn. */
99b1c316 281 class store_info *next;
6fb5fa3c
DB
282
283 /* The right hand side of the store. This is used if there is a
284 subsequent reload of the mems address somewhere later in the
285 basic block. */
8dd5516b
JJ
286 rtx rhs;
287
288 /* If rhs is or holds a constant, this contains that constant,
289 otherwise NULL. */
290 rtx const_rhs;
291
292 /* Set if this store stores the same constant value as REDUNDANT_REASON
293 insn stored. These aren't eliminated early, because doing that
294 might prevent the earlier larger store to be eliminated. */
da6603c6 295 struct insn_info_type *redundant_reason;
6fb5fa3c
DB
296};
297
4fe663b0
L
298/* Return a bitmask with the first N low bits set. */
299
300static unsigned HOST_WIDE_INT
301lowpart_bitmask (int n)
302{
dd4786fe 303 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
4fe663b0
L
304 return mask >> (HOST_BITS_PER_WIDE_INT - n);
305}
306
fcb87c50 307static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
da6603c6 308
fcb87c50 309static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
6fb5fa3c
DB
310
311/* This structure holds information about a load. These are only
312 built for rtx bases. */
6c1dae73 313class read_info_type
6fb5fa3c 314{
6c1dae73 315public:
6fb5fa3c
DB
316 /* The id of the mem group of the base address. */
317 int group_id;
318
71d6a386 319 /* The offset of the first byte associated with the operation. */
02ce5d90 320 poly_int64 offset;
71d6a386
RS
321
322 /* The number of bytes covered by the operation, or -1 if not known. */
02ce5d90 323 poly_int64 width;
6fb5fa3c
DB
324
325 /* The mem being read. */
326 rtx mem;
327
328 /* The next read_info for this insn. */
99b1c316 329 class read_info_type *next;
6fb5fa3c 330};
99b1c316 331typedef class read_info_type *read_info_t;
6fb5fa3c 332
fcb87c50 333static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
6fb5fa3c
DB
334
335/* One of these records is created for each insn. */
336
da6603c6 337struct insn_info_type
6fb5fa3c
DB
338{
339 /* Set true if the insn contains a store but the insn itself cannot
340 be deleted. This is set if the insn is a parallel and there is
341 more than one non dead output or if the insn is in some way
342 volatile. */
343 bool cannot_delete;
344
345 /* This field is only used by the global algorithm. It is set true
346 if the insn contains any read of mem except for a (1). This is
347 also set if the insn is a call or has a clobber mem. If the insn
348 contains a wild read, the use_rec will be null. */
349 bool wild_read;
350
d26c7090
ER
351 /* This is true only for CALL instructions which could potentially read
352 any non-frame memory location. This field is used by the global
353 algorithm. */
354 bool non_frame_wild_read;
355
50f0f366
EB
356 /* This field is only used for the processing of const functions.
357 These functions cannot read memory, but they can read the stack
64520bdc
EB
358 because that is where they may get their parms. We need to be
359 this conservative because, like the store motion pass, we don't
360 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
361 Moreover, we need to distinguish two cases:
362 1. Before reload (register elimination), the stores related to
363 outgoing arguments are stack pointer based and thus deemed
364 of non-constant base in this pass. This requires special
365 handling but also means that the frame pointer based stores
366 need not be killed upon encountering a const function call.
367 2. After reload, the stores related to outgoing arguments can be
368 either stack pointer or hard frame pointer based. This means
369 that we have no other choice than also killing all the frame
370 pointer based stores upon encountering a const function call.
57534689
JJ
371 This field is set after reload for const function calls and before
372 reload for const tail function calls on targets where arg pointer
373 is the frame pointer. Having this set is less severe than a wild
374 read, it just means that all the frame related stores are killed
375 rather than all the stores. */
64520bdc
EB
376 bool frame_read;
377
378 /* This field is only used for the processing of const functions.
379 It is set if the insn may contain a stack pointer based store. */
50f0f366 380 bool stack_pointer_based;
6fb5fa3c
DB
381
382 /* This is true if any of the sets within the store contains a
383 cselib base. Such stores can only be deleted by the local
384 algorithm. */
385 bool contains_cselib_groups;
386
387 /* The insn. */
dd60a84c 388 rtx_insn *insn;
6fb5fa3c
DB
389
390 /* The list of mem sets or mem clobbers that are contained in this
391 insn. If the insn is deletable, it contains only one mem set.
392 But it could also contain clobbers. Insns that contain more than
393 one mem set are not deletable, but each of those mems are here in
6ed3da00 394 order to provide info to delete other insns. */
fd6daec9 395 store_info *store_rec;
6fb5fa3c
DB
396
397 /* The linked list of mem uses in this insn. Only the reads from
398 rtx bases are listed here. The reads to cselib bases are
399 completely processed during the first scan and so are never
400 created. */
401 read_info_t read_rec;
402
9e582b1d
JR
403 /* The live fixed registers. We assume only fixed registers can
404 cause trouble by being clobbered from an expanded pattern;
405 storing only the live fixed registers (rather than all registers)
406 means less memory needs to be allocated / copied for the individual
407 stores. */
408 regset fixed_regs_live;
409
6fb5fa3c 410 /* The prev insn in the basic block. */
da6603c6 411 struct insn_info_type * prev_insn;
6fb5fa3c
DB
412
413 /* The linked list of insns that are in consideration for removal in
073a8998 414 the forwards pass through the basic block. This pointer may be
6fb5fa3c 415 trash as it is not cleared when a wild read occurs. The only
fa10beec 416 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c 417 at active_local_stores. */
da6603c6 418 struct insn_info_type * next_local_store;
6fb5fa3c 419};
da6603c6 420typedef struct insn_info_type *insn_info_t;
6fb5fa3c 421
fcb87c50 422static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
6fb5fa3c
DB
423
424/* The linked list of stores that are under consideration in this
b8698a0f 425 basic block. */
6fb5fa3c 426static insn_info_t active_local_stores;
dabd47e7 427static int active_local_stores_len;
6fb5fa3c 428
da6603c6 429struct dse_bb_info_type
6fb5fa3c 430{
6fb5fa3c
DB
431 /* Pointer to the insn info for the last insn in the block. These
432 are linked so this is how all of the insns are reached. During
433 scanning this is the current insn being scanned. */
434 insn_info_t last_insn;
435
436 /* The info for the global dataflow problem. */
437
438
439 /* This is set if the transfer function should and in the wild_read
440 bitmap before applying the kill and gen sets. That vector knocks
441 out most of the bits in the bitmap and thus speeds up the
442 operations. */
443 bool apply_wild_read;
444
02b47899
KZ
445 /* The following 4 bitvectors hold information about which positions
446 of which stores are live or dead. They are indexed by
447 get_bitmap_index. */
448
6fb5fa3c
DB
449 /* The set of store positions that exist in this block before a wild read. */
450 bitmap gen;
b8698a0f 451
6fb5fa3c
DB
452 /* The set of load positions that exist in this block above the
453 same position of a store. */
454 bitmap kill;
455
456 /* The set of stores that reach the top of the block without being
457 killed by a read.
458
459 Do not represent the in if it is all ones. Note that this is
460 what the bitvector should logically be initialized to for a set
461 intersection problem. However, like the kill set, this is too
462 expensive. So initially, the in set will only be created for the
463 exit block and any block that contains a wild read. */
464 bitmap in;
465
466 /* The set of stores that reach the bottom of the block from it's
467 successors.
468
469 Do not represent the in if it is all ones. Note that this is
470 what the bitvector should logically be initialized to for a set
471 intersection problem. However, like the kill and in set, this is
472 too expensive. So what is done is that the confluence operator
473 just initializes the vector from one of the out sets of the
474 successors of the block. */
475 bitmap out;
02b47899
KZ
476
477 /* The following bitvector is indexed by the reg number. It
478 contains the set of regs that are live at the current instruction
479 being processed. While it contains info for all of the
9e582b1d
JR
480 registers, only the hard registers are actually examined. It is used
481 to assure that shift and/or add sequences that are inserted do not
073a8998 482 accidentally clobber live hard regs. */
02b47899 483 bitmap regs_live;
6fb5fa3c
DB
484};
485
da6603c6 486typedef struct dse_bb_info_type *bb_info_t;
fb0b2914
ML
487
488static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
fcb87c50 489 ("bb_info_pool");
6fb5fa3c
DB
490
491/* Table to hold all bb_infos. */
492static bb_info_t *bb_table;
493
494/* There is a group_info for each rtx base that is used to reference
495 memory. There are also not many of the rtx bases because they are
496 very limited in scope. */
497
b8698a0f 498struct group_info
6fb5fa3c
DB
499{
500 /* The actual base of the address. */
501 rtx rtx_base;
502
503 /* The sequential id of the base. This allows us to have a
504 canonical ordering of these that is not based on addresses. */
505 int id;
506
8f5929e1
JJ
507 /* True if there are any positions that are to be processed
508 globally. */
509 bool process_globally;
510
511 /* True if the base of this group is either the frame_pointer or
512 hard_frame_pointer. */
513 bool frame_related;
514
d32f725a
OH
515 /* A mem wrapped around the base pointer for the group in order to do
516 read dependency. It must be given BLKmode in order to encompass all
517 the possible offsets from the base. */
6fb5fa3c 518 rtx base_mem;
b8698a0f 519
6216f94e
JJ
520 /* Canonized version of base_mem's address. */
521 rtx canon_base_addr;
6fb5fa3c
DB
522
523 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 524 stores are actually referencing that position from this base. We
6fb5fa3c 525 only do this for rtx bases as this will be used to assign
6ed3da00 526 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
527 store1 on the first store for offset N. Bit N is set in store2
528 for the second store to offset N. This is all we need since we
529 only care about offsets that have two or more stores for them.
530
531 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
532 for 0 and greater offsets.
533
534 There is one special case here, for stores into the stack frame,
535 we will or store1 into store2 before deciding which stores look
536 at globally. This is because stores to the stack frame that have
537 no other reads before the end of the function can also be
538 deleted. */
539 bitmap store1_n, store1_p, store2_n, store2_p;
540
d26c7090
ER
541 /* These bitmaps keep track of offsets in this group escape this function.
542 An offset escapes if it corresponds to a named variable whose
543 addressable flag is set. */
544 bitmap escaped_n, escaped_p;
545
6ed3da00 546 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 547 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 548 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
549 bitmap group_kill;
550
6fb5fa3c 551 /* The offset_map is used to map the offsets from this base into
6ed3da00 552 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
553 the all of stores have been scanned and we know which ones we
554 care about. */
b8698a0f
L
555 int *offset_map_n, *offset_map_p;
556 int offset_map_size_n, offset_map_size_p;
6fb5fa3c 557};
da6603c6 558
fcb87c50 559static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
6fb5fa3c 560
6fb5fa3c
DB
561/* Index into the rtx_group_vec. */
562static int rtx_group_next_id;
563
6fb5fa3c 564
fd6daec9 565static vec<group_info *> rtx_group_vec;
6fb5fa3c
DB
566
567
568/* This structure holds the set of changes that are being deferred
569 when removing read operation. See replace_read. */
b8698a0f 570struct deferred_change
6fb5fa3c
DB
571{
572
573 /* The mem that is being replaced. */
574 rtx *loc;
575
576 /* The reg it is being replaced with. */
577 rtx reg;
578
579 struct deferred_change *next;
580};
581
fb0b2914 582static object_allocator<deferred_change> deferred_change_pool
fcb87c50 583 ("deferred_change_pool");
6fb5fa3c 584
fd6daec9 585static deferred_change *deferred_change_list = NULL;
6fb5fa3c 586
e3b5732b 587/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 588 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
589static bool stores_off_frame_dead_at_return;
590
591/* Counter for stats. */
b8698a0f
L
592static int globally_deleted;
593static int locally_deleted;
b8698a0f 594
6fb5fa3c
DB
595static bitmap all_blocks;
596
d26c7090
ER
597/* Locations that are killed by calls in the global phase. */
598static bitmap kill_on_calls;
599
6fb5fa3c
DB
600/* The number of bits used in the global bitmaps. */
601static unsigned int current_position;
71d6a386
RS
602
603/* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
604
605static void
606print_range (FILE *file, poly_int64 offset, poly_int64 width)
607{
608 fprintf (file, "[");
609 print_dec (offset, file, SIGNED);
610 fprintf (file, "..");
611 print_dec (offset + width, file, SIGNED);
612 fprintf (file, ")");
613}
6fb5fa3c
DB
614\f
615/*----------------------------------------------------------------------------
616 Zeroth step.
617
b8698a0f 618 Initialization.
6fb5fa3c
DB
619----------------------------------------------------------------------------*/
620
6fb5fa3c 621
6fb5fa3c
DB
622/* Hashtable callbacks for maintaining the "bases" field of
623 store_group_info, given that the addresses are function invariants. */
624
8d67ee55 625struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
703c8606 626{
67f58944
TS
627 static inline hashval_t hash (const group_info *);
628 static inline bool equal (const group_info *, const group_info *);
703c8606
LC
629};
630
631inline bool
67f58944
TS
632invariant_group_base_hasher::equal (const group_info *gi1,
633 const group_info *gi2)
6fb5fa3c 634{
6fb5fa3c
DB
635 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
636}
637
703c8606 638inline hashval_t
67f58944 639invariant_group_base_hasher::hash (const group_info *gi)
6fb5fa3c 640{
6fb5fa3c
DB
641 int do_not_record;
642 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
643}
644
703c8606 645/* Tables of group_info structures, hashed by base value. */
c203e8a7 646static hash_table<invariant_group_base_hasher> *rtx_group_table;
703c8606 647
6fb5fa3c
DB
648
649/* Get the GROUP for BASE. Add a new group if it is not there. */
650
fd6daec9 651static group_info *
6fb5fa3c
DB
652get_group_info (rtx base)
653{
b8698a0f 654 struct group_info tmp_gi;
fd6daec9 655 group_info *gi;
703c8606 656 group_info **slot;
6fb5fa3c 657
ac6929b5
RB
658 gcc_assert (base != NULL_RTX);
659
660 /* Find the store_base_info structure for BASE, creating a new one
661 if necessary. */
662 tmp_gi.rtx_base = base;
663 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
664 gi = *slot;
6fb5fa3c
DB
665
666 if (gi == NULL)
667 {
fb0b2914 668 *slot = gi = group_info_pool.allocate ();
6fb5fa3c
DB
669 gi->rtx_base = base;
670 gi->id = rtx_group_next_id++;
d32f725a 671 gi->base_mem = gen_rtx_MEM (BLKmode, base);
6216f94e 672 gi->canon_base_addr = canon_rtx (base);
3f9b14ff
SB
673 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 680 gi->process_globally = false;
b8698a0f 681 gi->frame_related =
6fb5fa3c
DB
682 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
683 gi->offset_map_size_n = 0;
684 gi->offset_map_size_p = 0;
685 gi->offset_map_n = NULL;
686 gi->offset_map_p = NULL;
9771b263 687 rtx_group_vec.safe_push (gi);
6fb5fa3c
DB
688 }
689
690 return gi;
691}
692
693
694/* Initialization of data structures. */
695
696static void
697dse_step0 (void)
698{
699 locally_deleted = 0;
700 globally_deleted = 0;
6fb5fa3c 701
3f9b14ff
SB
702 bitmap_obstack_initialize (&dse_bitmap_obstack);
703 gcc_obstack_init (&dse_obstack);
704
705 scratch = BITMAP_ALLOC (&reg_obstack);
706 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 707
6fb5fa3c 708
c203e8a7 709 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
6fb5fa3c 710
8b1c6fd7 711 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
712 rtx_group_next_id = 0;
713
e3b5732b 714 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
715
716 init_alias_analysis ();
6fb5fa3c
DB
717}
718
719
720\f
721/*----------------------------------------------------------------------------
722 First step.
723
724 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 725 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
726 is used to remove stores with non-constant bases.
727----------------------------------------------------------------------------*/
728
729/* Delete all of the store_info recs from INSN_INFO. */
730
b8698a0f 731static void
6fb5fa3c
DB
732free_store_info (insn_info_t insn_info)
733{
fd6daec9
TS
734 store_info *cur = insn_info->store_rec;
735 while (cur)
6fb5fa3c 736 {
fd6daec9
TS
737 store_info *next = cur->next;
738 if (cur->is_large)
739 BITMAP_FREE (cur->positions_needed.large.bmap);
740 if (cur->cse_base)
741 cse_store_info_pool.remove (cur);
6fb5fa3c 742 else
fd6daec9
TS
743 rtx_store_info_pool.remove (cur);
744 cur = next;
6fb5fa3c
DB
745 }
746
747 insn_info->cannot_delete = true;
748 insn_info->contains_cselib_groups = false;
749 insn_info->store_rec = NULL;
750}
751
a79683d5 752struct note_add_store_info
9e582b1d 753{
dc01c3d1 754 rtx_insn *first, *current;
9e582b1d
JR
755 regset fixed_regs_live;
756 bool failure;
a79683d5 757};
9e582b1d
JR
758
759/* Callback for emit_inc_dec_insn_before via note_stores.
760 Check if a register is clobbered which is live afterwards. */
761
762static void
763note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
764{
dc01c3d1 765 rtx_insn *insn;
9e582b1d 766 note_add_store_info *info = (note_add_store_info *) data;
9e582b1d
JR
767
768 if (!REG_P (loc))
769 return;
770
771 /* If this register is referenced by the current or an earlier insn,
772 that's OK. E.g. this applies to the register that is being incremented
773 with this addition. */
774 for (insn = info->first;
775 insn != NEXT_INSN (info->current);
776 insn = NEXT_INSN (insn))
777 if (reg_referenced_p (loc, PATTERN (insn)))
778 return;
779
780 /* If we come here, we have a clobber of a register that's only OK
781 if that register is not live. If we don't have liveness information
782 available, fail now. */
783 if (!info->fixed_regs_live)
784 {
53d1bae9 785 info->failure = true;
9e582b1d
JR
786 return;
787 }
788 /* Now check if this is a live fixed register. */
53d1bae9
RS
789 unsigned int end_regno = END_REGNO (loc);
790 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
791 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
792 info->failure = true;
9e582b1d
JR
793}
794
4deef538
AO
795/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
796 SRC + SRCOFF before insn ARG. */
6fb5fa3c
DB
797
798static int
4deef538
AO
799emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
800 rtx op ATTRIBUTE_UNUSED,
801 rtx dest, rtx src, rtx srcoff, void *arg)
6fb5fa3c 802{
9e582b1d 803 insn_info_t insn_info = (insn_info_t) arg;
dc01c3d1 804 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
9e582b1d 805 note_add_store_info info;
b8698a0f 806
4deef538
AO
807 /* We can reuse all operands without copying, because we are about
808 to delete the insn that contained it. */
9e582b1d 809 if (srcoff)
ed079c4b
JJ
810 {
811 start_sequence ();
812 emit_insn (gen_add3_insn (dest, src, srcoff));
813 new_insn = get_insns ();
814 end_sequence ();
815 }
9e582b1d 816 else
1476d1bd 817 new_insn = gen_move_insn (dest, src);
9e582b1d
JR
818 info.first = new_insn;
819 info.fixed_regs_live = insn_info->fixed_regs_live;
820 info.failure = false;
821 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
822 {
823 info.current = cur;
e8448ba5 824 note_stores (cur, note_add_store, &info);
9e582b1d 825 }
6fb5fa3c 826
9e582b1d
JR
827 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
828 return it immediately, communicating the failure to its caller. */
829 if (info.failure)
830 return 1;
831
832 emit_insn_before (new_insn, insn);
6fb5fa3c 833
8d8e205b 834 return 0;
6fb5fa3c
DB
835}
836
9e582b1d
JR
837/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
838 is there, is split into a separate insn.
839 Return true on success (or if there was nothing to do), false on failure. */
6fb5fa3c 840
9e582b1d
JR
841static bool
842check_for_inc_dec_1 (insn_info_t insn_info)
6fb5fa3c 843{
dd60a84c 844 rtx_insn *insn = insn_info->insn;
6fb5fa3c
DB
845 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
846 if (note)
8d8e205b
RS
847 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
848 insn_info) == 0;
2c0fa3ec
JJ
849
850 /* Punt on stack pushes, those don't have REG_INC notes and we are
851 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
852 subrtx_iterator::array_type array;
853 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
854 {
855 const_rtx x = *iter;
856 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
857 return false;
858 }
859
9e582b1d 860 return true;
6fb5fa3c
DB
861}
862
863
9e582b1d
JR
864/* Entry point for postreload. If you work on reload_cse, or you need this
865 anywhere else, consider if you can provide register liveness information
866 and add a parameter to this function so that it can be passed down in
867 insn_info.fixed_regs_live. */
868bool
dd60a84c 869check_for_inc_dec (rtx_insn *insn)
9e582b1d 870{
da6603c6 871 insn_info_type insn_info;
9e582b1d
JR
872 rtx note;
873
874 insn_info.insn = insn;
875 insn_info.fixed_regs_live = NULL;
876 note = find_reg_note (insn, REG_INC, NULL_RTX);
877 if (note)
8d8e205b
RS
878 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
879 &insn_info) == 0;
2c0fa3ec
JJ
880
881 /* Punt on stack pushes, those don't have REG_INC notes and we are
882 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
883 subrtx_iterator::array_type array;
884 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
885 {
886 const_rtx x = *iter;
887 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
888 return false;
889 }
890
9e582b1d
JR
891 return true;
892}
893
b8698a0f 894/* Delete the insn and free all of the fields inside INSN_INFO. */
6fb5fa3c
DB
895
896static void
897delete_dead_store_insn (insn_info_t insn_info)
898{
899 read_info_t read_info;
900
901 if (!dbg_cnt (dse))
902 return;
903
9e582b1d
JR
904 if (!check_for_inc_dec_1 (insn_info))
905 return;
456610d3 906 if (dump_file && (dump_flags & TDF_DETAILS))
ac6929b5
RB
907 fprintf (dump_file, "Locally deleting insn %d\n",
908 INSN_UID (insn_info->insn));
6fb5fa3c
DB
909
910 free_store_info (insn_info);
911 read_info = insn_info->read_rec;
b8698a0f 912
6fb5fa3c
DB
913 while (read_info)
914 {
915 read_info_t next = read_info->next;
fb0b2914 916 read_info_type_pool.remove (read_info);
6fb5fa3c
DB
917 read_info = next;
918 }
919 insn_info->read_rec = NULL;
920
921 delete_insn (insn_info->insn);
922 locally_deleted++;
923 insn_info->insn = NULL;
924
925 insn_info->wild_read = false;
926}
927
88d8330d
EB
928/* Return whether DECL, a local variable, can possibly escape the current
929 function scope. */
930
931static bool
932local_variable_can_escape (tree decl)
933{
934 if (TREE_ADDRESSABLE (decl))
935 return true;
936
937 /* If this is a partitioned variable, we need to consider all the variables
938 in the partition. This is necessary because a store into one of them can
939 be replaced with a store into another and this may not change the outcome
940 of the escape analysis. */
941 if (cfun->gimple_df->decls_to_pointers != NULL)
942 {
39c8aaa4 943 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
88d8330d 944 if (namep)
39c8aaa4 945 return TREE_ADDRESSABLE (*namep);
88d8330d
EB
946 }
947
948 return false;
949}
950
951/* Return whether EXPR can possibly escape the current function scope. */
952
d26c7090
ER
953static bool
954can_escape (tree expr)
955{
956 tree base;
957 if (!expr)
958 return true;
959 base = get_base_address (expr);
960 if (DECL_P (base)
88d8330d 961 && !may_be_aliased (base)
8813a647 962 && !(VAR_P (base)
88d8330d
EB
963 && !DECL_EXTERNAL (base)
964 && !TREE_STATIC (base)
965 && local_variable_can_escape (base)))
d26c7090
ER
966 return false;
967 return true;
968}
6fb5fa3c
DB
969
970/* Set the store* bitmaps offset_map_size* fields in GROUP based on
971 OFFSET and WIDTH. */
972
973static void
02ce5d90 974set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
d26c7090 975 tree expr)
6fb5fa3c 976{
02ce5d90
RS
977 /* Non-constant offsets and widths act as global kills, so there's no point
978 trying to use them to derive global DSE candidates. */
979 HOST_WIDE_INT i, const_offset, const_width;
d26c7090 980 bool expr_escapes = can_escape (expr);
02ce5d90
RS
981 if (offset.is_constant (&const_offset)
982 && width.is_constant (&const_width)
983 && const_offset > -MAX_OFFSET
984 && const_offset + const_width < MAX_OFFSET)
985 for (i = const_offset; i < const_offset + const_width; ++i)
6fb5fa3c
DB
986 {
987 bitmap store1;
988 bitmap store2;
d26c7090 989 bitmap escaped;
6fb5fa3c
DB
990 int ai;
991 if (i < 0)
992 {
993 store1 = group->store1_n;
994 store2 = group->store2_n;
d26c7090 995 escaped = group->escaped_n;
6fb5fa3c
DB
996 ai = -i;
997 }
998 else
999 {
1000 store1 = group->store1_p;
1001 store2 = group->store2_p;
d26c7090 1002 escaped = group->escaped_p;
6fb5fa3c
DB
1003 ai = i;
1004 }
b8698a0f 1005
fcaa4ca4 1006 if (!bitmap_set_bit (store1, ai))
6fb5fa3c 1007 bitmap_set_bit (store2, ai);
b8698a0f 1008 else
6fb5fa3c 1009 {
6fb5fa3c
DB
1010 if (i < 0)
1011 {
1012 if (group->offset_map_size_n < ai)
1013 group->offset_map_size_n = ai;
1014 }
1015 else
1016 {
1017 if (group->offset_map_size_p < ai)
1018 group->offset_map_size_p = ai;
1019 }
1020 }
d26c7090
ER
1021 if (expr_escapes)
1022 bitmap_set_bit (escaped, ai);
6fb5fa3c
DB
1023 }
1024}
1025
d26c7090
ER
1026static void
1027reset_active_stores (void)
1028{
1029 active_local_stores = NULL;
1030 active_local_stores_len = 0;
1031}
6fb5fa3c 1032
d26c7090 1033/* Free all READ_REC of the LAST_INSN of BB_INFO. */
6fb5fa3c
DB
1034
1035static void
d26c7090 1036free_read_records (bb_info_t bb_info)
6fb5fa3c
DB
1037{
1038 insn_info_t insn_info = bb_info->last_insn;
1039 read_info_t *ptr = &insn_info->read_rec;
6fb5fa3c
DB
1040 while (*ptr)
1041 {
1042 read_info_t next = (*ptr)->next;
ac6929b5
RB
1043 read_info_type_pool.remove (*ptr);
1044 *ptr = next;
6fb5fa3c 1045 }
d26c7090
ER
1046}
1047
1048/* Set the BB_INFO so that the last insn is marked as a wild read. */
1049
1050static void
1051add_wild_read (bb_info_t bb_info)
1052{
1053 insn_info_t insn_info = bb_info->last_insn;
6fb5fa3c 1054 insn_info->wild_read = true;
d26c7090
ER
1055 free_read_records (bb_info);
1056 reset_active_stores ();
6fb5fa3c
DB
1057}
1058
d26c7090
ER
1059/* Set the BB_INFO so that the last insn is marked as a wild read of
1060 non-frame locations. */
1061
1062static void
1063add_non_frame_wild_read (bb_info_t bb_info)
1064{
1065 insn_info_t insn_info = bb_info->last_insn;
1066 insn_info->non_frame_wild_read = true;
1067 free_read_records (bb_info);
1068 reset_active_stores ();
1069}
6fb5fa3c 1070
50f0f366
EB
1071/* Return true if X is a constant or one of the registers that behave
1072 as a constant over the life of a function. This is equivalent to
1073 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1074
1075static bool
1076const_or_frame_p (rtx x)
1077{
d8116890
KZ
1078 if (CONSTANT_P (x))
1079 return true;
1080
1081 if (GET_CODE (x) == REG)
6fb5fa3c 1082 {
6fb5fa3c
DB
1083 /* Note that we have to test for the actual rtx used for the frame
1084 and arg pointers and not just the register number in case we have
1085 eliminated the frame and/or arg pointer and are using it
1086 for pseudos. */
1087 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1088 /* The arg pointer varies if it is not a fixed register. */
1089 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1090 || x == pic_offset_table_rtx)
1091 return true;
1092 return false;
6fb5fa3c 1093 }
da6603c6 1094
d8116890 1095 return false;
6fb5fa3c
DB
1096}
1097
b8698a0f
L
1098/* Take all reasonable action to put the address of MEM into the form
1099 that we can do analysis on.
6fb5fa3c
DB
1100
1101 The gold standard is to get the address into the form: address +
1102 OFFSET where address is something that rtx_varies_p considers a
1103 constant. When we can get the address in this form, we can do
1104 global analysis on it. Note that for constant bases, address is
1105 not actually returned, only the group_id. The address can be
1106 obtained from that.
1107
1108 If that fails, we try cselib to get a value we can at least use
b8698a0f
L
1109 locally. If that fails we return false.
1110
6fb5fa3c
DB
1111 The GROUP_ID is set to -1 for cselib bases and the index of the
1112 group for non_varying bases.
1113
1114 FOR_READ is true if this is a mem read and false if not. */
1115
1116static bool
1117canon_address (rtx mem,
6fb5fa3c 1118 int *group_id,
02ce5d90 1119 poly_int64 *offset,
6fb5fa3c
DB
1120 cselib_val **base)
1121{
ef4bddc2 1122 machine_mode address_mode = get_address_mode (mem);
6fb5fa3c
DB
1123 rtx mem_address = XEXP (mem, 0);
1124 rtx expanded_address, address;
403c7520
JJ
1125 int expanded;
1126
4deef538 1127 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
6fb5fa3c 1128
456610d3 1129 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1130 {
1131 fprintf (dump_file, " mem: ");
1132 print_inline_rtx (dump_file, mem_address, 0);
1133 fprintf (dump_file, "\n");
1134 }
1135
403c7520
JJ
1136 /* First see if just canon_rtx (mem_address) is const or frame,
1137 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1138 address = NULL_RTX;
1139 for (expanded = 0; expanded < 2; expanded++)
1140 {
1141 if (expanded)
1142 {
1143 /* Use cselib to replace all of the reg references with the full
b8698a0f 1144 expression. This will take care of the case where we have
6fb5fa3c 1145
403c7520
JJ
1146 r_x = base + offset;
1147 val = *r_x;
b8698a0f
L
1148
1149 by making it into
6fb5fa3c 1150
403c7520 1151 val = *(base + offset); */
6fb5fa3c 1152
403c7520
JJ
1153 expanded_address = cselib_expand_value_rtx (mem_address,
1154 scratch, 5);
6fb5fa3c 1155
403c7520
JJ
1156 /* If this fails, just go with the address from first
1157 iteration. */
1158 if (!expanded_address)
1159 break;
1160 }
1161 else
1162 expanded_address = mem_address;
6fb5fa3c 1163
403c7520
JJ
1164 /* Split the address into canonical BASE + OFFSET terms. */
1165 address = canon_rtx (expanded_address);
6fb5fa3c 1166
403c7520 1167 *offset = 0;
6fb5fa3c 1168
456610d3 1169 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1170 {
1171 if (expanded)
1172 {
1173 fprintf (dump_file, "\n after cselib_expand address: ");
1174 print_inline_rtx (dump_file, expanded_address, 0);
1175 fprintf (dump_file, "\n");
1176 }
6fb5fa3c 1177
403c7520
JJ
1178 fprintf (dump_file, "\n after canon_rtx address: ");
1179 print_inline_rtx (dump_file, address, 0);
1180 fprintf (dump_file, "\n");
1181 }
6fb5fa3c 1182
403c7520
JJ
1183 if (GET_CODE (address) == CONST)
1184 address = XEXP (address, 0);
6fb5fa3c 1185
02ce5d90 1186 address = strip_offset_and_add (address, offset);
6fb5fa3c 1187
09e881c9
BE
1188 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1189 && const_or_frame_p (address))
6fb5fa3c 1190 {
fd6daec9 1191 group_info *group = get_group_info (address);
403c7520 1192
456610d3 1193 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1194 {
1195 fprintf (dump_file, " gid=%d offset=", group->id);
1196 print_dec (*offset, dump_file);
1197 fprintf (dump_file, "\n");
1198 }
403c7520
JJ
1199 *base = NULL;
1200 *group_id = group->id;
1201 return true;
6fb5fa3c 1202 }
403c7520
JJ
1203 }
1204
4deef538 1205 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
403c7520
JJ
1206 *group_id = -1;
1207
1208 if (*base == NULL)
1209 {
456610d3 1210 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1211 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1212 return false;
6fb5fa3c 1213 }
456610d3 1214 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1215 {
1216 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1217 (*base)->uid, (*base)->hash);
1218 print_dec (*offset, dump_file);
1219 fprintf (dump_file, "\n");
1220 }
6fb5fa3c
DB
1221 return true;
1222}
1223
1224
1225/* Clear the rhs field from the active_local_stores array. */
1226
1227static void
1228clear_rhs_from_active_local_stores (void)
1229{
1230 insn_info_t ptr = active_local_stores;
1231
1232 while (ptr)
1233 {
fd6daec9 1234 store_info *store_info = ptr->store_rec;
6fb5fa3c
DB
1235 /* Skip the clobbers. */
1236 while (!store_info->is_set)
1237 store_info = store_info->next;
1238
1239 store_info->rhs = NULL;
8dd5516b 1240 store_info->const_rhs = NULL;
6fb5fa3c
DB
1241
1242 ptr = ptr->next_local_store;
1243 }
1244}
1245
1246
8dd5516b
JJ
1247/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1248
1249static inline void
fd6daec9 1250set_position_unneeded (store_info *s_info, int pos)
8dd5516b 1251{
22d9c880 1252 if (UNLIKELY (s_info->is_large))
8dd5516b 1253 {
fcaa4ca4
NF
1254 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1255 s_info->positions_needed.large.count++;
8dd5516b
JJ
1256 }
1257 else
1258 s_info->positions_needed.small_bitmask
fecfbfa4 1259 &= ~(HOST_WIDE_INT_1U << pos);
8dd5516b
JJ
1260}
1261
1262/* Mark the whole store S_INFO as unneeded. */
1263
1264static inline void
fd6daec9 1265set_all_positions_unneeded (store_info *s_info)
8dd5516b 1266{
22d9c880 1267 if (UNLIKELY (s_info->is_large))
8dd5516b 1268 {
02ce5d90
RS
1269 HOST_WIDE_INT width;
1270 if (s_info->width.is_constant (&width))
1271 {
1272 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1273 s_info->positions_needed.large.count = width;
1274 }
1275 else
1276 {
1277 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1278 s_info->positions_needed.large.count = 1;
1279 }
8dd5516b
JJ
1280 }
1281 else
07e96250 1282 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
8dd5516b
JJ
1283}
1284
1285/* Return TRUE if any bytes from S_INFO store are needed. */
1286
1287static inline bool
fd6daec9 1288any_positions_needed_p (store_info *s_info)
8dd5516b 1289{
22d9c880 1290 if (UNLIKELY (s_info->is_large))
02ce5d90
RS
1291 {
1292 HOST_WIDE_INT width;
1293 if (s_info->width.is_constant (&width))
1294 {
1295 gcc_checking_assert (s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count < width;
1297 }
1298 else
1299 {
1300 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1301 return s_info->positions_needed.large.count == 0;
1302 }
1303 }
8dd5516b 1304 else
07e96250 1305 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
8dd5516b
JJ
1306}
1307
1308/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
02ce5d90 1309 store are known to be needed. */
8dd5516b
JJ
1310
1311static inline bool
02ce5d90
RS
1312all_positions_needed_p (store_info *s_info, poly_int64 start,
1313 poly_int64 width)
8dd5516b 1314{
02ce5d90
RS
1315 gcc_assert (s_info->rhs);
1316 if (!s_info->width.is_constant ())
1317 {
1318 gcc_assert (s_info->is_large
1319 && !s_info->positions_needed.large.bmap);
1320 return s_info->positions_needed.large.count == 0;
1321 }
1322
1323 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1324 a non-constant region of a constant-sized store. We can't say for
1325 sure that all positions are needed. */
1326 HOST_WIDE_INT const_start, const_width;
1327 if (!start.is_constant (&const_start)
1328 || !width.is_constant (&const_width))
1329 return false;
1330
22d9c880 1331 if (UNLIKELY (s_info->is_large))
8dd5516b 1332 {
02ce5d90
RS
1333 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1334 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
8dd5516b
JJ
1335 return false;
1336 return true;
1337 }
1338 else
1339 {
02ce5d90
RS
1340 unsigned HOST_WIDE_INT mask
1341 = lowpart_bitmask (const_width) << const_start;
8dd5516b
JJ
1342 return (s_info->positions_needed.small_bitmask & mask) == mask;
1343 }
1344}
1345
1346
02ce5d90
RS
1347static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1348 poly_int64, basic_block, bool);
8dd5516b
JJ
1349
1350
6fb5fa3c
DB
1351/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1352 there is a candidate store, after adding it to the appropriate
1353 local store group if so. */
1354
1355static int
1356record_store (rtx body, bb_info_t bb_info)
1357{
6216f94e 1358 rtx mem, rhs, const_rhs, mem_addr;
02ce5d90
RS
1359 poly_int64 offset = 0;
1360 poly_int64 width = 0;
6fb5fa3c 1361 insn_info_t insn_info = bb_info->last_insn;
fd6daec9 1362 store_info *store_info = NULL;
6fb5fa3c
DB
1363 int group_id;
1364 cselib_val *base = NULL;
8dd5516b 1365 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1366 bool store_is_unused;
1367
1368 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1369 return 0;
1370
8dd5516b
JJ
1371 mem = SET_DEST (body);
1372
6fb5fa3c
DB
1373 /* If this is not used, then this cannot be used to keep the insn
1374 from being deleted. On the other hand, it does provide something
1375 that can be used to prove that another store is dead. */
1376 store_is_unused
8dd5516b 1377 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1378
1379 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1380 if (!MEM_P (mem))
1381 {
1382 /* If the set or clobber is unused, then it does not effect our
1383 ability to get rid of the entire insn. */
1384 if (!store_is_unused)
1385 insn_info->cannot_delete = true;
1386 return 0;
1387 }
1388
1389 /* At this point we know mem is a mem. */
1390 if (GET_MODE (mem) == BLKmode)
1391 {
d05d7551 1392 HOST_WIDE_INT const_size;
6fb5fa3c
DB
1393 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1394 {
456610d3 1395 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1396 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1397 add_wild_read (bb_info);
1398 insn_info->cannot_delete = true;
8dd5516b 1399 return 0;
6fb5fa3c 1400 }
8dd5516b
JJ
1401 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1402 as memset (addr, 0, 36); */
f5541398 1403 else if (!MEM_SIZE_KNOWN_P (mem)
d05d7551
RS
1404 || maybe_le (MEM_SIZE (mem), 0)
1405 /* This is a limit on the bitmap size, which is only relevant
1406 for constant-sized MEMs. */
1407 || (MEM_SIZE (mem).is_constant (&const_size)
1408 && const_size > MAX_OFFSET)
8dd5516b 1409 || GET_CODE (body) != SET
8dd5516b 1410 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1411 {
8dd5516b
JJ
1412 if (!store_is_unused)
1413 {
1414 /* If the set or clobber is unused, then it does not effect our
1415 ability to get rid of the entire insn. */
1416 insn_info->cannot_delete = true;
1417 clear_rhs_from_active_local_stores ();
1418 }
1419 return 0;
6fb5fa3c 1420 }
6fb5fa3c
DB
1421 }
1422
1423 /* We can still process a volatile mem, we just cannot delete it. */
1424 if (MEM_VOLATILE_P (mem))
8dd5516b 1425 insn_info->cannot_delete = true;
6fb5fa3c 1426
ac6929b5 1427 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c
DB
1428 {
1429 clear_rhs_from_active_local_stores ();
1430 return 0;
1431 }
1432
8dd5516b 1433 if (GET_MODE (mem) == BLKmode)
f5541398 1434 width = MEM_SIZE (mem);
8dd5516b 1435 else
6f557e0e 1436 width = GET_MODE_SIZE (GET_MODE (mem));
6fb5fa3c 1437
02ce5d90 1438 if (!endpoint_representable_p (offset, width))
213ffde2
JJ
1439 {
1440 clear_rhs_from_active_local_stores ();
1441 return 0;
1442 }
1443
cbe679a4
JJ
1444 if (known_eq (width, 0))
1445 return 0;
1446
ac6929b5 1447 if (group_id >= 0)
6fb5fa3c
DB
1448 {
1449 /* In the restrictive case where the base is a constant or the
1450 frame pointer we can do global analysis. */
b8698a0f 1451
fd6daec9 1452 group_info *group
9771b263 1453 = rtx_group_vec[group_id];
d26c7090 1454 tree expr = MEM_EXPR (mem);
b8698a0f 1455
da6603c6 1456 store_info = rtx_store_info_pool.allocate ();
d26c7090 1457 set_usage_bits (group, offset, width, expr);
6fb5fa3c 1458
456610d3 1459 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1460 {
1461 fprintf (dump_file, " processing const base store gid=%d",
1462 group_id);
1463 print_range (dump_file, offset, width);
1464 fprintf (dump_file, "\n");
1465 }
6fb5fa3c
DB
1466 }
1467 else
1468 {
9e412ca3 1469 if (may_be_sp_based_p (XEXP (mem, 0)))
50f0f366 1470 insn_info->stack_pointer_based = true;
6fb5fa3c 1471 insn_info->contains_cselib_groups = true;
50f0f366 1472
da6603c6 1473 store_info = cse_store_info_pool.allocate ();
6fb5fa3c
DB
1474 group_id = -1;
1475
456610d3 1476 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1477 {
1478 fprintf (dump_file, " processing cselib store ");
1479 print_range (dump_file, offset, width);
1480 fprintf (dump_file, "\n");
1481 }
6fb5fa3c
DB
1482 }
1483
8dd5516b
JJ
1484 const_rhs = rhs = NULL_RTX;
1485 if (GET_CODE (body) == SET
1486 /* No place to keep the value after ra. */
1487 && !reload_completed
1488 && (REG_P (SET_SRC (body))
1489 || GET_CODE (SET_SRC (body)) == SUBREG
1490 || CONSTANT_P (SET_SRC (body)))
1491 && !MEM_VOLATILE_P (mem)
1492 /* Sometimes the store and reload is used for truncation and
1493 rounding. */
1494 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1495 {
1496 rhs = SET_SRC (body);
1497 if (CONSTANT_P (rhs))
1498 const_rhs = rhs;
1499 else if (body == PATTERN (insn_info->insn))
1500 {
1501 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1502 if (tem && CONSTANT_P (XEXP (tem, 0)))
1503 const_rhs = XEXP (tem, 0);
1504 }
1505 if (const_rhs == NULL_RTX && REG_P (rhs))
1506 {
1507 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1508
1509 if (tem && CONSTANT_P (tem))
1510 const_rhs = tem;
a743a727
L
1511 else
1512 {
1513 /* If RHS is set only once to a constant, set CONST_RHS
1514 to the constant. */
1515 rtx def_src = df_find_single_def_src (rhs);
1516 if (def_src != nullptr && CONSTANT_P (def_src))
1517 const_rhs = def_src;
1518 }
8dd5516b
JJ
1519 }
1520 }
1521
6fb5fa3c
DB
1522 /* Check to see if this stores causes some other stores to be
1523 dead. */
1524 ptr = active_local_stores;
1525 last = NULL;
8dd5516b 1526 redundant_reason = NULL;
6216f94e 1527 mem = canon_rtx (mem);
ac6929b5
RB
1528
1529 if (group_id < 0)
1530 mem_addr = base->val_rtx;
6216f94e
JJ
1531 else
1532 {
ac6929b5
RB
1533 group_info *group = rtx_group_vec[group_id];
1534 mem_addr = group->canon_base_addr;
6216f94e 1535 }
02ce5d90 1536 if (maybe_ne (offset, 0))
ac6929b5 1537 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c
DB
1538
1539 while (ptr)
1540 {
1541 insn_info_t next = ptr->next_local_store;
99b1c316 1542 class store_info *s_info = ptr->store_rec;
60564289 1543 bool del = true;
6fb5fa3c
DB
1544
1545 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1546 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1547 has exactly on set. */
1548 while (!s_info->is_set)
1549 s_info = s_info->next;
1550
ac6929b5 1551 if (s_info->group_id == group_id && s_info->cse_base == base)
6fb5fa3c
DB
1552 {
1553 HOST_WIDE_INT i;
456610d3 1554 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1555 {
1556 fprintf (dump_file, " trying store in insn=%d gid=%d",
1557 INSN_UID (ptr->insn), s_info->group_id);
1558 print_range (dump_file, s_info->offset, s_info->width);
1559 fprintf (dump_file, "\n");
1560 }
8dd5516b
JJ
1561
1562 /* Even if PTR won't be eliminated as unneeded, if both
1563 PTR and this insn store the same constant value, we might
1564 eliminate this insn instead. */
1565 if (s_info->const_rhs
1566 && const_rhs
71d6a386
RS
1567 && known_subrange_p (offset, width,
1568 s_info->offset, s_info->width)
1569 && all_positions_needed_p (s_info, offset - s_info->offset,
d7e1f499
RB
1570 width)
1571 /* We can only remove the later store if the earlier aliases
1572 at least all accesses the later one. */
64ce76d9 1573 && mems_same_for_tbaa_p (s_info->mem, mem))
8dd5516b
JJ
1574 {
1575 if (GET_MODE (mem) == BLKmode)
1576 {
1577 if (GET_MODE (s_info->mem) == BLKmode
1578 && s_info->const_rhs == const_rhs)
1579 redundant_reason = ptr;
1580 }
1581 else if (s_info->const_rhs == const0_rtx
1582 && const_rhs == const0_rtx)
1583 redundant_reason = ptr;
1584 else
1585 {
1586 rtx val;
1587 start_sequence ();
71d6a386 1588 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
8dd5516b
JJ
1589 BLOCK_FOR_INSN (insn_info->insn),
1590 true);
1591 if (get_insns () != NULL)
1592 val = NULL_RTX;
1593 end_sequence ();
1594 if (val && rtx_equal_p (val, const_rhs))
1595 redundant_reason = ptr;
1596 }
1597 }
1598
02ce5d90 1599 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
71d6a386
RS
1600 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1601 /* The new store touches every byte that S_INFO does. */
1602 set_all_positions_unneeded (s_info);
02ce5d90
RS
1603 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1604 && s_info->width.is_constant (&const_s_width)
1605 && width.is_constant (&const_width))
71d6a386 1606 {
02ce5d90 1607 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
71d6a386 1608 begin_unneeded = MAX (begin_unneeded, 0);
02ce5d90 1609 end_unneeded = MIN (end_unneeded, const_s_width);
71d6a386
RS
1610 for (i = begin_unneeded; i < end_unneeded; ++i)
1611 set_position_unneeded (s_info, i);
1612 }
02ce5d90
RS
1613 else
1614 {
1615 /* We don't know which parts of S_INFO are needed and
1616 which aren't, so invalidate the RHS. */
1617 s_info->rhs = NULL;
1618 s_info->const_rhs = NULL;
1619 }
6fb5fa3c
DB
1620 }
1621 else if (s_info->rhs)
1622 /* Need to see if it is possible for this store to overwrite
1623 the value of store_info. If it is, set the rhs to NULL to
1624 keep it from being used to remove a load. */
1625 {
43b9f499
RB
1626 if (canon_output_dependence (s_info->mem, true,
1627 mem, GET_MODE (mem),
1628 mem_addr))
8dd5516b
JJ
1629 {
1630 s_info->rhs = NULL;
1631 s_info->const_rhs = NULL;
1632 }
6fb5fa3c 1633 }
6216f94e 1634
6fb5fa3c
DB
1635 /* An insn can be deleted if every position of every one of
1636 its s_infos is zero. */
1b6fa860 1637 if (any_positions_needed_p (s_info))
60564289 1638 del = false;
8dd5516b 1639
60564289 1640 if (del)
6fb5fa3c
DB
1641 {
1642 insn_info_t insn_to_delete = ptr;
b8698a0f 1643
dabd47e7 1644 active_local_stores_len--;
6fb5fa3c
DB
1645 if (last)
1646 last->next_local_store = ptr->next_local_store;
1647 else
1648 active_local_stores = ptr->next_local_store;
b8698a0f 1649
1b6fa860
JJ
1650 if (!insn_to_delete->cannot_delete)
1651 delete_dead_store_insn (insn_to_delete);
6fb5fa3c
DB
1652 }
1653 else
1654 last = ptr;
b8698a0f 1655
6fb5fa3c
DB
1656 ptr = next;
1657 }
b8698a0f 1658
6fb5fa3c
DB
1659 /* Finish filling in the store_info. */
1660 store_info->next = insn_info->store_rec;
1661 insn_info->store_rec = store_info;
6216f94e 1662 store_info->mem = mem;
6216f94e 1663 store_info->mem_addr = mem_addr;
6fb5fa3c 1664 store_info->cse_base = base;
02ce5d90
RS
1665 HOST_WIDE_INT const_width;
1666 if (!width.is_constant (&const_width))
1667 {
1668 store_info->is_large = true;
1669 store_info->positions_needed.large.count = 0;
1670 store_info->positions_needed.large.bmap = NULL;
1671 }
1672 else if (const_width > HOST_BITS_PER_WIDE_INT)
8dd5516b
JJ
1673 {
1674 store_info->is_large = true;
1675 store_info->positions_needed.large.count = 0;
3f9b14ff 1676 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
8dd5516b
JJ
1677 }
1678 else
1679 {
1680 store_info->is_large = false;
02ce5d90
RS
1681 store_info->positions_needed.small_bitmask
1682 = lowpart_bitmask (const_width);
8dd5516b 1683 }
6fb5fa3c 1684 store_info->group_id = group_id;
71d6a386
RS
1685 store_info->offset = offset;
1686 store_info->width = width;
6fb5fa3c 1687 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1688 store_info->rhs = rhs;
1689 store_info->const_rhs = const_rhs;
1690 store_info->redundant_reason = redundant_reason;
6fb5fa3c 1691
6fb5fa3c
DB
1692 /* If this is a clobber, we return 0. We will only be able to
1693 delete this insn if there is only one store USED store, but we
1694 can use the clobber to delete other stores earlier. */
1695 return store_info->is_set ? 1 : 0;
1696}
1697
1698
1699static void
1700dump_insn_info (const char * start, insn_info_t insn_info)
1701{
b8698a0f 1702 fprintf (dump_file, "%s insn=%d %s\n", start,
6fb5fa3c
DB
1703 INSN_UID (insn_info->insn),
1704 insn_info->store_rec ? "has store" : "naked");
1705}
1706
1707
8660aaae
EC
1708/* If the modes are different and the value's source and target do not
1709 line up, we need to extract the value from lower part of the rhs of
1710 the store, shift it, and then put it into a form that can be shoved
1711 into the read_insn. This function generates a right SHIFT of a
1712 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1713 shift sequence is returned or NULL if we failed to find a
1714 shift. */
1715
1716static rtx
02ce5d90 1717find_shift_sequence (poly_int64 access_size,
fd6daec9 1718 store_info *store_info,
ef4bddc2 1719 machine_mode read_mode,
02ce5d90 1720 poly_int64 shift, bool speed, bool require_cst)
8660aaae 1721{
ef4bddc2 1722 machine_mode store_mode = GET_MODE (store_info->mem);
f67f4dff 1723 scalar_int_mode new_mode;
18b526e8 1724 rtx read_reg = NULL;
8660aaae 1725
265d817b
XL
1726 /* If a constant was stored into memory, try to simplify it here,
1727 otherwise the cost of the shift might preclude this optimization
1728 e.g. at -Os, even when no actual shift will be needed. */
1729 if (store_info->const_rhs)
1730 {
1731 auto new_mode = smallest_int_mode_for_size (access_size * BITS_PER_UNIT);
1732 auto byte = subreg_lowpart_offset (new_mode, store_mode);
1733 rtx ret
1734 = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte);
1735 if (ret && CONSTANT_P (ret))
1736 {
1737 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1738 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret,
1739 shift_rtx);
1740 if (ret && CONSTANT_P (ret))
1741 {
1742 byte = subreg_lowpart_offset (read_mode, new_mode);
1743 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1744 if (ret && CONSTANT_P (ret)
1745 && (set_src_cost (ret, read_mode, speed)
1746 <= COSTS_N_INSNS (1)))
1747 return ret;
1748 }
1749 }
1750 }
1751
1752 if (require_cst)
1753 return NULL_RTX;
1754
8660aaae
EC
1755 /* Some machines like the x86 have shift insns for each size of
1756 operand. Other machines like the ppc or the ia-64 may only have
1757 shift insns that shift values within 32 or 64 bit registers.
1758 This loop tries to find the smallest shift insn that will right
1759 justify the value we want to read but is available in one insn on
1760 the machine. */
1761
f67f4dff 1762 opt_scalar_int_mode new_mode_iter;
f835e9f6 1763 FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
8660aaae 1764 {
dc01c3d1
DM
1765 rtx target, new_reg, new_lhs;
1766 rtx_insn *shift_seq, *insn;
d898d29b 1767 int cost;
348eea5f 1768
f67f4dff 1769 new_mode = new_mode_iter.require ();
c94843d2
RS
1770 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1771 break;
f835e9f6
RS
1772 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (read_mode)))
1773 continue;
c94843d2 1774
18b526e8
RS
1775 /* Try a wider mode if truncating the store mode to NEW_MODE
1776 requires a real instruction. */
73a699ae 1777 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
d0edd768 1778 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
348eea5f
RS
1779 continue;
1780
18b526e8
RS
1781 /* Also try a wider mode if the necessary punning is either not
1782 desirable or not possible. */
1783 if (!CONSTANT_P (store_info->rhs)
99e1629f 1784 && !targetm.modes_tieable_p (new_mode, store_mode))
18b526e8 1785 continue;
18b526e8 1786
265d817b
XL
1787 if (multiple_p (shift, GET_MODE_BITSIZE (new_mode))
1788 && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode)))
1789 {
1790 /* Try to implement the shift using a subreg. */
1791 poly_int64 offset
1792 = subreg_offset_from_lsb (new_mode, store_mode, shift);
1793 rtx rhs_subreg = simplify_gen_subreg (new_mode, store_info->rhs,
1794 store_mode, offset);
1795 if (rhs_subreg)
1796 {
1797 read_reg
1798 = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg));
1799 break;
1800 }
1801 }
1802
1803 if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1804 continue;
1805
348eea5f 1806 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1807
1808 start_sequence ();
1809
1810 /* In theory we could also check for an ashr. Ian Taylor knows
1811 of one dsp where the cost of these two was not the same. But
1812 this really is a rare case anyway. */
1813 target = expand_binop (new_mode, lshr_optab, new_reg,
abd3c800
RS
1814 gen_int_shift_amount (new_mode, shift),
1815 new_reg, 1, OPTAB_DIRECT);
8660aaae 1816
c6f3019a
RS
1817 shift_seq = get_insns ();
1818 end_sequence ();
8660aaae 1819
c6f3019a
RS
1820 if (target != new_reg || shift_seq == NULL)
1821 continue;
1822
1823 cost = 0;
1824 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1825 if (INSN_P (insn))
d09e78e8 1826 cost += insn_cost (insn, speed);
c6f3019a
RS
1827
1828 /* The computation up to here is essentially independent
1829 of the arguments and could be precomputed. It may
1830 not be worth doing so. We could precompute if
1831 worthwhile or at least cache the results. The result
06acf7d0
RS
1832 technically depends on both SHIFT and ACCESS_SIZE,
1833 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1834
1835 if (cost > COSTS_N_INSNS (1))
1836 continue;
1837
d898d29b
JJ
1838 new_lhs = extract_low_bits (new_mode, store_mode,
1839 copy_rtx (store_info->rhs));
1840 if (new_lhs == NULL_RTX)
1841 continue;
1842
c6f3019a
RS
1843 /* We found an acceptable shift. Generate a move to
1844 take the value from the store and put it into the
1845 shift pseudo, then shift it, then generate another
1846 move to put in into the target of the read. */
18b526e8 1847 emit_move_insn (new_reg, new_lhs);
c6f3019a 1848 emit_insn (shift_seq);
18b526e8 1849 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1850 break;
8660aaae
EC
1851 }
1852
18b526e8 1853 return read_reg;
8660aaae
EC
1854}
1855
1856
02b47899
KZ
1857/* Call back for note_stores to find the hard regs set or clobbered by
1858 insn. Data is a bitmap of the hardregs set so far. */
1859
1860static void
1861look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1862{
1863 bitmap regs_set = (bitmap) data;
1864
1865 if (REG_P (x)
f773c2bd 1866 && HARD_REGISTER_P (x))
dc8afb70 1867 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
02b47899
KZ
1868}
1869
8dd5516b 1870/* Helper function for replace_read and record_store.
71d6a386
RS
1871 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1872 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
8dd5516b
JJ
1873 if not successful. If REQUIRE_CST is true, return always constant. */
1874
1875static rtx
fd6daec9 1876get_stored_val (store_info *store_info, machine_mode read_mode,
02ce5d90 1877 poly_int64 read_offset, poly_int64 read_width,
8dd5516b
JJ
1878 basic_block bb, bool require_cst)
1879{
ef4bddc2 1880 machine_mode store_mode = GET_MODE (store_info->mem);
02ce5d90 1881 poly_int64 gap;
8dd5516b
JJ
1882 rtx read_reg;
1883
1884 /* To get here the read is within the boundaries of the write so
1885 shift will never be negative. Start out with the shift being in
1886 bytes. */
1887 if (store_mode == BLKmode)
71d6a386 1888 gap = 0;
8dd5516b 1889 else if (BYTES_BIG_ENDIAN)
71d6a386
RS
1890 gap = ((store_info->offset + store_info->width)
1891 - (read_offset + read_width));
8dd5516b 1892 else
71d6a386 1893 gap = read_offset - store_info->offset;
8dd5516b 1894
e6575643 1895 if (gap.is_constant () && maybe_ne (gap, 0))
71d6a386 1896 {
02ce5d90
RS
1897 poly_int64 shift = gap * BITS_PER_UNIT;
1898 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
71d6a386
RS
1899 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1900 shift, optimize_bb_for_speed_p (bb),
1901 require_cst);
1902 }
8dd5516b
JJ
1903 else if (store_mode == BLKmode)
1904 {
1905 /* The store is a memset (addr, const_val, const_size). */
1906 gcc_assert (CONST_INT_P (store_info->rhs));
304b9962
RS
1907 scalar_int_mode int_store_mode;
1908 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
8dd5516b
JJ
1909 read_reg = NULL_RTX;
1910 else if (store_info->rhs == const0_rtx)
304b9962
RS
1911 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1912 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
8dd5516b
JJ
1913 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1914 read_reg = NULL_RTX;
1915 else
1916 {
1917 unsigned HOST_WIDE_INT c
1918 = INTVAL (store_info->rhs)
fecfbfa4 1919 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
8dd5516b
JJ
1920 int shift = BITS_PER_UNIT;
1921 while (shift < HOST_BITS_PER_WIDE_INT)
1922 {
1923 c |= (c << shift);
1924 shift <<= 1;
1925 }
304b9962
RS
1926 read_reg = gen_int_mode (c, int_store_mode);
1927 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
8dd5516b
JJ
1928 }
1929 }
1930 else if (store_info->const_rhs
1931 && (require_cst
1932 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1933 read_reg = extract_low_bits (read_mode, store_mode,
1934 copy_rtx (store_info->const_rhs));
1935 else
1936 read_reg = extract_low_bits (read_mode, store_mode,
1937 copy_rtx (store_info->rhs));
1938 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1939 read_reg = NULL_RTX;
1940 return read_reg;
1941}
02b47899 1942
6fb5fa3c
DB
1943/* Take a sequence of:
1944 A <- r1
1945 ...
1946 ... <- A
1947
b8698a0f 1948 and change it into
6fb5fa3c
DB
1949 r2 <- r1
1950 A <- r1
1951 ...
1952 ... <- r2
1953
8660aaae
EC
1954 or
1955
1956 r3 <- extract (r1)
1957 r3 <- r3 >> shift
1958 r2 <- extract (r3)
1959 ... <- r2
1960
1961 or
1962
1963 r2 <- extract (r1)
1964 ... <- r2
1965
1966 Depending on the alignment and the mode of the store and
1967 subsequent load.
1968
1969
1970 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1971 and READ_INSN are for the read. Return true if the replacement
1972 went ok. */
1973
1974static bool
fd6daec9 1975replace_read (store_info *store_info, insn_info_t store_insn,
9c747368 1976 read_info_t read_info, insn_info_t read_insn, rtx *loc)
6fb5fa3c 1977{
ef4bddc2
RS
1978 machine_mode store_mode = GET_MODE (store_info->mem);
1979 machine_mode read_mode = GET_MODE (read_info->mem);
dc01c3d1
DM
1980 rtx_insn *insns, *this_insn;
1981 rtx read_reg;
8dd5516b 1982 basic_block bb;
8660aaae 1983
6fb5fa3c
DB
1984 if (!dbg_cnt (dse))
1985 return false;
1986
18b526e8
RS
1987 /* Create a sequence of instructions to set up the read register.
1988 This sequence goes immediately before the store and its result
1989 is read by the load.
1990
1991 We need to keep this in perspective. We are replacing a read
8660aaae
EC
1992 with a sequence of insns, but the read will almost certainly be
1993 in cache, so it is not going to be an expensive one. Thus, we
1994 are not willing to do a multi insn shift or worse a subroutine
1995 call to get rid of the read. */
456610d3 1996 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1997 fprintf (dump_file, "trying to replace %smode load in insn %d"
1998 " from %smode store in insn %d\n",
1999 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2000 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2001 start_sequence ();
8dd5516b
JJ
2002 bb = BLOCK_FOR_INSN (read_insn->insn);
2003 read_reg = get_stored_val (store_info,
71d6a386 2004 read_mode, read_info->offset, read_info->width,
8dd5516b 2005 bb, false);
18b526e8 2006 if (read_reg == NULL_RTX)
8660aaae 2007 {
18b526e8 2008 end_sequence ();
456610d3 2009 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2010 fprintf (dump_file, " -- could not extract bits of stored value\n");
2011 return false;
8660aaae 2012 }
18b526e8
RS
2013 /* Force the value into a new register so that it won't be clobbered
2014 between the store and the load. */
2015 read_reg = copy_to_mode_reg (read_mode, read_reg);
2016 insns = get_insns ();
2017 end_sequence ();
8660aaae 2018
02b47899
KZ
2019 if (insns != NULL_RTX)
2020 {
2021 /* Now we have to scan the set of new instructions to see if the
2022 sequence contains and sets of hardregs that happened to be
2023 live at this point. For instance, this can happen if one of
2024 the insns sets the CC and the CC happened to be live at that
2025 point. This does occasionally happen, see PR 37922. */
3f9b14ff 2026 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
02b47899 2027
2c0fa3ec
JJ
2028 for (this_insn = insns;
2029 this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2030 {
2031 if (insn_invalid_p (this_insn, false))
2032 {
2033 if (dump_file && (dump_flags & TDF_DETAILS))
2034 {
2035 fprintf (dump_file, " -- replacing the loaded MEM with ");
2036 print_simple_rtl (dump_file, read_reg);
2037 fprintf (dump_file, " led to an invalid instruction\n");
2038 }
2039 BITMAP_FREE (regs_set);
2040 return false;
2041 }
2042 note_stores (this_insn, look_for_hardregs, regs_set);
2043 }
b8698a0f 2044
9c747368
JJ
2045 if (store_insn->fixed_regs_live)
2046 bitmap_and_into (regs_set, store_insn->fixed_regs_live);
02b47899
KZ
2047 if (!bitmap_empty_p (regs_set))
2048 {
456610d3 2049 if (dump_file && (dump_flags & TDF_DETAILS))
02b47899 2050 {
2c0fa3ec
JJ
2051 fprintf (dump_file, "abandoning replacement because sequence "
2052 "clobbers live hardregs:");
02b47899
KZ
2053 df_print_regset (dump_file, regs_set);
2054 }
b8698a0f 2055
02b47899
KZ
2056 BITMAP_FREE (regs_set);
2057 return false;
2058 }
2059 BITMAP_FREE (regs_set);
2060 }
2061
2c0fa3ec
JJ
2062 subrtx_iterator::array_type array;
2063 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2064 {
2065 const_rtx x = *iter;
2066 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2067 {
2068 if (dump_file && (dump_flags & TDF_DETAILS))
2069 fprintf (dump_file, " -- replacing the MEM failed due to address "
2070 "side-effects\n");
2071 return false;
2072 }
2073 }
2074
8660aaae 2075 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 2076 {
fd6daec9 2077 deferred_change *change = deferred_change_pool.allocate ();
b8698a0f 2078
8660aaae
EC
2079 /* Insert this right before the store insn where it will be safe
2080 from later insns that might change it before the read. */
2081 emit_insn_before (insns, store_insn->insn);
b8698a0f 2082
8660aaae
EC
2083 /* And now for the kludge part: cselib croaks if you just
2084 return at this point. There are two reasons for this:
b8698a0f 2085
8660aaae
EC
2086 1) Cselib has an idea of how many pseudos there are and
2087 that does not include the new ones we just added.
b8698a0f 2088
8660aaae
EC
2089 2) Cselib does not know about the move insn we added
2090 above the store_info, and there is no way to tell it
2091 about it, because it has "moved on".
b8698a0f 2092
8660aaae
EC
2093 Problem (1) is fixable with a certain amount of engineering.
2094 Problem (2) is requires starting the bb from scratch. This
2095 could be expensive.
b8698a0f 2096
8660aaae
EC
2097 So we are just going to have to lie. The move/extraction
2098 insns are not really an issue, cselib did not see them. But
2099 the use of the new pseudo read_insn is a real problem because
2100 cselib has not scanned this insn. The way that we solve this
2101 problem is that we are just going to put the mem back for now
2102 and when we are finished with the block, we undo this. We
2103 keep a table of mems to get rid of. At the end of the basic
2104 block we can put them back. */
b8698a0f 2105
8660aaae 2106 *loc = read_info->mem;
da6603c6
ML
2107 change->next = deferred_change_list;
2108 deferred_change_list = change;
2109 change->loc = loc;
2110 change->reg = read_reg;
b8698a0f 2111
8660aaae
EC
2112 /* Get rid of the read_info, from the point of view of the
2113 rest of dse, play like this read never happened. */
2114 read_insn->read_rec = read_info->next;
fb0b2914 2115 read_info_type_pool.remove (read_info);
456610d3 2116 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2117 {
2118 fprintf (dump_file, " -- replaced the loaded MEM with ");
2119 print_simple_rtl (dump_file, read_reg);
2120 fprintf (dump_file, "\n");
2121 }
8660aaae 2122 return true;
6fb5fa3c 2123 }
b8698a0f 2124 else
6fb5fa3c 2125 {
456610d3 2126 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2127 {
2128 fprintf (dump_file, " -- replacing the loaded MEM with ");
2129 print_simple_rtl (dump_file, read_reg);
2130 fprintf (dump_file, " led to an invalid instruction\n");
2131 }
6fb5fa3c
DB
2132 return false;
2133 }
2134}
2135
d7111da8
RS
2136/* Check the address of MEM *LOC and kill any appropriate stores that may
2137 be active. */
6fb5fa3c 2138
d7111da8
RS
2139static void
2140check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
6fb5fa3c 2141{
6216f94e 2142 rtx mem = *loc, mem_addr;
6fb5fa3c 2143 insn_info_t insn_info;
02ce5d90
RS
2144 poly_int64 offset = 0;
2145 poly_int64 width = 0;
b8698a0f 2146 cselib_val *base = NULL;
6fb5fa3c
DB
2147 int group_id;
2148 read_info_t read_info;
2149
6fb5fa3c
DB
2150 insn_info = bb_info->last_insn;
2151
2152 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
a49a975f 2153 || MEM_VOLATILE_P (mem))
6fb5fa3c 2154 {
a49a975f
JJ
2155 if (crtl->stack_protect_guard
2156 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2157 || (crtl->stack_protect_guard_decl
2158 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2159 && MEM_VOLATILE_P (mem))
2160 {
2161 /* This is either the stack protector canary on the stack,
2162 which ought to be written by a MEM_VOLATILE_P store and
2163 thus shouldn't be deleted and is read at the very end of
2164 function, but shouldn't conflict with any other store.
2165 Or it is __stack_chk_guard variable or TLS or whatever else
2166 MEM holding the canary value, which really shouldn't be
2167 ever modified in -fstack-protector* protected functions,
2168 otherwise the prologue store wouldn't match the epilogue
2169 check. */
2170 if (dump_file && (dump_flags & TDF_DETAILS))
2171 fprintf (dump_file, " stack protector canary read ignored.\n");
2172 insn_info->cannot_delete = true;
2173 return;
2174 }
2175
456610d3 2176 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2177 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2178 add_wild_read (bb_info);
2179 insn_info->cannot_delete = true;
d7111da8 2180 return;
6fb5fa3c
DB
2181 }
2182
2183 /* If it is reading readonly mem, then there can be no conflict with
2184 another write. */
2185 if (MEM_READONLY_P (mem))
d7111da8 2186 return;
6fb5fa3c 2187
ac6929b5 2188 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c 2189 {
456610d3 2190 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2191 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2192 add_wild_read (bb_info);
d7111da8 2193 return;
6fb5fa3c
DB
2194 }
2195
2196 if (GET_MODE (mem) == BLKmode)
2197 width = -1;
2198 else
2199 width = GET_MODE_SIZE (GET_MODE (mem));
2200
02ce5d90 2201 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
938f9248 2202 {
213ffde2
JJ
2203 if (dump_file && (dump_flags & TDF_DETAILS))
2204 fprintf (dump_file, " adding wild read, due to overflow.\n");
2205 add_wild_read (bb_info);
938f9248
ML
2206 return;
2207 }
2208
fb0b2914 2209 read_info = read_info_type_pool.allocate ();
6fb5fa3c
DB
2210 read_info->group_id = group_id;
2211 read_info->mem = mem;
71d6a386
RS
2212 read_info->offset = offset;
2213 read_info->width = width;
6fb5fa3c
DB
2214 read_info->next = insn_info->read_rec;
2215 insn_info->read_rec = read_info;
ac6929b5
RB
2216 if (group_id < 0)
2217 mem_addr = base->val_rtx;
6216f94e
JJ
2218 else
2219 {
ac6929b5
RB
2220 group_info *group = rtx_group_vec[group_id];
2221 mem_addr = group->canon_base_addr;
6216f94e 2222 }
02ce5d90 2223 if (maybe_ne (offset, 0))
ac6929b5 2224 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
a523add3
RB
2225 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2226 which will over and over re-create proper RTL and re-apply the
2227 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2228 RTXen that way. */
2229 mem_addr = get_addr (mem_addr);
6fb5fa3c 2230
ac6929b5 2231 if (group_id >= 0)
6fb5fa3c
DB
2232 {
2233 /* This is the restricted case where the base is a constant or
2234 the frame pointer and offset is a constant. */
2235 insn_info_t i_ptr = active_local_stores;
2236 insn_info_t last = NULL;
b8698a0f 2237
456610d3 2238 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2239 {
02ce5d90 2240 if (!known_size_p (width))
6fb5fa3c
DB
2241 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2242 group_id);
2243 else
71d6a386
RS
2244 {
2245 fprintf (dump_file, " processing const load gid=%d", group_id);
2246 print_range (dump_file, offset, width);
2247 fprintf (dump_file, "\n");
2248 }
6fb5fa3c
DB
2249 }
2250
2251 while (i_ptr)
2252 {
2253 bool remove = false;
fd6daec9 2254 store_info *store_info = i_ptr->store_rec;
b8698a0f 2255
6fb5fa3c
DB
2256 /* Skip the clobbers. */
2257 while (!store_info->is_set)
2258 store_info = store_info->next;
b8698a0f 2259
6fb5fa3c
DB
2260 /* There are three cases here. */
2261 if (store_info->group_id < 0)
2262 /* We have a cselib store followed by a read from a
2263 const base. */
b8698a0f
L
2264 remove
2265 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2266 GET_MODE (store_info->mem),
2267 store_info->mem_addr,
53d9622b 2268 mem, mem_addr);
b8698a0f 2269
6fb5fa3c
DB
2270 else if (group_id == store_info->group_id)
2271 {
2272 /* This is a block mode load. We may get lucky and
2273 canon_true_dependence may save the day. */
02ce5d90 2274 if (!known_size_p (width))
b8698a0f
L
2275 remove
2276 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2277 GET_MODE (store_info->mem),
2278 store_info->mem_addr,
53d9622b 2279 mem, mem_addr);
b8698a0f 2280
6fb5fa3c
DB
2281 /* If this read is just reading back something that we just
2282 stored, rewrite the read. */
b8698a0f 2283 else
6fb5fa3c
DB
2284 {
2285 if (store_info->rhs
71d6a386
RS
2286 && known_subrange_p (offset, width, store_info->offset,
2287 store_info->width)
8dd5516b 2288 && all_positions_needed_p (store_info,
71d6a386 2289 offset - store_info->offset,
8dd5516b
JJ
2290 width)
2291 && replace_read (store_info, i_ptr, read_info,
9c747368 2292 insn_info, loc))
d7111da8 2293 return;
8dd5516b 2294
6fb5fa3c 2295 /* The bases are the same, just see if the offsets
71d6a386
RS
2296 could overlap. */
2297 if (ranges_maybe_overlap_p (offset, width,
2298 store_info->offset,
2299 store_info->width))
6fb5fa3c
DB
2300 remove = true;
2301 }
2302 }
b8698a0f
L
2303
2304 /* else
6fb5fa3c
DB
2305 The else case that is missing here is that the
2306 bases are constant but different. There is nothing
2307 to do here because there is no overlap. */
b8698a0f 2308
6fb5fa3c
DB
2309 if (remove)
2310 {
456610d3 2311 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2312 dump_insn_info ("removing from active", i_ptr);
2313
dabd47e7 2314 active_local_stores_len--;
6fb5fa3c
DB
2315 if (last)
2316 last->next_local_store = i_ptr->next_local_store;
2317 else
2318 active_local_stores = i_ptr->next_local_store;
2319 }
2320 else
2321 last = i_ptr;
2322 i_ptr = i_ptr->next_local_store;
2323 }
2324 }
b8698a0f 2325 else
6fb5fa3c
DB
2326 {
2327 insn_info_t i_ptr = active_local_stores;
2328 insn_info_t last = NULL;
456610d3 2329 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2330 {
2331 fprintf (dump_file, " processing cselib load mem:");
2332 print_inline_rtx (dump_file, mem, 0);
2333 fprintf (dump_file, "\n");
2334 }
2335
2336 while (i_ptr)
2337 {
2338 bool remove = false;
fd6daec9 2339 store_info *store_info = i_ptr->store_rec;
b8698a0f 2340
456610d3 2341 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2342 fprintf (dump_file, " processing cselib load against insn %d\n",
2343 INSN_UID (i_ptr->insn));
2344
2345 /* Skip the clobbers. */
2346 while (!store_info->is_set)
2347 store_info = store_info->next;
2348
2349 /* If this read is just reading back something that we just
2350 stored, rewrite the read. */
2351 if (store_info->rhs
2352 && store_info->group_id == -1
2353 && store_info->cse_base == base
71d6a386
RS
2354 && known_subrange_p (offset, width, store_info->offset,
2355 store_info->width)
8dd5516b 2356 && all_positions_needed_p (store_info,
71d6a386 2357 offset - store_info->offset, width)
9c747368 2358 && replace_read (store_info, i_ptr, read_info, insn_info, loc))
d7111da8 2359 return;
6fb5fa3c 2360
ac6929b5
RB
2361 remove = canon_true_dependence (store_info->mem,
2362 GET_MODE (store_info->mem),
2363 store_info->mem_addr,
2364 mem, mem_addr);
b8698a0f 2365
6fb5fa3c
DB
2366 if (remove)
2367 {
456610d3 2368 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2369 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2370
dabd47e7 2371 active_local_stores_len--;
6fb5fa3c
DB
2372 if (last)
2373 last->next_local_store = i_ptr->next_local_store;
2374 else
2375 active_local_stores = i_ptr->next_local_store;
2376 }
2377 else
2378 last = i_ptr;
2379 i_ptr = i_ptr->next_local_store;
2380 }
2381 }
6fb5fa3c
DB
2382}
2383
d7111da8 2384/* A note_uses callback in which DATA points the INSN_INFO for
6fb5fa3c
DB
2385 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2386 true for any part of *LOC. */
2387
2388static void
2389check_mem_read_use (rtx *loc, void *data)
2390{
d7111da8
RS
2391 subrtx_ptr_iterator::array_type array;
2392 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2393 {
2394 rtx *loc = *iter;
2395 if (MEM_P (*loc))
2396 check_mem_read_rtx (loc, (bb_info_t) data);
2397 }
6fb5fa3c
DB
2398}
2399
8dd5516b
JJ
2400
2401/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2402 So far it only handles arguments passed in registers. */
2403
2404static bool
2405get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2406{
d5cc9181
JR
2407 CUMULATIVE_ARGS args_so_far_v;
2408 cumulative_args_t args_so_far;
8dd5516b
JJ
2409 tree arg;
2410 int idx;
2411
d5cc9181
JR
2412 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2413 args_so_far = pack_cumulative_args (&args_so_far_v);
8dd5516b
JJ
2414
2415 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2416 for (idx = 0;
2417 arg != void_list_node && idx < nargs;
2418 arg = TREE_CHAIN (arg), idx++)
2419 {
b4206259 2420 scalar_int_mode mode;
3c07301f 2421 rtx reg, link, tmp;
b4206259
RS
2422
2423 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2424 return false;
2425
6783fdb7
RS
2426 function_arg_info arg (mode, /*named=*/true);
2427 reg = targetm.calls.function_arg (args_so_far, arg);
b4206259 2428 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
8dd5516b
JJ
2429 return false;
2430
2431 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2432 link;
2433 link = XEXP (link, 1))
2434 if (GET_CODE (XEXP (link, 0)) == USE)
2435 {
b4206259 2436 scalar_int_mode arg_mode;
8dd5516b
JJ
2437 args[idx] = XEXP (XEXP (link, 0), 0);
2438 if (REG_P (args[idx])
2439 && REGNO (args[idx]) == REGNO (reg)
2440 && (GET_MODE (args[idx]) == mode
b4206259
RS
2441 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2442 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2443 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
8dd5516b
JJ
2444 break;
2445 }
2446 if (!link)
2447 return false;
2448
2449 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2450 if (GET_MODE (args[idx]) != mode)
2451 {
2452 if (!tmp || !CONST_INT_P (tmp))
2453 return false;
6d26322f 2454 tmp = gen_int_mode (INTVAL (tmp), mode);
8dd5516b
JJ
2455 }
2456 if (tmp)
2457 args[idx] = tmp;
2458
6930c98c 2459 targetm.calls.function_arg_advance (args_so_far, arg);
8dd5516b
JJ
2460 }
2461 if (arg != void_list_node || idx != nargs)
2462 return false;
2463 return true;
2464}
2465
9e582b1d
JR
2466/* Return a bitmap of the fixed registers contained in IN. */
2467
2468static bitmap
2469copy_fixed_regs (const_bitmap in)
2470{
2471 bitmap ret;
2472
2473 ret = ALLOC_REG_SET (NULL);
0b0310e9 2474 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
9e582b1d
JR
2475 return ret;
2476}
8dd5516b 2477
6fb5fa3c
DB
2478/* Apply record_store to all candidate stores in INSN. Mark INSN
2479 if some part of it is not a candidate store and assigns to a
2480 non-register target. */
2481
2482static void
fc2d7303 2483scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
6fb5fa3c
DB
2484{
2485 rtx body;
fb0b2914 2486 insn_info_type *insn_info = insn_info_type_pool.allocate ();
6fb5fa3c 2487 int mems_found = 0;
da6603c6 2488 memset (insn_info, 0, sizeof (struct insn_info_type));
6fb5fa3c 2489
456610d3 2490 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2491 fprintf (dump_file, "\n**scanning insn=%d\n",
2492 INSN_UID (insn));
2493
2494 insn_info->prev_insn = bb_info->last_insn;
2495 insn_info->insn = insn;
2496 bb_info->last_insn = insn_info;
b8698a0f 2497
b5b8b0ac
AO
2498 if (DEBUG_INSN_P (insn))
2499 {
2500 insn_info->cannot_delete = true;
2501 return;
2502 }
6fb5fa3c 2503
6fb5fa3c
DB
2504 /* Look at all of the uses in the insn. */
2505 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2506
2507 if (CALL_P (insn))
2508 {
8dd5516b 2509 bool const_call;
ee516de9 2510 rtx call, sym;
8dd5516b
JJ
2511 tree memset_call = NULL_TREE;
2512
6fb5fa3c 2513 insn_info->cannot_delete = true;
50f0f366 2514
6fb5fa3c 2515 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2516 however, they can read their parameters which may have
8dd5516b
JJ
2517 been pushed onto the stack.
2518 memset and bzero don't read memory either. */
2519 const_call = RTL_CONST_CALL_P (insn);
ee516de9
EB
2520 if (!const_call
2521 && (call = get_call_rtx_from (insn))
2522 && (sym = XEXP (XEXP (call, 0), 0))
2523 && GET_CODE (sym) == SYMBOL_REF
2524 && SYMBOL_REF_DECL (sym)
2525 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
3d78e008 2526 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
ee516de9
EB
2527 memset_call = SYMBOL_REF_DECL (sym);
2528
8dd5516b 2529 if (const_call || memset_call)
6fb5fa3c
DB
2530 {
2531 insn_info_t i_ptr = active_local_stores;
2532 insn_info_t last = NULL;
2533
456610d3 2534 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2535 fprintf (dump_file, "%s call %d\n",
2536 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2537
64520bdc 2538 /* See the head comment of the frame_read field. */
57534689
JJ
2539 if (reload_completed
2540 /* Tail calls are storing their arguments using
2541 arg pointer. If it is a frame pointer on the target,
2542 even before reload we need to kill frame pointer based
2543 stores. */
2544 || (SIBLING_CALL_P (insn)
2545 && HARD_FRAME_POINTER_IS_ARG_POINTER))
64520bdc
EB
2546 insn_info->frame_read = true;
2547
2548 /* Loop over the active stores and remove those which are
2549 killed by the const function call. */
6fb5fa3c
DB
2550 while (i_ptr)
2551 {
64520bdc
EB
2552 bool remove_store = false;
2553
2554 /* The stack pointer based stores are always killed. */
50f0f366 2555 if (i_ptr->stack_pointer_based)
64520bdc
EB
2556 remove_store = true;
2557
2558 /* If the frame is read, the frame related stores are killed. */
2559 else if (insn_info->frame_read)
2560 {
fd6daec9 2561 store_info *store_info = i_ptr->store_rec;
64520bdc
EB
2562
2563 /* Skip the clobbers. */
2564 while (!store_info->is_set)
2565 store_info = store_info->next;
2566
2567 if (store_info->group_id >= 0
9771b263 2568 && rtx_group_vec[store_info->group_id]->frame_related)
64520bdc
EB
2569 remove_store = true;
2570 }
2571
2572 if (remove_store)
6fb5fa3c 2573 {
456610d3 2574 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2575 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2576
dabd47e7 2577 active_local_stores_len--;
6fb5fa3c
DB
2578 if (last)
2579 last->next_local_store = i_ptr->next_local_store;
2580 else
2581 active_local_stores = i_ptr->next_local_store;
2582 }
2583 else
2584 last = i_ptr;
64520bdc 2585
6fb5fa3c
DB
2586 i_ptr = i_ptr->next_local_store;
2587 }
8dd5516b
JJ
2588
2589 if (memset_call)
2590 {
2591 rtx args[3];
2592 if (get_call_args (insn, memset_call, args, 3)
2593 && CONST_INT_P (args[1])
2594 && CONST_INT_P (args[2])
2595 && INTVAL (args[2]) > 0)
2596 {
2597 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
f5541398 2598 set_mem_size (mem, INTVAL (args[2]));
f7df4a84 2599 body = gen_rtx_SET (mem, args[1]);
8dd5516b 2600 mems_found += record_store (body, bb_info);
456610d3 2601 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2602 fprintf (dump_file, "handling memset as BLKmode store\n");
2603 if (mems_found == 1)
2604 {
fc2d7303 2605 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2606 {
2607 active_local_stores_len = 1;
2608 active_local_stores = NULL;
2609 }
9e582b1d
JR
2610 insn_info->fixed_regs_live
2611 = copy_fixed_regs (bb_info->regs_live);
8dd5516b
JJ
2612 insn_info->next_local_store = active_local_stores;
2613 active_local_stores = insn_info;
2614 }
2615 }
a2ad54a0
JJ
2616 else
2617 clear_rhs_from_active_local_stores ();
8dd5516b 2618 }
6fb5fa3c 2619 }
7ee98586
EB
2620 else if (SIBLING_CALL_P (insn)
2621 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
57534689
JJ
2622 /* Arguments for a sibling call that are pushed to memory are passed
2623 using the incoming argument pointer of the current function. After
7ee98586
EB
2624 reload that might be (and likely is) frame pointer based. And, if
2625 it is a frame pointer on the target, even before reload we need to
2626 kill frame pointer based stores. */
57534689 2627 add_wild_read (bb_info);
50f0f366 2628 else
d26c7090
ER
2629 /* Every other call, including pure functions, may read any memory
2630 that is not relative to the frame. */
2631 add_non_frame_wild_read (bb_info);
50f0f366 2632
6fb5fa3c
DB
2633 return;
2634 }
2635
2636 /* Assuming that there are sets in these insns, we cannot delete
2637 them. */
2638 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2639 || volatile_refs_p (PATTERN (insn))
2da02156 2640 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6fb5fa3c
DB
2641 || (RTX_FRAME_RELATED_P (insn))
2642 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2643 insn_info->cannot_delete = true;
b8698a0f 2644
6fb5fa3c
DB
2645 body = PATTERN (insn);
2646 if (GET_CODE (body) == PARALLEL)
2647 {
2648 int i;
2649 for (i = 0; i < XVECLEN (body, 0); i++)
2650 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2651 }
2652 else
2653 mems_found += record_store (body, bb_info);
2654
456610d3 2655 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2656 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
6fb5fa3c
DB
2657 mems_found, insn_info->cannot_delete ? "true" : "false");
2658
8dd5516b
JJ
2659 /* If we found some sets of mems, add it into the active_local_stores so
2660 that it can be locally deleted if found dead or used for
2661 replace_read and redundant constant store elimination. Otherwise mark
2662 it as cannot delete. This simplifies the processing later. */
2663 if (mems_found == 1)
6fb5fa3c 2664 {
fc2d7303 2665 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2666 {
2667 active_local_stores_len = 1;
2668 active_local_stores = NULL;
2669 }
9e582b1d 2670 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
6fb5fa3c
DB
2671 insn_info->next_local_store = active_local_stores;
2672 active_local_stores = insn_info;
2673 }
2674 else
2675 insn_info->cannot_delete = true;
2676}
2677
2678
2679/* Remove BASE from the set of active_local_stores. This is a
2680 callback from cselib that is used to get rid of the stores in
2681 active_local_stores. */
2682
2683static void
2684remove_useless_values (cselib_val *base)
2685{
2686 insn_info_t insn_info = active_local_stores;
2687 insn_info_t last = NULL;
2688
2689 while (insn_info)
2690 {
fd6daec9 2691 store_info *store_info = insn_info->store_rec;
60564289 2692 bool del = false;
6fb5fa3c
DB
2693
2694 /* If ANY of the store_infos match the cselib group that is
67914693 2695 being deleted, then the insn cannot be deleted. */
6fb5fa3c
DB
2696 while (store_info)
2697 {
b8698a0f 2698 if ((store_info->group_id == -1)
6fb5fa3c
DB
2699 && (store_info->cse_base == base))
2700 {
60564289 2701 del = true;
6fb5fa3c
DB
2702 break;
2703 }
2704 store_info = store_info->next;
2705 }
2706
60564289 2707 if (del)
6fb5fa3c 2708 {
dabd47e7 2709 active_local_stores_len--;
6fb5fa3c
DB
2710 if (last)
2711 last->next_local_store = insn_info->next_local_store;
2712 else
2713 active_local_stores = insn_info->next_local_store;
2714 free_store_info (insn_info);
2715 }
2716 else
2717 last = insn_info;
b8698a0f 2718
6fb5fa3c
DB
2719 insn_info = insn_info->next_local_store;
2720 }
2721}
2722
2723
2724/* Do all of step 1. */
2725
2726static void
2727dse_step1 (void)
2728{
2729 basic_block bb;
3f9b14ff 2730 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
b8698a0f 2731
457eeaae 2732 cselib_init (0);
6fb5fa3c
DB
2733 all_blocks = BITMAP_ALLOC (NULL);
2734 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2735 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2736
fc2d7303
RB
2737 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2738 since this can consume huge amounts of memory (PR89115). */
028d4092 2739 int max_active_local_stores = param_max_dse_active_local_stores;
fc2d7303
RB
2740 if (optimize < 2)
2741 max_active_local_stores /= 10;
2742
04a90bec 2743 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2744 {
2745 insn_info_t ptr;
fb0b2914 2746 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
6fb5fa3c 2747
da6603c6 2748 memset (bb_info, 0, sizeof (dse_bb_info_type));
6fb5fa3c 2749 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2750 bb_info->regs_live = regs_live;
2751
2752 bitmap_copy (regs_live, DF_LR_IN (bb));
2753 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2754
2755 bb_table[bb->index] = bb_info;
2756 cselib_discard_hook = remove_useless_values;
2757
2758 if (bb->index >= NUM_FIXED_BLOCKS)
2759 {
dd60a84c 2760 rtx_insn *insn;
6fb5fa3c 2761
6fb5fa3c 2762 active_local_stores = NULL;
dabd47e7 2763 active_local_stores_len = 0;
6fb5fa3c 2764 cselib_clear_table ();
b8698a0f 2765
6fb5fa3c
DB
2766 /* Scan the insns. */
2767 FOR_BB_INSNS (bb, insn)
2768 {
2769 if (INSN_P (insn))
fc2d7303 2770 scan_insn (bb_info, insn, max_active_local_stores);
6fb5fa3c 2771 cselib_process_insn (insn);
02b47899
KZ
2772 if (INSN_P (insn))
2773 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c 2774 }
b8698a0f 2775
6fb5fa3c
DB
2776 /* This is something of a hack, because the global algorithm
2777 is supposed to take care of the case where stores go dead
2778 at the end of the function. However, the global
2779 algorithm must take a more conservative view of block
2780 mode reads than the local alg does. So to get the case
2781 where you have a store to the frame followed by a non
0d52bcc1 2782 overlapping block more read, we look at the active local
6fb5fa3c
DB
2783 stores at the end of the function and delete all of the
2784 frame and spill based ones. */
2785 if (stores_off_frame_dead_at_return
2786 && (EDGE_COUNT (bb->succs) == 0
2787 || (single_succ_p (bb)
fefa31b5 2788 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
e3b5732b 2789 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2790 {
2791 insn_info_t i_ptr = active_local_stores;
2792 while (i_ptr)
2793 {
fd6daec9 2794 store_info *store_info = i_ptr->store_rec;
6fb5fa3c
DB
2795
2796 /* Skip the clobbers. */
2797 while (!store_info->is_set)
2798 store_info = store_info->next;
ac6929b5
RB
2799 if (store_info->group_id >= 0)
2800 {
2801 group_info *group = rtx_group_vec[store_info->group_id];
2802 if (group->frame_related && !i_ptr->cannot_delete)
2803 delete_dead_store_insn (i_ptr);
2804 }
6fb5fa3c
DB
2805
2806 i_ptr = i_ptr->next_local_store;
2807 }
2808 }
2809
2810 /* Get rid of the loads that were discovered in
2811 replace_read. Cselib is finished with this block. */
2812 while (deferred_change_list)
2813 {
fd6daec9 2814 deferred_change *next = deferred_change_list->next;
6fb5fa3c
DB
2815
2816 /* There is no reason to validate this change. That was
2817 done earlier. */
2818 *deferred_change_list->loc = deferred_change_list->reg;
fb0b2914 2819 deferred_change_pool.remove (deferred_change_list);
6fb5fa3c
DB
2820 deferred_change_list = next;
2821 }
2822
2823 /* Get rid of all of the cselib based store_infos in this
2824 block and mark the containing insns as not being
2825 deletable. */
2826 ptr = bb_info->last_insn;
2827 while (ptr)
2828 {
2829 if (ptr->contains_cselib_groups)
8dd5516b 2830 {
fd6daec9 2831 store_info *s_info = ptr->store_rec;
8dd5516b
JJ
2832 while (s_info && !s_info->is_set)
2833 s_info = s_info->next;
2834 if (s_info
2835 && s_info->redundant_reason
2836 && s_info->redundant_reason->insn
2837 && !ptr->cannot_delete)
2838 {
456610d3 2839 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2840 fprintf (dump_file, "Locally deleting insn %d "
2841 "because insn %d stores the "
2842 "same value and couldn't be "
2843 "eliminated\n",
2844 INSN_UID (ptr->insn),
2845 INSN_UID (s_info->redundant_reason->insn));
2846 delete_dead_store_insn (ptr);
2847 }
8dd5516b
JJ
2848 free_store_info (ptr);
2849 }
2850 else
2851 {
fd6daec9 2852 store_info *s_info;
8dd5516b
JJ
2853
2854 /* Free at least positions_needed bitmaps. */
2855 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2856 if (s_info->is_large)
2857 {
dc491a25 2858 BITMAP_FREE (s_info->positions_needed.large.bmap);
8dd5516b
JJ
2859 s_info->is_large = false;
2860 }
2861 }
6fb5fa3c
DB
2862 ptr = ptr->prev_insn;
2863 }
2864
da6603c6 2865 cse_store_info_pool.release ();
6fb5fa3c 2866 }
02b47899 2867 bb_info->regs_live = NULL;
6fb5fa3c
DB
2868 }
2869
02b47899 2870 BITMAP_FREE (regs_live);
6fb5fa3c 2871 cselib_finish ();
c203e8a7 2872 rtx_group_table->empty ();
6fb5fa3c
DB
2873}
2874
2875\f
2876/*----------------------------------------------------------------------------
2877 Second step.
2878
2879 Assign each byte position in the stores that we are going to
2880 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2881 there are any bit positions assigned.
6fb5fa3c
DB
2882----------------------------------------------------------------------------*/
2883
2884static void
2885dse_step2_init (void)
2886{
2887 unsigned int i;
fd6daec9 2888 group_info *group;
6fb5fa3c 2889
9771b263 2890 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2891 {
2892 /* For all non stack related bases, we only consider a store to
2893 be deletable if there are two or more stores for that
2894 position. This is because it takes one store to make the
2895 other store redundant. However, for the stores that are
2896 stack related, we consider them if there is only one store
2897 for the position. We do this because the stack related
2898 stores can be deleted if their is no read between them and
2899 the end of the function.
b8698a0f 2900
6fb5fa3c
DB
2901 To make this work in the current framework, we take the stack
2902 related bases add all of the bits from store1 into store2.
2903 This has the effect of making the eligible even if there is
2904 only one store. */
2905
2906 if (stores_off_frame_dead_at_return && group->frame_related)
2907 {
2908 bitmap_ior_into (group->store2_n, group->store1_n);
2909 bitmap_ior_into (group->store2_p, group->store1_p);
456610d3 2910 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2911 fprintf (dump_file, "group %d is frame related ", i);
6fb5fa3c
DB
2912 }
2913
2914 group->offset_map_size_n++;
3f9b14ff
SB
2915 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2916 group->offset_map_size_n);
6fb5fa3c 2917 group->offset_map_size_p++;
3f9b14ff
SB
2918 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2919 group->offset_map_size_p);
6fb5fa3c 2920 group->process_globally = false;
456610d3 2921 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2922 {
b8698a0f 2923 fprintf (dump_file, "group %d(%d+%d): ", i,
6fb5fa3c
DB
2924 (int)bitmap_count_bits (group->store2_n),
2925 (int)bitmap_count_bits (group->store2_p));
2926 bitmap_print (dump_file, group->store2_n, "n ", " ");
2927 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2928 }
2929 }
2930}
2931
2932
ac6929b5 2933/* Init the offset tables. */
6fb5fa3c
DB
2934
2935static bool
ac6929b5 2936dse_step2 (void)
6fb5fa3c
DB
2937{
2938 unsigned int i;
fd6daec9 2939 group_info *group;
6fb5fa3c
DB
2940 /* Position 0 is unused because 0 is used in the maps to mean
2941 unused. */
2942 current_position = 1;
9771b263 2943 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2944 {
2945 bitmap_iterator bi;
2946 unsigned int j;
2947
c3284718
RS
2948 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2949 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
6fb5fa3c
DB
2950 bitmap_clear (group->group_kill);
2951
2952 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2953 {
2954 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2955 if (bitmap_bit_p (group->escaped_n, j))
2956 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2957 group->offset_map_n[j] = current_position++;
2958 group->process_globally = true;
2959 }
2960 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2961 {
b8698a0f 2962 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2963 if (bitmap_bit_p (group->escaped_p, j))
2964 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2965 group->offset_map_p[j] = current_position++;
2966 group->process_globally = true;
2967 }
2968 }
2969 return current_position != 1;
2970}
2971
2972
6fb5fa3c
DB
2973\f
2974/*----------------------------------------------------------------------------
2975 Third step.
b8698a0f 2976
6fb5fa3c
DB
2977 Build the bit vectors for the transfer functions.
2978----------------------------------------------------------------------------*/
2979
2980
6fb5fa3c
DB
2981/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2982 there, return 0. */
2983
2984static int
fd6daec9 2985get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
6fb5fa3c
DB
2986{
2987 if (offset < 0)
2988 {
2989 HOST_WIDE_INT offset_p = -offset;
2990 if (offset_p >= group_info->offset_map_size_n)
2991 return 0;
2992 return group_info->offset_map_n[offset_p];
2993 }
2994 else
2995 {
2996 if (offset >= group_info->offset_map_size_p)
2997 return 0;
2998 return group_info->offset_map_p[offset];
2999 }
3000}
3001
3002
3003/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3004 may be NULL. */
3005
b8698a0f 3006static void
ac6929b5 3007scan_stores (store_info *store_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
3008{
3009 while (store_info)
3010 {
02ce5d90 3011 HOST_WIDE_INT i, offset, width;
fd6daec9 3012 group_info *group_info
9771b263 3013 = rtx_group_vec[store_info->group_id];
02ce5d90
RS
3014 /* We can (conservatively) ignore stores whose bounds aren't known;
3015 they simply don't generate new global dse opportunities. */
3016 if (group_info->process_globally
3017 && store_info->offset.is_constant (&offset)
3018 && store_info->width.is_constant (&width))
71d6a386 3019 {
02ce5d90
RS
3020 HOST_WIDE_INT end = offset + width;
3021 for (i = offset; i < end; i++)
71d6a386
RS
3022 {
3023 int index = get_bitmap_index (group_info, i);
3024 if (index != 0)
3025 {
3026 bitmap_set_bit (gen, index);
3027 if (kill)
3028 bitmap_clear_bit (kill, index);
3029 }
3030 }
3031 }
6fb5fa3c
DB
3032 store_info = store_info->next;
3033 }
3034}
3035
3036
6fb5fa3c
DB
3037/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3038 may be NULL. */
3039
3040static void
ac6929b5 3041scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
3042{
3043 read_info_t read_info = insn_info->read_rec;
3044 int i;
fd6daec9 3045 group_info *group;
6fb5fa3c 3046
64520bdc
EB
3047 /* If this insn reads the frame, kill all the frame related stores. */
3048 if (insn_info->frame_read)
3049 {
9771b263 3050 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
64520bdc
EB
3051 if (group->process_globally && group->frame_related)
3052 {
3053 if (kill)
3054 bitmap_ior_into (kill, group->group_kill);
b8698a0f 3055 bitmap_and_compl_into (gen, group->group_kill);
64520bdc
EB
3056 }
3057 }
d26c7090
ER
3058 if (insn_info->non_frame_wild_read)
3059 {
3060 /* Kill all non-frame related stores. Kill all stores of variables that
3061 escape. */
3062 if (kill)
3063 bitmap_ior_into (kill, kill_on_calls);
3064 bitmap_and_compl_into (gen, kill_on_calls);
9771b263 3065 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
d26c7090
ER
3066 if (group->process_globally && !group->frame_related)
3067 {
3068 if (kill)
3069 bitmap_ior_into (kill, group->group_kill);
3070 bitmap_and_compl_into (gen, group->group_kill);
3071 }
3072 }
6fb5fa3c
DB
3073 while (read_info)
3074 {
9771b263 3075 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3076 {
3077 if (group->process_globally)
3078 {
3079 if (i == read_info->group_id)
3080 {
02ce5d90
RS
3081 HOST_WIDE_INT offset, width;
3082 /* Reads with non-constant size kill all DSE opportunities
3083 in the group. */
3084 if (!read_info->offset.is_constant (&offset)
3085 || !read_info->width.is_constant (&width)
3086 || !known_size_p (width))
6fb5fa3c 3087 {
71d6a386 3088 /* Handle block mode reads. */
6fb5fa3c
DB
3089 if (kill)
3090 bitmap_ior_into (kill, group->group_kill);
3091 bitmap_and_compl_into (gen, group->group_kill);
3092 }
3093 else
3094 {
3095 /* The groups are the same, just process the
3096 offsets. */
3097 HOST_WIDE_INT j;
02ce5d90
RS
3098 HOST_WIDE_INT end = offset + width;
3099 for (j = offset; j < end; j++)
6fb5fa3c
DB
3100 {
3101 int index = get_bitmap_index (group, j);
3102 if (index != 0)
3103 {
3104 if (kill)
3105 bitmap_set_bit (kill, index);
3106 bitmap_clear_bit (gen, index);
3107 }
3108 }
3109 }
3110 }
3111 else
3112 {
3113 /* The groups are different, if the alias sets
3114 conflict, clear the entire group. We only need
3115 to apply this test if the read_info is a cselib
3116 read. Anything with a constant base cannot alias
3117 something else with a different constant
3118 base. */
3119 if ((read_info->group_id < 0)
b8698a0f 3120 && canon_true_dependence (group->base_mem,
d32f725a 3121 GET_MODE (group->base_mem),
6216f94e 3122 group->canon_base_addr,
53d9622b 3123 read_info->mem, NULL_RTX))
6fb5fa3c
DB
3124 {
3125 if (kill)
3126 bitmap_ior_into (kill, group->group_kill);
3127 bitmap_and_compl_into (gen, group->group_kill);
3128 }
3129 }
3130 }
3131 }
b8698a0f 3132
6fb5fa3c
DB
3133 read_info = read_info->next;
3134 }
3135}
3136
6fb5fa3c
DB
3137
3138/* Return the insn in BB_INFO before the first wild read or if there
3139 are no wild reads in the block, return the last insn. */
3140
3141static insn_info_t
3142find_insn_before_first_wild_read (bb_info_t bb_info)
3143{
3144 insn_info_t insn_info = bb_info->last_insn;
3145 insn_info_t last_wild_read = NULL;
3146
3147 while (insn_info)
3148 {
3149 if (insn_info->wild_read)
3150 {
3151 last_wild_read = insn_info->prev_insn;
3152 /* Block starts with wild read. */
3153 if (!last_wild_read)
3154 return NULL;
3155 }
3156
3157 insn_info = insn_info->prev_insn;
3158 }
3159
3160 if (last_wild_read)
3161 return last_wild_read;
3162 else
3163 return bb_info->last_insn;
3164}
3165
3166
3167/* Scan the insns in BB_INFO starting at PTR and going to the top of
3168 the block in order to build the gen and kill sets for the block.
3169 We start at ptr which may be the last insn in the block or may be
3170 the first insn with a wild read. In the latter case we are able to
3171 skip the rest of the block because it just does not matter:
3172 anything that happens is hidden by the wild read. */
3173
3174static void
ac6929b5 3175dse_step3_scan (basic_block bb)
6fb5fa3c
DB
3176{
3177 bb_info_t bb_info = bb_table[bb->index];
3178 insn_info_t insn_info;
3179
ac6929b5 3180 insn_info = find_insn_before_first_wild_read (bb_info);
b8698a0f 3181
6fb5fa3c
DB
3182 /* In the spill case or in the no_spill case if there is no wild
3183 read in the block, we will need a kill set. */
3184 if (insn_info == bb_info->last_insn)
3185 {
3186 if (bb_info->kill)
3187 bitmap_clear (bb_info->kill);
3188 else
3f9b14ff 3189 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 3190 }
b8698a0f 3191 else
6fb5fa3c
DB
3192 if (bb_info->kill)
3193 BITMAP_FREE (bb_info->kill);
3194
3195 while (insn_info)
3196 {
3197 /* There may have been code deleted by the dce pass run before
3198 this phase. */
3199 if (insn_info->insn && INSN_P (insn_info->insn))
3200 {
ac6929b5
RB
3201 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3202 scan_reads (insn_info, bb_info->gen, bb_info->kill);
b8698a0f 3203 }
6fb5fa3c
DB
3204
3205 insn_info = insn_info->prev_insn;
3206 }
3207}
3208
3209
3210/* Set the gen set of the exit block, and also any block with no
3211 successors that does not have a wild read. */
3212
3213static void
3214dse_step3_exit_block_scan (bb_info_t bb_info)
3215{
3216 /* The gen set is all 0's for the exit block except for the
3217 frame_pointer_group. */
b8698a0f 3218
6fb5fa3c
DB
3219 if (stores_off_frame_dead_at_return)
3220 {
3221 unsigned int i;
fd6daec9 3222 group_info *group;
b8698a0f 3223
9771b263 3224 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3225 {
3226 if (group->process_globally && group->frame_related)
3227 bitmap_ior_into (bb_info->gen, group->group_kill);
3228 }
3229 }
3230}
3231
3232
3233/* Find all of the blocks that are not backwards reachable from the
3234 exit block or any block with no successors (BB). These are the
3235 infinite loops or infinite self loops. These blocks will still
3236 have their bits set in UNREACHABLE_BLOCKS. */
3237
3238static void
3239mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3240{
3241 edge e;
3242 edge_iterator ei;
3243
d7c028c0 3244 if (bitmap_bit_p (unreachable_blocks, bb->index))
6fb5fa3c 3245 {
d7c028c0 3246 bitmap_clear_bit (unreachable_blocks, bb->index);
6fb5fa3c 3247 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 3248 {
6fb5fa3c 3249 mark_reachable_blocks (unreachable_blocks, e->src);
b8698a0f 3250 }
6fb5fa3c
DB
3251 }
3252}
3253
3254/* Build the transfer functions for the function. */
3255
3256static void
ac6929b5 3257dse_step3 ()
6fb5fa3c
DB
3258{
3259 basic_block bb;
6fb5fa3c
DB
3260 sbitmap_iterator sbi;
3261 bitmap all_ones = NULL;
3262 unsigned int i;
b8698a0f 3263
7ba9e72d 3264 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
f61e445a 3265 bitmap_ones (unreachable_blocks);
6fb5fa3c 3266
04a90bec 3267 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3268 {
3269 bb_info_t bb_info = bb_table[bb->index];
3270 if (bb_info->gen)
3271 bitmap_clear (bb_info->gen);
3272 else
3f9b14ff 3273 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3274
3275 if (bb->index == ENTRY_BLOCK)
3276 ;
3277 else if (bb->index == EXIT_BLOCK)
3278 dse_step3_exit_block_scan (bb_info);
3279 else
ac6929b5 3280 dse_step3_scan (bb);
6fb5fa3c
DB
3281 if (EDGE_COUNT (bb->succs) == 0)
3282 mark_reachable_blocks (unreachable_blocks, bb);
3283
3284 /* If this is the second time dataflow is run, delete the old
3285 sets. */
3286 if (bb_info->in)
3287 BITMAP_FREE (bb_info->in);
3288 if (bb_info->out)
3289 BITMAP_FREE (bb_info->out);
3290 }
3291
3292 /* For any block in an infinite loop, we must initialize the out set
3293 to all ones. This could be expensive, but almost never occurs in
3294 practice. However, it is common in regression tests. */
d4ac4ce2 3295 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
6fb5fa3c
DB
3296 {
3297 if (bitmap_bit_p (all_blocks, i))
3298 {
3299 bb_info_t bb_info = bb_table[i];
3300 if (!all_ones)
3301 {
3302 unsigned int j;
fd6daec9 3303 group_info *group;
6fb5fa3c 3304
3f9b14ff 3305 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
9771b263 3306 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
6fb5fa3c
DB
3307 bitmap_ior_into (all_ones, group->group_kill);
3308 }
3309 if (!bb_info->out)
3310 {
3f9b14ff 3311 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3312 bitmap_copy (bb_info->out, all_ones);
3313 }
3314 }
3315 }
3316
3317 if (all_ones)
3318 BITMAP_FREE (all_ones);
6fb5fa3c
DB
3319}
3320
3321
3322\f
3323/*----------------------------------------------------------------------------
3324 Fourth step.
3325
3326 Solve the bitvector equations.
3327----------------------------------------------------------------------------*/
3328
3329
3330/* Confluence function for blocks with no successors. Create an out
3331 set from the gen set of the exit block. This block logically has
3332 the exit block as a successor. */
3333
3334
3335
3336static void
3337dse_confluence_0 (basic_block bb)
3338{
3339 bb_info_t bb_info = bb_table[bb->index];
3340
3341 if (bb->index == EXIT_BLOCK)
3342 return;
3343
3344 if (!bb_info->out)
3345 {
3f9b14ff 3346 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3347 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3348 }
3349}
3350
3351/* Propagate the information from the in set of the dest of E to the
3352 out set of the src of E. If the various in or out sets are not
3353 there, that means they are all ones. */
3354
1a0f3fa1 3355static bool
6fb5fa3c
DB
3356dse_confluence_n (edge e)
3357{
3358 bb_info_t src_info = bb_table[e->src->index];
3359 bb_info_t dest_info = bb_table[e->dest->index];
3360
3361 if (dest_info->in)
3362 {
3363 if (src_info->out)
3364 bitmap_and_into (src_info->out, dest_info->in);
3365 else
3366 {
3f9b14ff 3367 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3368 bitmap_copy (src_info->out, dest_info->in);
3369 }
3370 }
1a0f3fa1 3371 return true;
6fb5fa3c
DB
3372}
3373
3374
3375/* Propagate the info from the out to the in set of BB_INDEX's basic
b8698a0f 3376 block. There are three cases:
6fb5fa3c
DB
3377
3378 1) The block has no kill set. In this case the kill set is all
3379 ones. It does not matter what the out set of the block is, none of
3380 the info can reach the top. The only thing that reaches the top is
3381 the gen set and we just copy the set.
3382
3383 2) There is a kill set but no out set and bb has successors. In
3384 this case we just return. Eventually an out set will be created and
3385 it is better to wait than to create a set of ones.
3386
3387 3) There is both a kill and out set. We apply the obvious transfer
3388 function.
3389*/
3390
3391static bool
3392dse_transfer_function (int bb_index)
3393{
3394 bb_info_t bb_info = bb_table[bb_index];
3395
3396 if (bb_info->kill)
3397 {
3398 if (bb_info->out)
3399 {
3400 /* Case 3 above. */
3401 if (bb_info->in)
b8698a0f 3402 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3403 bb_info->out, bb_info->kill);
3404 else
3405 {
3f9b14ff 3406 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
b8698a0f 3407 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3408 bb_info->out, bb_info->kill);
3409 return true;
3410 }
3411 }
3412 else
3413 /* Case 2 above. */
3414 return false;
3415 }
3416 else
3417 {
3418 /* Case 1 above. If there is already an in set, nothing
3419 happens. */
3420 if (bb_info->in)
3421 return false;
3422 else
3423 {
3f9b14ff 3424 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3425 bitmap_copy (bb_info->in, bb_info->gen);
3426 return true;
3427 }
3428 }
3429}
3430
3431/* Solve the dataflow equations. */
3432
3433static void
3434dse_step4 (void)
3435{
b8698a0f
L
3436 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3437 dse_confluence_n, dse_transfer_function,
3438 all_blocks, df_get_postorder (DF_BACKWARD),
6fb5fa3c 3439 df_get_n_blocks (DF_BACKWARD));
456610d3 3440 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3441 {
3442 basic_block bb;
3443
3444 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
04a90bec 3445 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3446 {
3447 bb_info_t bb_info = bb_table[bb->index];
3448
3449 df_print_bb_index (bb, dump_file);
3450 if (bb_info->in)
3451 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3452 else
3453 fprintf (dump_file, " in: *MISSING*\n");
3454 if (bb_info->gen)
3455 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3456 else
3457 fprintf (dump_file, " gen: *MISSING*\n");
3458 if (bb_info->kill)
3459 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3460 else
3461 fprintf (dump_file, " kill: *MISSING*\n");
3462 if (bb_info->out)
3463 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3464 else
3465 fprintf (dump_file, " out: *MISSING*\n\n");
3466 }
3467 }
3468}
3469
3470
3471\f
3472/*----------------------------------------------------------------------------
3473 Fifth step.
3474
0d52bcc1 3475 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3476----------------------------------------------------------------------------*/
3477
3478
3479static void
ac6929b5 3480dse_step5 (void)
6fb5fa3c
DB
3481{
3482 basic_block bb;
11cd3bed 3483 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c
DB
3484 {
3485 bb_info_t bb_info = bb_table[bb->index];
3486 insn_info_t insn_info = bb_info->last_insn;
3487 bitmap v = bb_info->out;
3488
3489 while (insn_info)
3490 {
3491 bool deleted = false;
3492 if (dump_file && insn_info->insn)
3493 {
3494 fprintf (dump_file, "starting to process insn %d\n",
3495 INSN_UID (insn_info->insn));
3496 bitmap_print (dump_file, v, " v: ", "\n");
3497 }
3498
3499 /* There may have been code deleted by the dce pass run before
3500 this phase. */
b8698a0f 3501 if (insn_info->insn
6fb5fa3c
DB
3502 && INSN_P (insn_info->insn)
3503 && (!insn_info->cannot_delete)
3504 && (!bitmap_empty_p (v)))
3505 {
fd6daec9 3506 store_info *store_info = insn_info->store_rec;
6fb5fa3c
DB
3507
3508 /* Try to delete the current insn. */
3509 deleted = true;
b8698a0f 3510
6fb5fa3c
DB
3511 /* Skip the clobbers. */
3512 while (!store_info->is_set)
3513 store_info = store_info->next;
3514
02ce5d90 3515 HOST_WIDE_INT i, offset, width;
ac6929b5
RB
3516 group_info *group_info = rtx_group_vec[store_info->group_id];
3517
02ce5d90
RS
3518 if (!store_info->offset.is_constant (&offset)
3519 || !store_info->width.is_constant (&width))
3520 deleted = false;
3521 else
6fb5fa3c 3522 {
02ce5d90
RS
3523 HOST_WIDE_INT end = offset + width;
3524 for (i = offset; i < end; i++)
6fb5fa3c 3525 {
02ce5d90
RS
3526 int index = get_bitmap_index (group_info, i);
3527
456610d3 3528 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
3529 fprintf (dump_file, "i = %d, index = %d\n",
3530 (int) i, index);
3531 if (index == 0 || !bitmap_bit_p (v, index))
3532 {
3533 if (dump_file && (dump_flags & TDF_DETAILS))
3534 fprintf (dump_file, "failing at i = %d\n",
3535 (int) i);
3536 deleted = false;
3537 break;
3538 }
6fb5fa3c
DB
3539 }
3540 }
3541 if (deleted)
3542 {
9e582b1d
JR
3543 if (dbg_cnt (dse)
3544 && check_for_inc_dec_1 (insn_info))
6fb5fa3c 3545 {
6fb5fa3c
DB
3546 delete_insn (insn_info->insn);
3547 insn_info->insn = NULL;
3548 globally_deleted++;
3549 }
3550 }
3551 }
3552 /* We do want to process the local info if the insn was
6ed3da00 3553 deleted. For instance, if the insn did a wild read, we
6fb5fa3c 3554 no longer need to trash the info. */
b8698a0f 3555 if (insn_info->insn
6fb5fa3c
DB
3556 && INSN_P (insn_info->insn)
3557 && (!deleted))
3558 {
ac6929b5 3559 scan_stores (insn_info->store_rec, v, NULL);
6fb5fa3c
DB
3560 if (insn_info->wild_read)
3561 {
456610d3 3562 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3563 fprintf (dump_file, "wild read\n");
3564 bitmap_clear (v);
3565 }
d26c7090 3566 else if (insn_info->read_rec
a8404b9a
JJ
3567 || insn_info->non_frame_wild_read
3568 || insn_info->frame_read)
6fb5fa3c 3569 {
a8404b9a
JJ
3570 if (dump_file && (dump_flags & TDF_DETAILS))
3571 {
3572 if (!insn_info->non_frame_wild_read
3573 && !insn_info->frame_read)
3574 fprintf (dump_file, "regular read\n");
3575 if (insn_info->non_frame_wild_read)
3576 fprintf (dump_file, "non-frame wild read\n");
3577 if (insn_info->frame_read)
3578 fprintf (dump_file, "frame read\n");
3579 }
ac6929b5 3580 scan_reads (insn_info, v, NULL);
6fb5fa3c
DB
3581 }
3582 }
b8698a0f 3583
6fb5fa3c
DB
3584 insn_info = insn_info->prev_insn;
3585 }
3586 }
3587}
3588
3589
6fb5fa3c
DB
3590\f
3591/*----------------------------------------------------------------------------
3592 Sixth step.
3593
8dd5516b
JJ
3594 Delete stores made redundant by earlier stores (which store the same
3595 value) that couldn't be eliminated.
3596----------------------------------------------------------------------------*/
3597
3598static void
3599dse_step6 (void)
3600{
3601 basic_block bb;
3602
04a90bec 3603 FOR_ALL_BB_FN (bb, cfun)
8dd5516b
JJ
3604 {
3605 bb_info_t bb_info = bb_table[bb->index];
3606 insn_info_t insn_info = bb_info->last_insn;
3607
3608 while (insn_info)
3609 {
3610 /* There may have been code deleted by the dce pass run before
3611 this phase. */
3612 if (insn_info->insn
3613 && INSN_P (insn_info->insn)
3614 && !insn_info->cannot_delete)
3615 {
fd6daec9 3616 store_info *s_info = insn_info->store_rec;
8dd5516b
JJ
3617
3618 while (s_info && !s_info->is_set)
3619 s_info = s_info->next;
3620 if (s_info
3621 && s_info->redundant_reason
3622 && s_info->redundant_reason->insn
3623 && INSN_P (s_info->redundant_reason->insn))
3624 {
eb92d49a 3625 rtx_insn *rinsn = s_info->redundant_reason->insn;
456610d3 3626 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
3627 fprintf (dump_file, "Locally deleting insn %d "
3628 "because insn %d stores the "
3629 "same value and couldn't be "
3630 "eliminated\n",
3631 INSN_UID (insn_info->insn),
3632 INSN_UID (rinsn));
3633 delete_dead_store_insn (insn_info);
3634 }
3635 }
3636 insn_info = insn_info->prev_insn;
3637 }
3638 }
3639}
3640\f
3641/*----------------------------------------------------------------------------
3642 Seventh step.
3643
b8698a0f 3644 Destroy everything left standing.
6fb5fa3c
DB
3645----------------------------------------------------------------------------*/
3646
b8698a0f 3647static void
3f9b14ff 3648dse_step7 (void)
6fb5fa3c 3649{
3f9b14ff
SB
3650 bitmap_obstack_release (&dse_bitmap_obstack);
3651 obstack_free (&dse_obstack, NULL);
370f38e8 3652
6fb5fa3c
DB
3653 end_alias_analysis ();
3654 free (bb_table);
c203e8a7
TS
3655 delete rtx_group_table;
3656 rtx_group_table = NULL;
9771b263 3657 rtx_group_vec.release ();
6fb5fa3c
DB
3658 BITMAP_FREE (all_blocks);
3659 BITMAP_FREE (scratch);
3660
da6603c6 3661 rtx_store_info_pool.release ();
fb0b2914
ML
3662 read_info_type_pool.release ();
3663 insn_info_type_pool.release ();
3664 dse_bb_info_type_pool.release ();
3665 group_info_pool.release ();
3666 deferred_change_pool.release ();
6fb5fa3c
DB
3667}
3668
3669
6fb5fa3c
DB
3670/* -------------------------------------------------------------------------
3671 DSE
3672 ------------------------------------------------------------------------- */
3673
3674/* Callback for running pass_rtl_dse. */
3675
3676static unsigned int
3677rest_of_handle_dse (void)
3678{
6fb5fa3c
DB
3679 df_set_flags (DF_DEFER_INSN_RESCAN);
3680
02b47899
KZ
3681 /* Need the notes since we must track live hardregs in the forwards
3682 direction. */
3683 df_note_add_problem ();
3684 df_analyze ();
3685
6fb5fa3c
DB
3686 dse_step0 ();
3687 dse_step1 ();
dfda40f8
RB
3688 /* DSE can eliminate potentially-trapping MEMs.
3689 Remove any EH edges associated with them, since otherwise
3690 DF_LR_RUN_DCE will complain later. */
3691 if ((locally_deleted || globally_deleted)
3692 && cfun->can_throw_non_call_exceptions
3693 && purge_all_dead_edges ())
3694 {
3695 free_dominance_info (CDI_DOMINATORS);
3696 delete_unreachable_blocks ();
3697 }
6fb5fa3c 3698 dse_step2_init ();
ac6929b5 3699 if (dse_step2 ())
6fb5fa3c
DB
3700 {
3701 df_set_flags (DF_LR_RUN_DCE);
3702 df_analyze ();
456610d3 3703 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 3704 fprintf (dump_file, "doing global processing\n");
ac6929b5 3705 dse_step3 ();
6fb5fa3c 3706 dse_step4 ();
ac6929b5 3707 dse_step5 ();
6fb5fa3c
DB
3708 }
3709
8dd5516b 3710 dse_step6 ();
3f9b14ff 3711 dse_step7 ();
6fb5fa3c
DB
3712
3713 if (dump_file)
ac6929b5
RB
3714 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3715 locally_deleted, globally_deleted);
6c5ed3f1
JJ
3716
3717 /* DSE can eliminate potentially-trapping MEMs.
3718 Remove any EH edges associated with them. */
3719 if ((locally_deleted || globally_deleted)
3720 && cfun->can_throw_non_call_exceptions
3721 && purge_all_dead_edges ())
7f5ddfcb
JJ
3722 {
3723 free_dominance_info (CDI_DOMINATORS);
3724 cleanup_cfg (0);
3725 }
6c5ed3f1 3726
6fb5fa3c
DB
3727 return 0;
3728}
3729
17795822
TS
3730namespace {
3731
3732const pass_data pass_data_rtl_dse1 =
27a4cd48
DM
3733{
3734 RTL_PASS, /* type */
3735 "dse1", /* name */
3736 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3737 TV_DSE1, /* tv_id */
3738 0, /* properties_required */
3739 0, /* properties_provided */
3740 0, /* properties_destroyed */
3741 0, /* todo_flags_start */
3bea341f 3742 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c
DB
3743};
3744
17795822 3745class pass_rtl_dse1 : public rtl_opt_pass
27a4cd48
DM
3746{
3747public:
c3284718
RS
3748 pass_rtl_dse1 (gcc::context *ctxt)
3749 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
27a4cd48
DM
3750 {}
3751
3752 /* opt_pass methods: */
725793af 3753 bool gate (function *) final override
1a3d085c
TS
3754 {
3755 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3756 }
3757
725793af
DM
3758 unsigned int execute (function *) final override
3759 {
3760 return rest_of_handle_dse ();
3761 }
27a4cd48
DM
3762
3763}; // class pass_rtl_dse1
3764
17795822
TS
3765} // anon namespace
3766
27a4cd48
DM
3767rtl_opt_pass *
3768make_pass_rtl_dse1 (gcc::context *ctxt)
3769{
3770 return new pass_rtl_dse1 (ctxt);
3771}
3772
17795822
TS
3773namespace {
3774
3775const pass_data pass_data_rtl_dse2 =
27a4cd48
DM
3776{
3777 RTL_PASS, /* type */
3778 "dse2", /* name */
3779 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3780 TV_DSE2, /* tv_id */
3781 0, /* properties_required */
3782 0, /* properties_provided */
3783 0, /* properties_destroyed */
3784 0, /* todo_flags_start */
3bea341f 3785 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c 3786};
27a4cd48 3787
17795822 3788class pass_rtl_dse2 : public rtl_opt_pass
27a4cd48
DM
3789{
3790public:
c3284718
RS
3791 pass_rtl_dse2 (gcc::context *ctxt)
3792 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
27a4cd48
DM
3793 {}
3794
3795 /* opt_pass methods: */
725793af 3796 bool gate (function *) final override
1a3d085c
TS
3797 {
3798 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3799 }
3800
725793af
DM
3801 unsigned int execute (function *) final override
3802 {
3803 return rest_of_handle_dse ();
3804 }
27a4cd48
DM
3805
3806}; // class pass_rtl_dse2
3807
17795822
TS
3808} // anon namespace
3809
27a4cd48
DM
3810rtl_opt_pass *
3811make_pass_rtl_dse2 (gcc::context *ctxt)
3812{
3813 return new pass_rtl_dse2 (ctxt);
3814}