]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.cc
Fix profiledbootstrap
[thirdparty/gcc.git] / gcc / dse.cc
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
aeee4812 2 Copyright (C) 2005-2023 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "target.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5 33#include "predict.h"
c7131fb2 34#include "df.h"
4d0cdd0c 35#include "memmodel.h"
957060b5
AM
36#include "tm_p.h"
37#include "gimple-ssa.h"
38#include "expmed.h"
39#include "optabs.h"
957060b5
AM
40#include "emit-rtl.h"
41#include "recog.h"
40e23961 42#include "alias.h"
d8a2d370 43#include "stor-layout.h"
60393bbc 44#include "cfgrtl.h"
6fb5fa3c 45#include "cselib.h"
6fb5fa3c 46#include "tree-pass.h"
36566b39 47#include "explow.h"
6fb5fa3c 48#include "expr.h"
6fb5fa3c 49#include "dbgcnt.h"
d7111da8 50#include "rtl-iter.h"
6c5ed3f1 51#include "cfgcleanup.h"
6783fdb7 52#include "calls.h"
6fb5fa3c
DB
53
54/* This file contains three techniques for performing Dead Store
b8698a0f 55 Elimination (dse).
6fb5fa3c
DB
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
b8698a0f 61
6fb5fa3c
DB
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
026c3cfd 67 processes the spill slots. This differs from the second
6fb5fa3c
DB
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
b8698a0f 91 3) Set up the global dataflow equations based on processing the
6fb5fa3c
DB
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
073a8998 99 6) Delete insns that store the same value as preceding store
8dd5516b
JJ
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
6fb5fa3c
DB
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
0d52bcc1 108 forwards ordering is to accommodate cselib.
6fb5fa3c 109
5ef0b50d 110 We make a simplifying assumption: addresses fall into four broad
6fb5fa3c
DB
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
5ef0b50d 119 global pass only handles 1).
6fb5fa3c
DB
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
5ef0b50d 125 function contain another store to A before a read to A.
6fb5fa3c
DB
126
127 If the address A is relative to the stack frame, a store S2 to A
5ef0b50d 128 can be eliminated if there are no paths from S2 that reach the
6fb5fa3c 129 end of the function that read A before another store to A. In
5ef0b50d 130 this case S2 can be deleted if there are paths from S2 to the
6fb5fa3c
DB
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
5ef0b50d 141 implementation requires a lot of bitmaps filled with 1s.
6fb5fa3c
DB
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
b8698a0f 145 for details.
6fb5fa3c
DB
146
147 There are two places for further enhancements to this algorithm:
b8698a0f 148
6fb5fa3c
DB
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
6ed3da00 156 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
b8698a0f 190 off the frame pointer, the global algorithm handles this slot.
6fb5fa3c
DB
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
0d52bcc1 195 required is to have those passes make the same calls that reload
6fb5fa3c
DB
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199/* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203#define MAX_OFFSET (64 * 1024)
204
3f9b14ff
SB
205/* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211static bitmap_obstack dse_bitmap_obstack;
212
213/* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215static struct obstack dse_obstack;
216
217/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
6fb5fa3c 218static bitmap scratch = NULL;
3f9b14ff 219
da6603c6 220struct insn_info_type;
6fb5fa3c
DB
221
222/* This structure holds information about a candidate store. */
6c1dae73 223class store_info
6fb5fa3c 224{
6c1dae73 225public:
6fb5fa3c
DB
226
227 /* False means this is a clobber. */
228 bool is_set;
229
8dd5516b
JJ
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
232
6fb5fa3c
DB
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
b8698a0f 237
6fb5fa3c
DB
238 /* This is the cselib value. */
239 cselib_val *cse_base;
240
241 /* This canonized mem. */
242 rtx mem;
243
6216f94e 244 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
245 rtx mem_addr;
246
71d6a386 247 /* The offset of the first byte associated with the operation. */
02ce5d90 248 poly_int64 offset;
71d6a386
RS
249
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
02ce5d90 252 poly_int64 width;
8dd5516b 253
64ca6aa7
AP
254 /* The address space that the memory reference uses. */
255 unsigned char addrspace;
256
8dd5516b
JJ
257 union
258 {
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask;
263
264 struct
265 {
02ce5d90
RS
266 /* A bitmap with one bit per byte, or null if the number of
267 bytes isn't known at compile time. A cleared bit means
268 the position is needed. Used if IS_LARGE is true. */
dc491a25 269 bitmap bmap;
6fb5fa3c 270
02ce5d90
RS
271 /* When BITMAP is nonnull, this counts the number of set bits
272 (i.e. unneeded bytes) in the bitmap. If it is equal to
273 WIDTH, the whole store is unused.
274
275 When BITMAP is null:
276 - the store is definitely not needed when COUNT == 1
277 - all the store is needed when COUNT == 0 and RHS is nonnull
278 - otherwise we don't know which parts of the store are needed. */
8dd5516b
JJ
279 int count;
280 } large;
281 } positions_needed;
6fb5fa3c
DB
282
283 /* The next store info for this insn. */
99b1c316 284 class store_info *next;
6fb5fa3c
DB
285
286 /* The right hand side of the store. This is used if there is a
287 subsequent reload of the mems address somewhere later in the
288 basic block. */
8dd5516b
JJ
289 rtx rhs;
290
291 /* If rhs is or holds a constant, this contains that constant,
292 otherwise NULL. */
293 rtx const_rhs;
294
295 /* Set if this store stores the same constant value as REDUNDANT_REASON
296 insn stored. These aren't eliminated early, because doing that
297 might prevent the earlier larger store to be eliminated. */
da6603c6 298 struct insn_info_type *redundant_reason;
6fb5fa3c
DB
299};
300
4fe663b0
L
301/* Return a bitmask with the first N low bits set. */
302
303static unsigned HOST_WIDE_INT
304lowpart_bitmask (int n)
305{
dd4786fe 306 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
4fe663b0
L
307 return mask >> (HOST_BITS_PER_WIDE_INT - n);
308}
309
fcb87c50 310static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
da6603c6 311
fcb87c50 312static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
6fb5fa3c
DB
313
314/* This structure holds information about a load. These are only
315 built for rtx bases. */
6c1dae73 316class read_info_type
6fb5fa3c 317{
6c1dae73 318public:
6fb5fa3c
DB
319 /* The id of the mem group of the base address. */
320 int group_id;
321
71d6a386 322 /* The offset of the first byte associated with the operation. */
02ce5d90 323 poly_int64 offset;
71d6a386
RS
324
325 /* The number of bytes covered by the operation, or -1 if not known. */
02ce5d90 326 poly_int64 width;
6fb5fa3c
DB
327
328 /* The mem being read. */
329 rtx mem;
330
331 /* The next read_info for this insn. */
99b1c316 332 class read_info_type *next;
6fb5fa3c 333};
99b1c316 334typedef class read_info_type *read_info_t;
6fb5fa3c 335
fcb87c50 336static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
6fb5fa3c
DB
337
338/* One of these records is created for each insn. */
339
da6603c6 340struct insn_info_type
6fb5fa3c
DB
341{
342 /* Set true if the insn contains a store but the insn itself cannot
343 be deleted. This is set if the insn is a parallel and there is
344 more than one non dead output or if the insn is in some way
345 volatile. */
346 bool cannot_delete;
347
348 /* This field is only used by the global algorithm. It is set true
349 if the insn contains any read of mem except for a (1). This is
350 also set if the insn is a call or has a clobber mem. If the insn
351 contains a wild read, the use_rec will be null. */
352 bool wild_read;
353
d26c7090
ER
354 /* This is true only for CALL instructions which could potentially read
355 any non-frame memory location. This field is used by the global
356 algorithm. */
357 bool non_frame_wild_read;
358
50f0f366
EB
359 /* This field is only used for the processing of const functions.
360 These functions cannot read memory, but they can read the stack
64520bdc
EB
361 because that is where they may get their parms. We need to be
362 this conservative because, like the store motion pass, we don't
363 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
364 Moreover, we need to distinguish two cases:
365 1. Before reload (register elimination), the stores related to
366 outgoing arguments are stack pointer based and thus deemed
367 of non-constant base in this pass. This requires special
368 handling but also means that the frame pointer based stores
369 need not be killed upon encountering a const function call.
370 2. After reload, the stores related to outgoing arguments can be
371 either stack pointer or hard frame pointer based. This means
372 that we have no other choice than also killing all the frame
373 pointer based stores upon encountering a const function call.
57534689
JJ
374 This field is set after reload for const function calls and before
375 reload for const tail function calls on targets where arg pointer
376 is the frame pointer. Having this set is less severe than a wild
377 read, it just means that all the frame related stores are killed
378 rather than all the stores. */
64520bdc
EB
379 bool frame_read;
380
381 /* This field is only used for the processing of const functions.
382 It is set if the insn may contain a stack pointer based store. */
50f0f366 383 bool stack_pointer_based;
6fb5fa3c
DB
384
385 /* This is true if any of the sets within the store contains a
386 cselib base. Such stores can only be deleted by the local
387 algorithm. */
388 bool contains_cselib_groups;
389
390 /* The insn. */
dd60a84c 391 rtx_insn *insn;
6fb5fa3c
DB
392
393 /* The list of mem sets or mem clobbers that are contained in this
394 insn. If the insn is deletable, it contains only one mem set.
395 But it could also contain clobbers. Insns that contain more than
396 one mem set are not deletable, but each of those mems are here in
6ed3da00 397 order to provide info to delete other insns. */
fd6daec9 398 store_info *store_rec;
6fb5fa3c
DB
399
400 /* The linked list of mem uses in this insn. Only the reads from
401 rtx bases are listed here. The reads to cselib bases are
402 completely processed during the first scan and so are never
403 created. */
404 read_info_t read_rec;
405
9e582b1d
JR
406 /* The live fixed registers. We assume only fixed registers can
407 cause trouble by being clobbered from an expanded pattern;
408 storing only the live fixed registers (rather than all registers)
409 means less memory needs to be allocated / copied for the individual
410 stores. */
411 regset fixed_regs_live;
412
6fb5fa3c 413 /* The prev insn in the basic block. */
da6603c6 414 struct insn_info_type * prev_insn;
6fb5fa3c
DB
415
416 /* The linked list of insns that are in consideration for removal in
073a8998 417 the forwards pass through the basic block. This pointer may be
6fb5fa3c 418 trash as it is not cleared when a wild read occurs. The only
fa10beec 419 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c 420 at active_local_stores. */
da6603c6 421 struct insn_info_type * next_local_store;
6fb5fa3c 422};
da6603c6 423typedef struct insn_info_type *insn_info_t;
6fb5fa3c 424
fcb87c50 425static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
6fb5fa3c
DB
426
427/* The linked list of stores that are under consideration in this
b8698a0f 428 basic block. */
6fb5fa3c 429static insn_info_t active_local_stores;
dabd47e7 430static int active_local_stores_len;
6fb5fa3c 431
da6603c6 432struct dse_bb_info_type
6fb5fa3c 433{
6fb5fa3c
DB
434 /* Pointer to the insn info for the last insn in the block. These
435 are linked so this is how all of the insns are reached. During
436 scanning this is the current insn being scanned. */
437 insn_info_t last_insn;
438
439 /* The info for the global dataflow problem. */
440
441
442 /* This is set if the transfer function should and in the wild_read
443 bitmap before applying the kill and gen sets. That vector knocks
444 out most of the bits in the bitmap and thus speeds up the
445 operations. */
446 bool apply_wild_read;
447
02b47899
KZ
448 /* The following 4 bitvectors hold information about which positions
449 of which stores are live or dead. They are indexed by
450 get_bitmap_index. */
451
6fb5fa3c
DB
452 /* The set of store positions that exist in this block before a wild read. */
453 bitmap gen;
b8698a0f 454
6fb5fa3c
DB
455 /* The set of load positions that exist in this block above the
456 same position of a store. */
457 bitmap kill;
458
459 /* The set of stores that reach the top of the block without being
460 killed by a read.
461
462 Do not represent the in if it is all ones. Note that this is
463 what the bitvector should logically be initialized to for a set
464 intersection problem. However, like the kill set, this is too
465 expensive. So initially, the in set will only be created for the
466 exit block and any block that contains a wild read. */
467 bitmap in;
468
469 /* The set of stores that reach the bottom of the block from it's
470 successors.
471
472 Do not represent the in if it is all ones. Note that this is
473 what the bitvector should logically be initialized to for a set
474 intersection problem. However, like the kill and in set, this is
475 too expensive. So what is done is that the confluence operator
476 just initializes the vector from one of the out sets of the
477 successors of the block. */
478 bitmap out;
02b47899
KZ
479
480 /* The following bitvector is indexed by the reg number. It
481 contains the set of regs that are live at the current instruction
482 being processed. While it contains info for all of the
9e582b1d
JR
483 registers, only the hard registers are actually examined. It is used
484 to assure that shift and/or add sequences that are inserted do not
073a8998 485 accidentally clobber live hard regs. */
02b47899 486 bitmap regs_live;
6fb5fa3c
DB
487};
488
da6603c6 489typedef struct dse_bb_info_type *bb_info_t;
fb0b2914
ML
490
491static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
fcb87c50 492 ("bb_info_pool");
6fb5fa3c
DB
493
494/* Table to hold all bb_infos. */
495static bb_info_t *bb_table;
496
497/* There is a group_info for each rtx base that is used to reference
498 memory. There are also not many of the rtx bases because they are
499 very limited in scope. */
500
b8698a0f 501struct group_info
6fb5fa3c
DB
502{
503 /* The actual base of the address. */
504 rtx rtx_base;
505
506 /* The sequential id of the base. This allows us to have a
507 canonical ordering of these that is not based on addresses. */
508 int id;
509
8f5929e1
JJ
510 /* True if there are any positions that are to be processed
511 globally. */
512 bool process_globally;
513
514 /* True if the base of this group is either the frame_pointer or
515 hard_frame_pointer. */
516 bool frame_related;
517
d32f725a
OH
518 /* A mem wrapped around the base pointer for the group in order to do
519 read dependency. It must be given BLKmode in order to encompass all
520 the possible offsets from the base. */
6fb5fa3c 521 rtx base_mem;
b8698a0f 522
6216f94e
JJ
523 /* Canonized version of base_mem's address. */
524 rtx canon_base_addr;
6fb5fa3c
DB
525
526 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 527 stores are actually referencing that position from this base. We
6fb5fa3c 528 only do this for rtx bases as this will be used to assign
6ed3da00 529 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
530 store1 on the first store for offset N. Bit N is set in store2
531 for the second store to offset N. This is all we need since we
532 only care about offsets that have two or more stores for them.
533
534 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
535 for 0 and greater offsets.
536
537 There is one special case here, for stores into the stack frame,
538 we will or store1 into store2 before deciding which stores look
539 at globally. This is because stores to the stack frame that have
540 no other reads before the end of the function can also be
541 deleted. */
542 bitmap store1_n, store1_p, store2_n, store2_p;
543
d26c7090
ER
544 /* These bitmaps keep track of offsets in this group escape this function.
545 An offset escapes if it corresponds to a named variable whose
546 addressable flag is set. */
547 bitmap escaped_n, escaped_p;
548
6ed3da00 549 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 550 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 551 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
552 bitmap group_kill;
553
6fb5fa3c 554 /* The offset_map is used to map the offsets from this base into
6ed3da00 555 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
556 the all of stores have been scanned and we know which ones we
557 care about. */
b8698a0f
L
558 int *offset_map_n, *offset_map_p;
559 int offset_map_size_n, offset_map_size_p;
6fb5fa3c 560};
da6603c6 561
fcb87c50 562static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
6fb5fa3c 563
6fb5fa3c
DB
564/* Index into the rtx_group_vec. */
565static int rtx_group_next_id;
566
6fb5fa3c 567
fd6daec9 568static vec<group_info *> rtx_group_vec;
6fb5fa3c
DB
569
570
571/* This structure holds the set of changes that are being deferred
572 when removing read operation. See replace_read. */
b8698a0f 573struct deferred_change
6fb5fa3c
DB
574{
575
576 /* The mem that is being replaced. */
577 rtx *loc;
578
579 /* The reg it is being replaced with. */
580 rtx reg;
581
582 struct deferred_change *next;
583};
584
fb0b2914 585static object_allocator<deferred_change> deferred_change_pool
fcb87c50 586 ("deferred_change_pool");
6fb5fa3c 587
fd6daec9 588static deferred_change *deferred_change_list = NULL;
6fb5fa3c 589
e3b5732b 590/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 591 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
592static bool stores_off_frame_dead_at_return;
593
594/* Counter for stats. */
b8698a0f
L
595static int globally_deleted;
596static int locally_deleted;
b8698a0f 597
6fb5fa3c
DB
598static bitmap all_blocks;
599
d26c7090
ER
600/* Locations that are killed by calls in the global phase. */
601static bitmap kill_on_calls;
602
6fb5fa3c
DB
603/* The number of bits used in the global bitmaps. */
604static unsigned int current_position;
71d6a386
RS
605
606/* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
607
608static void
609print_range (FILE *file, poly_int64 offset, poly_int64 width)
610{
611 fprintf (file, "[");
612 print_dec (offset, file, SIGNED);
613 fprintf (file, "..");
614 print_dec (offset + width, file, SIGNED);
615 fprintf (file, ")");
616}
6fb5fa3c
DB
617\f
618/*----------------------------------------------------------------------------
619 Zeroth step.
620
b8698a0f 621 Initialization.
6fb5fa3c
DB
622----------------------------------------------------------------------------*/
623
6fb5fa3c 624
6fb5fa3c
DB
625/* Hashtable callbacks for maintaining the "bases" field of
626 store_group_info, given that the addresses are function invariants. */
627
8d67ee55 628struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
703c8606 629{
67f58944
TS
630 static inline hashval_t hash (const group_info *);
631 static inline bool equal (const group_info *, const group_info *);
703c8606
LC
632};
633
634inline bool
67f58944
TS
635invariant_group_base_hasher::equal (const group_info *gi1,
636 const group_info *gi2)
6fb5fa3c 637{
6fb5fa3c
DB
638 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
639}
640
703c8606 641inline hashval_t
67f58944 642invariant_group_base_hasher::hash (const group_info *gi)
6fb5fa3c 643{
6fb5fa3c
DB
644 int do_not_record;
645 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
646}
647
703c8606 648/* Tables of group_info structures, hashed by base value. */
c203e8a7 649static hash_table<invariant_group_base_hasher> *rtx_group_table;
703c8606 650
6fb5fa3c
DB
651
652/* Get the GROUP for BASE. Add a new group if it is not there. */
653
fd6daec9 654static group_info *
6fb5fa3c
DB
655get_group_info (rtx base)
656{
b8698a0f 657 struct group_info tmp_gi;
fd6daec9 658 group_info *gi;
703c8606 659 group_info **slot;
6fb5fa3c 660
ac6929b5
RB
661 gcc_assert (base != NULL_RTX);
662
663 /* Find the store_base_info structure for BASE, creating a new one
664 if necessary. */
665 tmp_gi.rtx_base = base;
666 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
667 gi = *slot;
6fb5fa3c
DB
668
669 if (gi == NULL)
670 {
fb0b2914 671 *slot = gi = group_info_pool.allocate ();
6fb5fa3c
DB
672 gi->rtx_base = base;
673 gi->id = rtx_group_next_id++;
d32f725a 674 gi->base_mem = gen_rtx_MEM (BLKmode, base);
6216f94e 675 gi->canon_base_addr = canon_rtx (base);
3f9b14ff
SB
676 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
681 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
682 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 683 gi->process_globally = false;
b8698a0f 684 gi->frame_related =
6fb5fa3c
DB
685 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
686 gi->offset_map_size_n = 0;
687 gi->offset_map_size_p = 0;
688 gi->offset_map_n = NULL;
689 gi->offset_map_p = NULL;
9771b263 690 rtx_group_vec.safe_push (gi);
6fb5fa3c
DB
691 }
692
693 return gi;
694}
695
696
697/* Initialization of data structures. */
698
699static void
700dse_step0 (void)
701{
702 locally_deleted = 0;
703 globally_deleted = 0;
6fb5fa3c 704
3f9b14ff
SB
705 bitmap_obstack_initialize (&dse_bitmap_obstack);
706 gcc_obstack_init (&dse_obstack);
707
708 scratch = BITMAP_ALLOC (&reg_obstack);
709 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 710
6fb5fa3c 711
c203e8a7 712 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
6fb5fa3c 713
8b1c6fd7 714 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
715 rtx_group_next_id = 0;
716
e3b5732b 717 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
718
719 init_alias_analysis ();
6fb5fa3c
DB
720}
721
722
723\f
724/*----------------------------------------------------------------------------
725 First step.
726
727 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 728 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
729 is used to remove stores with non-constant bases.
730----------------------------------------------------------------------------*/
731
732/* Delete all of the store_info recs from INSN_INFO. */
733
b8698a0f 734static void
6fb5fa3c
DB
735free_store_info (insn_info_t insn_info)
736{
fd6daec9
TS
737 store_info *cur = insn_info->store_rec;
738 while (cur)
6fb5fa3c 739 {
fd6daec9
TS
740 store_info *next = cur->next;
741 if (cur->is_large)
742 BITMAP_FREE (cur->positions_needed.large.bmap);
743 if (cur->cse_base)
744 cse_store_info_pool.remove (cur);
6fb5fa3c 745 else
fd6daec9
TS
746 rtx_store_info_pool.remove (cur);
747 cur = next;
6fb5fa3c
DB
748 }
749
750 insn_info->cannot_delete = true;
751 insn_info->contains_cselib_groups = false;
752 insn_info->store_rec = NULL;
753}
754
a79683d5 755struct note_add_store_info
9e582b1d 756{
dc01c3d1 757 rtx_insn *first, *current;
9e582b1d
JR
758 regset fixed_regs_live;
759 bool failure;
a79683d5 760};
9e582b1d
JR
761
762/* Callback for emit_inc_dec_insn_before via note_stores.
763 Check if a register is clobbered which is live afterwards. */
764
765static void
766note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
767{
dc01c3d1 768 rtx_insn *insn;
9e582b1d 769 note_add_store_info *info = (note_add_store_info *) data;
9e582b1d
JR
770
771 if (!REG_P (loc))
772 return;
773
774 /* If this register is referenced by the current or an earlier insn,
775 that's OK. E.g. this applies to the register that is being incremented
776 with this addition. */
777 for (insn = info->first;
778 insn != NEXT_INSN (info->current);
779 insn = NEXT_INSN (insn))
780 if (reg_referenced_p (loc, PATTERN (insn)))
781 return;
782
783 /* If we come here, we have a clobber of a register that's only OK
784 if that register is not live. If we don't have liveness information
785 available, fail now. */
786 if (!info->fixed_regs_live)
787 {
53d1bae9 788 info->failure = true;
9e582b1d
JR
789 return;
790 }
791 /* Now check if this is a live fixed register. */
53d1bae9
RS
792 unsigned int end_regno = END_REGNO (loc);
793 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
794 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
795 info->failure = true;
9e582b1d
JR
796}
797
4deef538
AO
798/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
799 SRC + SRCOFF before insn ARG. */
6fb5fa3c
DB
800
801static int
4deef538
AO
802emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
803 rtx op ATTRIBUTE_UNUSED,
804 rtx dest, rtx src, rtx srcoff, void *arg)
6fb5fa3c 805{
9e582b1d 806 insn_info_t insn_info = (insn_info_t) arg;
dc01c3d1 807 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
9e582b1d 808 note_add_store_info info;
b8698a0f 809
4deef538
AO
810 /* We can reuse all operands without copying, because we are about
811 to delete the insn that contained it. */
9e582b1d 812 if (srcoff)
ed079c4b
JJ
813 {
814 start_sequence ();
815 emit_insn (gen_add3_insn (dest, src, srcoff));
816 new_insn = get_insns ();
817 end_sequence ();
818 }
9e582b1d 819 else
1476d1bd 820 new_insn = gen_move_insn (dest, src);
9e582b1d
JR
821 info.first = new_insn;
822 info.fixed_regs_live = insn_info->fixed_regs_live;
823 info.failure = false;
824 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
825 {
826 info.current = cur;
e8448ba5 827 note_stores (cur, note_add_store, &info);
9e582b1d 828 }
6fb5fa3c 829
9e582b1d
JR
830 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
831 return it immediately, communicating the failure to its caller. */
832 if (info.failure)
833 return 1;
834
835 emit_insn_before (new_insn, insn);
6fb5fa3c 836
8d8e205b 837 return 0;
6fb5fa3c
DB
838}
839
9e582b1d
JR
840/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
841 is there, is split into a separate insn.
842 Return true on success (or if there was nothing to do), false on failure. */
6fb5fa3c 843
9e582b1d
JR
844static bool
845check_for_inc_dec_1 (insn_info_t insn_info)
6fb5fa3c 846{
dd60a84c 847 rtx_insn *insn = insn_info->insn;
6fb5fa3c
DB
848 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
849 if (note)
8d8e205b
RS
850 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
851 insn_info) == 0;
2c0fa3ec
JJ
852
853 /* Punt on stack pushes, those don't have REG_INC notes and we are
854 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
855 subrtx_iterator::array_type array;
856 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
857 {
858 const_rtx x = *iter;
859 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
860 return false;
861 }
862
9e582b1d 863 return true;
6fb5fa3c
DB
864}
865
866
9e582b1d
JR
867/* Entry point for postreload. If you work on reload_cse, or you need this
868 anywhere else, consider if you can provide register liveness information
869 and add a parameter to this function so that it can be passed down in
870 insn_info.fixed_regs_live. */
871bool
dd60a84c 872check_for_inc_dec (rtx_insn *insn)
9e582b1d 873{
da6603c6 874 insn_info_type insn_info;
9e582b1d
JR
875 rtx note;
876
877 insn_info.insn = insn;
878 insn_info.fixed_regs_live = NULL;
879 note = find_reg_note (insn, REG_INC, NULL_RTX);
880 if (note)
8d8e205b
RS
881 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
882 &insn_info) == 0;
2c0fa3ec
JJ
883
884 /* Punt on stack pushes, those don't have REG_INC notes and we are
885 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
886 subrtx_iterator::array_type array;
887 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
888 {
889 const_rtx x = *iter;
890 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
891 return false;
892 }
893
9e582b1d
JR
894 return true;
895}
896
b8698a0f 897/* Delete the insn and free all of the fields inside INSN_INFO. */
6fb5fa3c
DB
898
899static void
900delete_dead_store_insn (insn_info_t insn_info)
901{
902 read_info_t read_info;
903
904 if (!dbg_cnt (dse))
905 return;
906
9e582b1d
JR
907 if (!check_for_inc_dec_1 (insn_info))
908 return;
456610d3 909 if (dump_file && (dump_flags & TDF_DETAILS))
ac6929b5
RB
910 fprintf (dump_file, "Locally deleting insn %d\n",
911 INSN_UID (insn_info->insn));
6fb5fa3c
DB
912
913 free_store_info (insn_info);
914 read_info = insn_info->read_rec;
b8698a0f 915
6fb5fa3c
DB
916 while (read_info)
917 {
918 read_info_t next = read_info->next;
fb0b2914 919 read_info_type_pool.remove (read_info);
6fb5fa3c
DB
920 read_info = next;
921 }
922 insn_info->read_rec = NULL;
923
924 delete_insn (insn_info->insn);
925 locally_deleted++;
926 insn_info->insn = NULL;
927
928 insn_info->wild_read = false;
929}
930
88d8330d
EB
931/* Return whether DECL, a local variable, can possibly escape the current
932 function scope. */
933
934static bool
935local_variable_can_escape (tree decl)
936{
937 if (TREE_ADDRESSABLE (decl))
938 return true;
939
940 /* If this is a partitioned variable, we need to consider all the variables
941 in the partition. This is necessary because a store into one of them can
942 be replaced with a store into another and this may not change the outcome
943 of the escape analysis. */
944 if (cfun->gimple_df->decls_to_pointers != NULL)
945 {
39c8aaa4 946 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
88d8330d 947 if (namep)
39c8aaa4 948 return TREE_ADDRESSABLE (*namep);
88d8330d
EB
949 }
950
951 return false;
952}
953
954/* Return whether EXPR can possibly escape the current function scope. */
955
d26c7090
ER
956static bool
957can_escape (tree expr)
958{
959 tree base;
960 if (!expr)
961 return true;
962 base = get_base_address (expr);
963 if (DECL_P (base)
88d8330d 964 && !may_be_aliased (base)
8813a647 965 && !(VAR_P (base)
88d8330d
EB
966 && !DECL_EXTERNAL (base)
967 && !TREE_STATIC (base)
968 && local_variable_can_escape (base)))
d26c7090
ER
969 return false;
970 return true;
971}
6fb5fa3c
DB
972
973/* Set the store* bitmaps offset_map_size* fields in GROUP based on
974 OFFSET and WIDTH. */
975
976static void
02ce5d90 977set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
d26c7090 978 tree expr)
6fb5fa3c 979{
02ce5d90
RS
980 /* Non-constant offsets and widths act as global kills, so there's no point
981 trying to use them to derive global DSE candidates. */
982 HOST_WIDE_INT i, const_offset, const_width;
d26c7090 983 bool expr_escapes = can_escape (expr);
02ce5d90
RS
984 if (offset.is_constant (&const_offset)
985 && width.is_constant (&const_width)
986 && const_offset > -MAX_OFFSET
987 && const_offset + const_width < MAX_OFFSET)
988 for (i = const_offset; i < const_offset + const_width; ++i)
6fb5fa3c
DB
989 {
990 bitmap store1;
991 bitmap store2;
d26c7090 992 bitmap escaped;
6fb5fa3c
DB
993 int ai;
994 if (i < 0)
995 {
996 store1 = group->store1_n;
997 store2 = group->store2_n;
d26c7090 998 escaped = group->escaped_n;
6fb5fa3c
DB
999 ai = -i;
1000 }
1001 else
1002 {
1003 store1 = group->store1_p;
1004 store2 = group->store2_p;
d26c7090 1005 escaped = group->escaped_p;
6fb5fa3c
DB
1006 ai = i;
1007 }
b8698a0f 1008
fcaa4ca4 1009 if (!bitmap_set_bit (store1, ai))
6fb5fa3c 1010 bitmap_set_bit (store2, ai);
b8698a0f 1011 else
6fb5fa3c 1012 {
6fb5fa3c
DB
1013 if (i < 0)
1014 {
1015 if (group->offset_map_size_n < ai)
1016 group->offset_map_size_n = ai;
1017 }
1018 else
1019 {
1020 if (group->offset_map_size_p < ai)
1021 group->offset_map_size_p = ai;
1022 }
1023 }
d26c7090
ER
1024 if (expr_escapes)
1025 bitmap_set_bit (escaped, ai);
6fb5fa3c
DB
1026 }
1027}
1028
d26c7090
ER
1029static void
1030reset_active_stores (void)
1031{
1032 active_local_stores = NULL;
1033 active_local_stores_len = 0;
1034}
6fb5fa3c 1035
d26c7090 1036/* Free all READ_REC of the LAST_INSN of BB_INFO. */
6fb5fa3c
DB
1037
1038static void
d26c7090 1039free_read_records (bb_info_t bb_info)
6fb5fa3c
DB
1040{
1041 insn_info_t insn_info = bb_info->last_insn;
1042 read_info_t *ptr = &insn_info->read_rec;
6fb5fa3c
DB
1043 while (*ptr)
1044 {
1045 read_info_t next = (*ptr)->next;
ac6929b5
RB
1046 read_info_type_pool.remove (*ptr);
1047 *ptr = next;
6fb5fa3c 1048 }
d26c7090
ER
1049}
1050
1051/* Set the BB_INFO so that the last insn is marked as a wild read. */
1052
1053static void
1054add_wild_read (bb_info_t bb_info)
1055{
1056 insn_info_t insn_info = bb_info->last_insn;
6fb5fa3c 1057 insn_info->wild_read = true;
d26c7090
ER
1058 free_read_records (bb_info);
1059 reset_active_stores ();
6fb5fa3c
DB
1060}
1061
d26c7090
ER
1062/* Set the BB_INFO so that the last insn is marked as a wild read of
1063 non-frame locations. */
1064
1065static void
1066add_non_frame_wild_read (bb_info_t bb_info)
1067{
1068 insn_info_t insn_info = bb_info->last_insn;
1069 insn_info->non_frame_wild_read = true;
1070 free_read_records (bb_info);
1071 reset_active_stores ();
1072}
6fb5fa3c 1073
50f0f366
EB
1074/* Return true if X is a constant or one of the registers that behave
1075 as a constant over the life of a function. This is equivalent to
1076 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1077
1078static bool
1079const_or_frame_p (rtx x)
1080{
d8116890
KZ
1081 if (CONSTANT_P (x))
1082 return true;
1083
1084 if (GET_CODE (x) == REG)
6fb5fa3c 1085 {
6fb5fa3c
DB
1086 /* Note that we have to test for the actual rtx used for the frame
1087 and arg pointers and not just the register number in case we have
1088 eliminated the frame and/or arg pointer and are using it
1089 for pseudos. */
1090 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1091 /* The arg pointer varies if it is not a fixed register. */
1092 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1093 || x == pic_offset_table_rtx)
1094 return true;
1095 return false;
6fb5fa3c 1096 }
da6603c6 1097
d8116890 1098 return false;
6fb5fa3c
DB
1099}
1100
b8698a0f
L
1101/* Take all reasonable action to put the address of MEM into the form
1102 that we can do analysis on.
6fb5fa3c
DB
1103
1104 The gold standard is to get the address into the form: address +
1105 OFFSET where address is something that rtx_varies_p considers a
1106 constant. When we can get the address in this form, we can do
1107 global analysis on it. Note that for constant bases, address is
1108 not actually returned, only the group_id. The address can be
1109 obtained from that.
1110
1111 If that fails, we try cselib to get a value we can at least use
b8698a0f
L
1112 locally. If that fails we return false.
1113
6fb5fa3c
DB
1114 The GROUP_ID is set to -1 for cselib bases and the index of the
1115 group for non_varying bases.
1116
1117 FOR_READ is true if this is a mem read and false if not. */
1118
1119static bool
1120canon_address (rtx mem,
6fb5fa3c 1121 int *group_id,
02ce5d90 1122 poly_int64 *offset,
6fb5fa3c
DB
1123 cselib_val **base)
1124{
ef4bddc2 1125 machine_mode address_mode = get_address_mode (mem);
6fb5fa3c
DB
1126 rtx mem_address = XEXP (mem, 0);
1127 rtx expanded_address, address;
403c7520
JJ
1128 int expanded;
1129
4deef538 1130 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
6fb5fa3c 1131
456610d3 1132 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1133 {
1134 fprintf (dump_file, " mem: ");
1135 print_inline_rtx (dump_file, mem_address, 0);
1136 fprintf (dump_file, "\n");
1137 }
1138
403c7520
JJ
1139 /* First see if just canon_rtx (mem_address) is const or frame,
1140 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1141 address = NULL_RTX;
1142 for (expanded = 0; expanded < 2; expanded++)
1143 {
1144 if (expanded)
1145 {
1146 /* Use cselib to replace all of the reg references with the full
b8698a0f 1147 expression. This will take care of the case where we have
6fb5fa3c 1148
403c7520
JJ
1149 r_x = base + offset;
1150 val = *r_x;
b8698a0f
L
1151
1152 by making it into
6fb5fa3c 1153
403c7520 1154 val = *(base + offset); */
6fb5fa3c 1155
403c7520
JJ
1156 expanded_address = cselib_expand_value_rtx (mem_address,
1157 scratch, 5);
6fb5fa3c 1158
403c7520
JJ
1159 /* If this fails, just go with the address from first
1160 iteration. */
1161 if (!expanded_address)
1162 break;
1163 }
1164 else
1165 expanded_address = mem_address;
6fb5fa3c 1166
403c7520
JJ
1167 /* Split the address into canonical BASE + OFFSET terms. */
1168 address = canon_rtx (expanded_address);
6fb5fa3c 1169
403c7520 1170 *offset = 0;
6fb5fa3c 1171
456610d3 1172 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1173 {
1174 if (expanded)
1175 {
1176 fprintf (dump_file, "\n after cselib_expand address: ");
1177 print_inline_rtx (dump_file, expanded_address, 0);
1178 fprintf (dump_file, "\n");
1179 }
6fb5fa3c 1180
403c7520
JJ
1181 fprintf (dump_file, "\n after canon_rtx address: ");
1182 print_inline_rtx (dump_file, address, 0);
1183 fprintf (dump_file, "\n");
1184 }
6fb5fa3c 1185
403c7520
JJ
1186 if (GET_CODE (address) == CONST)
1187 address = XEXP (address, 0);
6fb5fa3c 1188
02ce5d90 1189 address = strip_offset_and_add (address, offset);
6fb5fa3c 1190
09e881c9
BE
1191 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1192 && const_or_frame_p (address))
6fb5fa3c 1193 {
fd6daec9 1194 group_info *group = get_group_info (address);
403c7520 1195
456610d3 1196 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1197 {
1198 fprintf (dump_file, " gid=%d offset=", group->id);
1199 print_dec (*offset, dump_file);
1200 fprintf (dump_file, "\n");
1201 }
403c7520
JJ
1202 *base = NULL;
1203 *group_id = group->id;
1204 return true;
6fb5fa3c 1205 }
403c7520
JJ
1206 }
1207
4deef538 1208 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
403c7520
JJ
1209 *group_id = -1;
1210
1211 if (*base == NULL)
1212 {
456610d3 1213 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1214 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1215 return false;
6fb5fa3c 1216 }
456610d3 1217 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1218 {
1219 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1220 (*base)->uid, (*base)->hash);
1221 print_dec (*offset, dump_file);
1222 fprintf (dump_file, "\n");
1223 }
6fb5fa3c
DB
1224 return true;
1225}
1226
1227
1228/* Clear the rhs field from the active_local_stores array. */
1229
1230static void
1231clear_rhs_from_active_local_stores (void)
1232{
1233 insn_info_t ptr = active_local_stores;
1234
1235 while (ptr)
1236 {
fd6daec9 1237 store_info *store_info = ptr->store_rec;
6fb5fa3c
DB
1238 /* Skip the clobbers. */
1239 while (!store_info->is_set)
1240 store_info = store_info->next;
1241
1242 store_info->rhs = NULL;
8dd5516b 1243 store_info->const_rhs = NULL;
6fb5fa3c
DB
1244
1245 ptr = ptr->next_local_store;
1246 }
1247}
1248
1249
8dd5516b
JJ
1250/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1251
1252static inline void
fd6daec9 1253set_position_unneeded (store_info *s_info, int pos)
8dd5516b 1254{
22d9c880 1255 if (UNLIKELY (s_info->is_large))
8dd5516b 1256 {
fcaa4ca4
NF
1257 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1258 s_info->positions_needed.large.count++;
8dd5516b
JJ
1259 }
1260 else
1261 s_info->positions_needed.small_bitmask
fecfbfa4 1262 &= ~(HOST_WIDE_INT_1U << pos);
8dd5516b
JJ
1263}
1264
1265/* Mark the whole store S_INFO as unneeded. */
1266
1267static inline void
fd6daec9 1268set_all_positions_unneeded (store_info *s_info)
8dd5516b 1269{
22d9c880 1270 if (UNLIKELY (s_info->is_large))
8dd5516b 1271 {
02ce5d90
RS
1272 HOST_WIDE_INT width;
1273 if (s_info->width.is_constant (&width))
1274 {
1275 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1276 s_info->positions_needed.large.count = width;
1277 }
1278 else
1279 {
1280 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1281 s_info->positions_needed.large.count = 1;
1282 }
8dd5516b
JJ
1283 }
1284 else
07e96250 1285 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
8dd5516b
JJ
1286}
1287
1288/* Return TRUE if any bytes from S_INFO store are needed. */
1289
1290static inline bool
fd6daec9 1291any_positions_needed_p (store_info *s_info)
8dd5516b 1292{
22d9c880 1293 if (UNLIKELY (s_info->is_large))
02ce5d90
RS
1294 {
1295 HOST_WIDE_INT width;
1296 if (s_info->width.is_constant (&width))
1297 {
1298 gcc_checking_assert (s_info->positions_needed.large.bmap);
1299 return s_info->positions_needed.large.count < width;
1300 }
1301 else
1302 {
1303 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1304 return s_info->positions_needed.large.count == 0;
1305 }
1306 }
8dd5516b 1307 else
07e96250 1308 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
8dd5516b
JJ
1309}
1310
1311/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
02ce5d90 1312 store are known to be needed. */
8dd5516b
JJ
1313
1314static inline bool
02ce5d90
RS
1315all_positions_needed_p (store_info *s_info, poly_int64 start,
1316 poly_int64 width)
8dd5516b 1317{
02ce5d90
RS
1318 gcc_assert (s_info->rhs);
1319 if (!s_info->width.is_constant ())
1320 {
1321 gcc_assert (s_info->is_large
1322 && !s_info->positions_needed.large.bmap);
1323 return s_info->positions_needed.large.count == 0;
1324 }
1325
1326 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1327 a non-constant region of a constant-sized store. We can't say for
1328 sure that all positions are needed. */
1329 HOST_WIDE_INT const_start, const_width;
1330 if (!start.is_constant (&const_start)
1331 || !width.is_constant (&const_width))
1332 return false;
1333
22d9c880 1334 if (UNLIKELY (s_info->is_large))
8dd5516b 1335 {
02ce5d90
RS
1336 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1337 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
8dd5516b
JJ
1338 return false;
1339 return true;
1340 }
1341 else
1342 {
02ce5d90
RS
1343 unsigned HOST_WIDE_INT mask
1344 = lowpart_bitmask (const_width) << const_start;
8dd5516b
JJ
1345 return (s_info->positions_needed.small_bitmask & mask) == mask;
1346 }
1347}
1348
1349
02ce5d90
RS
1350static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1351 poly_int64, basic_block, bool);
8dd5516b
JJ
1352
1353
6fb5fa3c
DB
1354/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1355 there is a candidate store, after adding it to the appropriate
1356 local store group if so. */
1357
1358static int
1359record_store (rtx body, bb_info_t bb_info)
1360{
6216f94e 1361 rtx mem, rhs, const_rhs, mem_addr;
02ce5d90
RS
1362 poly_int64 offset = 0;
1363 poly_int64 width = 0;
6fb5fa3c 1364 insn_info_t insn_info = bb_info->last_insn;
fd6daec9 1365 store_info *store_info = NULL;
6fb5fa3c
DB
1366 int group_id;
1367 cselib_val *base = NULL;
8dd5516b 1368 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1369 bool store_is_unused;
1370
1371 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1372 return 0;
1373
8dd5516b
JJ
1374 mem = SET_DEST (body);
1375
6fb5fa3c
DB
1376 /* If this is not used, then this cannot be used to keep the insn
1377 from being deleted. On the other hand, it does provide something
1378 that can be used to prove that another store is dead. */
1379 store_is_unused
8dd5516b 1380 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1381
1382 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1383 if (!MEM_P (mem))
1384 {
1385 /* If the set or clobber is unused, then it does not effect our
1386 ability to get rid of the entire insn. */
1387 if (!store_is_unused)
1388 insn_info->cannot_delete = true;
1389 return 0;
1390 }
1391
1392 /* At this point we know mem is a mem. */
1393 if (GET_MODE (mem) == BLKmode)
1394 {
d05d7551 1395 HOST_WIDE_INT const_size;
6fb5fa3c
DB
1396 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1397 {
456610d3 1398 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1399 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1400 add_wild_read (bb_info);
1401 insn_info->cannot_delete = true;
8dd5516b 1402 return 0;
6fb5fa3c 1403 }
8dd5516b
JJ
1404 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1405 as memset (addr, 0, 36); */
f5541398 1406 else if (!MEM_SIZE_KNOWN_P (mem)
d05d7551
RS
1407 || maybe_le (MEM_SIZE (mem), 0)
1408 /* This is a limit on the bitmap size, which is only relevant
1409 for constant-sized MEMs. */
1410 || (MEM_SIZE (mem).is_constant (&const_size)
1411 && const_size > MAX_OFFSET)
8dd5516b 1412 || GET_CODE (body) != SET
8dd5516b 1413 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1414 {
8dd5516b
JJ
1415 if (!store_is_unused)
1416 {
1417 /* If the set or clobber is unused, then it does not effect our
1418 ability to get rid of the entire insn. */
1419 insn_info->cannot_delete = true;
1420 clear_rhs_from_active_local_stores ();
1421 }
1422 return 0;
6fb5fa3c 1423 }
6fb5fa3c
DB
1424 }
1425
1426 /* We can still process a volatile mem, we just cannot delete it. */
1427 if (MEM_VOLATILE_P (mem))
8dd5516b 1428 insn_info->cannot_delete = true;
6fb5fa3c 1429
ac6929b5 1430 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c
DB
1431 {
1432 clear_rhs_from_active_local_stores ();
1433 return 0;
1434 }
1435
8dd5516b 1436 if (GET_MODE (mem) == BLKmode)
f5541398 1437 width = MEM_SIZE (mem);
8dd5516b 1438 else
6f557e0e 1439 width = GET_MODE_SIZE (GET_MODE (mem));
6fb5fa3c 1440
02ce5d90 1441 if (!endpoint_representable_p (offset, width))
213ffde2
JJ
1442 {
1443 clear_rhs_from_active_local_stores ();
1444 return 0;
1445 }
1446
cbe679a4
JJ
1447 if (known_eq (width, 0))
1448 return 0;
1449
ac6929b5 1450 if (group_id >= 0)
6fb5fa3c
DB
1451 {
1452 /* In the restrictive case where the base is a constant or the
1453 frame pointer we can do global analysis. */
b8698a0f 1454
fd6daec9 1455 group_info *group
9771b263 1456 = rtx_group_vec[group_id];
d26c7090 1457 tree expr = MEM_EXPR (mem);
b8698a0f 1458
da6603c6 1459 store_info = rtx_store_info_pool.allocate ();
d26c7090 1460 set_usage_bits (group, offset, width, expr);
6fb5fa3c 1461
456610d3 1462 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1463 {
1464 fprintf (dump_file, " processing const base store gid=%d",
1465 group_id);
1466 print_range (dump_file, offset, width);
1467 fprintf (dump_file, "\n");
1468 }
6fb5fa3c
DB
1469 }
1470 else
1471 {
9e412ca3 1472 if (may_be_sp_based_p (XEXP (mem, 0)))
50f0f366 1473 insn_info->stack_pointer_based = true;
6fb5fa3c 1474 insn_info->contains_cselib_groups = true;
50f0f366 1475
da6603c6 1476 store_info = cse_store_info_pool.allocate ();
6fb5fa3c
DB
1477 group_id = -1;
1478
456610d3 1479 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1480 {
1481 fprintf (dump_file, " processing cselib store ");
1482 print_range (dump_file, offset, width);
1483 fprintf (dump_file, "\n");
1484 }
6fb5fa3c
DB
1485 }
1486
8dd5516b
JJ
1487 const_rhs = rhs = NULL_RTX;
1488 if (GET_CODE (body) == SET
1489 /* No place to keep the value after ra. */
1490 && !reload_completed
1491 && (REG_P (SET_SRC (body))
1492 || GET_CODE (SET_SRC (body)) == SUBREG
1493 || CONSTANT_P (SET_SRC (body)))
1494 && !MEM_VOLATILE_P (mem)
1495 /* Sometimes the store and reload is used for truncation and
1496 rounding. */
1497 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1498 {
1499 rhs = SET_SRC (body);
1500 if (CONSTANT_P (rhs))
1501 const_rhs = rhs;
1502 else if (body == PATTERN (insn_info->insn))
1503 {
1504 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1505 if (tem && CONSTANT_P (XEXP (tem, 0)))
1506 const_rhs = XEXP (tem, 0);
1507 }
1508 if (const_rhs == NULL_RTX && REG_P (rhs))
1509 {
1510 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1511
1512 if (tem && CONSTANT_P (tem))
1513 const_rhs = tem;
a743a727
L
1514 else
1515 {
1516 /* If RHS is set only once to a constant, set CONST_RHS
1517 to the constant. */
1518 rtx def_src = df_find_single_def_src (rhs);
1519 if (def_src != nullptr && CONSTANT_P (def_src))
1520 const_rhs = def_src;
1521 }
8dd5516b
JJ
1522 }
1523 }
1524
6fb5fa3c
DB
1525 /* Check to see if this stores causes some other stores to be
1526 dead. */
1527 ptr = active_local_stores;
1528 last = NULL;
8dd5516b 1529 redundant_reason = NULL;
64ca6aa7 1530 unsigned char addrspace = MEM_ADDR_SPACE (mem);
6216f94e 1531 mem = canon_rtx (mem);
ac6929b5
RB
1532
1533 if (group_id < 0)
1534 mem_addr = base->val_rtx;
6216f94e
JJ
1535 else
1536 {
ac6929b5
RB
1537 group_info *group = rtx_group_vec[group_id];
1538 mem_addr = group->canon_base_addr;
6216f94e 1539 }
02ce5d90 1540 if (maybe_ne (offset, 0))
ac6929b5 1541 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c
DB
1542
1543 while (ptr)
1544 {
1545 insn_info_t next = ptr->next_local_store;
99b1c316 1546 class store_info *s_info = ptr->store_rec;
60564289 1547 bool del = true;
6fb5fa3c
DB
1548
1549 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1550 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1551 has exactly on set. */
1552 while (!s_info->is_set)
1553 s_info = s_info->next;
1554
64ca6aa7
AP
1555 if (s_info->group_id == group_id
1556 && s_info->cse_base == base
1557 && s_info->addrspace == addrspace)
6fb5fa3c
DB
1558 {
1559 HOST_WIDE_INT i;
456610d3 1560 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1561 {
1562 fprintf (dump_file, " trying store in insn=%d gid=%d",
1563 INSN_UID (ptr->insn), s_info->group_id);
1564 print_range (dump_file, s_info->offset, s_info->width);
1565 fprintf (dump_file, "\n");
1566 }
8dd5516b
JJ
1567
1568 /* Even if PTR won't be eliminated as unneeded, if both
1569 PTR and this insn store the same constant value, we might
1570 eliminate this insn instead. */
1571 if (s_info->const_rhs
1572 && const_rhs
71d6a386
RS
1573 && known_subrange_p (offset, width,
1574 s_info->offset, s_info->width)
1575 && all_positions_needed_p (s_info, offset - s_info->offset,
d7e1f499
RB
1576 width)
1577 /* We can only remove the later store if the earlier aliases
1578 at least all accesses the later one. */
64ce76d9 1579 && mems_same_for_tbaa_p (s_info->mem, mem))
8dd5516b
JJ
1580 {
1581 if (GET_MODE (mem) == BLKmode)
1582 {
1583 if (GET_MODE (s_info->mem) == BLKmode
1584 && s_info->const_rhs == const_rhs)
1585 redundant_reason = ptr;
1586 }
1587 else if (s_info->const_rhs == const0_rtx
1588 && const_rhs == const0_rtx)
1589 redundant_reason = ptr;
1590 else
1591 {
1592 rtx val;
1593 start_sequence ();
71d6a386 1594 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
8dd5516b
JJ
1595 BLOCK_FOR_INSN (insn_info->insn),
1596 true);
1597 if (get_insns () != NULL)
1598 val = NULL_RTX;
1599 end_sequence ();
1600 if (val && rtx_equal_p (val, const_rhs))
1601 redundant_reason = ptr;
1602 }
1603 }
1604
02ce5d90 1605 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
71d6a386
RS
1606 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1607 /* The new store touches every byte that S_INFO does. */
1608 set_all_positions_unneeded (s_info);
02ce5d90
RS
1609 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1610 && s_info->width.is_constant (&const_s_width)
1611 && width.is_constant (&const_width))
71d6a386 1612 {
02ce5d90 1613 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
71d6a386 1614 begin_unneeded = MAX (begin_unneeded, 0);
02ce5d90 1615 end_unneeded = MIN (end_unneeded, const_s_width);
71d6a386
RS
1616 for (i = begin_unneeded; i < end_unneeded; ++i)
1617 set_position_unneeded (s_info, i);
1618 }
02ce5d90
RS
1619 else
1620 {
1621 /* We don't know which parts of S_INFO are needed and
1622 which aren't, so invalidate the RHS. */
1623 s_info->rhs = NULL;
1624 s_info->const_rhs = NULL;
1625 }
6fb5fa3c
DB
1626 }
1627 else if (s_info->rhs)
1628 /* Need to see if it is possible for this store to overwrite
1629 the value of store_info. If it is, set the rhs to NULL to
1630 keep it from being used to remove a load. */
1631 {
43b9f499
RB
1632 if (canon_output_dependence (s_info->mem, true,
1633 mem, GET_MODE (mem),
1634 mem_addr))
8dd5516b
JJ
1635 {
1636 s_info->rhs = NULL;
1637 s_info->const_rhs = NULL;
1638 }
6fb5fa3c 1639 }
6216f94e 1640
6fb5fa3c
DB
1641 /* An insn can be deleted if every position of every one of
1642 its s_infos is zero. */
1b6fa860 1643 if (any_positions_needed_p (s_info))
60564289 1644 del = false;
8dd5516b 1645
60564289 1646 if (del)
6fb5fa3c
DB
1647 {
1648 insn_info_t insn_to_delete = ptr;
b8698a0f 1649
dabd47e7 1650 active_local_stores_len--;
6fb5fa3c
DB
1651 if (last)
1652 last->next_local_store = ptr->next_local_store;
1653 else
1654 active_local_stores = ptr->next_local_store;
b8698a0f 1655
1b6fa860
JJ
1656 if (!insn_to_delete->cannot_delete)
1657 delete_dead_store_insn (insn_to_delete);
6fb5fa3c
DB
1658 }
1659 else
1660 last = ptr;
b8698a0f 1661
6fb5fa3c
DB
1662 ptr = next;
1663 }
b8698a0f 1664
6fb5fa3c
DB
1665 /* Finish filling in the store_info. */
1666 store_info->next = insn_info->store_rec;
1667 insn_info->store_rec = store_info;
6216f94e 1668 store_info->mem = mem;
6216f94e 1669 store_info->mem_addr = mem_addr;
6fb5fa3c 1670 store_info->cse_base = base;
02ce5d90
RS
1671 HOST_WIDE_INT const_width;
1672 if (!width.is_constant (&const_width))
1673 {
1674 store_info->is_large = true;
1675 store_info->positions_needed.large.count = 0;
1676 store_info->positions_needed.large.bmap = NULL;
1677 }
1678 else if (const_width > HOST_BITS_PER_WIDE_INT)
8dd5516b
JJ
1679 {
1680 store_info->is_large = true;
1681 store_info->positions_needed.large.count = 0;
3f9b14ff 1682 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
8dd5516b
JJ
1683 }
1684 else
1685 {
1686 store_info->is_large = false;
02ce5d90
RS
1687 store_info->positions_needed.small_bitmask
1688 = lowpart_bitmask (const_width);
8dd5516b 1689 }
6fb5fa3c 1690 store_info->group_id = group_id;
71d6a386
RS
1691 store_info->offset = offset;
1692 store_info->width = width;
6fb5fa3c 1693 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1694 store_info->rhs = rhs;
1695 store_info->const_rhs = const_rhs;
1696 store_info->redundant_reason = redundant_reason;
64ca6aa7 1697 store_info->addrspace = addrspace;
6fb5fa3c 1698
6fb5fa3c
DB
1699 /* If this is a clobber, we return 0. We will only be able to
1700 delete this insn if there is only one store USED store, but we
1701 can use the clobber to delete other stores earlier. */
1702 return store_info->is_set ? 1 : 0;
1703}
1704
1705
1706static void
1707dump_insn_info (const char * start, insn_info_t insn_info)
1708{
b8698a0f 1709 fprintf (dump_file, "%s insn=%d %s\n", start,
6fb5fa3c
DB
1710 INSN_UID (insn_info->insn),
1711 insn_info->store_rec ? "has store" : "naked");
1712}
1713
1714
8660aaae
EC
1715/* If the modes are different and the value's source and target do not
1716 line up, we need to extract the value from lower part of the rhs of
1717 the store, shift it, and then put it into a form that can be shoved
1718 into the read_insn. This function generates a right SHIFT of a
1719 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1720 shift sequence is returned or NULL if we failed to find a
1721 shift. */
1722
1723static rtx
02ce5d90 1724find_shift_sequence (poly_int64 access_size,
fd6daec9 1725 store_info *store_info,
ef4bddc2 1726 machine_mode read_mode,
02ce5d90 1727 poly_int64 shift, bool speed, bool require_cst)
8660aaae 1728{
ef4bddc2 1729 machine_mode store_mode = GET_MODE (store_info->mem);
f67f4dff 1730 scalar_int_mode new_mode;
18b526e8 1731 rtx read_reg = NULL;
8660aaae 1732
265d817b
XL
1733 /* If a constant was stored into memory, try to simplify it here,
1734 otherwise the cost of the shift might preclude this optimization
1735 e.g. at -Os, even when no actual shift will be needed. */
1736 if (store_info->const_rhs)
1737 {
1738 auto new_mode = smallest_int_mode_for_size (access_size * BITS_PER_UNIT);
1739 auto byte = subreg_lowpart_offset (new_mode, store_mode);
1740 rtx ret
1741 = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte);
1742 if (ret && CONSTANT_P (ret))
1743 {
1744 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1745 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret,
1746 shift_rtx);
1747 if (ret && CONSTANT_P (ret))
1748 {
1749 byte = subreg_lowpart_offset (read_mode, new_mode);
1750 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1751 if (ret && CONSTANT_P (ret)
1752 && (set_src_cost (ret, read_mode, speed)
1753 <= COSTS_N_INSNS (1)))
1754 return ret;
1755 }
1756 }
1757 }
1758
1759 if (require_cst)
1760 return NULL_RTX;
1761
8660aaae
EC
1762 /* Some machines like the x86 have shift insns for each size of
1763 operand. Other machines like the ppc or the ia-64 may only have
1764 shift insns that shift values within 32 or 64 bit registers.
1765 This loop tries to find the smallest shift insn that will right
1766 justify the value we want to read but is available in one insn on
1767 the machine. */
1768
f67f4dff 1769 opt_scalar_int_mode new_mode_iter;
f835e9f6 1770 FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
8660aaae 1771 {
dc01c3d1
DM
1772 rtx target, new_reg, new_lhs;
1773 rtx_insn *shift_seq, *insn;
d898d29b 1774 int cost;
348eea5f 1775
f67f4dff 1776 new_mode = new_mode_iter.require ();
c94843d2
RS
1777 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1778 break;
f835e9f6
RS
1779 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (read_mode)))
1780 continue;
c94843d2 1781
18b526e8
RS
1782 /* Try a wider mode if truncating the store mode to NEW_MODE
1783 requires a real instruction. */
73a699ae 1784 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
d0edd768 1785 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
348eea5f
RS
1786 continue;
1787
18b526e8
RS
1788 /* Also try a wider mode if the necessary punning is either not
1789 desirable or not possible. */
1790 if (!CONSTANT_P (store_info->rhs)
99e1629f 1791 && !targetm.modes_tieable_p (new_mode, store_mode))
18b526e8 1792 continue;
18b526e8 1793
265d817b
XL
1794 if (multiple_p (shift, GET_MODE_BITSIZE (new_mode))
1795 && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode)))
1796 {
1797 /* Try to implement the shift using a subreg. */
1798 poly_int64 offset
1799 = subreg_offset_from_lsb (new_mode, store_mode, shift);
1800 rtx rhs_subreg = simplify_gen_subreg (new_mode, store_info->rhs,
1801 store_mode, offset);
1802 if (rhs_subreg)
1803 {
1804 read_reg
1805 = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg));
1806 break;
1807 }
1808 }
1809
1810 if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1811 continue;
1812
348eea5f 1813 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1814
1815 start_sequence ();
1816
1817 /* In theory we could also check for an ashr. Ian Taylor knows
1818 of one dsp where the cost of these two was not the same. But
1819 this really is a rare case anyway. */
1820 target = expand_binop (new_mode, lshr_optab, new_reg,
abd3c800
RS
1821 gen_int_shift_amount (new_mode, shift),
1822 new_reg, 1, OPTAB_DIRECT);
8660aaae 1823
c6f3019a
RS
1824 shift_seq = get_insns ();
1825 end_sequence ();
8660aaae 1826
c6f3019a
RS
1827 if (target != new_reg || shift_seq == NULL)
1828 continue;
1829
1830 cost = 0;
1831 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1832 if (INSN_P (insn))
d09e78e8 1833 cost += insn_cost (insn, speed);
c6f3019a
RS
1834
1835 /* The computation up to here is essentially independent
1836 of the arguments and could be precomputed. It may
1837 not be worth doing so. We could precompute if
1838 worthwhile or at least cache the results. The result
06acf7d0
RS
1839 technically depends on both SHIFT and ACCESS_SIZE,
1840 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1841
1842 if (cost > COSTS_N_INSNS (1))
1843 continue;
1844
d898d29b
JJ
1845 new_lhs = extract_low_bits (new_mode, store_mode,
1846 copy_rtx (store_info->rhs));
1847 if (new_lhs == NULL_RTX)
1848 continue;
1849
c6f3019a
RS
1850 /* We found an acceptable shift. Generate a move to
1851 take the value from the store and put it into the
1852 shift pseudo, then shift it, then generate another
1853 move to put in into the target of the read. */
18b526e8 1854 emit_move_insn (new_reg, new_lhs);
c6f3019a 1855 emit_insn (shift_seq);
18b526e8 1856 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1857 break;
8660aaae
EC
1858 }
1859
18b526e8 1860 return read_reg;
8660aaae
EC
1861}
1862
1863
02b47899
KZ
1864/* Call back for note_stores to find the hard regs set or clobbered by
1865 insn. Data is a bitmap of the hardregs set so far. */
1866
1867static void
1868look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1869{
1870 bitmap regs_set = (bitmap) data;
1871
1872 if (REG_P (x)
f773c2bd 1873 && HARD_REGISTER_P (x))
dc8afb70 1874 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
02b47899
KZ
1875}
1876
8dd5516b 1877/* Helper function for replace_read and record_store.
71d6a386
RS
1878 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1879 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
8dd5516b
JJ
1880 if not successful. If REQUIRE_CST is true, return always constant. */
1881
1882static rtx
fd6daec9 1883get_stored_val (store_info *store_info, machine_mode read_mode,
02ce5d90 1884 poly_int64 read_offset, poly_int64 read_width,
8dd5516b
JJ
1885 basic_block bb, bool require_cst)
1886{
ef4bddc2 1887 machine_mode store_mode = GET_MODE (store_info->mem);
02ce5d90 1888 poly_int64 gap;
8dd5516b
JJ
1889 rtx read_reg;
1890
1891 /* To get here the read is within the boundaries of the write so
1892 shift will never be negative. Start out with the shift being in
1893 bytes. */
1894 if (store_mode == BLKmode)
71d6a386 1895 gap = 0;
8dd5516b 1896 else if (BYTES_BIG_ENDIAN)
71d6a386
RS
1897 gap = ((store_info->offset + store_info->width)
1898 - (read_offset + read_width));
8dd5516b 1899 else
71d6a386 1900 gap = read_offset - store_info->offset;
8dd5516b 1901
e6575643 1902 if (gap.is_constant () && maybe_ne (gap, 0))
71d6a386 1903 {
02ce5d90
RS
1904 poly_int64 shift = gap * BITS_PER_UNIT;
1905 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
71d6a386
RS
1906 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1907 shift, optimize_bb_for_speed_p (bb),
1908 require_cst);
1909 }
8dd5516b
JJ
1910 else if (store_mode == BLKmode)
1911 {
1912 /* The store is a memset (addr, const_val, const_size). */
1913 gcc_assert (CONST_INT_P (store_info->rhs));
304b9962
RS
1914 scalar_int_mode int_store_mode;
1915 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
8dd5516b
JJ
1916 read_reg = NULL_RTX;
1917 else if (store_info->rhs == const0_rtx)
304b9962
RS
1918 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1919 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
8dd5516b
JJ
1920 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1921 read_reg = NULL_RTX;
1922 else
1923 {
1924 unsigned HOST_WIDE_INT c
1925 = INTVAL (store_info->rhs)
fecfbfa4 1926 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
8dd5516b
JJ
1927 int shift = BITS_PER_UNIT;
1928 while (shift < HOST_BITS_PER_WIDE_INT)
1929 {
1930 c |= (c << shift);
1931 shift <<= 1;
1932 }
304b9962
RS
1933 read_reg = gen_int_mode (c, int_store_mode);
1934 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
8dd5516b
JJ
1935 }
1936 }
1937 else if (store_info->const_rhs
1938 && (require_cst
1939 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1940 read_reg = extract_low_bits (read_mode, store_mode,
1941 copy_rtx (store_info->const_rhs));
1942 else
1943 read_reg = extract_low_bits (read_mode, store_mode,
1944 copy_rtx (store_info->rhs));
1945 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1946 read_reg = NULL_RTX;
1947 return read_reg;
1948}
02b47899 1949
6fb5fa3c
DB
1950/* Take a sequence of:
1951 A <- r1
1952 ...
1953 ... <- A
1954
b8698a0f 1955 and change it into
6fb5fa3c
DB
1956 r2 <- r1
1957 A <- r1
1958 ...
1959 ... <- r2
1960
8660aaae
EC
1961 or
1962
1963 r3 <- extract (r1)
1964 r3 <- r3 >> shift
1965 r2 <- extract (r3)
1966 ... <- r2
1967
1968 or
1969
1970 r2 <- extract (r1)
1971 ... <- r2
1972
1973 Depending on the alignment and the mode of the store and
1974 subsequent load.
1975
1976
1977 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1978 and READ_INSN are for the read. Return true if the replacement
1979 went ok. */
1980
1981static bool
fd6daec9 1982replace_read (store_info *store_info, insn_info_t store_insn,
9c747368 1983 read_info_t read_info, insn_info_t read_insn, rtx *loc)
6fb5fa3c 1984{
ef4bddc2
RS
1985 machine_mode store_mode = GET_MODE (store_info->mem);
1986 machine_mode read_mode = GET_MODE (read_info->mem);
dc01c3d1
DM
1987 rtx_insn *insns, *this_insn;
1988 rtx read_reg;
8dd5516b 1989 basic_block bb;
8660aaae 1990
6fb5fa3c
DB
1991 if (!dbg_cnt (dse))
1992 return false;
1993
18b526e8
RS
1994 /* Create a sequence of instructions to set up the read register.
1995 This sequence goes immediately before the store and its result
1996 is read by the load.
1997
1998 We need to keep this in perspective. We are replacing a read
8660aaae
EC
1999 with a sequence of insns, but the read will almost certainly be
2000 in cache, so it is not going to be an expensive one. Thus, we
2001 are not willing to do a multi insn shift or worse a subroutine
2002 call to get rid of the read. */
456610d3 2003 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2004 fprintf (dump_file, "trying to replace %smode load in insn %d"
2005 " from %smode store in insn %d\n",
2006 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2007 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2008 start_sequence ();
8dd5516b
JJ
2009 bb = BLOCK_FOR_INSN (read_insn->insn);
2010 read_reg = get_stored_val (store_info,
71d6a386 2011 read_mode, read_info->offset, read_info->width,
8dd5516b 2012 bb, false);
18b526e8 2013 if (read_reg == NULL_RTX)
8660aaae 2014 {
18b526e8 2015 end_sequence ();
456610d3 2016 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2017 fprintf (dump_file, " -- could not extract bits of stored value\n");
2018 return false;
8660aaae 2019 }
18b526e8
RS
2020 /* Force the value into a new register so that it won't be clobbered
2021 between the store and the load. */
76f44fbf
JJ
2022 if (WORD_REGISTER_OPERATIONS
2023 && GET_CODE (read_reg) == SUBREG
2024 && REG_P (SUBREG_REG (read_reg))
2025 && GET_MODE (SUBREG_REG (read_reg)) == word_mode)
2026 {
2027 /* For WORD_REGISTER_OPERATIONS with subreg of word_mode register
2028 force SUBREG_REG into a new register rather than the SUBREG. */
2029 rtx r = copy_to_mode_reg (word_mode, SUBREG_REG (read_reg));
2030 read_reg = shallow_copy_rtx (read_reg);
2031 SUBREG_REG (read_reg) = r;
2032 }
2033 else
2034 read_reg = copy_to_mode_reg (read_mode, read_reg);
18b526e8
RS
2035 insns = get_insns ();
2036 end_sequence ();
8660aaae 2037
02b47899
KZ
2038 if (insns != NULL_RTX)
2039 {
2040 /* Now we have to scan the set of new instructions to see if the
2041 sequence contains and sets of hardregs that happened to be
2042 live at this point. For instance, this can happen if one of
2043 the insns sets the CC and the CC happened to be live at that
2044 point. This does occasionally happen, see PR 37922. */
3f9b14ff 2045 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
02b47899 2046
2c0fa3ec
JJ
2047 for (this_insn = insns;
2048 this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2049 {
2050 if (insn_invalid_p (this_insn, false))
2051 {
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 {
2054 fprintf (dump_file, " -- replacing the loaded MEM with ");
2055 print_simple_rtl (dump_file, read_reg);
2056 fprintf (dump_file, " led to an invalid instruction\n");
2057 }
2058 BITMAP_FREE (regs_set);
2059 return false;
2060 }
2061 note_stores (this_insn, look_for_hardregs, regs_set);
2062 }
b8698a0f 2063
9c747368
JJ
2064 if (store_insn->fixed_regs_live)
2065 bitmap_and_into (regs_set, store_insn->fixed_regs_live);
02b47899
KZ
2066 if (!bitmap_empty_p (regs_set))
2067 {
456610d3 2068 if (dump_file && (dump_flags & TDF_DETAILS))
02b47899 2069 {
2c0fa3ec
JJ
2070 fprintf (dump_file, "abandoning replacement because sequence "
2071 "clobbers live hardregs:");
02b47899
KZ
2072 df_print_regset (dump_file, regs_set);
2073 }
b8698a0f 2074
02b47899
KZ
2075 BITMAP_FREE (regs_set);
2076 return false;
2077 }
2078 BITMAP_FREE (regs_set);
2079 }
2080
2c0fa3ec
JJ
2081 subrtx_iterator::array_type array;
2082 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2083 {
2084 const_rtx x = *iter;
2085 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2086 {
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2088 fprintf (dump_file, " -- replacing the MEM failed due to address "
2089 "side-effects\n");
2090 return false;
2091 }
2092 }
2093
8660aaae 2094 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 2095 {
fd6daec9 2096 deferred_change *change = deferred_change_pool.allocate ();
b8698a0f 2097
8660aaae
EC
2098 /* Insert this right before the store insn where it will be safe
2099 from later insns that might change it before the read. */
2100 emit_insn_before (insns, store_insn->insn);
b8698a0f 2101
8660aaae
EC
2102 /* And now for the kludge part: cselib croaks if you just
2103 return at this point. There are two reasons for this:
b8698a0f 2104
8660aaae
EC
2105 1) Cselib has an idea of how many pseudos there are and
2106 that does not include the new ones we just added.
b8698a0f 2107
8660aaae
EC
2108 2) Cselib does not know about the move insn we added
2109 above the store_info, and there is no way to tell it
2110 about it, because it has "moved on".
b8698a0f 2111
8660aaae
EC
2112 Problem (1) is fixable with a certain amount of engineering.
2113 Problem (2) is requires starting the bb from scratch. This
2114 could be expensive.
b8698a0f 2115
8660aaae
EC
2116 So we are just going to have to lie. The move/extraction
2117 insns are not really an issue, cselib did not see them. But
2118 the use of the new pseudo read_insn is a real problem because
2119 cselib has not scanned this insn. The way that we solve this
2120 problem is that we are just going to put the mem back for now
2121 and when we are finished with the block, we undo this. We
2122 keep a table of mems to get rid of. At the end of the basic
2123 block we can put them back. */
b8698a0f 2124
8660aaae 2125 *loc = read_info->mem;
da6603c6
ML
2126 change->next = deferred_change_list;
2127 deferred_change_list = change;
2128 change->loc = loc;
2129 change->reg = read_reg;
b8698a0f 2130
8660aaae
EC
2131 /* Get rid of the read_info, from the point of view of the
2132 rest of dse, play like this read never happened. */
2133 read_insn->read_rec = read_info->next;
fb0b2914 2134 read_info_type_pool.remove (read_info);
456610d3 2135 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2136 {
2137 fprintf (dump_file, " -- replaced the loaded MEM with ");
2138 print_simple_rtl (dump_file, read_reg);
2139 fprintf (dump_file, "\n");
2140 }
8660aaae 2141 return true;
6fb5fa3c 2142 }
b8698a0f 2143 else
6fb5fa3c 2144 {
456610d3 2145 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2146 {
2147 fprintf (dump_file, " -- replacing the loaded MEM with ");
2148 print_simple_rtl (dump_file, read_reg);
2149 fprintf (dump_file, " led to an invalid instruction\n");
2150 }
6fb5fa3c
DB
2151 return false;
2152 }
2153}
2154
d7111da8
RS
2155/* Check the address of MEM *LOC and kill any appropriate stores that may
2156 be active. */
6fb5fa3c 2157
d7111da8
RS
2158static void
2159check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
6fb5fa3c 2160{
6216f94e 2161 rtx mem = *loc, mem_addr;
6fb5fa3c 2162 insn_info_t insn_info;
02ce5d90
RS
2163 poly_int64 offset = 0;
2164 poly_int64 width = 0;
b8698a0f 2165 cselib_val *base = NULL;
6fb5fa3c
DB
2166 int group_id;
2167 read_info_t read_info;
2168
6fb5fa3c
DB
2169 insn_info = bb_info->last_insn;
2170
2171 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
a49a975f 2172 || MEM_VOLATILE_P (mem))
6fb5fa3c 2173 {
a49a975f
JJ
2174 if (crtl->stack_protect_guard
2175 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2176 || (crtl->stack_protect_guard_decl
2177 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2178 && MEM_VOLATILE_P (mem))
2179 {
2180 /* This is either the stack protector canary on the stack,
2181 which ought to be written by a MEM_VOLATILE_P store and
2182 thus shouldn't be deleted and is read at the very end of
2183 function, but shouldn't conflict with any other store.
2184 Or it is __stack_chk_guard variable or TLS or whatever else
2185 MEM holding the canary value, which really shouldn't be
2186 ever modified in -fstack-protector* protected functions,
2187 otherwise the prologue store wouldn't match the epilogue
2188 check. */
2189 if (dump_file && (dump_flags & TDF_DETAILS))
2190 fprintf (dump_file, " stack protector canary read ignored.\n");
2191 insn_info->cannot_delete = true;
2192 return;
2193 }
2194
456610d3 2195 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2196 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2197 add_wild_read (bb_info);
2198 insn_info->cannot_delete = true;
d7111da8 2199 return;
6fb5fa3c
DB
2200 }
2201
2202 /* If it is reading readonly mem, then there can be no conflict with
2203 another write. */
2204 if (MEM_READONLY_P (mem))
d7111da8 2205 return;
6fb5fa3c 2206
ac6929b5 2207 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c 2208 {
456610d3 2209 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2210 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2211 add_wild_read (bb_info);
d7111da8 2212 return;
6fb5fa3c
DB
2213 }
2214
2215 if (GET_MODE (mem) == BLKmode)
2216 width = -1;
2217 else
2218 width = GET_MODE_SIZE (GET_MODE (mem));
2219
02ce5d90 2220 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
938f9248 2221 {
213ffde2
JJ
2222 if (dump_file && (dump_flags & TDF_DETAILS))
2223 fprintf (dump_file, " adding wild read, due to overflow.\n");
2224 add_wild_read (bb_info);
938f9248
ML
2225 return;
2226 }
2227
fb0b2914 2228 read_info = read_info_type_pool.allocate ();
6fb5fa3c
DB
2229 read_info->group_id = group_id;
2230 read_info->mem = mem;
71d6a386
RS
2231 read_info->offset = offset;
2232 read_info->width = width;
6fb5fa3c
DB
2233 read_info->next = insn_info->read_rec;
2234 insn_info->read_rec = read_info;
ac6929b5
RB
2235 if (group_id < 0)
2236 mem_addr = base->val_rtx;
6216f94e
JJ
2237 else
2238 {
ac6929b5
RB
2239 group_info *group = rtx_group_vec[group_id];
2240 mem_addr = group->canon_base_addr;
6216f94e 2241 }
02ce5d90 2242 if (maybe_ne (offset, 0))
ac6929b5 2243 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
a523add3
RB
2244 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2245 which will over and over re-create proper RTL and re-apply the
2246 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2247 RTXen that way. */
2248 mem_addr = get_addr (mem_addr);
6fb5fa3c 2249
ac6929b5 2250 if (group_id >= 0)
6fb5fa3c
DB
2251 {
2252 /* This is the restricted case where the base is a constant or
2253 the frame pointer and offset is a constant. */
2254 insn_info_t i_ptr = active_local_stores;
2255 insn_info_t last = NULL;
b8698a0f 2256
456610d3 2257 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2258 {
02ce5d90 2259 if (!known_size_p (width))
6fb5fa3c
DB
2260 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2261 group_id);
2262 else
71d6a386
RS
2263 {
2264 fprintf (dump_file, " processing const load gid=%d", group_id);
2265 print_range (dump_file, offset, width);
2266 fprintf (dump_file, "\n");
2267 }
6fb5fa3c
DB
2268 }
2269
2270 while (i_ptr)
2271 {
2272 bool remove = false;
fd6daec9 2273 store_info *store_info = i_ptr->store_rec;
b8698a0f 2274
6fb5fa3c
DB
2275 /* Skip the clobbers. */
2276 while (!store_info->is_set)
2277 store_info = store_info->next;
b8698a0f 2278
6fb5fa3c
DB
2279 /* There are three cases here. */
2280 if (store_info->group_id < 0)
2281 /* We have a cselib store followed by a read from a
2282 const base. */
b8698a0f
L
2283 remove
2284 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2285 GET_MODE (store_info->mem),
2286 store_info->mem_addr,
53d9622b 2287 mem, mem_addr);
b8698a0f 2288
6fb5fa3c
DB
2289 else if (group_id == store_info->group_id)
2290 {
2291 /* This is a block mode load. We may get lucky and
2292 canon_true_dependence may save the day. */
02ce5d90 2293 if (!known_size_p (width))
b8698a0f
L
2294 remove
2295 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2296 GET_MODE (store_info->mem),
2297 store_info->mem_addr,
53d9622b 2298 mem, mem_addr);
b8698a0f 2299
6fb5fa3c
DB
2300 /* If this read is just reading back something that we just
2301 stored, rewrite the read. */
b8698a0f 2302 else
6fb5fa3c
DB
2303 {
2304 if (store_info->rhs
71d6a386
RS
2305 && known_subrange_p (offset, width, store_info->offset,
2306 store_info->width)
8dd5516b 2307 && all_positions_needed_p (store_info,
71d6a386 2308 offset - store_info->offset,
8dd5516b
JJ
2309 width)
2310 && replace_read (store_info, i_ptr, read_info,
9c747368 2311 insn_info, loc))
d7111da8 2312 return;
8dd5516b 2313
6fb5fa3c 2314 /* The bases are the same, just see if the offsets
71d6a386
RS
2315 could overlap. */
2316 if (ranges_maybe_overlap_p (offset, width,
2317 store_info->offset,
2318 store_info->width))
6fb5fa3c
DB
2319 remove = true;
2320 }
2321 }
b8698a0f
L
2322
2323 /* else
6fb5fa3c
DB
2324 The else case that is missing here is that the
2325 bases are constant but different. There is nothing
2326 to do here because there is no overlap. */
b8698a0f 2327
6fb5fa3c
DB
2328 if (remove)
2329 {
456610d3 2330 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2331 dump_insn_info ("removing from active", i_ptr);
2332
dabd47e7 2333 active_local_stores_len--;
6fb5fa3c
DB
2334 if (last)
2335 last->next_local_store = i_ptr->next_local_store;
2336 else
2337 active_local_stores = i_ptr->next_local_store;
2338 }
2339 else
2340 last = i_ptr;
2341 i_ptr = i_ptr->next_local_store;
2342 }
2343 }
b8698a0f 2344 else
6fb5fa3c
DB
2345 {
2346 insn_info_t i_ptr = active_local_stores;
2347 insn_info_t last = NULL;
456610d3 2348 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2349 {
2350 fprintf (dump_file, " processing cselib load mem:");
2351 print_inline_rtx (dump_file, mem, 0);
2352 fprintf (dump_file, "\n");
2353 }
2354
2355 while (i_ptr)
2356 {
2357 bool remove = false;
fd6daec9 2358 store_info *store_info = i_ptr->store_rec;
b8698a0f 2359
456610d3 2360 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2361 fprintf (dump_file, " processing cselib load against insn %d\n",
2362 INSN_UID (i_ptr->insn));
2363
2364 /* Skip the clobbers. */
2365 while (!store_info->is_set)
2366 store_info = store_info->next;
2367
2368 /* If this read is just reading back something that we just
2369 stored, rewrite the read. */
2370 if (store_info->rhs
2371 && store_info->group_id == -1
2372 && store_info->cse_base == base
71d6a386
RS
2373 && known_subrange_p (offset, width, store_info->offset,
2374 store_info->width)
8dd5516b 2375 && all_positions_needed_p (store_info,
71d6a386 2376 offset - store_info->offset, width)
9c747368 2377 && replace_read (store_info, i_ptr, read_info, insn_info, loc))
d7111da8 2378 return;
6fb5fa3c 2379
ac6929b5
RB
2380 remove = canon_true_dependence (store_info->mem,
2381 GET_MODE (store_info->mem),
2382 store_info->mem_addr,
2383 mem, mem_addr);
b8698a0f 2384
6fb5fa3c
DB
2385 if (remove)
2386 {
456610d3 2387 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2388 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2389
dabd47e7 2390 active_local_stores_len--;
6fb5fa3c
DB
2391 if (last)
2392 last->next_local_store = i_ptr->next_local_store;
2393 else
2394 active_local_stores = i_ptr->next_local_store;
2395 }
2396 else
2397 last = i_ptr;
2398 i_ptr = i_ptr->next_local_store;
2399 }
2400 }
6fb5fa3c
DB
2401}
2402
d7111da8 2403/* A note_uses callback in which DATA points the INSN_INFO for
6fb5fa3c
DB
2404 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2405 true for any part of *LOC. */
2406
2407static void
2408check_mem_read_use (rtx *loc, void *data)
2409{
d7111da8
RS
2410 subrtx_ptr_iterator::array_type array;
2411 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2412 {
2413 rtx *loc = *iter;
2414 if (MEM_P (*loc))
2415 check_mem_read_rtx (loc, (bb_info_t) data);
2416 }
6fb5fa3c
DB
2417}
2418
8dd5516b
JJ
2419
2420/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2421 So far it only handles arguments passed in registers. */
2422
2423static bool
2424get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2425{
d5cc9181
JR
2426 CUMULATIVE_ARGS args_so_far_v;
2427 cumulative_args_t args_so_far;
8dd5516b
JJ
2428 tree arg;
2429 int idx;
2430
d5cc9181
JR
2431 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2432 args_so_far = pack_cumulative_args (&args_so_far_v);
8dd5516b
JJ
2433
2434 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2435 for (idx = 0;
2436 arg != void_list_node && idx < nargs;
2437 arg = TREE_CHAIN (arg), idx++)
2438 {
b4206259 2439 scalar_int_mode mode;
3c07301f 2440 rtx reg, link, tmp;
b4206259
RS
2441
2442 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2443 return false;
2444
6783fdb7
RS
2445 function_arg_info arg (mode, /*named=*/true);
2446 reg = targetm.calls.function_arg (args_so_far, arg);
b4206259 2447 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
8dd5516b
JJ
2448 return false;
2449
2450 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2451 link;
2452 link = XEXP (link, 1))
2453 if (GET_CODE (XEXP (link, 0)) == USE)
2454 {
b4206259 2455 scalar_int_mode arg_mode;
8dd5516b
JJ
2456 args[idx] = XEXP (XEXP (link, 0), 0);
2457 if (REG_P (args[idx])
2458 && REGNO (args[idx]) == REGNO (reg)
2459 && (GET_MODE (args[idx]) == mode
b4206259
RS
2460 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2461 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2462 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
8dd5516b
JJ
2463 break;
2464 }
2465 if (!link)
2466 return false;
2467
2468 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2469 if (GET_MODE (args[idx]) != mode)
2470 {
2471 if (!tmp || !CONST_INT_P (tmp))
2472 return false;
6d26322f 2473 tmp = gen_int_mode (INTVAL (tmp), mode);
8dd5516b
JJ
2474 }
2475 if (tmp)
2476 args[idx] = tmp;
2477
6930c98c 2478 targetm.calls.function_arg_advance (args_so_far, arg);
8dd5516b
JJ
2479 }
2480 if (arg != void_list_node || idx != nargs)
2481 return false;
2482 return true;
2483}
2484
9e582b1d
JR
2485/* Return a bitmap of the fixed registers contained in IN. */
2486
2487static bitmap
2488copy_fixed_regs (const_bitmap in)
2489{
2490 bitmap ret;
2491
2492 ret = ALLOC_REG_SET (NULL);
0b0310e9 2493 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
9e582b1d
JR
2494 return ret;
2495}
8dd5516b 2496
6fb5fa3c
DB
2497/* Apply record_store to all candidate stores in INSN. Mark INSN
2498 if some part of it is not a candidate store and assigns to a
2499 non-register target. */
2500
2501static void
fc2d7303 2502scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
6fb5fa3c
DB
2503{
2504 rtx body;
fb0b2914 2505 insn_info_type *insn_info = insn_info_type_pool.allocate ();
6fb5fa3c 2506 int mems_found = 0;
da6603c6 2507 memset (insn_info, 0, sizeof (struct insn_info_type));
6fb5fa3c 2508
456610d3 2509 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2510 fprintf (dump_file, "\n**scanning insn=%d\n",
2511 INSN_UID (insn));
2512
2513 insn_info->prev_insn = bb_info->last_insn;
2514 insn_info->insn = insn;
2515 bb_info->last_insn = insn_info;
b8698a0f 2516
b5b8b0ac
AO
2517 if (DEBUG_INSN_P (insn))
2518 {
2519 insn_info->cannot_delete = true;
2520 return;
2521 }
6fb5fa3c 2522
6fb5fa3c
DB
2523 /* Look at all of the uses in the insn. */
2524 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2525
2526 if (CALL_P (insn))
2527 {
8dd5516b 2528 bool const_call;
ee516de9 2529 rtx call, sym;
8dd5516b
JJ
2530 tree memset_call = NULL_TREE;
2531
6fb5fa3c 2532 insn_info->cannot_delete = true;
50f0f366 2533
6fb5fa3c 2534 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2535 however, they can read their parameters which may have
8dd5516b
JJ
2536 been pushed onto the stack.
2537 memset and bzero don't read memory either. */
2538 const_call = RTL_CONST_CALL_P (insn);
ee516de9
EB
2539 if (!const_call
2540 && (call = get_call_rtx_from (insn))
2541 && (sym = XEXP (XEXP (call, 0), 0))
2542 && GET_CODE (sym) == SYMBOL_REF
2543 && SYMBOL_REF_DECL (sym)
2544 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
3d78e008 2545 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
ee516de9
EB
2546 memset_call = SYMBOL_REF_DECL (sym);
2547
8dd5516b 2548 if (const_call || memset_call)
6fb5fa3c
DB
2549 {
2550 insn_info_t i_ptr = active_local_stores;
2551 insn_info_t last = NULL;
2552
456610d3 2553 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2554 fprintf (dump_file, "%s call %d\n",
2555 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2556
64520bdc 2557 /* See the head comment of the frame_read field. */
57534689
JJ
2558 if (reload_completed
2559 /* Tail calls are storing their arguments using
2560 arg pointer. If it is a frame pointer on the target,
2561 even before reload we need to kill frame pointer based
2562 stores. */
2563 || (SIBLING_CALL_P (insn)
2564 && HARD_FRAME_POINTER_IS_ARG_POINTER))
64520bdc
EB
2565 insn_info->frame_read = true;
2566
2567 /* Loop over the active stores and remove those which are
2568 killed by the const function call. */
6fb5fa3c
DB
2569 while (i_ptr)
2570 {
64520bdc
EB
2571 bool remove_store = false;
2572
2573 /* The stack pointer based stores are always killed. */
50f0f366 2574 if (i_ptr->stack_pointer_based)
64520bdc
EB
2575 remove_store = true;
2576
2577 /* If the frame is read, the frame related stores are killed. */
2578 else if (insn_info->frame_read)
2579 {
fd6daec9 2580 store_info *store_info = i_ptr->store_rec;
64520bdc
EB
2581
2582 /* Skip the clobbers. */
2583 while (!store_info->is_set)
2584 store_info = store_info->next;
2585
2586 if (store_info->group_id >= 0
9771b263 2587 && rtx_group_vec[store_info->group_id]->frame_related)
64520bdc
EB
2588 remove_store = true;
2589 }
2590
2591 if (remove_store)
6fb5fa3c 2592 {
456610d3 2593 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2594 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2595
dabd47e7 2596 active_local_stores_len--;
6fb5fa3c
DB
2597 if (last)
2598 last->next_local_store = i_ptr->next_local_store;
2599 else
2600 active_local_stores = i_ptr->next_local_store;
2601 }
2602 else
2603 last = i_ptr;
64520bdc 2604
6fb5fa3c
DB
2605 i_ptr = i_ptr->next_local_store;
2606 }
8dd5516b
JJ
2607
2608 if (memset_call)
2609 {
2610 rtx args[3];
2611 if (get_call_args (insn, memset_call, args, 3)
2612 && CONST_INT_P (args[1])
2613 && CONST_INT_P (args[2])
2614 && INTVAL (args[2]) > 0)
2615 {
2616 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
f5541398 2617 set_mem_size (mem, INTVAL (args[2]));
f7df4a84 2618 body = gen_rtx_SET (mem, args[1]);
8dd5516b 2619 mems_found += record_store (body, bb_info);
456610d3 2620 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2621 fprintf (dump_file, "handling memset as BLKmode store\n");
2622 if (mems_found == 1)
2623 {
fc2d7303 2624 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2625 {
2626 active_local_stores_len = 1;
2627 active_local_stores = NULL;
2628 }
9e582b1d
JR
2629 insn_info->fixed_regs_live
2630 = copy_fixed_regs (bb_info->regs_live);
8dd5516b
JJ
2631 insn_info->next_local_store = active_local_stores;
2632 active_local_stores = insn_info;
2633 }
2634 }
a2ad54a0
JJ
2635 else
2636 clear_rhs_from_active_local_stores ();
8dd5516b 2637 }
6fb5fa3c 2638 }
7ee98586
EB
2639 else if (SIBLING_CALL_P (insn)
2640 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
57534689
JJ
2641 /* Arguments for a sibling call that are pushed to memory are passed
2642 using the incoming argument pointer of the current function. After
7ee98586
EB
2643 reload that might be (and likely is) frame pointer based. And, if
2644 it is a frame pointer on the target, even before reload we need to
2645 kill frame pointer based stores. */
57534689 2646 add_wild_read (bb_info);
50f0f366 2647 else
d26c7090
ER
2648 /* Every other call, including pure functions, may read any memory
2649 that is not relative to the frame. */
2650 add_non_frame_wild_read (bb_info);
50f0f366 2651
6fb5fa3c
DB
2652 return;
2653 }
2654
2655 /* Assuming that there are sets in these insns, we cannot delete
2656 them. */
2657 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2658 || volatile_refs_p (PATTERN (insn))
2da02156 2659 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6fb5fa3c
DB
2660 || (RTX_FRAME_RELATED_P (insn))
2661 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2662 insn_info->cannot_delete = true;
b8698a0f 2663
6fb5fa3c
DB
2664 body = PATTERN (insn);
2665 if (GET_CODE (body) == PARALLEL)
2666 {
2667 int i;
2668 for (i = 0; i < XVECLEN (body, 0); i++)
2669 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2670 }
2671 else
2672 mems_found += record_store (body, bb_info);
2673
456610d3 2674 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2675 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
6fb5fa3c
DB
2676 mems_found, insn_info->cannot_delete ? "true" : "false");
2677
8dd5516b
JJ
2678 /* If we found some sets of mems, add it into the active_local_stores so
2679 that it can be locally deleted if found dead or used for
2680 replace_read and redundant constant store elimination. Otherwise mark
2681 it as cannot delete. This simplifies the processing later. */
2682 if (mems_found == 1)
6fb5fa3c 2683 {
fc2d7303 2684 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2685 {
2686 active_local_stores_len = 1;
2687 active_local_stores = NULL;
2688 }
9e582b1d 2689 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
6fb5fa3c
DB
2690 insn_info->next_local_store = active_local_stores;
2691 active_local_stores = insn_info;
2692 }
2693 else
2694 insn_info->cannot_delete = true;
2695}
2696
2697
2698/* Remove BASE from the set of active_local_stores. This is a
2699 callback from cselib that is used to get rid of the stores in
2700 active_local_stores. */
2701
2702static void
2703remove_useless_values (cselib_val *base)
2704{
2705 insn_info_t insn_info = active_local_stores;
2706 insn_info_t last = NULL;
2707
2708 while (insn_info)
2709 {
fd6daec9 2710 store_info *store_info = insn_info->store_rec;
60564289 2711 bool del = false;
6fb5fa3c
DB
2712
2713 /* If ANY of the store_infos match the cselib group that is
67914693 2714 being deleted, then the insn cannot be deleted. */
6fb5fa3c
DB
2715 while (store_info)
2716 {
b8698a0f 2717 if ((store_info->group_id == -1)
6fb5fa3c
DB
2718 && (store_info->cse_base == base))
2719 {
60564289 2720 del = true;
6fb5fa3c
DB
2721 break;
2722 }
2723 store_info = store_info->next;
2724 }
2725
60564289 2726 if (del)
6fb5fa3c 2727 {
dabd47e7 2728 active_local_stores_len--;
6fb5fa3c
DB
2729 if (last)
2730 last->next_local_store = insn_info->next_local_store;
2731 else
2732 active_local_stores = insn_info->next_local_store;
2733 free_store_info (insn_info);
2734 }
2735 else
2736 last = insn_info;
b8698a0f 2737
6fb5fa3c
DB
2738 insn_info = insn_info->next_local_store;
2739 }
2740}
2741
2742
2743/* Do all of step 1. */
2744
2745static void
2746dse_step1 (void)
2747{
2748 basic_block bb;
3f9b14ff 2749 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
b8698a0f 2750
457eeaae 2751 cselib_init (0);
6fb5fa3c
DB
2752 all_blocks = BITMAP_ALLOC (NULL);
2753 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2754 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2755
fc2d7303
RB
2756 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2757 since this can consume huge amounts of memory (PR89115). */
028d4092 2758 int max_active_local_stores = param_max_dse_active_local_stores;
fc2d7303
RB
2759 if (optimize < 2)
2760 max_active_local_stores /= 10;
2761
04a90bec 2762 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2763 {
2764 insn_info_t ptr;
fb0b2914 2765 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
6fb5fa3c 2766
da6603c6 2767 memset (bb_info, 0, sizeof (dse_bb_info_type));
6fb5fa3c 2768 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2769 bb_info->regs_live = regs_live;
2770
2771 bitmap_copy (regs_live, DF_LR_IN (bb));
2772 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2773
2774 bb_table[bb->index] = bb_info;
2775 cselib_discard_hook = remove_useless_values;
2776
2777 if (bb->index >= NUM_FIXED_BLOCKS)
2778 {
dd60a84c 2779 rtx_insn *insn;
6fb5fa3c 2780
6fb5fa3c 2781 active_local_stores = NULL;
dabd47e7 2782 active_local_stores_len = 0;
6fb5fa3c 2783 cselib_clear_table ();
b8698a0f 2784
6fb5fa3c
DB
2785 /* Scan the insns. */
2786 FOR_BB_INSNS (bb, insn)
2787 {
2788 if (INSN_P (insn))
fc2d7303 2789 scan_insn (bb_info, insn, max_active_local_stores);
6fb5fa3c 2790 cselib_process_insn (insn);
02b47899
KZ
2791 if (INSN_P (insn))
2792 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c 2793 }
b8698a0f 2794
6fb5fa3c
DB
2795 /* This is something of a hack, because the global algorithm
2796 is supposed to take care of the case where stores go dead
2797 at the end of the function. However, the global
2798 algorithm must take a more conservative view of block
2799 mode reads than the local alg does. So to get the case
2800 where you have a store to the frame followed by a non
0d52bcc1 2801 overlapping block more read, we look at the active local
6fb5fa3c
DB
2802 stores at the end of the function and delete all of the
2803 frame and spill based ones. */
2804 if (stores_off_frame_dead_at_return
2805 && (EDGE_COUNT (bb->succs) == 0
2806 || (single_succ_p (bb)
fefa31b5 2807 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
e3b5732b 2808 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2809 {
2810 insn_info_t i_ptr = active_local_stores;
2811 while (i_ptr)
2812 {
fd6daec9 2813 store_info *store_info = i_ptr->store_rec;
6fb5fa3c
DB
2814
2815 /* Skip the clobbers. */
2816 while (!store_info->is_set)
2817 store_info = store_info->next;
ac6929b5
RB
2818 if (store_info->group_id >= 0)
2819 {
2820 group_info *group = rtx_group_vec[store_info->group_id];
2821 if (group->frame_related && !i_ptr->cannot_delete)
2822 delete_dead_store_insn (i_ptr);
2823 }
6fb5fa3c
DB
2824
2825 i_ptr = i_ptr->next_local_store;
2826 }
2827 }
2828
2829 /* Get rid of the loads that were discovered in
2830 replace_read. Cselib is finished with this block. */
2831 while (deferred_change_list)
2832 {
fd6daec9 2833 deferred_change *next = deferred_change_list->next;
6fb5fa3c
DB
2834
2835 /* There is no reason to validate this change. That was
2836 done earlier. */
2837 *deferred_change_list->loc = deferred_change_list->reg;
fb0b2914 2838 deferred_change_pool.remove (deferred_change_list);
6fb5fa3c
DB
2839 deferred_change_list = next;
2840 }
2841
2842 /* Get rid of all of the cselib based store_infos in this
2843 block and mark the containing insns as not being
2844 deletable. */
2845 ptr = bb_info->last_insn;
2846 while (ptr)
2847 {
2848 if (ptr->contains_cselib_groups)
8dd5516b 2849 {
fd6daec9 2850 store_info *s_info = ptr->store_rec;
8dd5516b
JJ
2851 while (s_info && !s_info->is_set)
2852 s_info = s_info->next;
2853 if (s_info
2854 && s_info->redundant_reason
2855 && s_info->redundant_reason->insn
2856 && !ptr->cannot_delete)
2857 {
456610d3 2858 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2859 fprintf (dump_file, "Locally deleting insn %d "
2860 "because insn %d stores the "
2861 "same value and couldn't be "
2862 "eliminated\n",
2863 INSN_UID (ptr->insn),
2864 INSN_UID (s_info->redundant_reason->insn));
2865 delete_dead_store_insn (ptr);
2866 }
8dd5516b
JJ
2867 free_store_info (ptr);
2868 }
2869 else
2870 {
fd6daec9 2871 store_info *s_info;
8dd5516b
JJ
2872
2873 /* Free at least positions_needed bitmaps. */
2874 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2875 if (s_info->is_large)
2876 {
dc491a25 2877 BITMAP_FREE (s_info->positions_needed.large.bmap);
8dd5516b
JJ
2878 s_info->is_large = false;
2879 }
2880 }
6fb5fa3c
DB
2881 ptr = ptr->prev_insn;
2882 }
2883
da6603c6 2884 cse_store_info_pool.release ();
6fb5fa3c 2885 }
02b47899 2886 bb_info->regs_live = NULL;
6fb5fa3c
DB
2887 }
2888
02b47899 2889 BITMAP_FREE (regs_live);
6fb5fa3c 2890 cselib_finish ();
c203e8a7 2891 rtx_group_table->empty ();
6fb5fa3c
DB
2892}
2893
2894\f
2895/*----------------------------------------------------------------------------
2896 Second step.
2897
2898 Assign each byte position in the stores that we are going to
2899 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2900 there are any bit positions assigned.
6fb5fa3c
DB
2901----------------------------------------------------------------------------*/
2902
2903static void
2904dse_step2_init (void)
2905{
2906 unsigned int i;
fd6daec9 2907 group_info *group;
6fb5fa3c 2908
9771b263 2909 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2910 {
2911 /* For all non stack related bases, we only consider a store to
2912 be deletable if there are two or more stores for that
2913 position. This is because it takes one store to make the
2914 other store redundant. However, for the stores that are
2915 stack related, we consider them if there is only one store
2916 for the position. We do this because the stack related
2917 stores can be deleted if their is no read between them and
2918 the end of the function.
b8698a0f 2919
6fb5fa3c
DB
2920 To make this work in the current framework, we take the stack
2921 related bases add all of the bits from store1 into store2.
2922 This has the effect of making the eligible even if there is
2923 only one store. */
2924
2925 if (stores_off_frame_dead_at_return && group->frame_related)
2926 {
2927 bitmap_ior_into (group->store2_n, group->store1_n);
2928 bitmap_ior_into (group->store2_p, group->store1_p);
456610d3 2929 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2930 fprintf (dump_file, "group %d is frame related ", i);
6fb5fa3c
DB
2931 }
2932
2933 group->offset_map_size_n++;
3f9b14ff
SB
2934 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2935 group->offset_map_size_n);
6fb5fa3c 2936 group->offset_map_size_p++;
3f9b14ff
SB
2937 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2938 group->offset_map_size_p);
6fb5fa3c 2939 group->process_globally = false;
456610d3 2940 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2941 {
b8698a0f 2942 fprintf (dump_file, "group %d(%d+%d): ", i,
6fb5fa3c
DB
2943 (int)bitmap_count_bits (group->store2_n),
2944 (int)bitmap_count_bits (group->store2_p));
2945 bitmap_print (dump_file, group->store2_n, "n ", " ");
2946 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2947 }
2948 }
2949}
2950
2951
ac6929b5 2952/* Init the offset tables. */
6fb5fa3c
DB
2953
2954static bool
ac6929b5 2955dse_step2 (void)
6fb5fa3c
DB
2956{
2957 unsigned int i;
fd6daec9 2958 group_info *group;
6fb5fa3c
DB
2959 /* Position 0 is unused because 0 is used in the maps to mean
2960 unused. */
2961 current_position = 1;
9771b263 2962 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2963 {
2964 bitmap_iterator bi;
2965 unsigned int j;
2966
c3284718
RS
2967 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2968 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
6fb5fa3c
DB
2969 bitmap_clear (group->group_kill);
2970
2971 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2972 {
2973 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2974 if (bitmap_bit_p (group->escaped_n, j))
2975 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2976 group->offset_map_n[j] = current_position++;
2977 group->process_globally = true;
2978 }
2979 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2980 {
b8698a0f 2981 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2982 if (bitmap_bit_p (group->escaped_p, j))
2983 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2984 group->offset_map_p[j] = current_position++;
2985 group->process_globally = true;
2986 }
2987 }
2988 return current_position != 1;
2989}
2990
2991
6fb5fa3c
DB
2992\f
2993/*----------------------------------------------------------------------------
2994 Third step.
b8698a0f 2995
6fb5fa3c
DB
2996 Build the bit vectors for the transfer functions.
2997----------------------------------------------------------------------------*/
2998
2999
6fb5fa3c
DB
3000/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3001 there, return 0. */
3002
3003static int
fd6daec9 3004get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
6fb5fa3c
DB
3005{
3006 if (offset < 0)
3007 {
3008 HOST_WIDE_INT offset_p = -offset;
3009 if (offset_p >= group_info->offset_map_size_n)
3010 return 0;
3011 return group_info->offset_map_n[offset_p];
3012 }
3013 else
3014 {
3015 if (offset >= group_info->offset_map_size_p)
3016 return 0;
3017 return group_info->offset_map_p[offset];
3018 }
3019}
3020
3021
3022/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3023 may be NULL. */
3024
b8698a0f 3025static void
ac6929b5 3026scan_stores (store_info *store_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
3027{
3028 while (store_info)
3029 {
02ce5d90 3030 HOST_WIDE_INT i, offset, width;
fd6daec9 3031 group_info *group_info
9771b263 3032 = rtx_group_vec[store_info->group_id];
02ce5d90
RS
3033 /* We can (conservatively) ignore stores whose bounds aren't known;
3034 they simply don't generate new global dse opportunities. */
3035 if (group_info->process_globally
3036 && store_info->offset.is_constant (&offset)
3037 && store_info->width.is_constant (&width))
71d6a386 3038 {
02ce5d90
RS
3039 HOST_WIDE_INT end = offset + width;
3040 for (i = offset; i < end; i++)
71d6a386
RS
3041 {
3042 int index = get_bitmap_index (group_info, i);
3043 if (index != 0)
3044 {
3045 bitmap_set_bit (gen, index);
3046 if (kill)
3047 bitmap_clear_bit (kill, index);
3048 }
3049 }
3050 }
6fb5fa3c
DB
3051 store_info = store_info->next;
3052 }
3053}
3054
3055
6fb5fa3c
DB
3056/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3057 may be NULL. */
3058
3059static void
ac6929b5 3060scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
3061{
3062 read_info_t read_info = insn_info->read_rec;
3063 int i;
fd6daec9 3064 group_info *group;
6fb5fa3c 3065
64520bdc
EB
3066 /* If this insn reads the frame, kill all the frame related stores. */
3067 if (insn_info->frame_read)
3068 {
9771b263 3069 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
64520bdc
EB
3070 if (group->process_globally && group->frame_related)
3071 {
3072 if (kill)
3073 bitmap_ior_into (kill, group->group_kill);
b8698a0f 3074 bitmap_and_compl_into (gen, group->group_kill);
64520bdc
EB
3075 }
3076 }
d26c7090
ER
3077 if (insn_info->non_frame_wild_read)
3078 {
3079 /* Kill all non-frame related stores. Kill all stores of variables that
3080 escape. */
3081 if (kill)
3082 bitmap_ior_into (kill, kill_on_calls);
3083 bitmap_and_compl_into (gen, kill_on_calls);
9771b263 3084 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
d26c7090
ER
3085 if (group->process_globally && !group->frame_related)
3086 {
3087 if (kill)
3088 bitmap_ior_into (kill, group->group_kill);
3089 bitmap_and_compl_into (gen, group->group_kill);
3090 }
3091 }
6fb5fa3c
DB
3092 while (read_info)
3093 {
9771b263 3094 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3095 {
3096 if (group->process_globally)
3097 {
3098 if (i == read_info->group_id)
3099 {
02ce5d90
RS
3100 HOST_WIDE_INT offset, width;
3101 /* Reads with non-constant size kill all DSE opportunities
3102 in the group. */
3103 if (!read_info->offset.is_constant (&offset)
3104 || !read_info->width.is_constant (&width)
3105 || !known_size_p (width))
6fb5fa3c 3106 {
71d6a386 3107 /* Handle block mode reads. */
6fb5fa3c
DB
3108 if (kill)
3109 bitmap_ior_into (kill, group->group_kill);
3110 bitmap_and_compl_into (gen, group->group_kill);
3111 }
3112 else
3113 {
3114 /* The groups are the same, just process the
3115 offsets. */
3116 HOST_WIDE_INT j;
02ce5d90
RS
3117 HOST_WIDE_INT end = offset + width;
3118 for (j = offset; j < end; j++)
6fb5fa3c
DB
3119 {
3120 int index = get_bitmap_index (group, j);
3121 if (index != 0)
3122 {
3123 if (kill)
3124 bitmap_set_bit (kill, index);
3125 bitmap_clear_bit (gen, index);
3126 }
3127 }
3128 }
3129 }
3130 else
3131 {
3132 /* The groups are different, if the alias sets
3133 conflict, clear the entire group. We only need
3134 to apply this test if the read_info is a cselib
3135 read. Anything with a constant base cannot alias
3136 something else with a different constant
3137 base. */
3138 if ((read_info->group_id < 0)
b8698a0f 3139 && canon_true_dependence (group->base_mem,
d32f725a 3140 GET_MODE (group->base_mem),
6216f94e 3141 group->canon_base_addr,
53d9622b 3142 read_info->mem, NULL_RTX))
6fb5fa3c
DB
3143 {
3144 if (kill)
3145 bitmap_ior_into (kill, group->group_kill);
3146 bitmap_and_compl_into (gen, group->group_kill);
3147 }
3148 }
3149 }
3150 }
b8698a0f 3151
6fb5fa3c
DB
3152 read_info = read_info->next;
3153 }
3154}
3155
6fb5fa3c
DB
3156
3157/* Return the insn in BB_INFO before the first wild read or if there
3158 are no wild reads in the block, return the last insn. */
3159
3160static insn_info_t
3161find_insn_before_first_wild_read (bb_info_t bb_info)
3162{
3163 insn_info_t insn_info = bb_info->last_insn;
3164 insn_info_t last_wild_read = NULL;
3165
3166 while (insn_info)
3167 {
3168 if (insn_info->wild_read)
3169 {
3170 last_wild_read = insn_info->prev_insn;
3171 /* Block starts with wild read. */
3172 if (!last_wild_read)
3173 return NULL;
3174 }
3175
3176 insn_info = insn_info->prev_insn;
3177 }
3178
3179 if (last_wild_read)
3180 return last_wild_read;
3181 else
3182 return bb_info->last_insn;
3183}
3184
3185
3186/* Scan the insns in BB_INFO starting at PTR and going to the top of
3187 the block in order to build the gen and kill sets for the block.
3188 We start at ptr which may be the last insn in the block or may be
3189 the first insn with a wild read. In the latter case we are able to
3190 skip the rest of the block because it just does not matter:
3191 anything that happens is hidden by the wild read. */
3192
3193static void
ac6929b5 3194dse_step3_scan (basic_block bb)
6fb5fa3c
DB
3195{
3196 bb_info_t bb_info = bb_table[bb->index];
3197 insn_info_t insn_info;
3198
ac6929b5 3199 insn_info = find_insn_before_first_wild_read (bb_info);
b8698a0f 3200
6fb5fa3c
DB
3201 /* In the spill case or in the no_spill case if there is no wild
3202 read in the block, we will need a kill set. */
3203 if (insn_info == bb_info->last_insn)
3204 {
3205 if (bb_info->kill)
3206 bitmap_clear (bb_info->kill);
3207 else
3f9b14ff 3208 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 3209 }
b8698a0f 3210 else
6fb5fa3c
DB
3211 if (bb_info->kill)
3212 BITMAP_FREE (bb_info->kill);
3213
3214 while (insn_info)
3215 {
3216 /* There may have been code deleted by the dce pass run before
3217 this phase. */
3218 if (insn_info->insn && INSN_P (insn_info->insn))
3219 {
ac6929b5
RB
3220 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3221 scan_reads (insn_info, bb_info->gen, bb_info->kill);
b8698a0f 3222 }
6fb5fa3c
DB
3223
3224 insn_info = insn_info->prev_insn;
3225 }
3226}
3227
3228
3229/* Set the gen set of the exit block, and also any block with no
3230 successors that does not have a wild read. */
3231
3232static void
3233dse_step3_exit_block_scan (bb_info_t bb_info)
3234{
3235 /* The gen set is all 0's for the exit block except for the
3236 frame_pointer_group. */
b8698a0f 3237
6fb5fa3c
DB
3238 if (stores_off_frame_dead_at_return)
3239 {
3240 unsigned int i;
fd6daec9 3241 group_info *group;
b8698a0f 3242
9771b263 3243 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3244 {
3245 if (group->process_globally && group->frame_related)
3246 bitmap_ior_into (bb_info->gen, group->group_kill);
3247 }
3248 }
3249}
3250
3251
3252/* Find all of the blocks that are not backwards reachable from the
3253 exit block or any block with no successors (BB). These are the
3254 infinite loops or infinite self loops. These blocks will still
3255 have their bits set in UNREACHABLE_BLOCKS. */
3256
3257static void
3258mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3259{
3260 edge e;
3261 edge_iterator ei;
3262
d7c028c0 3263 if (bitmap_bit_p (unreachable_blocks, bb->index))
6fb5fa3c 3264 {
d7c028c0 3265 bitmap_clear_bit (unreachable_blocks, bb->index);
6fb5fa3c 3266 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 3267 {
6fb5fa3c 3268 mark_reachable_blocks (unreachable_blocks, e->src);
b8698a0f 3269 }
6fb5fa3c
DB
3270 }
3271}
3272
3273/* Build the transfer functions for the function. */
3274
3275static void
ac6929b5 3276dse_step3 ()
6fb5fa3c
DB
3277{
3278 basic_block bb;
6fb5fa3c
DB
3279 sbitmap_iterator sbi;
3280 bitmap all_ones = NULL;
3281 unsigned int i;
b8698a0f 3282
7ba9e72d 3283 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
f61e445a 3284 bitmap_ones (unreachable_blocks);
6fb5fa3c 3285
04a90bec 3286 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3287 {
3288 bb_info_t bb_info = bb_table[bb->index];
3289 if (bb_info->gen)
3290 bitmap_clear (bb_info->gen);
3291 else
3f9b14ff 3292 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3293
3294 if (bb->index == ENTRY_BLOCK)
3295 ;
3296 else if (bb->index == EXIT_BLOCK)
3297 dse_step3_exit_block_scan (bb_info);
3298 else
ac6929b5 3299 dse_step3_scan (bb);
6fb5fa3c
DB
3300 if (EDGE_COUNT (bb->succs) == 0)
3301 mark_reachable_blocks (unreachable_blocks, bb);
3302
3303 /* If this is the second time dataflow is run, delete the old
3304 sets. */
3305 if (bb_info->in)
3306 BITMAP_FREE (bb_info->in);
3307 if (bb_info->out)
3308 BITMAP_FREE (bb_info->out);
3309 }
3310
3311 /* For any block in an infinite loop, we must initialize the out set
3312 to all ones. This could be expensive, but almost never occurs in
3313 practice. However, it is common in regression tests. */
d4ac4ce2 3314 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
6fb5fa3c
DB
3315 {
3316 if (bitmap_bit_p (all_blocks, i))
3317 {
3318 bb_info_t bb_info = bb_table[i];
3319 if (!all_ones)
3320 {
3321 unsigned int j;
fd6daec9 3322 group_info *group;
6fb5fa3c 3323
3f9b14ff 3324 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
9771b263 3325 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
6fb5fa3c
DB
3326 bitmap_ior_into (all_ones, group->group_kill);
3327 }
3328 if (!bb_info->out)
3329 {
3f9b14ff 3330 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3331 bitmap_copy (bb_info->out, all_ones);
3332 }
3333 }
3334 }
3335
3336 if (all_ones)
3337 BITMAP_FREE (all_ones);
6fb5fa3c
DB
3338}
3339
3340
3341\f
3342/*----------------------------------------------------------------------------
3343 Fourth step.
3344
3345 Solve the bitvector equations.
3346----------------------------------------------------------------------------*/
3347
3348
3349/* Confluence function for blocks with no successors. Create an out
3350 set from the gen set of the exit block. This block logically has
3351 the exit block as a successor. */
3352
3353
3354
3355static void
3356dse_confluence_0 (basic_block bb)
3357{
3358 bb_info_t bb_info = bb_table[bb->index];
3359
3360 if (bb->index == EXIT_BLOCK)
3361 return;
3362
3363 if (!bb_info->out)
3364 {
3f9b14ff 3365 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3366 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3367 }
3368}
3369
3370/* Propagate the information from the in set of the dest of E to the
3371 out set of the src of E. If the various in or out sets are not
3372 there, that means they are all ones. */
3373
1a0f3fa1 3374static bool
6fb5fa3c
DB
3375dse_confluence_n (edge e)
3376{
3377 bb_info_t src_info = bb_table[e->src->index];
3378 bb_info_t dest_info = bb_table[e->dest->index];
3379
3380 if (dest_info->in)
3381 {
3382 if (src_info->out)
3383 bitmap_and_into (src_info->out, dest_info->in);
3384 else
3385 {
3f9b14ff 3386 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3387 bitmap_copy (src_info->out, dest_info->in);
3388 }
3389 }
1a0f3fa1 3390 return true;
6fb5fa3c
DB
3391}
3392
3393
3394/* Propagate the info from the out to the in set of BB_INDEX's basic
b8698a0f 3395 block. There are three cases:
6fb5fa3c
DB
3396
3397 1) The block has no kill set. In this case the kill set is all
3398 ones. It does not matter what the out set of the block is, none of
3399 the info can reach the top. The only thing that reaches the top is
3400 the gen set and we just copy the set.
3401
3402 2) There is a kill set but no out set and bb has successors. In
3403 this case we just return. Eventually an out set will be created and
3404 it is better to wait than to create a set of ones.
3405
3406 3) There is both a kill and out set. We apply the obvious transfer
3407 function.
3408*/
3409
3410static bool
3411dse_transfer_function (int bb_index)
3412{
3413 bb_info_t bb_info = bb_table[bb_index];
3414
3415 if (bb_info->kill)
3416 {
3417 if (bb_info->out)
3418 {
3419 /* Case 3 above. */
3420 if (bb_info->in)
b8698a0f 3421 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3422 bb_info->out, bb_info->kill);
3423 else
3424 {
3f9b14ff 3425 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
b8698a0f 3426 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3427 bb_info->out, bb_info->kill);
3428 return true;
3429 }
3430 }
3431 else
3432 /* Case 2 above. */
3433 return false;
3434 }
3435 else
3436 {
3437 /* Case 1 above. If there is already an in set, nothing
3438 happens. */
3439 if (bb_info->in)
3440 return false;
3441 else
3442 {
3f9b14ff 3443 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3444 bitmap_copy (bb_info->in, bb_info->gen);
3445 return true;
3446 }
3447 }
3448}
3449
3450/* Solve the dataflow equations. */
3451
3452static void
3453dse_step4 (void)
3454{
b8698a0f
L
3455 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3456 dse_confluence_n, dse_transfer_function,
3457 all_blocks, df_get_postorder (DF_BACKWARD),
6fb5fa3c 3458 df_get_n_blocks (DF_BACKWARD));
456610d3 3459 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3460 {
3461 basic_block bb;
3462
3463 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
04a90bec 3464 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3465 {
3466 bb_info_t bb_info = bb_table[bb->index];
3467
3468 df_print_bb_index (bb, dump_file);
3469 if (bb_info->in)
3470 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3471 else
3472 fprintf (dump_file, " in: *MISSING*\n");
3473 if (bb_info->gen)
3474 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3475 else
3476 fprintf (dump_file, " gen: *MISSING*\n");
3477 if (bb_info->kill)
3478 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3479 else
3480 fprintf (dump_file, " kill: *MISSING*\n");
3481 if (bb_info->out)
3482 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3483 else
3484 fprintf (dump_file, " out: *MISSING*\n\n");
3485 }
3486 }
3487}
3488
3489
3490\f
3491/*----------------------------------------------------------------------------
3492 Fifth step.
3493
0d52bcc1 3494 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3495----------------------------------------------------------------------------*/
3496
3497
3498static void
ac6929b5 3499dse_step5 (void)
6fb5fa3c
DB
3500{
3501 basic_block bb;
11cd3bed 3502 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c
DB
3503 {
3504 bb_info_t bb_info = bb_table[bb->index];
3505 insn_info_t insn_info = bb_info->last_insn;
3506 bitmap v = bb_info->out;
3507
3508 while (insn_info)
3509 {
3510 bool deleted = false;
3511 if (dump_file && insn_info->insn)
3512 {
3513 fprintf (dump_file, "starting to process insn %d\n",
3514 INSN_UID (insn_info->insn));
3515 bitmap_print (dump_file, v, " v: ", "\n");
3516 }
3517
3518 /* There may have been code deleted by the dce pass run before
3519 this phase. */
b8698a0f 3520 if (insn_info->insn
6fb5fa3c
DB
3521 && INSN_P (insn_info->insn)
3522 && (!insn_info->cannot_delete)
3523 && (!bitmap_empty_p (v)))
3524 {
fd6daec9 3525 store_info *store_info = insn_info->store_rec;
6fb5fa3c
DB
3526
3527 /* Try to delete the current insn. */
3528 deleted = true;
b8698a0f 3529
6fb5fa3c
DB
3530 /* Skip the clobbers. */
3531 while (!store_info->is_set)
3532 store_info = store_info->next;
3533
02ce5d90 3534 HOST_WIDE_INT i, offset, width;
ac6929b5
RB
3535 group_info *group_info = rtx_group_vec[store_info->group_id];
3536
02ce5d90
RS
3537 if (!store_info->offset.is_constant (&offset)
3538 || !store_info->width.is_constant (&width))
3539 deleted = false;
3540 else
6fb5fa3c 3541 {
02ce5d90
RS
3542 HOST_WIDE_INT end = offset + width;
3543 for (i = offset; i < end; i++)
6fb5fa3c 3544 {
02ce5d90
RS
3545 int index = get_bitmap_index (group_info, i);
3546
456610d3 3547 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
3548 fprintf (dump_file, "i = %d, index = %d\n",
3549 (int) i, index);
3550 if (index == 0 || !bitmap_bit_p (v, index))
3551 {
3552 if (dump_file && (dump_flags & TDF_DETAILS))
3553 fprintf (dump_file, "failing at i = %d\n",
3554 (int) i);
3555 deleted = false;
3556 break;
3557 }
6fb5fa3c
DB
3558 }
3559 }
3560 if (deleted)
3561 {
9e582b1d
JR
3562 if (dbg_cnt (dse)
3563 && check_for_inc_dec_1 (insn_info))
6fb5fa3c 3564 {
6fb5fa3c
DB
3565 delete_insn (insn_info->insn);
3566 insn_info->insn = NULL;
3567 globally_deleted++;
3568 }
3569 }
3570 }
3571 /* We do want to process the local info if the insn was
6ed3da00 3572 deleted. For instance, if the insn did a wild read, we
6fb5fa3c 3573 no longer need to trash the info. */
b8698a0f 3574 if (insn_info->insn
6fb5fa3c
DB
3575 && INSN_P (insn_info->insn)
3576 && (!deleted))
3577 {
ac6929b5 3578 scan_stores (insn_info->store_rec, v, NULL);
6fb5fa3c
DB
3579 if (insn_info->wild_read)
3580 {
456610d3 3581 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3582 fprintf (dump_file, "wild read\n");
3583 bitmap_clear (v);
3584 }
d26c7090 3585 else if (insn_info->read_rec
a8404b9a
JJ
3586 || insn_info->non_frame_wild_read
3587 || insn_info->frame_read)
6fb5fa3c 3588 {
a8404b9a
JJ
3589 if (dump_file && (dump_flags & TDF_DETAILS))
3590 {
3591 if (!insn_info->non_frame_wild_read
3592 && !insn_info->frame_read)
3593 fprintf (dump_file, "regular read\n");
3594 if (insn_info->non_frame_wild_read)
3595 fprintf (dump_file, "non-frame wild read\n");
3596 if (insn_info->frame_read)
3597 fprintf (dump_file, "frame read\n");
3598 }
ac6929b5 3599 scan_reads (insn_info, v, NULL);
6fb5fa3c
DB
3600 }
3601 }
b8698a0f 3602
6fb5fa3c
DB
3603 insn_info = insn_info->prev_insn;
3604 }
3605 }
3606}
3607
3608
6fb5fa3c
DB
3609\f
3610/*----------------------------------------------------------------------------
3611 Sixth step.
3612
8dd5516b
JJ
3613 Delete stores made redundant by earlier stores (which store the same
3614 value) that couldn't be eliminated.
3615----------------------------------------------------------------------------*/
3616
3617static void
3618dse_step6 (void)
3619{
3620 basic_block bb;
3621
04a90bec 3622 FOR_ALL_BB_FN (bb, cfun)
8dd5516b
JJ
3623 {
3624 bb_info_t bb_info = bb_table[bb->index];
3625 insn_info_t insn_info = bb_info->last_insn;
3626
3627 while (insn_info)
3628 {
3629 /* There may have been code deleted by the dce pass run before
3630 this phase. */
3631 if (insn_info->insn
3632 && INSN_P (insn_info->insn)
3633 && !insn_info->cannot_delete)
3634 {
fd6daec9 3635 store_info *s_info = insn_info->store_rec;
8dd5516b
JJ
3636
3637 while (s_info && !s_info->is_set)
3638 s_info = s_info->next;
3639 if (s_info
3640 && s_info->redundant_reason
3641 && s_info->redundant_reason->insn
3642 && INSN_P (s_info->redundant_reason->insn))
3643 {
eb92d49a 3644 rtx_insn *rinsn = s_info->redundant_reason->insn;
456610d3 3645 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
3646 fprintf (dump_file, "Locally deleting insn %d "
3647 "because insn %d stores the "
3648 "same value and couldn't be "
3649 "eliminated\n",
3650 INSN_UID (insn_info->insn),
3651 INSN_UID (rinsn));
3652 delete_dead_store_insn (insn_info);
3653 }
3654 }
3655 insn_info = insn_info->prev_insn;
3656 }
3657 }
3658}
3659\f
3660/*----------------------------------------------------------------------------
3661 Seventh step.
3662
b8698a0f 3663 Destroy everything left standing.
6fb5fa3c
DB
3664----------------------------------------------------------------------------*/
3665
b8698a0f 3666static void
3f9b14ff 3667dse_step7 (void)
6fb5fa3c 3668{
3f9b14ff
SB
3669 bitmap_obstack_release (&dse_bitmap_obstack);
3670 obstack_free (&dse_obstack, NULL);
370f38e8 3671
6fb5fa3c
DB
3672 end_alias_analysis ();
3673 free (bb_table);
c203e8a7
TS
3674 delete rtx_group_table;
3675 rtx_group_table = NULL;
9771b263 3676 rtx_group_vec.release ();
6fb5fa3c
DB
3677 BITMAP_FREE (all_blocks);
3678 BITMAP_FREE (scratch);
3679
da6603c6 3680 rtx_store_info_pool.release ();
fb0b2914
ML
3681 read_info_type_pool.release ();
3682 insn_info_type_pool.release ();
3683 dse_bb_info_type_pool.release ();
3684 group_info_pool.release ();
3685 deferred_change_pool.release ();
6fb5fa3c
DB
3686}
3687
3688
6fb5fa3c
DB
3689/* -------------------------------------------------------------------------
3690 DSE
3691 ------------------------------------------------------------------------- */
3692
3693/* Callback for running pass_rtl_dse. */
3694
3695static unsigned int
3696rest_of_handle_dse (void)
3697{
6fb5fa3c
DB
3698 df_set_flags (DF_DEFER_INSN_RESCAN);
3699
02b47899
KZ
3700 /* Need the notes since we must track live hardregs in the forwards
3701 direction. */
3702 df_note_add_problem ();
3703 df_analyze ();
3704
6fb5fa3c
DB
3705 dse_step0 ();
3706 dse_step1 ();
dfda40f8
RB
3707 /* DSE can eliminate potentially-trapping MEMs.
3708 Remove any EH edges associated with them, since otherwise
3709 DF_LR_RUN_DCE will complain later. */
3710 if ((locally_deleted || globally_deleted)
3711 && cfun->can_throw_non_call_exceptions
3712 && purge_all_dead_edges ())
3713 {
3714 free_dominance_info (CDI_DOMINATORS);
3715 delete_unreachable_blocks ();
3716 }
6fb5fa3c 3717 dse_step2_init ();
ac6929b5 3718 if (dse_step2 ())
6fb5fa3c
DB
3719 {
3720 df_set_flags (DF_LR_RUN_DCE);
3721 df_analyze ();
456610d3 3722 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 3723 fprintf (dump_file, "doing global processing\n");
ac6929b5 3724 dse_step3 ();
6fb5fa3c 3725 dse_step4 ();
ac6929b5 3726 dse_step5 ();
6fb5fa3c
DB
3727 }
3728
8dd5516b 3729 dse_step6 ();
3f9b14ff 3730 dse_step7 ();
6fb5fa3c
DB
3731
3732 if (dump_file)
ac6929b5
RB
3733 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3734 locally_deleted, globally_deleted);
6c5ed3f1
JJ
3735
3736 /* DSE can eliminate potentially-trapping MEMs.
3737 Remove any EH edges associated with them. */
3738 if ((locally_deleted || globally_deleted)
3739 && cfun->can_throw_non_call_exceptions
3740 && purge_all_dead_edges ())
7f5ddfcb
JJ
3741 {
3742 free_dominance_info (CDI_DOMINATORS);
3743 cleanup_cfg (0);
3744 }
6c5ed3f1 3745
6fb5fa3c
DB
3746 return 0;
3747}
3748
17795822
TS
3749namespace {
3750
3751const pass_data pass_data_rtl_dse1 =
27a4cd48
DM
3752{
3753 RTL_PASS, /* type */
3754 "dse1", /* name */
3755 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3756 TV_DSE1, /* tv_id */
3757 0, /* properties_required */
3758 0, /* properties_provided */
3759 0, /* properties_destroyed */
3760 0, /* todo_flags_start */
3bea341f 3761 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c
DB
3762};
3763
17795822 3764class pass_rtl_dse1 : public rtl_opt_pass
27a4cd48
DM
3765{
3766public:
c3284718
RS
3767 pass_rtl_dse1 (gcc::context *ctxt)
3768 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
27a4cd48
DM
3769 {}
3770
3771 /* opt_pass methods: */
725793af 3772 bool gate (function *) final override
1a3d085c
TS
3773 {
3774 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3775 }
3776
725793af
DM
3777 unsigned int execute (function *) final override
3778 {
3779 return rest_of_handle_dse ();
3780 }
27a4cd48
DM
3781
3782}; // class pass_rtl_dse1
3783
17795822
TS
3784} // anon namespace
3785
27a4cd48
DM
3786rtl_opt_pass *
3787make_pass_rtl_dse1 (gcc::context *ctxt)
3788{
3789 return new pass_rtl_dse1 (ctxt);
3790}
3791
17795822
TS
3792namespace {
3793
3794const pass_data pass_data_rtl_dse2 =
27a4cd48
DM
3795{
3796 RTL_PASS, /* type */
3797 "dse2", /* name */
3798 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3799 TV_DSE2, /* tv_id */
3800 0, /* properties_required */
3801 0, /* properties_provided */
3802 0, /* properties_destroyed */
3803 0, /* todo_flags_start */
3bea341f 3804 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c 3805};
27a4cd48 3806
17795822 3807class pass_rtl_dse2 : public rtl_opt_pass
27a4cd48
DM
3808{
3809public:
c3284718
RS
3810 pass_rtl_dse2 (gcc::context *ctxt)
3811 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
27a4cd48
DM
3812 {}
3813
3814 /* opt_pass methods: */
725793af 3815 bool gate (function *) final override
1a3d085c
TS
3816 {
3817 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3818 }
3819
725793af
DM
3820 unsigned int execute (function *) final override
3821 {
3822 return rest_of_handle_dse ();
3823 }
27a4cd48
DM
3824
3825}; // class pass_rtl_dse2
3826
17795822
TS
3827} // anon namespace
3828
27a4cd48
DM
3829rtl_opt_pass *
3830make_pass_rtl_dse2 (gcc::context *ctxt)
3831{
3832 return new pass_rtl_dse2 (ctxt);
3833}