]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.cc
mingw: Exclude utf8 manifest [PR111170, PR108865]
[thirdparty/gcc.git] / gcc / dse.cc
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
aeee4812 2 Copyright (C) 2005-2023 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "target.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5 33#include "predict.h"
c7131fb2 34#include "df.h"
4d0cdd0c 35#include "memmodel.h"
957060b5
AM
36#include "tm_p.h"
37#include "gimple-ssa.h"
38#include "expmed.h"
39#include "optabs.h"
957060b5
AM
40#include "emit-rtl.h"
41#include "recog.h"
40e23961 42#include "alias.h"
d8a2d370 43#include "stor-layout.h"
60393bbc 44#include "cfgrtl.h"
6fb5fa3c 45#include "cselib.h"
6fb5fa3c 46#include "tree-pass.h"
36566b39 47#include "explow.h"
6fb5fa3c 48#include "expr.h"
6fb5fa3c 49#include "dbgcnt.h"
d7111da8 50#include "rtl-iter.h"
6c5ed3f1 51#include "cfgcleanup.h"
6783fdb7 52#include "calls.h"
6fb5fa3c
DB
53
54/* This file contains three techniques for performing Dead Store
b8698a0f 55 Elimination (dse).
6fb5fa3c
DB
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
b8698a0f 61
6fb5fa3c
DB
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
026c3cfd 67 processes the spill slots. This differs from the second
6fb5fa3c
DB
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
b8698a0f 91 3) Set up the global dataflow equations based on processing the
6fb5fa3c
DB
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
073a8998 99 6) Delete insns that store the same value as preceding store
8dd5516b
JJ
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
6fb5fa3c
DB
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
0d52bcc1 108 forwards ordering is to accommodate cselib.
6fb5fa3c 109
5ef0b50d 110 We make a simplifying assumption: addresses fall into four broad
6fb5fa3c
DB
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
5ef0b50d 119 global pass only handles 1).
6fb5fa3c
DB
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
5ef0b50d 125 function contain another store to A before a read to A.
6fb5fa3c
DB
126
127 If the address A is relative to the stack frame, a store S2 to A
5ef0b50d 128 can be eliminated if there are no paths from S2 that reach the
6fb5fa3c 129 end of the function that read A before another store to A. In
5ef0b50d 130 this case S2 can be deleted if there are paths from S2 to the
6fb5fa3c
DB
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
5ef0b50d 141 implementation requires a lot of bitmaps filled with 1s.
6fb5fa3c
DB
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
b8698a0f 145 for details.
6fb5fa3c
DB
146
147 There are two places for further enhancements to this algorithm:
b8698a0f 148
6fb5fa3c
DB
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
6ed3da00 156 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
b8698a0f 190 off the frame pointer, the global algorithm handles this slot.
6fb5fa3c
DB
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
0d52bcc1 195 required is to have those passes make the same calls that reload
6fb5fa3c
DB
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199/* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203#define MAX_OFFSET (64 * 1024)
204
3f9b14ff
SB
205/* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211static bitmap_obstack dse_bitmap_obstack;
212
213/* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215static struct obstack dse_obstack;
216
217/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
6fb5fa3c 218static bitmap scratch = NULL;
3f9b14ff 219
da6603c6 220struct insn_info_type;
6fb5fa3c
DB
221
222/* This structure holds information about a candidate store. */
6c1dae73 223class store_info
6fb5fa3c 224{
6c1dae73 225public:
6fb5fa3c
DB
226
227 /* False means this is a clobber. */
228 bool is_set;
229
8dd5516b
JJ
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
232
6fb5fa3c
DB
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
b8698a0f 237
6fb5fa3c
DB
238 /* This is the cselib value. */
239 cselib_val *cse_base;
240
241 /* This canonized mem. */
242 rtx mem;
243
6216f94e 244 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
245 rtx mem_addr;
246
71d6a386 247 /* The offset of the first byte associated with the operation. */
02ce5d90 248 poly_int64 offset;
71d6a386
RS
249
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
02ce5d90 252 poly_int64 width;
8dd5516b 253
64ca6aa7
AP
254 /* The address space that the memory reference uses. */
255 unsigned char addrspace;
256
8dd5516b
JJ
257 union
258 {
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask;
263
264 struct
265 {
02ce5d90
RS
266 /* A bitmap with one bit per byte, or null if the number of
267 bytes isn't known at compile time. A cleared bit means
268 the position is needed. Used if IS_LARGE is true. */
dc491a25 269 bitmap bmap;
6fb5fa3c 270
02ce5d90
RS
271 /* When BITMAP is nonnull, this counts the number of set bits
272 (i.e. unneeded bytes) in the bitmap. If it is equal to
273 WIDTH, the whole store is unused.
274
275 When BITMAP is null:
276 - the store is definitely not needed when COUNT == 1
277 - all the store is needed when COUNT == 0 and RHS is nonnull
278 - otherwise we don't know which parts of the store are needed. */
8dd5516b
JJ
279 int count;
280 } large;
281 } positions_needed;
6fb5fa3c
DB
282
283 /* The next store info for this insn. */
99b1c316 284 class store_info *next;
6fb5fa3c
DB
285
286 /* The right hand side of the store. This is used if there is a
287 subsequent reload of the mems address somewhere later in the
288 basic block. */
8dd5516b
JJ
289 rtx rhs;
290
291 /* If rhs is or holds a constant, this contains that constant,
292 otherwise NULL. */
293 rtx const_rhs;
294
295 /* Set if this store stores the same constant value as REDUNDANT_REASON
296 insn stored. These aren't eliminated early, because doing that
297 might prevent the earlier larger store to be eliminated. */
da6603c6 298 struct insn_info_type *redundant_reason;
6fb5fa3c
DB
299};
300
4fe663b0
L
301/* Return a bitmask with the first N low bits set. */
302
303static unsigned HOST_WIDE_INT
304lowpart_bitmask (int n)
305{
dd4786fe 306 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
4fe663b0
L
307 return mask >> (HOST_BITS_PER_WIDE_INT - n);
308}
309
fcb87c50 310static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
da6603c6 311
fcb87c50 312static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
6fb5fa3c
DB
313
314/* This structure holds information about a load. These are only
315 built for rtx bases. */
6c1dae73 316class read_info_type
6fb5fa3c 317{
6c1dae73 318public:
6fb5fa3c
DB
319 /* The id of the mem group of the base address. */
320 int group_id;
321
71d6a386 322 /* The offset of the first byte associated with the operation. */
02ce5d90 323 poly_int64 offset;
71d6a386
RS
324
325 /* The number of bytes covered by the operation, or -1 if not known. */
02ce5d90 326 poly_int64 width;
6fb5fa3c
DB
327
328 /* The mem being read. */
329 rtx mem;
330
331 /* The next read_info for this insn. */
99b1c316 332 class read_info_type *next;
6fb5fa3c 333};
99b1c316 334typedef class read_info_type *read_info_t;
6fb5fa3c 335
fcb87c50 336static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
6fb5fa3c
DB
337
338/* One of these records is created for each insn. */
339
da6603c6 340struct insn_info_type
6fb5fa3c
DB
341{
342 /* Set true if the insn contains a store but the insn itself cannot
343 be deleted. This is set if the insn is a parallel and there is
344 more than one non dead output or if the insn is in some way
345 volatile. */
346 bool cannot_delete;
347
348 /* This field is only used by the global algorithm. It is set true
349 if the insn contains any read of mem except for a (1). This is
350 also set if the insn is a call or has a clobber mem. If the insn
351 contains a wild read, the use_rec will be null. */
352 bool wild_read;
353
d26c7090
ER
354 /* This is true only for CALL instructions which could potentially read
355 any non-frame memory location. This field is used by the global
356 algorithm. */
357 bool non_frame_wild_read;
358
50f0f366
EB
359 /* This field is only used for the processing of const functions.
360 These functions cannot read memory, but they can read the stack
64520bdc
EB
361 because that is where they may get their parms. We need to be
362 this conservative because, like the store motion pass, we don't
363 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
364 Moreover, we need to distinguish two cases:
365 1. Before reload (register elimination), the stores related to
366 outgoing arguments are stack pointer based and thus deemed
367 of non-constant base in this pass. This requires special
368 handling but also means that the frame pointer based stores
369 need not be killed upon encountering a const function call.
370 2. After reload, the stores related to outgoing arguments can be
371 either stack pointer or hard frame pointer based. This means
372 that we have no other choice than also killing all the frame
373 pointer based stores upon encountering a const function call.
57534689
JJ
374 This field is set after reload for const function calls and before
375 reload for const tail function calls on targets where arg pointer
376 is the frame pointer. Having this set is less severe than a wild
377 read, it just means that all the frame related stores are killed
378 rather than all the stores. */
64520bdc
EB
379 bool frame_read;
380
381 /* This field is only used for the processing of const functions.
382 It is set if the insn may contain a stack pointer based store. */
50f0f366 383 bool stack_pointer_based;
6fb5fa3c
DB
384
385 /* This is true if any of the sets within the store contains a
386 cselib base. Such stores can only be deleted by the local
387 algorithm. */
388 bool contains_cselib_groups;
389
390 /* The insn. */
dd60a84c 391 rtx_insn *insn;
6fb5fa3c
DB
392
393 /* The list of mem sets or mem clobbers that are contained in this
394 insn. If the insn is deletable, it contains only one mem set.
395 But it could also contain clobbers. Insns that contain more than
396 one mem set are not deletable, but each of those mems are here in
6ed3da00 397 order to provide info to delete other insns. */
fd6daec9 398 store_info *store_rec;
6fb5fa3c
DB
399
400 /* The linked list of mem uses in this insn. Only the reads from
401 rtx bases are listed here. The reads to cselib bases are
402 completely processed during the first scan and so are never
403 created. */
404 read_info_t read_rec;
405
9e582b1d
JR
406 /* The live fixed registers. We assume only fixed registers can
407 cause trouble by being clobbered from an expanded pattern;
408 storing only the live fixed registers (rather than all registers)
409 means less memory needs to be allocated / copied for the individual
410 stores. */
411 regset fixed_regs_live;
412
6fb5fa3c 413 /* The prev insn in the basic block. */
da6603c6 414 struct insn_info_type * prev_insn;
6fb5fa3c
DB
415
416 /* The linked list of insns that are in consideration for removal in
073a8998 417 the forwards pass through the basic block. This pointer may be
6fb5fa3c 418 trash as it is not cleared when a wild read occurs. The only
fa10beec 419 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c 420 at active_local_stores. */
da6603c6 421 struct insn_info_type * next_local_store;
6fb5fa3c 422};
da6603c6 423typedef struct insn_info_type *insn_info_t;
6fb5fa3c 424
fcb87c50 425static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
6fb5fa3c
DB
426
427/* The linked list of stores that are under consideration in this
b8698a0f 428 basic block. */
6fb5fa3c 429static insn_info_t active_local_stores;
dabd47e7 430static int active_local_stores_len;
6fb5fa3c 431
da6603c6 432struct dse_bb_info_type
6fb5fa3c 433{
6fb5fa3c
DB
434 /* Pointer to the insn info for the last insn in the block. These
435 are linked so this is how all of the insns are reached. During
436 scanning this is the current insn being scanned. */
437 insn_info_t last_insn;
438
439 /* The info for the global dataflow problem. */
440
441
442 /* This is set if the transfer function should and in the wild_read
443 bitmap before applying the kill and gen sets. That vector knocks
444 out most of the bits in the bitmap and thus speeds up the
445 operations. */
446 bool apply_wild_read;
447
02b47899
KZ
448 /* The following 4 bitvectors hold information about which positions
449 of which stores are live or dead. They are indexed by
450 get_bitmap_index. */
451
6fb5fa3c
DB
452 /* The set of store positions that exist in this block before a wild read. */
453 bitmap gen;
b8698a0f 454
6fb5fa3c
DB
455 /* The set of load positions that exist in this block above the
456 same position of a store. */
457 bitmap kill;
458
459 /* The set of stores that reach the top of the block without being
460 killed by a read.
461
462 Do not represent the in if it is all ones. Note that this is
463 what the bitvector should logically be initialized to for a set
464 intersection problem. However, like the kill set, this is too
465 expensive. So initially, the in set will only be created for the
466 exit block and any block that contains a wild read. */
467 bitmap in;
468
469 /* The set of stores that reach the bottom of the block from it's
470 successors.
471
472 Do not represent the in if it is all ones. Note that this is
473 what the bitvector should logically be initialized to for a set
474 intersection problem. However, like the kill and in set, this is
475 too expensive. So what is done is that the confluence operator
476 just initializes the vector from one of the out sets of the
477 successors of the block. */
478 bitmap out;
02b47899
KZ
479
480 /* The following bitvector is indexed by the reg number. It
481 contains the set of regs that are live at the current instruction
482 being processed. While it contains info for all of the
9e582b1d
JR
483 registers, only the hard registers are actually examined. It is used
484 to assure that shift and/or add sequences that are inserted do not
073a8998 485 accidentally clobber live hard regs. */
02b47899 486 bitmap regs_live;
6fb5fa3c
DB
487};
488
da6603c6 489typedef struct dse_bb_info_type *bb_info_t;
fb0b2914
ML
490
491static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
fcb87c50 492 ("bb_info_pool");
6fb5fa3c
DB
493
494/* Table to hold all bb_infos. */
495static bb_info_t *bb_table;
496
497/* There is a group_info for each rtx base that is used to reference
498 memory. There are also not many of the rtx bases because they are
499 very limited in scope. */
500
b8698a0f 501struct group_info
6fb5fa3c
DB
502{
503 /* The actual base of the address. */
504 rtx rtx_base;
505
506 /* The sequential id of the base. This allows us to have a
507 canonical ordering of these that is not based on addresses. */
508 int id;
509
8f5929e1
JJ
510 /* True if there are any positions that are to be processed
511 globally. */
512 bool process_globally;
513
514 /* True if the base of this group is either the frame_pointer or
515 hard_frame_pointer. */
516 bool frame_related;
517
d32f725a
OH
518 /* A mem wrapped around the base pointer for the group in order to do
519 read dependency. It must be given BLKmode in order to encompass all
520 the possible offsets from the base. */
6fb5fa3c 521 rtx base_mem;
b8698a0f 522
6216f94e
JJ
523 /* Canonized version of base_mem's address. */
524 rtx canon_base_addr;
6fb5fa3c
DB
525
526 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 527 stores are actually referencing that position from this base. We
6fb5fa3c 528 only do this for rtx bases as this will be used to assign
6ed3da00 529 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
530 store1 on the first store for offset N. Bit N is set in store2
531 for the second store to offset N. This is all we need since we
532 only care about offsets that have two or more stores for them.
533
534 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
535 for 0 and greater offsets.
536
537 There is one special case here, for stores into the stack frame,
538 we will or store1 into store2 before deciding which stores look
539 at globally. This is because stores to the stack frame that have
540 no other reads before the end of the function can also be
541 deleted. */
542 bitmap store1_n, store1_p, store2_n, store2_p;
543
d26c7090
ER
544 /* These bitmaps keep track of offsets in this group escape this function.
545 An offset escapes if it corresponds to a named variable whose
546 addressable flag is set. */
547 bitmap escaped_n, escaped_p;
548
6ed3da00 549 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 550 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 551 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
552 bitmap group_kill;
553
6fb5fa3c 554 /* The offset_map is used to map the offsets from this base into
6ed3da00 555 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
556 the all of stores have been scanned and we know which ones we
557 care about. */
b8698a0f
L
558 int *offset_map_n, *offset_map_p;
559 int offset_map_size_n, offset_map_size_p;
6fb5fa3c 560};
da6603c6 561
fcb87c50 562static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
6fb5fa3c 563
6fb5fa3c
DB
564/* Index into the rtx_group_vec. */
565static int rtx_group_next_id;
566
6fb5fa3c 567
fd6daec9 568static vec<group_info *> rtx_group_vec;
6fb5fa3c
DB
569
570
571/* This structure holds the set of changes that are being deferred
572 when removing read operation. See replace_read. */
b8698a0f 573struct deferred_change
6fb5fa3c
DB
574{
575
576 /* The mem that is being replaced. */
577 rtx *loc;
578
579 /* The reg it is being replaced with. */
580 rtx reg;
581
582 struct deferred_change *next;
583};
584
fb0b2914 585static object_allocator<deferred_change> deferred_change_pool
fcb87c50 586 ("deferred_change_pool");
6fb5fa3c 587
fd6daec9 588static deferred_change *deferred_change_list = NULL;
6fb5fa3c 589
e3b5732b 590/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 591 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
592static bool stores_off_frame_dead_at_return;
593
594/* Counter for stats. */
b8698a0f
L
595static int globally_deleted;
596static int locally_deleted;
b8698a0f 597
6fb5fa3c
DB
598static bitmap all_blocks;
599
d26c7090
ER
600/* Locations that are killed by calls in the global phase. */
601static bitmap kill_on_calls;
602
6fb5fa3c
DB
603/* The number of bits used in the global bitmaps. */
604static unsigned int current_position;
71d6a386
RS
605
606/* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
607
608static void
609print_range (FILE *file, poly_int64 offset, poly_int64 width)
610{
611 fprintf (file, "[");
612 print_dec (offset, file, SIGNED);
613 fprintf (file, "..");
614 print_dec (offset + width, file, SIGNED);
615 fprintf (file, ")");
616}
6fb5fa3c
DB
617\f
618/*----------------------------------------------------------------------------
619 Zeroth step.
620
b8698a0f 621 Initialization.
6fb5fa3c
DB
622----------------------------------------------------------------------------*/
623
6fb5fa3c 624
6fb5fa3c
DB
625/* Hashtable callbacks for maintaining the "bases" field of
626 store_group_info, given that the addresses are function invariants. */
627
8d67ee55 628struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
703c8606 629{
67f58944
TS
630 static inline hashval_t hash (const group_info *);
631 static inline bool equal (const group_info *, const group_info *);
703c8606
LC
632};
633
634inline bool
67f58944
TS
635invariant_group_base_hasher::equal (const group_info *gi1,
636 const group_info *gi2)
6fb5fa3c 637{
6fb5fa3c
DB
638 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
639}
640
703c8606 641inline hashval_t
67f58944 642invariant_group_base_hasher::hash (const group_info *gi)
6fb5fa3c 643{
6fb5fa3c
DB
644 int do_not_record;
645 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
646}
647
703c8606 648/* Tables of group_info structures, hashed by base value. */
c203e8a7 649static hash_table<invariant_group_base_hasher> *rtx_group_table;
703c8606 650
6fb5fa3c
DB
651
652/* Get the GROUP for BASE. Add a new group if it is not there. */
653
fd6daec9 654static group_info *
6fb5fa3c
DB
655get_group_info (rtx base)
656{
b8698a0f 657 struct group_info tmp_gi;
fd6daec9 658 group_info *gi;
703c8606 659 group_info **slot;
6fb5fa3c 660
ac6929b5
RB
661 gcc_assert (base != NULL_RTX);
662
663 /* Find the store_base_info structure for BASE, creating a new one
664 if necessary. */
665 tmp_gi.rtx_base = base;
666 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
667 gi = *slot;
6fb5fa3c
DB
668
669 if (gi == NULL)
670 {
fb0b2914 671 *slot = gi = group_info_pool.allocate ();
6fb5fa3c
DB
672 gi->rtx_base = base;
673 gi->id = rtx_group_next_id++;
d32f725a 674 gi->base_mem = gen_rtx_MEM (BLKmode, base);
6216f94e 675 gi->canon_base_addr = canon_rtx (base);
3f9b14ff
SB
676 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
681 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
682 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 683 gi->process_globally = false;
b8698a0f 684 gi->frame_related =
6fb5fa3c
DB
685 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
686 gi->offset_map_size_n = 0;
687 gi->offset_map_size_p = 0;
688 gi->offset_map_n = NULL;
689 gi->offset_map_p = NULL;
9771b263 690 rtx_group_vec.safe_push (gi);
6fb5fa3c
DB
691 }
692
693 return gi;
694}
695
696
697/* Initialization of data structures. */
698
699static void
700dse_step0 (void)
701{
702 locally_deleted = 0;
703 globally_deleted = 0;
6fb5fa3c 704
3f9b14ff
SB
705 bitmap_obstack_initialize (&dse_bitmap_obstack);
706 gcc_obstack_init (&dse_obstack);
707
708 scratch = BITMAP_ALLOC (&reg_obstack);
709 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 710
6fb5fa3c 711
c203e8a7 712 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
6fb5fa3c 713
8b1c6fd7 714 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
715 rtx_group_next_id = 0;
716
e3b5732b 717 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
718
719 init_alias_analysis ();
6fb5fa3c
DB
720}
721
722
723\f
724/*----------------------------------------------------------------------------
725 First step.
726
727 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 728 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
729 is used to remove stores with non-constant bases.
730----------------------------------------------------------------------------*/
731
732/* Delete all of the store_info recs from INSN_INFO. */
733
b8698a0f 734static void
6fb5fa3c
DB
735free_store_info (insn_info_t insn_info)
736{
fd6daec9
TS
737 store_info *cur = insn_info->store_rec;
738 while (cur)
6fb5fa3c 739 {
fd6daec9
TS
740 store_info *next = cur->next;
741 if (cur->is_large)
742 BITMAP_FREE (cur->positions_needed.large.bmap);
743 if (cur->cse_base)
744 cse_store_info_pool.remove (cur);
6fb5fa3c 745 else
fd6daec9
TS
746 rtx_store_info_pool.remove (cur);
747 cur = next;
6fb5fa3c
DB
748 }
749
750 insn_info->cannot_delete = true;
751 insn_info->contains_cselib_groups = false;
752 insn_info->store_rec = NULL;
753}
754
a79683d5 755struct note_add_store_info
9e582b1d 756{
dc01c3d1 757 rtx_insn *first, *current;
9e582b1d
JR
758 regset fixed_regs_live;
759 bool failure;
a79683d5 760};
9e582b1d
JR
761
762/* Callback for emit_inc_dec_insn_before via note_stores.
763 Check if a register is clobbered which is live afterwards. */
764
765static void
766note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
767{
dc01c3d1 768 rtx_insn *insn;
9e582b1d 769 note_add_store_info *info = (note_add_store_info *) data;
9e582b1d
JR
770
771 if (!REG_P (loc))
772 return;
773
774 /* If this register is referenced by the current or an earlier insn,
775 that's OK. E.g. this applies to the register that is being incremented
776 with this addition. */
777 for (insn = info->first;
778 insn != NEXT_INSN (info->current);
779 insn = NEXT_INSN (insn))
780 if (reg_referenced_p (loc, PATTERN (insn)))
781 return;
782
783 /* If we come here, we have a clobber of a register that's only OK
784 if that register is not live. If we don't have liveness information
785 available, fail now. */
786 if (!info->fixed_regs_live)
787 {
53d1bae9 788 info->failure = true;
9e582b1d
JR
789 return;
790 }
791 /* Now check if this is a live fixed register. */
53d1bae9
RS
792 unsigned int end_regno = END_REGNO (loc);
793 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
794 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
795 info->failure = true;
9e582b1d
JR
796}
797
4deef538
AO
798/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
799 SRC + SRCOFF before insn ARG. */
6fb5fa3c
DB
800
801static int
4deef538
AO
802emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
803 rtx op ATTRIBUTE_UNUSED,
804 rtx dest, rtx src, rtx srcoff, void *arg)
6fb5fa3c 805{
9e582b1d 806 insn_info_t insn_info = (insn_info_t) arg;
dc01c3d1 807 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
9e582b1d 808 note_add_store_info info;
b8698a0f 809
4deef538
AO
810 /* We can reuse all operands without copying, because we are about
811 to delete the insn that contained it. */
9e582b1d 812 if (srcoff)
ed079c4b
JJ
813 {
814 start_sequence ();
815 emit_insn (gen_add3_insn (dest, src, srcoff));
816 new_insn = get_insns ();
817 end_sequence ();
818 }
9e582b1d 819 else
1476d1bd 820 new_insn = gen_move_insn (dest, src);
9e582b1d
JR
821 info.first = new_insn;
822 info.fixed_regs_live = insn_info->fixed_regs_live;
823 info.failure = false;
824 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
825 {
826 info.current = cur;
e8448ba5 827 note_stores (cur, note_add_store, &info);
9e582b1d 828 }
6fb5fa3c 829
9e582b1d
JR
830 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
831 return it immediately, communicating the failure to its caller. */
832 if (info.failure)
833 return 1;
834
835 emit_insn_before (new_insn, insn);
6fb5fa3c 836
8d8e205b 837 return 0;
6fb5fa3c
DB
838}
839
9e582b1d
JR
840/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
841 is there, is split into a separate insn.
842 Return true on success (or if there was nothing to do), false on failure. */
6fb5fa3c 843
9e582b1d
JR
844static bool
845check_for_inc_dec_1 (insn_info_t insn_info)
6fb5fa3c 846{
dd60a84c 847 rtx_insn *insn = insn_info->insn;
6fb5fa3c
DB
848 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
849 if (note)
8d8e205b
RS
850 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
851 insn_info) == 0;
2c0fa3ec
JJ
852
853 /* Punt on stack pushes, those don't have REG_INC notes and we are
854 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
855 subrtx_iterator::array_type array;
856 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
857 {
858 const_rtx x = *iter;
859 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
860 return false;
861 }
862
9e582b1d 863 return true;
6fb5fa3c
DB
864}
865
866
9e582b1d
JR
867/* Entry point for postreload. If you work on reload_cse, or you need this
868 anywhere else, consider if you can provide register liveness information
869 and add a parameter to this function so that it can be passed down in
870 insn_info.fixed_regs_live. */
871bool
dd60a84c 872check_for_inc_dec (rtx_insn *insn)
9e582b1d 873{
da6603c6 874 insn_info_type insn_info;
9e582b1d
JR
875 rtx note;
876
877 insn_info.insn = insn;
878 insn_info.fixed_regs_live = NULL;
879 note = find_reg_note (insn, REG_INC, NULL_RTX);
880 if (note)
8d8e205b
RS
881 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
882 &insn_info) == 0;
2c0fa3ec
JJ
883
884 /* Punt on stack pushes, those don't have REG_INC notes and we are
885 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
886 subrtx_iterator::array_type array;
887 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
888 {
889 const_rtx x = *iter;
890 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
891 return false;
892 }
893
9e582b1d
JR
894 return true;
895}
896
b8698a0f 897/* Delete the insn and free all of the fields inside INSN_INFO. */
6fb5fa3c
DB
898
899static void
900delete_dead_store_insn (insn_info_t insn_info)
901{
902 read_info_t read_info;
903
904 if (!dbg_cnt (dse))
905 return;
906
9e582b1d
JR
907 if (!check_for_inc_dec_1 (insn_info))
908 return;
456610d3 909 if (dump_file && (dump_flags & TDF_DETAILS))
ac6929b5
RB
910 fprintf (dump_file, "Locally deleting insn %d\n",
911 INSN_UID (insn_info->insn));
6fb5fa3c
DB
912
913 free_store_info (insn_info);
914 read_info = insn_info->read_rec;
b8698a0f 915
6fb5fa3c
DB
916 while (read_info)
917 {
918 read_info_t next = read_info->next;
fb0b2914 919 read_info_type_pool.remove (read_info);
6fb5fa3c
DB
920 read_info = next;
921 }
922 insn_info->read_rec = NULL;
923
924 delete_insn (insn_info->insn);
925 locally_deleted++;
926 insn_info->insn = NULL;
927
928 insn_info->wild_read = false;
929}
930
88d8330d
EB
931/* Return whether DECL, a local variable, can possibly escape the current
932 function scope. */
933
934static bool
935local_variable_can_escape (tree decl)
936{
937 if (TREE_ADDRESSABLE (decl))
938 return true;
939
940 /* If this is a partitioned variable, we need to consider all the variables
941 in the partition. This is necessary because a store into one of them can
942 be replaced with a store into another and this may not change the outcome
943 of the escape analysis. */
944 if (cfun->gimple_df->decls_to_pointers != NULL)
945 {
39c8aaa4 946 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
88d8330d 947 if (namep)
39c8aaa4 948 return TREE_ADDRESSABLE (*namep);
88d8330d
EB
949 }
950
951 return false;
952}
953
954/* Return whether EXPR can possibly escape the current function scope. */
955
d26c7090
ER
956static bool
957can_escape (tree expr)
958{
959 tree base;
960 if (!expr)
961 return true;
962 base = get_base_address (expr);
963 if (DECL_P (base)
88d8330d 964 && !may_be_aliased (base)
8813a647 965 && !(VAR_P (base)
88d8330d
EB
966 && !DECL_EXTERNAL (base)
967 && !TREE_STATIC (base)
968 && local_variable_can_escape (base)))
d26c7090
ER
969 return false;
970 return true;
971}
6fb5fa3c
DB
972
973/* Set the store* bitmaps offset_map_size* fields in GROUP based on
974 OFFSET and WIDTH. */
975
976static void
02ce5d90 977set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
d26c7090 978 tree expr)
6fb5fa3c 979{
02ce5d90
RS
980 /* Non-constant offsets and widths act as global kills, so there's no point
981 trying to use them to derive global DSE candidates. */
982 HOST_WIDE_INT i, const_offset, const_width;
d26c7090 983 bool expr_escapes = can_escape (expr);
02ce5d90
RS
984 if (offset.is_constant (&const_offset)
985 && width.is_constant (&const_width)
986 && const_offset > -MAX_OFFSET
987 && const_offset + const_width < MAX_OFFSET)
988 for (i = const_offset; i < const_offset + const_width; ++i)
6fb5fa3c
DB
989 {
990 bitmap store1;
991 bitmap store2;
d26c7090 992 bitmap escaped;
6fb5fa3c
DB
993 int ai;
994 if (i < 0)
995 {
996 store1 = group->store1_n;
997 store2 = group->store2_n;
d26c7090 998 escaped = group->escaped_n;
6fb5fa3c
DB
999 ai = -i;
1000 }
1001 else
1002 {
1003 store1 = group->store1_p;
1004 store2 = group->store2_p;
d26c7090 1005 escaped = group->escaped_p;
6fb5fa3c
DB
1006 ai = i;
1007 }
b8698a0f 1008
fcaa4ca4 1009 if (!bitmap_set_bit (store1, ai))
6fb5fa3c 1010 bitmap_set_bit (store2, ai);
b8698a0f 1011 else
6fb5fa3c 1012 {
6fb5fa3c
DB
1013 if (i < 0)
1014 {
1015 if (group->offset_map_size_n < ai)
1016 group->offset_map_size_n = ai;
1017 }
1018 else
1019 {
1020 if (group->offset_map_size_p < ai)
1021 group->offset_map_size_p = ai;
1022 }
1023 }
d26c7090
ER
1024 if (expr_escapes)
1025 bitmap_set_bit (escaped, ai);
6fb5fa3c
DB
1026 }
1027}
1028
d26c7090
ER
1029static void
1030reset_active_stores (void)
1031{
1032 active_local_stores = NULL;
1033 active_local_stores_len = 0;
1034}
6fb5fa3c 1035
d26c7090 1036/* Free all READ_REC of the LAST_INSN of BB_INFO. */
6fb5fa3c
DB
1037
1038static void
d26c7090 1039free_read_records (bb_info_t bb_info)
6fb5fa3c
DB
1040{
1041 insn_info_t insn_info = bb_info->last_insn;
1042 read_info_t *ptr = &insn_info->read_rec;
6fb5fa3c
DB
1043 while (*ptr)
1044 {
1045 read_info_t next = (*ptr)->next;
ac6929b5
RB
1046 read_info_type_pool.remove (*ptr);
1047 *ptr = next;
6fb5fa3c 1048 }
d26c7090
ER
1049}
1050
1051/* Set the BB_INFO so that the last insn is marked as a wild read. */
1052
1053static void
1054add_wild_read (bb_info_t bb_info)
1055{
1056 insn_info_t insn_info = bb_info->last_insn;
6fb5fa3c 1057 insn_info->wild_read = true;
d26c7090
ER
1058 free_read_records (bb_info);
1059 reset_active_stores ();
6fb5fa3c
DB
1060}
1061
d26c7090
ER
1062/* Set the BB_INFO so that the last insn is marked as a wild read of
1063 non-frame locations. */
1064
1065static void
1066add_non_frame_wild_read (bb_info_t bb_info)
1067{
1068 insn_info_t insn_info = bb_info->last_insn;
1069 insn_info->non_frame_wild_read = true;
1070 free_read_records (bb_info);
1071 reset_active_stores ();
1072}
6fb5fa3c 1073
50f0f366
EB
1074/* Return true if X is a constant or one of the registers that behave
1075 as a constant over the life of a function. This is equivalent to
1076 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1077
1078static bool
1079const_or_frame_p (rtx x)
1080{
d8116890
KZ
1081 if (CONSTANT_P (x))
1082 return true;
1083
1084 if (GET_CODE (x) == REG)
6fb5fa3c 1085 {
6fb5fa3c
DB
1086 /* Note that we have to test for the actual rtx used for the frame
1087 and arg pointers and not just the register number in case we have
1088 eliminated the frame and/or arg pointer and are using it
1089 for pseudos. */
1090 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1091 /* The arg pointer varies if it is not a fixed register. */
1092 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1093 || x == pic_offset_table_rtx)
1094 return true;
1095 return false;
6fb5fa3c 1096 }
da6603c6 1097
d8116890 1098 return false;
6fb5fa3c
DB
1099}
1100
b8698a0f
L
1101/* Take all reasonable action to put the address of MEM into the form
1102 that we can do analysis on.
6fb5fa3c
DB
1103
1104 The gold standard is to get the address into the form: address +
1105 OFFSET where address is something that rtx_varies_p considers a
1106 constant. When we can get the address in this form, we can do
1107 global analysis on it. Note that for constant bases, address is
1108 not actually returned, only the group_id. The address can be
1109 obtained from that.
1110
1111 If that fails, we try cselib to get a value we can at least use
b8698a0f
L
1112 locally. If that fails we return false.
1113
6fb5fa3c
DB
1114 The GROUP_ID is set to -1 for cselib bases and the index of the
1115 group for non_varying bases.
1116
1117 FOR_READ is true if this is a mem read and false if not. */
1118
1119static bool
1120canon_address (rtx mem,
6fb5fa3c 1121 int *group_id,
02ce5d90 1122 poly_int64 *offset,
6fb5fa3c
DB
1123 cselib_val **base)
1124{
ef4bddc2 1125 machine_mode address_mode = get_address_mode (mem);
6fb5fa3c
DB
1126 rtx mem_address = XEXP (mem, 0);
1127 rtx expanded_address, address;
403c7520
JJ
1128 int expanded;
1129
4deef538 1130 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
6fb5fa3c 1131
456610d3 1132 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1133 {
1134 fprintf (dump_file, " mem: ");
1135 print_inline_rtx (dump_file, mem_address, 0);
1136 fprintf (dump_file, "\n");
1137 }
1138
403c7520
JJ
1139 /* First see if just canon_rtx (mem_address) is const or frame,
1140 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1141 address = NULL_RTX;
1142 for (expanded = 0; expanded < 2; expanded++)
1143 {
1144 if (expanded)
1145 {
1146 /* Use cselib to replace all of the reg references with the full
b8698a0f 1147 expression. This will take care of the case where we have
6fb5fa3c 1148
403c7520
JJ
1149 r_x = base + offset;
1150 val = *r_x;
b8698a0f
L
1151
1152 by making it into
6fb5fa3c 1153
403c7520 1154 val = *(base + offset); */
6fb5fa3c 1155
403c7520
JJ
1156 expanded_address = cselib_expand_value_rtx (mem_address,
1157 scratch, 5);
6fb5fa3c 1158
403c7520
JJ
1159 /* If this fails, just go with the address from first
1160 iteration. */
1161 if (!expanded_address)
1162 break;
1163 }
1164 else
1165 expanded_address = mem_address;
6fb5fa3c 1166
403c7520
JJ
1167 /* Split the address into canonical BASE + OFFSET terms. */
1168 address = canon_rtx (expanded_address);
6fb5fa3c 1169
403c7520 1170 *offset = 0;
6fb5fa3c 1171
456610d3 1172 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1173 {
1174 if (expanded)
1175 {
1176 fprintf (dump_file, "\n after cselib_expand address: ");
1177 print_inline_rtx (dump_file, expanded_address, 0);
1178 fprintf (dump_file, "\n");
1179 }
6fb5fa3c 1180
403c7520
JJ
1181 fprintf (dump_file, "\n after canon_rtx address: ");
1182 print_inline_rtx (dump_file, address, 0);
1183 fprintf (dump_file, "\n");
1184 }
6fb5fa3c 1185
403c7520
JJ
1186 if (GET_CODE (address) == CONST)
1187 address = XEXP (address, 0);
6fb5fa3c 1188
02ce5d90 1189 address = strip_offset_and_add (address, offset);
6fb5fa3c 1190
09e881c9
BE
1191 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1192 && const_or_frame_p (address))
6fb5fa3c 1193 {
fd6daec9 1194 group_info *group = get_group_info (address);
403c7520 1195
456610d3 1196 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1197 {
1198 fprintf (dump_file, " gid=%d offset=", group->id);
1199 print_dec (*offset, dump_file);
1200 fprintf (dump_file, "\n");
1201 }
403c7520
JJ
1202 *base = NULL;
1203 *group_id = group->id;
1204 return true;
6fb5fa3c 1205 }
403c7520
JJ
1206 }
1207
4deef538 1208 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
403c7520
JJ
1209 *group_id = -1;
1210
1211 if (*base == NULL)
1212 {
456610d3 1213 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1214 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1215 return false;
6fb5fa3c 1216 }
456610d3 1217 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1218 {
1219 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1220 (*base)->uid, (*base)->hash);
1221 print_dec (*offset, dump_file);
1222 fprintf (dump_file, "\n");
1223 }
6fb5fa3c
DB
1224 return true;
1225}
1226
1227
1228/* Clear the rhs field from the active_local_stores array. */
1229
1230static void
1231clear_rhs_from_active_local_stores (void)
1232{
1233 insn_info_t ptr = active_local_stores;
1234
1235 while (ptr)
1236 {
fd6daec9 1237 store_info *store_info = ptr->store_rec;
6fb5fa3c
DB
1238 /* Skip the clobbers. */
1239 while (!store_info->is_set)
1240 store_info = store_info->next;
1241
1242 store_info->rhs = NULL;
8dd5516b 1243 store_info->const_rhs = NULL;
6fb5fa3c
DB
1244
1245 ptr = ptr->next_local_store;
1246 }
1247}
1248
1249
8dd5516b
JJ
1250/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1251
1252static inline void
fd6daec9 1253set_position_unneeded (store_info *s_info, int pos)
8dd5516b 1254{
22d9c880 1255 if (UNLIKELY (s_info->is_large))
8dd5516b 1256 {
fcaa4ca4
NF
1257 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1258 s_info->positions_needed.large.count++;
8dd5516b
JJ
1259 }
1260 else
1261 s_info->positions_needed.small_bitmask
fecfbfa4 1262 &= ~(HOST_WIDE_INT_1U << pos);
8dd5516b
JJ
1263}
1264
1265/* Mark the whole store S_INFO as unneeded. */
1266
1267static inline void
fd6daec9 1268set_all_positions_unneeded (store_info *s_info)
8dd5516b 1269{
22d9c880 1270 if (UNLIKELY (s_info->is_large))
8dd5516b 1271 {
02ce5d90
RS
1272 HOST_WIDE_INT width;
1273 if (s_info->width.is_constant (&width))
1274 {
1275 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1276 s_info->positions_needed.large.count = width;
1277 }
1278 else
1279 {
1280 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1281 s_info->positions_needed.large.count = 1;
1282 }
8dd5516b
JJ
1283 }
1284 else
07e96250 1285 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
8dd5516b
JJ
1286}
1287
1288/* Return TRUE if any bytes from S_INFO store are needed. */
1289
1290static inline bool
fd6daec9 1291any_positions_needed_p (store_info *s_info)
8dd5516b 1292{
22d9c880 1293 if (UNLIKELY (s_info->is_large))
02ce5d90
RS
1294 {
1295 HOST_WIDE_INT width;
1296 if (s_info->width.is_constant (&width))
1297 {
1298 gcc_checking_assert (s_info->positions_needed.large.bmap);
1299 return s_info->positions_needed.large.count < width;
1300 }
1301 else
1302 {
1303 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1304 return s_info->positions_needed.large.count == 0;
1305 }
1306 }
8dd5516b 1307 else
07e96250 1308 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
8dd5516b
JJ
1309}
1310
1311/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
02ce5d90 1312 store are known to be needed. */
8dd5516b
JJ
1313
1314static inline bool
02ce5d90
RS
1315all_positions_needed_p (store_info *s_info, poly_int64 start,
1316 poly_int64 width)
8dd5516b 1317{
02ce5d90
RS
1318 gcc_assert (s_info->rhs);
1319 if (!s_info->width.is_constant ())
1320 {
1321 gcc_assert (s_info->is_large
1322 && !s_info->positions_needed.large.bmap);
1323 return s_info->positions_needed.large.count == 0;
1324 }
1325
1326 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1327 a non-constant region of a constant-sized store. We can't say for
1328 sure that all positions are needed. */
1329 HOST_WIDE_INT const_start, const_width;
1330 if (!start.is_constant (&const_start)
1331 || !width.is_constant (&const_width))
1332 return false;
1333
22d9c880 1334 if (UNLIKELY (s_info->is_large))
8dd5516b 1335 {
02ce5d90
RS
1336 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1337 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
8dd5516b
JJ
1338 return false;
1339 return true;
1340 }
1341 else
1342 {
02ce5d90
RS
1343 unsigned HOST_WIDE_INT mask
1344 = lowpart_bitmask (const_width) << const_start;
8dd5516b
JJ
1345 return (s_info->positions_needed.small_bitmask & mask) == mask;
1346 }
1347}
1348
1349
02ce5d90
RS
1350static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1351 poly_int64, basic_block, bool);
8dd5516b
JJ
1352
1353
6fb5fa3c
DB
1354/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1355 there is a candidate store, after adding it to the appropriate
1356 local store group if so. */
1357
1358static int
1359record_store (rtx body, bb_info_t bb_info)
1360{
6216f94e 1361 rtx mem, rhs, const_rhs, mem_addr;
02ce5d90
RS
1362 poly_int64 offset = 0;
1363 poly_int64 width = 0;
6fb5fa3c 1364 insn_info_t insn_info = bb_info->last_insn;
fd6daec9 1365 store_info *store_info = NULL;
6fb5fa3c
DB
1366 int group_id;
1367 cselib_val *base = NULL;
8dd5516b 1368 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1369 bool store_is_unused;
1370
1371 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1372 return 0;
1373
8dd5516b
JJ
1374 mem = SET_DEST (body);
1375
6fb5fa3c
DB
1376 /* If this is not used, then this cannot be used to keep the insn
1377 from being deleted. On the other hand, it does provide something
1378 that can be used to prove that another store is dead. */
1379 store_is_unused
8dd5516b 1380 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1381
1382 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1383 if (!MEM_P (mem))
1384 {
1385 /* If the set or clobber is unused, then it does not effect our
1386 ability to get rid of the entire insn. */
1387 if (!store_is_unused)
1388 insn_info->cannot_delete = true;
1389 return 0;
1390 }
1391
1392 /* At this point we know mem is a mem. */
1393 if (GET_MODE (mem) == BLKmode)
1394 {
d05d7551 1395 HOST_WIDE_INT const_size;
6fb5fa3c
DB
1396 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1397 {
456610d3 1398 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1399 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1400 add_wild_read (bb_info);
1401 insn_info->cannot_delete = true;
8dd5516b 1402 return 0;
6fb5fa3c 1403 }
8dd5516b
JJ
1404 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1405 as memset (addr, 0, 36); */
f5541398 1406 else if (!MEM_SIZE_KNOWN_P (mem)
d05d7551
RS
1407 || maybe_le (MEM_SIZE (mem), 0)
1408 /* This is a limit on the bitmap size, which is only relevant
1409 for constant-sized MEMs. */
1410 || (MEM_SIZE (mem).is_constant (&const_size)
1411 && const_size > MAX_OFFSET)
8dd5516b 1412 || GET_CODE (body) != SET
8dd5516b 1413 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1414 {
8dd5516b
JJ
1415 if (!store_is_unused)
1416 {
1417 /* If the set or clobber is unused, then it does not effect our
1418 ability to get rid of the entire insn. */
1419 insn_info->cannot_delete = true;
1420 clear_rhs_from_active_local_stores ();
1421 }
1422 return 0;
6fb5fa3c 1423 }
6fb5fa3c
DB
1424 }
1425
1426 /* We can still process a volatile mem, we just cannot delete it. */
1427 if (MEM_VOLATILE_P (mem))
8dd5516b 1428 insn_info->cannot_delete = true;
6fb5fa3c 1429
ac6929b5 1430 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c
DB
1431 {
1432 clear_rhs_from_active_local_stores ();
1433 return 0;
1434 }
1435
8dd5516b 1436 if (GET_MODE (mem) == BLKmode)
f5541398 1437 width = MEM_SIZE (mem);
8dd5516b 1438 else
6f557e0e 1439 width = GET_MODE_SIZE (GET_MODE (mem));
6fb5fa3c 1440
02ce5d90 1441 if (!endpoint_representable_p (offset, width))
213ffde2
JJ
1442 {
1443 clear_rhs_from_active_local_stores ();
1444 return 0;
1445 }
1446
cbe679a4
JJ
1447 if (known_eq (width, 0))
1448 return 0;
1449
ac6929b5 1450 if (group_id >= 0)
6fb5fa3c
DB
1451 {
1452 /* In the restrictive case where the base is a constant or the
1453 frame pointer we can do global analysis. */
b8698a0f 1454
fd6daec9 1455 group_info *group
9771b263 1456 = rtx_group_vec[group_id];
d26c7090 1457 tree expr = MEM_EXPR (mem);
b8698a0f 1458
da6603c6 1459 store_info = rtx_store_info_pool.allocate ();
d26c7090 1460 set_usage_bits (group, offset, width, expr);
6fb5fa3c 1461
456610d3 1462 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1463 {
1464 fprintf (dump_file, " processing const base store gid=%d",
1465 group_id);
1466 print_range (dump_file, offset, width);
1467 fprintf (dump_file, "\n");
1468 }
6fb5fa3c
DB
1469 }
1470 else
1471 {
9e412ca3 1472 if (may_be_sp_based_p (XEXP (mem, 0)))
50f0f366 1473 insn_info->stack_pointer_based = true;
6fb5fa3c 1474 insn_info->contains_cselib_groups = true;
50f0f366 1475
da6603c6 1476 store_info = cse_store_info_pool.allocate ();
6fb5fa3c
DB
1477 group_id = -1;
1478
456610d3 1479 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1480 {
1481 fprintf (dump_file, " processing cselib store ");
1482 print_range (dump_file, offset, width);
1483 fprintf (dump_file, "\n");
1484 }
6fb5fa3c
DB
1485 }
1486
8dd5516b
JJ
1487 const_rhs = rhs = NULL_RTX;
1488 if (GET_CODE (body) == SET
1489 /* No place to keep the value after ra. */
1490 && !reload_completed
1491 && (REG_P (SET_SRC (body))
1492 || GET_CODE (SET_SRC (body)) == SUBREG
1493 || CONSTANT_P (SET_SRC (body)))
1494 && !MEM_VOLATILE_P (mem)
1495 /* Sometimes the store and reload is used for truncation and
1496 rounding. */
1497 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1498 {
1499 rhs = SET_SRC (body);
1500 if (CONSTANT_P (rhs))
1501 const_rhs = rhs;
1502 else if (body == PATTERN (insn_info->insn))
1503 {
1504 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1505 if (tem && CONSTANT_P (XEXP (tem, 0)))
1506 const_rhs = XEXP (tem, 0);
1507 }
1508 if (const_rhs == NULL_RTX && REG_P (rhs))
1509 {
1510 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1511
1512 if (tem && CONSTANT_P (tem))
1513 const_rhs = tem;
a743a727
L
1514 else
1515 {
1516 /* If RHS is set only once to a constant, set CONST_RHS
1517 to the constant. */
1518 rtx def_src = df_find_single_def_src (rhs);
1519 if (def_src != nullptr && CONSTANT_P (def_src))
1520 const_rhs = def_src;
1521 }
8dd5516b
JJ
1522 }
1523 }
1524
6fb5fa3c
DB
1525 /* Check to see if this stores causes some other stores to be
1526 dead. */
1527 ptr = active_local_stores;
1528 last = NULL;
8dd5516b 1529 redundant_reason = NULL;
64ca6aa7 1530 unsigned char addrspace = MEM_ADDR_SPACE (mem);
6216f94e 1531 mem = canon_rtx (mem);
ac6929b5
RB
1532
1533 if (group_id < 0)
1534 mem_addr = base->val_rtx;
6216f94e
JJ
1535 else
1536 {
ac6929b5
RB
1537 group_info *group = rtx_group_vec[group_id];
1538 mem_addr = group->canon_base_addr;
6216f94e 1539 }
02ce5d90 1540 if (maybe_ne (offset, 0))
ac6929b5 1541 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c
DB
1542
1543 while (ptr)
1544 {
1545 insn_info_t next = ptr->next_local_store;
99b1c316 1546 class store_info *s_info = ptr->store_rec;
60564289 1547 bool del = true;
6fb5fa3c
DB
1548
1549 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1550 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1551 has exactly on set. */
1552 while (!s_info->is_set)
1553 s_info = s_info->next;
1554
64ca6aa7
AP
1555 if (s_info->group_id == group_id
1556 && s_info->cse_base == base
1557 && s_info->addrspace == addrspace)
6fb5fa3c
DB
1558 {
1559 HOST_WIDE_INT i;
456610d3 1560 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1561 {
1562 fprintf (dump_file, " trying store in insn=%d gid=%d",
1563 INSN_UID (ptr->insn), s_info->group_id);
1564 print_range (dump_file, s_info->offset, s_info->width);
1565 fprintf (dump_file, "\n");
1566 }
8dd5516b
JJ
1567
1568 /* Even if PTR won't be eliminated as unneeded, if both
1569 PTR and this insn store the same constant value, we might
1570 eliminate this insn instead. */
1571 if (s_info->const_rhs
1572 && const_rhs
71d6a386
RS
1573 && known_subrange_p (offset, width,
1574 s_info->offset, s_info->width)
1575 && all_positions_needed_p (s_info, offset - s_info->offset,
d7e1f499
RB
1576 width)
1577 /* We can only remove the later store if the earlier aliases
1578 at least all accesses the later one. */
64ce76d9 1579 && mems_same_for_tbaa_p (s_info->mem, mem))
8dd5516b
JJ
1580 {
1581 if (GET_MODE (mem) == BLKmode)
1582 {
1583 if (GET_MODE (s_info->mem) == BLKmode
1584 && s_info->const_rhs == const_rhs)
1585 redundant_reason = ptr;
1586 }
1587 else if (s_info->const_rhs == const0_rtx
1588 && const_rhs == const0_rtx)
1589 redundant_reason = ptr;
1590 else
1591 {
1592 rtx val;
1593 start_sequence ();
71d6a386 1594 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
8dd5516b
JJ
1595 BLOCK_FOR_INSN (insn_info->insn),
1596 true);
1597 if (get_insns () != NULL)
1598 val = NULL_RTX;
1599 end_sequence ();
1600 if (val && rtx_equal_p (val, const_rhs))
1601 redundant_reason = ptr;
1602 }
1603 }
1604
02ce5d90 1605 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
71d6a386
RS
1606 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1607 /* The new store touches every byte that S_INFO does. */
1608 set_all_positions_unneeded (s_info);
02ce5d90
RS
1609 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1610 && s_info->width.is_constant (&const_s_width)
1611 && width.is_constant (&const_width))
71d6a386 1612 {
02ce5d90 1613 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
71d6a386 1614 begin_unneeded = MAX (begin_unneeded, 0);
02ce5d90 1615 end_unneeded = MIN (end_unneeded, const_s_width);
71d6a386
RS
1616 for (i = begin_unneeded; i < end_unneeded; ++i)
1617 set_position_unneeded (s_info, i);
1618 }
02ce5d90
RS
1619 else
1620 {
1621 /* We don't know which parts of S_INFO are needed and
1622 which aren't, so invalidate the RHS. */
1623 s_info->rhs = NULL;
1624 s_info->const_rhs = NULL;
1625 }
6fb5fa3c
DB
1626 }
1627 else if (s_info->rhs)
1628 /* Need to see if it is possible for this store to overwrite
1629 the value of store_info. If it is, set the rhs to NULL to
1630 keep it from being used to remove a load. */
1631 {
43b9f499
RB
1632 if (canon_output_dependence (s_info->mem, true,
1633 mem, GET_MODE (mem),
1634 mem_addr))
8dd5516b
JJ
1635 {
1636 s_info->rhs = NULL;
1637 s_info->const_rhs = NULL;
1638 }
6fb5fa3c 1639 }
6216f94e 1640
6fb5fa3c
DB
1641 /* An insn can be deleted if every position of every one of
1642 its s_infos is zero. */
1b6fa860 1643 if (any_positions_needed_p (s_info))
60564289 1644 del = false;
8dd5516b 1645
60564289 1646 if (del)
6fb5fa3c
DB
1647 {
1648 insn_info_t insn_to_delete = ptr;
b8698a0f 1649
dabd47e7 1650 active_local_stores_len--;
6fb5fa3c
DB
1651 if (last)
1652 last->next_local_store = ptr->next_local_store;
1653 else
1654 active_local_stores = ptr->next_local_store;
b8698a0f 1655
1b6fa860
JJ
1656 if (!insn_to_delete->cannot_delete)
1657 delete_dead_store_insn (insn_to_delete);
6fb5fa3c
DB
1658 }
1659 else
1660 last = ptr;
b8698a0f 1661
6fb5fa3c
DB
1662 ptr = next;
1663 }
b8698a0f 1664
6fb5fa3c
DB
1665 /* Finish filling in the store_info. */
1666 store_info->next = insn_info->store_rec;
1667 insn_info->store_rec = store_info;
6216f94e 1668 store_info->mem = mem;
6216f94e 1669 store_info->mem_addr = mem_addr;
6fb5fa3c 1670 store_info->cse_base = base;
02ce5d90
RS
1671 HOST_WIDE_INT const_width;
1672 if (!width.is_constant (&const_width))
1673 {
1674 store_info->is_large = true;
1675 store_info->positions_needed.large.count = 0;
1676 store_info->positions_needed.large.bmap = NULL;
1677 }
1678 else if (const_width > HOST_BITS_PER_WIDE_INT)
8dd5516b
JJ
1679 {
1680 store_info->is_large = true;
1681 store_info->positions_needed.large.count = 0;
3f9b14ff 1682 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
8dd5516b
JJ
1683 }
1684 else
1685 {
1686 store_info->is_large = false;
02ce5d90
RS
1687 store_info->positions_needed.small_bitmask
1688 = lowpart_bitmask (const_width);
8dd5516b 1689 }
6fb5fa3c 1690 store_info->group_id = group_id;
71d6a386
RS
1691 store_info->offset = offset;
1692 store_info->width = width;
6fb5fa3c 1693 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1694 store_info->rhs = rhs;
1695 store_info->const_rhs = const_rhs;
1696 store_info->redundant_reason = redundant_reason;
64ca6aa7 1697 store_info->addrspace = addrspace;
6fb5fa3c 1698
6fb5fa3c
DB
1699 /* If this is a clobber, we return 0. We will only be able to
1700 delete this insn if there is only one store USED store, but we
1701 can use the clobber to delete other stores earlier. */
1702 return store_info->is_set ? 1 : 0;
1703}
1704
1705
1706static void
1707dump_insn_info (const char * start, insn_info_t insn_info)
1708{
b8698a0f 1709 fprintf (dump_file, "%s insn=%d %s\n", start,
6fb5fa3c
DB
1710 INSN_UID (insn_info->insn),
1711 insn_info->store_rec ? "has store" : "naked");
1712}
1713
1714
8660aaae
EC
1715/* If the modes are different and the value's source and target do not
1716 line up, we need to extract the value from lower part of the rhs of
1717 the store, shift it, and then put it into a form that can be shoved
1718 into the read_insn. This function generates a right SHIFT of a
1719 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1720 shift sequence is returned or NULL if we failed to find a
1721 shift. */
1722
1723static rtx
02ce5d90 1724find_shift_sequence (poly_int64 access_size,
fd6daec9 1725 store_info *store_info,
ef4bddc2 1726 machine_mode read_mode,
02ce5d90 1727 poly_int64 shift, bool speed, bool require_cst)
8660aaae 1728{
ef4bddc2 1729 machine_mode store_mode = GET_MODE (store_info->mem);
f67f4dff 1730 scalar_int_mode new_mode;
18b526e8 1731 rtx read_reg = NULL;
8660aaae 1732
265d817b
XL
1733 /* If a constant was stored into memory, try to simplify it here,
1734 otherwise the cost of the shift might preclude this optimization
1735 e.g. at -Os, even when no actual shift will be needed. */
073849da
JZ
1736 if (store_info->const_rhs
1737 && known_le (access_size, GET_MODE_SIZE (MAX_MODE_INT)))
265d817b
XL
1738 {
1739 auto new_mode = smallest_int_mode_for_size (access_size * BITS_PER_UNIT);
1740 auto byte = subreg_lowpart_offset (new_mode, store_mode);
1741 rtx ret
1742 = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte);
1743 if (ret && CONSTANT_P (ret))
1744 {
1745 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1746 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret,
1747 shift_rtx);
1748 if (ret && CONSTANT_P (ret))
1749 {
1750 byte = subreg_lowpart_offset (read_mode, new_mode);
1751 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1752 if (ret && CONSTANT_P (ret)
1753 && (set_src_cost (ret, read_mode, speed)
1754 <= COSTS_N_INSNS (1)))
1755 return ret;
1756 }
1757 }
1758 }
1759
1760 if (require_cst)
1761 return NULL_RTX;
1762
8660aaae
EC
1763 /* Some machines like the x86 have shift insns for each size of
1764 operand. Other machines like the ppc or the ia-64 may only have
1765 shift insns that shift values within 32 or 64 bit registers.
1766 This loop tries to find the smallest shift insn that will right
1767 justify the value we want to read but is available in one insn on
1768 the machine. */
1769
f67f4dff 1770 opt_scalar_int_mode new_mode_iter;
f835e9f6 1771 FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
8660aaae 1772 {
dc01c3d1
DM
1773 rtx target, new_reg, new_lhs;
1774 rtx_insn *shift_seq, *insn;
d898d29b 1775 int cost;
348eea5f 1776
f67f4dff 1777 new_mode = new_mode_iter.require ();
c94843d2
RS
1778 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1779 break;
f835e9f6
RS
1780 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (read_mode)))
1781 continue;
c94843d2 1782
18b526e8
RS
1783 /* Try a wider mode if truncating the store mode to NEW_MODE
1784 requires a real instruction. */
73a699ae 1785 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
d0edd768 1786 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
348eea5f
RS
1787 continue;
1788
18b526e8
RS
1789 /* Also try a wider mode if the necessary punning is either not
1790 desirable or not possible. */
1791 if (!CONSTANT_P (store_info->rhs)
99e1629f 1792 && !targetm.modes_tieable_p (new_mode, store_mode))
18b526e8 1793 continue;
18b526e8 1794
265d817b
XL
1795 if (multiple_p (shift, GET_MODE_BITSIZE (new_mode))
1796 && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode)))
1797 {
1798 /* Try to implement the shift using a subreg. */
1799 poly_int64 offset
1800 = subreg_offset_from_lsb (new_mode, store_mode, shift);
1801 rtx rhs_subreg = simplify_gen_subreg (new_mode, store_info->rhs,
1802 store_mode, offset);
1803 if (rhs_subreg)
1804 {
1805 read_reg
1806 = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg));
1807 break;
1808 }
1809 }
1810
1811 if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1812 continue;
1813
348eea5f 1814 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1815
1816 start_sequence ();
1817
1818 /* In theory we could also check for an ashr. Ian Taylor knows
1819 of one dsp where the cost of these two was not the same. But
1820 this really is a rare case anyway. */
1821 target = expand_binop (new_mode, lshr_optab, new_reg,
abd3c800
RS
1822 gen_int_shift_amount (new_mode, shift),
1823 new_reg, 1, OPTAB_DIRECT);
8660aaae 1824
c6f3019a
RS
1825 shift_seq = get_insns ();
1826 end_sequence ();
8660aaae 1827
c6f3019a
RS
1828 if (target != new_reg || shift_seq == NULL)
1829 continue;
1830
1831 cost = 0;
1832 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1833 if (INSN_P (insn))
d09e78e8 1834 cost += insn_cost (insn, speed);
c6f3019a
RS
1835
1836 /* The computation up to here is essentially independent
1837 of the arguments and could be precomputed. It may
1838 not be worth doing so. We could precompute if
1839 worthwhile or at least cache the results. The result
06acf7d0
RS
1840 technically depends on both SHIFT and ACCESS_SIZE,
1841 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1842
1843 if (cost > COSTS_N_INSNS (1))
1844 continue;
1845
d898d29b
JJ
1846 new_lhs = extract_low_bits (new_mode, store_mode,
1847 copy_rtx (store_info->rhs));
1848 if (new_lhs == NULL_RTX)
1849 continue;
1850
c6f3019a
RS
1851 /* We found an acceptable shift. Generate a move to
1852 take the value from the store and put it into the
1853 shift pseudo, then shift it, then generate another
1854 move to put in into the target of the read. */
18b526e8 1855 emit_move_insn (new_reg, new_lhs);
c6f3019a 1856 emit_insn (shift_seq);
18b526e8 1857 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1858 break;
8660aaae
EC
1859 }
1860
18b526e8 1861 return read_reg;
8660aaae
EC
1862}
1863
1864
02b47899
KZ
1865/* Call back for note_stores to find the hard regs set or clobbered by
1866 insn. Data is a bitmap of the hardregs set so far. */
1867
1868static void
1869look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1870{
1871 bitmap regs_set = (bitmap) data;
1872
1873 if (REG_P (x)
f773c2bd 1874 && HARD_REGISTER_P (x))
dc8afb70 1875 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
02b47899
KZ
1876}
1877
8dd5516b 1878/* Helper function for replace_read and record_store.
71d6a386
RS
1879 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1880 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
8dd5516b
JJ
1881 if not successful. If REQUIRE_CST is true, return always constant. */
1882
1883static rtx
fd6daec9 1884get_stored_val (store_info *store_info, machine_mode read_mode,
02ce5d90 1885 poly_int64 read_offset, poly_int64 read_width,
8dd5516b
JJ
1886 basic_block bb, bool require_cst)
1887{
ef4bddc2 1888 machine_mode store_mode = GET_MODE (store_info->mem);
02ce5d90 1889 poly_int64 gap;
8dd5516b
JJ
1890 rtx read_reg;
1891
1892 /* To get here the read is within the boundaries of the write so
1893 shift will never be negative. Start out with the shift being in
1894 bytes. */
1895 if (store_mode == BLKmode)
71d6a386 1896 gap = 0;
8dd5516b 1897 else if (BYTES_BIG_ENDIAN)
71d6a386
RS
1898 gap = ((store_info->offset + store_info->width)
1899 - (read_offset + read_width));
8dd5516b 1900 else
71d6a386 1901 gap = read_offset - store_info->offset;
8dd5516b 1902
e6575643 1903 if (gap.is_constant () && maybe_ne (gap, 0))
71d6a386 1904 {
02ce5d90
RS
1905 poly_int64 shift = gap * BITS_PER_UNIT;
1906 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
71d6a386
RS
1907 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1908 shift, optimize_bb_for_speed_p (bb),
1909 require_cst);
1910 }
8dd5516b
JJ
1911 else if (store_mode == BLKmode)
1912 {
1913 /* The store is a memset (addr, const_val, const_size). */
1914 gcc_assert (CONST_INT_P (store_info->rhs));
304b9962
RS
1915 scalar_int_mode int_store_mode;
1916 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
8dd5516b
JJ
1917 read_reg = NULL_RTX;
1918 else if (store_info->rhs == const0_rtx)
304b9962
RS
1919 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1920 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
8dd5516b
JJ
1921 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1922 read_reg = NULL_RTX;
1923 else
1924 {
1925 unsigned HOST_WIDE_INT c
1926 = INTVAL (store_info->rhs)
fecfbfa4 1927 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
8dd5516b
JJ
1928 int shift = BITS_PER_UNIT;
1929 while (shift < HOST_BITS_PER_WIDE_INT)
1930 {
1931 c |= (c << shift);
1932 shift <<= 1;
1933 }
304b9962
RS
1934 read_reg = gen_int_mode (c, int_store_mode);
1935 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
8dd5516b
JJ
1936 }
1937 }
1938 else if (store_info->const_rhs
1939 && (require_cst
1940 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1941 read_reg = extract_low_bits (read_mode, store_mode,
1942 copy_rtx (store_info->const_rhs));
1943 else
1944 read_reg = extract_low_bits (read_mode, store_mode,
1945 copy_rtx (store_info->rhs));
1946 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1947 read_reg = NULL_RTX;
1948 return read_reg;
1949}
02b47899 1950
6fb5fa3c
DB
1951/* Take a sequence of:
1952 A <- r1
1953 ...
1954 ... <- A
1955
b8698a0f 1956 and change it into
6fb5fa3c
DB
1957 r2 <- r1
1958 A <- r1
1959 ...
1960 ... <- r2
1961
8660aaae
EC
1962 or
1963
1964 r3 <- extract (r1)
1965 r3 <- r3 >> shift
1966 r2 <- extract (r3)
1967 ... <- r2
1968
1969 or
1970
1971 r2 <- extract (r1)
1972 ... <- r2
1973
1974 Depending on the alignment and the mode of the store and
1975 subsequent load.
1976
1977
1978 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1979 and READ_INSN are for the read. Return true if the replacement
1980 went ok. */
1981
1982static bool
fd6daec9 1983replace_read (store_info *store_info, insn_info_t store_insn,
9c747368 1984 read_info_t read_info, insn_info_t read_insn, rtx *loc)
6fb5fa3c 1985{
ef4bddc2
RS
1986 machine_mode store_mode = GET_MODE (store_info->mem);
1987 machine_mode read_mode = GET_MODE (read_info->mem);
dc01c3d1
DM
1988 rtx_insn *insns, *this_insn;
1989 rtx read_reg;
8dd5516b 1990 basic_block bb;
8660aaae 1991
6fb5fa3c
DB
1992 if (!dbg_cnt (dse))
1993 return false;
1994
18b526e8
RS
1995 /* Create a sequence of instructions to set up the read register.
1996 This sequence goes immediately before the store and its result
1997 is read by the load.
1998
1999 We need to keep this in perspective. We are replacing a read
8660aaae
EC
2000 with a sequence of insns, but the read will almost certainly be
2001 in cache, so it is not going to be an expensive one. Thus, we
2002 are not willing to do a multi insn shift or worse a subroutine
2003 call to get rid of the read. */
456610d3 2004 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2005 fprintf (dump_file, "trying to replace %smode load in insn %d"
2006 " from %smode store in insn %d\n",
2007 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2008 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2009 start_sequence ();
8dd5516b
JJ
2010 bb = BLOCK_FOR_INSN (read_insn->insn);
2011 read_reg = get_stored_val (store_info,
71d6a386 2012 read_mode, read_info->offset, read_info->width,
8dd5516b 2013 bb, false);
18b526e8 2014 if (read_reg == NULL_RTX)
8660aaae 2015 {
18b526e8 2016 end_sequence ();
456610d3 2017 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2018 fprintf (dump_file, " -- could not extract bits of stored value\n");
2019 return false;
8660aaae 2020 }
18b526e8
RS
2021 /* Force the value into a new register so that it won't be clobbered
2022 between the store and the load. */
76f44fbf
JJ
2023 if (WORD_REGISTER_OPERATIONS
2024 && GET_CODE (read_reg) == SUBREG
2025 && REG_P (SUBREG_REG (read_reg))
2026 && GET_MODE (SUBREG_REG (read_reg)) == word_mode)
2027 {
2028 /* For WORD_REGISTER_OPERATIONS with subreg of word_mode register
2029 force SUBREG_REG into a new register rather than the SUBREG. */
2030 rtx r = copy_to_mode_reg (word_mode, SUBREG_REG (read_reg));
2031 read_reg = shallow_copy_rtx (read_reg);
2032 SUBREG_REG (read_reg) = r;
2033 }
2034 else
2035 read_reg = copy_to_mode_reg (read_mode, read_reg);
18b526e8
RS
2036 insns = get_insns ();
2037 end_sequence ();
8660aaae 2038
02b47899
KZ
2039 if (insns != NULL_RTX)
2040 {
2041 /* Now we have to scan the set of new instructions to see if the
2042 sequence contains and sets of hardregs that happened to be
2043 live at this point. For instance, this can happen if one of
2044 the insns sets the CC and the CC happened to be live at that
2045 point. This does occasionally happen, see PR 37922. */
3f9b14ff 2046 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
02b47899 2047
2c0fa3ec
JJ
2048 for (this_insn = insns;
2049 this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2050 {
2051 if (insn_invalid_p (this_insn, false))
2052 {
2053 if (dump_file && (dump_flags & TDF_DETAILS))
2054 {
2055 fprintf (dump_file, " -- replacing the loaded MEM with ");
2056 print_simple_rtl (dump_file, read_reg);
2057 fprintf (dump_file, " led to an invalid instruction\n");
2058 }
2059 BITMAP_FREE (regs_set);
2060 return false;
2061 }
2062 note_stores (this_insn, look_for_hardregs, regs_set);
2063 }
b8698a0f 2064
9c747368
JJ
2065 if (store_insn->fixed_regs_live)
2066 bitmap_and_into (regs_set, store_insn->fixed_regs_live);
02b47899
KZ
2067 if (!bitmap_empty_p (regs_set))
2068 {
456610d3 2069 if (dump_file && (dump_flags & TDF_DETAILS))
02b47899 2070 {
2c0fa3ec
JJ
2071 fprintf (dump_file, "abandoning replacement because sequence "
2072 "clobbers live hardregs:");
02b47899
KZ
2073 df_print_regset (dump_file, regs_set);
2074 }
b8698a0f 2075
02b47899
KZ
2076 BITMAP_FREE (regs_set);
2077 return false;
2078 }
2079 BITMAP_FREE (regs_set);
2080 }
2081
2c0fa3ec
JJ
2082 subrtx_iterator::array_type array;
2083 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2084 {
2085 const_rtx x = *iter;
2086 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2087 {
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, " -- replacing the MEM failed due to address "
2090 "side-effects\n");
2091 return false;
2092 }
2093 }
2094
8660aaae 2095 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 2096 {
fd6daec9 2097 deferred_change *change = deferred_change_pool.allocate ();
b8698a0f 2098
8660aaae
EC
2099 /* Insert this right before the store insn where it will be safe
2100 from later insns that might change it before the read. */
2101 emit_insn_before (insns, store_insn->insn);
b8698a0f 2102
8660aaae
EC
2103 /* And now for the kludge part: cselib croaks if you just
2104 return at this point. There are two reasons for this:
b8698a0f 2105
8660aaae
EC
2106 1) Cselib has an idea of how many pseudos there are and
2107 that does not include the new ones we just added.
b8698a0f 2108
8660aaae
EC
2109 2) Cselib does not know about the move insn we added
2110 above the store_info, and there is no way to tell it
2111 about it, because it has "moved on".
b8698a0f 2112
8660aaae
EC
2113 Problem (1) is fixable with a certain amount of engineering.
2114 Problem (2) is requires starting the bb from scratch. This
2115 could be expensive.
b8698a0f 2116
8660aaae
EC
2117 So we are just going to have to lie. The move/extraction
2118 insns are not really an issue, cselib did not see them. But
2119 the use of the new pseudo read_insn is a real problem because
2120 cselib has not scanned this insn. The way that we solve this
2121 problem is that we are just going to put the mem back for now
2122 and when we are finished with the block, we undo this. We
2123 keep a table of mems to get rid of. At the end of the basic
2124 block we can put them back. */
b8698a0f 2125
8660aaae 2126 *loc = read_info->mem;
da6603c6
ML
2127 change->next = deferred_change_list;
2128 deferred_change_list = change;
2129 change->loc = loc;
2130 change->reg = read_reg;
b8698a0f 2131
8660aaae
EC
2132 /* Get rid of the read_info, from the point of view of the
2133 rest of dse, play like this read never happened. */
2134 read_insn->read_rec = read_info->next;
fb0b2914 2135 read_info_type_pool.remove (read_info);
456610d3 2136 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2137 {
2138 fprintf (dump_file, " -- replaced the loaded MEM with ");
2139 print_simple_rtl (dump_file, read_reg);
2140 fprintf (dump_file, "\n");
2141 }
8660aaae 2142 return true;
6fb5fa3c 2143 }
b8698a0f 2144 else
6fb5fa3c 2145 {
456610d3 2146 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2147 {
2148 fprintf (dump_file, " -- replacing the loaded MEM with ");
2149 print_simple_rtl (dump_file, read_reg);
2150 fprintf (dump_file, " led to an invalid instruction\n");
2151 }
6fb5fa3c
DB
2152 return false;
2153 }
2154}
2155
d7111da8
RS
2156/* Check the address of MEM *LOC and kill any appropriate stores that may
2157 be active. */
6fb5fa3c 2158
d7111da8
RS
2159static void
2160check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
6fb5fa3c 2161{
6216f94e 2162 rtx mem = *loc, mem_addr;
6fb5fa3c 2163 insn_info_t insn_info;
02ce5d90
RS
2164 poly_int64 offset = 0;
2165 poly_int64 width = 0;
b8698a0f 2166 cselib_val *base = NULL;
6fb5fa3c
DB
2167 int group_id;
2168 read_info_t read_info;
2169
6fb5fa3c
DB
2170 insn_info = bb_info->last_insn;
2171
2172 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
a49a975f 2173 || MEM_VOLATILE_P (mem))
6fb5fa3c 2174 {
a49a975f
JJ
2175 if (crtl->stack_protect_guard
2176 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2177 || (crtl->stack_protect_guard_decl
2178 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2179 && MEM_VOLATILE_P (mem))
2180 {
2181 /* This is either the stack protector canary on the stack,
2182 which ought to be written by a MEM_VOLATILE_P store and
2183 thus shouldn't be deleted and is read at the very end of
2184 function, but shouldn't conflict with any other store.
2185 Or it is __stack_chk_guard variable or TLS or whatever else
2186 MEM holding the canary value, which really shouldn't be
2187 ever modified in -fstack-protector* protected functions,
2188 otherwise the prologue store wouldn't match the epilogue
2189 check. */
2190 if (dump_file && (dump_flags & TDF_DETAILS))
2191 fprintf (dump_file, " stack protector canary read ignored.\n");
2192 insn_info->cannot_delete = true;
2193 return;
2194 }
2195
456610d3 2196 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2197 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2198 add_wild_read (bb_info);
2199 insn_info->cannot_delete = true;
d7111da8 2200 return;
6fb5fa3c
DB
2201 }
2202
2203 /* If it is reading readonly mem, then there can be no conflict with
2204 another write. */
2205 if (MEM_READONLY_P (mem))
d7111da8 2206 return;
6fb5fa3c 2207
ac6929b5 2208 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c 2209 {
456610d3 2210 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2211 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2212 add_wild_read (bb_info);
d7111da8 2213 return;
6fb5fa3c
DB
2214 }
2215
2216 if (GET_MODE (mem) == BLKmode)
2217 width = -1;
2218 else
2219 width = GET_MODE_SIZE (GET_MODE (mem));
2220
02ce5d90 2221 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
938f9248 2222 {
213ffde2
JJ
2223 if (dump_file && (dump_flags & TDF_DETAILS))
2224 fprintf (dump_file, " adding wild read, due to overflow.\n");
2225 add_wild_read (bb_info);
938f9248
ML
2226 return;
2227 }
2228
fb0b2914 2229 read_info = read_info_type_pool.allocate ();
6fb5fa3c
DB
2230 read_info->group_id = group_id;
2231 read_info->mem = mem;
71d6a386
RS
2232 read_info->offset = offset;
2233 read_info->width = width;
6fb5fa3c
DB
2234 read_info->next = insn_info->read_rec;
2235 insn_info->read_rec = read_info;
ac6929b5
RB
2236 if (group_id < 0)
2237 mem_addr = base->val_rtx;
6216f94e
JJ
2238 else
2239 {
ac6929b5
RB
2240 group_info *group = rtx_group_vec[group_id];
2241 mem_addr = group->canon_base_addr;
6216f94e 2242 }
02ce5d90 2243 if (maybe_ne (offset, 0))
ac6929b5 2244 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
a523add3
RB
2245 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2246 which will over and over re-create proper RTL and re-apply the
2247 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2248 RTXen that way. */
2249 mem_addr = get_addr (mem_addr);
6fb5fa3c 2250
ac6929b5 2251 if (group_id >= 0)
6fb5fa3c
DB
2252 {
2253 /* This is the restricted case where the base is a constant or
2254 the frame pointer and offset is a constant. */
2255 insn_info_t i_ptr = active_local_stores;
2256 insn_info_t last = NULL;
b8698a0f 2257
456610d3 2258 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2259 {
02ce5d90 2260 if (!known_size_p (width))
6fb5fa3c
DB
2261 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2262 group_id);
2263 else
71d6a386
RS
2264 {
2265 fprintf (dump_file, " processing const load gid=%d", group_id);
2266 print_range (dump_file, offset, width);
2267 fprintf (dump_file, "\n");
2268 }
6fb5fa3c
DB
2269 }
2270
2271 while (i_ptr)
2272 {
2273 bool remove = false;
fd6daec9 2274 store_info *store_info = i_ptr->store_rec;
b8698a0f 2275
6fb5fa3c
DB
2276 /* Skip the clobbers. */
2277 while (!store_info->is_set)
2278 store_info = store_info->next;
b8698a0f 2279
6fb5fa3c
DB
2280 /* There are three cases here. */
2281 if (store_info->group_id < 0)
2282 /* We have a cselib store followed by a read from a
2283 const base. */
b8698a0f
L
2284 remove
2285 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2286 GET_MODE (store_info->mem),
2287 store_info->mem_addr,
53d9622b 2288 mem, mem_addr);
b8698a0f 2289
6fb5fa3c
DB
2290 else if (group_id == store_info->group_id)
2291 {
2292 /* This is a block mode load. We may get lucky and
2293 canon_true_dependence may save the day. */
02ce5d90 2294 if (!known_size_p (width))
b8698a0f
L
2295 remove
2296 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2297 GET_MODE (store_info->mem),
2298 store_info->mem_addr,
53d9622b 2299 mem, mem_addr);
b8698a0f 2300
6fb5fa3c
DB
2301 /* If this read is just reading back something that we just
2302 stored, rewrite the read. */
b8698a0f 2303 else
6fb5fa3c
DB
2304 {
2305 if (store_info->rhs
71d6a386
RS
2306 && known_subrange_p (offset, width, store_info->offset,
2307 store_info->width)
8dd5516b 2308 && all_positions_needed_p (store_info,
71d6a386 2309 offset - store_info->offset,
8dd5516b
JJ
2310 width)
2311 && replace_read (store_info, i_ptr, read_info,
9c747368 2312 insn_info, loc))
d7111da8 2313 return;
8dd5516b 2314
6fb5fa3c 2315 /* The bases are the same, just see if the offsets
71d6a386
RS
2316 could overlap. */
2317 if (ranges_maybe_overlap_p (offset, width,
2318 store_info->offset,
2319 store_info->width))
6fb5fa3c
DB
2320 remove = true;
2321 }
2322 }
b8698a0f
L
2323
2324 /* else
6fb5fa3c
DB
2325 The else case that is missing here is that the
2326 bases are constant but different. There is nothing
2327 to do here because there is no overlap. */
b8698a0f 2328
6fb5fa3c
DB
2329 if (remove)
2330 {
456610d3 2331 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2332 dump_insn_info ("removing from active", i_ptr);
2333
dabd47e7 2334 active_local_stores_len--;
6fb5fa3c
DB
2335 if (last)
2336 last->next_local_store = i_ptr->next_local_store;
2337 else
2338 active_local_stores = i_ptr->next_local_store;
2339 }
2340 else
2341 last = i_ptr;
2342 i_ptr = i_ptr->next_local_store;
2343 }
2344 }
b8698a0f 2345 else
6fb5fa3c
DB
2346 {
2347 insn_info_t i_ptr = active_local_stores;
2348 insn_info_t last = NULL;
456610d3 2349 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2350 {
2351 fprintf (dump_file, " processing cselib load mem:");
2352 print_inline_rtx (dump_file, mem, 0);
2353 fprintf (dump_file, "\n");
2354 }
2355
2356 while (i_ptr)
2357 {
2358 bool remove = false;
fd6daec9 2359 store_info *store_info = i_ptr->store_rec;
b8698a0f 2360
456610d3 2361 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2362 fprintf (dump_file, " processing cselib load against insn %d\n",
2363 INSN_UID (i_ptr->insn));
2364
2365 /* Skip the clobbers. */
2366 while (!store_info->is_set)
2367 store_info = store_info->next;
2368
2369 /* If this read is just reading back something that we just
2370 stored, rewrite the read. */
2371 if (store_info->rhs
2372 && store_info->group_id == -1
2373 && store_info->cse_base == base
71d6a386
RS
2374 && known_subrange_p (offset, width, store_info->offset,
2375 store_info->width)
8dd5516b 2376 && all_positions_needed_p (store_info,
71d6a386 2377 offset - store_info->offset, width)
9c747368 2378 && replace_read (store_info, i_ptr, read_info, insn_info, loc))
d7111da8 2379 return;
6fb5fa3c 2380
ac6929b5
RB
2381 remove = canon_true_dependence (store_info->mem,
2382 GET_MODE (store_info->mem),
2383 store_info->mem_addr,
2384 mem, mem_addr);
b8698a0f 2385
6fb5fa3c
DB
2386 if (remove)
2387 {
456610d3 2388 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2389 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2390
dabd47e7 2391 active_local_stores_len--;
6fb5fa3c
DB
2392 if (last)
2393 last->next_local_store = i_ptr->next_local_store;
2394 else
2395 active_local_stores = i_ptr->next_local_store;
2396 }
2397 else
2398 last = i_ptr;
2399 i_ptr = i_ptr->next_local_store;
2400 }
2401 }
6fb5fa3c
DB
2402}
2403
d7111da8 2404/* A note_uses callback in which DATA points the INSN_INFO for
6fb5fa3c
DB
2405 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2406 true for any part of *LOC. */
2407
2408static void
2409check_mem_read_use (rtx *loc, void *data)
2410{
d7111da8
RS
2411 subrtx_ptr_iterator::array_type array;
2412 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2413 {
2414 rtx *loc = *iter;
2415 if (MEM_P (*loc))
2416 check_mem_read_rtx (loc, (bb_info_t) data);
2417 }
6fb5fa3c
DB
2418}
2419
8dd5516b
JJ
2420
2421/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2422 So far it only handles arguments passed in registers. */
2423
2424static bool
2425get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2426{
d5cc9181
JR
2427 CUMULATIVE_ARGS args_so_far_v;
2428 cumulative_args_t args_so_far;
8dd5516b
JJ
2429 tree arg;
2430 int idx;
2431
d5cc9181
JR
2432 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2433 args_so_far = pack_cumulative_args (&args_so_far_v);
8dd5516b
JJ
2434
2435 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2436 for (idx = 0;
2437 arg != void_list_node && idx < nargs;
2438 arg = TREE_CHAIN (arg), idx++)
2439 {
b4206259 2440 scalar_int_mode mode;
3c07301f 2441 rtx reg, link, tmp;
b4206259
RS
2442
2443 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2444 return false;
2445
6783fdb7
RS
2446 function_arg_info arg (mode, /*named=*/true);
2447 reg = targetm.calls.function_arg (args_so_far, arg);
b4206259 2448 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
8dd5516b
JJ
2449 return false;
2450
2451 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2452 link;
2453 link = XEXP (link, 1))
2454 if (GET_CODE (XEXP (link, 0)) == USE)
2455 {
b4206259 2456 scalar_int_mode arg_mode;
8dd5516b
JJ
2457 args[idx] = XEXP (XEXP (link, 0), 0);
2458 if (REG_P (args[idx])
2459 && REGNO (args[idx]) == REGNO (reg)
2460 && (GET_MODE (args[idx]) == mode
b4206259
RS
2461 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2462 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2463 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
8dd5516b
JJ
2464 break;
2465 }
2466 if (!link)
2467 return false;
2468
2469 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2470 if (GET_MODE (args[idx]) != mode)
2471 {
2472 if (!tmp || !CONST_INT_P (tmp))
2473 return false;
6d26322f 2474 tmp = gen_int_mode (INTVAL (tmp), mode);
8dd5516b
JJ
2475 }
2476 if (tmp)
2477 args[idx] = tmp;
2478
6930c98c 2479 targetm.calls.function_arg_advance (args_so_far, arg);
8dd5516b
JJ
2480 }
2481 if (arg != void_list_node || idx != nargs)
2482 return false;
2483 return true;
2484}
2485
9e582b1d
JR
2486/* Return a bitmap of the fixed registers contained in IN. */
2487
2488static bitmap
2489copy_fixed_regs (const_bitmap in)
2490{
2491 bitmap ret;
2492
2493 ret = ALLOC_REG_SET (NULL);
0b0310e9 2494 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
9e582b1d
JR
2495 return ret;
2496}
8dd5516b 2497
6fb5fa3c
DB
2498/* Apply record_store to all candidate stores in INSN. Mark INSN
2499 if some part of it is not a candidate store and assigns to a
2500 non-register target. */
2501
2502static void
fc2d7303 2503scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
6fb5fa3c
DB
2504{
2505 rtx body;
fb0b2914 2506 insn_info_type *insn_info = insn_info_type_pool.allocate ();
6fb5fa3c 2507 int mems_found = 0;
da6603c6 2508 memset (insn_info, 0, sizeof (struct insn_info_type));
6fb5fa3c 2509
456610d3 2510 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2511 fprintf (dump_file, "\n**scanning insn=%d\n",
2512 INSN_UID (insn));
2513
2514 insn_info->prev_insn = bb_info->last_insn;
2515 insn_info->insn = insn;
2516 bb_info->last_insn = insn_info;
b8698a0f 2517
b5b8b0ac
AO
2518 if (DEBUG_INSN_P (insn))
2519 {
2520 insn_info->cannot_delete = true;
2521 return;
2522 }
6fb5fa3c 2523
6fb5fa3c
DB
2524 /* Look at all of the uses in the insn. */
2525 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2526
2527 if (CALL_P (insn))
2528 {
8dd5516b 2529 bool const_call;
ee516de9 2530 rtx call, sym;
8dd5516b
JJ
2531 tree memset_call = NULL_TREE;
2532
6fb5fa3c 2533 insn_info->cannot_delete = true;
50f0f366 2534
6fb5fa3c 2535 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2536 however, they can read their parameters which may have
8dd5516b
JJ
2537 been pushed onto the stack.
2538 memset and bzero don't read memory either. */
2539 const_call = RTL_CONST_CALL_P (insn);
ee516de9
EB
2540 if (!const_call
2541 && (call = get_call_rtx_from (insn))
2542 && (sym = XEXP (XEXP (call, 0), 0))
2543 && GET_CODE (sym) == SYMBOL_REF
2544 && SYMBOL_REF_DECL (sym)
2545 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
3d78e008 2546 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
ee516de9
EB
2547 memset_call = SYMBOL_REF_DECL (sym);
2548
8dd5516b 2549 if (const_call || memset_call)
6fb5fa3c
DB
2550 {
2551 insn_info_t i_ptr = active_local_stores;
2552 insn_info_t last = NULL;
2553
456610d3 2554 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2555 fprintf (dump_file, "%s call %d\n",
2556 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2557
64520bdc 2558 /* See the head comment of the frame_read field. */
57534689
JJ
2559 if (reload_completed
2560 /* Tail calls are storing their arguments using
2561 arg pointer. If it is a frame pointer on the target,
2562 even before reload we need to kill frame pointer based
2563 stores. */
2564 || (SIBLING_CALL_P (insn)
2565 && HARD_FRAME_POINTER_IS_ARG_POINTER))
64520bdc
EB
2566 insn_info->frame_read = true;
2567
2568 /* Loop over the active stores and remove those which are
2569 killed by the const function call. */
6fb5fa3c
DB
2570 while (i_ptr)
2571 {
64520bdc
EB
2572 bool remove_store = false;
2573
2574 /* The stack pointer based stores are always killed. */
50f0f366 2575 if (i_ptr->stack_pointer_based)
64520bdc
EB
2576 remove_store = true;
2577
2578 /* If the frame is read, the frame related stores are killed. */
2579 else if (insn_info->frame_read)
2580 {
fd6daec9 2581 store_info *store_info = i_ptr->store_rec;
64520bdc
EB
2582
2583 /* Skip the clobbers. */
2584 while (!store_info->is_set)
2585 store_info = store_info->next;
2586
2587 if (store_info->group_id >= 0
9771b263 2588 && rtx_group_vec[store_info->group_id]->frame_related)
64520bdc
EB
2589 remove_store = true;
2590 }
2591
2592 if (remove_store)
6fb5fa3c 2593 {
456610d3 2594 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2595 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2596
dabd47e7 2597 active_local_stores_len--;
6fb5fa3c
DB
2598 if (last)
2599 last->next_local_store = i_ptr->next_local_store;
2600 else
2601 active_local_stores = i_ptr->next_local_store;
2602 }
2603 else
2604 last = i_ptr;
64520bdc 2605
6fb5fa3c
DB
2606 i_ptr = i_ptr->next_local_store;
2607 }
8dd5516b
JJ
2608
2609 if (memset_call)
2610 {
2611 rtx args[3];
2612 if (get_call_args (insn, memset_call, args, 3)
2613 && CONST_INT_P (args[1])
2614 && CONST_INT_P (args[2])
2615 && INTVAL (args[2]) > 0)
2616 {
2617 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
f5541398 2618 set_mem_size (mem, INTVAL (args[2]));
f7df4a84 2619 body = gen_rtx_SET (mem, args[1]);
8dd5516b 2620 mems_found += record_store (body, bb_info);
456610d3 2621 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2622 fprintf (dump_file, "handling memset as BLKmode store\n");
2623 if (mems_found == 1)
2624 {
fc2d7303 2625 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2626 {
2627 active_local_stores_len = 1;
2628 active_local_stores = NULL;
2629 }
9e582b1d
JR
2630 insn_info->fixed_regs_live
2631 = copy_fixed_regs (bb_info->regs_live);
8dd5516b
JJ
2632 insn_info->next_local_store = active_local_stores;
2633 active_local_stores = insn_info;
2634 }
2635 }
a2ad54a0
JJ
2636 else
2637 clear_rhs_from_active_local_stores ();
8dd5516b 2638 }
6fb5fa3c 2639 }
7ee98586
EB
2640 else if (SIBLING_CALL_P (insn)
2641 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
57534689
JJ
2642 /* Arguments for a sibling call that are pushed to memory are passed
2643 using the incoming argument pointer of the current function. After
7ee98586
EB
2644 reload that might be (and likely is) frame pointer based. And, if
2645 it is a frame pointer on the target, even before reload we need to
2646 kill frame pointer based stores. */
57534689 2647 add_wild_read (bb_info);
50f0f366 2648 else
d26c7090
ER
2649 /* Every other call, including pure functions, may read any memory
2650 that is not relative to the frame. */
2651 add_non_frame_wild_read (bb_info);
50f0f366 2652
6fb5fa3c
DB
2653 return;
2654 }
2655
2656 /* Assuming that there are sets in these insns, we cannot delete
2657 them. */
2658 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2659 || volatile_refs_p (PATTERN (insn))
2da02156 2660 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6fb5fa3c
DB
2661 || (RTX_FRAME_RELATED_P (insn))
2662 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2663 insn_info->cannot_delete = true;
b8698a0f 2664
6fb5fa3c
DB
2665 body = PATTERN (insn);
2666 if (GET_CODE (body) == PARALLEL)
2667 {
2668 int i;
2669 for (i = 0; i < XVECLEN (body, 0); i++)
2670 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2671 }
2672 else
2673 mems_found += record_store (body, bb_info);
2674
456610d3 2675 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2676 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
6fb5fa3c
DB
2677 mems_found, insn_info->cannot_delete ? "true" : "false");
2678
8dd5516b
JJ
2679 /* If we found some sets of mems, add it into the active_local_stores so
2680 that it can be locally deleted if found dead or used for
2681 replace_read and redundant constant store elimination. Otherwise mark
2682 it as cannot delete. This simplifies the processing later. */
2683 if (mems_found == 1)
6fb5fa3c 2684 {
fc2d7303 2685 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2686 {
2687 active_local_stores_len = 1;
2688 active_local_stores = NULL;
2689 }
9e582b1d 2690 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
6fb5fa3c
DB
2691 insn_info->next_local_store = active_local_stores;
2692 active_local_stores = insn_info;
2693 }
2694 else
2695 insn_info->cannot_delete = true;
2696}
2697
2698
2699/* Remove BASE from the set of active_local_stores. This is a
2700 callback from cselib that is used to get rid of the stores in
2701 active_local_stores. */
2702
2703static void
2704remove_useless_values (cselib_val *base)
2705{
2706 insn_info_t insn_info = active_local_stores;
2707 insn_info_t last = NULL;
2708
2709 while (insn_info)
2710 {
fd6daec9 2711 store_info *store_info = insn_info->store_rec;
60564289 2712 bool del = false;
6fb5fa3c
DB
2713
2714 /* If ANY of the store_infos match the cselib group that is
67914693 2715 being deleted, then the insn cannot be deleted. */
6fb5fa3c
DB
2716 while (store_info)
2717 {
b8698a0f 2718 if ((store_info->group_id == -1)
6fb5fa3c
DB
2719 && (store_info->cse_base == base))
2720 {
60564289 2721 del = true;
6fb5fa3c
DB
2722 break;
2723 }
2724 store_info = store_info->next;
2725 }
2726
60564289 2727 if (del)
6fb5fa3c 2728 {
dabd47e7 2729 active_local_stores_len--;
6fb5fa3c
DB
2730 if (last)
2731 last->next_local_store = insn_info->next_local_store;
2732 else
2733 active_local_stores = insn_info->next_local_store;
2734 free_store_info (insn_info);
2735 }
2736 else
2737 last = insn_info;
b8698a0f 2738
6fb5fa3c
DB
2739 insn_info = insn_info->next_local_store;
2740 }
2741}
2742
2743
2744/* Do all of step 1. */
2745
2746static void
2747dse_step1 (void)
2748{
2749 basic_block bb;
3f9b14ff 2750 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
b8698a0f 2751
457eeaae 2752 cselib_init (0);
6fb5fa3c
DB
2753 all_blocks = BITMAP_ALLOC (NULL);
2754 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2755 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2756
fc2d7303
RB
2757 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2758 since this can consume huge amounts of memory (PR89115). */
028d4092 2759 int max_active_local_stores = param_max_dse_active_local_stores;
fc2d7303
RB
2760 if (optimize < 2)
2761 max_active_local_stores /= 10;
2762
04a90bec 2763 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2764 {
2765 insn_info_t ptr;
fb0b2914 2766 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
6fb5fa3c 2767
da6603c6 2768 memset (bb_info, 0, sizeof (dse_bb_info_type));
6fb5fa3c 2769 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2770 bb_info->regs_live = regs_live;
2771
2772 bitmap_copy (regs_live, DF_LR_IN (bb));
2773 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2774
2775 bb_table[bb->index] = bb_info;
2776 cselib_discard_hook = remove_useless_values;
2777
2778 if (bb->index >= NUM_FIXED_BLOCKS)
2779 {
dd60a84c 2780 rtx_insn *insn;
6fb5fa3c 2781
6fb5fa3c 2782 active_local_stores = NULL;
dabd47e7 2783 active_local_stores_len = 0;
6fb5fa3c 2784 cselib_clear_table ();
b8698a0f 2785
6fb5fa3c
DB
2786 /* Scan the insns. */
2787 FOR_BB_INSNS (bb, insn)
2788 {
2789 if (INSN_P (insn))
fc2d7303 2790 scan_insn (bb_info, insn, max_active_local_stores);
6fb5fa3c 2791 cselib_process_insn (insn);
02b47899
KZ
2792 if (INSN_P (insn))
2793 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c 2794 }
b8698a0f 2795
6fb5fa3c
DB
2796 /* This is something of a hack, because the global algorithm
2797 is supposed to take care of the case where stores go dead
2798 at the end of the function. However, the global
2799 algorithm must take a more conservative view of block
2800 mode reads than the local alg does. So to get the case
2801 where you have a store to the frame followed by a non
0d52bcc1 2802 overlapping block more read, we look at the active local
6fb5fa3c
DB
2803 stores at the end of the function and delete all of the
2804 frame and spill based ones. */
2805 if (stores_off_frame_dead_at_return
2806 && (EDGE_COUNT (bb->succs) == 0
2807 || (single_succ_p (bb)
fefa31b5 2808 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
e3b5732b 2809 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2810 {
2811 insn_info_t i_ptr = active_local_stores;
2812 while (i_ptr)
2813 {
fd6daec9 2814 store_info *store_info = i_ptr->store_rec;
6fb5fa3c
DB
2815
2816 /* Skip the clobbers. */
2817 while (!store_info->is_set)
2818 store_info = store_info->next;
ac6929b5
RB
2819 if (store_info->group_id >= 0)
2820 {
2821 group_info *group = rtx_group_vec[store_info->group_id];
2822 if (group->frame_related && !i_ptr->cannot_delete)
2823 delete_dead_store_insn (i_ptr);
2824 }
6fb5fa3c
DB
2825
2826 i_ptr = i_ptr->next_local_store;
2827 }
2828 }
2829
2830 /* Get rid of the loads that were discovered in
2831 replace_read. Cselib is finished with this block. */
2832 while (deferred_change_list)
2833 {
fd6daec9 2834 deferred_change *next = deferred_change_list->next;
6fb5fa3c
DB
2835
2836 /* There is no reason to validate this change. That was
2837 done earlier. */
2838 *deferred_change_list->loc = deferred_change_list->reg;
fb0b2914 2839 deferred_change_pool.remove (deferred_change_list);
6fb5fa3c
DB
2840 deferred_change_list = next;
2841 }
2842
2843 /* Get rid of all of the cselib based store_infos in this
2844 block and mark the containing insns as not being
2845 deletable. */
2846 ptr = bb_info->last_insn;
2847 while (ptr)
2848 {
2849 if (ptr->contains_cselib_groups)
8dd5516b 2850 {
fd6daec9 2851 store_info *s_info = ptr->store_rec;
8dd5516b
JJ
2852 while (s_info && !s_info->is_set)
2853 s_info = s_info->next;
2854 if (s_info
2855 && s_info->redundant_reason
2856 && s_info->redundant_reason->insn
2857 && !ptr->cannot_delete)
2858 {
456610d3 2859 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2860 fprintf (dump_file, "Locally deleting insn %d "
2861 "because insn %d stores the "
2862 "same value and couldn't be "
2863 "eliminated\n",
2864 INSN_UID (ptr->insn),
2865 INSN_UID (s_info->redundant_reason->insn));
2866 delete_dead_store_insn (ptr);
2867 }
8dd5516b
JJ
2868 free_store_info (ptr);
2869 }
2870 else
2871 {
fd6daec9 2872 store_info *s_info;
8dd5516b
JJ
2873
2874 /* Free at least positions_needed bitmaps. */
2875 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2876 if (s_info->is_large)
2877 {
dc491a25 2878 BITMAP_FREE (s_info->positions_needed.large.bmap);
8dd5516b
JJ
2879 s_info->is_large = false;
2880 }
2881 }
6fb5fa3c
DB
2882 ptr = ptr->prev_insn;
2883 }
2884
da6603c6 2885 cse_store_info_pool.release ();
6fb5fa3c 2886 }
02b47899 2887 bb_info->regs_live = NULL;
6fb5fa3c
DB
2888 }
2889
02b47899 2890 BITMAP_FREE (regs_live);
6fb5fa3c 2891 cselib_finish ();
c203e8a7 2892 rtx_group_table->empty ();
6fb5fa3c
DB
2893}
2894
2895\f
2896/*----------------------------------------------------------------------------
2897 Second step.
2898
2899 Assign each byte position in the stores that we are going to
2900 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2901 there are any bit positions assigned.
6fb5fa3c
DB
2902----------------------------------------------------------------------------*/
2903
2904static void
2905dse_step2_init (void)
2906{
2907 unsigned int i;
fd6daec9 2908 group_info *group;
6fb5fa3c 2909
9771b263 2910 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2911 {
2912 /* For all non stack related bases, we only consider a store to
2913 be deletable if there are two or more stores for that
2914 position. This is because it takes one store to make the
2915 other store redundant. However, for the stores that are
2916 stack related, we consider them if there is only one store
2917 for the position. We do this because the stack related
2918 stores can be deleted if their is no read between them and
2919 the end of the function.
b8698a0f 2920
6fb5fa3c
DB
2921 To make this work in the current framework, we take the stack
2922 related bases add all of the bits from store1 into store2.
2923 This has the effect of making the eligible even if there is
2924 only one store. */
2925
2926 if (stores_off_frame_dead_at_return && group->frame_related)
2927 {
2928 bitmap_ior_into (group->store2_n, group->store1_n);
2929 bitmap_ior_into (group->store2_p, group->store1_p);
456610d3 2930 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2931 fprintf (dump_file, "group %d is frame related ", i);
6fb5fa3c
DB
2932 }
2933
2934 group->offset_map_size_n++;
3f9b14ff
SB
2935 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2936 group->offset_map_size_n);
6fb5fa3c 2937 group->offset_map_size_p++;
3f9b14ff
SB
2938 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2939 group->offset_map_size_p);
6fb5fa3c 2940 group->process_globally = false;
456610d3 2941 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2942 {
b8698a0f 2943 fprintf (dump_file, "group %d(%d+%d): ", i,
6fb5fa3c
DB
2944 (int)bitmap_count_bits (group->store2_n),
2945 (int)bitmap_count_bits (group->store2_p));
2946 bitmap_print (dump_file, group->store2_n, "n ", " ");
2947 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2948 }
2949 }
2950}
2951
2952
ac6929b5 2953/* Init the offset tables. */
6fb5fa3c
DB
2954
2955static bool
ac6929b5 2956dse_step2 (void)
6fb5fa3c
DB
2957{
2958 unsigned int i;
fd6daec9 2959 group_info *group;
6fb5fa3c
DB
2960 /* Position 0 is unused because 0 is used in the maps to mean
2961 unused. */
2962 current_position = 1;
9771b263 2963 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2964 {
2965 bitmap_iterator bi;
2966 unsigned int j;
2967
c3284718
RS
2968 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2969 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
6fb5fa3c
DB
2970 bitmap_clear (group->group_kill);
2971
2972 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2973 {
2974 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2975 if (bitmap_bit_p (group->escaped_n, j))
2976 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2977 group->offset_map_n[j] = current_position++;
2978 group->process_globally = true;
2979 }
2980 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2981 {
b8698a0f 2982 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2983 if (bitmap_bit_p (group->escaped_p, j))
2984 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2985 group->offset_map_p[j] = current_position++;
2986 group->process_globally = true;
2987 }
2988 }
2989 return current_position != 1;
2990}
2991
2992
6fb5fa3c
DB
2993\f
2994/*----------------------------------------------------------------------------
2995 Third step.
b8698a0f 2996
6fb5fa3c
DB
2997 Build the bit vectors for the transfer functions.
2998----------------------------------------------------------------------------*/
2999
3000
6fb5fa3c
DB
3001/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3002 there, return 0. */
3003
3004static int
fd6daec9 3005get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
6fb5fa3c
DB
3006{
3007 if (offset < 0)
3008 {
3009 HOST_WIDE_INT offset_p = -offset;
3010 if (offset_p >= group_info->offset_map_size_n)
3011 return 0;
3012 return group_info->offset_map_n[offset_p];
3013 }
3014 else
3015 {
3016 if (offset >= group_info->offset_map_size_p)
3017 return 0;
3018 return group_info->offset_map_p[offset];
3019 }
3020}
3021
3022
3023/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3024 may be NULL. */
3025
b8698a0f 3026static void
ac6929b5 3027scan_stores (store_info *store_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
3028{
3029 while (store_info)
3030 {
02ce5d90 3031 HOST_WIDE_INT i, offset, width;
fd6daec9 3032 group_info *group_info
9771b263 3033 = rtx_group_vec[store_info->group_id];
02ce5d90
RS
3034 /* We can (conservatively) ignore stores whose bounds aren't known;
3035 they simply don't generate new global dse opportunities. */
3036 if (group_info->process_globally
3037 && store_info->offset.is_constant (&offset)
3038 && store_info->width.is_constant (&width))
71d6a386 3039 {
02ce5d90
RS
3040 HOST_WIDE_INT end = offset + width;
3041 for (i = offset; i < end; i++)
71d6a386
RS
3042 {
3043 int index = get_bitmap_index (group_info, i);
3044 if (index != 0)
3045 {
3046 bitmap_set_bit (gen, index);
3047 if (kill)
3048 bitmap_clear_bit (kill, index);
3049 }
3050 }
3051 }
6fb5fa3c
DB
3052 store_info = store_info->next;
3053 }
3054}
3055
3056
6fb5fa3c
DB
3057/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3058 may be NULL. */
3059
3060static void
ac6929b5 3061scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
3062{
3063 read_info_t read_info = insn_info->read_rec;
3064 int i;
fd6daec9 3065 group_info *group;
6fb5fa3c 3066
64520bdc
EB
3067 /* If this insn reads the frame, kill all the frame related stores. */
3068 if (insn_info->frame_read)
3069 {
9771b263 3070 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
64520bdc
EB
3071 if (group->process_globally && group->frame_related)
3072 {
3073 if (kill)
3074 bitmap_ior_into (kill, group->group_kill);
b8698a0f 3075 bitmap_and_compl_into (gen, group->group_kill);
64520bdc
EB
3076 }
3077 }
d26c7090
ER
3078 if (insn_info->non_frame_wild_read)
3079 {
3080 /* Kill all non-frame related stores. Kill all stores of variables that
3081 escape. */
3082 if (kill)
3083 bitmap_ior_into (kill, kill_on_calls);
3084 bitmap_and_compl_into (gen, kill_on_calls);
9771b263 3085 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
d26c7090
ER
3086 if (group->process_globally && !group->frame_related)
3087 {
3088 if (kill)
3089 bitmap_ior_into (kill, group->group_kill);
3090 bitmap_and_compl_into (gen, group->group_kill);
3091 }
3092 }
6fb5fa3c
DB
3093 while (read_info)
3094 {
9771b263 3095 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3096 {
3097 if (group->process_globally)
3098 {
3099 if (i == read_info->group_id)
3100 {
02ce5d90
RS
3101 HOST_WIDE_INT offset, width;
3102 /* Reads with non-constant size kill all DSE opportunities
3103 in the group. */
3104 if (!read_info->offset.is_constant (&offset)
3105 || !read_info->width.is_constant (&width)
3106 || !known_size_p (width))
6fb5fa3c 3107 {
71d6a386 3108 /* Handle block mode reads. */
6fb5fa3c
DB
3109 if (kill)
3110 bitmap_ior_into (kill, group->group_kill);
3111 bitmap_and_compl_into (gen, group->group_kill);
3112 }
3113 else
3114 {
3115 /* The groups are the same, just process the
3116 offsets. */
3117 HOST_WIDE_INT j;
02ce5d90
RS
3118 HOST_WIDE_INT end = offset + width;
3119 for (j = offset; j < end; j++)
6fb5fa3c
DB
3120 {
3121 int index = get_bitmap_index (group, j);
3122 if (index != 0)
3123 {
3124 if (kill)
3125 bitmap_set_bit (kill, index);
3126 bitmap_clear_bit (gen, index);
3127 }
3128 }
3129 }
3130 }
3131 else
3132 {
3133 /* The groups are different, if the alias sets
3134 conflict, clear the entire group. We only need
3135 to apply this test if the read_info is a cselib
3136 read. Anything with a constant base cannot alias
3137 something else with a different constant
3138 base. */
3139 if ((read_info->group_id < 0)
b8698a0f 3140 && canon_true_dependence (group->base_mem,
d32f725a 3141 GET_MODE (group->base_mem),
6216f94e 3142 group->canon_base_addr,
53d9622b 3143 read_info->mem, NULL_RTX))
6fb5fa3c
DB
3144 {
3145 if (kill)
3146 bitmap_ior_into (kill, group->group_kill);
3147 bitmap_and_compl_into (gen, group->group_kill);
3148 }
3149 }
3150 }
3151 }
b8698a0f 3152
6fb5fa3c
DB
3153 read_info = read_info->next;
3154 }
3155}
3156
6fb5fa3c
DB
3157
3158/* Return the insn in BB_INFO before the first wild read or if there
3159 are no wild reads in the block, return the last insn. */
3160
3161static insn_info_t
3162find_insn_before_first_wild_read (bb_info_t bb_info)
3163{
3164 insn_info_t insn_info = bb_info->last_insn;
3165 insn_info_t last_wild_read = NULL;
3166
3167 while (insn_info)
3168 {
3169 if (insn_info->wild_read)
3170 {
3171 last_wild_read = insn_info->prev_insn;
3172 /* Block starts with wild read. */
3173 if (!last_wild_read)
3174 return NULL;
3175 }
3176
3177 insn_info = insn_info->prev_insn;
3178 }
3179
3180 if (last_wild_read)
3181 return last_wild_read;
3182 else
3183 return bb_info->last_insn;
3184}
3185
3186
3187/* Scan the insns in BB_INFO starting at PTR and going to the top of
3188 the block in order to build the gen and kill sets for the block.
3189 We start at ptr which may be the last insn in the block or may be
3190 the first insn with a wild read. In the latter case we are able to
3191 skip the rest of the block because it just does not matter:
3192 anything that happens is hidden by the wild read. */
3193
3194static void
ac6929b5 3195dse_step3_scan (basic_block bb)
6fb5fa3c
DB
3196{
3197 bb_info_t bb_info = bb_table[bb->index];
3198 insn_info_t insn_info;
3199
ac6929b5 3200 insn_info = find_insn_before_first_wild_read (bb_info);
b8698a0f 3201
6fb5fa3c
DB
3202 /* In the spill case or in the no_spill case if there is no wild
3203 read in the block, we will need a kill set. */
3204 if (insn_info == bb_info->last_insn)
3205 {
3206 if (bb_info->kill)
3207 bitmap_clear (bb_info->kill);
3208 else
3f9b14ff 3209 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 3210 }
b8698a0f 3211 else
6fb5fa3c
DB
3212 if (bb_info->kill)
3213 BITMAP_FREE (bb_info->kill);
3214
3215 while (insn_info)
3216 {
3217 /* There may have been code deleted by the dce pass run before
3218 this phase. */
3219 if (insn_info->insn && INSN_P (insn_info->insn))
3220 {
ac6929b5
RB
3221 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3222 scan_reads (insn_info, bb_info->gen, bb_info->kill);
b8698a0f 3223 }
6fb5fa3c
DB
3224
3225 insn_info = insn_info->prev_insn;
3226 }
3227}
3228
3229
3230/* Set the gen set of the exit block, and also any block with no
3231 successors that does not have a wild read. */
3232
3233static void
3234dse_step3_exit_block_scan (bb_info_t bb_info)
3235{
3236 /* The gen set is all 0's for the exit block except for the
3237 frame_pointer_group. */
b8698a0f 3238
6fb5fa3c
DB
3239 if (stores_off_frame_dead_at_return)
3240 {
3241 unsigned int i;
fd6daec9 3242 group_info *group;
b8698a0f 3243
9771b263 3244 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3245 {
3246 if (group->process_globally && group->frame_related)
3247 bitmap_ior_into (bb_info->gen, group->group_kill);
3248 }
3249 }
3250}
3251
3252
3253/* Find all of the blocks that are not backwards reachable from the
3254 exit block or any block with no successors (BB). These are the
3255 infinite loops or infinite self loops. These blocks will still
3256 have their bits set in UNREACHABLE_BLOCKS. */
3257
3258static void
3259mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3260{
3261 edge e;
3262 edge_iterator ei;
3263
d7c028c0 3264 if (bitmap_bit_p (unreachable_blocks, bb->index))
6fb5fa3c 3265 {
d7c028c0 3266 bitmap_clear_bit (unreachable_blocks, bb->index);
6fb5fa3c 3267 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 3268 {
6fb5fa3c 3269 mark_reachable_blocks (unreachable_blocks, e->src);
b8698a0f 3270 }
6fb5fa3c
DB
3271 }
3272}
3273
3274/* Build the transfer functions for the function. */
3275
3276static void
ac6929b5 3277dse_step3 ()
6fb5fa3c
DB
3278{
3279 basic_block bb;
6fb5fa3c
DB
3280 sbitmap_iterator sbi;
3281 bitmap all_ones = NULL;
3282 unsigned int i;
b8698a0f 3283
7ba9e72d 3284 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
f61e445a 3285 bitmap_ones (unreachable_blocks);
6fb5fa3c 3286
04a90bec 3287 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3288 {
3289 bb_info_t bb_info = bb_table[bb->index];
3290 if (bb_info->gen)
3291 bitmap_clear (bb_info->gen);
3292 else
3f9b14ff 3293 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3294
3295 if (bb->index == ENTRY_BLOCK)
3296 ;
3297 else if (bb->index == EXIT_BLOCK)
3298 dse_step3_exit_block_scan (bb_info);
3299 else
ac6929b5 3300 dse_step3_scan (bb);
6fb5fa3c
DB
3301 if (EDGE_COUNT (bb->succs) == 0)
3302 mark_reachable_blocks (unreachable_blocks, bb);
3303
3304 /* If this is the second time dataflow is run, delete the old
3305 sets. */
3306 if (bb_info->in)
3307 BITMAP_FREE (bb_info->in);
3308 if (bb_info->out)
3309 BITMAP_FREE (bb_info->out);
3310 }
3311
3312 /* For any block in an infinite loop, we must initialize the out set
3313 to all ones. This could be expensive, but almost never occurs in
3314 practice. However, it is common in regression tests. */
d4ac4ce2 3315 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
6fb5fa3c
DB
3316 {
3317 if (bitmap_bit_p (all_blocks, i))
3318 {
3319 bb_info_t bb_info = bb_table[i];
3320 if (!all_ones)
3321 {
3322 unsigned int j;
fd6daec9 3323 group_info *group;
6fb5fa3c 3324
3f9b14ff 3325 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
9771b263 3326 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
6fb5fa3c
DB
3327 bitmap_ior_into (all_ones, group->group_kill);
3328 }
3329 if (!bb_info->out)
3330 {
3f9b14ff 3331 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3332 bitmap_copy (bb_info->out, all_ones);
3333 }
3334 }
3335 }
3336
3337 if (all_ones)
3338 BITMAP_FREE (all_ones);
6fb5fa3c
DB
3339}
3340
3341
3342\f
3343/*----------------------------------------------------------------------------
3344 Fourth step.
3345
3346 Solve the bitvector equations.
3347----------------------------------------------------------------------------*/
3348
3349
3350/* Confluence function for blocks with no successors. Create an out
3351 set from the gen set of the exit block. This block logically has
3352 the exit block as a successor. */
3353
3354
3355
3356static void
3357dse_confluence_0 (basic_block bb)
3358{
3359 bb_info_t bb_info = bb_table[bb->index];
3360
3361 if (bb->index == EXIT_BLOCK)
3362 return;
3363
3364 if (!bb_info->out)
3365 {
3f9b14ff 3366 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3367 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3368 }
3369}
3370
3371/* Propagate the information from the in set of the dest of E to the
3372 out set of the src of E. If the various in or out sets are not
3373 there, that means they are all ones. */
3374
1a0f3fa1 3375static bool
6fb5fa3c
DB
3376dse_confluence_n (edge e)
3377{
3378 bb_info_t src_info = bb_table[e->src->index];
3379 bb_info_t dest_info = bb_table[e->dest->index];
3380
3381 if (dest_info->in)
3382 {
3383 if (src_info->out)
3384 bitmap_and_into (src_info->out, dest_info->in);
3385 else
3386 {
3f9b14ff 3387 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3388 bitmap_copy (src_info->out, dest_info->in);
3389 }
3390 }
1a0f3fa1 3391 return true;
6fb5fa3c
DB
3392}
3393
3394
3395/* Propagate the info from the out to the in set of BB_INDEX's basic
b8698a0f 3396 block. There are three cases:
6fb5fa3c
DB
3397
3398 1) The block has no kill set. In this case the kill set is all
3399 ones. It does not matter what the out set of the block is, none of
3400 the info can reach the top. The only thing that reaches the top is
3401 the gen set and we just copy the set.
3402
3403 2) There is a kill set but no out set and bb has successors. In
3404 this case we just return. Eventually an out set will be created and
3405 it is better to wait than to create a set of ones.
3406
3407 3) There is both a kill and out set. We apply the obvious transfer
3408 function.
3409*/
3410
3411static bool
3412dse_transfer_function (int bb_index)
3413{
3414 bb_info_t bb_info = bb_table[bb_index];
3415
3416 if (bb_info->kill)
3417 {
3418 if (bb_info->out)
3419 {
3420 /* Case 3 above. */
3421 if (bb_info->in)
b8698a0f 3422 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3423 bb_info->out, bb_info->kill);
3424 else
3425 {
3f9b14ff 3426 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
b8698a0f 3427 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3428 bb_info->out, bb_info->kill);
3429 return true;
3430 }
3431 }
3432 else
3433 /* Case 2 above. */
3434 return false;
3435 }
3436 else
3437 {
3438 /* Case 1 above. If there is already an in set, nothing
3439 happens. */
3440 if (bb_info->in)
3441 return false;
3442 else
3443 {
3f9b14ff 3444 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3445 bitmap_copy (bb_info->in, bb_info->gen);
3446 return true;
3447 }
3448 }
3449}
3450
3451/* Solve the dataflow equations. */
3452
3453static void
3454dse_step4 (void)
3455{
b8698a0f
L
3456 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3457 dse_confluence_n, dse_transfer_function,
3458 all_blocks, df_get_postorder (DF_BACKWARD),
6fb5fa3c 3459 df_get_n_blocks (DF_BACKWARD));
456610d3 3460 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3461 {
3462 basic_block bb;
3463
3464 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
04a90bec 3465 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3466 {
3467 bb_info_t bb_info = bb_table[bb->index];
3468
3469 df_print_bb_index (bb, dump_file);
3470 if (bb_info->in)
3471 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3472 else
3473 fprintf (dump_file, " in: *MISSING*\n");
3474 if (bb_info->gen)
3475 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3476 else
3477 fprintf (dump_file, " gen: *MISSING*\n");
3478 if (bb_info->kill)
3479 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3480 else
3481 fprintf (dump_file, " kill: *MISSING*\n");
3482 if (bb_info->out)
3483 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3484 else
3485 fprintf (dump_file, " out: *MISSING*\n\n");
3486 }
3487 }
3488}
3489
3490
3491\f
3492/*----------------------------------------------------------------------------
3493 Fifth step.
3494
0d52bcc1 3495 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3496----------------------------------------------------------------------------*/
3497
3498
3499static void
ac6929b5 3500dse_step5 (void)
6fb5fa3c
DB
3501{
3502 basic_block bb;
11cd3bed 3503 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c
DB
3504 {
3505 bb_info_t bb_info = bb_table[bb->index];
3506 insn_info_t insn_info = bb_info->last_insn;
3507 bitmap v = bb_info->out;
3508
3509 while (insn_info)
3510 {
3511 bool deleted = false;
3512 if (dump_file && insn_info->insn)
3513 {
3514 fprintf (dump_file, "starting to process insn %d\n",
3515 INSN_UID (insn_info->insn));
3516 bitmap_print (dump_file, v, " v: ", "\n");
3517 }
3518
3519 /* There may have been code deleted by the dce pass run before
3520 this phase. */
b8698a0f 3521 if (insn_info->insn
6fb5fa3c
DB
3522 && INSN_P (insn_info->insn)
3523 && (!insn_info->cannot_delete)
3524 && (!bitmap_empty_p (v)))
3525 {
fd6daec9 3526 store_info *store_info = insn_info->store_rec;
6fb5fa3c
DB
3527
3528 /* Try to delete the current insn. */
3529 deleted = true;
b8698a0f 3530
6fb5fa3c
DB
3531 /* Skip the clobbers. */
3532 while (!store_info->is_set)
3533 store_info = store_info->next;
3534
02ce5d90 3535 HOST_WIDE_INT i, offset, width;
ac6929b5
RB
3536 group_info *group_info = rtx_group_vec[store_info->group_id];
3537
02ce5d90
RS
3538 if (!store_info->offset.is_constant (&offset)
3539 || !store_info->width.is_constant (&width))
3540 deleted = false;
3541 else
6fb5fa3c 3542 {
02ce5d90
RS
3543 HOST_WIDE_INT end = offset + width;
3544 for (i = offset; i < end; i++)
6fb5fa3c 3545 {
02ce5d90
RS
3546 int index = get_bitmap_index (group_info, i);
3547
456610d3 3548 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
3549 fprintf (dump_file, "i = %d, index = %d\n",
3550 (int) i, index);
3551 if (index == 0 || !bitmap_bit_p (v, index))
3552 {
3553 if (dump_file && (dump_flags & TDF_DETAILS))
3554 fprintf (dump_file, "failing at i = %d\n",
3555 (int) i);
3556 deleted = false;
3557 break;
3558 }
6fb5fa3c
DB
3559 }
3560 }
3561 if (deleted)
3562 {
9e582b1d
JR
3563 if (dbg_cnt (dse)
3564 && check_for_inc_dec_1 (insn_info))
6fb5fa3c 3565 {
6fb5fa3c
DB
3566 delete_insn (insn_info->insn);
3567 insn_info->insn = NULL;
3568 globally_deleted++;
3569 }
3570 }
3571 }
3572 /* We do want to process the local info if the insn was
6ed3da00 3573 deleted. For instance, if the insn did a wild read, we
6fb5fa3c 3574 no longer need to trash the info. */
b8698a0f 3575 if (insn_info->insn
6fb5fa3c
DB
3576 && INSN_P (insn_info->insn)
3577 && (!deleted))
3578 {
ac6929b5 3579 scan_stores (insn_info->store_rec, v, NULL);
6fb5fa3c
DB
3580 if (insn_info->wild_read)
3581 {
456610d3 3582 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3583 fprintf (dump_file, "wild read\n");
3584 bitmap_clear (v);
3585 }
d26c7090 3586 else if (insn_info->read_rec
a8404b9a
JJ
3587 || insn_info->non_frame_wild_read
3588 || insn_info->frame_read)
6fb5fa3c 3589 {
a8404b9a
JJ
3590 if (dump_file && (dump_flags & TDF_DETAILS))
3591 {
3592 if (!insn_info->non_frame_wild_read
3593 && !insn_info->frame_read)
3594 fprintf (dump_file, "regular read\n");
3595 if (insn_info->non_frame_wild_read)
3596 fprintf (dump_file, "non-frame wild read\n");
3597 if (insn_info->frame_read)
3598 fprintf (dump_file, "frame read\n");
3599 }
ac6929b5 3600 scan_reads (insn_info, v, NULL);
6fb5fa3c
DB
3601 }
3602 }
b8698a0f 3603
6fb5fa3c
DB
3604 insn_info = insn_info->prev_insn;
3605 }
3606 }
3607}
3608
3609
6fb5fa3c
DB
3610\f
3611/*----------------------------------------------------------------------------
3612 Sixth step.
3613
8dd5516b
JJ
3614 Delete stores made redundant by earlier stores (which store the same
3615 value) that couldn't be eliminated.
3616----------------------------------------------------------------------------*/
3617
3618static void
3619dse_step6 (void)
3620{
3621 basic_block bb;
3622
04a90bec 3623 FOR_ALL_BB_FN (bb, cfun)
8dd5516b
JJ
3624 {
3625 bb_info_t bb_info = bb_table[bb->index];
3626 insn_info_t insn_info = bb_info->last_insn;
3627
3628 while (insn_info)
3629 {
3630 /* There may have been code deleted by the dce pass run before
3631 this phase. */
3632 if (insn_info->insn
3633 && INSN_P (insn_info->insn)
3634 && !insn_info->cannot_delete)
3635 {
fd6daec9 3636 store_info *s_info = insn_info->store_rec;
8dd5516b
JJ
3637
3638 while (s_info && !s_info->is_set)
3639 s_info = s_info->next;
3640 if (s_info
3641 && s_info->redundant_reason
3642 && s_info->redundant_reason->insn
3643 && INSN_P (s_info->redundant_reason->insn))
3644 {
eb92d49a 3645 rtx_insn *rinsn = s_info->redundant_reason->insn;
456610d3 3646 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
3647 fprintf (dump_file, "Locally deleting insn %d "
3648 "because insn %d stores the "
3649 "same value and couldn't be "
3650 "eliminated\n",
3651 INSN_UID (insn_info->insn),
3652 INSN_UID (rinsn));
3653 delete_dead_store_insn (insn_info);
3654 }
3655 }
3656 insn_info = insn_info->prev_insn;
3657 }
3658 }
3659}
3660\f
3661/*----------------------------------------------------------------------------
3662 Seventh step.
3663
b8698a0f 3664 Destroy everything left standing.
6fb5fa3c
DB
3665----------------------------------------------------------------------------*/
3666
b8698a0f 3667static void
3f9b14ff 3668dse_step7 (void)
6fb5fa3c 3669{
3f9b14ff
SB
3670 bitmap_obstack_release (&dse_bitmap_obstack);
3671 obstack_free (&dse_obstack, NULL);
370f38e8 3672
6fb5fa3c
DB
3673 end_alias_analysis ();
3674 free (bb_table);
c203e8a7
TS
3675 delete rtx_group_table;
3676 rtx_group_table = NULL;
9771b263 3677 rtx_group_vec.release ();
6fb5fa3c
DB
3678 BITMAP_FREE (all_blocks);
3679 BITMAP_FREE (scratch);
3680
da6603c6 3681 rtx_store_info_pool.release ();
fb0b2914
ML
3682 read_info_type_pool.release ();
3683 insn_info_type_pool.release ();
3684 dse_bb_info_type_pool.release ();
3685 group_info_pool.release ();
3686 deferred_change_pool.release ();
6fb5fa3c
DB
3687}
3688
3689
6fb5fa3c
DB
3690/* -------------------------------------------------------------------------
3691 DSE
3692 ------------------------------------------------------------------------- */
3693
3694/* Callback for running pass_rtl_dse. */
3695
3696static unsigned int
3697rest_of_handle_dse (void)
3698{
6fb5fa3c
DB
3699 df_set_flags (DF_DEFER_INSN_RESCAN);
3700
02b47899
KZ
3701 /* Need the notes since we must track live hardregs in the forwards
3702 direction. */
3703 df_note_add_problem ();
3704 df_analyze ();
3705
6fb5fa3c
DB
3706 dse_step0 ();
3707 dse_step1 ();
dfda40f8
RB
3708 /* DSE can eliminate potentially-trapping MEMs.
3709 Remove any EH edges associated with them, since otherwise
3710 DF_LR_RUN_DCE will complain later. */
3711 if ((locally_deleted || globally_deleted)
3712 && cfun->can_throw_non_call_exceptions
3713 && purge_all_dead_edges ())
3714 {
3715 free_dominance_info (CDI_DOMINATORS);
3716 delete_unreachable_blocks ();
3717 }
6fb5fa3c 3718 dse_step2_init ();
ac6929b5 3719 if (dse_step2 ())
6fb5fa3c
DB
3720 {
3721 df_set_flags (DF_LR_RUN_DCE);
3722 df_analyze ();
456610d3 3723 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 3724 fprintf (dump_file, "doing global processing\n");
ac6929b5 3725 dse_step3 ();
6fb5fa3c 3726 dse_step4 ();
ac6929b5 3727 dse_step5 ();
6fb5fa3c
DB
3728 }
3729
8dd5516b 3730 dse_step6 ();
3f9b14ff 3731 dse_step7 ();
6fb5fa3c
DB
3732
3733 if (dump_file)
ac6929b5
RB
3734 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3735 locally_deleted, globally_deleted);
6c5ed3f1
JJ
3736
3737 /* DSE can eliminate potentially-trapping MEMs.
3738 Remove any EH edges associated with them. */
3739 if ((locally_deleted || globally_deleted)
3740 && cfun->can_throw_non_call_exceptions
3741 && purge_all_dead_edges ())
7f5ddfcb
JJ
3742 {
3743 free_dominance_info (CDI_DOMINATORS);
3744 cleanup_cfg (0);
3745 }
6c5ed3f1 3746
6fb5fa3c
DB
3747 return 0;
3748}
3749
17795822
TS
3750namespace {
3751
3752const pass_data pass_data_rtl_dse1 =
27a4cd48
DM
3753{
3754 RTL_PASS, /* type */
3755 "dse1", /* name */
3756 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3757 TV_DSE1, /* tv_id */
3758 0, /* properties_required */
3759 0, /* properties_provided */
3760 0, /* properties_destroyed */
3761 0, /* todo_flags_start */
3bea341f 3762 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c
DB
3763};
3764
17795822 3765class pass_rtl_dse1 : public rtl_opt_pass
27a4cd48
DM
3766{
3767public:
c3284718
RS
3768 pass_rtl_dse1 (gcc::context *ctxt)
3769 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
27a4cd48
DM
3770 {}
3771
3772 /* opt_pass methods: */
725793af 3773 bool gate (function *) final override
1a3d085c
TS
3774 {
3775 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3776 }
3777
725793af
DM
3778 unsigned int execute (function *) final override
3779 {
3780 return rest_of_handle_dse ();
3781 }
27a4cd48
DM
3782
3783}; // class pass_rtl_dse1
3784
17795822
TS
3785} // anon namespace
3786
27a4cd48
DM
3787rtl_opt_pass *
3788make_pass_rtl_dse1 (gcc::context *ctxt)
3789{
3790 return new pass_rtl_dse1 (ctxt);
3791}
3792
17795822
TS
3793namespace {
3794
3795const pass_data pass_data_rtl_dse2 =
27a4cd48
DM
3796{
3797 RTL_PASS, /* type */
3798 "dse2", /* name */
3799 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3800 TV_DSE2, /* tv_id */
3801 0, /* properties_required */
3802 0, /* properties_provided */
3803 0, /* properties_destroyed */
3804 0, /* todo_flags_start */
3bea341f 3805 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c 3806};
27a4cd48 3807
17795822 3808class pass_rtl_dse2 : public rtl_opt_pass
27a4cd48
DM
3809{
3810public:
c3284718
RS
3811 pass_rtl_dse2 (gcc::context *ctxt)
3812 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
27a4cd48
DM
3813 {}
3814
3815 /* opt_pass methods: */
725793af 3816 bool gate (function *) final override
1a3d085c
TS
3817 {
3818 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3819 }
3820
725793af
DM
3821 unsigned int execute (function *) final override
3822 {
3823 return rest_of_handle_dse ();
3824 }
27a4cd48
DM
3825
3826}; // class pass_rtl_dse2
3827
17795822
TS
3828} // anon namespace
3829
27a4cd48
DM
3830rtl_opt_pass *
3831make_pass_rtl_dse2 (gcc::context *ctxt)
3832{
3833 return new pass_rtl_dse2 (ctxt);
3834}