]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dwarf2cfi.c
dojump.h: New header file.
[thirdparty/gcc.git] / gcc / dwarf2cfi.c
CommitLineData
647a1567 1/* Dwarf2 Call Frame Information helper routines.
5624e564 2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
647a1567
RH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "version.h"
25#include "flags.h"
26#include "rtl.h"
83685514 27#include "hash-set.h"
83685514 28#include "machmode.h"
40e23961
MC
29#include "vec.h"
30#include "double-int.h"
31#include "input.h"
32#include "alias.h"
33#include "symtab.h"
34#include "wide-int.h"
35#include "inchash.h"
36#include "real.h"
37#include "tree.h"
38#include "stor-layout.h"
83685514 39#include "hard-reg-set.h"
647a1567 40#include "function.h"
60393bbc 41#include "cfgbuild.h"
647a1567
RH
42#include "dwarf2.h"
43#include "dwarf2out.h"
44#include "dwarf2asm.h"
45#include "ggc.h"
4a8fb1a1 46#include "hash-table.h"
647a1567
RH
47#include "tm_p.h"
48#include "target.h"
49#include "common/common-target.h"
50#include "tree-pass.h"
51
52#include "except.h" /* expand_builtin_dwarf_sp_column */
36566b39
PK
53#include "hashtab.h"
54#include "statistics.h"
55#include "fixed-value.h"
56#include "insn-config.h"
57#include "expmed.h"
58#include "dojump.h"
59#include "explow.h"
60#include "calls.h"
61#include "emit-rtl.h"
62#include "varasm.h"
63#include "stmt.h"
647a1567
RH
64#include "expr.h" /* init_return_column_size */
65#include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
66#include "output.h" /* asm_out_file */
67#include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
68
69
70/* ??? Poison these here until it can be done generically. They've been
71 totally replaced in this file; make sure it stays that way. */
72#undef DWARF2_UNWIND_INFO
73#undef DWARF2_FRAME_INFO
74#if (GCC_VERSION >= 3000)
75 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
76#endif
77
78#ifndef INCOMING_RETURN_ADDR_RTX
79#define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
80#endif
81
647a1567
RH
82/* Maximum size (in bytes) of an artificially generated label. */
83#define MAX_ARTIFICIAL_LABEL_BYTES 30
647a1567 84\f
f17d3401
RH
85/* A collected description of an entire row of the abstract CFI table. */
86typedef struct GTY(()) dw_cfi_row_struct
87{
88 /* The expression that computes the CFA, expressed in two different ways.
89 The CFA member for the simple cases, and the full CFI expression for
90 the complex cases. The later will be a DW_CFA_cfa_expression. */
91 dw_cfa_location cfa;
92 dw_cfi_ref cfa_cfi;
93
94 /* The expressions for any register column that is saved. */
95 cfi_vec reg_save;
f17d3401
RH
96} dw_cfi_row;
97
43215a89
RH
98/* The caller's ORIG_REG is saved in SAVED_IN_REG. */
99typedef struct GTY(()) reg_saved_in_data_struct {
100 rtx orig_reg;
101 rtx saved_in_reg;
102} reg_saved_in_data;
103
43215a89
RH
104
105/* Since we no longer have a proper CFG, we're going to create a facsimile
106 of one on the fly while processing the frame-related insns.
107
829bdd4b
RH
108 We create dw_trace_info structures for each extended basic block beginning
109 and ending at a "save point". Save points are labels, barriers, certain
110 notes, and of course the beginning and end of the function.
43215a89
RH
111
112 As we encounter control transfer insns, we propagate the "current"
829bdd4b
RH
113 row state across the edges to the starts of traces. When checking is
114 enabled, we validate that we propagate the same data from all sources.
43215a89
RH
115
116 All traces are members of the TRACE_INFO array, in the order in which
117 they appear in the instruction stream.
118
829bdd4b
RH
119 All save points are present in the TRACE_INDEX hash, mapping the insn
120 starting a trace to the dw_trace_info describing the trace. */
43215a89
RH
121
122typedef struct
123{
829bdd4b 124 /* The insn that begins the trace. */
7583d99a 125 rtx_insn *head;
43215a89
RH
126
127 /* The row state at the beginning and end of the trace. */
829bdd4b
RH
128 dw_cfi_row *beg_row, *end_row;
129
9a08d230
RH
130 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
131 while scanning insns. However, the args_size value is irrelevant at
132 any point except can_throw_internal_p insns. Therefore the "delay"
133 sizes the values that must actually be emitted for this trace. */
134 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
135 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
136
137 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
dc01c3d1 138 rtx_insn *eh_head;
9a08d230 139
43215a89
RH
140 /* The following variables contain data used in interpreting frame related
141 expressions. These are not part of the "real" row state as defined by
142 Dwarf, but it seems like they need to be propagated into a trace in case
143 frame related expressions have been sunk. */
144 /* ??? This seems fragile. These variables are fragments of a larger
145 expression. If we do not keep the entire expression together, we risk
146 not being able to put it together properly. Consider forcing targets
147 to generate self-contained expressions and dropping all of the magic
148 interpretation code in this file. Or at least refusing to shrink wrap
149 any frame related insn that doesn't contain a complete expression. */
150
151 /* The register used for saving registers to the stack, and its offset
152 from the CFA. */
153 dw_cfa_location cfa_store;
154
155 /* A temporary register holding an integral value used in adjusting SP
156 or setting up the store_reg. The "offset" field holds the integer
157 value, not an offset. */
158 dw_cfa_location cfa_temp;
159
160 /* A set of registers saved in other registers. This is the inverse of
161 the row->reg_save info, if the entry is a DW_CFA_register. This is
162 implemented as a flat array because it normally contains zero or 1
163 entry, depending on the target. IA-64 is the big spender here, using
164 a maximum of 5 entries. */
9771b263 165 vec<reg_saved_in_data> regs_saved_in_regs;
43215a89 166
200e10dc
RH
167 /* An identifier for this trace. Used only for debugging dumps. */
168 unsigned id;
169
170 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
171 bool switch_sections;
9a08d230
RH
172
173 /* True if we've seen different values incoming to beg_true_args_size. */
174 bool args_size_undefined;
43215a89
RH
175} dw_trace_info;
176
43215a89 177
829bdd4b 178typedef dw_trace_info *dw_trace_info_ref;
43215a89 179
43215a89 180
4a8fb1a1
LC
181/* Hashtable helpers. */
182
183struct trace_info_hasher : typed_noop_remove <dw_trace_info>
184{
185 typedef dw_trace_info value_type;
186 typedef dw_trace_info compare_type;
187 static inline hashval_t hash (const value_type *);
188 static inline bool equal (const value_type *, const compare_type *);
189};
190
191inline hashval_t
192trace_info_hasher::hash (const value_type *ti)
193{
194 return INSN_UID (ti->head);
195}
196
197inline bool
198trace_info_hasher::equal (const value_type *a, const compare_type *b)
199{
200 return a->head == b->head;
201}
202
203
43215a89 204/* The variables making up the pseudo-cfg, as described above. */
9771b263
DN
205static vec<dw_trace_info> trace_info;
206static vec<dw_trace_info_ref> trace_work_list;
c203e8a7 207static hash_table<trace_info_hasher> *trace_index;
43215a89 208
647a1567
RH
209/* A vector of call frame insns for the CIE. */
210cfi_vec cie_cfi_vec;
211
f17d3401
RH
212/* The state of the first row of the FDE table, which includes the
213 state provided by the CIE. */
ce363ef2 214static GTY(()) dw_cfi_row *cie_cfi_row;
f17d3401 215
43215a89
RH
216static GTY(()) reg_saved_in_data *cie_return_save;
217
647a1567
RH
218static GTY(()) unsigned long dwarf2out_cfi_label_num;
219
bc5612ed 220/* The insn after which a new CFI note should be emitted. */
141618e2 221static rtx add_cfi_insn;
bc5612ed 222
3edb53aa
RH
223/* When non-null, add_cfi will add the CFI to this vector. */
224static cfi_vec *add_cfi_vec;
225
43215a89
RH
226/* The current instruction trace. */
227static dw_trace_info *cur_trace;
228
229/* The current, i.e. most recently generated, row of the CFI table. */
230static dw_cfi_row *cur_row;
231
9a08d230
RH
232/* A copy of the current CFA, for use during the processing of a
233 single insn. */
234static dw_cfa_location *cur_cfa;
235
43215a89
RH
236/* We delay emitting a register save until either (a) we reach the end
237 of the prologue or (b) the register is clobbered. This clusters
238 register saves so that there are fewer pc advances. */
239
240typedef struct {
241 rtx reg;
242 rtx saved_reg;
243 HOST_WIDE_INT cfa_offset;
244} queued_reg_save;
245
43215a89 246
9771b263 247static vec<queued_reg_save> queued_reg_saves;
43215a89 248
bc5612ed
BS
249/* True if any CFI directives were emitted at the current insn. */
250static bool any_cfis_emitted;
4f42d714
RH
251
252/* Short-hand for commonly used register numbers. */
253static unsigned dw_stack_pointer_regnum;
254static unsigned dw_frame_pointer_regnum;
647a1567
RH
255\f
256/* Hook used by __throw. */
257
258rtx
259expand_builtin_dwarf_sp_column (void)
260{
4f42d714 261 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
647a1567
RH
262 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
263}
264
265/* MEM is a memory reference for the register size table, each element of
266 which has mode MODE. Initialize column C as a return address column. */
267
268static void
ef4bddc2 269init_return_column_size (machine_mode mode, rtx mem, unsigned int c)
647a1567
RH
270{
271 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
272 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
69db2d57
RS
273 emit_move_insn (adjust_address (mem, mode, offset),
274 gen_int_mode (size, mode));
647a1567
RH
275}
276
edbbaf3b
OH
277/* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
278 init_one_dwarf_reg_size to communicate on what has been done by the
279 latter. */
280
281typedef struct
282{
283 /* Whether the dwarf return column was initialized. */
284 bool wrote_return_column;
285
286 /* For each hard register REGNO, whether init_one_dwarf_reg_size
287 was given REGNO to process already. */
288 bool processed_regno [FIRST_PSEUDO_REGISTER];
289
290} init_one_dwarf_reg_state;
291
292/* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
293 initialize the dwarf register size table entry corresponding to register
294 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
295 use for the size entry to initialize, and INIT_STATE is the communication
296 datastructure conveying what we're doing to our caller. */
297
298static
299void init_one_dwarf_reg_size (int regno, machine_mode regmode,
300 rtx table, machine_mode slotmode,
301 init_one_dwarf_reg_state *init_state)
302{
303 const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
304 const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
a66272f6 305 const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
edbbaf3b 306
a66272f6 307 const HOST_WIDE_INT slotoffset = dcol * GET_MODE_SIZE (slotmode);
edbbaf3b
OH
308 const HOST_WIDE_INT regsize = GET_MODE_SIZE (regmode);
309
310 init_state->processed_regno[regno] = true;
311
312 if (rnum >= DWARF_FRAME_REGISTERS)
313 return;
314
315 if (dnum == DWARF_FRAME_RETURN_COLUMN)
316 {
317 if (regmode == VOIDmode)
318 return;
319 init_state->wrote_return_column = true;
320 }
321
322 if (slotoffset < 0)
323 return;
324
325 emit_move_insn (adjust_address (table, slotmode, slotoffset),
326 gen_int_mode (regsize, slotmode));
327}
328
329/* Generate code to initialize the dwarf register size table located
330 at the provided ADDRESS. */
647a1567
RH
331
332void
333expand_builtin_init_dwarf_reg_sizes (tree address)
334{
335 unsigned int i;
ef4bddc2 336 machine_mode mode = TYPE_MODE (char_type_node);
647a1567
RH
337 rtx addr = expand_normal (address);
338 rtx mem = gen_rtx_MEM (BLKmode, addr);
edbbaf3b
OH
339
340 init_one_dwarf_reg_state init_state;
341
342 memset ((char *)&init_state, 0, sizeof (init_state));
647a1567
RH
343
344 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
345 {
edbbaf3b
OH
346 machine_mode save_mode;
347 rtx span;
647a1567 348
edbbaf3b
OH
349 /* No point in processing a register multiple times. This could happen
350 with register spans, e.g. when a reg is first processed as a piece of
351 a span, then as a register on its own later on. */
352
353 if (init_state.processed_regno[i])
354 continue;
355
356 save_mode = targetm.dwarf_frame_reg_mode (i);
357 span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
647a1567 358
edbbaf3b
OH
359 if (!span)
360 init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
361 else
362 {
363 for (int si = 0; si < XVECLEN (span, 0); si++)
647a1567 364 {
edbbaf3b 365 rtx reg = XVECEXP (span, 0, si);
647a1567 366
edbbaf3b
OH
367 init_one_dwarf_reg_size
368 (REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
369 }
647a1567
RH
370 }
371 }
372
edbbaf3b 373 if (!init_state.wrote_return_column)
647a1567
RH
374 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
375
376#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
377 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
378#endif
379
380 targetm.init_dwarf_reg_sizes_extra (address);
381}
382
829bdd4b 383\f
829bdd4b 384static dw_trace_info *
7583d99a 385get_trace_info (rtx_insn *insn)
829bdd4b
RH
386{
387 dw_trace_info dummy;
388 dummy.head = insn;
c203e8a7 389 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
829bdd4b
RH
390}
391
392static bool
7583d99a 393save_point_p (rtx_insn *insn)
829bdd4b
RH
394{
395 /* Labels, except those that are really jump tables. */
396 if (LABEL_P (insn))
397 return inside_basic_block_p (insn);
398
399 /* We split traces at the prologue/epilogue notes because those
400 are points at which the unwind info is usually stable. This
401 makes it easier to find spots with identical unwind info so
402 that we can use remember/restore_state opcodes. */
403 if (NOTE_P (insn))
404 switch (NOTE_KIND (insn))
405 {
406 case NOTE_INSN_PROLOGUE_END:
407 case NOTE_INSN_EPILOGUE_BEG:
408 return true;
409 }
410
411 return false;
412}
413
647a1567
RH
414/* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
415
416static inline HOST_WIDE_INT
417div_data_align (HOST_WIDE_INT off)
418{
419 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
420 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
421 return r;
422}
423
424/* Return true if we need a signed version of a given opcode
425 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
426
427static inline bool
428need_data_align_sf_opcode (HOST_WIDE_INT off)
429{
430 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
431}
432
433/* Return a pointer to a newly allocated Call Frame Instruction. */
434
435static inline dw_cfi_ref
436new_cfi (void)
437{
766090c2 438 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
647a1567
RH
439
440 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
441 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
442
443 return cfi;
444}
445
f17d3401
RH
446/* Return a newly allocated CFI row, with no defined data. */
447
ce363ef2 448static dw_cfi_row *
f17d3401
RH
449new_cfi_row (void)
450{
766090c2 451 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
f17d3401
RH
452
453 row->cfa.reg = INVALID_REGNUM;
454
455 return row;
456}
457
458/* Return a copy of an existing CFI row. */
459
ce363ef2
RH
460static dw_cfi_row *
461copy_cfi_row (dw_cfi_row *src)
f17d3401 462{
766090c2 463 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
f17d3401
RH
464
465 *dst = *src;
9771b263 466 dst->reg_save = vec_safe_copy (src->reg_save);
f17d3401
RH
467
468 return dst;
469}
470
89e25f95 471/* Generate a new label for the CFI info to refer to. */
647a1567
RH
472
473static char *
89e25f95 474dwarf2out_cfi_label (void)
647a1567 475{
89e25f95
BS
476 int num = dwarf2out_cfi_label_num++;
477 char label[20];
647a1567 478
89e25f95 479 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
647a1567 480
89e25f95 481 return xstrdup (label);
647a1567
RH
482}
483
3edb53aa 484/* Add CFI either to the current insn stream or to a vector, or both. */
647a1567
RH
485
486static void
3edb53aa 487add_cfi (dw_cfi_ref cfi)
647a1567 488{
89e25f95 489 any_cfis_emitted = true;
141618e2
RH
490
491 if (add_cfi_insn != NULL)
647a1567 492 {
141618e2
RH
493 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
494 NOTE_CFI (add_cfi_insn) = cfi;
647a1567 495 }
141618e2 496
3edb53aa 497 if (add_cfi_vec != NULL)
9771b263 498 vec_safe_push (*add_cfi_vec, cfi);
647a1567
RH
499}
500
57e16c96
RH
501static void
502add_cfi_args_size (HOST_WIDE_INT size)
503{
504 dw_cfi_ref cfi = new_cfi ();
505
9a08d230
RH
506 /* While we can occasionally have args_size < 0 internally, this state
507 should not persist at a point we actually need an opcode. */
508 gcc_assert (size >= 0);
509
57e16c96
RH
510 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
511 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
512
513 add_cfi (cfi);
514}
515
516static void
517add_cfi_restore (unsigned reg)
518{
519 dw_cfi_ref cfi = new_cfi ();
520
521 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
522 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
523
524 add_cfi (cfi);
525}
526
f1a0e830
RH
527/* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
528 that the register column is no longer saved. */
529
530static void
ce363ef2 531update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
f1a0e830 532{
9771b263
DN
533 if (vec_safe_length (row->reg_save) <= column)
534 vec_safe_grow_cleared (row->reg_save, column + 1);
535 (*row->reg_save)[column] = cfi;
f1a0e830
RH
536}
537
647a1567
RH
538/* This function fills in aa dw_cfa_location structure from a dwarf location
539 descriptor sequence. */
540
541static void
84562394 542get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
647a1567 543{
84562394 544 struct dw_loc_descr_node *ptr;
647a1567
RH
545 cfa->offset = 0;
546 cfa->base_offset = 0;
547 cfa->indirect = 0;
548 cfa->reg = -1;
549
550 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
551 {
552 enum dwarf_location_atom op = ptr->dw_loc_opc;
553
554 switch (op)
555 {
556 case DW_OP_reg0:
557 case DW_OP_reg1:
558 case DW_OP_reg2:
559 case DW_OP_reg3:
560 case DW_OP_reg4:
561 case DW_OP_reg5:
562 case DW_OP_reg6:
563 case DW_OP_reg7:
564 case DW_OP_reg8:
565 case DW_OP_reg9:
566 case DW_OP_reg10:
567 case DW_OP_reg11:
568 case DW_OP_reg12:
569 case DW_OP_reg13:
570 case DW_OP_reg14:
571 case DW_OP_reg15:
572 case DW_OP_reg16:
573 case DW_OP_reg17:
574 case DW_OP_reg18:
575 case DW_OP_reg19:
576 case DW_OP_reg20:
577 case DW_OP_reg21:
578 case DW_OP_reg22:
579 case DW_OP_reg23:
580 case DW_OP_reg24:
581 case DW_OP_reg25:
582 case DW_OP_reg26:
583 case DW_OP_reg27:
584 case DW_OP_reg28:
585 case DW_OP_reg29:
586 case DW_OP_reg30:
587 case DW_OP_reg31:
588 cfa->reg = op - DW_OP_reg0;
589 break;
590 case DW_OP_regx:
591 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
592 break;
593 case DW_OP_breg0:
594 case DW_OP_breg1:
595 case DW_OP_breg2:
596 case DW_OP_breg3:
597 case DW_OP_breg4:
598 case DW_OP_breg5:
599 case DW_OP_breg6:
600 case DW_OP_breg7:
601 case DW_OP_breg8:
602 case DW_OP_breg9:
603 case DW_OP_breg10:
604 case DW_OP_breg11:
605 case DW_OP_breg12:
606 case DW_OP_breg13:
607 case DW_OP_breg14:
608 case DW_OP_breg15:
609 case DW_OP_breg16:
610 case DW_OP_breg17:
611 case DW_OP_breg18:
612 case DW_OP_breg19:
613 case DW_OP_breg20:
614 case DW_OP_breg21:
615 case DW_OP_breg22:
616 case DW_OP_breg23:
617 case DW_OP_breg24:
618 case DW_OP_breg25:
619 case DW_OP_breg26:
620 case DW_OP_breg27:
621 case DW_OP_breg28:
622 case DW_OP_breg29:
623 case DW_OP_breg30:
624 case DW_OP_breg31:
625 cfa->reg = op - DW_OP_breg0;
626 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
627 break;
628 case DW_OP_bregx:
629 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
630 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
631 break;
632 case DW_OP_deref:
633 cfa->indirect = 1;
634 break;
635 case DW_OP_plus_uconst:
636 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
637 break;
638 default:
639 gcc_unreachable ();
640 }
641 }
642}
643
4a8ee122
RH
644/* Find the previous value for the CFA, iteratively. CFI is the opcode
645 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
646 one level of remember/restore state processing. */
647a1567
RH
647
648void
649lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
650{
651 switch (cfi->dw_cfi_opc)
652 {
653 case DW_CFA_def_cfa_offset:
654 case DW_CFA_def_cfa_offset_sf:
655 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
656 break;
657 case DW_CFA_def_cfa_register:
658 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
659 break;
660 case DW_CFA_def_cfa:
661 case DW_CFA_def_cfa_sf:
662 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
663 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
664 break;
665 case DW_CFA_def_cfa_expression:
666 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
667 break;
668
669 case DW_CFA_remember_state:
670 gcc_assert (!remember->in_use);
671 *remember = *loc;
672 remember->in_use = 1;
673 break;
674 case DW_CFA_restore_state:
675 gcc_assert (remember->in_use);
676 *loc = *remember;
677 remember->in_use = 0;
678 break;
679
680 default:
681 break;
682 }
683}
684
647a1567
RH
685/* Determine if two dw_cfa_location structures define the same data. */
686
687bool
688cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
689{
690 return (loc1->reg == loc2->reg
691 && loc1->offset == loc2->offset
692 && loc1->indirect == loc2->indirect
693 && (loc1->indirect == 0
694 || loc1->base_offset == loc2->base_offset));
695}
696
57e16c96 697/* Determine if two CFI operands are identical. */
647a1567 698
57e16c96
RH
699static bool
700cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
647a1567 701{
57e16c96
RH
702 switch (t)
703 {
704 case dw_cfi_oprnd_unused:
705 return true;
706 case dw_cfi_oprnd_reg_num:
707 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
708 case dw_cfi_oprnd_offset:
709 return a->dw_cfi_offset == b->dw_cfi_offset;
710 case dw_cfi_oprnd_addr:
711 return (a->dw_cfi_addr == b->dw_cfi_addr
712 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
713 case dw_cfi_oprnd_loc:
714 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
715 }
716 gcc_unreachable ();
717}
647a1567 718
57e16c96
RH
719/* Determine if two CFI entries are identical. */
720
721static bool
722cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
723{
724 enum dwarf_call_frame_info opc;
725
726 /* Make things easier for our callers, including missing operands. */
727 if (a == b)
728 return true;
729 if (a == NULL || b == NULL)
730 return false;
731
732 /* Obviously, the opcodes must match. */
733 opc = a->dw_cfi_opc;
734 if (opc != b->dw_cfi_opc)
735 return false;
736
737 /* Compare the two operands, re-using the type of the operands as
738 already exposed elsewhere. */
739 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
740 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
741 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
742 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
743}
744
829bdd4b
RH
745/* Determine if two CFI_ROW structures are identical. */
746
747static bool
748cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
749{
750 size_t i, n_a, n_b, n_max;
751
752 if (a->cfa_cfi)
753 {
754 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
755 return false;
756 }
757 else if (!cfa_equal_p (&a->cfa, &b->cfa))
758 return false;
759
9771b263
DN
760 n_a = vec_safe_length (a->reg_save);
761 n_b = vec_safe_length (b->reg_save);
829bdd4b
RH
762 n_max = MAX (n_a, n_b);
763
764 for (i = 0; i < n_max; ++i)
765 {
766 dw_cfi_ref r_a = NULL, r_b = NULL;
767
768 if (i < n_a)
9771b263 769 r_a = (*a->reg_save)[i];
829bdd4b 770 if (i < n_b)
9771b263 771 r_b = (*b->reg_save)[i];
829bdd4b
RH
772
773 if (!cfi_equal_p (r_a, r_b))
774 return false;
775 }
776
777 return true;
778}
779
57e16c96
RH
780/* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
781 what opcode to emit. Returns the CFI opcode to effect the change, or
782 NULL if NEW_CFA == OLD_CFA. */
783
784static dw_cfi_ref
785def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
786{
787 dw_cfi_ref cfi;
647a1567 788
647a1567 789 /* If nothing changed, no need to issue any call frame instructions. */
57e16c96
RH
790 if (cfa_equal_p (old_cfa, new_cfa))
791 return NULL;
647a1567
RH
792
793 cfi = new_cfi ();
794
57e16c96 795 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
647a1567
RH
796 {
797 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
798 the CFA register did not change but the offset did. The data
799 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
800 in the assembler via the .cfi_def_cfa_offset directive. */
57e16c96 801 if (new_cfa->offset < 0)
647a1567
RH
802 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
803 else
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
57e16c96 805 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
647a1567 806 }
57e16c96
RH
807 else if (new_cfa->offset == old_cfa->offset
808 && old_cfa->reg != INVALID_REGNUM
809 && !new_cfa->indirect
810 && !old_cfa->indirect)
647a1567
RH
811 {
812 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
813 indicating the CFA register has changed to <register> but the
814 offset has not changed. */
815 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
57e16c96 816 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
647a1567 817 }
57e16c96 818 else if (new_cfa->indirect == 0)
647a1567
RH
819 {
820 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
821 indicating the CFA register has changed to <register> with
822 the specified offset. The data factoring for DW_CFA_def_cfa_sf
823 happens in output_cfi, or in the assembler via the .cfi_def_cfa
824 directive. */
57e16c96 825 if (new_cfa->offset < 0)
647a1567
RH
826 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
827 else
828 cfi->dw_cfi_opc = DW_CFA_def_cfa;
57e16c96
RH
829 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
830 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
647a1567
RH
831 }
832 else
833 {
834 /* Construct a DW_CFA_def_cfa_expression instruction to
835 calculate the CFA using a full location expression since no
836 register-offset pair is available. */
84562394 837 struct dw_loc_descr_node *loc_list;
647a1567
RH
838
839 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
57e16c96 840 loc_list = build_cfa_loc (new_cfa, 0);
647a1567
RH
841 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
842 }
843
57e16c96
RH
844 return cfi;
845}
846
847/* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
848
849static void
850def_cfa_1 (dw_cfa_location *new_cfa)
851{
852 dw_cfi_ref cfi;
853
43215a89
RH
854 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
855 cur_trace->cfa_store.offset = new_cfa->offset;
57e16c96
RH
856
857 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
858 if (cfi)
859 {
860 cur_row->cfa = *new_cfa;
8f1594b2
RH
861 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
862 ? cfi : NULL);
57e16c96
RH
863
864 add_cfi (cfi);
865 }
647a1567
RH
866}
867
868/* Add the CFI for saving a register. REG is the CFA column number.
647a1567
RH
869 If SREG is -1, the register is saved at OFFSET from the CFA;
870 otherwise it is saved in SREG. */
871
872static void
3edb53aa 873reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
647a1567 874{
3edb53aa 875 dw_fde_ref fde = cfun ? cfun->fde : NULL;
647a1567 876 dw_cfi_ref cfi = new_cfi ();
647a1567
RH
877
878 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
879
880 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
881 if (fde
882 && fde->stack_realign
883 && sreg == INVALID_REGNUM)
884 {
885 cfi->dw_cfi_opc = DW_CFA_expression;
886 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
887 cfi->dw_cfi_oprnd2.dw_cfi_loc
f17d3401
RH
888 = build_cfa_aligned_loc (&cur_row->cfa, offset,
889 fde->stack_realignment);
647a1567
RH
890 }
891 else if (sreg == INVALID_REGNUM)
892 {
893 if (need_data_align_sf_opcode (offset))
894 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
895 else if (reg & ~0x3f)
896 cfi->dw_cfi_opc = DW_CFA_offset_extended;
897 else
898 cfi->dw_cfi_opc = DW_CFA_offset;
899 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
900 }
901 else if (sreg == reg)
f1a0e830
RH
902 {
903 /* While we could emit something like DW_CFA_same_value or
904 DW_CFA_restore, we never expect to see something like that
905 in a prologue. This is more likely to be a bug. A backend
906 can always bypass this by using REG_CFA_RESTORE directly. */
907 gcc_unreachable ();
908 }
647a1567
RH
909 else
910 {
911 cfi->dw_cfi_opc = DW_CFA_register;
912 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
913 }
914
3edb53aa 915 add_cfi (cfi);
f1a0e830 916 update_row_reg_save (cur_row, reg, cfi);
647a1567
RH
917}
918
9a08d230
RH
919/* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
920 and adjust data structures to match. */
647a1567
RH
921
922static void
9a08d230 923notice_args_size (rtx insn)
647a1567 924{
9a08d230
RH
925 HOST_WIDE_INT args_size, delta;
926 rtx note;
647a1567 927
9a08d230
RH
928 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
929 if (note == NULL)
930 return;
f17d3401 931
9a08d230
RH
932 args_size = INTVAL (XEXP (note, 0));
933 delta = args_size - cur_trace->end_true_args_size;
934 if (delta == 0)
935 return;
647a1567 936
9a08d230 937 cur_trace->end_true_args_size = args_size;
43215a89 938
9a08d230
RH
939 /* If the CFA is computed off the stack pointer, then we must adjust
940 the computation of the CFA as well. */
941 if (cur_cfa->reg == dw_stack_pointer_regnum)
942 {
943 gcc_assert (!cur_cfa->indirect);
647a1567 944
9a08d230
RH
945 /* Convert a change in args_size (always a positive in the
946 direction of stack growth) to a change in stack pointer. */
981dc735 947#ifndef STACK_GROWS_DOWNWARD
9a08d230 948 delta = -delta;
981dc735 949#endif
9a08d230
RH
950 cur_cfa->offset += delta;
951 }
647a1567
RH
952}
953
9a08d230
RH
954/* A subroutine of scan_trace. INSN is can_throw_internal. Update the
955 data within the trace related to EH insns and args_size. */
647a1567
RH
956
957static void
dc01c3d1 958notice_eh_throw (rtx_insn *insn)
647a1567 959{
9a08d230 960 HOST_WIDE_INT args_size;
647a1567 961
9a08d230
RH
962 args_size = cur_trace->end_true_args_size;
963 if (cur_trace->eh_head == NULL)
647a1567 964 {
9a08d230
RH
965 cur_trace->eh_head = insn;
966 cur_trace->beg_delay_args_size = args_size;
967 cur_trace->end_delay_args_size = args_size;
647a1567 968 }
9a08d230 969 else if (cur_trace->end_delay_args_size != args_size)
647a1567 970 {
9a08d230 971 cur_trace->end_delay_args_size = args_size;
647a1567 972
9a08d230
RH
973 /* ??? If the CFA is the stack pointer, search backward for the last
974 CFI note and insert there. Given that the stack changed for the
975 args_size change, there *must* be such a note in between here and
976 the last eh insn. */
977 add_cfi_args_size (args_size);
978 }
647a1567
RH
979}
980
7263c6d7 981/* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
4f42d714
RH
982/* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
983 used in places where rtl is prohibited. */
7263c6d7
RH
984
985static inline unsigned
986dwf_regno (const_rtx reg)
987{
362805fc 988 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
4f42d714 989 return DWARF_FRAME_REGNUM (REGNO (reg));
7263c6d7
RH
990}
991
647a1567
RH
992/* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
993
994static bool
995compare_reg_or_pc (rtx x, rtx y)
996{
997 if (REG_P (x) && REG_P (y))
998 return REGNO (x) == REGNO (y);
999 return x == y;
1000}
1001
1002/* Record SRC as being saved in DEST. DEST may be null to delete an
1003 existing entry. SRC may be a register or PC_RTX. */
1004
1005static void
1006record_reg_saved_in_reg (rtx dest, rtx src)
1007{
1008 reg_saved_in_data *elt;
1009 size_t i;
1010
9771b263 1011 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
647a1567
RH
1012 if (compare_reg_or_pc (elt->orig_reg, src))
1013 {
1014 if (dest == NULL)
9771b263 1015 cur_trace->regs_saved_in_regs.unordered_remove (i);
647a1567
RH
1016 else
1017 elt->saved_in_reg = dest;
1018 return;
1019 }
1020
1021 if (dest == NULL)
1022 return;
1023
f32682ca 1024 reg_saved_in_data e = {src, dest};
9771b263 1025 cur_trace->regs_saved_in_regs.safe_push (e);
647a1567
RH
1026}
1027
647a1567
RH
1028/* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1029 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1030
1031static void
89e25f95 1032queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
647a1567 1033{
999646c1 1034 queued_reg_save *q;
f32682ca 1035 queued_reg_save e = {reg, sreg, offset};
999646c1 1036 size_t i;
647a1567
RH
1037
1038 /* Duplicates waste space, but it's also necessary to remove them
a8e5c0e7 1039 for correctness, since the queue gets output in reverse order. */
9771b263 1040 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
a8e5c0e7 1041 if (compare_reg_or_pc (q->reg, reg))
f32682ca
DN
1042 {
1043 *q = e;
1044 return;
1045 }
647a1567 1046
9771b263 1047 queued_reg_saves.safe_push (e);
647a1567
RH
1048}
1049
1050/* Output all the entries in QUEUED_REG_SAVES. */
1051
1052static void
1053dwarf2out_flush_queued_reg_saves (void)
1054{
999646c1
RH
1055 queued_reg_save *q;
1056 size_t i;
647a1567 1057
9771b263 1058 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
647a1567
RH
1059 {
1060 unsigned int reg, sreg;
1061
1062 record_reg_saved_in_reg (q->saved_reg, q->reg);
1063
a8e5c0e7
RH
1064 if (q->reg == pc_rtx)
1065 reg = DWARF_FRAME_RETURN_COLUMN;
1066 else
7263c6d7 1067 reg = dwf_regno (q->reg);
647a1567 1068 if (q->saved_reg)
7263c6d7 1069 sreg = dwf_regno (q->saved_reg);
647a1567
RH
1070 else
1071 sreg = INVALID_REGNUM;
3edb53aa 1072 reg_save (reg, sreg, q->cfa_offset);
647a1567
RH
1073 }
1074
9771b263 1075 queued_reg_saves.truncate (0);
647a1567
RH
1076}
1077
1078/* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1079 location for? Or, does it clobber a register which we've previously
1080 said that some other register is saved in, and for which we now
1081 have a new location for? */
1082
1083static bool
1084clobbers_queued_reg_save (const_rtx insn)
1085{
999646c1
RH
1086 queued_reg_save *q;
1087 size_t iq;
647a1567 1088
9771b263 1089 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
647a1567 1090 {
999646c1 1091 size_t ir;
647a1567
RH
1092 reg_saved_in_data *rir;
1093
1094 if (modified_in_p (q->reg, insn))
1095 return true;
1096
9771b263 1097 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
647a1567
RH
1098 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1099 && modified_in_p (rir->saved_in_reg, insn))
1100 return true;
1101 }
1102
1103 return false;
1104}
1105
1106/* What register, if any, is currently saved in REG? */
1107
1108static rtx
1109reg_saved_in (rtx reg)
1110{
1111 unsigned int regn = REGNO (reg);
999646c1 1112 queued_reg_save *q;
647a1567
RH
1113 reg_saved_in_data *rir;
1114 size_t i;
1115
9771b263 1116 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
647a1567
RH
1117 if (q->saved_reg && regn == REGNO (q->saved_reg))
1118 return q->reg;
1119
9771b263 1120 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
647a1567
RH
1121 if (regn == REGNO (rir->saved_in_reg))
1122 return rir->orig_reg;
1123
1124 return NULL_RTX;
1125}
1126
647a1567
RH
1127/* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1128
1129static void
89e25f95 1130dwarf2out_frame_debug_def_cfa (rtx pat)
647a1567 1131{
9a08d230 1132 memset (cur_cfa, 0, sizeof (*cur_cfa));
647a1567 1133
8f1594b2 1134 if (GET_CODE (pat) == PLUS)
647a1567 1135 {
9a08d230 1136 cur_cfa->offset = INTVAL (XEXP (pat, 1));
8f1594b2
RH
1137 pat = XEXP (pat, 0);
1138 }
1139 if (MEM_P (pat))
1140 {
9a08d230 1141 cur_cfa->indirect = 1;
647a1567
RH
1142 pat = XEXP (pat, 0);
1143 if (GET_CODE (pat) == PLUS)
1144 {
9a08d230 1145 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
647a1567
RH
1146 pat = XEXP (pat, 0);
1147 }
647a1567 1148 }
8f1594b2
RH
1149 /* ??? If this fails, we could be calling into the _loc functions to
1150 define a full expression. So far no port does that. */
1151 gcc_assert (REG_P (pat));
9a08d230 1152 cur_cfa->reg = dwf_regno (pat);
647a1567
RH
1153}
1154
1155/* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1156
1157static void
89e25f95 1158dwarf2out_frame_debug_adjust_cfa (rtx pat)
647a1567
RH
1159{
1160 rtx src, dest;
1161
1162 gcc_assert (GET_CODE (pat) == SET);
1163 dest = XEXP (pat, 0);
1164 src = XEXP (pat, 1);
1165
1166 switch (GET_CODE (src))
1167 {
1168 case PLUS:
9a08d230
RH
1169 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1170 cur_cfa->offset -= INTVAL (XEXP (src, 1));
647a1567
RH
1171 break;
1172
1173 case REG:
9a08d230 1174 break;
647a1567
RH
1175
1176 default:
9a08d230 1177 gcc_unreachable ();
647a1567
RH
1178 }
1179
9a08d230
RH
1180 cur_cfa->reg = dwf_regno (dest);
1181 gcc_assert (cur_cfa->indirect == 0);
647a1567
RH
1182}
1183
1184/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1185
1186static void
89e25f95 1187dwarf2out_frame_debug_cfa_offset (rtx set)
647a1567
RH
1188{
1189 HOST_WIDE_INT offset;
1190 rtx src, addr, span;
1191 unsigned int sregno;
1192
1193 src = XEXP (set, 1);
1194 addr = XEXP (set, 0);
1195 gcc_assert (MEM_P (addr));
1196 addr = XEXP (addr, 0);
1197
1198 /* As documented, only consider extremely simple addresses. */
1199 switch (GET_CODE (addr))
1200 {
1201 case REG:
9a08d230
RH
1202 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1203 offset = -cur_cfa->offset;
647a1567
RH
1204 break;
1205 case PLUS:
9a08d230
RH
1206 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1207 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
647a1567
RH
1208 break;
1209 default:
1210 gcc_unreachable ();
1211 }
1212
1213 if (src == pc_rtx)
1214 {
1215 span = NULL;
1216 sregno = DWARF_FRAME_RETURN_COLUMN;
1217 }
43215a89 1218 else
647a1567
RH
1219 {
1220 span = targetm.dwarf_register_span (src);
7263c6d7 1221 sregno = dwf_regno (src);
647a1567
RH
1222 }
1223
1224 /* ??? We'd like to use queue_reg_save, but we need to come up with
1225 a different flushing heuristic for epilogues. */
1226 if (!span)
3edb53aa 1227 reg_save (sregno, INVALID_REGNUM, offset);
647a1567
RH
1228 else
1229 {
1230 /* We have a PARALLEL describing where the contents of SRC live.
a4d47cac 1231 Adjust the offset for each piece of the PARALLEL. */
647a1567
RH
1232 HOST_WIDE_INT span_offset = offset;
1233
1234 gcc_assert (GET_CODE (span) == PARALLEL);
1235
a4d47cac
EB
1236 const int par_len = XVECLEN (span, 0);
1237 for (int par_index = 0; par_index < par_len; par_index++)
647a1567
RH
1238 {
1239 rtx elem = XVECEXP (span, 0, par_index);
7263c6d7 1240 sregno = dwf_regno (src);
3edb53aa 1241 reg_save (sregno, INVALID_REGNUM, span_offset);
647a1567
RH
1242 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1243 }
1244 }
1245}
1246
1247/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1248
1249static void
89e25f95 1250dwarf2out_frame_debug_cfa_register (rtx set)
647a1567
RH
1251{
1252 rtx src, dest;
1253 unsigned sregno, dregno;
1254
1255 src = XEXP (set, 1);
1256 dest = XEXP (set, 0);
1257
a8e5c0e7 1258 record_reg_saved_in_reg (dest, src);
647a1567
RH
1259 if (src == pc_rtx)
1260 sregno = DWARF_FRAME_RETURN_COLUMN;
1261 else
7263c6d7 1262 sregno = dwf_regno (src);
647a1567 1263
7263c6d7 1264 dregno = dwf_regno (dest);
647a1567
RH
1265
1266 /* ??? We'd like to use queue_reg_save, but we need to come up with
1267 a different flushing heuristic for epilogues. */
3edb53aa 1268 reg_save (sregno, dregno, 0);
647a1567
RH
1269}
1270
1271/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1272
1273static void
89e25f95 1274dwarf2out_frame_debug_cfa_expression (rtx set)
647a1567
RH
1275{
1276 rtx src, dest, span;
1277 dw_cfi_ref cfi = new_cfi ();
f1a0e830 1278 unsigned regno;
647a1567
RH
1279
1280 dest = SET_DEST (set);
1281 src = SET_SRC (set);
1282
1283 gcc_assert (REG_P (src));
1284 gcc_assert (MEM_P (dest));
1285
1286 span = targetm.dwarf_register_span (src);
1287 gcc_assert (!span);
1288
f1a0e830
RH
1289 regno = dwf_regno (src);
1290
647a1567 1291 cfi->dw_cfi_opc = DW_CFA_expression;
f1a0e830 1292 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
647a1567
RH
1293 cfi->dw_cfi_oprnd2.dw_cfi_loc
1294 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1295 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1296
1297 /* ??? We'd like to use queue_reg_save, were the interface different,
1298 and, as above, we could manage flushing for epilogues. */
3edb53aa 1299 add_cfi (cfi);
f1a0e830 1300 update_row_reg_save (cur_row, regno, cfi);
647a1567
RH
1301}
1302
1303/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1304
1305static void
89e25f95 1306dwarf2out_frame_debug_cfa_restore (rtx reg)
647a1567 1307{
a4d47cac
EB
1308 gcc_assert (REG_P (reg));
1309
1310 rtx span = targetm.dwarf_register_span (reg);
1311 if (!span)
1312 {
1313 unsigned int regno = dwf_regno (reg);
1314 add_cfi_restore (regno);
1315 update_row_reg_save (cur_row, regno, NULL);
1316 }
1317 else
1318 {
1319 /* We have a PARALLEL describing where the contents of REG live.
1320 Restore the register for each piece of the PARALLEL. */
1321 gcc_assert (GET_CODE (span) == PARALLEL);
647a1567 1322
a4d47cac
EB
1323 const int par_len = XVECLEN (span, 0);
1324 for (int par_index = 0; par_index < par_len; par_index++)
1325 {
1326 reg = XVECEXP (span, 0, par_index);
1327 gcc_assert (REG_P (reg));
1328 unsigned int regno = dwf_regno (reg);
1329 add_cfi_restore (regno);
1330 update_row_reg_save (cur_row, regno, NULL);
1331 }
1332 }
647a1567
RH
1333}
1334
1335/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1336 ??? Perhaps we should note in the CIE where windows are saved (instead of
1337 assuming 0(cfa)) and what registers are in the window. */
1338
1339static void
89e25f95 1340dwarf2out_frame_debug_cfa_window_save (void)
647a1567
RH
1341{
1342 dw_cfi_ref cfi = new_cfi ();
1343
1344 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
3edb53aa 1345 add_cfi (cfi);
647a1567
RH
1346}
1347
1348/* Record call frame debugging information for an expression EXPR,
1349 which either sets SP or FP (adjusting how we calculate the frame
1350 address) or saves a register to the stack or another register.
1351 LABEL indicates the address of EXPR.
1352
1353 This function encodes a state machine mapping rtxes to actions on
1354 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1355 users need not read the source code.
1356
1357 The High-Level Picture
1358
1359 Changes in the register we use to calculate the CFA: Currently we
1360 assume that if you copy the CFA register into another register, we
1361 should take the other one as the new CFA register; this seems to
1362 work pretty well. If it's wrong for some target, it's simple
1363 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1364
1365 Changes in the register we use for saving registers to the stack:
1366 This is usually SP, but not always. Again, we deduce that if you
1367 copy SP into another register (and SP is not the CFA register),
1368 then the new register is the one we will be using for register
1369 saves. This also seems to work.
1370
1371 Register saves: There's not much guesswork about this one; if
1372 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1373 register save, and the register used to calculate the destination
1374 had better be the one we think we're using for this purpose.
1375 It's also assumed that a copy from a call-saved register to another
1376 register is saving that register if RTX_FRAME_RELATED_P is set on
1377 that instruction. If the copy is from a call-saved register to
1378 the *same* register, that means that the register is now the same
1379 value as in the caller.
1380
1381 Except: If the register being saved is the CFA register, and the
1382 offset is nonzero, we are saving the CFA, so we assume we have to
1383 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1384 the intent is to save the value of SP from the previous frame.
1385
1386 In addition, if a register has previously been saved to a different
1387 register,
1388
1389 Invariants / Summaries of Rules
1390
1391 cfa current rule for calculating the CFA. It usually
f17d3401 1392 consists of a register and an offset. This is
9a08d230 1393 actually stored in *cur_cfa, but abbreviated
f17d3401 1394 for the purposes of this documentation.
647a1567
RH
1395 cfa_store register used by prologue code to save things to the stack
1396 cfa_store.offset is the offset from the value of
1397 cfa_store.reg to the actual CFA
1398 cfa_temp register holding an integral value. cfa_temp.offset
1399 stores the value, which will be used to adjust the
1400 stack pointer. cfa_temp is also used like cfa_store,
1401 to track stores to the stack via fp or a temp reg.
1402
1403 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1404 with cfa.reg as the first operand changes the cfa.reg and its
1405 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1406 cfa_temp.offset.
1407
1408 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1409 expression yielding a constant. This sets cfa_temp.reg
1410 and cfa_temp.offset.
1411
1412 Rule 5: Create a new register cfa_store used to save items to the
1413 stack.
1414
1415 Rules 10-14: Save a register to the stack. Define offset as the
1416 difference of the original location and cfa_store's
1417 location (or cfa_temp's location if cfa_temp is used).
1418
1419 Rules 16-20: If AND operation happens on sp in prologue, we assume
1420 stack is realigned. We will use a group of DW_OP_XXX
1421 expressions to represent the location of the stored
1422 register instead of CFA+offset.
1423
1424 The Rules
1425
1426 "{a,b}" indicates a choice of a xor b.
1427 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1428
1429 Rule 1:
1430 (set <reg1> <reg2>:cfa.reg)
1431 effects: cfa.reg = <reg1>
1432 cfa.offset unchanged
1433 cfa_temp.reg = <reg1>
1434 cfa_temp.offset = cfa.offset
1435
1436 Rule 2:
1437 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1438 {<const_int>,<reg>:cfa_temp.reg}))
1439 effects: cfa.reg = sp if fp used
1440 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1441 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1442 if cfa_store.reg==sp
1443
1444 Rule 3:
1445 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1446 effects: cfa.reg = fp
1447 cfa_offset += +/- <const_int>
1448
1449 Rule 4:
1450 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1451 constraints: <reg1> != fp
1452 <reg1> != sp
1453 effects: cfa.reg = <reg1>
1454 cfa_temp.reg = <reg1>
1455 cfa_temp.offset = cfa.offset
1456
1457 Rule 5:
1458 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1459 constraints: <reg1> != fp
1460 <reg1> != sp
1461 effects: cfa_store.reg = <reg1>
1462 cfa_store.offset = cfa.offset - cfa_temp.offset
1463
1464 Rule 6:
1465 (set <reg> <const_int>)
1466 effects: cfa_temp.reg = <reg>
1467 cfa_temp.offset = <const_int>
1468
1469 Rule 7:
1470 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1471 effects: cfa_temp.reg = <reg1>
1472 cfa_temp.offset |= <const_int>
1473
1474 Rule 8:
1475 (set <reg> (high <exp>))
1476 effects: none
1477
1478 Rule 9:
1479 (set <reg> (lo_sum <exp> <const_int>))
1480 effects: cfa_temp.reg = <reg>
1481 cfa_temp.offset = <const_int>
1482
1483 Rule 10:
1484 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1485 effects: cfa_store.offset -= <const_int>
1486 cfa.offset = cfa_store.offset if cfa.reg == sp
1487 cfa.reg = sp
1488 cfa.base_offset = -cfa_store.offset
1489
1490 Rule 11:
1491 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1492 effects: cfa_store.offset += -/+ mode_size(mem)
1493 cfa.offset = cfa_store.offset if cfa.reg == sp
1494 cfa.reg = sp
1495 cfa.base_offset = -cfa_store.offset
1496
1497 Rule 12:
1498 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1499
1500 <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1503
1504 Rule 13:
1505 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1506 effects: cfa.reg = <reg1>
1507 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1508
1509 Rule 14:
1510 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1511 effects: cfa.reg = <reg1>
1512 cfa.base_offset = -cfa_temp.offset
1513 cfa_temp.offset -= mode_size(mem)
1514
1515 Rule 15:
1516 (set <reg> {unspec, unspec_volatile})
1517 effects: target-dependent
1518
1519 Rule 16:
1520 (set sp (and: sp <const_int>))
1521 constraints: cfa_store.reg == sp
a518b996 1522 effects: cfun->fde.stack_realign = 1
647a1567
RH
1523 cfa_store.offset = 0
1524 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1525
1526 Rule 17:
1527 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1528 effects: cfa_store.offset += -/+ mode_size(mem)
1529
1530 Rule 18:
1531 (set (mem ({pre_inc, pre_dec} sp)) fp)
1532 constraints: fde->stack_realign == 1
1533 effects: cfa_store.offset = 0
1534 cfa.reg != HARD_FRAME_POINTER_REGNUM
1535
1536 Rule 19:
1537 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1538 constraints: fde->stack_realign == 1
1539 && cfa.offset == 0
1540 && cfa.indirect == 0
1541 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1542 effects: Use DW_CFA_def_cfa_expression to define cfa
1543 cfa.reg == fde->drap_reg */
1544
1545static void
89e25f95 1546dwarf2out_frame_debug_expr (rtx expr)
647a1567
RH
1547{
1548 rtx src, dest, span;
1549 HOST_WIDE_INT offset;
1550 dw_fde_ref fde;
1551
1552 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1553 the PARALLEL independently. The first element is always processed if
1554 it is a SET. This is for backward compatibility. Other elements
1555 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1556 flag is set in them. */
1557 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1558 {
1559 int par_index;
1560 int limit = XVECLEN (expr, 0);
1561 rtx elem;
1562
1563 /* PARALLELs have strict read-modify-write semantics, so we
1564 ought to evaluate every rvalue before changing any lvalue.
1565 It's cumbersome to do that in general, but there's an
1566 easy approximation that is enough for all current users:
1567 handle register saves before register assignments. */
1568 if (GET_CODE (expr) == PARALLEL)
1569 for (par_index = 0; par_index < limit; par_index++)
1570 {
1571 elem = XVECEXP (expr, 0, par_index);
1572 if (GET_CODE (elem) == SET
1573 && MEM_P (SET_DEST (elem))
1574 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
89e25f95 1575 dwarf2out_frame_debug_expr (elem);
647a1567
RH
1576 }
1577
1578 for (par_index = 0; par_index < limit; par_index++)
1579 {
1580 elem = XVECEXP (expr, 0, par_index);
1581 if (GET_CODE (elem) == SET
1582 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1583 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
89e25f95 1584 dwarf2out_frame_debug_expr (elem);
647a1567
RH
1585 }
1586 return;
1587 }
1588
1589 gcc_assert (GET_CODE (expr) == SET);
1590
1591 src = SET_SRC (expr);
1592 dest = SET_DEST (expr);
1593
1594 if (REG_P (src))
1595 {
1596 rtx rsi = reg_saved_in (src);
1597 if (rsi)
1598 src = rsi;
1599 }
1600
a518b996 1601 fde = cfun->fde;
647a1567
RH
1602
1603 switch (GET_CODE (dest))
1604 {
1605 case REG:
1606 switch (GET_CODE (src))
1607 {
1608 /* Setting FP from SP. */
1609 case REG:
9a08d230 1610 if (cur_cfa->reg == dwf_regno (src))
647a1567
RH
1611 {
1612 /* Rule 1 */
1613 /* Update the CFA rule wrt SP or FP. Make sure src is
1614 relative to the current CFA register.
1615
1616 We used to require that dest be either SP or FP, but the
1617 ARM copies SP to a temporary register, and from there to
1618 FP. So we just rely on the backends to only set
1619 RTX_FRAME_RELATED_P on appropriate insns. */
9a08d230
RH
1620 cur_cfa->reg = dwf_regno (dest);
1621 cur_trace->cfa_temp.reg = cur_cfa->reg;
1622 cur_trace->cfa_temp.offset = cur_cfa->offset;
647a1567
RH
1623 }
1624 else
1625 {
1626 /* Saving a register in a register. */
1627 gcc_assert (!fixed_regs [REGNO (dest)]
1628 /* For the SPARC and its register window. */
7263c6d7 1629 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
647a1567
RH
1630
1631 /* After stack is aligned, we can only save SP in FP
1632 if drap register is used. In this case, we have
1633 to restore stack pointer with the CFA value and we
1634 don't generate this DWARF information. */
1635 if (fde
1636 && fde->stack_realign
1637 && REGNO (src) == STACK_POINTER_REGNUM)
1638 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1639 && fde->drap_reg != INVALID_REGNUM
9a08d230 1640 && cur_cfa->reg != dwf_regno (src));
647a1567 1641 else
89e25f95 1642 queue_reg_save (src, dest, 0);
647a1567
RH
1643 }
1644 break;
1645
1646 case PLUS:
1647 case MINUS:
1648 case LO_SUM:
1649 if (dest == stack_pointer_rtx)
1650 {
1651 /* Rule 2 */
1652 /* Adjusting SP. */
1653 switch (GET_CODE (XEXP (src, 1)))
1654 {
1655 case CONST_INT:
1656 offset = INTVAL (XEXP (src, 1));
1657 break;
1658 case REG:
43215a89
RH
1659 gcc_assert (dwf_regno (XEXP (src, 1))
1660 == cur_trace->cfa_temp.reg);
1661 offset = cur_trace->cfa_temp.offset;
647a1567
RH
1662 break;
1663 default:
1664 gcc_unreachable ();
1665 }
1666
1667 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1668 {
1669 /* Restoring SP from FP in the epilogue. */
9a08d230
RH
1670 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1671 cur_cfa->reg = dw_stack_pointer_regnum;
647a1567
RH
1672 }
1673 else if (GET_CODE (src) == LO_SUM)
1674 /* Assume we've set the source reg of the LO_SUM from sp. */
1675 ;
1676 else
1677 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1678
1679 if (GET_CODE (src) != MINUS)
1680 offset = -offset;
9a08d230
RH
1681 if (cur_cfa->reg == dw_stack_pointer_regnum)
1682 cur_cfa->offset += offset;
43215a89
RH
1683 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1684 cur_trace->cfa_store.offset += offset;
647a1567
RH
1685 }
1686 else if (dest == hard_frame_pointer_rtx)
1687 {
1688 /* Rule 3 */
1689 /* Either setting the FP from an offset of the SP,
1690 or adjusting the FP */
1691 gcc_assert (frame_pointer_needed);
1692
1693 gcc_assert (REG_P (XEXP (src, 0))
9a08d230 1694 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
647a1567
RH
1695 && CONST_INT_P (XEXP (src, 1)));
1696 offset = INTVAL (XEXP (src, 1));
1697 if (GET_CODE (src) != MINUS)
1698 offset = -offset;
9a08d230
RH
1699 cur_cfa->offset += offset;
1700 cur_cfa->reg = dw_frame_pointer_regnum;
647a1567
RH
1701 }
1702 else
1703 {
1704 gcc_assert (GET_CODE (src) != MINUS);
1705
1706 /* Rule 4 */
1707 if (REG_P (XEXP (src, 0))
9a08d230 1708 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
647a1567
RH
1709 && CONST_INT_P (XEXP (src, 1)))
1710 {
1711 /* Setting a temporary CFA register that will be copied
1712 into the FP later on. */
1713 offset = - INTVAL (XEXP (src, 1));
9a08d230
RH
1714 cur_cfa->offset += offset;
1715 cur_cfa->reg = dwf_regno (dest);
647a1567 1716 /* Or used to save regs to the stack. */
9a08d230
RH
1717 cur_trace->cfa_temp.reg = cur_cfa->reg;
1718 cur_trace->cfa_temp.offset = cur_cfa->offset;
647a1567
RH
1719 }
1720
1721 /* Rule 5 */
1722 else if (REG_P (XEXP (src, 0))
43215a89 1723 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
647a1567
RH
1724 && XEXP (src, 1) == stack_pointer_rtx)
1725 {
1726 /* Setting a scratch register that we will use instead
1727 of SP for saving registers to the stack. */
9a08d230 1728 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
43215a89
RH
1729 cur_trace->cfa_store.reg = dwf_regno (dest);
1730 cur_trace->cfa_store.offset
9a08d230 1731 = cur_cfa->offset - cur_trace->cfa_temp.offset;
647a1567
RH
1732 }
1733
1734 /* Rule 9 */
1735 else if (GET_CODE (src) == LO_SUM
1736 && CONST_INT_P (XEXP (src, 1)))
1737 {
43215a89
RH
1738 cur_trace->cfa_temp.reg = dwf_regno (dest);
1739 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
647a1567
RH
1740 }
1741 else
1742 gcc_unreachable ();
1743 }
1744 break;
1745
1746 /* Rule 6 */
1747 case CONST_INT:
43215a89
RH
1748 cur_trace->cfa_temp.reg = dwf_regno (dest);
1749 cur_trace->cfa_temp.offset = INTVAL (src);
647a1567
RH
1750 break;
1751
1752 /* Rule 7 */
1753 case IOR:
1754 gcc_assert (REG_P (XEXP (src, 0))
43215a89 1755 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
647a1567
RH
1756 && CONST_INT_P (XEXP (src, 1)));
1757
43215a89
RH
1758 cur_trace->cfa_temp.reg = dwf_regno (dest);
1759 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
647a1567
RH
1760 break;
1761
1762 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1763 which will fill in all of the bits. */
1764 /* Rule 8 */
1765 case HIGH:
1766 break;
1767
1768 /* Rule 15 */
1769 case UNSPEC:
1770 case UNSPEC_VOLATILE:
89e25f95
BS
1771 /* All unspecs should be represented by REG_CFA_* notes. */
1772 gcc_unreachable ();
647a1567
RH
1773 return;
1774
1775 /* Rule 16 */
1776 case AND:
1777 /* If this AND operation happens on stack pointer in prologue,
1778 we assume the stack is realigned and we extract the
1779 alignment. */
1780 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1781 {
1782 /* We interpret reg_save differently with stack_realign set.
1783 Thus we must flush whatever we have queued first. */
1784 dwarf2out_flush_queued_reg_saves ();
1785
43215a89
RH
1786 gcc_assert (cur_trace->cfa_store.reg
1787 == dwf_regno (XEXP (src, 0)));
647a1567
RH
1788 fde->stack_realign = 1;
1789 fde->stack_realignment = INTVAL (XEXP (src, 1));
43215a89 1790 cur_trace->cfa_store.offset = 0;
647a1567 1791
9a08d230
RH
1792 if (cur_cfa->reg != dw_stack_pointer_regnum
1793 && cur_cfa->reg != dw_frame_pointer_regnum)
1794 fde->drap_reg = cur_cfa->reg;
647a1567
RH
1795 }
1796 return;
1797
1798 default:
1799 gcc_unreachable ();
1800 }
647a1567
RH
1801 break;
1802
1803 case MEM:
1804
1805 /* Saving a register to the stack. Make sure dest is relative to the
1806 CFA register. */
1807 switch (GET_CODE (XEXP (dest, 0)))
1808 {
1809 /* Rule 10 */
1810 /* With a push. */
1811 case PRE_MODIFY:
1812 case POST_MODIFY:
1813 /* We can't handle variable size modifications. */
1814 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1815 == CONST_INT);
1816 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1817
1818 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
43215a89 1819 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
647a1567 1820
43215a89 1821 cur_trace->cfa_store.offset += offset;
9a08d230
RH
1822 if (cur_cfa->reg == dw_stack_pointer_regnum)
1823 cur_cfa->offset = cur_trace->cfa_store.offset;
647a1567
RH
1824
1825 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
43215a89 1826 offset -= cur_trace->cfa_store.offset;
647a1567 1827 else
43215a89 1828 offset = -cur_trace->cfa_store.offset;
647a1567
RH
1829 break;
1830
1831 /* Rule 11 */
1832 case PRE_INC:
1833 case PRE_DEC:
1834 case POST_DEC:
1835 offset = GET_MODE_SIZE (GET_MODE (dest));
1836 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1837 offset = -offset;
1838
1839 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1840 == STACK_POINTER_REGNUM)
43215a89 1841 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
647a1567 1842
43215a89 1843 cur_trace->cfa_store.offset += offset;
647a1567
RH
1844
1845 /* Rule 18: If stack is aligned, we will use FP as a
1846 reference to represent the address of the stored
1847 regiser. */
1848 if (fde
1849 && fde->stack_realign
7b4d5595
L
1850 && REG_P (src)
1851 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
647a1567 1852 {
9a08d230 1853 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
43215a89 1854 cur_trace->cfa_store.offset = 0;
647a1567
RH
1855 }
1856
9a08d230
RH
1857 if (cur_cfa->reg == dw_stack_pointer_regnum)
1858 cur_cfa->offset = cur_trace->cfa_store.offset;
647a1567
RH
1859
1860 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
43215a89 1861 offset += -cur_trace->cfa_store.offset;
647a1567 1862 else
43215a89 1863 offset = -cur_trace->cfa_store.offset;
647a1567
RH
1864 break;
1865
1866 /* Rule 12 */
1867 /* With an offset. */
1868 case PLUS:
1869 case MINUS:
1870 case LO_SUM:
1871 {
7263c6d7 1872 unsigned int regno;
647a1567
RH
1873
1874 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1875 && REG_P (XEXP (XEXP (dest, 0), 0)));
1876 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1877 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1878 offset = -offset;
1879
7263c6d7 1880 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
647a1567 1881
9a08d230
RH
1882 if (cur_cfa->reg == regno)
1883 offset -= cur_cfa->offset;
43215a89
RH
1884 else if (cur_trace->cfa_store.reg == regno)
1885 offset -= cur_trace->cfa_store.offset;
647a1567
RH
1886 else
1887 {
43215a89
RH
1888 gcc_assert (cur_trace->cfa_temp.reg == regno);
1889 offset -= cur_trace->cfa_temp.offset;
647a1567
RH
1890 }
1891 }
1892 break;
1893
1894 /* Rule 13 */
1895 /* Without an offset. */
1896 case REG:
1897 {
7263c6d7 1898 unsigned int regno = dwf_regno (XEXP (dest, 0));
647a1567 1899
9a08d230
RH
1900 if (cur_cfa->reg == regno)
1901 offset = -cur_cfa->offset;
43215a89
RH
1902 else if (cur_trace->cfa_store.reg == regno)
1903 offset = -cur_trace->cfa_store.offset;
647a1567
RH
1904 else
1905 {
43215a89
RH
1906 gcc_assert (cur_trace->cfa_temp.reg == regno);
1907 offset = -cur_trace->cfa_temp.offset;
647a1567
RH
1908 }
1909 }
1910 break;
1911
1912 /* Rule 14 */
1913 case POST_INC:
43215a89
RH
1914 gcc_assert (cur_trace->cfa_temp.reg
1915 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1916 offset = -cur_trace->cfa_temp.offset;
1917 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
647a1567
RH
1918 break;
1919
1920 default:
1921 gcc_unreachable ();
1922 }
1923
a8e5c0e7
RH
1924 /* Rule 17 */
1925 /* If the source operand of this MEM operation is a memory,
1926 we only care how much stack grew. */
1927 if (MEM_P (src))
647a1567
RH
1928 break;
1929
a8e5c0e7
RH
1930 if (REG_P (src)
1931 && REGNO (src) != STACK_POINTER_REGNUM
647a1567 1932 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
9a08d230 1933 && dwf_regno (src) == cur_cfa->reg)
647a1567
RH
1934 {
1935 /* We're storing the current CFA reg into the stack. */
1936
9a08d230 1937 if (cur_cfa->offset == 0)
647a1567
RH
1938 {
1939 /* Rule 19 */
1940 /* If stack is aligned, putting CFA reg into stack means
1941 we can no longer use reg + offset to represent CFA.
1942 Here we use DW_CFA_def_cfa_expression instead. The
1943 result of this expression equals to the original CFA
1944 value. */
1945 if (fde
1946 && fde->stack_realign
9a08d230
RH
1947 && cur_cfa->indirect == 0
1948 && cur_cfa->reg != dw_frame_pointer_regnum)
647a1567 1949 {
9a08d230 1950 gcc_assert (fde->drap_reg == cur_cfa->reg);
647a1567 1951
9a08d230
RH
1952 cur_cfa->indirect = 1;
1953 cur_cfa->reg = dw_frame_pointer_regnum;
1954 cur_cfa->base_offset = offset;
1955 cur_cfa->offset = 0;
647a1567
RH
1956
1957 fde->drap_reg_saved = 1;
647a1567
RH
1958 break;
1959 }
1960
1961 /* If the source register is exactly the CFA, assume
1962 we're saving SP like any other register; this happens
1963 on the ARM. */
89e25f95 1964 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
647a1567
RH
1965 break;
1966 }
1967 else
1968 {
1969 /* Otherwise, we'll need to look in the stack to
1970 calculate the CFA. */
1971 rtx x = XEXP (dest, 0);
1972
1973 if (!REG_P (x))
1974 x = XEXP (x, 0);
1975 gcc_assert (REG_P (x));
1976
9a08d230
RH
1977 cur_cfa->reg = dwf_regno (x);
1978 cur_cfa->base_offset = offset;
1979 cur_cfa->indirect = 1;
647a1567
RH
1980 break;
1981 }
1982 }
1983
a8e5c0e7
RH
1984 if (REG_P (src))
1985 span = targetm.dwarf_register_span (src);
a4d47cac
EB
1986 else
1987 span = NULL;
1988
a8e5c0e7
RH
1989 if (!span)
1990 queue_reg_save (src, NULL_RTX, offset);
1991 else
1992 {
1993 /* We have a PARALLEL describing where the contents of SRC live.
1994 Queue register saves for each piece of the PARALLEL. */
a8e5c0e7 1995 HOST_WIDE_INT span_offset = offset;
647a1567 1996
a8e5c0e7 1997 gcc_assert (GET_CODE (span) == PARALLEL);
647a1567 1998
a4d47cac
EB
1999 const int par_len = XVECLEN (span, 0);
2000 for (int par_index = 0; par_index < par_len; par_index++)
a8e5c0e7
RH
2001 {
2002 rtx elem = XVECEXP (span, 0, par_index);
2003 queue_reg_save (elem, NULL_RTX, span_offset);
2004 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2005 }
2006 }
647a1567
RH
2007 break;
2008
2009 default:
2010 gcc_unreachable ();
2011 }
2012}
2013
9a08d230
RH
2014/* Record call frame debugging information for INSN, which either sets
2015 SP or FP (adjusting how we calculate the frame address) or saves a
2016 register to the stack. */
647a1567 2017
7644b3c7 2018static void
e8a54173 2019dwarf2out_frame_debug (rtx_insn *insn)
647a1567 2020{
e8a54173 2021 rtx note, n, pat;
647a1567 2022 bool handled_one = false;
647a1567
RH
2023
2024 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2025 switch (REG_NOTE_KIND (note))
2026 {
2027 case REG_FRAME_RELATED_EXPR:
e8a54173 2028 pat = XEXP (note, 0);
647a1567
RH
2029 goto do_frame_expr;
2030
2031 case REG_CFA_DEF_CFA:
89e25f95 2032 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
647a1567
RH
2033 handled_one = true;
2034 break;
2035
2036 case REG_CFA_ADJUST_CFA:
2037 n = XEXP (note, 0);
2038 if (n == NULL)
2039 {
2040 n = PATTERN (insn);
2041 if (GET_CODE (n) == PARALLEL)
2042 n = XVECEXP (n, 0, 0);
2043 }
89e25f95 2044 dwarf2out_frame_debug_adjust_cfa (n);
647a1567
RH
2045 handled_one = true;
2046 break;
2047
2048 case REG_CFA_OFFSET:
2049 n = XEXP (note, 0);
2050 if (n == NULL)
2051 n = single_set (insn);
89e25f95 2052 dwarf2out_frame_debug_cfa_offset (n);
647a1567
RH
2053 handled_one = true;
2054 break;
2055
2056 case REG_CFA_REGISTER:
2057 n = XEXP (note, 0);
2058 if (n == NULL)
2059 {
2060 n = PATTERN (insn);
2061 if (GET_CODE (n) == PARALLEL)
2062 n = XVECEXP (n, 0, 0);
2063 }
89e25f95 2064 dwarf2out_frame_debug_cfa_register (n);
647a1567
RH
2065 handled_one = true;
2066 break;
2067
2068 case REG_CFA_EXPRESSION:
2069 n = XEXP (note, 0);
2070 if (n == NULL)
2071 n = single_set (insn);
89e25f95 2072 dwarf2out_frame_debug_cfa_expression (n);
647a1567
RH
2073 handled_one = true;
2074 break;
2075
2076 case REG_CFA_RESTORE:
2077 n = XEXP (note, 0);
2078 if (n == NULL)
2079 {
2080 n = PATTERN (insn);
2081 if (GET_CODE (n) == PARALLEL)
2082 n = XVECEXP (n, 0, 0);
2083 n = XEXP (n, 0);
2084 }
89e25f95 2085 dwarf2out_frame_debug_cfa_restore (n);
647a1567
RH
2086 handled_one = true;
2087 break;
2088
2089 case REG_CFA_SET_VDRAP:
2090 n = XEXP (note, 0);
2091 if (REG_P (n))
2092 {
a518b996 2093 dw_fde_ref fde = cfun->fde;
647a1567
RH
2094 if (fde)
2095 {
2096 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2097 if (REG_P (n))
7263c6d7 2098 fde->vdrap_reg = dwf_regno (n);
647a1567
RH
2099 }
2100 }
2101 handled_one = true;
2102 break;
2103
2104 case REG_CFA_WINDOW_SAVE:
89e25f95 2105 dwarf2out_frame_debug_cfa_window_save ();
647a1567
RH
2106 handled_one = true;
2107 break;
2108
2109 case REG_CFA_FLUSH_QUEUE:
67d7405e 2110 /* The actual flush happens elsewhere. */
647a1567
RH
2111 handled_one = true;
2112 break;
2113
2114 default:
2115 break;
2116 }
2117
67d7405e 2118 if (!handled_one)
647a1567 2119 {
e8a54173 2120 pat = PATTERN (insn);
647a1567 2121 do_frame_expr:
e8a54173 2122 dwarf2out_frame_debug_expr (pat);
647a1567
RH
2123
2124 /* Check again. A parallel can save and update the same register.
2125 We could probably check just once, here, but this is safer than
2126 removing the check at the start of the function. */
e8a54173 2127 if (clobbers_queued_reg_save (pat))
67d7405e 2128 dwarf2out_flush_queued_reg_saves ();
647a1567 2129 }
647a1567
RH
2130}
2131
57e16c96
RH
2132/* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2133
2134static void
ce363ef2 2135change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
57e16c96
RH
2136{
2137 size_t i, n_old, n_new, n_max;
2138 dw_cfi_ref cfi;
2139
2140 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2141 add_cfi (new_row->cfa_cfi);
2142 else
2143 {
2144 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2145 if (cfi)
2146 add_cfi (cfi);
2147 }
2148
9771b263
DN
2149 n_old = vec_safe_length (old_row->reg_save);
2150 n_new = vec_safe_length (new_row->reg_save);
57e16c96
RH
2151 n_max = MAX (n_old, n_new);
2152
2153 for (i = 0; i < n_max; ++i)
2154 {
2155 dw_cfi_ref r_old = NULL, r_new = NULL;
2156
2157 if (i < n_old)
9771b263 2158 r_old = (*old_row->reg_save)[i];
57e16c96 2159 if (i < n_new)
9771b263 2160 r_new = (*new_row->reg_save)[i];
57e16c96
RH
2161
2162 if (r_old == r_new)
2163 ;
2164 else if (r_new == NULL)
2165 add_cfi_restore (i);
2166 else if (!cfi_equal_p (r_old, r_new))
2167 add_cfi (r_new);
2168 }
2169}
2170
89e25f95
BS
2171/* Examine CFI and return true if a cfi label and set_loc is needed
2172 beforehand. Even when generating CFI assembler instructions, we
4a8ee122 2173 still have to add the cfi to the list so that lookup_cfa_1 works
89e25f95
BS
2174 later on. When -g2 and above we even need to force emitting of
2175 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2176 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2177 and so don't use convert_cfa_to_fb_loc_list. */
2178
2179static bool
2180cfi_label_required_p (dw_cfi_ref cfi)
2181{
2182 if (!dwarf2out_do_cfi_asm ())
2183 return true;
2184
2185 if (dwarf_version == 2
2186 && debug_info_level > DINFO_LEVEL_TERSE
2187 && (write_symbols == DWARF2_DEBUG
2188 || write_symbols == VMS_AND_DWARF2_DEBUG))
2189 {
2190 switch (cfi->dw_cfi_opc)
2191 {
2192 case DW_CFA_def_cfa_offset:
2193 case DW_CFA_def_cfa_offset_sf:
2194 case DW_CFA_def_cfa_register:
2195 case DW_CFA_def_cfa:
2196 case DW_CFA_def_cfa_sf:
2197 case DW_CFA_def_cfa_expression:
2198 case DW_CFA_restore_state:
2199 return true;
2200 default:
2201 return false;
2202 }
2203 }
2204 return false;
2205}
2206
2207/* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2208 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2209 necessary. */
2210static void
2211add_cfis_to_fde (void)
2212{
a518b996 2213 dw_fde_ref fde = cfun->fde;
f65c531e 2214 rtx_insn *insn, *next;
89e25f95
BS
2215 /* We always start with a function_begin label. */
2216 bool first = false;
2217
2218 for (insn = get_insns (); insn; insn = next)
2219 {
2220 next = NEXT_INSN (insn);
2221
2222 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2223 {
9771b263 2224 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
89e25f95
BS
2225 /* Don't attempt to advance_loc4 between labels
2226 in different sections. */
2227 first = true;
2228 }
2229
2230 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2231 {
2232 bool required = cfi_label_required_p (NOTE_CFI (insn));
b84dad8e
JJ
2233 while (next)
2234 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2235 {
2236 required |= cfi_label_required_p (NOTE_CFI (next));
2237 next = NEXT_INSN (next);
2238 }
2239 else if (active_insn_p (next)
2240 || (NOTE_P (next) && (NOTE_KIND (next)
2241 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2242 break;
2243 else
89e25f95 2244 next = NEXT_INSN (next);
89e25f95
BS
2245 if (required)
2246 {
2247 int num = dwarf2out_cfi_label_num;
2248 const char *label = dwarf2out_cfi_label ();
2249 dw_cfi_ref xcfi;
2250 rtx tmp;
2251
2252 /* Set the location counter to the new label. */
2253 xcfi = new_cfi ();
2254 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2255 : DW_CFA_advance_loc4);
2256 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
9771b263 2257 vec_safe_push (fde->dw_fde_cfi, xcfi);
89e25f95
BS
2258
2259 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2260 NOTE_LABEL_NUMBER (tmp) = num;
2261 }
2262
2263 do
2264 {
b84dad8e 2265 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
9771b263 2266 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
89e25f95
BS
2267 insn = NEXT_INSN (insn);
2268 }
2269 while (insn != next);
2270 first = false;
2271 }
2272 }
2273}
2274
829bdd4b
RH
2275/* If LABEL is the start of a trace, then initialize the state of that
2276 trace from CUR_TRACE and CUR_ROW. */
43215a89 2277
7644b3c7 2278static void
7583d99a 2279maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
89e25f95 2280{
829bdd4b 2281 dw_trace_info *ti;
9a08d230 2282 HOST_WIDE_INT args_size;
829bdd4b
RH
2283
2284 ti = get_trace_info (start);
2285 gcc_assert (ti != NULL);
647a1567 2286
829bdd4b 2287 if (dump_file)
647a1567 2288 {
829bdd4b 2289 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
200e10dc 2290 cur_trace->id, ti->id,
829bdd4b
RH
2291 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2292 (origin ? INSN_UID (origin) : 0));
2293 }
bc5612ed 2294
9a08d230 2295 args_size = cur_trace->end_true_args_size;
829bdd4b
RH
2296 if (ti->beg_row == NULL)
2297 {
2298 /* This is the first time we've encountered this trace. Propagate
2299 state across the edge and push the trace onto the work list. */
2300 ti->beg_row = copy_cfi_row (cur_row);
9a08d230 2301 ti->beg_true_args_size = args_size;
2f23f97a 2302
829bdd4b
RH
2303 ti->cfa_store = cur_trace->cfa_store;
2304 ti->cfa_temp = cur_trace->cfa_temp;
9771b263 2305 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
829bdd4b 2306
9771b263 2307 trace_work_list.safe_push (ti);
829bdd4b
RH
2308
2309 if (dump_file)
200e10dc 2310 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
829bdd4b
RH
2311 }
2312 else
2313 {
9a08d230 2314
829bdd4b
RH
2315 /* We ought to have the same state incoming to a given trace no
2316 matter how we arrive at the trace. Anything else means we've
2317 got some kind of optimization error. */
2318 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
9a08d230
RH
2319
2320 /* The args_size is allowed to conflict if it isn't actually used. */
2321 if (ti->beg_true_args_size != args_size)
2322 ti->args_size_undefined = true;
2323 }
2324}
2325
2326/* Similarly, but handle the args_size and CFA reset across EH
2327 and non-local goto edges. */
2328
2329static void
7583d99a 2330maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
9a08d230
RH
2331{
2332 HOST_WIDE_INT save_args_size, delta;
2333 dw_cfa_location save_cfa;
2334
2335 save_args_size = cur_trace->end_true_args_size;
2336 if (save_args_size == 0)
2337 {
2338 maybe_record_trace_start (start, origin);
2339 return;
2340 }
2341
2342 delta = -save_args_size;
2343 cur_trace->end_true_args_size = 0;
2344
2345 save_cfa = cur_row->cfa;
2346 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2347 {
2348 /* Convert a change in args_size (always a positive in the
2349 direction of stack growth) to a change in stack pointer. */
2350#ifndef STACK_GROWS_DOWNWARD
2351 delta = -delta;
2352#endif
2353 cur_row->cfa.offset += delta;
829bdd4b 2354 }
9a08d230
RH
2355
2356 maybe_record_trace_start (start, origin);
2357
2358 cur_trace->end_true_args_size = save_args_size;
2359 cur_row->cfa = save_cfa;
829bdd4b 2360}
45fba6d1 2361
829bdd4b
RH
2362/* Propagate CUR_TRACE state to the destinations implied by INSN. */
2363/* ??? Sadly, this is in large part a duplicate of make_edges. */
2364
2365static void
7583d99a 2366create_trace_edges (rtx_insn *insn)
829bdd4b 2367{
ca486330 2368 rtx tmp;
829bdd4b
RH
2369 int i, n;
2370
2371 if (JUMP_P (insn))
2372 {
8942ee0f
DM
2373 rtx_jump_table_data *table;
2374
829bdd4b 2375 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
9a08d230
RH
2376 return;
2377
8942ee0f 2378 if (tablejump_p (insn, NULL, &table))
bc5612ed 2379 {
95c43227 2380 rtvec vec = table->get_labels ();
829bdd4b
RH
2381
2382 n = GET_NUM_ELEM (vec);
2383 for (i = 0; i < n; ++i)
2384 {
7583d99a 2385 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
9a08d230 2386 maybe_record_trace_start (lab, insn);
829bdd4b
RH
2387 }
2388 }
2389 else if (computed_jump_p (insn))
bc5612ed 2390 {
e8c038ca
DM
2391 for (rtx_insn_list *lab = forced_labels; lab; lab = lab->next ())
2392 maybe_record_trace_start (lab->insn (), insn);
829bdd4b
RH
2393 }
2394 else if (returnjump_p (insn))
2395 ;
2396 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2397 {
2398 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2399 for (i = 0; i < n; ++i)
bc5612ed 2400 {
7583d99a
DM
2401 rtx_insn *lab =
2402 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
9a08d230 2403 maybe_record_trace_start (lab, insn);
829bdd4b
RH
2404 }
2405 }
2406 else
2407 {
7583d99a 2408 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
829bdd4b 2409 gcc_assert (lab != NULL);
9a08d230 2410 maybe_record_trace_start (lab, insn);
829bdd4b
RH
2411 }
2412 }
2413 else if (CALL_P (insn))
2414 {
2415 /* Sibling calls don't have edges inside this function. */
2416 if (SIBLING_CALL_P (insn))
2417 return;
965b2557 2418
829bdd4b
RH
2419 /* Process non-local goto edges. */
2420 if (can_nonlocal_goto (insn))
b5241a5a 2421 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2382940b
DM
2422 lab;
2423 lab = lab->next ())
b5241a5a 2424 maybe_record_trace_start_abnormal (lab->insn (), insn);
829bdd4b 2425 }
292d1dfb 2426 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3382318a 2427 {
292d1dfb 2428 int i, n = seq->len ();
3382318a 2429 for (i = 0; i < n; ++i)
292d1dfb 2430 create_trace_edges (seq->insn (i));
3382318a
RH
2431 return;
2432 }
965b2557 2433
829bdd4b
RH
2434 /* Process EH edges. */
2435 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2436 {
2437 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2438 if (lp)
9a08d230 2439 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
829bdd4b
RH
2440 }
2441}
57e16c96 2442
eebc8f37
RH
2443/* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2444
2445static void
e8a54173 2446scan_insn_after (rtx_insn *insn)
eebc8f37
RH
2447{
2448 if (RTX_FRAME_RELATED_P (insn))
2449 dwarf2out_frame_debug (insn);
2450 notice_args_size (insn);
2451}
2452
829bdd4b
RH
2453/* Scan the trace beginning at INSN and create the CFI notes for the
2454 instructions therein. */
2455
2456static void
2457scan_trace (dw_trace_info *trace)
2458{
7583d99a 2459 rtx_insn *prev, *insn = trace->head;
9a08d230 2460 dw_cfa_location this_cfa;
829bdd4b
RH
2461
2462 if (dump_file)
2463 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
200e10dc 2464 trace->id, rtx_name[(int) GET_CODE (insn)],
829bdd4b
RH
2465 INSN_UID (insn));
2466
2467 trace->end_row = copy_cfi_row (trace->beg_row);
9a08d230 2468 trace->end_true_args_size = trace->beg_true_args_size;
829bdd4b
RH
2469
2470 cur_trace = trace;
2471 cur_row = trace->end_row;
9a08d230
RH
2472
2473 this_cfa = cur_row->cfa;
2474 cur_cfa = &this_cfa;
829bdd4b 2475
eebc8f37
RH
2476 for (prev = insn, insn = NEXT_INSN (insn);
2477 insn;
2478 prev = insn, insn = NEXT_INSN (insn))
829bdd4b 2479 {
7583d99a 2480 rtx_insn *control;
eebc8f37 2481
9a08d230 2482 /* Do everything that happens "before" the insn. */
eebc8f37 2483 add_cfi_insn = prev;
829bdd4b
RH
2484
2485 /* Notice the end of a trace. */
9a08d230
RH
2486 if (BARRIER_P (insn))
2487 {
2488 /* Don't bother saving the unneeded queued registers at all. */
9771b263 2489 queued_reg_saves.truncate (0);
9a08d230
RH
2490 break;
2491 }
2492 if (save_point_p (insn))
829bdd4b 2493 {
829bdd4b 2494 /* Propagate across fallthru edges. */
9a08d230
RH
2495 dwarf2out_flush_queued_reg_saves ();
2496 maybe_record_trace_start (insn, NULL);
829bdd4b 2497 break;
bc5612ed
BS
2498 }
2499
829bdd4b 2500 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
bc5612ed
BS
2501 continue;
2502
eebc8f37
RH
2503 /* Handle all changes to the row state. Sequences require special
2504 handling for the positioning of the notes. */
292d1dfb 2505 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
bc5612ed 2506 {
e8a54173 2507 rtx_insn *elt;
292d1dfb 2508 int i, n = pat->len ();
9a08d230 2509
7583d99a 2510 control = pat->insn (0);
eebc8f37
RH
2511 if (can_throw_internal (control))
2512 notice_eh_throw (control);
2513 dwarf2out_flush_queued_reg_saves ();
2514
8f06d483 2515 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
829bdd4b 2516 {
9a08d230
RH
2517 /* ??? Hopefully multiple delay slots are not annulled. */
2518 gcc_assert (n == 2);
eebc8f37
RH
2519 gcc_assert (!RTX_FRAME_RELATED_P (control));
2520 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2521
e8a54173 2522 elt = pat->insn (1);
9a08d230 2523
9a08d230
RH
2524 if (INSN_FROM_TARGET_P (elt))
2525 {
2526 HOST_WIDE_INT restore_args_size;
5d1f1cd5 2527 cfi_vec save_row_reg_save;
829bdd4b 2528
bf27c43e
RH
2529 /* If ELT is an instruction from target of an annulled
2530 branch, the effects are for the target only and so
2531 the args_size and CFA along the current path
2532 shouldn't change. */
eebc8f37 2533 add_cfi_insn = NULL;
9a08d230
RH
2534 restore_args_size = cur_trace->end_true_args_size;
2535 cur_cfa = &cur_row->cfa;
9771b263 2536 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
bc5612ed 2537
eebc8f37
RH
2538 scan_insn_after (elt);
2539
2540 /* ??? Should we instead save the entire row state? */
9771b263 2541 gcc_assert (!queued_reg_saves.length ());
eebc8f37
RH
2542
2543 create_trace_edges (control);
bc5612ed 2544
9a08d230
RH
2545 cur_trace->end_true_args_size = restore_args_size;
2546 cur_row->cfa = this_cfa;
5d1f1cd5 2547 cur_row->reg_save = save_row_reg_save;
9a08d230 2548 cur_cfa = &this_cfa;
9a08d230 2549 }
bf27c43e
RH
2550 else
2551 {
2552 /* If ELT is a annulled branch-taken instruction (i.e.
2553 executed only when branch is not taken), the args_size
2554 and CFA should not change through the jump. */
2555 create_trace_edges (control);
2556
2557 /* Update and continue with the trace. */
2558 add_cfi_insn = insn;
2559 scan_insn_after (elt);
2560 def_cfa_1 (&this_cfa);
2561 }
2562 continue;
9a08d230
RH
2563 }
2564
eebc8f37
RH
2565 /* The insns in the delay slot should all be considered to happen
2566 "before" a call insn. Consider a call with a stack pointer
2567 adjustment in the delay slot. The backtrace from the callee
2568 should include the sp adjustment. Unfortunately, that leaves
2569 us with an unavoidable unwinding error exactly at the call insn
2570 itself. For jump insns we'd prefer to avoid this error by
2571 placing the notes after the sequence. */
2572 if (JUMP_P (control))
2573 add_cfi_insn = insn;
2574
9a08d230
RH
2575 for (i = 1; i < n; ++i)
2576 {
e8a54173 2577 elt = pat->insn (i);
eebc8f37 2578 scan_insn_after (elt);
9a08d230 2579 }
eebc8f37
RH
2580
2581 /* Make sure any register saves are visible at the jump target. */
2582 dwarf2out_flush_queued_reg_saves ();
67d7405e 2583 any_cfis_emitted = false;
eebc8f37
RH
2584
2585 /* However, if there is some adjustment on the call itself, e.g.
2586 a call_pop, that action should be considered to happen after
2587 the call returns. */
2588 add_cfi_insn = insn;
2589 scan_insn_after (control);
829bdd4b 2590 }
9a08d230 2591 else
eebc8f37
RH
2592 {
2593 /* Flush data before calls and jumps, and of course if necessary. */
2594 if (can_throw_internal (insn))
2595 {
2596 notice_eh_throw (insn);
2597 dwarf2out_flush_queued_reg_saves ();
2598 }
2599 else if (!NONJUMP_INSN_P (insn)
2600 || clobbers_queued_reg_save (insn)
2601 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2602 dwarf2out_flush_queued_reg_saves ();
67d7405e 2603 any_cfis_emitted = false;
eebc8f37
RH
2604
2605 add_cfi_insn = insn;
2606 scan_insn_after (insn);
2607 control = insn;
2608 }
9a08d230
RH
2609
2610 /* Between frame-related-p and args_size we might have otherwise
2611 emitted two cfa adjustments. Do it now. */
2612 def_cfa_1 (&this_cfa);
45fba6d1 2613
67d7405e
RH
2614 /* Minimize the number of advances by emitting the entire queue
2615 once anything is emitted. */
2616 if (any_cfis_emitted
2617 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2618 dwarf2out_flush_queued_reg_saves ();
2619
829bdd4b
RH
2620 /* Note that a test for control_flow_insn_p does exactly the
2621 same tests as are done to actually create the edges. So
2622 always call the routine and let it not create edges for
2623 non-control-flow insns. */
eebc8f37 2624 create_trace_edges (control);
647a1567 2625 }
45fba6d1 2626
141618e2 2627 add_cfi_insn = NULL;
829bdd4b
RH
2628 cur_row = NULL;
2629 cur_trace = NULL;
9a08d230 2630 cur_cfa = NULL;
647a1567
RH
2631}
2632
829bdd4b 2633/* Scan the function and create the initial set of CFI notes. */
647a1567 2634
bc5612ed 2635static void
829bdd4b 2636create_cfi_notes (void)
647a1567 2637{
829bdd4b 2638 dw_trace_info *ti;
647a1567 2639
9771b263
DN
2640 gcc_checking_assert (!queued_reg_saves.exists ());
2641 gcc_checking_assert (!trace_work_list.exists ());
647a1567 2642
829bdd4b 2643 /* Always begin at the entry trace. */
9771b263 2644 ti = &trace_info[0];
829bdd4b 2645 scan_trace (ti);
647a1567 2646
9771b263 2647 while (!trace_work_list.is_empty ())
829bdd4b 2648 {
9771b263 2649 ti = trace_work_list.pop ();
829bdd4b 2650 scan_trace (ti);
647a1567
RH
2651 }
2652
9771b263
DN
2653 queued_reg_saves.release ();
2654 trace_work_list.release ();
829bdd4b 2655}
647a1567 2656
200e10dc
RH
2657/* Return the insn before the first NOTE_INSN_CFI after START. */
2658
dc01c3d1
DM
2659static rtx_insn *
2660before_next_cfi_note (rtx_insn *start)
200e10dc 2661{
dc01c3d1 2662 rtx_insn *prev = start;
200e10dc
RH
2663 while (start)
2664 {
2665 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2666 return prev;
2667 prev = start;
2668 start = NEXT_INSN (start);
2669 }
2670 gcc_unreachable ();
2671}
2672
829bdd4b 2673/* Insert CFI notes between traces to properly change state between them. */
647a1567 2674
829bdd4b
RH
2675static void
2676connect_traces (void)
2677{
9771b263 2678 unsigned i, n = trace_info.length ();
829bdd4b
RH
2679 dw_trace_info *prev_ti, *ti;
2680
200e10dc
RH
2681 /* ??? Ideally, we should have both queued and processed every trace.
2682 However the current representation of constant pools on various targets
2683 is indistinguishable from unreachable code. Assume for the moment that
2684 we can simply skip over such traces. */
2685 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2686 these are not "real" instructions, and should not be considered.
2687 This could be generically useful for tablejump data as well. */
2688 /* Remove all unprocessed traces from the list. */
2689 for (i = n - 1; i > 0; --i)
2690 {
9771b263 2691 ti = &trace_info[i];
200e10dc
RH
2692 if (ti->beg_row == NULL)
2693 {
9771b263 2694 trace_info.ordered_remove (i);
200e10dc
RH
2695 n -= 1;
2696 }
2697 else
2698 gcc_assert (ti->end_row != NULL);
2699 }
829bdd4b 2700
200e10dc
RH
2701 /* Work from the end back to the beginning. This lets us easily insert
2702 remember/restore_state notes in the correct order wrt other notes. */
9771b263 2703 prev_ti = &trace_info[n - 1];
200e10dc 2704 for (i = n - 1; i > 0; --i)
647a1567 2705 {
829bdd4b 2706 dw_cfi_row *old_row;
647a1567 2707
200e10dc 2708 ti = prev_ti;
9771b263 2709 prev_ti = &trace_info[i - 1];
647a1567 2710
200e10dc 2711 add_cfi_insn = ti->head;
829bdd4b
RH
2712
2713 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2714 for the portion of the function in the alternate text
2715 section. The row state at the very beginning of that
2716 new FDE will be exactly the row state from the CIE. */
2717 if (ti->switch_sections)
2718 old_row = cie_cfi_row;
2719 else
200e10dc
RH
2720 {
2721 old_row = prev_ti->end_row;
2722 /* If there's no change from the previous end state, fine. */
2723 if (cfi_row_equal_p (old_row, ti->beg_row))
2724 ;
2725 /* Otherwise check for the common case of sharing state with
2726 the beginning of an epilogue, but not the end. Insert
2727 remember/restore opcodes in that case. */
2728 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2729 {
2730 dw_cfi_ref cfi;
2731
2732 /* Note that if we blindly insert the remember at the
2733 start of the trace, we can wind up increasing the
2734 size of the unwind info due to extra advance opcodes.
2735 Instead, put the remember immediately before the next
2736 state change. We know there must be one, because the
2737 state at the beginning and head of the trace differ. */
2738 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2739 cfi = new_cfi ();
2740 cfi->dw_cfi_opc = DW_CFA_remember_state;
2741 add_cfi (cfi);
2742
2743 add_cfi_insn = ti->head;
2744 cfi = new_cfi ();
2745 cfi->dw_cfi_opc = DW_CFA_restore_state;
2746 add_cfi (cfi);
2747
2748 old_row = prev_ti->beg_row;
2749 }
2750 /* Otherwise, we'll simply change state from the previous end. */
2751 }
829bdd4b 2752
829bdd4b
RH
2753 change_cfi_row (old_row, ti->beg_row);
2754
2755 if (dump_file && add_cfi_insn != ti->head)
2756 {
dc01c3d1 2757 rtx_insn *note;
829bdd4b 2758
200e10dc
RH
2759 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2760 prev_ti->id, ti->id);
829bdd4b
RH
2761
2762 note = ti->head;
2763 do
2764 {
2765 note = NEXT_INSN (note);
2766 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2767 output_cfi_directive (dump_file, NOTE_CFI (note));
2768 }
2769 while (note != add_cfi_insn);
2770 }
2771 }
9a08d230
RH
2772
2773 /* Connect args_size between traces that have can_throw_internal insns. */
9771b263 2774 if (cfun->eh->lp_array)
9a08d230
RH
2775 {
2776 HOST_WIDE_INT prev_args_size = 0;
2777
2778 for (i = 0; i < n; ++i)
2779 {
9771b263 2780 ti = &trace_info[i];
9a08d230
RH
2781
2782 if (ti->switch_sections)
2783 prev_args_size = 0;
2784 if (ti->eh_head == NULL)
2785 continue;
2786 gcc_assert (!ti->args_size_undefined);
2787
2788 if (ti->beg_delay_args_size != prev_args_size)
2789 {
2790 /* ??? Search back to previous CFI note. */
2791 add_cfi_insn = PREV_INSN (ti->eh_head);
2792 add_cfi_args_size (ti->beg_delay_args_size);
2793 }
2794
2795 prev_args_size = ti->end_delay_args_size;
2796 }
2797 }
647a1567
RH
2798}
2799
829bdd4b
RH
2800/* Set up the pseudo-cfg of instruction traces, as described at the
2801 block comment at the top of the file. */
647a1567 2802
bc5612ed 2803static void
829bdd4b 2804create_pseudo_cfg (void)
647a1567 2805{
829bdd4b 2806 bool saw_barrier, switch_sections;
f32682ca 2807 dw_trace_info ti;
f65c531e 2808 rtx_insn *insn;
829bdd4b
RH
2809 unsigned i;
2810
2811 /* The first trace begins at the start of the function,
2812 and begins with the CIE row state. */
9771b263 2813 trace_info.create (16);
f32682ca
DN
2814 memset (&ti, 0, sizeof (ti));
2815 ti.head = get_insns ();
2816 ti.beg_row = cie_cfi_row;
2817 ti.cfa_store = cie_cfi_row->cfa;
2818 ti.cfa_temp.reg = INVALID_REGNUM;
9771b263 2819 trace_info.quick_push (ti);
829bdd4b 2820
829bdd4b 2821 if (cie_return_save)
9771b263 2822 ti.regs_saved_in_regs.safe_push (*cie_return_save);
647a1567 2823
829bdd4b
RH
2824 /* Walk all the insns, collecting start of trace locations. */
2825 saw_barrier = false;
2826 switch_sections = false;
2827 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2828 {
2829 if (BARRIER_P (insn))
2830 saw_barrier = true;
2831 else if (NOTE_P (insn)
2832 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2833 {
2834 /* We should have just seen a barrier. */
2835 gcc_assert (saw_barrier);
2836 switch_sections = true;
2837 }
2838 /* Watch out for save_point notes between basic blocks.
2839 In particular, a note after a barrier. Do not record these,
2840 delaying trace creation until the label. */
2841 else if (save_point_p (insn)
2842 && (LABEL_P (insn) || !saw_barrier))
2843 {
f32682ca
DN
2844 memset (&ti, 0, sizeof (ti));
2845 ti.head = insn;
2846 ti.switch_sections = switch_sections;
f8ed2fc2 2847 ti.id = trace_info.length ();
9771b263 2848 trace_info.safe_push (ti);
829bdd4b
RH
2849
2850 saw_barrier = false;
2851 switch_sections = false;
2852 }
2853 }
2854
2855 /* Create the trace index after we've finished building trace_info,
2856 avoiding stale pointer problems due to reallocation. */
c203e8a7
TS
2857 trace_index
2858 = new hash_table<trace_info_hasher> (trace_info.length ());
f32682ca 2859 dw_trace_info *tp;
9771b263 2860 FOR_EACH_VEC_ELT (trace_info, i, tp)
829bdd4b 2861 {
4a8fb1a1 2862 dw_trace_info **slot;
647a1567 2863
829bdd4b 2864 if (dump_file)
f8ed2fc2 2865 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
f32682ca
DN
2866 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2867 tp->switch_sections ? " (section switch)" : "");
829bdd4b 2868
c203e8a7 2869 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
829bdd4b 2870 gcc_assert (*slot == NULL);
4a8fb1a1 2871 *slot = tp;
829bdd4b 2872 }
647a1567 2873}
829bdd4b 2874
a8e5c0e7
RH
2875/* Record the initial position of the return address. RTL is
2876 INCOMING_RETURN_ADDR_RTX. */
2877
2878static void
2879initial_return_save (rtx rtl)
2880{
2881 unsigned int reg = INVALID_REGNUM;
2882 HOST_WIDE_INT offset = 0;
2883
2884 switch (GET_CODE (rtl))
2885 {
2886 case REG:
2887 /* RA is in a register. */
7263c6d7 2888 reg = dwf_regno (rtl);
a8e5c0e7
RH
2889 break;
2890
2891 case MEM:
2892 /* RA is on the stack. */
2893 rtl = XEXP (rtl, 0);
2894 switch (GET_CODE (rtl))
2895 {
2896 case REG:
2897 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2898 offset = 0;
2899 break;
2900
2901 case PLUS:
2902 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2903 offset = INTVAL (XEXP (rtl, 1));
2904 break;
2905
2906 case MINUS:
2907 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2908 offset = -INTVAL (XEXP (rtl, 1));
2909 break;
2910
2911 default:
2912 gcc_unreachable ();
2913 }
2914
2915 break;
2916
2917 case PLUS:
2918 /* The return address is at some offset from any value we can
2919 actually load. For instance, on the SPARC it is in %i7+8. Just
2920 ignore the offset for now; it doesn't matter for unwinding frames. */
2921 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2922 initial_return_save (XEXP (rtl, 0));
2923 return;
2924
2925 default:
2926 gcc_unreachable ();
2927 }
2928
2929 if (reg != DWARF_FRAME_RETURN_COLUMN)
2930 {
2931 if (reg != INVALID_REGNUM)
2932 record_reg_saved_in_reg (rtl, pc_rtx);
f17d3401 2933 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
a8e5c0e7
RH
2934 }
2935}
647a1567 2936
43215a89
RH
2937static void
2938create_cie_data (void)
2939{
2940 dw_cfa_location loc;
2941 dw_trace_info cie_trace;
2942
2943 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2944 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2945
c3284718 2946 memset (&cie_trace, 0, sizeof (cie_trace));
43215a89
RH
2947 cur_trace = &cie_trace;
2948
2949 add_cfi_vec = &cie_cfi_vec;
2950 cie_cfi_row = cur_row = new_cfi_row ();
2951
2952 /* On entry, the Canonical Frame Address is at SP. */
c3284718 2953 memset (&loc, 0, sizeof (loc));
43215a89
RH
2954 loc.reg = dw_stack_pointer_regnum;
2955 loc.offset = INCOMING_FRAME_SP_OFFSET;
2956 def_cfa_1 (&loc);
2957
2958 if (targetm.debug_unwind_info () == UI_DWARF2
2959 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2960 {
2961 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2962
2963 /* For a few targets, we have the return address incoming into a
2964 register, but choose a different return column. This will result
2965 in a DW_CFA_register for the return, and an entry in
2966 regs_saved_in_regs to match. If the target later stores that
2967 return address register to the stack, we want to be able to emit
2968 the DW_CFA_offset against the return column, not the intermediate
2969 save register. Save the contents of regs_saved_in_regs so that
2970 we can re-initialize it at the start of each function. */
9771b263 2971 switch (cie_trace.regs_saved_in_regs.length ())
43215a89
RH
2972 {
2973 case 0:
2974 break;
2975 case 1:
766090c2 2976 cie_return_save = ggc_alloc<reg_saved_in_data> ();
9771b263
DN
2977 *cie_return_save = cie_trace.regs_saved_in_regs[0];
2978 cie_trace.regs_saved_in_regs.release ();
43215a89
RH
2979 break;
2980 default:
2981 gcc_unreachable ();
2982 }
2983 }
2984
2985 add_cfi_vec = NULL;
2986 cur_row = NULL;
2987 cur_trace = NULL;
2988}
2989
7644b3c7
RH
2990/* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2991 state at each location within the function. These notes will be
2992 emitted during pass_final. */
647a1567 2993
7644b3c7
RH
2994static unsigned int
2995execute_dwarf2_frame (void)
647a1567 2996{
7644b3c7
RH
2997 /* The first time we're called, compute the incoming frame state. */
2998 if (cie_cfi_vec == NULL)
43215a89 2999 create_cie_data ();
3edb53aa 3000
7644b3c7
RH
3001 dwarf2out_alloc_current_fde ();
3002
829bdd4b
RH
3003 create_pseudo_cfg ();
3004
7644b3c7
RH
3005 /* Do the work. */
3006 create_cfi_notes ();
829bdd4b 3007 connect_traces ();
7644b3c7
RH
3008 add_cfis_to_fde ();
3009
829bdd4b
RH
3010 /* Free all the data we allocated. */
3011 {
3012 size_t i;
3013 dw_trace_info *ti;
647a1567 3014
9771b263
DN
3015 FOR_EACH_VEC_ELT (trace_info, i, ti)
3016 ti->regs_saved_in_regs.release ();
829bdd4b 3017 }
9771b263 3018 trace_info.release ();
829bdd4b 3019
c203e8a7
TS
3020 delete trace_index;
3021 trace_index = NULL;
f17d3401 3022
7644b3c7 3023 return 0;
647a1567
RH
3024}
3025\f
948d330e
RH
3026/* Convert a DWARF call frame info. operation to its string name */
3027
3028static const char *
3029dwarf_cfi_name (unsigned int cfi_opc)
3030{
11ec770e 3031 const char *name = get_DW_CFA_name (cfi_opc);
948d330e 3032
11ec770e
TT
3033 if (name != NULL)
3034 return name;
948d330e 3035
11ec770e 3036 return "DW_CFA_<unknown>";
948d330e
RH
3037}
3038
3039/* This routine will generate the correct assembly data for a location
3040 description based on a cfi entry with a complex address. */
3041
3042static void
3043output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3044{
3045 dw_loc_descr_ref loc;
3046 unsigned long size;
3047
3048 if (cfi->dw_cfi_opc == DW_CFA_expression)
3049 {
43215a89 3050 unsigned r =
948d330e
RH
3051 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3052 dw2_asm_output_data (1, r, NULL);
3053 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3054 }
3055 else
3056 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3057
3058 /* Output the size of the block. */
3059 size = size_of_locs (loc);
3060 dw2_asm_output_data_uleb128 (size, NULL);
3061
3062 /* Now output the operations themselves. */
3063 output_loc_sequence (loc, for_eh);
3064}
3065
3066/* Similar, but used for .cfi_escape. */
3067
3068static void
3069output_cfa_loc_raw (dw_cfi_ref cfi)
3070{
3071 dw_loc_descr_ref loc;
3072 unsigned long size;
3073
3074 if (cfi->dw_cfi_opc == DW_CFA_expression)
3075 {
43215a89 3076 unsigned r =
948d330e
RH
3077 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3078 fprintf (asm_out_file, "%#x,", r);
3079 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3080 }
3081 else
3082 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3083
3084 /* Output the size of the block. */
3085 size = size_of_locs (loc);
3086 dw2_asm_output_data_uleb128_raw (size);
3087 fputc (',', asm_out_file);
3088
3089 /* Now output the operations themselves. */
3090 output_loc_sequence_raw (loc);
3091}
3092
3093/* Output a Call Frame Information opcode and its operand(s). */
3094
3095void
3096output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3097{
3098 unsigned long r;
3099 HOST_WIDE_INT off;
3100
3101 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3102 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3103 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3104 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3105 ((unsigned HOST_WIDE_INT)
3106 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3107 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3108 {
3109 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3110 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3111 "DW_CFA_offset, column %#lx", r);
3112 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3113 dw2_asm_output_data_uleb128 (off, NULL);
3114 }
3115 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3116 {
3117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3118 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3119 "DW_CFA_restore, column %#lx", r);
3120 }
3121 else
3122 {
3123 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3124 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3125
3126 switch (cfi->dw_cfi_opc)
3127 {
3128 case DW_CFA_set_loc:
3129 if (for_eh)
3130 dw2_asm_output_encoded_addr_rtx (
3131 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3132 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3133 false, NULL);
3134 else
3135 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3136 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3137 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3138 break;
3139
3140 case DW_CFA_advance_loc1:
3141 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3142 fde->dw_fde_current_label, NULL);
3143 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3144 break;
3145
3146 case DW_CFA_advance_loc2:
3147 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3148 fde->dw_fde_current_label, NULL);
3149 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3150 break;
3151
3152 case DW_CFA_advance_loc4:
3153 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3154 fde->dw_fde_current_label, NULL);
3155 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3156 break;
3157
3158 case DW_CFA_MIPS_advance_loc8:
3159 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3160 fde->dw_fde_current_label, NULL);
3161 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3162 break;
3163
3164 case DW_CFA_offset_extended:
3165 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3166 dw2_asm_output_data_uleb128 (r, NULL);
3167 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3168 dw2_asm_output_data_uleb128 (off, NULL);
3169 break;
3170
3171 case DW_CFA_def_cfa:
3172 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3173 dw2_asm_output_data_uleb128 (r, NULL);
3174 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3175 break;
3176
3177 case DW_CFA_offset_extended_sf:
3178 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3179 dw2_asm_output_data_uleb128 (r, NULL);
3180 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3181 dw2_asm_output_data_sleb128 (off, NULL);
3182 break;
3183
3184 case DW_CFA_def_cfa_sf:
3185 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3186 dw2_asm_output_data_uleb128 (r, NULL);
3187 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3188 dw2_asm_output_data_sleb128 (off, NULL);
3189 break;
3190
3191 case DW_CFA_restore_extended:
3192 case DW_CFA_undefined:
3193 case DW_CFA_same_value:
3194 case DW_CFA_def_cfa_register:
3195 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3196 dw2_asm_output_data_uleb128 (r, NULL);
3197 break;
3198
3199 case DW_CFA_register:
3200 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3201 dw2_asm_output_data_uleb128 (r, NULL);
3202 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3203 dw2_asm_output_data_uleb128 (r, NULL);
3204 break;
3205
3206 case DW_CFA_def_cfa_offset:
3207 case DW_CFA_GNU_args_size:
3208 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3209 break;
3210
3211 case DW_CFA_def_cfa_offset_sf:
3212 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3213 dw2_asm_output_data_sleb128 (off, NULL);
3214 break;
3215
3216 case DW_CFA_GNU_window_save:
3217 break;
3218
3219 case DW_CFA_def_cfa_expression:
3220 case DW_CFA_expression:
3221 output_cfa_loc (cfi, for_eh);
3222 break;
3223
3224 case DW_CFA_GNU_negative_offset_extended:
3225 /* Obsoleted by DW_CFA_offset_extended_sf. */
3226 gcc_unreachable ();
3227
3228 default:
3229 break;
3230 }
3231 }
3232}
3233
3234/* Similar, but do it via assembler directives instead. */
3235
3236void
3237output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3238{
3239 unsigned long r, r2;
3240
3241 switch (cfi->dw_cfi_opc)
3242 {
3243 case DW_CFA_advance_loc:
3244 case DW_CFA_advance_loc1:
3245 case DW_CFA_advance_loc2:
3246 case DW_CFA_advance_loc4:
3247 case DW_CFA_MIPS_advance_loc8:
3248 case DW_CFA_set_loc:
3249 /* Should only be created in a code path not followed when emitting
3250 via directives. The assembler is going to take care of this for
3251 us. But this routines is also used for debugging dumps, so
3252 print something. */
3253 gcc_assert (f != asm_out_file);
3254 fprintf (f, "\t.cfi_advance_loc\n");
3255 break;
3256
3257 case DW_CFA_offset:
3258 case DW_CFA_offset_extended:
3259 case DW_CFA_offset_extended_sf:
3260 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3261 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3262 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3263 break;
3264
3265 case DW_CFA_restore:
3266 case DW_CFA_restore_extended:
3267 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3268 fprintf (f, "\t.cfi_restore %lu\n", r);
3269 break;
3270
3271 case DW_CFA_undefined:
3272 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3273 fprintf (f, "\t.cfi_undefined %lu\n", r);
3274 break;
3275
3276 case DW_CFA_same_value:
3277 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3278 fprintf (f, "\t.cfi_same_value %lu\n", r);
3279 break;
3280
3281 case DW_CFA_def_cfa:
3282 case DW_CFA_def_cfa_sf:
3283 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3284 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3285 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3286 break;
3287
3288 case DW_CFA_def_cfa_register:
3289 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3290 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3291 break;
3292
3293 case DW_CFA_register:
3294 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3295 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3296 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3297 break;
3298
3299 case DW_CFA_def_cfa_offset:
3300 case DW_CFA_def_cfa_offset_sf:
3301 fprintf (f, "\t.cfi_def_cfa_offset "
3302 HOST_WIDE_INT_PRINT_DEC"\n",
3303 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3304 break;
3305
3306 case DW_CFA_remember_state:
3307 fprintf (f, "\t.cfi_remember_state\n");
3308 break;
3309 case DW_CFA_restore_state:
3310 fprintf (f, "\t.cfi_restore_state\n");
3311 break;
3312
3313 case DW_CFA_GNU_args_size:
3314 if (f == asm_out_file)
3315 {
3316 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3317 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3318 if (flag_debug_asm)
3319 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3320 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3321 fputc ('\n', f);
3322 }
3323 else
3324 {
3325 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3326 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3327 }
3328 break;
3329
3330 case DW_CFA_GNU_window_save:
3331 fprintf (f, "\t.cfi_window_save\n");
3332 break;
3333
3334 case DW_CFA_def_cfa_expression:
3335 if (f != asm_out_file)
3336 {
3337 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3338 break;
3339 }
3340 /* FALLTHRU */
3341 case DW_CFA_expression:
3342 if (f != asm_out_file)
3343 {
3344 fprintf (f, "\t.cfi_cfa_expression ...\n");
3345 break;
3346 }
3347 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3348 output_cfa_loc_raw (cfi);
3349 fputc ('\n', f);
3350 break;
3351
3352 default:
3353 gcc_unreachable ();
3354 }
3355}
3356
3357void
3358dwarf2out_emit_cfi (dw_cfi_ref cfi)
3359{
3360 if (dwarf2out_do_cfi_asm ())
3361 output_cfi_directive (asm_out_file, cfi);
3362}
a5d0ce89
RH
3363
3364static void
3365dump_cfi_row (FILE *f, dw_cfi_row *row)
3366{
3367 dw_cfi_ref cfi;
3368 unsigned i;
3369
3370 cfi = row->cfa_cfi;
3371 if (!cfi)
3372 {
3373 dw_cfa_location dummy;
c3284718 3374 memset (&dummy, 0, sizeof (dummy));
a5d0ce89
RH
3375 dummy.reg = INVALID_REGNUM;
3376 cfi = def_cfa_0 (&dummy, &row->cfa);
3377 }
3378 output_cfi_directive (f, cfi);
3379
9771b263 3380 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
a5d0ce89
RH
3381 if (cfi)
3382 output_cfi_directive (f, cfi);
a5d0ce89
RH
3383}
3384
3385void debug_cfi_row (dw_cfi_row *row);
3386
3387void
3388debug_cfi_row (dw_cfi_row *row)
3389{
3390 dump_cfi_row (stderr, row);
3391}
948d330e 3392\f
647a1567 3393
7644b3c7
RH
3394/* Save the result of dwarf2out_do_frame across PCH.
3395 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3396static GTY(()) signed char saved_do_cfi_asm = 0;
647a1567
RH
3397
3398/* Decide whether we want to emit frame unwind information for the current
3399 translation unit. */
3400
7644b3c7 3401bool
647a1567
RH
3402dwarf2out_do_frame (void)
3403{
3404 /* We want to emit correct CFA location expressions or lists, so we
3405 have to return true if we're going to output debug info, even if
3406 we're not going to output frame or unwind info. */
3407 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3408 return true;
3409
7644b3c7 3410 if (saved_do_cfi_asm > 0)
647a1567
RH
3411 return true;
3412
3413 if (targetm.debug_unwind_info () == UI_DWARF2)
3414 return true;
3415
3416 if ((flag_unwind_tables || flag_exceptions)
3417 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3418 return true;
3419
3420 return false;
3421}
3422
3423/* Decide whether to emit frame unwind via assembler directives. */
3424
7644b3c7 3425bool
647a1567
RH
3426dwarf2out_do_cfi_asm (void)
3427{
3428 int enc;
3429
7644b3c7
RH
3430 if (saved_do_cfi_asm != 0)
3431 return saved_do_cfi_asm > 0;
3432
3433 /* Assume failure for a moment. */
3434 saved_do_cfi_asm = -1;
3435
647a1567
RH
3436 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3437 return false;
3438 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3439 return false;
3440
3441 /* Make sure the personality encoding is one the assembler can support.
3442 In particular, aligned addresses can't be handled. */
3443 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3444 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3445 return false;
3446 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3447 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3448 return false;
3449
3450 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3451 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3452 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3453 && !flag_unwind_tables && !flag_exceptions
3454 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3455 return false;
3456
7644b3c7
RH
3457 /* Success! */
3458 saved_do_cfi_asm = 1;
647a1567
RH
3459 return true;
3460}
3461
27a4cd48
DM
3462namespace {
3463
3464const pass_data pass_data_dwarf2_frame =
3465{
3466 RTL_PASS, /* type */
3467 "dwarf2", /* name */
3468 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3469 TV_FINAL, /* tv_id */
3470 0, /* properties_required */
3471 0, /* properties_provided */
3472 0, /* properties_destroyed */
3473 0, /* todo_flags_start */
3474 0, /* todo_flags_finish */
7644b3c7
RH
3475};
3476
27a4cd48
DM
3477class pass_dwarf2_frame : public rtl_opt_pass
3478{
3479public:
c3284718
RS
3480 pass_dwarf2_frame (gcc::context *ctxt)
3481 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
27a4cd48
DM
3482 {}
3483
3484 /* opt_pass methods: */
1a3d085c 3485 virtual bool gate (function *);
be55bfe6 3486 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
27a4cd48
DM
3487
3488}; // class pass_dwarf2_frame
3489
1a3d085c
TS
3490bool
3491pass_dwarf2_frame::gate (function *)
3492{
3493#ifndef HAVE_prologue
3494 /* Targets which still implement the prologue in assembler text
3495 cannot use the generic dwarf2 unwinding. */
3496 return false;
3497#endif
3498
3499 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3500 from the optimized shrink-wrapping annotations that we will compute.
3501 For now, only produce the CFI notes for dwarf2. */
3502 return dwarf2out_do_frame ();
3503}
3504
27a4cd48
DM
3505} // anon namespace
3506
3507rtl_opt_pass *
3508make_pass_dwarf2_frame (gcc::context *ctxt)
3509{
3510 return new pass_dwarf2_frame (ctxt);
3511}
3512
647a1567 3513#include "gt-dwarf2cfi.h"