]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dwarf2cfi.c
Strengthen return_label and naked_return_label to rtx_code_label *
[thirdparty/gcc.git] / gcc / dwarf2cfi.c
CommitLineData
647a1567 1/* Dwarf2 Call Frame Information helper routines.
23a5b65a 2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
647a1567
RH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "version.h"
25#include "flags.h"
26#include "rtl.h"
4d648807 27#include "tree.h"
d8a2d370 28#include "stor-layout.h"
647a1567 29#include "function.h"
829bdd4b 30#include "basic-block.h"
647a1567
RH
31#include "dwarf2.h"
32#include "dwarf2out.h"
33#include "dwarf2asm.h"
34#include "ggc.h"
4a8fb1a1 35#include "hash-table.h"
647a1567
RH
36#include "tm_p.h"
37#include "target.h"
38#include "common/common-target.h"
39#include "tree-pass.h"
40
41#include "except.h" /* expand_builtin_dwarf_sp_column */
42#include "expr.h" /* init_return_column_size */
43#include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
44#include "output.h" /* asm_out_file */
45#include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
46
47
48/* ??? Poison these here until it can be done generically. They've been
49 totally replaced in this file; make sure it stays that way. */
50#undef DWARF2_UNWIND_INFO
51#undef DWARF2_FRAME_INFO
52#if (GCC_VERSION >= 3000)
53 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
54#endif
55
56#ifndef INCOMING_RETURN_ADDR_RTX
57#define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
58#endif
59
647a1567
RH
60/* Maximum size (in bytes) of an artificially generated label. */
61#define MAX_ARTIFICIAL_LABEL_BYTES 30
647a1567 62\f
f17d3401
RH
63/* A collected description of an entire row of the abstract CFI table. */
64typedef struct GTY(()) dw_cfi_row_struct
65{
66 /* The expression that computes the CFA, expressed in two different ways.
67 The CFA member for the simple cases, and the full CFI expression for
68 the complex cases. The later will be a DW_CFA_cfa_expression. */
69 dw_cfa_location cfa;
70 dw_cfi_ref cfa_cfi;
71
72 /* The expressions for any register column that is saved. */
73 cfi_vec reg_save;
f17d3401
RH
74} dw_cfi_row;
75
43215a89
RH
76/* The caller's ORIG_REG is saved in SAVED_IN_REG. */
77typedef struct GTY(()) reg_saved_in_data_struct {
78 rtx orig_reg;
79 rtx saved_in_reg;
80} reg_saved_in_data;
81
43215a89
RH
82
83/* Since we no longer have a proper CFG, we're going to create a facsimile
84 of one on the fly while processing the frame-related insns.
85
829bdd4b
RH
86 We create dw_trace_info structures for each extended basic block beginning
87 and ending at a "save point". Save points are labels, barriers, certain
88 notes, and of course the beginning and end of the function.
43215a89
RH
89
90 As we encounter control transfer insns, we propagate the "current"
829bdd4b
RH
91 row state across the edges to the starts of traces. When checking is
92 enabled, we validate that we propagate the same data from all sources.
43215a89
RH
93
94 All traces are members of the TRACE_INFO array, in the order in which
95 they appear in the instruction stream.
96
829bdd4b
RH
97 All save points are present in the TRACE_INDEX hash, mapping the insn
98 starting a trace to the dw_trace_info describing the trace. */
43215a89
RH
99
100typedef struct
101{
829bdd4b
RH
102 /* The insn that begins the trace. */
103 rtx head;
43215a89
RH
104
105 /* The row state at the beginning and end of the trace. */
829bdd4b
RH
106 dw_cfi_row *beg_row, *end_row;
107
9a08d230
RH
108 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
109 while scanning insns. However, the args_size value is irrelevant at
110 any point except can_throw_internal_p insns. Therefore the "delay"
111 sizes the values that must actually be emitted for this trace. */
112 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
113 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
114
115 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
116 rtx eh_head;
117
43215a89
RH
118 /* The following variables contain data used in interpreting frame related
119 expressions. These are not part of the "real" row state as defined by
120 Dwarf, but it seems like they need to be propagated into a trace in case
121 frame related expressions have been sunk. */
122 /* ??? This seems fragile. These variables are fragments of a larger
123 expression. If we do not keep the entire expression together, we risk
124 not being able to put it together properly. Consider forcing targets
125 to generate self-contained expressions and dropping all of the magic
126 interpretation code in this file. Or at least refusing to shrink wrap
127 any frame related insn that doesn't contain a complete expression. */
128
129 /* The register used for saving registers to the stack, and its offset
130 from the CFA. */
131 dw_cfa_location cfa_store;
132
133 /* A temporary register holding an integral value used in adjusting SP
134 or setting up the store_reg. The "offset" field holds the integer
135 value, not an offset. */
136 dw_cfa_location cfa_temp;
137
138 /* A set of registers saved in other registers. This is the inverse of
139 the row->reg_save info, if the entry is a DW_CFA_register. This is
140 implemented as a flat array because it normally contains zero or 1
141 entry, depending on the target. IA-64 is the big spender here, using
142 a maximum of 5 entries. */
9771b263 143 vec<reg_saved_in_data> regs_saved_in_regs;
43215a89 144
200e10dc
RH
145 /* An identifier for this trace. Used only for debugging dumps. */
146 unsigned id;
147
148 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
149 bool switch_sections;
9a08d230
RH
150
151 /* True if we've seen different values incoming to beg_true_args_size. */
152 bool args_size_undefined;
43215a89
RH
153} dw_trace_info;
154
43215a89 155
829bdd4b 156typedef dw_trace_info *dw_trace_info_ref;
43215a89 157
43215a89 158
4a8fb1a1
LC
159/* Hashtable helpers. */
160
161struct trace_info_hasher : typed_noop_remove <dw_trace_info>
162{
163 typedef dw_trace_info value_type;
164 typedef dw_trace_info compare_type;
165 static inline hashval_t hash (const value_type *);
166 static inline bool equal (const value_type *, const compare_type *);
167};
168
169inline hashval_t
170trace_info_hasher::hash (const value_type *ti)
171{
172 return INSN_UID (ti->head);
173}
174
175inline bool
176trace_info_hasher::equal (const value_type *a, const compare_type *b)
177{
178 return a->head == b->head;
179}
180
181
43215a89 182/* The variables making up the pseudo-cfg, as described above. */
9771b263
DN
183static vec<dw_trace_info> trace_info;
184static vec<dw_trace_info_ref> trace_work_list;
c203e8a7 185static hash_table<trace_info_hasher> *trace_index;
43215a89 186
647a1567
RH
187/* A vector of call frame insns for the CIE. */
188cfi_vec cie_cfi_vec;
189
f17d3401
RH
190/* The state of the first row of the FDE table, which includes the
191 state provided by the CIE. */
ce363ef2 192static GTY(()) dw_cfi_row *cie_cfi_row;
f17d3401 193
43215a89
RH
194static GTY(()) reg_saved_in_data *cie_return_save;
195
647a1567
RH
196static GTY(()) unsigned long dwarf2out_cfi_label_num;
197
bc5612ed 198/* The insn after which a new CFI note should be emitted. */
141618e2 199static rtx add_cfi_insn;
bc5612ed 200
3edb53aa
RH
201/* When non-null, add_cfi will add the CFI to this vector. */
202static cfi_vec *add_cfi_vec;
203
43215a89
RH
204/* The current instruction trace. */
205static dw_trace_info *cur_trace;
206
207/* The current, i.e. most recently generated, row of the CFI table. */
208static dw_cfi_row *cur_row;
209
9a08d230
RH
210/* A copy of the current CFA, for use during the processing of a
211 single insn. */
212static dw_cfa_location *cur_cfa;
213
43215a89
RH
214/* We delay emitting a register save until either (a) we reach the end
215 of the prologue or (b) the register is clobbered. This clusters
216 register saves so that there are fewer pc advances. */
217
218typedef struct {
219 rtx reg;
220 rtx saved_reg;
221 HOST_WIDE_INT cfa_offset;
222} queued_reg_save;
223
43215a89 224
9771b263 225static vec<queued_reg_save> queued_reg_saves;
43215a89 226
bc5612ed
BS
227/* True if any CFI directives were emitted at the current insn. */
228static bool any_cfis_emitted;
4f42d714
RH
229
230/* Short-hand for commonly used register numbers. */
231static unsigned dw_stack_pointer_regnum;
232static unsigned dw_frame_pointer_regnum;
647a1567
RH
233\f
234/* Hook used by __throw. */
235
236rtx
237expand_builtin_dwarf_sp_column (void)
238{
4f42d714 239 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
647a1567
RH
240 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
241}
242
243/* MEM is a memory reference for the register size table, each element of
244 which has mode MODE. Initialize column C as a return address column. */
245
246static void
247init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
248{
249 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
250 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
69db2d57
RS
251 emit_move_insn (adjust_address (mem, mode, offset),
252 gen_int_mode (size, mode));
647a1567
RH
253}
254
255/* Generate code to initialize the register size table. */
256
257void
258expand_builtin_init_dwarf_reg_sizes (tree address)
259{
260 unsigned int i;
261 enum machine_mode mode = TYPE_MODE (char_type_node);
262 rtx addr = expand_normal (address);
263 rtx mem = gen_rtx_MEM (BLKmode, addr);
264 bool wrote_return_column = false;
265
266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
267 {
4f42d714
RH
268 unsigned int dnum = DWARF_FRAME_REGNUM (i);
269 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
647a1567
RH
270
271 if (rnum < DWARF_FRAME_REGISTERS)
272 {
273 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
274 enum machine_mode save_mode = reg_raw_mode[i];
275 HOST_WIDE_INT size;
276
277 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
278 save_mode = choose_hard_reg_mode (i, 1, true);
4f42d714 279 if (dnum == DWARF_FRAME_RETURN_COLUMN)
647a1567
RH
280 {
281 if (save_mode == VOIDmode)
282 continue;
283 wrote_return_column = true;
284 }
285 size = GET_MODE_SIZE (save_mode);
286 if (offset < 0)
287 continue;
288
289 emit_move_insn (adjust_address (mem, mode, offset),
290 gen_int_mode (size, mode));
291 }
292 }
293
294 if (!wrote_return_column)
295 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
296
297#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
298 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
299#endif
300
301 targetm.init_dwarf_reg_sizes_extra (address);
302}
303
829bdd4b 304\f
829bdd4b
RH
305static dw_trace_info *
306get_trace_info (rtx insn)
307{
308 dw_trace_info dummy;
309 dummy.head = insn;
c203e8a7 310 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
829bdd4b
RH
311}
312
313static bool
314save_point_p (rtx insn)
315{
316 /* Labels, except those that are really jump tables. */
317 if (LABEL_P (insn))
318 return inside_basic_block_p (insn);
319
320 /* We split traces at the prologue/epilogue notes because those
321 are points at which the unwind info is usually stable. This
322 makes it easier to find spots with identical unwind info so
323 that we can use remember/restore_state opcodes. */
324 if (NOTE_P (insn))
325 switch (NOTE_KIND (insn))
326 {
327 case NOTE_INSN_PROLOGUE_END:
328 case NOTE_INSN_EPILOGUE_BEG:
329 return true;
330 }
331
332 return false;
333}
334
647a1567
RH
335/* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
336
337static inline HOST_WIDE_INT
338div_data_align (HOST_WIDE_INT off)
339{
340 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
341 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
342 return r;
343}
344
345/* Return true if we need a signed version of a given opcode
346 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
347
348static inline bool
349need_data_align_sf_opcode (HOST_WIDE_INT off)
350{
351 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
352}
353
354/* Return a pointer to a newly allocated Call Frame Instruction. */
355
356static inline dw_cfi_ref
357new_cfi (void)
358{
766090c2 359 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
647a1567
RH
360
361 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
362 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
363
364 return cfi;
365}
366
f17d3401
RH
367/* Return a newly allocated CFI row, with no defined data. */
368
ce363ef2 369static dw_cfi_row *
f17d3401
RH
370new_cfi_row (void)
371{
766090c2 372 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
f17d3401
RH
373
374 row->cfa.reg = INVALID_REGNUM;
375
376 return row;
377}
378
379/* Return a copy of an existing CFI row. */
380
ce363ef2
RH
381static dw_cfi_row *
382copy_cfi_row (dw_cfi_row *src)
f17d3401 383{
766090c2 384 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
f17d3401
RH
385
386 *dst = *src;
9771b263 387 dst->reg_save = vec_safe_copy (src->reg_save);
f17d3401
RH
388
389 return dst;
390}
391
89e25f95 392/* Generate a new label for the CFI info to refer to. */
647a1567
RH
393
394static char *
89e25f95 395dwarf2out_cfi_label (void)
647a1567 396{
89e25f95
BS
397 int num = dwarf2out_cfi_label_num++;
398 char label[20];
647a1567 399
89e25f95 400 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
647a1567 401
89e25f95 402 return xstrdup (label);
647a1567
RH
403}
404
3edb53aa 405/* Add CFI either to the current insn stream or to a vector, or both. */
647a1567
RH
406
407static void
3edb53aa 408add_cfi (dw_cfi_ref cfi)
647a1567 409{
89e25f95 410 any_cfis_emitted = true;
141618e2
RH
411
412 if (add_cfi_insn != NULL)
647a1567 413 {
141618e2
RH
414 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
415 NOTE_CFI (add_cfi_insn) = cfi;
647a1567 416 }
141618e2 417
3edb53aa 418 if (add_cfi_vec != NULL)
9771b263 419 vec_safe_push (*add_cfi_vec, cfi);
647a1567
RH
420}
421
57e16c96
RH
422static void
423add_cfi_args_size (HOST_WIDE_INT size)
424{
425 dw_cfi_ref cfi = new_cfi ();
426
9a08d230
RH
427 /* While we can occasionally have args_size < 0 internally, this state
428 should not persist at a point we actually need an opcode. */
429 gcc_assert (size >= 0);
430
57e16c96
RH
431 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
432 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
433
434 add_cfi (cfi);
435}
436
437static void
438add_cfi_restore (unsigned reg)
439{
440 dw_cfi_ref cfi = new_cfi ();
441
442 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
443 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
444
445 add_cfi (cfi);
446}
447
f1a0e830
RH
448/* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
449 that the register column is no longer saved. */
450
451static void
ce363ef2 452update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
f1a0e830 453{
9771b263
DN
454 if (vec_safe_length (row->reg_save) <= column)
455 vec_safe_grow_cleared (row->reg_save, column + 1);
456 (*row->reg_save)[column] = cfi;
f1a0e830
RH
457}
458
647a1567
RH
459/* This function fills in aa dw_cfa_location structure from a dwarf location
460 descriptor sequence. */
461
462static void
84562394 463get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
647a1567 464{
84562394 465 struct dw_loc_descr_node *ptr;
647a1567
RH
466 cfa->offset = 0;
467 cfa->base_offset = 0;
468 cfa->indirect = 0;
469 cfa->reg = -1;
470
471 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
472 {
473 enum dwarf_location_atom op = ptr->dw_loc_opc;
474
475 switch (op)
476 {
477 case DW_OP_reg0:
478 case DW_OP_reg1:
479 case DW_OP_reg2:
480 case DW_OP_reg3:
481 case DW_OP_reg4:
482 case DW_OP_reg5:
483 case DW_OP_reg6:
484 case DW_OP_reg7:
485 case DW_OP_reg8:
486 case DW_OP_reg9:
487 case DW_OP_reg10:
488 case DW_OP_reg11:
489 case DW_OP_reg12:
490 case DW_OP_reg13:
491 case DW_OP_reg14:
492 case DW_OP_reg15:
493 case DW_OP_reg16:
494 case DW_OP_reg17:
495 case DW_OP_reg18:
496 case DW_OP_reg19:
497 case DW_OP_reg20:
498 case DW_OP_reg21:
499 case DW_OP_reg22:
500 case DW_OP_reg23:
501 case DW_OP_reg24:
502 case DW_OP_reg25:
503 case DW_OP_reg26:
504 case DW_OP_reg27:
505 case DW_OP_reg28:
506 case DW_OP_reg29:
507 case DW_OP_reg30:
508 case DW_OP_reg31:
509 cfa->reg = op - DW_OP_reg0;
510 break;
511 case DW_OP_regx:
512 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
513 break;
514 case DW_OP_breg0:
515 case DW_OP_breg1:
516 case DW_OP_breg2:
517 case DW_OP_breg3:
518 case DW_OP_breg4:
519 case DW_OP_breg5:
520 case DW_OP_breg6:
521 case DW_OP_breg7:
522 case DW_OP_breg8:
523 case DW_OP_breg9:
524 case DW_OP_breg10:
525 case DW_OP_breg11:
526 case DW_OP_breg12:
527 case DW_OP_breg13:
528 case DW_OP_breg14:
529 case DW_OP_breg15:
530 case DW_OP_breg16:
531 case DW_OP_breg17:
532 case DW_OP_breg18:
533 case DW_OP_breg19:
534 case DW_OP_breg20:
535 case DW_OP_breg21:
536 case DW_OP_breg22:
537 case DW_OP_breg23:
538 case DW_OP_breg24:
539 case DW_OP_breg25:
540 case DW_OP_breg26:
541 case DW_OP_breg27:
542 case DW_OP_breg28:
543 case DW_OP_breg29:
544 case DW_OP_breg30:
545 case DW_OP_breg31:
546 cfa->reg = op - DW_OP_breg0;
547 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
548 break;
549 case DW_OP_bregx:
550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
551 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
552 break;
553 case DW_OP_deref:
554 cfa->indirect = 1;
555 break;
556 case DW_OP_plus_uconst:
557 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
558 break;
559 default:
560 gcc_unreachable ();
561 }
562 }
563}
564
4a8ee122
RH
565/* Find the previous value for the CFA, iteratively. CFI is the opcode
566 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
567 one level of remember/restore state processing. */
647a1567
RH
568
569void
570lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
571{
572 switch (cfi->dw_cfi_opc)
573 {
574 case DW_CFA_def_cfa_offset:
575 case DW_CFA_def_cfa_offset_sf:
576 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
577 break;
578 case DW_CFA_def_cfa_register:
579 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
580 break;
581 case DW_CFA_def_cfa:
582 case DW_CFA_def_cfa_sf:
583 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
584 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
585 break;
586 case DW_CFA_def_cfa_expression:
587 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
588 break;
589
590 case DW_CFA_remember_state:
591 gcc_assert (!remember->in_use);
592 *remember = *loc;
593 remember->in_use = 1;
594 break;
595 case DW_CFA_restore_state:
596 gcc_assert (remember->in_use);
597 *loc = *remember;
598 remember->in_use = 0;
599 break;
600
601 default:
602 break;
603 }
604}
605
647a1567
RH
606/* Determine if two dw_cfa_location structures define the same data. */
607
608bool
609cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
610{
611 return (loc1->reg == loc2->reg
612 && loc1->offset == loc2->offset
613 && loc1->indirect == loc2->indirect
614 && (loc1->indirect == 0
615 || loc1->base_offset == loc2->base_offset));
616}
617
57e16c96 618/* Determine if two CFI operands are identical. */
647a1567 619
57e16c96
RH
620static bool
621cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
647a1567 622{
57e16c96
RH
623 switch (t)
624 {
625 case dw_cfi_oprnd_unused:
626 return true;
627 case dw_cfi_oprnd_reg_num:
628 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
629 case dw_cfi_oprnd_offset:
630 return a->dw_cfi_offset == b->dw_cfi_offset;
631 case dw_cfi_oprnd_addr:
632 return (a->dw_cfi_addr == b->dw_cfi_addr
633 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
634 case dw_cfi_oprnd_loc:
635 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
636 }
637 gcc_unreachable ();
638}
647a1567 639
57e16c96
RH
640/* Determine if two CFI entries are identical. */
641
642static bool
643cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
644{
645 enum dwarf_call_frame_info opc;
646
647 /* Make things easier for our callers, including missing operands. */
648 if (a == b)
649 return true;
650 if (a == NULL || b == NULL)
651 return false;
652
653 /* Obviously, the opcodes must match. */
654 opc = a->dw_cfi_opc;
655 if (opc != b->dw_cfi_opc)
656 return false;
657
658 /* Compare the two operands, re-using the type of the operands as
659 already exposed elsewhere. */
660 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
661 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
662 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
663 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
664}
665
829bdd4b
RH
666/* Determine if two CFI_ROW structures are identical. */
667
668static bool
669cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
670{
671 size_t i, n_a, n_b, n_max;
672
673 if (a->cfa_cfi)
674 {
675 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
676 return false;
677 }
678 else if (!cfa_equal_p (&a->cfa, &b->cfa))
679 return false;
680
9771b263
DN
681 n_a = vec_safe_length (a->reg_save);
682 n_b = vec_safe_length (b->reg_save);
829bdd4b
RH
683 n_max = MAX (n_a, n_b);
684
685 for (i = 0; i < n_max; ++i)
686 {
687 dw_cfi_ref r_a = NULL, r_b = NULL;
688
689 if (i < n_a)
9771b263 690 r_a = (*a->reg_save)[i];
829bdd4b 691 if (i < n_b)
9771b263 692 r_b = (*b->reg_save)[i];
829bdd4b
RH
693
694 if (!cfi_equal_p (r_a, r_b))
695 return false;
696 }
697
698 return true;
699}
700
57e16c96
RH
701/* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
702 what opcode to emit. Returns the CFI opcode to effect the change, or
703 NULL if NEW_CFA == OLD_CFA. */
704
705static dw_cfi_ref
706def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
707{
708 dw_cfi_ref cfi;
647a1567 709
647a1567 710 /* If nothing changed, no need to issue any call frame instructions. */
57e16c96
RH
711 if (cfa_equal_p (old_cfa, new_cfa))
712 return NULL;
647a1567
RH
713
714 cfi = new_cfi ();
715
57e16c96 716 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
647a1567
RH
717 {
718 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
719 the CFA register did not change but the offset did. The data
720 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
721 in the assembler via the .cfi_def_cfa_offset directive. */
57e16c96 722 if (new_cfa->offset < 0)
647a1567
RH
723 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
724 else
725 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
57e16c96 726 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
647a1567 727 }
57e16c96
RH
728 else if (new_cfa->offset == old_cfa->offset
729 && old_cfa->reg != INVALID_REGNUM
730 && !new_cfa->indirect
731 && !old_cfa->indirect)
647a1567
RH
732 {
733 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
734 indicating the CFA register has changed to <register> but the
735 offset has not changed. */
736 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
57e16c96 737 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
647a1567 738 }
57e16c96 739 else if (new_cfa->indirect == 0)
647a1567
RH
740 {
741 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
742 indicating the CFA register has changed to <register> with
743 the specified offset. The data factoring for DW_CFA_def_cfa_sf
744 happens in output_cfi, or in the assembler via the .cfi_def_cfa
745 directive. */
57e16c96 746 if (new_cfa->offset < 0)
647a1567
RH
747 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
748 else
749 cfi->dw_cfi_opc = DW_CFA_def_cfa;
57e16c96
RH
750 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
751 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
647a1567
RH
752 }
753 else
754 {
755 /* Construct a DW_CFA_def_cfa_expression instruction to
756 calculate the CFA using a full location expression since no
757 register-offset pair is available. */
84562394 758 struct dw_loc_descr_node *loc_list;
647a1567
RH
759
760 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
57e16c96 761 loc_list = build_cfa_loc (new_cfa, 0);
647a1567
RH
762 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
763 }
764
57e16c96
RH
765 return cfi;
766}
767
768/* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
769
770static void
771def_cfa_1 (dw_cfa_location *new_cfa)
772{
773 dw_cfi_ref cfi;
774
43215a89
RH
775 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
776 cur_trace->cfa_store.offset = new_cfa->offset;
57e16c96
RH
777
778 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
779 if (cfi)
780 {
781 cur_row->cfa = *new_cfa;
8f1594b2
RH
782 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
783 ? cfi : NULL);
57e16c96
RH
784
785 add_cfi (cfi);
786 }
647a1567
RH
787}
788
789/* Add the CFI for saving a register. REG is the CFA column number.
647a1567
RH
790 If SREG is -1, the register is saved at OFFSET from the CFA;
791 otherwise it is saved in SREG. */
792
793static void
3edb53aa 794reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
647a1567 795{
3edb53aa 796 dw_fde_ref fde = cfun ? cfun->fde : NULL;
647a1567 797 dw_cfi_ref cfi = new_cfi ();
647a1567
RH
798
799 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
800
801 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
802 if (fde
803 && fde->stack_realign
804 && sreg == INVALID_REGNUM)
805 {
806 cfi->dw_cfi_opc = DW_CFA_expression;
807 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
808 cfi->dw_cfi_oprnd2.dw_cfi_loc
f17d3401
RH
809 = build_cfa_aligned_loc (&cur_row->cfa, offset,
810 fde->stack_realignment);
647a1567
RH
811 }
812 else if (sreg == INVALID_REGNUM)
813 {
814 if (need_data_align_sf_opcode (offset))
815 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
816 else if (reg & ~0x3f)
817 cfi->dw_cfi_opc = DW_CFA_offset_extended;
818 else
819 cfi->dw_cfi_opc = DW_CFA_offset;
820 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
821 }
822 else if (sreg == reg)
f1a0e830
RH
823 {
824 /* While we could emit something like DW_CFA_same_value or
825 DW_CFA_restore, we never expect to see something like that
826 in a prologue. This is more likely to be a bug. A backend
827 can always bypass this by using REG_CFA_RESTORE directly. */
828 gcc_unreachable ();
829 }
647a1567
RH
830 else
831 {
832 cfi->dw_cfi_opc = DW_CFA_register;
833 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
834 }
835
3edb53aa 836 add_cfi (cfi);
f1a0e830 837 update_row_reg_save (cur_row, reg, cfi);
647a1567
RH
838}
839
9a08d230
RH
840/* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
841 and adjust data structures to match. */
647a1567
RH
842
843static void
9a08d230 844notice_args_size (rtx insn)
647a1567 845{
9a08d230
RH
846 HOST_WIDE_INT args_size, delta;
847 rtx note;
647a1567 848
9a08d230
RH
849 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
850 if (note == NULL)
851 return;
f17d3401 852
9a08d230
RH
853 args_size = INTVAL (XEXP (note, 0));
854 delta = args_size - cur_trace->end_true_args_size;
855 if (delta == 0)
856 return;
647a1567 857
9a08d230 858 cur_trace->end_true_args_size = args_size;
43215a89 859
9a08d230
RH
860 /* If the CFA is computed off the stack pointer, then we must adjust
861 the computation of the CFA as well. */
862 if (cur_cfa->reg == dw_stack_pointer_regnum)
863 {
864 gcc_assert (!cur_cfa->indirect);
647a1567 865
9a08d230
RH
866 /* Convert a change in args_size (always a positive in the
867 direction of stack growth) to a change in stack pointer. */
981dc735 868#ifndef STACK_GROWS_DOWNWARD
9a08d230 869 delta = -delta;
981dc735 870#endif
9a08d230
RH
871 cur_cfa->offset += delta;
872 }
647a1567
RH
873}
874
9a08d230
RH
875/* A subroutine of scan_trace. INSN is can_throw_internal. Update the
876 data within the trace related to EH insns and args_size. */
647a1567
RH
877
878static void
9a08d230 879notice_eh_throw (rtx insn)
647a1567 880{
9a08d230 881 HOST_WIDE_INT args_size;
647a1567 882
9a08d230
RH
883 args_size = cur_trace->end_true_args_size;
884 if (cur_trace->eh_head == NULL)
647a1567 885 {
9a08d230
RH
886 cur_trace->eh_head = insn;
887 cur_trace->beg_delay_args_size = args_size;
888 cur_trace->end_delay_args_size = args_size;
647a1567 889 }
9a08d230 890 else if (cur_trace->end_delay_args_size != args_size)
647a1567 891 {
9a08d230 892 cur_trace->end_delay_args_size = args_size;
647a1567 893
9a08d230
RH
894 /* ??? If the CFA is the stack pointer, search backward for the last
895 CFI note and insert there. Given that the stack changed for the
896 args_size change, there *must* be such a note in between here and
897 the last eh insn. */
898 add_cfi_args_size (args_size);
899 }
647a1567
RH
900}
901
7263c6d7 902/* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
4f42d714
RH
903/* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
904 used in places where rtl is prohibited. */
7263c6d7
RH
905
906static inline unsigned
907dwf_regno (const_rtx reg)
908{
362805fc 909 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
4f42d714 910 return DWARF_FRAME_REGNUM (REGNO (reg));
7263c6d7
RH
911}
912
647a1567
RH
913/* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
914
915static bool
916compare_reg_or_pc (rtx x, rtx y)
917{
918 if (REG_P (x) && REG_P (y))
919 return REGNO (x) == REGNO (y);
920 return x == y;
921}
922
923/* Record SRC as being saved in DEST. DEST may be null to delete an
924 existing entry. SRC may be a register or PC_RTX. */
925
926static void
927record_reg_saved_in_reg (rtx dest, rtx src)
928{
929 reg_saved_in_data *elt;
930 size_t i;
931
9771b263 932 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
647a1567
RH
933 if (compare_reg_or_pc (elt->orig_reg, src))
934 {
935 if (dest == NULL)
9771b263 936 cur_trace->regs_saved_in_regs.unordered_remove (i);
647a1567
RH
937 else
938 elt->saved_in_reg = dest;
939 return;
940 }
941
942 if (dest == NULL)
943 return;
944
f32682ca 945 reg_saved_in_data e = {src, dest};
9771b263 946 cur_trace->regs_saved_in_regs.safe_push (e);
647a1567
RH
947}
948
647a1567
RH
949/* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
950 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
951
952static void
89e25f95 953queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
647a1567 954{
999646c1 955 queued_reg_save *q;
f32682ca 956 queued_reg_save e = {reg, sreg, offset};
999646c1 957 size_t i;
647a1567
RH
958
959 /* Duplicates waste space, but it's also necessary to remove them
a8e5c0e7 960 for correctness, since the queue gets output in reverse order. */
9771b263 961 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
a8e5c0e7 962 if (compare_reg_or_pc (q->reg, reg))
f32682ca
DN
963 {
964 *q = e;
965 return;
966 }
647a1567 967
9771b263 968 queued_reg_saves.safe_push (e);
647a1567
RH
969}
970
971/* Output all the entries in QUEUED_REG_SAVES. */
972
973static void
974dwarf2out_flush_queued_reg_saves (void)
975{
999646c1
RH
976 queued_reg_save *q;
977 size_t i;
647a1567 978
9771b263 979 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
647a1567
RH
980 {
981 unsigned int reg, sreg;
982
983 record_reg_saved_in_reg (q->saved_reg, q->reg);
984
a8e5c0e7
RH
985 if (q->reg == pc_rtx)
986 reg = DWARF_FRAME_RETURN_COLUMN;
987 else
7263c6d7 988 reg = dwf_regno (q->reg);
647a1567 989 if (q->saved_reg)
7263c6d7 990 sreg = dwf_regno (q->saved_reg);
647a1567
RH
991 else
992 sreg = INVALID_REGNUM;
3edb53aa 993 reg_save (reg, sreg, q->cfa_offset);
647a1567
RH
994 }
995
9771b263 996 queued_reg_saves.truncate (0);
647a1567
RH
997}
998
999/* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1000 location for? Or, does it clobber a register which we've previously
1001 said that some other register is saved in, and for which we now
1002 have a new location for? */
1003
1004static bool
1005clobbers_queued_reg_save (const_rtx insn)
1006{
999646c1
RH
1007 queued_reg_save *q;
1008 size_t iq;
647a1567 1009
9771b263 1010 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
647a1567 1011 {
999646c1 1012 size_t ir;
647a1567
RH
1013 reg_saved_in_data *rir;
1014
1015 if (modified_in_p (q->reg, insn))
1016 return true;
1017
9771b263 1018 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
647a1567
RH
1019 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1020 && modified_in_p (rir->saved_in_reg, insn))
1021 return true;
1022 }
1023
1024 return false;
1025}
1026
1027/* What register, if any, is currently saved in REG? */
1028
1029static rtx
1030reg_saved_in (rtx reg)
1031{
1032 unsigned int regn = REGNO (reg);
999646c1 1033 queued_reg_save *q;
647a1567
RH
1034 reg_saved_in_data *rir;
1035 size_t i;
1036
9771b263 1037 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
647a1567
RH
1038 if (q->saved_reg && regn == REGNO (q->saved_reg))
1039 return q->reg;
1040
9771b263 1041 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
647a1567
RH
1042 if (regn == REGNO (rir->saved_in_reg))
1043 return rir->orig_reg;
1044
1045 return NULL_RTX;
1046}
1047
647a1567
RH
1048/* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1049
1050static void
89e25f95 1051dwarf2out_frame_debug_def_cfa (rtx pat)
647a1567 1052{
9a08d230 1053 memset (cur_cfa, 0, sizeof (*cur_cfa));
647a1567 1054
8f1594b2 1055 if (GET_CODE (pat) == PLUS)
647a1567 1056 {
9a08d230 1057 cur_cfa->offset = INTVAL (XEXP (pat, 1));
8f1594b2
RH
1058 pat = XEXP (pat, 0);
1059 }
1060 if (MEM_P (pat))
1061 {
9a08d230 1062 cur_cfa->indirect = 1;
647a1567
RH
1063 pat = XEXP (pat, 0);
1064 if (GET_CODE (pat) == PLUS)
1065 {
9a08d230 1066 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
647a1567
RH
1067 pat = XEXP (pat, 0);
1068 }
647a1567 1069 }
8f1594b2
RH
1070 /* ??? If this fails, we could be calling into the _loc functions to
1071 define a full expression. So far no port does that. */
1072 gcc_assert (REG_P (pat));
9a08d230 1073 cur_cfa->reg = dwf_regno (pat);
647a1567
RH
1074}
1075
1076/* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1077
1078static void
89e25f95 1079dwarf2out_frame_debug_adjust_cfa (rtx pat)
647a1567
RH
1080{
1081 rtx src, dest;
1082
1083 gcc_assert (GET_CODE (pat) == SET);
1084 dest = XEXP (pat, 0);
1085 src = XEXP (pat, 1);
1086
1087 switch (GET_CODE (src))
1088 {
1089 case PLUS:
9a08d230
RH
1090 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1091 cur_cfa->offset -= INTVAL (XEXP (src, 1));
647a1567
RH
1092 break;
1093
1094 case REG:
9a08d230 1095 break;
647a1567
RH
1096
1097 default:
9a08d230 1098 gcc_unreachable ();
647a1567
RH
1099 }
1100
9a08d230
RH
1101 cur_cfa->reg = dwf_regno (dest);
1102 gcc_assert (cur_cfa->indirect == 0);
647a1567
RH
1103}
1104
1105/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1106
1107static void
89e25f95 1108dwarf2out_frame_debug_cfa_offset (rtx set)
647a1567
RH
1109{
1110 HOST_WIDE_INT offset;
1111 rtx src, addr, span;
1112 unsigned int sregno;
1113
1114 src = XEXP (set, 1);
1115 addr = XEXP (set, 0);
1116 gcc_assert (MEM_P (addr));
1117 addr = XEXP (addr, 0);
1118
1119 /* As documented, only consider extremely simple addresses. */
1120 switch (GET_CODE (addr))
1121 {
1122 case REG:
9a08d230
RH
1123 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1124 offset = -cur_cfa->offset;
647a1567
RH
1125 break;
1126 case PLUS:
9a08d230
RH
1127 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1128 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
647a1567
RH
1129 break;
1130 default:
1131 gcc_unreachable ();
1132 }
1133
1134 if (src == pc_rtx)
1135 {
1136 span = NULL;
1137 sregno = DWARF_FRAME_RETURN_COLUMN;
1138 }
43215a89 1139 else
647a1567
RH
1140 {
1141 span = targetm.dwarf_register_span (src);
7263c6d7 1142 sregno = dwf_regno (src);
647a1567
RH
1143 }
1144
1145 /* ??? We'd like to use queue_reg_save, but we need to come up with
1146 a different flushing heuristic for epilogues. */
1147 if (!span)
3edb53aa 1148 reg_save (sregno, INVALID_REGNUM, offset);
647a1567
RH
1149 else
1150 {
1151 /* We have a PARALLEL describing where the contents of SRC live.
a4d47cac 1152 Adjust the offset for each piece of the PARALLEL. */
647a1567
RH
1153 HOST_WIDE_INT span_offset = offset;
1154
1155 gcc_assert (GET_CODE (span) == PARALLEL);
1156
a4d47cac
EB
1157 const int par_len = XVECLEN (span, 0);
1158 for (int par_index = 0; par_index < par_len; par_index++)
647a1567
RH
1159 {
1160 rtx elem = XVECEXP (span, 0, par_index);
7263c6d7 1161 sregno = dwf_regno (src);
3edb53aa 1162 reg_save (sregno, INVALID_REGNUM, span_offset);
647a1567
RH
1163 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1164 }
1165 }
1166}
1167
1168/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1169
1170static void
89e25f95 1171dwarf2out_frame_debug_cfa_register (rtx set)
647a1567
RH
1172{
1173 rtx src, dest;
1174 unsigned sregno, dregno;
1175
1176 src = XEXP (set, 1);
1177 dest = XEXP (set, 0);
1178
a8e5c0e7 1179 record_reg_saved_in_reg (dest, src);
647a1567
RH
1180 if (src == pc_rtx)
1181 sregno = DWARF_FRAME_RETURN_COLUMN;
1182 else
7263c6d7 1183 sregno = dwf_regno (src);
647a1567 1184
7263c6d7 1185 dregno = dwf_regno (dest);
647a1567
RH
1186
1187 /* ??? We'd like to use queue_reg_save, but we need to come up with
1188 a different flushing heuristic for epilogues. */
3edb53aa 1189 reg_save (sregno, dregno, 0);
647a1567
RH
1190}
1191
1192/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1193
1194static void
89e25f95 1195dwarf2out_frame_debug_cfa_expression (rtx set)
647a1567
RH
1196{
1197 rtx src, dest, span;
1198 dw_cfi_ref cfi = new_cfi ();
f1a0e830 1199 unsigned regno;
647a1567
RH
1200
1201 dest = SET_DEST (set);
1202 src = SET_SRC (set);
1203
1204 gcc_assert (REG_P (src));
1205 gcc_assert (MEM_P (dest));
1206
1207 span = targetm.dwarf_register_span (src);
1208 gcc_assert (!span);
1209
f1a0e830
RH
1210 regno = dwf_regno (src);
1211
647a1567 1212 cfi->dw_cfi_opc = DW_CFA_expression;
f1a0e830 1213 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
647a1567
RH
1214 cfi->dw_cfi_oprnd2.dw_cfi_loc
1215 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1216 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1217
1218 /* ??? We'd like to use queue_reg_save, were the interface different,
1219 and, as above, we could manage flushing for epilogues. */
3edb53aa 1220 add_cfi (cfi);
f1a0e830 1221 update_row_reg_save (cur_row, regno, cfi);
647a1567
RH
1222}
1223
1224/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1225
1226static void
89e25f95 1227dwarf2out_frame_debug_cfa_restore (rtx reg)
647a1567 1228{
a4d47cac
EB
1229 gcc_assert (REG_P (reg));
1230
1231 rtx span = targetm.dwarf_register_span (reg);
1232 if (!span)
1233 {
1234 unsigned int regno = dwf_regno (reg);
1235 add_cfi_restore (regno);
1236 update_row_reg_save (cur_row, regno, NULL);
1237 }
1238 else
1239 {
1240 /* We have a PARALLEL describing where the contents of REG live.
1241 Restore the register for each piece of the PARALLEL. */
1242 gcc_assert (GET_CODE (span) == PARALLEL);
647a1567 1243
a4d47cac
EB
1244 const int par_len = XVECLEN (span, 0);
1245 for (int par_index = 0; par_index < par_len; par_index++)
1246 {
1247 reg = XVECEXP (span, 0, par_index);
1248 gcc_assert (REG_P (reg));
1249 unsigned int regno = dwf_regno (reg);
1250 add_cfi_restore (regno);
1251 update_row_reg_save (cur_row, regno, NULL);
1252 }
1253 }
647a1567
RH
1254}
1255
1256/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1257 ??? Perhaps we should note in the CIE where windows are saved (instead of
1258 assuming 0(cfa)) and what registers are in the window. */
1259
1260static void
89e25f95 1261dwarf2out_frame_debug_cfa_window_save (void)
647a1567
RH
1262{
1263 dw_cfi_ref cfi = new_cfi ();
1264
1265 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
3edb53aa 1266 add_cfi (cfi);
647a1567
RH
1267}
1268
1269/* Record call frame debugging information for an expression EXPR,
1270 which either sets SP or FP (adjusting how we calculate the frame
1271 address) or saves a register to the stack or another register.
1272 LABEL indicates the address of EXPR.
1273
1274 This function encodes a state machine mapping rtxes to actions on
1275 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1276 users need not read the source code.
1277
1278 The High-Level Picture
1279
1280 Changes in the register we use to calculate the CFA: Currently we
1281 assume that if you copy the CFA register into another register, we
1282 should take the other one as the new CFA register; this seems to
1283 work pretty well. If it's wrong for some target, it's simple
1284 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1285
1286 Changes in the register we use for saving registers to the stack:
1287 This is usually SP, but not always. Again, we deduce that if you
1288 copy SP into another register (and SP is not the CFA register),
1289 then the new register is the one we will be using for register
1290 saves. This also seems to work.
1291
1292 Register saves: There's not much guesswork about this one; if
1293 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1294 register save, and the register used to calculate the destination
1295 had better be the one we think we're using for this purpose.
1296 It's also assumed that a copy from a call-saved register to another
1297 register is saving that register if RTX_FRAME_RELATED_P is set on
1298 that instruction. If the copy is from a call-saved register to
1299 the *same* register, that means that the register is now the same
1300 value as in the caller.
1301
1302 Except: If the register being saved is the CFA register, and the
1303 offset is nonzero, we are saving the CFA, so we assume we have to
1304 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1305 the intent is to save the value of SP from the previous frame.
1306
1307 In addition, if a register has previously been saved to a different
1308 register,
1309
1310 Invariants / Summaries of Rules
1311
1312 cfa current rule for calculating the CFA. It usually
f17d3401 1313 consists of a register and an offset. This is
9a08d230 1314 actually stored in *cur_cfa, but abbreviated
f17d3401 1315 for the purposes of this documentation.
647a1567
RH
1316 cfa_store register used by prologue code to save things to the stack
1317 cfa_store.offset is the offset from the value of
1318 cfa_store.reg to the actual CFA
1319 cfa_temp register holding an integral value. cfa_temp.offset
1320 stores the value, which will be used to adjust the
1321 stack pointer. cfa_temp is also used like cfa_store,
1322 to track stores to the stack via fp or a temp reg.
1323
1324 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1325 with cfa.reg as the first operand changes the cfa.reg and its
1326 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1327 cfa_temp.offset.
1328
1329 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1330 expression yielding a constant. This sets cfa_temp.reg
1331 and cfa_temp.offset.
1332
1333 Rule 5: Create a new register cfa_store used to save items to the
1334 stack.
1335
1336 Rules 10-14: Save a register to the stack. Define offset as the
1337 difference of the original location and cfa_store's
1338 location (or cfa_temp's location if cfa_temp is used).
1339
1340 Rules 16-20: If AND operation happens on sp in prologue, we assume
1341 stack is realigned. We will use a group of DW_OP_XXX
1342 expressions to represent the location of the stored
1343 register instead of CFA+offset.
1344
1345 The Rules
1346
1347 "{a,b}" indicates a choice of a xor b.
1348 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1349
1350 Rule 1:
1351 (set <reg1> <reg2>:cfa.reg)
1352 effects: cfa.reg = <reg1>
1353 cfa.offset unchanged
1354 cfa_temp.reg = <reg1>
1355 cfa_temp.offset = cfa.offset
1356
1357 Rule 2:
1358 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1359 {<const_int>,<reg>:cfa_temp.reg}))
1360 effects: cfa.reg = sp if fp used
1361 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1362 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1363 if cfa_store.reg==sp
1364
1365 Rule 3:
1366 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1367 effects: cfa.reg = fp
1368 cfa_offset += +/- <const_int>
1369
1370 Rule 4:
1371 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1372 constraints: <reg1> != fp
1373 <reg1> != sp
1374 effects: cfa.reg = <reg1>
1375 cfa_temp.reg = <reg1>
1376 cfa_temp.offset = cfa.offset
1377
1378 Rule 5:
1379 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1380 constraints: <reg1> != fp
1381 <reg1> != sp
1382 effects: cfa_store.reg = <reg1>
1383 cfa_store.offset = cfa.offset - cfa_temp.offset
1384
1385 Rule 6:
1386 (set <reg> <const_int>)
1387 effects: cfa_temp.reg = <reg>
1388 cfa_temp.offset = <const_int>
1389
1390 Rule 7:
1391 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1392 effects: cfa_temp.reg = <reg1>
1393 cfa_temp.offset |= <const_int>
1394
1395 Rule 8:
1396 (set <reg> (high <exp>))
1397 effects: none
1398
1399 Rule 9:
1400 (set <reg> (lo_sum <exp> <const_int>))
1401 effects: cfa_temp.reg = <reg>
1402 cfa_temp.offset = <const_int>
1403
1404 Rule 10:
1405 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1406 effects: cfa_store.offset -= <const_int>
1407 cfa.offset = cfa_store.offset if cfa.reg == sp
1408 cfa.reg = sp
1409 cfa.base_offset = -cfa_store.offset
1410
1411 Rule 11:
1412 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1413 effects: cfa_store.offset += -/+ mode_size(mem)
1414 cfa.offset = cfa_store.offset if cfa.reg == sp
1415 cfa.reg = sp
1416 cfa.base_offset = -cfa_store.offset
1417
1418 Rule 12:
1419 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1420
1421 <reg2>)
1422 effects: cfa.reg = <reg1>
1423 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1424
1425 Rule 13:
1426 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1427 effects: cfa.reg = <reg1>
1428 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1429
1430 Rule 14:
1431 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1432 effects: cfa.reg = <reg1>
1433 cfa.base_offset = -cfa_temp.offset
1434 cfa_temp.offset -= mode_size(mem)
1435
1436 Rule 15:
1437 (set <reg> {unspec, unspec_volatile})
1438 effects: target-dependent
1439
1440 Rule 16:
1441 (set sp (and: sp <const_int>))
1442 constraints: cfa_store.reg == sp
a518b996 1443 effects: cfun->fde.stack_realign = 1
647a1567
RH
1444 cfa_store.offset = 0
1445 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1446
1447 Rule 17:
1448 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1449 effects: cfa_store.offset += -/+ mode_size(mem)
1450
1451 Rule 18:
1452 (set (mem ({pre_inc, pre_dec} sp)) fp)
1453 constraints: fde->stack_realign == 1
1454 effects: cfa_store.offset = 0
1455 cfa.reg != HARD_FRAME_POINTER_REGNUM
1456
1457 Rule 19:
1458 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1459 constraints: fde->stack_realign == 1
1460 && cfa.offset == 0
1461 && cfa.indirect == 0
1462 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1463 effects: Use DW_CFA_def_cfa_expression to define cfa
1464 cfa.reg == fde->drap_reg */
1465
1466static void
89e25f95 1467dwarf2out_frame_debug_expr (rtx expr)
647a1567
RH
1468{
1469 rtx src, dest, span;
1470 HOST_WIDE_INT offset;
1471 dw_fde_ref fde;
1472
1473 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1474 the PARALLEL independently. The first element is always processed if
1475 it is a SET. This is for backward compatibility. Other elements
1476 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1477 flag is set in them. */
1478 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1479 {
1480 int par_index;
1481 int limit = XVECLEN (expr, 0);
1482 rtx elem;
1483
1484 /* PARALLELs have strict read-modify-write semantics, so we
1485 ought to evaluate every rvalue before changing any lvalue.
1486 It's cumbersome to do that in general, but there's an
1487 easy approximation that is enough for all current users:
1488 handle register saves before register assignments. */
1489 if (GET_CODE (expr) == PARALLEL)
1490 for (par_index = 0; par_index < limit; par_index++)
1491 {
1492 elem = XVECEXP (expr, 0, par_index);
1493 if (GET_CODE (elem) == SET
1494 && MEM_P (SET_DEST (elem))
1495 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
89e25f95 1496 dwarf2out_frame_debug_expr (elem);
647a1567
RH
1497 }
1498
1499 for (par_index = 0; par_index < limit; par_index++)
1500 {
1501 elem = XVECEXP (expr, 0, par_index);
1502 if (GET_CODE (elem) == SET
1503 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1504 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
89e25f95 1505 dwarf2out_frame_debug_expr (elem);
647a1567
RH
1506 }
1507 return;
1508 }
1509
1510 gcc_assert (GET_CODE (expr) == SET);
1511
1512 src = SET_SRC (expr);
1513 dest = SET_DEST (expr);
1514
1515 if (REG_P (src))
1516 {
1517 rtx rsi = reg_saved_in (src);
1518 if (rsi)
1519 src = rsi;
1520 }
1521
a518b996 1522 fde = cfun->fde;
647a1567
RH
1523
1524 switch (GET_CODE (dest))
1525 {
1526 case REG:
1527 switch (GET_CODE (src))
1528 {
1529 /* Setting FP from SP. */
1530 case REG:
9a08d230 1531 if (cur_cfa->reg == dwf_regno (src))
647a1567
RH
1532 {
1533 /* Rule 1 */
1534 /* Update the CFA rule wrt SP or FP. Make sure src is
1535 relative to the current CFA register.
1536
1537 We used to require that dest be either SP or FP, but the
1538 ARM copies SP to a temporary register, and from there to
1539 FP. So we just rely on the backends to only set
1540 RTX_FRAME_RELATED_P on appropriate insns. */
9a08d230
RH
1541 cur_cfa->reg = dwf_regno (dest);
1542 cur_trace->cfa_temp.reg = cur_cfa->reg;
1543 cur_trace->cfa_temp.offset = cur_cfa->offset;
647a1567
RH
1544 }
1545 else
1546 {
1547 /* Saving a register in a register. */
1548 gcc_assert (!fixed_regs [REGNO (dest)]
1549 /* For the SPARC and its register window. */
7263c6d7 1550 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
647a1567
RH
1551
1552 /* After stack is aligned, we can only save SP in FP
1553 if drap register is used. In this case, we have
1554 to restore stack pointer with the CFA value and we
1555 don't generate this DWARF information. */
1556 if (fde
1557 && fde->stack_realign
1558 && REGNO (src) == STACK_POINTER_REGNUM)
1559 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1560 && fde->drap_reg != INVALID_REGNUM
9a08d230 1561 && cur_cfa->reg != dwf_regno (src));
647a1567 1562 else
89e25f95 1563 queue_reg_save (src, dest, 0);
647a1567
RH
1564 }
1565 break;
1566
1567 case PLUS:
1568 case MINUS:
1569 case LO_SUM:
1570 if (dest == stack_pointer_rtx)
1571 {
1572 /* Rule 2 */
1573 /* Adjusting SP. */
1574 switch (GET_CODE (XEXP (src, 1)))
1575 {
1576 case CONST_INT:
1577 offset = INTVAL (XEXP (src, 1));
1578 break;
1579 case REG:
43215a89
RH
1580 gcc_assert (dwf_regno (XEXP (src, 1))
1581 == cur_trace->cfa_temp.reg);
1582 offset = cur_trace->cfa_temp.offset;
647a1567
RH
1583 break;
1584 default:
1585 gcc_unreachable ();
1586 }
1587
1588 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1589 {
1590 /* Restoring SP from FP in the epilogue. */
9a08d230
RH
1591 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1592 cur_cfa->reg = dw_stack_pointer_regnum;
647a1567
RH
1593 }
1594 else if (GET_CODE (src) == LO_SUM)
1595 /* Assume we've set the source reg of the LO_SUM from sp. */
1596 ;
1597 else
1598 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1599
1600 if (GET_CODE (src) != MINUS)
1601 offset = -offset;
9a08d230
RH
1602 if (cur_cfa->reg == dw_stack_pointer_regnum)
1603 cur_cfa->offset += offset;
43215a89
RH
1604 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1605 cur_trace->cfa_store.offset += offset;
647a1567
RH
1606 }
1607 else if (dest == hard_frame_pointer_rtx)
1608 {
1609 /* Rule 3 */
1610 /* Either setting the FP from an offset of the SP,
1611 or adjusting the FP */
1612 gcc_assert (frame_pointer_needed);
1613
1614 gcc_assert (REG_P (XEXP (src, 0))
9a08d230 1615 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
647a1567
RH
1616 && CONST_INT_P (XEXP (src, 1)));
1617 offset = INTVAL (XEXP (src, 1));
1618 if (GET_CODE (src) != MINUS)
1619 offset = -offset;
9a08d230
RH
1620 cur_cfa->offset += offset;
1621 cur_cfa->reg = dw_frame_pointer_regnum;
647a1567
RH
1622 }
1623 else
1624 {
1625 gcc_assert (GET_CODE (src) != MINUS);
1626
1627 /* Rule 4 */
1628 if (REG_P (XEXP (src, 0))
9a08d230 1629 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
647a1567
RH
1630 && CONST_INT_P (XEXP (src, 1)))
1631 {
1632 /* Setting a temporary CFA register that will be copied
1633 into the FP later on. */
1634 offset = - INTVAL (XEXP (src, 1));
9a08d230
RH
1635 cur_cfa->offset += offset;
1636 cur_cfa->reg = dwf_regno (dest);
647a1567 1637 /* Or used to save regs to the stack. */
9a08d230
RH
1638 cur_trace->cfa_temp.reg = cur_cfa->reg;
1639 cur_trace->cfa_temp.offset = cur_cfa->offset;
647a1567
RH
1640 }
1641
1642 /* Rule 5 */
1643 else if (REG_P (XEXP (src, 0))
43215a89 1644 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
647a1567
RH
1645 && XEXP (src, 1) == stack_pointer_rtx)
1646 {
1647 /* Setting a scratch register that we will use instead
1648 of SP for saving registers to the stack. */
9a08d230 1649 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
43215a89
RH
1650 cur_trace->cfa_store.reg = dwf_regno (dest);
1651 cur_trace->cfa_store.offset
9a08d230 1652 = cur_cfa->offset - cur_trace->cfa_temp.offset;
647a1567
RH
1653 }
1654
1655 /* Rule 9 */
1656 else if (GET_CODE (src) == LO_SUM
1657 && CONST_INT_P (XEXP (src, 1)))
1658 {
43215a89
RH
1659 cur_trace->cfa_temp.reg = dwf_regno (dest);
1660 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
647a1567
RH
1661 }
1662 else
1663 gcc_unreachable ();
1664 }
1665 break;
1666
1667 /* Rule 6 */
1668 case CONST_INT:
43215a89
RH
1669 cur_trace->cfa_temp.reg = dwf_regno (dest);
1670 cur_trace->cfa_temp.offset = INTVAL (src);
647a1567
RH
1671 break;
1672
1673 /* Rule 7 */
1674 case IOR:
1675 gcc_assert (REG_P (XEXP (src, 0))
43215a89 1676 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
647a1567
RH
1677 && CONST_INT_P (XEXP (src, 1)));
1678
43215a89
RH
1679 cur_trace->cfa_temp.reg = dwf_regno (dest);
1680 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
647a1567
RH
1681 break;
1682
1683 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1684 which will fill in all of the bits. */
1685 /* Rule 8 */
1686 case HIGH:
1687 break;
1688
1689 /* Rule 15 */
1690 case UNSPEC:
1691 case UNSPEC_VOLATILE:
89e25f95
BS
1692 /* All unspecs should be represented by REG_CFA_* notes. */
1693 gcc_unreachable ();
647a1567
RH
1694 return;
1695
1696 /* Rule 16 */
1697 case AND:
1698 /* If this AND operation happens on stack pointer in prologue,
1699 we assume the stack is realigned and we extract the
1700 alignment. */
1701 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1702 {
1703 /* We interpret reg_save differently with stack_realign set.
1704 Thus we must flush whatever we have queued first. */
1705 dwarf2out_flush_queued_reg_saves ();
1706
43215a89
RH
1707 gcc_assert (cur_trace->cfa_store.reg
1708 == dwf_regno (XEXP (src, 0)));
647a1567
RH
1709 fde->stack_realign = 1;
1710 fde->stack_realignment = INTVAL (XEXP (src, 1));
43215a89 1711 cur_trace->cfa_store.offset = 0;
647a1567 1712
9a08d230
RH
1713 if (cur_cfa->reg != dw_stack_pointer_regnum
1714 && cur_cfa->reg != dw_frame_pointer_regnum)
1715 fde->drap_reg = cur_cfa->reg;
647a1567
RH
1716 }
1717 return;
1718
1719 default:
1720 gcc_unreachable ();
1721 }
647a1567
RH
1722 break;
1723
1724 case MEM:
1725
1726 /* Saving a register to the stack. Make sure dest is relative to the
1727 CFA register. */
1728 switch (GET_CODE (XEXP (dest, 0)))
1729 {
1730 /* Rule 10 */
1731 /* With a push. */
1732 case PRE_MODIFY:
1733 case POST_MODIFY:
1734 /* We can't handle variable size modifications. */
1735 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1736 == CONST_INT);
1737 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1738
1739 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
43215a89 1740 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
647a1567 1741
43215a89 1742 cur_trace->cfa_store.offset += offset;
9a08d230
RH
1743 if (cur_cfa->reg == dw_stack_pointer_regnum)
1744 cur_cfa->offset = cur_trace->cfa_store.offset;
647a1567
RH
1745
1746 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
43215a89 1747 offset -= cur_trace->cfa_store.offset;
647a1567 1748 else
43215a89 1749 offset = -cur_trace->cfa_store.offset;
647a1567
RH
1750 break;
1751
1752 /* Rule 11 */
1753 case PRE_INC:
1754 case PRE_DEC:
1755 case POST_DEC:
1756 offset = GET_MODE_SIZE (GET_MODE (dest));
1757 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1758 offset = -offset;
1759
1760 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1761 == STACK_POINTER_REGNUM)
43215a89 1762 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
647a1567 1763
43215a89 1764 cur_trace->cfa_store.offset += offset;
647a1567
RH
1765
1766 /* Rule 18: If stack is aligned, we will use FP as a
1767 reference to represent the address of the stored
1768 regiser. */
1769 if (fde
1770 && fde->stack_realign
7b4d5595
L
1771 && REG_P (src)
1772 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
647a1567 1773 {
9a08d230 1774 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
43215a89 1775 cur_trace->cfa_store.offset = 0;
647a1567
RH
1776 }
1777
9a08d230
RH
1778 if (cur_cfa->reg == dw_stack_pointer_regnum)
1779 cur_cfa->offset = cur_trace->cfa_store.offset;
647a1567
RH
1780
1781 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
43215a89 1782 offset += -cur_trace->cfa_store.offset;
647a1567 1783 else
43215a89 1784 offset = -cur_trace->cfa_store.offset;
647a1567
RH
1785 break;
1786
1787 /* Rule 12 */
1788 /* With an offset. */
1789 case PLUS:
1790 case MINUS:
1791 case LO_SUM:
1792 {
7263c6d7 1793 unsigned int regno;
647a1567
RH
1794
1795 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1796 && REG_P (XEXP (XEXP (dest, 0), 0)));
1797 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1798 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1799 offset = -offset;
1800
7263c6d7 1801 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
647a1567 1802
9a08d230
RH
1803 if (cur_cfa->reg == regno)
1804 offset -= cur_cfa->offset;
43215a89
RH
1805 else if (cur_trace->cfa_store.reg == regno)
1806 offset -= cur_trace->cfa_store.offset;
647a1567
RH
1807 else
1808 {
43215a89
RH
1809 gcc_assert (cur_trace->cfa_temp.reg == regno);
1810 offset -= cur_trace->cfa_temp.offset;
647a1567
RH
1811 }
1812 }
1813 break;
1814
1815 /* Rule 13 */
1816 /* Without an offset. */
1817 case REG:
1818 {
7263c6d7 1819 unsigned int regno = dwf_regno (XEXP (dest, 0));
647a1567 1820
9a08d230
RH
1821 if (cur_cfa->reg == regno)
1822 offset = -cur_cfa->offset;
43215a89
RH
1823 else if (cur_trace->cfa_store.reg == regno)
1824 offset = -cur_trace->cfa_store.offset;
647a1567
RH
1825 else
1826 {
43215a89
RH
1827 gcc_assert (cur_trace->cfa_temp.reg == regno);
1828 offset = -cur_trace->cfa_temp.offset;
647a1567
RH
1829 }
1830 }
1831 break;
1832
1833 /* Rule 14 */
1834 case POST_INC:
43215a89
RH
1835 gcc_assert (cur_trace->cfa_temp.reg
1836 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1837 offset = -cur_trace->cfa_temp.offset;
1838 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
647a1567
RH
1839 break;
1840
1841 default:
1842 gcc_unreachable ();
1843 }
1844
a8e5c0e7
RH
1845 /* Rule 17 */
1846 /* If the source operand of this MEM operation is a memory,
1847 we only care how much stack grew. */
1848 if (MEM_P (src))
647a1567
RH
1849 break;
1850
a8e5c0e7
RH
1851 if (REG_P (src)
1852 && REGNO (src) != STACK_POINTER_REGNUM
647a1567 1853 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
9a08d230 1854 && dwf_regno (src) == cur_cfa->reg)
647a1567
RH
1855 {
1856 /* We're storing the current CFA reg into the stack. */
1857
9a08d230 1858 if (cur_cfa->offset == 0)
647a1567
RH
1859 {
1860 /* Rule 19 */
1861 /* If stack is aligned, putting CFA reg into stack means
1862 we can no longer use reg + offset to represent CFA.
1863 Here we use DW_CFA_def_cfa_expression instead. The
1864 result of this expression equals to the original CFA
1865 value. */
1866 if (fde
1867 && fde->stack_realign
9a08d230
RH
1868 && cur_cfa->indirect == 0
1869 && cur_cfa->reg != dw_frame_pointer_regnum)
647a1567 1870 {
9a08d230 1871 gcc_assert (fde->drap_reg == cur_cfa->reg);
647a1567 1872
9a08d230
RH
1873 cur_cfa->indirect = 1;
1874 cur_cfa->reg = dw_frame_pointer_regnum;
1875 cur_cfa->base_offset = offset;
1876 cur_cfa->offset = 0;
647a1567
RH
1877
1878 fde->drap_reg_saved = 1;
647a1567
RH
1879 break;
1880 }
1881
1882 /* If the source register is exactly the CFA, assume
1883 we're saving SP like any other register; this happens
1884 on the ARM. */
89e25f95 1885 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
647a1567
RH
1886 break;
1887 }
1888 else
1889 {
1890 /* Otherwise, we'll need to look in the stack to
1891 calculate the CFA. */
1892 rtx x = XEXP (dest, 0);
1893
1894 if (!REG_P (x))
1895 x = XEXP (x, 0);
1896 gcc_assert (REG_P (x));
1897
9a08d230
RH
1898 cur_cfa->reg = dwf_regno (x);
1899 cur_cfa->base_offset = offset;
1900 cur_cfa->indirect = 1;
647a1567
RH
1901 break;
1902 }
1903 }
1904
a8e5c0e7
RH
1905 if (REG_P (src))
1906 span = targetm.dwarf_register_span (src);
a4d47cac
EB
1907 else
1908 span = NULL;
1909
a8e5c0e7
RH
1910 if (!span)
1911 queue_reg_save (src, NULL_RTX, offset);
1912 else
1913 {
1914 /* We have a PARALLEL describing where the contents of SRC live.
1915 Queue register saves for each piece of the PARALLEL. */
a8e5c0e7 1916 HOST_WIDE_INT span_offset = offset;
647a1567 1917
a8e5c0e7 1918 gcc_assert (GET_CODE (span) == PARALLEL);
647a1567 1919
a4d47cac
EB
1920 const int par_len = XVECLEN (span, 0);
1921 for (int par_index = 0; par_index < par_len; par_index++)
a8e5c0e7
RH
1922 {
1923 rtx elem = XVECEXP (span, 0, par_index);
1924 queue_reg_save (elem, NULL_RTX, span_offset);
1925 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1926 }
1927 }
647a1567
RH
1928 break;
1929
1930 default:
1931 gcc_unreachable ();
1932 }
1933}
1934
9a08d230
RH
1935/* Record call frame debugging information for INSN, which either sets
1936 SP or FP (adjusting how we calculate the frame address) or saves a
1937 register to the stack. */
647a1567 1938
7644b3c7 1939static void
9a08d230 1940dwarf2out_frame_debug (rtx insn)
647a1567 1941{
647a1567
RH
1942 rtx note, n;
1943 bool handled_one = false;
647a1567
RH
1944
1945 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1946 switch (REG_NOTE_KIND (note))
1947 {
1948 case REG_FRAME_RELATED_EXPR:
1949 insn = XEXP (note, 0);
1950 goto do_frame_expr;
1951
1952 case REG_CFA_DEF_CFA:
89e25f95 1953 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
647a1567
RH
1954 handled_one = true;
1955 break;
1956
1957 case REG_CFA_ADJUST_CFA:
1958 n = XEXP (note, 0);
1959 if (n == NULL)
1960 {
1961 n = PATTERN (insn);
1962 if (GET_CODE (n) == PARALLEL)
1963 n = XVECEXP (n, 0, 0);
1964 }
89e25f95 1965 dwarf2out_frame_debug_adjust_cfa (n);
647a1567
RH
1966 handled_one = true;
1967 break;
1968
1969 case REG_CFA_OFFSET:
1970 n = XEXP (note, 0);
1971 if (n == NULL)
1972 n = single_set (insn);
89e25f95 1973 dwarf2out_frame_debug_cfa_offset (n);
647a1567
RH
1974 handled_one = true;
1975 break;
1976
1977 case REG_CFA_REGISTER:
1978 n = XEXP (note, 0);
1979 if (n == NULL)
1980 {
1981 n = PATTERN (insn);
1982 if (GET_CODE (n) == PARALLEL)
1983 n = XVECEXP (n, 0, 0);
1984 }
89e25f95 1985 dwarf2out_frame_debug_cfa_register (n);
647a1567
RH
1986 handled_one = true;
1987 break;
1988
1989 case REG_CFA_EXPRESSION:
1990 n = XEXP (note, 0);
1991 if (n == NULL)
1992 n = single_set (insn);
89e25f95 1993 dwarf2out_frame_debug_cfa_expression (n);
647a1567
RH
1994 handled_one = true;
1995 break;
1996
1997 case REG_CFA_RESTORE:
1998 n = XEXP (note, 0);
1999 if (n == NULL)
2000 {
2001 n = PATTERN (insn);
2002 if (GET_CODE (n) == PARALLEL)
2003 n = XVECEXP (n, 0, 0);
2004 n = XEXP (n, 0);
2005 }
89e25f95 2006 dwarf2out_frame_debug_cfa_restore (n);
647a1567
RH
2007 handled_one = true;
2008 break;
2009
2010 case REG_CFA_SET_VDRAP:
2011 n = XEXP (note, 0);
2012 if (REG_P (n))
2013 {
a518b996 2014 dw_fde_ref fde = cfun->fde;
647a1567
RH
2015 if (fde)
2016 {
2017 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2018 if (REG_P (n))
7263c6d7 2019 fde->vdrap_reg = dwf_regno (n);
647a1567
RH
2020 }
2021 }
2022 handled_one = true;
2023 break;
2024
2025 case REG_CFA_WINDOW_SAVE:
89e25f95 2026 dwarf2out_frame_debug_cfa_window_save ();
647a1567
RH
2027 handled_one = true;
2028 break;
2029
2030 case REG_CFA_FLUSH_QUEUE:
67d7405e 2031 /* The actual flush happens elsewhere. */
647a1567
RH
2032 handled_one = true;
2033 break;
2034
2035 default:
2036 break;
2037 }
2038
67d7405e 2039 if (!handled_one)
647a1567
RH
2040 {
2041 insn = PATTERN (insn);
2042 do_frame_expr:
89e25f95 2043 dwarf2out_frame_debug_expr (insn);
647a1567
RH
2044
2045 /* Check again. A parallel can save and update the same register.
2046 We could probably check just once, here, but this is safer than
2047 removing the check at the start of the function. */
67d7405e
RH
2048 if (clobbers_queued_reg_save (insn))
2049 dwarf2out_flush_queued_reg_saves ();
647a1567 2050 }
647a1567
RH
2051}
2052
57e16c96
RH
2053/* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2054
2055static void
ce363ef2 2056change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
57e16c96
RH
2057{
2058 size_t i, n_old, n_new, n_max;
2059 dw_cfi_ref cfi;
2060
2061 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2062 add_cfi (new_row->cfa_cfi);
2063 else
2064 {
2065 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2066 if (cfi)
2067 add_cfi (cfi);
2068 }
2069
9771b263
DN
2070 n_old = vec_safe_length (old_row->reg_save);
2071 n_new = vec_safe_length (new_row->reg_save);
57e16c96
RH
2072 n_max = MAX (n_old, n_new);
2073
2074 for (i = 0; i < n_max; ++i)
2075 {
2076 dw_cfi_ref r_old = NULL, r_new = NULL;
2077
2078 if (i < n_old)
9771b263 2079 r_old = (*old_row->reg_save)[i];
57e16c96 2080 if (i < n_new)
9771b263 2081 r_new = (*new_row->reg_save)[i];
57e16c96
RH
2082
2083 if (r_old == r_new)
2084 ;
2085 else if (r_new == NULL)
2086 add_cfi_restore (i);
2087 else if (!cfi_equal_p (r_old, r_new))
2088 add_cfi (r_new);
2089 }
2090}
2091
89e25f95
BS
2092/* Examine CFI and return true if a cfi label and set_loc is needed
2093 beforehand. Even when generating CFI assembler instructions, we
4a8ee122 2094 still have to add the cfi to the list so that lookup_cfa_1 works
89e25f95
BS
2095 later on. When -g2 and above we even need to force emitting of
2096 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2097 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2098 and so don't use convert_cfa_to_fb_loc_list. */
2099
2100static bool
2101cfi_label_required_p (dw_cfi_ref cfi)
2102{
2103 if (!dwarf2out_do_cfi_asm ())
2104 return true;
2105
2106 if (dwarf_version == 2
2107 && debug_info_level > DINFO_LEVEL_TERSE
2108 && (write_symbols == DWARF2_DEBUG
2109 || write_symbols == VMS_AND_DWARF2_DEBUG))
2110 {
2111 switch (cfi->dw_cfi_opc)
2112 {
2113 case DW_CFA_def_cfa_offset:
2114 case DW_CFA_def_cfa_offset_sf:
2115 case DW_CFA_def_cfa_register:
2116 case DW_CFA_def_cfa:
2117 case DW_CFA_def_cfa_sf:
2118 case DW_CFA_def_cfa_expression:
2119 case DW_CFA_restore_state:
2120 return true;
2121 default:
2122 return false;
2123 }
2124 }
2125 return false;
2126}
2127
2128/* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2129 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2130 necessary. */
2131static void
2132add_cfis_to_fde (void)
2133{
a518b996 2134 dw_fde_ref fde = cfun->fde;
f65c531e 2135 rtx_insn *insn, *next;
89e25f95
BS
2136 /* We always start with a function_begin label. */
2137 bool first = false;
2138
2139 for (insn = get_insns (); insn; insn = next)
2140 {
2141 next = NEXT_INSN (insn);
2142
2143 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2144 {
9771b263 2145 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
89e25f95
BS
2146 /* Don't attempt to advance_loc4 between labels
2147 in different sections. */
2148 first = true;
2149 }
2150
2151 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2152 {
2153 bool required = cfi_label_required_p (NOTE_CFI (insn));
b84dad8e
JJ
2154 while (next)
2155 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2156 {
2157 required |= cfi_label_required_p (NOTE_CFI (next));
2158 next = NEXT_INSN (next);
2159 }
2160 else if (active_insn_p (next)
2161 || (NOTE_P (next) && (NOTE_KIND (next)
2162 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2163 break;
2164 else
89e25f95 2165 next = NEXT_INSN (next);
89e25f95
BS
2166 if (required)
2167 {
2168 int num = dwarf2out_cfi_label_num;
2169 const char *label = dwarf2out_cfi_label ();
2170 dw_cfi_ref xcfi;
2171 rtx tmp;
2172
2173 /* Set the location counter to the new label. */
2174 xcfi = new_cfi ();
2175 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2176 : DW_CFA_advance_loc4);
2177 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
9771b263 2178 vec_safe_push (fde->dw_fde_cfi, xcfi);
89e25f95
BS
2179
2180 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2181 NOTE_LABEL_NUMBER (tmp) = num;
2182 }
2183
2184 do
2185 {
b84dad8e 2186 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
9771b263 2187 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
89e25f95
BS
2188 insn = NEXT_INSN (insn);
2189 }
2190 while (insn != next);
2191 first = false;
2192 }
2193 }
2194}
2195
829bdd4b
RH
2196/* If LABEL is the start of a trace, then initialize the state of that
2197 trace from CUR_TRACE and CUR_ROW. */
43215a89 2198
7644b3c7 2199static void
9a08d230 2200maybe_record_trace_start (rtx start, rtx origin)
89e25f95 2201{
829bdd4b 2202 dw_trace_info *ti;
9a08d230 2203 HOST_WIDE_INT args_size;
829bdd4b
RH
2204
2205 ti = get_trace_info (start);
2206 gcc_assert (ti != NULL);
647a1567 2207
829bdd4b 2208 if (dump_file)
647a1567 2209 {
829bdd4b 2210 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
200e10dc 2211 cur_trace->id, ti->id,
829bdd4b
RH
2212 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2213 (origin ? INSN_UID (origin) : 0));
2214 }
bc5612ed 2215
9a08d230 2216 args_size = cur_trace->end_true_args_size;
829bdd4b
RH
2217 if (ti->beg_row == NULL)
2218 {
2219 /* This is the first time we've encountered this trace. Propagate
2220 state across the edge and push the trace onto the work list. */
2221 ti->beg_row = copy_cfi_row (cur_row);
9a08d230 2222 ti->beg_true_args_size = args_size;
2f23f97a 2223
829bdd4b
RH
2224 ti->cfa_store = cur_trace->cfa_store;
2225 ti->cfa_temp = cur_trace->cfa_temp;
9771b263 2226 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
829bdd4b 2227
9771b263 2228 trace_work_list.safe_push (ti);
829bdd4b
RH
2229
2230 if (dump_file)
200e10dc 2231 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
829bdd4b
RH
2232 }
2233 else
2234 {
9a08d230 2235
829bdd4b
RH
2236 /* We ought to have the same state incoming to a given trace no
2237 matter how we arrive at the trace. Anything else means we've
2238 got some kind of optimization error. */
2239 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
9a08d230
RH
2240
2241 /* The args_size is allowed to conflict if it isn't actually used. */
2242 if (ti->beg_true_args_size != args_size)
2243 ti->args_size_undefined = true;
2244 }
2245}
2246
2247/* Similarly, but handle the args_size and CFA reset across EH
2248 and non-local goto edges. */
2249
2250static void
2251maybe_record_trace_start_abnormal (rtx start, rtx origin)
2252{
2253 HOST_WIDE_INT save_args_size, delta;
2254 dw_cfa_location save_cfa;
2255
2256 save_args_size = cur_trace->end_true_args_size;
2257 if (save_args_size == 0)
2258 {
2259 maybe_record_trace_start (start, origin);
2260 return;
2261 }
2262
2263 delta = -save_args_size;
2264 cur_trace->end_true_args_size = 0;
2265
2266 save_cfa = cur_row->cfa;
2267 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2268 {
2269 /* Convert a change in args_size (always a positive in the
2270 direction of stack growth) to a change in stack pointer. */
2271#ifndef STACK_GROWS_DOWNWARD
2272 delta = -delta;
2273#endif
2274 cur_row->cfa.offset += delta;
829bdd4b 2275 }
9a08d230
RH
2276
2277 maybe_record_trace_start (start, origin);
2278
2279 cur_trace->end_true_args_size = save_args_size;
2280 cur_row->cfa = save_cfa;
829bdd4b 2281}
45fba6d1 2282
829bdd4b
RH
2283/* Propagate CUR_TRACE state to the destinations implied by INSN. */
2284/* ??? Sadly, this is in large part a duplicate of make_edges. */
2285
2286static void
2287create_trace_edges (rtx insn)
2288{
ca486330 2289 rtx tmp;
829bdd4b
RH
2290 int i, n;
2291
2292 if (JUMP_P (insn))
2293 {
8942ee0f
DM
2294 rtx_jump_table_data *table;
2295
829bdd4b 2296 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
9a08d230
RH
2297 return;
2298
8942ee0f 2299 if (tablejump_p (insn, NULL, &table))
bc5612ed 2300 {
95c43227 2301 rtvec vec = table->get_labels ();
829bdd4b
RH
2302
2303 n = GET_NUM_ELEM (vec);
2304 for (i = 0; i < n; ++i)
2305 {
ca486330 2306 rtx lab = XEXP (RTVEC_ELT (vec, i), 0);
9a08d230 2307 maybe_record_trace_start (lab, insn);
829bdd4b
RH
2308 }
2309 }
2310 else if (computed_jump_p (insn))
bc5612ed 2311 {
ca486330
DM
2312 for (rtx_expr_list *lab = forced_labels; lab; lab = lab->next ())
2313 maybe_record_trace_start (lab->element (), insn);
829bdd4b
RH
2314 }
2315 else if (returnjump_p (insn))
2316 ;
2317 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2318 {
2319 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2320 for (i = 0; i < n; ++i)
bc5612ed 2321 {
ca486330 2322 rtx lab = XEXP (ASM_OPERANDS_LABEL (tmp, i), 0);
9a08d230 2323 maybe_record_trace_start (lab, insn);
829bdd4b
RH
2324 }
2325 }
2326 else
2327 {
ca486330 2328 rtx lab = JUMP_LABEL (insn);
829bdd4b 2329 gcc_assert (lab != NULL);
9a08d230 2330 maybe_record_trace_start (lab, insn);
829bdd4b
RH
2331 }
2332 }
2333 else if (CALL_P (insn))
2334 {
2335 /* Sibling calls don't have edges inside this function. */
2336 if (SIBLING_CALL_P (insn))
2337 return;
965b2557 2338
829bdd4b
RH
2339 /* Process non-local goto edges. */
2340 if (can_nonlocal_goto (insn))
2382940b
DM
2341 for (rtx_expr_list *lab = nonlocal_goto_handler_labels;
2342 lab;
2343 lab = lab->next ())
2344 maybe_record_trace_start_abnormal (lab->element (), insn);
829bdd4b 2345 }
292d1dfb 2346 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3382318a 2347 {
292d1dfb 2348 int i, n = seq->len ();
3382318a 2349 for (i = 0; i < n; ++i)
292d1dfb 2350 create_trace_edges (seq->insn (i));
3382318a
RH
2351 return;
2352 }
965b2557 2353
829bdd4b
RH
2354 /* Process EH edges. */
2355 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2356 {
2357 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2358 if (lp)
9a08d230 2359 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
829bdd4b
RH
2360 }
2361}
57e16c96 2362
eebc8f37
RH
2363/* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2364
2365static void
2366scan_insn_after (rtx insn)
2367{
2368 if (RTX_FRAME_RELATED_P (insn))
2369 dwarf2out_frame_debug (insn);
2370 notice_args_size (insn);
2371}
2372
829bdd4b
RH
2373/* Scan the trace beginning at INSN and create the CFI notes for the
2374 instructions therein. */
2375
2376static void
2377scan_trace (dw_trace_info *trace)
2378{
eebc8f37 2379 rtx prev, insn = trace->head;
9a08d230 2380 dw_cfa_location this_cfa;
829bdd4b
RH
2381
2382 if (dump_file)
2383 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
200e10dc 2384 trace->id, rtx_name[(int) GET_CODE (insn)],
829bdd4b
RH
2385 INSN_UID (insn));
2386
2387 trace->end_row = copy_cfi_row (trace->beg_row);
9a08d230 2388 trace->end_true_args_size = trace->beg_true_args_size;
829bdd4b
RH
2389
2390 cur_trace = trace;
2391 cur_row = trace->end_row;
9a08d230
RH
2392
2393 this_cfa = cur_row->cfa;
2394 cur_cfa = &this_cfa;
829bdd4b 2395
eebc8f37
RH
2396 for (prev = insn, insn = NEXT_INSN (insn);
2397 insn;
2398 prev = insn, insn = NEXT_INSN (insn))
829bdd4b 2399 {
eebc8f37
RH
2400 rtx control;
2401
9a08d230 2402 /* Do everything that happens "before" the insn. */
eebc8f37 2403 add_cfi_insn = prev;
829bdd4b
RH
2404
2405 /* Notice the end of a trace. */
9a08d230
RH
2406 if (BARRIER_P (insn))
2407 {
2408 /* Don't bother saving the unneeded queued registers at all. */
9771b263 2409 queued_reg_saves.truncate (0);
9a08d230
RH
2410 break;
2411 }
2412 if (save_point_p (insn))
829bdd4b 2413 {
829bdd4b 2414 /* Propagate across fallthru edges. */
9a08d230
RH
2415 dwarf2out_flush_queued_reg_saves ();
2416 maybe_record_trace_start (insn, NULL);
829bdd4b 2417 break;
bc5612ed
BS
2418 }
2419
829bdd4b 2420 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
bc5612ed
BS
2421 continue;
2422
eebc8f37
RH
2423 /* Handle all changes to the row state. Sequences require special
2424 handling for the positioning of the notes. */
292d1dfb 2425 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
bc5612ed 2426 {
292d1dfb
DM
2427 rtx elt;
2428 int i, n = pat->len ();
9a08d230 2429
292d1dfb 2430 control = pat->element (0);
eebc8f37
RH
2431 if (can_throw_internal (control))
2432 notice_eh_throw (control);
2433 dwarf2out_flush_queued_reg_saves ();
2434
8f06d483 2435 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
829bdd4b 2436 {
9a08d230
RH
2437 /* ??? Hopefully multiple delay slots are not annulled. */
2438 gcc_assert (n == 2);
eebc8f37
RH
2439 gcc_assert (!RTX_FRAME_RELATED_P (control));
2440 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2441
292d1dfb 2442 elt = pat->element (1);
9a08d230 2443
9a08d230
RH
2444 if (INSN_FROM_TARGET_P (elt))
2445 {
2446 HOST_WIDE_INT restore_args_size;
5d1f1cd5 2447 cfi_vec save_row_reg_save;
829bdd4b 2448
bf27c43e
RH
2449 /* If ELT is an instruction from target of an annulled
2450 branch, the effects are for the target only and so
2451 the args_size and CFA along the current path
2452 shouldn't change. */
eebc8f37 2453 add_cfi_insn = NULL;
9a08d230
RH
2454 restore_args_size = cur_trace->end_true_args_size;
2455 cur_cfa = &cur_row->cfa;
9771b263 2456 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
bc5612ed 2457
eebc8f37
RH
2458 scan_insn_after (elt);
2459
2460 /* ??? Should we instead save the entire row state? */
9771b263 2461 gcc_assert (!queued_reg_saves.length ());
eebc8f37
RH
2462
2463 create_trace_edges (control);
bc5612ed 2464
9a08d230
RH
2465 cur_trace->end_true_args_size = restore_args_size;
2466 cur_row->cfa = this_cfa;
5d1f1cd5 2467 cur_row->reg_save = save_row_reg_save;
9a08d230 2468 cur_cfa = &this_cfa;
9a08d230 2469 }
bf27c43e
RH
2470 else
2471 {
2472 /* If ELT is a annulled branch-taken instruction (i.e.
2473 executed only when branch is not taken), the args_size
2474 and CFA should not change through the jump. */
2475 create_trace_edges (control);
2476
2477 /* Update and continue with the trace. */
2478 add_cfi_insn = insn;
2479 scan_insn_after (elt);
2480 def_cfa_1 (&this_cfa);
2481 }
2482 continue;
9a08d230
RH
2483 }
2484
eebc8f37
RH
2485 /* The insns in the delay slot should all be considered to happen
2486 "before" a call insn. Consider a call with a stack pointer
2487 adjustment in the delay slot. The backtrace from the callee
2488 should include the sp adjustment. Unfortunately, that leaves
2489 us with an unavoidable unwinding error exactly at the call insn
2490 itself. For jump insns we'd prefer to avoid this error by
2491 placing the notes after the sequence. */
2492 if (JUMP_P (control))
2493 add_cfi_insn = insn;
2494
9a08d230
RH
2495 for (i = 1; i < n; ++i)
2496 {
292d1dfb 2497 elt = pat->element (i);
eebc8f37 2498 scan_insn_after (elt);
9a08d230 2499 }
eebc8f37
RH
2500
2501 /* Make sure any register saves are visible at the jump target. */
2502 dwarf2out_flush_queued_reg_saves ();
67d7405e 2503 any_cfis_emitted = false;
eebc8f37
RH
2504
2505 /* However, if there is some adjustment on the call itself, e.g.
2506 a call_pop, that action should be considered to happen after
2507 the call returns. */
2508 add_cfi_insn = insn;
2509 scan_insn_after (control);
829bdd4b 2510 }
9a08d230 2511 else
eebc8f37
RH
2512 {
2513 /* Flush data before calls and jumps, and of course if necessary. */
2514 if (can_throw_internal (insn))
2515 {
2516 notice_eh_throw (insn);
2517 dwarf2out_flush_queued_reg_saves ();
2518 }
2519 else if (!NONJUMP_INSN_P (insn)
2520 || clobbers_queued_reg_save (insn)
2521 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2522 dwarf2out_flush_queued_reg_saves ();
67d7405e 2523 any_cfis_emitted = false;
eebc8f37
RH
2524
2525 add_cfi_insn = insn;
2526 scan_insn_after (insn);
2527 control = insn;
2528 }
9a08d230
RH
2529
2530 /* Between frame-related-p and args_size we might have otherwise
2531 emitted two cfa adjustments. Do it now. */
2532 def_cfa_1 (&this_cfa);
45fba6d1 2533
67d7405e
RH
2534 /* Minimize the number of advances by emitting the entire queue
2535 once anything is emitted. */
2536 if (any_cfis_emitted
2537 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2538 dwarf2out_flush_queued_reg_saves ();
2539
829bdd4b
RH
2540 /* Note that a test for control_flow_insn_p does exactly the
2541 same tests as are done to actually create the edges. So
2542 always call the routine and let it not create edges for
2543 non-control-flow insns. */
eebc8f37 2544 create_trace_edges (control);
647a1567 2545 }
45fba6d1 2546
141618e2 2547 add_cfi_insn = NULL;
829bdd4b
RH
2548 cur_row = NULL;
2549 cur_trace = NULL;
9a08d230 2550 cur_cfa = NULL;
647a1567
RH
2551}
2552
829bdd4b 2553/* Scan the function and create the initial set of CFI notes. */
647a1567 2554
bc5612ed 2555static void
829bdd4b 2556create_cfi_notes (void)
647a1567 2557{
829bdd4b 2558 dw_trace_info *ti;
647a1567 2559
9771b263
DN
2560 gcc_checking_assert (!queued_reg_saves.exists ());
2561 gcc_checking_assert (!trace_work_list.exists ());
647a1567 2562
829bdd4b 2563 /* Always begin at the entry trace. */
9771b263 2564 ti = &trace_info[0];
829bdd4b 2565 scan_trace (ti);
647a1567 2566
9771b263 2567 while (!trace_work_list.is_empty ())
829bdd4b 2568 {
9771b263 2569 ti = trace_work_list.pop ();
829bdd4b 2570 scan_trace (ti);
647a1567
RH
2571 }
2572
9771b263
DN
2573 queued_reg_saves.release ();
2574 trace_work_list.release ();
829bdd4b 2575}
647a1567 2576
200e10dc
RH
2577/* Return the insn before the first NOTE_INSN_CFI after START. */
2578
2579static rtx
2580before_next_cfi_note (rtx start)
2581{
2582 rtx prev = start;
2583 while (start)
2584 {
2585 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2586 return prev;
2587 prev = start;
2588 start = NEXT_INSN (start);
2589 }
2590 gcc_unreachable ();
2591}
2592
829bdd4b 2593/* Insert CFI notes between traces to properly change state between them. */
647a1567 2594
829bdd4b
RH
2595static void
2596connect_traces (void)
2597{
9771b263 2598 unsigned i, n = trace_info.length ();
829bdd4b
RH
2599 dw_trace_info *prev_ti, *ti;
2600
200e10dc
RH
2601 /* ??? Ideally, we should have both queued and processed every trace.
2602 However the current representation of constant pools on various targets
2603 is indistinguishable from unreachable code. Assume for the moment that
2604 we can simply skip over such traces. */
2605 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2606 these are not "real" instructions, and should not be considered.
2607 This could be generically useful for tablejump data as well. */
2608 /* Remove all unprocessed traces from the list. */
2609 for (i = n - 1; i > 0; --i)
2610 {
9771b263 2611 ti = &trace_info[i];
200e10dc
RH
2612 if (ti->beg_row == NULL)
2613 {
9771b263 2614 trace_info.ordered_remove (i);
200e10dc
RH
2615 n -= 1;
2616 }
2617 else
2618 gcc_assert (ti->end_row != NULL);
2619 }
829bdd4b 2620
200e10dc
RH
2621 /* Work from the end back to the beginning. This lets us easily insert
2622 remember/restore_state notes in the correct order wrt other notes. */
9771b263 2623 prev_ti = &trace_info[n - 1];
200e10dc 2624 for (i = n - 1; i > 0; --i)
647a1567 2625 {
829bdd4b 2626 dw_cfi_row *old_row;
647a1567 2627
200e10dc 2628 ti = prev_ti;
9771b263 2629 prev_ti = &trace_info[i - 1];
647a1567 2630
200e10dc 2631 add_cfi_insn = ti->head;
829bdd4b
RH
2632
2633 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2634 for the portion of the function in the alternate text
2635 section. The row state at the very beginning of that
2636 new FDE will be exactly the row state from the CIE. */
2637 if (ti->switch_sections)
2638 old_row = cie_cfi_row;
2639 else
200e10dc
RH
2640 {
2641 old_row = prev_ti->end_row;
2642 /* If there's no change from the previous end state, fine. */
2643 if (cfi_row_equal_p (old_row, ti->beg_row))
2644 ;
2645 /* Otherwise check for the common case of sharing state with
2646 the beginning of an epilogue, but not the end. Insert
2647 remember/restore opcodes in that case. */
2648 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2649 {
2650 dw_cfi_ref cfi;
2651
2652 /* Note that if we blindly insert the remember at the
2653 start of the trace, we can wind up increasing the
2654 size of the unwind info due to extra advance opcodes.
2655 Instead, put the remember immediately before the next
2656 state change. We know there must be one, because the
2657 state at the beginning and head of the trace differ. */
2658 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2659 cfi = new_cfi ();
2660 cfi->dw_cfi_opc = DW_CFA_remember_state;
2661 add_cfi (cfi);
2662
2663 add_cfi_insn = ti->head;
2664 cfi = new_cfi ();
2665 cfi->dw_cfi_opc = DW_CFA_restore_state;
2666 add_cfi (cfi);
2667
2668 old_row = prev_ti->beg_row;
2669 }
2670 /* Otherwise, we'll simply change state from the previous end. */
2671 }
829bdd4b 2672
829bdd4b
RH
2673 change_cfi_row (old_row, ti->beg_row);
2674
2675 if (dump_file && add_cfi_insn != ti->head)
2676 {
2677 rtx note;
2678
200e10dc
RH
2679 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2680 prev_ti->id, ti->id);
829bdd4b
RH
2681
2682 note = ti->head;
2683 do
2684 {
2685 note = NEXT_INSN (note);
2686 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2687 output_cfi_directive (dump_file, NOTE_CFI (note));
2688 }
2689 while (note != add_cfi_insn);
2690 }
2691 }
9a08d230
RH
2692
2693 /* Connect args_size between traces that have can_throw_internal insns. */
9771b263 2694 if (cfun->eh->lp_array)
9a08d230
RH
2695 {
2696 HOST_WIDE_INT prev_args_size = 0;
2697
2698 for (i = 0; i < n; ++i)
2699 {
9771b263 2700 ti = &trace_info[i];
9a08d230
RH
2701
2702 if (ti->switch_sections)
2703 prev_args_size = 0;
2704 if (ti->eh_head == NULL)
2705 continue;
2706 gcc_assert (!ti->args_size_undefined);
2707
2708 if (ti->beg_delay_args_size != prev_args_size)
2709 {
2710 /* ??? Search back to previous CFI note. */
2711 add_cfi_insn = PREV_INSN (ti->eh_head);
2712 add_cfi_args_size (ti->beg_delay_args_size);
2713 }
2714
2715 prev_args_size = ti->end_delay_args_size;
2716 }
2717 }
647a1567
RH
2718}
2719
829bdd4b
RH
2720/* Set up the pseudo-cfg of instruction traces, as described at the
2721 block comment at the top of the file. */
647a1567 2722
bc5612ed 2723static void
829bdd4b 2724create_pseudo_cfg (void)
647a1567 2725{
829bdd4b 2726 bool saw_barrier, switch_sections;
f32682ca 2727 dw_trace_info ti;
f65c531e 2728 rtx_insn *insn;
829bdd4b
RH
2729 unsigned i;
2730
2731 /* The first trace begins at the start of the function,
2732 and begins with the CIE row state. */
9771b263 2733 trace_info.create (16);
f32682ca
DN
2734 memset (&ti, 0, sizeof (ti));
2735 ti.head = get_insns ();
2736 ti.beg_row = cie_cfi_row;
2737 ti.cfa_store = cie_cfi_row->cfa;
2738 ti.cfa_temp.reg = INVALID_REGNUM;
9771b263 2739 trace_info.quick_push (ti);
829bdd4b 2740
829bdd4b 2741 if (cie_return_save)
9771b263 2742 ti.regs_saved_in_regs.safe_push (*cie_return_save);
647a1567 2743
829bdd4b
RH
2744 /* Walk all the insns, collecting start of trace locations. */
2745 saw_barrier = false;
2746 switch_sections = false;
2747 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2748 {
2749 if (BARRIER_P (insn))
2750 saw_barrier = true;
2751 else if (NOTE_P (insn)
2752 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2753 {
2754 /* We should have just seen a barrier. */
2755 gcc_assert (saw_barrier);
2756 switch_sections = true;
2757 }
2758 /* Watch out for save_point notes between basic blocks.
2759 In particular, a note after a barrier. Do not record these,
2760 delaying trace creation until the label. */
2761 else if (save_point_p (insn)
2762 && (LABEL_P (insn) || !saw_barrier))
2763 {
f32682ca
DN
2764 memset (&ti, 0, sizeof (ti));
2765 ti.head = insn;
2766 ti.switch_sections = switch_sections;
9771b263
DN
2767 ti.id = trace_info.length () - 1;
2768 trace_info.safe_push (ti);
829bdd4b
RH
2769
2770 saw_barrier = false;
2771 switch_sections = false;
2772 }
2773 }
2774
2775 /* Create the trace index after we've finished building trace_info,
2776 avoiding stale pointer problems due to reallocation. */
c203e8a7
TS
2777 trace_index
2778 = new hash_table<trace_info_hasher> (trace_info.length ());
f32682ca 2779 dw_trace_info *tp;
9771b263 2780 FOR_EACH_VEC_ELT (trace_info, i, tp)
829bdd4b 2781 {
4a8fb1a1 2782 dw_trace_info **slot;
647a1567 2783
829bdd4b
RH
2784 if (dump_file)
2785 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
f32682ca
DN
2786 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2787 tp->switch_sections ? " (section switch)" : "");
829bdd4b 2788
c203e8a7 2789 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
829bdd4b 2790 gcc_assert (*slot == NULL);
4a8fb1a1 2791 *slot = tp;
829bdd4b 2792 }
647a1567 2793}
829bdd4b 2794
a8e5c0e7
RH
2795/* Record the initial position of the return address. RTL is
2796 INCOMING_RETURN_ADDR_RTX. */
2797
2798static void
2799initial_return_save (rtx rtl)
2800{
2801 unsigned int reg = INVALID_REGNUM;
2802 HOST_WIDE_INT offset = 0;
2803
2804 switch (GET_CODE (rtl))
2805 {
2806 case REG:
2807 /* RA is in a register. */
7263c6d7 2808 reg = dwf_regno (rtl);
a8e5c0e7
RH
2809 break;
2810
2811 case MEM:
2812 /* RA is on the stack. */
2813 rtl = XEXP (rtl, 0);
2814 switch (GET_CODE (rtl))
2815 {
2816 case REG:
2817 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2818 offset = 0;
2819 break;
2820
2821 case PLUS:
2822 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2823 offset = INTVAL (XEXP (rtl, 1));
2824 break;
2825
2826 case MINUS:
2827 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2828 offset = -INTVAL (XEXP (rtl, 1));
2829 break;
2830
2831 default:
2832 gcc_unreachable ();
2833 }
2834
2835 break;
2836
2837 case PLUS:
2838 /* The return address is at some offset from any value we can
2839 actually load. For instance, on the SPARC it is in %i7+8. Just
2840 ignore the offset for now; it doesn't matter for unwinding frames. */
2841 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2842 initial_return_save (XEXP (rtl, 0));
2843 return;
2844
2845 default:
2846 gcc_unreachable ();
2847 }
2848
2849 if (reg != DWARF_FRAME_RETURN_COLUMN)
2850 {
2851 if (reg != INVALID_REGNUM)
2852 record_reg_saved_in_reg (rtl, pc_rtx);
f17d3401 2853 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
a8e5c0e7
RH
2854 }
2855}
647a1567 2856
43215a89
RH
2857static void
2858create_cie_data (void)
2859{
2860 dw_cfa_location loc;
2861 dw_trace_info cie_trace;
2862
2863 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2864 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2865
c3284718 2866 memset (&cie_trace, 0, sizeof (cie_trace));
43215a89
RH
2867 cur_trace = &cie_trace;
2868
2869 add_cfi_vec = &cie_cfi_vec;
2870 cie_cfi_row = cur_row = new_cfi_row ();
2871
2872 /* On entry, the Canonical Frame Address is at SP. */
c3284718 2873 memset (&loc, 0, sizeof (loc));
43215a89
RH
2874 loc.reg = dw_stack_pointer_regnum;
2875 loc.offset = INCOMING_FRAME_SP_OFFSET;
2876 def_cfa_1 (&loc);
2877
2878 if (targetm.debug_unwind_info () == UI_DWARF2
2879 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2880 {
2881 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2882
2883 /* For a few targets, we have the return address incoming into a
2884 register, but choose a different return column. This will result
2885 in a DW_CFA_register for the return, and an entry in
2886 regs_saved_in_regs to match. If the target later stores that
2887 return address register to the stack, we want to be able to emit
2888 the DW_CFA_offset against the return column, not the intermediate
2889 save register. Save the contents of regs_saved_in_regs so that
2890 we can re-initialize it at the start of each function. */
9771b263 2891 switch (cie_trace.regs_saved_in_regs.length ())
43215a89
RH
2892 {
2893 case 0:
2894 break;
2895 case 1:
766090c2 2896 cie_return_save = ggc_alloc<reg_saved_in_data> ();
9771b263
DN
2897 *cie_return_save = cie_trace.regs_saved_in_regs[0];
2898 cie_trace.regs_saved_in_regs.release ();
43215a89
RH
2899 break;
2900 default:
2901 gcc_unreachable ();
2902 }
2903 }
2904
2905 add_cfi_vec = NULL;
2906 cur_row = NULL;
2907 cur_trace = NULL;
2908}
2909
7644b3c7
RH
2910/* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2911 state at each location within the function. These notes will be
2912 emitted during pass_final. */
647a1567 2913
7644b3c7
RH
2914static unsigned int
2915execute_dwarf2_frame (void)
647a1567 2916{
7644b3c7
RH
2917 /* The first time we're called, compute the incoming frame state. */
2918 if (cie_cfi_vec == NULL)
43215a89 2919 create_cie_data ();
3edb53aa 2920
7644b3c7
RH
2921 dwarf2out_alloc_current_fde ();
2922
829bdd4b
RH
2923 create_pseudo_cfg ();
2924
7644b3c7
RH
2925 /* Do the work. */
2926 create_cfi_notes ();
829bdd4b 2927 connect_traces ();
7644b3c7
RH
2928 add_cfis_to_fde ();
2929
829bdd4b
RH
2930 /* Free all the data we allocated. */
2931 {
2932 size_t i;
2933 dw_trace_info *ti;
647a1567 2934
9771b263
DN
2935 FOR_EACH_VEC_ELT (trace_info, i, ti)
2936 ti->regs_saved_in_regs.release ();
829bdd4b 2937 }
9771b263 2938 trace_info.release ();
829bdd4b 2939
c203e8a7
TS
2940 delete trace_index;
2941 trace_index = NULL;
f17d3401 2942
7644b3c7 2943 return 0;
647a1567
RH
2944}
2945\f
948d330e
RH
2946/* Convert a DWARF call frame info. operation to its string name */
2947
2948static const char *
2949dwarf_cfi_name (unsigned int cfi_opc)
2950{
11ec770e 2951 const char *name = get_DW_CFA_name (cfi_opc);
948d330e 2952
11ec770e
TT
2953 if (name != NULL)
2954 return name;
948d330e 2955
11ec770e 2956 return "DW_CFA_<unknown>";
948d330e
RH
2957}
2958
2959/* This routine will generate the correct assembly data for a location
2960 description based on a cfi entry with a complex address. */
2961
2962static void
2963output_cfa_loc (dw_cfi_ref cfi, int for_eh)
2964{
2965 dw_loc_descr_ref loc;
2966 unsigned long size;
2967
2968 if (cfi->dw_cfi_opc == DW_CFA_expression)
2969 {
43215a89 2970 unsigned r =
948d330e
RH
2971 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2972 dw2_asm_output_data (1, r, NULL);
2973 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2974 }
2975 else
2976 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2977
2978 /* Output the size of the block. */
2979 size = size_of_locs (loc);
2980 dw2_asm_output_data_uleb128 (size, NULL);
2981
2982 /* Now output the operations themselves. */
2983 output_loc_sequence (loc, for_eh);
2984}
2985
2986/* Similar, but used for .cfi_escape. */
2987
2988static void
2989output_cfa_loc_raw (dw_cfi_ref cfi)
2990{
2991 dw_loc_descr_ref loc;
2992 unsigned long size;
2993
2994 if (cfi->dw_cfi_opc == DW_CFA_expression)
2995 {
43215a89 2996 unsigned r =
948d330e
RH
2997 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
2998 fprintf (asm_out_file, "%#x,", r);
2999 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3000 }
3001 else
3002 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3003
3004 /* Output the size of the block. */
3005 size = size_of_locs (loc);
3006 dw2_asm_output_data_uleb128_raw (size);
3007 fputc (',', asm_out_file);
3008
3009 /* Now output the operations themselves. */
3010 output_loc_sequence_raw (loc);
3011}
3012
3013/* Output a Call Frame Information opcode and its operand(s). */
3014
3015void
3016output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3017{
3018 unsigned long r;
3019 HOST_WIDE_INT off;
3020
3021 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3022 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3023 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3024 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3025 ((unsigned HOST_WIDE_INT)
3026 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3027 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3028 {
3029 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3030 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3031 "DW_CFA_offset, column %#lx", r);
3032 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3033 dw2_asm_output_data_uleb128 (off, NULL);
3034 }
3035 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3036 {
3037 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3038 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3039 "DW_CFA_restore, column %#lx", r);
3040 }
3041 else
3042 {
3043 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3044 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3045
3046 switch (cfi->dw_cfi_opc)
3047 {
3048 case DW_CFA_set_loc:
3049 if (for_eh)
3050 dw2_asm_output_encoded_addr_rtx (
3051 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3052 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3053 false, NULL);
3054 else
3055 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3056 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3057 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3058 break;
3059
3060 case DW_CFA_advance_loc1:
3061 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3062 fde->dw_fde_current_label, NULL);
3063 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3064 break;
3065
3066 case DW_CFA_advance_loc2:
3067 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3068 fde->dw_fde_current_label, NULL);
3069 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3070 break;
3071
3072 case DW_CFA_advance_loc4:
3073 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3074 fde->dw_fde_current_label, NULL);
3075 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3076 break;
3077
3078 case DW_CFA_MIPS_advance_loc8:
3079 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3080 fde->dw_fde_current_label, NULL);
3081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3082 break;
3083
3084 case DW_CFA_offset_extended:
3085 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3086 dw2_asm_output_data_uleb128 (r, NULL);
3087 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3088 dw2_asm_output_data_uleb128 (off, NULL);
3089 break;
3090
3091 case DW_CFA_def_cfa:
3092 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3093 dw2_asm_output_data_uleb128 (r, NULL);
3094 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3095 break;
3096
3097 case DW_CFA_offset_extended_sf:
3098 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3099 dw2_asm_output_data_uleb128 (r, NULL);
3100 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3101 dw2_asm_output_data_sleb128 (off, NULL);
3102 break;
3103
3104 case DW_CFA_def_cfa_sf:
3105 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3106 dw2_asm_output_data_uleb128 (r, NULL);
3107 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3108 dw2_asm_output_data_sleb128 (off, NULL);
3109 break;
3110
3111 case DW_CFA_restore_extended:
3112 case DW_CFA_undefined:
3113 case DW_CFA_same_value:
3114 case DW_CFA_def_cfa_register:
3115 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3116 dw2_asm_output_data_uleb128 (r, NULL);
3117 break;
3118
3119 case DW_CFA_register:
3120 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3121 dw2_asm_output_data_uleb128 (r, NULL);
3122 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3123 dw2_asm_output_data_uleb128 (r, NULL);
3124 break;
3125
3126 case DW_CFA_def_cfa_offset:
3127 case DW_CFA_GNU_args_size:
3128 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3129 break;
3130
3131 case DW_CFA_def_cfa_offset_sf:
3132 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3133 dw2_asm_output_data_sleb128 (off, NULL);
3134 break;
3135
3136 case DW_CFA_GNU_window_save:
3137 break;
3138
3139 case DW_CFA_def_cfa_expression:
3140 case DW_CFA_expression:
3141 output_cfa_loc (cfi, for_eh);
3142 break;
3143
3144 case DW_CFA_GNU_negative_offset_extended:
3145 /* Obsoleted by DW_CFA_offset_extended_sf. */
3146 gcc_unreachable ();
3147
3148 default:
3149 break;
3150 }
3151 }
3152}
3153
3154/* Similar, but do it via assembler directives instead. */
3155
3156void
3157output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3158{
3159 unsigned long r, r2;
3160
3161 switch (cfi->dw_cfi_opc)
3162 {
3163 case DW_CFA_advance_loc:
3164 case DW_CFA_advance_loc1:
3165 case DW_CFA_advance_loc2:
3166 case DW_CFA_advance_loc4:
3167 case DW_CFA_MIPS_advance_loc8:
3168 case DW_CFA_set_loc:
3169 /* Should only be created in a code path not followed when emitting
3170 via directives. The assembler is going to take care of this for
3171 us. But this routines is also used for debugging dumps, so
3172 print something. */
3173 gcc_assert (f != asm_out_file);
3174 fprintf (f, "\t.cfi_advance_loc\n");
3175 break;
3176
3177 case DW_CFA_offset:
3178 case DW_CFA_offset_extended:
3179 case DW_CFA_offset_extended_sf:
3180 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3181 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3182 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3183 break;
3184
3185 case DW_CFA_restore:
3186 case DW_CFA_restore_extended:
3187 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3188 fprintf (f, "\t.cfi_restore %lu\n", r);
3189 break;
3190
3191 case DW_CFA_undefined:
3192 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3193 fprintf (f, "\t.cfi_undefined %lu\n", r);
3194 break;
3195
3196 case DW_CFA_same_value:
3197 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3198 fprintf (f, "\t.cfi_same_value %lu\n", r);
3199 break;
3200
3201 case DW_CFA_def_cfa:
3202 case DW_CFA_def_cfa_sf:
3203 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3204 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3205 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3206 break;
3207
3208 case DW_CFA_def_cfa_register:
3209 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3210 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3211 break;
3212
3213 case DW_CFA_register:
3214 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3215 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3216 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3217 break;
3218
3219 case DW_CFA_def_cfa_offset:
3220 case DW_CFA_def_cfa_offset_sf:
3221 fprintf (f, "\t.cfi_def_cfa_offset "
3222 HOST_WIDE_INT_PRINT_DEC"\n",
3223 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3224 break;
3225
3226 case DW_CFA_remember_state:
3227 fprintf (f, "\t.cfi_remember_state\n");
3228 break;
3229 case DW_CFA_restore_state:
3230 fprintf (f, "\t.cfi_restore_state\n");
3231 break;
3232
3233 case DW_CFA_GNU_args_size:
3234 if (f == asm_out_file)
3235 {
3236 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3237 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3238 if (flag_debug_asm)
3239 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3240 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3241 fputc ('\n', f);
3242 }
3243 else
3244 {
3245 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3246 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3247 }
3248 break;
3249
3250 case DW_CFA_GNU_window_save:
3251 fprintf (f, "\t.cfi_window_save\n");
3252 break;
3253
3254 case DW_CFA_def_cfa_expression:
3255 if (f != asm_out_file)
3256 {
3257 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3258 break;
3259 }
3260 /* FALLTHRU */
3261 case DW_CFA_expression:
3262 if (f != asm_out_file)
3263 {
3264 fprintf (f, "\t.cfi_cfa_expression ...\n");
3265 break;
3266 }
3267 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3268 output_cfa_loc_raw (cfi);
3269 fputc ('\n', f);
3270 break;
3271
3272 default:
3273 gcc_unreachable ();
3274 }
3275}
3276
3277void
3278dwarf2out_emit_cfi (dw_cfi_ref cfi)
3279{
3280 if (dwarf2out_do_cfi_asm ())
3281 output_cfi_directive (asm_out_file, cfi);
3282}
a5d0ce89
RH
3283
3284static void
3285dump_cfi_row (FILE *f, dw_cfi_row *row)
3286{
3287 dw_cfi_ref cfi;
3288 unsigned i;
3289
3290 cfi = row->cfa_cfi;
3291 if (!cfi)
3292 {
3293 dw_cfa_location dummy;
c3284718 3294 memset (&dummy, 0, sizeof (dummy));
a5d0ce89
RH
3295 dummy.reg = INVALID_REGNUM;
3296 cfi = def_cfa_0 (&dummy, &row->cfa);
3297 }
3298 output_cfi_directive (f, cfi);
3299
9771b263 3300 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
a5d0ce89
RH
3301 if (cfi)
3302 output_cfi_directive (f, cfi);
a5d0ce89
RH
3303}
3304
3305void debug_cfi_row (dw_cfi_row *row);
3306
3307void
3308debug_cfi_row (dw_cfi_row *row)
3309{
3310 dump_cfi_row (stderr, row);
3311}
948d330e 3312\f
647a1567 3313
7644b3c7
RH
3314/* Save the result of dwarf2out_do_frame across PCH.
3315 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3316static GTY(()) signed char saved_do_cfi_asm = 0;
647a1567
RH
3317
3318/* Decide whether we want to emit frame unwind information for the current
3319 translation unit. */
3320
7644b3c7 3321bool
647a1567
RH
3322dwarf2out_do_frame (void)
3323{
3324 /* We want to emit correct CFA location expressions or lists, so we
3325 have to return true if we're going to output debug info, even if
3326 we're not going to output frame or unwind info. */
3327 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3328 return true;
3329
7644b3c7 3330 if (saved_do_cfi_asm > 0)
647a1567
RH
3331 return true;
3332
3333 if (targetm.debug_unwind_info () == UI_DWARF2)
3334 return true;
3335
3336 if ((flag_unwind_tables || flag_exceptions)
3337 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3338 return true;
3339
3340 return false;
3341}
3342
3343/* Decide whether to emit frame unwind via assembler directives. */
3344
7644b3c7 3345bool
647a1567
RH
3346dwarf2out_do_cfi_asm (void)
3347{
3348 int enc;
3349
7644b3c7
RH
3350 if (saved_do_cfi_asm != 0)
3351 return saved_do_cfi_asm > 0;
3352
3353 /* Assume failure for a moment. */
3354 saved_do_cfi_asm = -1;
3355
647a1567
RH
3356 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3357 return false;
3358 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3359 return false;
3360
3361 /* Make sure the personality encoding is one the assembler can support.
3362 In particular, aligned addresses can't be handled. */
3363 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3364 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3365 return false;
3366 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3367 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3368 return false;
3369
3370 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3371 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3372 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3373 && !flag_unwind_tables && !flag_exceptions
3374 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3375 return false;
3376
7644b3c7
RH
3377 /* Success! */
3378 saved_do_cfi_asm = 1;
647a1567
RH
3379 return true;
3380}
3381
27a4cd48
DM
3382namespace {
3383
3384const pass_data pass_data_dwarf2_frame =
3385{
3386 RTL_PASS, /* type */
3387 "dwarf2", /* name */
3388 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3389 TV_FINAL, /* tv_id */
3390 0, /* properties_required */
3391 0, /* properties_provided */
3392 0, /* properties_destroyed */
3393 0, /* todo_flags_start */
3394 0, /* todo_flags_finish */
7644b3c7
RH
3395};
3396
27a4cd48
DM
3397class pass_dwarf2_frame : public rtl_opt_pass
3398{
3399public:
c3284718
RS
3400 pass_dwarf2_frame (gcc::context *ctxt)
3401 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
27a4cd48
DM
3402 {}
3403
3404 /* opt_pass methods: */
1a3d085c 3405 virtual bool gate (function *);
be55bfe6 3406 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
27a4cd48
DM
3407
3408}; // class pass_dwarf2_frame
3409
1a3d085c
TS
3410bool
3411pass_dwarf2_frame::gate (function *)
3412{
3413#ifndef HAVE_prologue
3414 /* Targets which still implement the prologue in assembler text
3415 cannot use the generic dwarf2 unwinding. */
3416 return false;
3417#endif
3418
3419 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3420 from the optimized shrink-wrapping annotations that we will compute.
3421 For now, only produce the CFI notes for dwarf2. */
3422 return dwarf2out_do_frame ();
3423}
3424
27a4cd48
DM
3425} // anon namespace
3426
3427rtl_opt_pass *
3428make_pass_dwarf2_frame (gcc::context *ctxt)
3429{
3430 return new pass_dwarf2_frame (ctxt);
3431}
3432
647a1567 3433#include "gt-dwarf2cfi.h"