]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dwarf2out.c
gcc/
[thirdparty/gcc.git] / gcc / dwarf2out.c
CommitLineData
bccafa26 1/* Output Dwarf2 format symbol table information from GCC.
07576557 2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3d7c33fe 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
0dbd1c74 4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
df78b73b 6 Extensively modified by Jason Merrill (jason@cygnus.com).
30ade641 7
f12b58b3 8This file is part of GCC.
30ade641 9
f12b58b3 10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
12Software Foundation; either version 2, or (at your option) any later
13version.
30ade641 14
f12b58b3 15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
30ade641 19
20You should have received a copy of the GNU General Public License
f12b58b3 21along with GCC; see the file COPYING. If not, write to the Free
67ce556b 22Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2302110-1301, USA. */
30ade641 24
80b7bd06 25/* TODO: Emit .debug_line header even when there are no functions, since
5c65b85a 26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
8a8bfbe7 31/* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
d757b8c9 37#include "config.h"
405711de 38#include "system.h"
805e22b2 39#include "coretypes.h"
40#include "tm.h"
30ade641 41#include "tree.h"
af225e7d 42#include "version.h"
30ade641 43#include "flags.h"
ef258422 44#include "real.h"
30ade641 45#include "rtl.h"
46#include "hard-reg-set.h"
47#include "regs.h"
48#include "insn-config.h"
49#include "reload.h"
df4b504c 50#include "function.h"
30ade641 51#include "output.h"
ec1e49cc 52#include "expr.h"
d8fc4d0b 53#include "libfuncs.h"
8a8bfbe7 54#include "except.h"
2c133160 55#include "dwarf2.h"
744d3441 56#include "dwarf2out.h"
ca98eb0a 57#include "dwarf2asm.h"
12874aaf 58#include "toplev.h"
eacbfaac 59#include "varray.h"
cff53614 60#include "ggc.h"
19f716e5 61#include "md5.h"
39697b37 62#include "tm_p.h"
a587b03b 63#include "diagnostic.h"
b896d81b 64#include "debug.h"
02c8b767 65#include "target.h"
d19bd1f0 66#include "langhooks.h"
51e8c210 67#include "hashtab.h"
5bd74231 68#include "cgraph.h"
2b49746a 69#include "input.h"
30ade641 70
f76df888 71#ifdef DWARF2_DEBUGGING_INFO
8ec3a57b 72static void dwarf2out_source_line (unsigned int, const char *);
f76df888 73#endif
74
950ae8fe 75/* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
ca6c45a9 77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
ae8c6892 81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
950ae8fe 83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
89
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
92
34986748 93#ifndef DWARF2_FRAME_INFO
94# ifdef DWARF2_DEBUGGING_INFO
95# define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97# else
98# define DWARF2_FRAME_INFO 0
99# endif
100#endif
101
c98ee857 102/* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105#ifndef DWARF2_FRAME_REG_OUT
106#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107#endif
108
d757b8c9 109/* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
111
112int
8ec3a57b 113dwarf2out_do_frame (void)
d757b8c9 114{
34986748 115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
d757b8c9 118 return (write_symbols == DWARF2_DEBUG
8d60d2bc 119 || write_symbols == VMS_AND_DWARF2_DEBUG
f80d1bcd 120 || DWARF2_FRAME_INFO
d757b8c9 121#ifdef DWARF2_UNWIND_INFO
34986748 122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
d757b8c9 125#endif
126 );
127}
128
13c14f1c 129/* The size of the target's pointer type. */
130#ifndef PTR_SIZE
131#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132#endif
133
1f3233d1 134/* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
62aedc4c 136static GTY(()) VEC(rtx,gc) *used_rtx_array;
1f3233d1 137
138/* A pointer to the base of a list of incomplete types which might be
22230dd1 139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142static GTY(()) VEC(tree,gc) *incomplete_types;
1f3233d1 143
144/* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
4a940e75 149static GTY(()) VEC(tree,gc) *decl_scope_table;
1f3233d1 150
2f14b1f9 151/* Pointers to various DWARF2 sections. */
152static GTY(()) section *debug_info_section;
153static GTY(()) section *debug_abbrev_section;
154static GTY(()) section *debug_aranges_section;
155static GTY(()) section *debug_macinfo_section;
156static GTY(()) section *debug_line_section;
157static GTY(()) section *debug_loc_section;
158static GTY(()) section *debug_pubnames_section;
159static GTY(()) section *debug_str_section;
160static GTY(()) section *debug_ranges_section;
d08d29c0 161static GTY(()) section *debug_frame_section;
2f14b1f9 162
e5530d32 163/* How to start an assembler comment. */
164#ifndef ASM_COMMENT_START
165#define ASM_COMMENT_START ";#"
166#endif
167
30ade641 168typedef struct dw_cfi_struct *dw_cfi_ref;
169typedef struct dw_fde_struct *dw_fde_ref;
170typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
30ade641 171
172/* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
ec1e49cc 176
573aba85 177enum dw_cfi_oprnd_type {
178 dw_cfi_oprnd_unused,
179 dw_cfi_oprnd_reg_num,
180 dw_cfi_oprnd_offset,
181 dw_cfi_oprnd_addr,
182 dw_cfi_oprnd_loc
183};
184
185typedef union dw_cfi_oprnd_struct GTY(())
ec1e49cc 186{
da72c083 187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
3d867824 188 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
573aba85 189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
ec1e49cc 191}
30ade641 192dw_cfi_oprnd;
193
573aba85 194typedef struct dw_cfi_struct GTY(())
ec1e49cc 195{
196 dw_cfi_ref dw_cfi_next;
197 enum dwarf_call_frame_info dw_cfi_opc;
8ec3a57b 198 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
573aba85 199 dw_cfi_oprnd1;
8ec3a57b 200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
573aba85 201 dw_cfi_oprnd2;
ec1e49cc 202}
30ade641 203dw_cfi_node;
204
4b72e226 205/* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
f80d1bcd 208 Instead of passing around REG and OFFSET, we pass a copy
4b72e226 209 of this structure. */
573aba85 210typedef struct cfa_loc GTY(())
4b72e226 211{
3d867824 212 HOST_WIDE_INT offset;
213 HOST_WIDE_INT base_offset;
12d886b8 214 unsigned int reg;
4b72e226 215 int indirect; /* 1 if CFA is accessed via a dereference. */
216} dw_cfa_location;
217
30ade641 218/* All call frame descriptions (FDE's) in the GCC generated DWARF
752e49ca 219 refer to a single Common Information Entry (CIE), defined at
dae39efc 220 the beginning of the .debug_frame section. This use of a single
30ade641 221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
ec1e49cc 223
573aba85 224typedef struct dw_fde_struct GTY(())
ec1e49cc 225{
2f9fc8ef 226 tree decl;
1e034a40 227 const char *dw_fde_begin;
228 const char *dw_fde_current_label;
229 const char *dw_fde_end;
1897b881 230 const char *dw_fde_hot_section_label;
231 const char *dw_fde_hot_section_end_label;
232 const char *dw_fde_unlikely_section_label;
233 const char *dw_fde_unlikely_section_end_label;
234 bool dw_fde_switched_sections;
ec1e49cc 235 dw_cfi_ref dw_fde_cfi;
df4b504c 236 unsigned funcdef_number;
04396483 237 unsigned all_throwers_are_sibcalls : 1;
df4b504c 238 unsigned nothrow : 1;
239 unsigned uses_eh_lsda : 1;
ec1e49cc 240}
30ade641 241dw_fde_node;
242
1e625a2e 243/* Maximum size (in bytes) of an artificially generated label. */
30ade641 244#define MAX_ARTIFICIAL_LABEL_BYTES 30
245
aaa408cd 246/* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
250 pointers. */
251#ifndef DWARF2_ADDR_SIZE
252#define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253#endif
254
a3899bb7 255/* The size in bytes of a DWARF field indicating an offset or length
aaa408cd 256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
b6ce7963 258 as PTR_SIZE. */
ec1e49cc 259
a3899bb7 260#ifndef DWARF_OFFSET_SIZE
261#define DWARF_OFFSET_SIZE 4
262#endif
263
65bdc57c 264/* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
267 bytes.
268
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
271
272#ifndef DWARF_INITIAL_LENGTH_SIZE
273#define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274#endif
275
be6eb971 276#define DWARF_VERSION 2
277
a3899bb7 278/* Round SIZE up to the nearest BOUNDARY. */
279#define DWARF_ROUND(SIZE,BOUNDARY) \
e711a040 280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
30ade641 281
30ade641 282/* Offsets recorded in opcodes are a multiple of this alignment factor. */
78ac74b9 283#ifndef DWARF_CIE_DATA_ALIGNMENT
df78b73b 284#ifdef STACK_GROWS_DOWNWARD
7eb04d1c 285#define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
df78b73b 286#else
7eb04d1c 287#define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
df78b73b 288#endif
8c3f468d 289#endif
30ade641 290
04da8de9 291/* CIE identifier. */
292#if HOST_BITS_PER_WIDE_INT >= 64
293#define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295#else
296#define DWARF_CIE_ID DW_CIE_ID
297#endif
298
8a8bfbe7 299/* A pointer to the base of a table that contains frame description
300 information for each routine. */
573aba85 301static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
30ade641 302
8a8bfbe7 303/* Number of elements currently allocated for fde_table. */
909be935 304static GTY(()) unsigned fde_table_allocated;
6efd403b 305
8a8bfbe7 306/* Number of elements in fde_table currently in use. */
9105005a 307static GTY(()) unsigned fde_table_in_use;
30ade641 308
8a8bfbe7 309/* Size (in elements) of increments by which we may expand the
310 fde_table. */
311#define FDE_TABLE_INCREMENT 256
30ade641 312
6efd403b 313/* A list of call frame insns for the CIE. */
573aba85 314static GTY(()) dw_cfi_ref cie_cfi_head;
6efd403b 315
38ac91bf 316#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
30ade641 317/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
f80d1bcd 319 with the subprogram. This variable holds the table index of the FDE
30ade641 320 associated with the current function (body) definition. */
321static unsigned current_funcdef_fde;
38ac91bf 322#endif
30ade641 323
573aba85 324struct indirect_string_node GTY(())
80b7bd06 325{
573aba85 326 const char *str;
80b7bd06 327 unsigned int refcount;
328 unsigned int form;
329 char *label;
330};
331
573aba85 332static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
333
334static GTY(()) int dw2_string_counter;
9105005a 335static GTY(()) unsigned long dwarf2out_cfi_label_num;
573aba85 336
337#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
338
30ade641 339/* Forward declarations for functions defined in this file. */
ec1e49cc 340
8ec3a57b 341static char *stripattributes (const char *);
342static const char *dwarf_cfi_name (unsigned);
343static dw_cfi_ref new_cfi (void);
344static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345static void add_fde_cfi (const char *, dw_cfi_ref);
346static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347static void lookup_cfa (dw_cfa_location *);
3d867824 348static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
8ec3a57b 349static void initial_return_save (rtx);
3d867824 350static HOST_WIDE_INT stack_adjust_offset (rtx);
8ec3a57b 351static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352static void output_call_frame_info (int);
535fcfa4 353static void dwarf2out_stack_adjust (rtx, bool);
8ec3a57b 354static void flush_queued_reg_saves (void);
355static bool clobbers_queued_reg_save (rtx);
356static void dwarf2out_frame_debug_expr (rtx, const char *);
30ade641 357
4b72e226 358/* Support for complex CFA locations. */
8ec3a57b 359static void output_cfa_loc (dw_cfi_ref);
360static void get_cfa_from_loc_descr (dw_cfa_location *,
361 struct dw_loc_descr_struct *);
4b72e226 362static struct dw_loc_descr_struct *build_cfa_loc
89fa767a 363 (dw_cfa_location *, HOST_WIDE_INT);
8ec3a57b 364static void def_cfa_1 (const char *, dw_cfa_location *);
4b72e226 365
ca98eb0a 366/* How to start an assembler comment. */
367#ifndef ASM_COMMENT_START
368#define ASM_COMMENT_START ";#"
30ade641 369#endif
370
a3899bb7 371/* Data and reference forms for relocatable data. */
372#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
374
702620e0 375#ifndef DEBUG_FRAME_SECTION
376#define DEBUG_FRAME_SECTION ".debug_frame"
30ade641 377#endif
30ade641 378
d58978a6 379#ifndef FUNC_BEGIN_LABEL
380#define FUNC_BEGIN_LABEL "LFB"
30ade641 381#endif
8c3f468d 382
d58978a6 383#ifndef FUNC_END_LABEL
384#define FUNC_END_LABEL "LFE"
30ade641 385#endif
8c3f468d 386
2f9fc8ef 387#ifndef FRAME_BEGIN_LABEL
48ead6eb 388#define FRAME_BEGIN_LABEL "Lframe"
2f9fc8ef 389#endif
19bce576 390#define CIE_AFTER_SIZE_LABEL "LSCIE"
391#define CIE_END_LABEL "LECIE"
ca98eb0a 392#define FDE_LABEL "LSFDE"
393#define FDE_AFTER_SIZE_LABEL "LASFDE"
19bce576 394#define FDE_END_LABEL "LEFDE"
3740694f 395#define LINE_NUMBER_BEGIN_LABEL "LSLT"
396#define LINE_NUMBER_END_LABEL "LELT"
397#define LN_PROLOG_AS_LABEL "LASLTP"
398#define LN_PROLOG_END_LABEL "LELTP"
19f716e5 399#define DIE_LABEL_PREFIX "DW"
30ade641 400
212538c2 401/* The DWARF 2 CFA column which tracks the return address. Normally this
6efd403b 402 is the column for PC, or the first column after all of the hard
403 registers. */
212538c2 404#ifndef DWARF_FRAME_RETURN_COLUMN
6efd403b 405#ifdef PC_REGNUM
8ec3a57b 406#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
6efd403b 407#else
8ec3a57b 408#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
6efd403b 409#endif
212538c2 410#endif
411
412/* The mapping from gcc register number to DWARF 2 CFA column number. By
df78b73b 413 default, we just provide columns for all registers. */
212538c2 414#ifndef DWARF_FRAME_REGNUM
df78b73b 415#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
212538c2 416#endif
8c3f468d 417\f
d757b8c9 418/* Hook used by __throw. */
419
420rtx
8ec3a57b 421expand_builtin_dwarf_sp_column (void)
d757b8c9 422{
963e1d38 423 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
c98ee857 424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
d757b8c9 425}
426
ec1e49cc 427/* Return a pointer to a copy of the section string name S with all
1bfb8e27 428 attributes stripped off, and an asterisk prepended (for assemble_name). */
ec1e49cc 429
430static inline char *
8ec3a57b 431stripattributes (const char *s)
30ade641 432{
4c36ffe6 433 char *stripped = XNEWVEC (char, strlen (s) + 2);
ec1e49cc 434 char *p = stripped;
435
1bfb8e27 436 *p++ = '*';
437
438 while (*s && *s != ',')
439 *p++ = *s++;
ec1e49cc 440
30ade641 441 *p = '\0';
442 return stripped;
443}
444
695e919b 445/* Generate code to initialize the register size table. */
5ff00a1d 446
695e919b 447void
8ec3a57b 448expand_builtin_init_dwarf_reg_sizes (tree address)
5ff00a1d 449{
963e1d38 450 unsigned int i;
695e919b 451 enum machine_mode mode = TYPE_MODE (char_type_node);
8ec3c5c2 452 rtx addr = expand_normal (address);
8c3f468d 453 rtx mem = gen_rtx_MEM (BLKmode, addr);
5fec5f34 454 bool wrote_return_column = false;
5ff00a1d 455
33f90206 456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
c98ee857 457 {
458 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
459
460 if (rnum < DWARF_FRAME_REGISTERS)
461 {
462 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 enum machine_mode save_mode = reg_raw_mode[i];
464 HOST_WIDE_INT size;
465
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 save_mode = choose_hard_reg_mode (i, 1, true);
468 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
469 {
470 if (save_mode == VOIDmode)
471 continue;
472 wrote_return_column = true;
473 }
474 size = GET_MODE_SIZE (save_mode);
475 if (offset < 0)
476 continue;
477
478 emit_move_insn (adjust_address (mem, mode, offset),
479 gen_int_mode (size, mode));
480 }
481 }
c49ad9ef 482
483#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
7bd4f6b6 484 gcc_assert (wrote_return_column);
c49ad9ef 485 i = DWARF_ALT_FRAME_RETURN_COLUMN;
486 wrote_return_column = false;
487#else
488 i = DWARF_FRAME_RETURN_COLUMN;
489#endif
490
5fec5f34 491 if (! wrote_return_column)
492 {
493 enum machine_mode save_mode = Pmode;
c49ad9ef 494 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
5fec5f34 495 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
497 }
5ff00a1d 498}
499
8a8bfbe7 500/* Convert a DWARF call frame info. operation to its string name */
30ade641 501
7795e5d1 502static const char *
8ec3a57b 503dwarf_cfi_name (unsigned int cfi_opc)
8a8bfbe7 504{
505 switch (cfi_opc)
506 {
507 case DW_CFA_advance_loc:
508 return "DW_CFA_advance_loc";
509 case DW_CFA_offset:
510 return "DW_CFA_offset";
511 case DW_CFA_restore:
512 return "DW_CFA_restore";
513 case DW_CFA_nop:
514 return "DW_CFA_nop";
515 case DW_CFA_set_loc:
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value:
530 return "DW_CFA_same_value";
531 case DW_CFA_register:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state:
536 return "DW_CFA_restore_state";
537 case DW_CFA_def_cfa:
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset:
542 return "DW_CFA_def_cfa_offset";
15a56411 543
544 /* DWARF 3 */
4b72e226 545 case DW_CFA_def_cfa_expression:
546 return "DW_CFA_def_cfa_expression";
15a56411 547 case DW_CFA_expression:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf:
554 return "DW_CFA_def_cfa_offset_sf";
4ad3f9b3 555
8a8bfbe7 556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8:
558 return "DW_CFA_MIPS_advance_loc8";
4ad3f9b3 559
560 /* GNU extensions */
561 case DW_CFA_GNU_window_save:
562 return "DW_CFA_GNU_window_save";
d757b8c9 563 case DW_CFA_GNU_args_size:
564 return "DW_CFA_GNU_args_size";
db3d4a18 565 case DW_CFA_GNU_negative_offset_extended:
566 return "DW_CFA_GNU_negative_offset_extended";
4ad3f9b3 567
8a8bfbe7 568 default:
569 return "DW_CFA_<unknown>";
570 }
571}
30ade641 572
8a8bfbe7 573/* Return a pointer to a newly allocated Call Frame Instruction. */
ec1e49cc 574
8a8bfbe7 575static inline dw_cfi_ref
8ec3a57b 576new_cfi (void)
8a8bfbe7 577{
f0af5a88 578 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
ec1e49cc 579
8a8bfbe7 580 cfi->dw_cfi_next = NULL;
581 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
30ade641 583
8a8bfbe7 584 return cfi;
585}
30ade641 586
8a8bfbe7 587/* Add a Call Frame Instruction to list of instructions. */
30ade641 588
8a8bfbe7 589static inline void
8ec3a57b 590add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
8a8bfbe7 591{
19cb6b50 592 dw_cfi_ref *p;
30ade641 593
8a8bfbe7 594 /* Find the end of the chain. */
595 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
596 ;
597
598 *p = cfi;
30ade641 599}
600
8a8bfbe7 601/* Generate a new label for the CFI info to refer to. */
ec1e49cc 602
4ad3f9b3 603char *
8ec3a57b 604dwarf2out_cfi_label (void)
30ade641 605{
8a8bfbe7 606 static char label[20];
f80d1bcd 607
9105005a 608 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
8a8bfbe7 609 ASM_OUTPUT_LABEL (asm_out_file, label);
8a8bfbe7 610 return label;
30ade641 611}
612
8a8bfbe7 613/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
ec1e49cc 615
8a8bfbe7 616static void
8ec3a57b 617add_fde_cfi (const char *label, dw_cfi_ref cfi)
30ade641 618{
8a8bfbe7 619 if (label)
620 {
19cb6b50 621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
30ade641 622
8a8bfbe7 623 if (*label == 0)
624 label = dwarf2out_cfi_label ();
ec1e49cc 625
8a8bfbe7 626 if (fde->dw_fde_current_label == NULL
627 || strcmp (label, fde->dw_fde_current_label) != 0)
628 {
19cb6b50 629 dw_cfi_ref xcfi;
30ade641 630
d8eb7025 631 label = xstrdup (label);
ec1e49cc 632
8a8bfbe7 633 /* Set the location counter to the new label. */
634 xcfi = new_cfi ();
d8eb7025 635 /* If we have a current label, advance from there, otherwise
636 set the location directly using set_loc. */
637 xcfi->dw_cfi_opc = fde->dw_fde_current_label
638 ? DW_CFA_advance_loc4
639 : DW_CFA_set_loc;
8a8bfbe7 640 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
641 add_cfi (&fde->dw_fde_cfi, xcfi);
d8eb7025 642
643 fde->dw_fde_current_label = label;
8a8bfbe7 644 }
ec1e49cc 645
8a8bfbe7 646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
30ade641 651}
652
8a8bfbe7 653/* Subroutine of lookup_cfa. */
ec1e49cc 654
12d886b8 655static void
8ec3a57b 656lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
30ade641 657{
8a8bfbe7 658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
4b72e226 661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
8a8bfbe7 662 break;
da72c083 663 case DW_CFA_def_cfa_offset_sf:
664 loc->offset
665 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
666 break;
8a8bfbe7 667 case DW_CFA_def_cfa_register:
4b72e226 668 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
8a8bfbe7 669 break;
670 case DW_CFA_def_cfa:
4b72e226 671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
673 break;
da72c083 674 case DW_CFA_def_cfa_sf:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 loc->offset
677 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
678 break;
4b72e226 679 case DW_CFA_def_cfa_expression:
680 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
8a8bfbe7 681 break;
0dbd1c74 682 default:
683 break;
8a8bfbe7 684 }
30ade641 685}
686
8a8bfbe7 687/* Find the previous value for the CFA. */
ec1e49cc 688
8a8bfbe7 689static void
8ec3a57b 690lookup_cfa (dw_cfa_location *loc)
30ade641 691{
19cb6b50 692 dw_cfi_ref cfi;
8a8bfbe7 693
12d886b8 694 loc->reg = INVALID_REGNUM;
4b72e226 695 loc->offset = 0;
696 loc->indirect = 0;
697 loc->base_offset = 0;
8a8bfbe7 698
699 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
4b72e226 700 lookup_cfa_1 (cfi, loc);
8a8bfbe7 701
702 if (fde_table_in_use)
30ade641 703 {
19cb6b50 704 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
8a8bfbe7 705 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
4b72e226 706 lookup_cfa_1 (cfi, loc);
30ade641 707 }
708}
709
8a8bfbe7 710/* The current rule for calculating the DWARF2 canonical frame address. */
b0d72d68 711static dw_cfa_location cfa;
ec1e49cc 712
8a8bfbe7 713/* The register used for saving registers to the stack, and its offset
714 from the CFA. */
b0d72d68 715static dw_cfa_location cfa_store;
8a8bfbe7 716
d757b8c9 717/* The running total of the size of arguments pushed onto the stack. */
3d867824 718static HOST_WIDE_INT args_size;
d757b8c9 719
08532d4f 720/* The last args_size we actually output. */
3d867824 721static HOST_WIDE_INT old_args_size;
08532d4f 722
8a8bfbe7 723/* Entry point to update the canonical frame address (CFA).
724 LABEL is passed to add_fde_cfi. The value of CFA is now to be
725 calculated from REG+OFFSET. */
726
727void
3d867824 728dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
4b72e226 729{
730 dw_cfa_location loc;
731 loc.indirect = 0;
732 loc.base_offset = 0;
733 loc.reg = reg;
734 loc.offset = offset;
735 def_cfa_1 (label, &loc);
736}
737
12d886b8 738/* Determine if two dw_cfa_location structures define the same data. */
739
740static bool
741cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
742{
743 return (loc1->reg == loc2->reg
744 && loc1->offset == loc2->offset
745 && loc1->indirect == loc2->indirect
746 && (loc1->indirect == 0
747 || loc1->base_offset == loc2->base_offset));
748}
749
950ae8fe 750/* This routine does the actual work. The CFA is now calculated from
4b72e226 751 the dw_cfa_location structure. */
8c3f468d 752
4b72e226 753static void
8ec3a57b 754def_cfa_1 (const char *label, dw_cfa_location *loc_p)
30ade641 755{
19cb6b50 756 dw_cfi_ref cfi;
4b72e226 757 dw_cfa_location old_cfa, loc;
8a8bfbe7 758
4b72e226 759 cfa = *loc_p;
760 loc = *loc_p;
8ab7f849 761
4b72e226 762 if (cfa_store.reg == loc.reg && loc.indirect == 0)
763 cfa_store.offset = loc.offset;
8a8bfbe7 764
4b72e226 765 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
766 lookup_cfa (&old_cfa);
767
8c3f468d 768 /* If nothing changed, no need to issue any call frame instructions. */
12d886b8 769 if (cfa_equal_p (&loc, &old_cfa))
8c3f468d 770 return;
8a8bfbe7 771
772 cfi = new_cfi ();
773
49a9983c 774 if (loc.reg == old_cfa.reg && !loc.indirect)
30ade641 775 {
da72c083 776 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 the CFA register did not change but the offset did. */
778 if (loc.offset < 0)
779 {
780 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
781 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
782
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
784 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
785 }
786 else
787 {
788 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
789 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
790 }
8a8bfbe7 791 }
30ade641 792
8a8bfbe7 793#ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
12d886b8 794 else if (loc.offset == old_cfa.offset
795 && old_cfa.reg != INVALID_REGNUM
49a9983c 796 && !loc.indirect)
8a8bfbe7 797 {
950ae8fe 798 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 indicating the CFA register has changed to <register> but the
800 offset has not changed. */
8a8bfbe7 801 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
4b72e226 802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
8a8bfbe7 803 }
804#endif
30ade641 805
4b72e226 806 else if (loc.indirect == 0)
8a8bfbe7 807 {
950ae8fe 808 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 indicating the CFA register has changed to <register> with
810 the specified offset. */
da72c083 811 if (loc.offset < 0)
812 {
813 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
814 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
815
816 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
819 }
820 else
821 {
822 cfi->dw_cfi_opc = DW_CFA_def_cfa;
823 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
824 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
825 }
4b72e226 826 }
827 else
828 {
950ae8fe 829 /* Construct a DW_CFA_def_cfa_expression instruction to
830 calculate the CFA using a full location expression since no
831 register-offset pair is available. */
f80d1bcd 832 struct dw_loc_descr_struct *loc_list;
8c3f468d 833
4b72e226 834 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
89fa767a 835 loc_list = build_cfa_loc (&loc, 0);
4b72e226 836 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
30ade641 837 }
8a8bfbe7 838
839 add_fde_cfi (label, cfi);
30ade641 840}
841
8a8bfbe7 842/* Add the CFI for saving a register. REG is the CFA column number.
843 LABEL is passed to add_fde_cfi.
844 If SREG is -1, the register is saved at OFFSET from the CFA;
845 otherwise it is saved in SREG. */
ec1e49cc 846
8a8bfbe7 847static void
3d867824 848reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
30ade641 849{
19cb6b50 850 dw_cfi_ref cfi = new_cfi ();
8a8bfbe7 851
852 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
853
f481766a 854 if (sreg == INVALID_REGNUM)
30ade641 855 {
8a8bfbe7 856 if (reg & ~0x3f)
857 /* The register number won't fit in 6 bits, so we have to use
858 the long form. */
859 cfi->dw_cfi_opc = DW_CFA_offset_extended;
860 else
861 cfi->dw_cfi_opc = DW_CFA_offset;
862
78ac74b9 863#ifdef ENABLE_CHECKING
864 {
865 /* If we get an offset that is not a multiple of
866 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
868 description. */
3d867824 869 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
78ac74b9 870
7bd4f6b6 871 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
78ac74b9 872 }
873#endif
8a8bfbe7 874 offset /= DWARF_CIE_DATA_ALIGNMENT;
7e2bfe1e 875 if (offset < 0)
15a56411 876 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
8c3f468d 877
8a8bfbe7 878 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
879 }
220d204b 880 else if (sreg == reg)
60ea93bb 881 cfi->dw_cfi_opc = DW_CFA_same_value;
8a8bfbe7 882 else
883 {
884 cfi->dw_cfi_opc = DW_CFA_register;
885 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
886 }
887
888 add_fde_cfi (label, cfi);
889}
890
4ad3f9b3 891/* Add the CFI for saving a register window. LABEL is passed to reg_save.
892 This CFI tells the unwinder that it needs to restore the window registers
893 from the previous frame's window save area.
f80d1bcd 894
4ad3f9b3 895 ??? Perhaps we should note in the CIE where windows are saved (instead of
896 assuming 0(cfa)) and what registers are in the window. */
897
898void
8ec3a57b 899dwarf2out_window_save (const char *label)
4ad3f9b3 900{
19cb6b50 901 dw_cfi_ref cfi = new_cfi ();
8c3f468d 902
4ad3f9b3 903 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
904 add_fde_cfi (label, cfi);
905}
906
d757b8c9 907/* Add a CFI to update the running total of the size of arguments
908 pushed onto the stack. */
909
910void
3d867824 911dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
d757b8c9 912{
19cb6b50 913 dw_cfi_ref cfi;
08532d4f 914
915 if (size == old_args_size)
916 return;
8c3f468d 917
08532d4f 918 old_args_size = size;
919
920 cfi = new_cfi ();
d757b8c9 921 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
922 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
923 add_fde_cfi (label, cfi);
924}
925
4ad3f9b3 926/* Entry point for saving a register to the stack. REG is the GCC register
927 number. LABEL and OFFSET are passed to reg_save. */
8a8bfbe7 928
929void
3d867824 930dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
8a8bfbe7 931{
f481766a 932 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
8a8bfbe7 933}
934
4ad3f9b3 935/* Entry point for saving the return address in the stack.
936 LABEL and OFFSET are passed to reg_save. */
937
938void
3d867824 939dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
4ad3f9b3 940{
f481766a 941 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
4ad3f9b3 942}
943
944/* Entry point for saving the return address in a register.
945 LABEL and SREG are passed to reg_save. */
946
947void
8ec3a57b 948dwarf2out_return_reg (const char *label, unsigned int sreg)
4ad3f9b3 949{
f481766a 950 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
4ad3f9b3 951}
952
8a8bfbe7 953/* Record the initial position of the return address. RTL is
954 INCOMING_RETURN_ADDR_RTX. */
955
956static void
8ec3a57b 957initial_return_save (rtx rtl)
8a8bfbe7 958{
f481766a 959 unsigned int reg = INVALID_REGNUM;
8c3f468d 960 HOST_WIDE_INT offset = 0;
8a8bfbe7 961
962 switch (GET_CODE (rtl))
963 {
964 case REG:
965 /* RA is in a register. */
220d204b 966 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
8a8bfbe7 967 break;
8c3f468d 968
8a8bfbe7 969 case MEM:
970 /* RA is on the stack. */
971 rtl = XEXP (rtl, 0);
972 switch (GET_CODE (rtl))
973 {
974 case REG:
7bd4f6b6 975 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
8a8bfbe7 976 offset = 0;
977 break;
8c3f468d 978
8a8bfbe7 979 case PLUS:
7bd4f6b6 980 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
8a8bfbe7 981 offset = INTVAL (XEXP (rtl, 1));
982 break;
8c3f468d 983
8a8bfbe7 984 case MINUS:
7bd4f6b6 985 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
8a8bfbe7 986 offset = -INTVAL (XEXP (rtl, 1));
987 break;
8c3f468d 988
8a8bfbe7 989 default:
7bd4f6b6 990 gcc_unreachable ();
8a8bfbe7 991 }
8c3f468d 992
8a8bfbe7 993 break;
8c3f468d 994
4ad3f9b3 995 case PLUS:
996 /* The return address is at some offset from any value we can
997 actually load. For instance, on the SPARC it is in %i7+8. Just
998 ignore the offset for now; it doesn't matter for unwinding frames. */
7bd4f6b6 999 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
4ad3f9b3 1000 initial_return_save (XEXP (rtl, 0));
1001 return;
8c3f468d 1002
30ade641 1003 default:
7bd4f6b6 1004 gcc_unreachable ();
30ade641 1005 }
8a8bfbe7 1006
60ea93bb 1007 if (reg != DWARF_FRAME_RETURN_COLUMN)
1008 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
30ade641 1009}
1010
6ee89c56 1011/* Given a SET, calculate the amount of stack adjustment it
6312a35e 1012 contains. */
6ee89c56 1013
3d867824 1014static HOST_WIDE_INT
8ec3a57b 1015stack_adjust_offset (rtx pattern)
6ee89c56 1016{
1017 rtx src = SET_SRC (pattern);
1018 rtx dest = SET_DEST (pattern);
8c3f468d 1019 HOST_WIDE_INT offset = 0;
6ee89c56 1020 enum rtx_code code;
1021
1022 if (dest == stack_pointer_rtx)
1023 {
1024 /* (set (reg sp) (plus (reg sp) (const_int))) */
1025 code = GET_CODE (src);
1026 if (! (code == PLUS || code == MINUS)
1027 || XEXP (src, 0) != stack_pointer_rtx
1028 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1029 return 0;
1030
1031 offset = INTVAL (XEXP (src, 1));
052c7a5c 1032 if (code == PLUS)
1033 offset = -offset;
6ee89c56 1034 }
e16ceb8e 1035 else if (MEM_P (dest))
6ee89c56 1036 {
1037 /* (set (mem (pre_dec (reg sp))) (foo)) */
1038 src = XEXP (dest, 0);
1039 code = GET_CODE (src);
1040
bc70bd5e 1041 switch (code)
1042 {
052c7a5c 1043 case PRE_MODIFY:
1044 case POST_MODIFY:
1045 if (XEXP (src, 0) == stack_pointer_rtx)
1046 {
1047 rtx val = XEXP (XEXP (src, 1), 1);
1048 /* We handle only adjustments by constant amount. */
7bd4f6b6 1049 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1050 && GET_CODE (val) == CONST_INT);
052c7a5c 1051 offset = -INTVAL (val);
1052 break;
1053 }
1054 return 0;
1055
1056 case PRE_DEC:
1057 case POST_DEC:
1058 if (XEXP (src, 0) == stack_pointer_rtx)
1059 {
1060 offset = GET_MODE_SIZE (GET_MODE (dest));
1061 break;
1062 }
1063 return 0;
1064
1065 case PRE_INC:
1066 case POST_INC:
1067 if (XEXP (src, 0) == stack_pointer_rtx)
1068 {
1069 offset = -GET_MODE_SIZE (GET_MODE (dest));
1070 break;
1071 }
1072 return 0;
8c3f468d 1073
052c7a5c 1074 default:
1075 return 0;
93fbe1f3 1076 }
6ee89c56 1077 }
1078 else
1079 return 0;
1080
6ee89c56 1081 return offset;
1082}
1083
d757b8c9 1084/* Check INSN to see if it looks like a push or a stack adjustment, and
1085 make a note of it if it does. EH uses this information to find out how
1086 much extra space it needs to pop off the stack. */
1087
1088static void
46b2b3c8 1089dwarf2out_stack_adjust (rtx insn, bool after_p)
d757b8c9 1090{
8c3f468d 1091 HOST_WIDE_INT offset;
1e034a40 1092 const char *label;
8c3f468d 1093 int i;
d757b8c9 1094
31b1fbc5 1095 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1096 with this function. Proper support would require all frame-related
1097 insns to be marked, and to be able to handle saving state around
1098 epilogues textually in the middle of the function. */
1099 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1100 return;
1101
46b2b3c8 1102 /* If only calls can throw, and we have a frame pointer,
1103 save up adjustments until we see the CALL_INSN. */
1104 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1105 {
1106 if (CALL_P (insn) && !after_p)
1107 {
1108 /* Extract the size of the args from the CALL rtx itself. */
1109 insn = PATTERN (insn);
1110 if (GET_CODE (insn) == PARALLEL)
1111 insn = XVECEXP (insn, 0, 0);
1112 if (GET_CODE (insn) == SET)
1113 insn = SET_SRC (insn);
1114 gcc_assert (GET_CODE (insn) == CALL);
1115 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1116 }
1117 return;
1118 }
1119
1120 if (CALL_P (insn) && !after_p)
1121 {
1122 if (!flag_asynchronous_unwind_tables)
1123 dwarf2out_args_size ("", args_size);
1124 return;
1125 }
1126 else if (BARRIER_P (insn))
d757b8c9 1127 {
24db2725 1128 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1129 the compiler will have already emitted a stack adjustment, but
1130 doesn't bother for calls to noreturn functions. */
1131#ifdef STACK_GROWS_DOWNWARD
1132 offset = -args_size;
1133#else
1134 offset = args_size;
1135#endif
d757b8c9 1136 }
24db2725 1137 else if (GET_CODE (PATTERN (insn)) == SET)
8c3f468d 1138 offset = stack_adjust_offset (PATTERN (insn));
6ee89c56 1139 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1140 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1141 {
1142 /* There may be stack adjustments inside compound insns. Search
8c3f468d 1143 for them. */
1144 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1145 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1146 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
d757b8c9 1147 }
1148 else
1149 return;
ac02093f 1150
24db2725 1151 if (offset == 0)
1152 return;
1153
4b72e226 1154 if (cfa.reg == STACK_POINTER_REGNUM)
1155 cfa.offset += offset;
d757b8c9 1156
1157#ifndef STACK_GROWS_DOWNWARD
1158 offset = -offset;
1159#endif
8c3f468d 1160
d757b8c9 1161 args_size += offset;
1162 if (args_size < 0)
1163 args_size = 0;
1164
1165 label = dwarf2out_cfi_label ();
4b72e226 1166 def_cfa_1 (label, &cfa);
535fcfa4 1167 if (flag_asynchronous_unwind_tables)
1168 dwarf2out_args_size (label, args_size);
d757b8c9 1169}
1170
573aba85 1171#endif
1172
b0d72d68 1173/* We delay emitting a register save until either (a) we reach the end
1174 of the prologue or (b) the register is clobbered. This clusters
1175 register saves so that there are fewer pc advances. */
1176
573aba85 1177struct queued_reg_save GTY(())
b0d72d68 1178{
1179 struct queued_reg_save *next;
1180 rtx reg;
3d867824 1181 HOST_WIDE_INT cfa_offset;
60ea93bb 1182 rtx saved_reg;
b0d72d68 1183};
1184
573aba85 1185static GTY(()) struct queued_reg_save *queued_reg_saves;
1186
60ea93bb 1187/* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1188struct reg_saved_in_data GTY(()) {
1189 rtx orig_reg;
1190 rtx saved_in_reg;
1191};
1192
1193/* A list of registers saved in other registers.
1194 The list intentionally has a small maximum capacity of 4; if your
1195 port needs more than that, you might consider implementing a
1196 more efficient data structure. */
1197static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1198static GTY(()) size_t num_regs_saved_in_regs;
8ff30ff6 1199
573aba85 1200#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
b0d72d68 1201static const char *last_reg_save_label;
1202
60ea93bb 1203/* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1205
b0d72d68 1206static void
60ea93bb 1207queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
b0d72d68 1208{
60ea93bb 1209 struct queued_reg_save *q;
1210
1211 /* Duplicates waste space, but it's also necessary to remove them
1212 for correctness, since the queue gets output in reverse
1213 order. */
1214 for (q = queued_reg_saves; q != NULL; q = q->next)
1215 if (REGNO (q->reg) == REGNO (reg))
1216 break;
1217
1218 if (q == NULL)
1219 {
1220 q = ggc_alloc (sizeof (*q));
1221 q->next = queued_reg_saves;
1222 queued_reg_saves = q;
1223 }
b0d72d68 1224
b0d72d68 1225 q->reg = reg;
1226 q->cfa_offset = offset;
60ea93bb 1227 q->saved_reg = sreg;
b0d72d68 1228
1229 last_reg_save_label = label;
1230}
1231
60ea93bb 1232/* Output all the entries in QUEUED_REG_SAVES. */
1233
b0d72d68 1234static void
8ec3a57b 1235flush_queued_reg_saves (void)
b0d72d68 1236{
60ea93bb 1237 struct queued_reg_save *q;
b0d72d68 1238
60ea93bb 1239 for (q = queued_reg_saves; q; q = q->next)
b0d72d68 1240 {
60ea93bb 1241 size_t i;
f481766a 1242 unsigned int reg, sreg;
1243
60ea93bb 1244 for (i = 0; i < num_regs_saved_in_regs; i++)
1245 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1246 break;
1247 if (q->saved_reg && i == num_regs_saved_in_regs)
1248 {
7bd4f6b6 1249 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
60ea93bb 1250 num_regs_saved_in_regs++;
1251 }
1252 if (i != num_regs_saved_in_regs)
1253 {
1254 regs_saved_in_regs[i].orig_reg = q->reg;
1255 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1256 }
1257
f481766a 1258 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1259 if (q->saved_reg)
1260 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1261 else
1262 sreg = INVALID_REGNUM;
1263 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
b0d72d68 1264 }
1265
1266 queued_reg_saves = NULL;
1267 last_reg_save_label = NULL;
1268}
1269
60ea93bb 1270/* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271 location for? Or, does it clobber a register which we've previously
1272 said that some other register is saved in, and for which we now
1273 have a new location for? */
1274
b0d72d68 1275static bool
8ec3a57b 1276clobbers_queued_reg_save (rtx insn)
b0d72d68 1277{
1278 struct queued_reg_save *q;
1279
bc70bd5e 1280 for (q = queued_reg_saves; q; q = q->next)
60ea93bb 1281 {
1282 size_t i;
1283 if (modified_in_p (q->reg, insn))
1284 return true;
1285 for (i = 0; i < num_regs_saved_in_regs; i++)
1286 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1287 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1288 return true;
1289 }
b0d72d68 1290
1291 return false;
1292}
bc70bd5e 1293
567925e3 1294/* Entry point for saving the first register into the second. */
1295
1296void
1297dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1298{
1299 size_t i;
1300 unsigned int regno, sregno;
1301
1302 for (i = 0; i < num_regs_saved_in_regs; i++)
1303 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1304 break;
1305 if (i == num_regs_saved_in_regs)
1306 {
1307 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1308 num_regs_saved_in_regs++;
1309 }
1310 regs_saved_in_regs[i].orig_reg = reg;
1311 regs_saved_in_regs[i].saved_in_reg = sreg;
1312
1313 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1314 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1315 reg_save (label, regno, sregno, 0);
1316}
1317
60ea93bb 1318/* What register, if any, is currently saved in REG? */
1319
1320static rtx
1321reg_saved_in (rtx reg)
1322{
1323 unsigned int regn = REGNO (reg);
1324 size_t i;
1325 struct queued_reg_save *q;
8ff30ff6 1326
60ea93bb 1327 for (q = queued_reg_saves; q; q = q->next)
1328 if (q->saved_reg && regn == REGNO (q->saved_reg))
1329 return q->reg;
1330
1331 for (i = 0; i < num_regs_saved_in_regs; i++)
1332 if (regs_saved_in_regs[i].saved_in_reg
1333 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1334 return regs_saved_in_regs[i].orig_reg;
1335
1336 return NULL_RTX;
1337}
1338
b0d72d68 1339
950ae8fe 1340/* A temporary register holding an integral value used in adjusting SP
1341 or setting up the store_reg. The "offset" field holds the integer
1342 value, not an offset. */
b0d72d68 1343static dw_cfa_location cfa_temp;
950ae8fe 1344
1345/* Record call frame debugging information for an expression EXPR,
1346 which either sets SP or FP (adjusting how we calculate the frame
60ea93bb 1347 address) or saves a register to the stack or another register.
1348 LABEL indicates the address of EXPR.
950ae8fe 1349
1350 This function encodes a state machine mapping rtxes to actions on
1351 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1352 users need not read the source code.
1353
ae8c6892 1354 The High-Level Picture
1355
1356 Changes in the register we use to calculate the CFA: Currently we
1357 assume that if you copy the CFA register into another register, we
1358 should take the other one as the new CFA register; this seems to
1359 work pretty well. If it's wrong for some target, it's simple
1360 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1361
1362 Changes in the register we use for saving registers to the stack:
1363 This is usually SP, but not always. Again, we deduce that if you
1364 copy SP into another register (and SP is not the CFA register),
1365 then the new register is the one we will be using for register
1366 saves. This also seems to work.
1367
1368 Register saves: There's not much guesswork about this one; if
1369 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370 register save, and the register used to calculate the destination
1371 had better be the one we think we're using for this purpose.
60ea93bb 1372 It's also assumed that a copy from a call-saved register to another
1373 register is saving that register if RTX_FRAME_RELATED_P is set on
1374 that instruction. If the copy is from a call-saved register to
1375 the *same* register, that means that the register is now the same
1376 value as in the caller.
ae8c6892 1377
1378 Except: If the register being saved is the CFA register, and the
6ef828f9 1379 offset is nonzero, we are saving the CFA, so we assume we have to
ae8c6892 1380 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1381 the intent is to save the value of SP from the previous frame.
1382
60ea93bb 1383 In addition, if a register has previously been saved to a different
8ff30ff6 1384 register,
60ea93bb 1385
950ae8fe 1386 Invariants / Summaries of Rules
1387
ae8c6892 1388 cfa current rule for calculating the CFA. It usually
1389 consists of a register and an offset.
950ae8fe 1390 cfa_store register used by prologue code to save things to the stack
1391 cfa_store.offset is the offset from the value of
1392 cfa_store.reg to the actual CFA
1393 cfa_temp register holding an integral value. cfa_temp.offset
1394 stores the value, which will be used to adjust the
cc858176 1395 stack pointer. cfa_temp is also used like cfa_store,
1396 to track stores to the stack via fp or a temp reg.
bc70bd5e 1397
950ae8fe 1398 Rules 1- 4: Setting a register's value to cfa.reg or an expression
8ec3a57b 1399 with cfa.reg as the first operand changes the cfa.reg and its
cc858176 1400 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1401 cfa_temp.offset.
950ae8fe 1402
1403 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1404 expression yielding a constant. This sets cfa_temp.reg
1405 and cfa_temp.offset.
1406
1407 Rule 5: Create a new register cfa_store used to save items to the
1408 stack.
1409
cc858176 1410 Rules 10-14: Save a register to the stack. Define offset as the
ae8c6892 1411 difference of the original location and cfa_store's
cc858176 1412 location (or cfa_temp's location if cfa_temp is used).
950ae8fe 1413
1414 The Rules
1415
1416 "{a,b}" indicates a choice of a xor b.
1417 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1418
1419 Rule 1:
1420 (set <reg1> <reg2>:cfa.reg)
cc858176 1421 effects: cfa.reg = <reg1>
c83a163c 1422 cfa.offset unchanged
cc858176 1423 cfa_temp.reg = <reg1>
1424 cfa_temp.offset = cfa.offset
950ae8fe 1425
1426 Rule 2:
8c3f468d 1427 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 {<const_int>,<reg>:cfa_temp.reg}))
950ae8fe 1429 effects: cfa.reg = sp if fp used
8ec3a57b 1430 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
950ae8fe 1431 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 if cfa_store.reg==sp
1433
1434 Rule 3:
cc858176 1435 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
950ae8fe 1436 effects: cfa.reg = fp
8ec3a57b 1437 cfa_offset += +/- <const_int>
950ae8fe 1438
1439 Rule 4:
cc858176 1440 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
950ae8fe 1441 constraints: <reg1> != fp
8ec3a57b 1442 <reg1> != sp
950ae8fe 1443 effects: cfa.reg = <reg1>
cc858176 1444 cfa_temp.reg = <reg1>
1445 cfa_temp.offset = cfa.offset
950ae8fe 1446
1447 Rule 5:
1448 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449 constraints: <reg1> != fp
8ec3a57b 1450 <reg1> != sp
950ae8fe 1451 effects: cfa_store.reg = <reg1>
8ec3a57b 1452 cfa_store.offset = cfa.offset - cfa_temp.offset
950ae8fe 1453
1454 Rule 6:
1455 (set <reg> <const_int>)
1456 effects: cfa_temp.reg = <reg>
8ec3a57b 1457 cfa_temp.offset = <const_int>
950ae8fe 1458
1459 Rule 7:
1460 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461 effects: cfa_temp.reg = <reg1>
1462 cfa_temp.offset |= <const_int>
1463
1464 Rule 8:
1465 (set <reg> (high <exp>))
1466 effects: none
1467
1468 Rule 9:
1469 (set <reg> (lo_sum <exp> <const_int>))
1470 effects: cfa_temp.reg = <reg>
8ec3a57b 1471 cfa_temp.offset = <const_int>
950ae8fe 1472
1473 Rule 10:
1474 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475 effects: cfa_store.offset -= <const_int>
1476 cfa.offset = cfa_store.offset if cfa.reg == sp
950ae8fe 1477 cfa.reg = sp
cc858176 1478 cfa.base_offset = -cfa_store.offset
950ae8fe 1479
1480 Rule 11:
1481 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482 effects: cfa_store.offset += -/+ mode_size(mem)
1483 cfa.offset = cfa_store.offset if cfa.reg == sp
950ae8fe 1484 cfa.reg = sp
cc858176 1485 cfa.base_offset = -cfa_store.offset
950ae8fe 1486
1487 Rule 12:
8c3f468d 1488 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1489
1490 <reg2>)
cc858176 1491 effects: cfa.reg = <reg1>
1492 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
950ae8fe 1493
1494 Rule 13:
cc858176 1495 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496 effects: cfa.reg = <reg1>
1497 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1498
1499 Rule 14:
1500 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -cfa_temp.offset
d15ee1a5 1503 cfa_temp.offset -= mode_size(mem)
1504
85fdc672 1505 Rule 15:
1506 (set <reg> {unspec, unspec_volatile})
1507 effects: target-dependent */
fa19b467 1508
1509static void
8ec3a57b 1510dwarf2out_frame_debug_expr (rtx expr, const char *label)
fa19b467 1511{
1512 rtx src, dest;
8c3f468d 1513 HOST_WIDE_INT offset;
f80d1bcd 1514
1515 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516 the PARALLEL independently. The first element is always processed if
950ae8fe 1517 it is a SET. This is for backward compatibility. Other elements
f80d1bcd 1518 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519 flag is set in them. */
8c3f468d 1520 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
f80d1bcd 1521 {
fa19b467 1522 int par_index;
1523 int limit = XVECLEN (expr, 0);
1524
1525 for (par_index = 0; par_index < limit; par_index++)
8c3f468d 1526 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1527 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1528 || par_index == 0))
1529 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
f80d1bcd 1530
fa19b467 1531 return;
1532 }
f80d1bcd 1533
7bd4f6b6 1534 gcc_assert (GET_CODE (expr) == SET);
fa19b467 1535
1536 src = SET_SRC (expr);
1537 dest = SET_DEST (expr);
1538
1c14a50e 1539 if (REG_P (src))
60ea93bb 1540 {
1541 rtx rsi = reg_saved_in (src);
1542 if (rsi)
1543 src = rsi;
1544 }
1545
fa19b467 1546 switch (GET_CODE (dest))
1547 {
1548 case REG:
fa19b467 1549 switch (GET_CODE (src))
f80d1bcd 1550 {
1551 /* Setting FP from SP. */
1552 case REG:
1553 if (cfa.reg == (unsigned) REGNO (src))
60ea93bb 1554 {
1555 /* Rule 1 */
1556 /* Update the CFA rule wrt SP or FP. Make sure src is
8ff30ff6 1557 relative to the current CFA register.
60ea93bb 1558
1559 We used to require that dest be either SP or FP, but the
1560 ARM copies SP to a temporary register, and from there to
1561 FP. So we just rely on the backends to only set
1562 RTX_FRAME_RELATED_P on appropriate insns. */
1563 cfa.reg = REGNO (dest);
1564 cfa_temp.reg = cfa.reg;
1565 cfa_temp.offset = cfa.offset;
1566 }
7bd4f6b6 1567 else
60ea93bb 1568 {
1569 /* Saving a register in a register. */
ed86dceb 1570 gcc_assert (!fixed_regs [REGNO (dest)]
1571 /* For the SPARC and its register window. */
1572 || (DWARF_FRAME_REGNUM (REGNO (src))
1573 == DWARF_FRAME_RETURN_COLUMN));
60ea93bb 1574 queue_reg_save (label, src, dest, 0);
1575 }
f80d1bcd 1576 break;
fa19b467 1577
f80d1bcd 1578 case PLUS:
1579 case MINUS:
cc858176 1580 case LO_SUM:
f80d1bcd 1581 if (dest == stack_pointer_rtx)
1582 {
950ae8fe 1583 /* Rule 2 */
31306376 1584 /* Adjusting SP. */
1585 switch (GET_CODE (XEXP (src, 1)))
1586 {
1587 case CONST_INT:
1588 offset = INTVAL (XEXP (src, 1));
1589 break;
1590 case REG:
7bd4f6b6 1591 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1592 == cfa_temp.reg);
950ae8fe 1593 offset = cfa_temp.offset;
31306376 1594 break;
1595 default:
7bd4f6b6 1596 gcc_unreachable ();
31306376 1597 }
1598
1599 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1600 {
1601 /* Restoring SP from FP in the epilogue. */
7bd4f6b6 1602 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
4b72e226 1603 cfa.reg = STACK_POINTER_REGNUM;
31306376 1604 }
cc858176 1605 else if (GET_CODE (src) == LO_SUM)
1606 /* Assume we've set the source reg of the LO_SUM from sp. */
1607 ;
7bd4f6b6 1608 else
1609 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
31306376 1610
cc858176 1611 if (GET_CODE (src) != MINUS)
31306376 1612 offset = -offset;
4b72e226 1613 if (cfa.reg == STACK_POINTER_REGNUM)
1614 cfa.offset += offset;
1615 if (cfa_store.reg == STACK_POINTER_REGNUM)
1616 cfa_store.offset += offset;
f80d1bcd 1617 }
1618 else if (dest == hard_frame_pointer_rtx)
1619 {
950ae8fe 1620 /* Rule 3 */
31306376 1621 /* Either setting the FP from an offset of the SP,
1622 or adjusting the FP */
7bd4f6b6 1623 gcc_assert (frame_pointer_needed);
31306376 1624
7bd4f6b6 1625 gcc_assert (REG_P (XEXP (src, 0))
1626 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1627 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1628 offset = INTVAL (XEXP (src, 1));
1629 if (GET_CODE (src) != MINUS)
1630 offset = -offset;
1631 cfa.offset += offset;
1632 cfa.reg = HARD_FRAME_POINTER_REGNUM;
f80d1bcd 1633 }
1634 else
1635 {
7bd4f6b6 1636 gcc_assert (GET_CODE (src) != MINUS);
4747ea36 1637
950ae8fe 1638 /* Rule 4 */
8ad4c111 1639 if (REG_P (XEXP (src, 0))
4747ea36 1640 && REGNO (XEXP (src, 0)) == cfa.reg
1641 && GET_CODE (XEXP (src, 1)) == CONST_INT)
9b536fa6 1642 {
1643 /* Setting a temporary CFA register that will be copied
1644 into the FP later on. */
cc858176 1645 offset = - INTVAL (XEXP (src, 1));
9b536fa6 1646 cfa.offset += offset;
1647 cfa.reg = REGNO (dest);
cc858176 1648 /* Or used to save regs to the stack. */
1649 cfa_temp.reg = cfa.reg;
1650 cfa_temp.offset = cfa.offset;
9b536fa6 1651 }
8c3f468d 1652
950ae8fe 1653 /* Rule 5 */
8ad4c111 1654 else if (REG_P (XEXP (src, 0))
cc858176 1655 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1656 && XEXP (src, 1) == stack_pointer_rtx)
4747ea36 1657 {
ca6c45a9 1658 /* Setting a scratch register that we will use instead
1659 of SP for saving registers to the stack. */
7bd4f6b6 1660 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
4747ea36 1661 cfa_store.reg = REGNO (dest);
950ae8fe 1662 cfa_store.offset = cfa.offset - cfa_temp.offset;
4747ea36 1663 }
8c3f468d 1664
cc858176 1665 /* Rule 9 */
1666 else if (GET_CODE (src) == LO_SUM
1667 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1668 {
1669 cfa_temp.reg = REGNO (dest);
1670 cfa_temp.offset = INTVAL (XEXP (src, 1));
1671 }
1672 else
7bd4f6b6 1673 gcc_unreachable ();
f80d1bcd 1674 }
1675 break;
fa19b467 1676
950ae8fe 1677 /* Rule 6 */
f80d1bcd 1678 case CONST_INT:
950ae8fe 1679 cfa_temp.reg = REGNO (dest);
1680 cfa_temp.offset = INTVAL (src);
f80d1bcd 1681 break;
fa19b467 1682
950ae8fe 1683 /* Rule 7 */
f80d1bcd 1684 case IOR:
7bd4f6b6 1685 gcc_assert (REG_P (XEXP (src, 0))
1686 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 && GET_CODE (XEXP (src, 1)) == CONST_INT);
8c3f468d 1688
950ae8fe 1689 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset |= INTVAL (XEXP (src, 1));
f80d1bcd 1692 break;
fa19b467 1693
e0cedf2c 1694 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 which will fill in all of the bits. */
1696 /* Rule 8 */
1697 case HIGH:
1698 break;
1699
d15ee1a5 1700 /* Rule 15 */
1701 case UNSPEC:
1702 case UNSPEC_VOLATILE:
1703 gcc_assert (targetm.dwarf_handle_frame_unspec);
1704 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
567925e3 1705 return;
d15ee1a5 1706
f80d1bcd 1707 default:
7bd4f6b6 1708 gcc_unreachable ();
f80d1bcd 1709 }
8c3f468d 1710
4b72e226 1711 def_cfa_1 (label, &cfa);
31306376 1712 break;
fa19b467 1713
31306376 1714 case MEM:
7bd4f6b6 1715 gcc_assert (REG_P (src));
4b72e226 1716
4b72e226 1717 /* Saving a register to the stack. Make sure dest is relative to the
1718 CFA register. */
31306376 1719 switch (GET_CODE (XEXP (dest, 0)))
1720 {
950ae8fe 1721 /* Rule 10 */
31306376 1722 /* With a push. */
93fbe1f3 1723 case PRE_MODIFY:
1724 /* We can't handle variable size modifications. */
7bd4f6b6 1725 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1726 == CONST_INT);
93fbe1f3 1727 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1728
7bd4f6b6 1729 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1730 && cfa_store.reg == STACK_POINTER_REGNUM);
8c3f468d 1731
93fbe1f3 1732 cfa_store.offset += offset;
1733 if (cfa.reg == STACK_POINTER_REGNUM)
1734 cfa.offset = cfa_store.offset;
1735
1736 offset = -cfa_store.offset;
1737 break;
8c3f468d 1738
950ae8fe 1739 /* Rule 11 */
31306376 1740 case PRE_INC:
1741 case PRE_DEC:
1742 offset = GET_MODE_SIZE (GET_MODE (dest));
1743 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1744 offset = -offset;
fa19b467 1745
7bd4f6b6 1746 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1747 && cfa_store.reg == STACK_POINTER_REGNUM);
8c3f468d 1748
4b72e226 1749 cfa_store.offset += offset;
1750 if (cfa.reg == STACK_POINTER_REGNUM)
1751 cfa.offset = cfa_store.offset;
fa19b467 1752
4b72e226 1753 offset = -cfa_store.offset;
31306376 1754 break;
fa19b467 1755
950ae8fe 1756 /* Rule 12 */
31306376 1757 /* With an offset. */
1758 case PLUS:
1759 case MINUS:
cc858176 1760 case LO_SUM:
7bd4f6b6 1761 {
1762 int regno;
8ff30ff6 1763
ccb88806 1764 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1765 && REG_P (XEXP (XEXP (dest, 0), 0)));
7bd4f6b6 1766 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1767 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1768 offset = -offset;
1769
1770 regno = REGNO (XEXP (XEXP (dest, 0), 0));
8ff30ff6 1771
7bd4f6b6 1772 if (cfa_store.reg == (unsigned) regno)
1773 offset -= cfa_store.offset;
1774 else
1775 {
1776 gcc_assert (cfa_temp.reg == (unsigned) regno);
1777 offset -= cfa_temp.offset;
1778 }
1779 }
31306376 1780 break;
1781
950ae8fe 1782 /* Rule 13 */
31306376 1783 /* Without an offset. */
1784 case REG:
7bd4f6b6 1785 {
1786 int regno = REGNO (XEXP (dest, 0));
8ff30ff6 1787
7bd4f6b6 1788 if (cfa_store.reg == (unsigned) regno)
1789 offset = -cfa_store.offset;
1790 else
1791 {
1792 gcc_assert (cfa_temp.reg == (unsigned) regno);
1793 offset = -cfa_temp.offset;
1794 }
1795 }
cc858176 1796 break;
1797
1798 /* Rule 14 */
1799 case POST_INC:
7bd4f6b6 1800 gcc_assert (cfa_temp.reg
1801 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
cc858176 1802 offset = -cfa_temp.offset;
1803 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
31306376 1804 break;
1805
1806 default:
7bd4f6b6 1807 gcc_unreachable ();
31306376 1808 }
49a9983c 1809
f80d1bcd 1810 if (REGNO (src) != STACK_POINTER_REGNUM
49a9983c 1811 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1812 && (unsigned) REGNO (src) == cfa.reg)
1813 {
1814 /* We're storing the current CFA reg into the stack. */
1815
1816 if (cfa.offset == 0)
1817 {
1818 /* If the source register is exactly the CFA, assume
1819 we're saving SP like any other register; this happens
1820 on the ARM. */
49a9983c 1821 def_cfa_1 (label, &cfa);
60ea93bb 1822 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
49a9983c 1823 break;
1824 }
1825 else
1826 {
1827 /* Otherwise, we'll need to look in the stack to
c83a163c 1828 calculate the CFA. */
49a9983c 1829 rtx x = XEXP (dest, 0);
8c3f468d 1830
8ad4c111 1831 if (!REG_P (x))
49a9983c 1832 x = XEXP (x, 0);
7bd4f6b6 1833 gcc_assert (REG_P (x));
8c3f468d 1834
1835 cfa.reg = REGNO (x);
49a9983c 1836 cfa.base_offset = offset;
1837 cfa.indirect = 1;
1838 def_cfa_1 (label, &cfa);
1839 break;
1840 }
1841 }
1842
4b72e226 1843 def_cfa_1 (label, &cfa);
60ea93bb 1844 queue_reg_save (label, src, NULL_RTX, offset);
31306376 1845 break;
1846
1847 default:
7bd4f6b6 1848 gcc_unreachable ();
31306376 1849 }
fa19b467 1850}
1851
8a8bfbe7 1852/* Record call frame debugging information for INSN, which either
1853 sets SP or FP (adjusting how we calculate the frame address) or saves a
535fcfa4 1854 register to the stack. If INSN is NULL_RTX, initialize our state.
1855
1856 If AFTER_P is false, we're being called before the insn is emitted,
1857 otherwise after. Call instructions get invoked twice. */
ec1e49cc 1858
8a8bfbe7 1859void
535fcfa4 1860dwarf2out_frame_debug (rtx insn, bool after_p)
30ade641 1861{
1e034a40 1862 const char *label;
fa19b467 1863 rtx src;
8a8bfbe7 1864
1865 if (insn == NULL_RTX)
30ade641 1866 {
60ea93bb 1867 size_t i;
8ff30ff6 1868
b0d72d68 1869 /* Flush any queued register saves. */
1870 flush_queued_reg_saves ();
1871
8a8bfbe7 1872 /* Set up state for generating call frame debug info. */
4b72e226 1873 lookup_cfa (&cfa);
7bd4f6b6 1874 gcc_assert (cfa.reg
1875 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
8c3f468d 1876
4b72e226 1877 cfa.reg = STACK_POINTER_REGNUM;
1878 cfa_store = cfa;
950ae8fe 1879 cfa_temp.reg = -1;
1880 cfa_temp.offset = 0;
8ff30ff6 1881
60ea93bb 1882 for (i = 0; i < num_regs_saved_in_regs; i++)
1883 {
1884 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1885 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1886 }
1887 num_regs_saved_in_regs = 0;
8a8bfbe7 1888 return;
1889 }
1890
6d7dc5b9 1891 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
b0d72d68 1892 flush_queued_reg_saves ();
1893
d757b8c9 1894 if (! RTX_FRAME_RELATED_P (insn))
1895 {
b0d72d68 1896 if (!ACCUMULATE_OUTGOING_ARGS)
535fcfa4 1897 dwarf2out_stack_adjust (insn, after_p);
d757b8c9 1898 return;
1899 }
1900
8a8bfbe7 1901 label = dwarf2out_cfi_label ();
86b18255 1902 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1903 if (src)
1904 insn = XEXP (src, 0);
f80d1bcd 1905 else
86b18255 1906 insn = PATTERN (insn);
1907
fa19b467 1908 dwarf2out_frame_debug_expr (insn, label);
8a8bfbe7 1909}
1910
573aba85 1911#endif
1912
1913/* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
8ec3a57b 1914static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915 (enum dwarf_call_frame_info cfi);
573aba85 1916
1917static enum dw_cfi_oprnd_type
8ec3a57b 1918dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
573aba85 1919{
1920 switch (cfi)
1921 {
1922 case DW_CFA_nop:
1923 case DW_CFA_GNU_window_save:
1924 return dw_cfi_oprnd_unused;
1925
1926 case DW_CFA_set_loc:
1927 case DW_CFA_advance_loc1:
1928 case DW_CFA_advance_loc2:
1929 case DW_CFA_advance_loc4:
1930 case DW_CFA_MIPS_advance_loc8:
1931 return dw_cfi_oprnd_addr;
1932
1933 case DW_CFA_offset:
1934 case DW_CFA_offset_extended:
1935 case DW_CFA_def_cfa:
1936 case DW_CFA_offset_extended_sf:
1937 case DW_CFA_def_cfa_sf:
1938 case DW_CFA_restore_extended:
1939 case DW_CFA_undefined:
1940 case DW_CFA_same_value:
1941 case DW_CFA_def_cfa_register:
1942 case DW_CFA_register:
1943 return dw_cfi_oprnd_reg_num;
1944
1945 case DW_CFA_def_cfa_offset:
1946 case DW_CFA_GNU_args_size:
1947 case DW_CFA_def_cfa_offset_sf:
1948 return dw_cfi_oprnd_offset;
8ec3a57b 1949
573aba85 1950 case DW_CFA_def_cfa_expression:
1951 case DW_CFA_expression:
1952 return dw_cfi_oprnd_loc;
1953
1954 default:
7bd4f6b6 1955 gcc_unreachable ();
573aba85 1956 }
1957}
1958
1959/* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
8ec3a57b 1960static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961 (enum dwarf_call_frame_info cfi);
573aba85 1962
1963static enum dw_cfi_oprnd_type
8ec3a57b 1964dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
573aba85 1965{
1966 switch (cfi)
1967 {
1968 case DW_CFA_def_cfa:
1969 case DW_CFA_def_cfa_sf:
1970 case DW_CFA_offset:
1971 case DW_CFA_offset_extended_sf:
1972 case DW_CFA_offset_extended:
1973 return dw_cfi_oprnd_offset;
1974
1975 case DW_CFA_register:
1976 return dw_cfi_oprnd_reg_num;
1977
1978 default:
1979 return dw_cfi_oprnd_unused;
1980 }
1981}
1982
1983#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1984
2f14b1f9 1985/* Switch to eh_frame_section. If we don't have an eh_frame_section,
1986 switch to the data section instead, and write out a synthetic label
1987 for collect2. */
1988
1989static void
1990switch_to_eh_frame_section (void)
1991{
1992 tree label;
1993
2943ce06 1994#ifdef EH_FRAME_SECTION_NAME
1995 if (eh_frame_section == 0)
1996 {
1997 int flags;
1998
1999 if (EH_TABLES_CAN_BE_READ_ONLY)
2000 {
2001 int fde_encoding;
2002 int per_encoding;
2003 int lsda_encoding;
2004
2005 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2006 /*global=*/0);
2007 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2008 /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2010 /*global=*/0);
2011 flags = ((! flag_pic
2012 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2013 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2014 && (per_encoding & 0x70) != DW_EH_PE_absptr
2015 && (per_encoding & 0x70) != DW_EH_PE_aligned
2016 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2017 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2018 ? 0 : SECTION_WRITE);
2019 }
2020 else
2021 flags = SECTION_WRITE;
2022 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2023 }
2024#endif
2025
2f14b1f9 2026 if (eh_frame_section)
2027 switch_to_section (eh_frame_section);
2028 else
2029 {
2943ce06 2030 /* We have no special eh_frame section. Put the information in
2031 the data section and emit special labels to guide collect2. */
2f14b1f9 2032 switch_to_section (data_section);
2033 label = get_file_function_name ('F');
2034 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2035 targetm.asm_out.globalize_label (asm_out_file,
2036 IDENTIFIER_POINTER (label));
2037 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2038 }
2039}
2040
8a8bfbe7 2041/* Output a Call Frame Information opcode and its operand(s). */
2042
2043static void
8ec3a57b 2044output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
8a8bfbe7 2045{
4eeb8b5d 2046 unsigned long r;
8a8bfbe7 2047 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
8c3f468d 2048 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2049 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3201d6f1 2050 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
8c3f468d 2051 cfi->dw_cfi_oprnd1.dw_cfi_offset);
8a8bfbe7 2052 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2053 {
4eeb8b5d 2054 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2055 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2056 "DW_CFA_offset, column 0x%lx", r);
ca98eb0a 2057 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
8a8bfbe7 2058 }
2059 else if (cfi->dw_cfi_opc == DW_CFA_restore)
4eeb8b5d 2060 {
2061 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2063 "DW_CFA_restore, column 0x%lx", r);
2064 }
8a8bfbe7 2065 else
2066 {
ca98eb0a 2067 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2068 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
8a8bfbe7 2069
8a8bfbe7 2070 switch (cfi->dw_cfi_opc)
2071 {
2072 case DW_CFA_set_loc:
9b84bf7d 2073 if (for_eh)
2074 dw2_asm_output_encoded_addr_rtx (
2075 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
42e07529 2077 false, NULL);
9b84bf7d 2078 else
2079 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2080 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
d8eb7025 2081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
8a8bfbe7 2082 break;
8c3f468d 2083
8a8bfbe7 2084 case DW_CFA_advance_loc1:
ca98eb0a 2085 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 fde->dw_fde_current_label, NULL);
c96dd0ff 2087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
8a8bfbe7 2088 break;
8c3f468d 2089
8a8bfbe7 2090 case DW_CFA_advance_loc2:
ca98eb0a 2091 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2092 fde->dw_fde_current_label, NULL);
8a8bfbe7 2093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2094 break;
8c3f468d 2095
8a8bfbe7 2096 case DW_CFA_advance_loc4:
ca98eb0a 2097 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2098 fde->dw_fde_current_label, NULL);
8a8bfbe7 2099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2100 break;
8c3f468d 2101
8a8bfbe7 2102 case DW_CFA_MIPS_advance_loc8:
ca98eb0a 2103 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2104 fde->dw_fde_current_label, NULL);
2105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
8a8bfbe7 2106 break;
8c3f468d 2107
8a8bfbe7 2108 case DW_CFA_offset_extended:
2109 case DW_CFA_def_cfa:
4eeb8b5d 2110 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 dw2_asm_output_data_uleb128 (r, NULL);
ca98eb0a 2112 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
8a8bfbe7 2113 break;
8c3f468d 2114
15a56411 2115 case DW_CFA_offset_extended_sf:
2116 case DW_CFA_def_cfa_sf:
4eeb8b5d 2117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2118 dw2_asm_output_data_uleb128 (r, NULL);
15a56411 2119 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2120 break;
2121
8a8bfbe7 2122 case DW_CFA_restore_extended:
2123 case DW_CFA_undefined:
8a8bfbe7 2124 case DW_CFA_same_value:
2125 case DW_CFA_def_cfa_register:
4eeb8b5d 2126 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2127 dw2_asm_output_data_uleb128 (r, NULL);
8a8bfbe7 2128 break;
8c3f468d 2129
8a8bfbe7 2130 case DW_CFA_register:
4eeb8b5d 2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2134 dw2_asm_output_data_uleb128 (r, NULL);
8a8bfbe7 2135 break;
8c3f468d 2136
8a8bfbe7 2137 case DW_CFA_def_cfa_offset:
ca98eb0a 2138 case DW_CFA_GNU_args_size:
2139 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
8a8bfbe7 2140 break;
8c3f468d 2141
15a56411 2142 case DW_CFA_def_cfa_offset_sf:
2143 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2144 break;
2145
4ad3f9b3 2146 case DW_CFA_GNU_window_save:
2147 break;
8c3f468d 2148
4b72e226 2149 case DW_CFA_def_cfa_expression:
15a56411 2150 case DW_CFA_expression:
4b72e226 2151 output_cfa_loc (cfi);
2152 break;
8c3f468d 2153
15a56411 2154 case DW_CFA_GNU_negative_offset_extended:
2155 /* Obsoleted by DW_CFA_offset_extended_sf. */
7bd4f6b6 2156 gcc_unreachable ();
15a56411 2157
8a8bfbe7 2158 default:
2159 break;
2160 }
f80d1bcd 2161 }
8a8bfbe7 2162}
2163
4eeb8b5d 2164/* Output the call frame information used to record information
8a8bfbe7 2165 that relates to calculating the frame pointer, and records the
2166 location of saved registers. */
2167
2168static void
8ec3a57b 2169output_call_frame_info (int for_eh)
8a8bfbe7 2170{
19cb6b50 2171 unsigned int i;
2172 dw_fde_ref fde;
2173 dw_cfi_ref cfi;
48ead6eb 2174 char l1[20], l2[20], section_start_label[20];
f7b10771 2175 bool any_lsda_needed = false;
df4b504c 2176 char augmentation[6];
9b84bf7d 2177 int augmentation_size;
2178 int fde_encoding = DW_EH_PE_absptr;
2179 int per_encoding = DW_EH_PE_absptr;
2180 int lsda_encoding = DW_EH_PE_absptr;
51ea5d02 2181 int return_reg;
8a8bfbe7 2182
637d3308 2183 /* Don't emit a CIE if there won't be any FDEs. */
2184 if (fde_table_in_use == 0)
2185 return;
2186
2f9fc8ef 2187 /* If we make FDEs linkonce, we may have to emit an empty label for
2188 an FDE that wouldn't otherwise be emitted. We want to avoid
2189 having an FDE kept around when the function it refers to is
1dc74225 2190 discarded. Example where this matters: a primary function
2f9fc8ef 2191 template in C++ requires EH information, but an explicit
0bed3869 2192 specialization doesn't. */
2f9fc8ef 2193 if (TARGET_USES_WEAK_UNWIND_INFO
2194 && ! flag_asynchronous_unwind_tables
2195 && for_eh)
2196 for (i = 0; i < fde_table_in_use; i++)
2197 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2198 && !fde_table[i].uses_eh_lsda
1dc74225 2199 && ! DECL_WEAK (fde_table[i].decl))
883b2e73 2200 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
ef1074f7 2201 for_eh, /* empty */ 1);
2f9fc8ef 2202
f7b10771 2203 /* If we don't have any functions we'll want to unwind out of, don't
2204 emit any EH unwind information. Note that if exceptions aren't
2205 enabled, we won't have collected nothrow information, and if we
2206 asked for asynchronous tables, we always want this info. */
f543a963 2207 if (for_eh)
2208 {
f7b10771 2209 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
8c3f468d 2210
2211 for (i = 0; i < fde_table_in_use; i++)
df4b504c 2212 if (fde_table[i].uses_eh_lsda)
f7b10771 2213 any_eh_needed = any_lsda_needed = true;
1dc74225 2214 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
3ff2e849 2215 any_eh_needed = true;
d744d41d 2216 else if (! fde_table[i].nothrow
2217 && ! fde_table[i].all_throwers_are_sibcalls)
f7b10771 2218 any_eh_needed = true;
df4b504c 2219
2220 if (! any_eh_needed)
2221 return;
f543a963 2222 }
2223
009a56ab 2224 /* We're going to be generating comments, so turn on app. */
2225 if (flag_debug_asm)
2226 app_enable ();
ad87de1e 2227
8a8bfbe7 2228 if (for_eh)
2f14b1f9 2229 switch_to_eh_frame_section ();
8a8bfbe7 2230 else
4494ff1b 2231 {
2232 if (!debug_frame_section)
2233 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2234 SECTION_DEBUG, NULL);
2235 switch_to_section (debug_frame_section);
2236 }
8a8bfbe7 2237
48ead6eb 2238 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2239 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2240
f80d1bcd 2241 /* Output the CIE. */
19bce576 2242 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2243 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
04da8de9 2244 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2245 dw2_asm_output_data (4, 0xffffffff,
2246 "Initial length escape value indicating 64-bit DWARF extension");
ca98eb0a 2247 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2248 "Length of Common Information Entry");
19bce576 2249 ASM_OUTPUT_LABEL (asm_out_file, l1);
2250
ca98eb0a 2251 /* Now that the CIE pointer is PC-relative for EH,
2252 use 0 to identify the CIE. */
2253 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
04da8de9 2254 (for_eh ? 0 : DWARF_CIE_ID),
ca98eb0a 2255 "CIE Identifier Tag");
8a8bfbe7 2256
ca98eb0a 2257 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
8a8bfbe7 2258
df4b504c 2259 augmentation[0] = 0;
9b84bf7d 2260 augmentation_size = 0;
df4b504c 2261 if (for_eh)
19bce576 2262 {
9b84bf7d 2263 char *p;
2264
df4b504c 2265 /* Augmentation:
2266 z Indicates that a uleb128 is present to size the
8ec3a57b 2267 augmentation section.
9b84bf7d 2268 L Indicates the encoding (and thus presence) of
2269 an LSDA pointer in the FDE augmentation.
2270 R Indicates a non-default pointer encoding for
2271 FDE code pointers.
2272 P Indicates the presence of an encoding + language
2273 personality routine in the CIE augmentation. */
2274
3ff2e849 2275 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
9b84bf7d 2276 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2278
2279 p = augmentation + 1;
2280 if (eh_personality_libfunc)
2281 {
2282 *p++ = 'P';
2283 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2284 }
df4b504c 2285 if (any_lsda_needed)
9b84bf7d 2286 {
2287 *p++ = 'L';
2288 augmentation_size += 1;
2289 }
2290 if (fde_encoding != DW_EH_PE_absptr)
2291 {
2292 *p++ = 'R';
2293 augmentation_size += 1;
2294 }
2295 if (p > augmentation + 1)
2296 {
2297 augmentation[0] = 'z';
bc70bd5e 2298 *p = '\0';
9b84bf7d 2299 }
9a4d22ba 2300
2301 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2302 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2303 {
2304 int offset = ( 4 /* Length */
2305 + 4 /* CIE Id */
2306 + 1 /* CIE version */
2307 + strlen (augmentation) + 1 /* Augmentation */
2308 + size_of_uleb128 (1) /* Code alignment */
2309 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2310 + 1 /* RA column */
2311 + 1 /* Augmentation size */
2312 + 1 /* Personality encoding */ );
2313 int pad = -offset & (PTR_SIZE - 1);
2314
2315 augmentation_size += pad;
2316
2317 /* Augmentations should be small, so there's scarce need to
2318 iterate for a solution. Die if we exceed one uleb128 byte. */
7bd4f6b6 2319 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
9a4d22ba 2320 }
19bce576 2321 }
8a8bfbe7 2322
8c3f468d 2323 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
ca98eb0a 2324 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
ca98eb0a 2325 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2326 "CIE Data Alignment Factor");
ab569c0c 2327
51ea5d02 2328 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
ab569c0c 2329 if (DW_CIE_VERSION == 1)
51ea5d02 2330 dw2_asm_output_data (1, return_reg, "CIE RA Column");
ab569c0c 2331 else
51ea5d02 2332 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
8a8bfbe7 2333
df4b504c 2334 if (augmentation[0])
2335 {
9b84bf7d 2336 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
df4b504c 2337 if (eh_personality_libfunc)
9b84bf7d 2338 {
2339 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2340 eh_data_format_name (per_encoding));
2341 dw2_asm_output_encoded_addr_rtx (per_encoding,
42e07529 2342 eh_personality_libfunc,
2343 true, NULL);
9b84bf7d 2344 }
8c3f468d 2345
9b84bf7d 2346 if (any_lsda_needed)
2347 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2348 eh_data_format_name (lsda_encoding));
8c3f468d 2349
9b84bf7d 2350 if (fde_encoding != DW_EH_PE_absptr)
2351 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2352 eh_data_format_name (fde_encoding));
df4b504c 2353 }
2354
8a8bfbe7 2355 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
b7020468 2356 output_cfi (cfi, NULL, for_eh);
8a8bfbe7 2357
2358 /* Pad the CIE out to an address sized boundary. */
bc70bd5e 2359 ASM_OUTPUT_ALIGN (asm_out_file,
b7020468 2360 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
19bce576 2361 ASM_OUTPUT_LABEL (asm_out_file, l2);
8a8bfbe7 2362
2363 /* Loop through all of the FDE's. */
8c3f468d 2364 for (i = 0; i < fde_table_in_use; i++)
8a8bfbe7 2365 {
2366 fde = &fde_table[i];
8a8bfbe7 2367
df4b504c 2368 /* Don't emit EH unwind info for leaf functions that don't need it. */
f7b10771 2369 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
04396483 2370 && (fde->nothrow || fde->all_throwers_are_sibcalls)
1dc74225 2371 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
04396483 2372 && !fde->uses_eh_lsda)
f543a963 2373 continue;
2374
ef1074f7 2375 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
883b2e73 2376 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
f80d1bcd 2377 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
04da8de9 2379 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2380 dw2_asm_output_data (4, 0xffffffff,
2381 "Initial length escape value indicating 64-bit DWARF extension");
ca98eb0a 2382 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2383 "FDE Length");
19bce576 2384 ASM_OUTPUT_LABEL (asm_out_file, l1);
2385
8a8bfbe7 2386 if (for_eh)
48ead6eb 2387 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
8a8bfbe7 2388 else
48ead6eb 2389 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
d08d29c0 2390 debug_frame_section, "FDE CIE offset");
8a8bfbe7 2391
9b84bf7d 2392 if (for_eh)
2393 {
3ff2e849 2394 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2395 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2396 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2397 sym_ref,
42e07529 2398 false,
3ff2e849 2399 "FDE initial location");
1897b881 2400 if (fde->dw_fde_switched_sections)
2401 {
2402 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2403 fde->dw_fde_unlikely_section_label);
2404 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2405 fde->dw_fde_hot_section_label);
2406 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2407 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
42e07529 2408 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
1897b881 2409 "FDE initial location");
2410 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2411 fde->dw_fde_hot_section_end_label,
2412 fde->dw_fde_hot_section_label,
2413 "FDE address range");
42e07529 2414 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
1897b881 2415 "FDE initial location");
2416 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2417 fde->dw_fde_unlikely_section_end_label,
2418 fde->dw_fde_unlikely_section_label,
2419 "FDE address range");
2420 }
2421 else
2422 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2423 fde->dw_fde_end, fde->dw_fde_begin,
2424 "FDE address range");
9b84bf7d 2425 }
2426 else
2427 {
2428 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2429 "FDE initial location");
1897b881 2430 if (fde->dw_fde_switched_sections)
2431 {
2432 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2433 fde->dw_fde_hot_section_label,
2434 "FDE initial location");
2435 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2436 fde->dw_fde_hot_section_end_label,
2437 fde->dw_fde_hot_section_label,
2438 "FDE address range");
2439 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2440 fde->dw_fde_unlikely_section_label,
2441 "FDE initial location");
2442 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2443 fde->dw_fde_unlikely_section_end_label,
2444 fde->dw_fde_unlikely_section_label,
2445 "FDE address range");
2446 }
2447 else
2448 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2449 fde->dw_fde_end, fde->dw_fde_begin,
2450 "FDE address range");
9b84bf7d 2451 }
8a8bfbe7 2452
df4b504c 2453 if (augmentation[0])
2454 {
9b84bf7d 2455 if (any_lsda_needed)
df4b504c 2456 {
9a4d22ba 2457 int size = size_of_encoded_value (lsda_encoding);
2458
2459 if (lsda_encoding == DW_EH_PE_aligned)
2460 {
2461 int offset = ( 4 /* Length */
2462 + 4 /* CIE offset */
2463 + 2 * size_of_encoded_value (fde_encoding)
2464 + 1 /* Augmentation size */ );
2465 int pad = -offset & (PTR_SIZE - 1);
2466
2467 size += pad;
7bd4f6b6 2468 gcc_assert (size_of_uleb128 (size) == 1);
9a4d22ba 2469 }
2470
2471 dw2_asm_output_data_uleb128 (size, "Augmentation size");
9b84bf7d 2472
2473 if (fde->uses_eh_lsda)
c83a163c 2474 {
2475 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
9b84bf7d 2476 fde->funcdef_number);
c83a163c 2477 dw2_asm_output_encoded_addr_rtx (
9b84bf7d 2478 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
42e07529 2479 false, "Language Specific Data Area");
c83a163c 2480 }
9b84bf7d 2481 else
9a4d22ba 2482 {
2483 if (lsda_encoding == DW_EH_PE_aligned)
2484 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
8c3f468d 2485 dw2_asm_output_data
2486 (size_of_encoded_value (lsda_encoding), 0,
2487 "Language Specific Data Area (none)");
9a4d22ba 2488 }
df4b504c 2489 }
2490 else
9b84bf7d 2491 dw2_asm_output_data_uleb128 (0, "Augmentation size");
df4b504c 2492 }
2493
8a8bfbe7 2494 /* Loop through the Call Frame Instructions associated with
2495 this FDE. */
2496 fde->dw_fde_current_label = fde->dw_fde_begin;
2497 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
b7020468 2498 output_cfi (cfi, fde, for_eh);
8a8bfbe7 2499
19bce576 2500 /* Pad the FDE out to an address sized boundary. */
bc70bd5e 2501 ASM_OUTPUT_ALIGN (asm_out_file,
c83a163c 2502 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
19bce576 2503 ASM_OUTPUT_LABEL (asm_out_file, l2);
8a8bfbe7 2504 }
ca98eb0a 2505
a08b74c8 2506 if (for_eh && targetm.terminate_dw2_eh_frame_info)
ca98eb0a 2507 dw2_asm_output_data (4, 0, "End of Table");
19bce576 2508#ifdef MIPS_DEBUGGING_INFO
2509 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510 get a value of 0. Putting .align 0 after the label fixes it. */
2511 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2512#endif
009a56ab 2513
2514 /* Turn off app to make assembly quicker. */
2515 if (flag_debug_asm)
2516 app_disable ();
19bce576 2517}
2518
8a8bfbe7 2519/* Output a marker (i.e. a label) for the beginning of a function, before
2520 the prologue. */
2521
2522void
8ec3a57b 2523dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2524 const char *file ATTRIBUTE_UNUSED)
8a8bfbe7 2525{
2526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2d754264 2527 char * dup_label;
19cb6b50 2528 dw_fde_ref fde;
8a8bfbe7 2529
2d754264 2530 current_function_func_begin_label = NULL;
ad5818ae 2531
8ec87476 2532#ifdef TARGET_UNWIND_INFO
ad5818ae 2533 /* ??? current_function_func_begin_label is also used by except.c
2534 for call-site information. We must emit this label if it might
2535 be used. */
2536 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2537 && ! dwarf2out_do_frame ())
2538 return;
2539#else
2540 if (! dwarf2out_do_frame ())
2541 return;
2542#endif
2543
2f14b1f9 2544 switch_to_section (function_section (current_function_decl));
8a8bfbe7 2545 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
4781f9b9 2546 current_function_funcdef_no);
ad5818ae 2547 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
4781f9b9 2548 current_function_funcdef_no);
2d754264 2549 dup_label = xstrdup (label);
2550 current_function_func_begin_label = dup_label;
8a8bfbe7 2551
8ec87476 2552#ifdef TARGET_UNWIND_INFO
ad5818ae 2553 /* We can elide the fde allocation if we're not emitting debug info. */
2554 if (! dwarf2out_do_frame ())
2555 return;
2556#endif
2557
8a8bfbe7 2558 /* Expand the fde table if necessary. */
2559 if (fde_table_in_use == fde_table_allocated)
2560 {
2561 fde_table_allocated += FDE_TABLE_INCREMENT;
573aba85 2562 fde_table = ggc_realloc (fde_table,
2563 fde_table_allocated * sizeof (dw_fde_node));
2564 memset (fde_table + fde_table_in_use, 0,
2565 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
30ade641 2566 }
8a8bfbe7 2567
2568 /* Record the FDE associated with this function. */
2569 current_funcdef_fde = fde_table_in_use;
2570
2571 /* Add the new FDE at the end of the fde_table. */
2572 fde = &fde_table[fde_table_in_use++];
2f9fc8ef 2573 fde->decl = current_function_decl;
2d754264 2574 fde->dw_fde_begin = dup_label;
3036ecbe 2575 fde->dw_fde_current_label = dup_label;
1897b881 2576 fde->dw_fde_hot_section_label = NULL;
2577 fde->dw_fde_hot_section_end_label = NULL;
2578 fde->dw_fde_unlikely_section_label = NULL;
2579 fde->dw_fde_unlikely_section_end_label = NULL;
2580 fde->dw_fde_switched_sections = false;
8a8bfbe7 2581 fde->dw_fde_end = NULL;
2582 fde->dw_fde_cfi = NULL;
4781f9b9 2583 fde->funcdef_number = current_function_funcdef_no;
da2f1613 2584 fde->nothrow = TREE_NOTHROW (current_function_decl);
df4b504c 2585 fde->uses_eh_lsda = cfun->uses_eh_lsda;
04396483 2586 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
f543a963 2587
08532d4f 2588 args_size = old_args_size = 0;
f76df888 2589
8c3f468d 2590 /* We only want to output line number information for the genuine dwarf2
2591 prologue case, not the eh frame case. */
f76df888 2592#ifdef DWARF2_DEBUGGING_INFO
2593 if (file)
2594 dwarf2out_source_line (line, file);
2595#endif
8a8bfbe7 2596}
2597
2598/* Output a marker (i.e. a label) for the absolute end of the generated code
2599 for a function definition. This gets called *after* the epilogue code has
2600 been generated. */
2601
2602void
8ec3a57b 2603dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2604 const char *file ATTRIBUTE_UNUSED)
8a8bfbe7 2605{
2606 dw_fde_ref fde;
2607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2608
2609 /* Output a label to mark the endpoint of the code generated for this
04641143 2610 function. */
4781f9b9 2611 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2612 current_function_funcdef_no);
8a8bfbe7 2613 ASM_OUTPUT_LABEL (asm_out_file, label);
2614 fde = &fde_table[fde_table_in_use - 1];
2615 fde->dw_fde_end = xstrdup (label);
8a8bfbe7 2616}
2617
2618void
8ec3a57b 2619dwarf2out_frame_init (void)
8a8bfbe7 2620{
2621 /* Allocate the initial hunk of the fde_table. */
f0af5a88 2622 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
8a8bfbe7 2623 fde_table_allocated = FDE_TABLE_INCREMENT;
2624 fde_table_in_use = 0;
2625
2626 /* Generate the CFA instructions common to all FDE's. Do it now for the
2627 sake of lookup_cfa. */
2628
56daab87 2629 /* On entry, the Canonical Frame Address is at SP. */
2630 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
34986748 2631
2632#ifdef DWARF2_UNWIND_INFO
2633 if (DWARF2_UNWIND_INFO)
2634 initial_return_save (INCOMING_RETURN_ADDR_RTX);
8a8bfbe7 2635#endif
2636}
2637
2638void
8ec3a57b 2639dwarf2out_frame_finish (void)
8a8bfbe7 2640{
8a8bfbe7 2641 /* Output call frame information. */
34986748 2642 if (DWARF2_FRAME_INFO)
8a8bfbe7 2643 output_call_frame_info (0);
8c3f468d 2644
a28008f5 2645#ifndef TARGET_UNWIND_INFO
2646 /* Output another copy for the unwinder. */
6851a1fc 2647 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
8a8bfbe7 2648 output_call_frame_info (1);
a28008f5 2649#endif
f80d1bcd 2650}
573aba85 2651#endif
4b72e226 2652\f
2653/* And now, the subset of the debugging information support code necessary
2654 for emitting location expressions. */
8a8bfbe7 2655
69278c24 2656/* Data about a single source file. */
2657struct dwarf_file_data GTY(())
2658{
2659 const char * filename;
2660 int emitted_number;
2661};
2662
931e9893 2663/* We need some way to distinguish DW_OP_addr with a direct symbol
2664 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2665#define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2666
2667
4b72e226 2668typedef struct dw_val_struct *dw_val_ref;
2669typedef struct die_struct *dw_die_ref;
2670typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
4c21a22f 2671typedef struct dw_loc_list_struct *dw_loc_list_ref;
8a8bfbe7 2672
2673/* Each DIE may have a series of attribute/value pairs. Values
2674 can take on several forms. The forms that are used in this
2675 implementation are listed below. */
2676
573aba85 2677enum dw_val_class
8a8bfbe7 2678{
2679 dw_val_class_addr,
a36145ca 2680 dw_val_class_offset,
8a8bfbe7 2681 dw_val_class_loc,
4c21a22f 2682 dw_val_class_loc_list,
fe39c28c 2683 dw_val_class_range_list,
8a8bfbe7 2684 dw_val_class_const,
2685 dw_val_class_unsigned_const,
2686 dw_val_class_long_long,
1b6ad376 2687 dw_val_class_vec,
8a8bfbe7 2688 dw_val_class_flag,
2689 dw_val_class_die_ref,
2690 dw_val_class_fde_ref,
2691 dw_val_class_lbl_id,
d08d29c0 2692 dw_val_class_lineptr,
2693 dw_val_class_str,
69278c24 2694 dw_val_class_macptr,
2695 dw_val_class_file
573aba85 2696};
30ade641 2697
8a8bfbe7 2698/* Describe a double word constant value. */
0a44b200 2699/* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
8a8bfbe7 2700
573aba85 2701typedef struct dw_long_long_struct GTY(())
30ade641 2702{
8a8bfbe7 2703 unsigned long hi;
2704 unsigned long low;
2705}
2706dw_long_long_const;
2707
1b6ad376 2708/* Describe a floating point constant value, or a vector constant value. */
8a8bfbe7 2709
1b6ad376 2710typedef struct dw_vec_struct GTY(())
8a8bfbe7 2711{
1b6ad376 2712 unsigned char * GTY((length ("%h.length"))) array;
8a8bfbe7 2713 unsigned length;
1b6ad376 2714 unsigned elt_size;
8a8bfbe7 2715}
1b6ad376 2716dw_vec_const;
8a8bfbe7 2717
ad87de1e 2718/* The dw_val_node describes an attribute's value, as it is
8a8bfbe7 2719 represented internally. */
2720
573aba85 2721typedef struct dw_val_struct GTY(())
8a8bfbe7 2722{
573aba85 2723 enum dw_val_class val_class;
2724 union dw_val_struct_union
30ade641 2725 {
573aba85 2726 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
3d867824 2727 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
573aba85 2728 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2729 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
7035b2ab 2730 HOST_WIDE_INT GTY ((default)) val_int;
3d867824 2731 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
573aba85 2732 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
1b6ad376 2733 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
573aba85 2734 struct dw_val_die_union
8c3f468d 2735 {
2736 dw_die_ref die;
2737 int external;
573aba85 2738 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2739 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2740 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2741 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2742 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
69278c24 2743 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
30ade641 2744 }
573aba85 2745 GTY ((desc ("%1.val_class"))) v;
8a8bfbe7 2746}
2747dw_val_node;
2748
2749/* Locations in memory are described using a sequence of stack machine
2750 operations. */
2751
573aba85 2752typedef struct dw_loc_descr_struct GTY(())
8a8bfbe7 2753{
2754 dw_loc_descr_ref dw_loc_next;
2755 enum dwarf_location_atom dw_loc_opc;
2756 dw_val_node dw_loc_oprnd1;
2757 dw_val_node dw_loc_oprnd2;
9ed904da 2758 int dw_loc_addr;
8a8bfbe7 2759}
2760dw_loc_descr_node;
2761
4c21a22f 2762/* Location lists are ranges + location descriptions for that range,
2763 so you can track variables that are in different places over
6312a35e 2764 their entire life. */
573aba85 2765typedef struct dw_loc_list_struct GTY(())
4c21a22f 2766{
2767 dw_loc_list_ref dw_loc_next;
2768 const char *begin; /* Label for begin address of range */
2769 const char *end; /* Label for end address of range */
8c3f468d 2770 char *ll_symbol; /* Label for beginning of location list.
2771 Only on head of list */
4c21a22f 2772 const char *section; /* Section this loclist is relative to */
2773 dw_loc_descr_ref expr;
2774} dw_loc_list_node;
2775
573aba85 2776#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2777
8ec3a57b 2778static const char *dwarf_stack_op_name (unsigned);
2779static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
3d867824 2780 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
8ec3a57b 2781static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2782static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2783static unsigned long size_of_locs (dw_loc_descr_ref);
2784static void output_loc_operands (dw_loc_descr_ref);
2785static void output_loc_sequence (dw_loc_descr_ref);
8a8bfbe7 2786
4b72e226 2787/* Convert a DWARF stack opcode into its string name. */
8a8bfbe7 2788
4b72e226 2789static const char *
8ec3a57b 2790dwarf_stack_op_name (unsigned int op)
678d90bb 2791{
4b72e226 2792 switch (op)
2793 {
2794 case DW_OP_addr:
931e9893 2795 case INTERNAL_DW_OP_tls_addr:
4b72e226 2796 return "DW_OP_addr";
2797 case DW_OP_deref:
2798 return "DW_OP_deref";
2799 case DW_OP_const1u:
2800 return "DW_OP_const1u";
2801 case DW_OP_const1s:
2802 return "DW_OP_const1s";
2803 case DW_OP_const2u:
2804 return "DW_OP_const2u";
2805 case DW_OP_const2s:
2806 return "DW_OP_const2s";
2807 case DW_OP_const4u:
2808 return "DW_OP_const4u";
2809 case DW_OP_const4s:
2810 return "DW_OP_const4s";
2811 case DW_OP_const8u:
2812 return "DW_OP_const8u";
2813 case DW_OP_const8s:
2814 return "DW_OP_const8s";
2815 case DW_OP_constu:
2816 return "DW_OP_constu";
2817 case DW_OP_consts:
2818 return "DW_OP_consts";
2819 case DW_OP_dup:
2820 return "DW_OP_dup";
2821 case DW_OP_drop:
2822 return "DW_OP_drop";
2823 case DW_OP_over:
2824 return "DW_OP_over";
2825 case DW_OP_pick:
2826 return "DW_OP_pick";
2827 case DW_OP_swap:
2828 return "DW_OP_swap";
2829 case DW_OP_rot:
2830 return "DW_OP_rot";
2831 case DW_OP_xderef:
2832 return "DW_OP_xderef";
2833 case DW_OP_abs:
2834 return "DW_OP_abs";
2835 case DW_OP_and:
2836 return "DW_OP_and";
2837 case DW_OP_div:
2838 return "DW_OP_div";
2839 case DW_OP_minus:
2840 return "DW_OP_minus";
2841 case DW_OP_mod:
2842 return "DW_OP_mod";
2843 case DW_OP_mul:
2844 return "DW_OP_mul";
2845 case DW_OP_neg:
2846 return "DW_OP_neg";
2847 case DW_OP_not:
2848 return "DW_OP_not";
2849 case DW_OP_or:
2850 return "DW_OP_or";
2851 case DW_OP_plus:
2852 return "DW_OP_plus";
2853 case DW_OP_plus_uconst:
2854 return "DW_OP_plus_uconst";
2855 case DW_OP_shl:
2856 return "DW_OP_shl";
2857 case DW_OP_shr:
2858 return "DW_OP_shr";
2859 case DW_OP_shra:
2860 return "DW_OP_shra";
2861 case DW_OP_xor:
2862 return "DW_OP_xor";
2863 case DW_OP_bra:
2864 return "DW_OP_bra";
2865 case DW_OP_eq:
2866 return "DW_OP_eq";
2867 case DW_OP_ge:
2868 return "DW_OP_ge";
2869 case DW_OP_gt:
2870 return "DW_OP_gt";
2871 case DW_OP_le:
2872 return "DW_OP_le";
2873 case DW_OP_lt:
2874 return "DW_OP_lt";
2875 case DW_OP_ne:
2876 return "DW_OP_ne";
2877 case DW_OP_skip:
2878 return "DW_OP_skip";
2879 case DW_OP_lit0:
2880 return "DW_OP_lit0";
2881 case DW_OP_lit1:
2882 return "DW_OP_lit1";
2883 case DW_OP_lit2:
2884 return "DW_OP_lit2";
2885 case DW_OP_lit3:
2886 return "DW_OP_lit3";
2887 case DW_OP_lit4:
2888 return "DW_OP_lit4";
2889 case DW_OP_lit5:
2890 return "DW_OP_lit5";
2891 case DW_OP_lit6:
2892 return "DW_OP_lit6";
2893 case DW_OP_lit7:
2894 return "DW_OP_lit7";
2895 case DW_OP_lit8:
2896 return "DW_OP_lit8";
2897 case DW_OP_lit9:
2898 return "DW_OP_lit9";
2899 case DW_OP_lit10:
2900 return "DW_OP_lit10";
2901 case DW_OP_lit11:
2902 return "DW_OP_lit11";
2903 case DW_OP_lit12:
2904 return "DW_OP_lit12";
2905 case DW_OP_lit13:
2906 return "DW_OP_lit13";
2907 case DW_OP_lit14:
2908 return "DW_OP_lit14";
2909 case DW_OP_lit15:
2910 return "DW_OP_lit15";
2911 case DW_OP_lit16:
2912 return "DW_OP_lit16";
2913 case DW_OP_lit17:
2914 return "DW_OP_lit17";
2915 case DW_OP_lit18:
2916 return "DW_OP_lit18";
2917 case DW_OP_lit19:
2918 return "DW_OP_lit19";
2919 case DW_OP_lit20:
2920 return "DW_OP_lit20";
2921 case DW_OP_lit21:
2922 return "DW_OP_lit21";
2923 case DW_OP_lit22:
2924 return "DW_OP_lit22";
2925 case DW_OP_lit23:
2926 return "DW_OP_lit23";
2927 case DW_OP_lit24:
2928 return "DW_OP_lit24";
2929 case DW_OP_lit25:
2930 return "DW_OP_lit25";
2931 case DW_OP_lit26:
2932 return "DW_OP_lit26";
2933 case DW_OP_lit27:
2934 return "DW_OP_lit27";
2935 case DW_OP_lit28:
2936 return "DW_OP_lit28";
2937 case DW_OP_lit29:
2938 return "DW_OP_lit29";
2939 case DW_OP_lit30:
2940 return "DW_OP_lit30";
2941 case DW_OP_lit31:
2942 return "DW_OP_lit31";
2943 case DW_OP_reg0:
2944 return "DW_OP_reg0";
2945 case DW_OP_reg1:
2946 return "DW_OP_reg1";
2947 case DW_OP_reg2:
2948 return "DW_OP_reg2";
2949 case DW_OP_reg3:
2950 return "DW_OP_reg3";
2951 case DW_OP_reg4:
2952 return "DW_OP_reg4";
2953 case DW_OP_reg5:
2954 return "DW_OP_reg5";
2955 case DW_OP_reg6:
2956 return "DW_OP_reg6";
2957 case DW_OP_reg7:
2958 return "DW_OP_reg7";
2959 case DW_OP_reg8:
2960 return "DW_OP_reg8";
2961 case DW_OP_reg9:
2962 return "DW_OP_reg9";
2963 case DW_OP_reg10:
2964 return "DW_OP_reg10";
2965 case DW_OP_reg11:
2966 return "DW_OP_reg11";
2967 case DW_OP_reg12:
2968 return "DW_OP_reg12";
2969 case DW_OP_reg13:
2970 return "DW_OP_reg13";
2971 case DW_OP_reg14:
2972 return "DW_OP_reg14";
2973 case DW_OP_reg15:
2974 return "DW_OP_reg15";
2975 case DW_OP_reg16:
2976 return "DW_OP_reg16";
2977 case DW_OP_reg17:
2978 return "DW_OP_reg17";
2979 case DW_OP_reg18:
2980 return "DW_OP_reg18";
2981 case DW_OP_reg19:
2982 return "DW_OP_reg19";
2983 case DW_OP_reg20:
2984 return "DW_OP_reg20";
2985 case DW_OP_reg21:
2986 return "DW_OP_reg21";
2987 case DW_OP_reg22:
2988 return "DW_OP_reg22";
2989 case DW_OP_reg23:
2990 return "DW_OP_reg23";
2991 case DW_OP_reg24:
2992 return "DW_OP_reg24";
2993 case DW_OP_reg25:
2994 return "DW_OP_reg25";
2995 case DW_OP_reg26:
2996 return "DW_OP_reg26";
2997 case DW_OP_reg27:
2998 return "DW_OP_reg27";
2999 case DW_OP_reg28:
3000 return "DW_OP_reg28";
3001 case DW_OP_reg29:
3002 return "DW_OP_reg29";
3003 case DW_OP_reg30:
3004 return "DW_OP_reg30";
3005 case DW_OP_reg31:
3006 return "DW_OP_reg31";
3007 case DW_OP_breg0:
3008 return "DW_OP_breg0";
3009 case DW_OP_breg1:
3010 return "DW_OP_breg1";
3011 case DW_OP_breg2:
3012 return "DW_OP_breg2";
3013 case DW_OP_breg3:
3014 return "DW_OP_breg3";
3015 case DW_OP_breg4:
3016 return "DW_OP_breg4";
3017 case DW_OP_breg5:
3018 return "DW_OP_breg5";
3019 case DW_OP_breg6:
3020 return "DW_OP_breg6";
3021 case DW_OP_breg7:
3022 return "DW_OP_breg7";
3023 case DW_OP_breg8:
3024 return "DW_OP_breg8";
3025 case DW_OP_breg9:
3026 return "DW_OP_breg9";
3027 case DW_OP_breg10:
3028 return "DW_OP_breg10";
3029 case DW_OP_breg11:
3030 return "DW_OP_breg11";
3031 case DW_OP_breg12:
3032 return "DW_OP_breg12";
3033 case DW_OP_breg13:
3034 return "DW_OP_breg13";
3035 case DW_OP_breg14:
3036 return "DW_OP_breg14";
3037 case DW_OP_breg15:
3038 return "DW_OP_breg15";
3039 case DW_OP_breg16:
3040 return "DW_OP_breg16";
3041 case DW_OP_breg17:
3042 return "DW_OP_breg17";
3043 case DW_OP_breg18:
3044 return "DW_OP_breg18";
3045 case DW_OP_breg19:
3046 return "DW_OP_breg19";
3047 case DW_OP_breg20:
3048 return "DW_OP_breg20";
3049 case DW_OP_breg21:
3050 return "DW_OP_breg21";
3051 case DW_OP_breg22:
3052 return "DW_OP_breg22";
3053 case DW_OP_breg23:
3054 return "DW_OP_breg23";
3055 case DW_OP_breg24:
3056 return "DW_OP_breg24";
3057 case DW_OP_breg25:
3058 return "DW_OP_breg25";
3059 case DW_OP_breg26:
3060 return "DW_OP_breg26";
3061 case DW_OP_breg27:
3062 return "DW_OP_breg27";
3063 case DW_OP_breg28:
3064 return "DW_OP_breg28";
3065 case DW_OP_breg29:
3066 return "DW_OP_breg29";
3067 case DW_OP_breg30:
3068 return "DW_OP_breg30";
3069 case DW_OP_breg31:
3070 return "DW_OP_breg31";
3071 case DW_OP_regx:
3072 return "DW_OP_regx";
3073 case DW_OP_fbreg:
3074 return "DW_OP_fbreg";
3075 case DW_OP_bregx:
3076 return "DW_OP_bregx";
3077 case DW_OP_piece:
3078 return "DW_OP_piece";
3079 case DW_OP_deref_size:
3080 return "DW_OP_deref_size";
3081 case DW_OP_xderef_size:
3082 return "DW_OP_xderef_size";
3083 case DW_OP_nop:
3084 return "DW_OP_nop";
931e9893 3085 case DW_OP_push_object_address:
3086 return "DW_OP_push_object_address";
3087 case DW_OP_call2:
3088 return "DW_OP_call2";
3089 case DW_OP_call4:
3090 return "DW_OP_call4";
3091 case DW_OP_call_ref:
3092 return "DW_OP_call_ref";
3093 case DW_OP_GNU_push_tls_address:
3094 return "DW_OP_GNU_push_tls_address";
8a8bfbe7 3095 default:
4b72e226 3096 return "OP_<unknown>";
8a8bfbe7 3097 }
6ed29fb8 3098}
30ade641 3099
4b72e226 3100/* Return a pointer to a newly allocated location description. Location
3101 descriptions are simple expression terms that can be strung
3102 together to form more complicated location (address) descriptions. */
3103
3104static inline dw_loc_descr_ref
3d867824 3105new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3106 unsigned HOST_WIDE_INT oprnd2)
752e49ca 3107{
f0af5a88 3108 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
ec1e49cc 3109
4b72e226 3110 descr->dw_loc_opc = op;
3111 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3112 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3113 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3114 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
ec1e49cc 3115
4b72e226 3116 return descr;
3117}
3118
3119/* Add a location description term to a location description expression. */
3120
3121static inline void
8ec3a57b 3122add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
4b72e226 3123{
19cb6b50 3124 dw_loc_descr_ref *d;
4b72e226 3125
3126 /* Find the end of the chain. */
3127 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3128 ;
3129
3130 *d = descr;
3131}
3132
3133/* Return the size of a location descriptor. */
3134
3135static unsigned long
8ec3a57b 3136size_of_loc_descr (dw_loc_descr_ref loc)
4b72e226 3137{
19cb6b50 3138 unsigned long size = 1;
4b72e226 3139
3140 switch (loc->dw_loc_opc)
3141 {
3142 case DW_OP_addr:
931e9893 3143 case INTERNAL_DW_OP_tls_addr:
4b72e226 3144 size += DWARF2_ADDR_SIZE;
3145 break;
3146 case DW_OP_const1u:
3147 case DW_OP_const1s:
3148 size += 1;
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 size += 2;
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 size += 4;
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 size += 8;
3161 break;
3162 case DW_OP_constu:
3163 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3164 break;
3165 case DW_OP_consts:
3166 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3167 break;
3168 case DW_OP_pick:
3169 size += 1;
3170 break;
3171 case DW_OP_plus_uconst:
3172 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3176 size += 2;
3177 break;
3178 case DW_OP_breg0:
3179 case DW_OP_breg1:
3180 case DW_OP_breg2:
3181 case DW_OP_breg3:
3182 case DW_OP_breg4:
3183 case DW_OP_breg5:
3184 case DW_OP_breg6:
3185 case DW_OP_breg7:
3186 case DW_OP_breg8:
3187 case DW_OP_breg9:
3188 case DW_OP_breg10:
3189 case DW_OP_breg11:
3190 case DW_OP_breg12:
3191 case DW_OP_breg13:
3192 case DW_OP_breg14:
3193 case DW_OP_breg15:
3194 case DW_OP_breg16:
3195 case DW_OP_breg17:
3196 case DW_OP_breg18:
3197 case DW_OP_breg19:
3198 case DW_OP_breg20:
3199 case DW_OP_breg21:
3200 case DW_OP_breg22:
3201 case DW_OP_breg23:
3202 case DW_OP_breg24:
3203 case DW_OP_breg25:
3204 case DW_OP_breg26:
3205 case DW_OP_breg27:
3206 case DW_OP_breg28:
3207 case DW_OP_breg29:
3208 case DW_OP_breg30:
3209 case DW_OP_breg31:
3210 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3211 break;
3212 case DW_OP_regx:
3213 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3214 break;
3215 case DW_OP_fbreg:
3216 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3217 break;
3218 case DW_OP_bregx:
3219 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3220 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3221 break;
3222 case DW_OP_piece:
3223 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3224 break;
3225 case DW_OP_deref_size:
3226 case DW_OP_xderef_size:
3227 size += 1;
3228 break;
931e9893 3229 case DW_OP_call2:
3230 size += 2;
3231 break;
3232 case DW_OP_call4:
3233 size += 4;
3234 break;
3235 case DW_OP_call_ref:
3236 size += DWARF2_ADDR_SIZE;
3237 break;
8a8bfbe7 3238 default:
4b72e226 3239 break;
752e49ca 3240 }
4b72e226 3241
3242 return size;
752e49ca 3243}
3244
4b72e226 3245/* Return the size of a series of location descriptors. */
ec1e49cc 3246
4b72e226 3247static unsigned long
8ec3a57b 3248size_of_locs (dw_loc_descr_ref loc)
752e49ca 3249{
2fa2456e 3250 dw_loc_descr_ref l;
8c3f468d 3251 unsigned long size;
4b72e226 3252
2fa2456e 3253 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254 field, to avoid writing to a PCH file. */
3255 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
9ed904da 3256 {
2fa2456e 3257 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3258 break;
3259 size += size_of_loc_descr (l);
3260 }
3261 if (! l)
3262 return size;
3263
3264 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3265 {
3266 l->dw_loc_addr = size;
3267 size += size_of_loc_descr (l);
9ed904da 3268 }
4b72e226 3269
3270 return size;
752e49ca 3271}
3272
4b72e226 3273/* Output location description stack opcode's operands (if any). */
ec1e49cc 3274
4b72e226 3275static void
8ec3a57b 3276output_loc_operands (dw_loc_descr_ref loc)
30ade641 3277{
19cb6b50 3278 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3279 dw_val_ref val2 = &loc->dw_loc_oprnd2;
4b72e226 3280
3281 switch (loc->dw_loc_opc)
30ade641 3282 {
a6c3bce6 3283#ifdef DWARF2_DEBUGGING_INFO
8a8bfbe7 3284 case DW_OP_addr:
ca98eb0a 3285 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
4b72e226 3286 break;
8a8bfbe7 3287 case DW_OP_const2u:
8a8bfbe7 3288 case DW_OP_const2s:
ca98eb0a 3289 dw2_asm_output_data (2, val1->v.val_int, NULL);
4b72e226 3290 break;
8a8bfbe7 3291 case DW_OP_const4u:
8a8bfbe7 3292 case DW_OP_const4s:
ca98eb0a 3293 dw2_asm_output_data (4, val1->v.val_int, NULL);
4b72e226 3294 break;
8a8bfbe7 3295 case DW_OP_const8u:
8a8bfbe7 3296 case DW_OP_const8s:
7bd4f6b6 3297 gcc_assert (HOST_BITS_PER_LONG >= 64);
ca98eb0a 3298 dw2_asm_output_data (8, val1->v.val_int, NULL);
4b72e226 3299 break;
a6c3bce6 3300 case DW_OP_skip:
3301 case DW_OP_bra:
9ed904da 3302 {
3303 int offset;
3304
7bd4f6b6 3305 gcc_assert (val1->val_class == dw_val_class_loc);
3306 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
9ed904da 3307
ca98eb0a 3308 dw2_asm_output_data (2, offset, NULL);
9ed904da 3309 }
a6c3bce6 3310 break;
ccd12125 3311#else
3312 case DW_OP_addr:
3313 case DW_OP_const2u:
3314 case DW_OP_const2s:
3315 case DW_OP_const4u:
3316 case DW_OP_const4s:
3317 case DW_OP_const8u:
3318 case DW_OP_const8s:
3319 case DW_OP_skip:
3320 case DW_OP_bra:
3321 /* We currently don't make any attempt to make sure these are
c83a163c 3322 aligned properly like we do for the main unwind info, so
3323 don't support emitting things larger than a byte if we're
3324 only doing unwinding. */
7bd4f6b6 3325 gcc_unreachable ();
a6c3bce6 3326#endif
3327 case DW_OP_const1u:
3328 case DW_OP_const1s:
ca98eb0a 3329 dw2_asm_output_data (1, val1->v.val_int, NULL);
a6c3bce6 3330 break;
8a8bfbe7 3331 case DW_OP_constu:
ca98eb0a 3332 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4b72e226 3333 break;
8a8bfbe7 3334 case DW_OP_consts:
ca98eb0a 3335 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
4b72e226 3336 break;
3337 case DW_OP_pick:
ca98eb0a 3338 dw2_asm_output_data (1, val1->v.val_int, NULL);
4b72e226 3339 break;
3340 case DW_OP_plus_uconst:
ca98eb0a 3341 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4b72e226 3342 break;
8a8bfbe7 3343 case DW_OP_breg0:
8a8bfbe7 3344 case DW_OP_breg1:
8a8bfbe7 3345 case DW_OP_breg2:
8a8bfbe7 3346 case DW_OP_breg3:
8a8bfbe7 3347 case DW_OP_breg4:
8a8bfbe7 3348 case DW_OP_breg5:
8a8bfbe7 3349 case DW_OP_breg6:
8a8bfbe7 3350 case DW_OP_breg7:
8a8bfbe7 3351 case DW_OP_breg8:
8a8bfbe7 3352 case DW_OP_breg9:
8a8bfbe7 3353 case DW_OP_breg10:
8a8bfbe7 3354 case DW_OP_breg11:
8a8bfbe7 3355 case DW_OP_breg12:
8a8bfbe7 3356 case DW_OP_breg13:
8a8bfbe7 3357 case DW_OP_breg14:
8a8bfbe7 3358 case DW_OP_breg15:
8a8bfbe7 3359 case DW_OP_breg16:
8a8bfbe7 3360 case DW_OP_breg17:
8a8bfbe7 3361 case DW_OP_breg18:
8a8bfbe7 3362 case DW_OP_breg19:
8a8bfbe7 3363 case DW_OP_breg20:
8a8bfbe7 3364 case DW_OP_breg21:
8a8bfbe7 3365 case DW_OP_breg22:
8a8bfbe7 3366 case DW_OP_breg23:
8a8bfbe7 3367 case DW_OP_breg24:
8a8bfbe7 3368 case DW_OP_breg25:
8a8bfbe7 3369 case DW_OP_breg26:
8a8bfbe7 3370 case DW_OP_breg27:
8a8bfbe7 3371 case DW_OP_breg28:
8a8bfbe7 3372 case DW_OP_breg29:
8a8bfbe7 3373 case DW_OP_breg30:
8a8bfbe7 3374 case DW_OP_breg31:
ca98eb0a 3375 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
4b72e226 3376 break;
8a8bfbe7 3377 case DW_OP_regx:
ca98eb0a 3378 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4b72e226 3379 break;
8a8bfbe7 3380 case DW_OP_fbreg:
ca98eb0a 3381 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
4b72e226 3382 break;
8a8bfbe7 3383 case DW_OP_bregx:
ca98eb0a 3384 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3385 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
4b72e226 3386 break;
8a8bfbe7 3387 case DW_OP_piece:
ca98eb0a 3388 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4b72e226 3389 break;
8a8bfbe7 3390 case DW_OP_deref_size:
8a8bfbe7 3391 case DW_OP_xderef_size:
ca98eb0a 3392 dw2_asm_output_data (1, val1->v.val_int, NULL);
4b72e226 3393 break;
931e9893 3394
3395 case INTERNAL_DW_OP_tls_addr:
40af64cc 3396 if (targetm.asm_out.output_dwarf_dtprel)
3397 {
3398 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3399 DWARF2_ADDR_SIZE,
3400 val1->v.val_addr);
3401 fputc ('\n', asm_out_file);
3402 }
3403 else
3404 gcc_unreachable ();
931e9893 3405 break;
3406
4b72e226 3407 default:
ccd12125 3408 /* Other codes have no operands. */
3409 break;
4b72e226 3410 }
3411}
3412
3413/* Output a sequence of location operations. */
3414
3415static void
8ec3a57b 3416output_loc_sequence (dw_loc_descr_ref loc)
4b72e226 3417{
3418 for (; loc != NULL; loc = loc->dw_loc_next)
3419 {
3420 /* Output the opcode. */
ca98eb0a 3421 dw2_asm_output_data (1, loc->dw_loc_opc,
3422 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
4b72e226 3423
3424 /* Output the operand(s) (if any). */
3425 output_loc_operands (loc);
3426 }
3427}
3428
3429/* This routine will generate the correct assembly data for a location
3430 description based on a cfi entry with a complex address. */
3431
3432static void
8ec3a57b 3433output_cfa_loc (dw_cfi_ref cfi)
4b72e226 3434{
3435 dw_loc_descr_ref loc;
3436 unsigned long size;
3437
3438 /* Output the size of the block. */
3439 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3440 size = size_of_locs (loc);
ca98eb0a 3441 dw2_asm_output_data_uleb128 (size, NULL);
4b72e226 3442
3443 /* Now output the operations themselves. */
3444 output_loc_sequence (loc);
3445}
3446
89fa767a 3447/* This function builds a dwarf location descriptor sequence from a
3448 dw_cfa_location, adding the given OFFSET to the result of the
3449 expression. */
4b72e226 3450
3451static struct dw_loc_descr_struct *
89fa767a 3452build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
4b72e226 3453{
3454 struct dw_loc_descr_struct *head, *tmp;
3455
89fa767a 3456 offset += cfa->offset;
3457
12d886b8 3458 if (cfa->indirect)
5f19af7a 3459 {
12d886b8 3460 if (cfa->base_offset)
3461 {
3462 if (cfa->reg <= 31)
3463 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3464 else
3465 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3466 }
3467 else if (cfa->reg <= 31)
3468 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
5f19af7a 3469 else
12d886b8 3470 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3471
3472 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3473 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3474 add_loc_descr (&head, tmp);
89fa767a 3475 if (offset != 0)
12d886b8 3476 {
89fa767a 3477 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
12d886b8 3478 add_loc_descr (&head, tmp);
3479 }
5f19af7a 3480 }
5f19af7a 3481 else
4b72e226 3482 {
89fa767a 3483 if (offset == 0)
12d886b8 3484 if (cfa->reg <= 31)
3485 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3486 else
3487 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3488 else if (cfa->reg <= 31)
89fa767a 3489 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
12d886b8 3490 else
89fa767a 3491 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
4b72e226 3492 }
8c3f468d 3493
4b72e226 3494 return head;
3495}
3496
8c3f468d 3497/* This function fills in aa dw_cfa_location structure from a dwarf location
3498 descriptor sequence. */
4b72e226 3499
3500static void
8ec3a57b 3501get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
4b72e226 3502{
f80d1bcd 3503 struct dw_loc_descr_struct *ptr;
4b72e226 3504 cfa->offset = 0;
3505 cfa->base_offset = 0;
3506 cfa->indirect = 0;
3507 cfa->reg = -1;
3508
3509 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3510 {
3511 enum dwarf_location_atom op = ptr->dw_loc_opc;
8c3f468d 3512
4b72e226 3513 switch (op)
f80d1bcd 3514 {
4b72e226 3515 case DW_OP_reg0:
3516 case DW_OP_reg1:
3517 case DW_OP_reg2:
3518 case DW_OP_reg3:
3519 case DW_OP_reg4:
3520 case DW_OP_reg5:
3521 case DW_OP_reg6:
3522 case DW_OP_reg7:
3523 case DW_OP_reg8:
3524 case DW_OP_reg9:
3525 case DW_OP_reg10:
3526 case DW_OP_reg11:
3527 case DW_OP_reg12:
3528 case DW_OP_reg13:
3529 case DW_OP_reg14:
3530 case DW_OP_reg15:
3531 case DW_OP_reg16:
3532 case DW_OP_reg17:
3533 case DW_OP_reg18:
3534 case DW_OP_reg19:
3535 case DW_OP_reg20:
3536 case DW_OP_reg21:
3537 case DW_OP_reg22:
3538 case DW_OP_reg23:
3539 case DW_OP_reg24:
3540 case DW_OP_reg25:
3541 case DW_OP_reg26:
3542 case DW_OP_reg27:
3543 case DW_OP_reg28:
3544 case DW_OP_reg29:
3545 case DW_OP_reg30:
3546 case DW_OP_reg31:
3547 cfa->reg = op - DW_OP_reg0;
3548 break;
3549 case DW_OP_regx:
3550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3551 break;
3552 case DW_OP_breg0:
3553 case DW_OP_breg1:
3554 case DW_OP_breg2:
3555 case DW_OP_breg3:
3556 case DW_OP_breg4:
3557 case DW_OP_breg5:
3558 case DW_OP_breg6:
3559 case DW_OP_breg7:
3560 case DW_OP_breg8:
3561 case DW_OP_breg9:
3562 case DW_OP_breg10:
3563 case DW_OP_breg11:
3564 case DW_OP_breg12:
3565 case DW_OP_breg13:
3566 case DW_OP_breg14:
3567 case DW_OP_breg15:
3568 case DW_OP_breg16:
3569 case DW_OP_breg17:
3570 case DW_OP_breg18:
3571 case DW_OP_breg19:
3572 case DW_OP_breg20:
3573 case DW_OP_breg21:
3574 case DW_OP_breg22:
3575 case DW_OP_breg23:
3576 case DW_OP_breg24:
3577 case DW_OP_breg25:
3578 case DW_OP_breg26:
3579 case DW_OP_breg27:
3580 case DW_OP_breg28:
3581 case DW_OP_breg29:
3582 case DW_OP_breg30:
3583 case DW_OP_breg31:
3584 cfa->reg = op - DW_OP_breg0;
3585 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3586 break;
3587 case DW_OP_bregx:
3588 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3589 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3590 break;
3591 case DW_OP_deref:
3592 cfa->indirect = 1;
3593 break;
3594 case DW_OP_plus_uconst:
f80d1bcd 3595 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
4b72e226 3596 break;
3597 default:
0a81f5a0 3598 internal_error ("DW_LOC_OP %s not implemented",
f060a027 3599 dwarf_stack_op_name (ptr->dw_loc_opc));
4b72e226 3600 }
3601 }
3602}
3603#endif /* .debug_frame support */
3604\f
3605/* And now, the support for symbolic debugging information. */
3606#ifdef DWARF2_DEBUGGING_INFO
3607
c366eeee 3608/* .debug_str support. */
8ec3a57b 3609static int output_indirect_string (void **, void *);
3610
3611static void dwarf2out_init (const char *);
3612static void dwarf2out_finish (const char *);
3613static void dwarf2out_define (unsigned int, const char *);
3614static void dwarf2out_undef (unsigned int, const char *);
3615static void dwarf2out_start_source_file (unsigned, const char *);
3616static void dwarf2out_end_source_file (unsigned);
3617static void dwarf2out_begin_block (unsigned, unsigned);
3618static void dwarf2out_end_block (unsigned, unsigned);
3619static bool dwarf2out_ignore_block (tree);
3620static void dwarf2out_global_decl (tree);
73ae3ef7 3621static void dwarf2out_type_decl (tree, int);
2b49746a 3622static void dwarf2out_imported_module_or_decl (tree, tree);
8ec3a57b 3623static void dwarf2out_abstract_function (tree);
b2025850 3624static void dwarf2out_var_location (rtx);
3625static void dwarf2out_begin_function (tree);
1897b881 3626static void dwarf2out_switch_text_section (void);
c140b944 3627
3628/* The debug hooks structure. */
3629
e42f6423 3630const struct gcc_debug_hooks dwarf2_debug_hooks =
c140b944 3631{
3632 dwarf2out_init,
3633 dwarf2out_finish,
3634 dwarf2out_define,
3635 dwarf2out_undef,
3636 dwarf2out_start_source_file,
1dff614c 3637 dwarf2out_end_source_file,
3638 dwarf2out_begin_block,
b9b7f8b4 3639 dwarf2out_end_block,
b29760a8 3640 dwarf2out_ignore_block,
b9b7f8b4 3641 dwarf2out_source_line,
f76df888 3642 dwarf2out_begin_prologue,
e74e8242 3643 debug_nothing_int_charstar, /* end_prologue */
b9b7f8b4 3644 dwarf2out_end_epilogue,
b2025850 3645 dwarf2out_begin_function,
c37d72e9 3646 debug_nothing_int, /* end_function */
3647 dwarf2out_decl, /* function_decl */
3648 dwarf2out_global_decl,
73ae3ef7 3649 dwarf2out_type_decl, /* type_decl */
2b49746a 3650 dwarf2out_imported_module_or_decl,
b29760a8 3651 debug_nothing_tree, /* deferred_inline_function */
3652 /* The DWARF 2 backend tries to reduce debugging bloat by not
3653 emitting the abstract description of inline functions until
3654 something tries to reference them. */
3655 dwarf2out_abstract_function, /* outlining_inline_function */
cf8e41a4 3656 debug_nothing_rtx, /* label */
5923a5e7 3657 debug_nothing_int, /* handle_pch */
7a4afb3f 3658 dwarf2out_var_location,
1897b881 3659 dwarf2out_switch_text_section,
7a4afb3f 3660 1 /* start_end_main_source_file */
c140b944 3661};
573aba85 3662#endif
c140b944 3663\f
4b72e226 3664/* NOTE: In the comments in this file, many references are made to
3665 "Debugging Information Entries". This term is abbreviated as `DIE'
3666 throughout the remainder of this file. */
3667
3668/* An internal representation of the DWARF output is built, and then
3669 walked to generate the DWARF debugging info. The walk of the internal
3670 representation is done after the entire program has been compiled.
3671 The types below are used to describe the internal representation. */
3672
3673/* Various DIE's use offsets relative to the beginning of the
3674 .debug_info section to refer to each other. */
3675
3676typedef long int dw_offset;
3677
3678/* Define typedefs here to avoid circular dependencies. */
3679
3680typedef struct dw_attr_struct *dw_attr_ref;
3681typedef struct dw_line_info_struct *dw_line_info_ref;
3682typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3683typedef struct pubname_struct *pubname_ref;
a36145ca 3684typedef struct dw_ranges_struct *dw_ranges_ref;
4b72e226 3685
3686/* Each entry in the line_info_table maintains the file and
3687 line number associated with the label generated for that
3688 entry. The label gives the PC value associated with
3689 the line number entry. */
3690
573aba85 3691typedef struct dw_line_info_struct GTY(())
4b72e226 3692{
3693 unsigned long dw_file_num;
3694 unsigned long dw_line_num;
3695}
3696dw_line_info_entry;
3697
3698/* Line information for functions in separate sections; each one gets its
3699 own sequence. */
573aba85 3700typedef struct dw_separate_line_info_struct GTY(())
4b72e226 3701{
3702 unsigned long dw_file_num;
3703 unsigned long dw_line_num;
3704 unsigned long function;
3705}
3706dw_separate_line_info_entry;
3707
3708/* Each DIE attribute has a field specifying the attribute kind,
3709 a link to the next attribute in the chain, and an attribute value.
3710 Attributes are typically linked below the DIE they modify. */
3711
573aba85 3712typedef struct dw_attr_struct GTY(())
4b72e226 3713{
3714 enum dwarf_attribute dw_attr;
4b72e226 3715 dw_val_node dw_attr_val;
3716}
3717dw_attr_node;
3718
6f56c055 3719DEF_VEC_O(dw_attr_node);
3720DEF_VEC_ALLOC_O(dw_attr_node,gc);
3721
958656b7 3722/* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3723 The children of each node form a circular list linked by
3724 die_sib. die_child points to the node *before* the "first" child node. */
4b72e226 3725
573aba85 3726typedef struct die_struct GTY(())
4b72e226 3727{
3728 enum dwarf_tag die_tag;
19f716e5 3729 char *die_symbol;
6f56c055 3730 VEC(dw_attr_node,gc) * die_attr;
4b72e226 3731 dw_die_ref die_parent;
3732 dw_die_ref die_child;
3733 dw_die_ref die_sib;
023dc493 3734 dw_die_ref die_definition; /* ref from a specification to its definition */
4b72e226 3735 dw_offset die_offset;
3736 unsigned long die_abbrev;
eabb26f3 3737 int die_mark;
f6e59711 3738 /* Die is used and must not be pruned as unused. */
3739 int die_perennial_p;
26863140 3740 unsigned int decl_id;
4b72e226 3741}
3742die_node;
3743
958656b7 3744/* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3745#define FOR_EACH_CHILD(die, c, expr) do { \
3746 c = die->die_child; \
3747 if (c) do { \
3748 c = c->die_sib; \
3749 expr; \
3750 } while (c != die->die_child); \
3751} while (0)
3752
4b72e226 3753/* The pubname structure */
3754
573aba85 3755typedef struct pubname_struct GTY(())
4b72e226 3756{
3757 dw_die_ref die;
f80d1bcd 3758 char *name;
4b72e226 3759}
3760pubname_entry;
3761
573aba85 3762struct dw_ranges_struct GTY(())
a36145ca 3763{
3764 int block_num;
3765};
3766
4b72e226 3767/* The limbo die list structure. */
573aba85 3768typedef struct limbo_die_struct GTY(())
4b72e226 3769{
3770 dw_die_ref die;
15cfae4e 3771 tree created_for;
4b72e226 3772 struct limbo_die_struct *next;
3773}
3774limbo_die_node;
3775
3776/* How to start an assembler comment. */
3777#ifndef ASM_COMMENT_START
3778#define ASM_COMMENT_START ";#"
3779#endif
3780
6ef828f9 3781/* Define a macro which returns nonzero for a TYPE_DECL which was
4b72e226 3782 implicitly generated for a tagged type.
3783
3784 Note that unlike the gcc front end (which generates a NULL named
3785 TYPE_DECL node for each complete tagged type, each array type, and
3786 each function type node created) the g++ front end generates a
3787 _named_ TYPE_DECL node for each tagged type node created.
3788 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789 generate a DW_TAG_typedef DIE for them. */
3790
3791#define TYPE_DECL_IS_STUB(decl) \
3792 (DECL_NAME (decl) == NULL_TREE \
3793 || (DECL_ARTIFICIAL (decl) \
3794 && is_tagged_type (TREE_TYPE (decl)) \
3795 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3796 /* This is necessary for stub decls that \
3797 appear in nested inline functions. */ \
3798 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3799 && (decl_ultimate_origin (decl) \
3800 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3801
3802/* Information concerning the compilation unit's programming
3803 language, and compiler version. */
3804
4b72e226 3805/* Fixed size portion of the DWARF compilation unit header. */
65bdc57c 3806#define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
4b72e226 3808
4b72e226 3809/* Fixed size portion of public names info. */
3810#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3811
3812/* Fixed size portion of the address range info. */
3813#define DWARF_ARANGES_HEADER_SIZE \
38c41660 3814 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3815 DWARF2_ADDR_SIZE * 2) \
3816 - DWARF_INITIAL_LENGTH_SIZE)
4b72e226 3817
3818/* Size of padding portion in the address range info. It must be
3819 aligned to twice the pointer size. */
3820#define DWARF_ARANGES_PAD_SIZE \
38c41660 3821 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822 DWARF2_ADDR_SIZE * 2) \
3823 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
4b72e226 3824
142cf471 3825/* Use assembler line directives if available. */
4b72e226 3826#ifndef DWARF2_ASM_LINE_DEBUG_INFO
142cf471 3827#ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828#define DWARF2_ASM_LINE_DEBUG_INFO 1
3829#else
4b72e226 3830#define DWARF2_ASM_LINE_DEBUG_INFO 0
3831#endif
142cf471 3832#endif
4b72e226 3833
4b72e226 3834/* Minimum line offset in a special line info. opcode.
3835 This value was chosen to give a reasonable range of values. */
3836#define DWARF_LINE_BASE -10
3837
3fb1e43b 3838/* First special line opcode - leave room for the standard opcodes. */
4b72e226 3839#define DWARF_LINE_OPCODE_BASE 10
3840
3841/* Range of line offsets in a special line info. opcode. */
3842#define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3843
3844/* Flag that indicates the initial value of the is_stmt_start flag.
3845 In the present implementation, we do not mark any lines as
3846 the beginning of a source statement, because that information
3847 is not made available by the GCC front-end. */
3848#define DWARF_LINE_DEFAULT_IS_STMT_START 1
3849
38ac91bf 3850#ifdef DWARF2_DEBUGGING_INFO
4b72e226 3851/* This location is used by calc_die_sizes() to keep track
3852 the offset of each DIE within the .debug_info section. */
3853static unsigned long next_die_offset;
38ac91bf 3854#endif
4b72e226 3855
3856/* Record the root of the DIE's built for the current compilation unit. */
573aba85 3857static GTY(()) dw_die_ref comp_unit_die;
4b72e226 3858
3859/* A list of DIEs with a NULL parent waiting to be relocated. */
573aba85 3860static GTY(()) limbo_die_node *limbo_die_list;
4b72e226 3861
3740694f 3862/* Filenames referenced by this compilation unit. */
69278c24 3863static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
5a3023d9 3864
26863140 3865/* A hash table of references to DIE's that describe declarations.
3866 The key is a DECL_UID() which is a unique number identifying each decl. */
3867static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
4b72e226 3868
b2025850 3869/* Node of the variable location list. */
3870struct var_loc_node GTY ((chain_next ("%h.next")))
3871{
3872 rtx GTY (()) var_loc_note;
3873 const char * GTY (()) label;
1897b881 3874 const char * GTY (()) section_label;
b2025850 3875 struct var_loc_node * GTY (()) next;
3876};
3877
3878/* Variable location list. */
3879struct var_loc_list_def GTY (())
3880{
3881 struct var_loc_node * GTY (()) first;
3882
3883 /* Do not mark the last element of the chained list because
3884 it is marked through the chain. */
3885 struct var_loc_node * GTY ((skip ("%h"))) last;
3886
3887 /* DECL_UID of the variable decl. */
3888 unsigned int decl_id;
3889};
3890typedef struct var_loc_list_def var_loc_list;
3891
b2025850 3892
3893/* Table of decl location linked lists. */
3894static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3895
4b72e226 3896/* A pointer to the base of a list of references to DIE's that
3897 are uniquely identified by their tag, presence/absence of
3898 children DIE's, and list of attribute/value pairs. */
8ec3a57b 3899static GTY((length ("abbrev_die_table_allocated")))
573aba85 3900 dw_die_ref *abbrev_die_table;
4b72e226 3901
3902/* Number of elements currently allocated for abbrev_die_table. */
909be935 3903static GTY(()) unsigned abbrev_die_table_allocated;
4b72e226 3904
3905/* Number of elements in type_die_table currently in use. */
909be935 3906static GTY(()) unsigned abbrev_die_table_in_use;
4b72e226 3907
3908/* Size (in elements) of increments by which we may expand the
3909 abbrev_die_table. */
3910#define ABBREV_DIE_TABLE_INCREMENT 256
3911
3912/* A pointer to the base of a table that contains line information
3913 for each source code line in .text in the compilation unit. */
8ec3a57b 3914static GTY((length ("line_info_table_allocated")))
573aba85 3915 dw_line_info_ref line_info_table;
4b72e226 3916
3917/* Number of elements currently allocated for line_info_table. */
909be935 3918static GTY(()) unsigned line_info_table_allocated;
4b72e226 3919
573aba85 3920/* Number of elements in line_info_table currently in use. */
909be935 3921static GTY(()) unsigned line_info_table_in_use;
4b72e226 3922
dae1861f 3923/* True if the compilation unit places functions in more than one section. */
3924static GTY(()) bool have_multiple_function_sections = false;
3eb32482 3925
4b72e226 3926/* A pointer to the base of a table that contains line information
3927 for each source code line outside of .text in the compilation unit. */
573aba85 3928static GTY ((length ("separate_line_info_table_allocated")))
3929 dw_separate_line_info_ref separate_line_info_table;
4b72e226 3930
3931/* Number of elements currently allocated for separate_line_info_table. */
909be935 3932static GTY(()) unsigned separate_line_info_table_allocated;
4b72e226 3933
573aba85 3934/* Number of elements in separate_line_info_table currently in use. */
909be935 3935static GTY(()) unsigned separate_line_info_table_in_use;
4b72e226 3936
3937/* Size (in elements) of increments by which we may expand the
3938 line_info_table. */
3939#define LINE_INFO_TABLE_INCREMENT 1024
3940
3941/* A pointer to the base of a table that contains a list of publicly
3942 accessible names. */
573aba85 3943static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
4b72e226 3944
3945/* Number of elements currently allocated for pubname_table. */
909be935 3946static GTY(()) unsigned pubname_table_allocated;
4b72e226 3947
3948/* Number of elements in pubname_table currently in use. */
909be935 3949static GTY(()) unsigned pubname_table_in_use;
4b72e226 3950
3951/* Size (in elements) of increments by which we may expand the
3952 pubname_table. */
3953#define PUBNAME_TABLE_INCREMENT 64
3954
a36145ca 3955/* Array of dies for which we should generate .debug_arange info. */
573aba85 3956static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
4b72e226 3957
3958/* Number of elements currently allocated for arange_table. */
909be935 3959static GTY(()) unsigned arange_table_allocated;
4b72e226 3960
3961/* Number of elements in arange_table currently in use. */
909be935 3962static GTY(()) unsigned arange_table_in_use;
4b72e226 3963
3964/* Size (in elements) of increments by which we may expand the
3965 arange_table. */
3966#define ARANGE_TABLE_INCREMENT 64
3967
a36145ca 3968/* Array of dies for which we should generate .debug_ranges info. */
573aba85 3969static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
a36145ca 3970
3971/* Number of elements currently allocated for ranges_table. */
909be935 3972static GTY(()) unsigned ranges_table_allocated;
a36145ca 3973
3974/* Number of elements in ranges_table currently in use. */
909be935 3975static GTY(()) unsigned ranges_table_in_use;
a36145ca 3976
3977/* Size (in elements) of increments by which we may expand the
3978 ranges_table. */
3979#define RANGES_TABLE_INCREMENT 64
3980
4c21a22f 3981/* Whether we have location lists that need outputting */
dae1861f 3982static GTY(()) bool have_location_lists;
4c21a22f 3983
d3cdd238 3984/* Unique label counter. */
3985static GTY(()) unsigned int loclabel_num;
3986
909be935 3987#ifdef DWARF2_DEBUGGING_INFO
4b72e226 3988/* Record whether the function being analyzed contains inlined functions. */
3989static int current_function_has_inlines;
38ac91bf 3990#endif
4b72e226 3991#if 0 && defined (MIPS_DEBUGGING_INFO)
3992static int comp_unit_has_inlines;
3993#endif
3994
69278c24 3995/* The last file entry emitted by maybe_emit_file(). */
3996static GTY(()) struct dwarf_file_data * last_emitted_file;
909be935 3997
6473f3f4 3998/* Number of internal labels generated by gen_internal_sym(). */
909be935 3999static GTY(()) int label_num;
4000
62435250 4001/* Cached result of previous call to lookup_filename. */
4002static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4003
573aba85 4004#ifdef DWARF2_DEBUGGING_INFO
4005
89fa767a 4006/* Offset from the "steady-state frame pointer" to the frame base,
12d886b8 4007 within the current function. */
89fa767a 4008static HOST_WIDE_INT frame_pointer_fb_offset;
12d886b8 4009
4b72e226 4010/* Forward declarations for functions defined in this file. */
4011
8ec3a57b 4012static int is_pseudo_reg (rtx);
4013static tree type_main_variant (tree);
4014static int is_tagged_type (tree);
4015static const char *dwarf_tag_name (unsigned);
4016static const char *dwarf_attr_name (unsigned);
4017static const char *dwarf_form_name (unsigned);
8ec3a57b 4018static tree decl_ultimate_origin (tree);
4019static tree block_ultimate_origin (tree);
4020static tree decl_class_context (tree);
4021static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4022static inline enum dw_val_class AT_class (dw_attr_ref);
4023static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4024static inline unsigned AT_flag (dw_attr_ref);
3d867824 4025static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4026static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4027static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4028static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
8ec3a57b 4029static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4030 unsigned long);
1b6ad376 4031static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4032 unsigned int, unsigned char *);
8ec3a57b 4033static hashval_t debug_str_do_hash (const void *);
4034static int debug_str_eq (const void *, const void *);
4035static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4036static inline const char *AT_string (dw_attr_ref);
4037static int AT_string_form (dw_attr_ref);
4038static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
023dc493 4039static void add_AT_specification (dw_die_ref, dw_die_ref);
8ec3a57b 4040static inline dw_die_ref AT_ref (dw_attr_ref);
4041static inline int AT_ref_external (dw_attr_ref);
4042static inline void set_AT_ref_external (dw_attr_ref, int);
4043static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4044static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4045static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4046static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4047 dw_loc_list_ref);
4048static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4049static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4050static inline rtx AT_addr (dw_attr_ref);
4051static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
d08d29c0 4052static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4053static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3d867824 4054static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4055 unsigned HOST_WIDE_INT);
8ec3a57b 4056static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4057 unsigned long);
4058static inline const char *AT_lbl (dw_attr_ref);
4059static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4060static const char *get_AT_low_pc (dw_die_ref);
4061static const char *get_AT_hi_pc (dw_die_ref);
4062static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4063static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4064static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4065static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4066static bool is_c_family (void);
4067static bool is_cxx (void);
4068static bool is_java (void);
4069static bool is_fortran (void);
4070static bool is_ada (void);
4071static void remove_AT (dw_die_ref, enum dwarf_attribute);
2b49746a 4072static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
8ec3a57b 4073static void add_child_die (dw_die_ref, dw_die_ref);
4074static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4075static dw_die_ref lookup_type_die (tree);
4076static void equate_type_number_to_die (tree, dw_die_ref);
26863140 4077static hashval_t decl_die_table_hash (const void *);
4078static int decl_die_table_eq (const void *, const void *);
8ec3a57b 4079static dw_die_ref lookup_decl_die (tree);
b2025850 4080static hashval_t decl_loc_table_hash (const void *);
4081static int decl_loc_table_eq (const void *, const void *);
4082static var_loc_list *lookup_decl_loc (tree);
8ec3a57b 4083static void equate_decl_number_to_die (tree, dw_die_ref);
b2025850 4084static void add_var_loc_to_decl (tree, struct var_loc_node *);
8ec3a57b 4085static void print_spaces (FILE *);
4086static void print_die (dw_die_ref, FILE *);
4087static void print_dwarf_line_table (FILE *);
8ec3a57b 4088static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4089static dw_die_ref pop_compile_unit (dw_die_ref);
4090static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4091static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4092static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4093static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4094static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4095static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4096static int same_die_p (dw_die_ref, dw_die_ref, int *);
4097static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4098static void compute_section_prefix (dw_die_ref);
4099static int is_type_die (dw_die_ref);
4100static int is_comdat_die (dw_die_ref);
4101static int is_symbol_die (dw_die_ref);
4102static void assign_symbol_names (dw_die_ref);
4103static void break_out_includes (dw_die_ref);
4104static hashval_t htab_cu_hash (const void *);
4105static int htab_cu_eq (const void *, const void *);
4106static void htab_cu_del (void *);
4107static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4108static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4109static void add_sibling_attributes (dw_die_ref);
4110static void build_abbrev_table (dw_die_ref);
4111static void output_location_lists (dw_die_ref);
4112static int constant_size (long unsigned);
4113static unsigned long size_of_die (dw_die_ref);
4114static void calc_die_sizes (dw_die_ref);
4115static void mark_dies (dw_die_ref);
4116static void unmark_dies (dw_die_ref);
4117static void unmark_all_dies (dw_die_ref);
4118static unsigned long size_of_pubnames (void);
4119static unsigned long size_of_aranges (void);
4120static enum dwarf_form value_format (dw_attr_ref);
4121static void output_value_format (dw_attr_ref);
4122static void output_abbrev_section (void);
4123static void output_die_symbol (dw_die_ref);
4124static void output_die (dw_die_ref);
4125static void output_compilation_unit_header (void);
4126static void output_comp_unit (dw_die_ref, int);
4127static const char *dwarf2_name (tree, int);
4128static void add_pubname (tree, dw_die_ref);
4129static void output_pubnames (void);
4130static void add_arange (tree, dw_die_ref);
4131static void output_aranges (void);
4132static unsigned int add_ranges (tree);
4133static void output_ranges (void);
4134static void output_line_info (void);
4135static void output_file_names (void);
4136static dw_die_ref base_type_die (tree);
4137static tree root_type (tree);
4138static int is_base_type (tree);
6114cbf0 4139static bool is_subrange_type (tree);
a7011153 4140static dw_die_ref subrange_type_die (tree, dw_die_ref);
8ec3a57b 4141static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4142static int type_is_enum (tree);
7f3ca0ce 4143static unsigned int dbx_reg_number (rtx);
fd51758c 4144static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
8ec3a57b 4145static dw_loc_descr_ref reg_loc_descriptor (rtx);
4146static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4147static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4148static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
12d886b8 4149static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
8ec3a57b 4150static int is_based_loc (rtx);
12d886b8 4151static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4152static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4153static dw_loc_descr_ref loc_descriptor (rtx);
afcf285e 4154static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4155static dw_loc_descr_ref loc_descriptor_from_tree (tree);
8ec3a57b 4156static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4157static tree field_type (tree);
4158static unsigned int simple_type_align_in_bits (tree);
4159static unsigned int simple_decl_align_in_bits (tree);
4160static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4161static HOST_WIDE_INT field_byte_offset (tree);
4162static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4163 dw_loc_descr_ref);
4164static void add_data_member_location_attribute (dw_die_ref, tree);
4165static void add_const_value_attribute (dw_die_ref, rtx);
1b6ad376 4166static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4167static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4168static void insert_float (rtx, unsigned char *);
8ec3a57b 4169static rtx rtl_for_decl_location (tree);
b2025850 4170static void add_location_or_const_value_attribute (dw_die_ref, tree,
4171 enum dwarf_attribute);
8ec3a57b 4172static void tree_add_const_value_attribute (dw_die_ref, tree);
4173static void add_name_attribute (dw_die_ref, const char *);
4174static void add_comp_dir_attribute (dw_die_ref);
4175static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4176static void add_subscript_info (dw_die_ref, tree);
4177static void add_byte_size_attribute (dw_die_ref, tree);
4178static void add_bit_offset_attribute (dw_die_ref, tree);
4179static void add_bit_size_attribute (dw_die_ref, tree);
4180static void add_prototyped_attribute (dw_die_ref, tree);
4181static void add_abstract_origin_attribute (dw_die_ref, tree);
4182static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4183static void add_src_coords_attributes (dw_die_ref, tree);
4184static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4185static void push_decl_scope (tree);
4186static void pop_decl_scope (void);
4187static dw_die_ref scope_die_for (tree, dw_die_ref);
4188static inline int local_scope_p (dw_die_ref);
e89530cd 4189static inline int class_or_namespace_scope_p (dw_die_ref);
8ec3a57b 4190static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
8ff30ff6 4191static void add_calling_convention_attribute (dw_die_ref, tree);
8ec3a57b 4192static const char *type_tag (tree);
4193static tree member_declared_type (tree);
4b72e226 4194#if 0
8ec3a57b 4195static const char *decl_start_label (tree);
4b72e226 4196#endif
8ec3a57b 4197static void gen_array_type_die (tree, dw_die_ref);
4b72e226 4198#if 0
8ec3a57b 4199static void gen_entry_point_die (tree, dw_die_ref);
4b72e226 4200#endif
8ec3a57b 4201static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4202static void gen_inlined_structure_type_die (tree, dw_die_ref);
4203static void gen_inlined_union_type_die (tree, dw_die_ref);
93c7db82 4204static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
8ec3a57b 4205static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4206static void gen_unspecified_parameters_die (tree, dw_die_ref);
4207static void gen_formal_types_die (tree, dw_die_ref);
4208static void gen_subprogram_die (tree, dw_die_ref);
4209static void gen_variable_die (tree, dw_die_ref);
4210static void gen_label_die (tree, dw_die_ref);
4211static void gen_lexical_block_die (tree, dw_die_ref, int);
4212static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4213static void gen_field_die (tree, dw_die_ref);
4214static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4215static dw_die_ref gen_compile_unit_die (const char *);
8ec3a57b 4216static void gen_inheritance_die (tree, tree, dw_die_ref);
4217static void gen_member_die (tree, dw_die_ref);
4218static void gen_struct_or_union_type_die (tree, dw_die_ref);
4219static void gen_subroutine_type_die (tree, dw_die_ref);
4220static void gen_typedef_die (tree, dw_die_ref);
4221static void gen_type_die (tree, dw_die_ref);
4222static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4223static void gen_block_die (tree, dw_die_ref, int);
4224static void decls_for_scope (tree, dw_die_ref, int);
4225static int is_redundant_typedef (tree);
e89530cd 4226static void gen_namespace_die (tree);
8ec3a57b 4227static void gen_decl_die (tree, dw_die_ref);
2b49746a 4228static dw_die_ref force_decl_die (tree);
4229static dw_die_ref force_type_die (tree);
e89530cd 4230static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4231static void declare_in_namespace (tree, dw_die_ref);
69278c24 4232static struct dwarf_file_data * lookup_filename (const char *);
8ec3a57b 4233static void retry_incomplete_types (void);
4234static void gen_type_die_for_member (tree, tree, dw_die_ref);
4235static void splice_child_die (dw_die_ref, dw_die_ref);
4236static int file_info_cmp (const void *, const void *);
4237static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4238 const char *, const char *, unsigned);
4239static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4240 const char *, const char *,
4241 const char *);
4242static void output_loc_list (dw_loc_list_ref);
4243static char *gen_internal_sym (const char *);
4244
4245static void prune_unmark_dies (dw_die_ref);
4246static void prune_unused_types_mark (dw_die_ref, int);
4247static void prune_unused_types_walk (dw_die_ref);
4248static void prune_unused_types_walk_attribs (dw_die_ref);
4249static void prune_unused_types_prune (dw_die_ref);
4250static void prune_unused_types (void);
69278c24 4251static int maybe_emit_file (struct dwarf_file_data *fd);
c83a163c 4252
4b72e226 4253/* Section names used to hold DWARF debugging information. */
4254#ifndef DEBUG_INFO_SECTION
4255#define DEBUG_INFO_SECTION ".debug_info"
4256#endif
049aa99b 4257#ifndef DEBUG_ABBREV_SECTION
4258#define DEBUG_ABBREV_SECTION ".debug_abbrev"
4b72e226 4259#endif
049aa99b 4260#ifndef DEBUG_ARANGES_SECTION
4261#define DEBUG_ARANGES_SECTION ".debug_aranges"
4b72e226 4262#endif
049aa99b 4263#ifndef DEBUG_MACINFO_SECTION
4264#define DEBUG_MACINFO_SECTION ".debug_macinfo"
4b72e226 4265#endif
4266#ifndef DEBUG_LINE_SECTION
4267#define DEBUG_LINE_SECTION ".debug_line"
4268#endif
049aa99b 4269#ifndef DEBUG_LOC_SECTION
4270#define DEBUG_LOC_SECTION ".debug_loc"
4b72e226 4271#endif
049aa99b 4272#ifndef DEBUG_PUBNAMES_SECTION
4273#define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4b72e226 4274#endif
049aa99b 4275#ifndef DEBUG_STR_SECTION
4276#define DEBUG_STR_SECTION ".debug_str"
4b72e226 4277#endif
a36145ca 4278#ifndef DEBUG_RANGES_SECTION
4279#define DEBUG_RANGES_SECTION ".debug_ranges"
4280#endif
4b72e226 4281
4282/* Standard ELF section names for compiled code and data. */
25e5d448 4283#ifndef TEXT_SECTION_NAME
4284#define TEXT_SECTION_NAME ".text"
4b72e226 4285#endif
4286
80b7bd06 4287/* Section flags for .debug_str section. */
80b7bd06 4288#define DEBUG_STR_SECTION_FLAGS \
cdb2d692 4289 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
44bbb5f3 4290 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4291 : SECTION_DEBUG)
80b7bd06 4292
4b72e226 4293/* Labels we insert at beginning sections we can reference instead of
f80d1bcd 4294 the section names themselves. */
4b72e226 4295
4296#ifndef TEXT_SECTION_LABEL
049aa99b 4297#define TEXT_SECTION_LABEL "Ltext"
4b72e226 4298#endif
4d0e931f 4299#ifndef COLD_TEXT_SECTION_LABEL
4300#define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4301#endif
4b72e226 4302#ifndef DEBUG_LINE_SECTION_LABEL
049aa99b 4303#define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4b72e226 4304#endif
4305#ifndef DEBUG_INFO_SECTION_LABEL
049aa99b 4306#define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4b72e226 4307#endif
049aa99b 4308#ifndef DEBUG_ABBREV_SECTION_LABEL
4309#define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4b72e226 4310#endif
049aa99b 4311#ifndef DEBUG_LOC_SECTION_LABEL
4312#define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4c21a22f 4313#endif
fe39c28c 4314#ifndef DEBUG_RANGES_SECTION_LABEL
4315#define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4316#endif
1d340a5e 4317#ifndef DEBUG_MACINFO_SECTION_LABEL
4318#define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4319#endif
a36145ca 4320
4b72e226 4321/* Definitions of defaults for formats and names of various special
4322 (artificial) labels which may be generated within this file (when the -g
ad8d48ea 4323 options is used and DWARF2_DEBUGGING_INFO is in effect.
4b72e226 4324 If necessary, these may be overridden from within the tm.h file, but
4325 typically, overriding these defaults is unnecessary. */
4326
4327static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4d0e931f 4329static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4b72e226 4331static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
1d340a5e 4334static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4c21a22f 4335static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
fe39c28c 4336static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
8c3f468d 4337
4b72e226 4338#ifndef TEXT_END_LABEL
4339#define TEXT_END_LABEL "Letext"
4340#endif
4d0e931f 4341#ifndef COLD_END_LABEL
4342#define COLD_END_LABEL "Letext_cold"
4343#endif
4b72e226 4344#ifndef BLOCK_BEGIN_LABEL
4345#define BLOCK_BEGIN_LABEL "LBB"
4346#endif
4347#ifndef BLOCK_END_LABEL
4348#define BLOCK_END_LABEL "LBE"
4349#endif
4b72e226 4350#ifndef LINE_CODE_LABEL
4351#define LINE_CODE_LABEL "LM"
4352#endif
4353#ifndef SEPARATE_LINE_CODE_LABEL
4354#define SEPARATE_LINE_CODE_LABEL "LSM"
4355#endif
4356\f
4357/* We allow a language front-end to designate a function that is to be
822e391f 4358 called to "demangle" any name before it is put into a DIE. */
4b72e226 4359
8ec3a57b 4360static const char *(*demangle_name_func) (const char *);
4b72e226 4361
4362void
8ec3a57b 4363dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4b72e226 4364{
4365 demangle_name_func = func;
4366}
4b72e226 4367
4368/* Test if rtl node points to a pseudo register. */
4369
4370static inline int
8ec3a57b 4371is_pseudo_reg (rtx rtl)
4b72e226 4372{
8ad4c111 4373 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4b72e226 4374 || (GET_CODE (rtl) == SUBREG
701e46d0 4375 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4b72e226 4376}
4377
4378/* Return a reference to a type, with its const and volatile qualifiers
4379 removed. */
4380
4381static inline tree
8ec3a57b 4382type_main_variant (tree type)
4b72e226 4383{
4384 type = TYPE_MAIN_VARIANT (type);
4385
8c3f468d 4386 /* ??? There really should be only one main variant among any group of
4387 variants of a given type (and all of the MAIN_VARIANT values for all
4388 members of the group should point to that one type) but sometimes the C
4389 front-end messes this up for array types, so we work around that bug
4390 here. */
4b72e226 4391 if (TREE_CODE (type) == ARRAY_TYPE)
4392 while (type != TYPE_MAIN_VARIANT (type))
4393 type = TYPE_MAIN_VARIANT (type);
4394
4395 return type;
4396}
4397
6ef828f9 4398/* Return nonzero if the given type node represents a tagged type. */
4b72e226 4399
4400static inline int
8ec3a57b 4401is_tagged_type (tree type)
4b72e226 4402{
19cb6b50 4403 enum tree_code code = TREE_CODE (type);
4b72e226 4404
4405 return (code == RECORD_TYPE || code == UNION_TYPE
4406 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4407}
4408
4409/* Convert a DIE tag into its string name. */
4410
4411static const char *
8ec3a57b 4412dwarf_tag_name (unsigned int tag)
4b72e226 4413{
4414 switch (tag)
4415 {
4416 case DW_TAG_padding:
4417 return "DW_TAG_padding";
4418 case DW_TAG_array_type:
4419 return "DW_TAG_array_type";
4420 case DW_TAG_class_type:
4421 return "DW_TAG_class_type";
4422 case DW_TAG_entry_point:
4423 return "DW_TAG_entry_point";
4424 case DW_TAG_enumeration_type:
4425 return "DW_TAG_enumeration_type";
4426 case DW_TAG_formal_parameter:
4427 return "DW_TAG_formal_parameter";
4428 case DW_TAG_imported_declaration:
4429 return "DW_TAG_imported_declaration";
4430 case DW_TAG_label:
4431 return "DW_TAG_label";
4432 case DW_TAG_lexical_block:
4433 return "DW_TAG_lexical_block";
4434 case DW_TAG_member:
4435 return "DW_TAG_member";
4436 case DW_TAG_pointer_type:
4437 return "DW_TAG_pointer_type";
4438 case DW_TAG_reference_type:
4439 return "DW_TAG_reference_type";
4440 case DW_TAG_compile_unit:
4441 return "DW_TAG_compile_unit";
4442 case DW_TAG_string_type:
4443 return "DW_TAG_string_type";
4444 case DW_TAG_structure_type:
4445 return "DW_TAG_structure_type";
4446 case DW_TAG_subroutine_type:
4447 return "DW_TAG_subroutine_type";
4448 case DW_TAG_typedef:
4449 return "DW_TAG_typedef";
4450 case DW_TAG_union_type:
4451 return "DW_TAG_union_type";
4452 case DW_TAG_unspecified_parameters:
4453 return "DW_TAG_unspecified_parameters";
4454 case DW_TAG_variant:
4455 return "DW_TAG_variant";
4456 case DW_TAG_common_block:
4457 return "DW_TAG_common_block";
4458 case DW_TAG_common_inclusion:
4459 return "DW_TAG_common_inclusion";
4460 case DW_TAG_inheritance:
4461 return "DW_TAG_inheritance";
4462 case DW_TAG_inlined_subroutine:
4463 return "DW_TAG_inlined_subroutine";
4464 case DW_TAG_module:
4465 return "DW_TAG_module";
4466 case DW_TAG_ptr_to_member_type:
4467 return "DW_TAG_ptr_to_member_type";
4468 case DW_TAG_set_type:
4469 return "DW_TAG_set_type";
4470 case DW_TAG_subrange_type:
4471 return "DW_TAG_subrange_type";
4472 case DW_TAG_with_stmt:
4473 return "DW_TAG_with_stmt";
4474 case DW_TAG_access_declaration:
4475 return "DW_TAG_access_declaration";
4476 case DW_TAG_base_type:
4477 return "DW_TAG_base_type";
4478 case DW_TAG_catch_block:
4479 return "DW_TAG_catch_block";
4480 case DW_TAG_const_type:
4481 return "DW_TAG_const_type";
4482 case DW_TAG_constant:
4483 return "DW_TAG_constant";
4484 case DW_TAG_enumerator:
4485 return "DW_TAG_enumerator";
4486 case DW_TAG_file_type:
4487 return "DW_TAG_file_type";
4488 case DW_TAG_friend:
4489 return "DW_TAG_friend";
4490 case DW_TAG_namelist:
4491 return "DW_TAG_namelist";
4492 case DW_TAG_namelist_item:
4493 return "DW_TAG_namelist_item";
e89530cd 4494 case DW_TAG_namespace:
4495 return "DW_TAG_namespace";
4b72e226 4496 case DW_TAG_packed_type:
4497 return "DW_TAG_packed_type";
4498 case DW_TAG_subprogram:
4499 return "DW_TAG_subprogram";
4500 case DW_TAG_template_type_param:
4501 return "DW_TAG_template_type_param";
4502 case DW_TAG_template_value_param:
4503 return "DW_TAG_template_value_param";
4504 case DW_TAG_thrown_type:
4505 return "DW_TAG_thrown_type";
4506 case DW_TAG_try_block:
4507 return "DW_TAG_try_block";
4508 case DW_TAG_variant_part:
4509 return "DW_TAG_variant_part";
4510 case DW_TAG_variable:
4511 return "DW_TAG_variable";
4512 case DW_TAG_volatile_type:
4513 return "DW_TAG_volatile_type";
2b49746a 4514 case DW_TAG_imported_module:
4515 return "DW_TAG_imported_module";
4b72e226 4516 case DW_TAG_MIPS_loop:
4517 return "DW_TAG_MIPS_loop";
4518 case DW_TAG_format_label:
4519 return "DW_TAG_format_label";
4520 case DW_TAG_function_template:
4521 return "DW_TAG_function_template";
4522 case DW_TAG_class_template:
4523 return "DW_TAG_class_template";
19f716e5 4524 case DW_TAG_GNU_BINCL:
4525 return "DW_TAG_GNU_BINCL";
4526 case DW_TAG_GNU_EINCL:
4527 return "DW_TAG_GNU_EINCL";
4b72e226 4528 default:
4529 return "DW_TAG_<unknown>";
4530 }
4531}
4532
4533/* Convert a DWARF attribute code into its string name. */
4534
4535static const char *
8ec3a57b 4536dwarf_attr_name (unsigned int attr)
4b72e226 4537{
4538 switch (attr)
4539 {
4540 case DW_AT_sibling:
4541 return "DW_AT_sibling";
4542 case DW_AT_location:
4543 return "DW_AT_location";
4544 case DW_AT_name:
4545 return "DW_AT_name";
4546 case DW_AT_ordering:
4547 return "DW_AT_ordering";
4548 case DW_AT_subscr_data:
4549 return "DW_AT_subscr_data";
4550 case DW_AT_byte_size:
4551 return "DW_AT_byte_size";
4552 case DW_AT_bit_offset:
4553 return "DW_AT_bit_offset";
4554 case DW_AT_bit_size:
4555 return "DW_AT_bit_size";
4556 case DW_AT_element_list:
4557 return "DW_AT_element_list";
4558 case DW_AT_stmt_list:
4559 return "DW_AT_stmt_list";
4560 case DW_AT_low_pc:
4561 return "DW_AT_low_pc";
4562 case DW_AT_high_pc:
4563 return "DW_AT_high_pc";
4564 case DW_AT_language:
4565 return "DW_AT_language";
4566 case DW_AT_member:
4567 return "DW_AT_member";
4568 case DW_AT_discr:
4569 return "DW_AT_discr";
4570 case DW_AT_discr_value:
4571 return "DW_AT_discr_value";
4572 case DW_AT_visibility:
4573 return "DW_AT_visibility";
4574 case DW_AT_import:
4575 return "DW_AT_import";
4576 case DW_AT_string_length:
4577 return "DW_AT_string_length";
4578 case DW_AT_common_reference:
4579 return "DW_AT_common_reference";
4580 case DW_AT_comp_dir:
4581 return "DW_AT_comp_dir";
4582 case DW_AT_const_value:
4583 return "DW_AT_const_value";
4584 case DW_AT_containing_type:
4585 return "DW_AT_containing_type";
4586 case DW_AT_default_value:
4587 return "DW_AT_default_value";
4588 case DW_AT_inline:
4589 return "DW_AT_inline";
4590 case DW_AT_is_optional:
4591 return "DW_AT_is_optional";
4592 case DW_AT_lower_bound:
4593 return "DW_AT_lower_bound";
4594 case DW_AT_producer:
4595 return "DW_AT_producer";
4596 case DW_AT_prototyped:
4597 return "DW_AT_prototyped";
4598 case DW_AT_return_addr:
4599 return "DW_AT_return_addr";
4600 case DW_AT_start_scope:
4601 return "DW_AT_start_scope";
4602 case DW_AT_stride_size:
4603 return "DW_AT_stride_size";
4604 case DW_AT_upper_bound:
4605 return "DW_AT_upper_bound";
4606 case DW_AT_abstract_origin:
4607 return "DW_AT_abstract_origin";
4608 case DW_AT_accessibility:
4609 return "DW_AT_accessibility";
4610 case DW_AT_address_class:
4611 return "DW_AT_address_class";
4612 case DW_AT_artificial:
4613 return "DW_AT_artificial";
4614 case DW_AT_base_types:
4615 return "DW_AT_base_types";
4616 case DW_AT_calling_convention:
4617 return "DW_AT_calling_convention";
4618 case DW_AT_count:
4619 return "DW_AT_count";
4620 case DW_AT_data_member_location:
4621 return "DW_AT_data_member_location";
4622 case DW_AT_decl_column:
4623 return "DW_AT_decl_column";
4624 case DW_AT_decl_file:
4625 return "DW_AT_decl_file";
4626 case DW_AT_decl_line:
4627 return "DW_AT_decl_line";
4628 case DW_AT_declaration:
4629 return "DW_AT_declaration";
4630 case DW_AT_discr_list:
4631 return "DW_AT_discr_list";
4632 case DW_AT_encoding:
4633 return "DW_AT_encoding";
4634 case DW_AT_external:
4635 return "DW_AT_external";
4636 case DW_AT_frame_base:
4637 return "DW_AT_frame_base";
4638 case DW_AT_friend:
4639 return "DW_AT_friend";
4640 case DW_AT_identifier_case:
4641 return "DW_AT_identifier_case";
4642 case DW_AT_macro_info:
4643 return "DW_AT_macro_info";
4644 case DW_AT_namelist_items:
4645 return "DW_AT_namelist_items";
4646 case DW_AT_priority:
4647 return "DW_AT_priority";
4648 case DW_AT_segment:
4649 return "DW_AT_segment";
4650 case DW_AT_specification:
4651 return "DW_AT_specification";
4652 case DW_AT_static_link:
4653 return "DW_AT_static_link";
4654 case DW_AT_type:
4655 return "DW_AT_type";
4656 case DW_AT_use_location:
4657 return "DW_AT_use_location";
4658 case DW_AT_variable_parameter:
4659 return "DW_AT_variable_parameter";
4660 case DW_AT_virtuality:
4661 return "DW_AT_virtuality";
4662 case DW_AT_vtable_elem_location:
4663 return "DW_AT_vtable_elem_location";
4664
a36145ca 4665 case DW_AT_allocated:
4666 return "DW_AT_allocated";
4667 case DW_AT_associated:
4668 return "DW_AT_associated";
4669 case DW_AT_data_location:
4670 return "DW_AT_data_location";
4671 case DW_AT_stride:
4672 return "DW_AT_stride";
4673 case DW_AT_entry_pc:
4674 return "DW_AT_entry_pc";
4675 case DW_AT_use_UTF8:
4676 return "DW_AT_use_UTF8";
4677 case DW_AT_extension:
4678 return "DW_AT_extension";
4679 case DW_AT_ranges:
4680 return "DW_AT_ranges";
4681 case DW_AT_trampoline:
4682 return "DW_AT_trampoline";
4683 case DW_AT_call_column:
4684 return "DW_AT_call_column";
4685 case DW_AT_call_file:
4686 return "DW_AT_call_file";
4687 case DW_AT_call_line:
4688 return "DW_AT_call_line";
4689
4b72e226 4690 case DW_AT_MIPS_fde:
4691 return "DW_AT_MIPS_fde";
4692 case DW_AT_MIPS_loop_begin:
4693 return "DW_AT_MIPS_loop_begin";
4694 case DW_AT_MIPS_tail_loop_begin:
4695 return "DW_AT_MIPS_tail_loop_begin";
4696 case DW_AT_MIPS_epilog_begin:
4697 return "DW_AT_MIPS_epilog_begin";
4698 case DW_AT_MIPS_loop_unroll_factor:
4699 return "DW_AT_MIPS_loop_unroll_factor";
4700 case DW_AT_MIPS_software_pipeline_depth:
4701 return "DW_AT_MIPS_software_pipeline_depth";
4702 case DW_AT_MIPS_linkage_name:
4703 return "DW_AT_MIPS_linkage_name";
4704 case DW_AT_MIPS_stride:
4705 return "DW_AT_MIPS_stride";
4706 case DW_AT_MIPS_abstract_name:
4707 return "DW_AT_MIPS_abstract_name";
4708 case DW_AT_MIPS_clone_origin:
4709 return "DW_AT_MIPS_clone_origin";
4710 case DW_AT_MIPS_has_inlines:
4711 return "DW_AT_MIPS_has_inlines";
4712
4713 case DW_AT_sf_names:
4714 return "DW_AT_sf_names";
4715 case DW_AT_src_info:
4716 return "DW_AT_src_info";
4717 case DW_AT_mac_info:
4718 return "DW_AT_mac_info";
4719 case DW_AT_src_coords:
4720 return "DW_AT_src_coords";
4721 case DW_AT_body_begin:
4722 return "DW_AT_body_begin";
4723 case DW_AT_body_end:
4724 return "DW_AT_body_end";
634906d6 4725 case DW_AT_GNU_vector:
4726 return "DW_AT_GNU_vector";
4727
8d60d2bc 4728 case DW_AT_VMS_rtnbeg_pd_address:
4729 return "DW_AT_VMS_rtnbeg_pd_address";
4730
4b72e226 4731 default:
4732 return "DW_AT_<unknown>";
4733 }
4734}
4735
4736/* Convert a DWARF value form code into its string name. */
4737
4738static const char *
8ec3a57b 4739dwarf_form_name (unsigned int form)
4b72e226 4740{
4741 switch (form)
4742 {
4743 case DW_FORM_addr:
4744 return "DW_FORM_addr";
4745 case DW_FORM_block2:
4746 return "DW_FORM_block2";
4747 case DW_FORM_block4:
4748 return "DW_FORM_block4";
4749 case DW_FORM_data2:
4750 return "DW_FORM_data2";
4751 case DW_FORM_data4:
4752 return "DW_FORM_data4";
4753 case DW_FORM_data8:
4754 return "DW_FORM_data8";
4755 case DW_FORM_string:
4756 return "DW_FORM_string";
4757 case DW_FORM_block:
4758 return "DW_FORM_block";
4759 case DW_FORM_block1:
4760 return "DW_FORM_block1";
4761 case DW_FORM_data1:
4762 return "DW_FORM_data1";
4763 case DW_FORM_flag:
4764 return "DW_FORM_flag";
4765 case DW_FORM_sdata:
4766 return "DW_FORM_sdata";
4767 case DW_FORM_strp:
4768 return "DW_FORM_strp";
4769 case DW_FORM_udata:
4770 return "DW_FORM_udata";
4771 case DW_FORM_ref_addr:
4772 return "DW_FORM_ref_addr";
4773 case DW_FORM_ref1:
4774 return "DW_FORM_ref1";
4775 case DW_FORM_ref2:
4776 return "DW_FORM_ref2";
4777 case DW_FORM_ref4:
4778 return "DW_FORM_ref4";
4779 case DW_FORM_ref8:
4780 return "DW_FORM_ref8";
4781 case DW_FORM_ref_udata:
4782 return "DW_FORM_ref_udata";
4783 case DW_FORM_indirect:
4784 return "DW_FORM_indirect";
8a8bfbe7 4785 default:
4b72e226 4786 return "DW_FORM_<unknown>";
30ade641 4787 }
4788}
8a8bfbe7 4789\f
4790/* Determine the "ultimate origin" of a decl. The decl may be an inlined
4791 instance of an inlined instance of a decl which is local to an inline
4792 function, so we have to trace all of the way back through the origin chain
4793 to find out what sort of node actually served as the original seed for the
4794 given block. */
30ade641 4795
8a8bfbe7 4796static tree
8ec3a57b 4797decl_ultimate_origin (tree decl)
30ade641 4798{
5ded8c6f 4799 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4800 return NULL_TREE;
4801
e7b3c55c 4802 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803 nodes in the function to point to themselves; ignore that if
4804 we're trying to output the abstract instance of this function. */
4805 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4806 return NULL_TREE;
4807
7bd4f6b6 4808 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809 most distant ancestor, this should never happen. */
4810 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
8a8bfbe7 4811
c0671ae8 4812 return DECL_ABSTRACT_ORIGIN (decl);
30ade641 4813}
4814
8a8bfbe7 4815/* Determine the "ultimate origin" of a block. The block may be an inlined
4816 instance of an inlined instance of a block which is local to an inline
4817 function, so we have to trace all of the way back through the origin chain
4818 to find out what sort of node actually served as the original seed for the
4819 given block. */
ec1e49cc 4820
8a8bfbe7 4821static tree
8ec3a57b 4822block_ultimate_origin (tree block)
30ade641 4823{
19cb6b50 4824 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
ec1e49cc 4825
e7b3c55c 4826 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827 nodes in the function to point to themselves; ignore that if
4828 we're trying to output the abstract instance of this function. */
4829 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4830 return NULL_TREE;
4831
8a8bfbe7 4832 if (immediate_origin == NULL_TREE)
4833 return NULL_TREE;
4834 else
4835 {
19cb6b50 4836 tree ret_val;
4837 tree lookahead = immediate_origin;
ec1e49cc 4838
8a8bfbe7 4839 do
4840 {
4841 ret_val = lookahead;
8c3f468d 4842 lookahead = (TREE_CODE (ret_val) == BLOCK
4843 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
8a8bfbe7 4844 }
4845 while (lookahead != NULL && lookahead != ret_val);
9e45f419 4846
4847 /* The block's abstract origin chain may not be the *ultimate* origin of
4848 the block. It could lead to a DECL that has an abstract origin set.
4849 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850 will give us if it has one). Note that DECL's abstract origins are
4851 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852 claims), so we don't need to loop following the DECL origins. */
4853 if (DECL_P (ret_val))
4854 return DECL_ORIGIN (ret_val);
8a8bfbe7 4855
4856 return ret_val;
4857 }
30ade641 4858}
4859
8a8bfbe7 4860/* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4861 of a virtual function may refer to a base class, so we check the 'this'
4862 parameter. */
ec1e49cc 4863
8a8bfbe7 4864static tree
8ec3a57b 4865decl_class_context (tree decl)
30ade641 4866{
8a8bfbe7 4867 tree context = NULL_TREE;
ec1e49cc 4868
8a8bfbe7 4869 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4870 context = DECL_CONTEXT (decl);
4871 else
4872 context = TYPE_MAIN_VARIANT
4873 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
ec1e49cc 4874
9308e976 4875 if (context && !TYPE_P (context))
8a8bfbe7 4876 context = NULL_TREE;
4877
4878 return context;
30ade641 4879}
4880\f
958656b7 4881/* Add an attribute/value pair to a DIE. */
ec1e49cc 4882
4883static inline void
8ec3a57b 4884add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
30ade641 4885{
6f56c055 4886 /* Maybe this should be an assert? */
4887 if (die == NULL)
4888 return;
4889
4890 if (die->die_attr == NULL)
4891 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4892 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
30ade641 4893}
4894
573aba85 4895static inline enum dw_val_class
8ec3a57b 4896AT_class (dw_attr_ref a)
c90bf86c 4897{
4898 return a->dw_attr_val.val_class;
4899}
4900
8a8bfbe7 4901/* Add a flag value attribute to a DIE. */
ec1e49cc 4902
8a8bfbe7 4903static inline void
8ec3a57b 4904add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
30ade641 4905{
6f56c055 4906 dw_attr_node attr;
ec1e49cc 4907
6f56c055 4908 attr.dw_attr = attr_kind;
4909 attr.dw_attr_val.val_class = dw_val_class_flag;
4910 attr.dw_attr_val.v.val_flag = flag;
4911 add_dwarf_attr (die, &attr);
30ade641 4912}
4913
c90bf86c 4914static inline unsigned
8ec3a57b 4915AT_flag (dw_attr_ref a)
c90bf86c 4916{
7bd4f6b6 4917 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4918 return a->dw_attr_val.v.val_flag;
c90bf86c 4919}
4920
8a8bfbe7 4921/* Add a signed integer attribute value to a DIE. */
ec1e49cc 4922
8a8bfbe7 4923static inline void
3d867824 4924add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
30ade641 4925{
6f56c055 4926 dw_attr_node attr;
8a8bfbe7 4927
6f56c055 4928 attr.dw_attr = attr_kind;
4929 attr.dw_attr_val.val_class = dw_val_class_const;
4930 attr.dw_attr_val.v.val_int = int_val;
4931 add_dwarf_attr (die, &attr);
30ade641 4932}
4933
3d867824 4934static inline HOST_WIDE_INT
8ec3a57b 4935AT_int (dw_attr_ref a)
c90bf86c 4936{
7bd4f6b6 4937 gcc_assert (a && AT_class (a) == dw_val_class_const);
4938 return a->dw_attr_val.v.val_int;
c90bf86c 4939}
4940
8a8bfbe7 4941/* Add an unsigned integer attribute value to a DIE. */
ec1e49cc 4942
8a8bfbe7 4943static inline void
8ec3a57b 4944add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
3d867824 4945 unsigned HOST_WIDE_INT unsigned_val)
30ade641 4946{
6f56c055 4947 dw_attr_node attr;
8a8bfbe7 4948
6f56c055 4949 attr.dw_attr = attr_kind;
4950 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4951 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4952 add_dwarf_attr (die, &attr);
30ade641 4953}
ec1e49cc 4954
3d867824 4955static inline unsigned HOST_WIDE_INT
8ec3a57b 4956AT_unsigned (dw_attr_ref a)
c90bf86c 4957{
7bd4f6b6 4958 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4959 return a->dw_attr_val.v.val_unsigned;
c90bf86c 4960}
4961
8a8bfbe7 4962/* Add an unsigned double integer attribute value to a DIE. */
4963
4964static inline void
8ec3a57b 4965add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4966 long unsigned int val_hi, long unsigned int val_low)
30ade641 4967{
6f56c055 4968 dw_attr_node attr;
ec1e49cc 4969
6f56c055 4970 attr.dw_attr = attr_kind;
4971 attr.dw_attr_val.val_class = dw_val_class_long_long;
4972 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4973 attr.dw_attr_val.v.val_long_long.low = val_low;
4974 add_dwarf_attr (die, &attr);
8a8bfbe7 4975}
ec1e49cc 4976
8a8bfbe7 4977/* Add a floating point attribute value to a DIE and return it. */
ec1e49cc 4978
8a8bfbe7 4979static inline void
1b6ad376 4980add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4981 unsigned int length, unsigned int elt_size, unsigned char *array)
8a8bfbe7 4982{
6f56c055 4983 dw_attr_node attr;
8a8bfbe7 4984
6f56c055 4985 attr.dw_attr = attr_kind;
4986 attr.dw_attr_val.val_class = dw_val_class_vec;
4987 attr.dw_attr_val.v.val_vec.length = length;
4988 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4989 attr.dw_attr_val.v.val_vec.array = array;
4990 add_dwarf_attr (die, &attr);
30ade641 4991}
4992
573aba85 4993/* Hash and equality functions for debug_str_hash. */
4994
4995static hashval_t
8ec3a57b 4996debug_str_do_hash (const void *x)
573aba85 4997{
4998 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4999}
5000
5001static int
8ec3a57b 5002debug_str_eq (const void *x1, const void *x2)
573aba85 5003{
5004 return strcmp ((((const struct indirect_string_node *)x1)->str),
5005 (const char *)x2) == 0;
5006}
5007
8a8bfbe7 5008/* Add a string attribute value to a DIE. */
ec1e49cc 5009
8a8bfbe7 5010static inline void
8ec3a57b 5011add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
30ade641 5012{
6f56c055 5013 dw_attr_node attr;
80b7bd06 5014 struct indirect_string_node *node;
b9a7cc69 5015 void **slot;
bc70bd5e 5016
80b7bd06 5017 if (! debug_str_hash)
8ec3a57b 5018 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
573aba85 5019 debug_str_eq, NULL);
5020
5021 slot = htab_find_slot_with_hash (debug_str_hash, str,
5022 htab_hash_string (str), INSERT);
5023 if (*slot == NULL)
5024 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5025 node = (struct indirect_string_node *) *slot;
6327cf58 5026 node->str = ggc_strdup (str);
80b7bd06 5027 node->refcount++;
ec1e49cc 5028
6f56c055 5029 attr.dw_attr = attr_kind;
5030 attr.dw_attr_val.val_class = dw_val_class_str;
5031 attr.dw_attr_val.v.val_str = node;
5032 add_dwarf_attr (die, &attr);
8a8bfbe7 5033}
ec1e49cc 5034
c90bf86c 5035static inline const char *
8ec3a57b 5036AT_string (dw_attr_ref a)
c90bf86c 5037{
7bd4f6b6 5038 gcc_assert (a && AT_class (a) == dw_val_class_str);
5039 return a->dw_attr_val.v.val_str->str;
80b7bd06 5040}
5041
5042/* Find out whether a string should be output inline in DIE
5043 or out-of-line in .debug_str section. */
5044
80b7bd06 5045static int
8ec3a57b 5046AT_string_form (dw_attr_ref a)
80b7bd06 5047{
7bd4f6b6 5048 struct indirect_string_node *node;
5049 unsigned int len;
5050 char label[32];
80b7bd06 5051
7bd4f6b6 5052 gcc_assert (a && AT_class (a) == dw_val_class_str);
8ff30ff6 5053
7bd4f6b6 5054 node = a->dw_attr_val.v.val_str;
5055 if (node->form)
5056 return node->form;
8ff30ff6 5057
7bd4f6b6 5058 len = strlen (node->str) + 1;
80b7bd06 5059
7bd4f6b6 5060 /* If the string is shorter or equal to the size of the reference, it is
5061 always better to put it inline. */
5062 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5063 return node->form = DW_FORM_string;
80b7bd06 5064
7bd4f6b6 5065 /* If we cannot expect the linker to merge strings in .debug_str
5066 section, only put it into .debug_str if it is worth even in this
5067 single module. */
2f14b1f9 5068 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
7bd4f6b6 5069 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5070 return node->form = DW_FORM_string;
8c3f468d 5071
7bd4f6b6 5072 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5073 ++dw2_string_counter;
5074 node->label = xstrdup (label);
c90bf86c 5075
7bd4f6b6 5076 return node->form = DW_FORM_strp;
c90bf86c 5077}
5078
8a8bfbe7 5079/* Add a DIE reference attribute value to a DIE. */
ec1e49cc 5080
8a8bfbe7 5081static inline void
8ec3a57b 5082add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
8a8bfbe7 5083{
6f56c055 5084 dw_attr_node attr;
ec1e49cc 5085
6f56c055 5086 attr.dw_attr = attr_kind;
5087 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5088 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5089 attr.dw_attr_val.v.val_die_ref.external = 0;
5090 add_dwarf_attr (die, &attr);
8a8bfbe7 5091}
34425fdc 5092
023dc493 5093/* Add an AT_specification attribute to a DIE, and also make the back
8b332087 5094 pointer from the specification to the definition. */
023dc493 5095
5096static inline void
5097add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098{
5099 add_AT_die_ref (die, DW_AT_specification, targ_die);
7bd4f6b6 5100 gcc_assert (!targ_die->die_definition);
023dc493 5101 targ_die->die_definition = die;
5102}
5103
c90bf86c 5104static inline dw_die_ref
8ec3a57b 5105AT_ref (dw_attr_ref a)
c90bf86c 5106{
7bd4f6b6 5107 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5108 return a->dw_attr_val.v.val_die_ref.die;
c90bf86c 5109}
5110
19f716e5 5111static inline int
8ec3a57b 5112AT_ref_external (dw_attr_ref a)
19f716e5 5113{
5114 if (a && AT_class (a) == dw_val_class_die_ref)
5115 return a->dw_attr_val.v.val_die_ref.external;
5116
5117 return 0;
5118}
5119
19f716e5 5120static inline void
8ec3a57b 5121set_AT_ref_external (dw_attr_ref a, int i)
19f716e5 5122{
7bd4f6b6 5123 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5124 a->dw_attr_val.v.val_die_ref.external = i;
19f716e5 5125}
5126
8a8bfbe7 5127/* Add an FDE reference attribute value to a DIE. */
34425fdc 5128
8a8bfbe7 5129static inline void
8ec3a57b 5130add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
8a8bfbe7 5131{
6f56c055 5132 dw_attr_node attr;
34425fdc 5133
6f56c055 5134 attr.dw_attr = attr_kind;
5135 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5136 attr.dw_attr_val.v.val_fde_index = targ_fde;
5137 add_dwarf_attr (die, &attr);
30ade641 5138}
ec1e49cc 5139
8a8bfbe7 5140/* Add a location description attribute value to a DIE. */
ec1e49cc 5141
8a8bfbe7 5142static inline void
8ec3a57b 5143add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
8a8bfbe7 5144{
6f56c055 5145 dw_attr_node attr;
ec1e49cc 5146
6f56c055 5147 attr.dw_attr = attr_kind;
5148 attr.dw_attr_val.val_class = dw_val_class_loc;
5149 attr.dw_attr_val.v.val_loc = loc;
5150 add_dwarf_attr (die, &attr);
30ade641 5151}
5152
c90bf86c 5153static inline dw_loc_descr_ref
8ec3a57b 5154AT_loc (dw_attr_ref a)
c90bf86c 5155{
7bd4f6b6 5156 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5157 return a->dw_attr_val.v.val_loc;
c90bf86c 5158}
5159
4c21a22f 5160static inline void
8ec3a57b 5161add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4c21a22f 5162{
6f56c055 5163 dw_attr_node attr;
4c21a22f 5164
6f56c055 5165 attr.dw_attr = attr_kind;
5166 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5167 attr.dw_attr_val.v.val_loc_list = loc_list;
5168 add_dwarf_attr (die, &attr);
dae1861f 5169 have_location_lists = true;
4c21a22f 5170}
5171
4c21a22f 5172static inline dw_loc_list_ref
8ec3a57b 5173AT_loc_list (dw_attr_ref a)
4c21a22f 5174{
7bd4f6b6 5175 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5176 return a->dw_attr_val.v.val_loc_list;
4c21a22f 5177}
5178
8a8bfbe7 5179/* Add an address constant attribute value to a DIE. */
ec1e49cc 5180
8a8bfbe7 5181static inline void
8ec3a57b 5182add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
30ade641 5183{
6f56c055 5184 dw_attr_node attr;
ec1e49cc 5185
6f56c055 5186 attr.dw_attr = attr_kind;
5187 attr.dw_attr_val.val_class = dw_val_class_addr;
5188 attr.dw_attr_val.v.val_addr = addr;
5189 add_dwarf_attr (die, &attr);
30ade641 5190}
5191
69278c24 5192/* Get the RTX from to an address DIE attribute. */
5193
eacbfaac 5194static inline rtx
8ec3a57b 5195AT_addr (dw_attr_ref a)
c90bf86c 5196{
7bd4f6b6 5197 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5198 return a->dw_attr_val.v.val_addr;
c90bf86c 5199}
5200
69278c24 5201/* Add a file attribute value to a DIE. */
5202
5203static inline void
5204add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5205 struct dwarf_file_data *fd)
5206{
5207 dw_attr_node attr;
5208
5209 attr.dw_attr = attr_kind;
5210 attr.dw_attr_val.val_class = dw_val_class_file;
5211 attr.dw_attr_val.v.val_file = fd;
5212 add_dwarf_attr (die, &attr);
5213}
5214
5215/* Get the dwarf_file_data from a file DIE attribute. */
5216
5217static inline struct dwarf_file_data *
5218AT_file (dw_attr_ref a)
5219{
5220 gcc_assert (a && AT_class (a) == dw_val_class_file);
5221 return a->dw_attr_val.v.val_file;
5222}
5223
8a8bfbe7 5224/* Add a label identifier attribute value to a DIE. */
ec1e49cc 5225
8a8bfbe7 5226static inline void
8ec3a57b 5227add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
30ade641 5228{
6f56c055 5229 dw_attr_node attr;
ec1e49cc 5230
6f56c055 5231 attr.dw_attr = attr_kind;
5232 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5233 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5234 add_dwarf_attr (die, &attr);
8a8bfbe7 5235}
ec1e49cc 5236
d08d29c0 5237/* Add a section offset attribute value to a DIE, an offset into the
5238 debug_line section. */
8a8bfbe7 5239
5240static inline void
d08d29c0 5241add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5242 const char *label)
8a8bfbe7 5243{
6f56c055 5244 dw_attr_node attr;
ec1e49cc 5245
6f56c055 5246 attr.dw_attr = attr_kind;
5247 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5248 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5249 add_dwarf_attr (die, &attr);
d08d29c0 5250}
5251
5252/* Add a section offset attribute value to a DIE, an offset into the
5253 debug_macinfo section. */
5254
5255static inline void
5256add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5257 const char *label)
5258{
6f56c055 5259 dw_attr_node attr;
d08d29c0 5260
6f56c055 5261 attr.dw_attr = attr_kind;
5262 attr.dw_attr_val.val_class = dw_val_class_macptr;
5263 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5264 add_dwarf_attr (die, &attr);
30ade641 5265}
5266
a36145ca 5267/* Add an offset attribute value to a DIE. */
5268
fe39c28c 5269static inline void
3d867824 5270add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5271 unsigned HOST_WIDE_INT offset)
a36145ca 5272{
6f56c055 5273 dw_attr_node attr;
a36145ca 5274
6f56c055 5275 attr.dw_attr = attr_kind;
5276 attr.dw_attr_val.val_class = dw_val_class_offset;
5277 attr.dw_attr_val.v.val_offset = offset;
5278 add_dwarf_attr (die, &attr);
a36145ca 5279}
5280
fe39c28c 5281/* Add an range_list attribute value to a DIE. */
5282
5283static void
8ec3a57b 5284add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5285 long unsigned int offset)
fe39c28c 5286{
6f56c055 5287 dw_attr_node attr;
fe39c28c 5288
6f56c055 5289 attr.dw_attr = attr_kind;
5290 attr.dw_attr_val.val_class = dw_val_class_range_list;
5291 attr.dw_attr_val.v.val_offset = offset;
5292 add_dwarf_attr (die, &attr);
fe39c28c 5293}
5294
c90bf86c 5295static inline const char *
8ec3a57b 5296AT_lbl (dw_attr_ref a)
30ade641 5297{
7bd4f6b6 5298 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
d08d29c0 5299 || AT_class (a) == dw_val_class_lineptr
5300 || AT_class (a) == dw_val_class_macptr));
7bd4f6b6 5301 return a->dw_attr_val.v.val_lbl_id;
30ade641 5302}
5303
8a8bfbe7 5304/* Get the attribute of type attr_kind. */
ec1e49cc 5305
89df180d 5306static dw_attr_ref
8ec3a57b 5307get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
7524eb42 5308{
19cb6b50 5309 dw_attr_ref a;
6f56c055 5310 unsigned ix;
19cb6b50 5311 dw_die_ref spec = NULL;
f80d1bcd 5312
6f56c055 5313 if (! die)
5314 return NULL;
ec1e49cc 5315
6f56c055 5316 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5317 if (a->dw_attr == attr_kind)
5318 return a;
5319 else if (a->dw_attr == DW_AT_specification
5320 || a->dw_attr == DW_AT_abstract_origin)
5321 spec = AT_ref (a);
5322
5323 if (spec)
5324 return get_AT (spec, attr_kind);
8a8bfbe7 5325
5326 return NULL;
7524eb42 5327}
5328
8c3f468d 5329/* Return the "low pc" attribute value, typically associated with a subprogram
5330 DIE. Return null if the "low pc" attribute is either not present, or if it
5331 cannot be represented as an assembler label identifier. */
ec1e49cc 5332
c90bf86c 5333static inline const char *
8ec3a57b 5334get_AT_low_pc (dw_die_ref die)
a3899bb7 5335{
19cb6b50 5336 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
8c3f468d 5337
433e0c6c 5338 return a ? AT_lbl (a) : NULL;
a3899bb7 5339}
5340
8c3f468d 5341/* Return the "high pc" attribute value, typically associated with a subprogram
5342 DIE. Return null if the "high pc" attribute is either not present, or if it
5343 cannot be represented as an assembler label identifier. */
ec1e49cc 5344
c90bf86c 5345static inline const char *
8ec3a57b 5346get_AT_hi_pc (dw_die_ref die)
30ade641 5347{
19cb6b50 5348 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
8c3f468d 5349
433e0c6c 5350 return a ? AT_lbl (a) : NULL;
8a8bfbe7 5351}
5352
5353/* Return the value of the string attribute designated by ATTR_KIND, or
5354 NULL if it is not present. */
ec1e49cc 5355
c90bf86c 5356static inline const char *
8ec3a57b 5357get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
8a8bfbe7 5358{
19cb6b50 5359 dw_attr_ref a = get_AT (die, attr_kind);
8c3f468d 5360
433e0c6c 5361 return a ? AT_string (a) : NULL;
30ade641 5362}
5363
8a8bfbe7 5364/* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365 if it is not present. */
ec1e49cc 5366
8a8bfbe7 5367static inline int
8ec3a57b 5368get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
30ade641 5369{
19cb6b50 5370 dw_attr_ref a = get_AT (die, attr_kind);
8c3f468d 5371
433e0c6c 5372 return a ? AT_flag (a) : 0;
30ade641 5373}
5374
8a8bfbe7 5375/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376 if it is not present. */
ec1e49cc 5377
8a8bfbe7 5378static inline unsigned
8ec3a57b 5379get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
30ade641 5380{
19cb6b50 5381 dw_attr_ref a = get_AT (die, attr_kind);
8c3f468d 5382
433e0c6c 5383 return a ? AT_unsigned (a) : 0;
c90bf86c 5384}
ec1e49cc 5385
c90bf86c 5386static inline dw_die_ref
8ec3a57b 5387get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
c90bf86c 5388{
19cb6b50 5389 dw_attr_ref a = get_AT (die, attr_kind);
8c3f468d 5390
433e0c6c 5391 return a ? AT_ref (a) : NULL;
8a8bfbe7 5392}
ec1e49cc 5393
69278c24 5394static inline struct dwarf_file_data *
5395get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396{
5397 dw_attr_ref a = get_AT (die, attr_kind);
5398
5399 return a ? AT_file (a) : NULL;
5400}
5401
600dbd47 5402/* Return TRUE if the language is C or C++. */
5403
5404static inline bool
8ec3a57b 5405is_c_family (void)
8a8bfbe7 5406{
600dbd47 5407 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
ec1e49cc 5408
bda642f9 5409 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5410 || lang == DW_LANG_C99
5411 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
f80d1bcd 5412}
ec1e49cc 5413
600dbd47 5414/* Return TRUE if the language is C++. */
5415
5416static inline bool
8ec3a57b 5417is_cxx (void)
bde7be7a 5418{
bda642f9 5419 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420
5421 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
bc70bd5e 5422}
bde7be7a 5423
600dbd47 5424/* Return TRUE if the language is Fortran. */
5425
5426static inline bool
8ec3a57b 5427is_fortran (void)
8a8bfbe7 5428{
600dbd47 5429 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
ec1e49cc 5430
4ee9c684 5431 return (lang == DW_LANG_Fortran77
5432 || lang == DW_LANG_Fortran90
5433 || lang == DW_LANG_Fortran95);
f80d1bcd 5434}
ec1e49cc 5435
600dbd47 5436/* Return TRUE if the language is Java. */
5437
5438static inline bool
8ec3a57b 5439is_java (void)
af4d39d8 5440{
600dbd47 5441 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
af4d39d8 5442
600dbd47 5443 return lang == DW_LANG_Java;
5444}
5445
5446/* Return TRUE if the language is Ada. */
5447
5448static inline bool
8ec3a57b 5449is_ada (void)
600dbd47 5450{
5451 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
8ec3a57b 5452
600dbd47 5453 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
af4d39d8 5454}
5455
e7b3c55c 5456/* Remove the specified attribute if present. */
5457
5458static void
8ec3a57b 5459remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
8a8bfbe7 5460{
6f56c055 5461 dw_attr_ref a;
5462 unsigned ix;
30ade641 5463
6f56c055 5464 if (! die)
5465 return;
ec1e49cc 5466
6f56c055 5467 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5468 if (a->dw_attr == attr_kind)
5469 {
b0aa6b33 5470 if (AT_class (a) == dw_val_class_str)
5471 if (a->dw_attr_val.v.val_str->refcount)
5472 a->dw_attr_val.v.val_str->refcount--;
5473
6f56c055 5474 /* VEC_ordered_remove should help reduce the number of abbrevs
5475 that are needed. */
5476 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5477 return;
5478 }
e7b3c55c 5479}
ec1e49cc 5480
958656b7 5481/* Remove CHILD from its parent. PREV must have the property that
5482 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
2b49746a 5483
5484static void
958656b7 5485remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
2b49746a 5486{
958656b7 5487 gcc_assert (child->die_parent == prev->die_parent);
5488 gcc_assert (prev->die_sib == child);
5489 if (prev == child)
2b49746a 5490 {
958656b7 5491 gcc_assert (child->die_parent->die_child == child);
5492 prev = NULL;
2b49746a 5493 }
958656b7 5494 else
5495 prev->die_sib = child->die_sib;
5496 if (child->die_parent->die_child == child)
5497 child->die_parent->die_child = prev;
2b49746a 5498}
5499
958656b7 5500/* Remove child DIE whose die_tag is TAG. Do nothing if no child
5501 matches TAG. */
ec1e49cc 5502
958656b7 5503static void
5504remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505{
5506 dw_die_ref c;
5507
5508 c = die->die_child;
5509 if (c) do {
5510 dw_die_ref prev = c;
5511 c = c->die_sib;
5512 while (c->die_tag == tag)
5513 {
5514 remove_child_with_prev (c, prev);
5515 /* Might have removed every child. */
5516 if (c == c->die_sib)
5517 return;
5518 c = c->die_sib;
5519 }
5520 } while (c != die->die_child);
5521}
5522
5523/* Add a CHILD_DIE as the last child of DIE. */
5524
5525static void
8ec3a57b 5526add_child_die (dw_die_ref die, dw_die_ref child_die)
8a8bfbe7 5527{
958656b7 5528 /* FIXME this should probably be an assert. */
5529 if (! die || ! child_die)
5530 return;
5531 gcc_assert (die != child_die);
8c3f468d 5532
958656b7 5533 child_die->die_parent = die;
5534 if (die->die_child)
5535 {
5536 child_die->die_sib = die->die_child->die_sib;
5537 die->die_child->die_sib = child_die;
8a8bfbe7 5538 }
958656b7 5539 else
5540 child_die->die_sib = child_die;
5541 die->die_child = child_die;
8a8bfbe7 5542}
5543
5134c73b 5544/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
958656b7 5545 is the specification, to the end of PARENT's list of children.
5546 This is done by removing and re-adding it. */
e7b3c55c 5547
5548static void
8ec3a57b 5549splice_child_die (dw_die_ref parent, dw_die_ref child)
e7b3c55c 5550{
958656b7 5551 dw_die_ref p;
e7b3c55c 5552
5553 /* We want the declaration DIE from inside the class, not the
5554 specification DIE at toplevel. */
5555 if (child->die_parent != parent)
5134c73b 5556 {
5557 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
8c3f468d 5558
5134c73b 5559 if (tmp)
5560 child = tmp;
5561 }
e7b3c55c 5562
7bd4f6b6 5563 gcc_assert (child->die_parent == parent
5564 || (child->die_parent
5565 == get_AT_ref (parent, DW_AT_specification)));
958656b7 5566
5567 for (p = child->die_parent->die_child; ; p = p->die_sib)
5568 if (p->die_sib == child)
e7b3c55c 5569 {
958656b7 5570 remove_child_with_prev (child, p);
e7b3c55c 5571 break;
5572 }
5573
958656b7 5574 add_child_die (parent, child);
e7b3c55c 5575}
5576
8a8bfbe7 5577/* Return a pointer to a newly created DIE node. */
5578
5579static inline dw_die_ref
8ec3a57b 5580new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
8a8bfbe7 5581{
f0af5a88 5582 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
8a8bfbe7 5583
5584 die->die_tag = tag_value;
8a8bfbe7 5585
5586 if (parent_die != NULL)
5587 add_child_die (parent_die, die);
5588 else
678d90bb 5589 {
5590 limbo_die_node *limbo_node;
5591
573aba85 5592 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
678d90bb 5593 limbo_node->die = die;
15cfae4e 5594 limbo_node->created_for = t;
678d90bb 5595 limbo_node->next = limbo_die_list;
5596 limbo_die_list = limbo_node;
5597 }
ec1e49cc 5598
8a8bfbe7 5599 return die;
5600}
ec1e49cc 5601
8a8bfbe7 5602/* Return the DIE associated with the given type specifier. */
ec1e49cc 5603
8a8bfbe7 5604static inline dw_die_ref
8ec3a57b 5605lookup_type_die (tree type)
8a8bfbe7 5606{
1f3233d1 5607 return TYPE_SYMTAB_DIE (type);
8a8bfbe7 5608}
c05d7491 5609
8a8bfbe7 5610/* Equate a DIE to a given type specifier. */
ec1e49cc 5611
e7b3c55c 5612static inline void
8ec3a57b 5613equate_type_number_to_die (tree type, dw_die_ref type_die)
8a8bfbe7 5614{
1f3233d1 5615 TYPE_SYMTAB_DIE (type) = type_die;
8a8bfbe7 5616}
ec1e49cc 5617
26863140 5618/* Returns a hash value for X (which really is a die_struct). */
5619
5620static hashval_t
5621decl_die_table_hash (const void *x)
5622{
5623 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5624}
5625
5626/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627
5628static int
5629decl_die_table_eq (const void *x, const void *y)
5630{
5631 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5632}
5633
8a8bfbe7 5634/* Return the DIE associated with a given declaration. */
ec1e49cc 5635
8a8bfbe7 5636static inline dw_die_ref
8ec3a57b 5637lookup_decl_die (tree decl)
8a8bfbe7 5638{
26863140 5639 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
30ade641 5640}
5641
b2025850 5642/* Returns a hash value for X (which really is a var_loc_list). */
5643
5644static hashval_t
5645decl_loc_table_hash (const void *x)
5646{
5647 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5648}
5649
5650/* Return nonzero if decl_id of var_loc_list X is the same as
5651 UID of decl *Y. */
5652
5653static int
5654decl_loc_table_eq (const void *x, const void *y)
5655{
5656 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5657}
5658
5659/* Return the var_loc list associated with a given declaration. */
5660
5661static inline var_loc_list *
5662lookup_decl_loc (tree decl)
5663{
5664 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5665}
5666
8a8bfbe7 5667/* Equate a DIE to a particular declaration. */
ec1e49cc 5668
8a8bfbe7 5669static void
8ec3a57b 5670equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
30ade641 5671{
dff29840 5672 unsigned int decl_id = DECL_UID (decl);
26863140 5673 void **slot;
8a8bfbe7 5674
26863140 5675 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5676 *slot = decl_die;
5677 decl_die->decl_id = decl_id;
30ade641 5678}
b2025850 5679
5680/* Add a variable location node to the linked list for DECL. */
5681
5682static void
5683add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684{
5685 unsigned int decl_id = DECL_UID (decl);
5686 var_loc_list *temp;
5687 void **slot;
5688
5689 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5690 if (*slot == NULL)
5691 {
5692 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5693 temp->decl_id = decl_id;
5694 *slot = temp;
5695 }
5696 else
5697 temp = *slot;
5698
5699 if (temp->last)
5700 {
5701 /* If the current location is the same as the end of the list,
5702 we have nothing to do. */
5703 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5704 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 {
5706 /* Add LOC to the end of list and update LAST. */
5707 temp->last->next = loc;
5708 temp->last = loc;
5709 }
5710 }
5711 /* Do not add empty location to the beginning of the list. */
5712 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 {
5714 temp->first = loc;
5715 temp->last = loc;
5716 }
5717}
8a8bfbe7 5718\f
5719/* Keep track of the number of spaces used to indent the
5720 output of the debugging routines that print the structure of
5721 the DIE internal representation. */
5722static int print_indent;
ec1e49cc 5723
8a8bfbe7 5724/* Indent the line the number of spaces given by print_indent. */
5725
5726static inline void
8ec3a57b 5727print_spaces (FILE *outfile)
8a8bfbe7 5728{
5729 fprintf (outfile, "%*s", print_indent, "");
30ade641 5730}
5731
ad87de1e 5732/* Print the information associated with a given DIE, and its children.
8a8bfbe7 5733 This routine is a debugging aid only. */
ec1e49cc 5734
30ade641 5735static void
8ec3a57b 5736print_die (dw_die_ref die, FILE *outfile)
30ade641 5737{
19cb6b50 5738 dw_attr_ref a;
5739 dw_die_ref c;
6f56c055 5740 unsigned ix;
ec1e49cc 5741
8a8bfbe7 5742 print_spaces (outfile);
c08e043f 5743 fprintf (outfile, "DIE %4lu: %s\n",
8a8bfbe7 5744 die->die_offset, dwarf_tag_name (die->die_tag));
5745 print_spaces (outfile);
c08e043f 5746 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5747 fprintf (outfile, " offset: %lu\n", die->die_offset);
8a8bfbe7 5748
6f56c055 5749 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
30ade641 5750 {
8a8bfbe7 5751 print_spaces (outfile);
5752 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753
c90bf86c 5754 switch (AT_class (a))
8a8bfbe7 5755 {
5756 case dw_val_class_addr:
5757 fprintf (outfile, "address");
5758 break;
a36145ca 5759 case dw_val_class_offset:
5760 fprintf (outfile, "offset");
5761 break;
8a8bfbe7 5762 case dw_val_class_loc:
5763 fprintf (outfile, "location descriptor");
5764 break;
4c21a22f 5765 case dw_val_class_loc_list:
a36145ca 5766 fprintf (outfile, "location list -> label:%s",
5767 AT_loc_list (a)->ll_symbol);
4c21a22f 5768 break;
fe39c28c 5769 case dw_val_class_range_list:
5770 fprintf (outfile, "range list");
5771 break;
8a8bfbe7 5772 case dw_val_class_const:
3201d6f1 5773 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
8a8bfbe7 5774 break;
5775 case dw_val_class_unsigned_const:
3201d6f1 5776 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
8a8bfbe7 5777 break;
5778 case dw_val_class_long_long:
c08e043f 5779 fprintf (outfile, "constant (%lu,%lu)",
f80d1bcd 5780 a->dw_attr_val.v.val_long_long.hi,
5781 a->dw_attr_val.v.val_long_long.low);
8a8bfbe7 5782 break;
1b6ad376 5783 case dw_val_class_vec:
5784 fprintf (outfile, "floating-point or vector constant");
8a8bfbe7 5785 break;
5786 case dw_val_class_flag:
c90bf86c 5787 fprintf (outfile, "%u", AT_flag (a));
8a8bfbe7 5788 break;
5789 case dw_val_class_die_ref:
c90bf86c 5790 if (AT_ref (a) != NULL)
19f716e5 5791 {
eabb26f3 5792 if (AT_ref (a)->die_symbol)
19f716e5 5793 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5794 else
5795 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 }
8a8bfbe7 5797 else
5798 fprintf (outfile, "die -> <null>");
5799 break;
5800 case dw_val_class_lbl_id:
d08d29c0 5801 case dw_val_class_lineptr:
5802 case dw_val_class_macptr:
c90bf86c 5803 fprintf (outfile, "label: %s", AT_lbl (a));
8a8bfbe7 5804 break;
8a8bfbe7 5805 case dw_val_class_str:
c90bf86c 5806 if (AT_string (a) != NULL)
5807 fprintf (outfile, "\"%s\"", AT_string (a));
8a8bfbe7 5808 else
5809 fprintf (outfile, "<null>");
5810 break;
69278c24 5811 case dw_val_class_file:
5812 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5813 AT_file (a)->emitted_number);
5814 break;
0dbd1c74 5815 default:
5816 break;
8a8bfbe7 5817 }
5818
5819 fprintf (outfile, "\n");
5820 }
5821
5822 if (die->die_child != NULL)
5823 {
5824 print_indent += 4;
958656b7 5825 FOR_EACH_CHILD (die, c, print_die (c, outfile));
8a8bfbe7 5826 print_indent -= 4;
30ade641 5827 }
19f716e5 5828 if (print_indent == 0)
5829 fprintf (outfile, "\n");
30ade641 5830}
5831
8a8bfbe7 5832/* Print the contents of the source code line number correspondence table.
5833 This routine is a debugging aid only. */
ec1e49cc 5834
8a8bfbe7 5835static void
8ec3a57b 5836print_dwarf_line_table (FILE *outfile)
30ade641 5837{
19cb6b50 5838 unsigned i;
5839 dw_line_info_ref line_info;
8a8bfbe7 5840
5841 fprintf (outfile, "\n\nDWARF source line information\n");
8c3f468d 5842 for (i = 1; i < line_info_table_in_use; i++)
30ade641 5843 {
8a8bfbe7 5844 line_info = &line_info_table[i];
69278c24 5845 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5846 line_info->dw_file_num,
5847 line_info->dw_line_num);
30ade641 5848 }
8a8bfbe7 5849
5850 fprintf (outfile, "\n\n");
7524eb42 5851}
5852
8a8bfbe7 5853/* Print the information collected for a given DIE. */
5854
5855void
8ec3a57b 5856debug_dwarf_die (dw_die_ref die)
8a8bfbe7 5857{
5858 print_die (die, stderr);
5859}
5860
5861/* Print all DWARF information collected for the compilation unit.
5862 This routine is a debugging aid only. */
5863
5864void
8ec3a57b 5865debug_dwarf (void)
8a8bfbe7 5866{
5867 print_indent = 0;
5868 print_die (comp_unit_die, stderr);
985956c1 5869 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5870 print_dwarf_line_table (stderr);
8a8bfbe7 5871}
5872\f
8c3f468d 5873/* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5874 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5875 DIE that marks the start of the DIEs for this include file. */
19f716e5 5876
5877static dw_die_ref
8ec3a57b 5878push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
19f716e5 5879{
5880 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5881 dw_die_ref new_unit = gen_compile_unit_die (filename);
8c3f468d 5882
19f716e5 5883 new_unit->die_sib = old_unit;
5884 return new_unit;
5885}
5886
5887/* Close an include-file CU and reopen the enclosing one. */
5888
5889static dw_die_ref
8ec3a57b 5890pop_compile_unit (dw_die_ref old_unit)
19f716e5 5891{
5892 dw_die_ref new_unit = old_unit->die_sib;
8c3f468d 5893
19f716e5 5894 old_unit->die_sib = NULL;
5895 return new_unit;
5896}
5897
8c3f468d 5898#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
19f716e5 5900
5901/* Calculate the checksum of a location expression. */
5902
5903static inline void
8ec3a57b 5904loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
19f716e5 5905{
8c3f468d 5906 CHECKSUM (loc->dw_loc_opc);
5907 CHECKSUM (loc->dw_loc_oprnd1);
5908 CHECKSUM (loc->dw_loc_oprnd2);
19f716e5 5909}
5910
5911/* Calculate the checksum of an attribute. */
5912
5913static void
8ec3a57b 5914attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
19f716e5 5915{
5916 dw_loc_descr_ref loc;
5917 rtx r;
5918
8c3f468d 5919 CHECKSUM (at->dw_attr);
19f716e5 5920
69278c24 5921 /* We don't care that this was compiled with a different compiler
5922 snapshot; if the output is the same, that's what matters. */
5923 if (at->dw_attr == DW_AT_producer)
19f716e5 5924 return;
5925
5926 switch (AT_class (at))
5927 {
5928 case dw_val_class_const:
8c3f468d 5929 CHECKSUM (at->dw_attr_val.v.val_int);
19f716e5 5930 break;
5931 case dw_val_class_unsigned_const:
8c3f468d 5932 CHECKSUM (at->dw_attr_val.v.val_unsigned);
19f716e5 5933 break;
5934 case dw_val_class_long_long:
8c3f468d 5935 CHECKSUM (at->dw_attr_val.v.val_long_long);
19f716e5 5936 break;
1b6ad376 5937 case dw_val_class_vec:
5938 CHECKSUM (at->dw_attr_val.v.val_vec);
19f716e5 5939 break;
5940 case dw_val_class_flag:
8c3f468d 5941 CHECKSUM (at->dw_attr_val.v.val_flag);
19f716e5 5942 break;
19f716e5 5943 case dw_val_class_str:
8c3f468d 5944 CHECKSUM_STRING (AT_string (at));
19f716e5 5945 break;
a36145ca 5946
19f716e5 5947 case dw_val_class_addr:
5948 r = AT_addr (at);
7bd4f6b6 5949 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5950 CHECKSUM_STRING (XSTR (r, 0));
19f716e5 5951 break;
5952
a36145ca 5953 case dw_val_class_offset:
8c3f468d 5954 CHECKSUM (at->dw_attr_val.v.val_offset);
a36145ca 5955 break;
5956
19f716e5 5957 case dw_val_class_loc:
5958 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5959 loc_checksum (loc, ctx);
5960 break;
5961
5962 case dw_val_class_die_ref:
51e8c210 5963 die_checksum (AT_ref (at), ctx, mark);
5964 break;
19f716e5 5965
5966 case dw_val_class_fde_ref:
5967 case dw_val_class_lbl_id:
d08d29c0 5968 case dw_val_class_lineptr:
5969 case dw_val_class_macptr:
a36145ca 5970 break;
19f716e5 5971
69278c24 5972 case dw_val_class_file:
5973 CHECKSUM_STRING (AT_file (at)->filename);
5974 break;
5975
19f716e5 5976 default:
5977 break;
5978 }
5979}
5980
5981/* Calculate the checksum of a DIE. */
5982
5983static void
8ec3a57b 5984die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
19f716e5 5985{
5986 dw_die_ref c;
5987 dw_attr_ref a;
6f56c055 5988 unsigned ix;
19f716e5 5989
51e8c210 5990 /* To avoid infinite recursion. */
5991 if (die->die_mark)
5992 {
5993 CHECKSUM (die->die_mark);
5994 return;
5995 }
5996 die->die_mark = ++(*mark);
5997
8c3f468d 5998 CHECKSUM (die->die_tag);
19f716e5 5999
6f56c055 6000 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
51e8c210 6001 attr_checksum (a, ctx, mark);
19f716e5 6002
958656b7 6003 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
19f716e5 6004}
6005
8c3f468d 6006#undef CHECKSUM
6007#undef CHECKSUM_STRING
19f716e5 6008
51e8c210 6009/* Do the location expressions look same? */
6010static inline int
8ec3a57b 6011same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
51e8c210 6012{
6013 return loc1->dw_loc_opc == loc2->dw_loc_opc
6014 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6015 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6016}
6017
6018/* Do the values look the same? */
6019static int
8ec3a57b 6020same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
51e8c210 6021{
6022 dw_loc_descr_ref loc1, loc2;
6023 rtx r1, r2;
51e8c210 6024
6025 if (v1->val_class != v2->val_class)
6026 return 0;
6027
6028 switch (v1->val_class)
6029 {
6030 case dw_val_class_const:
6031 return v1->v.val_int == v2->v.val_int;
6032 case dw_val_class_unsigned_const:
6033 return v1->v.val_unsigned == v2->v.val_unsigned;
6034 case dw_val_class_long_long:
6035 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
c83a163c 6036 && v1->v.val_long_long.low == v2->v.val_long_long.low;
1b6ad376 6037 case dw_val_class_vec:
6038 if (v1->v.val_vec.length != v2->v.val_vec.length
6039 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6040 return 0;
6041 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6042 v1->v.val_vec.length * v1->v.val_vec.elt_size))
51e8c210 6043 return 0;
51e8c210 6044 return 1;
6045 case dw_val_class_flag:
6046 return v1->v.val_flag == v2->v.val_flag;
6047 case dw_val_class_str:
573aba85 6048 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
51e8c210 6049
6050 case dw_val_class_addr:
6051 r1 = v1->v.val_addr;
6052 r2 = v2->v.val_addr;
6053 if (GET_CODE (r1) != GET_CODE (r2))
6054 return 0;
7bd4f6b6 6055 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6056 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
51e8c210 6057
6058 case dw_val_class_offset:
6059 return v1->v.val_offset == v2->v.val_offset;
6060
6061 case dw_val_class_loc:
6062 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6063 loc1 && loc2;
6064 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6065 if (!same_loc_p (loc1, loc2, mark))
6066 return 0;
6067 return !loc1 && !loc2;
6068
6069 case dw_val_class_die_ref:
6070 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071
6072 case dw_val_class_fde_ref:
6073 case dw_val_class_lbl_id:
d08d29c0 6074 case dw_val_class_lineptr:
6075 case dw_val_class_macptr:
51e8c210 6076 return 1;
6077
69278c24 6078 case dw_val_class_file:
6079 return v1->v.val_file == v2->v.val_file;
6080
51e8c210 6081 default:
6082 return 1;
6083 }
6084}
6085
6086/* Do the attributes look the same? */
6087
6088static int
8ec3a57b 6089same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
51e8c210 6090{
6091 if (at1->dw_attr != at2->dw_attr)
6092 return 0;
6093
69278c24 6094 /* We don't care that this was compiled with a different compiler
6095 snapshot; if the output is the same, that's what matters. */
6096 if (at1->dw_attr == DW_AT_producer)
51e8c210 6097 return 1;
6098
6099 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6100}
6101
6102/* Do the dies look the same? */
6103
6104static int
8ec3a57b 6105same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
51e8c210 6106{
6107 dw_die_ref c1, c2;
6f56c055 6108 dw_attr_ref a1;
6109 unsigned ix;
51e8c210 6110
6111 /* To avoid infinite recursion. */
6112 if (die1->die_mark)
6113 return die1->die_mark == die2->die_mark;
6114 die1->die_mark = die2->die_mark = ++(*mark);
6115
6116 if (die1->die_tag != die2->die_tag)
6117 return 0;
6118
6f56c055 6119 if (VEC_length (dw_attr_node, die1->die_attr)
6120 != VEC_length (dw_attr_node, die2->die_attr))
51e8c210 6121 return 0;
6f56c055 6122
6123 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6124 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6125 return 0;
51e8c210 6126
958656b7 6127 c1 = die1->die_child;
6128 c2 = die2->die_child;
6129 if (! c1)
6130 {
6131 if (c2)
6132 return 0;
6133 }
6134 else
6135 for (;;)
6136 {
6137 if (!same_die_p (c1, c2, mark))
6138 return 0;
6139 c1 = c1->die_sib;
6140 c2 = c2->die_sib;
6141 if (c1 == die1->die_child)
6142 {
6143 if (c2 == die2->die_child)
6144 break;
6145 else
6146 return 0;
6147 }
6148 }
51e8c210 6149
6150 return 1;
6151}
6152
6153/* Do the dies look the same? Wrapper around same_die_p. */
6154
6155static int
8ec3a57b 6156same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
51e8c210 6157{
6158 int mark = 0;
6159 int ret = same_die_p (die1, die2, &mark);
6160
6161 unmark_all_dies (die1);
6162 unmark_all_dies (die2);
6163
6164 return ret;
6165}
6166
19f716e5 6167/* The prefix to attach to symbols on DIEs in the current comdat debug
6168 info section. */
6169static char *comdat_symbol_id;
6170
6171/* The index of the current symbol within the current comdat CU. */
6172static unsigned int comdat_symbol_number;
6173
6174/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175 children, and set comdat_symbol_id accordingly. */
6176
6177static void
8ec3a57b 6178compute_section_prefix (dw_die_ref unit_die)
19f716e5 6179{
51e8c210 6180 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6181 const char *base = die_name ? lbasename (die_name) : "anonymous";
f0af5a88 6182 char *name = alloca (strlen (base) + 64);
90f973ed 6183 char *p;
51e8c210 6184 int i, mark;
19f716e5 6185 unsigned char checksum[16];
6186 struct md5_ctx ctx;
6187
90f973ed 6188 /* Compute the checksum of the DIE, then append part of it as hex digits to
6189 the name filename of the unit. */
6190
19f716e5 6191 md5_init_ctx (&ctx);
51e8c210 6192 mark = 0;
6193 die_checksum (unit_die, &ctx, &mark);
6194 unmark_all_dies (unit_die);
19f716e5 6195 md5_finish_ctx (&ctx, checksum);
6196
93d164ee 6197 sprintf (name, "%s.", base);
19f716e5 6198 clean_symbol_name (name);
6199
8c3f468d 6200 p = name + strlen (name);
6201 for (i = 0; i < 4; i++)
6202 {
6203 sprintf (p, "%.2x", checksum[i]);
6204 p += 2;
6205 }
19f716e5 6206
6207 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6208 comdat_symbol_number = 0;
6209}
6210
90f973ed 6211/* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
19f716e5 6212
6213static int
8ec3a57b 6214is_type_die (dw_die_ref die)
19f716e5 6215{
6216 switch (die->die_tag)
6217 {
6218 case DW_TAG_array_type:
6219 case DW_TAG_class_type:
6220 case DW_TAG_enumeration_type:
6221 case DW_TAG_pointer_type:
6222 case DW_TAG_reference_type:
6223 case DW_TAG_string_type:
6224 case DW_TAG_structure_type:
6225 case DW_TAG_subroutine_type:
6226 case DW_TAG_union_type:
6227 case DW_TAG_ptr_to_member_type:
6228 case DW_TAG_set_type:
6229 case DW_TAG_subrange_type:
6230 case DW_TAG_base_type:
6231 case DW_TAG_const_type:
6232 case DW_TAG_file_type:
6233 case DW_TAG_packed_type:
6234 case DW_TAG_volatile_type:
51e8c210 6235 case DW_TAG_typedef:
19f716e5 6236 return 1;
6237 default:
6238 return 0;
6239 }
6240}
6241
6242/* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243 Basically, we want to choose the bits that are likely to be shared between
6244 compilations (types) and leave out the bits that are specific to individual
6245 compilations (functions). */
6246
6247static int
8ec3a57b 6248is_comdat_die (dw_die_ref c)
19f716e5 6249{
8c3f468d 6250 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251 we do for stabs. The advantage is a greater likelihood of sharing between
6252 objects that don't include headers in the same order (and therefore would
6253 put the base types in a different comdat). jason 8/28/00 */
6254
19f716e5 6255 if (c->die_tag == DW_TAG_base_type)
6256 return 0;
6257
6258 if (c->die_tag == DW_TAG_pointer_type
6259 || c->die_tag == DW_TAG_reference_type
6260 || c->die_tag == DW_TAG_const_type
6261 || c->die_tag == DW_TAG_volatile_type)
6262 {
6263 dw_die_ref t = get_AT_ref (c, DW_AT_type);
8c3f468d 6264
19f716e5 6265 return t ? is_comdat_die (t) : 0;
6266 }
19f716e5 6267
6268 return is_type_die (c);
6269}
6270
6271/* Returns 1 iff C is the sort of DIE that might be referred to from another
6272 compilation unit. */
6273
6274static int
8ec3a57b 6275is_symbol_die (dw_die_ref c)
19f716e5 6276{
8c3f468d 6277 return (is_type_die (c)
bc70bd5e 6278 || (get_AT (c, DW_AT_declaration)
8462b107 6279 && !get_AT (c, DW_AT_specification))
6280 || c->die_tag == DW_TAG_namespace);
19f716e5 6281}
6282
6283static char *
8ec3a57b 6284gen_internal_sym (const char *prefix)
19f716e5 6285{
6286 char buf[256];
8c3f468d 6287
4c21a22f 6288 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
19f716e5 6289 return xstrdup (buf);
6290}
6291
6292/* Assign symbols to all worthy DIEs under DIE. */
6293
6294static void
8ec3a57b 6295assign_symbol_names (dw_die_ref die)
19f716e5 6296{
19cb6b50 6297 dw_die_ref c;
19f716e5 6298
6299 if (is_symbol_die (die))
6300 {
6301 if (comdat_symbol_id)
6302 {
6303 char *p = alloca (strlen (comdat_symbol_id) + 64);
8c3f468d 6304
19f716e5 6305 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6306 comdat_symbol_id, comdat_symbol_number++);
6307 die->die_symbol = xstrdup (p);
6308 }
6309 else
4c21a22f 6310 die->die_symbol = gen_internal_sym ("LDIE");
19f716e5 6311 }
6312
958656b7 6313 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
19f716e5 6314}
6315
51e8c210 6316struct cu_hash_table_entry
6317{
6318 dw_die_ref cu;
6319 unsigned min_comdat_num, max_comdat_num;
6320 struct cu_hash_table_entry *next;
6321};
6322
6323/* Routines to manipulate hash table of CUs. */
6324static hashval_t
8ec3a57b 6325htab_cu_hash (const void *of)
51e8c210 6326{
6327 const struct cu_hash_table_entry *entry = of;
6328
6329 return htab_hash_string (entry->cu->die_symbol);
6330}
6331
6332static int
8ec3a57b 6333htab_cu_eq (const void *of1, const void *of2)
51e8c210 6334{
6335 const struct cu_hash_table_entry *entry1 = of1;
6336 const struct die_struct *entry2 = of2;
6337
6338 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6339}
6340
6341static void
8ec3a57b 6342htab_cu_del (void *what)
51e8c210 6343{
6344 struct cu_hash_table_entry *next, *entry = what;
6345
6346 while (entry)
6347 {
6348 next = entry->next;
6349 free (entry);
6350 entry = next;
6351 }
6352}
6353
6354/* Check whether we have already seen this CU and set up SYM_NUM
6355 accordingly. */
6356static int
8ec3a57b 6357check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
51e8c210 6358{
6359 struct cu_hash_table_entry dummy;
6360 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361
6362 dummy.max_comdat_num = 0;
6363
6364 slot = (struct cu_hash_table_entry **)
6365 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6366 INSERT);
6367 entry = *slot;
6368
6369 for (; entry; last = entry, entry = entry->next)
6370 {
6371 if (same_die_p_wrap (cu, entry->cu))
6372 break;
6373 }
6374
6375 if (entry)
6376 {
6377 *sym_num = entry->min_comdat_num;
6378 return 1;
6379 }
6380
4c36ffe6 6381 entry = XCNEW (struct cu_hash_table_entry);
51e8c210 6382 entry->cu = cu;
6383 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6384 entry->next = *slot;
6385 *slot = entry;
6386
6387 return 0;
6388}
6389
6390/* Record SYM_NUM to record of CU in HTABLE. */
6391static void
8ec3a57b 6392record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
51e8c210 6393{
6394 struct cu_hash_table_entry **slot, *entry;
6395
6396 slot = (struct cu_hash_table_entry **)
6397 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6398 NO_INSERT);
6399 entry = *slot;
6400
6401 entry->max_comdat_num = sym_num;
6402}
6403
19f716e5 6404/* Traverse the DIE (which is always comp_unit_die), and set up
6405 additional compilation units for each of the include files we see
6406 bracketed by BINCL/EINCL. */
6407
6408static void
8ec3a57b 6409break_out_includes (dw_die_ref die)
19f716e5 6410{
958656b7 6411 dw_die_ref c;
19cb6b50 6412 dw_die_ref unit = NULL;
51e8c210 6413 limbo_die_node *node, **pnode;
6414 htab_t cu_hash_table;
19f716e5 6415
958656b7 6416 c = die->die_child;
6417 if (c) do {
6418 dw_die_ref prev = c;
6419 c = c->die_sib;
6420 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6421 || (unit && is_comdat_die (c)))
6422 {
6423 dw_die_ref next = c->die_sib;
6424
6425 /* This DIE is for a secondary CU; remove it from the main one. */
6426 remove_child_with_prev (c, prev);
6427
6428 if (c->die_tag == DW_TAG_GNU_BINCL)
6429 unit = push_new_compile_unit (unit, c);
6430 else if (c->die_tag == DW_TAG_GNU_EINCL)
6431 unit = pop_compile_unit (unit);
6432 else
6433 add_child_die (unit, c);
6434 c = next;
6435 if (c == die->die_child)
6436 break;
6437 }
6438 } while (c != die->die_child);
19f716e5 6439
6440#if 0
6441 /* We can only use this in debugging, since the frontend doesn't check
ac02093f 6442 to make sure that we leave every include file we enter. */
7bd4f6b6 6443 gcc_assert (!unit);
19f716e5 6444#endif
6445
6446 assign_symbol_names (die);
51e8c210 6447 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6448 for (node = limbo_die_list, pnode = &limbo_die_list;
6449 node;
6450 node = node->next)
19f716e5 6451 {
51e8c210 6452 int is_dupl;
6453
19f716e5 6454 compute_section_prefix (node->die);
51e8c210 6455 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6456 &comdat_symbol_number);
19f716e5 6457 assign_symbol_names (node->die);
51e8c210 6458 if (is_dupl)
6459 *pnode = node->next;
6460 else
c83a163c 6461 {
51e8c210 6462 pnode = &node->next;
6463 record_comdat_symbol_number (node->die, cu_hash_table,
6464 comdat_symbol_number);
6465 }
19f716e5 6466 }
51e8c210 6467 htab_delete (cu_hash_table);
19f716e5 6468}
6469
6470/* Traverse the DIE and add a sibling attribute if it may have the
6471 effect of speeding up access to siblings. To save some space,
6472 avoid generating sibling attributes for DIE's without children. */
6473
6474static void
8ec3a57b 6475add_sibling_attributes (dw_die_ref die)
19f716e5 6476{
19cb6b50 6477 dw_die_ref c;
19f716e5 6478
958656b7 6479 if (! die->die_child)
6480 return;
6481
6482 if (die->die_parent && die != die->die_parent->die_child)
4b72e226 6483 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484
958656b7 6485 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
4b72e226 6486}
6487
8c3f468d 6488/* Output all location lists for the DIE and its children. */
6489
4c21a22f 6490static void
8ec3a57b 6491output_location_lists (dw_die_ref die)
4c21a22f 6492{
6493 dw_die_ref c;
6f56c055 6494 dw_attr_ref a;
6495 unsigned ix;
8c3f468d 6496
6f56c055 6497 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6498 if (AT_class (a) == dw_val_class_loc_list)
6499 output_loc_list (AT_loc_list (a));
8c3f468d 6500
958656b7 6501 FOR_EACH_CHILD (die, c, output_location_lists (c));
4c21a22f 6502}
bc70bd5e 6503
8c3f468d 6504/* The format of each DIE (and its attribute value pairs) is encoded in an
6505 abbreviation table. This routine builds the abbreviation table and assigns
6506 a unique abbreviation id for each abbreviation entry. The children of each
6507 die are visited recursively. */
4b72e226 6508
6509static void
8ec3a57b 6510build_abbrev_table (dw_die_ref die)
4b72e226 6511{
19cb6b50 6512 unsigned long abbrev_id;
6513 unsigned int n_alloc;
6514 dw_die_ref c;
6f56c055 6515 dw_attr_ref a;
6516 unsigned ix;
19f716e5 6517
6518 /* Scan the DIE references, and mark as external any that refer to
eabb26f3 6519 DIEs from other CUs (i.e. those which are not marked). */
6f56c055 6520 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6521 if (AT_class (a) == dw_val_class_die_ref
6522 && AT_ref (a)->die_mark == 0)
8c3f468d 6523 {
6f56c055 6524 gcc_assert (AT_ref (a)->die_symbol);
8c3f468d 6525
6f56c055 6526 set_AT_ref_external (a, 1);
8c3f468d 6527 }
19f716e5 6528
4b72e226 6529 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 {
19cb6b50 6531 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6f56c055 6532 dw_attr_ref die_a, abbrev_a;
6533 unsigned ix;
6534 bool ok = true;
6535
6536 if (abbrev->die_tag != die->die_tag)
6537 continue;
6538 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6539 continue;
6540
6541 if (VEC_length (dw_attr_node, abbrev->die_attr)
6542 != VEC_length (dw_attr_node, die->die_attr))
6543 continue;
6544
6545 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
4b72e226 6546 {
6f56c055 6547 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6548 if ((abbrev_a->dw_attr != die_a->dw_attr)
6549 || (value_format (abbrev_a) != value_format (die_a)))
4b72e226 6550 {
6f56c055 6551 ok = false;
6552 break;
4b72e226 6553 }
6554 }
6f56c055 6555 if (ok)
6556 break;
4b72e226 6557 }
6558
6559 if (abbrev_id >= abbrev_die_table_in_use)
6560 {
6561 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 {
6563 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
573aba85 6564 abbrev_die_table = ggc_realloc (abbrev_die_table,
6565 sizeof (dw_die_ref) * n_alloc);
4b72e226 6566
f0af5a88 6567 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
4b72e226 6568 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6569 abbrev_die_table_allocated = n_alloc;
6570 }
6571
6572 ++abbrev_die_table_in_use;
6573 abbrev_die_table[abbrev_id] = die;
6574 }
6575
6576 die->die_abbrev = abbrev_id;
958656b7 6577 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
4b72e226 6578}
6579\f
8a8bfbe7 6580/* Return the power-of-two number of bytes necessary to represent VALUE. */
6581
6582static int
8ec3a57b 6583constant_size (long unsigned int value)
8a8bfbe7 6584{
6585 int log;
6586
6587 if (value == 0)
6588 log = 0;
30ade641 6589 else
8a8bfbe7 6590 log = floor_log2 (value);
ec1e49cc 6591
8a8bfbe7 6592 log = log / 8;
6593 log = 1 << (floor_log2 (log) + 1);
6594
6595 return log;
30ade641 6596}
6597
8c3f468d 6598/* Return the size of a DIE as it is represented in the
8a8bfbe7 6599 .debug_info section. */
ec1e49cc 6600
8a8bfbe7 6601static unsigned long
8ec3a57b 6602size_of_die (dw_die_ref die)
30ade641 6603{
19cb6b50 6604 unsigned long size = 0;
6605 dw_attr_ref a;
6f56c055 6606 unsigned ix;
ec1e49cc 6607
8a8bfbe7 6608 size += size_of_uleb128 (die->die_abbrev);
6f56c055 6609 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
30ade641 6610 {
c90bf86c 6611 switch (AT_class (a))
30ade641 6612 {
6613 case dw_val_class_addr:
aaa408cd 6614 size += DWARF2_ADDR_SIZE;
30ade641 6615 break;
a36145ca 6616 case dw_val_class_offset:
6617 size += DWARF_OFFSET_SIZE;
6618 break;
30ade641 6619 case dw_val_class_loc:
8a8bfbe7 6620 {
19cb6b50 6621 unsigned long lsize = size_of_locs (AT_loc (a));
ec1e49cc 6622
8a8bfbe7 6623 /* Block length. */
6624 size += constant_size (lsize);
6625 size += lsize;
6626 }
30ade641 6627 break;
4c21a22f 6628 case dw_val_class_loc_list:
6629 size += DWARF_OFFSET_SIZE;
6630 break;
fe39c28c 6631 case dw_val_class_range_list:
6632 size += DWARF_OFFSET_SIZE;
6633 break;
30ade641 6634 case dw_val_class_const:
fddebe76 6635 size += size_of_sleb128 (AT_int (a));
30ade641 6636 break;
6637 case dw_val_class_unsigned_const:
c90bf86c 6638 size += constant_size (AT_unsigned (a));
30ade641 6639 break;
df78b73b 6640 case dw_val_class_long_long:
ca98eb0a 6641 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
df78b73b 6642 break;
1b6ad376 6643 case dw_val_class_vec:
6644 size += 1 + (a->dw_attr_val.v.val_vec.length
6645 * a->dw_attr_val.v.val_vec.elt_size); /* block */
30ade641 6646 break;
6647 case dw_val_class_flag:
8a8bfbe7 6648 size += 1;
30ade641 6649 break;
6650 case dw_val_class_die_ref:
1ef5e659 6651 if (AT_ref_external (a))
6652 size += DWARF2_ADDR_SIZE;
6653 else
6654 size += DWARF_OFFSET_SIZE;
30ade641 6655 break;
6656 case dw_val_class_fde_ref:
8a8bfbe7 6657 size += DWARF_OFFSET_SIZE;
30ade641 6658 break;
6659 case dw_val_class_lbl_id:
aaa408cd 6660 size += DWARF2_ADDR_SIZE;
8a8bfbe7 6661 break;
d08d29c0 6662 case dw_val_class_lineptr:
6663 case dw_val_class_macptr:
8a8bfbe7 6664 size += DWARF_OFFSET_SIZE;
6665 break;
6666 case dw_val_class_str:
80b7bd06 6667 if (AT_string_form (a) == DW_FORM_strp)
6668 size += DWARF_OFFSET_SIZE;
6669 else
573aba85 6670 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
8a8bfbe7 6671 break;
69278c24 6672 case dw_val_class_file:
6673 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6674 break;
8a8bfbe7 6675 default:
7bd4f6b6 6676 gcc_unreachable ();
8a8bfbe7 6677 }
30ade641 6678 }
8a8bfbe7 6679
6680 return size;
30ade641 6681}
6682
8c3f468d 6683/* Size the debugging information associated with a given DIE. Visits the
6684 DIE's children recursively. Updates the global variable next_die_offset, on
6685 each time through. Uses the current value of next_die_offset to update the
6686 die_offset field in each DIE. */
ec1e49cc 6687
30ade641 6688static void
8ec3a57b 6689calc_die_sizes (dw_die_ref die)
30ade641 6690{
19cb6b50 6691 dw_die_ref c;
8c3f468d 6692
8a8bfbe7 6693 die->die_offset = next_die_offset;
6694 next_die_offset += size_of_die (die);
ec1e49cc 6695
958656b7 6696 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
ec1e49cc 6697
8a8bfbe7 6698 if (die->die_child != NULL)
6699 /* Count the null byte used to terminate sibling lists. */
6700 next_die_offset += 1;
30ade641 6701}
6702
eabb26f3 6703/* Set the marks for a die and its children. We do this so
19f716e5 6704 that we know whether or not a reference needs to use FORM_ref_addr; only
eabb26f3 6705 DIEs in the same CU will be marked. We used to clear out the offset
6706 and use that as the flag, but ran into ordering problems. */
19f716e5 6707
6708static void
8ec3a57b 6709mark_dies (dw_die_ref die)
19f716e5 6710{
19cb6b50 6711 dw_die_ref c;
8c3f468d 6712
7bd4f6b6 6713 gcc_assert (!die->die_mark);
8ec3a57b 6714
eabb26f3 6715 die->die_mark = 1;
958656b7 6716 FOR_EACH_CHILD (die, c, mark_dies (c));
eabb26f3 6717}
6718
6719/* Clear the marks for a die and its children. */
6720
6721static void
8ec3a57b 6722unmark_dies (dw_die_ref die)
eabb26f3 6723{
19cb6b50 6724 dw_die_ref c;
8c3f468d 6725
7bd4f6b6 6726 gcc_assert (die->die_mark);
8ec3a57b 6727
eabb26f3 6728 die->die_mark = 0;
958656b7 6729 FOR_EACH_CHILD (die, c, unmark_dies (c));
19f716e5 6730}
6731
51e8c210 6732/* Clear the marks for a die, its children and referred dies. */
6733
6734static void
8ec3a57b 6735unmark_all_dies (dw_die_ref die)
51e8c210 6736{
6737 dw_die_ref c;
6738 dw_attr_ref a;
6f56c055 6739 unsigned ix;
51e8c210 6740
6741 if (!die->die_mark)
6742 return;
6743 die->die_mark = 0;
6744
958656b7 6745 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
51e8c210 6746
6f56c055 6747 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
51e8c210 6748 if (AT_class (a) == dw_val_class_die_ref)
6749 unmark_all_dies (AT_ref (a));
6750}
6751
8a8bfbe7 6752/* Return the size of the .debug_pubnames table generated for the
6753 compilation unit. */
6efd403b 6754
8a8bfbe7 6755static unsigned long
8ec3a57b 6756size_of_pubnames (void)
6efd403b 6757{
19cb6b50 6758 unsigned long size;
6759 unsigned i;
df78b73b 6760
8a8bfbe7 6761 size = DWARF_PUBNAMES_HEADER_SIZE;
8c3f468d 6762 for (i = 0; i < pubname_table_in_use; i++)
6efd403b 6763 {
19cb6b50 6764 pubname_ref p = &pubname_table[i];
80b7bd06 6765 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6efd403b 6766 }
6767
8a8bfbe7 6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6efd403b 6770}
6771
ad87de1e 6772/* Return the size of the information in the .debug_aranges section. */
df78b73b 6773
8a8bfbe7 6774static unsigned long
8ec3a57b 6775size_of_aranges (void)
df78b73b 6776{
19cb6b50 6777 unsigned long size;
df78b73b 6778
8a8bfbe7 6779 size = DWARF_ARANGES_HEADER_SIZE;
df78b73b 6780
8a8bfbe7 6781 /* Count the address/length pair for this compilation unit. */
aaa408cd 6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
df78b73b 6784
8a8bfbe7 6785 /* Count the two zero words used to terminated the address range table. */
aaa408cd 6786 size += 2 * DWARF2_ADDR_SIZE;
8a8bfbe7 6787 return size;
6788}
6789\f
6790/* Select the encoding of an attribute value. */
6791
6792static enum dwarf_form
8ec3a57b 6793value_format (dw_attr_ref a)
8a8bfbe7 6794{
c90bf86c 6795 switch (a->dw_attr_val.val_class)
df78b73b 6796 {
8a8bfbe7 6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
fe39c28c 6799 case dw_val_class_range_list:
a36145ca 6800 case dw_val_class_offset:
04da8de9 6801 case dw_val_class_loc_list:
7bd4f6b6 6802 switch (DWARF_OFFSET_SIZE)
6803 {
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6810 }
8a8bfbe7 6811 case dw_val_class_loc:
c90bf86c 6812 switch (constant_size (size_of_locs (AT_loc (a))))
df78b73b 6813 {
8a8bfbe7 6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
df78b73b 6818 default:
7bd4f6b6 6819 gcc_unreachable ();
df78b73b 6820 }
8a8bfbe7 6821 case dw_val_class_const:
fddebe76 6822 return DW_FORM_sdata;
8a8bfbe7 6823 case dw_val_class_unsigned_const:
c90bf86c 6824 switch (constant_size (AT_unsigned (a)))
8a8bfbe7 6825 {
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
7bd4f6b6 6835 gcc_unreachable ();
8a8bfbe7 6836 }
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
1b6ad376 6839 case dw_val_class_vec:
8a8bfbe7 6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
19f716e5 6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
8a8bfbe7 6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
d08d29c0 6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
8a8bfbe7 6854 return DW_FORM_data;
6855 case dw_val_class_str:
80b7bd06 6856 return AT_string_form (a);
69278c24 6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6859 {
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6868 }
a36145ca 6869
df78b73b 6870 default:
7bd4f6b6 6871 gcc_unreachable ();
df78b73b 6872 }
6efd403b 6873}
6874
8a8bfbe7 6875/* Output the encoding of an attribute value. */
df78b73b 6876
8a8bfbe7 6877static void
8ec3a57b 6878output_value_format (dw_attr_ref a)
6efd403b 6879{
c90bf86c 6880 enum dwarf_form form = value_format (a);
8c3f468d 6881
ca98eb0a 6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
8a8bfbe7 6883}
df78b73b 6884
8a8bfbe7 6885/* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
df78b73b 6887
8a8bfbe7 6888static void
8ec3a57b 6889output_abbrev_section (void)
8a8bfbe7 6890{
6891 unsigned long abbrev_id;
ec1e49cc 6892
8a8bfbe7 6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6894 {
19cb6b50 6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6f56c055 6896 unsigned ix;
6897 dw_attr_ref a_attr;
ec1e49cc 6898
ca98eb0a 6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
ca98eb0a 6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
ec1e49cc 6902
ca98eb0a 6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
8a8bfbe7 6907
6f56c055 6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
8a8bfbe7 6910 {
ca98eb0a 6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
c90bf86c 6913 output_value_format (a_attr);
df78b73b 6914 }
df78b73b 6915
ca98eb0a 6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
df78b73b 6918 }
dd198c78 6919
6920 /* Terminate the table. */
ca98eb0a 6921 dw2_asm_output_data (1, 0, NULL);
6efd403b 6922}
6923
19f716e5 6924/* Output a symbol we can use to refer to this DIE from another CU. */
6925
6926static inline void
8ec3a57b 6927output_die_symbol (dw_die_ref die)
19f716e5 6928{
6929 char *sym = die->die_symbol;
6930
6931 if (sym == 0)
6932 return;
6933
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
883b2e73 6938 targetm.asm_out.globalize_label (asm_out_file, sym);
8c3f468d 6939
19f716e5 6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6941}
6942
1d340a5e 6943/* Return a new location list, given the begin and end range, and the
8c3f468d 6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6946
1d340a5e 6947static inline dw_loc_list_ref
8ec3a57b 6948new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
1d340a5e 6950{
573aba85 6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
8c3f468d 6952
1d340a5e 6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
bc70bd5e 6957 if (gensym)
1d340a5e 6958 retlist->ll_symbol = gen_internal_sym ("LLST");
8c3f468d 6959
1d340a5e 6960 return retlist;
6961}
6962
2358393e 6963/* Add a location description expression to a location list. */
8c3f468d 6964
1d340a5e 6965static inline void
8ec3a57b 6966add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
1d340a5e 6969{
19cb6b50 6970 dw_loc_list_ref *d;
bc70bd5e 6971
6312a35e 6972 /* Find the end of the chain. */
1d340a5e 6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6974 ;
8c3f468d 6975
2358393e 6976 /* Add a new location list node to the list. */
1d340a5e 6977 *d = new_loc_list (descr, begin, end, section, 0);
6978}
6979
1897b881 6980static void
6981dwarf2out_switch_text_section (void)
6982{
6983 dw_fde_ref fde;
6984
792a073a 6985 gcc_assert (cfun);
4d0e931f 6986
1897b881 6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
4d0e931f 6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
dae1861f 6993 have_multiple_function_sections = true;
d8eb7025 6994
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
1897b881 6998}
6999
2358393e 7000/* Output the location list given to us. */
8c3f468d 7001
4c21a22f 7002static void
8ec3a57b 7003output_loc_list (dw_loc_list_ref list_head)
4c21a22f 7004{
8c3f468d 7005 dw_loc_list_ref curr = list_head;
7006
4c21a22f 7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
a36145ca 7008
71c23453 7009 /* Walk the location list, and output each range + expression. */
bc70bd5e 7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
4c21a22f 7011 {
fe39c28c 7012 unsigned long size;
dae1861f 7013 if (!have_multiple_function_sections)
71c23453 7014 {
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7021 }
7022 else
7023 {
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7030 }
4c21a22f 7031 size = size_of_locs (curr->expr);
bc70bd5e 7032
4c21a22f 7033 /* Output the block length for this list of location operations. */
7bd4f6b6 7034 gcc_assert (size <= 0xffff);
fe39c28c 7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7036
4c21a22f 7037 output_loc_sequence (curr->expr);
7038 }
8c3f468d 7039
71c23453 7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
ec98ecf4 7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
71c23453 7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
ec98ecf4 7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
4c21a22f 7046}
80b7bd06 7047
8a8bfbe7 7048/* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
ec1e49cc 7050
30ade641 7051static void
8ec3a57b 7052output_die (dw_die_ref die)
30ade641 7053{
19cb6b50 7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
6f56c055 7057 unsigned ix;
6efd403b 7058
19f716e5 7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7063
ca98eb0a 7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
6efd403b 7066
6f56c055 7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
30ade641 7068 {
ca98eb0a 7069 const char *name = dwarf_attr_name (a->dw_attr);
7070
c90bf86c 7071 switch (AT_class (a))
8a8bfbe7 7072 {
7073 case dw_val_class_addr:
ca98eb0a 7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
8a8bfbe7 7075 break;
30ade641 7076
a36145ca 7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7081
fe39c28c 7082 case dw_val_class_range_list:
7083 {
7084 char *p = strchr (ranges_section_label, '\0');
7085
3201d6f1 7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
fe39c28c 7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
d08d29c0 7089 debug_ranges_section, "%s", name);
fe39c28c 7090 *p = '\0';
7091 }
7092 break;
7093
8a8bfbe7 7094 case dw_val_class_loc:
c90bf86c 7095 size = size_of_locs (AT_loc (a));
ec1e49cc 7096
8a8bfbe7 7097 /* Output the block length for this list of location operations. */
ca98eb0a 7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
ec1e49cc 7099
4b72e226 7100 output_loc_sequence (AT_loc (a));
30ade641 7101 break;
8a8bfbe7 7102
7103 case dw_val_class_const:
fddebe76 7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
ca98eb0a 7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
30ade641 7108 break;
8a8bfbe7 7109
7110 case dw_val_class_unsigned_const:
ca98eb0a 7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
30ade641 7113 break;
8a8bfbe7 7114
7115 case dw_val_class_long_long:
ca98eb0a 7116 {
7117 unsigned HOST_WIDE_INT first, second;
8a8bfbe7 7118
8c3f468d 7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
bc70bd5e 7121 "%s", name);
f80d1bcd 7122
ca98eb0a 7123 if (WORDS_BIG_ENDIAN)
7124 {
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7127 }
7128 else
7129 {
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7132 }
8c3f468d 7133
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
ca98eb0a 7135 first, "long long constant");
8c3f468d 7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
ca98eb0a 7137 second, NULL);
7138 }
30ade641 7139 break;
8a8bfbe7 7140
1b6ad376 7141 case dw_val_class_vec:
57380eb2 7142 {
1b6ad376 7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
19cb6b50 7145 unsigned int i;
1b6ad376 7146 unsigned char *p;
57380eb2 7147
1b6ad376 7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7150 {
7151 elt_size /= 2;
7152 len *= 2;
7153 }
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
f80d1bcd 7159 break;
57380eb2 7160 }
8a8bfbe7 7161
7162 case dw_val_class_flag:
ca98eb0a 7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
30ade641 7164 break;
a36145ca 7165
bc70bd5e 7166 case dw_val_class_loc_list:
4c21a22f 7167 {
7168 char *sym = AT_loc_list (a)->ll_symbol;
8c3f468d 7169
7bd4f6b6 7170 gcc_assert (sym);
d08d29c0 7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
4c21a22f 7173 }
7174 break;
a36145ca 7175
8a8bfbe7 7176 case dw_val_class_die_ref:
19f716e5 7177 if (AT_ref_external (a))
ca98eb0a 7178 {
7179 char *sym = AT_ref (a)->die_symbol;
8c3f468d 7180
7bd4f6b6 7181 gcc_assert (sym);
d08d29c0 7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
ca98eb0a 7184 }
19f716e5 7185 else
7bd4f6b6 7186 {
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7190 }
30ade641 7191 break;
8a8bfbe7 7192
7193 case dw_val_class_fde_ref:
19bce576 7194 {
7195 char l1[20];
8c3f468d 7196
ca98eb0a 7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
d08d29c0 7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
19bce576 7201 }
30ade641 7202 break;
30ade641 7203
8a8bfbe7 7204 case dw_val_class_lbl_id:
19e5668c 7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
8a8bfbe7 7206 break;
ec1e49cc 7207
d08d29c0 7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7212
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
8a8bfbe7 7216 break;
30ade641 7217
8a8bfbe7 7218 case dw_val_class_str:
80b7bd06 7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
d08d29c0 7222 debug_str_section,
895ecd4c 7223 "%s: \"%s\"", name, AT_string (a));
80b7bd06 7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
8a8bfbe7 7226 break;
840b696a 7227
69278c24 7228 case dw_val_class_file:
7229 {
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7231
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7235 }
7236
8a8bfbe7 7237 default:
7bd4f6b6 7238 gcc_unreachable ();
8a8bfbe7 7239 }
8a8bfbe7 7240 }
ec1e49cc 7241
958656b7 7242 FOR_EACH_CHILD (die, c, output_die (c));
ec1e49cc 7243
8c3f468d 7244 /* Add null byte to terminate sibling list. */
8a8bfbe7 7245 if (die->die_child != NULL)
8c3f468d 7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
8a8bfbe7 7248}
ec1e49cc 7249
8a8bfbe7 7250/* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
ec1e49cc 7252
8a8bfbe7 7253static void
8ec3a57b 7254output_compilation_unit_header (void)
8a8bfbe7 7255{
65bdc57c 7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
ca98eb0a 7261 "Length of Compilation Unit Info");
ca98eb0a 7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
ca98eb0a 7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
d08d29c0 7264 debug_abbrev_section,
ca98eb0a 7265 "Offset Into Abbrev. Section");
ca98eb0a 7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
30ade641 7267}
7268
19f716e5 7269/* Output the compilation unit DIE and its children. */
7270
7271static void
8ec3a57b 7272output_comp_unit (dw_die_ref die, int output_if_empty)
19f716e5 7273{
dd9977e9 7274 const char *secname;
51e8c210 7275 char *oldsym, *tmp;
7276
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
19f716e5 7280
8c3f468d 7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
eabb26f3 7286 mark_dies (die);
7287
7288 build_abbrev_table (die);
7289
1e625a2e 7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
19f716e5 7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7293
51e8c210 7294 oldsym = die->die_symbol;
7295 if (oldsym)
19f716e5 7296 {
f0af5a88 7297 tmp = alloca (strlen (oldsym) + 24);
8c3f468d 7298
51e8c210 7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
dd9977e9 7300 secname = tmp;
19f716e5 7301 die->die_symbol = NULL;
2f14b1f9 7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
19f716e5 7303 }
7304 else
2f14b1f9 7305 switch_to_section (debug_info_section);
19f716e5 7306
7307 /* Output debugging information. */
19f716e5 7308 output_compilation_unit_header ();
7309 output_die (die);
7310
eabb26f3 7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
51e8c210 7313 if (oldsym)
7314 {
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7317 }
19f716e5 7318}
7319
7d709201 7320/* Return the DWARF2/3 pubname associated with a decl. */
59561872 7321
7795e5d1 7322static const char *
8ec3a57b 7323dwarf2_name (tree decl, int scope)
59561872 7324{
7d709201 7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
59561872 7326}
7327
dc7a29ce 7328/* Add a new entry to .debug_pubnames if appropriate. */
ec1e49cc 7329
dc7a29ce 7330static void
8ec3a57b 7331add_pubname (tree decl, dw_die_ref die)
dc7a29ce 7332{
7333 pubname_ref p;
7334
7335 if (! TREE_PUBLIC (decl))
7336 return;
7337
7338 if (pubname_table_in_use == pubname_table_allocated)
7339 {
7340 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
8c3f468d 7341 pubname_table
f0af5a88 7342 = ggc_realloc (pubname_table,
7343 (pubname_table_allocated * sizeof (pubname_entry)));
573aba85 7344 memset (pubname_table + pubname_table_in_use, 0,
7345 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
dc7a29ce 7346 }
ec1e49cc 7347
dc7a29ce 7348 p = &pubname_table[pubname_table_in_use++];
7349 p->die = die;
59561872 7350 p->name = xstrdup (dwarf2_name (decl, 1));
dc7a29ce 7351}
7352
30ade641 7353/* Output the public names table used to speed up access to externally
7354 visible names. For now, only generate entries for externally
7355 visible procedures. */
ec1e49cc 7356
30ade641 7357static void
8ec3a57b 7358output_pubnames (void)
30ade641 7359{
19cb6b50 7360 unsigned i;
7361 unsigned long pubnames_length = size_of_pubnames ();
ec1e49cc 7362
65bdc57c 7363 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7364 dw2_asm_output_data (4, 0xffffffff,
7365 "Initial length escape value indicating 64-bit DWARF extension");
ca98eb0a 7366 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7367 "Length of Public Names Info");
ca98eb0a 7368 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
ca98eb0a 7369 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
d08d29c0 7370 debug_info_section,
ca98eb0a 7371 "Offset of Compilation Unit Info");
ca98eb0a 7372 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7373 "Compilation Unit Length");
ec1e49cc 7374
8c3f468d 7375 for (i = 0; i < pubname_table_in_use; i++)
30ade641 7376 {
19cb6b50 7377 pubname_ref pub = &pubname_table[i];
ec1e49cc 7378
19f716e5 7379 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7bd4f6b6 7380 gcc_assert (pub->die->die_mark);
19f716e5 7381
ca98eb0a 7382 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7383 "DIE offset");
ec1e49cc 7384
ca98eb0a 7385 dw2_asm_output_nstring (pub->name, -1, "external name");
30ade641 7386 }
ec1e49cc 7387
ca98eb0a 7388 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
30ade641 7389}
7390
dc7a29ce 7391/* Add a new entry to .debug_aranges if appropriate. */
ec1e49cc 7392
dc7a29ce 7393static void
8ec3a57b 7394add_arange (tree decl, dw_die_ref die)
dc7a29ce 7395{
7396 if (! DECL_SECTION_NAME (decl))
7397 return;
7398
7399 if (arange_table_in_use == arange_table_allocated)
7400 {
7401 arange_table_allocated += ARANGE_TABLE_INCREMENT;
8ec3a57b 7402 arange_table = ggc_realloc (arange_table,
7403 (arange_table_allocated
573aba85 7404 * sizeof (dw_die_ref)));
7405 memset (arange_table + arange_table_in_use, 0,
7406 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
dc7a29ce 7407 }
ec1e49cc 7408
dc7a29ce 7409 arange_table[arange_table_in_use++] = die;
7410}
7411
30ade641 7412/* Output the information that goes into the .debug_aranges table.
7413 Namely, define the beginning and ending address range of the
7414 text section generated for this compilation unit. */
ec1e49cc 7415
30ade641 7416static void
8ec3a57b 7417output_aranges (void)
30ade641 7418{
19cb6b50 7419 unsigned i;
7420 unsigned long aranges_length = size_of_aranges ();
ec1e49cc 7421
65bdc57c 7422 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7423 dw2_asm_output_data (4, 0xffffffff,
7424 "Initial length escape value indicating 64-bit DWARF extension");
ca98eb0a 7425 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7426 "Length of Address Ranges Info");
ca98eb0a 7427 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
ca98eb0a 7428 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
d08d29c0 7429 debug_info_section,
ca98eb0a 7430 "Offset of Compilation Unit Info");
ca98eb0a 7431 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
ca98eb0a 7432 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
ec1e49cc 7433
e711a040 7434 /* We need to align to twice the pointer size here. */
7435 if (DWARF_ARANGES_PAD_SIZE)
7436 {
ca98eb0a 7437 /* Pad using a 2 byte words so that padding is correct for any
c83a163c 7438 pointer size. */
ca98eb0a 7439 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7440 2 * DWARF2_ADDR_SIZE);
950ae8fe 7441 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
ca98eb0a 7442 dw2_asm_output_data (2, 0, NULL);
e711a040 7443 }
ec1e49cc 7444
19e5668c 7445 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
4d0e931f 7446 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7447 text_section_label, "Length");
7448 if (flag_reorder_blocks_and_partition)
7449 {
7450 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7451 "Address");
7452 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7453 cold_text_section_label, "Length");
7454 }
ec1e49cc 7455
8c3f468d 7456 for (i = 0; i < arange_table_in_use; i++)
dc7a29ce 7457 {
2b553659 7458 dw_die_ref die = arange_table[i];
ec1e49cc 7459
19f716e5 7460 /* We shouldn't see aranges for DIEs outside of the main CU. */
7bd4f6b6 7461 gcc_assert (die->die_mark);
19f716e5 7462
2b553659 7463 if (die->die_tag == DW_TAG_subprogram)
ca98eb0a 7464 {
19e5668c 7465 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7cc7e163 7466 "Address");
ca98eb0a 7467 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7468 get_AT_low_pc (die), "Length");
7469 }
dc7a29ce 7470 else
59561872 7471 {
2b553659 7472 /* A static variable; extract the symbol from DW_AT_location.
7473 Note that this code isn't currently hit, as we only emit
7474 aranges for functions (jason 9/23/99). */
2b553659 7475 dw_attr_ref a = get_AT (die, DW_AT_location);
7476 dw_loc_descr_ref loc;
8c3f468d 7477
7bd4f6b6 7478 gcc_assert (a && AT_class (a) == dw_val_class_loc);
2b553659 7479
c90bf86c 7480 loc = AT_loc (a);
7bd4f6b6 7481 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
2b553659 7482
ca98eb0a 7483 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7484 loc->dw_loc_oprnd1.v.val_addr, "Address");
7485 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7486 get_AT_unsigned (die, DW_AT_byte_size),
7487 "Length");
59561872 7488 }
dc7a29ce 7489 }
ec1e49cc 7490
30ade641 7491 /* Output the terminator words. */
ca98eb0a 7492 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7493 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
30ade641 7494}
7495
a36145ca 7496/* Add a new entry to .debug_ranges. Return the offset at which it
7497 was placed. */
7498
7499static unsigned int
8ec3a57b 7500add_ranges (tree block)
a36145ca 7501{
7502 unsigned int in_use = ranges_table_in_use;
7503
7504 if (in_use == ranges_table_allocated)
7505 {
7506 ranges_table_allocated += RANGES_TABLE_INCREMENT;
f0af5a88 7507 ranges_table
7508 = ggc_realloc (ranges_table, (ranges_table_allocated
7509 * sizeof (struct dw_ranges_struct)));
573aba85 7510 memset (ranges_table + ranges_table_in_use, 0,
7511 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
a36145ca 7512 }
7513
7514 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7515 ranges_table_in_use = in_use + 1;
7516
7517 return in_use * 2 * DWARF2_ADDR_SIZE;
7518}
7519
7520static void
8ec3a57b 7521output_ranges (void)
a36145ca 7522{
19cb6b50 7523 unsigned i;
0d95286f 7524 static const char *const start_fmt = "Offset 0x%x";
a36145ca 7525 const char *fmt = start_fmt;
7526
8c3f468d 7527 for (i = 0; i < ranges_table_in_use; i++)
a36145ca 7528 {
7529 int block_num = ranges_table[i].block_num;
7530
7531 if (block_num)
7532 {
7533 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7534 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7535
7536 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7537 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7538
7539 /* If all code is in the text section, then the compilation
7540 unit base address defaults to DW_AT_low_pc, which is the
7541 base of the text section. */
dae1861f 7542 if (!have_multiple_function_sections)
a36145ca 7543 {
4d0e931f 7544 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7545 text_section_label,
7546 fmt, i * 2 * DWARF2_ADDR_SIZE);
7547 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7548 text_section_label, NULL);
a36145ca 7549 }
8c3f468d 7550
a36145ca 7551 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7552 compilation unit base address to zero, which allows us to
7553 use absolute addresses, and not worry about whether the
7554 target supports cross-section arithmetic. */
7555 else
7556 {
7557 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7558 fmt, i * 2 * DWARF2_ADDR_SIZE);
7559 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7560 }
7561
7562 fmt = NULL;
7563 }
7564 else
7565 {
7566 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7567 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7568 fmt = start_fmt;
7569 }
7570 }
7571}
ac02093f 7572
7573/* Data structure containing information about input files. */
7574struct file_info
7575{
69278c24 7576 const char *path; /* Complete file name. */
7577 const char *fname; /* File name part. */
ac02093f 7578 int length; /* Length of entire string. */
69278c24 7579 struct dwarf_file_data * file_idx; /* Index in input file table. */
ac02093f 7580 int dir_idx; /* Index in directory table. */
7581};
7582
7583/* Data structure containing information about directories with source
7584 files. */
7585struct dir_info
7586{
69278c24 7587 const char *path; /* Path including directory name. */
ac02093f 7588 int length; /* Path length. */
7589 int prefix; /* Index of directory entry which is a prefix. */
ac02093f 7590 int count; /* Number of files in this directory. */
7591 int dir_idx; /* Index of directory used as base. */
ac02093f 7592};
7593
7594/* Callback function for file_info comparison. We sort by looking at
7595 the directories in the path. */
5fbe2ebb 7596
ac02093f 7597static int
8ec3a57b 7598file_info_cmp (const void *p1, const void *p2)
ac02093f 7599{
7600 const struct file_info *s1 = p1;
7601 const struct file_info *s2 = p2;
7602 unsigned char *cp1;
7603 unsigned char *cp2;
7604
5fbe2ebb 7605 /* Take care of file names without directories. We need to make sure that
7606 we return consistent values to qsort since some will get confused if
7607 we return the same value when identical operands are passed in opposite
7608 orders. So if neither has a directory, return 0 and otherwise return
7609 1 or -1 depending on which one has the directory. */
7610 if ((s1->path == s1->fname || s2->path == s2->fname))
7611 return (s2->path == s2->fname) - (s1->path == s1->fname);
ac02093f 7612
7613 cp1 = (unsigned char *) s1->path;
7614 cp2 = (unsigned char *) s2->path;
7615
7616 while (1)
7617 {
7618 ++cp1;
7619 ++cp2;
5fbe2ebb 7620 /* Reached the end of the first path? If so, handle like above. */
7621 if ((cp1 == (unsigned char *) s1->fname)
7622 || (cp2 == (unsigned char *) s2->fname))
7623 return ((cp2 == (unsigned char *) s2->fname)
7624 - (cp1 == (unsigned char *) s1->fname));
ac02093f 7625
7626 /* Character of current path component the same? */
5fbe2ebb 7627 else if (*cp1 != *cp2)
ac02093f 7628 return *cp1 - *cp2;
7629 }
7630}
7631
69278c24 7632struct file_name_acquire_data
7633{
7634 struct file_info *files;
7635 int used_files;
7636 int max_files;
7637};
7638
7639/* Traversal function for the hash table. */
7640
7641static int
7642file_name_acquire (void ** slot, void *data)
7643{
7644 struct file_name_acquire_data *fnad = data;
7645 struct dwarf_file_data *d = *slot;
7646 struct file_info *fi;
7647 const char *f;
7648
7649 gcc_assert (fnad->max_files >= d->emitted_number);
7650
7651 if (! d->emitted_number)
7652 return 1;
7653
7654 gcc_assert (fnad->max_files != fnad->used_files);
7655
7656 fi = fnad->files + fnad->used_files++;
7657
7658 /* Skip all leading "./". */
7659 f = d->filename;
7660 while (f[0] == '.' && f[1] == '/')
7661 f += 2;
7662
7663 /* Create a new array entry. */
7664 fi->path = f;
7665 fi->length = strlen (f);
7666 fi->file_idx = d;
7667
7668 /* Search for the file name part. */
7669 f = strrchr (f, '/');
7670 fi->fname = f == NULL ? fi->path : f + 1;
7671 return 1;
7672}
7673
ac02093f 7674/* Output the directory table and the file name table. We try to minimize
7675 the total amount of memory needed. A heuristic is used to avoid large
7676 slowdowns with many input files. */
8c3f468d 7677
ac02093f 7678static void
8ec3a57b 7679output_file_names (void)
ac02093f 7680{
69278c24 7681 struct file_name_acquire_data fnad;
7682 int numfiles;
ac02093f 7683 struct file_info *files;
7684 struct dir_info *dirs;
7685 int *saved;
7686 int *savehere;
7687 int *backmap;
69278c24 7688 int ndirs;
ac02093f 7689 int idx_offset;
69278c24 7690 int i;
ac02093f 7691 int idx;
7692
69278c24 7693 if (!last_emitted_file)
21d1bacf 7694 {
7695 dw2_asm_output_data (1, 0, "End directory table");
7696 dw2_asm_output_data (1, 0, "End file name table");
7697 return;
7698 }
7699
69278c24 7700 numfiles = last_emitted_file->emitted_number;
ac02093f 7701
69278c24 7702 /* Allocate the various arrays we need. */
7703 files = alloca (numfiles * sizeof (struct file_info));
7704 dirs = alloca (numfiles * sizeof (struct dir_info));
ac02093f 7705
69278c24 7706 fnad.files = files;
7707 fnad.used_files = 0;
7708 fnad.max_files = numfiles;
7709 htab_traverse (file_table, file_name_acquire, &fnad);
7710 gcc_assert (fnad.used_files == fnad.max_files);
8c3f468d 7711
69278c24 7712 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
ac02093f 7713
7714 /* Find all the different directories used. */
69278c24 7715 dirs[0].path = files[0].path;
7716 dirs[0].length = files[0].fname - files[0].path;
ac02093f 7717 dirs[0].prefix = -1;
ac02093f 7718 dirs[0].count = 1;
7719 dirs[0].dir_idx = 0;
69278c24 7720 files[0].dir_idx = 0;
ac02093f 7721 ndirs = 1;
7722
69278c24 7723 for (i = 1; i < numfiles; i++)
ac02093f 7724 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7725 && memcmp (dirs[ndirs - 1].path, files[i].path,
7726 dirs[ndirs - 1].length) == 0)
7727 {
7728 /* Same directory as last entry. */
7729 files[i].dir_idx = ndirs - 1;
ac02093f 7730 ++dirs[ndirs - 1].count;
7731 }
7732 else
7733 {
69278c24 7734 int j;
ac02093f 7735
7736 /* This is a new directory. */
7737 dirs[ndirs].path = files[i].path;
7738 dirs[ndirs].length = files[i].fname - files[i].path;
ac02093f 7739 dirs[ndirs].count = 1;
7740 dirs[ndirs].dir_idx = ndirs;
ac02093f 7741 files[i].dir_idx = ndirs;
7742
7743 /* Search for a prefix. */
3740694f 7744 dirs[ndirs].prefix = -1;
8c3f468d 7745 for (j = 0; j < ndirs; j++)
3740694f 7746 if (dirs[j].length < dirs[ndirs].length
7747 && dirs[j].length > 1
7748 && (dirs[ndirs].prefix == -1
7749 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7750 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7751 dirs[ndirs].prefix = j;
ac02093f 7752
7753 ++ndirs;
7754 }
7755
8c3f468d 7756 /* Now to the actual work. We have to find a subset of the directories which
7757 allow expressing the file name using references to the directory table
7758 with the least amount of characters. We do not do an exhaustive search
7759 where we would have to check out every combination of every single
7760 possible prefix. Instead we use a heuristic which provides nearly optimal
7761 results in most cases and never is much off. */
f0af5a88 7762 saved = alloca (ndirs * sizeof (int));
7763 savehere = alloca (ndirs * sizeof (int));
ac02093f 7764
7765 memset (saved, '\0', ndirs * sizeof (saved[0]));
8c3f468d 7766 for (i = 0; i < ndirs; i++)
ac02093f 7767 {
69278c24 7768 int j;
ac02093f 7769 int total;
7770
8c3f468d 7771 /* We can always save some space for the current directory. But this
7772 does not mean it will be enough to justify adding the directory. */
ac02093f 7773 savehere[i] = dirs[i].length;
7774 total = (savehere[i] - saved[i]) * dirs[i].count;
7775
8c3f468d 7776 for (j = i + 1; j < ndirs; j++)
ac02093f 7777 {
7778 savehere[j] = 0;
ac02093f 7779 if (saved[j] < dirs[i].length)
7780 {
7781 /* Determine whether the dirs[i] path is a prefix of the
7782 dirs[j] path. */
7783 int k;
7784
3740694f 7785 k = dirs[j].prefix;
ff279357 7786 while (k != -1 && k != (int) i)
3740694f 7787 k = dirs[k].prefix;
7788
ff279357 7789 if (k == (int) i)
3740694f 7790 {
69278c24 7791 /* Yes it is. We can possibly save some memory by
3740694f 7792 writing the filenames in dirs[j] relative to
7793 dirs[i]. */
7794 savehere[j] = dirs[i].length;
7795 total += (savehere[j] - saved[j]) * dirs[j].count;
7796 }
ac02093f 7797 }
7798 }
7799
69278c24 7800 /* Check whether we can save enough to justify adding the dirs[i]
ac02093f 7801 directory. */
7802 if (total > dirs[i].length + 1)
7803 {
3740694f 7804 /* It's worthwhile adding. */
bc70bd5e 7805 for (j = i; j < ndirs; j++)
ac02093f 7806 if (savehere[j] > 0)
7807 {
7808 /* Remember how much we saved for this directory so far. */
7809 saved[j] = savehere[j];
7810
7811 /* Remember the prefix directory. */
7812 dirs[j].dir_idx = i;
7813 }
7814 }
7815 }
7816
69278c24 7817 /* Emit the directory name table. */
ac02093f 7818 idx = 1;
f9038ab4 7819 idx_offset = dirs[0].length > 0 ? 1 : 0;
8c3f468d 7820 for (i = 1 - idx_offset; i < ndirs; i++)
69278c24 7821 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7822 "Directory Entry: 0x%x", i + idx_offset);
8c3f468d 7823
ca98eb0a 7824 dw2_asm_output_data (1, 0, "End directory table");
7825
69278c24 7826 /* We have to emit them in the order of emitted_number since that's
7827 used in the debug info generation. To do this efficiently we
7828 generate a back-mapping of the indices first. */
7829 backmap = alloca (numfiles * sizeof (int));
7830 for (i = 0; i < numfiles; i++)
7831 backmap[files[i].file_idx->emitted_number - 1] = i;
ac02093f 7832
7833 /* Now write all the file names. */
69278c24 7834 for (i = 0; i < numfiles; i++)
ac02093f 7835 {
7836 int file_idx = backmap[i];
7837 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7838
ca98eb0a 7839 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
69278c24 7840 "File Entry: 0x%x", (unsigned) i + 1);
ac02093f 7841
7842 /* Include directory index. */
69278c24 7843 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
ac02093f 7844
7845 /* Modification time. */
ca98eb0a 7846 dw2_asm_output_data_uleb128 (0, NULL);
ac02093f 7847
7848 /* File length in bytes. */
ca98eb0a 7849 dw2_asm_output_data_uleb128 (0, NULL);
ac02093f 7850 }
8c3f468d 7851
ca98eb0a 7852 dw2_asm_output_data (1, 0, "End file name table");
ac02093f 7853}
7854
7855
30ade641 7856/* Output the source line number correspondence information. This
155b05dc 7857 information goes into the .debug_line section. */
ec1e49cc 7858
30ade641 7859static void
8ec3a57b 7860output_line_info (void)
30ade641 7861{
3740694f 7862 char l1[20], l2[20], p1[20], p2[20];
30ade641 7863 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7864 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
19cb6b50 7865 unsigned opc;
7866 unsigned n_op_args;
7867 unsigned long lt_index;
7868 unsigned long current_line;
7869 long line_offset;
7870 long line_delta;
7871 unsigned long current_file;
7872 unsigned long function;
ec1e49cc 7873
ca98eb0a 7874 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7875 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
3740694f 7876 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7877 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
ec1e49cc 7878
65bdc57c 7879 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7880 dw2_asm_output_data (4, 0xffffffff,
7881 "Initial length escape value indicating 64-bit DWARF extension");
ca98eb0a 7882 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7883 "Length of Source Line Info");
7884 ASM_OUTPUT_LABEL (asm_out_file, l1);
ec1e49cc 7885
ca98eb0a 7886 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
3740694f 7887 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7888 ASM_OUTPUT_LABEL (asm_out_file, p1);
ec1e49cc 7889
bfba49c6 7890 /* Define the architecture-dependent minimum instruction length (in
7891 bytes). In this implementation of DWARF, this field is used for
7892 information purposes only. Since GCC generates assembly language,
7893 we have no a priori knowledge of how many instruction bytes are
7894 generated for each source line, and therefore can use only the
7895 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7896 commands. Accordingly, we fix this as `1', which is "correct
7897 enough" for all architectures, and don't let the target override. */
7898 dw2_asm_output_data (1, 1,
ca98eb0a 7899 "Minimum Instruction Length");
bfba49c6 7900
ca98eb0a 7901 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7902 "Default is_stmt_start flag");
ca98eb0a 7903 dw2_asm_output_data (1, DWARF_LINE_BASE,
7904 "Line Base Value (Special Opcodes)");
ca98eb0a 7905 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7906 "Line Range Value (Special Opcodes)");
ca98eb0a 7907 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7908 "Special Opcode Base");
ec1e49cc 7909
8c3f468d 7910 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
30ade641 7911 {
7912 switch (opc)
7913 {
7914 case DW_LNS_advance_pc:
7915 case DW_LNS_advance_line:
7916 case DW_LNS_set_file:
7917 case DW_LNS_set_column:
7918 case DW_LNS_fixed_advance_pc:
7919 n_op_args = 1;
7920 break;
7921 default:
7922 n_op_args = 0;
7923 break;
7924 }
ca98eb0a 7925
7926 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7927 opc, n_op_args);
30ade641 7928 }
ec1e49cc 7929
ac02093f 7930 /* Write out the information about the files we use. */
7931 output_file_names ();
3740694f 7932 ASM_OUTPUT_LABEL (asm_out_file, p2);
30ade641 7933
d8488b8a 7934 /* We used to set the address register to the first location in the text
7935 section here, but that didn't accomplish anything since we already
7936 have a line note for the opening brace of the first function. */
30ade641 7937
7938 /* Generate the line number to PC correspondence table, encoded as
7939 a series of state machine operations. */
7940 current_file = 1;
7941 current_line = 1;
4d0e931f 7942
5fbee89d 7943 if (cfun && in_cold_section_p)
4d0e931f 7944 strcpy (prev_line_label, cfun->cold_section_label);
1897b881 7945 else
7946 strcpy (prev_line_label, text_section_label);
30ade641 7947 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7948 {
19cb6b50 7949 dw_line_info_ref line_info = &line_info_table[lt_index];
d8488b8a 7950
e7b3c55c 7951#if 0
7952 /* Disable this optimization for now; GDB wants to see two line notes
7953 at the beginning of a function so it can find the end of the
7954 prologue. */
7955
d8488b8a 7956 /* Don't emit anything for redundant notes. Just updating the
c83a163c 7957 address doesn't accomplish anything, because we already assume
7958 that anything after the last address is this line. */
d8488b8a 7959 if (line_info->dw_line_num == current_line
7960 && line_info->dw_file_num == current_file)
7961 continue;
e7b3c55c 7962#endif
ec1e49cc 7963
ca98eb0a 7964 /* Emit debug info for the address of the current line.
7965
7966 Unfortunately, we have little choice here currently, and must always
8c3f468d 7967 use the most general form. GCC does not know the address delta
ca98eb0a 7968 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7969 attributes which will give an upper bound on the address range. We
7970 could perhaps use length attributes to determine when it is safe to
7971 use DW_LNS_fixed_advance_pc. */
7972
d58978a6 7973 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
db998a6a 7974 if (0)
7975 {
7976 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
ca98eb0a 7977 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7978 "DW_LNS_fixed_advance_pc");
7979 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
db998a6a 7980 }
7981 else
7982 {
aaa408cd 7983 /* This can handle any delta. This takes
c83a163c 7984 4+DWARF2_ADDR_SIZE bytes. */
ca98eb0a 7985 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7986 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7987 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
19e5668c 7988 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
db998a6a 7989 }
8c3f468d 7990
db998a6a 7991 strcpy (prev_line_label, line_label);
7992
7993 /* Emit debug info for the source file of the current line, if
7994 different from the previous line. */
30ade641 7995 if (line_info->dw_file_num != current_file)
7996 {
7997 current_file = line_info->dw_file_num;
ca98eb0a 7998 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
69278c24 7999 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
30ade641 8000 }
ec1e49cc 8001
db998a6a 8002 /* Emit debug info for the current line number, choosing the encoding
8003 that uses the least amount of space. */
d8488b8a 8004 if (line_info->dw_line_num != current_line)
30ade641 8005 {
d8488b8a 8006 line_offset = line_info->dw_line_num - current_line;
8007 line_delta = line_offset - DWARF_LINE_BASE;
8008 current_line = line_info->dw_line_num;
8009 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8c3f468d 8010 /* This can handle deltas from -10 to 234, using the current
8011 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8012 takes 1 byte. */
8013 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8014 "line %lu", current_line);
d8488b8a 8015 else
8016 {
8017 /* This can handle any delta. This takes at least 4 bytes,
8018 depending on the value being encoded. */
ca98eb0a 8019 dw2_asm_output_data (1, DW_LNS_advance_line,
8020 "advance to line %lu", current_line);
8021 dw2_asm_output_data_sleb128 (line_offset, NULL);
8022 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
d8488b8a 8023 }
6efd403b 8024 }
8025 else
8c3f468d 8026 /* We still need to start a new row, so output a copy insn. */
8027 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
30ade641 8028 }
8029
db998a6a 8030 /* Emit debug info for the address of the end of the function. */
8031 if (0)
8032 {
ca98eb0a 8033 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8034 "DW_LNS_fixed_advance_pc");
8035 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
db998a6a 8036 }
8037 else
8038 {
ca98eb0a 8039 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8040 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8041 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
19e5668c 8042 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
db998a6a 8043 }
6ed29fb8 8044
ca98eb0a 8045 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8046 dw2_asm_output_data_uleb128 (1, NULL);
8047 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
c05d7491 8048
8049 function = 0;
8050 current_file = 1;
8051 current_line = 1;
f80d1bcd 8052 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
c05d7491 8053 {
19cb6b50 8054 dw_separate_line_info_ref line_info
c05d7491 8055 = &separate_line_info_table[lt_index];
ec1e49cc 8056
e7b3c55c 8057#if 0
d8488b8a 8058 /* Don't emit anything for redundant notes. */
8059 if (line_info->dw_line_num == current_line
8060 && line_info->dw_file_num == current_file
8061 && line_info->function == function)
8062 goto cont;
e7b3c55c 8063#endif
d8488b8a 8064
db998a6a 8065 /* Emit debug info for the address of the current line. If this is
8066 a new function, or the first line of a function, then we need
8067 to handle it differently. */
d58978a6 8068 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8069 lt_index);
c05d7491 8070 if (function != line_info->function)
8071 {
8072 function = line_info->function;
ec1e49cc 8073
2358393e 8074 /* Set the address register to the first line in the function. */
ca98eb0a 8075 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8076 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8077 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
19e5668c 8078 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
c05d7491 8079 }
8080 else
8081 {
db998a6a 8082 /* ??? See the DW_LNS_advance_pc comment above. */
8083 if (0)
8084 {
ca98eb0a 8085 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8086 "DW_LNS_fixed_advance_pc");
8087 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
db998a6a 8088 }
8089 else
8090 {
ca98eb0a 8091 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8092 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8093 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
19e5668c 8094 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
db998a6a 8095 }
c05d7491 8096 }
8c3f468d 8097
db998a6a 8098 strcpy (prev_line_label, line_label);
ec1e49cc 8099
db998a6a 8100 /* Emit debug info for the source file of the current line, if
8101 different from the previous line. */
c05d7491 8102 if (line_info->dw_file_num != current_file)
8103 {
8104 current_file = line_info->dw_file_num;
ca98eb0a 8105 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
69278c24 8106 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
c05d7491 8107 }
ec1e49cc 8108
db998a6a 8109 /* Emit debug info for the current line number, choosing the encoding
8110 that uses the least amount of space. */
c05d7491 8111 if (line_info->dw_line_num != current_line)
8112 {
8113 line_offset = line_info->dw_line_num - current_line;
8114 line_delta = line_offset - DWARF_LINE_BASE;
8115 current_line = line_info->dw_line_num;
8116 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
ca98eb0a 8117 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8118 "line %lu", current_line);
c05d7491 8119 else
8120 {
ca98eb0a 8121 dw2_asm_output_data (1, DW_LNS_advance_line,
8122 "advance to line %lu", current_line);
8123 dw2_asm_output_data_sleb128 (line_offset, NULL);
8124 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
c05d7491 8125 }
8126 }
d8488b8a 8127 else
ca98eb0a 8128 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
ec1e49cc 8129
e7b3c55c 8130#if 0
d8488b8a 8131 cont:
e7b3c55c 8132#endif
8c3f468d 8133
8134 lt_index++;
c05d7491 8135
8136 /* If we're done with a function, end its sequence. */
8137 if (lt_index == separate_line_info_table_in_use
8138 || separate_line_info_table[lt_index].function != function)
8139 {
8140 current_file = 1;
8141 current_line = 1;
ec1e49cc 8142
db998a6a 8143 /* Emit debug info for the address of the end of the function. */
d58978a6 8144 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
db998a6a 8145 if (0)
8146 {
ca98eb0a 8147 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8148 "DW_LNS_fixed_advance_pc");
8149 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
db998a6a 8150 }
8151 else
8152 {
ca98eb0a 8153 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8154 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8155 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
19e5668c 8156 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
db998a6a 8157 }
c05d7491 8158
8159 /* Output the marker for the end of this sequence. */
ca98eb0a 8160 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8161 dw2_asm_output_data_uleb128 (1, NULL);
8162 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
c05d7491 8163 }
8164 }
d6d10a79 8165
8166 /* Output the marker for the end of the line number info. */
ca98eb0a 8167 ASM_OUTPUT_LABEL (asm_out_file, l2);
30ade641 8168}
8169\f
30ade641 8170/* Given a pointer to a tree node for some base type, return a pointer to
8171 a DIE that describes the given type.
8172
8173 This routine must only be called for GCC type nodes that correspond to
8174 Dwarf base (fundamental) types. */
ec1e49cc 8175
30ade641 8176static dw_die_ref
8ec3a57b 8177base_type_die (tree type)
30ade641 8178{
19cb6b50 8179 dw_die_ref base_type_result;
19cb6b50 8180 enum dwarf_type encoding;
30ade641 8181
8c3f468d 8182 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
30ade641 8183 return 0;
8184
8185 switch (TREE_CODE (type))
8186 {
30ade641 8187 case INTEGER_TYPE:
e026e576 8188 if (TYPE_STRING_FLAG (type))
30ade641 8189 {
78a8ed03 8190 if (TYPE_UNSIGNED (type))
e026e576 8191 encoding = DW_ATE_unsigned_char;
5b67860b 8192 else
e026e576 8193 encoding = DW_ATE_signed_char;
30ade641 8194 }
e026e576 8195 else if (TYPE_UNSIGNED (type))
8196 encoding = DW_ATE_unsigned;
5b67860b 8197 else
e026e576 8198 encoding = DW_ATE_signed;
30ade641 8199 break;
8200
8201 case REAL_TYPE:
069b07bf 8202 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8203 encoding = DW_ATE_decimal_float;
8204 else
8205 encoding = DW_ATE_float;
30ade641 8206 break;
8207
5b5abf88 8208 /* Dwarf2 doesn't know anything about complex ints, so use
8209 a user defined type for it. */
30ade641 8210 case COMPLEX_TYPE:
5b5abf88 8211 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8212 encoding = DW_ATE_complex_float;
8213 else
8214 encoding = DW_ATE_lo_user;
30ade641 8215 break;
8216
8217 case BOOLEAN_TYPE:
5b67860b 8218 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8219 encoding = DW_ATE_boolean;
30ade641 8220 break;
8221
8222 default:
8c3f468d 8223 /* No other TREE_CODEs are Dwarf fundamental types. */
7bd4f6b6 8224 gcc_unreachable ();
30ade641 8225 }
8226
15cfae4e 8227 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
155b05dc 8228
1524656f 8229 /* This probably indicates a bug. */
8230 if (! TYPE_NAME (type))
8231 add_name_attribute (base_type_result, "__unknown__");
8232
5b67860b 8233 add_AT_unsigned (base_type_result, DW_AT_byte_size,
21638aad 8234 int_size_in_bytes (type));
5b67860b 8235 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
30ade641 8236
8237 return base_type_result;
8238}
8239
8240/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8241 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8242 a given type is generally the same as the given type, except that if the
8243 given type is a pointer or reference type, then the root type of the given
8244 type is the root type of the "basis" type for the pointer or reference
8245 type. (This definition of the "root" type is recursive.) Also, the root
8246 type of a `const' qualified type or a `volatile' qualified type is the
8247 root type of the given type without the qualifiers. */
ec1e49cc 8248
30ade641 8249static tree
8ec3a57b 8250root_type (tree type)
30ade641 8251{
8252 if (TREE_CODE (type) == ERROR_MARK)
8253 return error_mark_node;
8254
8255 switch (TREE_CODE (type))
8256 {
8257 case ERROR_MARK:
8258 return error_mark_node;
8259
8260 case POINTER_TYPE:
8261 case REFERENCE_TYPE:
8262 return type_main_variant (root_type (TREE_TYPE (type)));
8263
8264 default:
8265 return type_main_variant (type);
8266 }
8267}
8268
6ef828f9 8269/* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
30ade641 8270 given input type is a Dwarf "fundamental" type. Otherwise return null. */
ec1e49cc 8271
8272static inline int
8ec3a57b 8273is_base_type (tree type)
30ade641 8274{
8275 switch (TREE_CODE (type))
8276 {
8277 case ERROR_MARK:
8278 case VOID_TYPE:
8279 case INTEGER_TYPE:
8280 case REAL_TYPE:
8281 case COMPLEX_TYPE:
8282 case BOOLEAN_TYPE:
30ade641 8283 return 1;
8284
30ade641 8285 case ARRAY_TYPE:
8286 case RECORD_TYPE:
8287 case UNION_TYPE:
8288 case QUAL_UNION_TYPE:
8289 case ENUMERAL_TYPE:
8290 case FUNCTION_TYPE:
8291 case METHOD_TYPE:
8292 case POINTER_TYPE:
8293 case REFERENCE_TYPE:
30ade641 8294 case OFFSET_TYPE:
8295 case LANG_TYPE:
4405d230 8296 case VECTOR_TYPE:
30ade641 8297 return 0;
8298
8299 default:
7bd4f6b6 8300 gcc_unreachable ();
30ade641 8301 }
ec1e49cc 8302
30ade641 8303 return 0;
8304}
8305
805e22b2 8306/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8307 node, return the size in bits for the type if it is a constant, or else
8308 return the alignment for the type if the type's size is not constant, or
8309 else return BITS_PER_WORD if the type actually turns out to be an
8310 ERROR_MARK node. */
8311
8312static inline unsigned HOST_WIDE_INT
8ec3a57b 8313simple_type_size_in_bits (tree type)
805e22b2 8314{
805e22b2 8315 if (TREE_CODE (type) == ERROR_MARK)
8316 return BITS_PER_WORD;
8317 else if (TYPE_SIZE (type) == NULL_TREE)
8318 return 0;
8319 else if (host_integerp (TYPE_SIZE (type), 1))
8320 return tree_low_cst (TYPE_SIZE (type), 1);
8321 else
8322 return TYPE_ALIGN (type);
8323}
8324
600dbd47 8325/* Return true if the debug information for the given type should be
8326 emitted as a subrange type. */
8327
8328static inline bool
6114cbf0 8329is_subrange_type (tree type)
8330{
93c7db82 8331 tree subtype = TREE_TYPE (type);
8332
fd45b48c 8333 /* Subrange types are identified by the fact that they are integer
8334 types, and that they have a subtype which is either an integer type
8335 or an enumeral type. */
8336
8337 if (TREE_CODE (type) != INTEGER_TYPE
8338 || subtype == NULL_TREE)
8339 return false;
8340
8341 if (TREE_CODE (subtype) != INTEGER_TYPE
8342 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8343 return false;
8344
62351b00 8345 if (TREE_CODE (type) == TREE_CODE (subtype)
8346 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8347 && TYPE_MIN_VALUE (type) != NULL
8348 && TYPE_MIN_VALUE (subtype) != NULL
8349 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8350 && TYPE_MAX_VALUE (type) != NULL
8351 && TYPE_MAX_VALUE (subtype) != NULL
8352 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8353 {
8354 /* The type and its subtype have the same representation. If in
8355 addition the two types also have the same name, then the given
8356 type is not a subrange type, but rather a plain base type. */
8357 /* FIXME: brobecker/2004-03-22:
8358 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8359 therefore be sufficient to check the TYPE_SIZE node pointers
8360 rather than checking the actual size. Unfortunately, we have
8361 found some cases, such as in the Ada "integer" type, where
8362 this is not the case. Until this problem is solved, we need to
8363 keep checking the actual size. */
8364 tree type_name = TYPE_NAME (type);
8365 tree subtype_name = TYPE_NAME (subtype);
8366
8367 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8368 type_name = DECL_NAME (type_name);
8369
8370 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8371 subtype_name = DECL_NAME (subtype_name);
8372
8373 if (type_name == subtype_name)
8374 return false;
8375 }
8376
fd45b48c 8377 return true;
600dbd47 8378}
8379
8380/* Given a pointer to a tree node for a subrange type, return a pointer
8381 to a DIE that describes the given type. */
8382
8383static dw_die_ref
a7011153 8384subrange_type_die (tree type, dw_die_ref context_die)
600dbd47 8385{
600dbd47 8386 dw_die_ref subrange_die;
6114cbf0 8387 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8ec3a57b 8388
a7011153 8389 if (context_die == NULL)
8390 context_die = comp_unit_die;
8391
a7011153 8392 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
a84a50a5 8393
1524656f 8394 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
6114cbf0 8395 {
8396 /* The size of the subrange type and its base type do not match,
8397 so we need to generate a size attribute for the subrange type. */
8398 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8399 }
8400
600dbd47 8401 if (TYPE_MIN_VALUE (type) != NULL)
8402 add_bound_info (subrange_die, DW_AT_lower_bound,
8403 TYPE_MIN_VALUE (type));
8404 if (TYPE_MAX_VALUE (type) != NULL)
8405 add_bound_info (subrange_die, DW_AT_upper_bound,
8406 TYPE_MAX_VALUE (type));
600dbd47 8407
8408 return subrange_die;
8409}
8410
30ade641 8411/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8412 entry that chains various modifiers in front of the given type. */
ec1e49cc 8413
30ade641 8414static dw_die_ref
8ec3a57b 8415modified_type_die (tree type, int is_const_type, int is_volatile_type,
8416 dw_die_ref context_die)
30ade641 8417{
19cb6b50 8418 enum tree_code code = TREE_CODE (type);
1524656f 8419 dw_die_ref mod_type_die;
19cb6b50 8420 dw_die_ref sub_die = NULL;
8421 tree item_type = NULL;
1524656f 8422 tree qualified_type;
8423 tree name;
8424
8425 if (code == ERROR_MARK)
8426 return NULL;
8427
8428 /* See if we already have the appropriately qualified variant of
8429 this type. */
8430 qualified_type
8431 = get_qualified_type (type,
8432 ((is_const_type ? TYPE_QUAL_CONST : 0)
8433 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8434
8435 /* If we do, then we can just use its DIE, if it exists. */
8436 if (qualified_type)
30ade641 8437 {
1524656f 8438 mod_type_die = lookup_type_die (qualified_type);
6efd403b 8439 if (mod_type_die)
1524656f 8440 return mod_type_die;
8441 }
8442
8443 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8444
8445 /* Handle C typedef types. */
8446 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8447 {
8448 tree dtype = TREE_TYPE (name);
8449
8450 if (qualified_type == dtype)
30ade641 8451 {
1524656f 8452 /* For a named type, use the typedef. */
8453 gen_type_die (qualified_type, context_die);
8454 return lookup_type_die (qualified_type);
30ade641 8455 }
1524656f 8456 else if (DECL_ORIGINAL_TYPE (name)
8457 && (is_const_type < TYPE_READONLY (dtype)
8458 || is_volatile_type < TYPE_VOLATILE (dtype)))
8459 /* cv-unqualified version of named type. Just use the unnamed
8460 type to which it refers. */
8461 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8462 is_const_type, is_volatile_type,
8463 context_die);
8464 /* Else cv-qualified version of named type; fall through. */
8465 }
8466
8467 if (is_const_type)
8468 {
8469 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8470 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8471 }
8472 else if (is_volatile_type)
8473 {
8474 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8475 sub_die = modified_type_die (type, 0, 0, context_die);
8476 }
8477 else if (code == POINTER_TYPE)
8478 {
8479 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8480 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8481 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8482 item_type = TREE_TYPE (type);
8483 }
8484 else if (code == REFERENCE_TYPE)
8485 {
8486 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8487 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8488 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8489 item_type = TREE_TYPE (type);
8490 }
8491 else if (is_subrange_type (type))
8492 {
8493 mod_type_die = subrange_type_die (type, context_die);
8494 item_type = TREE_TYPE (type);
8495 }
8496 else if (is_base_type (type))
8497 mod_type_die = base_type_die (type);
8498 else
8499 {
8500 gen_type_die (type, context_die);
8501
8502 /* We have to get the type_main_variant here (and pass that to the
8503 `lookup_type_die' routine) because the ..._TYPE node we have
8504 might simply be a *copy* of some original type node (where the
8505 copy was created to help us keep track of typedef names) and
8506 that copy might have a different TYPE_UID from the original
8507 ..._TYPE node. */
8508 if (TREE_CODE (type) != VECTOR_TYPE)
8509 return lookup_type_die (type_main_variant (type));
30ade641 8510 else
1524656f 8511 /* Vectors have the debugging information in the type,
8512 not the main variant. */
8513 return lookup_type_die (type);
8514 }
8515
8516 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8517 don't output a DW_TAG_typedef, since there isn't one in the
8518 user's program; just attach a DW_AT_name to the type. */
8519 if (name
8520 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8521 {
8522 if (TREE_CODE (name) == TYPE_DECL)
8523 /* Could just call add_name_and_src_coords_attributes here,
8524 but since this is a builtin type it doesn't have any
8525 useful source coordinates anyway. */
8526 name = DECL_NAME (name);
8527 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
30ade641 8528 }
1524656f 8529
8530 if (qualified_type)
8531 equate_type_number_to_die (qualified_type, mod_type_die);
ec1e49cc 8532
39ee7a4a 8533 if (item_type)
ec1e49cc 8534 /* We must do this after the equate_type_number_to_die call, in case
8535 this is a recursive type. This ensures that the modified_type_die
8536 recursion will terminate even if the type is recursive. Recursive
8537 types are possible in Ada. */
8538 sub_die = modified_type_die (item_type,
8539 TYPE_READONLY (item_type),
8540 TYPE_VOLATILE (item_type),
8541 context_die);
8542
30ade641 8543 if (sub_die != NULL)
ec1e49cc 8544 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8545
30ade641 8546 return mod_type_die;
8547}
8548
30ade641 8549/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
1e625a2e 8550 an enumerated type. */
ec1e49cc 8551
8552static inline int
8ec3a57b 8553type_is_enum (tree type)
30ade641 8554{
8555 return TREE_CODE (type) == ENUMERAL_TYPE;
8556}
8557
7f3ca0ce 8558/* Return the DBX register number described by a given RTL node. */
4b72e226 8559
8560static unsigned int
7f3ca0ce 8561dbx_reg_number (rtx rtl)
4b72e226 8562{
19cb6b50 8563 unsigned regno = REGNO (rtl);
4b72e226 8564
7bd4f6b6 8565 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4b72e226 8566
12d886b8 8567#ifdef LEAF_REG_REMAP
f52ddb74 8568 {
8569 int leaf_reg;
8570
8571 leaf_reg = LEAF_REG_REMAP (regno);
8572 if (leaf_reg != -1)
8573 regno = (unsigned) leaf_reg;
8574 }
12d886b8 8575#endif
8576
86e12d28 8577 return DBX_REGISTER_NUMBER (regno);
4b72e226 8578}
8579
fd51758c 8580/* Optionally add a DW_OP_piece term to a location description expression.
8581 DW_OP_piece is only added if the location description expression already
8582 doesn't end with DW_OP_piece. */
8583
8584static void
8585add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8586{
8587 dw_loc_descr_ref loc;
8588
8589 if (*list_head != NULL)
8590 {
8591 /* Find the end of the chain. */
8592 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8593 ;
8594
8595 if (loc->dw_loc_opc != DW_OP_piece)
8596 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8597 }
8598}
8599
86e12d28 8600/* Return a location descriptor that designates a machine register or
9754a2f0 8601 zero if there is none. */
ec1e49cc 8602
30ade641 8603static dw_loc_descr_ref
8ec3a57b 8604reg_loc_descriptor (rtx rtl)
30ade641 8605{
9754a2f0 8606 rtx regs;
ec1e49cc 8607
86e12d28 8608 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8609 return 0;
8610
883b2e73 8611 regs = targetm.dwarf_register_span (rtl);
9754a2f0 8612
12d886b8 8613 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
9754a2f0 8614 return multiple_reg_loc_descriptor (rtl, regs);
8615 else
12d886b8 8616 return one_reg_loc_descriptor (dbx_reg_number (rtl));
9754a2f0 8617}
8618
8619/* Return a location descriptor that designates a machine register for
8620 a given hard register number. */
8621
8622static dw_loc_descr_ref
8ec3a57b 8623one_reg_loc_descriptor (unsigned int regno)
9754a2f0 8624{
8625 if (regno <= 31)
8626 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
88e24dbb 8627 else
9754a2f0 8628 return new_loc_descr (DW_OP_regx, regno, 0);
8629}
8630
8631/* Given an RTL of a register, return a location descriptor that
8632 designates a value that spans more than one register. */
8633
8634static dw_loc_descr_ref
8ec3a57b 8635multiple_reg_loc_descriptor (rtx rtl, rtx regs)
9754a2f0 8636{
8637 int nregs, size, i;
8638 unsigned reg;
8639 dw_loc_descr_ref loc_result = NULL;
ec1e49cc 8640
b6ea71e9 8641 reg = REGNO (rtl);
8642#ifdef LEAF_REG_REMAP
f52ddb74 8643 {
8644 int leaf_reg;
8645
8646 leaf_reg = LEAF_REG_REMAP (reg);
8647 if (leaf_reg != -1)
8648 reg = (unsigned) leaf_reg;
8649 }
b6ea71e9 8650#endif
8651 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
7f3ca0ce 8652 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
9754a2f0 8653
8654 /* Simple, contiguous registers. */
8655 if (regs == NULL_RTX)
8656 {
8657 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8658
8659 loc_result = NULL;
8660 while (nregs--)
8661 {
8662 dw_loc_descr_ref t;
8663
b6ea71e9 8664 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
9754a2f0 8665 add_loc_descr (&loc_result, t);
4719779b 8666 add_loc_descr_op_piece (&loc_result, size);
a4920475 8667 ++reg;
9754a2f0 8668 }
8669 return loc_result;
8670 }
8671
8672 /* Now onto stupid register sets in non contiguous locations. */
8673
7bd4f6b6 8674 gcc_assert (GET_CODE (regs) == PARALLEL);
9754a2f0 8675
8676 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8677 loc_result = NULL;
8678
8679 for (i = 0; i < XVECLEN (regs, 0); ++i)
8680 {
8681 dw_loc_descr_ref t;
8682
8683 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8684 add_loc_descr (&loc_result, t);
8685 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
4719779b 8686 add_loc_descr_op_piece (&loc_result, size);
9754a2f0 8687 }
30ade641 8688 return loc_result;
8689}
8690
9ed904da 8691/* Return a location descriptor that designates a constant. */
8692
8693static dw_loc_descr_ref
8ec3a57b 8694int_loc_descriptor (HOST_WIDE_INT i)
9ed904da 8695{
8696 enum dwarf_location_atom op;
8697
8698 /* Pick the smallest representation of a constant, rather than just
8699 defaulting to the LEB encoding. */
8700 if (i >= 0)
8701 {
8702 if (i <= 31)
8703 op = DW_OP_lit0 + i;
8704 else if (i <= 0xff)
8705 op = DW_OP_const1u;
8706 else if (i <= 0xffff)
8707 op = DW_OP_const2u;
8708 else if (HOST_BITS_PER_WIDE_INT == 32
8709 || i <= 0xffffffff)
8710 op = DW_OP_const4u;
8711 else
8712 op = DW_OP_constu;
8713 }
8714 else
8715 {
8716 if (i >= -0x80)
8717 op = DW_OP_const1s;
8718 else if (i >= -0x8000)
8719 op = DW_OP_const2s;
8720 else if (HOST_BITS_PER_WIDE_INT == 32
8721 || i >= -0x80000000)
8722 op = DW_OP_const4s;
8723 else
8724 op = DW_OP_consts;
8725 }
8726
8727 return new_loc_descr (op, i, 0);
8728}
8729
30ade641 8730/* Return a location descriptor that designates a base+offset location. */
ec1e49cc 8731
30ade641 8732static dw_loc_descr_ref
12d886b8 8733based_loc_descr (rtx reg, HOST_WIDE_INT offset)
30ade641 8734{
da72c083 8735 unsigned int regno;
12d886b8 8736
8737 /* We only use "frame base" when we're sure we're talking about the
8738 post-prologue local stack frame. We do this by *not* running
8739 register elimination until this point, and recognizing the special
8740 argument pointer and soft frame pointer rtx's. */
8741 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8742 {
da72c083 8743 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
12d886b8 8744
da72c083 8745 if (elim != reg)
8746 {
8747 if (GET_CODE (elim) == PLUS)
8748 {
8749 offset += INTVAL (XEXP (elim, 1));
8750 elim = XEXP (elim, 0);
8751 }
8752 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8753 : stack_pointer_rtx));
89fa767a 8754 offset += frame_pointer_fb_offset;
12d886b8 8755
da72c083 8756 return new_loc_descr (DW_OP_fbreg, offset, 0);
8757 }
12d886b8 8758 }
ec1e49cc 8759
da72c083 8760 regno = dbx_reg_number (reg);
8761 if (regno <= 31)
8762 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8763 else
8764 return new_loc_descr (DW_OP_bregx, regno, offset);
30ade641 8765}
8766
8767/* Return true if this RTL expression describes a base+offset calculation. */
ec1e49cc 8768
8769static inline int
8ec3a57b 8770is_based_loc (rtx rtl)
30ade641 8771{
7cc7e163 8772 return (GET_CODE (rtl) == PLUS
8ad4c111 8773 && ((REG_P (XEXP (rtl, 0))
7cc7e163 8774 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8775 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
30ade641 8776}
8777
8778/* The following routine converts the RTL for a variable or parameter
8779 (resident in memory) into an equivalent Dwarf representation of a
8780 mechanism for getting the address of that same variable onto the top of a
8781 hypothetical "address evaluation" stack.
ec1e49cc 8782
30ade641 8783 When creating memory location descriptors, we are effectively transforming
8784 the RTL for a memory-resident object into its Dwarf postfix expression
8785 equivalent. This routine recursively descends an RTL tree, turning
92a94502 8786 it into Dwarf postfix code as it goes.
8787
8788 MODE is the mode of the memory reference, needed to handle some
86e12d28 8789 autoincrement addressing modes.
8790
12d886b8 8791 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8792 location list for RTL.
b2025850 8793
86e12d28 8794 Return 0 if we can't represent the location. */
ec1e49cc 8795
30ade641 8796static dw_loc_descr_ref
12d886b8 8797mem_loc_descriptor (rtx rtl, enum machine_mode mode)
30ade641 8798{
8799 dw_loc_descr_ref mem_loc_result = NULL;
3122a117 8800 enum dwarf_location_atom op;
86e12d28 8801
f80d1bcd 8802 /* Note that for a dynamically sized array, the location we will generate a
30ade641 8803 description of here will be the lowest numbered location which is
8804 actually within the array. That's *not* necessarily the same as the
8805 zeroth element of the array. */
ec1e49cc 8806
883b2e73 8807 rtl = targetm.delegitimize_address (rtl);
eacbfaac 8808
30ade641 8809 switch (GET_CODE (rtl))
8810 {
92a94502 8811 case POST_INC:
8812 case POST_DEC:
93fbe1f3 8813 case POST_MODIFY:
92a94502 8814 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8815 just fall into the SUBREG code. */
8816
8c3f468d 8817 /* ... fall through ... */
92a94502 8818
30ade641 8819 case SUBREG:
8820 /* The case of a subreg may arise when we have a local (register)
c83a163c 8821 variable or a formal (register) parameter which doesn't quite fill
8822 up an entire register. For now, just assume that it is
8823 legitimate to make the Dwarf info refer to the whole register which
8824 contains the given subreg. */
822e27f9 8825 rtl = XEXP (rtl, 0);
ec1e49cc 8826
8c3f468d 8827 /* ... fall through ... */
30ade641 8828
8829 case REG:
8830 /* Whenever a register number forms a part of the description of the
c83a163c 8831 method for calculating the (dynamic) address of a memory resident
8832 object, DWARF rules require the register number be referred to as
8833 a "base register". This distinction is not based in any way upon
8834 what category of register the hardware believes the given register
8835 belongs to. This is strictly DWARF terminology we're dealing with
8836 here. Note that in cases where the location of a memory-resident
8837 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8838 OP_CONST (0)) the actual DWARF location descriptor that we generate
8839 may just be OP_BASEREG (basereg). This may look deceptively like
8840 the object in question was allocated to a register (rather than in
8841 memory) so DWARF consumers need to be aware of the subtle
8842 distinction between OP_REG and OP_BASEREG. */
86e12d28 8843 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
12d886b8 8844 mem_loc_result = based_loc_descr (rtl, 0);
30ade641 8845 break;
8846
8847 case MEM:
12d886b8 8848 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
86e12d28 8849 if (mem_loc_result != 0)
8850 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
30ade641 8851 break;
8852
095ec610 8853 case LO_SUM:
8854 rtl = XEXP (rtl, 1);
8855
8856 /* ... fall through ... */
8857
9ed904da 8858 case LABEL_REF:
8859 /* Some ports can transform a symbol ref into a label ref, because
8ec3a57b 8860 the symbol ref is too far away and has to be dumped into a constant
8861 pool. */
30ade641 8862 case CONST:
8863 case SYMBOL_REF:
7012770b 8864 /* Alternatively, the symbol in the constant pool might be referenced
efdf6c61 8865 by a different symbol. */
8c3f468d 8866 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
dfc1ac47 8867 {
7ad1c520 8868 bool marked;
8869 rtx tmp = get_pool_constant_mark (rtl, &marked);
8c3f468d 8870
7012770b 8871 if (GET_CODE (tmp) == SYMBOL_REF)
7ad1c520 8872 {
8873 rtl = tmp;
8874 if (CONSTANT_POOL_ADDRESS_P (tmp))
8875 get_pool_constant_mark (tmp, &marked);
8876 else
8877 marked = true;
8878 }
8879
8880 /* If all references to this pool constant were optimized away,
8881 it was not output and thus we can't represent it.
8882 FIXME: might try to use DW_OP_const_value here, though
8883 DW_OP_piece complicates it. */
8884 if (!marked)
8885 return 0;
dfc1ac47 8886 }
8887
30ade641 8888 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8889 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
7facaa35 8890 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
62aedc4c 8891 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
30ade641 8892 break;
8893
93fbe1f3 8894 case PRE_MODIFY:
8895 /* Extract the PLUS expression nested inside and fall into
c83a163c 8896 PLUS code below. */
93fbe1f3 8897 rtl = XEXP (rtl, 1);
8898 goto plus;
8899
92a94502 8900 case PRE_INC:
8901 case PRE_DEC:
8902 /* Turn these into a PLUS expression and fall into the PLUS code
8903 below. */
8904 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8905 GEN_INT (GET_CODE (rtl) == PRE_INC
f80d1bcd 8906 ? GET_MODE_UNIT_SIZE (mode)
8907 : -GET_MODE_UNIT_SIZE (mode)));
8908
8c3f468d 8909 /* ... fall through ... */
92a94502 8910
30ade641 8911 case PLUS:
93fbe1f3 8912 plus:
30ade641 8913 if (is_based_loc (rtl))
12d886b8 8914 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8915 INTVAL (XEXP (rtl, 1)));
30ade641 8916 else
8917 {
12d886b8 8918 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
86e12d28 8919 if (mem_loc_result == 0)
8920 break;
9ed904da 8921
8922 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8923 && INTVAL (XEXP (rtl, 1)) >= 0)
86e12d28 8924 add_loc_descr (&mem_loc_result,
8925 new_loc_descr (DW_OP_plus_uconst,
8926 INTVAL (XEXP (rtl, 1)), 0));
9ed904da 8927 else
8928 {
8929 add_loc_descr (&mem_loc_result,
12d886b8 8930 mem_loc_descriptor (XEXP (rtl, 1), mode));
9ed904da 8931 add_loc_descr (&mem_loc_result,
8932 new_loc_descr (DW_OP_plus, 0, 0));
8933 }
30ade641 8934 }
8935 break;
8936
3122a117 8937 /* If a pseudo-reg is optimized away, it is possible for it to
8938 be replaced with a MEM containing a multiply or shift. */
a10de18c 8939 case MULT:
3122a117 8940 op = DW_OP_mul;
8941 goto do_binop;
8942
8943 case ASHIFT:
8944 op = DW_OP_shl;
8945 goto do_binop;
8ff30ff6 8946
3122a117 8947 case ASHIFTRT:
8948 op = DW_OP_shra;
8949 goto do_binop;
8950
8951 case LSHIFTRT:
8952 op = DW_OP_shr;
8953 goto do_binop;
8954
8955 do_binop:
86e12d28 8956 {
12d886b8 8957 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8958 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
86e12d28 8959
8960 if (op0 == 0 || op1 == 0)
8961 break;
8962
8963 mem_loc_result = op0;
8964 add_loc_descr (&mem_loc_result, op1);
3122a117 8965 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
86e12d28 8966 break;
8967 }
a10de18c 8968
30ade641 8969 case CONST_INT:
9ed904da 8970 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
30ade641 8971 break;
8972
8973 default:
7bd4f6b6 8974 gcc_unreachable ();
30ade641 8975 }
ec1e49cc 8976
30ade641 8977 return mem_loc_result;
8978}
8979
ad87de1e 8980/* Return a descriptor that describes the concatenation of two locations.
fe829d4e 8981 This is typically a complex variable. */
8982
8983static dw_loc_descr_ref
12d886b8 8984concat_loc_descriptor (rtx x0, rtx x1)
fe829d4e 8985{
8986 dw_loc_descr_ref cc_loc_result = NULL;
12d886b8 8987 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8988 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
fe829d4e 8989
86e12d28 8990 if (x0_ref == 0 || x1_ref == 0)
8991 return 0;
8992
8993 cc_loc_result = x0_ref;
4719779b 8994 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
fe829d4e 8995
86e12d28 8996 add_loc_descr (&cc_loc_result, x1_ref);
4719779b 8997 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
fe829d4e 8998
8999 return cc_loc_result;
9000}
9001
30ade641 9002/* Output a proper Dwarf location descriptor for a variable or parameter
9003 which is either allocated in a register or in a memory location. For a
9004 register, we just generate an OP_REG and the register number. For a
9005 memory location we provide a Dwarf postfix expression describing how to
86e12d28 9006 generate the (dynamic) address of the object onto the address stack.
9007
9008 If we don't know how to describe it, return 0. */
ec1e49cc 9009
30ade641 9010static dw_loc_descr_ref
12d886b8 9011loc_descriptor (rtx rtl)
30ade641 9012{
9013 dw_loc_descr_ref loc_result = NULL;
86e12d28 9014
30ade641 9015 switch (GET_CODE (rtl))
9016 {
9017 case SUBREG:
30ade641 9018 /* The case of a subreg may arise when we have a local (register)
c83a163c 9019 variable or a formal (register) parameter which doesn't quite fill
9020 up an entire register. For now, just assume that it is
9021 legitimate to make the Dwarf info refer to the whole register which
9022 contains the given subreg. */
701e46d0 9023 rtl = SUBREG_REG (rtl);
ec1e49cc 9024
8c3f468d 9025 /* ... fall through ... */
30ade641 9026
9027 case REG:
d58978a6 9028 loc_result = reg_loc_descriptor (rtl);
30ade641 9029 break;
9030
9031 case MEM:
12d886b8 9032 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
30ade641 9033 break;
9034
fe829d4e 9035 case CONCAT:
12d886b8 9036 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
fe829d4e 9037 break;
9038
b2025850 9039 case VAR_LOCATION:
9040 /* Single part. */
9041 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9042 {
12d886b8 9043 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
afcf285e 9044 break;
b2025850 9045 }
b2025850 9046
afcf285e 9047 rtl = XEXP (rtl, 1);
9048 /* FALLTHRU */
b2025850 9049
afcf285e 9050 case PARALLEL:
9051 {
9052 rtvec par_elems = XVEC (rtl, 0);
9053 int num_elem = GET_NUM_ELEM (par_elems);
9054 enum machine_mode mode;
9055 int i;
9056
9057 /* Create the first one, so we have something to add to. */
12d886b8 9058 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
afcf285e 9059 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
4719779b 9060 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
afcf285e 9061 for (i = 1; i < num_elem; i++)
9062 {
9063 dw_loc_descr_ref temp;
9064
12d886b8 9065 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
afcf285e 9066 add_loc_descr (&loc_result, temp);
9067 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
4719779b 9068 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
afcf285e 9069 }
9070 }
b2025850 9071 break;
9072
30ade641 9073 default:
7bd4f6b6 9074 gcc_unreachable ();
30ade641 9075 }
ec1e49cc 9076
30ade641 9077 return loc_result;
9078}
9079
8c3f468d 9080/* Similar, but generate the descriptor from trees instead of rtl. This comes
afcf285e 9081 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9082 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9083 top-level invocation, and we require the address of LOC; is 0 if we require
9084 the value of LOC. */
9ed904da 9085
9086static dw_loc_descr_ref
afcf285e 9087loc_descriptor_from_tree_1 (tree loc, int want_address)
9ed904da 9088{
86e12d28 9089 dw_loc_descr_ref ret, ret1;
afcf285e 9090 int have_address = 0;
9ed904da 9091 enum dwarf_location_atom op;
9092
9093 /* ??? Most of the time we do not take proper care for sign/zero
9094 extending the values properly. Hopefully this won't be a real
9095 problem... */
9096
9097 switch (TREE_CODE (loc))
9098 {
9099 case ERROR_MARK:
86e12d28 9100 return 0;
9ed904da 9101
86e12d28 9102 case PLACEHOLDER_EXPR:
a3915b32 9103 /* This case involves extracting fields from an object to determine the
9104 position of other fields. We don't try to encode this here. The
9105 only user of this is Ada, which encodes the needed information using
9106 the names of types. */
86e12d28 9107 return 0;
a3915b32 9108
dff29840 9109 case CALL_EXPR:
9110 return 0;
9111
7ddf4456 9112 case PREINCREMENT_EXPR:
9113 case PREDECREMENT_EXPR:
9114 case POSTINCREMENT_EXPR:
9115 case POSTDECREMENT_EXPR:
9116 /* There are no opcodes for these operations. */
9117 return 0;
9118
dff29840 9119 case ADDR_EXPR:
afcf285e 9120 /* If we already want an address, there's nothing we can do. */
9121 if (want_address)
9122 return 0;
dff29840 9123
afcf285e 9124 /* Otherwise, process the argument and look for the address. */
9125 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
dff29840 9126
9ed904da 9127 case VAR_DECL:
1b53eb20 9128 if (DECL_THREAD_LOCAL_P (loc))
931e9893 9129 {
9130 rtx rtl;
9131
931e9893 9132 /* If this is not defined, we have no way to emit the data. */
2551f8e0 9133 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
40af64cc 9134 return 0;
931e9893 9135
9136 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9137 look up addresses of objects in the current module. */
55bceb41 9138 if (DECL_EXTERNAL (loc))
931e9893 9139 return 0;
9140
9141 rtl = rtl_for_decl_location (loc);
9142 if (rtl == NULL_RTX)
9143 return 0;
9144
e16ceb8e 9145 if (!MEM_P (rtl))
931e9893 9146 return 0;
9147 rtl = XEXP (rtl, 0);
9148 if (! CONSTANT_P (rtl))
9149 return 0;
9150
9151 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9152 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9153 ret->dw_loc_oprnd1.v.val_addr = rtl;
9154
9155 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9156 add_loc_descr (&ret, ret1);
9157
afcf285e 9158 have_address = 1;
931e9893 9159 break;
9160 }
afcf285e 9161 /* FALLTHRU */
931e9893 9162
9ed904da 9163 case PARM_DECL:
75fa4f82 9164 if (DECL_HAS_VALUE_EXPR_P (loc))
9165 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9166 want_address);
afcf285e 9167 /* FALLTHRU */
9168
4ee9c684 9169 case RESULT_DECL:
cfdab332 9170 case FUNCTION_DECL:
9ed904da 9171 {
9172 rtx rtl = rtl_for_decl_location (loc);
9ed904da 9173
0ff98c8f 9174 if (rtl == NULL_RTX)
86e12d28 9175 return 0;
afcf285e 9176 else if (GET_CODE (rtl) == CONST_INT)
9177 {
9178 HOST_WIDE_INT val = INTVAL (rtl);
9179 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9180 val &= GET_MODE_MASK (DECL_MODE (loc));
9181 ret = int_loc_descriptor (val);
9182 }
9183 else if (GET_CODE (rtl) == CONST_STRING)
9184 return 0;
0ff98c8f 9185 else if (CONSTANT_P (rtl))
9ed904da 9186 {
9187 ret = new_loc_descr (DW_OP_addr, 0, 0);
9188 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9189 ret->dw_loc_oprnd1.v.val_addr = rtl;
9ed904da 9190 }
9191 else
9192 {
afcf285e 9193 enum machine_mode mode;
9194
9195 /* Certain constructs can only be represented at top-level. */
9196 if (want_address == 2)
12d886b8 9197 return loc_descriptor (rtl);
f3546830 9198
afcf285e 9199 mode = GET_MODE (rtl);
e16ceb8e 9200 if (MEM_P (rtl))
9ed904da 9201 {
9ed904da 9202 rtl = XEXP (rtl, 0);
afcf285e 9203 have_address = 1;
9ed904da 9204 }
12d886b8 9205 ret = mem_loc_descriptor (rtl, mode);
9ed904da 9206 }
9207 }
9208 break;
9209
9210 case INDIRECT_REF:
afcf285e 9211 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9212 have_address = 1;
9ed904da 9213 break;
9214
3de30178 9215 case COMPOUND_EXPR:
afcf285e 9216 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
3de30178 9217
a8abe560 9218 case NOP_EXPR:
9219 case CONVERT_EXPR:
9220 case NON_LVALUE_EXPR:
f96c43fb 9221 case VIEW_CONVERT_EXPR:
a3915b32 9222 case SAVE_EXPR:
e055d0e7 9223 case MODIFY_EXPR:
afcf285e 9224 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
f9038ab4 9225
9ed904da 9226 case COMPONENT_REF:
9227 case BIT_FIELD_REF:
9228 case ARRAY_REF:
ba04d9d5 9229 case ARRAY_RANGE_REF:
9ed904da 9230 {
9231 tree obj, offset;
9232 HOST_WIDE_INT bitsize, bitpos, bytepos;
9233 enum machine_mode mode;
9234 int volatilep;
1e8e9920 9235 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9ed904da 9236
9237 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
e7e9416e 9238 &unsignedp, &volatilep, false);
86e12d28 9239
9240 if (obj == loc)
9241 return 0;
9242
afcf285e 9243 ret = loc_descriptor_from_tree_1 (obj, 1);
86e12d28 9244 if (ret == 0
8c3f468d 9245 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
86e12d28 9246 return 0;
9ed904da 9247
9248 if (offset != NULL_TREE)
9249 {
9250 /* Variable offset. */
afcf285e 9251 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9ed904da 9252 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9253 }
9254
9ed904da 9255 bytepos = bitpos / BITS_PER_UNIT;
9256 if (bytepos > 0)
9257 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9258 else if (bytepos < 0)
9259 {
9260 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9261 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9262 }
afcf285e 9263
9264 have_address = 1;
9ed904da 9265 break;
9266 }
9267
9268 case INTEGER_CST:
9269 if (host_integerp (loc, 0))
9270 ret = int_loc_descriptor (tree_low_cst (loc, 0));
86e12d28 9271 else
9272 return 0;
9ed904da 9273 break;
9ed904da 9274
15b7bb11 9275 case CONSTRUCTOR:
9276 {
6e326506 9277 /* Get an RTL for this, if something has been emitted. */
9278 rtx rtl = lookup_constant_def (loc);
9279 enum machine_mode mode;
9280
afcf285e 9281 if (!rtl || !MEM_P (rtl))
6e326506 9282 return 0;
9283 mode = GET_MODE (rtl);
9284 rtl = XEXP (rtl, 0);
12d886b8 9285 ret = mem_loc_descriptor (rtl, mode);
afcf285e 9286 have_address = 1;
15b7bb11 9287 break;
9288 }
9289
bc70bd5e 9290 case TRUTH_AND_EXPR:
cfd66c04 9291 case TRUTH_ANDIF_EXPR:
9ed904da 9292 case BIT_AND_EXPR:
9293 op = DW_OP_and;
9294 goto do_binop;
86e12d28 9295
cfd66c04 9296 case TRUTH_XOR_EXPR:
9ed904da 9297 case BIT_XOR_EXPR:
9298 op = DW_OP_xor;
9299 goto do_binop;
86e12d28 9300
cfd66c04 9301 case TRUTH_OR_EXPR:
9302 case TRUTH_ORIF_EXPR:
9ed904da 9303 case BIT_IOR_EXPR:
9304 op = DW_OP_or;
9305 goto do_binop;
86e12d28 9306
d7f71e5a 9307 case FLOOR_DIV_EXPR:
9308 case CEIL_DIV_EXPR:
9309 case ROUND_DIV_EXPR:
9ed904da 9310 case TRUNC_DIV_EXPR:
9311 op = DW_OP_div;
9312 goto do_binop;
86e12d28 9313
9ed904da 9314 case MINUS_EXPR:
9315 op = DW_OP_minus;
9316 goto do_binop;
86e12d28 9317
d7f71e5a 9318 case FLOOR_MOD_EXPR:
9319 case CEIL_MOD_EXPR:
9320 case ROUND_MOD_EXPR:
9ed904da 9321 case TRUNC_MOD_EXPR:
9322 op = DW_OP_mod;
9323 goto do_binop;
86e12d28 9324
9ed904da 9325 case MULT_EXPR:
9326 op = DW_OP_mul;
9327 goto do_binop;
86e12d28 9328
9ed904da 9329 case LSHIFT_EXPR:
9330 op = DW_OP_shl;
9331 goto do_binop;
86e12d28 9332
9ed904da 9333 case RSHIFT_EXPR:
1e8e9920 9334 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9ed904da 9335 goto do_binop;
86e12d28 9336
9ed904da 9337 case PLUS_EXPR:
9338 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9339 && host_integerp (TREE_OPERAND (loc, 1), 0))
9340 {
afcf285e 9341 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
86e12d28 9342 if (ret == 0)
9343 return 0;
9344
9ed904da 9345 add_loc_descr (&ret,
9346 new_loc_descr (DW_OP_plus_uconst,
9347 tree_low_cst (TREE_OPERAND (loc, 1),
9348 0),
9349 0));
9350 break;
9351 }
86e12d28 9352
9ed904da 9353 op = DW_OP_plus;
9354 goto do_binop;
8c3f468d 9355
9ed904da 9356 case LE_EXPR:
78a8ed03 9357 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
86e12d28 9358 return 0;
9359
9ed904da 9360 op = DW_OP_le;
9361 goto do_binop;
86e12d28 9362
9ed904da 9363 case GE_EXPR:
78a8ed03 9364 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
86e12d28 9365 return 0;
9366
9ed904da 9367 op = DW_OP_ge;
9368 goto do_binop;
86e12d28 9369
9ed904da 9370 case LT_EXPR:
78a8ed03 9371 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
86e12d28 9372 return 0;
9373
9ed904da 9374 op = DW_OP_lt;
9375 goto do_binop;
86e12d28 9376
9ed904da 9377 case GT_EXPR:
78a8ed03 9378 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
86e12d28 9379 return 0;
9380
9ed904da 9381 op = DW_OP_gt;
9382 goto do_binop;
86e12d28 9383
9ed904da 9384 case EQ_EXPR:
9385 op = DW_OP_eq;
9386 goto do_binop;
86e12d28 9387
9ed904da 9388 case NE_EXPR:
9389 op = DW_OP_ne;
9390 goto do_binop;
9391
9392 do_binop:
afcf285e 9393 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9394 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
86e12d28 9395 if (ret == 0 || ret1 == 0)
9396 return 0;
9397
9398 add_loc_descr (&ret, ret1);
9ed904da 9399 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9400 break;
9401
cfd66c04 9402 case TRUTH_NOT_EXPR:
9ed904da 9403 case BIT_NOT_EXPR:
9404 op = DW_OP_not;
9405 goto do_unop;
86e12d28 9406
9ed904da 9407 case ABS_EXPR:
9408 op = DW_OP_abs;
9409 goto do_unop;
86e12d28 9410
9ed904da 9411 case NEGATE_EXPR:
9412 op = DW_OP_neg;
9413 goto do_unop;
9414
9415 do_unop:
afcf285e 9416 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
86e12d28 9417 if (ret == 0)
9418 return 0;
9419
9ed904da 9420 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9421 break;
9422
93823dba 9423 case MIN_EXPR:
9ed904da 9424 case MAX_EXPR:
93823dba 9425 {
9426 const enum tree_code code =
9427 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9428
b55f9493 9429 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9430 build2 (code, integer_type_node,
9431 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
afcf285e 9432 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
93823dba 9433 }
8c3f468d 9434
04641143 9435 /* ... fall through ... */
9ed904da 9436
9437 case COND_EXPR:
9438 {
86e12d28 9439 dw_loc_descr_ref lhs
afcf285e 9440 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
86e12d28 9441 dw_loc_descr_ref rhs
afcf285e 9442 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9ed904da 9443 dw_loc_descr_ref bra_node, jump_node, tmp;
9444
afcf285e 9445 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
86e12d28 9446 if (ret == 0 || lhs == 0 || rhs == 0)
9447 return 0;
9448
9ed904da 9449 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9450 add_loc_descr (&ret, bra_node);
9451
86e12d28 9452 add_loc_descr (&ret, rhs);
9ed904da 9453 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9454 add_loc_descr (&ret, jump_node);
9455
86e12d28 9456 add_loc_descr (&ret, lhs);
9ed904da 9457 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
86e12d28 9458 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9ed904da 9459
9460 /* ??? Need a node to point the skip at. Use a nop. */
9461 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9462 add_loc_descr (&ret, tmp);
9463 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9464 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9465 }
9466 break;
9467
c98c6570 9468 case FIX_TRUNC_EXPR:
9469 case FIX_CEIL_EXPR:
9470 case FIX_FLOOR_EXPR:
9471 case FIX_ROUND_EXPR:
9472 return 0;
9473
9ed904da 9474 default:
76d1c62d 9475 /* Leave front-end specific codes as simply unknown. This comes
9476 up, for instance, with the C STMT_EXPR. */
9477 if ((unsigned int) TREE_CODE (loc)
9478 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9479 return 0;
9480
13346250 9481#ifdef ENABLE_CHECKING
76d1c62d 9482 /* Otherwise this is a generic code; we should just lists all of
89f18f73 9483 these explicitly. We forgot one. */
7bd4f6b6 9484 gcc_unreachable ();
13346250 9485#else
9486 /* In a release build, we want to degrade gracefully: better to
9487 generate incomplete debugging information than to crash. */
9488 return NULL;
9489#endif
9ed904da 9490 }
9491
86e12d28 9492 /* Show if we can't fill the request for an address. */
afcf285e 9493 if (want_address && !have_address)
86e12d28 9494 return 0;
9ed904da 9495
9496 /* If we've got an address and don't want one, dereference. */
9338678e 9497 if (!want_address && have_address && ret)
9ed904da 9498 {
86e12d28 9499 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9500
9501 if (size > DWARF2_ADDR_SIZE || size == -1)
9502 return 0;
8c3f468d 9503 else if (size == DWARF2_ADDR_SIZE)
9ed904da 9504 op = DW_OP_deref;
9505 else
9506 op = DW_OP_deref_size;
86e12d28 9507
9508 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9ed904da 9509 }
9510
9511 return ret;
9512}
9513
afcf285e 9514static inline dw_loc_descr_ref
9515loc_descriptor_from_tree (tree loc)
9516{
9517 return loc_descriptor_from_tree_1 (loc, 2);
9518}
9519
5d844ba2 9520/* Given a value, round it up to the lowest multiple of `boundary'
30ade641 9521 which is not less than the value itself. */
ec1e49cc 9522
5d844ba2 9523static inline HOST_WIDE_INT
8ec3a57b 9524ceiling (HOST_WIDE_INT value, unsigned int boundary)
30ade641 9525{
9526 return (((value + boundary - 1) / boundary) * boundary);
9527}
9528
9529/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9530 pointer to the declared type for the relevant field variable, or return
9531 `integer_type_node' if the given node turns out to be an
9532 ERROR_MARK node. */
ec1e49cc 9533
9534static inline tree
8ec3a57b 9535field_type (tree decl)
30ade641 9536{
19cb6b50 9537 tree type;
30ade641 9538
9539 if (TREE_CODE (decl) == ERROR_MARK)
9540 return integer_type_node;
9541
9542 type = DECL_BIT_FIELD_TYPE (decl);
ec1e49cc 9543 if (type == NULL_TREE)
30ade641 9544 type = TREE_TYPE (decl);
9545
9546 return type;
9547}
9548
2180a0af 9549/* Given a pointer to a tree node, return the alignment in bits for
9550 it, or else return BITS_PER_WORD if the node actually turns out to
9551 be an ERROR_MARK node. */
ec1e49cc 9552
9553static inline unsigned
8ec3a57b 9554simple_type_align_in_bits (tree type)
30ade641 9555{
9556 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9557}
9558
2180a0af 9559static inline unsigned
8ec3a57b 9560simple_decl_align_in_bits (tree decl)
2180a0af 9561{
9562 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9563}
9564
8c3f468d 9565/* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9566 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9567 or return 0 if we are unable to determine what that offset is, either
9568 because the argument turns out to be a pointer to an ERROR_MARK node, or
9569 because the offset is actually variable. (We can't handle the latter case
9570 just yet). */
ec1e49cc 9571
5d844ba2 9572static HOST_WIDE_INT
8ec3a57b 9573field_byte_offset (tree decl)
30ade641 9574{
5d844ba2 9575 unsigned int type_align_in_bits;
2180a0af 9576 unsigned int decl_align_in_bits;
5d844ba2 9577 unsigned HOST_WIDE_INT type_size_in_bits;
5d844ba2 9578 HOST_WIDE_INT object_offset_in_bits;
5d844ba2 9579 tree type;
9580 tree field_size_tree;
9581 HOST_WIDE_INT bitpos_int;
9582 HOST_WIDE_INT deepest_bitpos;
9583 unsigned HOST_WIDE_INT field_size_in_bits;
30ade641 9584
9585 if (TREE_CODE (decl) == ERROR_MARK)
9586 return 0;
8ff30ff6 9587
7bd4f6b6 9588 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
30ade641 9589
9590 type = field_type (decl);
30ade641 9591 field_size_tree = DECL_SIZE (decl);
9592
f9c54ddc 9593 /* The size could be unspecified if there was an error, or for
9594 a flexible array member. */
7b99b940 9595 if (! field_size_tree)
f9c54ddc 9596 field_size_tree = bitsize_zero_node;
7b99b940 9597
f80d1bcd 9598 /* We cannot yet cope with fields whose positions are variable, so
30ade641 9599 for now, when we see such things, we simply return 0. Someday, we may
9600 be able to handle such cases, but it will be damn difficult. */
5d844ba2 9601 if (! host_integerp (bit_position (decl), 0))
30ade641 9602 return 0;
155b05dc 9603
5d844ba2 9604 bitpos_int = int_bit_position (decl);
30ade641 9605
f9c54ddc 9606 /* If we don't know the size of the field, pretend it's a full word. */
5d844ba2 9607 if (host_integerp (field_size_tree, 1))
9608 field_size_in_bits = tree_low_cst (field_size_tree, 1);
155b05dc 9609 else
9610 field_size_in_bits = BITS_PER_WORD;
30ade641 9611
9612 type_size_in_bits = simple_type_size_in_bits (type);
30ade641 9613 type_align_in_bits = simple_type_align_in_bits (type);
2180a0af 9614 decl_align_in_bits = simple_decl_align_in_bits (decl);
30ade641 9615
8c3f468d 9616 /* The GCC front-end doesn't make any attempt to keep track of the starting
9617 bit offset (relative to the start of the containing structure type) of the
9618 hypothetical "containing object" for a bit-field. Thus, when computing
9619 the byte offset value for the start of the "containing object" of a
9620 bit-field, we must deduce this information on our own. This can be rather
9621 tricky to do in some cases. For example, handling the following structure
9622 type definition when compiling for an i386/i486 target (which only aligns
9623 long long's to 32-bit boundaries) can be very tricky:
30ade641 9624
9625 struct S { int field1; long long field2:31; };
9626
8c3f468d 9627 Fortunately, there is a simple rule-of-thumb which can be used in such
9628 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9629 structure shown above. It decides to do this based upon one simple rule
9630 for bit-field allocation. GCC allocates each "containing object" for each
9631 bit-field at the first (i.e. lowest addressed) legitimate alignment
9632 boundary (based upon the required minimum alignment for the declared type
9633 of the field) which it can possibly use, subject to the condition that
9634 there is still enough available space remaining in the containing object
9635 (when allocated at the selected point) to fully accommodate all of the
9636 bits of the bit-field itself.
9637
9638 This simple rule makes it obvious why GCC allocates 8 bytes for each
9639 object of the structure type shown above. When looking for a place to
9640 allocate the "containing object" for `field2', the compiler simply tries
9641 to allocate a 64-bit "containing object" at each successive 32-bit
9642 boundary (starting at zero) until it finds a place to allocate that 64-
9643 bit field such that at least 31 contiguous (and previously unallocated)
9644 bits remain within that selected 64 bit field. (As it turns out, for the
9645 example above, the compiler finds it is OK to allocate the "containing
9646 object" 64-bit field at bit-offset zero within the structure type.)
9647
9648 Here we attempt to work backwards from the limited set of facts we're
9649 given, and we try to deduce from those facts, where GCC must have believed
9650 that the containing object started (within the structure type). The value
9651 we deduce is then used (by the callers of this routine) to generate
9652 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9653 and, in the case of DW_AT_location, regular fields as well). */
30ade641 9654
9655 /* Figure out the bit-distance from the start of the structure to the
9656 "deepest" bit of the bit-field. */
9657 deepest_bitpos = bitpos_int + field_size_in_bits;
9658
9659 /* This is the tricky part. Use some fancy footwork to deduce where the
9660 lowest addressed bit of the containing object must be. */
2180a0af 9661 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9662
9663 /* Round up to type_align by default. This works best for bitfields. */
9664 object_offset_in_bits += type_align_in_bits - 1;
9665 object_offset_in_bits /= type_align_in_bits;
9666 object_offset_in_bits *= type_align_in_bits;
30ade641 9667
2180a0af 9668 if (object_offset_in_bits > bitpos_int)
9669 {
9670 /* Sigh, the decl must be packed. */
9671 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9672
9673 /* Round up to decl_align instead. */
9674 object_offset_in_bits += decl_align_in_bits - 1;
9675 object_offset_in_bits /= decl_align_in_bits;
9676 object_offset_in_bits *= decl_align_in_bits;
9677 }
30ade641 9678
8c3f468d 9679 return object_offset_in_bits / BITS_PER_UNIT;
30ade641 9680}
30ade641 9681\f
ec1e49cc 9682/* The following routines define various Dwarf attributes and any data
9683 associated with them. */
30ade641 9684
678d90bb 9685/* Add a location description attribute value to a DIE.
30ade641 9686
678d90bb 9687 This emits location attributes suitable for whole variables and
30ade641 9688 whole parameters. Note that the location attributes for struct fields are
9689 generated by the routine `data_member_location_attribute' below. */
ec1e49cc 9690
931e9893 9691static inline void
8ec3a57b 9692add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9693 dw_loc_descr_ref descr)
30ade641 9694{
86e12d28 9695 if (descr != 0)
9696 add_AT_loc (die, attr_kind, descr);
30ade641 9697}
9698
8c3f468d 9699/* Attach the specialized form of location attribute used for data members of
9700 struct and union types. In the special case of a FIELD_DECL node which
9701 represents a bit-field, the "offset" part of this special location
9702 descriptor must indicate the distance in bytes from the lowest-addressed
9703 byte of the containing struct or union type to the lowest-addressed byte of
9704 the "containing object" for the bit-field. (See the `field_byte_offset'
9705 function above).
9706
9707 For any given bit-field, the "containing object" is a hypothetical object
9708 (of some integral or enum type) within which the given bit-field lives. The
9709 type of this hypothetical "containing object" is always the same as the
9710 declared type of the individual bit-field itself (for GCC anyway... the
9711 DWARF spec doesn't actually mandate this). Note that it is the size (in
9712 bytes) of the hypothetical "containing object" which will be given in the
9713 DW_AT_byte_size attribute for this bit-field. (See the
9714 `byte_size_attribute' function below.) It is also used when calculating the
9715 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9716 function below.) */
ec1e49cc 9717
30ade641 9718static void
8ec3a57b 9719add_data_member_location_attribute (dw_die_ref die, tree decl)
30ade641 9720{
3d867824 9721 HOST_WIDE_INT offset;
3e14aa38 9722 dw_loc_descr_ref loc_descr = 0;
30ade641 9723
3cb98335 9724 if (TREE_CODE (decl) == TREE_BINFO)
3e14aa38 9725 {
9726 /* We're working on the TAG_inheritance for a base class. */
57c28194 9727 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
3e14aa38 9728 {
9729 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9730 aren't at a fixed offset from all (sub)objects of the same
9731 type. We need to extract the appropriate offset from our
9732 vtable. The following dwarf expression means
9733
9734 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9735
9736 This is specific to the V3 ABI, of course. */
9737
9738 dw_loc_descr_ref tmp;
8c3f468d 9739
3e14aa38 9740 /* Make a copy of the object address. */
9741 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9742 add_loc_descr (&loc_descr, tmp);
8c3f468d 9743
3e14aa38 9744 /* Extract the vtable address. */
9745 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9746 add_loc_descr (&loc_descr, tmp);
8c3f468d 9747
3e14aa38 9748 /* Calculate the address of the offset. */
9749 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
7bd4f6b6 9750 gcc_assert (offset < 0);
8c3f468d 9751
3e14aa38 9752 tmp = int_loc_descriptor (-offset);
9753 add_loc_descr (&loc_descr, tmp);
9754 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9755 add_loc_descr (&loc_descr, tmp);
8c3f468d 9756
3e14aa38 9757 /* Extract the offset. */
9758 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9759 add_loc_descr (&loc_descr, tmp);
8c3f468d 9760
3e14aa38 9761 /* Add it to the object address. */
9762 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9763 add_loc_descr (&loc_descr, tmp);
9764 }
9765 else
9766 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9767 }
404ba76d 9768 else
9769 offset = field_byte_offset (decl);
9770
3e14aa38 9771 if (! loc_descr)
9772 {
9773 enum dwarf_location_atom op;
9774
8c3f468d 9775 /* The DWARF2 standard says that we should assume that the structure
9776 address is already on the stack, so we can specify a structure field
9777 address by using DW_OP_plus_uconst. */
ec1e49cc 9778
30ade641 9779#ifdef MIPS_DEBUGGING_INFO
8c3f468d 9780 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9781 operator correctly. It works only if we leave the offset on the
9782 stack. */
3e14aa38 9783 op = DW_OP_constu;
30ade641 9784#else
3e14aa38 9785 op = DW_OP_plus_uconst;
30ade641 9786#endif
ec1e49cc 9787
3e14aa38 9788 loc_descr = new_loc_descr (op, offset, 0);
9789 }
8c3f468d 9790
30ade641 9791 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9792}
9793
1b6ad376 9794/* Writes integer values to dw_vec_const array. */
9795
9796static void
9797insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9798{
9799 while (size != 0)
9800 {
9801 *dest++ = val & 0xff;
9802 val >>= 8;
9803 --size;
9804 }
9805}
9806
9807/* Reads integers from dw_vec_const array. Inverse of insert_int. */
9808
9809static HOST_WIDE_INT
9810extract_int (const unsigned char *src, unsigned int size)
9811{
9812 HOST_WIDE_INT val = 0;
9813
9814 src += size;
9815 while (size != 0)
9816 {
9817 val <<= 8;
9818 val |= *--src & 0xff;
9819 --size;
9820 }
9821 return val;
9822}
9823
9824/* Writes floating point values to dw_vec_const array. */
9825
9826static void
9827insert_float (rtx rtl, unsigned char *array)
9828{
9829 REAL_VALUE_TYPE rv;
9830 long val[4];
9831 int i;
9832
9833 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9834 real_to_target (val, &rv, GET_MODE (rtl));
9835
9836 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9837 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9838 {
9839 insert_int (val[i], 4, array);
9840 array += 4;
9841 }
9842}
9843
df07c3ae 9844/* Attach a DW_AT_const_value attribute for a variable or a parameter which
30ade641 9845 does not have a "location" either in memory or in a register. These
9846 things can arise in GNU C when a constant is passed as an actual parameter
9847 to an inlined function. They can also arise in C++ where declared
9848 constants do not necessarily get memory "homes". */
ec1e49cc 9849
30ade641 9850static void
8ec3a57b 9851add_const_value_attribute (dw_die_ref die, rtx rtl)
30ade641 9852{
9853 switch (GET_CODE (rtl))
9854 {
9855 case CONST_INT:
ca98eb0a 9856 {
9857 HOST_WIDE_INT val = INTVAL (rtl);
bc70bd5e 9858
3d867824 9859 if (val < 0)
9860 add_AT_int (die, DW_AT_const_value, val);
8ff30ff6 9861 else
3d867824 9862 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
ca98eb0a 9863 }
30ade641 9864 break;
9865
9866 case CONST_DOUBLE:
9867 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
c83a163c 9868 floating-point constant. A CONST_DOUBLE is used whenever the
9869 constant requires more than one word in order to be adequately
9870 represented. We output CONST_DOUBLEs as blocks. */
df78b73b 9871 {
19cb6b50 9872 enum machine_mode mode = GET_MODE (rtl);
df78b73b 9873
cee7491d 9874 if (SCALAR_FLOAT_MODE_P (mode))
df78b73b 9875 {
1b6ad376 9876 unsigned int length = GET_MODE_SIZE (mode);
9877 unsigned char *array = ggc_alloc (length);
df78b73b 9878
1b6ad376 9879 insert_float (rtl, array);
9880 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
df78b73b 9881 }
9882 else
ca98eb0a 9883 {
9884 /* ??? We really should be using HOST_WIDE_INT throughout. */
7bd4f6b6 9885 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
8c3f468d 9886
ca98eb0a 9887 add_AT_long_long (die, DW_AT_const_value,
9888 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9889 }
df78b73b 9890 }
30ade641 9891 break;
9892
1b6ad376 9893 case CONST_VECTOR:
9894 {
9895 enum machine_mode mode = GET_MODE (rtl);
9896 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9897 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9898 unsigned char *array = ggc_alloc (length * elt_size);
9899 unsigned int i;
9900 unsigned char *p;
9901
7bd4f6b6 9902 switch (GET_MODE_CLASS (mode))
1b6ad376 9903 {
7bd4f6b6 9904 case MODE_VECTOR_INT:
1b6ad376 9905 for (i = 0, p = array; i < length; i++, p += elt_size)
9906 {
9907 rtx elt = CONST_VECTOR_ELT (rtl, i);
9908 HOST_WIDE_INT lo, hi;
8ff30ff6 9909
7bd4f6b6 9910 switch (GET_CODE (elt))
1b6ad376 9911 {
7bd4f6b6 9912 case CONST_INT:
1b6ad376 9913 lo = INTVAL (elt);
9914 hi = -(lo < 0);
7bd4f6b6 9915 break;
8ff30ff6 9916
7bd4f6b6 9917 case CONST_DOUBLE:
1b6ad376 9918 lo = CONST_DOUBLE_LOW (elt);
9919 hi = CONST_DOUBLE_HIGH (elt);
7bd4f6b6 9920 break;
8ff30ff6 9921
7bd4f6b6 9922 default:
9923 gcc_unreachable ();
1b6ad376 9924 }
8ff30ff6 9925
1b6ad376 9926 if (elt_size <= sizeof (HOST_WIDE_INT))
9927 insert_int (lo, elt_size, p);
7bd4f6b6 9928 else
1b6ad376 9929 {
9930 unsigned char *p0 = p;
9931 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
8ff30ff6 9932
7bd4f6b6 9933 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
1b6ad376 9934 if (WORDS_BIG_ENDIAN)
9935 {
9936 p0 = p1;
9937 p1 = p;
9938 }
9939 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9940 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9941 }
1b6ad376 9942 }
7bd4f6b6 9943 break;
9944
9945 case MODE_VECTOR_FLOAT:
1b6ad376 9946 for (i = 0, p = array; i < length; i++, p += elt_size)
9947 {
9948 rtx elt = CONST_VECTOR_ELT (rtl, i);
9949 insert_float (elt, p);
9950 }
7bd4f6b6 9951 break;
9952
9953 default:
9954 gcc_unreachable ();
1b6ad376 9955 }
1b6ad376 9956
9957 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9958 }
9959 break;
9960
30ade641 9961 case CONST_STRING:
9962 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9963 break;
9964
9965 case SYMBOL_REF:
9966 case LABEL_REF:
9967 case CONST:
7facaa35 9968 add_AT_addr (die, DW_AT_const_value, rtl);
62aedc4c 9969 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
30ade641 9970 break;
9971
9972 case PLUS:
9973 /* In cases where an inlined instance of an inline function is passed
c83a163c 9974 the address of an `auto' variable (which is local to the caller) we
9975 can get a situation where the DECL_RTL of the artificial local
9976 variable (for the inlining) which acts as a stand-in for the
9977 corresponding formal parameter (of the inline function) will look
9978 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9979 exactly a compile-time constant expression, but it isn't the address
9980 of the (artificial) local variable either. Rather, it represents the
9981 *value* which the artificial local variable always has during its
9982 lifetime. We currently have no way to represent such quasi-constant
9983 values in Dwarf, so for now we just punt and generate nothing. */
30ade641 9984 break;
9985
9986 default:
9987 /* No other kinds of rtx should be possible here. */
7bd4f6b6 9988 gcc_unreachable ();
30ade641 9989 }
9990
9991}
9992
e124d6c7 9993/* Determine whether the evaluation of EXPR references any variables
9994 or functions which aren't otherwise used (and therefore may not be
9995 output). */
9996static tree
9997reference_to_unused (tree * tp, int * walk_subtrees,
9998 void * data ATTRIBUTE_UNUSED)
9999{
10000 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10001 *walk_subtrees = 0;
10002
10003 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10004 && ! TREE_ASM_WRITTEN (*tp))
10005 return *tp;
10006 else
10007 return NULL_TREE;
10008}
10009
9293d8bd 10010/* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10011 for use in a later add_const_value_attribute call. */
10012
10013static rtx
10014rtl_for_decl_init (tree init, tree type)
10015{
10016 rtx rtl = NULL_RTX;
10017
10018 /* If a variable is initialized with a string constant without embedded
10019 zeros, build CONST_STRING. */
10020 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10021 {
10022 tree enttype = TREE_TYPE (type);
10023 tree domain = TYPE_DOMAIN (type);
10024 enum machine_mode mode = TYPE_MODE (enttype);
10025
10026 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10027 && domain
10028 && integer_zerop (TYPE_MIN_VALUE (domain))
10029 && compare_tree_int (TYPE_MAX_VALUE (domain),
10030 TREE_STRING_LENGTH (init) - 1) == 0
10031 && ((size_t) TREE_STRING_LENGTH (init)
10032 == strlen (TREE_STRING_POINTER (init)) + 1))
10033 rtl = gen_rtx_CONST_STRING (VOIDmode,
10034 ggc_strdup (TREE_STRING_POINTER (init)));
10035 }
bf591863 10036 /* Other aggregates, and complex values, could be represented using
10037 CONCAT: FIXME! */
10038 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10039 ;
10040 /* Vectors only work if their mode is supported by the target.
10041 FIXME: generic vectors ought to work too. */
10042 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
e124d6c7 10043 ;
9293d8bd 10044 /* If the initializer is something that we know will expand into an
e124d6c7 10045 immediate RTL constant, expand it now. We must be careful not to
10046 reference variables which won't be output. */
10047 else if (initializer_constant_valid_p (init, type)
10048 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
9293d8bd 10049 {
10050 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10051
10052 /* If expand_expr returns a MEM, it wasn't immediate. */
10053 gcc_assert (!rtl || !MEM_P (rtl));
10054 }
10055
10056 return rtl;
10057}
10058
10059/* Generate RTL for the variable DECL to represent its location. */
10060
9ed904da 10061static rtx
8ec3a57b 10062rtl_for_decl_location (tree decl)
30ade641 10063{
19cb6b50 10064 rtx rtl;
ec1e49cc 10065
30ade641 10066 /* Here we have to decide where we are going to say the parameter "lives"
10067 (as far as the debugger is concerned). We only have a couple of
10068 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
ec1e49cc 10069
f80d1bcd 10070 DECL_RTL normally indicates where the parameter lives during most of the
ec1e49cc 10071 activation of the function. If optimization is enabled however, this
f80d1bcd 10072 could be either NULL or else a pseudo-reg. Both of those cases indicate
30ade641 10073 that the parameter doesn't really live anywhere (as far as the code
10074 generation parts of GCC are concerned) during most of the function's
10075 activation. That will happen (for example) if the parameter is never
ec1e49cc 10076 referenced within the function.
10077
10078 We could just generate a location descriptor here for all non-NULL
10079 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10080 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10081 where DECL_RTL is NULL or is a pseudo-reg.
10082
10083 Note however that we can only get away with using DECL_INCOMING_RTL as
10084 a backup substitute for DECL_RTL in certain limited cases. In cases
10085 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10086 we can be sure that the parameter was passed using the same type as it is
10087 declared to have within the function, and that its DECL_INCOMING_RTL
10088 points us to a place where a value of that type is passed.
10089
10090 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10091 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10092 because in these cases DECL_INCOMING_RTL points us to a value of some
10093 type which is *different* from the type of the parameter itself. Thus,
10094 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10095 such cases, the debugger would end up (for example) trying to fetch a
10096 `float' from a place which actually contains the first part of a
10097 `double'. That would lead to really incorrect and confusing
10098 output at debug-time.
10099
10100 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10101 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10102 are a couple of exceptions however. On little-endian machines we can
10103 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10104 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10105 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10106 when (on a little-endian machine) a non-prototyped function has a
10107 parameter declared to be of type `short' or `char'. In such cases,
10108 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10109 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10110 passed `int' value. If the debugger then uses that address to fetch
10111 a `short' or a `char' (on a little-endian machine) the result will be
10112 the correct data, so we allow for such exceptional cases below.
10113
10114 Note that our goal here is to describe the place where the given formal
8c3f468d 10115 parameter lives during most of the function's activation (i.e. between the
10116 end of the prologue and the start of the epilogue). We'll do that as best
10117 as we can. Note however that if the given formal parameter is modified
10118 sometime during the execution of the function, then a stack backtrace (at
10119 debug-time) will show the function as having been called with the *new*
10120 value rather than the value which was originally passed in. This happens
10121 rarely enough that it is not a major problem, but it *is* a problem, and
10122 I'd like to fix it.
10123
10124 A future version of dwarf2out.c may generate two additional attributes for
10125 any given DW_TAG_formal_parameter DIE which will describe the "passed
10126 type" and the "passed location" for the given formal parameter in addition
10127 to the attributes we now generate to indicate the "declared type" and the
10128 "active location" for each parameter. This additional set of attributes
10129 could be used by debuggers for stack backtraces. Separately, note that
10130 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10131 This happens (for example) for inlined-instances of inline function formal
10132 parameters which are never referenced. This really shouldn't be
10133 happening. All PARM_DECL nodes should get valid non-NULL
4ee9c684 10134 DECL_INCOMING_RTL values. FIXME. */
30ade641 10135
10136 /* Use DECL_RTL as the "location" unless we find something better. */
ff12286a 10137 rtl = DECL_RTL_IF_SET (decl);
30ade641 10138
f3546830 10139 /* When generating abstract instances, ignore everything except
3332aee2 10140 constants, symbols living in memory, and symbols living in
10141 fixed registers. */
f3546830 10142 if (! reload_completed)
10143 {
10144 if (rtl
10145 && (CONSTANT_P (rtl)
e16ceb8e 10146 || (MEM_P (rtl)
3332aee2 10147 && CONSTANT_P (XEXP (rtl, 0)))
8ad4c111 10148 || (REG_P (rtl)
3332aee2 10149 && TREE_CODE (decl) == VAR_DECL
10150 && TREE_STATIC (decl))))
e93986bb 10151 {
883b2e73 10152 rtl = targetm.delegitimize_address (rtl);
e93986bb 10153 return rtl;
10154 }
f3546830 10155 rtl = NULL_RTX;
10156 }
10157 else if (TREE_CODE (decl) == PARM_DECL)
30ade641 10158 {
10159 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10160 {
0189d7ee 10161 tree declared_type = TREE_TYPE (decl);
10162 tree passed_type = DECL_ARG_TYPE (decl);
10163 enum machine_mode dmode = TYPE_MODE (declared_type);
10164 enum machine_mode pmode = TYPE_MODE (passed_type);
30ade641 10165
ec1e49cc 10166 /* This decl represents a formal parameter which was optimized out.
30ade641 10167 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8c3f468d 10168 all cases where (rtl == NULL_RTX) just below. */
0189d7ee 10169 if (dmode == pmode)
f80d1bcd 10170 rtl = DECL_INCOMING_RTL (decl);
0189d7ee 10171 else if (SCALAR_INT_MODE_P (dmode)
a4cb69f8 10172 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10173 && DECL_INCOMING_RTL (decl))
0189d7ee 10174 {
10175 rtx inc = DECL_INCOMING_RTL (decl);
10176 if (REG_P (inc))
10177 rtl = inc;
10178 else if (MEM_P (inc))
10179 {
10180 if (BYTES_BIG_ENDIAN)
10181 rtl = adjust_address_nv (inc, dmode,
10182 GET_MODE_SIZE (pmode)
10183 - GET_MODE_SIZE (dmode));
10184 else
10185 rtl = inc;
10186 }
10187 }
30ade641 10188 }
80291b9e 10189
10190 /* If the parm was passed in registers, but lives on the stack, then
10191 make a big endian correction if the mode of the type of the
10192 parameter is not the same as the mode of the rtl. */
10193 /* ??? This is the same series of checks that are made in dbxout.c before
10194 we reach the big endian correction code there. It isn't clear if all
10195 of these checks are necessary here, but keeping them all is the safe
10196 thing to do. */
e16ceb8e 10197 else if (MEM_P (rtl)
80291b9e 10198 && XEXP (rtl, 0) != const0_rtx
10199 && ! CONSTANT_P (XEXP (rtl, 0))
10200 /* Not passed in memory. */
e16ceb8e 10201 && !MEM_P (DECL_INCOMING_RTL (decl))
80291b9e 10202 /* Not passed by invisible reference. */
8ad4c111 10203 && (!REG_P (XEXP (rtl, 0))
80291b9e 10204 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10205 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10206#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10207 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10208#endif
10209 )
10210 /* Big endian correction check. */
10211 && BYTES_BIG_ENDIAN
10212 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10213 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10214 < UNITS_PER_WORD))
10215 {
10216 int offset = (UNITS_PER_WORD
10217 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
8c3f468d 10218
80291b9e 10219 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10220 plus_constant (XEXP (rtl, 0), offset));
10221 }
30ade641 10222 }
13906b02 10223 else if (TREE_CODE (decl) == VAR_DECL
c7c9d0ca 10224 && rtl
e16ceb8e 10225 && MEM_P (rtl)
13906b02 10226 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10227 && BYTES_BIG_ENDIAN)
10228 {
10229 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10230 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10231
10232 /* If a variable is declared "register" yet is smaller than
10233 a register, then if we store the variable to memory, it
10234 looks like we're storing a register-sized value, when in
10235 fact we are not. We need to adjust the offset of the
10236 storage location to reflect the actual value's bytes,
10237 else gdb will not be able to display it. */
10238 if (rsize > dsize)
10239 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10240 plus_constant (XEXP (rtl, 0), rsize-dsize));
10241 }
ec1e49cc 10242
8c3f468d 10243 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10244 and will have been substituted directly into all expressions that use it.
10245 C does not have such a concept, but C++ and other languages do. */
12d886b8 10246 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9293d8bd 10247 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
2fbd3b4c 10248
e93986bb 10249 if (rtl)
883b2e73 10250 rtl = targetm.delegitimize_address (rtl);
931e9893 10251
10252 /* If we don't look past the constant pool, we risk emitting a
10253 reference to a constant pool entry that isn't referenced from
10254 code, and thus is not emitted. */
10255 if (rtl)
10256 rtl = avoid_constant_pool_reference (rtl);
10257
9ed904da 10258 return rtl;
10259}
10260
12d886b8 10261/* We need to figure out what section we should use as the base for the
10262 address ranges where a given location is valid.
10263 1. If this particular DECL has a section associated with it, use that.
10264 2. If this function has a section associated with it, use that.
10265 3. Otherwise, use the text section.
10266 XXX: If you split a variable across multiple sections, we won't notice. */
10267
10268static const char *
10269secname_for_decl (tree decl)
10270{
10271 const char *secname;
10272
10273 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10274 {
10275 tree sectree = DECL_SECTION_NAME (decl);
10276 secname = TREE_STRING_POINTER (sectree);
10277 }
10278 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10279 {
10280 tree sectree = DECL_SECTION_NAME (current_function_decl);
10281 secname = TREE_STRING_POINTER (sectree);
10282 }
5fbee89d 10283 else if (cfun && in_cold_section_p)
12d886b8 10284 secname = cfun->cold_section_label;
10285 else
10286 secname = text_section_label;
10287
10288 return secname;
10289}
10290
df07c3ae 10291/* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9ed904da 10292 data attribute for a variable or a parameter. We generate the
10293 DW_AT_const_value attribute only in those cases where the given variable
10294 or parameter does not have a true "location" either in memory or in a
10295 register. This can happen (for example) when a constant is passed as an
10296 actual argument in a call to an inline function. (It's possible that
10297 these things can crop up in other ways also.) Note that one type of
10298 constant value which can be passed into an inlined function is a constant
10299 pointer. This can happen for example if an actual argument in an inlined
10300 function call evaluates to a compile-time constant address. */
10301
10302static void
b2025850 10303add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10304 enum dwarf_attribute attr)
9ed904da 10305{
19cb6b50 10306 rtx rtl;
931e9893 10307 dw_loc_descr_ref descr;
b2025850 10308 var_loc_list *loc_list;
6ad1968a 10309 struct var_loc_node *node;
9ed904da 10310 if (TREE_CODE (decl) == ERROR_MARK)
10311 return;
7bd4f6b6 10312
10313 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10314 || TREE_CODE (decl) == RESULT_DECL);
6ad1968a 10315
b2025850 10316 /* See if we possibly have multiple locations for this variable. */
10317 loc_list = lookup_decl_loc (decl);
10318
10319 /* If it truly has multiple locations, the first and last node will
10320 differ. */
10321 if (loc_list && loc_list->first != loc_list->last)
10322 {
12d886b8 10323 const char *endname, *secname;
b2025850 10324 dw_loc_list_ref list;
10325 rtx varloc;
6ad1968a 10326
b2025850 10327 /* Now that we know what section we are using for a base,
10328 actually construct the list of locations.
10329 The first location information is what is passed to the
10330 function that creates the location list, and the remaining
10331 locations just get added on to that list.
10332 Note that we only know the start address for a location
10333 (IE location changes), so to build the range, we use
10334 the range [current location start, next location start].
10335 This means we have to special case the last node, and generate
10336 a range of [last location start, end of function label]. */
10337
10338 node = loc_list->first;
10339 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
12d886b8 10340 secname = secname_for_decl (decl);
10341
10342 list = new_loc_list (loc_descriptor (varloc),
b2025850 10343 node->label, node->next->label, secname, 1);
10344 node = node->next;
10345
10346 for (; node->next; node = node->next)
10347 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10348 {
10349 /* The variable has a location between NODE->LABEL and
10350 NODE->NEXT->LABEL. */
10351 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
12d886b8 10352 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
b2025850 10353 node->label, node->next->label, secname);
10354 }
10355
10356 /* If the variable has a location at the last label
10357 it keeps its location until the end of function. */
10358 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10359 {
10360 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10361
10362 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10363 if (!current_function_decl)
10364 endname = text_end_label;
10365 else
10366 {
10367 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10368 current_function_funcdef_no);
10369 endname = ggc_strdup (label_id);
10370 }
12d886b8 10371 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
b2025850 10372 node->label, endname, secname);
10373 }
10374
10375 /* Finally, add the location list to the DIE, and we are done. */
10376 add_AT_loc_list (die, attr, list);
10377 return;
10378 }
10379
6ad1968a 10380 /* Try to get some constant RTL for this decl, and use that as the value of
10381 the location. */
10382
9ed904da 10383 rtl = rtl_for_decl_location (decl);
afcf285e 10384 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
30ade641 10385 {
30ade641 10386 add_const_value_attribute (die, rtl);
afcf285e 10387 return;
30ade641 10388 }
6ad1968a 10389
600b9bbf 10390 /* If we have tried to generate the location otherwise, and it
6ad1968a 10391 didn't work out (we wouldn't be here if we did), and we have a one entry
10392 location list, try generating a location from that. */
10393 if (loc_list && loc_list->first)
10394 {
10395 node = loc_list->first;
12d886b8 10396 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
6ad1968a 10397 if (descr)
600b9bbf 10398 {
10399 add_AT_location_description (die, attr, descr);
10400 return;
10401 }
10402 }
10403
10404 /* We couldn't get any rtl, so try directly generating the location
10405 description from the tree. */
10406 descr = loc_descriptor_from_tree (decl);
10407 if (descr)
10408 {
10409 add_AT_location_description (die, attr, descr);
10410 return;
6ad1968a 10411 }
e124d6c7 10412 /* None of that worked, so it must not really have a location;
10413 try adding a constant value attribute from the DECL_INITIAL. */
10414 tree_add_const_value_attribute (die, decl);
30ade641 10415}
10416
eabb26f3 10417/* If we don't have a copy of this variable in memory for some reason (such
10418 as a C++ member constant that doesn't have an out-of-line definition),
10419 we should tell the debugger about the constant value. */
10420
10421static void
8ec3a57b 10422tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
eabb26f3 10423{
10424 tree init = DECL_INITIAL (decl);
10425 tree type = TREE_TYPE (decl);
9293d8bd 10426 rtx rtl;
eabb26f3 10427
9293d8bd 10428 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
eabb26f3 10429 /* OK */;
10430 else
10431 return;
10432
9293d8bd 10433 rtl = rtl_for_decl_init (init, type);
10434 if (rtl)
10435 add_const_value_attribute (var_die, rtl);
eabb26f3 10436}
ac02093f 10437
89fa767a 10438/* Convert the CFI instructions for the current function into a
10439 location list. This is used for DW_AT_frame_base when we targeting
10440 a dwarf2 consumer that does not support the dwarf3
10441 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10442 expressions. */
12d886b8 10443
10444static dw_loc_list_ref
89fa767a 10445convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
12d886b8 10446{
10447 dw_fde_ref fde;
10448 dw_loc_list_ref list, *list_tail;
10449 dw_cfi_ref cfi;
10450 dw_cfa_location last_cfa, next_cfa;
10451 const char *start_label, *last_label, *section;
10452
10453 fde = &fde_table[fde_table_in_use - 1];
10454
10455 section = secname_for_decl (current_function_decl);
10456 list_tail = &list;
10457 list = NULL;
10458
10459 next_cfa.reg = INVALID_REGNUM;
10460 next_cfa.offset = 0;
10461 next_cfa.indirect = 0;
10462 next_cfa.base_offset = 0;
10463
10464 start_label = fde->dw_fde_begin;
10465
10466 /* ??? Bald assumption that the CIE opcode list does not contain
10467 advance opcodes. */
10468 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10469 lookup_cfa_1 (cfi, &next_cfa);
10470
10471 last_cfa = next_cfa;
10472 last_label = start_label;
10473
10474 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10475 switch (cfi->dw_cfi_opc)
10476 {
bea04f76 10477 case DW_CFA_set_loc:
12d886b8 10478 case DW_CFA_advance_loc1:
10479 case DW_CFA_advance_loc2:
10480 case DW_CFA_advance_loc4:
10481 if (!cfa_equal_p (&last_cfa, &next_cfa))
10482 {
89fa767a 10483 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10484 start_label, last_label, section,
10485 list == NULL);
12d886b8 10486
10487 list_tail = &(*list_tail)->dw_loc_next;
10488 last_cfa = next_cfa;
10489 start_label = last_label;
10490 }
10491 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10492 break;
10493
10494 case DW_CFA_advance_loc:
10495 /* The encoding is complex enough that we should never emit this. */
10496 case DW_CFA_remember_state:
10497 case DW_CFA_restore_state:
10498 /* We don't handle these two in this function. It would be possible
10499 if it were to be required. */
10500 gcc_unreachable ();
10501
10502 default:
10503 lookup_cfa_1 (cfi, &next_cfa);
10504 break;
10505 }
10506
10507 if (!cfa_equal_p (&last_cfa, &next_cfa))
10508 {
89fa767a 10509 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10510 start_label, last_label, section,
10511 list == NULL);
12d886b8 10512 list_tail = &(*list_tail)->dw_loc_next;
10513 start_label = last_label;
10514 }
89fa767a 10515 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10516 start_label, fde->dw_fde_end, section,
10517 list == NULL);
12d886b8 10518
10519 return list;
10520}
10521
89fa767a 10522/* Compute a displacement from the "steady-state frame pointer" to the
10523 frame base (often the same as the CFA), and store it in
10524 frame_pointer_fb_offset. OFFSET is added to the displacement
10525 before the latter is negated. */
12d886b8 10526
10527static void
89fa767a 10528compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
12d886b8 10529{
da72c083 10530 rtx reg, elim;
10531
10532#ifdef FRAME_POINTER_CFA_OFFSET
10533 reg = frame_pointer_rtx;
89fa767a 10534 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
da72c083 10535#else
10536 reg = arg_pointer_rtx;
89fa767a 10537 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
da72c083 10538#endif
12d886b8 10539
da72c083 10540 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10541 if (GET_CODE (elim) == PLUS)
10542 {
10543 offset += INTVAL (XEXP (elim, 1));
10544 elim = XEXP (elim, 0);
10545 }
10546 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10547 : stack_pointer_rtx));
12d886b8 10548
89fa767a 10549 frame_pointer_fb_offset = -offset;
12d886b8 10550}
10551
df07c3ae 10552/* Generate a DW_AT_name attribute given some string value to be included as
30ade641 10553 the value of the attribute. */
ec1e49cc 10554
ff279357 10555static void
8ec3a57b 10556add_name_attribute (dw_die_ref die, const char *name_string)
30ade641 10557{
ec1e49cc 10558 if (name_string != NULL && *name_string != 0)
155b05dc 10559 {
10560 if (demangle_name_func)
10561 name_string = (*demangle_name_func) (name_string);
10562
10563 add_AT_string (die, DW_AT_name, name_string);
10564 }
30ade641 10565}
10566
df07c3ae 10567/* Generate a DW_AT_comp_dir attribute for DIE. */
ff279357 10568
10569static void
8ec3a57b 10570add_comp_dir_attribute (dw_die_ref die)
ff279357 10571{
e7aa92b2 10572 const char *wd = get_src_pwd ();
ff279357 10573 if (wd != NULL)
10574 add_AT_string (die, DW_AT_comp_dir, wd);
10575}
10576
30ade641 10577/* Given a tree node describing an array bound (either lower or upper) output
b58d53bf 10578 a representation for that bound. */
ec1e49cc 10579
30ade641 10580static void
8ec3a57b 10581add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
30ade641 10582{
30ade641 10583 switch (TREE_CODE (bound))
10584 {
10585 case ERROR_MARK:
10586 return;
10587
04641143 10588 /* All fixed-bounds are represented by INTEGER_CST nodes. */
30ade641 10589 case INTEGER_CST:
5d844ba2 10590 if (! host_integerp (bound, 0)
10591 || (bound_attr == DW_AT_lower_bound
af4d39d8 10592 && (((is_c_family () || is_java ()) && integer_zerop (bound))
5d844ba2 10593 || (is_fortran () && integer_onep (bound)))))
aab2cf92 10594 /* Use the default. */
5d844ba2 10595 ;
0defae70 10596 else
5d844ba2 10597 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
30ade641 10598 break;
10599
34425fdc 10600 case CONVERT_EXPR:
30ade641 10601 case NOP_EXPR:
34425fdc 10602 case NON_LVALUE_EXPR:
f96c43fb 10603 case VIEW_CONVERT_EXPR:
34425fdc 10604 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10605 break;
f80d1bcd 10606
30ade641 10607 case SAVE_EXPR:
30ade641 10608 break;
8a8bfbe7 10609
678d90bb 10610 case VAR_DECL:
9ed904da 10611 case PARM_DECL:
4ee9c684 10612 case RESULT_DECL:
9ed904da 10613 {
10614 dw_die_ref decl_die = lookup_decl_die (bound);
10615
10616 /* ??? Can this happen, or should the variable have been bound
10617 first? Probably it can, since I imagine that we try to create
10618 the types of parameters in the order in which they exist in
ac02093f 10619 the list, and won't have created a forward reference to a
9ed904da 10620 later parameter. */
10621 if (decl_die != NULL)
10622 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10623 break;
10624 }
678d90bb 10625
8a8bfbe7 10626 default:
9ed904da 10627 {
10628 /* Otherwise try to create a stack operation procedure to
10629 evaluate the value of the array bound. */
10630
10631 dw_die_ref ctx, decl_die;
10632 dw_loc_descr_ref loc;
10633
afcf285e 10634 loc = loc_descriptor_from_tree (bound);
9ed904da 10635 if (loc == NULL)
10636 break;
10637
86e12d28 10638 if (current_function_decl == 0)
10639 ctx = comp_unit_die;
10640 else
10641 ctx = lookup_decl_die (current_function_decl);
9ed904da 10642
15cfae4e 10643 decl_die = new_die (DW_TAG_variable, ctx, bound);
9ed904da 10644 add_AT_flag (decl_die, DW_AT_artificial, 1);
10645 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10646 add_AT_loc (decl_die, DW_AT_location, loc);
10647
10648 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10649 break;
10650 }
30ade641 10651 }
10652}
10653
10654/* Note that the block of subscript information for an array type also
10655 includes information about the element type of type given array type. */
ec1e49cc 10656
30ade641 10657static void
8ec3a57b 10658add_subscript_info (dw_die_ref type_die, tree type)
30ade641 10659{
73439ee0 10660#ifndef MIPS_DEBUGGING_INFO
19cb6b50 10661 unsigned dimension_number;
73439ee0 10662#endif
19cb6b50 10663 tree lower, upper;
10664 dw_die_ref subrange_die;
30ade641 10665
f80d1bcd 10666 /* The GNU compilers represent multidimensional array types as sequences of
30ade641 10667 one dimensional array types whose element types are themselves array
10668 types. Here we squish that down, so that each multidimensional array
f80d1bcd 10669 type gets only one array_type DIE in the Dwarf debugging info. The draft
30ade641 10670 Dwarf specification say that we are allowed to do this kind of
10671 compression in C (because there is no difference between an array or
f80d1bcd 10672 arrays and a multidimensional array in C) but for other source languages
30ade641 10673 (e.g. Ada) we probably shouldn't do this. */
ec1e49cc 10674
30ade641 10675 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10676 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10677 We work around this by disabling this feature. See also
10678 gen_array_type_die. */
10679#ifndef MIPS_DEBUGGING_INFO
10680 for (dimension_number = 0;
10681 TREE_CODE (type) == ARRAY_TYPE;
10682 type = TREE_TYPE (type), dimension_number++)
30ade641 10683#endif
8c3f468d 10684 {
19cb6b50 10685 tree domain = TYPE_DOMAIN (type);
30ade641 10686
10687 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
f80d1bcd 10688 and (in GNU C only) variable bounds. Handle all three forms
c83a163c 10689 here. */
15cfae4e 10690 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
30ade641 10691 if (domain)
10692 {
10693 /* We have an array type with specified bounds. */
10694 lower = TYPE_MIN_VALUE (domain);
10695 upper = TYPE_MAX_VALUE (domain);
10696
139c3f48 10697 /* Define the index type. */
5b67860b 10698 if (TREE_TYPE (domain))
678d90bb 10699 {
10700 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10701 TREE_TYPE field. We can't emit debug info for this
10702 because it is an unnamed integral type. */
10703 if (TREE_CODE (domain) == INTEGER_TYPE
10704 && TYPE_NAME (domain) == NULL_TREE
10705 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10706 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
f80d1bcd 10707 ;
678d90bb 10708 else
10709 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10710 type_die);
10711 }
5b67860b 10712
f52483b5 10713 /* ??? If upper is NULL, the array has unspecified length,
10714 but it does have a lower bound. This happens with Fortran
10715 dimension arr(N:*)
8ec3a57b 10716 Since the debugger is definitely going to need to know N
f52483b5 10717 to produce useful results, go ahead and output the lower
10718 bound solo, and hope the debugger can cope. */
10719
0defae70 10720 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
f52483b5 10721 if (upper)
10722 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
30ade641 10723 }
ec1e49cc 10724
8c3f468d 10725 /* Otherwise we have an array type with an unspecified length. The
10726 DWARF-2 spec does not say how to handle this; let's just leave out the
10727 bounds. */
30ade641 10728 }
30ade641 10729}
10730
10731static void
8ec3a57b 10732add_byte_size_attribute (dw_die_ref die, tree tree_node)
30ade641 10733{
19cb6b50 10734 unsigned size;
30ade641 10735
10736 switch (TREE_CODE (tree_node))
10737 {
10738 case ERROR_MARK:
10739 size = 0;
10740 break;
10741 case ENUMERAL_TYPE:
10742 case RECORD_TYPE:
10743 case UNION_TYPE:
10744 case QUAL_UNION_TYPE:
10745 size = int_size_in_bytes (tree_node);
10746 break;
10747 case FIELD_DECL:
10748 /* For a data member of a struct or union, the DW_AT_byte_size is
c83a163c 10749 generally given as the number of bytes normally allocated for an
10750 object of the *declared* type of the member itself. This is true
10751 even for bit-fields. */
30ade641 10752 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10753 break;
10754 default:
7bd4f6b6 10755 gcc_unreachable ();
30ade641 10756 }
10757
10758 /* Note that `size' might be -1 when we get to this point. If it is, that
10759 indicates that the byte size of the entity in question is variable. We
10760 have no good way of expressing this fact in Dwarf at the present time,
10761 so just let the -1 pass on through. */
30ade641 10762 add_AT_unsigned (die, DW_AT_byte_size, size);
10763}
10764
10765/* For a FIELD_DECL node which represents a bit-field, output an attribute
10766 which specifies the distance in bits from the highest order bit of the
10767 "containing object" for the bit-field to the highest order bit of the
10768 bit-field itself.
10769
8c3f468d 10770 For any given bit-field, the "containing object" is a hypothetical object
10771 (of some integral or enum type) within which the given bit-field lives. The
10772 type of this hypothetical "containing object" is always the same as the
10773 declared type of the individual bit-field itself. The determination of the
10774 exact location of the "containing object" for a bit-field is rather
10775 complicated. It's handled by the `field_byte_offset' function (above).
30ade641 10776
10777 Note that it is the size (in bytes) of the hypothetical "containing object"
10778 which will be given in the DW_AT_byte_size attribute for this bit-field.
10779 (See `byte_size_attribute' above). */
ec1e49cc 10780
10781static inline void
8ec3a57b 10782add_bit_offset_attribute (dw_die_ref die, tree decl)
30ade641 10783{
5d844ba2 10784 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10785 tree type = DECL_BIT_FIELD_TYPE (decl);
10786 HOST_WIDE_INT bitpos_int;
10787 HOST_WIDE_INT highest_order_object_bit_offset;
10788 HOST_WIDE_INT highest_order_field_bit_offset;
10789 HOST_WIDE_INT unsigned bit_offset;
30ade641 10790
7e2bfe1e 10791 /* Must be a field and a bit field. */
7bd4f6b6 10792 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
30ade641 10793
10794 /* We can't yet handle bit-fields whose offsets are variable, so if we
10795 encounter such things, just return without generating any attribute
5d844ba2 10796 whatsoever. Likewise for variable or too large size. */
10797 if (! host_integerp (bit_position (decl), 0)
10798 || ! host_integerp (DECL_SIZE (decl), 1))
ec1e49cc 10799 return;
10800
5d844ba2 10801 bitpos_int = int_bit_position (decl);
30ade641 10802
10803 /* Note that the bit offset is always the distance (in bits) from the
f80d1bcd 10804 highest-order bit of the "containing object" to the highest-order bit of
10805 the bit-field itself. Since the "high-order end" of any object or field
30ade641 10806 is different on big-endian and little-endian machines, the computation
10807 below must take account of these differences. */
10808 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10809 highest_order_field_bit_offset = bitpos_int;
10810
ec1e49cc 10811 if (! BYTES_BIG_ENDIAN)
30ade641 10812 {
5d844ba2 10813 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
30ade641 10814 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10815 }
ec1e49cc 10816
10817 bit_offset
10818 = (! BYTES_BIG_ENDIAN
10819 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10820 : highest_order_field_bit_offset - highest_order_object_bit_offset);
30ade641 10821
10822 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10823}
10824
10825/* For a FIELD_DECL node which represents a bit field, output an attribute
10826 which specifies the length in bits of the given field. */
ec1e49cc 10827
10828static inline void
8ec3a57b 10829add_bit_size_attribute (dw_die_ref die, tree decl)
30ade641 10830{
7e2bfe1e 10831 /* Must be a field and a bit field. */
7bd4f6b6 10832 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10833 && DECL_BIT_FIELD_TYPE (decl));
5d844ba2 10834
10835 if (host_integerp (DECL_SIZE (decl), 1))
10836 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
30ade641 10837}
10838
464217f3 10839/* If the compiled language is ANSI C, then add a 'prototyped'
30ade641 10840 attribute, if arg types are given for the parameters of a function. */
ec1e49cc 10841
10842static inline void
8ec3a57b 10843add_prototyped_attribute (dw_die_ref die, tree func_type)
30ade641 10844{
464217f3 10845 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10846 && TYPE_ARG_TYPES (func_type) != NULL)
10847 add_AT_flag (die, DW_AT_prototyped, 1);
30ade641 10848}
10849
30ade641 10850/* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10851 by looking in either the type declaration or object declaration
10852 equate table. */
ec1e49cc 10853
10854static inline void
8ec3a57b 10855add_abstract_origin_attribute (dw_die_ref die, tree origin)
30ade641 10856{
10857 dw_die_ref origin_die = NULL;
b2ca6017 10858
bb0f15b4 10859 if (TREE_CODE (origin) != FUNCTION_DECL)
6c92ff4f 10860 {
10861 /* We may have gotten separated from the block for the inlined
10862 function, if we're in an exception handler or some such; make
10863 sure that the abstract function has been written out.
10864
c83a163c 10865 Doing this for nested functions is wrong, however; functions are
6c92ff4f 10866 distinct units, and our context might not even be inline. */
f929a98a 10867 tree fn = origin;
8c3f468d 10868
f929a98a 10869 if (TYPE_P (fn))
10870 fn = TYPE_STUB_DECL (fn);
156660d7 10871
f10b7a77 10872 fn = decl_function_context (fn);
6c92ff4f 10873 if (fn)
f414ade2 10874 dwarf2out_abstract_function (fn);
6c92ff4f 10875 }
e3b3c2ae 10876
9308e976 10877 if (DECL_P (origin))
ec1e49cc 10878 origin_die = lookup_decl_die (origin);
9308e976 10879 else if (TYPE_P (origin))
ec1e49cc 10880 origin_die = lookup_type_die (origin);
10881
7c0a8197 10882 /* XXX: Functions that are never lowered don't always have correct block
10883 trees (in the case of java, they simply have no block tree, in some other
10884 languages). For these functions, there is nothing we can really do to
10885 output correct debug info for inlined functions in all cases. Rather
89f18f73 10886 than die, we'll just produce deficient debug info now, in that we will
7c0a8197 10887 have variables without a proper abstract origin. In the future, when all
10888 functions are lowered, we should re-add a gcc_assert (origin_die)
10889 here. */
f80d1bcd 10890
7c0a8197 10891 if (origin_die)
10892 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
30ade641 10893}
10894
6ed29fb8 10895/* We do not currently support the pure_virtual attribute. */
10896
ec1e49cc 10897static inline void
8ec3a57b 10898add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
30ade641 10899{
6efd403b 10900 if (DECL_VINDEX (func_decl))
30ade641 10901 {
6ed29fb8 10902 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
5d844ba2 10903
10904 if (host_integerp (DECL_VINDEX (func_decl), 0))
10905 add_AT_loc (die, DW_AT_vtable_elem_location,
10906 new_loc_descr (DW_OP_constu,
10907 tree_low_cst (DECL_VINDEX (func_decl), 0),
10908 0));
ec1e49cc 10909
6efd403b 10910 /* GNU extension: Record what type this method came from originally. */
10911 if (debug_info_level > DINFO_LEVEL_TERSE)
10912 add_AT_die_ref (die, DW_AT_containing_type,
10913 lookup_type_die (DECL_CONTEXT (func_decl)));
30ade641 10914 }
10915}
10916\f
840b696a 10917/* Add source coordinate attributes for the given decl. */
ec1e49cc 10918
840b696a 10919static void
8ec3a57b 10920add_src_coords_attributes (dw_die_ref die, tree decl)
840b696a 10921{
7bd3dcc4 10922 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
ec1e49cc 10923
69278c24 10924 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
7bd3dcc4 10925 add_AT_unsigned (die, DW_AT_decl_line, s.line);
840b696a 10926}
10927
df07c3ae 10928/* Add a DW_AT_name attribute and source coordinate attribute for the
30ade641 10929 given decl, but only if it actually has a name. */
ec1e49cc 10930
30ade641 10931static void
8ec3a57b 10932add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
30ade641 10933{
19cb6b50 10934 tree decl_name;
ec1e49cc 10935
f80d1bcd 10936 decl_name = DECL_NAME (decl);
ec1e49cc 10937 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
30ade641 10938 {
59561872 10939 add_name_attribute (die, dwarf2_name (decl, 0));
c90bf86c 10940 if (! DECL_ARTIFICIAL (decl))
10941 add_src_coords_attributes (die, decl);
2b553659 10942
59561872 10943 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
4e1d939e 10944 && TREE_PUBLIC (decl)
8f80e66d 10945 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
23bf35fe 10946 && !DECL_ABSTRACT (decl)
10947 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
59561872 10948 add_AT_string (die, DW_AT_MIPS_linkage_name,
10949 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
30ade641 10950 }
8d60d2bc 10951
10952#ifdef VMS_DEBUGGING_INFO
8d60d2bc 10953 /* Get the function's name, as described by its RTL. This may be different
10954 from the DECL_NAME name used in the source file. */
10955 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
7facaa35 10956 {
10957 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10958 XEXP (DECL_RTL (decl), 0));
62aedc4c 10959 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
7facaa35 10960 }
8d60d2bc 10961#endif
30ade641 10962}
10963
f80d1bcd 10964/* Push a new declaration scope. */
ec1e49cc 10965
30ade641 10966static void
8ec3a57b 10967push_decl_scope (tree scope)
30ade641 10968{
4a940e75 10969 VEC_safe_push (tree, gc, decl_scope_table, scope);
30ade641 10970}
10971
14b40abb 10972/* Pop a declaration scope. */
8c3f468d 10973
14b40abb 10974static inline void
8ec3a57b 10975pop_decl_scope (void)
14b40abb 10976{
4a940e75 10977 VEC_pop (tree, decl_scope_table);
14b40abb 10978}
10979
10980/* Return the DIE for the scope that immediately contains this type.
10981 Non-named types get global scope. Named types nested in other
10982 types get their containing scope if it's open, or global scope
10983 otherwise. All other types (i.e. function-local named types) get
10984 the current active scope. */
ec1e49cc 10985
30ade641 10986static dw_die_ref
8ec3a57b 10987scope_die_for (tree t, dw_die_ref context_die)
30ade641 10988{
19cb6b50 10989 dw_die_ref scope_die = NULL;
10990 tree containing_scope;
10991 int i;
30ade641 10992
14b40abb 10993 /* Non-types always go in the current scope. */
7bd4f6b6 10994 gcc_assert (TYPE_P (t));
14b40abb 10995
10996 containing_scope = TYPE_CONTEXT (t);
db42c2b2 10997
e89530cd 10998 /* Use the containing namespace if it was passed in (for a declaration). */
7c43cc0e 10999 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
e89530cd 11000 {
11001 if (context_die == lookup_decl_die (containing_scope))
11002 /* OK */;
11003 else
11004 containing_scope = NULL_TREE;
11005 }
7c43cc0e 11006
5ef8d04d 11007 /* Ignore function type "scopes" from the C frontend. They mean that
11008 a tagged type is local to a parmlist of a function declarator, but
11009 that isn't useful to DWARF. */
11010 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11011 containing_scope = NULL_TREE;
11012
ec1e49cc 11013 if (containing_scope == NULL_TREE)
11014 scope_die = comp_unit_die;
14b40abb 11015 else if (TYPE_P (containing_scope))
5c65b85a 11016 {
14b40abb 11017 /* For types, we can just look up the appropriate DIE. But
11018 first we check to see if we're in the middle of emitting it
11019 so we know where the new DIE should go. */
4a940e75 11020 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11021 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
5c65b85a 11022 break;
11023
11024 if (i < 0)
11025 {
7bd4f6b6 11026 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11027 || TREE_ASM_WRITTEN (containing_scope));
5c65b85a 11028
11029 /* If none of the current dies are suitable, we get file scope. */
11030 scope_die = comp_unit_die;
11031 }
11032 else
14b40abb 11033 scope_die = lookup_type_die (containing_scope);
5c65b85a 11034 }
30ade641 11035 else
14b40abb 11036 scope_die = context_die;
ec1e49cc 11037
30ade641 11038 return scope_die;
11039}
11040
8c3f468d 11041/* Returns nonzero if CONTEXT_DIE is internal to a function. */
14b40abb 11042
11043static inline int
8ec3a57b 11044local_scope_p (dw_die_ref context_die)
30ade641 11045{
14b40abb 11046 for (; context_die; context_die = context_die->die_parent)
11047 if (context_die->die_tag == DW_TAG_inlined_subroutine
11048 || context_die->die_tag == DW_TAG_subprogram)
11049 return 1;
8c3f468d 11050
14b40abb 11051 return 0;
30ade641 11052}
11053
e89530cd 11054/* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11055 whether or not to treat a DIE in this context as a declaration. */
ee1cd281 11056
11057static inline int
e89530cd 11058class_or_namespace_scope_p (dw_die_ref context_die)
ee1cd281 11059{
11060 return (context_die
11061 && (context_die->die_tag == DW_TAG_structure_type
e89530cd 11062 || context_die->die_tag == DW_TAG_union_type
11063 || context_die->die_tag == DW_TAG_namespace));
ee1cd281 11064}
11065
30ade641 11066/* Many forms of DIEs require a "type description" attribute. This
11067 routine locates the proper "type descriptor" die for the type given
df07c3ae 11068 by 'type', and adds a DW_AT_type attribute below the given die. */
ec1e49cc 11069
30ade641 11070static void
8ec3a57b 11071add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11072 int decl_volatile, dw_die_ref context_die)
30ade641 11073{
19cb6b50 11074 enum tree_code code = TREE_CODE (type);
11075 dw_die_ref type_die = NULL;
30ade641 11076
678d90bb 11077 /* ??? If this type is an unnamed subrange type of an integral or
11078 floating-point type, use the inner type. This is because we have no
11079 support for unnamed types in base_type_die. This can happen if this is
11080 an Ada subrange type. Correct solution is emit a subrange type die. */
34425fdc 11081 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11082 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11083 type = TREE_TYPE (type), code = TREE_CODE (type);
11084
8c3f468d 11085 if (code == ERROR_MARK
11086 /* Handle a special case. For functions whose return type is void, we
11087 generate *no* type attribute. (Note that no object may have type
11088 `void', so this only applies to function return types). */
11089 || code == VOID_TYPE)
34425fdc 11090 return;
30ade641 11091
30ade641 11092 type_die = modified_type_die (type,
11093 decl_const || TYPE_READONLY (type),
11094 decl_volatile || TYPE_VOLATILE (type),
db42c2b2 11095 context_die);
8c3f468d 11096
30ade641 11097 if (type_die != NULL)
ec1e49cc 11098 add_AT_die_ref (object_die, DW_AT_type, type_die);
30ade641 11099}
11100
8ff30ff6 11101/* Given an object die, add the calling convention attribute for the
11102 function call type. */
11103static void
11104add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11105{
11106 enum dwarf_calling_convention value = DW_CC_normal;
11107
11108 value = targetm.dwarf_calling_convention (type);
11109
785a2b1d 11110 /* Only add the attribute if the backend requests it, and
11111 is not DW_CC_normal. */
11112 if (value && (value != DW_CC_normal))
8ff30ff6 11113 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11114}
11115
30ade641 11116/* Given a tree pointer to a struct, class, union, or enum type node, return
11117 a pointer to the (string) tag name for the given type, or zero if the type
11118 was declared without a tag. */
ec1e49cc 11119
1e034a40 11120static const char *
8ec3a57b 11121type_tag (tree type)
30ade641 11122{
19cb6b50 11123 const char *name = 0;
30ade641 11124
11125 if (TYPE_NAME (type) != 0)
11126 {
19cb6b50 11127 tree t = 0;
30ade641 11128
11129 /* Find the IDENTIFIER_NODE for the type name. */
11130 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11131 t = TYPE_NAME (type);
6ed29fb8 11132
f80d1bcd 11133 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
c83a163c 11134 a TYPE_DECL node, regardless of whether or not a `typedef' was
11135 involved. */
6efd403b 11136 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11137 && ! DECL_IGNORED_P (TYPE_NAME (type)))
30ade641 11138 t = DECL_NAME (TYPE_NAME (type));
6ed29fb8 11139
30ade641 11140 /* Now get the name as a string, or invent one. */
11141 if (t != 0)
6efd403b 11142 name = IDENTIFIER_POINTER (t);
30ade641 11143 }
ec1e49cc 11144
30ade641 11145 return (name == 0 || *name == '\0') ? 0 : name;
11146}
11147
11148/* Return the type associated with a data member, make a special check
11149 for bit field types. */
ec1e49cc 11150
11151static inline tree
8ec3a57b 11152member_declared_type (tree member)
30ade641 11153{
ec1e49cc 11154 return (DECL_BIT_FIELD_TYPE (member)
8c3f468d 11155 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
30ade641 11156}
11157
dc7a29ce 11158/* Get the decl's label, as described by its RTL. This may be different
30ade641 11159 from the DECL_NAME name used in the source file. */
ec1e49cc 11160
0e93a6ac 11161#if 0
1e034a40 11162static const char *
8ec3a57b 11163decl_start_label (tree decl)
30ade641 11164{
11165 rtx x;
1e034a40 11166 const char *fnname;
8c3f468d 11167
30ade641 11168 x = DECL_RTL (decl);
7bd4f6b6 11169 gcc_assert (MEM_P (x));
ec1e49cc 11170
30ade641 11171 x = XEXP (x, 0);
7bd4f6b6 11172 gcc_assert (GET_CODE (x) == SYMBOL_REF);
ec1e49cc 11173
30ade641 11174 fnname = XSTR (x, 0);
11175 return fnname;
11176}
0e93a6ac 11177#endif
30ade641 11178\f
ad87de1e 11179/* These routines generate the internal representation of the DIE's for
30ade641 11180 the compilation unit. Debugging information is collected by walking
464217f3 11181 the declaration trees passed in from dwarf2out_decl(). */
30ade641 11182
11183static void
8ec3a57b 11184gen_array_type_die (tree type, dw_die_ref context_die)
30ade641 11185{
19cb6b50 11186 dw_die_ref scope_die = scope_die_for (type, context_die);
11187 dw_die_ref array_die;
11188 tree element_type;
6ed29fb8 11189
5b67860b 11190 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11191 the inner array type comes before the outer array type. Thus we must
11192 call gen_type_die before we call new_die. See below also. */
11193#ifdef MIPS_DEBUGGING_INFO
11194 gen_type_die (TREE_TYPE (type), context_die);
11195#endif
11196
15cfae4e 11197 array_die = new_die (DW_TAG_array_type, scope_die, type);
634906d6 11198 add_name_attribute (array_die, type_tag (type));
11199 equate_type_number_to_die (type, array_die);
11200
11201 if (TREE_CODE (type) == VECTOR_TYPE)
11202 {
11203 /* The frontend feeds us a representation for the vector as a struct
11204 containing an array. Pull out the array type. */
11205 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11206 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11207 }
5b67860b 11208
30ade641 11209#if 0
11210 /* We default the array ordering. SDB will probably do
11211 the right things even if DW_AT_ordering is not present. It's not even
11212 an issue until we start to get into multidimensional arrays anyway. If
11213 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11214 then we'll have to put the DW_AT_ordering attribute back in. (But if
11215 and when we find out that we need to put these in, we will only do so
11216 for multidimensional arrays. */
11217 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11218#endif
11219
5b67860b 11220#ifdef MIPS_DEBUGGING_INFO
cc324702 11221 /* The SGI compilers handle arrays of unknown bound by setting
11222 AT_declaration and not emitting any subrange DIEs. */
5b67860b 11223 if (! TYPE_DOMAIN (type))
8c50ec6a 11224 add_AT_flag (array_die, DW_AT_declaration, 1);
5b67860b 11225 else
11226#endif
11227 add_subscript_info (array_die, type);
30ade641 11228
30ade641 11229 /* Add representation of the type of the elements of this array type. */
11230 element_type = TREE_TYPE (type);
ec1e49cc 11231
30ade641 11232 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11233 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11234 We work around this by disabling this feature. See also
11235 add_subscript_info. */
11236#ifndef MIPS_DEBUGGING_INFO
ec1e49cc 11237 while (TREE_CODE (element_type) == ARRAY_TYPE)
11238 element_type = TREE_TYPE (element_type);
11239
30ade641 11240 gen_type_die (element_type, context_die);
5b67860b 11241#endif
30ade641 11242
11243 add_type_attribute (array_die, element_type, 0, 0, context_die);
11244}
11245
cd03a192 11246#if 0
30ade641 11247static void
8ec3a57b 11248gen_entry_point_die (tree decl, dw_die_ref context_die)
30ade641 11249{
19cb6b50 11250 tree origin = decl_ultimate_origin (decl);
15cfae4e 11251 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
8c3f468d 11252
30ade641 11253 if (origin != NULL)
ec1e49cc 11254 add_abstract_origin_attribute (decl_die, origin);
30ade641 11255 else
11256 {
11257 add_name_and_src_coords_attributes (decl_die, decl);
30ade641 11258 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11259 0, 0, context_die);
11260 }
ec1e49cc 11261
30ade641 11262 if (DECL_ABSTRACT (decl))
ec1e49cc 11263 equate_decl_number_to_die (decl, decl_die);
30ade641 11264 else
ec1e49cc 11265 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
30ade641 11266}
cd03a192 11267#endif
30ade641 11268
a4617d03 11269/* Walk through the list of incomplete types again, trying once more to
11270 emit full debugging info for them. */
11271
11272static void
8ec3a57b 11273retry_incomplete_types (void)
a4617d03 11274{
52a7cc7b 11275 int i;
8c3f468d 11276
22230dd1 11277 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11278 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
a4617d03 11279}
11280
30ade641 11281/* Generate a DIE to represent an inlined instance of an enumeration type. */
ec1e49cc 11282
30ade641 11283static void
8ec3a57b 11284gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
30ade641 11285{
15cfae4e 11286 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
8c3f468d 11287
b2ca6017 11288 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11289 be incomplete and such types are not marked. */
30ade641 11290 add_abstract_origin_attribute (type_die, type);
11291}
11292
11293/* Generate a DIE to represent an inlined instance of a structure type. */
ec1e49cc 11294
30ade641 11295static void
8ec3a57b 11296gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
30ade641 11297{
15cfae4e 11298 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
14b40abb 11299
b2ca6017 11300 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11301 be incomplete and such types are not marked. */
30ade641 11302 add_abstract_origin_attribute (type_die, type);
11303}
11304
11305/* Generate a DIE to represent an inlined instance of a union type. */
ec1e49cc 11306
30ade641 11307static void
8ec3a57b 11308gen_inlined_union_type_die (tree type, dw_die_ref context_die)
30ade641 11309{
15cfae4e 11310 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
14b40abb 11311
b2ca6017 11312 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11313 be incomplete and such types are not marked. */
30ade641 11314 add_abstract_origin_attribute (type_die, type);
11315}
11316
11317/* Generate a DIE to represent an enumeration type. Note that these DIEs
11318 include all of the information about the enumeration values also. Each
6542a017 11319 enumerated type name/value is listed as a child of the enumerated type
11320 DIE. */
ec1e49cc 11321
93c7db82 11322static dw_die_ref
8ec3a57b 11323gen_enumeration_type_die (tree type, dw_die_ref context_die)
30ade641 11324{
19cb6b50 11325 dw_die_ref type_die = lookup_type_die (type);
6542a017 11326
30ade641 11327 if (type_die == NULL)
11328 {
11329 type_die = new_die (DW_TAG_enumeration_type,
15cfae4e 11330 scope_die_for (type, context_die), type);
30ade641 11331 equate_type_number_to_die (type, type_die);
11332 add_name_attribute (type_die, type_tag (type));
30ade641 11333 }
6542a017 11334 else if (! TYPE_SIZE (type))
93c7db82 11335 return type_die;
6542a017 11336 else
11337 remove_AT (type_die, DW_AT_declaration);
11338
11339 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11340 given enum type is incomplete, do not generate the DW_AT_byte_size
11341 attribute or the DW_AT_element_list attribute. */
11342 if (TYPE_SIZE (type))
30ade641 11343 {
19cb6b50 11344 tree link;
ec1e49cc 11345
a3377a8b 11346 TREE_ASM_WRITTEN (type) = 1;
6542a017 11347 add_byte_size_attribute (type_die, type);
0dbd1c74 11348 if (TYPE_STUB_DECL (type) != NULL_TREE)
840b696a 11349 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
ec1e49cc 11350
678d90bb 11351 /* If the first reference to this type was as the return type of an
11352 inline function, then it may not have a parent. Fix this now. */
11353 if (type_die->die_parent == NULL)
11354 add_child_die (scope_die_for (type, context_die), type_die);
11355
82bb2115 11356 for (link = TYPE_VALUES (type);
6542a017 11357 link != NULL; link = TREE_CHAIN (link))
30ade641 11358 {
15cfae4e 11359 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
99f3dd6a 11360 tree value = TREE_VALUE (link);
ec1e49cc 11361
6542a017 11362 add_name_attribute (enum_die,
11363 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
5d844ba2 11364
78a8ed03 11365 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
99f3dd6a 11366 /* DWARF2 does not provide a way of indicating whether or
11367 not enumeration constants are signed or unsigned. GDB
11368 always assumes the values are signed, so we output all
11369 values as if they were signed. That means that
11370 enumeration constants with very large unsigned values
11371 will appear to have negative values in the debugger. */
11372 add_AT_int (enum_die, DW_AT_const_value,
11373 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
30ade641 11374 }
11375 }
6542a017 11376 else
11377 add_AT_flag (type_die, DW_AT_declaration, 1);
93c7db82 11378
11379 return type_die;
30ade641 11380}
11381
30ade641 11382/* Generate a DIE to represent either a real live formal parameter decl or to
11383 represent just the type of some formal parameter position in some function
11384 type.
ec1e49cc 11385
30ade641 11386 Note that this routine is a bit unusual because its argument may be a
11387 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11388 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11389 node. If it's the former then this function is being called to output a
11390 DIE to represent a formal parameter object (or some inlining thereof). If
11391 it's the latter, then this function is only being called to output a
11392 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11393 argument type of some subprogram type. */
ec1e49cc 11394
6efd403b 11395static dw_die_ref
8ec3a57b 11396gen_formal_parameter_die (tree node, dw_die_ref context_die)
30ade641 11397{
19cb6b50 11398 dw_die_ref parm_die
15cfae4e 11399 = new_die (DW_TAG_formal_parameter, context_die, node);
19cb6b50 11400 tree origin;
ec1e49cc 11401
30ade641 11402 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11403 {
ce45a448 11404 case tcc_declaration:
30ade641 11405 origin = decl_ultimate_origin (node);
11406 if (origin != NULL)
6efd403b 11407 add_abstract_origin_attribute (parm_die, origin);
30ade641 11408 else
11409 {
11410 add_name_and_src_coords_attributes (parm_die, node);
11411 add_type_attribute (parm_die, TREE_TYPE (node),
11412 TREE_READONLY (node),
11413 TREE_THIS_VOLATILE (node),
11414 context_die);
6ed29fb8 11415 if (DECL_ARTIFICIAL (node))
11416 add_AT_flag (parm_die, DW_AT_artificial, 1);
30ade641 11417 }
ec1e49cc 11418
0defae70 11419 equate_decl_number_to_die (node, parm_die);
11420 if (! DECL_ABSTRACT (node))
b2025850 11421 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
ec1e49cc 11422
30ade641 11423 break;
11424
ce45a448 11425 case tcc_type:
ec1e49cc 11426 /* We were called with some kind of a ..._TYPE node. */
30ade641 11427 add_type_attribute (parm_die, node, 0, 0, context_die);
11428 break;
11429
30ade641 11430 default:
7bd4f6b6 11431 gcc_unreachable ();
30ade641 11432 }
ec1e49cc 11433
6efd403b 11434 return parm_die;
30ade641 11435}
11436
11437/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11438 at the end of an (ANSI prototyped) formal parameters list. */
ec1e49cc 11439
30ade641 11440static void
8ec3a57b 11441gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
30ade641 11442{
15cfae4e 11443 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
30ade641 11444}
11445
11446/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11447 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11448 parameters as specified in some function type specification (except for
0dbc398a 11449 those which appear as part of a function *definition*). */
ec1e49cc 11450
30ade641 11451static void
8ec3a57b 11452gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
30ade641 11453{
19cb6b50 11454 tree link;
11455 tree formal_type = NULL;
11456 tree first_parm_type;
8f80e66d 11457 tree arg;
30ade641 11458
8f80e66d 11459 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11460 {
11461 arg = DECL_ARGUMENTS (function_or_method_type);
11462 function_or_method_type = TREE_TYPE (function_or_method_type);
11463 }
11464 else
11465 arg = NULL_TREE;
bc70bd5e 11466
8f80e66d 11467 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
30ade641 11468
f80d1bcd 11469 /* Make our first pass over the list of formal parameter types and output a
30ade641 11470 DW_TAG_formal_parameter DIE for each one. */
8f80e66d 11471 for (link = first_parm_type; link; )
30ade641 11472 {
19cb6b50 11473 dw_die_ref parm_die;
f80d1bcd 11474
30ade641 11475 formal_type = TREE_VALUE (link);
11476 if (formal_type == void_type_node)
11477 break;
11478
11479 /* Output a (nameless) DIE to represent the formal parameter itself. */
6efd403b 11480 parm_die = gen_formal_parameter_die (formal_type, context_die);
8f80e66d 11481 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11482 && link == first_parm_type)
11483 || (arg && DECL_ARTIFICIAL (arg)))
6efd403b 11484 add_AT_flag (parm_die, DW_AT_artificial, 1);
8f80e66d 11485
11486 link = TREE_CHAIN (link);
11487 if (arg)
11488 arg = TREE_CHAIN (arg);
30ade641 11489 }
11490
11491 /* If this function type has an ellipsis, add a
11492 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11493 if (formal_type != void_type_node)
11494 gen_unspecified_parameters_die (function_or_method_type, context_die);
11495
f80d1bcd 11496 /* Make our second (and final) pass over the list of formal parameter types
30ade641 11497 and output DIEs to represent those types (as necessary). */
11498 for (link = TYPE_ARG_TYPES (function_or_method_type);
8c3f468d 11499 link && TREE_VALUE (link);
30ade641 11500 link = TREE_CHAIN (link))
8c3f468d 11501 gen_type_die (TREE_VALUE (link), context_die);
30ade641 11502}
11503
e7b3c55c 11504/* We want to generate the DIE for TYPE so that we can generate the
11505 die for MEMBER, which has been defined; we will need to refer back
11506 to the member declaration nested within TYPE. If we're trying to
11507 generate minimal debug info for TYPE, processing TYPE won't do the
11508 trick; we need to attach the member declaration by hand. */
11509
11510static void
8ec3a57b 11511gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
e7b3c55c 11512{
11513 gen_type_die (type, context_die);
11514
11515 /* If we're trying to avoid duplicate debug info, we may not have
11516 emitted the member decl for this function. Emit it now. */
11517 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11518 && ! lookup_decl_die (member))
11519 {
d4946992 11520 dw_die_ref type_die;
7bd4f6b6 11521 gcc_assert (!decl_ultimate_origin (member));
e7b3c55c 11522
11523 push_decl_scope (type);
d4946992 11524 type_die = lookup_type_die (type);
e7b3c55c 11525 if (TREE_CODE (member) == FUNCTION_DECL)
d4946992 11526 gen_subprogram_die (member, type_die);
11527 else if (TREE_CODE (member) == FIELD_DECL)
11528 {
11529 /* Ignore the nameless fields that are used to skip bits but handle
11530 C++ anonymous unions and structs. */
11531 if (DECL_NAME (member) != NULL_TREE
11532 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11533 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11534 {
11535 gen_type_die (member_declared_type (member), type_die);
11536 gen_field_die (member, type_die);
11537 }
11538 }
e7b3c55c 11539 else
d4946992 11540 gen_variable_die (member, type_die);
8c3f468d 11541
e7b3c55c 11542 pop_decl_scope ();
11543 }
11544}
11545
8c3f468d 11546/* Generate the DWARF2 info for the "abstract" instance of a function which we
11547 may later generate inlined and/or out-of-line instances of. */
e7b3c55c 11548
b29760a8 11549static void
8ec3a57b 11550dwarf2out_abstract_function (tree decl)
e7b3c55c 11551{
19cb6b50 11552 dw_die_ref old_die;
14b40abb 11553 tree save_fn;
89c30811 11554 struct function *save_cfun;
8f80e66d 11555 tree context;
11556 int was_abstract = DECL_ABSTRACT (decl);
11557
11558 /* Make sure we have the actual abstract inline, not a clone. */
11559 decl = DECL_ORIGIN (decl);
e7b3c55c 11560
bc70bd5e 11561 old_die = lookup_decl_die (decl);
2e14ce2e 11562 if (old_die && get_AT (old_die, DW_AT_inline))
e7b3c55c 11563 /* We've already generated the abstract instance. */
11564 return;
11565
8f80e66d 11566 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11567 we don't get confused by DECL_ABSTRACT. */
0c88fb4f 11568 if (debug_info_level > DINFO_LEVEL_TERSE)
11569 {
11570 context = decl_class_context (decl);
11571 if (context)
11572 gen_type_die_for_member
11573 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11574 }
bc70bd5e 11575
8f80e66d 11576 /* Pretend we've just finished compiling this function. */
14b40abb 11577 save_fn = current_function_decl;
89c30811 11578 save_cfun = cfun;
14b40abb 11579 current_function_decl = decl;
89c30811 11580 cfun = DECL_STRUCT_FUNCTION (decl);
14b40abb 11581
e7b3c55c 11582 set_decl_abstract_flags (decl, 1);
11583 dwarf2out_decl (decl);
8f80e66d 11584 if (! was_abstract)
11585 set_decl_abstract_flags (decl, 0);
14b40abb 11586
11587 current_function_decl = save_fn;
89c30811 11588 cfun = save_cfun;
e7b3c55c 11589}
11590
f6e59711 11591/* Helper function of premark_used_types() which gets called through
11592 htab_traverse_resize().
11593
11594 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11595 marked as unused by prune_unused_types. */
11596static int
11597premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11598{
11599 tree type;
11600 dw_die_ref die;
11601
11602 type = *slot;
11603 die = lookup_type_die (type);
11604 if (die != NULL)
11605 die->die_perennial_p = 1;
11606 return 1;
11607}
11608
11609/* Mark all members of used_types_hash as perennial. */
11610static void
11611premark_used_types (void)
11612{
11613 if (cfun && cfun->used_types_hash)
11614 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11615}
11616
30ade641 11617/* Generate a DIE to represent a declared function (either file-scope or
11618 block-local). */
ec1e49cc 11619
30ade641 11620static void
8ec3a57b 11621gen_subprogram_die (tree decl, dw_die_ref context_die)
30ade641 11622{
11623 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
19cb6b50 11624 tree origin = decl_ultimate_origin (decl);
11625 dw_die_ref subr_die;
19cb6b50 11626 tree fn_arg_types;
11627 tree outer_scope;
11628 dw_die_ref old_die = lookup_decl_die (decl);
11629 int declaration = (current_function_decl != decl
e89530cd 11630 || class_or_namespace_scope_p (context_die));
30ade641 11631
89c30811 11632 premark_used_types ();
f6e59711 11633
8c3f468d 11634 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11635 started to generate the abstract instance of an inline, decided to output
11636 its containing class, and proceeded to emit the declaration of the inline
11637 from the member list for the class. If so, DECLARATION takes priority;
11638 we'll get back to the abstract instance when done with the class. */
e7b3c55c 11639
0dbc398a 11640 /* The class-scope declaration DIE must be the primary DIE. */
e89530cd 11641 if (origin && declaration && class_or_namespace_scope_p (context_die))
0dbc398a 11642 {
11643 origin = NULL;
7bd4f6b6 11644 gcc_assert (!old_die);
0dbc398a 11645 }
11646
dcfa82ba 11647 /* Now that the C++ front end lazily declares artificial member fns, we
11648 might need to retrofit the declaration into its class. */
11649 if (!declaration && !origin && !old_die
11650 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11651 && !class_or_namespace_scope_p (context_die)
11652 && debug_info_level > DINFO_LEVEL_TERSE)
11653 old_die = force_decl_die (decl);
11654
30ade641 11655 if (origin != NULL)
11656 {
7bd4f6b6 11657 gcc_assert (!declaration || local_scope_p (context_die));
e7b3c55c 11658
48fdacd0 11659 /* Fixup die_parent for the abstract instance of a nested
11660 inline function. */
11661 if (old_die && old_die->die_parent == NULL)
11662 add_child_die (context_die, old_die);
11663
15cfae4e 11664 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
30ade641 11665 add_abstract_origin_attribute (subr_die, origin);
11666 }
6ed29fb8 11667 else if (old_die)
11668 {
7bd3dcc4 11669 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
69278c24 11670 struct dwarf_file_data * file_index = lookup_filename (s.file);
6efd403b 11671
f414ade2 11672 if (!get_AT_flag (old_die, DW_AT_declaration)
11673 /* We can have a normal definition following an inline one in the
11674 case of redefinition of GNU C extern inlines.
11675 It seems reasonable to use AT_specification in this case. */
2e14ce2e 11676 && !get_AT (old_die, DW_AT_inline))
c2581433 11677 {
7c0a8197 11678 /* Detect and ignore this case, where we are trying to output
11679 something we have already output. */
7bd4f6b6 11680 return;
c2581433 11681 }
752e49ca 11682
11683 /* If the definition comes from the same place as the declaration,
6efd403b 11684 maybe use the old DIE. We always want the DIE for this function
11685 that has the *_pc attributes to be under comp_unit_die so the
a7678b15 11686 debugger can find it. We also need to do this for abstract
11687 instances of inlines, since the spec requires the out-of-line copy
11688 to have the same parent. For local class methods, this doesn't
11689 apply; we just use the old DIE. */
11690 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
c90bf86c 11691 && (DECL_ARTIFICIAL (decl)
69278c24 11692 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
c90bf86c 11693 && (get_AT_unsigned (old_die, DW_AT_decl_line)
7bd3dcc4 11694 == (unsigned) s.line))))
6ed29fb8 11695 {
752e49ca 11696 subr_die = old_die;
11697
2b49746a 11698 /* Clear out the declaration attribute and the formal parameters.
8ff30ff6 11699 Do not remove all children, because it is possible that this
2b49746a 11700 declaration die was forced using force_decl_die(). In such
11701 cases die that forced declaration die (e.g. TAG_imported_module)
11702 is one of the children that we do not want to remove. */
752e49ca 11703 remove_AT (subr_die, DW_AT_declaration);
2b49746a 11704 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
752e49ca 11705 }
11706 else
11707 {
15cfae4e 11708 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
023dc493 11709 add_AT_specification (subr_die, old_die);
69278c24 11710 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11711 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11712 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11713 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
6ed29fb8 11714 }
11715 }
30ade641 11716 else
11717 {
15cfae4e 11718 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
f80d1bcd 11719
6542a017 11720 if (TREE_PUBLIC (decl))
11721 add_AT_flag (subr_die, DW_AT_external, 1);
ec1e49cc 11722
30ade641 11723 add_name_and_src_coords_attributes (subr_die, decl);
43f116ae 11724 if (debug_info_level > DINFO_LEVEL_TERSE)
11725 {
8c3f468d 11726 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11727 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11728 0, 0, context_die);
43f116ae 11729 }
ec1e49cc 11730
30ade641 11731 add_pure_or_virtual_attribute (subr_die, decl);
6542a017 11732 if (DECL_ARTIFICIAL (decl))
11733 add_AT_flag (subr_die, DW_AT_artificial, 1);
8c3f468d 11734
6efd403b 11735 if (TREE_PROTECTED (decl))
11736 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11737 else if (TREE_PRIVATE (decl))
11738 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
30ade641 11739 }
cc324702 11740
6efd403b 11741 if (declaration)
11742 {
2e14ce2e 11743 if (!old_die || !get_AT (old_die, DW_AT_inline))
f414ade2 11744 {
11745 add_AT_flag (subr_die, DW_AT_declaration, 1);
11746
11747 /* The first time we see a member function, it is in the context of
11748 the class to which it belongs. We make sure of this by emitting
11749 the class first. The next time is the definition, which is
8ff30ff6 11750 handled above. The two may come from the same source text.
2b49746a 11751
11752 Note that force_decl_die() forces function declaration die. It is
11753 later reused to represent definition. */
dcfa82ba 11754 equate_decl_number_to_die (decl, subr_die);
f414ade2 11755 }
6efd403b 11756 }
11757 else if (DECL_ABSTRACT (decl))
30ade641 11758 {
5bd74231 11759 if (DECL_DECLARED_INLINE_P (decl))
404ba76d 11760 {
5bd74231 11761 if (cgraph_function_possibly_inlined_p (decl))
404ba76d 11762 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11763 else
5bd74231 11764 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
404ba76d 11765 }
404ba76d 11766 else
5bd74231 11767 {
11768 if (cgraph_function_possibly_inlined_p (decl))
11769 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11770 else
2e14ce2e 11771 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
5bd74231 11772 }
404ba76d 11773
30ade641 11774 equate_decl_number_to_die (decl, subr_die);
11775 }
11776 else if (!DECL_EXTERNAL (decl))
11777 {
89fa767a 11778 HOST_WIDE_INT cfa_fb_offset;
11779
2e14ce2e 11780 if (!old_die || !get_AT (old_die, DW_AT_inline))
ca2cef7a 11781 equate_decl_number_to_die (decl, subr_die);
ec1e49cc 11782
1897b881 11783 if (!flag_reorder_blocks_and_partition)
11784 {
11785 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11786 current_function_funcdef_no);
11787 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11788 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11789 current_function_funcdef_no);
11790 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11791
11792 add_pubname (decl, subr_die);
11793 add_arange (decl, subr_die);
11794 }
11795 else
11796 { /* Do nothing for now; maybe need to duplicate die, one for
11797 hot section and ond for cold section, then use the hot/cold
11798 section begin/end labels to generate the aranges... */
11799 /*
11800 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11801 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11802 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11803 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11804
11805 add_pubname (decl, subr_die);
11806 add_arange (decl, subr_die);
11807 add_arange (decl, subr_die);
11808 */
11809 }
dc7a29ce 11810
30ade641 11811#ifdef MIPS_DEBUGGING_INFO
30ade641 11812 /* Add a reference to the FDE for this routine. */
11813 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11814#endif
11815
89fa767a 11816 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11817
12d886b8 11818 /* We define the "frame base" as the function's CFA. This is more
11819 convenient for several reasons: (1) It's stable across the prologue
11820 and epilogue, which makes it better than just a frame pointer,
11821 (2) With dwarf3, there exists a one-byte encoding that allows us
11822 to reference the .debug_frame data by proxy, but failing that,
11823 (3) We can at least reuse the code inspection and interpretation
11824 code that determines the CFA position at various points in the
11825 function. */
11826 /* ??? Use some command-line or configury switch to enable the use
11827 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11828 consumers that understand it; fall back to "pure" dwarf2 and
11829 convert the CFA data into a location list. */
11830 {
89fa767a 11831 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
12d886b8 11832 if (list->dw_loc_next)
11833 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11834 else
11835 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11836 }
11837
11838 /* Compute a displacement from the "steady-state frame pointer" to
11839 the CFA. The former is what all stack slots and argument slots
11840 will reference in the rtl; the later is what we've told the
11841 debugger about. We'll need to adjust all frame_base references
11842 by this displacement. */
89fa767a 11843 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
30ade641 11844
4ee9c684 11845 if (cfun->static_chain_decl)
678d90bb 11846 add_AT_location_description (subr_die, DW_AT_static_link,
afcf285e 11847 loc_descriptor_from_tree (cfun->static_chain_decl));
30ade641 11848 }
11849
11850 /* Now output descriptions of the arguments for this function. This gets
f80d1bcd 11851 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
30ade641 11852 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11853 `...' at the end of the formal parameter list. In order to find out if
11854 there was a trailing ellipsis or not, we must instead look at the type
11855 associated with the FUNCTION_DECL. This will be a node of type
11856 FUNCTION_TYPE. If the chain of type nodes hanging off of this
f80d1bcd 11857 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
30ade641 11858 an ellipsis at the end. */
ec1e49cc 11859
30ade641 11860 /* In the case where we are describing a mere function declaration, all we
f80d1bcd 11861 need to do here (and all we *can* do here) is to describe the *types* of
30ade641 11862 its formal parameters. */
43f116ae 11863 if (debug_info_level <= DINFO_LEVEL_TERSE)
ec1e49cc 11864 ;
cc324702 11865 else if (declaration)
8f80e66d 11866 gen_formal_types_die (decl, subr_die);
30ade641 11867 else
11868 {
2358393e 11869 /* Generate DIEs to represent all known formal parameters. */
19cb6b50 11870 tree arg_decls = DECL_ARGUMENTS (decl);
11871 tree parm;
30ade641 11872
11873 /* When generating DIEs, generate the unspecified_parameters DIE
c83a163c 11874 instead if we come across the arg "__builtin_va_alist" */
30ade641 11875 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
ec1e49cc 11876 if (TREE_CODE (parm) == PARM_DECL)
11877 {
0bc644e0 11878 if (DECL_NAME (parm)
11879 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11880 "__builtin_va_alist"))
ec1e49cc 11881 gen_unspecified_parameters_die (parm, subr_die);
11882 else
11883 gen_decl_die (parm, subr_die);
11884 }
30ade641 11885
20dd417a 11886 /* Decide whether we need an unspecified_parameters DIE at the end.
c83a163c 11887 There are 2 more cases to do this for: 1) the ansi ... declaration -
11888 this is detectable when the end of the arg list is not a
11889 void_type_node 2) an unprototyped function declaration (not a
11890 definition). This just means that we have no info about the
11891 parameters at all. */
30ade641 11892 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
ec1e49cc 11893 if (fn_arg_types != NULL)
30ade641 11894 {
139c3f48 11895 /* This is the prototyped case, check for.... */
30ade641 11896 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
ec1e49cc 11897 gen_unspecified_parameters_die (decl, subr_die);
30ade641 11898 }
ec1e49cc 11899 else if (DECL_INITIAL (decl) == NULL_TREE)
11900 gen_unspecified_parameters_die (decl, subr_die);
30ade641 11901 }
11902
11903 /* Output Dwarf info for all of the stuff within the body of the function
11904 (if it has one - it may be just a declaration). */
11905 outer_scope = DECL_INITIAL (decl);
11906
8c3f468d 11907 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11908 a function. This BLOCK actually represents the outermost binding contour
11909 for the function, i.e. the contour in which the function's formal
11910 parameters and labels get declared. Curiously, it appears that the front
11911 end doesn't actually put the PARM_DECL nodes for the current function onto
11912 the BLOCK_VARS list for this outer scope, but are strung off of the
11913 DECL_ARGUMENTS list for the function instead.
11914
11915 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11916 the LABEL_DECL nodes for the function however, and we output DWARF info
11917 for those in decls_for_scope. Just within the `outer_scope' there will be
11918 a BLOCK node representing the function's outermost pair of curly braces,
11919 and any blocks used for the base and member initializers of a C++
cb371216 11920 constructor function. */
cc324702 11921 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
a3899bb7 11922 {
4ee9c684 11923 /* Emit a DW_TAG_variable DIE for a named return value. */
11924 if (DECL_NAME (DECL_RESULT (decl)))
11925 gen_decl_die (DECL_RESULT (decl), subr_die);
11926
a3899bb7 11927 current_function_has_inlines = 0;
11928 decls_for_scope (outer_scope, subr_die, 0);
ec1e49cc 11929
0680318b 11930#if 0 && defined (MIPS_DEBUGGING_INFO)
a3899bb7 11931 if (current_function_has_inlines)
11932 {
11933 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11934 if (! comp_unit_has_inlines)
11935 {
11936 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11937 comp_unit_has_inlines = 1;
11938 }
11939 }
11940#endif
11941 }
a4b48f01 11942 /* Add the calling convention attribute if requested. */
11943 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11944
30ade641 11945}
11946
11947/* Generate a DIE to represent a declared data object. */
ec1e49cc 11948
30ade641 11949static void
8ec3a57b 11950gen_variable_die (tree decl, dw_die_ref context_die)
30ade641 11951{
19cb6b50 11952 tree origin = decl_ultimate_origin (decl);
15cfae4e 11953 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
ec1e49cc 11954
6ed29fb8 11955 dw_die_ref old_die = lookup_decl_die (decl);
ee1cd281 11956 int declaration = (DECL_EXTERNAL (decl)
211fa870 11957 /* If DECL is COMDAT and has not actually been
11958 emitted, we cannot take its address; there
11959 might end up being no definition anywhere in
11960 the program. For example, consider the C++
11961 test case:
11962
11963 template <class T>
11964 struct S { static const int i = 7; };
11965
11966 template <class T>
11967 const int S<T>::i;
11968
11969 int f() { return S<int>::i; }
11970
11971 Here, S<int>::i is not DECL_EXTERNAL, but no
11972 definition is required, so the compiler will
11973 not emit a definition. */
11974 || (TREE_CODE (decl) == VAR_DECL
11975 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
e89530cd 11976 || class_or_namespace_scope_p (context_die));
cc324702 11977
30ade641 11978 if (origin != NULL)
ec1e49cc 11979 add_abstract_origin_attribute (var_die, origin);
8c3f468d 11980
5e1bdb0e 11981 /* Loop unrolling can create multiple blocks that refer to the same
8c3f468d 11982 static variable, so we must test for the DW_AT_declaration flag.
11983
11984 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
5e1bdb0e 11985 copy decls and set the DECL_ABSTRACT flag on them instead of
8c3f468d 11986 sharing them.
11987
6e395578 11988 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11989
11990 ??? The declare_in_namespace support causes us to get two DIEs for one
11991 variable, both of which are declarations. We want to avoid considering
11992 one to be a specification, so we must test that this DIE is not a
11993 declaration. */
11994 else if (old_die && TREE_STATIC (decl) && ! declaration
bc70bd5e 11995 && get_AT_flag (old_die, DW_AT_declaration) == 1)
6ed29fb8 11996 {
2b553659 11997 /* This is a definition of a C++ class level static. */
023dc493 11998 add_AT_specification (var_die, old_die);
6ed29fb8 11999 if (DECL_NAME (decl))
12000 {
7bd3dcc4 12001 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
69278c24 12002 struct dwarf_file_data * file_index = lookup_filename (s.file);
ec1e49cc 12003
69278c24 12004 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12005 add_AT_file (var_die, DW_AT_decl_file, file_index);
ec1e49cc 12006
69278c24 12007 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
ec1e49cc 12008
7bd3dcc4 12009 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
6ed29fb8 12010 }
12011 }
30ade641 12012 else
12013 {
12014 add_name_and_src_coords_attributes (var_die, decl);
8c3f468d 12015 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
30ade641 12016 TREE_THIS_VOLATILE (decl), context_die);
ec1e49cc 12017
6542a017 12018 if (TREE_PUBLIC (decl))
12019 add_AT_flag (var_die, DW_AT_external, 1);
ec1e49cc 12020
6542a017 12021 if (DECL_ARTIFICIAL (decl))
12022 add_AT_flag (var_die, DW_AT_artificial, 1);
ec1e49cc 12023
6efd403b 12024 if (TREE_PROTECTED (decl))
12025 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12026 else if (TREE_PRIVATE (decl))
12027 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
30ade641 12028 }
cc324702 12029
12030 if (declaration)
12031 add_AT_flag (var_die, DW_AT_declaration, 1);
f80d1bcd 12032
2b49746a 12033 if (DECL_ABSTRACT (decl) || declaration)
cc324702 12034 equate_decl_number_to_die (decl, var_die);
12035
12036 if (! declaration && ! DECL_ABSTRACT (decl))
30ade641 12037 {
b2025850 12038 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
dc7a29ce 12039 add_pubname (decl, var_die);
30ade641 12040 }
eabb26f3 12041 else
12042 tree_add_const_value_attribute (var_die, decl);
30ade641 12043}
12044
12045/* Generate a DIE to represent a label identifier. */
ec1e49cc 12046
30ade641 12047static void
8ec3a57b 12048gen_label_die (tree decl, dw_die_ref context_die)
30ade641 12049{
19cb6b50 12050 tree origin = decl_ultimate_origin (decl);
15cfae4e 12051 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
19cb6b50 12052 rtx insn;
30ade641 12053 char label[MAX_ARTIFICIAL_LABEL_BYTES];
ec1e49cc 12054
30ade641 12055 if (origin != NULL)
ec1e49cc 12056 add_abstract_origin_attribute (lbl_die, origin);
30ade641 12057 else
ec1e49cc 12058 add_name_and_src_coords_attributes (lbl_die, decl);
12059
30ade641 12060 if (DECL_ABSTRACT (decl))
ec1e49cc 12061 equate_decl_number_to_die (decl, lbl_die);
30ade641 12062 else
12063 {
c9f0a9eb 12064 insn = DECL_RTL_IF_SET (decl);
165b3519 12065
12066 /* Deleted labels are programmer specified labels which have been
7ef5b942 12067 eliminated because of various optimizations. We still emit them
165b3519 12068 here so that it is possible to put breakpoints on them. */
c9f0a9eb 12069 if (insn
6d7dc5b9 12070 && (LABEL_P (insn)
12071 || ((NOTE_P (insn)
c9f0a9eb 12072 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
30ade641 12073 {
f80d1bcd 12074 /* When optimization is enabled (via -O) some parts of the compiler
12075 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
30ade641 12076 represent source-level labels which were explicitly declared by
12077 the user. This really shouldn't be happening though, so catch
12078 it if it ever does happen. */
7bd4f6b6 12079 gcc_assert (!INSN_DELETED_P (insn));
ec1e49cc 12080
1134a028 12081 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
30ade641 12082 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12083 }
12084 }
12085}
12086
44276901 12087/* A helper function for gen_inlined_subroutine_die. Add source coordinate
12088 attributes to the DIE for a block STMT, to describe where the inlined
12089 function was called from. This is similar to add_src_coords_attributes. */
12090
12091static inline void
12092add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12093{
12094 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
44276901 12095
69278c24 12096 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
44276901 12097 add_AT_unsigned (die, DW_AT_call_line, s.line);
12098}
12099
3ac15270 12100/* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12101 Add low_pc and high_pc attributes to the DIE for a block STMT. */
ec1e49cc 12102
3ac15270 12103static inline void
12104add_high_low_attributes (tree stmt, dw_die_ref die)
30ade641 12105{
30ade641 12106 char label[MAX_ARTIFICIAL_LABEL_BYTES];
ec1e49cc 12107
3ac15270 12108 if (BLOCK_FRAGMENT_CHAIN (stmt))
30ade641 12109 {
3ac15270 12110 tree chain;
a36145ca 12111
3ac15270 12112 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
a36145ca 12113
3ac15270 12114 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12115 do
a36145ca 12116 {
3ac15270 12117 add_ranges (chain);
12118 chain = BLOCK_FRAGMENT_CHAIN (chain);
a36145ca 12119 }
3ac15270 12120 while (chain);
12121 add_ranges (NULL);
12122 }
12123 else
12124 {
12125 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12126 BLOCK_NUMBER (stmt));
12127 add_AT_lbl_id (die, DW_AT_low_pc, label);
12128 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12129 BLOCK_NUMBER (stmt));
12130 add_AT_lbl_id (die, DW_AT_high_pc, label);
30ade641 12131 }
3ac15270 12132}
12133
12134/* Generate a DIE for a lexical block. */
12135
12136static void
12137gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12138{
12139 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12140
12141 if (! BLOCK_ABSTRACT (stmt))
12142 add_high_low_attributes (stmt, stmt_die);
ec1e49cc 12143
cb371216 12144 decls_for_scope (stmt, stmt_die, depth);
30ade641 12145}
12146
12147/* Generate a DIE for an inlined subprogram. */
ec1e49cc 12148
30ade641 12149static void
8ec3a57b 12150gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
30ade641 12151{
b1682481 12152 tree decl = block_ultimate_origin (stmt);
12153
12154 /* Emit info for the abstract instance first, if we haven't yet. We
12155 must emit this even if the block is abstract, otherwise when we
12156 emit the block below (or elsewhere), we may end up trying to emit
12157 a die whose origin die hasn't been emitted, and crashing. */
12158 dwarf2out_abstract_function (decl);
12159
ec1e49cc 12160 if (! BLOCK_ABSTRACT (stmt))
30ade641 12161 {
19cb6b50 12162 dw_die_ref subr_die
15cfae4e 12163 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
ec1e49cc 12164
db42c2b2 12165 add_abstract_origin_attribute (subr_die, decl);
3ac15270 12166 add_high_low_attributes (stmt, subr_die);
44276901 12167 add_call_src_coords_attributes (stmt, subr_die);
3ac15270 12168
cb371216 12169 decls_for_scope (stmt, subr_die, depth);
a3899bb7 12170 current_function_has_inlines = 1;
30ade641 12171 }
6e1e0aa6 12172 else
12173 /* We may get here if we're the outer block of function A that was
12174 inlined into function B that was inlined into function C. When
12175 generating debugging info for C, dwarf2out_abstract_function(B)
12176 would mark all inlined blocks as abstract, including this one.
12177 So, we wouldn't (and shouldn't) expect labels to be generated
12178 for this one. Instead, just emit debugging info for
12179 declarations within the block. This is particularly important
12180 in the case of initializers of arguments passed from B to us:
12181 if they're statement expressions containing declarations, we
12182 wouldn't generate dies for their abstract variables, and then,
12183 when generating dies for the real variables, we'd die (pun
12184 intended :-) */
12185 gen_lexical_block_die (stmt, context_die, depth);
30ade641 12186}
12187
12188/* Generate a DIE for a field in a record, or structure. */
ec1e49cc 12189
30ade641 12190static void
8ec3a57b 12191gen_field_die (tree decl, dw_die_ref context_die)
30ade641 12192{
443a33a3 12193 dw_die_ref decl_die;
ec1e49cc 12194
443a33a3 12195 if (TREE_TYPE (decl) == error_mark_node)
12196 return;
8ec3a57b 12197
443a33a3 12198 decl_die = new_die (DW_TAG_member, context_die, decl);
30ade641 12199 add_name_and_src_coords_attributes (decl_die, decl);
30ade641 12200 add_type_attribute (decl_die, member_declared_type (decl),
12201 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12202 context_die);
ec1e49cc 12203
30ade641 12204 if (DECL_BIT_FIELD_TYPE (decl))
12205 {
12206 add_byte_size_attribute (decl_die, decl);
12207 add_bit_size_attribute (decl_die, decl);
12208 add_bit_offset_attribute (decl_die, decl);
12209 }
ec1e49cc 12210
6efd403b 12211 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12212 add_data_member_location_attribute (decl_die, decl);
ec1e49cc 12213
6542a017 12214 if (DECL_ARTIFICIAL (decl))
12215 add_AT_flag (decl_die, DW_AT_artificial, 1);
ec1e49cc 12216
6efd403b 12217 if (TREE_PROTECTED (decl))
12218 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12219 else if (TREE_PRIVATE (decl))
12220 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
243f8437 12221
12222 /* Equate decl number to die, so that we can look up this decl later on. */
12223 equate_decl_number_to_die (decl, decl_die);
30ade641 12224}
12225
db42c2b2 12226#if 0
12227/* Don't generate either pointer_type DIEs or reference_type DIEs here.
12228 Use modified_type_die instead.
30ade641 12229 We keep this code here just in case these types of DIEs may be needed to
12230 represent certain things in other languages (e.g. Pascal) someday. */
8c3f468d 12231
30ade641 12232static void
8ec3a57b 12233gen_pointer_type_die (tree type, dw_die_ref context_die)
30ade641 12234{
19cb6b50 12235 dw_die_ref ptr_die
15cfae4e 12236 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
ec1e49cc 12237
30ade641 12238 equate_type_number_to_die (type, ptr_die);
30ade641 12239 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
db42c2b2 12240 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
30ade641 12241}
12242
db42c2b2 12243/* Don't generate either pointer_type DIEs or reference_type DIEs here.
12244 Use modified_type_die instead.
30ade641 12245 We keep this code here just in case these types of DIEs may be needed to
12246 represent certain things in other languages (e.g. Pascal) someday. */
8c3f468d 12247
30ade641 12248static void
8ec3a57b 12249gen_reference_type_die (tree type, dw_die_ref context_die)
30ade641 12250{
19cb6b50 12251 dw_die_ref ref_die
15cfae4e 12252 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
ec1e49cc 12253
30ade641 12254 equate_type_number_to_die (type, ref_die);
30ade641 12255 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
db42c2b2 12256 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
30ade641 12257}
db42c2b2 12258#endif
30ade641 12259
12260/* Generate a DIE for a pointer to a member type. */
8c3f468d 12261
30ade641 12262static void
8ec3a57b 12263gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
30ade641 12264{
19cb6b50 12265 dw_die_ref ptr_die
15cfae4e 12266 = new_die (DW_TAG_ptr_to_member_type,
12267 scope_die_for (type, context_die), type);
ec1e49cc 12268
30ade641 12269 equate_type_number_to_die (type, ptr_die);
30ade641 12270 add_AT_die_ref (ptr_die, DW_AT_containing_type,
6ed29fb8 12271 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
30ade641 12272 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12273}
12274
12275/* Generate the DIE for the compilation unit. */
ec1e49cc 12276
c90bf86c 12277static dw_die_ref
8ec3a57b 12278gen_compile_unit_die (const char *filename)
30ade641 12279{
19cb6b50 12280 dw_die_ref die;
30ade641 12281 char producer[250];
d19bd1f0 12282 const char *language_string = lang_hooks.name;
c90bf86c 12283 int language;
30ade641 12284
15cfae4e 12285 die = new_die (DW_TAG_compile_unit, NULL, NULL);
6ed29fb8 12286
ff279357 12287 if (filename)
12288 {
12289 add_name_attribute (die, filename);
6d042e21 12290 /* Don't add cwd for <built-in>. */
12291 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
ff279357 12292 add_comp_dir_attribute (die);
12293 }
30ade641 12294
12295 sprintf (producer, "%s %s", language_string, version_string);
12296
12297#ifdef MIPS_DEBUGGING_INFO
12298 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12299 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12300 not appear in the producer string, the debugger reaches the conclusion
12301 that the object file is stripped and has no debugging information.
12302 To get the MIPS/SGI debugger to believe that there is debugging
12303 information in the object file, we add a -g to the producer string. */
43f116ae 12304 if (debug_info_level > DINFO_LEVEL_TERSE)
12305 strcat (producer, " -g");
30ade641 12306#endif
12307
c90bf86c 12308 add_AT_string (die, DW_AT_producer, producer);
5b67860b 12309
30ade641 12310 if (strcmp (language_string, "GNU C++") == 0)
c90bf86c 12311 language = DW_LANG_C_plus_plus;
30ade641 12312 else if (strcmp (language_string, "GNU Ada") == 0)
7f2ad96e 12313 language = DW_LANG_Ada95;
5b67860b 12314 else if (strcmp (language_string, "GNU F77") == 0)
c90bf86c 12315 language = DW_LANG_Fortran77;
4ee9c684 12316 else if (strcmp (language_string, "GNU F95") == 0)
12317 language = DW_LANG_Fortran95;
063295fb 12318 else if (strcmp (language_string, "GNU Pascal") == 0)
c90bf86c 12319 language = DW_LANG_Pascal83;
af4d39d8 12320 else if (strcmp (language_string, "GNU Java") == 0)
12321 language = DW_LANG_Java;
bda642f9 12322 else if (strcmp (language_string, "GNU Objective-C") == 0)
12323 language = DW_LANG_ObjC;
12324 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12325 language = DW_LANG_ObjC_plus_plus;
30ade641 12326 else
c90bf86c 12327 language = DW_LANG_C89;
5b67860b 12328
c90bf86c 12329 add_AT_unsigned (die, DW_AT_language, language);
c90bf86c 12330 return die;
30ade641 12331}
12332
404ba76d 12333/* Generate the DIE for a base class. */
ec1e49cc 12334
404ba76d 12335static void
8ec3a57b 12336gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
404ba76d 12337{
15cfae4e 12338 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
ec1e49cc 12339
404ba76d 12340 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12341 add_data_member_location_attribute (die, binfo);
ec1e49cc 12342
57c28194 12343 if (BINFO_VIRTUAL_P (binfo))
404ba76d 12344 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
8c3f468d 12345
95f3173a 12346 if (access == access_public_node)
404ba76d 12347 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
95f3173a 12348 else if (access == access_protected_node)
404ba76d 12349 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12350}
12351
ad87de1e 12352/* Generate a DIE for a class member. */
ec1e49cc 12353
30ade641 12354static void
8ec3a57b 12355gen_member_die (tree type, dw_die_ref context_die)
30ade641 12356{
19cb6b50 12357 tree member;
95f3173a 12358 tree binfo = TYPE_BINFO (type);
e7b3c55c 12359 dw_die_ref child;
ec1e49cc 12360
30ade641 12361 /* If this is not an incomplete type, output descriptions of each of its
12362 members. Note that as we output the DIEs necessary to represent the
12363 members of this record or union type, we will also be trying to output
12364 DIEs to represent the *types* of those members. However the `type'
f80d1bcd 12365 function (above) will specifically avoid generating type DIEs for member
4a82352a 12366 types *within* the list of member DIEs for this (containing) type except
30ade641 12367 for those types (of members) which are explicitly marked as also being
12368 members of this (containing) type themselves. The g++ front- end can
8c3f468d 12369 force any given type to be treated as a member of some other (containing)
12370 type by setting the TYPE_CONTEXT of the given (member) type to point to
12371 the TREE node representing the appropriate (containing) type. */
30ade641 12372
404ba76d 12373 /* First output info about the base classes. */
f6cc6a08 12374 if (binfo)
30ade641 12375 {
046bfc77 12376 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
19cb6b50 12377 int i;
f6cc6a08 12378 tree base;
404ba76d 12379
f6cc6a08 12380 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12381 gen_inheritance_die (base,
db77fe17 12382 (accesses ? VEC_index (tree, accesses, i)
95f3173a 12383 : access_public_node), context_die);
30ade641 12384 }
12385
404ba76d 12386 /* Now output info about the data members and type members. */
12387 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
e7b3c55c 12388 {
12389 /* If we thought we were generating minimal debug info for TYPE
12390 and then changed our minds, some of the member declarations
12391 may have already been defined. Don't define them again, but
12392 do put them in the right order. */
12393
12394 child = lookup_decl_die (member);
12395 if (child)
12396 splice_child_die (context_die, child);
12397 else
12398 gen_decl_die (member, context_die);
12399 }
404ba76d 12400
30ade641 12401 /* Now output info about the function members (if any). */
404ba76d 12402 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
e7b3c55c 12403 {
8f80e66d 12404 /* Don't include clones in the member list. */
12405 if (DECL_ABSTRACT_ORIGIN (member))
12406 continue;
12407
e7b3c55c 12408 child = lookup_decl_die (member);
12409 if (child)
12410 splice_child_die (context_die, child);
12411 else
12412 gen_decl_die (member, context_die);
12413 }
30ade641 12414}
12415
e7b3c55c 12416/* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12417 is set, we pretend that the type was never defined, so we only get the
12418 member DIEs needed by later specification DIEs. */
ec1e49cc 12419
30ade641 12420static void
8ec3a57b 12421gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
30ade641 12422{
19cb6b50 12423 dw_die_ref type_die = lookup_type_die (type);
12424 dw_die_ref scope_die = 0;
12425 int nested = 0;
e7b3c55c 12426 int complete = (TYPE_SIZE (type)
87ccbd32 12427 && (! TYPE_STUB_DECL (type)
12428 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
e89530cd 12429 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
6542a017 12430
e7b3c55c 12431 if (type_die && ! complete)
6542a017 12432 return;
a3377a8b 12433
ec1e49cc 12434 if (TYPE_CONTEXT (type) != NULL_TREE
e89530cd 12435 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12436 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
a3377a8b 12437 nested = 1;
12438
6efd403b 12439 scope_die = scope_die_for (type, context_die);
a3377a8b 12440
12441 if (! type_die || (nested && scope_die == comp_unit_die))
6542a017 12442 /* First occurrence of type or toplevel definition of nested class. */
30ade641 12443 {
19cb6b50 12444 dw_die_ref old_die = type_die;
ec1e49cc 12445
30ade641 12446 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12447 ? DW_TAG_structure_type : DW_TAG_union_type,
15cfae4e 12448 scope_die, type);
30ade641 12449 equate_type_number_to_die (type, type_die);
6542a017 12450 if (old_die)
023dc493 12451 add_AT_specification (type_die, old_die);
2dfaa9ec 12452 else
12453 add_name_attribute (type_die, type_tag (type));
30ade641 12454 }
752e49ca 12455 else
6542a017 12456 remove_AT (type_die, DW_AT_declaration);
30ade641 12457
12458 /* If this type has been completed, then give it a byte_size attribute and
12459 then give a list of members. */
e89530cd 12460 if (complete && !ns_decl)
30ade641 12461 {
f80d1bcd 12462 /* Prevent infinite recursion in cases where the type of some member of
c83a163c 12463 this type is expressed in terms of this type itself. */
30ade641 12464 TREE_ASM_WRITTEN (type) = 1;
6542a017 12465 add_byte_size_attribute (type_die, type);
0dbd1c74 12466 if (TYPE_STUB_DECL (type) != NULL_TREE)
840b696a 12467 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
ec1e49cc 12468
678d90bb 12469 /* If the first reference to this type was as the return type of an
12470 inline function, then it may not have a parent. Fix this now. */
12471 if (type_die->die_parent == NULL)
12472 add_child_die (scope_die, type_die);
12473
6542a017 12474 push_decl_scope (type);
12475 gen_member_die (type, type_die);
12476 pop_decl_scope ();
ec1e49cc 12477
6efd403b 12478 /* GNU extension: Record what type our vtable lives in. */
12479 if (TYPE_VFIELD (type))
12480 {
12481 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
ec1e49cc 12482
ad5808e7 12483 gen_type_die (vtype, context_die);
12484 add_AT_die_ref (type_die, DW_AT_containing_type,
12485 lookup_type_die (vtype));
6efd403b 12486 }
30ade641 12487 }
752e49ca 12488 else
a4617d03 12489 {
12490 add_AT_flag (type_die, DW_AT_declaration, 1);
a41e1595 12491
ee1cd281 12492 /* We don't need to do this for function-local types. */
cfd66c04 12493 if (TYPE_STUB_DECL (type)
12494 && ! decl_function_context (TYPE_STUB_DECL (type)))
22230dd1 12495 VEC_safe_push (tree, gc, incomplete_types, type);
a4617d03 12496 }
30ade641 12497}
12498
12499/* Generate a DIE for a subroutine _type_. */
ec1e49cc 12500
30ade641 12501static void
8ec3a57b 12502gen_subroutine_type_die (tree type, dw_die_ref context_die)
30ade641 12503{
19cb6b50 12504 tree return_type = TREE_TYPE (type);
12505 dw_die_ref subr_die
15cfae4e 12506 = new_die (DW_TAG_subroutine_type,
12507 scope_die_for (type, context_die), type);
ec1e49cc 12508
30ade641 12509 equate_type_number_to_die (type, subr_die);
12510 add_prototyped_attribute (subr_die, type);
30ade641 12511 add_type_attribute (subr_die, return_type, 0, 0, context_die);
6efd403b 12512 gen_formal_types_die (type, subr_die);
30ade641 12513}
12514
2358393e 12515/* Generate a DIE for a type definition. */
ec1e49cc 12516
30ade641 12517static void
8ec3a57b 12518gen_typedef_die (tree decl, dw_die_ref context_die)
30ade641 12519{
19cb6b50 12520 dw_die_ref type_die;
12521 tree origin;
6efd403b 12522
12523 if (TREE_ASM_WRITTEN (decl))
12524 return;
6efd403b 12525
8c3f468d 12526 TREE_ASM_WRITTEN (decl) = 1;
15cfae4e 12527 type_die = new_die (DW_TAG_typedef, context_die, decl);
6efd403b 12528 origin = decl_ultimate_origin (decl);
30ade641 12529 if (origin != NULL)
6efd403b 12530 add_abstract_origin_attribute (type_die, origin);
30ade641 12531 else
12532 {
19cb6b50 12533 tree type;
8c3f468d 12534
30ade641 12535 add_name_and_src_coords_attributes (type_die, decl);
6efd403b 12536 if (DECL_ORIGINAL_TYPE (decl))
12537 {
12538 type = DECL_ORIGINAL_TYPE (decl);
522649bb 12539
7bd4f6b6 12540 gcc_assert (type != TREE_TYPE (decl));
12541 equate_type_number_to_die (TREE_TYPE (decl), type_die);
6efd403b 12542 }
12543 else
12544 type = TREE_TYPE (decl);
8c3f468d 12545
6efd403b 12546 add_type_attribute (type_die, type, TREE_READONLY (decl),
12547 TREE_THIS_VOLATILE (decl), context_die);
30ade641 12548 }
ec1e49cc 12549
30ade641 12550 if (DECL_ABSTRACT (decl))
6efd403b 12551 equate_decl_number_to_die (decl, type_die);
30ade641 12552}
12553
12554/* Generate a type description DIE. */
ec1e49cc 12555
30ade641 12556static void
8ec3a57b 12557gen_type_die (tree type, dw_die_ref context_die)
30ade641 12558{
5c65b85a 12559 int need_pop;
12560
ec1e49cc 12561 if (type == NULL_TREE || type == error_mark_node)
12562 return;
30ade641 12563
6efd403b 12564 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12565 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
f80d1bcd 12566 {
dc346c40 12567 if (TREE_ASM_WRITTEN (type))
12568 return;
12569
637d3308 12570 /* Prevent broken recursion; we can't hand off to the same type. */
7bd4f6b6 12571 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
637d3308 12572
6efd403b 12573 TREE_ASM_WRITTEN (type) = 1;
12574 gen_decl_die (TYPE_NAME (type), context_die);
12575 return;
12576 }
12577
dc346c40 12578 /* We are going to output a DIE to represent the unqualified version
12579 of this type (i.e. without any const or volatile qualifiers) so
12580 get the main variant (i.e. the unqualified version) of this type
12581 now. (Vectors are special because the debugging info is in the
12582 cloned type itself). */
12583 if (TREE_CODE (type) != VECTOR_TYPE)
12584 type = type_main_variant (type);
12585
12586 if (TREE_ASM_WRITTEN (type))
12587 return;
12588
30ade641 12589 switch (TREE_CODE (type))
12590 {
12591 case ERROR_MARK:
12592 break;
12593
12594 case POINTER_TYPE:
12595 case REFERENCE_TYPE:
ad87de1e 12596 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12597 ensures that the gen_type_die recursion will terminate even if the
12598 type is recursive. Recursive types are possible in Ada. */
12599 /* ??? We could perhaps do this for all types before the switch
12600 statement. */
12601 TREE_ASM_WRITTEN (type) = 1;
12602
30ade641 12603 /* For these types, all that is required is that we output a DIE (or a
c83a163c 12604 set of DIEs) to represent the "basis" type. */
30ade641 12605 gen_type_die (TREE_TYPE (type), context_die);
12606 break;
12607
12608 case OFFSET_TYPE:
f80d1bcd 12609 /* This code is used for C++ pointer-to-data-member types.
ec1e49cc 12610 Output a description of the relevant class type. */
30ade641 12611 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
ec1e49cc 12612
30ade641 12613 /* Output a description of the type of the object pointed to. */
12614 gen_type_die (TREE_TYPE (type), context_die);
ec1e49cc 12615
30ade641 12616 /* Now output a DIE to represent this pointer-to-data-member type
c83a163c 12617 itself. */
30ade641 12618 gen_ptr_to_mbr_type_die (type, context_die);
12619 break;
12620
30ade641 12621 case FUNCTION_TYPE:
12622 /* Force out return type (in case it wasn't forced out already). */
12623 gen_type_die (TREE_TYPE (type), context_die);
12624 gen_subroutine_type_die (type, context_die);
12625 break;
12626
12627 case METHOD_TYPE:
12628 /* Force out return type (in case it wasn't forced out already). */
12629 gen_type_die (TREE_TYPE (type), context_die);
12630 gen_subroutine_type_die (type, context_die);
12631 break;
12632
12633 case ARRAY_TYPE:
63bf54cf 12634 gen_array_type_die (type, context_die);
30ade641 12635 break;
12636
e2ea7e3a 12637 case VECTOR_TYPE:
634906d6 12638 gen_array_type_die (type, context_die);
e2ea7e3a 12639 break;
12640
30ade641 12641 case ENUMERAL_TYPE:
12642 case RECORD_TYPE:
12643 case UNION_TYPE:
12644 case QUAL_UNION_TYPE:
8c3f468d 12645 /* If this is a nested type whose containing class hasn't been written
c83a163c 12646 out yet, writing it out will cover this one, too. This does not apply
12647 to instantiations of member class templates; they need to be added to
12648 the containing class as they are generated. FIXME: This hurts the
12649 idea of combining type decls from multiple TUs, since we can't predict
12650 what set of template instantiations we'll get. */
a3377a8b 12651 if (TYPE_CONTEXT (type)
5ef8d04d 12652 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
a3377a8b 12653 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
6efd403b 12654 {
12655 gen_type_die (TYPE_CONTEXT (type), context_die);
12656
5c65b85a 12657 if (TREE_ASM_WRITTEN (type))
6efd403b 12658 return;
12659
12660 /* If that failed, attach ourselves to the stub. */
12661 push_decl_scope (TYPE_CONTEXT (type));
12662 context_die = lookup_type_die (TYPE_CONTEXT (type));
5c65b85a 12663 need_pop = 1;
6efd403b 12664 }
5c65b85a 12665 else
e89530cd 12666 {
12667 declare_in_namespace (type, context_die);
12668 need_pop = 0;
12669 }
6efd403b 12670
12671 if (TREE_CODE (type) == ENUMERAL_TYPE)
6542a017 12672 gen_enumeration_type_die (type, context_die);
30ade641 12673 else
6542a017 12674 gen_struct_or_union_type_die (type, context_die);
752e49ca 12675
5c65b85a 12676 if (need_pop)
6efd403b 12677 pop_decl_scope ();
12678
752e49ca 12679 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
a3377a8b 12680 it up if it is ever completed. gen_*_type_die will set it for us
12681 when appropriate. */
12682 return;
30ade641 12683
12684 case VOID_TYPE:
12685 case INTEGER_TYPE:
12686 case REAL_TYPE:
12687 case COMPLEX_TYPE:
12688 case BOOLEAN_TYPE:
30ade641 12689 /* No DIEs needed for fundamental types. */
12690 break;
12691
12692 case LANG_TYPE:
12693 /* No Dwarf representation currently defined. */
12694 break;
12695
12696 default:
7bd4f6b6 12697 gcc_unreachable ();
30ade641 12698 }
12699
12700 TREE_ASM_WRITTEN (type) = 1;
12701}
12702
12703/* Generate a DIE for a tagged type instantiation. */
ec1e49cc 12704
30ade641 12705static void
8ec3a57b 12706gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
30ade641 12707{
ec1e49cc 12708 if (type == NULL_TREE || type == error_mark_node)
12709 return;
30ade641 12710
3398e91d 12711 /* We are going to output a DIE to represent the unqualified version of
30ade641 12712 this type (i.e. without any const or volatile qualifiers) so make sure
12713 that we have the main variant (i.e. the unqualified version) of this
12714 type now. */
7bd4f6b6 12715 gcc_assert (type == type_main_variant (type));
30ade641 12716
fa5a8144 12717 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
b2ca6017 12718 an instance of an unresolved type. */
f80d1bcd 12719
30ade641 12720 switch (TREE_CODE (type))
12721 {
12722 case ERROR_MARK:
12723 break;
12724
12725 case ENUMERAL_TYPE:
12726 gen_inlined_enumeration_type_die (type, context_die);
12727 break;
12728
12729 case RECORD_TYPE:
12730 gen_inlined_structure_type_die (type, context_die);
12731 break;
12732
12733 case UNION_TYPE:
12734 case QUAL_UNION_TYPE:
12735 gen_inlined_union_type_die (type, context_die);
12736 break;
12737
12738 default:
7bd4f6b6 12739 gcc_unreachable ();
30ade641 12740 }
12741}
12742
12743/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12744 things which are local to the given block. */
ec1e49cc 12745
30ade641 12746static void
8ec3a57b 12747gen_block_die (tree stmt, dw_die_ref context_die, int depth)
30ade641 12748{
19cb6b50 12749 int must_output_die = 0;
12750 tree origin;
12751 tree decl;
12752 enum tree_code origin_code;
30ade641 12753
7c0a8197 12754 /* Ignore blocks that are NULL. */
12755 if (stmt == NULL_TREE)
ec1e49cc 12756 return;
30ade641 12757
a36145ca 12758 /* If the block is one fragment of a non-contiguous block, do not
12759 process the variables, since they will have been done by the
12760 origin block. Do process subblocks. */
12761 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12762 {
12763 tree sub;
12764
8c3f468d 12765 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
a36145ca 12766 gen_block_die (sub, context_die, depth + 1);
8c3f468d 12767
a36145ca 12768 return;
12769 }
12770
30ade641 12771 /* Determine the "ultimate origin" of this block. This block may be an
12772 inlined instance of an inlined instance of inline function, so we have
12773 to trace all of the way back through the origin chain to find out what
12774 sort of node actually served as the original seed for the creation of
12775 the current block. */
12776 origin = block_ultimate_origin (stmt);
12777 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12778
12779 /* Determine if we need to output any Dwarf DIEs at all to represent this
12780 block. */
12781 if (origin_code == FUNCTION_DECL)
ec1e49cc 12782 /* The outer scopes for inlinings *must* always be represented. We
12783 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12784 must_output_die = 1;
30ade641 12785 else
12786 {
12787 /* In the case where the current block represents an inlining of the
c83a163c 12788 "body block" of an inline function, we must *NOT* output any DIE for
12789 this block because we have already output a DIE to represent the whole
12790 inlined function scope and the "body block" of any function doesn't
12791 really represent a different scope according to ANSI C rules. So we
12792 check here to make sure that this block does not represent a "body
12793 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
cb371216 12794 if (! is_body_block (origin ? origin : stmt))
30ade641 12795 {
12796 /* Determine if this block directly contains any "significant"
12797 local declarations which we will need to output DIEs for. */
12798 if (debug_info_level > DINFO_LEVEL_TERSE)
ec1e49cc 12799 /* We are not in terse mode so *any* local declaration counts
12800 as being a "significant" one. */
7c0a8197 12801 must_output_die = (BLOCK_VARS (stmt) != NULL
12802 && (TREE_USED (stmt)
12803 || TREE_ASM_WRITTEN (stmt)
12804 || BLOCK_ABSTRACT (stmt)));
30ade641 12805 else
ec1e49cc 12806 /* We are in terse mode, so only local (nested) function
12807 definitions count as "significant" local declarations. */
12808 for (decl = BLOCK_VARS (stmt);
12809 decl != NULL; decl = TREE_CHAIN (decl))
12810 if (TREE_CODE (decl) == FUNCTION_DECL
12811 && DECL_INITIAL (decl))
30ade641 12812 {
ec1e49cc 12813 must_output_die = 1;
12814 break;
30ade641 12815 }
30ade641 12816 }
12817 }
12818
12819 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12820 DIE for any block which contains no significant local declarations at
12821 all. Rather, in such cases we just call `decls_for_scope' so that any
12822 needed Dwarf info for any sub-blocks will get properly generated. Note
12823 that in terse mode, our definition of what constitutes a "significant"
12824 local declaration gets restricted to include only inlined function
12825 instances and local (nested) function definitions. */
12826 if (must_output_die)
12827 {
12828 if (origin_code == FUNCTION_DECL)
ec1e49cc 12829 gen_inlined_subroutine_die (stmt, context_die, depth);
30ade641 12830 else
ec1e49cc 12831 gen_lexical_block_die (stmt, context_die, depth);
30ade641 12832 }
12833 else
cb371216 12834 decls_for_scope (stmt, context_die, depth);
30ade641 12835}
12836
12837/* Generate all of the decls declared within a given scope and (recursively)
9e042f31 12838 all of its sub-blocks. */
ec1e49cc 12839
30ade641 12840static void
8ec3a57b 12841decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
30ade641 12842{
19cb6b50 12843 tree decl;
12844 tree subblocks;
ec1e49cc 12845
7c0a8197 12846 /* Ignore NULL blocks. */
12847 if (stmt == NULL_TREE)
ec1e49cc 12848 return;
12849
7c0a8197 12850 if (TREE_USED (stmt))
30ade641 12851 {
7c0a8197 12852 /* Output the DIEs to represent all of the data objects and typedefs
12853 declared directly within this block but not within any nested
12854 sub-blocks. Also, nested function and tag DIEs have been
12855 generated with a parent of NULL; fix that up now. */
12856 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12857 {
12858 dw_die_ref die;
12859
12860 if (TREE_CODE (decl) == FUNCTION_DECL)
12861 die = lookup_decl_die (decl);
12862 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12863 die = lookup_type_die (TREE_TYPE (decl));
12864 else
12865 die = NULL;
12866
12867 if (die != NULL && die->die_parent == NULL)
12868 add_child_die (context_die, die);
127d7f21 12869 /* Do not produce debug information for static variables since
12870 these might be optimized out. We are called for these later
12871 in cgraph_varpool_analyze_pending_decls. */
12872 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12873 ;
7c0a8197 12874 else
12875 gen_decl_die (decl, context_die);
12876 }
30ade641 12877 }
12878
e883780d 12879 /* If we're at -g1, we're not interested in subblocks. */
12880 if (debug_info_level <= DINFO_LEVEL_TERSE)
12881 return;
12882
30ade641 12883 /* Output the DIEs to represent all sub-blocks (and the items declared
12884 therein) of this block. */
12885 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12886 subblocks != NULL;
12887 subblocks = BLOCK_CHAIN (subblocks))
ec1e49cc 12888 gen_block_die (subblocks, context_die, depth + 1);
30ade641 12889}
12890
6efd403b 12891/* Is this a typedef we can avoid emitting? */
ec1e49cc 12892
12893static inline int
8ec3a57b 12894is_redundant_typedef (tree decl)
6efd403b 12895{
12896 if (TYPE_DECL_IS_STUB (decl))
12897 return 1;
ec1e49cc 12898
6efd403b 12899 if (DECL_ARTIFICIAL (decl)
12900 && DECL_CONTEXT (decl)
12901 && is_tagged_type (DECL_CONTEXT (decl))
12902 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12903 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12904 /* Also ignore the artificial member typedef for the class name. */
12905 return 1;
ec1e49cc 12906
6efd403b 12907 return 0;
12908}
12909
89f18f73 12910/* Returns the DIE for decl. A DIE will always be returned. */
2b49746a 12911
12912static dw_die_ref
12913force_decl_die (tree decl)
12914{
12915 dw_die_ref decl_die;
12916 unsigned saved_external_flag;
12917 tree save_fn = NULL_TREE;
12918 decl_die = lookup_decl_die (decl);
12919 if (!decl_die)
12920 {
12921 dw_die_ref context_die;
12922 tree decl_context = DECL_CONTEXT (decl);
12923 if (decl_context)
12924 {
12925 /* Find die that represents this context. */
12926 if (TYPE_P (decl_context))
12927 context_die = force_type_die (decl_context);
12928 else
12929 context_die = force_decl_die (decl_context);
12930 }
12931 else
12932 context_die = comp_unit_die;
12933
dcfa82ba 12934 decl_die = lookup_decl_die (decl);
12935 if (decl_die)
12936 return decl_die;
12937
2b49746a 12938 switch (TREE_CODE (decl))
12939 {
12940 case FUNCTION_DECL:
12941 /* Clear current_function_decl, so that gen_subprogram_die thinks
12942 that this is a declaration. At this point, we just want to force
12943 declaration die. */
12944 save_fn = current_function_decl;
12945 current_function_decl = NULL_TREE;
12946 gen_subprogram_die (decl, context_die);
8ff30ff6 12947 current_function_decl = save_fn;
2b49746a 12948 break;
12949
12950 case VAR_DECL:
12951 /* Set external flag to force declaration die. Restore it after
12952 gen_decl_die() call. */
12953 saved_external_flag = DECL_EXTERNAL (decl);
12954 DECL_EXTERNAL (decl) = 1;
12955 gen_decl_die (decl, context_die);
12956 DECL_EXTERNAL (decl) = saved_external_flag;
12957 break;
12958
12959 case NAMESPACE_DECL:
12960 dwarf2out_decl (decl);
12961 break;
12962
12963 default:
7bd4f6b6 12964 gcc_unreachable ();
2b49746a 12965 }
8ff30ff6 12966
89f18f73 12967 /* We should be able to find the DIE now. */
2b49746a 12968 if (!decl_die)
12969 decl_die = lookup_decl_die (decl);
7bd4f6b6 12970 gcc_assert (decl_die);
2b49746a 12971 }
8ff30ff6 12972
2b49746a 12973 return decl_die;
12974}
e89530cd 12975
89f18f73 12976/* Returns the DIE for TYPE. A DIE is always returned. */
e89530cd 12977
12978static dw_die_ref
2b49746a 12979force_type_die (tree type)
e89530cd 12980{
2b49746a 12981 dw_die_ref type_die;
e89530cd 12982
eb550b19 12983 type_die = lookup_type_die (type);
2b49746a 12984 if (!type_die)
12985 {
12986 dw_die_ref context_die;
12987 if (TYPE_CONTEXT (type))
dcfa82ba 12988 {
12989 if (TYPE_P (TYPE_CONTEXT (type)))
12990 context_die = force_type_die (TYPE_CONTEXT (type));
12991 else
12992 context_die = force_decl_die (TYPE_CONTEXT (type));
12993 }
2b49746a 12994 else
12995 context_die = comp_unit_die;
e89530cd 12996
dcfa82ba 12997 type_die = lookup_type_die (type);
12998 if (type_die)
12999 return type_die;
2b49746a 13000 gen_type_die (type, context_die);
eb550b19 13001 type_die = lookup_type_die (type);
7bd4f6b6 13002 gcc_assert (type_die);
2b49746a 13003 }
13004 return type_die;
e89530cd 13005}
13006
13007/* Force out any required namespaces to be able to output DECL,
13008 and return the new context_die for it, if it's changed. */
13009
13010static dw_die_ref
13011setup_namespace_context (tree thing, dw_die_ref context_die)
13012{
ce45a448 13013 tree context = (DECL_P (thing)
13014 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
e89530cd 13015 if (context && TREE_CODE (context) == NAMESPACE_DECL)
8b332087 13016 /* Force out the namespace. */
2b49746a 13017 context_die = force_decl_die (context);
e89530cd 13018
13019 return context_die;
13020}
13021
13022/* Emit a declaration DIE for THING (which is either a DECL or a tagged
13023 type) within its namespace, if appropriate.
13024
13025 For compatibility with older debuggers, namespace DIEs only contain
13026 declarations; all definitions are emitted at CU scope. */
13027
13028static void
13029declare_in_namespace (tree thing, dw_die_ref context_die)
13030{
13031 dw_die_ref ns_context;
13032
13033 if (debug_info_level <= DINFO_LEVEL_TERSE)
13034 return;
13035
d799a629 13036 /* If this decl is from an inlined function, then don't try to emit it in its
13037 namespace, as we will get confused. It would have already been emitted
13038 when the abstract instance of the inline function was emitted anyways. */
13039 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13040 return;
13041
e89530cd 13042 ns_context = setup_namespace_context (thing, context_die);
13043
13044 if (ns_context != context_die)
13045 {
13046 if (DECL_P (thing))
13047 gen_decl_die (thing, ns_context);
13048 else
13049 gen_type_die (thing, ns_context);
13050 }
13051}
13052
8b332087 13053/* Generate a DIE for a namespace or namespace alias. */
e89530cd 13054
13055static void
13056gen_namespace_die (tree decl)
13057{
13058 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13059
13060 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
21dda4ee 13061 they are an alias of. */
e89530cd 13062 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13063 {
8b332087 13064 /* Output a real namespace. */
e89530cd 13065 dw_die_ref namespace_die
13066 = new_die (DW_TAG_namespace, context_die, decl);
13067 add_name_and_src_coords_attributes (namespace_die, decl);
13068 equate_decl_number_to_die (decl, namespace_die);
13069 }
13070 else
13071 {
8b332087 13072 /* Output a namespace alias. */
e89530cd 13073
8b332087 13074 /* Force out the namespace we are an alias of, if necessary. */
e89530cd 13075 dw_die_ref origin_die
2b49746a 13076 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
e89530cd 13077
8b332087 13078 /* Now create the namespace alias DIE. */
e89530cd 13079 dw_die_ref namespace_die
13080 = new_die (DW_TAG_imported_declaration, context_die, decl);
13081 add_name_and_src_coords_attributes (namespace_die, decl);
13082 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13083 equate_decl_number_to_die (decl, namespace_die);
13084 }
13085}
13086
30ade641 13087/* Generate Dwarf debug information for a decl described by DECL. */
ec1e49cc 13088
30ade641 13089static void
8ec3a57b 13090gen_decl_die (tree decl, dw_die_ref context_die)
30ade641 13091{
19cb6b50 13092 tree origin;
ec1e49cc 13093
90f973ed 13094 if (DECL_P (decl) && DECL_IGNORED_P (decl))
ec1e49cc 13095 return;
30ade641 13096
30ade641 13097 switch (TREE_CODE (decl))
13098 {
8c3f468d 13099 case ERROR_MARK:
13100 break;
13101
30ade641 13102 case CONST_DECL:
f80d1bcd 13103 /* The individual enumerators of an enum type get output when we output
c83a163c 13104 the Dwarf representation of the relevant enum type itself. */
30ade641 13105 break;
13106
13107 case FUNCTION_DECL:
cc324702 13108 /* Don't output any DIEs to represent mere function declarations,
13109 unless they are class members or explicit block externs. */
13110 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
14b40abb 13111 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
ec1e49cc 13112 break;
6ed29fb8 13113
4ee9c684 13114#if 0
13115 /* FIXME */
13116 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13117 on local redeclarations of global functions. That seems broken. */
13118 if (current_function_decl != decl)
13119 /* This is only a declaration. */;
13120#endif
13121
8f80e66d 13122 /* If we're emitting a clone, emit info for the abstract instance. */
13123 if (DECL_ORIGIN (decl) != decl)
13124 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
8c3f468d 13125
0dbc398a 13126 /* If we're emitting an out-of-line copy of an inline function,
13127 emit info for the abstract instance and set up to refer to it. */
5bd74231 13128 else if (cgraph_function_possibly_inlined_p (decl)
13129 && ! DECL_ABSTRACT (decl)
e89530cd 13130 && ! class_or_namespace_scope_p (context_die)
8f80e66d 13131 /* dwarf2out_abstract_function won't emit a die if this is just
13132 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13133 that case, because that works only if we have a die. */
13134 && DECL_INITIAL (decl) != NULL_TREE)
0dbc398a 13135 {
f414ade2 13136 dwarf2out_abstract_function (decl);
0dbc398a 13137 set_decl_origin_self (decl);
13138 }
8c3f468d 13139
8f80e66d 13140 /* Otherwise we're emitting the primary DIE for this decl. */
13141 else if (debug_info_level > DINFO_LEVEL_TERSE)
6efd403b 13142 {
13143 /* Before we describe the FUNCTION_DECL itself, make sure that we
13144 have described its return type. */
13145 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13146
5134c73b 13147 /* And its virtual context. */
13148 if (DECL_VINDEX (decl) != NULL_TREE)
13149 gen_type_die (DECL_CONTEXT (decl), context_die);
13150
6efd403b 13151 /* And its containing type. */
13152 origin = decl_class_context (decl);
ec1e49cc 13153 if (origin != NULL_TREE)
e7b3c55c 13154 gen_type_die_for_member (origin, decl, context_die);
e89530cd 13155
13156 /* And its containing namespace. */
13157 declare_in_namespace (decl, context_die);
6efd403b 13158 }
30ade641 13159
13160 /* Now output a DIE to represent the function itself. */
13161 gen_subprogram_die (decl, context_die);
13162 break;
13163
13164 case TYPE_DECL:
13165 /* If we are in terse mode, don't generate any DIEs to represent any
c83a163c 13166 actual typedefs. */
30ade641 13167 if (debug_info_level <= DINFO_LEVEL_TERSE)
43f116ae 13168 break;
30ade641 13169
8c3f468d 13170 /* In the special case of a TYPE_DECL node representing the declaration
c83a163c 13171 of some type tag, if the given TYPE_DECL is marked as having been
13172 instantiated from some other (original) TYPE_DECL node (e.g. one which
13173 was generated within the original definition of an inline function) we
13174 have to generate a special (abbreviated) DW_TAG_structure_type,
13175 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
5134c73b 13176 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
30ade641 13177 {
13178 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13179 break;
13180 }
30ade641 13181
6efd403b 13182 if (is_redundant_typedef (decl))
13183 gen_type_die (TREE_TYPE (decl), context_die);
13184 else
ec1e49cc 13185 /* Output a DIE to represent the typedef itself. */
13186 gen_typedef_die (decl, context_die);
30ade641 13187 break;
13188
13189 case LABEL_DECL:
13190 if (debug_info_level >= DINFO_LEVEL_NORMAL)
ec1e49cc 13191 gen_label_die (decl, context_die);
30ade641 13192 break;
13193
13194 case VAR_DECL:
4ee9c684 13195 case RESULT_DECL:
30ade641 13196 /* If we are in terse mode, don't generate any DIEs to represent any
c83a163c 13197 variable declarations or definitions. */
30ade641 13198 if (debug_info_level <= DINFO_LEVEL_TERSE)
ec1e49cc 13199 break;
30ade641 13200
13201 /* Output any DIEs that are needed to specify the type of this data
c83a163c 13202 object. */
30ade641 13203 gen_type_die (TREE_TYPE (decl), context_die);
13204
6efd403b 13205 /* And its containing type. */
13206 origin = decl_class_context (decl);
ec1e49cc 13207 if (origin != NULL_TREE)
e7b3c55c 13208 gen_type_die_for_member (origin, decl, context_die);
6efd403b 13209
e89530cd 13210 /* And its containing namespace. */
13211 declare_in_namespace (decl, context_die);
13212
30ade641 13213 /* Now output the DIE to represent the data object itself. This gets
c83a163c 13214 complicated because of the possibility that the VAR_DECL really
13215 represents an inlined instance of a formal parameter for an inline
13216 function. */
30ade641 13217 origin = decl_ultimate_origin (decl);
ec1e49cc 13218 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13219 gen_formal_parameter_die (decl, context_die);
30ade641 13220 else
ec1e49cc 13221 gen_variable_die (decl, context_die);
30ade641 13222 break;
13223
13224 case FIELD_DECL:
8c3f468d 13225 /* Ignore the nameless fields that are used to skip bits but handle C++
dbb28acc 13226 anonymous unions and structs. */
ec1e49cc 13227 if (DECL_NAME (decl) != NULL_TREE
dbb28acc 13228 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13229 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
30ade641 13230 {
13231 gen_type_die (member_declared_type (decl), context_die);
13232 gen_field_die (decl, context_die);
13233 }
13234 break;
13235
13236 case PARM_DECL:
13237 gen_type_die (TREE_TYPE (decl), context_die);
13238 gen_formal_parameter_die (decl, context_die);
13239 break;
13240
5c65b85a 13241 case NAMESPACE_DECL:
e89530cd 13242 gen_namespace_die (decl);
5c65b85a 13243 break;
13244
30ade641 13245 default:
7bd4f6b6 13246 /* Probably some frontend-internal decl. Assume we don't care. */
13247 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13248 break;
30ade641 13249 }
30ade641 13250}
13251\f
8c3f468d 13252/* Output debug information for global decl DECL. Called from toplev.c after
c37d72e9 13253 compilation proper has finished. */
8c3f468d 13254
c37d72e9 13255static void
8ec3a57b 13256dwarf2out_global_decl (tree decl)
c37d72e9 13257{
13258 /* Output DWARF2 information for file-scope tentative data object
8c3f468d 13259 declarations, file-scope (extern) function declarations (which had no
13260 corresponding body) and file-scope tagged type declarations and
13261 definitions which have not yet been forced out. */
c37d72e9 13262 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13263 dwarf2out_decl (decl);
13264}
13265
73ae3ef7 13266/* Output debug information for type decl DECL. Called from toplev.c
13267 and from language front ends (to record built-in types). */
13268static void
13269dwarf2out_type_decl (tree decl, int local)
13270{
13271 if (!local)
13272 dwarf2out_decl (decl);
13273}
13274
8ff30ff6 13275/* Output debug information for imported module or decl. */
13276
2b49746a 13277static void
13278dwarf2out_imported_module_or_decl (tree decl, tree context)
13279{
13280 dw_die_ref imported_die, at_import_die;
13281 dw_die_ref scope_die;
7bd3dcc4 13282 expanded_location xloc;
8ff30ff6 13283
2b49746a 13284 if (debug_info_level <= DINFO_LEVEL_TERSE)
13285 return;
13286
7bd4f6b6 13287 gcc_assert (decl);
2b49746a 13288
13289 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
8ff30ff6 13290 We need decl DIE for reference and scope die. First, get DIE for the decl
2b49746a 13291 itself. */
13292
13293 /* Get the scope die for decl context. Use comp_unit_die for global module
13294 or decl. If die is not found for non globals, force new die. */
13295 if (!context)
13296 scope_die = comp_unit_die;
13297 else if (TYPE_P (context))
13298 scope_die = force_type_die (context);
13299 else
13300 scope_die = force_decl_die (context);
13301
cdcf9499 13302 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13303 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
2b49746a 13304 at_import_die = force_type_die (TREE_TYPE (decl));
13305 else
d4946992 13306 {
13307 at_import_die = lookup_decl_die (decl);
13308 if (!at_import_die)
13309 {
13310 /* If we're trying to avoid duplicate debug info, we may not have
13311 emitted the member decl for this field. Emit it now. */
13312 if (TREE_CODE (decl) == FIELD_DECL)
13313 {
13314 tree type = DECL_CONTEXT (decl);
13315 dw_die_ref type_context_die;
13316
13317 if (TYPE_CONTEXT (type))
13318 if (TYPE_P (TYPE_CONTEXT (type)))
13319 type_context_die = force_type_die (TYPE_CONTEXT (type));
13320 else
13321 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13322 else
13323 type_context_die = comp_unit_die;
13324 gen_type_die_for_member (type, decl, type_context_die);
13325 }
13326 at_import_die = force_decl_die (decl);
13327 }
13328 }
8ff30ff6 13329
13330 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
2b49746a 13331 if (TREE_CODE (decl) == NAMESPACE_DECL)
13332 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13333 else
13334 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
7bd3dcc4 13335
13336 xloc = expand_location (input_location);
69278c24 13337 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
7bd3dcc4 13338 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
2b49746a 13339 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13340}
13341
ec1e49cc 13342/* Write the debugging output for DECL. */
13343
30ade641 13344void
8ec3a57b 13345dwarf2out_decl (tree decl)
30ade641 13346{
19cb6b50 13347 dw_die_ref context_die = comp_unit_die;
464217f3 13348
30ade641 13349 switch (TREE_CODE (decl))
13350 {
8c3f468d 13351 case ERROR_MARK:
13352 return;
13353
30ade641 13354 case FUNCTION_DECL:
30ade641 13355 /* What we would really like to do here is to filter out all mere
c83a163c 13356 file-scope declarations of file-scope functions which are never
13357 referenced later within this translation unit (and keep all of ones
13358 that *are* referenced later on) but we aren't clairvoyant, so we have
13359 no idea which functions will be referenced in the future (i.e. later
13360 on within the current translation unit). So here we just ignore all
13361 file-scope function declarations which are not also definitions. If
13362 and when the debugger needs to know something about these functions,
13363 it will have to hunt around and find the DWARF information associated
13364 with the definition of the function.
8c3f468d 13365
13366 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
c83a163c 13367 nodes represent definitions and which ones represent mere
13368 declarations. We have to check DECL_INITIAL instead. That's because
13369 the C front-end supports some weird semantics for "extern inline"
13370 function definitions. These can get inlined within the current
77aa6362 13371 translation unit (and thus, we need to generate Dwarf info for their
c83a163c 13372 abstract instances so that the Dwarf info for the concrete inlined
13373 instances can have something to refer to) but the compiler never
13374 generates any out-of-lines instances of such things (despite the fact
13375 that they *are* definitions).
8c3f468d 13376
13377 The important point is that the C front-end marks these "extern
13378 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13379 them anyway. Note that the C++ front-end also plays some similar games
13380 for inline function definitions appearing within include files which
13381 also contain `#pragma interface' pragmas. */
30ade641 13382 if (DECL_INITIAL (decl) == NULL_TREE)
34425fdc 13383 return;
464217f3 13384
bf1e7d9a 13385 /* If we're a nested function, initially use a parent of NULL; if we're
13386 a plain function, this will be fixed up in decls_for_scope. If
13387 we're a method, it will be ignored, since we already have a DIE. */
e883780d 13388 if (decl_function_context (decl)
13389 /* But if we're in terse mode, we don't care about scope. */
13390 && debug_info_level > DINFO_LEVEL_TERSE)
bf1e7d9a 13391 context_die = NULL;
30ade641 13392 break;
13393
13394 case VAR_DECL:
f80d1bcd 13395 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
c83a163c 13396 declaration and if the declaration was never even referenced from
13397 within this entire compilation unit. We suppress these DIEs in
13398 order to save space in the .debug section (by eliminating entries
13399 which are probably useless). Note that we must not suppress
13400 block-local extern declarations (whether used or not) because that
13401 would screw-up the debugger's name lookup mechanism and cause it to
13402 miss things which really ought to be in scope at a given point. */
30ade641 13403 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
ec1e49cc 13404 return;
30ade641 13405
127d7f21 13406 /* For local statics lookup proper context die. */
13407 if (TREE_STATIC (decl) && decl_function_context (decl))
13408 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13409
30ade641 13410 /* If we are in terse mode, don't generate any DIEs to represent any
c83a163c 13411 variable declarations or definitions. */
30ade641 13412 if (debug_info_level <= DINFO_LEVEL_TERSE)
ec1e49cc 13413 return;
30ade641 13414 break;
13415
e89530cd 13416 case NAMESPACE_DECL:
13417 if (debug_info_level <= DINFO_LEVEL_TERSE)
13418 return;
13419 if (lookup_decl_die (decl) != NULL)
13420 return;
13421 break;
13422
30ade641 13423 case TYPE_DECL:
ee536dac 13424 /* Don't emit stubs for types unless they are needed by other DIEs. */
13425 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13426 return;
13427
30ade641 13428 /* Don't bother trying to generate any DIEs to represent any of the
c83a163c 13429 normal built-in types for the language we are compiling. */
7bd3dcc4 13430 if (DECL_IS_BUILTIN (decl))
6efd403b 13431 {
13432 /* OK, we need to generate one for `bool' so GDB knows what type
c83a163c 13433 comparisons have. */
bda642f9 13434 if (is_cxx ()
90f973ed 13435 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13436 && ! DECL_IGNORED_P (decl))
6efd403b 13437 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
ec1e49cc 13438
6efd403b 13439 return;
13440 }
30ade641 13441
464217f3 13442 /* If we are in terse mode, don't generate any DIEs for types. */
30ade641 13443 if (debug_info_level <= DINFO_LEVEL_TERSE)
43f116ae 13444 return;
464217f3 13445
13446 /* If we're a function-scope tag, initially use a parent of NULL;
13447 this will be fixed up in decls_for_scope. */
13448 if (decl_function_context (decl))
8a8bfbe7 13449 context_die = NULL;
464217f3 13450
30ade641 13451 break;
13452
13453 default:
13454 return;
13455 }
13456
464217f3 13457 gen_decl_die (decl, context_die);
30ade641 13458}
13459
13460/* Output a marker (i.e. a label) for the beginning of the generated code for
13461 a lexical block. */
ec1e49cc 13462
1dff614c 13463static void
8ec3a57b 13464dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13465 unsigned int blocknum)
30ade641 13466{
2f14b1f9 13467 switch_to_section (current_function_section ());
64e17633 13468 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
30ade641 13469}
13470
13471/* Output a marker (i.e. a label) for the end of the generated code for a
13472 lexical block. */
ec1e49cc 13473
1dff614c 13474static void
8ec3a57b 13475dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
30ade641 13476{
2f14b1f9 13477 switch_to_section (current_function_section ());
64e17633 13478 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
30ade641 13479}
13480
0a78547b 13481/* Returns nonzero if it is appropriate not to emit any debugging
13482 information for BLOCK, because it doesn't contain any instructions.
ad2fe2cd 13483
0a78547b 13484 Don't allow this for blocks with nested functions or local classes
13485 as we would end up with orphans, and in the presence of scheduling
13486 we may end up calling them anyway. */
13487
b29760a8 13488static bool
8ec3a57b 13489dwarf2out_ignore_block (tree block)
ad2fe2cd 13490{
13491 tree decl;
8c3f468d 13492
ad2fe2cd 13493 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
0a78547b 13494 if (TREE_CODE (decl) == FUNCTION_DECL
13495 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13496 return 0;
8c3f468d 13497
0a78547b 13498 return 1;
ad2fe2cd 13499}
13500
69278c24 13501/* Hash table routines for file_hash. */
13502
13503static int
13504file_table_eq (const void *p1_p, const void *p2_p)
13505{
13506 const struct dwarf_file_data * p1 = p1_p;
13507 const char * p2 = p2_p;
13508 return strcmp (p1->filename, p2) == 0;
13509}
13510
13511static hashval_t
13512file_table_hash (const void *p_p)
13513{
13514 const struct dwarf_file_data * p = p_p;
13515 return htab_hash_string (p->filename);
13516}
13517
8c3f468d 13518/* Lookup FILE_NAME (in the list of filenames that we know about here in
be6eb971 13519 dwarf2out.c) and return its "index". The index of each (known) filename is
8c3f468d 13520 just a unique number which is associated with only that one filename. We
13521 need such numbers for the sake of generating labels (in the .debug_sfnames
13522 section) and references to those files numbers (in the .debug_srcinfo
13523 and.debug_macinfo sections). If the filename given as an argument is not
13524 found in our current list, add it to the list and assign it the next
13525 available unique index number. In order to speed up searches, we remember
13526 the index of the filename was looked up last. This handles the majority of
13527 all searches. */
ec1e49cc 13528
69278c24 13529static struct dwarf_file_data *
8ec3a57b 13530lookup_filename (const char *file_name)
30ade641 13531{
69278c24 13532 void ** slot;
13533 struct dwarf_file_data * created;
30ade641 13534
5a3023d9 13535 /* Check to see if the file name that was searched on the previous
13536 call matches this file name. If so, return the index. */
69278c24 13537 if (file_table_last_lookup
13538 && (file_name == file_table_last_lookup->filename
13539 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13540 return file_table_last_lookup;
30ade641 13541
778ac06a 13542 /* Didn't match the previous lookup, search the table. */
69278c24 13543 slot = htab_find_slot_with_hash (file_table, file_name,
13544 htab_hash_string (file_name), INSERT);
13545 if (*slot)
13546 return *slot;
30ade641 13547
69278c24 13548 created = ggc_alloc (sizeof (struct dwarf_file_data));
13549 created->filename = file_name;
13550 created->emitted_number = 0;
13551 *slot = created;
13552 return created;
c83a163c 13553}
13554
44276901 13555/* If the assembler will construct the file table, then translate the compiler
13556 internal file table number into the assembler file table number, and emit
13557 a .file directive if we haven't already emitted one yet. The file table
13558 numbers are different because we prune debug info for unused variables and
13559 types, which may include filenames. */
13560
c83a163c 13561static int
69278c24 13562maybe_emit_file (struct dwarf_file_data * fd)
c83a163c 13563{
69278c24 13564 if (! fd->emitted_number)
6e957326 13565 {
69278c24 13566 if (last_emitted_file)
13567 fd->emitted_number = last_emitted_file->emitted_number + 1;
13568 else
13569 fd->emitted_number = 1;
13570 last_emitted_file = fd;
13571
13572 if (DWARF2_ASM_LINE_DEBUG_INFO)
c83a163c 13573 {
69278c24 13574 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13575 output_quoted_string (asm_out_file, fd->filename);
c83a163c 13576 fputc ('\n', asm_out_file);
13577 }
6e957326 13578 }
69278c24 13579
13580 return fd->emitted_number;
30ade641 13581}
13582
b2025850 13583/* Called by the final INSN scan whenever we see a var location. We
13584 use it to drop labels in the right places, and throw the location in
13585 our lookup table. */
13586
13587static void
13588dwarf2out_var_location (rtx loc_note)
13589{
13590 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13591 struct var_loc_node *newloc;
13592 rtx prev_insn;
13593 static rtx last_insn;
13594 static const char *last_label;
bbc7bce1 13595 tree decl;
b2025850 13596
13597 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13598 return;
13599 prev_insn = PREV_INSN (loc_note);
13600
13601 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13602 /* If the insn we processed last time is the previous insn
13603 and it is also a var location note, use the label we emitted
13604 last time. */
13605 if (last_insn != NULL_RTX
13606 && last_insn == prev_insn
6d7dc5b9 13607 && NOTE_P (prev_insn)
b2025850 13608 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13609 {
13610 newloc->label = last_label;
13611 }
13612 else
13613 {
13614 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13615 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13616 loclabel_num++;
13617 newloc->label = ggc_strdup (loclabel);
13618 }
13619 newloc->var_loc_note = loc_note;
13620 newloc->next = NULL;
13621
5fbee89d 13622 if (cfun && in_cold_section_p)
4d0e931f 13623 newloc->section_label = cfun->cold_section_label;
1897b881 13624 else
13625 newloc->section_label = text_section_label;
13626
b2025850 13627 last_insn = loc_note;
13628 last_label = newloc->label;
bbc7bce1 13629 decl = NOTE_VAR_LOCATION_DECL (loc_note);
bbc7bce1 13630 add_var_loc_to_decl (decl, newloc);
b2025850 13631}
13632
13633/* We need to reset the locations at the beginning of each
13634 function. We can't do this in the end_function hook, because the
dae1861f 13635 declarations that use the locations won't have been output when
13636 that hook is called. Also compute have_multiple_function_sections here. */
b2025850 13637
13638static void
dae1861f 13639dwarf2out_begin_function (tree fun)
b2025850 13640{
13641 htab_empty (decl_loc_table);
dae1861f 13642
13643 if (function_section (fun) != text_section)
13644 have_multiple_function_sections = true;
b2025850 13645}
13646
30ade641 13647/* Output a label to mark the beginning of a source code line entry
13648 and record information relating to this source line, in
13649 'line_info_table' for later output of the .debug_line section. */
ec1e49cc 13650
b9b7f8b4 13651static void
8ec3a57b 13652dwarf2out_source_line (unsigned int line, const char *filename)
30ade641 13653{
d8a4712b 13654 if (debug_info_level >= DINFO_LEVEL_NORMAL
13655 && line != 0)
30ade641 13656 {
69278c24 13657 int file_num = maybe_emit_file (lookup_filename (filename));
13658
2f14b1f9 13659 switch_to_section (current_function_section ());
30ade641 13660
80ae3362 13661 /* If requested, emit something human-readable. */
13662 if (flag_debug_asm)
13663 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13664 filename, line);
13665
985956c1 13666 if (DWARF2_ASM_LINE_DEBUG_INFO)
13667 {
3740694f 13668 /* Emit the .loc directive understood by GNU as. */
5a3023d9 13669 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
985956c1 13670
13671 /* Indicate that line number info exists. */
8c3f468d 13672 line_info_table_in_use++;
985956c1 13673 }
dae1861f 13674 else if (function_section (current_function_decl) != text_section)
30ade641 13675 {
19cb6b50 13676 dw_separate_line_info_ref line_info;
69278c24 13677 targetm.asm_out.internal_label (asm_out_file,
13678 SEPARATE_LINE_CODE_LABEL,
13679 separate_line_info_table_in_use);
c05d7491 13680
aab2cf92 13681 /* Expand the line info table if necessary. */
c05d7491 13682 if (separate_line_info_table_in_use
13683 == separate_line_info_table_allocated)
13684 {
13685 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13686 separate_line_info_table
f0af5a88 13687 = ggc_realloc (separate_line_info_table,
573aba85 13688 separate_line_info_table_allocated
13689 * sizeof (dw_separate_line_info_entry));
f0af5a88 13690 memset (separate_line_info_table
13691 + separate_line_info_table_in_use,
573aba85 13692 0,
8ec3a57b 13693 (LINE_INFO_TABLE_INCREMENT
573aba85 13694 * sizeof (dw_separate_line_info_entry)));
c05d7491 13695 }
ec1e49cc 13696
13697 /* Add the new entry at the end of the line_info_table. */
c05d7491 13698 line_info
13699 = &separate_line_info_table[separate_line_info_table_in_use++];
69278c24 13700 line_info->dw_file_num = file_num;
c05d7491 13701 line_info->dw_line_num = line;
4781f9b9 13702 line_info->function = current_function_funcdef_no;
c05d7491 13703 }
13704 else
13705 {
19cb6b50 13706 dw_line_info_ref line_info;
ec1e49cc 13707
883b2e73 13708 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
d58978a6 13709 line_info_table_in_use);
c05d7491 13710
ec1e49cc 13711 /* Expand the line info table if necessary. */
c05d7491 13712 if (line_info_table_in_use == line_info_table_allocated)
13713 {
13714 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13715 line_info_table
573aba85 13716 = ggc_realloc (line_info_table,
13717 (line_info_table_allocated
13718 * sizeof (dw_line_info_entry)));
13719 memset (line_info_table + line_info_table_in_use, 0,
13720 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
c05d7491 13721 }
ec1e49cc 13722
13723 /* Add the new entry at the end of the line_info_table. */
c05d7491 13724 line_info = &line_info_table[line_info_table_in_use++];
69278c24 13725 line_info->dw_file_num = file_num;
c05d7491 13726 line_info->dw_line_num = line;
30ade641 13727 }
30ade641 13728 }
13729}
13730
6312a35e 13731/* Record the beginning of a new source file. */
ec1e49cc 13732
c140b944 13733static void
8ec3a57b 13734dwarf2out_start_source_file (unsigned int lineno, const char *filename)
30ade641 13735{
7a614b74 13736 if (flag_eliminate_dwarf2_dups)
19f716e5 13737 {
13738 /* Record the beginning of the file for break_out_includes. */
51e8c210 13739 dw_die_ref bincl_die;
13740
13741 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
19f716e5 13742 add_AT_string (bincl_die, DW_AT_name, filename);
13743 }
8c3f468d 13744
1d340a5e 13745 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13746 {
69278c24 13747 int file_num = maybe_emit_file (lookup_filename (filename));
9b1f6100 13748
2f14b1f9 13749 switch_to_section (debug_macinfo_section);
1d340a5e 13750 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
2cb4ac60 13751 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13752 lineno);
9b1f6100 13753
69278c24 13754 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
1d340a5e 13755 }
30ade641 13756}
13757
c5c7e194 13758/* Record the end of a source file. */
ec1e49cc 13759
c140b944 13760static void
8ec3a57b 13761dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
30ade641 13762{
19f716e5 13763 if (flag_eliminate_dwarf2_dups)
8c3f468d 13764 /* Record the end of the file for break_out_includes. */
15cfae4e 13765 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
8c3f468d 13766
1d340a5e 13767 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13768 {
2f14b1f9 13769 switch_to_section (debug_macinfo_section);
1d340a5e 13770 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13771 }
30ade641 13772}
13773
c5c7e194 13774/* Called from debug_define in toplev.c. The `buffer' parameter contains
30ade641 13775 the tail part of the directive line, i.e. the part which is past the
13776 initial whitespace, #, whitespace, directive-name, whitespace part. */
ec1e49cc 13777
c140b944 13778static void
8ec3a57b 13779dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13780 const char *buffer ATTRIBUTE_UNUSED)
30ade641 13781{
1d340a5e 13782 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13783 {
2f14b1f9 13784 switch_to_section (debug_macinfo_section);
1d340a5e 13785 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13786 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13787 dw2_asm_output_nstring (buffer, -1, "The macro");
13788 }
30ade641 13789}
13790
c5c7e194 13791/* Called from debug_undef in toplev.c. The `buffer' parameter contains
30ade641 13792 the tail part of the directive line, i.e. the part which is past the
13793 initial whitespace, #, whitespace, directive-name, whitespace part. */
ec1e49cc 13794
c140b944 13795static void
8ec3a57b 13796dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13797 const char *buffer ATTRIBUTE_UNUSED)
30ade641 13798{
1d340a5e 13799 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13800 {
2f14b1f9 13801 switch_to_section (debug_macinfo_section);
1d340a5e 13802 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13803 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13804 dw2_asm_output_nstring (buffer, -1, "The macro");
13805 }
30ade641 13806}
13807
13808/* Set up for Dwarf output at the start of compilation. */
ec1e49cc 13809
b896d81b 13810static void
8ec3a57b 13811dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
30ade641 13812{
69278c24 13813 /* Allocate the file_table. */
13814 file_table = htab_create_ggc (50, file_table_hash,
13815 file_table_eq, NULL);
0924bbb7 13816
b2025850 13817 /* Allocate the decl_die_table. */
26863140 13818 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13819 decl_die_table_eq, NULL);
b2025850 13820
13821 /* Allocate the decl_loc_table. */
13822 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13823 decl_loc_table_eq, NULL);
30ade641 13824
13825 /* Allocate the initial hunk of the decl_scope_table. */
4a940e75 13826 decl_scope_table = VEC_alloc (tree, gc, 256);
30ade641 13827
13828 /* Allocate the initial hunk of the abbrev_die_table. */
573aba85 13829 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13830 * sizeof (dw_die_ref));
30ade641 13831 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
778ac06a 13832 /* Zero-th entry is allocated, but unused. */
30ade641 13833 abbrev_die_table_in_use = 1;
13834
13835 /* Allocate the initial hunk of the line_info_table. */
573aba85 13836 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13837 * sizeof (dw_line_info_entry));
30ade641 13838 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
8c3f468d 13839
778ac06a 13840 /* Zero-th entry is allocated, but unused. */
30ade641 13841 line_info_table_in_use = 1;
13842
f80d1bcd 13843 /* Generate the initial DIE for the .debug section. Note that the (string)
30ade641 13844 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
f80d1bcd 13845 will (typically) be a relative pathname and that this pathname should be
30ade641 13846 taken as being relative to the directory from which the compiler was
ff279357 13847 invoked when the given (base) source file was compiled. We will fill
13848 in this value in dwarf2out_finish. */
13849 comp_unit_die = gen_compile_unit_die (NULL);
30ade641 13850
22230dd1 13851 incomplete_types = VEC_alloc (tree, gc, 64);
52a7cc7b 13852
62aedc4c 13853 used_rtx_array = VEC_alloc (rtx, gc, 32);
eacbfaac 13854
2f14b1f9 13855 debug_info_section = get_section (DEBUG_INFO_SECTION,
13856 SECTION_DEBUG, NULL);
13857 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13858 SECTION_DEBUG, NULL);
13859 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13860 SECTION_DEBUG, NULL);
13861 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13862 SECTION_DEBUG, NULL);
13863 debug_line_section = get_section (DEBUG_LINE_SECTION,
13864 SECTION_DEBUG, NULL);
13865 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13866 SECTION_DEBUG, NULL);
13867 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13868 SECTION_DEBUG, NULL);
13869 debug_str_section = get_section (DEBUG_STR_SECTION,
13870 DEBUG_STR_SECTION_FLAGS, NULL);
13871 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13872 SECTION_DEBUG, NULL);
d08d29c0 13873 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13874 SECTION_DEBUG, NULL);
2f14b1f9 13875
d58978a6 13876 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
049aa99b 13877 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13878 DEBUG_ABBREV_SECTION_LABEL, 0);
e335d512 13879 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
4d0e931f 13880 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13881 COLD_TEXT_SECTION_LABEL, 0);
13882 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
8c3f468d 13883
f80d1bcd 13884 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
65fc1a16 13885 DEBUG_INFO_SECTION_LABEL, 0);
f80d1bcd 13886 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
65fc1a16 13887 DEBUG_LINE_SECTION_LABEL, 0);
fe39c28c 13888 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13889 DEBUG_RANGES_SECTION_LABEL, 0);
2f14b1f9 13890 switch_to_section (debug_abbrev_section);
65fc1a16 13891 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
2f14b1f9 13892 switch_to_section (debug_info_section);
65fc1a16 13893 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
2f14b1f9 13894 switch_to_section (debug_line_section);
65fc1a16 13895 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
8c3f468d 13896
1d340a5e 13897 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13898 {
2f14b1f9 13899 switch_to_section (debug_macinfo_section);
1d340a5e 13900 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13901 DEBUG_MACINFO_SECTION_LABEL, 0);
13902 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13903 }
2cb4ac60 13904
2f14b1f9 13905 switch_to_section (text_section);
e335d512 13906 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
4d0e931f 13907 if (flag_reorder_blocks_and_partition)
13908 {
5fbee89d 13909 switch_to_section (unlikely_text_section ());
4d0e931f 13910 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13911 }
30ade641 13912}
13913
80b7bd06 13914/* A helper function for dwarf2out_finish called through
13915 ht_forall. Emit one queued .debug_str string. */
13916
13917static int
8ec3a57b 13918output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
80b7bd06 13919{
573aba85 13920 struct indirect_string_node *node = (struct indirect_string_node *) *h;
80b7bd06 13921
80b7bd06 13922 if (node->form == DW_FORM_strp)
13923 {
2f14b1f9 13924 switch_to_section (debug_str_section);
80b7bd06 13925 ASM_OUTPUT_LABEL (asm_out_file, node->label);
573aba85 13926 assemble_string (node->str, strlen (node->str) + 1);
80b7bd06 13927 }
8c3f468d 13928
80b7bd06 13929 return 1;
13930}
13931
cd04bce0 13932#if ENABLE_ASSERT_CHECKING
13933/* Verify that all marks are clear. */
c83a163c 13934
cd04bce0 13935static void
13936verify_marks_clear (dw_die_ref die)
13937{
13938 dw_die_ref c;
13939
13940 gcc_assert (! die->die_mark);
13941 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13942}
13943#endif /* ENABLE_ASSERT_CHECKING */
c83a163c 13944
13945/* Clear the marks for a die and its children.
037845e5 13946 Be cool if the mark isn't set. */
c83a163c 13947
13948static void
8ec3a57b 13949prune_unmark_dies (dw_die_ref die)
c83a163c 13950{
13951 dw_die_ref c;
958656b7 13952
13953 if (die->die_mark)
13954 die->die_mark = 0;
13955 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
c83a163c 13956}
13957
c83a163c 13958/* Given DIE that we're marking as used, find any other dies
13959 it references as attributes and mark them as used. */
13960
13961static void
8ec3a57b 13962prune_unused_types_walk_attribs (dw_die_ref die)
c83a163c 13963{
13964 dw_attr_ref a;
6f56c055 13965 unsigned ix;
c83a163c 13966
6f56c055 13967 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
c83a163c 13968 {
13969 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13970 {
13971 /* A reference to another DIE.
13972 Make sure that it will get emitted. */
13973 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13974 }
b0aa6b33 13975 /* Set the string's refcount to 0 so that prune_unused_types_mark
13976 accounts properly for it. */
13977 if (AT_class (a) == dw_val_class_str)
13978 a->dw_attr_val.v.val_str->refcount = 0;
c83a163c 13979 }
13980}
13981
13982
13983/* Mark DIE as being used. If DOKIDS is true, then walk down
13984 to DIE's children. */
13985
13986static void
8ec3a57b 13987prune_unused_types_mark (dw_die_ref die, int dokids)
c83a163c 13988{
13989 dw_die_ref c;
13990
13991 if (die->die_mark == 0)
13992 {
13993 /* We haven't done this node yet. Mark it as used. */
13994 die->die_mark = 1;
13995
13996 /* We also have to mark its parents as used.
13997 (But we don't want to mark our parents' kids due to this.) */
13998 if (die->die_parent)
13999 prune_unused_types_mark (die->die_parent, 0);
14000
14001 /* Mark any referenced nodes. */
14002 prune_unused_types_walk_attribs (die);
023dc493 14003
14004 /* If this node is a specification,
8b332087 14005 also mark the definition, if it exists. */
023dc493 14006 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14007 prune_unused_types_mark (die->die_definition, 1);
c83a163c 14008 }
14009
14010 if (dokids && die->die_mark != 2)
14011 {
14012 /* We need to walk the children, but haven't done so yet.
14013 Remember that we've walked the kids. */
14014 die->die_mark = 2;
14015
958656b7 14016 /* If this is an array type, we need to make sure our
14017 kids get marked, even if they're types. */
14018 if (die->die_tag == DW_TAG_array_type)
14019 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14020 else
14021 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
c83a163c 14022 }
14023}
14024
14025
14026/* Walk the tree DIE and mark types that we actually use. */
14027
14028static void
8ec3a57b 14029prune_unused_types_walk (dw_die_ref die)
c83a163c 14030{
14031 dw_die_ref c;
14032
14033 /* Don't do anything if this node is already marked. */
14034 if (die->die_mark)
14035 return;
14036
14037 switch (die->die_tag) {
14038 case DW_TAG_const_type:
14039 case DW_TAG_packed_type:
14040 case DW_TAG_pointer_type:
14041 case DW_TAG_reference_type:
14042 case DW_TAG_volatile_type:
14043 case DW_TAG_typedef:
14044 case DW_TAG_array_type:
14045 case DW_TAG_structure_type:
14046 case DW_TAG_union_type:
14047 case DW_TAG_class_type:
14048 case DW_TAG_friend:
14049 case DW_TAG_variant_part:
14050 case DW_TAG_enumeration_type:
14051 case DW_TAG_subroutine_type:
14052 case DW_TAG_string_type:
14053 case DW_TAG_set_type:
14054 case DW_TAG_subrange_type:
14055 case DW_TAG_ptr_to_member_type:
14056 case DW_TAG_file_type:
f6e59711 14057 if (die->die_perennial_p)
14058 break;
14059
c83a163c 14060 /* It's a type node --- don't mark it. */
14061 return;
14062
14063 default:
14064 /* Mark everything else. */
14065 break;
14066 }
14067
14068 die->die_mark = 1;
14069
14070 /* Now, mark any dies referenced from here. */
14071 prune_unused_types_walk_attribs (die);
14072
14073 /* Mark children. */
958656b7 14074 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
c83a163c 14075}
14076
b0aa6b33 14077/* Increment the string counts on strings referred to from DIE's
14078 attributes. */
14079
14080static void
14081prune_unused_types_update_strings (dw_die_ref die)
14082{
14083 dw_attr_ref a;
14084 unsigned ix;
14085
14086 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14087 if (AT_class (a) == dw_val_class_str)
14088 {
14089 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14090 s->refcount++;
14091 /* Avoid unnecessarily putting strings that are used less than
14092 twice in the hash table. */
20f220a9 14093 if (s->refcount
14094 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
b0aa6b33 14095 {
14096 void ** slot;
14097 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14098 htab_hash_string (s->str),
14099 INSERT);
14100 gcc_assert (*slot == NULL);
14101 *slot = s;
14102 }
14103 }
14104}
c83a163c 14105
14106/* Remove from the tree DIE any dies that aren't marked. */
14107
14108static void
8ec3a57b 14109prune_unused_types_prune (dw_die_ref die)
c83a163c 14110{
958656b7 14111 dw_die_ref c;
8ff30ff6 14112
7bd4f6b6 14113 gcc_assert (die->die_mark);
4533b23c 14114 prune_unused_types_update_strings (die);
c83a163c 14115
958656b7 14116 if (! die->die_child)
14117 return;
14118
14119 c = die->die_child;
14120 do {
14121 dw_die_ref prev = c;
14122 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14123 if (c == die->die_child)
c83a163c 14124 {
958656b7 14125 /* No marked children between 'prev' and the end of the list. */
14126 if (prev == c)
14127 /* No marked children at all. */
14128 die->die_child = NULL;
14129 else
14130 {
14131 prev->die_sib = c->die_sib;
14132 die->die_child = prev;
14133 }
14134 return;
c83a163c 14135 }
958656b7 14136
14137 if (c != prev->die_sib)
14138 prev->die_sib = c;
958656b7 14139 prune_unused_types_prune (c);
14140 } while (c != die->die_child);
c83a163c 14141}
14142
14143
14144/* Remove dies representing declarations that we never use. */
14145
14146static void
8ec3a57b 14147prune_unused_types (void)
c83a163c 14148{
14149 unsigned int i;
14150 limbo_die_node *node;
14151
cd04bce0 14152#if ENABLE_ASSERT_CHECKING
14153 /* All the marks should already be clear. */
14154 verify_marks_clear (comp_unit_die);
c83a163c 14155 for (node = limbo_die_list; node; node = node->next)
cd04bce0 14156 verify_marks_clear (node->die);
14157#endif /* ENABLE_ASSERT_CHECKING */
c83a163c 14158
14159 /* Set the mark on nodes that are actually used. */
14160 prune_unused_types_walk (comp_unit_die);
14161 for (node = limbo_die_list; node; node = node->next)
14162 prune_unused_types_walk (node->die);
14163
14164 /* Also set the mark on nodes referenced from the
14165 pubname_table or arange_table. */
ea0041f4 14166 for (i = 0; i < pubname_table_in_use; i++)
14167 prune_unused_types_mark (pubname_table[i].die, 1);
14168 for (i = 0; i < arange_table_in_use; i++)
14169 prune_unused_types_mark (arange_table[i], 1);
c83a163c 14170
b0aa6b33 14171 /* Get rid of nodes that aren't marked; and update the string counts. */
14172 if (debug_str_hash)
14173 htab_empty (debug_str_hash);
c83a163c 14174 prune_unused_types_prune (comp_unit_die);
14175 for (node = limbo_die_list; node; node = node->next)
14176 prune_unused_types_prune (node->die);
14177
14178 /* Leave the marks clear. */
14179 prune_unmark_dies (comp_unit_die);
14180 for (node = limbo_die_list; node; node = node->next)
14181 prune_unmark_dies (node->die);
14182}
14183
69278c24 14184/* Set the parameter to true if there are any relative pathnames in
14185 the file table. */
14186static int
14187file_table_relative_p (void ** slot, void *param)
14188{
14189 bool *p = param;
14190 struct dwarf_file_data *d = *slot;
14191 if (d->emitted_number && d->filename[0] != DIR_SEPARATOR)
14192 {
14193 *p = true;
14194 return 0;
14195 }
14196 return 1;
14197}
14198
30ade641 14199/* Output stuff that dwarf requires at the end of every file,
14200 and generate the DWARF-2 debugging info. */
ec1e49cc 14201
b896d81b 14202static void
8ec3a57b 14203dwarf2out_finish (const char *filename)
30ade641 14204{
678d90bb 14205 limbo_die_node *node, *next_node;
97b330ca 14206 dw_die_ref die = 0;
678d90bb 14207
ff279357 14208 /* Add the name for the main input file now. We delayed this from
14209 dwarf2out_init to avoid complications with PCH. */
37b555e3 14210 add_name_attribute (comp_unit_die, filename);
14211 if (filename[0] != DIR_SEPARATOR)
ff279357 14212 add_comp_dir_attribute (comp_unit_die);
83f77ecb 14213 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14214 {
69278c24 14215 bool p = false;
14216 htab_traverse (file_table, file_table_relative_p, &p);
14217 if (p)
14218 add_comp_dir_attribute (comp_unit_die);
83f77ecb 14219 }
ff279357 14220
678d90bb 14221 /* Traverse the limbo die list, and add parent/child links. The only
14222 dies without parents that should be here are concrete instances of
14223 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14224 For concrete instances, we can get the parent die from the abstract
14225 instance. */
14226 for (node = limbo_die_list; node; node = next_node)
14227 {
14228 next_node = node->next;
14229 die = node->die;
14230
14231 if (die->die_parent == NULL)
14232 {
c90bf86c 14233 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
8c3f468d 14234
c90bf86c 14235 if (origin)
14236 add_child_die (origin->die_parent, die);
678d90bb 14237 else if (die == comp_unit_die)
c90bf86c 14238 ;
15a56411 14239 else if (errorcount > 0 || sorrycount > 0)
14240 /* It's OK to be confused by errors in the input. */
14241 add_child_die (comp_unit_die, die);
7bd4f6b6 14242 else
15cfae4e 14243 {
14244 /* In certain situations, the lexical block containing a
14245 nested function can be optimized away, which results
14246 in the nested function die being orphaned. Likewise
14247 with the return type of that nested function. Force
1b55e9dc 14248 this to be a child of the containing function.
14249
14250 It may happen that even the containing function got fully
14251 inlined and optimized out. In that case we are lost and
14252 assign the empty child. This should not be big issue as
14253 the function is likely unreachable too. */
7bd4f6b6 14254 tree context = NULL_TREE;
14255
14256 gcc_assert (node->created_for);
14257
14258 if (DECL_P (node->created_for))
14259 context = DECL_CONTEXT (node->created_for);
14260 else if (TYPE_P (node->created_for))
14261 context = TYPE_CONTEXT (node->created_for);
8ff30ff6 14262
7bd4f6b6 14263 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
8ff30ff6 14264
15cfae4e 14265 origin = lookup_decl_die (context);
1b55e9dc 14266 if (origin)
14267 add_child_die (origin, die);
68690e9c 14268 else
14269 add_child_die (comp_unit_die, die);
15cfae4e 14270 }
678d90bb 14271 }
678d90bb 14272 }
8c3f468d 14273
c90bf86c 14274 limbo_die_list = NULL;
678d90bb 14275
a4617d03 14276 /* Walk through the list of incomplete types again, trying once more to
14277 emit full debugging info for them. */
14278 retry_incomplete_types ();
14279
449db731 14280 if (flag_eliminate_unused_debug_types)
14281 prune_unused_types ();
14282
19f716e5 14283 /* Generate separate CUs for each of the include files we've seen.
14284 They will go into limbo_die_list. */
02749c22 14285 if (flag_eliminate_dwarf2_dups)
14286 break_out_includes (comp_unit_die);
19f716e5 14287
14288 /* Traverse the DIE's and add add sibling attributes to those DIE's
14289 that have children. */
30ade641 14290 add_sibling_attributes (comp_unit_die);
19f716e5 14291 for (node = limbo_die_list; node; node = node->next)
14292 add_sibling_attributes (node->die);
30ade641 14293
14294 /* Output a terminator label for the .text section. */
2f14b1f9 14295 switch_to_section (text_section);
883b2e73 14296 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
4d0e931f 14297 if (flag_reorder_blocks_and_partition)
14298 {
5fbee89d 14299 switch_to_section (unlikely_text_section ());
4d0e931f 14300 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14301 }
30ade641 14302
603796f0 14303 /* We can only use the low/high_pc attributes if all of the code was
14304 in .text. */
dae1861f 14305 if (!have_multiple_function_sections)
603796f0 14306 {
14307 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14308 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
c05d7491 14309 }
8c3f468d 14310
14311 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14312 "base address". Use zero so that these addresses become absolute. */
a36145ca 14313 else if (have_location_lists || ranges_table_in_use)
14314 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
c05d7491 14315
dae1861f 14316 /* Output location list section if necessary. */
14317 if (have_location_lists)
14318 {
14319 /* Output the location lists info. */
14320 switch_to_section (debug_loc_section);
14321 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14322 DEBUG_LOC_SECTION_LABEL, 0);
14323 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14324 output_location_lists (die);
14325 }
14326
28833db5 14327 if (debug_info_level >= DINFO_LEVEL_NORMAL)
d08d29c0 14328 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14329 debug_line_section_label);
603796f0 14330
1d340a5e 14331 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
d08d29c0 14332 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
c90bf86c 14333
19f716e5 14334 /* Output all of the compilation units. We put the main one last so that
14335 the offsets are available to output_pubnames. */
14336 for (node = limbo_die_list; node; node = node->next)
51e8c210 14337 output_comp_unit (node->die, 0);
8c3f468d 14338
51e8c210 14339 output_comp_unit (comp_unit_die, 0);
19f716e5 14340
30ade641 14341 /* Output the abbreviation table. */
2f14b1f9 14342 switch_to_section (debug_abbrev_section);
30ade641 14343 output_abbrev_section ();
14344
8c3f468d 14345 /* Output public names table if necessary. */
dc7a29ce 14346 if (pubname_table_in_use)
14347 {
2f14b1f9 14348 switch_to_section (debug_pubnames_section);
dc7a29ce 14349 output_pubnames ();
14350 }
14351
8c3f468d 14352 /* Output the address range information. We only put functions in the arange
14353 table, so don't write it out if we don't have any. */
30ade641 14354 if (fde_table_in_use)
14355 {
2f14b1f9 14356 switch_to_section (debug_aranges_section);
30ade641 14357 output_aranges ();
14358 }
a36145ca 14359
a36145ca 14360 /* Output ranges section if necessary. */
14361 if (ranges_table_in_use)
14362 {
2f14b1f9 14363 switch_to_section (debug_ranges_section);
fe39c28c 14364 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
a36145ca 14365 output_ranges ();
14366 }
14367
69278c24 14368 /* Output the source line correspondence table. We must do this
14369 even if there is no line information. Otherwise, on an empty
14370 translation unit, we will generate a present, but empty,
14371 .debug_info section. IRIX 6.5 `nm' will then complain when
14372 examining the file. This is done late so that any filenames
14373 used by the debug_info section are marked as 'used'. */
14374 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14375 {
14376 switch_to_section (debug_line_section);
14377 output_line_info ();
14378 }
14379
156660d7 14380 /* Have to end the macro section. */
c5c7e194 14381 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
bc70bd5e 14382 {
2f14b1f9 14383 switch_to_section (debug_macinfo_section);
323583a1 14384 dw2_asm_output_data (1, 0, "End compilation unit");
c5c7e194 14385 }
80b7bd06 14386
8c3f468d 14387 /* If we emitted any DW_FORM_strp form attribute, output the string
80b7bd06 14388 table too. */
14389 if (debug_str_hash)
573aba85 14390 htab_traverse (debug_str_hash, output_indirect_string, NULL);
30ade641 14391}
1f3233d1 14392#else
14393
14394/* This should never be used, but its address is needed for comparisons. */
14395const struct gcc_debug_hooks dwarf2_debug_hooks;
14396
14397#endif /* DWARF2_DEBUGGING_INFO */
14398
14399#include "gt-dwarf2out.h"