]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dwarf2out.c
gc.c: Removed the DEBUG declaration.
[thirdparty/gcc.git] / gcc / dwarf2out.c
CommitLineData
a3f97cbb 1/* Output Dwarf2 format symbol table information from the GNU C compiler.
1917ef85 2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001
06ceef4e 3 Free Software Foundation, Inc.
e9a25f70
JL
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
469ac993 6 Extensively modified by Jason Merrill (jason@cygnus.com).
a3f97cbb 7
1322177d 8This file is part of GCC.
a3f97cbb 9
1322177d
LB
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
12Software Foundation; either version 2, or (at your option) any later
13version.
a3f97cbb 14
1322177d
LB
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
a3f97cbb
JW
19
20You should have received a copy of the GNU General Public License
1322177d
LB
21along with GCC; see the file COPYING. If not, write to the Free
22Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2302111-1307, USA. */
a3f97cbb 24
a96c67ec 25/* TODO: Implement .debug_str handling, and share entries somehow.
348bb3c7
JM
26 Emit .debug_line header even when there are no functions, since
27 the file numbers are used by .debug_info. Alternately, leave
28 out locations for types and decls.
29 Avoid talking about ctors and op= for PODs.
30 Factor out common prologue sequences into multiple CIEs. */
31
3f76745e
JM
32/* The first part of this file deals with the DWARF 2 frame unwind
33 information, which is also used by the GCC efficient exception handling
34 mechanism. The second part, controlled only by an #ifdef
35 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
36 information. */
37
0021b564 38#include "config.h"
670ee920 39#include "system.h"
a3f97cbb
JW
40#include "tree.h"
41#include "flags.h"
42#include "rtl.h"
43#include "hard-reg-set.h"
44#include "regs.h"
45#include "insn-config.h"
46#include "reload.h"
52a11cbf 47#include "function.h"
a3f97cbb 48#include "output.h"
71dfc51f 49#include "expr.h"
e78d8e51 50#include "libfuncs.h"
3f76745e 51#include "except.h"
a7cc7f29 52#include "dwarf2.h"
76ead72b 53#include "dwarf2out.h"
2e4b9b8c 54#include "dwarf2asm.h"
10f0ad3d 55#include "toplev.h"
1865dbb5 56#include "varray.h"
951a525f 57#include "ggc.h"
881c6935 58#include "md5.h"
57bed152 59#include "tm_p.h"
2a2b2d43 60#include "diagnostic.h"
a51d908e 61#include "debug.h"
a3f97cbb 62
653e276c
NB
63#ifdef DWARF2_DEBUGGING_INFO
64static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
65#endif
66
770ca8c6
JO
67/* DWARF2 Abbreviation Glossary:
68 CFA = Canonical Frame Address
00a42e21
JM
69 a fixed address on the stack which identifies a call frame.
70 We define it to be the value of SP just before the call insn.
71 The CFA register and offset, which may change during the course
72 of the function, are used to calculate its value at runtime.
a401107d
JO
73 CFI = Call Frame Instruction
74 an instruction for the DWARF2 abstract machine
770ca8c6
JO
75 CIE = Common Information Entry
76 information describing information common to one or more FDEs
77 DIE = Debugging Information Entry
78 FDE = Frame Description Entry
79 information describing the stack call frame, in particular,
80 how to restore registers
81
82 DW_CFA_... = DWARF2 CFA call frame instruction
83 DW_TAG_... = DWARF2 DIE tag */
84
0021b564
JM
85/* Decide whether we want to emit frame unwind information for the current
86 translation unit. */
87
88int
89dwarf2out_do_frame ()
90{
91 return (write_symbols == DWARF2_DEBUG
9ec36da5 92#ifdef DWARF2_FRAME_INFO
556273e0 93 || DWARF2_FRAME_INFO
9ec36da5 94#endif
0021b564 95#ifdef DWARF2_UNWIND_INFO
14a774a9 96 || flag_unwind_tables
531073e7 97 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
0021b564
JM
98#endif
99 );
100}
101
b1e6ab03
RH
102/* The number of the current function definition for which debugging
103 information is being generated. These numbers range from 1 up to the
104 maximum number of function definitions contained within the current
105 compilation unit. These numbers are used to create unique label id's
106 unique to each function definition. */
107unsigned current_funcdef_number = 0;
108
0021b564
JM
109#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
110
eaf95893
RK
111/* How to start an assembler comment. */
112#ifndef ASM_COMMENT_START
113#define ASM_COMMENT_START ";#"
114#endif
115
a3f97cbb
JW
116typedef struct dw_cfi_struct *dw_cfi_ref;
117typedef struct dw_fde_struct *dw_fde_ref;
118typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
a3f97cbb
JW
119
120/* Call frames are described using a sequence of Call Frame
121 Information instructions. The register number, offset
122 and address fields are provided as possible operands;
123 their use is selected by the opcode field. */
71dfc51f 124
a3f97cbb 125typedef union dw_cfi_oprnd_struct
71dfc51f
RK
126{
127 unsigned long dw_cfi_reg_num;
128 long int dw_cfi_offset;
d3e3972c 129 const char *dw_cfi_addr;
7d9d8943 130 struct dw_loc_descr_struct *dw_cfi_loc;
71dfc51f 131}
a3f97cbb
JW
132dw_cfi_oprnd;
133
134typedef struct dw_cfi_struct
71dfc51f
RK
135{
136 dw_cfi_ref dw_cfi_next;
137 enum dwarf_call_frame_info dw_cfi_opc;
138 dw_cfi_oprnd dw_cfi_oprnd1;
139 dw_cfi_oprnd dw_cfi_oprnd2;
140}
a3f97cbb
JW
141dw_cfi_node;
142
7d9d8943
AM
143/* This is how we define the location of the CFA. We use to handle it
144 as REG + OFFSET all the time, but now it can be more complex.
145 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
556273e0 146 Instead of passing around REG and OFFSET, we pass a copy
7d9d8943
AM
147 of this structure. */
148typedef struct cfa_loc
149{
556273e0 150 unsigned long reg;
7d9d8943
AM
151 long offset;
152 long base_offset;
153 int indirect; /* 1 if CFA is accessed via a dereference. */
154} dw_cfa_location;
155
a3f97cbb 156/* All call frame descriptions (FDE's) in the GCC generated DWARF
4b674448 157 refer to a single Common Information Entry (CIE), defined at
a3f97cbb
JW
158 the beginning of the .debug_frame section. This used of a single
159 CIE obviates the need to keep track of multiple CIE's
160 in the DWARF generation routines below. */
71dfc51f 161
a3f97cbb 162typedef struct dw_fde_struct
71dfc51f 163{
d3e3972c
KG
164 const char *dw_fde_begin;
165 const char *dw_fde_current_label;
166 const char *dw_fde_end;
71dfc51f 167 dw_cfi_ref dw_fde_cfi;
52a11cbf
RH
168 unsigned funcdef_number;
169 unsigned nothrow : 1;
170 unsigned uses_eh_lsda : 1;
71dfc51f 171}
a3f97cbb
JW
172dw_fde_node;
173
a3f97cbb
JW
174/* Maximum size (in bytes) of an artificially generated label. */
175#define MAX_ARTIFICIAL_LABEL_BYTES 30
176
a1a4189d 177/* The size of the target's pointer type. */
a3f97cbb 178#ifndef PTR_SIZE
a9d38797 179#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
a3f97cbb
JW
180#endif
181
a1a4189d
JB
182/* The size of addresses as they appear in the Dwarf 2 data.
183 Some architectures use word addresses to refer to code locations,
184 but Dwarf 2 info always uses byte addresses. On such machines,
185 Dwarf 2 addresses need to be larger than the architecture's
186 pointers. */
187#ifndef DWARF2_ADDR_SIZE
188#define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
189#endif
190
7e23cb16 191/* The size in bytes of a DWARF field indicating an offset or length
a1a4189d
JB
192 relative to a debug info section, specified to be 4 bytes in the
193 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
b13fe8bf 194 as PTR_SIZE. */
71dfc51f 195
7e23cb16
JM
196#ifndef DWARF_OFFSET_SIZE
197#define DWARF_OFFSET_SIZE 4
198#endif
199
9a666dda
JM
200#define DWARF_VERSION 2
201
7e23cb16
JM
202/* Round SIZE up to the nearest BOUNDARY. */
203#define DWARF_ROUND(SIZE,BOUNDARY) \
262b6384 204 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
a3f97cbb 205
a3f97cbb 206/* Offsets recorded in opcodes are a multiple of this alignment factor. */
27c35f4b 207#ifndef DWARF_CIE_DATA_ALIGNMENT
469ac993 208#ifdef STACK_GROWS_DOWNWARD
08cb3d38 209#define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
469ac993 210#else
08cb3d38 211#define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
469ac993 212#endif
27c35f4b 213#endif /* not DWARF_CIE_DATA_ALIGNMENT */
a3f97cbb 214
3f76745e
JM
215/* A pointer to the base of a table that contains frame description
216 information for each routine. */
217static dw_fde_ref fde_table;
a3f97cbb 218
3f76745e
JM
219/* Number of elements currently allocated for fde_table. */
220static unsigned fde_table_allocated;
a94dbf2c 221
3f76745e
JM
222/* Number of elements in fde_table currently in use. */
223static unsigned fde_table_in_use;
a3f97cbb 224
3f76745e
JM
225/* Size (in elements) of increments by which we may expand the
226 fde_table. */
227#define FDE_TABLE_INCREMENT 256
a3f97cbb 228
a94dbf2c
JM
229/* A list of call frame insns for the CIE. */
230static dw_cfi_ref cie_cfi_head;
231
a3f97cbb
JW
232/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
233 attribute that accelerates the lookup of the FDE associated
556273e0 234 with the subprogram. This variable holds the table index of the FDE
a3f97cbb
JW
235 associated with the current function (body) definition. */
236static unsigned current_funcdef_fde;
237
a3f97cbb 238/* Forward declarations for functions defined in this file. */
71dfc51f 239
83d2b3b9
KG
240static char *stripattributes PARAMS ((const char *));
241static const char *dwarf_cfi_name PARAMS ((unsigned));
242static dw_cfi_ref new_cfi PARAMS ((void));
243static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
d3e3972c 244static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
7d9d8943
AM
245static void lookup_cfa_1 PARAMS ((dw_cfi_ref, dw_cfa_location *));
246static void lookup_cfa PARAMS ((dw_cfa_location *));
d3e3972c
KG
247static void reg_save PARAMS ((const char *, unsigned,
248 unsigned, long));
83d2b3b9 249static void initial_return_save PARAMS ((rtx));
5e640c56 250static long stack_adjust_offset PARAMS ((rtx));
12f0b96b 251static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
83d2b3b9 252static void output_call_frame_info PARAMS ((int));
83d2b3b9 253static void dwarf2out_stack_adjust PARAMS ((rtx));
fbfa55b0
RH
254static void queue_reg_save PARAMS ((const char *, rtx, long));
255static void flush_queued_reg_saves PARAMS ((void));
256static bool clobbers_queued_reg_save PARAMS ((rtx));
d3e3972c 257static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
a3f97cbb 258
7d9d8943
AM
259/* Support for complex CFA locations. */
260static void output_cfa_loc PARAMS ((dw_cfi_ref));
556273e0 261static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
7d9d8943
AM
262 struct dw_loc_descr_struct *));
263static struct dw_loc_descr_struct *build_cfa_loc
264 PARAMS ((dw_cfa_location *));
265static void def_cfa_1 PARAMS ((const char *, dw_cfa_location *));
266
2e4b9b8c
RH
267/* How to start an assembler comment. */
268#ifndef ASM_COMMENT_START
269#define ASM_COMMENT_START ";#"
a3f97cbb
JW
270#endif
271
7e23cb16
JM
272/* Data and reference forms for relocatable data. */
273#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
274#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
275
a3f97cbb
JW
276/* Pseudo-op for defining a new section. */
277#ifndef SECTION_ASM_OP
0a3e1f45 278#define SECTION_ASM_OP "\t.section\t"
a3f97cbb
JW
279#endif
280
cf2fe500
RH
281#ifndef DEBUG_FRAME_SECTION
282#define DEBUG_FRAME_SECTION ".debug_frame"
a3f97cbb 283#endif
a3f97cbb 284
5c90448c
JM
285#ifndef FUNC_BEGIN_LABEL
286#define FUNC_BEGIN_LABEL "LFB"
a3f97cbb 287#endif
5c90448c
JM
288#ifndef FUNC_END_LABEL
289#define FUNC_END_LABEL "LFE"
a3f97cbb 290#endif
a6ab3aad
JM
291#define CIE_AFTER_SIZE_LABEL "LSCIE"
292#define CIE_END_LABEL "LECIE"
2ed2af28 293#define CIE_LENGTH_LABEL "LLCIE"
2e4b9b8c
RH
294#define FDE_LABEL "LSFDE"
295#define FDE_AFTER_SIZE_LABEL "LASFDE"
a6ab3aad 296#define FDE_END_LABEL "LEFDE"
2ed2af28 297#define FDE_LENGTH_LABEL "LLFDE"
981975b6
RH
298#define LINE_NUMBER_BEGIN_LABEL "LSLT"
299#define LINE_NUMBER_END_LABEL "LELT"
300#define LN_PROLOG_AS_LABEL "LASLTP"
301#define LN_PROLOG_END_LABEL "LELTP"
881c6935 302#define DIE_LABEL_PREFIX "DW"
a3f97cbb 303
a3f97cbb
JW
304/* Definitions of defaults for various types of primitive assembly language
305 output operations. These may be overridden from within the tm.h file,
956d6950 306 but typically, that is unnecessary. */
71dfc51f 307
2ed2af28
PDM
308#ifdef SET_ASM_OP
309#ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
7bb9fb0e
JM
310#define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO) \
311 do { \
e8638df0 312 fprintf (FILE, "%s", SET_ASM_OP); \
7bb9fb0e
JM
313 assemble_name (FILE, SY); \
314 fputc (',', FILE); \
315 assemble_name (FILE, HI); \
316 fputc ('-', FILE); \
317 assemble_name (FILE, LO); \
318 } while (0)
2ed2af28
PDM
319#endif
320#endif /* SET_ASM_OP */
321
c8cc5c4a 322/* The DWARF 2 CFA column which tracks the return address. Normally this
a94dbf2c
JM
323 is the column for PC, or the first column after all of the hard
324 registers. */
c8cc5c4a 325#ifndef DWARF_FRAME_RETURN_COLUMN
a94dbf2c
JM
326#ifdef PC_REGNUM
327#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
328#else
3073d01c 329#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
a94dbf2c 330#endif
c8cc5c4a
JM
331#endif
332
333/* The mapping from gcc register number to DWARF 2 CFA column number. By
469ac993 334 default, we just provide columns for all registers. */
c8cc5c4a 335#ifndef DWARF_FRAME_REGNUM
469ac993 336#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
c8cc5c4a 337#endif
3f76745e 338
0021b564
JM
339/* Hook used by __throw. */
340
341rtx
342expand_builtin_dwarf_fp_regnum ()
343{
344 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
345}
346
a6ab3aad
JM
347/* The offset from the incoming value of %sp to the top of the stack frame
348 for the current function. */
349#ifndef INCOMING_FRAME_SP_OFFSET
350#define INCOMING_FRAME_SP_OFFSET 0
351#endif
a51d908e 352\f
71dfc51f 353/* Return a pointer to a copy of the section string name S with all
bf20f341 354 attributes stripped off, and an asterisk prepended (for assemble_name). */
71dfc51f
RK
355
356static inline char *
a3f97cbb 357stripattributes (s)
d560ee52 358 const char *s;
a3f97cbb 359{
bf20f341 360 char *stripped = xmalloc (strlen (s) + 2);
71dfc51f
RK
361 char *p = stripped;
362
bf20f341
JW
363 *p++ = '*';
364
365 while (*s && *s != ',')
366 *p++ = *s++;
71dfc51f 367
a3f97cbb
JW
368 *p = '\0';
369 return stripped;
370}
371
d9d5c9de 372/* Generate code to initialize the register size table. */
2f3ca9e7 373
d9d5c9de
BS
374void
375expand_builtin_init_dwarf_reg_sizes (address)
376 tree address;
2f3ca9e7 377{
d9d5c9de
BS
378 int i;
379 enum machine_mode mode = TYPE_MODE (char_type_node);
380 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
381 rtx mem = gen_rtx_MEM (mode, addr);
2f3ca9e7 382
376e12ab 383 for (i = 0; i < DWARF_FRAME_REGISTERS; ++i)
2f3ca9e7 384 {
e0e07bd1 385 int offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
d9d5c9de 386 int size = GET_MODE_SIZE (reg_raw_mode[i]);
2f3ca9e7 387
c699cee9
JM
388 if (offset < 0)
389 continue;
390
f4ef873c 391 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
2f3ca9e7 392 }
2f3ca9e7
JM
393}
394
3f76745e 395/* Convert a DWARF call frame info. operation to its string name */
a3f97cbb 396
d560ee52 397static const char *
3f76745e
JM
398dwarf_cfi_name (cfi_opc)
399 register unsigned cfi_opc;
400{
401 switch (cfi_opc)
402 {
403 case DW_CFA_advance_loc:
404 return "DW_CFA_advance_loc";
405 case DW_CFA_offset:
406 return "DW_CFA_offset";
407 case DW_CFA_restore:
408 return "DW_CFA_restore";
409 case DW_CFA_nop:
410 return "DW_CFA_nop";
411 case DW_CFA_set_loc:
412 return "DW_CFA_set_loc";
413 case DW_CFA_advance_loc1:
414 return "DW_CFA_advance_loc1";
415 case DW_CFA_advance_loc2:
416 return "DW_CFA_advance_loc2";
417 case DW_CFA_advance_loc4:
418 return "DW_CFA_advance_loc4";
419 case DW_CFA_offset_extended:
420 return "DW_CFA_offset_extended";
421 case DW_CFA_restore_extended:
422 return "DW_CFA_restore_extended";
423 case DW_CFA_undefined:
424 return "DW_CFA_undefined";
425 case DW_CFA_same_value:
426 return "DW_CFA_same_value";
427 case DW_CFA_register:
428 return "DW_CFA_register";
429 case DW_CFA_remember_state:
430 return "DW_CFA_remember_state";
431 case DW_CFA_restore_state:
432 return "DW_CFA_restore_state";
433 case DW_CFA_def_cfa:
434 return "DW_CFA_def_cfa";
435 case DW_CFA_def_cfa_register:
436 return "DW_CFA_def_cfa_register";
437 case DW_CFA_def_cfa_offset:
438 return "DW_CFA_def_cfa_offset";
7d9d8943
AM
439 case DW_CFA_def_cfa_expression:
440 return "DW_CFA_def_cfa_expression";
c53aa195 441
3f76745e
JM
442 /* SGI/MIPS specific */
443 case DW_CFA_MIPS_advance_loc8:
444 return "DW_CFA_MIPS_advance_loc8";
c53aa195
JM
445
446 /* GNU extensions */
447 case DW_CFA_GNU_window_save:
448 return "DW_CFA_GNU_window_save";
0021b564
JM
449 case DW_CFA_GNU_args_size:
450 return "DW_CFA_GNU_args_size";
3f388b42
GK
451 case DW_CFA_GNU_negative_offset_extended:
452 return "DW_CFA_GNU_negative_offset_extended";
c53aa195 453
3f76745e
JM
454 default:
455 return "DW_CFA_<unknown>";
456 }
457}
a3f97cbb 458
3f76745e 459/* Return a pointer to a newly allocated Call Frame Instruction. */
71dfc51f 460
3f76745e
JM
461static inline dw_cfi_ref
462new_cfi ()
463{
464 register dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));
71dfc51f 465
3f76745e
JM
466 cfi->dw_cfi_next = NULL;
467 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
468 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
a3f97cbb 469
3f76745e
JM
470 return cfi;
471}
a3f97cbb 472
3f76745e 473/* Add a Call Frame Instruction to list of instructions. */
a3f97cbb 474
3f76745e
JM
475static inline void
476add_cfi (list_head, cfi)
477 register dw_cfi_ref *list_head;
478 register dw_cfi_ref cfi;
479{
480 register dw_cfi_ref *p;
a3f97cbb 481
3f76745e
JM
482 /* Find the end of the chain. */
483 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
484 ;
485
486 *p = cfi;
a3f97cbb
JW
487}
488
3f76745e 489/* Generate a new label for the CFI info to refer to. */
71dfc51f 490
c53aa195 491char *
3f76745e 492dwarf2out_cfi_label ()
a3f97cbb 493{
3f76745e
JM
494 static char label[20];
495 static unsigned long label_num = 0;
556273e0 496
3f76745e
JM
497 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
498 ASM_OUTPUT_LABEL (asm_out_file, label);
499
500 return label;
a3f97cbb
JW
501}
502
3f76745e
JM
503/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
504 or to the CIE if LABEL is NULL. */
71dfc51f 505
3f76745e
JM
506static void
507add_fde_cfi (label, cfi)
d3e3972c 508 register const char *label;
3f76745e 509 register dw_cfi_ref cfi;
a3f97cbb 510{
3f76745e
JM
511 if (label)
512 {
513 register dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
a3f97cbb 514
3f76745e
JM
515 if (*label == 0)
516 label = dwarf2out_cfi_label ();
71dfc51f 517
3f76745e
JM
518 if (fde->dw_fde_current_label == NULL
519 || strcmp (label, fde->dw_fde_current_label) != 0)
520 {
521 register dw_cfi_ref xcfi;
a3f97cbb 522
3f76745e 523 fde->dw_fde_current_label = label = xstrdup (label);
71dfc51f 524
3f76745e
JM
525 /* Set the location counter to the new label. */
526 xcfi = new_cfi ();
527 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
528 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
529 add_cfi (&fde->dw_fde_cfi, xcfi);
530 }
71dfc51f 531
3f76745e
JM
532 add_cfi (&fde->dw_fde_cfi, cfi);
533 }
534
535 else
536 add_cfi (&cie_cfi_head, cfi);
a3f97cbb
JW
537}
538
3f76745e 539/* Subroutine of lookup_cfa. */
71dfc51f 540
3f76745e 541static inline void
7d9d8943 542lookup_cfa_1 (cfi, loc)
3f76745e 543 register dw_cfi_ref cfi;
7d9d8943 544 register dw_cfa_location *loc;
a3f97cbb 545{
3f76745e
JM
546 switch (cfi->dw_cfi_opc)
547 {
548 case DW_CFA_def_cfa_offset:
7d9d8943 549 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
3f76745e
JM
550 break;
551 case DW_CFA_def_cfa_register:
7d9d8943 552 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
3f76745e
JM
553 break;
554 case DW_CFA_def_cfa:
7d9d8943
AM
555 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
556 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
557 break;
558 case DW_CFA_def_cfa_expression:
559 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
3f76745e 560 break;
e9a25f70
JL
561 default:
562 break;
3f76745e 563 }
a3f97cbb
JW
564}
565
3f76745e 566/* Find the previous value for the CFA. */
71dfc51f 567
3f76745e 568static void
7d9d8943
AM
569lookup_cfa (loc)
570 register dw_cfa_location *loc;
a3f97cbb 571{
3f76745e
JM
572 register dw_cfi_ref cfi;
573
7d9d8943
AM
574 loc->reg = (unsigned long) -1;
575 loc->offset = 0;
576 loc->indirect = 0;
577 loc->base_offset = 0;
3f76745e
JM
578
579 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
7d9d8943 580 lookup_cfa_1 (cfi, loc);
3f76745e
JM
581
582 if (fde_table_in_use)
a3f97cbb 583 {
3f76745e
JM
584 register dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
585 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
7d9d8943 586 lookup_cfa_1 (cfi, loc);
a3f97cbb
JW
587 }
588}
589
3f76745e 590/* The current rule for calculating the DWARF2 canonical frame address. */
fbfa55b0 591static dw_cfa_location cfa;
71dfc51f 592
3f76745e
JM
593/* The register used for saving registers to the stack, and its offset
594 from the CFA. */
fbfa55b0 595static dw_cfa_location cfa_store;
3f76745e 596
0021b564
JM
597/* The running total of the size of arguments pushed onto the stack. */
598static long args_size;
599
b57d9225
JM
600/* The last args_size we actually output. */
601static long old_args_size;
602
3f76745e
JM
603/* Entry point to update the canonical frame address (CFA).
604 LABEL is passed to add_fde_cfi. The value of CFA is now to be
605 calculated from REG+OFFSET. */
606
607void
608dwarf2out_def_cfa (label, reg, offset)
d3e3972c 609 register const char *label;
7d9d8943
AM
610 unsigned reg;
611 long offset;
612{
613 dw_cfa_location loc;
614 loc.indirect = 0;
615 loc.base_offset = 0;
616 loc.reg = reg;
617 loc.offset = offset;
618 def_cfa_1 (label, &loc);
619}
620
770ca8c6 621/* This routine does the actual work. The CFA is now calculated from
7d9d8943
AM
622 the dw_cfa_location structure. */
623static void
624def_cfa_1 (label, loc_p)
625 register const char *label;
626 dw_cfa_location *loc_p;
a3f97cbb 627{
3f76745e 628 register dw_cfi_ref cfi;
7d9d8943 629 dw_cfa_location old_cfa, loc;
3f76745e 630
7d9d8943
AM
631 cfa = *loc_p;
632 loc = *loc_p;
5bef9b1f 633
7d9d8943
AM
634 if (cfa_store.reg == loc.reg && loc.indirect == 0)
635 cfa_store.offset = loc.offset;
3f76745e 636
7d9d8943
AM
637 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
638 lookup_cfa (&old_cfa);
639
640 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset &&
641 loc.indirect == old_cfa.indirect)
642 {
e09bbb25
JM
643 if (loc.indirect == 0
644 || loc.base_offset == old_cfa.base_offset)
770ca8c6
JO
645 /* Nothing changed so no need to issue any call frame
646 instructions. */
7d9d8943 647 return;
7d9d8943 648 }
3f76745e
JM
649
650 cfi = new_cfi ();
651
e09bbb25 652 if (loc.reg == old_cfa.reg && !loc.indirect)
a3f97cbb 653 {
770ca8c6
JO
654 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
655 indicating the CFA register did not change but the offset
656 did. */
3f76745e 657 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
7d9d8943 658 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
3f76745e 659 }
a3f97cbb 660
3f76745e 661#ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
7d9d8943 662 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
e09bbb25 663 && !loc.indirect)
3f76745e 664 {
770ca8c6
JO
665 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
666 indicating the CFA register has changed to <register> but the
667 offset has not changed. */
3f76745e 668 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
7d9d8943 669 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
3f76745e
JM
670 }
671#endif
a3f97cbb 672
7d9d8943 673 else if (loc.indirect == 0)
3f76745e 674 {
770ca8c6
JO
675 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
676 indicating the CFA register has changed to <register> with
677 the specified offset. */
3f76745e 678 cfi->dw_cfi_opc = DW_CFA_def_cfa;
7d9d8943
AM
679 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
680 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
681 }
682 else
683 {
770ca8c6
JO
684 /* Construct a DW_CFA_def_cfa_expression instruction to
685 calculate the CFA using a full location expression since no
686 register-offset pair is available. */
556273e0 687 struct dw_loc_descr_struct *loc_list;
7d9d8943
AM
688 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
689 loc_list = build_cfa_loc (&loc);
690 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
a3f97cbb 691 }
3f76745e
JM
692
693 add_fde_cfi (label, cfi);
a3f97cbb
JW
694}
695
3f76745e
JM
696/* Add the CFI for saving a register. REG is the CFA column number.
697 LABEL is passed to add_fde_cfi.
698 If SREG is -1, the register is saved at OFFSET from the CFA;
699 otherwise it is saved in SREG. */
71dfc51f 700
3f76745e
JM
701static void
702reg_save (label, reg, sreg, offset)
d3e3972c 703 register const char *label;
3f76745e
JM
704 register unsigned reg;
705 register unsigned sreg;
706 register long offset;
a3f97cbb 707{
3f76745e
JM
708 register dw_cfi_ref cfi = new_cfi ();
709
710 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
711
85066503
MH
712 /* The following comparison is correct. -1 is used to indicate that
713 the value isn't a register number. */
714 if (sreg == (unsigned int) -1)
a3f97cbb 715 {
3f76745e
JM
716 if (reg & ~0x3f)
717 /* The register number won't fit in 6 bits, so we have to use
718 the long form. */
719 cfi->dw_cfi_opc = DW_CFA_offset_extended;
720 else
721 cfi->dw_cfi_opc = DW_CFA_offset;
722
27c35f4b
HPN
723#ifdef ENABLE_CHECKING
724 {
725 /* If we get an offset that is not a multiple of
726 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
727 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
728 description. */
729 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
730
731 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
732 abort ();
733 }
734#endif
3f76745e 735 offset /= DWARF_CIE_DATA_ALIGNMENT;
3a88cbd1 736 if (offset < 0)
3f388b42
GK
737 {
738 cfi->dw_cfi_opc = DW_CFA_GNU_negative_offset_extended;
739 offset = -offset;
740 }
3f76745e
JM
741 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
742 }
2c849145
JM
743 else if (sreg == reg)
744 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
745 return;
3f76745e
JM
746 else
747 {
748 cfi->dw_cfi_opc = DW_CFA_register;
749 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
750 }
751
752 add_fde_cfi (label, cfi);
753}
754
c53aa195
JM
755/* Add the CFI for saving a register window. LABEL is passed to reg_save.
756 This CFI tells the unwinder that it needs to restore the window registers
757 from the previous frame's window save area.
556273e0 758
c53aa195
JM
759 ??? Perhaps we should note in the CIE where windows are saved (instead of
760 assuming 0(cfa)) and what registers are in the window. */
761
762void
763dwarf2out_window_save (label)
d3e3972c 764 register const char *label;
c53aa195
JM
765{
766 register dw_cfi_ref cfi = new_cfi ();
767 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
768 add_fde_cfi (label, cfi);
769}
770
0021b564
JM
771/* Add a CFI to update the running total of the size of arguments
772 pushed onto the stack. */
773
774void
775dwarf2out_args_size (label, size)
d3e3972c 776 const char *label;
0021b564
JM
777 long size;
778{
b57d9225
JM
779 register dw_cfi_ref cfi;
780
781 if (size == old_args_size)
782 return;
783 old_args_size = size;
784
785 cfi = new_cfi ();
0021b564
JM
786 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
787 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
788 add_fde_cfi (label, cfi);
789}
790
c53aa195
JM
791/* Entry point for saving a register to the stack. REG is the GCC register
792 number. LABEL and OFFSET are passed to reg_save. */
3f76745e
JM
793
794void
795dwarf2out_reg_save (label, reg, offset)
d3e3972c 796 register const char *label;
3f76745e
JM
797 register unsigned reg;
798 register long offset;
799{
800 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
801}
802
c53aa195
JM
803/* Entry point for saving the return address in the stack.
804 LABEL and OFFSET are passed to reg_save. */
805
806void
807dwarf2out_return_save (label, offset)
d3e3972c 808 register const char *label;
c53aa195
JM
809 register long offset;
810{
811 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
812}
813
814/* Entry point for saving the return address in a register.
815 LABEL and SREG are passed to reg_save. */
816
817void
818dwarf2out_return_reg (label, sreg)
d3e3972c 819 register const char *label;
c53aa195
JM
820 register unsigned sreg;
821{
822 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
823}
824
3f76745e
JM
825/* Record the initial position of the return address. RTL is
826 INCOMING_RETURN_ADDR_RTX. */
827
828static void
829initial_return_save (rtl)
830 register rtx rtl;
831{
973838fd 832 unsigned int reg = (unsigned int) -1;
3f76745e
JM
833 long offset = 0;
834
835 switch (GET_CODE (rtl))
836 {
837 case REG:
838 /* RA is in a register. */
2c849145 839 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
3f76745e
JM
840 break;
841 case MEM:
842 /* RA is on the stack. */
843 rtl = XEXP (rtl, 0);
844 switch (GET_CODE (rtl))
845 {
846 case REG:
3a88cbd1
JL
847 if (REGNO (rtl) != STACK_POINTER_REGNUM)
848 abort ();
3f76745e
JM
849 offset = 0;
850 break;
851 case PLUS:
3a88cbd1
JL
852 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
853 abort ();
3f76745e
JM
854 offset = INTVAL (XEXP (rtl, 1));
855 break;
856 case MINUS:
3a88cbd1
JL
857 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
858 abort ();
3f76745e
JM
859 offset = -INTVAL (XEXP (rtl, 1));
860 break;
861 default:
862 abort ();
863 }
864 break;
c53aa195
JM
865 case PLUS:
866 /* The return address is at some offset from any value we can
867 actually load. For instance, on the SPARC it is in %i7+8. Just
868 ignore the offset for now; it doesn't matter for unwinding frames. */
3a88cbd1
JL
869 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
870 abort ();
c53aa195
JM
871 initial_return_save (XEXP (rtl, 0));
872 return;
a3f97cbb 873 default:
3f76745e 874 abort ();
a3f97cbb 875 }
3f76745e 876
7d9d8943 877 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
a3f97cbb
JW
878}
879
1ba5ae8f 880/* Given a SET, calculate the amount of stack adjustment it
30f7a378 881 contains. */
1ba5ae8f 882
5e640c56
AH
883static long
884stack_adjust_offset (pattern)
1ba5ae8f
AH
885 rtx pattern;
886{
887 rtx src = SET_SRC (pattern);
888 rtx dest = SET_DEST (pattern);
889 long offset = 0;
890 enum rtx_code code;
891
892 if (dest == stack_pointer_rtx)
893 {
894 /* (set (reg sp) (plus (reg sp) (const_int))) */
895 code = GET_CODE (src);
896 if (! (code == PLUS || code == MINUS)
897 || XEXP (src, 0) != stack_pointer_rtx
898 || GET_CODE (XEXP (src, 1)) != CONST_INT)
899 return 0;
900
901 offset = INTVAL (XEXP (src, 1));
902 }
903 else if (GET_CODE (dest) == MEM)
904 {
905 /* (set (mem (pre_dec (reg sp))) (foo)) */
906 src = XEXP (dest, 0);
907 code = GET_CODE (src);
908
e2134eea
JH
909 if (! (code == PRE_DEC || code == PRE_INC
910 || code == PRE_MODIFY)
1ba5ae8f
AH
911 || XEXP (src, 0) != stack_pointer_rtx)
912 return 0;
913
e2134eea
JH
914 if (code == PRE_MODIFY)
915 {
916 rtx val = XEXP (XEXP (src, 1), 1);
917 /* We handle only adjustments by constant amount. */
918 if (GET_CODE (XEXP (src, 1)) != PLUS ||
919 GET_CODE (val) != CONST_INT)
920 abort();
921 offset = -INTVAL (val);
922 }
923 else offset = GET_MODE_SIZE (GET_MODE (dest));
1ba5ae8f
AH
924 }
925 else
926 return 0;
927
928 if (code == PLUS || code == PRE_INC)
929 offset = -offset;
930
931 return offset;
932}
933
0021b564
JM
934/* Check INSN to see if it looks like a push or a stack adjustment, and
935 make a note of it if it does. EH uses this information to find out how
936 much extra space it needs to pop off the stack. */
937
938static void
939dwarf2out_stack_adjust (insn)
940 rtx insn;
941{
0021b564 942 long offset;
d3e3972c 943 const char *label;
0021b564 944
c1e9f663 945 if (! flag_non_call_exceptions && GET_CODE (insn) == CALL_INSN)
b57d9225
JM
946 {
947 /* Extract the size of the args from the CALL rtx itself. */
948
949 insn = PATTERN (insn);
950 if (GET_CODE (insn) == PARALLEL)
951 insn = XVECEXP (insn, 0, 0);
952 if (GET_CODE (insn) == SET)
953 insn = SET_SRC (insn);
3db35af4
MM
954 if (GET_CODE (insn) != CALL)
955 abort ();
b57d9225
JM
956 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
957 return;
958 }
959
960 /* If only calls can throw, and we have a frame pointer,
961 save up adjustments until we see the CALL_INSN. */
c1e9f663 962 else if (! flag_non_call_exceptions
7d9d8943 963 && cfa.reg != STACK_POINTER_REGNUM)
b57d9225
JM
964 return;
965
6020d360 966 if (GET_CODE (insn) == BARRIER)
0021b564 967 {
6020d360
JM
968 /* When we see a BARRIER, we know to reset args_size to 0. Usually
969 the compiler will have already emitted a stack adjustment, but
970 doesn't bother for calls to noreturn functions. */
971#ifdef STACK_GROWS_DOWNWARD
972 offset = -args_size;
973#else
974 offset = args_size;
975#endif
0021b564 976 }
6020d360 977 else if (GET_CODE (PATTERN (insn)) == SET)
0021b564 978 {
1ba5ae8f
AH
979 offset = stack_adjust_offset (PATTERN (insn));
980 }
981 else if (GET_CODE (PATTERN (insn)) == PARALLEL
982 || GET_CODE (PATTERN (insn)) == SEQUENCE)
983 {
984 /* There may be stack adjustments inside compound insns. Search
30f7a378 985 for them. */
1ba5ae8f 986 int j;
0021b564 987
1ba5ae8f
AH
988 offset = 0;
989 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
6020d360 990 {
1ba5ae8f
AH
991 rtx pattern = XVECEXP (PATTERN (insn), 0, j);
992 if (GET_CODE (pattern) == SET)
993 offset += stack_adjust_offset (pattern);
6020d360 994 }
0021b564
JM
995 }
996 else
997 return;
0b34cf1e 998
6020d360
JM
999 if (offset == 0)
1000 return;
1001
7d9d8943
AM
1002 if (cfa.reg == STACK_POINTER_REGNUM)
1003 cfa.offset += offset;
0021b564
JM
1004
1005#ifndef STACK_GROWS_DOWNWARD
1006 offset = -offset;
1007#endif
1008 args_size += offset;
1009 if (args_size < 0)
1010 args_size = 0;
1011
1012 label = dwarf2out_cfi_label ();
7d9d8943 1013 def_cfa_1 (label, &cfa);
0021b564
JM
1014 dwarf2out_args_size (label, args_size);
1015}
1016
fbfa55b0
RH
1017/* We delay emitting a register save until either (a) we reach the end
1018 of the prologue or (b) the register is clobbered. This clusters
1019 register saves so that there are fewer pc advances. */
1020
1021struct queued_reg_save
1022{
1023 struct queued_reg_save *next;
1024 rtx reg;
1025 long cfa_offset;
1026};
1027
1028static struct queued_reg_save *queued_reg_saves;
1029static const char *last_reg_save_label;
1030
1031static void
1032queue_reg_save (label, reg, offset)
1033 const char *label;
1034 rtx reg;
1035 long offset;
1036{
1037 struct queued_reg_save *q = (struct queued_reg_save *) xmalloc (sizeof (*q));
1038
1039 q->next = queued_reg_saves;
1040 q->reg = reg;
1041 q->cfa_offset = offset;
1042 queued_reg_saves = q;
1043
1044 last_reg_save_label = label;
1045}
1046
1047static void
1048flush_queued_reg_saves ()
1049{
1050 struct queued_reg_save *q, *next;
1051
1052 for (q = queued_reg_saves; q ; q = next)
1053 {
1054 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1055 next = q->next;
1056 free (q);
1057 }
1058
1059 queued_reg_saves = NULL;
1060 last_reg_save_label = NULL;
1061}
1062
1063static bool
1064clobbers_queued_reg_save (insn)
1065 rtx insn;
1066{
1067 struct queued_reg_save *q;
1068
1069 for (q = queued_reg_saves; q ; q = q->next)
1070 if (modified_in_p (q->reg, insn))
1071 return true;
1072
1073 return false;
1074}
1075
1076
770ca8c6
JO
1077/* A temporary register holding an integral value used in adjusting SP
1078 or setting up the store_reg. The "offset" field holds the integer
1079 value, not an offset. */
fbfa55b0 1080static dw_cfa_location cfa_temp;
770ca8c6
JO
1081
1082/* Record call frame debugging information for an expression EXPR,
1083 which either sets SP or FP (adjusting how we calculate the frame
1084 address) or saves a register to the stack. LABEL indicates the
1085 address of EXPR.
1086
1087 This function encodes a state machine mapping rtxes to actions on
1088 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1089 users need not read the source code.
1090
a401107d
JO
1091 The High-Level Picture
1092
1093 Changes in the register we use to calculate the CFA: Currently we
1094 assume that if you copy the CFA register into another register, we
1095 should take the other one as the new CFA register; this seems to
1096 work pretty well. If it's wrong for some target, it's simple
1097 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1098
1099 Changes in the register we use for saving registers to the stack:
1100 This is usually SP, but not always. Again, we deduce that if you
1101 copy SP into another register (and SP is not the CFA register),
1102 then the new register is the one we will be using for register
1103 saves. This also seems to work.
1104
1105 Register saves: There's not much guesswork about this one; if
1106 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1107 register save, and the register used to calculate the destination
1108 had better be the one we think we're using for this purpose.
1109
1110 Except: If the register being saved is the CFA register, and the
1111 offset is non-zero, we are saving the CFA, so we assume we have to
1112 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1113 the intent is to save the value of SP from the previous frame.
1114
770ca8c6
JO
1115 Invariants / Summaries of Rules
1116
a401107d
JO
1117 cfa current rule for calculating the CFA. It usually
1118 consists of a register and an offset.
770ca8c6
JO
1119 cfa_store register used by prologue code to save things to the stack
1120 cfa_store.offset is the offset from the value of
1121 cfa_store.reg to the actual CFA
1122 cfa_temp register holding an integral value. cfa_temp.offset
1123 stores the value, which will be used to adjust the
19ec6a36
AM
1124 stack pointer. cfa_temp is also used like cfa_store,
1125 to track stores to the stack via fp or a temp reg.
770ca8c6
JO
1126
1127 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1128 with cfa.reg as the first operand changes the cfa.reg and its
19ec6a36
AM
1129 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1130 cfa_temp.offset.
770ca8c6
JO
1131
1132 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1133 expression yielding a constant. This sets cfa_temp.reg
1134 and cfa_temp.offset.
1135
1136 Rule 5: Create a new register cfa_store used to save items to the
1137 stack.
1138
19ec6a36 1139 Rules 10-14: Save a register to the stack. Define offset as the
a401107d 1140 difference of the original location and cfa_store's
19ec6a36 1141 location (or cfa_temp's location if cfa_temp is used).
770ca8c6
JO
1142
1143 The Rules
1144
1145 "{a,b}" indicates a choice of a xor b.
1146 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1147
1148 Rule 1:
1149 (set <reg1> <reg2>:cfa.reg)
19ec6a36 1150 effects: cfa.reg = <reg1>
770ca8c6 1151 cfa.offset unchanged
19ec6a36
AM
1152 cfa_temp.reg = <reg1>
1153 cfa_temp.offset = cfa.offset
770ca8c6
JO
1154
1155 Rule 2:
19ec6a36 1156 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg {<const_int>,<reg>:cfa_temp.reg}))
770ca8c6
JO
1157 effects: cfa.reg = sp if fp used
1158 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1159 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1160 if cfa_store.reg==sp
1161
1162 Rule 3:
19ec6a36 1163 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
770ca8c6
JO
1164 effects: cfa.reg = fp
1165 cfa_offset += +/- <const_int>
1166
1167 Rule 4:
19ec6a36 1168 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
770ca8c6
JO
1169 constraints: <reg1> != fp
1170 <reg1> != sp
1171 effects: cfa.reg = <reg1>
19ec6a36
AM
1172 cfa_temp.reg = <reg1>
1173 cfa_temp.offset = cfa.offset
770ca8c6
JO
1174
1175 Rule 5:
1176 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1177 constraints: <reg1> != fp
1178 <reg1> != sp
1179 effects: cfa_store.reg = <reg1>
1180 cfa_store.offset = cfa.offset - cfa_temp.offset
1181
1182 Rule 6:
1183 (set <reg> <const_int>)
1184 effects: cfa_temp.reg = <reg>
1185 cfa_temp.offset = <const_int>
1186
1187 Rule 7:
1188 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1189 effects: cfa_temp.reg = <reg1>
1190 cfa_temp.offset |= <const_int>
1191
1192 Rule 8:
1193 (set <reg> (high <exp>))
1194 effects: none
1195
1196 Rule 9:
1197 (set <reg> (lo_sum <exp> <const_int>))
1198 effects: cfa_temp.reg = <reg>
1199 cfa_temp.offset = <const_int>
1200
1201 Rule 10:
1202 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1203 effects: cfa_store.offset -= <const_int>
1204 cfa.offset = cfa_store.offset if cfa.reg == sp
770ca8c6 1205 cfa.reg = sp
19ec6a36 1206 cfa.base_offset = -cfa_store.offset
770ca8c6
JO
1207
1208 Rule 11:
1209 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1210 effects: cfa_store.offset += -/+ mode_size(mem)
1211 cfa.offset = cfa_store.offset if cfa.reg == sp
770ca8c6 1212 cfa.reg = sp
19ec6a36 1213 cfa.base_offset = -cfa_store.offset
770ca8c6
JO
1214
1215 Rule 12:
19ec6a36
AM
1216 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>)) <reg2>)
1217 effects: cfa.reg = <reg1>
1218 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
770ca8c6
JO
1219
1220 Rule 13:
19ec6a36
AM
1221 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1222 effects: cfa.reg = <reg1>
1223 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1224
1225 Rule 14:
1226 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1227 effects: cfa.reg = <reg1>
1228 cfa.base_offset = -cfa_temp.offset
1229 cfa_temp.offset -= mode_size(mem) */
b664de3a
AM
1230
1231static void
1232dwarf2out_frame_debug_expr (expr, label)
1233 rtx expr;
d3e3972c 1234 const char *label;
b664de3a
AM
1235{
1236 rtx src, dest;
1237 long offset;
556273e0
KH
1238
1239 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1240 the PARALLEL independently. The first element is always processed if
770ca8c6 1241 it is a SET. This is for backward compatibility. Other elements
556273e0
KH
1242 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1243 flag is set in them. */
b664de3a 1244
79d13342
NC
1245 if (GET_CODE (expr) == PARALLEL
1246 || GET_CODE (expr) == SEQUENCE)
556273e0 1247 {
b664de3a
AM
1248 int par_index;
1249 int limit = XVECLEN (expr, 0);
1250
1251 for (par_index = 0; par_index < limit; par_index++)
556273e0
KH
1252 {
1253 rtx x = XVECEXP (expr, 0, par_index);
1254
1255 if (GET_CODE (x) == SET &&
b664de3a 1256 (RTX_FRAME_RELATED_P (x) || par_index == 0))
2618f955 1257 dwarf2out_frame_debug_expr (x, label);
556273e0 1258 }
b664de3a
AM
1259 return;
1260 }
556273e0 1261
b664de3a
AM
1262 if (GET_CODE (expr) != SET)
1263 abort ();
1264
1265 src = SET_SRC (expr);
1266 dest = SET_DEST (expr);
1267
1268 switch (GET_CODE (dest))
1269 {
1270 case REG:
770ca8c6 1271 /* Rule 1 */
b664de3a
AM
1272 /* Update the CFA rule wrt SP or FP. Make sure src is
1273 relative to the current CFA register. */
1274 switch (GET_CODE (src))
556273e0
KH
1275 {
1276 /* Setting FP from SP. */
1277 case REG:
1278 if (cfa.reg == (unsigned) REGNO (src))
1279 /* OK. */
1280 ;
626d1efd 1281 else
556273e0 1282 abort ();
2c849145
JM
1283
1284 /* We used to require that dest be either SP or FP, but the
1285 ARM copies SP to a temporary register, and from there to
1286 FP. So we just rely on the backends to only set
1287 RTX_FRAME_RELATED_P on appropriate insns. */
556273e0 1288 cfa.reg = REGNO (dest);
19ec6a36
AM
1289 cfa_temp.reg = cfa.reg;
1290 cfa_temp.offset = cfa.offset;
556273e0 1291 break;
b664de3a 1292
556273e0
KH
1293 case PLUS:
1294 case MINUS:
19ec6a36 1295 case LO_SUM:
556273e0
KH
1296 if (dest == stack_pointer_rtx)
1297 {
770ca8c6 1298 /* Rule 2 */
2618f955
MM
1299 /* Adjusting SP. */
1300 switch (GET_CODE (XEXP (src, 1)))
1301 {
1302 case CONST_INT:
1303 offset = INTVAL (XEXP (src, 1));
1304 break;
1305 case REG:
770ca8c6 1306 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
2618f955 1307 abort ();
770ca8c6 1308 offset = cfa_temp.offset;
2618f955
MM
1309 break;
1310 default:
1311 abort ();
1312 }
1313
1314 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1315 {
1316 /* Restoring SP from FP in the epilogue. */
7d9d8943 1317 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
2618f955 1318 abort ();
7d9d8943 1319 cfa.reg = STACK_POINTER_REGNUM;
2618f955 1320 }
19ec6a36
AM
1321 else if (GET_CODE (src) == LO_SUM)
1322 /* Assume we've set the source reg of the LO_SUM from sp. */
1323 ;
2618f955
MM
1324 else if (XEXP (src, 0) != stack_pointer_rtx)
1325 abort ();
1326
19ec6a36 1327 if (GET_CODE (src) != MINUS)
2618f955 1328 offset = -offset;
7d9d8943
AM
1329 if (cfa.reg == STACK_POINTER_REGNUM)
1330 cfa.offset += offset;
1331 if (cfa_store.reg == STACK_POINTER_REGNUM)
1332 cfa_store.offset += offset;
556273e0
KH
1333 }
1334 else if (dest == hard_frame_pointer_rtx)
1335 {
770ca8c6 1336 /* Rule 3 */
2618f955
MM
1337 /* Either setting the FP from an offset of the SP,
1338 or adjusting the FP */
2c849145 1339 if (! frame_pointer_needed)
2618f955
MM
1340 abort ();
1341
2c849145 1342 if (GET_CODE (XEXP (src, 0)) == REG
7d9d8943 1343 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
2618f955
MM
1344 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1345 {
2618f955 1346 offset = INTVAL (XEXP (src, 1));
19ec6a36 1347 if (GET_CODE (src) != MINUS)
2618f955 1348 offset = -offset;
7d9d8943
AM
1349 cfa.offset += offset;
1350 cfa.reg = HARD_FRAME_POINTER_REGNUM;
2618f955 1351 }
556273e0
KH
1352 else
1353 abort ();
1354 }
1355 else
1356 {
19ec6a36 1357 if (GET_CODE (src) == MINUS)
2618f955 1358 abort ();
b53ef1a2 1359
770ca8c6 1360 /* Rule 4 */
b53ef1a2
NC
1361 if (GET_CODE (XEXP (src, 0)) == REG
1362 && REGNO (XEXP (src, 0)) == cfa.reg
1363 && GET_CODE (XEXP (src, 1)) == CONST_INT)
34ce3d7b
JM
1364 {
1365 /* Setting a temporary CFA register that will be copied
1366 into the FP later on. */
19ec6a36 1367 offset = - INTVAL (XEXP (src, 1));
34ce3d7b
JM
1368 cfa.offset += offset;
1369 cfa.reg = REGNO (dest);
19ec6a36
AM
1370 /* Or used to save regs to the stack. */
1371 cfa_temp.reg = cfa.reg;
1372 cfa_temp.offset = cfa.offset;
34ce3d7b 1373 }
770ca8c6 1374 /* Rule 5 */
19ec6a36
AM
1375 else if (GET_CODE (XEXP (src, 0)) == REG
1376 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1377 && XEXP (src, 1) == stack_pointer_rtx)
b53ef1a2 1378 {
00a42e21
JM
1379 /* Setting a scratch register that we will use instead
1380 of SP for saving registers to the stack. */
b53ef1a2
NC
1381 if (cfa.reg != STACK_POINTER_REGNUM)
1382 abort ();
1383 cfa_store.reg = REGNO (dest);
770ca8c6 1384 cfa_store.offset = cfa.offset - cfa_temp.offset;
b53ef1a2 1385 }
19ec6a36
AM
1386 /* Rule 9 */
1387 else if (GET_CODE (src) == LO_SUM
1388 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1389 {
1390 cfa_temp.reg = REGNO (dest);
1391 cfa_temp.offset = INTVAL (XEXP (src, 1));
1392 }
1393 else
1394 abort ();
556273e0
KH
1395 }
1396 break;
b664de3a 1397
770ca8c6 1398 /* Rule 6 */
556273e0 1399 case CONST_INT:
770ca8c6
JO
1400 cfa_temp.reg = REGNO (dest);
1401 cfa_temp.offset = INTVAL (src);
556273e0 1402 break;
b664de3a 1403
770ca8c6 1404 /* Rule 7 */
556273e0
KH
1405 case IOR:
1406 if (GET_CODE (XEXP (src, 0)) != REG
770ca8c6 1407 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
2618f955 1408 || GET_CODE (XEXP (src, 1)) != CONST_INT)
556273e0 1409 abort ();
770ca8c6
JO
1410 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1411 cfa_temp.reg = REGNO (dest);
1412 cfa_temp.offset |= INTVAL (XEXP (src, 1));
556273e0 1413 break;
b664de3a 1414
9ae21d2a
AM
1415 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1416 which will fill in all of the bits. */
1417 /* Rule 8 */
1418 case HIGH:
1419 break;
1420
556273e0
KH
1421 default:
1422 abort ();
1423 }
7d9d8943 1424 def_cfa_1 (label, &cfa);
2618f955 1425 break;
b664de3a 1426
2618f955 1427 case MEM:
2618f955
MM
1428 if (GET_CODE (src) != REG)
1429 abort ();
7d9d8943 1430
7d9d8943
AM
1431 /* Saving a register to the stack. Make sure dest is relative to the
1432 CFA register. */
2618f955
MM
1433 switch (GET_CODE (XEXP (dest, 0)))
1434 {
770ca8c6 1435 /* Rule 10 */
2618f955 1436 /* With a push. */
e2134eea
JH
1437 case PRE_MODIFY:
1438 /* We can't handle variable size modifications. */
1439 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1440 abort();
1441 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1442
1443 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1444 || cfa_store.reg != STACK_POINTER_REGNUM)
1445 abort ();
1446 cfa_store.offset += offset;
1447 if (cfa.reg == STACK_POINTER_REGNUM)
1448 cfa.offset = cfa_store.offset;
1449
1450 offset = -cfa_store.offset;
1451 break;
770ca8c6 1452 /* Rule 11 */
2618f955
MM
1453 case PRE_INC:
1454 case PRE_DEC:
1455 offset = GET_MODE_SIZE (GET_MODE (dest));
1456 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1457 offset = -offset;
b664de3a 1458
2618f955 1459 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
7d9d8943 1460 || cfa_store.reg != STACK_POINTER_REGNUM)
2618f955 1461 abort ();
7d9d8943
AM
1462 cfa_store.offset += offset;
1463 if (cfa.reg == STACK_POINTER_REGNUM)
1464 cfa.offset = cfa_store.offset;
b664de3a 1465
7d9d8943 1466 offset = -cfa_store.offset;
2618f955 1467 break;
b664de3a 1468
770ca8c6 1469 /* Rule 12 */
2618f955
MM
1470 /* With an offset. */
1471 case PLUS:
1472 case MINUS:
19ec6a36 1473 case LO_SUM:
770ca8c6
JO
1474 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1475 abort ();
2618f955
MM
1476 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1477 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1478 offset = -offset;
b664de3a 1479
19ec6a36
AM
1480 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1481 offset -= cfa_store.offset;
1482 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1483 offset -= cfa_temp.offset;
1484 else
2618f955 1485 abort ();
2618f955
MM
1486 break;
1487
770ca8c6 1488 /* Rule 13 */
2618f955
MM
1489 /* Without an offset. */
1490 case REG:
19ec6a36
AM
1491 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1492 offset = -cfa_store.offset;
1493 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1494 offset = -cfa_temp.offset;
1495 else
556273e0 1496 abort ();
19ec6a36
AM
1497 break;
1498
1499 /* Rule 14 */
1500 case POST_INC:
1501 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1502 abort ();
1503 offset = -cfa_temp.offset;
1504 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
2618f955
MM
1505 break;
1506
1507 default:
1508 abort ();
1509 }
e09bbb25 1510
556273e0 1511 if (REGNO (src) != STACK_POINTER_REGNUM
e09bbb25
JM
1512 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1513 && (unsigned) REGNO (src) == cfa.reg)
1514 {
1515 /* We're storing the current CFA reg into the stack. */
1516
1517 if (cfa.offset == 0)
1518 {
1519 /* If the source register is exactly the CFA, assume
1520 we're saving SP like any other register; this happens
1521 on the ARM. */
1522
1523 def_cfa_1 (label, &cfa);
fbfa55b0 1524 queue_reg_save (label, stack_pointer_rtx, offset);
e09bbb25
JM
1525 break;
1526 }
1527 else
1528 {
1529 /* Otherwise, we'll need to look in the stack to
1530 calculate the CFA. */
1531
1532 rtx x = XEXP (dest, 0);
1533 if (GET_CODE (x) != REG)
1534 x = XEXP (x, 0);
1535 if (GET_CODE (x) != REG)
1536 abort ();
1537 cfa.reg = (unsigned) REGNO (x);
1538 cfa.base_offset = offset;
1539 cfa.indirect = 1;
1540 def_cfa_1 (label, &cfa);
1541 break;
1542 }
1543 }
1544
7d9d8943 1545 def_cfa_1 (label, &cfa);
fbfa55b0 1546 queue_reg_save (label, src, offset);
2618f955
MM
1547 break;
1548
1549 default:
1550 abort ();
1551 }
b664de3a
AM
1552}
1553
3f76745e
JM
1554/* Record call frame debugging information for INSN, which either
1555 sets SP or FP (adjusting how we calculate the frame address) or saves a
1556 register to the stack. If INSN is NULL_RTX, initialize our state. */
71dfc51f 1557
3f76745e
JM
1558void
1559dwarf2out_frame_debug (insn)
1560 rtx insn;
a3f97cbb 1561{
d3e3972c 1562 const char *label;
b664de3a 1563 rtx src;
3f76745e
JM
1564
1565 if (insn == NULL_RTX)
a3f97cbb 1566 {
fbfa55b0
RH
1567 /* Flush any queued register saves. */
1568 flush_queued_reg_saves ();
1569
3f76745e 1570 /* Set up state for generating call frame debug info. */
7d9d8943
AM
1571 lookup_cfa (&cfa);
1572 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
3a88cbd1 1573 abort ();
7d9d8943
AM
1574 cfa.reg = STACK_POINTER_REGNUM;
1575 cfa_store = cfa;
770ca8c6
JO
1576 cfa_temp.reg = -1;
1577 cfa_temp.offset = 0;
3f76745e
JM
1578 return;
1579 }
1580
fbfa55b0
RH
1581 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1582 flush_queued_reg_saves ();
1583
0021b564
JM
1584 if (! RTX_FRAME_RELATED_P (insn))
1585 {
fbfa55b0
RH
1586 if (!ACCUMULATE_OUTGOING_ARGS)
1587 dwarf2out_stack_adjust (insn);
0021b564
JM
1588 return;
1589 }
1590
3f76745e 1591 label = dwarf2out_cfi_label ();
556273e0 1592
07ebc930
RH
1593 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1594 if (src)
1595 insn = XEXP (src, 0);
556273e0 1596 else
07ebc930
RH
1597 insn = PATTERN (insn);
1598
b664de3a 1599 dwarf2out_frame_debug_expr (insn, label);
3f76745e
JM
1600}
1601
3f76745e
JM
1602/* Output a Call Frame Information opcode and its operand(s). */
1603
1604static void
12f0b96b 1605output_cfi (cfi, fde, for_eh)
3f76745e
JM
1606 register dw_cfi_ref cfi;
1607 register dw_fde_ref fde;
12f0b96b 1608 int for_eh;
3f76745e
JM
1609{
1610 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1611 {
2e4b9b8c
RH
1612 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1613 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1614 "DW_CFA_advance_loc 0x%lx",
1615 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3f76745e 1616 }
3f76745e
JM
1617 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1618 {
2e4b9b8c
RH
1619 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1620 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1621 "DW_CFA_offset, column 0x%lx",
1622 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1623 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3f76745e
JM
1624 }
1625 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1626 {
2e4b9b8c
RH
1627 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1628 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1629 "DW_CFA_restore, column 0x%lx",
1630 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
3f76745e
JM
1631 }
1632 else
1633 {
2e4b9b8c
RH
1634 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1635 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3f76745e 1636
3f76745e
JM
1637 switch (cfi->dw_cfi_opc)
1638 {
1639 case DW_CFA_set_loc:
e1f9550a
RH
1640 if (for_eh)
1641 dw2_asm_output_encoded_addr_rtx (
1642 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1643 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1644 NULL);
1645 else
1646 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1647 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3f76745e
JM
1648 break;
1649 case DW_CFA_advance_loc1:
2e4b9b8c
RH
1650 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1651 fde->dw_fde_current_label, NULL);
bb727b5a 1652 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3f76745e
JM
1653 break;
1654 case DW_CFA_advance_loc2:
2e4b9b8c
RH
1655 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1656 fde->dw_fde_current_label, NULL);
3f76745e
JM
1657 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1658 break;
1659 case DW_CFA_advance_loc4:
2e4b9b8c
RH
1660 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1661 fde->dw_fde_current_label, NULL);
3f76745e
JM
1662 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1663 break;
3f76745e 1664 case DW_CFA_MIPS_advance_loc8:
2e4b9b8c
RH
1665 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1666 fde->dw_fde_current_label, NULL);
1667 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3f76745e 1668 break;
3f76745e 1669 case DW_CFA_offset_extended:
3f388b42 1670 case DW_CFA_GNU_negative_offset_extended:
3f76745e 1671 case DW_CFA_def_cfa:
2e4b9b8c
RH
1672 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1673 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3f76745e
JM
1674 break;
1675 case DW_CFA_restore_extended:
1676 case DW_CFA_undefined:
3f76745e
JM
1677 case DW_CFA_same_value:
1678 case DW_CFA_def_cfa_register:
2e4b9b8c 1679 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
3f76745e
JM
1680 break;
1681 case DW_CFA_register:
2e4b9b8c
RH
1682 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1683 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, NULL);
3f76745e
JM
1684 break;
1685 case DW_CFA_def_cfa_offset:
2e4b9b8c
RH
1686 case DW_CFA_GNU_args_size:
1687 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3f76745e 1688 break;
c53aa195
JM
1689 case DW_CFA_GNU_window_save:
1690 break;
7d9d8943
AM
1691 case DW_CFA_def_cfa_expression:
1692 output_cfa_loc (cfi);
1693 break;
3f76745e
JM
1694 default:
1695 break;
1696 }
556273e0 1697 }
3f76745e
JM
1698}
1699
1700/* Output the call frame information used to used to record information
1701 that relates to calculating the frame pointer, and records the
1702 location of saved registers. */
1703
1704static void
1705output_call_frame_info (for_eh)
1706 int for_eh;
1707{
ae0ed63a 1708 register unsigned int i;
3f76745e 1709 register dw_fde_ref fde;
3f76745e 1710 register dw_cfi_ref cfi;
a6ab3aad 1711 char l1[20], l2[20];
52a11cbf
RH
1712 int any_lsda_needed = 0;
1713 char augmentation[6];
e1f9550a
RH
1714 int augmentation_size;
1715 int fde_encoding = DW_EH_PE_absptr;
1716 int per_encoding = DW_EH_PE_absptr;
1717 int lsda_encoding = DW_EH_PE_absptr;
3f76745e 1718
737faf14
JM
1719 /* If we don't have any functions we'll want to unwind out of, don't
1720 emit any EH unwind information. */
1721 if (for_eh)
1722 {
52a11cbf 1723 int any_eh_needed = 0;
737faf14 1724 for (i = 0; i < fde_table_in_use; ++i)
52a11cbf
RH
1725 if (fde_table[i].uses_eh_lsda)
1726 any_eh_needed = any_lsda_needed = 1;
1727 else if (! fde_table[i].nothrow)
1728 any_eh_needed = 1;
1729
1730 if (! any_eh_needed)
1731 return;
737faf14
JM
1732 }
1733
aa0c1401
JL
1734 /* We're going to be generating comments, so turn on app. */
1735 if (flag_debug_asm)
1736 app_enable ();
956d6950 1737
3f76745e
JM
1738 if (for_eh)
1739 {
7c262518 1740#ifdef EH_FRAME_SECTION_NAME
715bdd29 1741 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
3f76745e 1742#else
496651db 1743 tree label = get_file_function_name ('F');
0021b564 1744
7c262518 1745 data_section ();
12f0b96b 1746 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
0021b564
JM
1747 ASM_GLOBALIZE_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
1748 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
3f76745e
JM
1749#endif
1750 assemble_label ("__FRAME_BEGIN__");
1751 }
1752 else
715bdd29 1753 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
3f76745e 1754
556273e0 1755 /* Output the CIE. */
a6ab3aad
JM
1756 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1757 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2e4b9b8c
RH
1758 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1759 "Length of Common Information Entry");
a6ab3aad
JM
1760 ASM_OUTPUT_LABEL (asm_out_file, l1);
1761
2e4b9b8c
RH
1762 /* Now that the CIE pointer is PC-relative for EH,
1763 use 0 to identify the CIE. */
1764 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1765 (for_eh ? 0 : DW_CIE_ID),
1766 "CIE Identifier Tag");
3f76745e 1767
2e4b9b8c 1768 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
3f76745e 1769
52a11cbf 1770 augmentation[0] = 0;
e1f9550a 1771 augmentation_size = 0;
52a11cbf 1772 if (for_eh)
a6ab3aad 1773 {
e1f9550a
RH
1774 char *p;
1775
52a11cbf
RH
1776 /* Augmentation:
1777 z Indicates that a uleb128 is present to size the
1778 augmentation section.
e1f9550a
RH
1779 L Indicates the encoding (and thus presence) of
1780 an LSDA pointer in the FDE augmentation.
1781 R Indicates a non-default pointer encoding for
1782 FDE code pointers.
1783 P Indicates the presence of an encoding + language
1784 personality routine in the CIE augmentation. */
1785
1786 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1787 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1788 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1789
1790 p = augmentation + 1;
1791 if (eh_personality_libfunc)
1792 {
1793 *p++ = 'P';
1794 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1795 }
52a11cbf 1796 if (any_lsda_needed)
e1f9550a
RH
1797 {
1798 *p++ = 'L';
1799 augmentation_size += 1;
1800 }
1801 if (fde_encoding != DW_EH_PE_absptr)
1802 {
1803 *p++ = 'R';
1804 augmentation_size += 1;
1805 }
1806 if (p > augmentation + 1)
1807 {
1808 augmentation[0] = 'z';
1809 *p = '\0';
1810 }
099c8b17
RH
1811
1812 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1813 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1814 {
1815 int offset = ( 4 /* Length */
1816 + 4 /* CIE Id */
1817 + 1 /* CIE version */
1818 + strlen (augmentation) + 1 /* Augmentation */
1819 + size_of_uleb128 (1) /* Code alignment */
1820 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1821 + 1 /* RA column */
1822 + 1 /* Augmentation size */
1823 + 1 /* Personality encoding */ );
1824 int pad = -offset & (PTR_SIZE - 1);
1825
1826 augmentation_size += pad;
1827
1828 /* Augmentations should be small, so there's scarce need to
1829 iterate for a solution. Die if we exceed one uleb128 byte. */
1830 if (size_of_uleb128 (augmentation_size) != 1)
1831 abort ();
1832 }
a6ab3aad 1833 }
52a11cbf 1834 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
3f76745e 1835
2e4b9b8c 1836 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
3f76745e 1837
2e4b9b8c
RH
1838 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
1839 "CIE Data Alignment Factor");
3f76745e 1840
2e4b9b8c 1841 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
3f76745e 1842
52a11cbf
RH
1843 if (augmentation[0])
1844 {
e1f9550a 1845 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
52a11cbf 1846 if (eh_personality_libfunc)
e1f9550a
RH
1847 {
1848 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
1849 eh_data_format_name (per_encoding));
1850 dw2_asm_output_encoded_addr_rtx (per_encoding,
1851 eh_personality_libfunc, NULL);
1852 }
1853 if (any_lsda_needed)
1854 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
1855 eh_data_format_name (lsda_encoding));
1856 if (fde_encoding != DW_EH_PE_absptr)
1857 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
1858 eh_data_format_name (fde_encoding));
52a11cbf
RH
1859 }
1860
3f76745e 1861 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
12f0b96b 1862 output_cfi (cfi, NULL, for_eh);
3f76745e
JM
1863
1864 /* Pad the CIE out to an address sized boundary. */
12f0b96b
AM
1865 ASM_OUTPUT_ALIGN (asm_out_file,
1866 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
a6ab3aad 1867 ASM_OUTPUT_LABEL (asm_out_file, l2);
3f76745e
JM
1868
1869 /* Loop through all of the FDE's. */
1870 for (i = 0; i < fde_table_in_use; ++i)
1871 {
1872 fde = &fde_table[i];
3f76745e 1873
52a11cbf
RH
1874 /* Don't emit EH unwind info for leaf functions that don't need it. */
1875 if (for_eh && fde->nothrow && ! fde->uses_eh_lsda)
737faf14
JM
1876 continue;
1877
2e4b9b8c 1878 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, FDE_LABEL, for_eh + i * 2);
556273e0
KH
1879 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
1880 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2e4b9b8c
RH
1881 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1882 "FDE Length");
a6ab3aad
JM
1883 ASM_OUTPUT_LABEL (asm_out_file, l1);
1884
eef906d6
JW
1885 /* ??? This always emits a 4 byte offset when for_eh is true, but it
1886 emits a target dependent sized offset when for_eh is not true.
1887 This inconsistency may confuse gdb. The only case where we need a
1888 non-4 byte offset is for the Irix6 N64 ABI, so we may lose SGI
1889 compatibility if we emit a 4 byte offset. We need a 4 byte offset
1890 though in order to be compatible with the dwarf_fde struct in frame.c.
1891 If the for_eh case is changed, then the struct in frame.c has
1892 to be adjusted appropriately. */
3f76745e 1893 if (for_eh)
2e4b9b8c 1894 dw2_asm_output_delta (4, l1, "__FRAME_BEGIN__", "FDE CIE offset");
3f76745e 1895 else
2e4b9b8c 1896 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
cf2fe500 1897 stripattributes (DEBUG_FRAME_SECTION),
2e4b9b8c 1898 "FDE CIE offset");
3f76745e 1899
e1f9550a
RH
1900 if (for_eh)
1901 {
1902 dw2_asm_output_encoded_addr_rtx (fde_encoding,
1903 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
1904 "FDE initial location");
1905 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
1906 fde->dw_fde_end, fde->dw_fde_begin,
1907 "FDE address range");
1908 }
1909 else
1910 {
1911 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
1912 "FDE initial location");
1913 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
1914 fde->dw_fde_end, fde->dw_fde_begin,
1915 "FDE address range");
1916 }
3f76745e 1917
52a11cbf
RH
1918 if (augmentation[0])
1919 {
e1f9550a 1920 if (any_lsda_needed)
52a11cbf 1921 {
099c8b17
RH
1922 int size = size_of_encoded_value (lsda_encoding);
1923
1924 if (lsda_encoding == DW_EH_PE_aligned)
1925 {
1926 int offset = ( 4 /* Length */
1927 + 4 /* CIE offset */
1928 + 2 * size_of_encoded_value (fde_encoding)
1929 + 1 /* Augmentation size */ );
1930 int pad = -offset & (PTR_SIZE - 1);
1931
1932 size += pad;
1933 if (size_of_uleb128 (size) != 1)
1934 abort ();
1935 }
1936
1937 dw2_asm_output_data_uleb128 (size, "Augmentation size");
e1f9550a
RH
1938
1939 if (fde->uses_eh_lsda)
1940 {
1941 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
1942 fde->funcdef_number);
1943 dw2_asm_output_encoded_addr_rtx (
1944 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
1945 "Language Specific Data Area");
1946 }
1947 else
099c8b17
RH
1948 {
1949 if (lsda_encoding == DW_EH_PE_aligned)
1950 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
1951 dw2_asm_output_data (size_of_encoded_value (lsda_encoding),
1952 0, "Language Specific Data Area (none)");
1953 }
52a11cbf
RH
1954 }
1955 else
e1f9550a 1956 dw2_asm_output_data_uleb128 (0, "Augmentation size");
52a11cbf
RH
1957 }
1958
3f76745e
JM
1959 /* Loop through the Call Frame Instructions associated with
1960 this FDE. */
1961 fde->dw_fde_current_label = fde->dw_fde_begin;
1962 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
12f0b96b 1963 output_cfi (cfi, fde, for_eh);
3f76745e 1964
a6ab3aad 1965 /* Pad the FDE out to an address sized boundary. */
12f0b96b 1966 ASM_OUTPUT_ALIGN (asm_out_file,
e1f9550a 1967 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
a6ab3aad 1968 ASM_OUTPUT_LABEL (asm_out_file, l2);
3f76745e 1969 }
2e4b9b8c 1970
7c262518 1971#ifndef EH_FRAME_SECTION_NAME
3f76745e 1972 if (for_eh)
2e4b9b8c 1973 dw2_asm_output_data (4, 0, "End of Table");
3f76745e 1974#endif
a6ab3aad
JM
1975#ifdef MIPS_DEBUGGING_INFO
1976 /* Work around Irix 6 assembler bug whereby labels at the end of a section
1977 get a value of 0. Putting .align 0 after the label fixes it. */
1978 ASM_OUTPUT_ALIGN (asm_out_file, 0);
1979#endif
aa0c1401
JL
1980
1981 /* Turn off app to make assembly quicker. */
1982 if (flag_debug_asm)
1983 app_disable ();
a6ab3aad
JM
1984}
1985
3f76745e
JM
1986/* Output a marker (i.e. a label) for the beginning of a function, before
1987 the prologue. */
1988
1989void
653e276c
NB
1990dwarf2out_begin_prologue (line, file)
1991 unsigned int line ATTRIBUTE_UNUSED;
1992 const char *file ATTRIBUTE_UNUSED;
3f76745e
JM
1993{
1994 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1995 register dw_fde_ref fde;
1996
2a1ee410
RH
1997 current_function_func_begin_label = 0;
1998
1999#ifdef IA64_UNWIND_INFO
2000 /* ??? current_function_func_begin_label is also used by except.c
2001 for call-site information. We must emit this label if it might
2002 be used. */
2003 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2004 && ! dwarf2out_do_frame ())
2005 return;
2006#else
2007 if (! dwarf2out_do_frame ())
2008 return;
2009#endif
2010
4f988ea2
JM
2011 ++current_funcdef_number;
2012
3f76745e
JM
2013 function_section (current_function_decl);
2014 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2015 current_funcdef_number);
2a1ee410
RH
2016 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2017 current_funcdef_number);
00262c8a 2018 current_function_func_begin_label = get_identifier (label);
3f76745e 2019
2a1ee410
RH
2020#ifdef IA64_UNWIND_INFO
2021 /* We can elide the fde allocation if we're not emitting debug info. */
2022 if (! dwarf2out_do_frame ())
2023 return;
2024#endif
2025
3f76745e
JM
2026 /* Expand the fde table if necessary. */
2027 if (fde_table_in_use == fde_table_allocated)
2028 {
2029 fde_table_allocated += FDE_TABLE_INCREMENT;
2030 fde_table
2031 = (dw_fde_ref) xrealloc (fde_table,
2032 fde_table_allocated * sizeof (dw_fde_node));
a3f97cbb 2033 }
3f76745e
JM
2034
2035 /* Record the FDE associated with this function. */
2036 current_funcdef_fde = fde_table_in_use;
2037
2038 /* Add the new FDE at the end of the fde_table. */
2039 fde = &fde_table[fde_table_in_use++];
2040 fde->dw_fde_begin = xstrdup (label);
2041 fde->dw_fde_current_label = NULL;
2042 fde->dw_fde_end = NULL;
2043 fde->dw_fde_cfi = NULL;
52a11cbf 2044 fde->funcdef_number = current_funcdef_number;
fb13d4d0 2045 fde->nothrow = current_function_nothrow;
52a11cbf 2046 fde->uses_eh_lsda = cfun->uses_eh_lsda;
737faf14 2047
b57d9225 2048 args_size = old_args_size = 0;
653e276c
NB
2049
2050 /* We only want to output line number information for the genuine
2051 dwarf2 prologue case, not the eh frame case. */
2052#ifdef DWARF2_DEBUGGING_INFO
2053 if (file)
2054 dwarf2out_source_line (line, file);
2055#endif
3f76745e
JM
2056}
2057
2058/* Output a marker (i.e. a label) for the absolute end of the generated code
2059 for a function definition. This gets called *after* the epilogue code has
2060 been generated. */
2061
2062void
2063dwarf2out_end_epilogue ()
2064{
2065 dw_fde_ref fde;
2066 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2067
2068 /* Output a label to mark the endpoint of the code generated for this
2069 function. */
2070 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number);
2071 ASM_OUTPUT_LABEL (asm_out_file, label);
2072 fde = &fde_table[fde_table_in_use - 1];
2073 fde->dw_fde_end = xstrdup (label);
3f76745e
JM
2074}
2075
2076void
2077dwarf2out_frame_init ()
2078{
2079 /* Allocate the initial hunk of the fde_table. */
3de90026 2080 fde_table = (dw_fde_ref) xcalloc (FDE_TABLE_INCREMENT, sizeof (dw_fde_node));
3f76745e
JM
2081 fde_table_allocated = FDE_TABLE_INCREMENT;
2082 fde_table_in_use = 0;
2083
2084 /* Generate the CFA instructions common to all FDE's. Do it now for the
2085 sake of lookup_cfa. */
2086
a6ab3aad 2087#ifdef DWARF2_UNWIND_INFO
91193900
AS
2088 /* On entry, the Canonical Frame Address is at SP. */
2089 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2090 initial_return_save (INCOMING_RETURN_ADDR_RTX);
3f76745e
JM
2091#endif
2092}
2093
2094void
2095dwarf2out_frame_finish ()
2096{
3f76745e 2097 /* Output call frame information. */
a6ab3aad 2098#ifdef MIPS_DEBUGGING_INFO
3f76745e
JM
2099 if (write_symbols == DWARF2_DEBUG)
2100 output_call_frame_info (0);
ddee9e8d 2101 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
3f76745e 2102 output_call_frame_info (1);
a6ab3aad 2103#else
ddee9e8d
RH
2104 int for_eh = (! USING_SJLJ_EXCEPTIONS
2105 && (flag_unwind_tables || flag_exceptions));
2106 if (write_symbols == DWARF2_DEBUG || for_eh)
2107 output_call_frame_info (for_eh);
a6ab3aad 2108#endif
556273e0 2109}
7d9d8943
AM
2110\f
2111/* And now, the subset of the debugging information support code necessary
2112 for emitting location expressions. */
3f76745e 2113
7d9d8943
AM
2114typedef struct dw_val_struct *dw_val_ref;
2115typedef struct die_struct *dw_die_ref;
2116typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
63e46568 2117typedef struct dw_loc_list_struct *dw_loc_list_ref;
3f76745e
JM
2118
2119/* Each DIE may have a series of attribute/value pairs. Values
2120 can take on several forms. The forms that are used in this
2121 implementation are listed below. */
2122
2123typedef enum
2124{
2125 dw_val_class_addr,
a20612aa 2126 dw_val_class_offset,
3f76745e 2127 dw_val_class_loc,
63e46568 2128 dw_val_class_loc_list,
3f76745e
JM
2129 dw_val_class_const,
2130 dw_val_class_unsigned_const,
2131 dw_val_class_long_long,
2132 dw_val_class_float,
2133 dw_val_class_flag,
2134 dw_val_class_die_ref,
2135 dw_val_class_fde_ref,
2136 dw_val_class_lbl_id,
8b790721 2137 dw_val_class_lbl_offset,
3f76745e 2138 dw_val_class_str
a3f97cbb 2139}
3f76745e 2140dw_val_class;
a3f97cbb 2141
3f76745e 2142/* Describe a double word constant value. */
21217bd0 2143/* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
3f76745e
JM
2144
2145typedef struct dw_long_long_struct
a3f97cbb 2146{
3f76745e
JM
2147 unsigned long hi;
2148 unsigned long low;
2149}
2150dw_long_long_const;
2151
2152/* Describe a floating point constant value. */
2153
2154typedef struct dw_fp_struct
2155{
2156 long *array;
2157 unsigned length;
2158}
2159dw_float_const;
2160
956d6950 2161/* The dw_val_node describes an attribute's value, as it is
3f76745e
JM
2162 represented internally. */
2163
2164typedef struct dw_val_struct
2165{
2166 dw_val_class val_class;
2167 union
a3f97cbb 2168 {
1865dbb5 2169 rtx val_addr;
a20612aa 2170 long unsigned val_offset;
63e46568 2171 dw_loc_list_ref val_loc_list;
3f76745e
JM
2172 dw_loc_descr_ref val_loc;
2173 long int val_int;
2174 long unsigned val_unsigned;
2175 dw_long_long_const val_long_long;
2176 dw_float_const val_float;
881c6935
JM
2177 struct {
2178 dw_die_ref die;
2179 int external;
2180 } val_die_ref;
3f76745e
JM
2181 unsigned val_fde_index;
2182 char *val_str;
2183 char *val_lbl_id;
3f76745e 2184 unsigned char val_flag;
a3f97cbb 2185 }
3f76745e
JM
2186 v;
2187}
2188dw_val_node;
2189
2190/* Locations in memory are described using a sequence of stack machine
2191 operations. */
2192
2193typedef struct dw_loc_descr_struct
2194{
2195 dw_loc_descr_ref dw_loc_next;
2196 enum dwarf_location_atom dw_loc_opc;
2197 dw_val_node dw_loc_oprnd1;
2198 dw_val_node dw_loc_oprnd2;
d8041cc8 2199 int dw_loc_addr;
3f76745e
JM
2200}
2201dw_loc_descr_node;
2202
63e46568
DB
2203/* Location lists are ranges + location descriptions for that range,
2204 so you can track variables that are in different places over
30f7a378 2205 their entire life. */
63e46568
DB
2206typedef struct dw_loc_list_struct
2207{
2208 dw_loc_list_ref dw_loc_next;
2209 const char *begin; /* Label for begin address of range */
2210 const char *end; /* Label for end address of range */
2211 char *ll_symbol; /* Label for beginning of location list. Only on head of list */
2212 const char *section; /* Section this loclist is relative to */
2213 dw_loc_descr_ref expr;
2214} dw_loc_list_node;
2215
7d9d8943
AM
2216static const char *dwarf_stack_op_name PARAMS ((unsigned));
2217static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2218 unsigned long,
2219 unsigned long));
2220static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2221 dw_loc_descr_ref));
2222static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2223static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2224static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2225static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
3f76745e 2226
7d9d8943 2227/* Convert a DWARF stack opcode into its string name. */
3f76745e 2228
7d9d8943
AM
2229static const char *
2230dwarf_stack_op_name (op)
2231 register unsigned op;
ef76d03b 2232{
7d9d8943
AM
2233 switch (op)
2234 {
2235 case DW_OP_addr:
2236 return "DW_OP_addr";
2237 case DW_OP_deref:
2238 return "DW_OP_deref";
2239 case DW_OP_const1u:
2240 return "DW_OP_const1u";
2241 case DW_OP_const1s:
2242 return "DW_OP_const1s";
2243 case DW_OP_const2u:
2244 return "DW_OP_const2u";
2245 case DW_OP_const2s:
2246 return "DW_OP_const2s";
2247 case DW_OP_const4u:
2248 return "DW_OP_const4u";
2249 case DW_OP_const4s:
2250 return "DW_OP_const4s";
2251 case DW_OP_const8u:
2252 return "DW_OP_const8u";
2253 case DW_OP_const8s:
2254 return "DW_OP_const8s";
2255 case DW_OP_constu:
2256 return "DW_OP_constu";
2257 case DW_OP_consts:
2258 return "DW_OP_consts";
2259 case DW_OP_dup:
2260 return "DW_OP_dup";
2261 case DW_OP_drop:
2262 return "DW_OP_drop";
2263 case DW_OP_over:
2264 return "DW_OP_over";
2265 case DW_OP_pick:
2266 return "DW_OP_pick";
2267 case DW_OP_swap:
2268 return "DW_OP_swap";
2269 case DW_OP_rot:
2270 return "DW_OP_rot";
2271 case DW_OP_xderef:
2272 return "DW_OP_xderef";
2273 case DW_OP_abs:
2274 return "DW_OP_abs";
2275 case DW_OP_and:
2276 return "DW_OP_and";
2277 case DW_OP_div:
2278 return "DW_OP_div";
2279 case DW_OP_minus:
2280 return "DW_OP_minus";
2281 case DW_OP_mod:
2282 return "DW_OP_mod";
2283 case DW_OP_mul:
2284 return "DW_OP_mul";
2285 case DW_OP_neg:
2286 return "DW_OP_neg";
2287 case DW_OP_not:
2288 return "DW_OP_not";
2289 case DW_OP_or:
2290 return "DW_OP_or";
2291 case DW_OP_plus:
2292 return "DW_OP_plus";
2293 case DW_OP_plus_uconst:
2294 return "DW_OP_plus_uconst";
2295 case DW_OP_shl:
2296 return "DW_OP_shl";
2297 case DW_OP_shr:
2298 return "DW_OP_shr";
2299 case DW_OP_shra:
2300 return "DW_OP_shra";
2301 case DW_OP_xor:
2302 return "DW_OP_xor";
2303 case DW_OP_bra:
2304 return "DW_OP_bra";
2305 case DW_OP_eq:
2306 return "DW_OP_eq";
2307 case DW_OP_ge:
2308 return "DW_OP_ge";
2309 case DW_OP_gt:
2310 return "DW_OP_gt";
2311 case DW_OP_le:
2312 return "DW_OP_le";
2313 case DW_OP_lt:
2314 return "DW_OP_lt";
2315 case DW_OP_ne:
2316 return "DW_OP_ne";
2317 case DW_OP_skip:
2318 return "DW_OP_skip";
2319 case DW_OP_lit0:
2320 return "DW_OP_lit0";
2321 case DW_OP_lit1:
2322 return "DW_OP_lit1";
2323 case DW_OP_lit2:
2324 return "DW_OP_lit2";
2325 case DW_OP_lit3:
2326 return "DW_OP_lit3";
2327 case DW_OP_lit4:
2328 return "DW_OP_lit4";
2329 case DW_OP_lit5:
2330 return "DW_OP_lit5";
2331 case DW_OP_lit6:
2332 return "DW_OP_lit6";
2333 case DW_OP_lit7:
2334 return "DW_OP_lit7";
2335 case DW_OP_lit8:
2336 return "DW_OP_lit8";
2337 case DW_OP_lit9:
2338 return "DW_OP_lit9";
2339 case DW_OP_lit10:
2340 return "DW_OP_lit10";
2341 case DW_OP_lit11:
2342 return "DW_OP_lit11";
2343 case DW_OP_lit12:
2344 return "DW_OP_lit12";
2345 case DW_OP_lit13:
2346 return "DW_OP_lit13";
2347 case DW_OP_lit14:
2348 return "DW_OP_lit14";
2349 case DW_OP_lit15:
2350 return "DW_OP_lit15";
2351 case DW_OP_lit16:
2352 return "DW_OP_lit16";
2353 case DW_OP_lit17:
2354 return "DW_OP_lit17";
2355 case DW_OP_lit18:
2356 return "DW_OP_lit18";
2357 case DW_OP_lit19:
2358 return "DW_OP_lit19";
2359 case DW_OP_lit20:
2360 return "DW_OP_lit20";
2361 case DW_OP_lit21:
2362 return "DW_OP_lit21";
2363 case DW_OP_lit22:
2364 return "DW_OP_lit22";
2365 case DW_OP_lit23:
2366 return "DW_OP_lit23";
2367 case DW_OP_lit24:
2368 return "DW_OP_lit24";
2369 case DW_OP_lit25:
2370 return "DW_OP_lit25";
2371 case DW_OP_lit26:
2372 return "DW_OP_lit26";
2373 case DW_OP_lit27:
2374 return "DW_OP_lit27";
2375 case DW_OP_lit28:
2376 return "DW_OP_lit28";
2377 case DW_OP_lit29:
2378 return "DW_OP_lit29";
2379 case DW_OP_lit30:
2380 return "DW_OP_lit30";
2381 case DW_OP_lit31:
2382 return "DW_OP_lit31";
2383 case DW_OP_reg0:
2384 return "DW_OP_reg0";
2385 case DW_OP_reg1:
2386 return "DW_OP_reg1";
2387 case DW_OP_reg2:
2388 return "DW_OP_reg2";
2389 case DW_OP_reg3:
2390 return "DW_OP_reg3";
2391 case DW_OP_reg4:
2392 return "DW_OP_reg4";
2393 case DW_OP_reg5:
2394 return "DW_OP_reg5";
2395 case DW_OP_reg6:
2396 return "DW_OP_reg6";
2397 case DW_OP_reg7:
2398 return "DW_OP_reg7";
2399 case DW_OP_reg8:
2400 return "DW_OP_reg8";
2401 case DW_OP_reg9:
2402 return "DW_OP_reg9";
2403 case DW_OP_reg10:
2404 return "DW_OP_reg10";
2405 case DW_OP_reg11:
2406 return "DW_OP_reg11";
2407 case DW_OP_reg12:
2408 return "DW_OP_reg12";
2409 case DW_OP_reg13:
2410 return "DW_OP_reg13";
2411 case DW_OP_reg14:
2412 return "DW_OP_reg14";
2413 case DW_OP_reg15:
2414 return "DW_OP_reg15";
2415 case DW_OP_reg16:
2416 return "DW_OP_reg16";
2417 case DW_OP_reg17:
2418 return "DW_OP_reg17";
2419 case DW_OP_reg18:
2420 return "DW_OP_reg18";
2421 case DW_OP_reg19:
2422 return "DW_OP_reg19";
2423 case DW_OP_reg20:
2424 return "DW_OP_reg20";
2425 case DW_OP_reg21:
2426 return "DW_OP_reg21";
2427 case DW_OP_reg22:
2428 return "DW_OP_reg22";
2429 case DW_OP_reg23:
2430 return "DW_OP_reg23";
2431 case DW_OP_reg24:
2432 return "DW_OP_reg24";
2433 case DW_OP_reg25:
2434 return "DW_OP_reg25";
2435 case DW_OP_reg26:
2436 return "DW_OP_reg26";
2437 case DW_OP_reg27:
2438 return "DW_OP_reg27";
2439 case DW_OP_reg28:
2440 return "DW_OP_reg28";
2441 case DW_OP_reg29:
2442 return "DW_OP_reg29";
2443 case DW_OP_reg30:
2444 return "DW_OP_reg30";
2445 case DW_OP_reg31:
2446 return "DW_OP_reg31";
2447 case DW_OP_breg0:
2448 return "DW_OP_breg0";
2449 case DW_OP_breg1:
2450 return "DW_OP_breg1";
2451 case DW_OP_breg2:
2452 return "DW_OP_breg2";
2453 case DW_OP_breg3:
2454 return "DW_OP_breg3";
2455 case DW_OP_breg4:
2456 return "DW_OP_breg4";
2457 case DW_OP_breg5:
2458 return "DW_OP_breg5";
2459 case DW_OP_breg6:
2460 return "DW_OP_breg6";
2461 case DW_OP_breg7:
2462 return "DW_OP_breg7";
2463 case DW_OP_breg8:
2464 return "DW_OP_breg8";
2465 case DW_OP_breg9:
2466 return "DW_OP_breg9";
2467 case DW_OP_breg10:
2468 return "DW_OP_breg10";
2469 case DW_OP_breg11:
2470 return "DW_OP_breg11";
2471 case DW_OP_breg12:
2472 return "DW_OP_breg12";
2473 case DW_OP_breg13:
2474 return "DW_OP_breg13";
2475 case DW_OP_breg14:
2476 return "DW_OP_breg14";
2477 case DW_OP_breg15:
2478 return "DW_OP_breg15";
2479 case DW_OP_breg16:
2480 return "DW_OP_breg16";
2481 case DW_OP_breg17:
2482 return "DW_OP_breg17";
2483 case DW_OP_breg18:
2484 return "DW_OP_breg18";
2485 case DW_OP_breg19:
2486 return "DW_OP_breg19";
2487 case DW_OP_breg20:
2488 return "DW_OP_breg20";
2489 case DW_OP_breg21:
2490 return "DW_OP_breg21";
2491 case DW_OP_breg22:
2492 return "DW_OP_breg22";
2493 case DW_OP_breg23:
2494 return "DW_OP_breg23";
2495 case DW_OP_breg24:
2496 return "DW_OP_breg24";
2497 case DW_OP_breg25:
2498 return "DW_OP_breg25";
2499 case DW_OP_breg26:
2500 return "DW_OP_breg26";
2501 case DW_OP_breg27:
2502 return "DW_OP_breg27";
2503 case DW_OP_breg28:
2504 return "DW_OP_breg28";
2505 case DW_OP_breg29:
2506 return "DW_OP_breg29";
2507 case DW_OP_breg30:
2508 return "DW_OP_breg30";
2509 case DW_OP_breg31:
2510 return "DW_OP_breg31";
2511 case DW_OP_regx:
2512 return "DW_OP_regx";
2513 case DW_OP_fbreg:
2514 return "DW_OP_fbreg";
2515 case DW_OP_bregx:
2516 return "DW_OP_bregx";
2517 case DW_OP_piece:
2518 return "DW_OP_piece";
2519 case DW_OP_deref_size:
2520 return "DW_OP_deref_size";
2521 case DW_OP_xderef_size:
2522 return "DW_OP_xderef_size";
2523 case DW_OP_nop:
2524 return "DW_OP_nop";
3f76745e 2525 default:
7d9d8943 2526 return "OP_<unknown>";
3f76745e 2527 }
bdb669cb 2528}
a3f97cbb 2529
7d9d8943
AM
2530/* Return a pointer to a newly allocated location description. Location
2531 descriptions are simple expression terms that can be strung
2532 together to form more complicated location (address) descriptions. */
2533
2534static inline dw_loc_descr_ref
2535new_loc_descr (op, oprnd1, oprnd2)
2536 register enum dwarf_location_atom op;
2537 register unsigned long oprnd1;
2538 register unsigned long oprnd2;
4b674448 2539{
5de0e8d4
JM
2540 /* Use xcalloc here so we clear out all of the long_long constant in
2541 the union. */
7d9d8943 2542 register dw_loc_descr_ref descr
5de0e8d4 2543 = (dw_loc_descr_ref) xcalloc (1, sizeof (dw_loc_descr_node));
71dfc51f 2544
7d9d8943
AM
2545 descr->dw_loc_opc = op;
2546 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2547 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2548 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2549 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
71dfc51f 2550
7d9d8943
AM
2551 return descr;
2552}
2553
63e46568 2554
7d9d8943
AM
2555/* Add a location description term to a location description expression. */
2556
2557static inline void
2558add_loc_descr (list_head, descr)
2559 register dw_loc_descr_ref *list_head;
2560 register dw_loc_descr_ref descr;
2561{
2562 register dw_loc_descr_ref *d;
2563
2564 /* Find the end of the chain. */
2565 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2566 ;
2567
2568 *d = descr;
2569}
2570
2571/* Return the size of a location descriptor. */
2572
2573static unsigned long
2574size_of_loc_descr (loc)
2575 register dw_loc_descr_ref loc;
2576{
2577 register unsigned long size = 1;
2578
2579 switch (loc->dw_loc_opc)
2580 {
2581 case DW_OP_addr:
2582 size += DWARF2_ADDR_SIZE;
2583 break;
2584 case DW_OP_const1u:
2585 case DW_OP_const1s:
2586 size += 1;
2587 break;
2588 case DW_OP_const2u:
2589 case DW_OP_const2s:
2590 size += 2;
2591 break;
2592 case DW_OP_const4u:
2593 case DW_OP_const4s:
2594 size += 4;
2595 break;
2596 case DW_OP_const8u:
2597 case DW_OP_const8s:
2598 size += 8;
2599 break;
2600 case DW_OP_constu:
2601 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2602 break;
2603 case DW_OP_consts:
2604 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2605 break;
2606 case DW_OP_pick:
2607 size += 1;
2608 break;
2609 case DW_OP_plus_uconst:
2610 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2611 break;
2612 case DW_OP_skip:
2613 case DW_OP_bra:
2614 size += 2;
2615 break;
2616 case DW_OP_breg0:
2617 case DW_OP_breg1:
2618 case DW_OP_breg2:
2619 case DW_OP_breg3:
2620 case DW_OP_breg4:
2621 case DW_OP_breg5:
2622 case DW_OP_breg6:
2623 case DW_OP_breg7:
2624 case DW_OP_breg8:
2625 case DW_OP_breg9:
2626 case DW_OP_breg10:
2627 case DW_OP_breg11:
2628 case DW_OP_breg12:
2629 case DW_OP_breg13:
2630 case DW_OP_breg14:
2631 case DW_OP_breg15:
2632 case DW_OP_breg16:
2633 case DW_OP_breg17:
2634 case DW_OP_breg18:
2635 case DW_OP_breg19:
2636 case DW_OP_breg20:
2637 case DW_OP_breg21:
2638 case DW_OP_breg22:
2639 case DW_OP_breg23:
2640 case DW_OP_breg24:
2641 case DW_OP_breg25:
2642 case DW_OP_breg26:
2643 case DW_OP_breg27:
2644 case DW_OP_breg28:
2645 case DW_OP_breg29:
2646 case DW_OP_breg30:
2647 case DW_OP_breg31:
2648 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2649 break;
2650 case DW_OP_regx:
2651 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2652 break;
2653 case DW_OP_fbreg:
2654 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2655 break;
2656 case DW_OP_bregx:
2657 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2658 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2659 break;
2660 case DW_OP_piece:
2661 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2662 break;
2663 case DW_OP_deref_size:
2664 case DW_OP_xderef_size:
2665 size += 1;
2666 break;
3f76745e 2667 default:
7d9d8943 2668 break;
4b674448 2669 }
7d9d8943
AM
2670
2671 return size;
4b674448
JM
2672}
2673
7d9d8943 2674/* Return the size of a series of location descriptors. */
71dfc51f 2675
7d9d8943
AM
2676static unsigned long
2677size_of_locs (loc)
2678 register dw_loc_descr_ref loc;
4b674448 2679{
7d9d8943
AM
2680 register unsigned long size = 0;
2681
2682 for (; loc != NULL; loc = loc->dw_loc_next)
d8041cc8
RH
2683 {
2684 loc->dw_loc_addr = size;
2685 size += size_of_loc_descr (loc);
2686 }
7d9d8943
AM
2687
2688 return size;
4b674448
JM
2689}
2690
7d9d8943 2691/* Output location description stack opcode's operands (if any). */
71dfc51f 2692
7d9d8943
AM
2693static void
2694output_loc_operands (loc)
2695 register dw_loc_descr_ref loc;
a3f97cbb 2696{
7d9d8943
AM
2697 register dw_val_ref val1 = &loc->dw_loc_oprnd1;
2698 register dw_val_ref val2 = &loc->dw_loc_oprnd2;
2699
2700 switch (loc->dw_loc_opc)
a3f97cbb 2701 {
0517872a 2702#ifdef DWARF2_DEBUGGING_INFO
3f76745e 2703 case DW_OP_addr:
2e4b9b8c 2704 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
7d9d8943 2705 break;
3f76745e 2706 case DW_OP_const2u:
3f76745e 2707 case DW_OP_const2s:
2e4b9b8c 2708 dw2_asm_output_data (2, val1->v.val_int, NULL);
7d9d8943 2709 break;
3f76745e 2710 case DW_OP_const4u:
3f76745e 2711 case DW_OP_const4s:
2e4b9b8c 2712 dw2_asm_output_data (4, val1->v.val_int, NULL);
7d9d8943 2713 break;
3f76745e 2714 case DW_OP_const8u:
3f76745e 2715 case DW_OP_const8s:
2e4b9b8c
RH
2716 if (HOST_BITS_PER_LONG < 64)
2717 abort ();
2718 dw2_asm_output_data (8, val1->v.val_int, NULL);
7d9d8943 2719 break;
0517872a
JM
2720 case DW_OP_skip:
2721 case DW_OP_bra:
d8041cc8
RH
2722 {
2723 int offset;
2724
2725 if (val1->val_class == dw_val_class_loc)
2726 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2727 else
2728 abort ();
2729
2e4b9b8c 2730 dw2_asm_output_data (2, offset, NULL);
d8041cc8 2731 }
0517872a 2732 break;
3139472f
JM
2733#else
2734 case DW_OP_addr:
2735 case DW_OP_const2u:
2736 case DW_OP_const2s:
2737 case DW_OP_const4u:
2738 case DW_OP_const4s:
2739 case DW_OP_const8u:
2740 case DW_OP_const8s:
2741 case DW_OP_skip:
2742 case DW_OP_bra:
2743 /* We currently don't make any attempt to make sure these are
2744 aligned properly like we do for the main unwind info, so
2745 don't support emitting things larger than a byte if we're
2746 only doing unwinding. */
2747 abort ();
0517872a
JM
2748#endif
2749 case DW_OP_const1u:
2750 case DW_OP_const1s:
2e4b9b8c 2751 dw2_asm_output_data (1, val1->v.val_int, NULL);
0517872a 2752 break;
3f76745e 2753 case DW_OP_constu:
2e4b9b8c 2754 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2755 break;
3f76745e 2756 case DW_OP_consts:
2e4b9b8c 2757 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
7d9d8943
AM
2758 break;
2759 case DW_OP_pick:
2e4b9b8c 2760 dw2_asm_output_data (1, val1->v.val_int, NULL);
7d9d8943
AM
2761 break;
2762 case DW_OP_plus_uconst:
2e4b9b8c 2763 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2764 break;
3f76745e 2765 case DW_OP_breg0:
3f76745e 2766 case DW_OP_breg1:
3f76745e 2767 case DW_OP_breg2:
3f76745e 2768 case DW_OP_breg3:
3f76745e 2769 case DW_OP_breg4:
3f76745e 2770 case DW_OP_breg5:
3f76745e 2771 case DW_OP_breg6:
3f76745e 2772 case DW_OP_breg7:
3f76745e 2773 case DW_OP_breg8:
3f76745e 2774 case DW_OP_breg9:
3f76745e 2775 case DW_OP_breg10:
3f76745e 2776 case DW_OP_breg11:
3f76745e 2777 case DW_OP_breg12:
3f76745e 2778 case DW_OP_breg13:
3f76745e 2779 case DW_OP_breg14:
3f76745e 2780 case DW_OP_breg15:
3f76745e 2781 case DW_OP_breg16:
3f76745e 2782 case DW_OP_breg17:
3f76745e 2783 case DW_OP_breg18:
3f76745e 2784 case DW_OP_breg19:
3f76745e 2785 case DW_OP_breg20:
3f76745e 2786 case DW_OP_breg21:
3f76745e 2787 case DW_OP_breg22:
3f76745e 2788 case DW_OP_breg23:
3f76745e 2789 case DW_OP_breg24:
3f76745e 2790 case DW_OP_breg25:
3f76745e 2791 case DW_OP_breg26:
3f76745e 2792 case DW_OP_breg27:
3f76745e 2793 case DW_OP_breg28:
3f76745e 2794 case DW_OP_breg29:
3f76745e 2795 case DW_OP_breg30:
3f76745e 2796 case DW_OP_breg31:
2e4b9b8c 2797 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
7d9d8943 2798 break;
3f76745e 2799 case DW_OP_regx:
2e4b9b8c 2800 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2801 break;
3f76745e 2802 case DW_OP_fbreg:
2e4b9b8c 2803 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
7d9d8943 2804 break;
3f76745e 2805 case DW_OP_bregx:
2e4b9b8c
RH
2806 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2807 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
7d9d8943 2808 break;
3f76745e 2809 case DW_OP_piece:
2e4b9b8c 2810 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2811 break;
3f76745e 2812 case DW_OP_deref_size:
3f76745e 2813 case DW_OP_xderef_size:
2e4b9b8c 2814 dw2_asm_output_data (1, val1->v.val_int, NULL);
7d9d8943
AM
2815 break;
2816 default:
3139472f
JM
2817 /* Other codes have no operands. */
2818 break;
7d9d8943
AM
2819 }
2820}
2821
2822/* Output a sequence of location operations. */
2823
2824static void
2825output_loc_sequence (loc)
2826 dw_loc_descr_ref loc;
2827{
2828 for (; loc != NULL; loc = loc->dw_loc_next)
2829 {
2830 /* Output the opcode. */
2e4b9b8c
RH
2831 dw2_asm_output_data (1, loc->dw_loc_opc,
2832 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
7d9d8943
AM
2833
2834 /* Output the operand(s) (if any). */
2835 output_loc_operands (loc);
2836 }
2837}
2838
2839/* This routine will generate the correct assembly data for a location
2840 description based on a cfi entry with a complex address. */
2841
2842static void
2843output_cfa_loc (cfi)
2844 dw_cfi_ref cfi;
2845{
2846 dw_loc_descr_ref loc;
2847 unsigned long size;
2848
2849 /* Output the size of the block. */
2850 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2851 size = size_of_locs (loc);
2e4b9b8c 2852 dw2_asm_output_data_uleb128 (size, NULL);
7d9d8943
AM
2853
2854 /* Now output the operations themselves. */
2855 output_loc_sequence (loc);
2856}
2857
dd49a9ec 2858/* This function builds a dwarf location descriptor sequence from
556273e0 2859 a dw_cfa_location. */
7d9d8943
AM
2860
2861static struct dw_loc_descr_struct *
2862build_cfa_loc (cfa)
2863 dw_cfa_location *cfa;
2864{
2865 struct dw_loc_descr_struct *head, *tmp;
2866
2867 if (cfa->indirect == 0)
2868 abort ();
2869
2870 if (cfa->base_offset)
f299afab
HPN
2871 {
2872 if (cfa->reg <= 31)
2873 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
2874 else
2875 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
2876 }
2877 else if (cfa->reg <= 31)
7d9d8943 2878 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
f299afab
HPN
2879 else
2880 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
7d9d8943
AM
2881 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2882 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2883 add_loc_descr (&head, tmp);
2884 if (cfa->offset != 0)
2885 {
2886 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
2887 add_loc_descr (&head, tmp);
2888 }
2889 return head;
2890}
2891
556273e0 2892/* This function fills in aa dw_cfa_location structure from a
7d9d8943
AM
2893 dwarf location descriptor sequence. */
2894
2895static void
2896get_cfa_from_loc_descr (cfa, loc)
2897 dw_cfa_location *cfa;
556273e0 2898 struct dw_loc_descr_struct *loc;
7d9d8943 2899{
556273e0 2900 struct dw_loc_descr_struct *ptr;
7d9d8943
AM
2901 cfa->offset = 0;
2902 cfa->base_offset = 0;
2903 cfa->indirect = 0;
2904 cfa->reg = -1;
2905
2906 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
2907 {
2908 enum dwarf_location_atom op = ptr->dw_loc_opc;
2909 switch (op)
556273e0 2910 {
7d9d8943
AM
2911 case DW_OP_reg0:
2912 case DW_OP_reg1:
2913 case DW_OP_reg2:
2914 case DW_OP_reg3:
2915 case DW_OP_reg4:
2916 case DW_OP_reg5:
2917 case DW_OP_reg6:
2918 case DW_OP_reg7:
2919 case DW_OP_reg8:
2920 case DW_OP_reg9:
2921 case DW_OP_reg10:
2922 case DW_OP_reg11:
2923 case DW_OP_reg12:
2924 case DW_OP_reg13:
2925 case DW_OP_reg14:
2926 case DW_OP_reg15:
2927 case DW_OP_reg16:
2928 case DW_OP_reg17:
2929 case DW_OP_reg18:
2930 case DW_OP_reg19:
2931 case DW_OP_reg20:
2932 case DW_OP_reg21:
2933 case DW_OP_reg22:
2934 case DW_OP_reg23:
2935 case DW_OP_reg24:
2936 case DW_OP_reg25:
2937 case DW_OP_reg26:
2938 case DW_OP_reg27:
2939 case DW_OP_reg28:
2940 case DW_OP_reg29:
2941 case DW_OP_reg30:
2942 case DW_OP_reg31:
2943 cfa->reg = op - DW_OP_reg0;
2944 break;
2945 case DW_OP_regx:
2946 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
2947 break;
2948 case DW_OP_breg0:
2949 case DW_OP_breg1:
2950 case DW_OP_breg2:
2951 case DW_OP_breg3:
2952 case DW_OP_breg4:
2953 case DW_OP_breg5:
2954 case DW_OP_breg6:
2955 case DW_OP_breg7:
2956 case DW_OP_breg8:
2957 case DW_OP_breg9:
2958 case DW_OP_breg10:
2959 case DW_OP_breg11:
2960 case DW_OP_breg12:
2961 case DW_OP_breg13:
2962 case DW_OP_breg14:
2963 case DW_OP_breg15:
2964 case DW_OP_breg16:
2965 case DW_OP_breg17:
2966 case DW_OP_breg18:
2967 case DW_OP_breg19:
2968 case DW_OP_breg20:
2969 case DW_OP_breg21:
2970 case DW_OP_breg22:
2971 case DW_OP_breg23:
2972 case DW_OP_breg24:
2973 case DW_OP_breg25:
2974 case DW_OP_breg26:
2975 case DW_OP_breg27:
2976 case DW_OP_breg28:
2977 case DW_OP_breg29:
2978 case DW_OP_breg30:
2979 case DW_OP_breg31:
2980 cfa->reg = op - DW_OP_breg0;
2981 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
2982 break;
2983 case DW_OP_bregx:
2984 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
2985 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
2986 break;
2987 case DW_OP_deref:
2988 cfa->indirect = 1;
2989 break;
2990 case DW_OP_plus_uconst:
556273e0 2991 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
7d9d8943
AM
2992 break;
2993 default:
400500c4
RK
2994 internal_error ("DW_LOC_OP %s not implememnted\n",
2995 dwarf_stack_op_name (ptr->dw_loc_opc));
7d9d8943
AM
2996 }
2997 }
2998}
2999#endif /* .debug_frame support */
3000\f
3001/* And now, the support for symbolic debugging information. */
3002#ifdef DWARF2_DEBUGGING_INFO
3003
e2a12aca
NB
3004static void dwarf2out_init PARAMS ((const char *));
3005static void dwarf2out_finish PARAMS ((const char *));
7f905405
NB
3006static void dwarf2out_define PARAMS ((unsigned int, const char *));
3007static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3008static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3009static void dwarf2out_end_source_file PARAMS ((unsigned));
e2a12aca
NB
3010static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3011static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
e1772ac0 3012static bool dwarf2out_ignore_block PARAMS ((tree));
2b85879e 3013static void dwarf2out_global_decl PARAMS ((tree));
e1772ac0 3014static void dwarf2out_abstract_function PARAMS ((tree));
7f905405
NB
3015
3016/* The debug hooks structure. */
3017
3018struct gcc_debug_hooks dwarf2_debug_hooks =
3019{
3020 dwarf2out_init,
3021 dwarf2out_finish,
3022 dwarf2out_define,
3023 dwarf2out_undef,
3024 dwarf2out_start_source_file,
a5a42b92
NB
3025 dwarf2out_end_source_file,
3026 dwarf2out_begin_block,
e2a12aca 3027 dwarf2out_end_block,
e1772ac0 3028 dwarf2out_ignore_block,
e2a12aca 3029 dwarf2out_source_line,
653e276c
NB
3030 dwarf2out_begin_prologue,
3031 debug_nothing_int, /* end_prologue */
e2a12aca 3032 dwarf2out_end_epilogue,
653e276c 3033 debug_nothing_tree, /* begin_function */
2b85879e
NB
3034 debug_nothing_int, /* end_function */
3035 dwarf2out_decl, /* function_decl */
3036 dwarf2out_global_decl,
e1772ac0
NB
3037 debug_nothing_tree, /* deferred_inline_function */
3038 /* The DWARF 2 backend tries to reduce debugging bloat by not
3039 emitting the abstract description of inline functions until
3040 something tries to reference them. */
3041 dwarf2out_abstract_function, /* outlining_inline_function */
3042 debug_nothing_rtx /* label */
7f905405
NB
3043};
3044\f
7d9d8943
AM
3045/* NOTE: In the comments in this file, many references are made to
3046 "Debugging Information Entries". This term is abbreviated as `DIE'
3047 throughout the remainder of this file. */
3048
3049/* An internal representation of the DWARF output is built, and then
3050 walked to generate the DWARF debugging info. The walk of the internal
3051 representation is done after the entire program has been compiled.
3052 The types below are used to describe the internal representation. */
3053
3054/* Various DIE's use offsets relative to the beginning of the
3055 .debug_info section to refer to each other. */
3056
3057typedef long int dw_offset;
3058
3059/* Define typedefs here to avoid circular dependencies. */
3060
3061typedef struct dw_attr_struct *dw_attr_ref;
3062typedef struct dw_line_info_struct *dw_line_info_ref;
3063typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3064typedef struct pubname_struct *pubname_ref;
a20612aa 3065typedef struct dw_ranges_struct *dw_ranges_ref;
7d9d8943
AM
3066
3067/* Each entry in the line_info_table maintains the file and
3068 line number associated with the label generated for that
3069 entry. The label gives the PC value associated with
3070 the line number entry. */
3071
3072typedef struct dw_line_info_struct
3073{
3074 unsigned long dw_file_num;
3075 unsigned long dw_line_num;
3076}
3077dw_line_info_entry;
3078
3079/* Line information for functions in separate sections; each one gets its
3080 own sequence. */
3081typedef struct dw_separate_line_info_struct
3082{
3083 unsigned long dw_file_num;
3084 unsigned long dw_line_num;
3085 unsigned long function;
3086}
3087dw_separate_line_info_entry;
3088
3089/* Each DIE attribute has a field specifying the attribute kind,
3090 a link to the next attribute in the chain, and an attribute value.
3091 Attributes are typically linked below the DIE they modify. */
3092
3093typedef struct dw_attr_struct
3094{
3095 enum dwarf_attribute dw_attr;
3096 dw_attr_ref dw_attr_next;
3097 dw_val_node dw_attr_val;
3098}
3099dw_attr_node;
3100
3101/* The Debugging Information Entry (DIE) structure */
3102
3103typedef struct die_struct
3104{
3105 enum dwarf_tag die_tag;
881c6935 3106 char *die_symbol;
7d9d8943
AM
3107 dw_attr_ref die_attr;
3108 dw_die_ref die_parent;
3109 dw_die_ref die_child;
3110 dw_die_ref die_sib;
3111 dw_offset die_offset;
3112 unsigned long die_abbrev;
1bfb5f8f 3113 int die_mark;
7d9d8943
AM
3114}
3115die_node;
3116
3117/* The pubname structure */
3118
3119typedef struct pubname_struct
3120{
3121 dw_die_ref die;
556273e0 3122 char *name;
7d9d8943
AM
3123}
3124pubname_entry;
3125
a20612aa
RH
3126struct dw_ranges_struct
3127{
3128 int block_num;
3129};
3130
7d9d8943
AM
3131/* The limbo die list structure. */
3132typedef struct limbo_die_struct
3133{
3134 dw_die_ref die;
3135 struct limbo_die_struct *next;
3136}
3137limbo_die_node;
3138
3139/* How to start an assembler comment. */
3140#ifndef ASM_COMMENT_START
3141#define ASM_COMMENT_START ";#"
3142#endif
3143
3144/* Define a macro which returns non-zero for a TYPE_DECL which was
3145 implicitly generated for a tagged type.
3146
3147 Note that unlike the gcc front end (which generates a NULL named
3148 TYPE_DECL node for each complete tagged type, each array type, and
3149 each function type node created) the g++ front end generates a
3150 _named_ TYPE_DECL node for each tagged type node created.
3151 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3152 generate a DW_TAG_typedef DIE for them. */
3153
3154#define TYPE_DECL_IS_STUB(decl) \
3155 (DECL_NAME (decl) == NULL_TREE \
3156 || (DECL_ARTIFICIAL (decl) \
3157 && is_tagged_type (TREE_TYPE (decl)) \
3158 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3159 /* This is necessary for stub decls that \
3160 appear in nested inline functions. */ \
3161 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3162 && (decl_ultimate_origin (decl) \
3163 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3164
3165/* Information concerning the compilation unit's programming
3166 language, and compiler version. */
3167
3168extern int flag_traditional;
3169
3170/* Fixed size portion of the DWARF compilation unit header. */
3171#define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3172
3173/* Fixed size portion of debugging line information prolog. */
3174#define DWARF_LINE_PROLOG_HEADER_SIZE 5
3175
3176/* Fixed size portion of public names info. */
3177#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3178
3179/* Fixed size portion of the address range info. */
3180#define DWARF_ARANGES_HEADER_SIZE \
3181 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3182 - DWARF_OFFSET_SIZE)
3183
3184/* Size of padding portion in the address range info. It must be
3185 aligned to twice the pointer size. */
3186#define DWARF_ARANGES_PAD_SIZE \
3187 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3188 - (2 * DWARF_OFFSET_SIZE + 4))
3189
9d147085 3190/* Use assembler line directives if available. */
7d9d8943 3191#ifndef DWARF2_ASM_LINE_DEBUG_INFO
9d147085
RH
3192#ifdef HAVE_AS_DWARF2_DEBUG_LINE
3193#define DWARF2_ASM_LINE_DEBUG_INFO 1
3194#else
7d9d8943
AM
3195#define DWARF2_ASM_LINE_DEBUG_INFO 0
3196#endif
9d147085 3197#endif
7d9d8943
AM
3198
3199/* Define the architecture-dependent minimum instruction length (in bytes).
3200 In this implementation of DWARF, this field is used for information
3201 purposes only. Since GCC generates assembly language, we have
3202 no a priori knowledge of how many instruction bytes are generated
3203 for each source line, and therefore can use only the DW_LNE_set_address
3204 and DW_LNS_fixed_advance_pc line information commands. */
3205
3206#ifndef DWARF_LINE_MIN_INSTR_LENGTH
3207#define DWARF_LINE_MIN_INSTR_LENGTH 4
3208#endif
3209
3210/* Minimum line offset in a special line info. opcode.
3211 This value was chosen to give a reasonable range of values. */
3212#define DWARF_LINE_BASE -10
3213
3214/* First special line opcde - leave room for the standard opcodes. */
3215#define DWARF_LINE_OPCODE_BASE 10
3216
3217/* Range of line offsets in a special line info. opcode. */
3218#define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3219
3220/* Flag that indicates the initial value of the is_stmt_start flag.
3221 In the present implementation, we do not mark any lines as
3222 the beginning of a source statement, because that information
3223 is not made available by the GCC front-end. */
3224#define DWARF_LINE_DEFAULT_IS_STMT_START 1
3225
3226/* This location is used by calc_die_sizes() to keep track
3227 the offset of each DIE within the .debug_info section. */
3228static unsigned long next_die_offset;
3229
3230/* Record the root of the DIE's built for the current compilation unit. */
3231static dw_die_ref comp_unit_die;
3232
3233/* A list of DIEs with a NULL parent waiting to be relocated. */
3234static limbo_die_node *limbo_die_list = 0;
3235
2e18bbae
RH
3236/* Structure used by lookup_filename to manage sets of filenames. */
3237struct file_table
3238{
3239 char **table;
3240 unsigned allocated;
3241 unsigned in_use;
3242 unsigned last_lookup_index;
3243};
7d9d8943
AM
3244
3245/* Size (in elements) of increments by which we may expand the filename
3246 table. */
3247#define FILE_TABLE_INCREMENT 64
3248
981975b6
RH
3249/* Filenames referenced by this compilation unit. */
3250static struct file_table file_table;
2e18bbae 3251
7d9d8943
AM
3252/* Local pointer to the name of the main input file. Initialized in
3253 dwarf2out_init. */
3254static const char *primary_filename;
3255
3256/* A pointer to the base of a table of references to DIE's that describe
3257 declarations. The table is indexed by DECL_UID() which is a unique
3258 number identifying each decl. */
3259static dw_die_ref *decl_die_table;
3260
3261/* Number of elements currently allocated for the decl_die_table. */
3262static unsigned decl_die_table_allocated;
3263
3264/* Number of elements in decl_die_table currently in use. */
3265static unsigned decl_die_table_in_use;
3266
3267/* Size (in elements) of increments by which we may expand the
3268 decl_die_table. */
3269#define DECL_DIE_TABLE_INCREMENT 256
3270
3271/* A pointer to the base of a table of references to declaration
3272 scopes. This table is a display which tracks the nesting
3273 of declaration scopes at the current scope and containing
3274 scopes. This table is used to find the proper place to
3275 define type declaration DIE's. */
3276static tree *decl_scope_table;
3277
3278/* Number of elements currently allocated for the decl_scope_table. */
3279static int decl_scope_table_allocated;
3280
3281/* Current level of nesting of declaration scopes. */
3282static int decl_scope_depth;
3283
3284/* Size (in elements) of increments by which we may expand the
3285 decl_scope_table. */
3286#define DECL_SCOPE_TABLE_INCREMENT 64
3287
3288/* A pointer to the base of a list of references to DIE's that
3289 are uniquely identified by their tag, presence/absence of
3290 children DIE's, and list of attribute/value pairs. */
3291static dw_die_ref *abbrev_die_table;
3292
3293/* Number of elements currently allocated for abbrev_die_table. */
3294static unsigned abbrev_die_table_allocated;
3295
3296/* Number of elements in type_die_table currently in use. */
3297static unsigned abbrev_die_table_in_use;
3298
3299/* Size (in elements) of increments by which we may expand the
3300 abbrev_die_table. */
3301#define ABBREV_DIE_TABLE_INCREMENT 256
3302
3303/* A pointer to the base of a table that contains line information
3304 for each source code line in .text in the compilation unit. */
3305static dw_line_info_ref line_info_table;
3306
3307/* Number of elements currently allocated for line_info_table. */
3308static unsigned line_info_table_allocated;
3309
3310/* Number of elements in separate_line_info_table currently in use. */
3311static unsigned separate_line_info_table_in_use;
3312
3313/* A pointer to the base of a table that contains line information
3314 for each source code line outside of .text in the compilation unit. */
3315static dw_separate_line_info_ref separate_line_info_table;
3316
3317/* Number of elements currently allocated for separate_line_info_table. */
3318static unsigned separate_line_info_table_allocated;
3319
3320/* Number of elements in line_info_table currently in use. */
3321static unsigned line_info_table_in_use;
3322
3323/* Size (in elements) of increments by which we may expand the
3324 line_info_table. */
3325#define LINE_INFO_TABLE_INCREMENT 1024
3326
3327/* A pointer to the base of a table that contains a list of publicly
3328 accessible names. */
3329static pubname_ref pubname_table;
3330
3331/* Number of elements currently allocated for pubname_table. */
3332static unsigned pubname_table_allocated;
3333
3334/* Number of elements in pubname_table currently in use. */
3335static unsigned pubname_table_in_use;
3336
3337/* Size (in elements) of increments by which we may expand the
3338 pubname_table. */
3339#define PUBNAME_TABLE_INCREMENT 64
3340
a20612aa
RH
3341/* Array of dies for which we should generate .debug_arange info. */
3342static dw_die_ref *arange_table;
7d9d8943
AM
3343
3344/* Number of elements currently allocated for arange_table. */
3345static unsigned arange_table_allocated;
3346
3347/* Number of elements in arange_table currently in use. */
3348static unsigned arange_table_in_use;
3349
3350/* Size (in elements) of increments by which we may expand the
3351 arange_table. */
3352#define ARANGE_TABLE_INCREMENT 64
3353
a20612aa
RH
3354/* Array of dies for which we should generate .debug_ranges info. */
3355static dw_ranges_ref ranges_table;
3356
3357/* Number of elements currently allocated for ranges_table. */
3358static unsigned ranges_table_allocated;
3359
3360/* Number of elements in ranges_table currently in use. */
3361static unsigned ranges_table_in_use;
3362
3363/* Size (in elements) of increments by which we may expand the
3364 ranges_table. */
3365#define RANGES_TABLE_INCREMENT 64
3366
63e46568
DB
3367/* Whether we have location lists that need outputting */
3368static unsigned have_location_lists;
3369
7d9d8943
AM
3370/* A pointer to the base of a list of incomplete types which might be
3371 completed at some later time. */
3372
3373static tree *incomplete_types_list;
3374
3375/* Number of elements currently allocated for the incomplete_types_list. */
3376static unsigned incomplete_types_allocated;
3377
3378/* Number of elements of incomplete_types_list currently in use. */
3379static unsigned incomplete_types;
3380
3381/* Size (in elements) of increments by which we may expand the incomplete
3382 types list. Actually, a single hunk of space of this size should
3383 be enough for most typical programs. */
3384#define INCOMPLETE_TYPES_INCREMENT 64
3385
3386/* Record whether the function being analyzed contains inlined functions. */
3387static int current_function_has_inlines;
3388#if 0 && defined (MIPS_DEBUGGING_INFO)
3389static int comp_unit_has_inlines;
3390#endif
3391
3392/* Array of RTXes referenced by the debugging information, which therefore
3393 must be kept around forever. We do this rather than perform GC on
3394 the dwarf info because almost all of the dwarf info lives forever, and
3395 it's easier to support non-GC frontends this way. */
3396static varray_type used_rtx_varray;
3397
3398/* Forward declarations for functions defined in this file. */
3399
3400static int is_pseudo_reg PARAMS ((rtx));
3401static tree type_main_variant PARAMS ((tree));
3402static int is_tagged_type PARAMS ((tree));
3403static const char *dwarf_tag_name PARAMS ((unsigned));
3404static const char *dwarf_attr_name PARAMS ((unsigned));
3405static const char *dwarf_form_name PARAMS ((unsigned));
3406#if 0
3407static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3408#endif
3409static tree decl_ultimate_origin PARAMS ((tree));
3410static tree block_ultimate_origin PARAMS ((tree));
3411static tree decl_class_context PARAMS ((tree));
3412static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3413static void add_AT_flag PARAMS ((dw_die_ref,
3414 enum dwarf_attribute,
3415 unsigned));
3416static void add_AT_int PARAMS ((dw_die_ref,
3417 enum dwarf_attribute, long));
3418static void add_AT_unsigned PARAMS ((dw_die_ref,
3419 enum dwarf_attribute,
3420 unsigned long));
3421static void add_AT_long_long PARAMS ((dw_die_ref,
3422 enum dwarf_attribute,
3423 unsigned long,
3424 unsigned long));
3425static void add_AT_float PARAMS ((dw_die_ref,
3426 enum dwarf_attribute,
3427 unsigned, long *));
3428static void add_AT_string PARAMS ((dw_die_ref,
3429 enum dwarf_attribute,
3430 const char *));
3431static void add_AT_die_ref PARAMS ((dw_die_ref,
3432 enum dwarf_attribute,
3433 dw_die_ref));
3434static void add_AT_fde_ref PARAMS ((dw_die_ref,
3435 enum dwarf_attribute,
3436 unsigned));
3437static void add_AT_loc PARAMS ((dw_die_ref,
3438 enum dwarf_attribute,
3439 dw_loc_descr_ref));
63e46568
DB
3440static void add_AT_loc_list PARAMS ((dw_die_ref,
3441 enum dwarf_attribute,
3442 dw_loc_list_ref));
7d9d8943
AM
3443static void add_AT_addr PARAMS ((dw_die_ref,
3444 enum dwarf_attribute,
3445 rtx));
3446static void add_AT_lbl_id PARAMS ((dw_die_ref,
3447 enum dwarf_attribute,
3448 const char *));
3449static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3450 enum dwarf_attribute,
3451 const char *));
a20612aa
RH
3452static void add_AT_offset PARAMS ((dw_die_ref,
3453 enum dwarf_attribute,
3454 unsigned long));
7d9d8943
AM
3455static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3456 enum dwarf_attribute));
3457static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3458static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3459static const char *get_AT_string PARAMS ((dw_die_ref,
3460 enum dwarf_attribute));
3461static int get_AT_flag PARAMS ((dw_die_ref,
3462 enum dwarf_attribute));
3463static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3464 enum dwarf_attribute));
3465static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3466 enum dwarf_attribute));
3467static int is_c_family PARAMS ((void));
28985b81 3468static int is_java PARAMS ((void));
7d9d8943
AM
3469static int is_fortran PARAMS ((void));
3470static void remove_AT PARAMS ((dw_die_ref,
3471 enum dwarf_attribute));
3472static void remove_children PARAMS ((dw_die_ref));
3473static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3474static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref));
3475static dw_die_ref lookup_type_die PARAMS ((tree));
3476static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3477static dw_die_ref lookup_decl_die PARAMS ((tree));
3478static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3479static void print_spaces PARAMS ((FILE *));
3480static void print_die PARAMS ((dw_die_ref, FILE *));
3481static void print_dwarf_line_table PARAMS ((FILE *));
881c6935
JM
3482static void reverse_die_lists PARAMS ((dw_die_ref));
3483static void reverse_all_dies PARAMS ((dw_die_ref));
3484static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3485static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3486static void loc_checksum PARAMS ((dw_loc_descr_ref, struct md5_ctx *));
3487static void attr_checksum PARAMS ((dw_attr_ref, struct md5_ctx *));
3488static void die_checksum PARAMS ((dw_die_ref, struct md5_ctx *));
3489static void compute_section_prefix PARAMS ((dw_die_ref));
3490static int is_type_die PARAMS ((dw_die_ref));
3491static int is_comdat_die PARAMS ((dw_die_ref));
3492static int is_symbol_die PARAMS ((dw_die_ref));
881c6935
JM
3493static void assign_symbol_names PARAMS ((dw_die_ref));
3494static void break_out_includes PARAMS ((dw_die_ref));
7d9d8943
AM
3495static void add_sibling_attributes PARAMS ((dw_die_ref));
3496static void build_abbrev_table PARAMS ((dw_die_ref));
63e46568 3497static void output_location_lists PARAMS ((dw_die_ref));
7d9d8943
AM
3498static unsigned long size_of_string PARAMS ((const char *));
3499static int constant_size PARAMS ((long unsigned));
3500static unsigned long size_of_die PARAMS ((dw_die_ref));
3501static void calc_die_sizes PARAMS ((dw_die_ref));
1bfb5f8f
JM
3502static void mark_dies PARAMS ((dw_die_ref));
3503static void unmark_dies PARAMS ((dw_die_ref));
7d9d8943
AM
3504static unsigned long size_of_pubnames PARAMS ((void));
3505static unsigned long size_of_aranges PARAMS ((void));
3506static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3507static void output_value_format PARAMS ((dw_attr_ref));
3508static void output_abbrev_section PARAMS ((void));
881c6935 3509static void output_die_symbol PARAMS ((dw_die_ref));
7d9d8943
AM
3510static void output_die PARAMS ((dw_die_ref));
3511static void output_compilation_unit_header PARAMS ((void));
881c6935 3512static void output_comp_unit PARAMS ((dw_die_ref));
7d9d8943
AM
3513static const char *dwarf2_name PARAMS ((tree, int));
3514static void add_pubname PARAMS ((tree, dw_die_ref));
3515static void output_pubnames PARAMS ((void));
3516static void add_arange PARAMS ((tree, dw_die_ref));
3517static void output_aranges PARAMS ((void));
a20612aa
RH
3518static unsigned int add_ranges PARAMS ((tree));
3519static void output_ranges PARAMS ((void));
7d9d8943 3520static void output_line_info PARAMS ((void));
0b34cf1e 3521static void output_file_names PARAMS ((void));
7d9d8943
AM
3522static dw_die_ref base_type_die PARAMS ((tree));
3523static tree root_type PARAMS ((tree));
3524static int is_base_type PARAMS ((tree));
3525static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3526static int type_is_enum PARAMS ((tree));
3527static unsigned int reg_number PARAMS ((rtx));
3528static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
d8041cc8 3529static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
7d9d8943
AM
3530static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3531static int is_based_loc PARAMS ((rtx));
3532static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3533static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3534static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
d8041cc8 3535static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
7d9d8943
AM
3536static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3537static tree field_type PARAMS ((tree));
3538static unsigned int simple_type_align_in_bits PARAMS ((tree));
5f446d21 3539static unsigned int simple_decl_align_in_bits PARAMS ((tree));
7d9d8943
AM
3540static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3541static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3542static void add_AT_location_description PARAMS ((dw_die_ref,
3543 enum dwarf_attribute, rtx));
3544static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3545static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
d8041cc8 3546static rtx rtl_for_decl_location PARAMS ((tree));
7d9d8943 3547static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
1bfb5f8f 3548static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
7d9d8943
AM
3549static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3550static void add_bound_info PARAMS ((dw_die_ref,
3551 enum dwarf_attribute, tree));
3552static void add_subscript_info PARAMS ((dw_die_ref, tree));
3553static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3554static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3555static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3556static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3557static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3558static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3559static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3560static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3561static void push_decl_scope PARAMS ((tree));
3562static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3563static void pop_decl_scope PARAMS ((void));
3564static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3565 dw_die_ref));
3566static const char *type_tag PARAMS ((tree));
3567static tree member_declared_type PARAMS ((tree));
3568#if 0
3569static const char *decl_start_label PARAMS ((tree));
3570#endif
3571static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3572static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3573#if 0
3574static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3575#endif
3576static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3577static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3578static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3579static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3580static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3581static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3582static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3583static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3584static void gen_variable_die PARAMS ((tree, dw_die_ref));
3585static void gen_label_die PARAMS ((tree, dw_die_ref));
3586static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3587static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3588static void gen_field_die PARAMS ((tree, dw_die_ref));
3589static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3590static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3591static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3592static void gen_inheritance_die PARAMS ((tree, dw_die_ref));
3593static void gen_member_die PARAMS ((tree, dw_die_ref));
3594static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3595static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3596static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3597static void gen_type_die PARAMS ((tree, dw_die_ref));
3598static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3599static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3600static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3601static int is_redundant_typedef PARAMS ((tree));
3602static void gen_decl_die PARAMS ((tree, dw_die_ref));
981975b6
RH
3603static unsigned lookup_filename PARAMS ((const char *));
3604static void init_file_table PARAMS ((void));
7d9d8943
AM
3605static void add_incomplete_type PARAMS ((tree));
3606static void retry_incomplete_types PARAMS ((void));
3607static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
7d9d8943
AM
3608static rtx save_rtx PARAMS ((rtx));
3609static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
fc608b03 3610static int file_info_cmp PARAMS ((const void *, const void *));
84a5b4f8
DB
3611static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3612 const char *, const char *,
3613 const char *, unsigned));
3614static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3615 dw_loc_descr_ref,
3616 const char *, const char *, const char *));
3617static void output_loc_list PARAMS ((dw_loc_list_ref));
3618static char *gen_internal_sym PARAMS ((const char *));
7d9d8943
AM
3619
3620/* Section names used to hold DWARF debugging information. */
3621#ifndef DEBUG_INFO_SECTION
3622#define DEBUG_INFO_SECTION ".debug_info"
3623#endif
9d2f2c45
RH
3624#ifndef DEBUG_ABBREV_SECTION
3625#define DEBUG_ABBREV_SECTION ".debug_abbrev"
7d9d8943 3626#endif
9d2f2c45
RH
3627#ifndef DEBUG_ARANGES_SECTION
3628#define DEBUG_ARANGES_SECTION ".debug_aranges"
7d9d8943 3629#endif
9d2f2c45
RH
3630#ifndef DEBUG_MACINFO_SECTION
3631#define DEBUG_MACINFO_SECTION ".debug_macinfo"
7d9d8943
AM
3632#endif
3633#ifndef DEBUG_LINE_SECTION
3634#define DEBUG_LINE_SECTION ".debug_line"
3635#endif
9d2f2c45
RH
3636#ifndef DEBUG_LOC_SECTION
3637#define DEBUG_LOC_SECTION ".debug_loc"
7d9d8943 3638#endif
9d2f2c45
RH
3639#ifndef DEBUG_PUBNAMES_SECTION
3640#define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
7d9d8943 3641#endif
9d2f2c45
RH
3642#ifndef DEBUG_STR_SECTION
3643#define DEBUG_STR_SECTION ".debug_str"
7d9d8943 3644#endif
a20612aa
RH
3645#ifndef DEBUG_RANGES_SECTION
3646#define DEBUG_RANGES_SECTION ".debug_ranges"
3647#endif
7d9d8943
AM
3648
3649/* Standard ELF section names for compiled code and data. */
f99ffb60
RH
3650#ifndef TEXT_SECTION_NAME
3651#define TEXT_SECTION_NAME ".text"
7d9d8943
AM
3652#endif
3653
3654/* Labels we insert at beginning sections we can reference instead of
556273e0 3655 the section names themselves. */
7d9d8943
AM
3656
3657#ifndef TEXT_SECTION_LABEL
9d2f2c45 3658#define TEXT_SECTION_LABEL "Ltext"
7d9d8943
AM
3659#endif
3660#ifndef DEBUG_LINE_SECTION_LABEL
9d2f2c45 3661#define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
7d9d8943
AM
3662#endif
3663#ifndef DEBUG_INFO_SECTION_LABEL
9d2f2c45 3664#define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
7d9d8943 3665#endif
9d2f2c45
RH
3666#ifndef DEBUG_ABBREV_SECTION_LABEL
3667#define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
7d9d8943 3668#endif
9d2f2c45
RH
3669#ifndef DEBUG_LOC_SECTION_LABEL
3670#define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
63e46568 3671#endif
84a5b4f8
DB
3672#ifndef DEBUG_MACINFO_SECTION_LABEL
3673#define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3674#endif
a20612aa 3675
7d9d8943
AM
3676/* Definitions of defaults for formats and names of various special
3677 (artificial) labels which may be generated within this file (when the -g
3678 options is used and DWARF_DEBUGGING_INFO is in effect.
3679 If necessary, these may be overridden from within the tm.h file, but
3680 typically, overriding these defaults is unnecessary. */
3681
3682static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3683static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3684static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3685static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3686static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
84a5b4f8 3687static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
63e46568 3688static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
7d9d8943
AM
3689#ifndef TEXT_END_LABEL
3690#define TEXT_END_LABEL "Letext"
3691#endif
3692#ifndef DATA_END_LABEL
3693#define DATA_END_LABEL "Ledata"
3694#endif
3695#ifndef BSS_END_LABEL
3696#define BSS_END_LABEL "Lebss"
3697#endif
7d9d8943
AM
3698#ifndef BLOCK_BEGIN_LABEL
3699#define BLOCK_BEGIN_LABEL "LBB"
3700#endif
3701#ifndef BLOCK_END_LABEL
3702#define BLOCK_END_LABEL "LBE"
3703#endif
3704#ifndef BODY_BEGIN_LABEL
3705#define BODY_BEGIN_LABEL "Lbb"
3706#endif
3707#ifndef BODY_END_LABEL
3708#define BODY_END_LABEL "Lbe"
3709#endif
3710#ifndef LINE_CODE_LABEL
3711#define LINE_CODE_LABEL "LM"
3712#endif
3713#ifndef SEPARATE_LINE_CODE_LABEL
3714#define SEPARATE_LINE_CODE_LABEL "LSM"
3715#endif
3716\f
3717/* We allow a language front-end to designate a function that is to be
3718 called to "demangle" any name before it it put into a DIE. */
3719
3720static const char *(*demangle_name_func) PARAMS ((const char *));
3721
3722void
3723dwarf2out_set_demangle_name_func (func)
3724 const char *(*func) PARAMS ((const char *));
3725{
3726 demangle_name_func = func;
3727}
3728\f
3729/* Return an rtx like ORIG which lives forever. If we're doing GC,
3730 that means adding it to used_rtx_varray. If not, that means making
3731 a copy on the permanent_obstack. */
3732
3733static rtx
3734save_rtx (orig)
3735 register rtx orig;
3736{
1f8f4a0b 3737 VARRAY_PUSH_RTX (used_rtx_varray, orig);
7d9d8943
AM
3738
3739 return orig;
3740}
3741
3742/* Test if rtl node points to a pseudo register. */
3743
3744static inline int
3745is_pseudo_reg (rtl)
3746 register rtx rtl;
3747{
3748 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3749 || (GET_CODE (rtl) == SUBREG
ddef6bc7 3750 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
7d9d8943
AM
3751}
3752
3753/* Return a reference to a type, with its const and volatile qualifiers
3754 removed. */
3755
3756static inline tree
3757type_main_variant (type)
3758 register tree type;
3759{
3760 type = TYPE_MAIN_VARIANT (type);
3761
556273e0 3762 /* There really should be only one main variant among any group of variants
7d9d8943
AM
3763 of a given type (and all of the MAIN_VARIANT values for all members of
3764 the group should point to that one type) but sometimes the C front-end
3765 messes this up for array types, so we work around that bug here. */
3766
3767 if (TREE_CODE (type) == ARRAY_TYPE)
3768 while (type != TYPE_MAIN_VARIANT (type))
3769 type = TYPE_MAIN_VARIANT (type);
3770
3771 return type;
3772}
3773
3774/* Return non-zero if the given type node represents a tagged type. */
3775
3776static inline int
3777is_tagged_type (type)
3778 register tree type;
3779{
3780 register enum tree_code code = TREE_CODE (type);
3781
3782 return (code == RECORD_TYPE || code == UNION_TYPE
3783 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3784}
3785
3786/* Convert a DIE tag into its string name. */
3787
3788static const char *
3789dwarf_tag_name (tag)
3790 register unsigned tag;
3791{
3792 switch (tag)
3793 {
3794 case DW_TAG_padding:
3795 return "DW_TAG_padding";
3796 case DW_TAG_array_type:
3797 return "DW_TAG_array_type";
3798 case DW_TAG_class_type:
3799 return "DW_TAG_class_type";
3800 case DW_TAG_entry_point:
3801 return "DW_TAG_entry_point";
3802 case DW_TAG_enumeration_type:
3803 return "DW_TAG_enumeration_type";
3804 case DW_TAG_formal_parameter:
3805 return "DW_TAG_formal_parameter";
3806 case DW_TAG_imported_declaration:
3807 return "DW_TAG_imported_declaration";
3808 case DW_TAG_label:
3809 return "DW_TAG_label";
3810 case DW_TAG_lexical_block:
3811 return "DW_TAG_lexical_block";
3812 case DW_TAG_member:
3813 return "DW_TAG_member";
3814 case DW_TAG_pointer_type:
3815 return "DW_TAG_pointer_type";
3816 case DW_TAG_reference_type:
3817 return "DW_TAG_reference_type";
3818 case DW_TAG_compile_unit:
3819 return "DW_TAG_compile_unit";
3820 case DW_TAG_string_type:
3821 return "DW_TAG_string_type";
3822 case DW_TAG_structure_type:
3823 return "DW_TAG_structure_type";
3824 case DW_TAG_subroutine_type:
3825 return "DW_TAG_subroutine_type";
3826 case DW_TAG_typedef:
3827 return "DW_TAG_typedef";
3828 case DW_TAG_union_type:
3829 return "DW_TAG_union_type";
3830 case DW_TAG_unspecified_parameters:
3831 return "DW_TAG_unspecified_parameters";
3832 case DW_TAG_variant:
3833 return "DW_TAG_variant";
3834 case DW_TAG_common_block:
3835 return "DW_TAG_common_block";
3836 case DW_TAG_common_inclusion:
3837 return "DW_TAG_common_inclusion";
3838 case DW_TAG_inheritance:
3839 return "DW_TAG_inheritance";
3840 case DW_TAG_inlined_subroutine:
3841 return "DW_TAG_inlined_subroutine";
3842 case DW_TAG_module:
3843 return "DW_TAG_module";
3844 case DW_TAG_ptr_to_member_type:
3845 return "DW_TAG_ptr_to_member_type";
3846 case DW_TAG_set_type:
3847 return "DW_TAG_set_type";
3848 case DW_TAG_subrange_type:
3849 return "DW_TAG_subrange_type";
3850 case DW_TAG_with_stmt:
3851 return "DW_TAG_with_stmt";
3852 case DW_TAG_access_declaration:
3853 return "DW_TAG_access_declaration";
3854 case DW_TAG_base_type:
3855 return "DW_TAG_base_type";
3856 case DW_TAG_catch_block:
3857 return "DW_TAG_catch_block";
3858 case DW_TAG_const_type:
3859 return "DW_TAG_const_type";
3860 case DW_TAG_constant:
3861 return "DW_TAG_constant";
3862 case DW_TAG_enumerator:
3863 return "DW_TAG_enumerator";
3864 case DW_TAG_file_type:
3865 return "DW_TAG_file_type";
3866 case DW_TAG_friend:
3867 return "DW_TAG_friend";
3868 case DW_TAG_namelist:
3869 return "DW_TAG_namelist";
3870 case DW_TAG_namelist_item:
3871 return "DW_TAG_namelist_item";
3872 case DW_TAG_packed_type:
3873 return "DW_TAG_packed_type";
3874 case DW_TAG_subprogram:
3875 return "DW_TAG_subprogram";
3876 case DW_TAG_template_type_param:
3877 return "DW_TAG_template_type_param";
3878 case DW_TAG_template_value_param:
3879 return "DW_TAG_template_value_param";
3880 case DW_TAG_thrown_type:
3881 return "DW_TAG_thrown_type";
3882 case DW_TAG_try_block:
3883 return "DW_TAG_try_block";
3884 case DW_TAG_variant_part:
3885 return "DW_TAG_variant_part";
3886 case DW_TAG_variable:
3887 return "DW_TAG_variable";
3888 case DW_TAG_volatile_type:
3889 return "DW_TAG_volatile_type";
3890 case DW_TAG_MIPS_loop:
3891 return "DW_TAG_MIPS_loop";
3892 case DW_TAG_format_label:
3893 return "DW_TAG_format_label";
3894 case DW_TAG_function_template:
3895 return "DW_TAG_function_template";
3896 case DW_TAG_class_template:
3897 return "DW_TAG_class_template";
881c6935
JM
3898 case DW_TAG_GNU_BINCL:
3899 return "DW_TAG_GNU_BINCL";
3900 case DW_TAG_GNU_EINCL:
3901 return "DW_TAG_GNU_EINCL";
7d9d8943
AM
3902 default:
3903 return "DW_TAG_<unknown>";
3904 }
3905}
3906
3907/* Convert a DWARF attribute code into its string name. */
3908
3909static const char *
3910dwarf_attr_name (attr)
3911 register unsigned attr;
3912{
3913 switch (attr)
3914 {
3915 case DW_AT_sibling:
3916 return "DW_AT_sibling";
3917 case DW_AT_location:
3918 return "DW_AT_location";
3919 case DW_AT_name:
3920 return "DW_AT_name";
3921 case DW_AT_ordering:
3922 return "DW_AT_ordering";
3923 case DW_AT_subscr_data:
3924 return "DW_AT_subscr_data";
3925 case DW_AT_byte_size:
3926 return "DW_AT_byte_size";
3927 case DW_AT_bit_offset:
3928 return "DW_AT_bit_offset";
3929 case DW_AT_bit_size:
3930 return "DW_AT_bit_size";
3931 case DW_AT_element_list:
3932 return "DW_AT_element_list";
3933 case DW_AT_stmt_list:
3934 return "DW_AT_stmt_list";
3935 case DW_AT_low_pc:
3936 return "DW_AT_low_pc";
3937 case DW_AT_high_pc:
3938 return "DW_AT_high_pc";
3939 case DW_AT_language:
3940 return "DW_AT_language";
3941 case DW_AT_member:
3942 return "DW_AT_member";
3943 case DW_AT_discr:
3944 return "DW_AT_discr";
3945 case DW_AT_discr_value:
3946 return "DW_AT_discr_value";
3947 case DW_AT_visibility:
3948 return "DW_AT_visibility";
3949 case DW_AT_import:
3950 return "DW_AT_import";
3951 case DW_AT_string_length:
3952 return "DW_AT_string_length";
3953 case DW_AT_common_reference:
3954 return "DW_AT_common_reference";
3955 case DW_AT_comp_dir:
3956 return "DW_AT_comp_dir";
3957 case DW_AT_const_value:
3958 return "DW_AT_const_value";
3959 case DW_AT_containing_type:
3960 return "DW_AT_containing_type";
3961 case DW_AT_default_value:
3962 return "DW_AT_default_value";
3963 case DW_AT_inline:
3964 return "DW_AT_inline";
3965 case DW_AT_is_optional:
3966 return "DW_AT_is_optional";
3967 case DW_AT_lower_bound:
3968 return "DW_AT_lower_bound";
3969 case DW_AT_producer:
3970 return "DW_AT_producer";
3971 case DW_AT_prototyped:
3972 return "DW_AT_prototyped";
3973 case DW_AT_return_addr:
3974 return "DW_AT_return_addr";
3975 case DW_AT_start_scope:
3976 return "DW_AT_start_scope";
3977 case DW_AT_stride_size:
3978 return "DW_AT_stride_size";
3979 case DW_AT_upper_bound:
3980 return "DW_AT_upper_bound";
3981 case DW_AT_abstract_origin:
3982 return "DW_AT_abstract_origin";
3983 case DW_AT_accessibility:
3984 return "DW_AT_accessibility";
3985 case DW_AT_address_class:
3986 return "DW_AT_address_class";
3987 case DW_AT_artificial:
3988 return "DW_AT_artificial";
3989 case DW_AT_base_types:
3990 return "DW_AT_base_types";
3991 case DW_AT_calling_convention:
3992 return "DW_AT_calling_convention";
3993 case DW_AT_count:
3994 return "DW_AT_count";
3995 case DW_AT_data_member_location:
3996 return "DW_AT_data_member_location";
3997 case DW_AT_decl_column:
3998 return "DW_AT_decl_column";
3999 case DW_AT_decl_file:
4000 return "DW_AT_decl_file";
4001 case DW_AT_decl_line:
4002 return "DW_AT_decl_line";
4003 case DW_AT_declaration:
4004 return "DW_AT_declaration";
4005 case DW_AT_discr_list:
4006 return "DW_AT_discr_list";
4007 case DW_AT_encoding:
4008 return "DW_AT_encoding";
4009 case DW_AT_external:
4010 return "DW_AT_external";
4011 case DW_AT_frame_base:
4012 return "DW_AT_frame_base";
4013 case DW_AT_friend:
4014 return "DW_AT_friend";
4015 case DW_AT_identifier_case:
4016 return "DW_AT_identifier_case";
4017 case DW_AT_macro_info:
4018 return "DW_AT_macro_info";
4019 case DW_AT_namelist_items:
4020 return "DW_AT_namelist_items";
4021 case DW_AT_priority:
4022 return "DW_AT_priority";
4023 case DW_AT_segment:
4024 return "DW_AT_segment";
4025 case DW_AT_specification:
4026 return "DW_AT_specification";
4027 case DW_AT_static_link:
4028 return "DW_AT_static_link";
4029 case DW_AT_type:
4030 return "DW_AT_type";
4031 case DW_AT_use_location:
4032 return "DW_AT_use_location";
4033 case DW_AT_variable_parameter:
4034 return "DW_AT_variable_parameter";
4035 case DW_AT_virtuality:
4036 return "DW_AT_virtuality";
4037 case DW_AT_vtable_elem_location:
4038 return "DW_AT_vtable_elem_location";
4039
a20612aa
RH
4040 case DW_AT_allocated:
4041 return "DW_AT_allocated";
4042 case DW_AT_associated:
4043 return "DW_AT_associated";
4044 case DW_AT_data_location:
4045 return "DW_AT_data_location";
4046 case DW_AT_stride:
4047 return "DW_AT_stride";
4048 case DW_AT_entry_pc:
4049 return "DW_AT_entry_pc";
4050 case DW_AT_use_UTF8:
4051 return "DW_AT_use_UTF8";
4052 case DW_AT_extension:
4053 return "DW_AT_extension";
4054 case DW_AT_ranges:
4055 return "DW_AT_ranges";
4056 case DW_AT_trampoline:
4057 return "DW_AT_trampoline";
4058 case DW_AT_call_column:
4059 return "DW_AT_call_column";
4060 case DW_AT_call_file:
4061 return "DW_AT_call_file";
4062 case DW_AT_call_line:
4063 return "DW_AT_call_line";
4064
7d9d8943
AM
4065 case DW_AT_MIPS_fde:
4066 return "DW_AT_MIPS_fde";
4067 case DW_AT_MIPS_loop_begin:
4068 return "DW_AT_MIPS_loop_begin";
4069 case DW_AT_MIPS_tail_loop_begin:
4070 return "DW_AT_MIPS_tail_loop_begin";
4071 case DW_AT_MIPS_epilog_begin:
4072 return "DW_AT_MIPS_epilog_begin";
4073 case DW_AT_MIPS_loop_unroll_factor:
4074 return "DW_AT_MIPS_loop_unroll_factor";
4075 case DW_AT_MIPS_software_pipeline_depth:
4076 return "DW_AT_MIPS_software_pipeline_depth";
4077 case DW_AT_MIPS_linkage_name:
4078 return "DW_AT_MIPS_linkage_name";
4079 case DW_AT_MIPS_stride:
4080 return "DW_AT_MIPS_stride";
4081 case DW_AT_MIPS_abstract_name:
4082 return "DW_AT_MIPS_abstract_name";
4083 case DW_AT_MIPS_clone_origin:
4084 return "DW_AT_MIPS_clone_origin";
4085 case DW_AT_MIPS_has_inlines:
4086 return "DW_AT_MIPS_has_inlines";
4087
4088 case DW_AT_sf_names:
4089 return "DW_AT_sf_names";
4090 case DW_AT_src_info:
4091 return "DW_AT_src_info";
4092 case DW_AT_mac_info:
4093 return "DW_AT_mac_info";
4094 case DW_AT_src_coords:
4095 return "DW_AT_src_coords";
4096 case DW_AT_body_begin:
4097 return "DW_AT_body_begin";
4098 case DW_AT_body_end:
4099 return "DW_AT_body_end";
4100 default:
4101 return "DW_AT_<unknown>";
4102 }
4103}
4104
4105/* Convert a DWARF value form code into its string name. */
4106
4107static const char *
4108dwarf_form_name (form)
4109 register unsigned form;
4110{
4111 switch (form)
4112 {
4113 case DW_FORM_addr:
4114 return "DW_FORM_addr";
4115 case DW_FORM_block2:
4116 return "DW_FORM_block2";
4117 case DW_FORM_block4:
4118 return "DW_FORM_block4";
4119 case DW_FORM_data2:
4120 return "DW_FORM_data2";
4121 case DW_FORM_data4:
4122 return "DW_FORM_data4";
4123 case DW_FORM_data8:
4124 return "DW_FORM_data8";
4125 case DW_FORM_string:
4126 return "DW_FORM_string";
4127 case DW_FORM_block:
4128 return "DW_FORM_block";
4129 case DW_FORM_block1:
4130 return "DW_FORM_block1";
4131 case DW_FORM_data1:
4132 return "DW_FORM_data1";
4133 case DW_FORM_flag:
4134 return "DW_FORM_flag";
4135 case DW_FORM_sdata:
4136 return "DW_FORM_sdata";
4137 case DW_FORM_strp:
4138 return "DW_FORM_strp";
4139 case DW_FORM_udata:
4140 return "DW_FORM_udata";
4141 case DW_FORM_ref_addr:
4142 return "DW_FORM_ref_addr";
4143 case DW_FORM_ref1:
4144 return "DW_FORM_ref1";
4145 case DW_FORM_ref2:
4146 return "DW_FORM_ref2";
4147 case DW_FORM_ref4:
4148 return "DW_FORM_ref4";
4149 case DW_FORM_ref8:
4150 return "DW_FORM_ref8";
4151 case DW_FORM_ref_udata:
4152 return "DW_FORM_ref_udata";
4153 case DW_FORM_indirect:
4154 return "DW_FORM_indirect";
3f76745e 4155 default:
7d9d8943 4156 return "DW_FORM_<unknown>";
a3f97cbb
JW
4157 }
4158}
4159
3f76745e 4160/* Convert a DWARF type code into its string name. */
71dfc51f 4161
487a6e06 4162#if 0
d560ee52 4163static const char *
3f76745e
JM
4164dwarf_type_encoding_name (enc)
4165 register unsigned enc;
a3f97cbb 4166{
3f76745e 4167 switch (enc)
a3f97cbb 4168 {
3f76745e
JM
4169 case DW_ATE_address:
4170 return "DW_ATE_address";
4171 case DW_ATE_boolean:
4172 return "DW_ATE_boolean";
4173 case DW_ATE_complex_float:
4174 return "DW_ATE_complex_float";
4175 case DW_ATE_float:
4176 return "DW_ATE_float";
4177 case DW_ATE_signed:
4178 return "DW_ATE_signed";
4179 case DW_ATE_signed_char:
4180 return "DW_ATE_signed_char";
4181 case DW_ATE_unsigned:
4182 return "DW_ATE_unsigned";
4183 case DW_ATE_unsigned_char:
4184 return "DW_ATE_unsigned_char";
4185 default:
4186 return "DW_ATE_<unknown>";
4187 }
a3f97cbb 4188}
487a6e06 4189#endif
3f76745e
JM
4190\f
4191/* Determine the "ultimate origin" of a decl. The decl may be an inlined
4192 instance of an inlined instance of a decl which is local to an inline
4193 function, so we have to trace all of the way back through the origin chain
4194 to find out what sort of node actually served as the original seed for the
4195 given block. */
a3f97cbb 4196
3f76745e
JM
4197static tree
4198decl_ultimate_origin (decl)
4199 register tree decl;
a3f97cbb 4200{
10a11b75
JM
4201 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4202 nodes in the function to point to themselves; ignore that if
4203 we're trying to output the abstract instance of this function. */
4204 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4205 return NULL_TREE;
4206
556273e0 4207#ifdef ENABLE_CHECKING
02e24c7a
MM
4208 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4209 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4210 most distant ancestor, this should never happen. */
4211 abort ();
4212#endif
3f76745e 4213
02e24c7a 4214 return DECL_ABSTRACT_ORIGIN (decl);
a3f97cbb
JW
4215}
4216
3f76745e
JM
4217/* Determine the "ultimate origin" of a block. The block may be an inlined
4218 instance of an inlined instance of a block which is local to an inline
4219 function, so we have to trace all of the way back through the origin chain
4220 to find out what sort of node actually served as the original seed for the
4221 given block. */
71dfc51f 4222
3f76745e
JM
4223static tree
4224block_ultimate_origin (block)
4225 register tree block;
a3f97cbb 4226{
3f76745e 4227 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
71dfc51f 4228
10a11b75
JM
4229 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4230 nodes in the function to point to themselves; ignore that if
4231 we're trying to output the abstract instance of this function. */
4232 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4233 return NULL_TREE;
4234
3f76745e
JM
4235 if (immediate_origin == NULL_TREE)
4236 return NULL_TREE;
4237 else
4238 {
4239 register tree ret_val;
4240 register tree lookahead = immediate_origin;
71dfc51f 4241
3f76745e
JM
4242 do
4243 {
4244 ret_val = lookahead;
4245 lookahead = (TREE_CODE (ret_val) == BLOCK)
4246 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
4247 : NULL;
4248 }
4249 while (lookahead != NULL && lookahead != ret_val);
4250
4251 return ret_val;
4252 }
a3f97cbb
JW
4253}
4254
3f76745e
JM
4255/* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4256 of a virtual function may refer to a base class, so we check the 'this'
4257 parameter. */
71dfc51f 4258
3f76745e
JM
4259static tree
4260decl_class_context (decl)
4261 tree decl;
a3f97cbb 4262{
3f76745e 4263 tree context = NULL_TREE;
71dfc51f 4264
3f76745e
JM
4265 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4266 context = DECL_CONTEXT (decl);
4267 else
4268 context = TYPE_MAIN_VARIANT
4269 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
71dfc51f 4270
2f939d94 4271 if (context && !TYPE_P (context))
3f76745e
JM
4272 context = NULL_TREE;
4273
4274 return context;
a3f97cbb
JW
4275}
4276\f
a96c67ec 4277/* Add an attribute/value pair to a DIE. We build the lists up in reverse
881c6935 4278 addition order, and correct that in reverse_all_dies. */
71dfc51f
RK
4279
4280static inline void
3f76745e
JM
4281add_dwarf_attr (die, attr)
4282 register dw_die_ref die;
4283 register dw_attr_ref attr;
a3f97cbb 4284{
3f76745e 4285 if (die != NULL && attr != NULL)
a3f97cbb 4286 {
a96c67ec
JM
4287 attr->dw_attr_next = die->die_attr;
4288 die->die_attr = attr;
a3f97cbb
JW
4289 }
4290}
4291
c6991660 4292static inline dw_val_class AT_class PARAMS ((dw_attr_ref));
a96c67ec
JM
4293static inline dw_val_class
4294AT_class (a)
4295 dw_attr_ref a;
4296{
4297 return a->dw_attr_val.val_class;
4298}
4299
3f76745e 4300/* Add a flag value attribute to a DIE. */
71dfc51f 4301
3f76745e
JM
4302static inline void
4303add_AT_flag (die, attr_kind, flag)
4304 register dw_die_ref die;
4305 register enum dwarf_attribute attr_kind;
4306 register unsigned flag;
a3f97cbb 4307{
3f76745e 4308 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4309
3f76745e
JM
4310 attr->dw_attr_next = NULL;
4311 attr->dw_attr = attr_kind;
4312 attr->dw_attr_val.val_class = dw_val_class_flag;
4313 attr->dw_attr_val.v.val_flag = flag;
4314 add_dwarf_attr (die, attr);
a3f97cbb
JW
4315}
4316
c6991660 4317static inline unsigned AT_flag PARAMS ((dw_attr_ref));
a96c67ec
JM
4318static inline unsigned
4319AT_flag (a)
4320 register dw_attr_ref a;
4321{
4322 if (a && AT_class (a) == dw_val_class_flag)
4323 return a->dw_attr_val.v.val_flag;
4324
40e8cc95 4325 abort ();
a96c67ec
JM
4326}
4327
3f76745e 4328/* Add a signed integer attribute value to a DIE. */
71dfc51f 4329
3f76745e
JM
4330static inline void
4331add_AT_int (die, attr_kind, int_val)
4332 register dw_die_ref die;
4333 register enum dwarf_attribute attr_kind;
4334 register long int int_val;
a3f97cbb 4335{
3f76745e
JM
4336 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4337
4338 attr->dw_attr_next = NULL;
4339 attr->dw_attr = attr_kind;
4340 attr->dw_attr_val.val_class = dw_val_class_const;
4341 attr->dw_attr_val.v.val_int = int_val;
4342 add_dwarf_attr (die, attr);
a3f97cbb
JW
4343}
4344
c6991660 4345static inline long int AT_int PARAMS ((dw_attr_ref));
a96c67ec
JM
4346static inline long int
4347AT_int (a)
4348 register dw_attr_ref a;
4349{
4350 if (a && AT_class (a) == dw_val_class_const)
4351 return a->dw_attr_val.v.val_int;
4352
40e8cc95 4353 abort ();
a96c67ec
JM
4354}
4355
3f76745e 4356/* Add an unsigned integer attribute value to a DIE. */
71dfc51f 4357
3f76745e
JM
4358static inline void
4359add_AT_unsigned (die, attr_kind, unsigned_val)
4360 register dw_die_ref die;
4361 register enum dwarf_attribute attr_kind;
4362 register unsigned long unsigned_val;
a3f97cbb 4363{
3f76745e
JM
4364 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4365
4366 attr->dw_attr_next = NULL;
4367 attr->dw_attr = attr_kind;
4368 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4369 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4370 add_dwarf_attr (die, attr);
a3f97cbb 4371}
71dfc51f 4372
c6991660 4373static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
a96c67ec
JM
4374static inline unsigned long
4375AT_unsigned (a)
4376 register dw_attr_ref a;
4377{
4378 if (a && AT_class (a) == dw_val_class_unsigned_const)
4379 return a->dw_attr_val.v.val_unsigned;
4380
40e8cc95 4381 abort ();
a96c67ec
JM
4382}
4383
3f76745e
JM
4384/* Add an unsigned double integer attribute value to a DIE. */
4385
4386static inline void
4387add_AT_long_long (die, attr_kind, val_hi, val_low)
a3f97cbb 4388 register dw_die_ref die;
3f76745e
JM
4389 register enum dwarf_attribute attr_kind;
4390 register unsigned long val_hi;
4391 register unsigned long val_low;
a3f97cbb 4392{
3f76745e 4393 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4394
3f76745e
JM
4395 attr->dw_attr_next = NULL;
4396 attr->dw_attr = attr_kind;
4397 attr->dw_attr_val.val_class = dw_val_class_long_long;
4398 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4399 attr->dw_attr_val.v.val_long_long.low = val_low;
4400 add_dwarf_attr (die, attr);
4401}
71dfc51f 4402
3f76745e 4403/* Add a floating point attribute value to a DIE and return it. */
71dfc51f 4404
3f76745e
JM
4405static inline void
4406add_AT_float (die, attr_kind, length, array)
4407 register dw_die_ref die;
4408 register enum dwarf_attribute attr_kind;
4409 register unsigned length;
4410 register long *array;
4411{
4412 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4413
4414 attr->dw_attr_next = NULL;
4415 attr->dw_attr = attr_kind;
4416 attr->dw_attr_val.val_class = dw_val_class_float;
4417 attr->dw_attr_val.v.val_float.length = length;
4418 attr->dw_attr_val.v.val_float.array = array;
4419 add_dwarf_attr (die, attr);
a3f97cbb
JW
4420}
4421
3f76745e 4422/* Add a string attribute value to a DIE. */
71dfc51f 4423
3f76745e
JM
4424static inline void
4425add_AT_string (die, attr_kind, str)
a3f97cbb 4426 register dw_die_ref die;
3f76745e 4427 register enum dwarf_attribute attr_kind;
d560ee52 4428 register const char *str;
a3f97cbb 4429{
3f76745e 4430 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4431
3f76745e
JM
4432 attr->dw_attr_next = NULL;
4433 attr->dw_attr = attr_kind;
4434 attr->dw_attr_val.val_class = dw_val_class_str;
4435 attr->dw_attr_val.v.val_str = xstrdup (str);
4436 add_dwarf_attr (die, attr);
4437}
71dfc51f 4438
c6991660 4439static inline const char *AT_string PARAMS ((dw_attr_ref));
a96c67ec
JM
4440static inline const char *
4441AT_string (a)
4442 register dw_attr_ref a;
4443{
4444 if (a && AT_class (a) == dw_val_class_str)
4445 return a->dw_attr_val.v.val_str;
4446
40e8cc95 4447 abort ();
a96c67ec
JM
4448}
4449
3f76745e 4450/* Add a DIE reference attribute value to a DIE. */
71dfc51f 4451
3f76745e
JM
4452static inline void
4453add_AT_die_ref (die, attr_kind, targ_die)
4454 register dw_die_ref die;
4455 register enum dwarf_attribute attr_kind;
4456 register dw_die_ref targ_die;
4457{
4458 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4459
3f76745e
JM
4460 attr->dw_attr_next = NULL;
4461 attr->dw_attr = attr_kind;
4462 attr->dw_attr_val.val_class = dw_val_class_die_ref;
881c6935
JM
4463 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4464 attr->dw_attr_val.v.val_die_ref.external = 0;
3f76745e
JM
4465 add_dwarf_attr (die, attr);
4466}
b1ccbc24 4467
c6991660 4468static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
a96c67ec
JM
4469static inline dw_die_ref
4470AT_ref (a)
4471 register dw_attr_ref a;
4472{
4473 if (a && AT_class (a) == dw_val_class_die_ref)
881c6935 4474 return a->dw_attr_val.v.val_die_ref.die;
a96c67ec 4475
40e8cc95 4476 abort ();
a96c67ec
JM
4477}
4478
881c6935
JM
4479static inline int AT_ref_external PARAMS ((dw_attr_ref));
4480static inline int
4481AT_ref_external (a)
4482 register dw_attr_ref a;
4483{
4484 if (a && AT_class (a) == dw_val_class_die_ref)
4485 return a->dw_attr_val.v.val_die_ref.external;
4486
4487 return 0;
4488}
4489
4490static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
4491static inline void
4492set_AT_ref_external (a, i)
4493 register dw_attr_ref a;
4494 int i;
4495{
4496 if (a && AT_class (a) == dw_val_class_die_ref)
4497 a->dw_attr_val.v.val_die_ref.external = i;
4498 else
4499 abort ();
4500}
4501
3f76745e 4502/* Add an FDE reference attribute value to a DIE. */
b1ccbc24 4503
3f76745e
JM
4504static inline void
4505add_AT_fde_ref (die, attr_kind, targ_fde)
4506 register dw_die_ref die;
4507 register enum dwarf_attribute attr_kind;
4508 register unsigned targ_fde;
4509{
4510 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
b1ccbc24 4511
3f76745e
JM
4512 attr->dw_attr_next = NULL;
4513 attr->dw_attr = attr_kind;
4514 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4515 attr->dw_attr_val.v.val_fde_index = targ_fde;
4516 add_dwarf_attr (die, attr);
a3f97cbb 4517}
71dfc51f 4518
3f76745e 4519/* Add a location description attribute value to a DIE. */
71dfc51f 4520
3f76745e
JM
4521static inline void
4522add_AT_loc (die, attr_kind, loc)
4523 register dw_die_ref die;
4524 register enum dwarf_attribute attr_kind;
4525 register dw_loc_descr_ref loc;
4526{
4527 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4528
3f76745e
JM
4529 attr->dw_attr_next = NULL;
4530 attr->dw_attr = attr_kind;
4531 attr->dw_attr_val.val_class = dw_val_class_loc;
4532 attr->dw_attr_val.v.val_loc = loc;
4533 add_dwarf_attr (die, attr);
a3f97cbb
JW
4534}
4535
c6991660 4536static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
a96c67ec
JM
4537static inline dw_loc_descr_ref
4538AT_loc (a)
4539 register dw_attr_ref a;
4540{
4541 if (a && AT_class (a) == dw_val_class_loc)
4542 return a->dw_attr_val.v.val_loc;
4543
40e8cc95 4544 abort ();
a96c67ec
JM
4545}
4546
63e46568
DB
4547static inline void
4548add_AT_loc_list (die, attr_kind, loc_list)
4549 register dw_die_ref die;
4550 register enum dwarf_attribute attr_kind;
4551 register dw_loc_list_ref loc_list;
4552{
4553 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4554
4555 attr->dw_attr_next = NULL;
4556 attr->dw_attr = attr_kind;
4557 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4558 attr->dw_attr_val.v.val_loc_list = loc_list;
4559 add_dwarf_attr (die, attr);
4560 have_location_lists = 1;
4561}
4562
4563static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
4564
4565static inline dw_loc_list_ref
4566AT_loc_list (a)
4567 register dw_attr_ref a;
4568{
4569 if (a && AT_class (a) == dw_val_class_loc_list)
4570 return a->dw_attr_val.v.val_loc_list;
4571
4572 abort ();
4573}
4574
3f76745e 4575/* Add an address constant attribute value to a DIE. */
71dfc51f 4576
3f76745e
JM
4577static inline void
4578add_AT_addr (die, attr_kind, addr)
4579 register dw_die_ref die;
4580 register enum dwarf_attribute attr_kind;
1865dbb5 4581 rtx addr;
a3f97cbb 4582{
3f76745e 4583 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4584
3f76745e
JM
4585 attr->dw_attr_next = NULL;
4586 attr->dw_attr = attr_kind;
4587 attr->dw_attr_val.val_class = dw_val_class_addr;
4588 attr->dw_attr_val.v.val_addr = addr;
4589 add_dwarf_attr (die, attr);
a3f97cbb
JW
4590}
4591
c6991660 4592static inline rtx AT_addr PARAMS ((dw_attr_ref));
1865dbb5 4593static inline rtx
a96c67ec
JM
4594AT_addr (a)
4595 register dw_attr_ref a;
4596{
4597 if (a && AT_class (a) == dw_val_class_addr)
4598 return a->dw_attr_val.v.val_addr;
4599
40e8cc95 4600 abort ();
a96c67ec
JM
4601}
4602
3f76745e 4603/* Add a label identifier attribute value to a DIE. */
71dfc51f 4604
3f76745e
JM
4605static inline void
4606add_AT_lbl_id (die, attr_kind, lbl_id)
4607 register dw_die_ref die;
4608 register enum dwarf_attribute attr_kind;
d3e3972c 4609 register const char *lbl_id;
a3f97cbb 4610{
3f76745e 4611 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4612
3f76745e
JM
4613 attr->dw_attr_next = NULL;
4614 attr->dw_attr = attr_kind;
4615 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4616 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4617 add_dwarf_attr (die, attr);
4618}
71dfc51f 4619
3f76745e
JM
4620/* Add a section offset attribute value to a DIE. */
4621
4622static inline void
8b790721 4623add_AT_lbl_offset (die, attr_kind, label)
3f76745e
JM
4624 register dw_die_ref die;
4625 register enum dwarf_attribute attr_kind;
d3e3972c 4626 register const char *label;
3f76745e
JM
4627{
4628 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4629
3f76745e
JM
4630 attr->dw_attr_next = NULL;
4631 attr->dw_attr = attr_kind;
8b790721 4632 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
a96c67ec 4633 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
3f76745e 4634 add_dwarf_attr (die, attr);
a3f97cbb
JW
4635}
4636
a20612aa
RH
4637/* Add an offset attribute value to a DIE. */
4638
4639static void
4640add_AT_offset (die, attr_kind, offset)
4641 register dw_die_ref die;
4642 register enum dwarf_attribute attr_kind;
4643 register unsigned long offset;
4644{
4645 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4646
4647 attr->dw_attr_next = NULL;
4648 attr->dw_attr = attr_kind;
4649 attr->dw_attr_val.val_class = dw_val_class_offset;
4650 attr->dw_attr_val.v.val_offset = offset;
4651 add_dwarf_attr (die, attr);
4652}
4653
c6991660 4654static inline const char *AT_lbl PARAMS ((dw_attr_ref));
a96c67ec
JM
4655static inline const char *
4656AT_lbl (a)
4657 register dw_attr_ref a;
a3f97cbb 4658{
a96c67ec
JM
4659 if (a && (AT_class (a) == dw_val_class_lbl_id
4660 || AT_class (a) == dw_val_class_lbl_offset))
4661 return a->dw_attr_val.v.val_lbl_id;
71dfc51f 4662
40e8cc95 4663 abort ();
a3f97cbb
JW
4664}
4665
3f76745e 4666/* Get the attribute of type attr_kind. */
71dfc51f 4667
3f76745e
JM
4668static inline dw_attr_ref
4669get_AT (die, attr_kind)
4670 register dw_die_ref die;
4671 register enum dwarf_attribute attr_kind;
f37230f0 4672{
3f76745e
JM
4673 register dw_attr_ref a;
4674 register dw_die_ref spec = NULL;
556273e0 4675
3f76745e
JM
4676 if (die != NULL)
4677 {
4678 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4679 {
4680 if (a->dw_attr == attr_kind)
4681 return a;
71dfc51f 4682
3f76745e
JM
4683 if (a->dw_attr == DW_AT_specification
4684 || a->dw_attr == DW_AT_abstract_origin)
a96c67ec 4685 spec = AT_ref (a);
3f76745e 4686 }
71dfc51f 4687
3f76745e
JM
4688 if (spec)
4689 return get_AT (spec, attr_kind);
4690 }
4691
4692 return NULL;
f37230f0
JM
4693}
4694
3f76745e
JM
4695/* Return the "low pc" attribute value, typically associated with
4696 a subprogram DIE. Return null if the "low pc" attribute is
4697 either not prsent, or if it cannot be represented as an
4698 assembler label identifier. */
71dfc51f 4699
a96c67ec 4700static inline const char *
3f76745e
JM
4701get_AT_low_pc (die)
4702 register dw_die_ref die;
7e23cb16 4703{
3f76745e 4704 register dw_attr_ref a = get_AT (die, DW_AT_low_pc);
40e8cc95 4705 return a ? AT_lbl (a) : NULL;
7e23cb16
JM
4706}
4707
3f76745e
JM
4708/* Return the "high pc" attribute value, typically associated with
4709 a subprogram DIE. Return null if the "high pc" attribute is
4710 either not prsent, or if it cannot be represented as an
4711 assembler label identifier. */
71dfc51f 4712
a96c67ec 4713static inline const char *
3f76745e 4714get_AT_hi_pc (die)
a3f97cbb
JW
4715 register dw_die_ref die;
4716{
3f76745e 4717 register dw_attr_ref a = get_AT (die, DW_AT_high_pc);
40e8cc95 4718 return a ? AT_lbl (a) : NULL;
3f76745e
JM
4719}
4720
4721/* Return the value of the string attribute designated by ATTR_KIND, or
4722 NULL if it is not present. */
71dfc51f 4723
a96c67ec 4724static inline const char *
3f76745e
JM
4725get_AT_string (die, attr_kind)
4726 register dw_die_ref die;
4727 register enum dwarf_attribute attr_kind;
4728{
4729 register dw_attr_ref a = get_AT (die, attr_kind);
40e8cc95 4730 return a ? AT_string (a) : NULL;
a3f97cbb
JW
4731}
4732
3f76745e
JM
4733/* Return the value of the flag attribute designated by ATTR_KIND, or -1
4734 if it is not present. */
71dfc51f 4735
3f76745e
JM
4736static inline int
4737get_AT_flag (die, attr_kind)
4738 register dw_die_ref die;
4739 register enum dwarf_attribute attr_kind;
a3f97cbb 4740{
3f76745e 4741 register dw_attr_ref a = get_AT (die, attr_kind);
40e8cc95 4742 return a ? AT_flag (a) : 0;
a3f97cbb
JW
4743}
4744
3f76745e
JM
4745/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4746 if it is not present. */
71dfc51f 4747
3f76745e
JM
4748static inline unsigned
4749get_AT_unsigned (die, attr_kind)
4750 register dw_die_ref die;
4751 register enum dwarf_attribute attr_kind;
a3f97cbb 4752{
3f76745e 4753 register dw_attr_ref a = get_AT (die, attr_kind);
40e8cc95 4754 return a ? AT_unsigned (a) : 0;
a96c67ec 4755}
71dfc51f 4756
a96c67ec
JM
4757static inline dw_die_ref
4758get_AT_ref (die, attr_kind)
4759 dw_die_ref die;
4760 register enum dwarf_attribute attr_kind;
4761{
4762 register dw_attr_ref a = get_AT (die, attr_kind);
40e8cc95 4763 return a ? AT_ref (a) : NULL;
3f76745e 4764}
71dfc51f 4765
3f76745e
JM
4766static inline int
4767is_c_family ()
4768{
4769 register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
71dfc51f 4770
3f76745e
JM
4771 return (lang == DW_LANG_C || lang == DW_LANG_C89
4772 || lang == DW_LANG_C_plus_plus);
556273e0 4773}
71dfc51f 4774
3f76745e
JM
4775static inline int
4776is_fortran ()
4777{
4778 register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
71dfc51f 4779
3f76745e 4780 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
556273e0 4781}
71dfc51f 4782
28985b81
AG
4783static inline int
4784is_java ()
4785{
4786 register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4787
4788 return (lang == DW_LANG_Java);
4789}
4790
10a11b75 4791/* Free up the memory used by A. */
71dfc51f 4792
c6991660 4793static inline void free_AT PARAMS ((dw_attr_ref));
3f76745e 4794static inline void
10a11b75
JM
4795free_AT (a)
4796 dw_attr_ref a;
4797{
4798 switch (AT_class (a))
4799 {
10a11b75
JM
4800 case dw_val_class_str:
4801 case dw_val_class_lbl_id:
4802 case dw_val_class_lbl_offset:
4803 free (a->dw_attr_val.v.val_str);
4804 break;
4805
3724ec07
WC
4806 case dw_val_class_float:
4807 free (a->dw_attr_val.v.val_float.array);
4808 break;
0b34cf1e 4809
10a11b75
JM
4810 default:
4811 break;
4812 }
4813
4814 free (a);
556273e0 4815}
10a11b75
JM
4816
4817/* Remove the specified attribute if present. */
4818
4819static void
3f76745e
JM
4820remove_AT (die, attr_kind)
4821 register dw_die_ref die;
4822 register enum dwarf_attribute attr_kind;
4823{
a96c67ec 4824 register dw_attr_ref *p;
6d649d26 4825 register dw_attr_ref removed = NULL;
a3f97cbb 4826
3f76745e
JM
4827 if (die != NULL)
4828 {
a96c67ec
JM
4829 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4830 if ((*p)->dw_attr == attr_kind)
4831 {
4832 removed = *p;
4833 *p = (*p)->dw_attr_next;
4834 break;
4835 }
71dfc51f 4836
a96c67ec 4837 if (removed != 0)
10a11b75
JM
4838 free_AT (removed);
4839 }
4840}
71dfc51f 4841
10a11b75 4842/* Free up the memory used by DIE. */
71dfc51f 4843
c6991660 4844static inline void free_die PARAMS ((dw_die_ref));
10a11b75
JM
4845static inline void
4846free_die (die)
4847 dw_die_ref die;
4848{
4849 remove_children (die);
4850 free (die);
3f76745e 4851}
71dfc51f 4852
3f76745e 4853/* Discard the children of this DIE. */
71dfc51f 4854
10a11b75 4855static void
3f76745e
JM
4856remove_children (die)
4857 register dw_die_ref die;
4858{
4859 register dw_die_ref child_die = die->die_child;
4860
4861 die->die_child = NULL;
3f76745e
JM
4862
4863 while (child_die != NULL)
a3f97cbb 4864 {
3f76745e
JM
4865 register dw_die_ref tmp_die = child_die;
4866 register dw_attr_ref a;
71dfc51f 4867
3f76745e 4868 child_die = child_die->die_sib;
556273e0
KH
4869
4870 for (a = tmp_die->die_attr; a != NULL;)
a3f97cbb 4871 {
3f76745e 4872 register dw_attr_ref tmp_a = a;
71dfc51f 4873
3f76745e 4874 a = a->dw_attr_next;
10a11b75 4875 free_AT (tmp_a);
a3f97cbb 4876 }
71dfc51f 4877
10a11b75 4878 free_die (tmp_die);
3f76745e
JM
4879 }
4880}
71dfc51f 4881
a96c67ec 4882/* Add a child DIE below its parent. We build the lists up in reverse
881c6935 4883 addition order, and correct that in reverse_all_dies. */
71dfc51f 4884
3f76745e
JM
4885static inline void
4886add_child_die (die, child_die)
4887 register dw_die_ref die;
4888 register dw_die_ref child_die;
4889{
4890 if (die != NULL && child_die != NULL)
e90b62db 4891 {
3a88cbd1
JL
4892 if (die == child_die)
4893 abort ();
3f76745e 4894 child_die->die_parent = die;
a96c67ec
JM
4895 child_die->die_sib = die->die_child;
4896 die->die_child = child_die;
3f76745e
JM
4897 }
4898}
4899
2081603c
JM
4900/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4901 is the specification, to the front of PARENT's list of children. */
10a11b75
JM
4902
4903static void
4904splice_child_die (parent, child)
4905 dw_die_ref parent, child;
4906{
4907 dw_die_ref *p;
4908
4909 /* We want the declaration DIE from inside the class, not the
4910 specification DIE at toplevel. */
4911 if (child->die_parent != parent)
2081603c
JM
4912 {
4913 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
4914 if (tmp)
4915 child = tmp;
4916 }
10a11b75 4917
2081603c
JM
4918 if (child->die_parent != parent
4919 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
10a11b75
JM
4920 abort ();
4921
5de0e8d4 4922 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
10a11b75
JM
4923 if (*p == child)
4924 {
4925 *p = child->die_sib;
4926 break;
4927 }
4928
4929 child->die_sib = parent->die_child;
4930 parent->die_child = child;
4931}
4932
3f76745e
JM
4933/* Return a pointer to a newly created DIE node. */
4934
4935static inline dw_die_ref
4936new_die (tag_value, parent_die)
4937 register enum dwarf_tag tag_value;
4938 register dw_die_ref parent_die;
4939{
3f4907a6 4940 register dw_die_ref die = (dw_die_ref) xcalloc (1, sizeof (die_node));
3f76745e
JM
4941
4942 die->die_tag = tag_value;
3f76745e
JM
4943
4944 if (parent_die != NULL)
4945 add_child_die (parent_die, die);
4946 else
ef76d03b
JW
4947 {
4948 limbo_die_node *limbo_node;
4949
4950 limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
4951 limbo_node->die = die;
4952 limbo_node->next = limbo_die_list;
4953 limbo_die_list = limbo_node;
4954 }
71dfc51f 4955
3f76745e
JM
4956 return die;
4957}
71dfc51f 4958
3f76745e 4959/* Return the DIE associated with the given type specifier. */
71dfc51f 4960
3f76745e
JM
4961static inline dw_die_ref
4962lookup_type_die (type)
4963 register tree type;
4964{
4061f623
BS
4965 if (TREE_CODE (type) == VECTOR_TYPE)
4966 type = TYPE_DEBUG_REPRESENTATION_TYPE (type);
3f76745e
JM
4967 return (dw_die_ref) TYPE_SYMTAB_POINTER (type);
4968}
e90b62db 4969
3f76745e 4970/* Equate a DIE to a given type specifier. */
71dfc51f 4971
10a11b75 4972static inline void
3f76745e
JM
4973equate_type_number_to_die (type, type_die)
4974 register tree type;
4975 register dw_die_ref type_die;
4976{
4977 TYPE_SYMTAB_POINTER (type) = (char *) type_die;
4978}
71dfc51f 4979
3f76745e 4980/* Return the DIE associated with a given declaration. */
71dfc51f 4981
3f76745e
JM
4982static inline dw_die_ref
4983lookup_decl_die (decl)
4984 register tree decl;
4985{
4986 register unsigned decl_id = DECL_UID (decl);
4987
4988 return (decl_id < decl_die_table_in_use
4989 ? decl_die_table[decl_id] : NULL);
a3f97cbb
JW
4990}
4991
3f76745e 4992/* Equate a DIE to a particular declaration. */
71dfc51f 4993
3f76745e
JM
4994static void
4995equate_decl_number_to_die (decl, decl_die)
4996 register tree decl;
4997 register dw_die_ref decl_die;
a3f97cbb 4998{
3f76745e 4999 register unsigned decl_id = DECL_UID (decl);
3f76745e 5000 register unsigned num_allocated;
d291dd49 5001
3f76745e 5002 if (decl_id >= decl_die_table_allocated)
a3f97cbb 5003 {
3f76745e
JM
5004 num_allocated
5005 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5006 / DECL_DIE_TABLE_INCREMENT)
5007 * DECL_DIE_TABLE_INCREMENT;
5008
5009 decl_die_table
5010 = (dw_die_ref *) xrealloc (decl_die_table,
5011 sizeof (dw_die_ref) * num_allocated);
5012
961192e1 5013 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
3f76745e
JM
5014 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5015 decl_die_table_allocated = num_allocated;
a3f97cbb 5016 }
71dfc51f 5017
3f76745e
JM
5018 if (decl_id >= decl_die_table_in_use)
5019 decl_die_table_in_use = (decl_id + 1);
5020
5021 decl_die_table[decl_id] = decl_die;
a3f97cbb 5022}
3f76745e
JM
5023\f
5024/* Keep track of the number of spaces used to indent the
5025 output of the debugging routines that print the structure of
5026 the DIE internal representation. */
5027static int print_indent;
71dfc51f 5028
3f76745e
JM
5029/* Indent the line the number of spaces given by print_indent. */
5030
5031static inline void
5032print_spaces (outfile)
5033 FILE *outfile;
5034{
5035 fprintf (outfile, "%*s", print_indent, "");
a3f97cbb
JW
5036}
5037
956d6950 5038/* Print the information associated with a given DIE, and its children.
3f76745e 5039 This routine is a debugging aid only. */
71dfc51f 5040
a3f97cbb 5041static void
3f76745e
JM
5042print_die (die, outfile)
5043 dw_die_ref die;
5044 FILE *outfile;
a3f97cbb 5045{
3f76745e
JM
5046 register dw_attr_ref a;
5047 register dw_die_ref c;
71dfc51f 5048
3f76745e 5049 print_spaces (outfile);
2d8b0f3a 5050 fprintf (outfile, "DIE %4lu: %s\n",
3f76745e
JM
5051 die->die_offset, dwarf_tag_name (die->die_tag));
5052 print_spaces (outfile);
2d8b0f3a
JL
5053 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5054 fprintf (outfile, " offset: %lu\n", die->die_offset);
3f76745e
JM
5055
5056 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
a3f97cbb 5057 {
3f76745e
JM
5058 print_spaces (outfile);
5059 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5060
a96c67ec 5061 switch (AT_class (a))
3f76745e
JM
5062 {
5063 case dw_val_class_addr:
5064 fprintf (outfile, "address");
5065 break;
a20612aa
RH
5066 case dw_val_class_offset:
5067 fprintf (outfile, "offset");
5068 break;
3f76745e
JM
5069 case dw_val_class_loc:
5070 fprintf (outfile, "location descriptor");
5071 break;
63e46568 5072 case dw_val_class_loc_list:
a20612aa
RH
5073 fprintf (outfile, "location list -> label:%s",
5074 AT_loc_list (a)->ll_symbol);
63e46568 5075 break;
3f76745e 5076 case dw_val_class_const:
a96c67ec 5077 fprintf (outfile, "%ld", AT_int (a));
3f76745e
JM
5078 break;
5079 case dw_val_class_unsigned_const:
a96c67ec 5080 fprintf (outfile, "%lu", AT_unsigned (a));
3f76745e
JM
5081 break;
5082 case dw_val_class_long_long:
2d8b0f3a 5083 fprintf (outfile, "constant (%lu,%lu)",
556273e0
KH
5084 a->dw_attr_val.v.val_long_long.hi,
5085 a->dw_attr_val.v.val_long_long.low);
3f76745e
JM
5086 break;
5087 case dw_val_class_float:
5088 fprintf (outfile, "floating-point constant");
5089 break;
5090 case dw_val_class_flag:
a96c67ec 5091 fprintf (outfile, "%u", AT_flag (a));
3f76745e
JM
5092 break;
5093 case dw_val_class_die_ref:
a96c67ec 5094 if (AT_ref (a) != NULL)
881c6935 5095 {
1bfb5f8f 5096 if (AT_ref (a)->die_symbol)
881c6935
JM
5097 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5098 else
5099 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5100 }
3f76745e
JM
5101 else
5102 fprintf (outfile, "die -> <null>");
5103 break;
5104 case dw_val_class_lbl_id:
8b790721 5105 case dw_val_class_lbl_offset:
a96c67ec 5106 fprintf (outfile, "label: %s", AT_lbl (a));
3f76745e 5107 break;
3f76745e 5108 case dw_val_class_str:
a96c67ec
JM
5109 if (AT_string (a) != NULL)
5110 fprintf (outfile, "\"%s\"", AT_string (a));
3f76745e
JM
5111 else
5112 fprintf (outfile, "<null>");
5113 break;
e9a25f70
JL
5114 default:
5115 break;
3f76745e
JM
5116 }
5117
5118 fprintf (outfile, "\n");
5119 }
5120
5121 if (die->die_child != NULL)
5122 {
5123 print_indent += 4;
5124 for (c = die->die_child; c != NULL; c = c->die_sib)
5125 print_die (c, outfile);
71dfc51f 5126
3f76745e 5127 print_indent -= 4;
a3f97cbb 5128 }
881c6935
JM
5129 if (print_indent == 0)
5130 fprintf (outfile, "\n");
a3f97cbb
JW
5131}
5132
3f76745e
JM
5133/* Print the contents of the source code line number correspondence table.
5134 This routine is a debugging aid only. */
71dfc51f 5135
3f76745e
JM
5136static void
5137print_dwarf_line_table (outfile)
5138 FILE *outfile;
a3f97cbb 5139{
3f76745e
JM
5140 register unsigned i;
5141 register dw_line_info_ref line_info;
5142
5143 fprintf (outfile, "\n\nDWARF source line information\n");
5144 for (i = 1; i < line_info_table_in_use; ++i)
a3f97cbb 5145 {
3f76745e
JM
5146 line_info = &line_info_table[i];
5147 fprintf (outfile, "%5d: ", i);
981975b6 5148 fprintf (outfile, "%-20s", file_table.table[line_info->dw_file_num]);
2d8b0f3a 5149 fprintf (outfile, "%6ld", line_info->dw_line_num);
3f76745e 5150 fprintf (outfile, "\n");
a3f97cbb 5151 }
3f76745e
JM
5152
5153 fprintf (outfile, "\n\n");
f37230f0
JM
5154}
5155
3f76745e
JM
5156/* Print the information collected for a given DIE. */
5157
5158void
5159debug_dwarf_die (die)
5160 dw_die_ref die;
5161{
5162 print_die (die, stderr);
5163}
5164
5165/* Print all DWARF information collected for the compilation unit.
5166 This routine is a debugging aid only. */
5167
5168void
5169debug_dwarf ()
5170{
5171 print_indent = 0;
5172 print_die (comp_unit_die, stderr);
b2244e22
JW
5173 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5174 print_dwarf_line_table (stderr);
3f76745e
JM
5175}
5176\f
a96c67ec
JM
5177/* We build up the lists of children and attributes by pushing new ones
5178 onto the beginning of the list. Reverse the lists for DIE so that
5179 they are in order of addition. */
71dfc51f 5180
f37230f0 5181static void
a96c67ec 5182reverse_die_lists (die)
3f76745e 5183 register dw_die_ref die;
f37230f0 5184{
a96c67ec
JM
5185 register dw_die_ref c, cp, cn;
5186 register dw_attr_ref a, ap, an;
71dfc51f 5187
a96c67ec 5188 for (a = die->die_attr, ap = 0; a; a = an)
7d9d8943
AM
5189 {
5190 an = a->dw_attr_next;
5191 a->dw_attr_next = ap;
5192 ap = a;
a3f97cbb 5193 }
7d9d8943 5194 die->die_attr = ap;
3f76745e 5195
7d9d8943
AM
5196 for (c = die->die_child, cp = 0; c; c = cn)
5197 {
5198 cn = c->die_sib;
5199 c->die_sib = cp;
5200 cp = c;
5201 }
5202 die->die_child = cp;
a3f97cbb
JW
5203}
5204
881c6935
JM
5205/* reverse_die_lists only reverses the single die you pass it. Since
5206 we used to reverse all dies in add_sibling_attributes, which runs
5207 through all the dies, it would reverse all the dies. Now, however,
5208 since we don't call reverse_die_lists in add_sibling_attributes, we
5209 need a routine to recursively reverse all the dies. This is that
5210 routine. */
71dfc51f 5211
7d9d8943 5212static void
881c6935 5213reverse_all_dies (die)
7d9d8943 5214 register dw_die_ref die;
a3f97cbb 5215{
7d9d8943 5216 register dw_die_ref c;
71dfc51f 5217
7d9d8943 5218 reverse_die_lists (die);
3f76745e 5219
881c6935
JM
5220 for (c = die->die_child; c; c = c->die_sib)
5221 reverse_all_dies (c);
5222}
5223
5224/* Start a new compilation unit DIE for an include file. OLD_UNIT is
5225 the CU for the enclosing include file, if any. BINCL_DIE is the
5226 DW_TAG_GNU_BINCL DIE that marks the start of the DIEs for this
5227 include file. */
5228
5229static dw_die_ref
5230push_new_compile_unit (old_unit, bincl_die)
5231 dw_die_ref old_unit, bincl_die;
5232{
5233 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5234 dw_die_ref new_unit = gen_compile_unit_die (filename);
5235 new_unit->die_sib = old_unit;
5236 return new_unit;
5237}
5238
5239/* Close an include-file CU and reopen the enclosing one. */
5240
5241static dw_die_ref
5242pop_compile_unit (old_unit)
5243 dw_die_ref old_unit;
5244{
5245 dw_die_ref new_unit = old_unit->die_sib;
5246 old_unit->die_sib = NULL;
5247 return new_unit;
5248}
5249
5250#define PROCESS(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5251#define PROCESS_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5252
5253/* Calculate the checksum of a location expression. */
5254
5255static inline void
5256loc_checksum (loc, ctx)
5257 dw_loc_descr_ref loc;
5258 struct md5_ctx *ctx;
5259{
5260 PROCESS (loc->dw_loc_opc);
5261 PROCESS (loc->dw_loc_oprnd1);
5262 PROCESS (loc->dw_loc_oprnd2);
5263}
5264
5265/* Calculate the checksum of an attribute. */
5266
5267static void
5268attr_checksum (at, ctx)
5269 dw_attr_ref at;
5270 struct md5_ctx *ctx;
5271{
5272 dw_loc_descr_ref loc;
5273 rtx r;
5274
5275 PROCESS (at->dw_attr);
5276
5277 /* We don't care about differences in file numbering. */
5f632b5e
JM
5278 if (at->dw_attr == DW_AT_decl_file
5279 /* Or that this was compiled with a different compiler snapshot; if
5280 the output is the same, that's what matters. */
5281 || at->dw_attr == DW_AT_producer)
881c6935
JM
5282 return;
5283
5284 switch (AT_class (at))
5285 {
5286 case dw_val_class_const:
5287 PROCESS (at->dw_attr_val.v.val_int);
5288 break;
5289 case dw_val_class_unsigned_const:
5290 PROCESS (at->dw_attr_val.v.val_unsigned);
5291 break;
5292 case dw_val_class_long_long:
5293 PROCESS (at->dw_attr_val.v.val_long_long);
5294 break;
5295 case dw_val_class_float:
5296 PROCESS (at->dw_attr_val.v.val_float);
5297 break;
5298 case dw_val_class_flag:
5299 PROCESS (at->dw_attr_val.v.val_flag);
5300 break;
5301
5302 case dw_val_class_str:
5303 PROCESS_STRING (AT_string (at));
5304 break;
a20612aa 5305
881c6935
JM
5306 case dw_val_class_addr:
5307 r = AT_addr (at);
5308 switch (GET_CODE (r))
5309 {
5310 case SYMBOL_REF:
5311 PROCESS_STRING (XSTR (r, 0));
5312 break;
5313
5314 default:
5315 abort ();
5316 }
5317 break;
5318
a20612aa
RH
5319 case dw_val_class_offset:
5320 PROCESS (at->dw_attr_val.v.val_offset);
5321 break;
5322
881c6935
JM
5323 case dw_val_class_loc:
5324 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5325 loc_checksum (loc, ctx);
5326 break;
5327
5328 case dw_val_class_die_ref:
5329 if (AT_ref (at)->die_offset)
5330 PROCESS (AT_ref (at)->die_offset);
5331 /* FIXME else use target die name or something. */
5332
5333 case dw_val_class_fde_ref:
5334 case dw_val_class_lbl_id:
5335 case dw_val_class_lbl_offset:
a20612aa 5336 break;
881c6935
JM
5337
5338 default:
5339 break;
5340 }
5341}
5342
5343/* Calculate the checksum of a DIE. */
5344
5345static void
5346die_checksum (die, ctx)
5347 dw_die_ref die;
5348 struct md5_ctx *ctx;
5349{
5350 dw_die_ref c;
5351 dw_attr_ref a;
5352
5353 PROCESS (die->die_tag);
5354
5355 for (a = die->die_attr; a; a = a->dw_attr_next)
5356 attr_checksum (a, ctx);
5357
5358 for (c = die->die_child; c; c = c->die_sib)
5359 die_checksum (c, ctx);
5360}
5361
5362#undef PROCESS
5363#undef PROCESS_STRING
5364
5365/* The prefix to attach to symbols on DIEs in the current comdat debug
5366 info section. */
5367static char *comdat_symbol_id;
5368
5369/* The index of the current symbol within the current comdat CU. */
5370static unsigned int comdat_symbol_number;
5371
5372/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5373 children, and set comdat_symbol_id accordingly. */
5374
5375static void
5376compute_section_prefix (unit_die)
5377 dw_die_ref unit_die;
5378{
0821bff7 5379 char *name;
881c6935
JM
5380 int i;
5381 unsigned char checksum[16];
5382 struct md5_ctx ctx;
5383
5384 md5_init_ctx (&ctx);
5385 die_checksum (unit_die, &ctx);
5386 md5_finish_ctx (&ctx, checksum);
5387
0821bff7
AC
5388 {
5389 const char *p = lbasename (get_AT_string (unit_die, DW_AT_name));
5390 name = (char *) alloca (strlen (p) + 64);
5391 sprintf (name, "%s.", p);
5392 }
881c6935
JM
5393
5394 clean_symbol_name (name);
5395
0821bff7
AC
5396 {
5397 char *p = name + strlen (name);
5398 for (i = 0; i < 4; ++i)
5399 {
5400 sprintf (p, "%.2x", checksum[i]);
5401 p += 2;
5402 }
5403 }
881c6935
JM
5404
5405 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5406 comdat_symbol_number = 0;
5407}
5408
5409/* Returns nonzero iff DIE represents a type, in the sense of TYPE_P. */
5410
5411static int
5412is_type_die (die)
5413 dw_die_ref die;
5414{
5415 switch (die->die_tag)
5416 {
5417 case DW_TAG_array_type:
5418 case DW_TAG_class_type:
5419 case DW_TAG_enumeration_type:
5420 case DW_TAG_pointer_type:
5421 case DW_TAG_reference_type:
5422 case DW_TAG_string_type:
5423 case DW_TAG_structure_type:
5424 case DW_TAG_subroutine_type:
5425 case DW_TAG_union_type:
5426 case DW_TAG_ptr_to_member_type:
5427 case DW_TAG_set_type:
5428 case DW_TAG_subrange_type:
5429 case DW_TAG_base_type:
5430 case DW_TAG_const_type:
5431 case DW_TAG_file_type:
5432 case DW_TAG_packed_type:
5433 case DW_TAG_volatile_type:
5434 return 1;
5435 default:
5436 return 0;
5437 }
5438}
5439
5440/* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5441 Basically, we want to choose the bits that are likely to be shared between
5442 compilations (types) and leave out the bits that are specific to individual
5443 compilations (functions). */
5444
5445static int
5446is_comdat_die (c)
5447 dw_die_ref c;
5448{
5449#if 1
5450 /* I think we want to leave base types and __vtbl_ptr_type in the
5451 main CU, as we do for stabs. The advantage is a greater
5452 likelihood of sharing between objects that don't include headers
5453 in the same order (and therefore would put the base types in a
5454 different comdat). jason 8/28/00 */
5455 if (c->die_tag == DW_TAG_base_type)
5456 return 0;
5457
5458 if (c->die_tag == DW_TAG_pointer_type
5459 || c->die_tag == DW_TAG_reference_type
5460 || c->die_tag == DW_TAG_const_type
5461 || c->die_tag == DW_TAG_volatile_type)
5462 {
5463 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5464 return t ? is_comdat_die (t) : 0;
5465 }
5466#endif
5467
5468 return is_type_die (c);
5469}
5470
5471/* Returns 1 iff C is the sort of DIE that might be referred to from another
5472 compilation unit. */
5473
5474static int
5475is_symbol_die (c)
5476 dw_die_ref c;
5477{
5478 if (is_type_die (c))
5479 return 1;
63e46568 5480 if (get_AT (c, DW_AT_declaration)
881c6935
JM
5481 && ! get_AT (c, DW_AT_specification))
5482 return 1;
5483 return 0;
5484}
5485
5486static char *
63e46568
DB
5487gen_internal_sym (prefix)
5488 const char *prefix;
881c6935
JM
5489{
5490 char buf[256];
5491 static int label_num;
63e46568 5492 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
881c6935
JM
5493 return xstrdup (buf);
5494}
5495
5496/* Assign symbols to all worthy DIEs under DIE. */
5497
5498static void
5499assign_symbol_names (die)
5500 register dw_die_ref die;
5501{
5502 register dw_die_ref c;
5503
5504 if (is_symbol_die (die))
5505 {
5506 if (comdat_symbol_id)
5507 {
5508 char *p = alloca (strlen (comdat_symbol_id) + 64);
5509 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5510 comdat_symbol_id, comdat_symbol_number++);
5511 die->die_symbol = xstrdup (p);
5512 }
5513 else
63e46568 5514 die->die_symbol = gen_internal_sym ("LDIE");
881c6935
JM
5515 }
5516
5517 for (c = die->die_child; c != NULL; c = c->die_sib)
5518 assign_symbol_names (c);
5519}
5520
5521/* Traverse the DIE (which is always comp_unit_die), and set up
5522 additional compilation units for each of the include files we see
5523 bracketed by BINCL/EINCL. */
5524
5525static void
5526break_out_includes (die)
5527 register dw_die_ref die;
5528{
5529 dw_die_ref *ptr;
5530 register dw_die_ref unit = NULL;
5531 limbo_die_node *node;
5532
5533 for (ptr = &(die->die_child); *ptr; )
5534 {
5535 register dw_die_ref c = *ptr;
5536
5537 if (c->die_tag == DW_TAG_GNU_BINCL
5538 || c->die_tag == DW_TAG_GNU_EINCL
5539 || (unit && is_comdat_die (c)))
5540 {
5541 /* This DIE is for a secondary CU; remove it from the main one. */
5542 *ptr = c->die_sib;
5543
5544 if (c->die_tag == DW_TAG_GNU_BINCL)
5545 {
5546 unit = push_new_compile_unit (unit, c);
5547 free_die (c);
5548 }
5549 else if (c->die_tag == DW_TAG_GNU_EINCL)
5550 {
5551 unit = pop_compile_unit (unit);
5552 free_die (c);
5553 }
5554 else
5555 add_child_die (unit, c);
5556 }
5557 else
5558 {
5559 /* Leave this DIE in the main CU. */
5560 ptr = &(c->die_sib);
5561 continue;
5562 }
5563 }
5564
5565#if 0
5566 /* We can only use this in debugging, since the frontend doesn't check
0b34cf1e 5567 to make sure that we leave every include file we enter. */
881c6935
JM
5568 if (unit != NULL)
5569 abort ();
5570#endif
5571
5572 assign_symbol_names (die);
5573 for (node = limbo_die_list; node; node = node->next)
5574 {
5575 compute_section_prefix (node->die);
5576 assign_symbol_names (node->die);
5577 }
5578}
5579
5580/* Traverse the DIE and add a sibling attribute if it may have the
5581 effect of speeding up access to siblings. To save some space,
5582 avoid generating sibling attributes for DIE's without children. */
5583
5584static void
5585add_sibling_attributes (die)
5586 register dw_die_ref die;
5587{
5588 register dw_die_ref c;
5589
5590 if (die->die_tag != DW_TAG_compile_unit
5591 && die->die_sib && die->die_child != NULL)
7d9d8943
AM
5592 /* Add the sibling link to the front of the attribute list. */
5593 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5594
5595 for (c = die->die_child; c != NULL; c = c->die_sib)
5596 add_sibling_attributes (c);
5597}
5598
63e46568
DB
5599/* Output all location lists for the DIE and it's children */
5600static void
5601output_location_lists (die)
5602 register dw_die_ref die;
5603{
5604 dw_die_ref c;
5605 dw_attr_ref d_attr;
5606 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5607 {
5608 if (AT_class (d_attr) == dw_val_class_loc_list)
5609 {
5610 output_loc_list (AT_loc_list (d_attr));
5611 }
5612 }
5613 for (c = die->die_child; c != NULL; c = c->die_sib)
5614 output_location_lists (c);
5615
5616}
7d9d8943
AM
5617/* The format of each DIE (and its attribute value pairs)
5618 is encoded in an abbreviation table. This routine builds the
5619 abbreviation table and assigns a unique abbreviation id for
5620 each abbreviation entry. The children of each die are visited
5621 recursively. */
5622
5623static void
5624build_abbrev_table (die)
5625 register dw_die_ref die;
5626{
5627 register unsigned long abbrev_id;
ae0ed63a 5628 register unsigned int n_alloc;
7d9d8943
AM
5629 register dw_die_ref c;
5630 register dw_attr_ref d_attr, a_attr;
881c6935
JM
5631
5632 /* Scan the DIE references, and mark as external any that refer to
1bfb5f8f 5633 DIEs from other CUs (i.e. those which are not marked). */
881c6935
JM
5634 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5635 {
5636 if (AT_class (d_attr) == dw_val_class_die_ref
1bfb5f8f 5637 && AT_ref (d_attr)->die_mark == 0)
881c6935
JM
5638 {
5639 if (AT_ref (d_attr)->die_symbol == 0)
5640 abort ();
5641 set_AT_ref_external (d_attr, 1);
5642 }
5643 }
5644
7d9d8943
AM
5645 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5646 {
5647 register dw_die_ref abbrev = abbrev_die_table[abbrev_id];
5648
5649 if (abbrev->die_tag == die->die_tag)
5650 {
5651 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
5652 {
5653 a_attr = abbrev->die_attr;
5654 d_attr = die->die_attr;
5655
5656 while (a_attr != NULL && d_attr != NULL)
5657 {
5658 if ((a_attr->dw_attr != d_attr->dw_attr)
5659 || (value_format (a_attr) != value_format (d_attr)))
5660 break;
5661
5662 a_attr = a_attr->dw_attr_next;
5663 d_attr = d_attr->dw_attr_next;
5664 }
5665
5666 if (a_attr == NULL && d_attr == NULL)
5667 break;
5668 }
5669 }
5670 }
5671
5672 if (abbrev_id >= abbrev_die_table_in_use)
5673 {
5674 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
5675 {
5676 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
556273e0 5677 abbrev_die_table
7d9d8943
AM
5678 = (dw_die_ref *) xrealloc (abbrev_die_table,
5679 sizeof (dw_die_ref) * n_alloc);
5680
961192e1 5681 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
7d9d8943
AM
5682 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
5683 abbrev_die_table_allocated = n_alloc;
5684 }
5685
5686 ++abbrev_die_table_in_use;
5687 abbrev_die_table[abbrev_id] = die;
5688 }
5689
5690 die->die_abbrev = abbrev_id;
5691 for (c = die->die_child; c != NULL; c = c->die_sib)
5692 build_abbrev_table (c);
5693}
5694\f
5695/* Return the size of a string, including the null byte.
5696
5697 This used to treat backslashes as escapes, and hence they were not included
5698 in the count. However, that conflicts with what ASM_OUTPUT_ASCII does,
5699 which treats a backslash as a backslash, escaping it if necessary, and hence
5700 we must include them in the count. */
5701
5702static unsigned long
5703size_of_string (str)
5704 register const char *str;
5705{
5706 return strlen (str) + 1;
3f76745e
JM
5707}
5708
5709/* Return the power-of-two number of bytes necessary to represent VALUE. */
5710
5711static int
5712constant_size (value)
5713 long unsigned value;
5714{
5715 int log;
5716
5717 if (value == 0)
5718 log = 0;
a3f97cbb 5719 else
3f76745e 5720 log = floor_log2 (value);
71dfc51f 5721
3f76745e
JM
5722 log = log / 8;
5723 log = 1 << (floor_log2 (log) + 1);
5724
5725 return log;
a3f97cbb
JW
5726}
5727
3f76745e
JM
5728/* Return the size of a DIE, as it is represented in the
5729 .debug_info section. */
71dfc51f 5730
3f76745e
JM
5731static unsigned long
5732size_of_die (die)
a3f97cbb
JW
5733 register dw_die_ref die;
5734{
3f76745e 5735 register unsigned long size = 0;
a3f97cbb 5736 register dw_attr_ref a;
71dfc51f 5737
3f76745e 5738 size += size_of_uleb128 (die->die_abbrev);
a3f97cbb
JW
5739 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5740 {
a96c67ec 5741 switch (AT_class (a))
a3f97cbb
JW
5742 {
5743 case dw_val_class_addr:
a1a4189d 5744 size += DWARF2_ADDR_SIZE;
a3f97cbb 5745 break;
a20612aa
RH
5746 case dw_val_class_offset:
5747 size += DWARF_OFFSET_SIZE;
5748 break;
a3f97cbb 5749 case dw_val_class_loc:
3f76745e 5750 {
a96c67ec 5751 register unsigned long lsize = size_of_locs (AT_loc (a));
71dfc51f 5752
3f76745e
JM
5753 /* Block length. */
5754 size += constant_size (lsize);
5755 size += lsize;
5756 }
a3f97cbb 5757 break;
63e46568
DB
5758 case dw_val_class_loc_list:
5759 size += DWARF_OFFSET_SIZE;
5760 break;
a3f97cbb 5761 case dw_val_class_const:
25dd13ec 5762 size += size_of_sleb128 (AT_int (a));
a3f97cbb
JW
5763 break;
5764 case dw_val_class_unsigned_const:
a96c67ec 5765 size += constant_size (AT_unsigned (a));
a3f97cbb 5766 break;
469ac993 5767 case dw_val_class_long_long:
2e4b9b8c 5768 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
469ac993
JM
5769 break;
5770 case dw_val_class_float:
3f76745e 5771 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
a3f97cbb
JW
5772 break;
5773 case dw_val_class_flag:
3f76745e 5774 size += 1;
a3f97cbb
JW
5775 break;
5776 case dw_val_class_die_ref:
3f76745e 5777 size += DWARF_OFFSET_SIZE;
a3f97cbb
JW
5778 break;
5779 case dw_val_class_fde_ref:
3f76745e 5780 size += DWARF_OFFSET_SIZE;
a3f97cbb
JW
5781 break;
5782 case dw_val_class_lbl_id:
a1a4189d 5783 size += DWARF2_ADDR_SIZE;
3f76745e 5784 break;
8b790721 5785 case dw_val_class_lbl_offset:
3f76745e
JM
5786 size += DWARF_OFFSET_SIZE;
5787 break;
5788 case dw_val_class_str:
a96c67ec 5789 size += size_of_string (AT_string (a));
3f76745e
JM
5790 break;
5791 default:
5792 abort ();
5793 }
a3f97cbb 5794 }
3f76745e
JM
5795
5796 return size;
a3f97cbb
JW
5797}
5798
956d6950 5799/* Size the debugging information associated with a given DIE.
3f76745e
JM
5800 Visits the DIE's children recursively. Updates the global
5801 variable next_die_offset, on each time through. Uses the
956d6950 5802 current value of next_die_offset to update the die_offset
3f76745e 5803 field in each DIE. */
71dfc51f 5804
a3f97cbb 5805static void
3f76745e
JM
5806calc_die_sizes (die)
5807 dw_die_ref die;
a3f97cbb 5808{
3f76745e
JM
5809 register dw_die_ref c;
5810 die->die_offset = next_die_offset;
5811 next_die_offset += size_of_die (die);
71dfc51f 5812
3f76745e
JM
5813 for (c = die->die_child; c != NULL; c = c->die_sib)
5814 calc_die_sizes (c);
71dfc51f 5815
3f76745e
JM
5816 if (die->die_child != NULL)
5817 /* Count the null byte used to terminate sibling lists. */
5818 next_die_offset += 1;
a3f97cbb
JW
5819}
5820
1bfb5f8f 5821/* Set the marks for a die and its children. We do this so
881c6935 5822 that we know whether or not a reference needs to use FORM_ref_addr; only
1bfb5f8f
JM
5823 DIEs in the same CU will be marked. We used to clear out the offset
5824 and use that as the flag, but ran into ordering problems. */
881c6935
JM
5825
5826static void
1bfb5f8f 5827mark_dies (die)
881c6935
JM
5828 dw_die_ref die;
5829{
5830 register dw_die_ref c;
1bfb5f8f
JM
5831 die->die_mark = 1;
5832 for (c = die->die_child; c; c = c->die_sib)
5833 mark_dies (c);
5834}
5835
5836/* Clear the marks for a die and its children. */
5837
5838static void
5839unmark_dies (die)
5840 dw_die_ref die;
5841{
5842 register dw_die_ref c;
5843 die->die_mark = 0;
881c6935 5844 for (c = die->die_child; c; c = c->die_sib)
1bfb5f8f 5845 unmark_dies (c);
881c6935
JM
5846}
5847
3f76745e
JM
5848/* Return the size of the .debug_pubnames table generated for the
5849 compilation unit. */
a94dbf2c 5850
3f76745e
JM
5851static unsigned long
5852size_of_pubnames ()
a94dbf2c 5853{
3f76745e
JM
5854 register unsigned long size;
5855 register unsigned i;
469ac993 5856
3f76745e
JM
5857 size = DWARF_PUBNAMES_HEADER_SIZE;
5858 for (i = 0; i < pubname_table_in_use; ++i)
a94dbf2c 5859 {
3f76745e
JM
5860 register pubname_ref p = &pubname_table[i];
5861 size += DWARF_OFFSET_SIZE + size_of_string (p->name);
a94dbf2c
JM
5862 }
5863
3f76745e
JM
5864 size += DWARF_OFFSET_SIZE;
5865 return size;
a94dbf2c
JM
5866}
5867
956d6950 5868/* Return the size of the information in the .debug_aranges section. */
469ac993 5869
3f76745e
JM
5870static unsigned long
5871size_of_aranges ()
469ac993 5872{
3f76745e 5873 register unsigned long size;
469ac993 5874
3f76745e 5875 size = DWARF_ARANGES_HEADER_SIZE;
469ac993 5876
3f76745e 5877 /* Count the address/length pair for this compilation unit. */
a1a4189d
JB
5878 size += 2 * DWARF2_ADDR_SIZE;
5879 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
469ac993 5880
3f76745e 5881 /* Count the two zero words used to terminated the address range table. */
a1a4189d 5882 size += 2 * DWARF2_ADDR_SIZE;
3f76745e
JM
5883 return size;
5884}
5885\f
5886/* Select the encoding of an attribute value. */
5887
5888static enum dwarf_form
a96c67ec
JM
5889value_format (a)
5890 dw_attr_ref a;
3f76745e 5891{
a96c67ec 5892 switch (a->dw_attr_val.val_class)
469ac993 5893 {
3f76745e
JM
5894 case dw_val_class_addr:
5895 return DW_FORM_addr;
a20612aa
RH
5896 case dw_val_class_offset:
5897 if (DWARF_OFFSET_SIZE == 4)
5898 return DW_FORM_data4;
5899 if (DWARF_OFFSET_SIZE == 8)
5900 return DW_FORM_data8;
5901 abort ();
63e46568 5902 case dw_val_class_loc_list:
9d2f2c45
RH
5903 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
5904 .debug_loc section */
5905 return DW_FORM_data4;
3f76745e 5906 case dw_val_class_loc:
a96c67ec 5907 switch (constant_size (size_of_locs (AT_loc (a))))
469ac993 5908 {
3f76745e
JM
5909 case 1:
5910 return DW_FORM_block1;
5911 case 2:
5912 return DW_FORM_block2;
469ac993
JM
5913 default:
5914 abort ();
5915 }
3f76745e 5916 case dw_val_class_const:
25dd13ec 5917 return DW_FORM_sdata;
3f76745e 5918 case dw_val_class_unsigned_const:
a96c67ec 5919 switch (constant_size (AT_unsigned (a)))
3f76745e
JM
5920 {
5921 case 1:
5922 return DW_FORM_data1;
5923 case 2:
5924 return DW_FORM_data2;
5925 case 4:
5926 return DW_FORM_data4;
5927 case 8:
5928 return DW_FORM_data8;
5929 default:
5930 abort ();
5931 }
5932 case dw_val_class_long_long:
5933 return DW_FORM_block1;
5934 case dw_val_class_float:
5935 return DW_FORM_block1;
5936 case dw_val_class_flag:
5937 return DW_FORM_flag;
5938 case dw_val_class_die_ref:
881c6935
JM
5939 if (AT_ref_external (a))
5940 return DW_FORM_ref_addr;
5941 else
5942 return DW_FORM_ref;
3f76745e
JM
5943 case dw_val_class_fde_ref:
5944 return DW_FORM_data;
5945 case dw_val_class_lbl_id:
5946 return DW_FORM_addr;
8b790721 5947 case dw_val_class_lbl_offset:
3f76745e
JM
5948 return DW_FORM_data;
5949 case dw_val_class_str:
5950 return DW_FORM_string;
a20612aa 5951
469ac993
JM
5952 default:
5953 abort ();
5954 }
a94dbf2c
JM
5955}
5956
3f76745e 5957/* Output the encoding of an attribute value. */
469ac993 5958
3f76745e 5959static void
a96c67ec
JM
5960output_value_format (a)
5961 dw_attr_ref a;
a94dbf2c 5962{
a96c67ec 5963 enum dwarf_form form = value_format (a);
2e4b9b8c 5964 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
3f76745e 5965}
469ac993 5966
3f76745e
JM
5967/* Output the .debug_abbrev section which defines the DIE abbreviation
5968 table. */
469ac993 5969
3f76745e
JM
5970static void
5971output_abbrev_section ()
5972{
5973 unsigned long abbrev_id;
71dfc51f 5974
3f76745e
JM
5975 dw_attr_ref a_attr;
5976 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5977 {
5978 register dw_die_ref abbrev = abbrev_die_table[abbrev_id];
71dfc51f 5979
2e4b9b8c 5980 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
469ac993 5981
2e4b9b8c
RH
5982 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
5983 dwarf_tag_name (abbrev->die_tag));
71dfc51f 5984
2e4b9b8c
RH
5985 if (abbrev->die_child != NULL)
5986 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
5987 else
5988 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
3f76745e
JM
5989
5990 for (a_attr = abbrev->die_attr; a_attr != NULL;
5991 a_attr = a_attr->dw_attr_next)
5992 {
2e4b9b8c
RH
5993 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
5994 dwarf_attr_name (a_attr->dw_attr));
a96c67ec 5995 output_value_format (a_attr);
469ac993 5996 }
469ac993 5997
2e4b9b8c
RH
5998 dw2_asm_output_data (1, 0, NULL);
5999 dw2_asm_output_data (1, 0, NULL);
469ac993 6000 }
81f374eb
HPN
6001
6002 /* Terminate the table. */
2e4b9b8c 6003 dw2_asm_output_data (1, 0, NULL);
a94dbf2c
JM
6004}
6005
881c6935
JM
6006/* Output a symbol we can use to refer to this DIE from another CU. */
6007
6008static inline void
6009output_die_symbol (die)
6010 register dw_die_ref die;
6011{
6012 char *sym = die->die_symbol;
6013
6014 if (sym == 0)
6015 return;
6016
6017 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6018 /* We make these global, not weak; if the target doesn't support
6019 .linkonce, it doesn't support combining the sections, so debugging
6020 will break. */
6021 ASM_GLOBALIZE_LABEL (asm_out_file, sym);
6022 ASM_OUTPUT_LABEL (asm_out_file, sym);
6023}
6024
84a5b4f8
DB
6025/* Return a new location list, given the begin and end range, and the
6026 expression. gensym tells us whether to generate a new internal
6027 symbol for this location list node, which is done for the head of
30f7a378 6028 the list only. */
84a5b4f8
DB
6029static inline dw_loc_list_ref
6030new_loc_list (expr, begin, end, section, gensym)
6031 register dw_loc_descr_ref expr;
6032 register const char *begin;
6033 register const char *end;
6034 register const char *section;
6035 register unsigned gensym;
6036{
6037 register dw_loc_list_ref retlist
6038 = (dw_loc_list_ref) xcalloc (1, sizeof (dw_loc_list_node));
6039 retlist->begin = begin;
6040 retlist->end = end;
6041 retlist->expr = expr;
6042 retlist->section = section;
6043 if (gensym)
6044 retlist->ll_symbol = gen_internal_sym ("LLST");
6045 return retlist;
6046}
6047
6048/* Add a location description expression to a location list */
6049static inline void
6050add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6051 register dw_loc_list_ref *list_head;
6052 register dw_loc_descr_ref descr;
6053 register const char *begin;
6054 register const char *end;
6055 register const char *section;
6056{
6057 register dw_loc_list_ref *d;
6058
30f7a378 6059 /* Find the end of the chain. */
84a5b4f8
DB
6060 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6061 ;
6062 /* Add a new location list node to the list */
6063 *d = new_loc_list (descr, begin, end, section, 0);
6064}
6065
63e46568
DB
6066/* Output the location list given to us */
6067static void
6068output_loc_list (list_head)
6069 register dw_loc_list_ref list_head;
6070{
84a5b4f8 6071 register dw_loc_list_ref curr=list_head;
63e46568 6072 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
a20612aa
RH
6073
6074 /* ??? This shouldn't be needed now that we've forced the
6075 compilation unit base address to zero when there is code
6076 in more than one section. */
63e46568
DB
6077 if (strcmp (curr->section, ".text") == 0)
6078 {
aafdcfcd
NS
6079 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6080 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT)0,
6081 "Location list base address specifier fake entry");
6082 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6083 "Location list base address specifier base");
63e46568
DB
6084 }
6085 for (curr = list_head; curr != NULL; curr=curr->dw_loc_next)
6086 {
6087 int size;
aafdcfcd
NS
6088 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6089 "Location list begin address (%s)",
6090 list_head->ll_symbol);
6091 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6092 "Location list end address (%s)",
6093 list_head->ll_symbol);
63e46568
DB
6094 size = size_of_locs (curr->expr);
6095
6096 /* Output the block length for this list of location operations. */
aafdcfcd
NS
6097 dw2_asm_output_data (constant_size (size), size, "%s",
6098 "Location expression size");
63e46568
DB
6099
6100 output_loc_sequence (curr->expr);
6101 }
aafdcfcd
NS
6102 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6103 "Location list terminator begin (%s)",
6104 list_head->ll_symbol);
6105 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6106 "Location list terminator end (%s)",
6107 list_head->ll_symbol);
63e46568 6108}
3f76745e
JM
6109/* Output the DIE and its attributes. Called recursively to generate
6110 the definitions of each child DIE. */
71dfc51f 6111
a3f97cbb 6112static void
3f76745e
JM
6113output_die (die)
6114 register dw_die_ref die;
a3f97cbb 6115{
3f76745e
JM
6116 register dw_attr_ref a;
6117 register dw_die_ref c;
3f76745e 6118 register unsigned long size;
a94dbf2c 6119
881c6935
JM
6120 /* If someone in another CU might refer to us, set up a symbol for
6121 them to point to. */
6122 if (die->die_symbol)
6123 output_die_symbol (die);
6124
2e4b9b8c
RH
6125 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6126 die->die_offset, dwarf_tag_name (die->die_tag));
a94dbf2c 6127
3f76745e 6128 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
a3f97cbb 6129 {
2e4b9b8c
RH
6130 const char *name = dwarf_attr_name (a->dw_attr);
6131
a96c67ec 6132 switch (AT_class (a))
3f76745e
JM
6133 {
6134 case dw_val_class_addr:
2e4b9b8c 6135 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
3f76745e 6136 break;
a3f97cbb 6137
a20612aa
RH
6138 case dw_val_class_offset:
6139 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6140 "%s", name);
6141 break;
6142
3f76745e 6143 case dw_val_class_loc:
a96c67ec 6144 size = size_of_locs (AT_loc (a));
71dfc51f 6145
3f76745e 6146 /* Output the block length for this list of location operations. */
2e4b9b8c 6147 dw2_asm_output_data (constant_size (size), size, "%s", name);
71dfc51f 6148
7d9d8943 6149 output_loc_sequence (AT_loc (a));
a3f97cbb 6150 break;
3f76745e
JM
6151
6152 case dw_val_class_const:
25dd13ec
JW
6153 /* ??? It would be slightly more efficient to use a scheme like is
6154 used for unsigned constants below, but gdb 4.x does not sign
6155 extend. Gdb 5.x does sign extend. */
2e4b9b8c 6156 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
a3f97cbb 6157 break;
3f76745e
JM
6158
6159 case dw_val_class_unsigned_const:
2e4b9b8c
RH
6160 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6161 AT_unsigned (a), "%s", name);
a3f97cbb 6162 break;
3f76745e
JM
6163
6164 case dw_val_class_long_long:
2e4b9b8c
RH
6165 {
6166 unsigned HOST_WIDE_INT first, second;
3f76745e 6167
2e4b9b8c
RH
6168 dw2_asm_output_data (1, 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6169 "%s", name);
556273e0 6170
2e4b9b8c
RH
6171 if (WORDS_BIG_ENDIAN)
6172 {
6173 first = a->dw_attr_val.v.val_long_long.hi;
6174 second = a->dw_attr_val.v.val_long_long.low;
6175 }
6176 else
6177 {
6178 first = a->dw_attr_val.v.val_long_long.low;
6179 second = a->dw_attr_val.v.val_long_long.hi;
6180 }
6181 dw2_asm_output_data (HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6182 first, "long long constant");
6183 dw2_asm_output_data (HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6184 second, NULL);
6185 }
a3f97cbb 6186 break;
3f76745e
JM
6187
6188 case dw_val_class_float:
c84e2712
KG
6189 {
6190 register unsigned int i;
c84e2712 6191
2e4b9b8c
RH
6192 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6193 "%s", name);
c84e2712 6194
2e4b9b8c
RH
6195 for (i = 0; i < a->dw_attr_val.v.val_float.length; ++i)
6196 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6197 "fp constant word %u", i);
556273e0 6198 break;
c84e2712 6199 }
3f76745e
JM
6200
6201 case dw_val_class_flag:
2e4b9b8c 6202 dw2_asm_output_data (1, AT_flag (a), "%s", name);
a3f97cbb 6203 break;
a20612aa 6204
63e46568
DB
6205 case dw_val_class_loc_list:
6206 {
6207 char *sym = AT_loc_list (a)->ll_symbol;
6208 if (sym == 0)
6209 abort();
a20612aa
RH
6210 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6211 loc_section_label, "%s", name);
63e46568
DB
6212 }
6213 break;
a20612aa 6214
3f76745e 6215 case dw_val_class_die_ref:
881c6935 6216 if (AT_ref_external (a))
2e4b9b8c
RH
6217 {
6218 char *sym = AT_ref (a)->die_symbol;
6219 if (sym == 0)
6220 abort ();
6221 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6222 }
3f4907a6
JM
6223 else if (AT_ref (a)->die_offset == 0)
6224 abort ();
881c6935 6225 else
2e4b9b8c
RH
6226 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6227 "%s", name);
a3f97cbb 6228 break;
3f76745e
JM
6229
6230 case dw_val_class_fde_ref:
a6ab3aad
JM
6231 {
6232 char l1[20];
2e4b9b8c
RH
6233 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6234 a->dw_attr_val.v.val_fde_index * 2);
6235 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
a6ab3aad 6236 }
a3f97cbb 6237 break;
a3f97cbb 6238
3f76745e 6239 case dw_val_class_lbl_id:
8e7fa2c8 6240 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
3f76745e 6241 break;
71dfc51f 6242
8b790721 6243 case dw_val_class_lbl_offset:
2e4b9b8c 6244 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
3f76745e 6245 break;
a3f97cbb 6246
3f76745e 6247 case dw_val_class_str:
2e4b9b8c 6248 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
3f76745e 6249 break;
b2932ae5 6250
3f76745e
JM
6251 default:
6252 abort ();
6253 }
3f76745e 6254 }
71dfc51f 6255
3f76745e
JM
6256 for (c = die->die_child; c != NULL; c = c->die_sib)
6257 output_die (c);
71dfc51f 6258
3f76745e 6259 if (die->die_child != NULL)
7e23cb16 6260 {
556273e0 6261 /* Add null byte to terminate sibling list. */
2e4b9b8c
RH
6262 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6263 die->die_offset);
7e23cb16 6264 }
3f76745e 6265}
71dfc51f 6266
3f76745e
JM
6267/* Output the compilation unit that appears at the beginning of the
6268 .debug_info section, and precedes the DIE descriptions. */
71dfc51f 6269
3f76745e
JM
6270static void
6271output_compilation_unit_header ()
6272{
2e4b9b8c
RH
6273 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6274 "Length of Compilation Unit Info");
71dfc51f 6275
2e4b9b8c 6276 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
71dfc51f 6277
2e4b9b8c
RH
6278 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6279 "Offset Into Abbrev. Section");
71dfc51f 6280
2e4b9b8c 6281 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
a3f97cbb
JW
6282}
6283
881c6935
JM
6284/* Output the compilation unit DIE and its children. */
6285
6286static void
6287output_comp_unit (die)
6288 dw_die_ref die;
6289{
ce1cc601 6290 const char *secname;
881c6935 6291
db3c0315
MM
6292 /* Even if there are no children of this DIE, we must output the
6293 information about the compilation unit. Otherwise, on an empty
6294 translation unit, we will generate a present, but empty,
6295 .debug_info section. IRIX 6.5 `nm' will then complain when
6296 examining the file.
6297
6298 Mark all the DIEs in this CU so we know which get local refs. */
1bfb5f8f
JM
6299 mark_dies (die);
6300
6301 build_abbrev_table (die);
6302
881c6935
JM
6303 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6304 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6305 calc_die_sizes (die);
6306
881c6935
JM
6307 if (die->die_symbol)
6308 {
ce1cc601
KG
6309 char *tmp = (char *) alloca (strlen (die->die_symbol) + 24);
6310 sprintf (tmp, ".gnu.linkonce.wi.%s", die->die_symbol);
6311 secname = tmp;
881c6935
JM
6312 die->die_symbol = NULL;
6313 }
6314 else
ce1cc601 6315 secname = (const char *) DEBUG_INFO_SECTION;
881c6935
JM
6316
6317 /* Output debugging information. */
715bdd29 6318 named_section_flags (secname, SECTION_DEBUG);
881c6935
JM
6319 output_compilation_unit_header ();
6320 output_die (die);
6321
1bfb5f8f
JM
6322 /* Leave the marks on the main CU, so we can check them in
6323 output_pubnames. */
881c6935 6324 if (die->die_symbol)
1bfb5f8f 6325 unmark_dies (die);
881c6935
JM
6326}
6327
a1d7ffe3
JM
6328/* The DWARF2 pubname for a nested thingy looks like "A::f". The output
6329 of decl_printable_name for C++ looks like "A::f(int)". Let's drop the
6330 argument list, and maybe the scope. */
6331
d560ee52 6332static const char *
a1d7ffe3
JM
6333dwarf2_name (decl, scope)
6334 tree decl;
6335 int scope;
6336{
6337 return (*decl_printable_name) (decl, scope ? 1 : 0);
6338}
6339
d291dd49 6340/* Add a new entry to .debug_pubnames if appropriate. */
71dfc51f 6341
d291dd49
JM
6342static void
6343add_pubname (decl, die)
6344 tree decl;
6345 dw_die_ref die;
6346{
6347 pubname_ref p;
6348
6349 if (! TREE_PUBLIC (decl))
6350 return;
6351
6352 if (pubname_table_in_use == pubname_table_allocated)
6353 {
6354 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6355 pubname_table = (pubname_ref) xrealloc
6356 (pubname_table, pubname_table_allocated * sizeof (pubname_entry));
6357 }
71dfc51f 6358
d291dd49
JM
6359 p = &pubname_table[pubname_table_in_use++];
6360 p->die = die;
a1d7ffe3
JM
6361
6362 p->name = xstrdup (dwarf2_name (decl, 1));
d291dd49
JM
6363}
6364
a3f97cbb
JW
6365/* Output the public names table used to speed up access to externally
6366 visible names. For now, only generate entries for externally
6367 visible procedures. */
71dfc51f 6368
a3f97cbb
JW
6369static void
6370output_pubnames ()
6371{
d291dd49 6372 register unsigned i;
71dfc51f
RK
6373 register unsigned long pubnames_length = size_of_pubnames ();
6374
2e4b9b8c
RH
6375 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6376 "Length of Public Names Info");
71dfc51f 6377
2e4b9b8c 6378 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
71dfc51f 6379
2e4b9b8c
RH
6380 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6381 "Offset of Compilation Unit Info");
71dfc51f 6382
2e4b9b8c
RH
6383 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6384 "Compilation Unit Length");
71dfc51f 6385
d291dd49 6386 for (i = 0; i < pubname_table_in_use; ++i)
a3f97cbb 6387 {
d291dd49 6388 register pubname_ref pub = &pubname_table[i];
71dfc51f 6389
881c6935 6390 /* We shouldn't see pubnames for DIEs outside of the main CU. */
1bfb5f8f 6391 if (pub->die->die_mark == 0)
881c6935
JM
6392 abort ();
6393
2e4b9b8c
RH
6394 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6395 "DIE offset");
71dfc51f 6396
2e4b9b8c 6397 dw2_asm_output_nstring (pub->name, -1, "external name");
a3f97cbb 6398 }
71dfc51f 6399
2e4b9b8c 6400 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
a3f97cbb
JW
6401}
6402
d291dd49 6403/* Add a new entry to .debug_aranges if appropriate. */
71dfc51f 6404
d291dd49
JM
6405static void
6406add_arange (decl, die)
6407 tree decl;
6408 dw_die_ref die;
6409{
6410 if (! DECL_SECTION_NAME (decl))
6411 return;
6412
6413 if (arange_table_in_use == arange_table_allocated)
6414 {
6415 arange_table_allocated += ARANGE_TABLE_INCREMENT;
a20612aa
RH
6416 arange_table = (dw_die_ref *)
6417 xrealloc (arange_table, arange_table_allocated * sizeof (dw_die_ref));
d291dd49 6418 }
71dfc51f 6419
d291dd49
JM
6420 arange_table[arange_table_in_use++] = die;
6421}
6422
a3f97cbb
JW
6423/* Output the information that goes into the .debug_aranges table.
6424 Namely, define the beginning and ending address range of the
6425 text section generated for this compilation unit. */
71dfc51f 6426
a3f97cbb
JW
6427static void
6428output_aranges ()
6429{
d291dd49 6430 register unsigned i;
71dfc51f
RK
6431 register unsigned long aranges_length = size_of_aranges ();
6432
2e4b9b8c
RH
6433 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6434 "Length of Address Ranges Info");
71dfc51f 6435
2e4b9b8c 6436 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
71dfc51f 6437
2e4b9b8c
RH
6438 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6439 "Offset of Compilation Unit Info");
71dfc51f 6440
2e4b9b8c 6441 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
71dfc51f 6442
2e4b9b8c 6443 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
71dfc51f 6444
262b6384
SC
6445 /* We need to align to twice the pointer size here. */
6446 if (DWARF_ARANGES_PAD_SIZE)
6447 {
2e4b9b8c
RH
6448 /* Pad using a 2 byte words so that padding is correct for any
6449 pointer size. */
6450 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6451 2 * DWARF2_ADDR_SIZE);
770ca8c6 6452 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
2e4b9b8c 6453 dw2_asm_output_data (2, 0, NULL);
262b6384 6454 }
71dfc51f 6455
8e7fa2c8 6456 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
2e4b9b8c
RH
6457 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6458 text_section_label, "Length");
71dfc51f 6459
d291dd49
JM
6460 for (i = 0; i < arange_table_in_use; ++i)
6461 {
e689ae67 6462 dw_die_ref die = arange_table[i];
71dfc51f 6463
881c6935 6464 /* We shouldn't see aranges for DIEs outside of the main CU. */
1bfb5f8f 6465 if (die->die_mark == 0)
881c6935
JM
6466 abort ();
6467
e689ae67 6468 if (die->die_tag == DW_TAG_subprogram)
2e4b9b8c 6469 {
8e7fa2c8 6470 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
2e4b9b8c
RH
6471 "Address");
6472 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6473 get_AT_low_pc (die), "Length");
6474 }
d291dd49 6475 else
a1d7ffe3 6476 {
e689ae67
JM
6477 /* A static variable; extract the symbol from DW_AT_location.
6478 Note that this code isn't currently hit, as we only emit
6479 aranges for functions (jason 9/23/99). */
71dfc51f 6480
e689ae67
JM
6481 dw_attr_ref a = get_AT (die, DW_AT_location);
6482 dw_loc_descr_ref loc;
a96c67ec 6483 if (! a || AT_class (a) != dw_val_class_loc)
e689ae67
JM
6484 abort ();
6485
a96c67ec 6486 loc = AT_loc (a);
e689ae67
JM
6487 if (loc->dw_loc_opc != DW_OP_addr)
6488 abort ();
6489
2e4b9b8c
RH
6490 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6491 loc->dw_loc_oprnd1.v.val_addr, "Address");
6492 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6493 get_AT_unsigned (die, DW_AT_byte_size),
6494 "Length");
a1d7ffe3 6495 }
d291dd49 6496 }
71dfc51f 6497
a3f97cbb 6498 /* Output the terminator words. */
2e4b9b8c
RH
6499 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6500 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
a3f97cbb
JW
6501}
6502
a20612aa
RH
6503/* Add a new entry to .debug_ranges. Return the offset at which it
6504 was placed. */
6505
6506static unsigned int
6507add_ranges (block)
6508 tree block;
6509{
6510 unsigned int in_use = ranges_table_in_use;
6511
6512 if (in_use == ranges_table_allocated)
6513 {
6514 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6515 ranges_table = (dw_ranges_ref)
6516 xrealloc (ranges_table, (ranges_table_allocated
6517 * sizeof (struct dw_ranges_struct)));
6518 }
6519
6520 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6521 ranges_table_in_use = in_use + 1;
6522
6523 return in_use * 2 * DWARF2_ADDR_SIZE;
6524}
6525
6526static void
6527output_ranges ()
6528{
6529 register unsigned i;
6530 const char *start_fmt = "Offset 0x%x";
6531 const char *fmt = start_fmt;
6532
6533 for (i = 0; i < ranges_table_in_use; ++i)
6534 {
6535 int block_num = ranges_table[i].block_num;
6536
6537 if (block_num)
6538 {
6539 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6540 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6541
6542 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6543 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6544
6545 /* If all code is in the text section, then the compilation
6546 unit base address defaults to DW_AT_low_pc, which is the
6547 base of the text section. */
6548 if (separate_line_info_table_in_use == 0)
6549 {
6550 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6551 text_section_label,
6552 fmt, i * 2 * DWARF2_ADDR_SIZE);
6553 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6554 text_section_label, NULL);
6555 }
6556 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6557 compilation unit base address to zero, which allows us to
6558 use absolute addresses, and not worry about whether the
6559 target supports cross-section arithmetic. */
6560 else
6561 {
6562 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6563 fmt, i * 2 * DWARF2_ADDR_SIZE);
6564 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6565 }
6566
6567 fmt = NULL;
6568 }
6569 else
6570 {
6571 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6572 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6573 fmt = start_fmt;
6574 }
6575 }
6576}
0b34cf1e
UD
6577
6578/* Data structure containing information about input files. */
6579struct file_info
6580{
6581 char *path; /* Complete file name. */
6582 char *fname; /* File name part. */
6583 int length; /* Length of entire string. */
6584 int file_idx; /* Index in input file table. */
6585 int dir_idx; /* Index in directory table. */
6586};
6587
6588/* Data structure containing information about directories with source
6589 files. */
6590struct dir_info
6591{
6592 char *path; /* Path including directory name. */
6593 int length; /* Path length. */
6594 int prefix; /* Index of directory entry which is a prefix. */
0b34cf1e
UD
6595 int count; /* Number of files in this directory. */
6596 int dir_idx; /* Index of directory used as base. */
6597 int used; /* Used in the end? */
6598};
6599
6600/* Callback function for file_info comparison. We sort by looking at
6601 the directories in the path. */
6602static int
6603file_info_cmp (p1, p2)
6604 const void *p1;
6605 const void *p2;
6606{
6607 const struct file_info *s1 = p1;
6608 const struct file_info *s2 = p2;
6609 unsigned char *cp1;
6610 unsigned char *cp2;
6611
6612 /* Take care of file names without directories. */
6613 if (s1->path == s1->fname)
6614 return -1;
6615 else if (s2->path == s2->fname)
6616 return 1;
6617
6618 cp1 = (unsigned char *) s1->path;
6619 cp2 = (unsigned char *) s2->path;
6620
6621 while (1)
6622 {
6623 ++cp1;
6624 ++cp2;
6625 /* Reached the end of the first path? */
6626 if (cp1 == (unsigned char *) s1->fname)
6627 /* It doesn't really matter in which order files from the
6628 same directory are sorted in. Therefore don't test for
6629 the second path reaching the end. */
6630 return -1;
6631 else if (cp2 == (unsigned char *) s2->fname)
6632 return 1;
6633
6634 /* Character of current path component the same? */
6635 if (*cp1 != *cp2)
6636 return *cp1 - *cp2;
6637 }
6638}
6639
6640/* Output the directory table and the file name table. We try to minimize
6641 the total amount of memory needed. A heuristic is used to avoid large
6642 slowdowns with many input files. */
6643static void
6644output_file_names ()
6645{
6646 struct file_info *files;
6647 struct dir_info *dirs;
6648 int *saved;
6649 int *savehere;
6650 int *backmap;
6651 int ndirs;
6652 int idx_offset;
6653 int i;
6654 int idx;
6655
6656 /* Allocate the various arrays we need. */
981975b6 6657 files = (struct file_info *) alloca (file_table.in_use
0b34cf1e 6658 * sizeof (struct file_info));
981975b6 6659 dirs = (struct dir_info *) alloca (file_table.in_use
0b34cf1e
UD
6660 * sizeof (struct dir_info));
6661
6662 /* Sort the file names. */
981975b6 6663 for (i = 1; i < (int) file_table.in_use; ++i)
0b34cf1e
UD
6664 {
6665 char *f;
6666
6667 /* Skip all leading "./". */
981975b6 6668 f = file_table.table[i];
0b34cf1e
UD
6669 while (f[0] == '.' && f[1] == '/')
6670 f += 2;
6671
6672 /* Create a new array entry. */
6673 files[i].path = f;
6674 files[i].length = strlen (f);
6675 files[i].file_idx = i;
6676
6677 /* Search for the file name part. */
6678 f = strrchr (f, '/');
6679 files[i].fname = f == NULL ? files[i].path : f + 1;
6680 }
981975b6 6681 qsort (files + 1, file_table.in_use - 1, sizeof (files[0]), file_info_cmp);
0b34cf1e
UD
6682
6683 /* Find all the different directories used. */
6684 dirs[0].path = files[1].path;
6685 dirs[0].length = files[1].fname - files[1].path;
6686 dirs[0].prefix = -1;
0b34cf1e
UD
6687 dirs[0].count = 1;
6688 dirs[0].dir_idx = 0;
6689 dirs[0].used = 0;
6690 files[1].dir_idx = 0;
6691 ndirs = 1;
6692
981975b6 6693 for (i = 2; i < (int) file_table.in_use; ++i)
0b34cf1e
UD
6694 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
6695 && memcmp (dirs[ndirs - 1].path, files[i].path,
6696 dirs[ndirs - 1].length) == 0)
6697 {
6698 /* Same directory as last entry. */
6699 files[i].dir_idx = ndirs - 1;
0b34cf1e
UD
6700 ++dirs[ndirs - 1].count;
6701 }
6702 else
6703 {
6704 int j;
6705
6706 /* This is a new directory. */
6707 dirs[ndirs].path = files[i].path;
6708 dirs[ndirs].length = files[i].fname - files[i].path;
0b34cf1e
UD
6709 dirs[ndirs].count = 1;
6710 dirs[ndirs].dir_idx = ndirs;
6711 dirs[ndirs].used = 0;
6712 files[i].dir_idx = ndirs;
6713
6714 /* Search for a prefix. */
981975b6 6715 dirs[ndirs].prefix = -1;
0b34cf1e 6716 for (j = 0; j < ndirs; ++j)
981975b6
RH
6717 if (dirs[j].length < dirs[ndirs].length
6718 && dirs[j].length > 1
6719 && (dirs[ndirs].prefix == -1
6720 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
6721 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
6722 dirs[ndirs].prefix = j;
0b34cf1e
UD
6723
6724 ++ndirs;
6725 }
6726
6727 /* Now to the actual work. We have to find a subset of the
6728 directories which allow expressing the file name using references
6729 to the directory table with the least amount of characters. We
6730 do not do an exhaustive search where we would have to check out
6731 every combination of every single possible prefix. Instead we
6732 use a heuristic which provides nearly optimal results in most
6733 cases and never is much off. */
6734 saved = (int *) alloca (ndirs * sizeof (int));
6735 savehere = (int *) alloca (ndirs * sizeof (int));
6736
6737 memset (saved, '\0', ndirs * sizeof (saved[0]));
6738 for (i = 0; i < ndirs; ++i)
6739 {
6740 int j;
6741 int total;
6742
981975b6 6743 /* We can always save some space for the current directory. But
0b34cf1e
UD
6744 this does not mean it will be enough to justify adding the
6745 directory. */
6746 savehere[i] = dirs[i].length;
6747 total = (savehere[i] - saved[i]) * dirs[i].count;
6748
6749 for (j = i + 1; j < ndirs; ++j)
6750 {
6751 savehere[j] = 0;
6752
6753 if (saved[j] < dirs[i].length)
6754 {
6755 /* Determine whether the dirs[i] path is a prefix of the
6756 dirs[j] path. */
6757 int k;
6758
981975b6
RH
6759 k = dirs[j].prefix;
6760 while (k != -1 && k != i)
6761 k = dirs[k].prefix;
6762
6763 if (k == i)
6764 {
6765 /* Yes it is. We can possibly safe some memory but
6766 writing the filenames in dirs[j] relative to
6767 dirs[i]. */
6768 savehere[j] = dirs[i].length;
6769 total += (savehere[j] - saved[j]) * dirs[j].count;
6770 }
0b34cf1e
UD
6771 }
6772 }
6773
6774 /* Check whether we can safe enough to justify adding the dirs[i]
6775 directory. */
6776 if (total > dirs[i].length + 1)
6777 {
981975b6 6778 /* It's worthwhile adding. */
0b34cf1e
UD
6779 for (j = i; j < ndirs; ++j)
6780 if (savehere[j] > 0)
6781 {
6782 /* Remember how much we saved for this directory so far. */
6783 saved[j] = savehere[j];
6784
6785 /* Remember the prefix directory. */
6786 dirs[j].dir_idx = i;
6787 }
6788 }
6789 }
6790
981975b6 6791 /* We have to emit them in the order they appear in the file_table
0b34cf1e
UD
6792 array since the index is used in the debug info generation. To
6793 do this efficiently we generate a back-mapping of the indices
6794 first. */
981975b6
RH
6795 backmap = (int *) alloca (file_table.in_use * sizeof (int));
6796 for (i = 1; i < (int) file_table.in_use; ++i)
0b34cf1e
UD
6797 {
6798 backmap[files[i].file_idx] = i;
6799 /* Mark this directory as used. */
6800 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
6801 }
6802
6803 /* That was it. We are ready to emit the information. First the
6804 directory name table. Here we have to make sure that the first
6805 actually emitted directory name has the index one. Zero is
6806 reserved for the current working directory. Make sure we do not
6807 confuse these indices with the one for the constructed table
6808 (even though most of the time they are identical). */
6809 idx = 1;
e57cabac 6810 idx_offset = dirs[0].length > 0 ? 1 : 0;
0b34cf1e
UD
6811 for (i = 1 - idx_offset; i < ndirs; ++i)
6812 if (dirs[i].used != 0)
6813 {
6814 dirs[i].used = idx++;
2e4b9b8c
RH
6815 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
6816 "Directory Entry: 0x%x", dirs[i].used);
0b34cf1e 6817 }
2e4b9b8c
RH
6818 dw2_asm_output_data (1, 0, "End directory table");
6819
0b34cf1e
UD
6820 /* Correct the index for the current working directory entry if it
6821 exists. */
6822 if (idx_offset == 0)
6823 dirs[0].used = 0;
0b34cf1e
UD
6824
6825 /* Now write all the file names. */
981975b6 6826 for (i = 1; i < (int) file_table.in_use; ++i)
0b34cf1e
UD
6827 {
6828 int file_idx = backmap[i];
6829 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
6830
2e4b9b8c
RH
6831 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
6832 "File Entry: 0x%x", i);
0b34cf1e
UD
6833
6834 /* Include directory index. */
2e4b9b8c 6835 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
0b34cf1e
UD
6836
6837 /* Modification time. */
2e4b9b8c 6838 dw2_asm_output_data_uleb128 (0, NULL);
0b34cf1e
UD
6839
6840 /* File length in bytes. */
2e4b9b8c 6841 dw2_asm_output_data_uleb128 (0, NULL);
0b34cf1e 6842 }
2e4b9b8c 6843 dw2_asm_output_data (1, 0, "End file name table");
0b34cf1e
UD
6844}
6845
6846
a3f97cbb 6847/* Output the source line number correspondence information. This
14a774a9 6848 information goes into the .debug_line section. */
71dfc51f 6849
a3f97cbb
JW
6850static void
6851output_line_info ()
6852{
981975b6 6853 char l1[20], l2[20], p1[20], p2[20];
a3f97cbb
JW
6854 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
6855 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
6856 register unsigned opc;
6857 register unsigned n_op_args;
a3f97cbb
JW
6858 register unsigned long lt_index;
6859 register unsigned long current_line;
6860 register long line_offset;
6861 register long line_delta;
6862 register unsigned long current_file;
e90b62db 6863 register unsigned long function;
71dfc51f 6864
2e4b9b8c
RH
6865 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
6866 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
981975b6
RH
6867 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
6868 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
71dfc51f 6869
2e4b9b8c
RH
6870 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
6871 "Length of Source Line Info");
6872 ASM_OUTPUT_LABEL (asm_out_file, l1);
71dfc51f 6873
2e4b9b8c 6874 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
71dfc51f 6875
981975b6
RH
6876 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
6877 ASM_OUTPUT_LABEL (asm_out_file, p1);
71dfc51f 6878
2e4b9b8c
RH
6879 dw2_asm_output_data (1, DWARF_LINE_MIN_INSTR_LENGTH,
6880 "Minimum Instruction Length");
71dfc51f 6881
2e4b9b8c
RH
6882 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
6883 "Default is_stmt_start flag");
71dfc51f 6884
2e4b9b8c
RH
6885 dw2_asm_output_data (1, DWARF_LINE_BASE,
6886 "Line Base Value (Special Opcodes)");
71dfc51f 6887
2e4b9b8c
RH
6888 dw2_asm_output_data (1, DWARF_LINE_RANGE,
6889 "Line Range Value (Special Opcodes)");
6890
6891 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
6892 "Special Opcode Base");
71dfc51f 6893
a3f97cbb
JW
6894 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; ++opc)
6895 {
6896 switch (opc)
6897 {
6898 case DW_LNS_advance_pc:
6899 case DW_LNS_advance_line:
6900 case DW_LNS_set_file:
6901 case DW_LNS_set_column:
6902 case DW_LNS_fixed_advance_pc:
6903 n_op_args = 1;
6904 break;
6905 default:
6906 n_op_args = 0;
6907 break;
6908 }
2e4b9b8c
RH
6909
6910 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
6911 opc, n_op_args);
a3f97cbb 6912 }
71dfc51f 6913
0b34cf1e
UD
6914 /* Write out the information about the files we use. */
6915 output_file_names ();
981975b6 6916 ASM_OUTPUT_LABEL (asm_out_file, p2);
a3f97cbb 6917
2f22d404
JM
6918 /* We used to set the address register to the first location in the text
6919 section here, but that didn't accomplish anything since we already
6920 have a line note for the opening brace of the first function. */
a3f97cbb
JW
6921
6922 /* Generate the line number to PC correspondence table, encoded as
6923 a series of state machine operations. */
6924 current_file = 1;
6925 current_line = 1;
8b790721 6926 strcpy (prev_line_label, text_section_label);
a3f97cbb
JW
6927 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
6928 {
2f22d404
JM
6929 register dw_line_info_ref line_info = &line_info_table[lt_index];
6930
10a11b75
JM
6931#if 0
6932 /* Disable this optimization for now; GDB wants to see two line notes
6933 at the beginning of a function so it can find the end of the
6934 prologue. */
6935
2f22d404
JM
6936 /* Don't emit anything for redundant notes. Just updating the
6937 address doesn't accomplish anything, because we already assume
6938 that anything after the last address is this line. */
6939 if (line_info->dw_line_num == current_line
6940 && line_info->dw_file_num == current_file)
6941 continue;
10a11b75 6942#endif
71dfc51f 6943
2e4b9b8c
RH
6944 /* Emit debug info for the address of the current line.
6945
6946 Unfortunately, we have little choice here currently, and must always
6947 use the most general form. Gcc does not know the address delta
6948 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
6949 attributes which will give an upper bound on the address range. We
6950 could perhaps use length attributes to determine when it is safe to
6951 use DW_LNS_fixed_advance_pc. */
6952
5c90448c 6953 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
f19a6894
JW
6954 if (0)
6955 {
6956 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
2e4b9b8c
RH
6957 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
6958 "DW_LNS_fixed_advance_pc");
6959 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
f19a6894
JW
6960 }
6961 else
6962 {
a1a4189d
JB
6963 /* This can handle any delta. This takes
6964 4+DWARF2_ADDR_SIZE bytes. */
2e4b9b8c
RH
6965 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
6966 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
6967 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 6968 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
f19a6894
JW
6969 }
6970 strcpy (prev_line_label, line_label);
6971
6972 /* Emit debug info for the source file of the current line, if
6973 different from the previous line. */
a3f97cbb
JW
6974 if (line_info->dw_file_num != current_file)
6975 {
6976 current_file = line_info->dw_file_num;
2e4b9b8c
RH
6977 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
6978 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
981975b6 6979 file_table.table[current_file]);
a3f97cbb 6980 }
71dfc51f 6981
f19a6894
JW
6982 /* Emit debug info for the current line number, choosing the encoding
6983 that uses the least amount of space. */
2f22d404 6984 if (line_info->dw_line_num != current_line)
a3f97cbb 6985 {
2f22d404
JM
6986 line_offset = line_info->dw_line_num - current_line;
6987 line_delta = line_offset - DWARF_LINE_BASE;
6988 current_line = line_info->dw_line_num;
6989 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
6990 {
6991 /* This can handle deltas from -10 to 234, using the current
6992 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
6993 takes 1 byte. */
2e4b9b8c
RH
6994 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
6995 "line %lu", current_line);
2f22d404
JM
6996 }
6997 else
6998 {
6999 /* This can handle any delta. This takes at least 4 bytes,
7000 depending on the value being encoded. */
2e4b9b8c
RH
7001 dw2_asm_output_data (1, DW_LNS_advance_line,
7002 "advance to line %lu", current_line);
7003 dw2_asm_output_data_sleb128 (line_offset, NULL);
7004 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
2f22d404 7005 }
a94dbf2c
JM
7006 }
7007 else
7008 {
2f22d404 7009 /* We still need to start a new row, so output a copy insn. */
2e4b9b8c 7010 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
a3f97cbb 7011 }
a3f97cbb
JW
7012 }
7013
f19a6894
JW
7014 /* Emit debug info for the address of the end of the function. */
7015 if (0)
7016 {
2e4b9b8c
RH
7017 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7018 "DW_LNS_fixed_advance_pc");
7019 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
f19a6894
JW
7020 }
7021 else
7022 {
2e4b9b8c
RH
7023 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7024 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7025 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7026 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
f19a6894 7027 }
bdb669cb 7028
2e4b9b8c
RH
7029 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7030 dw2_asm_output_data_uleb128 (1, NULL);
7031 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
e90b62db
JM
7032
7033 function = 0;
7034 current_file = 1;
7035 current_line = 1;
556273e0 7036 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
e90b62db
JM
7037 {
7038 register dw_separate_line_info_ref line_info
7039 = &separate_line_info_table[lt_index];
71dfc51f 7040
10a11b75 7041#if 0
2f22d404
JM
7042 /* Don't emit anything for redundant notes. */
7043 if (line_info->dw_line_num == current_line
7044 && line_info->dw_file_num == current_file
7045 && line_info->function == function)
7046 goto cont;
10a11b75 7047#endif
2f22d404 7048
f19a6894
JW
7049 /* Emit debug info for the address of the current line. If this is
7050 a new function, or the first line of a function, then we need
7051 to handle it differently. */
5c90448c
JM
7052 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7053 lt_index);
e90b62db
JM
7054 if (function != line_info->function)
7055 {
7056 function = line_info->function;
71dfc51f 7057
e90b62db 7058 /* Set the address register to the first line in the function */
2e4b9b8c
RH
7059 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7060 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7061 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7062 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
e90b62db
JM
7063 }
7064 else
7065 {
f19a6894
JW
7066 /* ??? See the DW_LNS_advance_pc comment above. */
7067 if (0)
7068 {
2e4b9b8c
RH
7069 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7070 "DW_LNS_fixed_advance_pc");
7071 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
f19a6894
JW
7072 }
7073 else
7074 {
2e4b9b8c
RH
7075 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7076 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7077 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7078 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
f19a6894 7079 }
e90b62db 7080 }
f19a6894 7081 strcpy (prev_line_label, line_label);
71dfc51f 7082
f19a6894
JW
7083 /* Emit debug info for the source file of the current line, if
7084 different from the previous line. */
e90b62db
JM
7085 if (line_info->dw_file_num != current_file)
7086 {
7087 current_file = line_info->dw_file_num;
2e4b9b8c
RH
7088 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7089 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
981975b6 7090 file_table.table[current_file]);
e90b62db 7091 }
71dfc51f 7092
f19a6894
JW
7093 /* Emit debug info for the current line number, choosing the encoding
7094 that uses the least amount of space. */
e90b62db
JM
7095 if (line_info->dw_line_num != current_line)
7096 {
7097 line_offset = line_info->dw_line_num - current_line;
7098 line_delta = line_offset - DWARF_LINE_BASE;
7099 current_line = line_info->dw_line_num;
7100 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
2e4b9b8c
RH
7101 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7102 "line %lu", current_line);
e90b62db
JM
7103 else
7104 {
2e4b9b8c
RH
7105 dw2_asm_output_data (1, DW_LNS_advance_line,
7106 "advance to line %lu", current_line);
7107 dw2_asm_output_data_sleb128 (line_offset, NULL);
7108 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
e90b62db
JM
7109 }
7110 }
2f22d404 7111 else
2e4b9b8c 7112 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
71dfc51f 7113
10a11b75 7114#if 0
2f22d404 7115 cont:
10a11b75 7116#endif
e90b62db 7117 ++lt_index;
e90b62db
JM
7118
7119 /* If we're done with a function, end its sequence. */
7120 if (lt_index == separate_line_info_table_in_use
7121 || separate_line_info_table[lt_index].function != function)
7122 {
7123 current_file = 1;
7124 current_line = 1;
71dfc51f 7125
f19a6894 7126 /* Emit debug info for the address of the end of the function. */
5c90448c 7127 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
f19a6894
JW
7128 if (0)
7129 {
2e4b9b8c
RH
7130 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7131 "DW_LNS_fixed_advance_pc");
7132 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
f19a6894
JW
7133 }
7134 else
7135 {
2e4b9b8c
RH
7136 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7137 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7138 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7139 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
f19a6894 7140 }
e90b62db
JM
7141
7142 /* Output the marker for the end of this sequence. */
2e4b9b8c
RH
7143 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7144 dw2_asm_output_data_uleb128 (1, NULL);
7145 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
e90b62db
JM
7146 }
7147 }
f19f17e0
JM
7148
7149 /* Output the marker for the end of the line number info. */
2e4b9b8c 7150 ASM_OUTPUT_LABEL (asm_out_file, l2);
a3f97cbb
JW
7151}
7152\f
a3f97cbb
JW
7153/* Given a pointer to a tree node for some base type, return a pointer to
7154 a DIE that describes the given type.
7155
7156 This routine must only be called for GCC type nodes that correspond to
7157 Dwarf base (fundamental) types. */
71dfc51f 7158
a3f97cbb
JW
7159static dw_die_ref
7160base_type_die (type)
7161 register tree type;
7162{
a9d38797 7163 register dw_die_ref base_type_result;
ec0ce6e2 7164 register const char *type_name;
a9d38797 7165 register enum dwarf_type encoding;
71dfc51f 7166 register tree name = TYPE_NAME (type);
a3f97cbb 7167
a9d38797
JM
7168 if (TREE_CODE (type) == ERROR_MARK
7169 || TREE_CODE (type) == VOID_TYPE)
a3f97cbb
JW
7170 return 0;
7171
405f63da
MM
7172 if (name)
7173 {
7174 if (TREE_CODE (name) == TYPE_DECL)
7175 name = DECL_NAME (name);
7176
7177 type_name = IDENTIFIER_POINTER (name);
7178 }
7179 else
7180 type_name = "__unknown__";
a9d38797 7181
a3f97cbb
JW
7182 switch (TREE_CODE (type))
7183 {
a3f97cbb 7184 case INTEGER_TYPE:
a9d38797 7185 /* Carefully distinguish the C character types, without messing
a3f97cbb 7186 up if the language is not C. Note that we check only for the names
556273e0 7187 that contain spaces; other names might occur by coincidence in other
a3f97cbb 7188 languages. */
a9d38797
JM
7189 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7190 && (type == char_type_node
7191 || ! strcmp (type_name, "signed char")
7192 || ! strcmp (type_name, "unsigned char"))))
a3f97cbb 7193 {
a9d38797
JM
7194 if (TREE_UNSIGNED (type))
7195 encoding = DW_ATE_unsigned;
7196 else
7197 encoding = DW_ATE_signed;
7198 break;
a3f97cbb 7199 }
556273e0 7200 /* else fall through. */
a3f97cbb 7201
a9d38797
JM
7202 case CHAR_TYPE:
7203 /* GNU Pascal/Ada CHAR type. Not used in C. */
7204 if (TREE_UNSIGNED (type))
7205 encoding = DW_ATE_unsigned_char;
7206 else
7207 encoding = DW_ATE_signed_char;
a3f97cbb
JW
7208 break;
7209
7210 case REAL_TYPE:
a9d38797 7211 encoding = DW_ATE_float;
a3f97cbb
JW
7212 break;
7213
405f63da
MM
7214 /* Dwarf2 doesn't know anything about complex ints, so use
7215 a user defined type for it. */
a3f97cbb 7216 case COMPLEX_TYPE:
405f63da
MM
7217 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7218 encoding = DW_ATE_complex_float;
7219 else
7220 encoding = DW_ATE_lo_user;
a3f97cbb
JW
7221 break;
7222
7223 case BOOLEAN_TYPE:
a9d38797
JM
7224 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7225 encoding = DW_ATE_boolean;
a3f97cbb
JW
7226 break;
7227
7228 default:
a9d38797 7229 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
a3f97cbb
JW
7230 }
7231
a9d38797 7232 base_type_result = new_die (DW_TAG_base_type, comp_unit_die);
14a774a9
RK
7233 if (demangle_name_func)
7234 type_name = (*demangle_name_func) (type_name);
7235
a9d38797
JM
7236 add_AT_string (base_type_result, DW_AT_name, type_name);
7237 add_AT_unsigned (base_type_result, DW_AT_byte_size,
4e5a8d7b 7238 int_size_in_bytes (type));
a9d38797 7239 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
a3f97cbb
JW
7240
7241 return base_type_result;
7242}
7243
7244/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7245 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7246 a given type is generally the same as the given type, except that if the
7247 given type is a pointer or reference type, then the root type of the given
7248 type is the root type of the "basis" type for the pointer or reference
7249 type. (This definition of the "root" type is recursive.) Also, the root
7250 type of a `const' qualified type or a `volatile' qualified type is the
7251 root type of the given type without the qualifiers. */
71dfc51f 7252
a3f97cbb
JW
7253static tree
7254root_type (type)
7255 register tree type;
7256{
7257 if (TREE_CODE (type) == ERROR_MARK)
7258 return error_mark_node;
7259
7260 switch (TREE_CODE (type))
7261 {
7262 case ERROR_MARK:
7263 return error_mark_node;
7264
7265 case POINTER_TYPE:
7266 case REFERENCE_TYPE:
7267 return type_main_variant (root_type (TREE_TYPE (type)));
7268
7269 default:
7270 return type_main_variant (type);
7271 }
7272}
7273
7274/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7275 given input type is a Dwarf "fundamental" type. Otherwise return null. */
71dfc51f
RK
7276
7277static inline int
a3f97cbb
JW
7278is_base_type (type)
7279 register tree type;
7280{
7281 switch (TREE_CODE (type))
7282 {
7283 case ERROR_MARK:
7284 case VOID_TYPE:
7285 case INTEGER_TYPE:
7286 case REAL_TYPE:
7287 case COMPLEX_TYPE:
7288 case BOOLEAN_TYPE:
7289 case CHAR_TYPE:
7290 return 1;
7291
7292 case SET_TYPE:
7293 case ARRAY_TYPE:
7294 case RECORD_TYPE:
7295 case UNION_TYPE:
7296 case QUAL_UNION_TYPE:
7297 case ENUMERAL_TYPE:
7298 case FUNCTION_TYPE:
7299 case METHOD_TYPE:
7300 case POINTER_TYPE:
7301 case REFERENCE_TYPE:
7302 case FILE_TYPE:
7303 case OFFSET_TYPE:
7304 case LANG_TYPE:
604bb87d 7305 case VECTOR_TYPE:
a3f97cbb
JW
7306 return 0;
7307
7308 default:
7309 abort ();
7310 }
71dfc51f 7311
a3f97cbb
JW
7312 return 0;
7313}
7314
7315/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7316 entry that chains various modifiers in front of the given type. */
71dfc51f 7317
a3f97cbb
JW
7318static dw_die_ref
7319modified_type_die (type, is_const_type, is_volatile_type, context_die)
7320 register tree type;
7321 register int is_const_type;
7322 register int is_volatile_type;
7323 register dw_die_ref context_die;
7324{
7325 register enum tree_code code = TREE_CODE (type);
7326 register dw_die_ref mod_type_die = NULL;
7327 register dw_die_ref sub_die = NULL;
dfcf9891 7328 register tree item_type = NULL;
a3f97cbb
JW
7329
7330 if (code != ERROR_MARK)
7331 {
5101b304
MM
7332 tree qualified_type;
7333
7334 /* See if we already have the appropriately qualified variant of
7335 this type. */
7336 qualified_type
7337 = get_qualified_type (type,
7338 ((is_const_type ? TYPE_QUAL_CONST : 0)
7339 | (is_volatile_type
7340 ? TYPE_QUAL_VOLATILE : 0)));
7341 /* If we do, then we can just use its DIE, if it exists. */
7342 if (qualified_type)
7343 {
7344 mod_type_die = lookup_type_die (qualified_type);
7345 if (mod_type_die)
7346 return mod_type_die;
7347 }
bdb669cb 7348
556273e0 7349 /* Handle C typedef types. */
5101b304
MM
7350 if (qualified_type && TYPE_NAME (qualified_type)
7351 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7352 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
a94dbf2c 7353 {
5101b304
MM
7354 tree type_name = TYPE_NAME (qualified_type);
7355 tree dtype = TREE_TYPE (type_name);
7356 if (qualified_type == dtype)
a94dbf2c
JM
7357 {
7358 /* For a named type, use the typedef. */
5101b304
MM
7359 gen_type_die (qualified_type, context_die);
7360 mod_type_die = lookup_type_die (qualified_type);
a94dbf2c 7361 }
71dfc51f 7362
a94dbf2c
JM
7363 else if (is_const_type < TYPE_READONLY (dtype)
7364 || is_volatile_type < TYPE_VOLATILE (dtype))
7365 /* cv-unqualified version of named type. Just use the unnamed
7366 type to which it refers. */
71dfc51f 7367 mod_type_die
5101b304 7368 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
71dfc51f
RK
7369 is_const_type, is_volatile_type,
7370 context_die);
7371 /* Else cv-qualified version of named type; fall through. */
a94dbf2c
JM
7372 }
7373
7374 if (mod_type_die)
556273e0
KH
7375 /* OK. */
7376 ;
a94dbf2c 7377 else if (is_const_type)
a3f97cbb 7378 {
ab72d377 7379 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die);
a9d38797 7380 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
a3f97cbb
JW
7381 }
7382 else if (is_volatile_type)
7383 {
ab72d377 7384 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die);
a9d38797 7385 sub_die = modified_type_die (type, 0, 0, context_die);
a3f97cbb
JW
7386 }
7387 else if (code == POINTER_TYPE)
7388 {
ab72d377 7389 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die);
a3f97cbb 7390 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
61b32c02 7391#if 0
a3f97cbb 7392 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
61b32c02 7393#endif
a3f97cbb 7394 item_type = TREE_TYPE (type);
a3f97cbb
JW
7395 }
7396 else if (code == REFERENCE_TYPE)
7397 {
ab72d377 7398 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die);
a3f97cbb 7399 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
61b32c02 7400#if 0
a3f97cbb 7401 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
556273e0 7402#endif
a3f97cbb 7403 item_type = TREE_TYPE (type);
a3f97cbb
JW
7404 }
7405 else if (is_base_type (type))
71dfc51f 7406 mod_type_die = base_type_die (type);
a3f97cbb
JW
7407 else
7408 {
4b674448
JM
7409 gen_type_die (type, context_die);
7410
a3f97cbb
JW
7411 /* We have to get the type_main_variant here (and pass that to the
7412 `lookup_type_die' routine) because the ..._TYPE node we have
7413 might simply be a *copy* of some original type node (where the
7414 copy was created to help us keep track of typedef names) and
7415 that copy might have a different TYPE_UID from the original
a94dbf2c 7416 ..._TYPE node. */
a3f97cbb 7417 mod_type_die = lookup_type_die (type_main_variant (type));
3a88cbd1
JL
7418 if (mod_type_die == NULL)
7419 abort ();
a3f97cbb 7420 }
3d2999ba
MK
7421
7422 /* We want to equate the qualified type to the die below. */
7423 if (qualified_type)
7424 type = qualified_type;
a3f97cbb 7425 }
71dfc51f 7426
dfcf9891
JW
7427 equate_type_number_to_die (type, mod_type_die);
7428 if (item_type)
71dfc51f
RK
7429 /* We must do this after the equate_type_number_to_die call, in case
7430 this is a recursive type. This ensures that the modified_type_die
7431 recursion will terminate even if the type is recursive. Recursive
7432 types are possible in Ada. */
7433 sub_die = modified_type_die (item_type,
7434 TYPE_READONLY (item_type),
7435 TYPE_VOLATILE (item_type),
7436 context_die);
7437
a3f97cbb 7438 if (sub_die != NULL)
71dfc51f
RK
7439 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7440
a3f97cbb
JW
7441 return mod_type_die;
7442}
7443
a3f97cbb
JW
7444/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7445 an enumerated type. */
71dfc51f
RK
7446
7447static inline int
a3f97cbb
JW
7448type_is_enum (type)
7449 register tree type;
7450{
7451 return TREE_CODE (type) == ENUMERAL_TYPE;
7452}
7453
7d9d8943
AM
7454/* Return the register number described by a given RTL node. */
7455
7456static unsigned int
7457reg_number (rtl)
7458 register rtx rtl;
7459{
7460 register unsigned regno = REGNO (rtl);
7461
7462 if (regno >= FIRST_PSEUDO_REGISTER)
7463 {
7464 warning ("internal regno botch: regno = %d\n", regno);
7465 regno = 0;
7466 }
7467
7468 regno = DBX_REGISTER_NUMBER (regno);
7469 return regno;
7470}
7471
a3f97cbb 7472/* Return a location descriptor that designates a machine register. */
71dfc51f 7473
a3f97cbb
JW
7474static dw_loc_descr_ref
7475reg_loc_descriptor (rtl)
7476 register rtx rtl;
7477{
7478 register dw_loc_descr_ref loc_result = NULL;
7479 register unsigned reg = reg_number (rtl);
71dfc51f 7480
85066503 7481 if (reg <= 31)
71dfc51f 7482 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
a3f97cbb 7483 else
71dfc51f
RK
7484 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
7485
a3f97cbb
JW
7486 return loc_result;
7487}
7488
d8041cc8
RH
7489/* Return a location descriptor that designates a constant. */
7490
7491static dw_loc_descr_ref
7492int_loc_descriptor (i)
7493 HOST_WIDE_INT i;
7494{
7495 enum dwarf_location_atom op;
7496
7497 /* Pick the smallest representation of a constant, rather than just
7498 defaulting to the LEB encoding. */
7499 if (i >= 0)
7500 {
7501 if (i <= 31)
7502 op = DW_OP_lit0 + i;
7503 else if (i <= 0xff)
7504 op = DW_OP_const1u;
7505 else if (i <= 0xffff)
7506 op = DW_OP_const2u;
7507 else if (HOST_BITS_PER_WIDE_INT == 32
7508 || i <= 0xffffffff)
7509 op = DW_OP_const4u;
7510 else
7511 op = DW_OP_constu;
7512 }
7513 else
7514 {
7515 if (i >= -0x80)
7516 op = DW_OP_const1s;
7517 else if (i >= -0x8000)
7518 op = DW_OP_const2s;
7519 else if (HOST_BITS_PER_WIDE_INT == 32
7520 || i >= -0x80000000)
7521 op = DW_OP_const4s;
7522 else
7523 op = DW_OP_consts;
7524 }
7525
7526 return new_loc_descr (op, i, 0);
7527}
7528
a3f97cbb 7529/* Return a location descriptor that designates a base+offset location. */
71dfc51f 7530
a3f97cbb
JW
7531static dw_loc_descr_ref
7532based_loc_descr (reg, offset)
7533 unsigned reg;
7534 long int offset;
7535{
7536 register dw_loc_descr_ref loc_result;
810429b7
JM
7537 /* For the "frame base", we use the frame pointer or stack pointer
7538 registers, since the RTL for local variables is relative to one of
7539 them. */
7540 register unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
b1ccbc24 7541 ? HARD_FRAME_POINTER_REGNUM
810429b7 7542 : STACK_POINTER_REGNUM);
71dfc51f 7543
a3f97cbb 7544 if (reg == fp_reg)
71dfc51f 7545 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
85066503 7546 else if (reg <= 31)
71dfc51f 7547 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
a3f97cbb 7548 else
71dfc51f
RK
7549 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
7550
a3f97cbb
JW
7551 return loc_result;
7552}
7553
7554/* Return true if this RTL expression describes a base+offset calculation. */
71dfc51f
RK
7555
7556static inline int
a3f97cbb
JW
7557is_based_loc (rtl)
7558 register rtx rtl;
7559{
71dfc51f
RK
7560 return (GET_CODE (rtl) == PLUS
7561 && ((GET_CODE (XEXP (rtl, 0)) == REG
7562 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
a3f97cbb
JW
7563}
7564
7565/* The following routine converts the RTL for a variable or parameter
7566 (resident in memory) into an equivalent Dwarf representation of a
7567 mechanism for getting the address of that same variable onto the top of a
7568 hypothetical "address evaluation" stack.
71dfc51f 7569
a3f97cbb
JW
7570 When creating memory location descriptors, we are effectively transforming
7571 the RTL for a memory-resident object into its Dwarf postfix expression
7572 equivalent. This routine recursively descends an RTL tree, turning
e60d4d7b
JL
7573 it into Dwarf postfix code as it goes.
7574
7575 MODE is the mode of the memory reference, needed to handle some
7576 autoincrement addressing modes. */
71dfc51f 7577
a3f97cbb 7578static dw_loc_descr_ref
e60d4d7b 7579mem_loc_descriptor (rtl, mode)
a3f97cbb 7580 register rtx rtl;
e60d4d7b 7581 enum machine_mode mode;
a3f97cbb
JW
7582{
7583 dw_loc_descr_ref mem_loc_result = NULL;
556273e0 7584 /* Note that for a dynamically sized array, the location we will generate a
a3f97cbb
JW
7585 description of here will be the lowest numbered location which is
7586 actually within the array. That's *not* necessarily the same as the
7587 zeroth element of the array. */
71dfc51f 7588
1865dbb5
JM
7589#ifdef ASM_SIMPLIFY_DWARF_ADDR
7590 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
7591#endif
7592
a3f97cbb
JW
7593 switch (GET_CODE (rtl))
7594 {
e60d4d7b
JL
7595 case POST_INC:
7596 case POST_DEC:
e2134eea 7597 case POST_MODIFY:
e60d4d7b
JL
7598 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7599 just fall into the SUBREG code. */
7600
556273e0 7601 /* Fall through. */
e60d4d7b 7602
a3f97cbb
JW
7603 case SUBREG:
7604 /* The case of a subreg may arise when we have a local (register)
7605 variable or a formal (register) parameter which doesn't quite fill
7606 up an entire register. For now, just assume that it is
7607 legitimate to make the Dwarf info refer to the whole register which
7608 contains the given subreg. */
ddef6bc7 7609 rtl = SUBREG_REG (rtl);
71dfc51f 7610
556273e0 7611 /* Fall through. */
a3f97cbb
JW
7612
7613 case REG:
7614 /* Whenever a register number forms a part of the description of the
7615 method for calculating the (dynamic) address of a memory resident
556273e0 7616 object, DWARF rules require the register number be referred to as
a3f97cbb
JW
7617 a "base register". This distinction is not based in any way upon
7618 what category of register the hardware believes the given register
7619 belongs to. This is strictly DWARF terminology we're dealing with
7620 here. Note that in cases where the location of a memory-resident
7621 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7622 OP_CONST (0)) the actual DWARF location descriptor that we generate
7623 may just be OP_BASEREG (basereg). This may look deceptively like
7624 the object in question was allocated to a register (rather than in
7625 memory) so DWARF consumers need to be aware of the subtle
7626 distinction between OP_REG and OP_BASEREG. */
7627 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
7628 break;
7629
7630 case MEM:
f7d2b0ed
RH
7631 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7632 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
a3f97cbb
JW
7633 break;
7634
d8041cc8
RH
7635 case LABEL_REF:
7636 /* Some ports can transform a symbol ref into a label ref, because
368f4cd6
NC
7637 the symbol ref is too far away and has to be dumped into a constant
7638 pool. */
a3f97cbb
JW
7639 case CONST:
7640 case SYMBOL_REF:
6331d1c1 7641 /* Alternatively, the symbol in the constant pool might be referenced
c6f9b9a1
NC
7642 by a different symbol. */
7643 if (GET_CODE (rtl) == SYMBOL_REF
79cdfa4b
TM
7644 && CONSTANT_POOL_ADDRESS_P (rtl))
7645 {
7646 rtx tmp = get_pool_constant (rtl);
6331d1c1 7647 if (GET_CODE (tmp) == SYMBOL_REF)
79cdfa4b
TM
7648 rtl = tmp;
7649 }
7650
a3f97cbb
JW
7651 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
7652 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
1865dbb5 7653 mem_loc_result->dw_loc_oprnd1.v.val_addr = save_rtx (rtl);
a3f97cbb
JW
7654 break;
7655
e2134eea
JH
7656 case PRE_MODIFY:
7657 /* Extract the PLUS expression nested inside and fall into
0407c02b 7658 PLUS code below. */
e2134eea
JH
7659 rtl = XEXP (rtl, 1);
7660 goto plus;
7661
e60d4d7b
JL
7662 case PRE_INC:
7663 case PRE_DEC:
7664 /* Turn these into a PLUS expression and fall into the PLUS code
7665 below. */
7666 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
7667 GEN_INT (GET_CODE (rtl) == PRE_INC
556273e0
KH
7668 ? GET_MODE_UNIT_SIZE (mode)
7669 : -GET_MODE_UNIT_SIZE (mode)));
7670
7671 /* Fall through. */
e60d4d7b 7672
a3f97cbb 7673 case PLUS:
e2134eea 7674 plus:
a3f97cbb 7675 if (is_based_loc (rtl))
71dfc51f
RK
7676 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
7677 INTVAL (XEXP (rtl, 1)));
a3f97cbb
JW
7678 else
7679 {
d8041cc8
RH
7680 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
7681
7682 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
7683 && INTVAL (XEXP (rtl, 1)) >= 0)
7684 {
7685 add_loc_descr (&mem_loc_result,
7686 new_loc_descr (DW_OP_plus_uconst,
7687 INTVAL (XEXP (rtl, 1)), 0));
7688 }
7689 else
7690 {
7691 add_loc_descr (&mem_loc_result,
7692 mem_loc_descriptor (XEXP (rtl, 1), mode));
7693 add_loc_descr (&mem_loc_result,
7694 new_loc_descr (DW_OP_plus, 0, 0));
7695 }
a3f97cbb
JW
7696 }
7697 break;
7698
dd2478ae
JW
7699 case MULT:
7700 /* If a pseudo-reg is optimized away, it is possible for it to
7701 be replaced with a MEM containing a multiply. */
d8041cc8
RH
7702 add_loc_descr (&mem_loc_result,
7703 mem_loc_descriptor (XEXP (rtl, 0), mode));
7704 add_loc_descr (&mem_loc_result,
7705 mem_loc_descriptor (XEXP (rtl, 1), mode));
dd2478ae
JW
7706 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
7707 break;
7708
a3f97cbb 7709 case CONST_INT:
d8041cc8 7710 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
a3f97cbb
JW
7711 break;
7712
7713 default:
7714 abort ();
7715 }
71dfc51f 7716
a3f97cbb
JW
7717 return mem_loc_result;
7718}
7719
956d6950 7720/* Return a descriptor that describes the concatenation of two locations.
4401bf24
JL
7721 This is typically a complex variable. */
7722
7723static dw_loc_descr_ref
7724concat_loc_descriptor (x0, x1)
7725 register rtx x0, x1;
7726{
7727 dw_loc_descr_ref cc_loc_result = NULL;
7728
7729 if (!is_pseudo_reg (x0)
7730 && (GET_CODE (x0) != MEM || !is_pseudo_reg (XEXP (x0, 0))))
7731 add_loc_descr (&cc_loc_result, loc_descriptor (x0));
7732 add_loc_descr (&cc_loc_result,
7733 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (GET_MODE (x0)), 0));
7734
7735 if (!is_pseudo_reg (x1)
7736 && (GET_CODE (x1) != MEM || !is_pseudo_reg (XEXP (x1, 0))))
7737 add_loc_descr (&cc_loc_result, loc_descriptor (x1));
7738 add_loc_descr (&cc_loc_result,
7739 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (GET_MODE (x1)), 0));
7740
7741 return cc_loc_result;
7742}
7743
a3f97cbb
JW
7744/* Output a proper Dwarf location descriptor for a variable or parameter
7745 which is either allocated in a register or in a memory location. For a
7746 register, we just generate an OP_REG and the register number. For a
7747 memory location we provide a Dwarf postfix expression describing how to
7748 generate the (dynamic) address of the object onto the address stack. */
71dfc51f 7749
a3f97cbb
JW
7750static dw_loc_descr_ref
7751loc_descriptor (rtl)
7752 register rtx rtl;
7753{
7754 dw_loc_descr_ref loc_result = NULL;
7755 switch (GET_CODE (rtl))
7756 {
7757 case SUBREG:
a3f97cbb
JW
7758 /* The case of a subreg may arise when we have a local (register)
7759 variable or a formal (register) parameter which doesn't quite fill
71dfc51f 7760 up an entire register. For now, just assume that it is
a3f97cbb
JW
7761 legitimate to make the Dwarf info refer to the whole register which
7762 contains the given subreg. */
ddef6bc7 7763 rtl = SUBREG_REG (rtl);
71dfc51f 7764
556273e0 7765 /* Fall through. */
a3f97cbb
JW
7766
7767 case REG:
5c90448c 7768 loc_result = reg_loc_descriptor (rtl);
a3f97cbb
JW
7769 break;
7770
7771 case MEM:
e60d4d7b 7772 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
a3f97cbb
JW
7773 break;
7774
4401bf24
JL
7775 case CONCAT:
7776 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
7777 break;
7778
a3f97cbb 7779 default:
71dfc51f 7780 abort ();
a3f97cbb 7781 }
71dfc51f 7782
a3f97cbb
JW
7783 return loc_result;
7784}
7785
d8041cc8
RH
7786/* Similar, but generate the descriptor from trees instead of rtl.
7787 This comes up particularly with variable length arrays. */
7788
7789static dw_loc_descr_ref
7790loc_descriptor_from_tree (loc, addressp)
7791 tree loc;
7792 int addressp;
7793{
7794 dw_loc_descr_ref ret = NULL;
7795 int indirect_size = 0;
7796 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
7797 enum dwarf_location_atom op;
7798
7799 /* ??? Most of the time we do not take proper care for sign/zero
7800 extending the values properly. Hopefully this won't be a real
7801 problem... */
7802
7803 switch (TREE_CODE (loc))
7804 {
7805 case ERROR_MARK:
7806 break;
7807
b4ae5201
RK
7808 case WITH_RECORD_EXPR:
7809 /* This case involves extracting fields from an object to determine the
7810 position of other fields. We don't try to encode this here. The
7811 only user of this is Ada, which encodes the needed information using
7812 the names of types. */
7813 return ret;
7814
d8041cc8
RH
7815 case VAR_DECL:
7816 case PARM_DECL:
7817 {
7818 rtx rtl = rtl_for_decl_location (loc);
7819 enum machine_mode mode = DECL_MODE (loc);
7820
a97c9600
RH
7821 if (rtl == NULL_RTX)
7822 break;
7823 else if (CONSTANT_P (rtl))
d8041cc8
RH
7824 {
7825 ret = new_loc_descr (DW_OP_addr, 0, 0);
7826 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
7827 ret->dw_loc_oprnd1.v.val_addr = rtl;
7828 indirect_size = GET_MODE_SIZE (mode);
7829 }
7830 else
7831 {
7832 if (GET_CODE (rtl) == MEM)
7833 {
7834 indirect_size = GET_MODE_SIZE (mode);
7835 rtl = XEXP (rtl, 0);
7836 }
7837 ret = mem_loc_descriptor (rtl, mode);
7838 }
7839 }
7840 break;
7841
7842 case INDIRECT_REF:
7843 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7844 indirect_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (loc)));
7845 break;
7846
ed972b14
RK
7847 case NOP_EXPR:
7848 case CONVERT_EXPR:
7849 case NON_LVALUE_EXPR:
b4ae5201 7850 case SAVE_EXPR:
ed972b14 7851 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
e57cabac 7852
d8041cc8
RH
7853 case COMPONENT_REF:
7854 case BIT_FIELD_REF:
7855 case ARRAY_REF:
b4e3fabb 7856 case ARRAY_RANGE_REF:
d8041cc8
RH
7857 {
7858 tree obj, offset;
7859 HOST_WIDE_INT bitsize, bitpos, bytepos;
7860 enum machine_mode mode;
7861 int volatilep;
7862 unsigned int alignment;
7863
7864 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
7865 &unsignedp, &volatilep, &alignment);
7866 ret = loc_descriptor_from_tree (obj, 1);
7867
7868 if (offset != NULL_TREE)
7869 {
7870 /* Variable offset. */
7871 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
7872 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
7873 }
7874
7875 if (addressp)
7876 {
7877 /* We cannot address anything not on a unit boundary. */
7878 if (bitpos % BITS_PER_UNIT != 0)
7879 abort ();
7880 }
7881 else
7882 {
7883 if (bitpos % BITS_PER_UNIT != 0
7884 || bitsize % BITS_PER_UNIT != 0)
7885 {
7886 /* ??? We could handle this by loading and shifting etc.
7887 Wait until someone needs it before expending the effort. */
7888 abort ();
7889 }
7890
7891 indirect_size = bitsize / BITS_PER_UNIT;
7892 }
7893
7894 bytepos = bitpos / BITS_PER_UNIT;
7895 if (bytepos > 0)
7896 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
7897 else if (bytepos < 0)
7898 {
7899 add_loc_descr (&ret, int_loc_descriptor (bytepos));
7900 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
7901 }
7902 break;
7903 }
7904
7905 case INTEGER_CST:
7906 if (host_integerp (loc, 0))
7907 ret = int_loc_descriptor (tree_low_cst (loc, 0));
7908 break;
d8041cc8
RH
7909
7910 case BIT_AND_EXPR:
7911 op = DW_OP_and;
7912 goto do_binop;
7913 case BIT_XOR_EXPR:
7914 op = DW_OP_xor;
7915 goto do_binop;
7916 case BIT_IOR_EXPR:
7917 op = DW_OP_or;
7918 goto do_binop;
7919 case TRUNC_DIV_EXPR:
7920 op = DW_OP_div;
7921 goto do_binop;
7922 case MINUS_EXPR:
7923 op = DW_OP_minus;
7924 goto do_binop;
7925 case TRUNC_MOD_EXPR:
7926 op = DW_OP_mod;
7927 goto do_binop;
7928 case MULT_EXPR:
7929 op = DW_OP_mul;
7930 goto do_binop;
7931 case LSHIFT_EXPR:
7932 op = DW_OP_shl;
7933 goto do_binop;
7934 case RSHIFT_EXPR:
7935 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
7936 goto do_binop;
7937 case PLUS_EXPR:
7938 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
7939 && host_integerp (TREE_OPERAND (loc, 1), 0))
7940 {
7941 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7942 add_loc_descr (&ret,
7943 new_loc_descr (DW_OP_plus_uconst,
7944 tree_low_cst (TREE_OPERAND (loc, 1),
7945 0),
7946 0));
7947 break;
7948 }
7949 op = DW_OP_plus;
7950 goto do_binop;
7951 case LE_EXPR:
7952 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7953 break;
7954 op = DW_OP_le;
7955 goto do_binop;
7956 case GE_EXPR:
7957 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7958 break;
7959 op = DW_OP_ge;
7960 goto do_binop;
7961 case LT_EXPR:
7962 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7963 break;
7964 op = DW_OP_lt;
7965 goto do_binop;
7966 case GT_EXPR:
7967 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7968 break;
7969 op = DW_OP_gt;
7970 goto do_binop;
7971 case EQ_EXPR:
7972 op = DW_OP_eq;
7973 goto do_binop;
7974 case NE_EXPR:
7975 op = DW_OP_ne;
7976 goto do_binop;
7977
7978 do_binop:
7979 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7980 add_loc_descr (&ret, loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0));
7981 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
7982 break;
7983
7984 case BIT_NOT_EXPR:
7985 op = DW_OP_not;
7986 goto do_unop;
7987 case ABS_EXPR:
7988 op = DW_OP_abs;
7989 goto do_unop;
7990 case NEGATE_EXPR:
7991 op = DW_OP_neg;
7992 goto do_unop;
7993
7994 do_unop:
7995 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7996 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
7997 break;
7998
7999 case MAX_EXPR:
8000 loc = build (COND_EXPR, TREE_TYPE (loc),
8001 build (LT_EXPR, integer_type_node,
8002 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8003 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8004 /* FALLTHRU */
8005
8006 case COND_EXPR:
8007 {
8008 dw_loc_descr_ref bra_node, jump_node, tmp;
8009
8010 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8011 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8012 add_loc_descr (&ret, bra_node);
8013
8014 tmp = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8015 add_loc_descr (&ret, tmp);
8016 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8017 add_loc_descr (&ret, jump_node);
8018
8019 tmp = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8020 add_loc_descr (&ret, tmp);
8021 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8022 bra_node->dw_loc_oprnd1.v.val_loc = tmp;
8023
8024 /* ??? Need a node to point the skip at. Use a nop. */
8025 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8026 add_loc_descr (&ret, tmp);
8027 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8028 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8029 }
8030 break;
8031
8032 default:
8033 abort ();
8034 }
8035
8036 /* If we can't fill the request for an address, die. */
8037 if (addressp && indirect_size == 0)
8038 abort ();
8039
8040 /* If we've got an address and don't want one, dereference. */
8041 if (!addressp && indirect_size > 0)
8042 {
8043 if (indirect_size > DWARF2_ADDR_SIZE)
8044 abort ();
8045 if (indirect_size == DWARF2_ADDR_SIZE)
8046 op = DW_OP_deref;
8047 else
8048 op = DW_OP_deref_size;
8049 add_loc_descr (&ret, new_loc_descr (op, indirect_size, 0));
8050 }
8051
8052 return ret;
8053}
8054
665f2503 8055/* Given a value, round it up to the lowest multiple of `boundary'
a3f97cbb 8056 which is not less than the value itself. */
71dfc51f 8057
665f2503 8058static inline HOST_WIDE_INT
a3f97cbb 8059ceiling (value, boundary)
665f2503
RK
8060 HOST_WIDE_INT value;
8061 unsigned int boundary;
a3f97cbb
JW
8062{
8063 return (((value + boundary - 1) / boundary) * boundary);
8064}
8065
8066/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8067 pointer to the declared type for the relevant field variable, or return
8068 `integer_type_node' if the given node turns out to be an
8069 ERROR_MARK node. */
71dfc51f
RK
8070
8071static inline tree
a3f97cbb
JW
8072field_type (decl)
8073 register tree decl;
8074{
8075 register tree type;
8076
8077 if (TREE_CODE (decl) == ERROR_MARK)
8078 return integer_type_node;
8079
8080 type = DECL_BIT_FIELD_TYPE (decl);
71dfc51f 8081 if (type == NULL_TREE)
a3f97cbb
JW
8082 type = TREE_TYPE (decl);
8083
8084 return type;
8085}
8086
5f446d21
DD
8087/* Given a pointer to a tree node, return the alignment in bits for
8088 it, or else return BITS_PER_WORD if the node actually turns out to
8089 be an ERROR_MARK node. */
71dfc51f
RK
8090
8091static inline unsigned
a3f97cbb
JW
8092simple_type_align_in_bits (type)
8093 register tree type;
8094{
8095 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8096}
8097
5f446d21
DD
8098static inline unsigned
8099simple_decl_align_in_bits (decl)
8100 register tree decl;
8101{
8102 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8103}
8104
a3f97cbb
JW
8105/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8106 node, return the size in bits for the type if it is a constant, or else
8107 return the alignment for the type if the type's size is not constant, or
8108 else return BITS_PER_WORD if the type actually turns out to be an
8109 ERROR_MARK node. */
71dfc51f 8110
665f2503 8111static inline unsigned HOST_WIDE_INT
a3f97cbb
JW
8112simple_type_size_in_bits (type)
8113 register tree type;
8114{
3df18884
RH
8115 tree type_size_tree;
8116
a3f97cbb
JW
8117 if (TREE_CODE (type) == ERROR_MARK)
8118 return BITS_PER_WORD;
3df18884 8119 type_size_tree = TYPE_SIZE (type);
a3f97cbb 8120
3df18884
RH
8121 if (type_size_tree == NULL_TREE)
8122 return 0;
8123 if (! host_integerp (type_size_tree, 1))
8124 return TYPE_ALIGN (type);
8125 return tree_low_cst (type_size_tree, 1);
a3f97cbb
JW
8126}
8127
8128/* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
8129 return the byte offset of the lowest addressed byte of the "containing
8130 object" for the given FIELD_DECL, or return 0 if we are unable to
8131 determine what that offset is, either because the argument turns out to
8132 be a pointer to an ERROR_MARK node, or because the offset is actually
8133 variable. (We can't handle the latter case just yet). */
71dfc51f 8134
665f2503 8135static HOST_WIDE_INT
a3f97cbb
JW
8136field_byte_offset (decl)
8137 register tree decl;
8138{
665f2503 8139 unsigned int type_align_in_bits;
5f446d21 8140 unsigned int decl_align_in_bits;
665f2503 8141 unsigned HOST_WIDE_INT type_size_in_bits;
665f2503
RK
8142 HOST_WIDE_INT object_offset_in_bits;
8143 HOST_WIDE_INT object_offset_in_bytes;
8144 tree type;
8145 tree field_size_tree;
8146 HOST_WIDE_INT bitpos_int;
8147 HOST_WIDE_INT deepest_bitpos;
8148 unsigned HOST_WIDE_INT field_size_in_bits;
a3f97cbb
JW
8149
8150 if (TREE_CODE (decl) == ERROR_MARK)
8151 return 0;
8152
8153 if (TREE_CODE (decl) != FIELD_DECL)
8154 abort ();
8155
8156 type = field_type (decl);
a3f97cbb
JW
8157 field_size_tree = DECL_SIZE (decl);
8158
3df18884
RH
8159 /* The size could be unspecified if there was an error, or for
8160 a flexible array member. */
50352c9c 8161 if (! field_size_tree)
3df18884 8162 field_size_tree = bitsize_zero_node;
50352c9c 8163
556273e0 8164 /* We cannot yet cope with fields whose positions are variable, so
a3f97cbb
JW
8165 for now, when we see such things, we simply return 0. Someday, we may
8166 be able to handle such cases, but it will be damn difficult. */
665f2503 8167 if (! host_integerp (bit_position (decl), 0))
a3f97cbb 8168 return 0;
14a774a9 8169
665f2503 8170 bitpos_int = int_bit_position (decl);
a3f97cbb 8171
3df18884 8172 /* If we don't know the size of the field, pretend it's a full word. */
665f2503
RK
8173 if (host_integerp (field_size_tree, 1))
8174 field_size_in_bits = tree_low_cst (field_size_tree, 1);
14a774a9
RK
8175 else
8176 field_size_in_bits = BITS_PER_WORD;
a3f97cbb
JW
8177
8178 type_size_in_bits = simple_type_size_in_bits (type);
a3f97cbb 8179 type_align_in_bits = simple_type_align_in_bits (type);
5f446d21 8180 decl_align_in_bits = simple_decl_align_in_bits (decl);
a3f97cbb
JW
8181
8182 /* Note that the GCC front-end doesn't make any attempt to keep track of
8183 the starting bit offset (relative to the start of the containing
8184 structure type) of the hypothetical "containing object" for a bit-
8185 field. Thus, when computing the byte offset value for the start of the
556273e0 8186 "containing object" of a bit-field, we must deduce this information on
a3f97cbb
JW
8187 our own. This can be rather tricky to do in some cases. For example,
8188 handling the following structure type definition when compiling for an
8189 i386/i486 target (which only aligns long long's to 32-bit boundaries)
8190 can be very tricky:
8191
8192 struct S { int field1; long long field2:31; };
8193
8194 Fortunately, there is a simple rule-of-thumb which can be
8195 used in such cases. When compiling for an i386/i486, GCC will allocate
556273e0 8196 8 bytes for the structure shown above. It decides to do this based upon
a3f97cbb
JW
8197 one simple rule for bit-field allocation. Quite simply, GCC allocates
8198 each "containing object" for each bit-field at the first (i.e. lowest
8199 addressed) legitimate alignment boundary (based upon the required
8200 minimum alignment for the declared type of the field) which it can
8201 possibly use, subject to the condition that there is still enough
8202 available space remaining in the containing object (when allocated at
8203 the selected point) to fully accommodate all of the bits of the
8204 bit-field itself. This simple rule makes it obvious why GCC allocates
8205 8 bytes for each object of the structure type shown above. When looking
8206 for a place to allocate the "containing object" for `field2', the
8207 compiler simply tries to allocate a 64-bit "containing object" at each
8208 successive 32-bit boundary (starting at zero) until it finds a place to
8209 allocate that 64- bit field such that at least 31 contiguous (and
8210 previously unallocated) bits remain within that selected 64 bit field.
8211 (As it turns out, for the example above, the compiler finds that it is
8212 OK to allocate the "containing object" 64-bit field at bit-offset zero
8213 within the structure type.) Here we attempt to work backwards from the
556273e0 8214 limited set of facts we're given, and we try to deduce from those facts,
a3f97cbb 8215 where GCC must have believed that the containing object started (within
556273e0
KH
8216 the structure type). The value we deduce is then used (by the callers of
8217 this routine) to generate DW_AT_location and DW_AT_bit_offset attributes
a3f97cbb
JW
8218 for fields (both bit-fields and, in the case of DW_AT_location, regular
8219 fields as well). */
8220
8221 /* Figure out the bit-distance from the start of the structure to the
8222 "deepest" bit of the bit-field. */
8223 deepest_bitpos = bitpos_int + field_size_in_bits;
8224
8225 /* This is the tricky part. Use some fancy footwork to deduce where the
8226 lowest addressed bit of the containing object must be. */
5f446d21
DD
8227 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8228
8229 /* Round up to type_align by default. This works best for bitfields. */
8230 object_offset_in_bits += type_align_in_bits - 1;
8231 object_offset_in_bits /= type_align_in_bits;
8232 object_offset_in_bits *= type_align_in_bits;
a3f97cbb 8233
5f446d21
DD
8234 if (object_offset_in_bits > bitpos_int)
8235 {
8236 /* Sigh, the decl must be packed. */
8237 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8238
8239 /* Round up to decl_align instead. */
8240 object_offset_in_bits += decl_align_in_bits - 1;
8241 object_offset_in_bits /= decl_align_in_bits;
8242 object_offset_in_bits *= decl_align_in_bits;
8243 }
a3f97cbb 8244
5f446d21 8245 object_offset_in_bytes = object_offset_in_bits / BITS_PER_UNIT;
a3f97cbb
JW
8246
8247 return object_offset_in_bytes;
8248}
a3f97cbb 8249\f
71dfc51f
RK
8250/* The following routines define various Dwarf attributes and any data
8251 associated with them. */
a3f97cbb 8252
ef76d03b 8253/* Add a location description attribute value to a DIE.
a3f97cbb 8254
ef76d03b 8255 This emits location attributes suitable for whole variables and
a3f97cbb
JW
8256 whole parameters. Note that the location attributes for struct fields are
8257 generated by the routine `data_member_location_attribute' below. */
71dfc51f 8258
a3f97cbb 8259static void
ef76d03b 8260add_AT_location_description (die, attr_kind, rtl)
a3f97cbb 8261 dw_die_ref die;
ef76d03b 8262 enum dwarf_attribute attr_kind;
a3f97cbb
JW
8263 register rtx rtl;
8264{
a3f97cbb
JW
8265 /* Handle a special case. If we are about to output a location descriptor
8266 for a variable or parameter which has been optimized out of existence,
6a7a9f01 8267 don't do that. A variable which has been optimized out
a3f97cbb
JW
8268 of existence will have a DECL_RTL value which denotes a pseudo-reg.
8269 Currently, in some rare cases, variables can have DECL_RTL values which
8270 look like (MEM (REG pseudo-reg#)). These cases are due to bugs
556273e0 8271 elsewhere in the compiler. We treat such cases as if the variable(s) in
6a7a9f01 8272 question had been optimized out of existence. */
a3f97cbb 8273
6a7a9f01
JM
8274 if (is_pseudo_reg (rtl)
8275 || (GET_CODE (rtl) == MEM
4401bf24 8276 && is_pseudo_reg (XEXP (rtl, 0)))
556273e0 8277 /* This can happen for a PARM_DECL with a DECL_INCOMING_RTL which
bce8fed7
JL
8278 references the internal argument pointer (a pseudo) in a function
8279 where all references to the internal argument pointer were
8280 eliminated via the optimizers. */
8281 || (GET_CODE (rtl) == MEM
8282 && GET_CODE (XEXP (rtl, 0)) == PLUS
8283 && is_pseudo_reg (XEXP (XEXP (rtl, 0), 0)))
4401bf24
JL
8284 || (GET_CODE (rtl) == CONCAT
8285 && is_pseudo_reg (XEXP (rtl, 0))
8286 && is_pseudo_reg (XEXP (rtl, 1))))
6a7a9f01 8287 return;
a3f97cbb 8288
6a7a9f01 8289 add_AT_loc (die, attr_kind, loc_descriptor (rtl));
a3f97cbb
JW
8290}
8291
8292/* Attach the specialized form of location attribute used for data
8293 members of struct and union types. In the special case of a
8294 FIELD_DECL node which represents a bit-field, the "offset" part
8295 of this special location descriptor must indicate the distance
8296 in bytes from the lowest-addressed byte of the containing struct
8297 or union type to the lowest-addressed byte of the "containing
8298 object" for the bit-field. (See the `field_byte_offset' function
8299 above).. For any given bit-field, the "containing object" is a
8300 hypothetical object (of some integral or enum type) within which
8301 the given bit-field lives. The type of this hypothetical
8302 "containing object" is always the same as the declared type of
8303 the individual bit-field itself (for GCC anyway... the DWARF
8304 spec doesn't actually mandate this). Note that it is the size
8305 (in bytes) of the hypothetical "containing object" which will
8306 be given in the DW_AT_byte_size attribute for this bit-field.
8307 (See the `byte_size_attribute' function below.) It is also used
8308 when calculating the value of the DW_AT_bit_offset attribute.
8309 (See the `bit_offset_attribute' function below). */
71dfc51f 8310
a3f97cbb
JW
8311static void
8312add_data_member_location_attribute (die, decl)
8313 register dw_die_ref die;
8314 register tree decl;
8315{
61b32c02 8316 register unsigned long offset;
a3f97cbb
JW
8317 register dw_loc_descr_ref loc_descr;
8318 register enum dwarf_location_atom op;
8319
61b32c02 8320 if (TREE_CODE (decl) == TREE_VEC)
665f2503 8321 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
61b32c02
JM
8322 else
8323 offset = field_byte_offset (decl);
8324
a3f97cbb
JW
8325 /* The DWARF2 standard says that we should assume that the structure address
8326 is already on the stack, so we can specify a structure field address
8327 by using DW_OP_plus_uconst. */
71dfc51f 8328
a3f97cbb
JW
8329#ifdef MIPS_DEBUGGING_INFO
8330 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst operator
8331 correctly. It works only if we leave the offset on the stack. */
8332 op = DW_OP_constu;
8333#else
8334 op = DW_OP_plus_uconst;
8335#endif
71dfc51f 8336
a3f97cbb
JW
8337 loc_descr = new_loc_descr (op, offset, 0);
8338 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
8339}
8340
8341/* Attach an DW_AT_const_value attribute for a variable or a parameter which
8342 does not have a "location" either in memory or in a register. These
8343 things can arise in GNU C when a constant is passed as an actual parameter
8344 to an inlined function. They can also arise in C++ where declared
8345 constants do not necessarily get memory "homes". */
71dfc51f 8346
a3f97cbb
JW
8347static void
8348add_const_value_attribute (die, rtl)
8349 register dw_die_ref die;
8350 register rtx rtl;
8351{
8352 switch (GET_CODE (rtl))
8353 {
8354 case CONST_INT:
2e4b9b8c
RH
8355 /* Note that a CONST_INT rtx could represent either an integer
8356 or a floating-point constant. A CONST_INT is used whenever
8357 the constant will fit into a single word. In all such
8358 cases, the original mode of the constant value is wiped
8359 out, and the CONST_INT rtx is assigned VOIDmode. */
8360 {
8361 HOST_WIDE_INT val = INTVAL (rtl);
8362
8363 /* ??? We really should be using HOST_WIDE_INT throughout. */
8364 if (val < 0)
8365 {
8366 if ((long) val != val)
8367 abort ();
8368 add_AT_int (die, DW_AT_const_value, (long) val);
8369 }
8370 else
8371 {
8372 if ((unsigned long) val != (unsigned HOST_WIDE_INT) val)
8373 abort ();
732910b9 8374 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
2e4b9b8c
RH
8375 }
8376 }
a3f97cbb
JW
8377 break;
8378
8379 case CONST_DOUBLE:
8380 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8381 floating-point constant. A CONST_DOUBLE is used whenever the
8382 constant requires more than one word in order to be adequately
469ac993
JM
8383 represented. We output CONST_DOUBLEs as blocks. */
8384 {
8385 register enum machine_mode mode = GET_MODE (rtl);
8386
8387 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
8388 {
e389897b 8389 register unsigned length = GET_MODE_SIZE (mode) / 4;
1bfb5f8f 8390 long *array = (long *) xmalloc (sizeof (long) * length);
71dfc51f 8391 REAL_VALUE_TYPE rv;
469ac993 8392
71dfc51f 8393 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
469ac993
JM
8394 switch (mode)
8395 {
8396 case SFmode:
71dfc51f 8397 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
469ac993
JM
8398 break;
8399
8400 case DFmode:
71dfc51f 8401 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
469ac993
JM
8402 break;
8403
8404 case XFmode:
8405 case TFmode:
71dfc51f 8406 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
469ac993
JM
8407 break;
8408
8409 default:
8410 abort ();
8411 }
8412
469ac993
JM
8413 add_AT_float (die, DW_AT_const_value, length, array);
8414 }
8415 else
2e4b9b8c
RH
8416 {
8417 /* ??? We really should be using HOST_WIDE_INT throughout. */
8418 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
8419 abort ();
8420 add_AT_long_long (die, DW_AT_const_value,
8421 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
8422 }
469ac993 8423 }
a3f97cbb
JW
8424 break;
8425
8426 case CONST_STRING:
8427 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
8428 break;
8429
8430 case SYMBOL_REF:
8431 case LABEL_REF:
8432 case CONST:
1865dbb5 8433 add_AT_addr (die, DW_AT_const_value, save_rtx (rtl));
a3f97cbb
JW
8434 break;
8435
8436 case PLUS:
8437 /* In cases where an inlined instance of an inline function is passed
8438 the address of an `auto' variable (which is local to the caller) we
8439 can get a situation where the DECL_RTL of the artificial local
8440 variable (for the inlining) which acts as a stand-in for the
8441 corresponding formal parameter (of the inline function) will look
8442 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
556273e0
KH
8443 exactly a compile-time constant expression, but it isn't the address
8444 of the (artificial) local variable either. Rather, it represents the
a3f97cbb 8445 *value* which the artificial local variable always has during its
556273e0 8446 lifetime. We currently have no way to represent such quasi-constant
6a7a9f01 8447 values in Dwarf, so for now we just punt and generate nothing. */
a3f97cbb
JW
8448 break;
8449
8450 default:
8451 /* No other kinds of rtx should be possible here. */
8452 abort ();
8453 }
8454
8455}
8456
d8041cc8
RH
8457static rtx
8458rtl_for_decl_location (decl)
8459 tree decl;
a3f97cbb
JW
8460{
8461 register rtx rtl;
71dfc51f 8462
a3f97cbb
JW
8463 /* Here we have to decide where we are going to say the parameter "lives"
8464 (as far as the debugger is concerned). We only have a couple of
8465 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
71dfc51f 8466
556273e0 8467 DECL_RTL normally indicates where the parameter lives during most of the
71dfc51f 8468 activation of the function. If optimization is enabled however, this
556273e0 8469 could be either NULL or else a pseudo-reg. Both of those cases indicate
a3f97cbb
JW
8470 that the parameter doesn't really live anywhere (as far as the code
8471 generation parts of GCC are concerned) during most of the function's
8472 activation. That will happen (for example) if the parameter is never
71dfc51f
RK
8473 referenced within the function.
8474
8475 We could just generate a location descriptor here for all non-NULL
8476 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8477 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8478 where DECL_RTL is NULL or is a pseudo-reg.
8479
8480 Note however that we can only get away with using DECL_INCOMING_RTL as
8481 a backup substitute for DECL_RTL in certain limited cases. In cases
8482 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8483 we can be sure that the parameter was passed using the same type as it is
8484 declared to have within the function, and that its DECL_INCOMING_RTL
8485 points us to a place where a value of that type is passed.
8486
8487 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8488 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8489 because in these cases DECL_INCOMING_RTL points us to a value of some
8490 type which is *different* from the type of the parameter itself. Thus,
8491 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8492 such cases, the debugger would end up (for example) trying to fetch a
8493 `float' from a place which actually contains the first part of a
8494 `double'. That would lead to really incorrect and confusing
8495 output at debug-time.
8496
8497 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8498 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8499 are a couple of exceptions however. On little-endian machines we can
8500 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8501 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8502 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8503 when (on a little-endian machine) a non-prototyped function has a
8504 parameter declared to be of type `short' or `char'. In such cases,
8505 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8506 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8507 passed `int' value. If the debugger then uses that address to fetch
8508 a `short' or a `char' (on a little-endian machine) the result will be
8509 the correct data, so we allow for such exceptional cases below.
8510
8511 Note that our goal here is to describe the place where the given formal
8512 parameter lives during most of the function's activation (i.e. between
8513 the end of the prologue and the start of the epilogue). We'll do that
8514 as best as we can. Note however that if the given formal parameter is
8515 modified sometime during the execution of the function, then a stack
8516 backtrace (at debug-time) will show the function as having been
8517 called with the *new* value rather than the value which was
8518 originally passed in. This happens rarely enough that it is not
8519 a major problem, but it *is* a problem, and I'd like to fix it.
8520
8521 A future version of dwarf2out.c may generate two additional
8522 attributes for any given DW_TAG_formal_parameter DIE which will
8523 describe the "passed type" and the "passed location" for the
8524 given formal parameter in addition to the attributes we now
8525 generate to indicate the "declared type" and the "active
8526 location" for each parameter. This additional set of attributes
8527 could be used by debuggers for stack backtraces. Separately, note
8528 that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be
8529 NULL also. This happens (for example) for inlined-instances of
8530 inline function formal parameters which are never referenced.
8531 This really shouldn't be happening. All PARM_DECL nodes should
8532 get valid non-NULL DECL_INCOMING_RTL values, but integrate.c
8533 doesn't currently generate these values for inlined instances of
8534 inline function parameters, so when we see such cases, we are
956d6950 8535 just out-of-luck for the time being (until integrate.c
a3f97cbb
JW
8536 gets fixed). */
8537
8538 /* Use DECL_RTL as the "location" unless we find something better. */
110c3568 8539 rtl = DECL_RTL_IF_SET (decl);
a3f97cbb
JW
8540
8541 if (TREE_CODE (decl) == PARM_DECL)
8542 {
8543 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
8544 {
d8041cc8
RH
8545 tree declared_type = type_main_variant (TREE_TYPE (decl));
8546 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
a3f97cbb 8547
71dfc51f 8548 /* This decl represents a formal parameter which was optimized out.
a3f97cbb
JW
8549 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8550 all* cases where (rtl == NULL_RTX) just below. */
8551 if (declared_type == passed_type)
71dfc51f
RK
8552 rtl = DECL_INCOMING_RTL (decl);
8553 else if (! BYTES_BIG_ENDIAN
8554 && TREE_CODE (declared_type) == INTEGER_TYPE
555b6442
HPN
8555 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
8556 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
556273e0 8557 rtl = DECL_INCOMING_RTL (decl);
a3f97cbb 8558 }
5a904a61
JW
8559
8560 /* If the parm was passed in registers, but lives on the stack, then
8561 make a big endian correction if the mode of the type of the
8562 parameter is not the same as the mode of the rtl. */
8563 /* ??? This is the same series of checks that are made in dbxout.c before
8564 we reach the big endian correction code there. It isn't clear if all
8565 of these checks are necessary here, but keeping them all is the safe
8566 thing to do. */
8567 else if (GET_CODE (rtl) == MEM
8568 && XEXP (rtl, 0) != const0_rtx
8569 && ! CONSTANT_P (XEXP (rtl, 0))
8570 /* Not passed in memory. */
8571 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
8572 /* Not passed by invisible reference. */
8573 && (GET_CODE (XEXP (rtl, 0)) != REG
8574 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
8575 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
8576#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8577 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
8578#endif
8579 )
8580 /* Big endian correction check. */
8581 && BYTES_BIG_ENDIAN
8582 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
8583 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
8584 < UNITS_PER_WORD))
8585 {
8586 int offset = (UNITS_PER_WORD
8587 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
8588 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
8589 plus_constant (XEXP (rtl, 0), offset));
8590 }
a3f97cbb 8591 }
71dfc51f 8592
d8041cc8
RH
8593 if (rtl != NULL_RTX)
8594 {
8595 rtl = eliminate_regs (rtl, 0, NULL_RTX);
6a7a9f01 8596#ifdef LEAF_REG_REMAP
d8041cc8
RH
8597 if (current_function_uses_only_leaf_regs)
8598 leaf_renumber_regs_insn (rtl);
6a7a9f01 8599#endif
d8041cc8
RH
8600 }
8601
8602 return rtl;
8603}
8604
8605/* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
8606 data attribute for a variable or a parameter. We generate the
8607 DW_AT_const_value attribute only in those cases where the given variable
8608 or parameter does not have a true "location" either in memory or in a
8609 register. This can happen (for example) when a constant is passed as an
8610 actual argument in a call to an inline function. (It's possible that
8611 these things can crop up in other ways also.) Note that one type of
8612 constant value which can be passed into an inlined function is a constant
8613 pointer. This can happen for example if an actual argument in an inlined
8614 function call evaluates to a compile-time constant address. */
8615
8616static void
8617add_location_or_const_value_attribute (die, decl)
8618 register dw_die_ref die;
8619 register tree decl;
8620{
8621 register rtx rtl;
8622
8623 if (TREE_CODE (decl) == ERROR_MARK)
8624 return;
8625
8626 if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
8627 abort ();
8628
8629 rtl = rtl_for_decl_location (decl);
a97c9600
RH
8630 if (rtl == NULL_RTX)
8631 return;
6a7a9f01 8632
732910b9
RH
8633 /* If we don't look past the constant pool, we risk emitting a
8634 reference to a constant pool entry that isn't referenced from
8635 code, and thus is not emitted. */
8636 rtl = avoid_constant_pool_reference (rtl);
8637
a3f97cbb
JW
8638 switch (GET_CODE (rtl))
8639 {
e9a25f70
JL
8640 case ADDRESSOF:
8641 /* The address of a variable that was optimized away; don't emit
8642 anything. */
8643 break;
8644
a3f97cbb
JW
8645 case CONST_INT:
8646 case CONST_DOUBLE:
8647 case CONST_STRING:
8648 case SYMBOL_REF:
8649 case LABEL_REF:
8650 case CONST:
8651 case PLUS:
8652 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
8653 add_const_value_attribute (die, rtl);
8654 break;
8655
8656 case MEM:
8657 case REG:
8658 case SUBREG:
4401bf24 8659 case CONCAT:
ef76d03b 8660 add_AT_location_description (die, DW_AT_location, rtl);
a3f97cbb
JW
8661 break;
8662
8663 default:
71dfc51f 8664 abort ();
a3f97cbb
JW
8665 }
8666}
8667
1bfb5f8f
JM
8668/* If we don't have a copy of this variable in memory for some reason (such
8669 as a C++ member constant that doesn't have an out-of-line definition),
8670 we should tell the debugger about the constant value. */
8671
8672static void
8673tree_add_const_value_attribute (var_die, decl)
8674 dw_die_ref var_die;
8675 tree decl;
8676{
8677 tree init = DECL_INITIAL (decl);
8678 tree type = TREE_TYPE (decl);
8679
8680 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
8681 && initializer_constant_valid_p (init, type) == null_pointer_node)
8682 /* OK */;
8683 else
8684 return;
8685
8686 switch (TREE_CODE (type))
8687 {
8688 case INTEGER_TYPE:
8689 if (host_integerp (init, 0))
8690 add_AT_unsigned (var_die, DW_AT_const_value,
8691 TREE_INT_CST_LOW (init));
8692 else
8693 add_AT_long_long (var_die, DW_AT_const_value,
8694 TREE_INT_CST_HIGH (init),
8695 TREE_INT_CST_LOW (init));
8696 break;
8697
8698 default:;
8699 }
8700}
0b34cf1e 8701
a3f97cbb
JW
8702/* Generate an DW_AT_name attribute given some string value to be included as
8703 the value of the attribute. */
71dfc51f
RK
8704
8705static inline void
a3f97cbb
JW
8706add_name_attribute (die, name_string)
8707 register dw_die_ref die;
d560ee52 8708 register const char *name_string;
a3f97cbb 8709{
71dfc51f 8710 if (name_string != NULL && *name_string != 0)
14a774a9
RK
8711 {
8712 if (demangle_name_func)
8713 name_string = (*demangle_name_func) (name_string);
8714
8715 add_AT_string (die, DW_AT_name, name_string);
8716 }
a3f97cbb
JW
8717}
8718
8719/* Given a tree node describing an array bound (either lower or upper) output
466446b0 8720 a representation for that bound. */
71dfc51f 8721
a3f97cbb
JW
8722static void
8723add_bound_info (subrange_die, bound_attr, bound)
8724 register dw_die_ref subrange_die;
8725 register enum dwarf_attribute bound_attr;
8726 register tree bound;
8727{
ef76d03b
JW
8728 /* If this is an Ada unconstrained array type, then don't emit any debug
8729 info because the array bounds are unknown. They are parameterized when
8730 the type is instantiated. */
8731 if (contains_placeholder_p (bound))
8732 return;
8733
a3f97cbb
JW
8734 switch (TREE_CODE (bound))
8735 {
8736 case ERROR_MARK:
8737 return;
8738
8739 /* All fixed-bounds are represented by INTEGER_CST nodes. */
8740 case INTEGER_CST:
665f2503
RK
8741 if (! host_integerp (bound, 0)
8742 || (bound_attr == DW_AT_lower_bound
28985b81 8743 && (((is_c_family () || is_java ()) && integer_zerop (bound))
665f2503
RK
8744 || (is_fortran () && integer_onep (bound)))))
8745 /* use the default */
8746 ;
141719a8 8747 else
665f2503 8748 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
a3f97cbb
JW
8749 break;
8750
b1ccbc24 8751 case CONVERT_EXPR:
a3f97cbb 8752 case NOP_EXPR:
b1ccbc24
RK
8753 case NON_LVALUE_EXPR:
8754 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
8755 break;
556273e0 8756
a3f97cbb
JW
8757 case SAVE_EXPR:
8758 /* If optimization is turned on, the SAVE_EXPRs that describe how to
466446b0
JM
8759 access the upper bound values may be bogus. If they refer to a
8760 register, they may only describe how to get at these values at the
8761 points in the generated code right after they have just been
8762 computed. Worse yet, in the typical case, the upper bound values
8763 will not even *be* computed in the optimized code (though the
8764 number of elements will), so these SAVE_EXPRs are entirely
8765 bogus. In order to compensate for this fact, we check here to see
8766 if optimization is enabled, and if so, we don't add an attribute
8767 for the (unknown and unknowable) upper bound. This should not
8768 cause too much trouble for existing (stupid?) debuggers because
8769 they have to deal with empty upper bounds location descriptions
8770 anyway in order to be able to deal with incomplete array types.
8771 Of course an intelligent debugger (GDB?) should be able to
8772 comprehend that a missing upper bound specification in a array
8773 type used for a storage class `auto' local array variable
8774 indicates that the upper bound is both unknown (at compile- time)
8775 and unknowable (at run-time) due to optimization.
8776
8777 We assume that a MEM rtx is safe because gcc wouldn't put the
8778 value there unless it was going to be used repeatedly in the
8779 function, i.e. for cleanups. */
1edf43d6
JM
8780 if (SAVE_EXPR_RTL (bound)
8781 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
a3f97cbb 8782 {
466446b0
JM
8783 register dw_die_ref ctx = lookup_decl_die (current_function_decl);
8784 register dw_die_ref decl_die = new_die (DW_TAG_variable, ctx);
f5963e61
JL
8785 register rtx loc = SAVE_EXPR_RTL (bound);
8786
8787 /* If the RTL for the SAVE_EXPR is memory, handle the case where
8788 it references an outer function's frame. */
8789
8790 if (GET_CODE (loc) == MEM)
8791 {
8792 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
8793
8794 if (XEXP (loc, 0) != new_addr)
c5c76735 8795 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
f5963e61
JL
8796 }
8797
466446b0
JM
8798 add_AT_flag (decl_die, DW_AT_artificial, 1);
8799 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
f5963e61 8800 add_AT_location_description (decl_die, DW_AT_location, loc);
466446b0 8801 add_AT_die_ref (subrange_die, bound_attr, decl_die);
a3f97cbb 8802 }
71dfc51f
RK
8803
8804 /* Else leave out the attribute. */
a3f97cbb 8805 break;
3f76745e 8806
ef76d03b 8807 case VAR_DECL:
d8041cc8
RH
8808 case PARM_DECL:
8809 {
8810 dw_die_ref decl_die = lookup_decl_die (bound);
8811
8812 /* ??? Can this happen, or should the variable have been bound
8813 first? Probably it can, since I imagine that we try to create
8814 the types of parameters in the order in which they exist in
0b34cf1e 8815 the list, and won't have created a forward reference to a
d8041cc8
RH
8816 later parameter. */
8817 if (decl_die != NULL)
8818 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8819 break;
8820 }
ef76d03b 8821
3f76745e 8822 default:
d8041cc8
RH
8823 {
8824 /* Otherwise try to create a stack operation procedure to
8825 evaluate the value of the array bound. */
8826
8827 dw_die_ref ctx, decl_die;
8828 dw_loc_descr_ref loc;
8829
8830 loc = loc_descriptor_from_tree (bound, 0);
8831 if (loc == NULL)
8832 break;
8833
8834 ctx = lookup_decl_die (current_function_decl);
8835
8836 decl_die = new_die (DW_TAG_variable, ctx);
8837 add_AT_flag (decl_die, DW_AT_artificial, 1);
8838 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
8839 add_AT_loc (decl_die, DW_AT_location, loc);
8840
8841 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8842 break;
8843 }
a3f97cbb
JW
8844 }
8845}
8846
8847/* Note that the block of subscript information for an array type also
8848 includes information about the element type of type given array type. */
71dfc51f 8849
a3f97cbb
JW
8850static void
8851add_subscript_info (type_die, type)
8852 register dw_die_ref type_die;
8853 register tree type;
8854{
081f5e7e 8855#ifndef MIPS_DEBUGGING_INFO
a3f97cbb 8856 register unsigned dimension_number;
081f5e7e 8857#endif
a3f97cbb
JW
8858 register tree lower, upper;
8859 register dw_die_ref subrange_die;
8860
556273e0 8861 /* The GNU compilers represent multidimensional array types as sequences of
a3f97cbb
JW
8862 one dimensional array types whose element types are themselves array
8863 types. Here we squish that down, so that each multidimensional array
556273e0 8864 type gets only one array_type DIE in the Dwarf debugging info. The draft
a3f97cbb
JW
8865 Dwarf specification say that we are allowed to do this kind of
8866 compression in C (because there is no difference between an array or
556273e0 8867 arrays and a multidimensional array in C) but for other source languages
a3f97cbb 8868 (e.g. Ada) we probably shouldn't do this. */
71dfc51f 8869
a3f97cbb
JW
8870 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
8871 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
8872 We work around this by disabling this feature. See also
8873 gen_array_type_die. */
8874#ifndef MIPS_DEBUGGING_INFO
8875 for (dimension_number = 0;
8876 TREE_CODE (type) == ARRAY_TYPE;
8877 type = TREE_TYPE (type), dimension_number++)
8878 {
8879#endif
8880 register tree domain = TYPE_DOMAIN (type);
8881
8882 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
556273e0 8883 and (in GNU C only) variable bounds. Handle all three forms
a3f97cbb
JW
8884 here. */
8885 subrange_die = new_die (DW_TAG_subrange_type, type_die);
8886 if (domain)
8887 {
8888 /* We have an array type with specified bounds. */
8889 lower = TYPE_MIN_VALUE (domain);
8890 upper = TYPE_MAX_VALUE (domain);
8891
a9d38797
JM
8892 /* define the index type. */
8893 if (TREE_TYPE (domain))
ef76d03b
JW
8894 {
8895 /* ??? This is probably an Ada unnamed subrange type. Ignore the
8896 TREE_TYPE field. We can't emit debug info for this
8897 because it is an unnamed integral type. */
8898 if (TREE_CODE (domain) == INTEGER_TYPE
8899 && TYPE_NAME (domain) == NULL_TREE
8900 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
8901 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
556273e0 8902 ;
ef76d03b
JW
8903 else
8904 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
8905 type_die);
8906 }
a9d38797 8907
e1ee5cdc
RH
8908 /* ??? If upper is NULL, the array has unspecified length,
8909 but it does have a lower bound. This happens with Fortran
8910 dimension arr(N:*)
8911 Since the debugger is definitely going to need to know N
8912 to produce useful results, go ahead and output the lower
8913 bound solo, and hope the debugger can cope. */
8914
141719a8 8915 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
e1ee5cdc
RH
8916 if (upper)
8917 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
a3f97cbb
JW
8918 }
8919 else
71dfc51f 8920 /* We have an array type with an unspecified length. The DWARF-2
a9d38797
JM
8921 spec does not say how to handle this; let's just leave out the
8922 bounds. */
e49a1d2e 8923 {;}
71dfc51f 8924
a3f97cbb
JW
8925#ifndef MIPS_DEBUGGING_INFO
8926 }
8927#endif
8928}
8929
8930static void
8931add_byte_size_attribute (die, tree_node)
8932 dw_die_ref die;
8933 register tree tree_node;
8934{
8935 register unsigned size;
8936
8937 switch (TREE_CODE (tree_node))
8938 {
8939 case ERROR_MARK:
8940 size = 0;
8941 break;
8942 case ENUMERAL_TYPE:
8943 case RECORD_TYPE:
8944 case UNION_TYPE:
8945 case QUAL_UNION_TYPE:
8946 size = int_size_in_bytes (tree_node);
8947 break;
8948 case FIELD_DECL:
8949 /* For a data member of a struct or union, the DW_AT_byte_size is
8950 generally given as the number of bytes normally allocated for an
8951 object of the *declared* type of the member itself. This is true
8952 even for bit-fields. */
8953 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
8954 break;
8955 default:
8956 abort ();
8957 }
8958
8959 /* Note that `size' might be -1 when we get to this point. If it is, that
8960 indicates that the byte size of the entity in question is variable. We
8961 have no good way of expressing this fact in Dwarf at the present time,
8962 so just let the -1 pass on through. */
8963
8964 add_AT_unsigned (die, DW_AT_byte_size, size);
8965}
8966
8967/* For a FIELD_DECL node which represents a bit-field, output an attribute
8968 which specifies the distance in bits from the highest order bit of the
8969 "containing object" for the bit-field to the highest order bit of the
8970 bit-field itself.
8971
b2932ae5
JM
8972 For any given bit-field, the "containing object" is a hypothetical
8973 object (of some integral or enum type) within which the given bit-field
8974 lives. The type of this hypothetical "containing object" is always the
8975 same as the declared type of the individual bit-field itself. The
8976 determination of the exact location of the "containing object" for a
8977 bit-field is rather complicated. It's handled by the
8978 `field_byte_offset' function (above).
a3f97cbb
JW
8979
8980 Note that it is the size (in bytes) of the hypothetical "containing object"
8981 which will be given in the DW_AT_byte_size attribute for this bit-field.
8982 (See `byte_size_attribute' above). */
71dfc51f
RK
8983
8984static inline void
a3f97cbb
JW
8985add_bit_offset_attribute (die, decl)
8986 register dw_die_ref die;
8987 register tree decl;
8988{
665f2503
RK
8989 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
8990 tree type = DECL_BIT_FIELD_TYPE (decl);
8991 HOST_WIDE_INT bitpos_int;
8992 HOST_WIDE_INT highest_order_object_bit_offset;
8993 HOST_WIDE_INT highest_order_field_bit_offset;
8994 HOST_WIDE_INT unsigned bit_offset;
a3f97cbb 8995
3a88cbd1
JL
8996 /* Must be a field and a bit field. */
8997 if (!type
8998 || TREE_CODE (decl) != FIELD_DECL)
8999 abort ();
a3f97cbb
JW
9000
9001 /* We can't yet handle bit-fields whose offsets are variable, so if we
9002 encounter such things, just return without generating any attribute
665f2503
RK
9003 whatsoever. Likewise for variable or too large size. */
9004 if (! host_integerp (bit_position (decl), 0)
9005 || ! host_integerp (DECL_SIZE (decl), 1))
71dfc51f
RK
9006 return;
9007
665f2503 9008 bitpos_int = int_bit_position (decl);
a3f97cbb
JW
9009
9010 /* Note that the bit offset is always the distance (in bits) from the
556273e0
KH
9011 highest-order bit of the "containing object" to the highest-order bit of
9012 the bit-field itself. Since the "high-order end" of any object or field
a3f97cbb
JW
9013 is different on big-endian and little-endian machines, the computation
9014 below must take account of these differences. */
9015 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9016 highest_order_field_bit_offset = bitpos_int;
9017
71dfc51f 9018 if (! BYTES_BIG_ENDIAN)
a3f97cbb 9019 {
665f2503 9020 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
a3f97cbb
JW
9021 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9022 }
71dfc51f
RK
9023
9024 bit_offset
9025 = (! BYTES_BIG_ENDIAN
9026 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9027 : highest_order_field_bit_offset - highest_order_object_bit_offset);
a3f97cbb
JW
9028
9029 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9030}
9031
9032/* For a FIELD_DECL node which represents a bit field, output an attribute
9033 which specifies the length in bits of the given field. */
71dfc51f
RK
9034
9035static inline void
a3f97cbb
JW
9036add_bit_size_attribute (die, decl)
9037 register dw_die_ref die;
9038 register tree decl;
9039{
3a88cbd1
JL
9040 /* Must be a field and a bit field. */
9041 if (TREE_CODE (decl) != FIELD_DECL
9042 || ! DECL_BIT_FIELD_TYPE (decl))
9043 abort ();
665f2503
RK
9044
9045 if (host_integerp (DECL_SIZE (decl), 1))
9046 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
a3f97cbb
JW
9047}
9048
88dad228 9049/* If the compiled language is ANSI C, then add a 'prototyped'
a3f97cbb 9050 attribute, if arg types are given for the parameters of a function. */
71dfc51f
RK
9051
9052static inline void
a3f97cbb
JW
9053add_prototyped_attribute (die, func_type)
9054 register dw_die_ref die;
9055 register tree func_type;
9056{
88dad228
JM
9057 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9058 && TYPE_ARG_TYPES (func_type) != NULL)
9059 add_AT_flag (die, DW_AT_prototyped, 1);
a3f97cbb
JW
9060}
9061
a3f97cbb
JW
9062/* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9063 by looking in either the type declaration or object declaration
9064 equate table. */
71dfc51f
RK
9065
9066static inline void
a3f97cbb
JW
9067add_abstract_origin_attribute (die, origin)
9068 register dw_die_ref die;
9069 register tree origin;
9070{
9071 dw_die_ref origin_die = NULL;
bbc6ae08 9072
d10b8e05 9073 if (TREE_CODE (origin) != FUNCTION_DECL)
e40a1c67
JM
9074 {
9075 /* We may have gotten separated from the block for the inlined
9076 function, if we're in an exception handler or some such; make
9077 sure that the abstract function has been written out.
9078
9079 Doing this for nested functions is wrong, however; functions are
9080 distinct units, and our context might not even be inline. */
fb13d4d0
JM
9081 tree fn = origin;
9082 if (TYPE_P (fn))
9083 fn = TYPE_STUB_DECL (fn);
9084 fn = decl_function_context (fn);
e40a1c67 9085 if (fn)
1edf43d6 9086 dwarf2out_abstract_function (fn);
e40a1c67 9087 }
44db1d9c 9088
2f939d94 9089 if (DECL_P (origin))
71dfc51f 9090 origin_die = lookup_decl_die (origin);
2f939d94 9091 else if (TYPE_P (origin))
71dfc51f
RK
9092 origin_die = lookup_type_die (origin);
9093
bbc6ae08 9094 if (origin_die == NULL)
1ae8994f 9095 abort ();
556273e0 9096
a3f97cbb
JW
9097 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9098}
9099
bdb669cb
JM
9100/* We do not currently support the pure_virtual attribute. */
9101
71dfc51f 9102static inline void
a3f97cbb
JW
9103add_pure_or_virtual_attribute (die, func_decl)
9104 register dw_die_ref die;
9105 register tree func_decl;
9106{
a94dbf2c 9107 if (DECL_VINDEX (func_decl))
a3f97cbb 9108 {
bdb669cb 9109 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
665f2503
RK
9110
9111 if (host_integerp (DECL_VINDEX (func_decl), 0))
9112 add_AT_loc (die, DW_AT_vtable_elem_location,
9113 new_loc_descr (DW_OP_constu,
9114 tree_low_cst (DECL_VINDEX (func_decl), 0),
9115 0));
71dfc51f 9116
a94dbf2c
JM
9117 /* GNU extension: Record what type this method came from originally. */
9118 if (debug_info_level > DINFO_LEVEL_TERSE)
9119 add_AT_die_ref (die, DW_AT_containing_type,
9120 lookup_type_die (DECL_CONTEXT (func_decl)));
a3f97cbb
JW
9121 }
9122}
9123\f
b2932ae5 9124/* Add source coordinate attributes for the given decl. */
71dfc51f 9125
b2932ae5
JM
9126static void
9127add_src_coords_attributes (die, decl)
9128 register dw_die_ref die;
9129 register tree decl;
9130{
981975b6 9131 register unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
71dfc51f 9132
b2932ae5
JM
9133 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9134 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9135}
9136
a3f97cbb
JW
9137/* Add an DW_AT_name attribute and source coordinate attribute for the
9138 given decl, but only if it actually has a name. */
71dfc51f 9139
a3f97cbb
JW
9140static void
9141add_name_and_src_coords_attributes (die, decl)
9142 register dw_die_ref die;
9143 register tree decl;
9144{
61b32c02 9145 register tree decl_name;
71dfc51f 9146
556273e0 9147 decl_name = DECL_NAME (decl);
71dfc51f 9148 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
a3f97cbb 9149 {
a1d7ffe3 9150 add_name_attribute (die, dwarf2_name (decl, 0));
a96c67ec
JM
9151 if (! DECL_ARTIFICIAL (decl))
9152 add_src_coords_attributes (die, decl);
e689ae67 9153
a1d7ffe3 9154 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
bc808e0b 9155 && TREE_PUBLIC (decl)
5daf7c0a
JM
9156 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9157 && !DECL_ABSTRACT (decl))
a1d7ffe3
JM
9158 add_AT_string (die, DW_AT_MIPS_linkage_name,
9159 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
a3f97cbb
JW
9160 }
9161}
9162
556273e0 9163/* Push a new declaration scope. */
71dfc51f 9164
a3f97cbb
JW
9165static void
9166push_decl_scope (scope)
9167 tree scope;
9168{
9169 /* Make room in the decl_scope_table, if necessary. */
9170 if (decl_scope_table_allocated == decl_scope_depth)
9171 {
9172 decl_scope_table_allocated += DECL_SCOPE_TABLE_INCREMENT;
71dfc51f 9173 decl_scope_table
777ad4c2
JM
9174 = (tree *) xrealloc (decl_scope_table,
9175 decl_scope_table_allocated * sizeof (tree));
a3f97cbb 9176 }
71dfc51f 9177
777ad4c2 9178 decl_scope_table[decl_scope_depth] = scope;
e3e7774e 9179 decl_scope_depth++;
a3f97cbb
JW
9180}
9181
777ad4c2
JM
9182/* Pop a declaration scope. */
9183static inline void
9184pop_decl_scope ()
9185{
9186 if (decl_scope_depth <= 0)
9187 abort ();
9188 --decl_scope_depth;
9189}
9190
9191/* Return the DIE for the scope that immediately contains this type.
9192 Non-named types get global scope. Named types nested in other
9193 types get their containing scope if it's open, or global scope
9194 otherwise. All other types (i.e. function-local named types) get
9195 the current active scope. */
71dfc51f 9196
a3f97cbb 9197static dw_die_ref
ab72d377 9198scope_die_for (t, context_die)
556273e0
KH
9199 register tree t;
9200 register dw_die_ref context_die;
a3f97cbb
JW
9201{
9202 register dw_die_ref scope_die = NULL;
9203 register tree containing_scope;
e3e7774e 9204 register int i;
a3f97cbb 9205
777ad4c2
JM
9206 /* Non-types always go in the current scope. */
9207 if (! TYPE_P (t))
9208 abort ();
9209
9210 containing_scope = TYPE_CONTEXT (t);
ab72d377 9211
2addbe1d
JM
9212 /* Ignore namespaces for the moment. */
9213 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9214 containing_scope = NULL_TREE;
9215
5f2f160c
JM
9216 /* Ignore function type "scopes" from the C frontend. They mean that
9217 a tagged type is local to a parmlist of a function declarator, but
9218 that isn't useful to DWARF. */
9219 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9220 containing_scope = NULL_TREE;
9221
71dfc51f
RK
9222 if (containing_scope == NULL_TREE)
9223 scope_die = comp_unit_die;
777ad4c2 9224 else if (TYPE_P (containing_scope))
348bb3c7 9225 {
777ad4c2
JM
9226 /* For types, we can just look up the appropriate DIE. But
9227 first we check to see if we're in the middle of emitting it
9228 so we know where the new DIE should go. */
348bb3c7
JM
9229
9230 for (i = decl_scope_depth - 1; i >= 0; --i)
777ad4c2 9231 if (decl_scope_table[i] == containing_scope)
348bb3c7
JM
9232 break;
9233
9234 if (i < 0)
9235 {
348bb3c7
JM
9236 if (debug_info_level > DINFO_LEVEL_TERSE
9237 && !TREE_ASM_WRITTEN (containing_scope))
9238 abort ();
9239
9240 /* If none of the current dies are suitable, we get file scope. */
9241 scope_die = comp_unit_die;
9242 }
9243 else
777ad4c2 9244 scope_die = lookup_type_die (containing_scope);
348bb3c7 9245 }
a3f97cbb 9246 else
777ad4c2 9247 scope_die = context_die;
71dfc51f 9248
a3f97cbb
JW
9249 return scope_die;
9250}
9251
777ad4c2
JM
9252/* Returns nonzero iff CONTEXT_DIE is internal to a function. */
9253
c6991660 9254static inline int local_scope_p PARAMS ((dw_die_ref));
777ad4c2
JM
9255static inline int
9256local_scope_p (context_die)
9257 dw_die_ref context_die;
a3f97cbb 9258{
777ad4c2
JM
9259 for (; context_die; context_die = context_die->die_parent)
9260 if (context_die->die_tag == DW_TAG_inlined_subroutine
9261 || context_die->die_tag == DW_TAG_subprogram)
9262 return 1;
9263 return 0;
a3f97cbb
JW
9264}
9265
9765e357
JM
9266/* Returns nonzero iff CONTEXT_DIE is a class. */
9267
c6991660 9268static inline int class_scope_p PARAMS ((dw_die_ref));
9765e357
JM
9269static inline int
9270class_scope_p (context_die)
9271 dw_die_ref context_die;
9272{
9273 return (context_die
9274 && (context_die->die_tag == DW_TAG_structure_type
9275 || context_die->die_tag == DW_TAG_union_type));
9276}
9277
a3f97cbb
JW
9278/* Many forms of DIEs require a "type description" attribute. This
9279 routine locates the proper "type descriptor" die for the type given
9280 by 'type', and adds an DW_AT_type attribute below the given die. */
71dfc51f 9281
a3f97cbb
JW
9282static void
9283add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
9284 register dw_die_ref object_die;
9285 register tree type;
9286 register int decl_const;
9287 register int decl_volatile;
9288 register dw_die_ref context_die;
9289{
9290 register enum tree_code code = TREE_CODE (type);
a3f97cbb
JW
9291 register dw_die_ref type_die = NULL;
9292
ef76d03b
JW
9293 /* ??? If this type is an unnamed subrange type of an integral or
9294 floating-point type, use the inner type. This is because we have no
9295 support for unnamed types in base_type_die. This can happen if this is
9296 an Ada subrange type. Correct solution is emit a subrange type die. */
b1ccbc24
RK
9297 if ((code == INTEGER_TYPE || code == REAL_TYPE)
9298 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
9299 type = TREE_TYPE (type), code = TREE_CODE (type);
9300
a3f97cbb 9301 if (code == ERROR_MARK)
b1ccbc24 9302 return;
a3f97cbb
JW
9303
9304 /* Handle a special case. For functions whose return type is void, we
9305 generate *no* type attribute. (Note that no object may have type
9306 `void', so this only applies to function return types). */
9307 if (code == VOID_TYPE)
b1ccbc24 9308 return;
a3f97cbb 9309
a3f97cbb
JW
9310 type_die = modified_type_die (type,
9311 decl_const || TYPE_READONLY (type),
9312 decl_volatile || TYPE_VOLATILE (type),
ab72d377 9313 context_die);
a3f97cbb 9314 if (type_die != NULL)
71dfc51f 9315 add_AT_die_ref (object_die, DW_AT_type, type_die);
a3f97cbb
JW
9316}
9317
9318/* Given a tree pointer to a struct, class, union, or enum type node, return
9319 a pointer to the (string) tag name for the given type, or zero if the type
9320 was declared without a tag. */
71dfc51f 9321
d3e3972c 9322static const char *
a3f97cbb
JW
9323type_tag (type)
9324 register tree type;
9325{
d3e3972c 9326 register const char *name = 0;
a3f97cbb
JW
9327
9328 if (TYPE_NAME (type) != 0)
9329 {
9330 register tree t = 0;
9331
9332 /* Find the IDENTIFIER_NODE for the type name. */
9333 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
9334 t = TYPE_NAME (type);
bdb669cb 9335
556273e0 9336 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
a3f97cbb 9337 a TYPE_DECL node, regardless of whether or not a `typedef' was
bdb669cb 9338 involved. */
a94dbf2c
JM
9339 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
9340 && ! DECL_IGNORED_P (TYPE_NAME (type)))
a3f97cbb 9341 t = DECL_NAME (TYPE_NAME (type));
bdb669cb 9342
a3f97cbb
JW
9343 /* Now get the name as a string, or invent one. */
9344 if (t != 0)
a94dbf2c 9345 name = IDENTIFIER_POINTER (t);
a3f97cbb 9346 }
71dfc51f 9347
a3f97cbb
JW
9348 return (name == 0 || *name == '\0') ? 0 : name;
9349}
9350
9351/* Return the type associated with a data member, make a special check
9352 for bit field types. */
71dfc51f
RK
9353
9354static inline tree
a3f97cbb
JW
9355member_declared_type (member)
9356 register tree member;
9357{
71dfc51f
RK
9358 return (DECL_BIT_FIELD_TYPE (member)
9359 ? DECL_BIT_FIELD_TYPE (member)
9360 : TREE_TYPE (member));
a3f97cbb
JW
9361}
9362
d291dd49 9363/* Get the decl's label, as described by its RTL. This may be different
a3f97cbb 9364 from the DECL_NAME name used in the source file. */
71dfc51f 9365
487a6e06 9366#if 0
d3e3972c 9367static const char *
d291dd49 9368decl_start_label (decl)
a3f97cbb
JW
9369 register tree decl;
9370{
9371 rtx x;
d3e3972c 9372 const char *fnname;
a3f97cbb
JW
9373 x = DECL_RTL (decl);
9374 if (GET_CODE (x) != MEM)
71dfc51f
RK
9375 abort ();
9376
a3f97cbb
JW
9377 x = XEXP (x, 0);
9378 if (GET_CODE (x) != SYMBOL_REF)
71dfc51f
RK
9379 abort ();
9380
a3f97cbb
JW
9381 fnname = XSTR (x, 0);
9382 return fnname;
9383}
487a6e06 9384#endif
a3f97cbb 9385\f
956d6950 9386/* These routines generate the internal representation of the DIE's for
a3f97cbb 9387 the compilation unit. Debugging information is collected by walking
88dad228 9388 the declaration trees passed in from dwarf2out_decl(). */
a3f97cbb
JW
9389
9390static void
9391gen_array_type_die (type, context_die)
9392 register tree type;
9393 register dw_die_ref context_die;
9394{
ab72d377 9395 register dw_die_ref scope_die = scope_die_for (type, context_die);
a9d38797 9396 register dw_die_ref array_die;
a3f97cbb 9397 register tree element_type;
bdb669cb 9398
a9d38797
JM
9399 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9400 the inner array type comes before the outer array type. Thus we must
9401 call gen_type_die before we call new_die. See below also. */
9402#ifdef MIPS_DEBUGGING_INFO
9403 gen_type_die (TREE_TYPE (type), context_die);
9404#endif
9405
9406 array_die = new_die (DW_TAG_array_type, scope_die);
9407
a3f97cbb
JW
9408#if 0
9409 /* We default the array ordering. SDB will probably do
9410 the right things even if DW_AT_ordering is not present. It's not even
9411 an issue until we start to get into multidimensional arrays anyway. If
9412 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9413 then we'll have to put the DW_AT_ordering attribute back in. (But if
9414 and when we find out that we need to put these in, we will only do so
9415 for multidimensional arrays. */
9416 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
9417#endif
9418
a9d38797 9419#ifdef MIPS_DEBUGGING_INFO
4edb7b60
JM
9420 /* The SGI compilers handle arrays of unknown bound by setting
9421 AT_declaration and not emitting any subrange DIEs. */
a9d38797
JM
9422 if (! TYPE_DOMAIN (type))
9423 add_AT_unsigned (array_die, DW_AT_declaration, 1);
9424 else
9425#endif
9426 add_subscript_info (array_die, type);
a3f97cbb 9427
14a774a9 9428 add_name_attribute (array_die, type_tag (type));
a3f97cbb
JW
9429 equate_type_number_to_die (type, array_die);
9430
9431 /* Add representation of the type of the elements of this array type. */
9432 element_type = TREE_TYPE (type);
71dfc51f 9433
a3f97cbb
JW
9434 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9435 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9436 We work around this by disabling this feature. See also
9437 add_subscript_info. */
9438#ifndef MIPS_DEBUGGING_INFO
71dfc51f
RK
9439 while (TREE_CODE (element_type) == ARRAY_TYPE)
9440 element_type = TREE_TYPE (element_type);
9441
a3f97cbb 9442 gen_type_die (element_type, context_die);
a9d38797 9443#endif
a3f97cbb
JW
9444
9445 add_type_attribute (array_die, element_type, 0, 0, context_die);
9446}
9447
9448static void
9449gen_set_type_die (type, context_die)
9450 register tree type;
9451 register dw_die_ref context_die;
9452{
71dfc51f
RK
9453 register dw_die_ref type_die
9454 = new_die (DW_TAG_set_type, scope_die_for (type, context_die));
9455
a3f97cbb 9456 equate_type_number_to_die (type, type_die);
a3f97cbb
JW
9457 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
9458}
9459
d6f4ec51 9460#if 0
a3f97cbb
JW
9461static void
9462gen_entry_point_die (decl, context_die)
9463 register tree decl;
9464 register dw_die_ref context_die;
9465{
9466 register tree origin = decl_ultimate_origin (decl);
9467 register dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die);
9468 if (origin != NULL)
71dfc51f 9469 add_abstract_origin_attribute (decl_die, origin);
a3f97cbb
JW
9470 else
9471 {
9472 add_name_and_src_coords_attributes (decl_die, decl);
a3f97cbb
JW
9473 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
9474 0, 0, context_die);
9475 }
71dfc51f 9476
a3f97cbb 9477 if (DECL_ABSTRACT (decl))
71dfc51f 9478 equate_decl_number_to_die (decl, decl_die);
a3f97cbb 9479 else
71dfc51f 9480 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
a3f97cbb 9481}
d6f4ec51 9482#endif
a3f97cbb 9483
8a8c3656
JM
9484/* Remember a type in the incomplete_types_list. */
9485
9486static void
9487add_incomplete_type (type)
9488 tree type;
9489{
9490 if (incomplete_types == incomplete_types_allocated)
9491 {
9492 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
9493 incomplete_types_list
9494 = (tree *) xrealloc (incomplete_types_list,
9495 sizeof (tree) * incomplete_types_allocated);
9496 }
9497
9498 incomplete_types_list[incomplete_types++] = type;
9499}
9500
9501/* Walk through the list of incomplete types again, trying once more to
9502 emit full debugging info for them. */
9503
9504static void
9505retry_incomplete_types ()
9506{
9507 register tree type;
9508
9509 while (incomplete_types)
9510 {
9511 --incomplete_types;
9512 type = incomplete_types_list[incomplete_types];
9513 gen_type_die (type, comp_unit_die);
9514 }
9515}
9516
a3f97cbb 9517/* Generate a DIE to represent an inlined instance of an enumeration type. */
71dfc51f 9518
a3f97cbb
JW
9519static void
9520gen_inlined_enumeration_type_die (type, context_die)
9521 register tree type;
9522 register dw_die_ref context_die;
9523{
71dfc51f 9524 register dw_die_ref type_die = new_die (DW_TAG_enumeration_type,
777ad4c2 9525 context_die);
bbc6ae08
NC
9526 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9527 be incomplete and such types are not marked. */
a3f97cbb
JW
9528 add_abstract_origin_attribute (type_die, type);
9529}
9530
9531/* Generate a DIE to represent an inlined instance of a structure type. */
71dfc51f 9532
a3f97cbb
JW
9533static void
9534gen_inlined_structure_type_die (type, context_die)
9535 register tree type;
9536 register dw_die_ref context_die;
9537{
777ad4c2
JM
9538 register dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die);
9539
bbc6ae08
NC
9540 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9541 be incomplete and such types are not marked. */
a3f97cbb
JW
9542 add_abstract_origin_attribute (type_die, type);
9543}
9544
9545/* Generate a DIE to represent an inlined instance of a union type. */
71dfc51f 9546
a3f97cbb
JW
9547static void
9548gen_inlined_union_type_die (type, context_die)
9549 register tree type;
9550 register dw_die_ref context_die;
9551{
777ad4c2
JM
9552 register dw_die_ref type_die = new_die (DW_TAG_union_type, context_die);
9553
bbc6ae08
NC
9554 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9555 be incomplete and such types are not marked. */
a3f97cbb
JW
9556 add_abstract_origin_attribute (type_die, type);
9557}
9558
9559/* Generate a DIE to represent an enumeration type. Note that these DIEs
9560 include all of the information about the enumeration values also. Each
273dbe67
JM
9561 enumerated type name/value is listed as a child of the enumerated type
9562 DIE. */
71dfc51f 9563
a3f97cbb 9564static void
273dbe67 9565gen_enumeration_type_die (type, context_die)
a3f97cbb 9566 register tree type;
a3f97cbb
JW
9567 register dw_die_ref context_die;
9568{
273dbe67
JM
9569 register dw_die_ref type_die = lookup_type_die (type);
9570
a3f97cbb
JW
9571 if (type_die == NULL)
9572 {
9573 type_die = new_die (DW_TAG_enumeration_type,
ab72d377 9574 scope_die_for (type, context_die));
a3f97cbb
JW
9575 equate_type_number_to_die (type, type_die);
9576 add_name_attribute (type_die, type_tag (type));
a3f97cbb 9577 }
273dbe67
JM
9578 else if (! TYPE_SIZE (type))
9579 return;
9580 else
9581 remove_AT (type_die, DW_AT_declaration);
9582
9583 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9584 given enum type is incomplete, do not generate the DW_AT_byte_size
9585 attribute or the DW_AT_element_list attribute. */
9586 if (TYPE_SIZE (type))
a3f97cbb 9587 {
273dbe67 9588 register tree link;
71dfc51f 9589
a082c85a 9590 TREE_ASM_WRITTEN (type) = 1;
273dbe67 9591 add_byte_size_attribute (type_die, type);
e9a25f70 9592 if (TYPE_STUB_DECL (type) != NULL_TREE)
b2932ae5 9593 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
71dfc51f 9594
ef76d03b
JW
9595 /* If the first reference to this type was as the return type of an
9596 inline function, then it may not have a parent. Fix this now. */
9597 if (type_die->die_parent == NULL)
9598 add_child_die (scope_die_for (type, context_die), type_die);
9599
273dbe67
JM
9600 for (link = TYPE_FIELDS (type);
9601 link != NULL; link = TREE_CHAIN (link))
a3f97cbb 9602 {
273dbe67 9603 register dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die);
71dfc51f 9604
273dbe67
JM
9605 add_name_attribute (enum_die,
9606 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
665f2503
RK
9607
9608 if (host_integerp (TREE_VALUE (link), 0))
fc9e8a14
JJ
9609 {
9610 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
9611 add_AT_int (enum_die, DW_AT_const_value,
9612 tree_low_cst (TREE_VALUE (link), 0));
9613 else
9614 add_AT_unsigned (enum_die, DW_AT_const_value,
9615 tree_low_cst (TREE_VALUE (link), 0));
9616 }
a3f97cbb
JW
9617 }
9618 }
273dbe67
JM
9619 else
9620 add_AT_flag (type_die, DW_AT_declaration, 1);
a3f97cbb
JW
9621}
9622
a3f97cbb
JW
9623/* Generate a DIE to represent either a real live formal parameter decl or to
9624 represent just the type of some formal parameter position in some function
9625 type.
71dfc51f 9626
a3f97cbb
JW
9627 Note that this routine is a bit unusual because its argument may be a
9628 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
9629 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
9630 node. If it's the former then this function is being called to output a
9631 DIE to represent a formal parameter object (or some inlining thereof). If
9632 it's the latter, then this function is only being called to output a
9633 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
9634 argument type of some subprogram type. */
71dfc51f 9635
a94dbf2c 9636static dw_die_ref
a3f97cbb
JW
9637gen_formal_parameter_die (node, context_die)
9638 register tree node;
9639 register dw_die_ref context_die;
9640{
71dfc51f
RK
9641 register dw_die_ref parm_die
9642 = new_die (DW_TAG_formal_parameter, context_die);
a3f97cbb 9643 register tree origin;
71dfc51f 9644
a3f97cbb
JW
9645 switch (TREE_CODE_CLASS (TREE_CODE (node)))
9646 {
a3f97cbb
JW
9647 case 'd':
9648 origin = decl_ultimate_origin (node);
9649 if (origin != NULL)
a94dbf2c 9650 add_abstract_origin_attribute (parm_die, origin);
a3f97cbb
JW
9651 else
9652 {
9653 add_name_and_src_coords_attributes (parm_die, node);
9654 add_type_attribute (parm_die, TREE_TYPE (node),
9655 TREE_READONLY (node),
9656 TREE_THIS_VOLATILE (node),
9657 context_die);
bdb669cb
JM
9658 if (DECL_ARTIFICIAL (node))
9659 add_AT_flag (parm_die, DW_AT_artificial, 1);
a3f97cbb 9660 }
71dfc51f 9661
141719a8
JM
9662 equate_decl_number_to_die (node, parm_die);
9663 if (! DECL_ABSTRACT (node))
a94dbf2c 9664 add_location_or_const_value_attribute (parm_die, node);
71dfc51f 9665
a3f97cbb
JW
9666 break;
9667
a3f97cbb 9668 case 't':
71dfc51f 9669 /* We were called with some kind of a ..._TYPE node. */
a3f97cbb
JW
9670 add_type_attribute (parm_die, node, 0, 0, context_die);
9671 break;
9672
a3f97cbb
JW
9673 default:
9674 abort ();
9675 }
71dfc51f 9676
a94dbf2c 9677 return parm_die;
a3f97cbb
JW
9678}
9679
9680/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
9681 at the end of an (ANSI prototyped) formal parameters list. */
71dfc51f 9682
a3f97cbb
JW
9683static void
9684gen_unspecified_parameters_die (decl_or_type, context_die)
2618f955 9685 register tree decl_or_type ATTRIBUTE_UNUSED;
a3f97cbb
JW
9686 register dw_die_ref context_die;
9687{
487a6e06 9688 new_die (DW_TAG_unspecified_parameters, context_die);
a3f97cbb
JW
9689}
9690
9691/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
9692 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
9693 parameters as specified in some function type specification (except for
1cfdcc15 9694 those which appear as part of a function *definition*). */
71dfc51f 9695
a3f97cbb
JW
9696static void
9697gen_formal_types_die (function_or_method_type, context_die)
9698 register tree function_or_method_type;
9699 register dw_die_ref context_die;
9700{
9701 register tree link;
9702 register tree formal_type = NULL;
5daf7c0a
JM
9703 register tree first_parm_type;
9704 tree arg;
a3f97cbb 9705
5daf7c0a
JM
9706 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
9707 {
9708 arg = DECL_ARGUMENTS (function_or_method_type);
9709 function_or_method_type = TREE_TYPE (function_or_method_type);
9710 }
9711 else
9712 arg = NULL_TREE;
9713
9714 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
a3f97cbb 9715
556273e0 9716 /* Make our first pass over the list of formal parameter types and output a
a3f97cbb 9717 DW_TAG_formal_parameter DIE for each one. */
5daf7c0a 9718 for (link = first_parm_type; link; )
a3f97cbb 9719 {
a94dbf2c 9720 register dw_die_ref parm_die;
556273e0 9721
a3f97cbb
JW
9722 formal_type = TREE_VALUE (link);
9723 if (formal_type == void_type_node)
9724 break;
9725
9726 /* Output a (nameless) DIE to represent the formal parameter itself. */
a94dbf2c 9727 parm_die = gen_formal_parameter_die (formal_type, context_die);
5daf7c0a
JM
9728 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
9729 && link == first_parm_type)
9730 || (arg && DECL_ARTIFICIAL (arg)))
a94dbf2c 9731 add_AT_flag (parm_die, DW_AT_artificial, 1);
5daf7c0a
JM
9732
9733 link = TREE_CHAIN (link);
9734 if (arg)
9735 arg = TREE_CHAIN (arg);
a3f97cbb
JW
9736 }
9737
9738 /* If this function type has an ellipsis, add a
9739 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
9740 if (formal_type != void_type_node)
9741 gen_unspecified_parameters_die (function_or_method_type, context_die);
9742
556273e0 9743 /* Make our second (and final) pass over the list of formal parameter types
a3f97cbb
JW
9744 and output DIEs to represent those types (as necessary). */
9745 for (link = TYPE_ARG_TYPES (function_or_method_type);
9746 link;
9747 link = TREE_CHAIN (link))
9748 {
9749 formal_type = TREE_VALUE (link);
9750 if (formal_type == void_type_node)
9751 break;
9752
b50c02f9 9753 gen_type_die (formal_type, context_die);
a3f97cbb
JW
9754 }
9755}
9756
10a11b75
JM
9757/* We want to generate the DIE for TYPE so that we can generate the
9758 die for MEMBER, which has been defined; we will need to refer back
9759 to the member declaration nested within TYPE. If we're trying to
9760 generate minimal debug info for TYPE, processing TYPE won't do the
9761 trick; we need to attach the member declaration by hand. */
9762
9763static void
9764gen_type_die_for_member (type, member, context_die)
9765 tree type, member;
9766 dw_die_ref context_die;
9767{
9768 gen_type_die (type, context_die);
9769
9770 /* If we're trying to avoid duplicate debug info, we may not have
9771 emitted the member decl for this function. Emit it now. */
9772 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
9773 && ! lookup_decl_die (member))
9774 {
9775 if (decl_ultimate_origin (member))
9776 abort ();
9777
9778 push_decl_scope (type);
9779 if (TREE_CODE (member) == FUNCTION_DECL)
9780 gen_subprogram_die (member, lookup_type_die (type));
9781 else
9782 gen_variable_die (member, lookup_type_die (type));
9783 pop_decl_scope ();
9784 }
9785}
9786
9787/* Generate the DWARF2 info for the "abstract" instance
9788 of a function which we may later generate inlined and/or
9789 out-of-line instances of. */
9790
e1772ac0 9791static void
1edf43d6 9792dwarf2out_abstract_function (decl)
10a11b75
JM
9793 tree decl;
9794{
5daf7c0a 9795 register dw_die_ref old_die;
777ad4c2 9796 tree save_fn;
5daf7c0a
JM
9797 tree context;
9798 int was_abstract = DECL_ABSTRACT (decl);
9799
9800 /* Make sure we have the actual abstract inline, not a clone. */
9801 decl = DECL_ORIGIN (decl);
10a11b75 9802
5daf7c0a 9803 old_die = lookup_decl_die (decl);
10a11b75
JM
9804 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
9805 /* We've already generated the abstract instance. */
9806 return;
9807
5daf7c0a
JM
9808 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
9809 we don't get confused by DECL_ABSTRACT. */
8458e954
JS
9810 if (debug_info_level > DINFO_LEVEL_TERSE)
9811 {
9812 context = decl_class_context (decl);
9813 if (context)
9814 gen_type_die_for_member
9815 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
9816 }
5daf7c0a
JM
9817
9818 /* Pretend we've just finished compiling this function. */
777ad4c2
JM
9819 save_fn = current_function_decl;
9820 current_function_decl = decl;
9821
10a11b75
JM
9822 set_decl_abstract_flags (decl, 1);
9823 dwarf2out_decl (decl);
5daf7c0a
JM
9824 if (! was_abstract)
9825 set_decl_abstract_flags (decl, 0);
777ad4c2
JM
9826
9827 current_function_decl = save_fn;
10a11b75
JM
9828}
9829
a3f97cbb
JW
9830/* Generate a DIE to represent a declared function (either file-scope or
9831 block-local). */
71dfc51f 9832
a3f97cbb
JW
9833static void
9834gen_subprogram_die (decl, context_die)
9835 register tree decl;
9836 register dw_die_ref context_die;
9837{
9838 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9839 register tree origin = decl_ultimate_origin (decl);
4b674448 9840 register dw_die_ref subr_die;
b1ccbc24 9841 register rtx fp_reg;
a3f97cbb
JW
9842 register tree fn_arg_types;
9843 register tree outer_scope;
a94dbf2c 9844 register dw_die_ref old_die = lookup_decl_die (decl);
9765e357
JM
9845 register int declaration = (current_function_decl != decl
9846 || class_scope_p (context_die));
a3f97cbb 9847
10a11b75
JM
9848 /* Note that it is possible to have both DECL_ABSTRACT and `declaration'
9849 be true, if we started to generate the abstract instance of an inline,
9850 decided to output its containing class, and proceeded to emit the
9851 declaration of the inline from the member list for the class. In that
9852 case, `declaration' takes priority; we'll get back to the abstract
9853 instance when we're done with the class. */
9854
1cfdcc15
JM
9855 /* The class-scope declaration DIE must be the primary DIE. */
9856 if (origin && declaration && class_scope_p (context_die))
9857 {
9858 origin = NULL;
9859 if (old_die)
9860 abort ();
9861 }
9862
a3f97cbb
JW
9863 if (origin != NULL)
9864 {
777ad4c2 9865 if (declaration && ! local_scope_p (context_die))
10a11b75
JM
9866 abort ();
9867
8d8238b6
JM
9868 /* Fixup die_parent for the abstract instance of a nested
9869 inline function. */
9870 if (old_die && old_die->die_parent == NULL)
9871 add_child_die (context_die, old_die);
9872
4b674448 9873 subr_die = new_die (DW_TAG_subprogram, context_die);
a3f97cbb
JW
9874 add_abstract_origin_attribute (subr_die, origin);
9875 }
bdb669cb
JM
9876 else if (old_die)
9877 {
981975b6 9878 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
a94dbf2c 9879
1edf43d6
JM
9880 if (!get_AT_flag (old_die, DW_AT_declaration)
9881 /* We can have a normal definition following an inline one in the
9882 case of redefinition of GNU C extern inlines.
9883 It seems reasonable to use AT_specification in this case. */
9884 && !get_AT_unsigned (old_die, DW_AT_inline))
b75ab88b
NC
9885 {
9886 /* ??? This can happen if there is a bug in the program, for
9887 instance, if it has duplicate function definitions. Ideally,
9888 we should detect this case and ignore it. For now, if we have
9889 already reported an error, any error at all, then assume that
9890 we got here because of a input error, not a dwarf2 bug. */
b75ab88b
NC
9891 if (errorcount)
9892 return;
9893 abort ();
9894 }
4b674448
JM
9895
9896 /* If the definition comes from the same place as the declaration,
a94dbf2c
JM
9897 maybe use the old DIE. We always want the DIE for this function
9898 that has the *_pc attributes to be under comp_unit_die so the
cb9e9d8d
JM
9899 debugger can find it. We also need to do this for abstract
9900 instances of inlines, since the spec requires the out-of-line copy
9901 to have the same parent. For local class methods, this doesn't
9902 apply; we just use the old DIE. */
9903 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
a96c67ec
JM
9904 && (DECL_ARTIFICIAL (decl)
9905 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
9906 && (get_AT_unsigned (old_die, DW_AT_decl_line)
556273e0 9907 == (unsigned) DECL_SOURCE_LINE (decl)))))
bdb669cb 9908 {
4b674448
JM
9909 subr_die = old_die;
9910
9911 /* Clear out the declaration attribute and the parm types. */
9912 remove_AT (subr_die, DW_AT_declaration);
9913 remove_children (subr_die);
9914 }
9915 else
9916 {
9917 subr_die = new_die (DW_TAG_subprogram, context_die);
9918 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
bdb669cb
JM
9919 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
9920 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
9921 if (get_AT_unsigned (old_die, DW_AT_decl_line)
556273e0 9922 != (unsigned) DECL_SOURCE_LINE (decl))
bdb669cb
JM
9923 add_AT_unsigned
9924 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9925 }
9926 }
a3f97cbb
JW
9927 else
9928 {
777ad4c2 9929 subr_die = new_die (DW_TAG_subprogram, context_die);
556273e0 9930
273dbe67
JM
9931 if (TREE_PUBLIC (decl))
9932 add_AT_flag (subr_die, DW_AT_external, 1);
71dfc51f 9933
a3f97cbb 9934 add_name_and_src_coords_attributes (subr_die, decl);
4927276d
JM
9935 if (debug_info_level > DINFO_LEVEL_TERSE)
9936 {
9937 register tree type = TREE_TYPE (decl);
71dfc51f 9938
4927276d
JM
9939 add_prototyped_attribute (subr_die, type);
9940 add_type_attribute (subr_die, TREE_TYPE (type), 0, 0, context_die);
9941 }
71dfc51f 9942
a3f97cbb 9943 add_pure_or_virtual_attribute (subr_die, decl);
273dbe67
JM
9944 if (DECL_ARTIFICIAL (decl))
9945 add_AT_flag (subr_die, DW_AT_artificial, 1);
a94dbf2c
JM
9946 if (TREE_PROTECTED (decl))
9947 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
9948 else if (TREE_PRIVATE (decl))
9949 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
a3f97cbb 9950 }
4edb7b60 9951
a94dbf2c
JM
9952 if (declaration)
9953 {
1edf43d6
JM
9954 if (!(old_die && get_AT_unsigned (old_die, DW_AT_inline)))
9955 {
9956 add_AT_flag (subr_die, DW_AT_declaration, 1);
9957
9958 /* The first time we see a member function, it is in the context of
9959 the class to which it belongs. We make sure of this by emitting
9960 the class first. The next time is the definition, which is
9961 handled above. The two may come from the same source text. */
9962 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
9963 equate_decl_number_to_die (decl, subr_die);
9964 }
a94dbf2c
JM
9965 }
9966 else if (DECL_ABSTRACT (decl))
a3f97cbb 9967 {
10a11b75 9968 if (DECL_INLINE (decl) && !flag_no_inline)
61b32c02 9969 {
10a11b75
JM
9970 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
9971 inline functions, but not for extern inline functions.
9972 We can't get this completely correct because information
9973 about whether the function was declared inline is not
9974 saved anywhere. */
9975 if (DECL_DEFER_OUTPUT (decl))
61b32c02
JM
9976 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
9977 else
10a11b75 9978 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
61b32c02 9979 }
61b32c02 9980 else
10a11b75 9981 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
61b32c02 9982
a3f97cbb
JW
9983 equate_decl_number_to_die (decl, subr_die);
9984 }
9985 else if (!DECL_EXTERNAL (decl))
9986 {
1edf43d6 9987 if (!(old_die && get_AT_unsigned (old_die, DW_AT_inline)))
ba7b35df 9988 equate_decl_number_to_die (decl, subr_die);
71dfc51f 9989
5c90448c
JM
9990 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
9991 current_funcdef_number);
7d4440be 9992 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
5c90448c
JM
9993 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
9994 current_funcdef_number);
a3f97cbb
JW
9995 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
9996
d291dd49
JM
9997 add_pubname (decl, subr_die);
9998 add_arange (decl, subr_die);
9999
a3f97cbb 10000#ifdef MIPS_DEBUGGING_INFO
a3f97cbb
JW
10001 /* Add a reference to the FDE for this routine. */
10002 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10003#endif
10004
810429b7
JM
10005 /* Define the "frame base" location for this routine. We use the
10006 frame pointer or stack pointer registers, since the RTL for local
10007 variables is relative to one of them. */
b1ccbc24
RK
10008 fp_reg
10009 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10010 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
a3f97cbb 10011
ef76d03b
JW
10012#if 0
10013 /* ??? This fails for nested inline functions, because context_display
10014 is not part of the state saved/restored for inline functions. */
88dad228 10015 if (current_function_needs_context)
ef76d03b
JW
10016 add_AT_location_description (subr_die, DW_AT_static_link,
10017 lookup_static_chain (decl));
10018#endif
a3f97cbb
JW
10019 }
10020
10021 /* Now output descriptions of the arguments for this function. This gets
556273e0 10022 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
a3f97cbb
JW
10023 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10024 `...' at the end of the formal parameter list. In order to find out if
10025 there was a trailing ellipsis or not, we must instead look at the type
10026 associated with the FUNCTION_DECL. This will be a node of type
10027 FUNCTION_TYPE. If the chain of type nodes hanging off of this
556273e0 10028 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
a3f97cbb 10029 an ellipsis at the end. */
71dfc51f 10030
a3f97cbb 10031 /* In the case where we are describing a mere function declaration, all we
556273e0 10032 need to do here (and all we *can* do here) is to describe the *types* of
a3f97cbb 10033 its formal parameters. */
4927276d 10034 if (debug_info_level <= DINFO_LEVEL_TERSE)
71dfc51f 10035 ;
4edb7b60 10036 else if (declaration)
5daf7c0a 10037 gen_formal_types_die (decl, subr_die);
a3f97cbb
JW
10038 else
10039 {
10040 /* Generate DIEs to represent all known formal parameters */
10041 register tree arg_decls = DECL_ARGUMENTS (decl);
10042 register tree parm;
10043
10044 /* When generating DIEs, generate the unspecified_parameters DIE
10045 instead if we come across the arg "__builtin_va_alist" */
10046 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
71dfc51f
RK
10047 if (TREE_CODE (parm) == PARM_DECL)
10048 {
db3cf6fb
MS
10049 if (DECL_NAME (parm)
10050 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10051 "__builtin_va_alist"))
71dfc51f
RK
10052 gen_unspecified_parameters_die (parm, subr_die);
10053 else
10054 gen_decl_die (parm, subr_die);
10055 }
a3f97cbb
JW
10056
10057 /* Decide whether we need a unspecified_parameters DIE at the end.
556273e0 10058 There are 2 more cases to do this for: 1) the ansi ... declaration -
a3f97cbb
JW
10059 this is detectable when the end of the arg list is not a
10060 void_type_node 2) an unprototyped function declaration (not a
10061 definition). This just means that we have no info about the
10062 parameters at all. */
10063 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
71dfc51f 10064 if (fn_arg_types != NULL)
a3f97cbb
JW
10065 {
10066 /* this is the prototyped case, check for ... */
10067 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
71dfc51f 10068 gen_unspecified_parameters_die (decl, subr_die);
a3f97cbb 10069 }
71dfc51f
RK
10070 else if (DECL_INITIAL (decl) == NULL_TREE)
10071 gen_unspecified_parameters_die (decl, subr_die);
a3f97cbb
JW
10072 }
10073
10074 /* Output Dwarf info for all of the stuff within the body of the function
10075 (if it has one - it may be just a declaration). */
10076 outer_scope = DECL_INITIAL (decl);
10077
d7248bff
JM
10078 /* Note that here, `outer_scope' is a pointer to the outermost BLOCK
10079 node created to represent a function. This outermost BLOCK actually
10080 represents the outermost binding contour for the function, i.e. the
10081 contour in which the function's formal parameters and labels get
10082 declared. Curiously, it appears that the front end doesn't actually
10083 put the PARM_DECL nodes for the current function onto the BLOCK_VARS
10084 list for this outer scope. (They are strung off of the DECL_ARGUMENTS
10085 list for the function instead.) The BLOCK_VARS list for the
10086 `outer_scope' does provide us with a list of the LABEL_DECL nodes for
10087 the function however, and we output DWARF info for those in
10088 decls_for_scope. Just within the `outer_scope' there will be a BLOCK
10089 node representing the function's outermost pair of curly braces, and
10090 any blocks used for the base and member initializers of a C++
10091 constructor function. */
4edb7b60 10092 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
7e23cb16
JM
10093 {
10094 current_function_has_inlines = 0;
10095 decls_for_scope (outer_scope, subr_die, 0);
71dfc51f 10096
ce61cc73 10097#if 0 && defined (MIPS_DEBUGGING_INFO)
7e23cb16
JM
10098 if (current_function_has_inlines)
10099 {
10100 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10101 if (! comp_unit_has_inlines)
10102 {
10103 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10104 comp_unit_has_inlines = 1;
10105 }
10106 }
10107#endif
10108 }
a3f97cbb
JW
10109}
10110
10111/* Generate a DIE to represent a declared data object. */
71dfc51f 10112
a3f97cbb
JW
10113static void
10114gen_variable_die (decl, context_die)
10115 register tree decl;
10116 register dw_die_ref context_die;
10117{
10118 register tree origin = decl_ultimate_origin (decl);
10119 register dw_die_ref var_die = new_die (DW_TAG_variable, context_die);
71dfc51f 10120
bdb669cb 10121 dw_die_ref old_die = lookup_decl_die (decl);
9765e357
JM
10122 int declaration = (DECL_EXTERNAL (decl)
10123 || class_scope_p (context_die));
4edb7b60 10124
a3f97cbb 10125 if (origin != NULL)
71dfc51f 10126 add_abstract_origin_attribute (var_die, origin);
f76b8156
JW
10127 /* Loop unrolling can create multiple blocks that refer to the same
10128 static variable, so we must test for the DW_AT_declaration flag. */
10129 /* ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10130 copy decls and set the DECL_ABSTRACT flag on them instead of
10131 sharing them. */
a20612aa 10132 /* ??? Duplicated blocks have been rewritten to use .debug_ranges. */
f76b8156
JW
10133 else if (old_die && TREE_STATIC (decl)
10134 && get_AT_flag (old_die, DW_AT_declaration) == 1)
bdb669cb 10135 {
e689ae67 10136 /* This is a definition of a C++ class level static. */
bdb669cb
JM
10137 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10138 if (DECL_NAME (decl))
10139 {
981975b6 10140 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
71dfc51f 10141
bdb669cb
JM
10142 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10143 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
71dfc51f 10144
bdb669cb 10145 if (get_AT_unsigned (old_die, DW_AT_decl_line)
556273e0 10146 != (unsigned) DECL_SOURCE_LINE (decl))
71dfc51f
RK
10147
10148 add_AT_unsigned (var_die, DW_AT_decl_line,
10149 DECL_SOURCE_LINE (decl));
bdb669cb
JM
10150 }
10151 }
a3f97cbb
JW
10152 else
10153 {
10154 add_name_and_src_coords_attributes (var_die, decl);
a3f97cbb
JW
10155 add_type_attribute (var_die, TREE_TYPE (decl),
10156 TREE_READONLY (decl),
10157 TREE_THIS_VOLATILE (decl), context_die);
71dfc51f 10158
273dbe67
JM
10159 if (TREE_PUBLIC (decl))
10160 add_AT_flag (var_die, DW_AT_external, 1);
71dfc51f 10161
273dbe67
JM
10162 if (DECL_ARTIFICIAL (decl))
10163 add_AT_flag (var_die, DW_AT_artificial, 1);
71dfc51f 10164
a94dbf2c
JM
10165 if (TREE_PROTECTED (decl))
10166 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
71dfc51f 10167
a94dbf2c
JM
10168 else if (TREE_PRIVATE (decl))
10169 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
a3f97cbb 10170 }
4edb7b60
JM
10171
10172 if (declaration)
10173 add_AT_flag (var_die, DW_AT_declaration, 1);
556273e0 10174
9765e357 10175 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
4edb7b60
JM
10176 equate_decl_number_to_die (decl, var_die);
10177
10178 if (! declaration && ! DECL_ABSTRACT (decl))
a3f97cbb
JW
10179 {
10180 add_location_or_const_value_attribute (var_die, decl);
d291dd49 10181 add_pubname (decl, var_die);
a3f97cbb 10182 }
1bfb5f8f
JM
10183 else
10184 tree_add_const_value_attribute (var_die, decl);
a3f97cbb
JW
10185}
10186
10187/* Generate a DIE to represent a label identifier. */
71dfc51f 10188
a3f97cbb
JW
10189static void
10190gen_label_die (decl, context_die)
10191 register tree decl;
10192 register dw_die_ref context_die;
10193{
10194 register tree origin = decl_ultimate_origin (decl);
10195 register dw_die_ref lbl_die = new_die (DW_TAG_label, context_die);
10196 register rtx insn;
10197 char label[MAX_ARTIFICIAL_LABEL_BYTES];
71dfc51f 10198
a3f97cbb 10199 if (origin != NULL)
71dfc51f 10200 add_abstract_origin_attribute (lbl_die, origin);
a3f97cbb 10201 else
71dfc51f
RK
10202 add_name_and_src_coords_attributes (lbl_die, decl);
10203
a3f97cbb 10204 if (DECL_ABSTRACT (decl))
71dfc51f 10205 equate_decl_number_to_die (decl, lbl_die);
a3f97cbb
JW
10206 else
10207 {
10208 insn = DECL_RTL (decl);
088e7160
NC
10209
10210 /* Deleted labels are programmer specified labels which have been
10211 eliminated because of various optimisations. We still emit them
10212 here so that it is possible to put breakpoints on them. */
10213 if (GET_CODE (insn) == CODE_LABEL
10214 || ((GET_CODE (insn) == NOTE
10215 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
a3f97cbb 10216 {
556273e0
KH
10217 /* When optimization is enabled (via -O) some parts of the compiler
10218 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
a3f97cbb
JW
10219 represent source-level labels which were explicitly declared by
10220 the user. This really shouldn't be happening though, so catch
10221 it if it ever does happen. */
10222 if (INSN_DELETED_P (insn))
71dfc51f
RK
10223 abort ();
10224
66234570 10225 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
a3f97cbb
JW
10226 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10227 }
10228 }
10229}
10230
10231/* Generate a DIE for a lexical block. */
71dfc51f 10232
a3f97cbb 10233static void
d7248bff 10234gen_lexical_block_die (stmt, context_die, depth)
a3f97cbb
JW
10235 register tree stmt;
10236 register dw_die_ref context_die;
d7248bff 10237 int depth;
a3f97cbb
JW
10238{
10239 register dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die);
10240 char label[MAX_ARTIFICIAL_LABEL_BYTES];
71dfc51f
RK
10241
10242 if (! BLOCK_ABSTRACT (stmt))
a3f97cbb 10243 {
a20612aa
RH
10244 if (BLOCK_FRAGMENT_CHAIN (stmt))
10245 {
10246 tree chain;
10247
10248 add_AT_offset (stmt_die, DW_AT_ranges, add_ranges (stmt));
10249
10250 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10251 do
10252 {
10253 add_ranges (chain);
10254 chain = BLOCK_FRAGMENT_CHAIN (chain);
10255 }
10256 while (chain);
10257 add_ranges (NULL);
10258 }
10259 else
10260 {
10261 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10262 BLOCK_NUMBER (stmt));
10263 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10264 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10265 BLOCK_NUMBER (stmt));
10266 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10267 }
a3f97cbb 10268 }
71dfc51f 10269
d7248bff 10270 decls_for_scope (stmt, stmt_die, depth);
a3f97cbb
JW
10271}
10272
10273/* Generate a DIE for an inlined subprogram. */
71dfc51f 10274
a3f97cbb 10275static void
d7248bff 10276gen_inlined_subroutine_die (stmt, context_die, depth)
a3f97cbb
JW
10277 register tree stmt;
10278 register dw_die_ref context_die;
d7248bff 10279 int depth;
a3f97cbb 10280{
71dfc51f 10281 if (! BLOCK_ABSTRACT (stmt))
a3f97cbb 10282 {
71dfc51f
RK
10283 register dw_die_ref subr_die
10284 = new_die (DW_TAG_inlined_subroutine, context_die);
ab72d377 10285 register tree decl = block_ultimate_origin (stmt);
d7248bff 10286 char label[MAX_ARTIFICIAL_LABEL_BYTES];
71dfc51f 10287
10a11b75 10288 /* Emit info for the abstract instance first, if we haven't yet. */
1edf43d6 10289 dwarf2out_abstract_function (decl);
10a11b75 10290
ab72d377 10291 add_abstract_origin_attribute (subr_die, decl);
5c90448c 10292 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
18c038b9 10293 BLOCK_NUMBER (stmt));
a3f97cbb 10294 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
18c038b9
MM
10295 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10296 BLOCK_NUMBER (stmt));
a3f97cbb 10297 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
d7248bff 10298 decls_for_scope (stmt, subr_die, depth);
7e23cb16 10299 current_function_has_inlines = 1;
a3f97cbb 10300 }
a3f97cbb
JW
10301}
10302
10303/* Generate a DIE for a field in a record, or structure. */
71dfc51f 10304
a3f97cbb
JW
10305static void
10306gen_field_die (decl, context_die)
10307 register tree decl;
10308 register dw_die_ref context_die;
10309{
10310 register dw_die_ref decl_die = new_die (DW_TAG_member, context_die);
71dfc51f 10311
a3f97cbb 10312 add_name_and_src_coords_attributes (decl_die, decl);
a3f97cbb
JW
10313 add_type_attribute (decl_die, member_declared_type (decl),
10314 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
10315 context_die);
71dfc51f 10316
a3f97cbb
JW
10317 /* If this is a bit field... */
10318 if (DECL_BIT_FIELD_TYPE (decl))
10319 {
10320 add_byte_size_attribute (decl_die, decl);
10321 add_bit_size_attribute (decl_die, decl);
10322 add_bit_offset_attribute (decl_die, decl);
10323 }
71dfc51f 10324
a94dbf2c
JM
10325 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
10326 add_data_member_location_attribute (decl_die, decl);
71dfc51f 10327
273dbe67
JM
10328 if (DECL_ARTIFICIAL (decl))
10329 add_AT_flag (decl_die, DW_AT_artificial, 1);
71dfc51f 10330
a94dbf2c
JM
10331 if (TREE_PROTECTED (decl))
10332 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
71dfc51f 10333
a94dbf2c
JM
10334 else if (TREE_PRIVATE (decl))
10335 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
a3f97cbb
JW
10336}
10337
ab72d377
JM
10338#if 0
10339/* Don't generate either pointer_type DIEs or reference_type DIEs here.
10340 Use modified_type_die instead.
a3f97cbb
JW
10341 We keep this code here just in case these types of DIEs may be needed to
10342 represent certain things in other languages (e.g. Pascal) someday. */
10343static void
10344gen_pointer_type_die (type, context_die)
10345 register tree type;
10346 register dw_die_ref context_die;
10347{
71dfc51f
RK
10348 register dw_die_ref ptr_die
10349 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die));
10350
a3f97cbb 10351 equate_type_number_to_die (type, ptr_die);
a3f97cbb 10352 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
ab72d377 10353 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
a3f97cbb
JW
10354}
10355
ab72d377
JM
10356/* Don't generate either pointer_type DIEs or reference_type DIEs here.
10357 Use modified_type_die instead.
a3f97cbb
JW
10358 We keep this code here just in case these types of DIEs may be needed to
10359 represent certain things in other languages (e.g. Pascal) someday. */
10360static void
10361gen_reference_type_die (type, context_die)
10362 register tree type;
10363 register dw_die_ref context_die;
10364{
71dfc51f
RK
10365 register dw_die_ref ref_die
10366 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die));
10367
a3f97cbb 10368 equate_type_number_to_die (type, ref_die);
a3f97cbb 10369 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
ab72d377 10370 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
a3f97cbb 10371}
ab72d377 10372#endif
a3f97cbb
JW
10373
10374/* Generate a DIE for a pointer to a member type. */
10375static void
10376gen_ptr_to_mbr_type_die (type, context_die)
10377 register tree type;
10378 register dw_die_ref context_die;
10379{
71dfc51f
RK
10380 register dw_die_ref ptr_die
10381 = new_die (DW_TAG_ptr_to_member_type, scope_die_for (type, context_die));
10382
a3f97cbb 10383 equate_type_number_to_die (type, ptr_die);
a3f97cbb 10384 add_AT_die_ref (ptr_die, DW_AT_containing_type,
bdb669cb 10385 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
a3f97cbb
JW
10386 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10387}
10388
10389/* Generate the DIE for the compilation unit. */
71dfc51f 10390
a96c67ec
JM
10391static dw_die_ref
10392gen_compile_unit_die (filename)
10393 register const char *filename;
a3f97cbb 10394{
a96c67ec 10395 register dw_die_ref die;
a3f97cbb 10396 char producer[250];
d3e3972c 10397 const char *wd = getpwd ();
a96c67ec 10398 int language;
a3f97cbb 10399
a96c67ec
JM
10400 die = new_die (DW_TAG_compile_unit, NULL);
10401 add_name_attribute (die, filename);
bdb669cb 10402
a96c67ec
JM
10403 if (wd != NULL && filename[0] != DIR_SEPARATOR)
10404 add_AT_string (die, DW_AT_comp_dir, wd);
a3f97cbb
JW
10405
10406 sprintf (producer, "%s %s", language_string, version_string);
10407
10408#ifdef MIPS_DEBUGGING_INFO
10409 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10410 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10411 not appear in the producer string, the debugger reaches the conclusion
10412 that the object file is stripped and has no debugging information.
10413 To get the MIPS/SGI debugger to believe that there is debugging
10414 information in the object file, we add a -g to the producer string. */
4927276d
JM
10415 if (debug_info_level > DINFO_LEVEL_TERSE)
10416 strcat (producer, " -g");
a3f97cbb
JW
10417#endif
10418
a96c67ec 10419 add_AT_string (die, DW_AT_producer, producer);
a9d38797 10420
a3f97cbb 10421 if (strcmp (language_string, "GNU C++") == 0)
a96c67ec 10422 language = DW_LANG_C_plus_plus;
a3f97cbb 10423 else if (strcmp (language_string, "GNU Ada") == 0)
a96c67ec 10424 language = DW_LANG_Ada83;
a9d38797 10425 else if (strcmp (language_string, "GNU F77") == 0)
a96c67ec 10426 language = DW_LANG_Fortran77;
bc28c45b 10427 else if (strcmp (language_string, "GNU Pascal") == 0)
a96c67ec 10428 language = DW_LANG_Pascal83;
28985b81
AG
10429 else if (strcmp (language_string, "GNU Java") == 0)
10430 language = DW_LANG_Java;
a3f97cbb 10431 else if (flag_traditional)
a96c67ec 10432 language = DW_LANG_C;
a3f97cbb 10433 else
a96c67ec 10434 language = DW_LANG_C89;
a9d38797 10435
a96c67ec
JM
10436 add_AT_unsigned (die, DW_AT_language, language);
10437
10438 return die;
a3f97cbb
JW
10439}
10440
10441/* Generate a DIE for a string type. */
71dfc51f 10442
a3f97cbb
JW
10443static void
10444gen_string_type_die (type, context_die)
10445 register tree type;
10446 register dw_die_ref context_die;
10447{
71dfc51f
RK
10448 register dw_die_ref type_die
10449 = new_die (DW_TAG_string_type, scope_die_for (type, context_die));
10450
bdb669cb 10451 equate_type_number_to_die (type, type_die);
a3f97cbb
JW
10452
10453 /* Fudge the string length attribute for now. */
556273e0 10454
a3f97cbb 10455 /* TODO: add string length info.
71dfc51f 10456 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
a3f97cbb
JW
10457 bound_representation (upper_bound, 0, 'u'); */
10458}
10459
61b32c02 10460/* Generate the DIE for a base class. */
71dfc51f 10461
61b32c02
JM
10462static void
10463gen_inheritance_die (binfo, context_die)
10464 register tree binfo;
10465 register dw_die_ref context_die;
10466{
10467 dw_die_ref die = new_die (DW_TAG_inheritance, context_die);
71dfc51f 10468
61b32c02
JM
10469 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
10470 add_data_member_location_attribute (die, binfo);
71dfc51f 10471
61b32c02
JM
10472 if (TREE_VIA_VIRTUAL (binfo))
10473 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10474 if (TREE_VIA_PUBLIC (binfo))
10475 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
10476 else if (TREE_VIA_PROTECTED (binfo))
10477 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
10478}
10479
956d6950 10480/* Generate a DIE for a class member. */
71dfc51f 10481
a3f97cbb
JW
10482static void
10483gen_member_die (type, context_die)
10484 register tree type;
10485 register dw_die_ref context_die;
10486{
61b32c02 10487 register tree member;
10a11b75 10488 dw_die_ref child;
71dfc51f 10489
a3f97cbb
JW
10490 /* If this is not an incomplete type, output descriptions of each of its
10491 members. Note that as we output the DIEs necessary to represent the
10492 members of this record or union type, we will also be trying to output
10493 DIEs to represent the *types* of those members. However the `type'
556273e0
KH
10494 function (above) will specifically avoid generating type DIEs for member
10495 types *within* the list of member DIEs for this (containing) type execpt
a3f97cbb
JW
10496 for those types (of members) which are explicitly marked as also being
10497 members of this (containing) type themselves. The g++ front- end can
10498 force any given type to be treated as a member of some other
556273e0 10499 (containing) type by setting the TYPE_CONTEXT of the given (member) type
a3f97cbb
JW
10500 to point to the TREE node representing the appropriate (containing)
10501 type. */
10502
61b32c02
JM
10503 /* First output info about the base classes. */
10504 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
a3f97cbb 10505 {
61b32c02
JM
10506 register tree bases = TYPE_BINFO_BASETYPES (type);
10507 register int n_bases = TREE_VEC_LENGTH (bases);
10508 register int i;
10509
10510 for (i = 0; i < n_bases; i++)
10511 gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
a3f97cbb
JW
10512 }
10513
61b32c02
JM
10514 /* Now output info about the data members and type members. */
10515 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
10a11b75
JM
10516 {
10517 /* If we thought we were generating minimal debug info for TYPE
10518 and then changed our minds, some of the member declarations
10519 may have already been defined. Don't define them again, but
10520 do put them in the right order. */
10521
10522 child = lookup_decl_die (member);
10523 if (child)
10524 splice_child_die (context_die, child);
10525 else
10526 gen_decl_die (member, context_die);
10527 }
61b32c02 10528
a3f97cbb 10529 /* Now output info about the function members (if any). */
61b32c02 10530 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
10a11b75 10531 {
5daf7c0a
JM
10532 /* Don't include clones in the member list. */
10533 if (DECL_ABSTRACT_ORIGIN (member))
10534 continue;
10535
10a11b75
JM
10536 child = lookup_decl_die (member);
10537 if (child)
10538 splice_child_die (context_die, child);
10539 else
10540 gen_decl_die (member, context_die);
10541 }
a3f97cbb
JW
10542}
10543
10a11b75
JM
10544/* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10545 is set, we pretend that the type was never defined, so we only get the
10546 member DIEs needed by later specification DIEs. */
71dfc51f 10547
a3f97cbb 10548static void
273dbe67 10549gen_struct_or_union_type_die (type, context_die)
a3f97cbb 10550 register tree type;
a3f97cbb
JW
10551 register dw_die_ref context_die;
10552{
273dbe67 10553 register dw_die_ref type_die = lookup_type_die (type);
a082c85a
JM
10554 register dw_die_ref scope_die = 0;
10555 register int nested = 0;
10a11b75 10556 int complete = (TYPE_SIZE (type)
65e1263a
JW
10557 && (! TYPE_STUB_DECL (type)
10558 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
273dbe67 10559
10a11b75 10560 if (type_die && ! complete)
273dbe67 10561 return;
a082c85a 10562
71dfc51f 10563 if (TYPE_CONTEXT (type) != NULL_TREE
5f2f160c 10564 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
a082c85a
JM
10565 nested = 1;
10566
a94dbf2c 10567 scope_die = scope_die_for (type, context_die);
a082c85a
JM
10568
10569 if (! type_die || (nested && scope_die == comp_unit_die))
273dbe67 10570 /* First occurrence of type or toplevel definition of nested class. */
a3f97cbb 10571 {
273dbe67 10572 register dw_die_ref old_die = type_die;
71dfc51f 10573
a3f97cbb
JW
10574 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
10575 ? DW_TAG_structure_type : DW_TAG_union_type,
a082c85a 10576 scope_die);
a3f97cbb 10577 equate_type_number_to_die (type, type_die);
273dbe67
JM
10578 if (old_die)
10579 add_AT_die_ref (type_die, DW_AT_specification, old_die);
5de0e8d4
JM
10580 else
10581 add_name_attribute (type_die, type_tag (type));
a3f97cbb 10582 }
4b674448 10583 else
273dbe67 10584 remove_AT (type_die, DW_AT_declaration);
a3f97cbb
JW
10585
10586 /* If this type has been completed, then give it a byte_size attribute and
10587 then give a list of members. */
2081603c 10588 if (complete)
a3f97cbb 10589 {
556273e0 10590 /* Prevent infinite recursion in cases where the type of some member of
a3f97cbb
JW
10591 this type is expressed in terms of this type itself. */
10592 TREE_ASM_WRITTEN (type) = 1;
273dbe67 10593 add_byte_size_attribute (type_die, type);
e9a25f70 10594 if (TYPE_STUB_DECL (type) != NULL_TREE)
b2932ae5 10595 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
71dfc51f 10596
ef76d03b
JW
10597 /* If the first reference to this type was as the return type of an
10598 inline function, then it may not have a parent. Fix this now. */
10599 if (type_die->die_parent == NULL)
10600 add_child_die (scope_die, type_die);
10601
273dbe67
JM
10602 push_decl_scope (type);
10603 gen_member_die (type, type_die);
10604 pop_decl_scope ();
71dfc51f 10605
a94dbf2c
JM
10606 /* GNU extension: Record what type our vtable lives in. */
10607 if (TYPE_VFIELD (type))
10608 {
10609 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
71dfc51f 10610
de6e505e
JM
10611 gen_type_die (vtype, context_die);
10612 add_AT_die_ref (type_die, DW_AT_containing_type,
10613 lookup_type_die (vtype));
a94dbf2c 10614 }
a3f97cbb 10615 }
4b674448 10616 else
8a8c3656
JM
10617 {
10618 add_AT_flag (type_die, DW_AT_declaration, 1);
a30d4514 10619
9765e357 10620 /* We don't need to do this for function-local types. */
f19f17e0 10621 if (! decl_function_context (TYPE_STUB_DECL (type)))
a30d4514 10622 add_incomplete_type (type);
8a8c3656 10623 }
a3f97cbb
JW
10624}
10625
10626/* Generate a DIE for a subroutine _type_. */
71dfc51f 10627
a3f97cbb
JW
10628static void
10629gen_subroutine_type_die (type, context_die)
10630 register tree type;
10631 register dw_die_ref context_die;
10632{
10633 register tree return_type = TREE_TYPE (type);
71dfc51f
RK
10634 register dw_die_ref subr_die
10635 = new_die (DW_TAG_subroutine_type, scope_die_for (type, context_die));
10636
a3f97cbb
JW
10637 equate_type_number_to_die (type, subr_die);
10638 add_prototyped_attribute (subr_die, type);
a3f97cbb 10639 add_type_attribute (subr_die, return_type, 0, 0, context_die);
a94dbf2c 10640 gen_formal_types_die (type, subr_die);
a3f97cbb
JW
10641}
10642
10643/* Generate a DIE for a type definition */
71dfc51f 10644
a3f97cbb
JW
10645static void
10646gen_typedef_die (decl, context_die)
10647 register tree decl;
10648 register dw_die_ref context_die;
10649{
a3f97cbb 10650 register dw_die_ref type_die;
a94dbf2c
JM
10651 register tree origin;
10652
10653 if (TREE_ASM_WRITTEN (decl))
10654 return;
10655 TREE_ASM_WRITTEN (decl) = 1;
10656
777ad4c2 10657 type_die = new_die (DW_TAG_typedef, context_die);
a94dbf2c 10658 origin = decl_ultimate_origin (decl);
a3f97cbb 10659 if (origin != NULL)
a94dbf2c 10660 add_abstract_origin_attribute (type_die, origin);
a3f97cbb
JW
10661 else
10662 {
a94dbf2c 10663 register tree type;
a3f97cbb 10664 add_name_and_src_coords_attributes (type_die, decl);
a94dbf2c
JM
10665 if (DECL_ORIGINAL_TYPE (decl))
10666 {
10667 type = DECL_ORIGINAL_TYPE (decl);
62e3bf54
JM
10668
10669 if (type == TREE_TYPE (decl))
10670 abort ();
10671 else
10672 equate_type_number_to_die (TREE_TYPE (decl), type_die);
a94dbf2c
JM
10673 }
10674 else
10675 type = TREE_TYPE (decl);
10676 add_type_attribute (type_die, type, TREE_READONLY (decl),
10677 TREE_THIS_VOLATILE (decl), context_die);
a3f97cbb 10678 }
71dfc51f 10679
a3f97cbb 10680 if (DECL_ABSTRACT (decl))
a94dbf2c 10681 equate_decl_number_to_die (decl, type_die);
a3f97cbb
JW
10682}
10683
10684/* Generate a type description DIE. */
71dfc51f 10685
a3f97cbb
JW
10686static void
10687gen_type_die (type, context_die)
10688 register tree type;
10689 register dw_die_ref context_die;
10690{
348bb3c7
JM
10691 int need_pop;
10692
71dfc51f
RK
10693 if (type == NULL_TREE || type == error_mark_node)
10694 return;
a3f97cbb 10695
38e01259 10696 /* We are going to output a DIE to represent the unqualified version of
a3f97cbb
JW
10697 this type (i.e. without any const or volatile qualifiers) so get the
10698 main variant (i.e. the unqualified version) of this type now. */
10699 type = type_main_variant (type);
10700
10701 if (TREE_ASM_WRITTEN (type))
71dfc51f 10702 return;
a3f97cbb 10703
a94dbf2c
JM
10704 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10705 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
556273e0 10706 {
a94dbf2c
JM
10707 TREE_ASM_WRITTEN (type) = 1;
10708 gen_decl_die (TYPE_NAME (type), context_die);
10709 return;
10710 }
10711
a3f97cbb
JW
10712 switch (TREE_CODE (type))
10713 {
10714 case ERROR_MARK:
10715 break;
10716
10717 case POINTER_TYPE:
10718 case REFERENCE_TYPE:
956d6950
JL
10719 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
10720 ensures that the gen_type_die recursion will terminate even if the
10721 type is recursive. Recursive types are possible in Ada. */
10722 /* ??? We could perhaps do this for all types before the switch
10723 statement. */
10724 TREE_ASM_WRITTEN (type) = 1;
10725
a3f97cbb
JW
10726 /* For these types, all that is required is that we output a DIE (or a
10727 set of DIEs) to represent the "basis" type. */
10728 gen_type_die (TREE_TYPE (type), context_die);
10729 break;
10730
10731 case OFFSET_TYPE:
556273e0 10732 /* This code is used for C++ pointer-to-data-member types.
71dfc51f 10733 Output a description of the relevant class type. */
a3f97cbb 10734 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
71dfc51f 10735
a3f97cbb
JW
10736 /* Output a description of the type of the object pointed to. */
10737 gen_type_die (TREE_TYPE (type), context_die);
71dfc51f 10738
a3f97cbb
JW
10739 /* Now output a DIE to represent this pointer-to-data-member type
10740 itself. */
10741 gen_ptr_to_mbr_type_die (type, context_die);
10742 break;
10743
10744 case SET_TYPE:
10745 gen_type_die (TYPE_DOMAIN (type), context_die);
10746 gen_set_type_die (type, context_die);
10747 break;
10748
10749 case FILE_TYPE:
10750 gen_type_die (TREE_TYPE (type), context_die);
10751 abort (); /* No way to represent these in Dwarf yet! */
10752 break;
10753
10754 case FUNCTION_TYPE:
10755 /* Force out return type (in case it wasn't forced out already). */
10756 gen_type_die (TREE_TYPE (type), context_die);
10757 gen_subroutine_type_die (type, context_die);
10758 break;
10759
10760 case METHOD_TYPE:
10761 /* Force out return type (in case it wasn't forced out already). */
10762 gen_type_die (TREE_TYPE (type), context_die);
10763 gen_subroutine_type_die (type, context_die);
10764 break;
10765
10766 case ARRAY_TYPE:
10767 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
10768 {
10769 gen_type_die (TREE_TYPE (type), context_die);
10770 gen_string_type_die (type, context_die);
10771 }
10772 else
71dfc51f 10773 gen_array_type_die (type, context_die);
a3f97cbb
JW
10774 break;
10775
4061f623
BS
10776 case VECTOR_TYPE:
10777 gen_type_die (TYPE_DEBUG_REPRESENTATION_TYPE (type), context_die);
10778 break;
10779
a3f97cbb
JW
10780 case ENUMERAL_TYPE:
10781 case RECORD_TYPE:
10782 case UNION_TYPE:
10783 case QUAL_UNION_TYPE:
a082c85a 10784 /* If this is a nested type whose containing class hasn't been
348bb3c7
JM
10785 written out yet, writing it out will cover this one, too.
10786 This does not apply to instantiations of member class templates;
10787 they need to be added to the containing class as they are
777ad4c2 10788 generated. FIXME: This hurts the idea of combining type decls
348bb3c7
JM
10789 from multiple TUs, since we can't predict what set of template
10790 instantiations we'll get. */
a082c85a 10791 if (TYPE_CONTEXT (type)
5f2f160c 10792 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
a082c85a 10793 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
a94dbf2c
JM
10794 {
10795 gen_type_die (TYPE_CONTEXT (type), context_die);
10796
348bb3c7 10797 if (TREE_ASM_WRITTEN (type))
a94dbf2c
JM
10798 return;
10799
10800 /* If that failed, attach ourselves to the stub. */
10801 push_decl_scope (TYPE_CONTEXT (type));
10802 context_die = lookup_type_die (TYPE_CONTEXT (type));
348bb3c7 10803 need_pop = 1;
a94dbf2c 10804 }
348bb3c7
JM
10805 else
10806 need_pop = 0;
a94dbf2c
JM
10807
10808 if (TREE_CODE (type) == ENUMERAL_TYPE)
273dbe67 10809 gen_enumeration_type_die (type, context_die);
a3f97cbb 10810 else
273dbe67 10811 gen_struct_or_union_type_die (type, context_die);
4b674448 10812
348bb3c7 10813 if (need_pop)
a94dbf2c
JM
10814 pop_decl_scope ();
10815
4b674448 10816 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
a082c85a
JM
10817 it up if it is ever completed. gen_*_type_die will set it for us
10818 when appropriate. */
10819 return;
a3f97cbb
JW
10820
10821 case VOID_TYPE:
10822 case INTEGER_TYPE:
10823 case REAL_TYPE:
10824 case COMPLEX_TYPE:
10825 case BOOLEAN_TYPE:
10826 case CHAR_TYPE:
10827 /* No DIEs needed for fundamental types. */
10828 break;
10829
10830 case LANG_TYPE:
10831 /* No Dwarf representation currently defined. */
10832 break;
10833
10834 default:
10835 abort ();
10836 }
10837
10838 TREE_ASM_WRITTEN (type) = 1;
10839}
10840
10841/* Generate a DIE for a tagged type instantiation. */
71dfc51f 10842
a3f97cbb
JW
10843static void
10844gen_tagged_type_instantiation_die (type, context_die)
10845 register tree type;
10846 register dw_die_ref context_die;
10847{
71dfc51f
RK
10848 if (type == NULL_TREE || type == error_mark_node)
10849 return;
a3f97cbb 10850
38e01259 10851 /* We are going to output a DIE to represent the unqualified version of
a3f97cbb
JW
10852 this type (i.e. without any const or volatile qualifiers) so make sure
10853 that we have the main variant (i.e. the unqualified version) of this
10854 type now. */
bbc6ae08 10855 if (type != type_main_variant (type))
3a88cbd1 10856 abort ();
a3f97cbb 10857
203588e7 10858 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
bbc6ae08 10859 an instance of an unresolved type. */
556273e0 10860
a3f97cbb
JW
10861 switch (TREE_CODE (type))
10862 {
10863 case ERROR_MARK:
10864 break;
10865
10866 case ENUMERAL_TYPE:
10867 gen_inlined_enumeration_type_die (type, context_die);
10868 break;
10869
10870 case RECORD_TYPE:
10871 gen_inlined_structure_type_die (type, context_die);
10872 break;
10873
10874 case UNION_TYPE:
10875 case QUAL_UNION_TYPE:
10876 gen_inlined_union_type_die (type, context_die);
10877 break;
10878
10879 default:
71dfc51f 10880 abort ();
a3f97cbb
JW
10881 }
10882}
10883
10884/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
10885 things which are local to the given block. */
71dfc51f 10886
a3f97cbb 10887static void
d7248bff 10888gen_block_die (stmt, context_die, depth)
a3f97cbb
JW
10889 register tree stmt;
10890 register dw_die_ref context_die;
d7248bff 10891 int depth;
a3f97cbb
JW
10892{
10893 register int must_output_die = 0;
10894 register tree origin;
10895 register tree decl;
10896 register enum tree_code origin_code;
10897
10898 /* Ignore blocks never really used to make RTL. */
1e7f092a
JM
10899 if (stmt == NULL_TREE || !TREE_USED (stmt)
10900 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
71dfc51f 10901 return;
a3f97cbb 10902
a20612aa
RH
10903 /* If the block is one fragment of a non-contiguous block, do not
10904 process the variables, since they will have been done by the
10905 origin block. Do process subblocks. */
10906 if (BLOCK_FRAGMENT_ORIGIN (stmt))
10907 {
10908 tree sub;
10909
10910 for (sub= BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
10911 gen_block_die (sub, context_die, depth + 1);
10912 return;
10913 }
10914
a3f97cbb
JW
10915 /* Determine the "ultimate origin" of this block. This block may be an
10916 inlined instance of an inlined instance of inline function, so we have
10917 to trace all of the way back through the origin chain to find out what
10918 sort of node actually served as the original seed for the creation of
10919 the current block. */
10920 origin = block_ultimate_origin (stmt);
10921 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
10922
10923 /* Determine if we need to output any Dwarf DIEs at all to represent this
10924 block. */
10925 if (origin_code == FUNCTION_DECL)
71dfc51f
RK
10926 /* The outer scopes for inlinings *must* always be represented. We
10927 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
10928 must_output_die = 1;
a3f97cbb
JW
10929 else
10930 {
10931 /* In the case where the current block represents an inlining of the
556273e0 10932 "body block" of an inline function, we must *NOT* output any DIE for
a3f97cbb
JW
10933 this block because we have already output a DIE to represent the
10934 whole inlined function scope and the "body block" of any function
10935 doesn't really represent a different scope according to ANSI C
10936 rules. So we check here to make sure that this block does not
10937 represent a "body block inlining" before trying to set the
10938 `must_output_die' flag. */
d7248bff 10939 if (! is_body_block (origin ? origin : stmt))
a3f97cbb
JW
10940 {
10941 /* Determine if this block directly contains any "significant"
10942 local declarations which we will need to output DIEs for. */
10943 if (debug_info_level > DINFO_LEVEL_TERSE)
71dfc51f
RK
10944 /* We are not in terse mode so *any* local declaration counts
10945 as being a "significant" one. */
10946 must_output_die = (BLOCK_VARS (stmt) != NULL);
a3f97cbb 10947 else
71dfc51f
RK
10948 /* We are in terse mode, so only local (nested) function
10949 definitions count as "significant" local declarations. */
10950 for (decl = BLOCK_VARS (stmt);
10951 decl != NULL; decl = TREE_CHAIN (decl))
10952 if (TREE_CODE (decl) == FUNCTION_DECL
10953 && DECL_INITIAL (decl))
a3f97cbb 10954 {
71dfc51f
RK
10955 must_output_die = 1;
10956 break;
a3f97cbb 10957 }
a3f97cbb
JW
10958 }
10959 }
10960
10961 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
10962 DIE for any block which contains no significant local declarations at
10963 all. Rather, in such cases we just call `decls_for_scope' so that any
10964 needed Dwarf info for any sub-blocks will get properly generated. Note
10965 that in terse mode, our definition of what constitutes a "significant"
10966 local declaration gets restricted to include only inlined function
10967 instances and local (nested) function definitions. */
10968 if (must_output_die)
10969 {
10970 if (origin_code == FUNCTION_DECL)
71dfc51f 10971 gen_inlined_subroutine_die (stmt, context_die, depth);
a3f97cbb 10972 else
71dfc51f 10973 gen_lexical_block_die (stmt, context_die, depth);
a3f97cbb
JW
10974 }
10975 else
d7248bff 10976 decls_for_scope (stmt, context_die, depth);
a3f97cbb
JW
10977}
10978
10979/* Generate all of the decls declared within a given scope and (recursively)
9ec36da5 10980 all of its sub-blocks. */
71dfc51f 10981
a3f97cbb 10982static void
d7248bff 10983decls_for_scope (stmt, context_die, depth)
a3f97cbb
JW
10984 register tree stmt;
10985 register dw_die_ref context_die;
d7248bff 10986 int depth;
a3f97cbb
JW
10987{
10988 register tree decl;
10989 register tree subblocks;
71dfc51f 10990
a3f97cbb 10991 /* Ignore blocks never really used to make RTL. */
71dfc51f
RK
10992 if (stmt == NULL_TREE || ! TREE_USED (stmt))
10993 return;
10994
88dad228
JM
10995 /* Output the DIEs to represent all of the data objects and typedefs
10996 declared directly within this block but not within any nested
10997 sub-blocks. Also, nested function and tag DIEs have been
10998 generated with a parent of NULL; fix that up now. */
a3f97cbb
JW
10999 for (decl = BLOCK_VARS (stmt);
11000 decl != NULL; decl = TREE_CHAIN (decl))
11001 {
a94dbf2c
JM
11002 register dw_die_ref die;
11003
88dad228 11004 if (TREE_CODE (decl) == FUNCTION_DECL)
a94dbf2c 11005 die = lookup_decl_die (decl);
88dad228 11006 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
a94dbf2c
JM
11007 die = lookup_type_die (TREE_TYPE (decl));
11008 else
11009 die = NULL;
11010
71dfc51f 11011 if (die != NULL && die->die_parent == NULL)
ef76d03b 11012 add_child_die (context_die, die);
88dad228
JM
11013 else
11014 gen_decl_die (decl, context_die);
a3f97cbb
JW
11015 }
11016
11017 /* Output the DIEs to represent all sub-blocks (and the items declared
11018 therein) of this block. */
11019 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11020 subblocks != NULL;
11021 subblocks = BLOCK_CHAIN (subblocks))
71dfc51f 11022 gen_block_die (subblocks, context_die, depth + 1);
a3f97cbb
JW
11023}
11024
a94dbf2c 11025/* Is this a typedef we can avoid emitting? */
71dfc51f
RK
11026
11027static inline int
a94dbf2c
JM
11028is_redundant_typedef (decl)
11029 register tree decl;
11030{
11031 if (TYPE_DECL_IS_STUB (decl))
11032 return 1;
71dfc51f 11033
a94dbf2c
JM
11034 if (DECL_ARTIFICIAL (decl)
11035 && DECL_CONTEXT (decl)
11036 && is_tagged_type (DECL_CONTEXT (decl))
11037 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11038 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11039 /* Also ignore the artificial member typedef for the class name. */
11040 return 1;
71dfc51f 11041
a94dbf2c
JM
11042 return 0;
11043}
11044
a3f97cbb 11045/* Generate Dwarf debug information for a decl described by DECL. */
71dfc51f 11046
a3f97cbb
JW
11047static void
11048gen_decl_die (decl, context_die)
11049 register tree decl;
11050 register dw_die_ref context_die;
11051{
11052 register tree origin;
71dfc51f 11053
a3f97cbb 11054 if (TREE_CODE (decl) == ERROR_MARK)
71dfc51f 11055 return;
a3f97cbb 11056
fcd7f76b
JM
11057 /* If this ..._DECL node is marked to be ignored, then ignore it. */
11058 if (DECL_IGNORED_P (decl))
71dfc51f 11059 return;
a3f97cbb 11060
a3f97cbb
JW
11061 switch (TREE_CODE (decl))
11062 {
11063 case CONST_DECL:
556273e0 11064 /* The individual enumerators of an enum type get output when we output
a3f97cbb
JW
11065 the Dwarf representation of the relevant enum type itself. */
11066 break;
11067
11068 case FUNCTION_DECL:
4edb7b60
JM
11069 /* Don't output any DIEs to represent mere function declarations,
11070 unless they are class members or explicit block externs. */
11071 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
777ad4c2 11072 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
71dfc51f 11073 break;
bdb669cb 11074
5daf7c0a
JM
11075 /* If we're emitting a clone, emit info for the abstract instance. */
11076 if (DECL_ORIGIN (decl) != decl)
11077 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
1cfdcc15
JM
11078 /* If we're emitting an out-of-line copy of an inline function,
11079 emit info for the abstract instance and set up to refer to it. */
5daf7c0a
JM
11080 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11081 && ! class_scope_p (context_die)
11082 /* dwarf2out_abstract_function won't emit a die if this is just
11083 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11084 that case, because that works only if we have a die. */
11085 && DECL_INITIAL (decl) != NULL_TREE)
1cfdcc15 11086 {
1edf43d6 11087 dwarf2out_abstract_function (decl);
1cfdcc15
JM
11088 set_decl_origin_self (decl);
11089 }
5daf7c0a
JM
11090 /* Otherwise we're emitting the primary DIE for this decl. */
11091 else if (debug_info_level > DINFO_LEVEL_TERSE)
a94dbf2c
JM
11092 {
11093 /* Before we describe the FUNCTION_DECL itself, make sure that we
11094 have described its return type. */
11095 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11096
2081603c
JM
11097 /* And its virtual context. */
11098 if (DECL_VINDEX (decl) != NULL_TREE)
11099 gen_type_die (DECL_CONTEXT (decl), context_die);
11100
a94dbf2c
JM
11101 /* And its containing type. */
11102 origin = decl_class_context (decl);
71dfc51f 11103 if (origin != NULL_TREE)
10a11b75 11104 gen_type_die_for_member (origin, decl, context_die);
a94dbf2c 11105 }
a3f97cbb
JW
11106
11107 /* Now output a DIE to represent the function itself. */
11108 gen_subprogram_die (decl, context_die);
11109 break;
11110
11111 case TYPE_DECL:
11112 /* If we are in terse mode, don't generate any DIEs to represent any
4927276d 11113 actual typedefs. */
a3f97cbb 11114 if (debug_info_level <= DINFO_LEVEL_TERSE)
4927276d 11115 break;
a3f97cbb 11116
556273e0 11117 /* In the special case of a TYPE_DECL node representing the
5c90448c 11118 declaration of some type tag, if the given TYPE_DECL is marked as
a3f97cbb
JW
11119 having been instantiated from some other (original) TYPE_DECL node
11120 (e.g. one which was generated within the original definition of an
11121 inline function) we have to generate a special (abbreviated)
556273e0 11122 DW_TAG_structure_type, DW_TAG_union_type, or DW_TAG_enumeration_type
a3f97cbb 11123 DIE here. */
2081603c 11124 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
a3f97cbb
JW
11125 {
11126 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11127 break;
11128 }
a3f97cbb 11129
a94dbf2c
JM
11130 if (is_redundant_typedef (decl))
11131 gen_type_die (TREE_TYPE (decl), context_die);
11132 else
71dfc51f
RK
11133 /* Output a DIE to represent the typedef itself. */
11134 gen_typedef_die (decl, context_die);
a3f97cbb
JW
11135 break;
11136
11137 case LABEL_DECL:
11138 if (debug_info_level >= DINFO_LEVEL_NORMAL)
71dfc51f 11139 gen_label_die (decl, context_die);
a3f97cbb
JW
11140 break;
11141
11142 case VAR_DECL:
11143 /* If we are in terse mode, don't generate any DIEs to represent any
11144 variable declarations or definitions. */
11145 if (debug_info_level <= DINFO_LEVEL_TERSE)
71dfc51f 11146 break;
a3f97cbb
JW
11147
11148 /* Output any DIEs that are needed to specify the type of this data
11149 object. */
11150 gen_type_die (TREE_TYPE (decl), context_die);
11151
a94dbf2c
JM
11152 /* And its containing type. */
11153 origin = decl_class_context (decl);
71dfc51f 11154 if (origin != NULL_TREE)
10a11b75 11155 gen_type_die_for_member (origin, decl, context_die);
a94dbf2c 11156
a3f97cbb
JW
11157 /* Now output the DIE to represent the data object itself. This gets
11158 complicated because of the possibility that the VAR_DECL really
11159 represents an inlined instance of a formal parameter for an inline
11160 function. */
11161 origin = decl_ultimate_origin (decl);
71dfc51f
RK
11162 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11163 gen_formal_parameter_die (decl, context_die);
a3f97cbb 11164 else
71dfc51f 11165 gen_variable_die (decl, context_die);
a3f97cbb
JW
11166 break;
11167
11168 case FIELD_DECL:
a94dbf2c
JM
11169 /* Ignore the nameless fields that are used to skip bits, but
11170 handle C++ anonymous unions. */
71dfc51f
RK
11171 if (DECL_NAME (decl) != NULL_TREE
11172 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
a3f97cbb
JW
11173 {
11174 gen_type_die (member_declared_type (decl), context_die);
11175 gen_field_die (decl, context_die);
11176 }
11177 break;
11178
11179 case PARM_DECL:
11180 gen_type_die (TREE_TYPE (decl), context_die);
11181 gen_formal_parameter_die (decl, context_die);
11182 break;
11183
348bb3c7
JM
11184 case NAMESPACE_DECL:
11185 /* Ignore for now. */
11186 break;
11187
a3f97cbb
JW
11188 default:
11189 abort ();
11190 }
a3f97cbb
JW
11191}
11192\f
14a774a9
RK
11193/* Add Ada "use" clause information for SGI Workshop debugger. */
11194
11195void
11196dwarf2out_add_library_unit_info (filename, context_list)
c6991660
KG
11197 const char *filename;
11198 const char *context_list;
14a774a9
RK
11199{
11200 unsigned int file_index;
11201
11202 if (filename != NULL)
11203 {
11204 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die);
556273e0 11205 tree context_list_decl
14a774a9
RK
11206 = build_decl (LABEL_DECL, get_identifier (context_list),
11207 void_type_node);
11208
11209 TREE_PUBLIC (context_list_decl) = TRUE;
11210 add_name_attribute (unit_die, context_list);
981975b6 11211 file_index = lookup_filename (filename);
14a774a9
RK
11212 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11213 add_pubname (context_list_decl, unit_die);
11214 }
11215}
11216
2b85879e
NB
11217/* Debug information for a global DECL. Called from toplev.c after
11218 compilation proper has finished. */
11219static void
11220dwarf2out_global_decl (decl)
11221 tree decl;
11222{
11223 /* Output DWARF2 information for file-scope tentative data object
11224 declarations, file-scope (extern) function declarations (which
11225 had no corresponding body) and file-scope tagged type
11226 declarations and definitions which have not yet been forced out. */
11227
11228 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11229 dwarf2out_decl (decl);
11230}
11231
71dfc51f
RK
11232/* Write the debugging output for DECL. */
11233
a3f97cbb 11234void
88dad228 11235dwarf2out_decl (decl)
a3f97cbb 11236 register tree decl;
a3f97cbb 11237{
88dad228
JM
11238 register dw_die_ref context_die = comp_unit_die;
11239
a3f97cbb 11240 if (TREE_CODE (decl) == ERROR_MARK)
71dfc51f 11241 return;
a3f97cbb 11242
fcd7f76b 11243 /* If this ..._DECL node is marked to be ignored, then ignore it. */
a3f97cbb 11244 if (DECL_IGNORED_P (decl))
fcd7f76b 11245 return;
a3f97cbb
JW
11246
11247 switch (TREE_CODE (decl))
11248 {
11249 case FUNCTION_DECL:
556273e0 11250 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
a3f97cbb
JW
11251 builtin function. Explicit programmer-supplied declarations of
11252 these same functions should NOT be ignored however. */
9765e357 11253 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
b1ccbc24 11254 return;
a3f97cbb
JW
11255
11256 /* What we would really like to do here is to filter out all mere
11257 file-scope declarations of file-scope functions which are never
11258 referenced later within this translation unit (and keep all of ones
556273e0
KH
11259 that *are* referenced later on) but we aren't clairvoyant, so we have
11260 no idea which functions will be referenced in the future (i.e. later
a3f97cbb 11261 on within the current translation unit). So here we just ignore all
556273e0 11262 file-scope function declarations which are not also definitions. If
956d6950 11263 and when the debugger needs to know something about these functions,
556273e0 11264 it will have to hunt around and find the DWARF information associated
bbc6ae08 11265 with the definition of the function. Note that we can't just check
a3f97cbb
JW
11266 `DECL_EXTERNAL' to find out which FUNCTION_DECL nodes represent
11267 definitions and which ones represent mere declarations. We have to
11268 check `DECL_INITIAL' instead. That's because the C front-end
11269 supports some weird semantics for "extern inline" function
11270 definitions. These can get inlined within the current translation
11271 unit (an thus, we need to generate DWARF info for their abstract
11272 instances so that the DWARF info for the concrete inlined instances
556273e0 11273 can have something to refer to) but the compiler never generates any
a3f97cbb
JW
11274 out-of-lines instances of such things (despite the fact that they
11275 *are* definitions). The important point is that the C front-end
11276 marks these "extern inline" functions as DECL_EXTERNAL, but we need
273dbe67 11277 to generate DWARF for them anyway. Note that the C++ front-end also
a3f97cbb 11278 plays some similar games for inline function definitions appearing
556273e0 11279 within include files which also contain
a3f97cbb
JW
11280 `#pragma interface' pragmas. */
11281 if (DECL_INITIAL (decl) == NULL_TREE)
b1ccbc24 11282 return;
88dad228 11283
9c6cd30e
JM
11284 /* If we're a nested function, initially use a parent of NULL; if we're
11285 a plain function, this will be fixed up in decls_for_scope. If
11286 we're a method, it will be ignored, since we already have a DIE. */
88dad228 11287 if (decl_function_context (decl))
9c6cd30e 11288 context_die = NULL;
88dad228 11289
a3f97cbb
JW
11290 break;
11291
11292 case VAR_DECL:
556273e0 11293 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
a3f97cbb
JW
11294 declaration and if the declaration was never even referenced from
11295 within this entire compilation unit. We suppress these DIEs in
11296 order to save space in the .debug section (by eliminating entries
11297 which are probably useless). Note that we must not suppress
11298 block-local extern declarations (whether used or not) because that
11299 would screw-up the debugger's name lookup mechanism and cause it to
11300 miss things which really ought to be in scope at a given point. */
11301 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
71dfc51f 11302 return;
a3f97cbb
JW
11303
11304 /* If we are in terse mode, don't generate any DIEs to represent any
11305 variable declarations or definitions. */
11306 if (debug_info_level <= DINFO_LEVEL_TERSE)
71dfc51f 11307 return;
a3f97cbb
JW
11308 break;
11309
11310 case TYPE_DECL:
57fb7689
JM
11311 /* Don't emit stubs for types unless they are needed by other DIEs. */
11312 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
11313 return;
11314
a3f97cbb 11315 /* Don't bother trying to generate any DIEs to represent any of the
a9d38797
JM
11316 normal built-in types for the language we are compiling. */
11317 if (DECL_SOURCE_LINE (decl) == 0)
a94dbf2c
JM
11318 {
11319 /* OK, we need to generate one for `bool' so GDB knows what type
11320 comparisons have. */
11321 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
11322 == DW_LANG_C_plus_plus)
11323 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE)
11324 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
71dfc51f 11325
a94dbf2c
JM
11326 return;
11327 }
a3f97cbb 11328
88dad228 11329 /* If we are in terse mode, don't generate any DIEs for types. */
a3f97cbb 11330 if (debug_info_level <= DINFO_LEVEL_TERSE)
4927276d 11331 return;
88dad228
JM
11332
11333 /* If we're a function-scope tag, initially use a parent of NULL;
11334 this will be fixed up in decls_for_scope. */
11335 if (decl_function_context (decl))
3f76745e 11336 context_die = NULL;
88dad228 11337
a3f97cbb
JW
11338 break;
11339
11340 default:
11341 return;
11342 }
11343
88dad228 11344 gen_decl_die (decl, context_die);
a3f97cbb
JW
11345}
11346
11347/* Output a marker (i.e. a label) for the beginning of the generated code for
11348 a lexical block. */
71dfc51f 11349
a5a42b92 11350static void
e2a12aca 11351dwarf2out_begin_block (line, blocknum)
a5a42b92
NB
11352 unsigned int line ATTRIBUTE_UNUSED;
11353 unsigned int blocknum;
a3f97cbb 11354{
a3f97cbb 11355 function_section (current_function_decl);
8215347e 11356 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
a3f97cbb
JW
11357}
11358
11359/* Output a marker (i.e. a label) for the end of the generated code for a
11360 lexical block. */
71dfc51f 11361
a5a42b92 11362static void
e2a12aca 11363dwarf2out_end_block (line, blocknum)
a5a42b92
NB
11364 unsigned int line ATTRIBUTE_UNUSED;
11365 unsigned int blocknum;
a3f97cbb 11366{
a3f97cbb 11367 function_section (current_function_decl);
8215347e 11368 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
a3f97cbb
JW
11369}
11370
64b59a80
JM
11371/* Returns nonzero if it is appropriate not to emit any debugging
11372 information for BLOCK, because it doesn't contain any instructions.
fcd7f76b 11373
64b59a80
JM
11374 Don't allow this for blocks with nested functions or local classes
11375 as we would end up with orphans, and in the presence of scheduling
11376 we may end up calling them anyway. */
11377
e1772ac0 11378static bool
fcd7f76b
JM
11379dwarf2out_ignore_block (block)
11380 tree block;
11381{
11382 tree decl;
11383 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
64b59a80
JM
11384 if (TREE_CODE (decl) == FUNCTION_DECL
11385 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
11386 return 0;
11387 return 1;
fcd7f76b
JM
11388}
11389
a3f97cbb 11390/* Lookup a filename (in the list of filenames that we know about here in
9a666dda 11391 dwarf2out.c) and return its "index". The index of each (known) filename is
a3f97cbb
JW
11392 just a unique number which is associated with only that one filename.
11393 We need such numbers for the sake of generating labels
11394 (in the .debug_sfnames section) and references to those
11395 files numbers (in the .debug_srcinfo and.debug_macinfo sections).
11396 If the filename given as an argument is not found in our current list,
11397 add it to the list and assign it the next available unique index number.
11398 In order to speed up searches, we remember the index of the filename
11399 was looked up last. This handles the majority of all searches. */
71dfc51f 11400
a3f97cbb 11401static unsigned
981975b6 11402lookup_filename (file_name)
d560ee52 11403 const char *file_name;
a3f97cbb 11404{
a3f97cbb
JW
11405 register unsigned i;
11406
981975b6
RH
11407 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11408 if (strcmp (file_name, "<internal>") == 0
11409 || strcmp (file_name, "<built-in>") == 0)
11410 return 0;
11411
2e18bbae
RH
11412 /* Check to see if the file name that was searched on the previous
11413 call matches this file name. If so, return the index. */
981975b6
RH
11414 if (file_table.last_lookup_index != 0)
11415 if (strcmp (file_name, file_table.table[file_table.last_lookup_index]) == 0)
11416 return file_table.last_lookup_index;
a3f97cbb
JW
11417
11418 /* Didn't match the previous lookup, search the table */
981975b6
RH
11419 for (i = 1; i < file_table.in_use; ++i)
11420 if (strcmp (file_name, file_table.table[i]) == 0)
71dfc51f 11421 {
981975b6 11422 file_table.last_lookup_index = i;
71dfc51f
RK
11423 return i;
11424 }
a3f97cbb 11425
556273e0 11426 /* Prepare to add a new table entry by making sure there is enough space in
a3f97cbb 11427 the table to do so. If not, expand the current table. */
981975b6 11428 if (i == file_table.allocated)
a3f97cbb 11429 {
981975b6
RH
11430 file_table.allocated = i + FILE_TABLE_INCREMENT;
11431 file_table.table = (char **)
11432 xrealloc (file_table.table, file_table.allocated * sizeof (char *));
a3f97cbb
JW
11433 }
11434
71dfc51f 11435 /* Add the new entry to the end of the filename table. */
981975b6
RH
11436 file_table.table[i] = xstrdup (file_name);
11437 file_table.in_use = i + 1;
11438 file_table.last_lookup_index = i;
2e18bbae 11439
acc187f5
RH
11440 if (DWARF2_ASM_LINE_DEBUG_INFO)
11441 fprintf (asm_out_file, "\t.file %u \"%s\"\n", i, file_name);
11442
2e18bbae
RH
11443 return i;
11444}
11445
11446static void
981975b6 11447init_file_table ()
2e18bbae
RH
11448{
11449 /* Allocate the initial hunk of the file_table. */
981975b6
RH
11450 file_table.table = (char **) xcalloc (FILE_TABLE_INCREMENT, sizeof (char *));
11451 file_table.allocated = FILE_TABLE_INCREMENT;
71dfc51f 11452
2e18bbae 11453 /* Skip the first entry - file numbers begin at 1. */
981975b6
RH
11454 file_table.in_use = 1;
11455 file_table.last_lookup_index = 0;
a3f97cbb
JW
11456}
11457
11458/* Output a label to mark the beginning of a source code line entry
11459 and record information relating to this source line, in
11460 'line_info_table' for later output of the .debug_line section. */
71dfc51f 11461
e2a12aca 11462static void
653e276c
NB
11463dwarf2out_source_line (line, filename)
11464 unsigned int line;
d560ee52 11465 register const char *filename;
a3f97cbb 11466{
a3f97cbb
JW
11467 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11468 {
11469 function_section (current_function_decl);
a3f97cbb 11470
8aaf55ac
JM
11471 /* If requested, emit something human-readable. */
11472 if (flag_debug_asm)
11473 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
11474 filename, line);
11475
b2244e22
JW
11476 if (DWARF2_ASM_LINE_DEBUG_INFO)
11477 {
981975b6 11478 unsigned file_num = lookup_filename (filename);
b2244e22 11479
981975b6 11480 /* Emit the .loc directive understood by GNU as. */
2e18bbae 11481 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
b2244e22
JW
11482
11483 /* Indicate that line number info exists. */
11484 ++line_info_table_in_use;
11485
11486 /* Indicate that multiple line number tables exist. */
11487 if (DECL_SECTION_NAME (current_function_decl))
11488 ++separate_line_info_table_in_use;
11489 }
11490 else if (DECL_SECTION_NAME (current_function_decl))
a3f97cbb 11491 {
e90b62db 11492 register dw_separate_line_info_ref line_info;
5c90448c
JM
11493 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
11494 separate_line_info_table_in_use);
e90b62db
JM
11495
11496 /* expand the line info table if necessary */
11497 if (separate_line_info_table_in_use
11498 == separate_line_info_table_allocated)
11499 {
11500 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11501 separate_line_info_table
71dfc51f
RK
11502 = (dw_separate_line_info_ref)
11503 xrealloc (separate_line_info_table,
11504 separate_line_info_table_allocated
11505 * sizeof (dw_separate_line_info_entry));
e90b62db 11506 }
71dfc51f
RK
11507
11508 /* Add the new entry at the end of the line_info_table. */
e90b62db
JM
11509 line_info
11510 = &separate_line_info_table[separate_line_info_table_in_use++];
981975b6 11511 line_info->dw_file_num = lookup_filename (filename);
e90b62db
JM
11512 line_info->dw_line_num = line;
11513 line_info->function = current_funcdef_number;
11514 }
11515 else
11516 {
11517 register dw_line_info_ref line_info;
71dfc51f 11518
5c90448c
JM
11519 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
11520 line_info_table_in_use);
e90b62db 11521
71dfc51f 11522 /* Expand the line info table if necessary. */
e90b62db
JM
11523 if (line_info_table_in_use == line_info_table_allocated)
11524 {
11525 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11526 line_info_table
71dfc51f
RK
11527 = (dw_line_info_ref)
11528 xrealloc (line_info_table,
11529 (line_info_table_allocated
11530 * sizeof (dw_line_info_entry)));
e90b62db 11531 }
71dfc51f
RK
11532
11533 /* Add the new entry at the end of the line_info_table. */
e90b62db 11534 line_info = &line_info_table[line_info_table_in_use++];
981975b6 11535 line_info->dw_file_num = lookup_filename (filename);
e90b62db 11536 line_info->dw_line_num = line;
a3f97cbb 11537 }
a3f97cbb
JW
11538 }
11539}
11540
30f7a378 11541/* Record the beginning of a new source file. */
71dfc51f 11542
7f905405 11543static void
84a5b4f8 11544dwarf2out_start_source_file (lineno, filename)
7f905405
NB
11545 register unsigned int lineno;
11546 register const char *filename;
a3f97cbb 11547{
881c6935
JM
11548 if (flag_eliminate_dwarf2_dups)
11549 {
11550 /* Record the beginning of the file for break_out_includes. */
11551 dw_die_ref bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die);
11552 add_AT_string (bincl_die, DW_AT_name, filename);
11553 }
84a5b4f8
DB
11554 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11555 {
715bdd29 11556 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8 11557 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
7c262518
RH
11558 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
11559 lineno);
11560 dw2_asm_output_data_uleb128 (lookup_filename (filename),
11561 "Filename we just started");
84a5b4f8 11562 }
a3f97cbb
JW
11563}
11564
cc260610 11565/* Record the end of a source file. */
71dfc51f 11566
7f905405
NB
11567static void
11568dwarf2out_end_source_file (lineno)
11569 unsigned int lineno ATTRIBUTE_UNUSED;
a3f97cbb 11570{
881c6935
JM
11571 if (flag_eliminate_dwarf2_dups)
11572 {
11573 /* Record the end of the file for break_out_includes. */
11574 new_die (DW_TAG_GNU_EINCL, comp_unit_die);
0b34cf1e 11575 }
84a5b4f8
DB
11576 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11577 {
715bdd29 11578 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
11579 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11580 }
a3f97cbb
JW
11581}
11582
cc260610 11583/* Called from debug_define in toplev.c. The `buffer' parameter contains
a3f97cbb
JW
11584 the tail part of the directive line, i.e. the part which is past the
11585 initial whitespace, #, whitespace, directive-name, whitespace part. */
71dfc51f 11586
7f905405 11587static void
9a666dda 11588dwarf2out_define (lineno, buffer)
2618f955 11589 register unsigned lineno ATTRIBUTE_UNUSED;
d560ee52 11590 register const char *buffer ATTRIBUTE_UNUSED;
a3f97cbb
JW
11591{
11592 static int initialized = 0;
11593 if (!initialized)
11594 {
84a5b4f8 11595 dwarf2out_start_source_file (0, primary_filename);
a3f97cbb
JW
11596 initialized = 1;
11597 }
84a5b4f8
DB
11598 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11599 {
715bdd29 11600 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
11601 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
11602 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11603 dw2_asm_output_nstring (buffer, -1, "The macro");
11604 }
a3f97cbb
JW
11605}
11606
cc260610 11607/* Called from debug_undef in toplev.c. The `buffer' parameter contains
a3f97cbb
JW
11608 the tail part of the directive line, i.e. the part which is past the
11609 initial whitespace, #, whitespace, directive-name, whitespace part. */
71dfc51f 11610
7f905405 11611static void
9a666dda 11612dwarf2out_undef (lineno, buffer)
487a6e06 11613 register unsigned lineno ATTRIBUTE_UNUSED;
d560ee52 11614 register const char *buffer ATTRIBUTE_UNUSED;
a3f97cbb 11615{
84a5b4f8
DB
11616 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11617 {
715bdd29 11618 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
11619 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
11620 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11621 dw2_asm_output_nstring (buffer, -1, "The macro");
11622 }
a3f97cbb
JW
11623}
11624
11625/* Set up for Dwarf output at the start of compilation. */
71dfc51f 11626
a51d908e 11627static void
e2a12aca 11628dwarf2out_init (main_input_filename)
d3e3972c 11629 register const char *main_input_filename;
a3f97cbb 11630{
acc187f5
RH
11631 init_file_table ();
11632
a3f97cbb
JW
11633 /* Remember the name of the primary input file. */
11634 primary_filename = main_input_filename;
11635
acc187f5
RH
11636 /* Add it to the file table first, under the assumption that we'll
11637 be emitting line number data for it first, which avoids having
11638 to add an initial DW_LNS_set_file. */
11639 lookup_filename (main_input_filename);
a3f97cbb 11640
a3f97cbb
JW
11641 /* Allocate the initial hunk of the decl_die_table. */
11642 decl_die_table
3de90026 11643 = (dw_die_ref *) xcalloc (DECL_DIE_TABLE_INCREMENT, sizeof (dw_die_ref));
a3f97cbb
JW
11644 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
11645 decl_die_table_in_use = 0;
11646
11647 /* Allocate the initial hunk of the decl_scope_table. */
11648 decl_scope_table
777ad4c2 11649 = (tree *) xcalloc (DECL_SCOPE_TABLE_INCREMENT, sizeof (tree));
a3f97cbb
JW
11650 decl_scope_table_allocated = DECL_SCOPE_TABLE_INCREMENT;
11651 decl_scope_depth = 0;
11652
11653 /* Allocate the initial hunk of the abbrev_die_table. */
11654 abbrev_die_table
3de90026
RH
11655 = (dw_die_ref *) xcalloc (ABBREV_DIE_TABLE_INCREMENT,
11656 sizeof (dw_die_ref));
a3f97cbb 11657 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
71dfc51f 11658 /* Zero-th entry is allocated, but unused */
a3f97cbb
JW
11659 abbrev_die_table_in_use = 1;
11660
11661 /* Allocate the initial hunk of the line_info_table. */
11662 line_info_table
3de90026
RH
11663 = (dw_line_info_ref) xcalloc (LINE_INFO_TABLE_INCREMENT,
11664 sizeof (dw_line_info_entry));
a3f97cbb 11665 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
71dfc51f 11666 /* Zero-th entry is allocated, but unused */
a3f97cbb
JW
11667 line_info_table_in_use = 1;
11668
556273e0 11669 /* Generate the initial DIE for the .debug section. Note that the (string)
a3f97cbb 11670 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
556273e0 11671 will (typically) be a relative pathname and that this pathname should be
a3f97cbb
JW
11672 taken as being relative to the directory from which the compiler was
11673 invoked when the given (base) source file was compiled. */
a96c67ec 11674 comp_unit_die = gen_compile_unit_die (main_input_filename);
a3f97cbb 11675
1f8f4a0b
MM
11676 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
11677 ggc_add_rtx_varray_root (&used_rtx_varray, 1);
1865dbb5 11678
5c90448c 11679 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
9d2f2c45
RH
11680 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
11681 DEBUG_ABBREV_SECTION_LABEL, 0);
b366352b
MM
11682 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
11683 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
11684 else
f99ffb60 11685 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
556273e0 11686 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
8b790721 11687 DEBUG_INFO_SECTION_LABEL, 0);
556273e0 11688 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
8b790721 11689 DEBUG_LINE_SECTION_LABEL, 0);
715bdd29 11690 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
8b790721 11691 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
715bdd29 11692 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
8b790721 11693 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
715bdd29 11694 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
8b790721 11695 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
84a5b4f8
DB
11696 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11697 {
715bdd29 11698 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
11699 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
11700 DEBUG_MACINFO_SECTION_LABEL, 0);
11701 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
11702 }
7c262518
RH
11703
11704 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
11705 {
11706 text_section ();
11707 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
11708 }
a3f97cbb
JW
11709}
11710
11711/* Output stuff that dwarf requires at the end of every file,
11712 and generate the DWARF-2 debugging info. */
71dfc51f 11713
a51d908e 11714static void
e2a12aca 11715dwarf2out_finish (input_filename)
a51d908e 11716 register const char *input_filename ATTRIBUTE_UNUSED;
a3f97cbb 11717{
ef76d03b 11718 limbo_die_node *node, *next_node;
ae0ed63a 11719 dw_die_ref die = 0;
ef76d03b
JW
11720
11721 /* Traverse the limbo die list, and add parent/child links. The only
11722 dies without parents that should be here are concrete instances of
11723 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
11724 For concrete instances, we can get the parent die from the abstract
11725 instance. */
11726 for (node = limbo_die_list; node; node = next_node)
11727 {
11728 next_node = node->next;
11729 die = node->die;
11730
11731 if (die->die_parent == NULL)
11732 {
a96c67ec
JM
11733 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
11734 if (origin)
11735 add_child_die (origin->die_parent, die);
ef76d03b 11736 else if (die == comp_unit_die)
a96c67ec 11737 ;
ef76d03b
JW
11738 else
11739 abort ();
11740 }
11741 free (node);
11742 }
a96c67ec 11743 limbo_die_list = NULL;
ef76d03b 11744
8a8c3656
JM
11745 /* Walk through the list of incomplete types again, trying once more to
11746 emit full debugging info for them. */
11747 retry_incomplete_types ();
11748
881c6935
JM
11749 /* We need to reverse all the dies before break_out_includes, or
11750 we'll see the end of an include file before the beginning. */
11751 reverse_all_dies (comp_unit_die);
11752
11753 /* Generate separate CUs for each of the include files we've seen.
11754 They will go into limbo_die_list. */
5f632b5e
JM
11755 if (flag_eliminate_dwarf2_dups)
11756 break_out_includes (comp_unit_die);
881c6935
JM
11757
11758 /* Traverse the DIE's and add add sibling attributes to those DIE's
11759 that have children. */
a3f97cbb 11760 add_sibling_attributes (comp_unit_die);
881c6935
JM
11761 for (node = limbo_die_list; node; node = node->next)
11762 add_sibling_attributes (node->die);
a3f97cbb
JW
11763
11764 /* Output a terminator label for the .text section. */
7c262518 11765 text_section ();
5c90448c 11766 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);
a3f97cbb 11767
db3c0315
MM
11768 /* Output the source line correspondence table. We must do this
11769 even if there is no line information. Otherwise, on an empty
11770 translation unit, we will generate a present, but empty,
11771 .debug_info section. IRIX 6.5 `nm' will then complain when
11772 examining the file. */
11773 if (! DWARF2_ASM_LINE_DEBUG_INFO)
e90b62db 11774 {
715bdd29 11775 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
db3c0315
MM
11776 output_line_info ();
11777 }
71dfc51f 11778
b38a75e5
RH
11779 /* Output location list section if necessary. */
11780 if (have_location_lists)
11781 {
11782 /* Output the location lists info. */
11783 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
11784 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
11785 DEBUG_LOC_SECTION_LABEL, 0);
11786 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
11787 output_location_lists (die);
11788 have_location_lists = 0;
11789 }
11790
db3c0315
MM
11791 /* We can only use the low/high_pc attributes if all of the code was
11792 in .text. */
11793 if (separate_line_info_table_in_use == 0)
11794 {
11795 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
11796 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
e90b62db 11797 }
a20612aa
RH
11798 /* And if it wasn't, we need to give .debug_loc and .debug_ranges
11799 an appropriate "base address". Use zero so that these addresses
11800 become absolute. */
11801 else if (have_location_lists || ranges_table_in_use)
11802 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
e90b62db 11803
fe7cd37f
RH
11804 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11805 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
11806 debug_line_section_label);
db3c0315 11807
84a5b4f8
DB
11808 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11809 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
a96c67ec 11810
881c6935
JM
11811 /* Output all of the compilation units. We put the main one last so that
11812 the offsets are available to output_pubnames. */
11813 for (node = limbo_die_list; node; node = node->next)
11814 output_comp_unit (node->die);
11815 output_comp_unit (comp_unit_die);
11816
a3f97cbb 11817 /* Output the abbreviation table. */
715bdd29 11818 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
a3f97cbb
JW
11819 output_abbrev_section ();
11820
d291dd49
JM
11821 if (pubname_table_in_use)
11822 {
11823 /* Output public names table. */
715bdd29 11824 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
d291dd49
JM
11825 output_pubnames ();
11826 }
11827
e689ae67
JM
11828 /* We only put functions in the arange table, so don't write it out if
11829 we don't have any. */
a3f97cbb
JW
11830 if (fde_table_in_use)
11831 {
a3f97cbb 11832 /* Output the address range information. */
715bdd29 11833 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
a3f97cbb
JW
11834 output_aranges ();
11835 }
a20612aa 11836
a20612aa
RH
11837 /* Output ranges section if necessary. */
11838 if (ranges_table_in_use)
11839 {
715bdd29 11840 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
a20612aa
RH
11841 output_ranges ();
11842 }
11843
30f7a378 11844 /* Have to end the primary source file. */
cc260610
DB
11845 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11846 {
715bdd29 11847 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
cc260610
DB
11848 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11849 }
a3f97cbb 11850}
9a666dda 11851#endif /* DWARF2_DEBUGGING_INFO */