]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
arm: Factorize several occurrences of the same code into reg_needs_saving_p
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
8d9254fc 2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6 36#include "coretypes.h"
4d0cdd0c 37#include "memmodel.h"
c7131fb2 38#include "backend.h"
957060b5 39#include "target.h"
23b2ce53 40#include "rtl.h"
957060b5 41#include "tree.h"
c7131fb2 42#include "df.h"
957060b5
AM
43#include "tm_p.h"
44#include "stringpool.h"
957060b5
AM
45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
c7131fb2 49#include "diagnostic-core.h"
40e23961 50#include "alias.h"
40e23961 51#include "fold-const.h"
d8a2d370 52#include "varasm.h"
60393bbc 53#include "cfgrtl.h"
60393bbc 54#include "tree-eh.h"
36566b39 55#include "explow.h"
23b2ce53 56#include "expr.h"
9b2b7279 57#include "builtins.h"
9021b8ec 58#include "rtl-iter.h"
1f9ceff1 59#include "stor-layout.h"
ecf835e9 60#include "opts.h"
5fa396ad 61#include "predict.h"
3877c560 62#include "rtx-vector-builder.h"
fa70c221
RB
63#include "gimple.h"
64#include "gimple-ssa.h"
65#include "gimplify.h"
ca695ac9 66
5fb0e246
RS
67struct target_rtl default_target_rtl;
68#if SWITCHABLE_TARGET
69struct target_rtl *this_target_rtl = &default_target_rtl;
70#endif
71
72#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
1d445e9e
ILT
74/* Commonly used modes. */
75
501623d4
RS
76scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 79
bd60bab2
JH
80/* Datastructures maintained for currently processed function in RTL form. */
81
3e029763 82struct rtl_data x_rtl;
bd60bab2
JH
83
84/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 85 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
88
89rtx * regno_reg_rtx;
23b2ce53
RS
90
91/* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
93
044b4de3 94static GTY(()) int label_num = 1;
23b2ce53 95
23b2ce53
RS
96/* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 100
e7c82a99 101rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 102
68d75312
JC
103rtx const_true_rtx;
104
23b2ce53
RS
105REAL_VALUE_TYPE dconst0;
106REAL_VALUE_TYPE dconst1;
107REAL_VALUE_TYPE dconst2;
108REAL_VALUE_TYPE dconstm1;
03f2ea93 109REAL_VALUE_TYPE dconsthalf;
23b2ce53 110
325217ed
CF
111/* Record fixed-point constant 0 and 1. */
112FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114
23b2ce53
RS
115/* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
118 integers. */
119
5da077de 120rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 121
ca4adc91
RS
122/* Standard pieces of rtx, to be substituted directly into things. */
123rtx pc_rtx;
124rtx ret_rtx;
125rtx simple_return_rtx;
126rtx cc0_rtx;
127
1476d1bd
MM
128/* Marker used for denoting an INSN, which should never be accessed (i.e.,
129 this pointer should normally never be dereferenced), but is required to be
130 distinct from NULL_RTX. Currently used by peephole2 pass. */
131rtx_insn *invalid_insn_rtx;
132
c13e8210
MM
133/* A hash table storing CONST_INTs whose absolute value is greater
134 than MAX_SAVED_CONST_INT. */
135
6c907cff 136struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
137{
138 typedef HOST_WIDE_INT compare_type;
139
140 static hashval_t hash (rtx i);
141 static bool equal (rtx i, HOST_WIDE_INT h);
142};
c13e8210 143
aebf76a2
TS
144static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
145
6c907cff 146struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
147{
148 static hashval_t hash (rtx x);
149 static bool equal (rtx x, rtx y);
150};
151
152static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
807e902e 153
0c12fc9b
RS
154struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
155{
156 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
157
158 static hashval_t hash (rtx x);
159 static bool equal (rtx x, const compare_type &y);
160};
161
162static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
163
a560d4d4 164/* A hash table storing register attribute structures. */
6c907cff 165struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
aebf76a2
TS
166{
167 static hashval_t hash (reg_attrs *x);
168 static bool equal (reg_attrs *a, reg_attrs *b);
169};
170
171static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
a560d4d4 172
5692c7bc 173/* A hash table storing all CONST_DOUBLEs. */
6c907cff 174struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
175{
176 static hashval_t hash (rtx x);
177 static bool equal (rtx x, rtx y);
178};
179
180static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
5692c7bc 181
091a3ac7 182/* A hash table storing all CONST_FIXEDs. */
6c907cff 183struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
184{
185 static hashval_t hash (rtx x);
186 static bool equal (rtx x, rtx y);
187};
188
189static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
091a3ac7 190
3e029763 191#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 192#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 193#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 194
5eb2a9f2 195static void set_used_decls (tree);
502b8322 196static void mark_label_nuses (rtx);
807e902e 197#if TARGET_SUPPORTS_WIDE_INT
807e902e
KZ
198static rtx lookup_const_wide_int (rtx);
199#endif
502b8322 200static rtx lookup_const_double (rtx);
091a3ac7 201static rtx lookup_const_fixed (rtx);
ef4bddc2 202static rtx gen_const_vector (machine_mode, int);
32b32b16 203static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 204
5fa396ad
JH
205/* Probability of the conditional branch currently proceeded by try_split. */
206profile_probability split_branch_probability;
ca695ac9 207\f
c13e8210
MM
208/* Returns a hash code for X (which is a really a CONST_INT). */
209
aebf76a2
TS
210hashval_t
211const_int_hasher::hash (rtx x)
c13e8210 212{
aebf76a2 213 return (hashval_t) INTVAL (x);
c13e8210
MM
214}
215
cc2902df 216/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
aebf76a2
TS
220bool
221const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
c13e8210 222{
aebf76a2 223 return (INTVAL (x) == y);
5692c7bc
ZW
224}
225
807e902e
KZ
226#if TARGET_SUPPORTS_WIDE_INT
227/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
228
aebf76a2
TS
229hashval_t
230const_wide_int_hasher::hash (rtx x)
807e902e
KZ
231{
232 int i;
d7ca26e4 233 unsigned HOST_WIDE_INT hash = 0;
aebf76a2 234 const_rtx xr = x;
807e902e
KZ
235
236 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
237 hash += CONST_WIDE_INT_ELT (xr, i);
238
239 return (hashval_t) hash;
240}
241
242/* Returns nonzero if the value represented by X (which is really a
243 CONST_WIDE_INT) is the same as that given by Y (which is really a
244 CONST_WIDE_INT). */
245
aebf76a2
TS
246bool
247const_wide_int_hasher::equal (rtx x, rtx y)
807e902e
KZ
248{
249 int i;
aebf76a2
TS
250 const_rtx xr = x;
251 const_rtx yr = y;
807e902e 252 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
aebf76a2 253 return false;
807e902e
KZ
254
255 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
256 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
aebf76a2 257 return false;
807e902e 258
aebf76a2 259 return true;
807e902e
KZ
260}
261#endif
262
0c12fc9b
RS
263/* Returns a hash code for CONST_POLY_INT X. */
264
265hashval_t
266const_poly_int_hasher::hash (rtx x)
267{
268 inchash::hash h;
269 h.add_int (GET_MODE (x));
270 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
271 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
272 return h.end ();
273}
274
275/* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
276
277bool
278const_poly_int_hasher::equal (rtx x, const compare_type &y)
279{
280 if (GET_MODE (x) != y.first)
281 return false;
282 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
283 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
284 return false;
285 return true;
286}
287
5692c7bc 288/* Returns a hash code for X (which is really a CONST_DOUBLE). */
aebf76a2
TS
289hashval_t
290const_double_hasher::hash (rtx x)
5692c7bc 291{
aebf76a2 292 const_rtx const value = x;
46b33600 293 hashval_t h;
5692c7bc 294
807e902e 295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
46b33600
RH
296 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
297 else
fe352c29 298 {
15c812e3 299 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h ^= GET_MODE (value);
302 }
5692c7bc
ZW
303 return h;
304}
305
cc2902df 306/* Returns nonzero if the value represented by X (really a ...)
5692c7bc 307 is the same as that represented by Y (really a ...) */
aebf76a2
TS
308bool
309const_double_hasher::equal (rtx x, rtx y)
5692c7bc 310{
aebf76a2 311 const_rtx const a = x, b = y;
5692c7bc
ZW
312
313 if (GET_MODE (a) != GET_MODE (b))
314 return 0;
807e902e 315 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
8580f7a0
RH
316 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
317 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
318 else
319 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
320 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
321}
322
091a3ac7
CF
323/* Returns a hash code for X (which is really a CONST_FIXED). */
324
aebf76a2
TS
325hashval_t
326const_fixed_hasher::hash (rtx x)
091a3ac7 327{
aebf76a2 328 const_rtx const value = x;
091a3ac7
CF
329 hashval_t h;
330
331 h = fixed_hash (CONST_FIXED_VALUE (value));
332 /* MODE is used in the comparison, so it should be in the hash. */
333 h ^= GET_MODE (value);
334 return h;
335}
336
aebf76a2
TS
337/* Returns nonzero if the value represented by X is the same as that
338 represented by Y. */
091a3ac7 339
aebf76a2
TS
340bool
341const_fixed_hasher::equal (rtx x, rtx y)
091a3ac7 342{
aebf76a2 343 const_rtx const a = x, b = y;
091a3ac7
CF
344
345 if (GET_MODE (a) != GET_MODE (b))
346 return 0;
347 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
348}
349
f12144dd 350/* Return true if the given memory attributes are equal. */
c13e8210 351
96b3c03f 352bool
99b1c316 353mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
c13e8210 354{
96b3c03f
RB
355 if (p == q)
356 return true;
357 if (!p || !q)
358 return false;
754c3d5d
RS
359 return (p->alias == q->alias
360 && p->offset_known_p == q->offset_known_p
d05d7551 361 && (!p->offset_known_p || known_eq (p->offset, q->offset))
754c3d5d 362 && p->size_known_p == q->size_known_p
d05d7551 363 && (!p->size_known_p || known_eq (p->size, q->size))
754c3d5d 364 && p->align == q->align
09e881c9 365 && p->addrspace == q->addrspace
78b76d08
SB
366 && (p->expr == q->expr
367 || (p->expr != NULL_TREE && q->expr != NULL_TREE
368 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
369}
370
f12144dd 371/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 372
f12144dd
RS
373static void
374set_mem_attrs (rtx mem, mem_attrs *attrs)
375{
f12144dd
RS
376 /* If everything is the default, we can just clear the attributes. */
377 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
378 {
379 MEM_ATTRS (mem) = 0;
380 return;
381 }
173b24b9 382
84053e02
RB
383 if (!MEM_ATTRS (mem)
384 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
173b24b9 385 {
766090c2 386 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
84053e02 387 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
173b24b9 388 }
c13e8210
MM
389}
390
a560d4d4
JH
391/* Returns a hash code for X (which is a really a reg_attrs *). */
392
aebf76a2
TS
393hashval_t
394reg_attr_hasher::hash (reg_attrs *x)
a560d4d4 395{
aebf76a2 396 const reg_attrs *const p = x;
a560d4d4 397
84bc717b
RS
398 inchash::hash h;
399 h.add_ptr (p->decl);
400 h.add_poly_hwi (p->offset);
401 return h.end ();
a560d4d4
JH
402}
403
aebf76a2
TS
404/* Returns nonzero if the value represented by X is the same as that given by
405 Y. */
a560d4d4 406
aebf76a2
TS
407bool
408reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
a560d4d4 409{
aebf76a2
TS
410 const reg_attrs *const p = x;
411 const reg_attrs *const q = y;
a560d4d4 412
84bc717b 413 return (p->decl == q->decl && known_eq (p->offset, q->offset));
a560d4d4
JH
414}
415/* Allocate a new reg_attrs structure and insert it into the hash table if
416 one identical to it is not already in the table. We are doing this for
417 MEM of mode MODE. */
418
419static reg_attrs *
84bc717b 420get_reg_attrs (tree decl, poly_int64 offset)
a560d4d4
JH
421{
422 reg_attrs attrs;
a560d4d4
JH
423
424 /* If everything is the default, we can just return zero. */
84bc717b 425 if (decl == 0 && known_eq (offset, 0))
a560d4d4
JH
426 return 0;
427
428 attrs.decl = decl;
429 attrs.offset = offset;
430
aebf76a2 431 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
a560d4d4
JH
432 if (*slot == 0)
433 {
766090c2 434 *slot = ggc_alloc<reg_attrs> ();
a560d4d4
JH
435 memcpy (*slot, &attrs, sizeof (reg_attrs));
436 }
437
aebf76a2 438 return *slot;
a560d4d4
JH
439}
440
6fb5fa3c
DB
441
442#if !HAVE_blockage
adddc347
HPN
443/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
444 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
445
446rtx
447gen_blockage (void)
448{
449 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
450 MEM_VOLATILE_P (x) = true;
451 return x;
452}
453#endif
454
455
8deccbb7
RS
456/* Set the mode and register number of X to MODE and REGNO. */
457
458void
459set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
460{
9188b286 461 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
ad474626 462 ? hard_regno_nregs (regno, mode)
9188b286 463 : 1);
8deccbb7 464 PUT_MODE_RAW (x, mode);
9188b286 465 set_regno_raw (x, regno, nregs);
8deccbb7
RS
466}
467
20fa157e
IL
468/* Initialize a fresh REG rtx with mode MODE and register REGNO. */
469
470rtx
471init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
472{
473 set_mode_and_regno (x, mode, regno);
474 REG_ATTRS (x) = NULL;
475 ORIGINAL_REGNO (x) = regno;
476 return x;
477}
478
08394eef
BS
479/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
480 don't attempt to share with the various global pieces of rtl (such as
481 frame_pointer_rtx). */
482
483rtx
8deccbb7 484gen_raw_REG (machine_mode mode, unsigned int regno)
08394eef 485{
84c2ad23 486 rtx x = rtx_alloc (REG MEM_STAT_INFO);
20fa157e 487 init_raw_REG (x, mode, regno);
08394eef
BS
488 return x;
489}
490
c5c76735
JL
491/* There are some RTL codes that require special attention; the generation
492 functions do the raw handling. If you add to this list, modify
493 special_rtx in gengenrtl.c as well. */
494
38e60c55 495rtx_expr_list *
ef4bddc2 496gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
38e60c55
DM
497{
498 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
499 expr_list));
500}
501
a756c6be 502rtx_insn_list *
ef4bddc2 503gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
a756c6be
DM
504{
505 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
506 insn_list));
507}
508
d6e1e8b8 509rtx_insn *
ef4bddc2 510gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
d6e1e8b8
DM
511 basic_block bb, rtx pattern, int location, int code,
512 rtx reg_notes)
513{
514 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
515 prev_insn, next_insn,
516 bb, pattern, location, code,
517 reg_notes));
518}
519
3b80f6ca 520rtx
ef4bddc2 521gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca
RH
522{
523 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 524 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
525
526#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
527 if (const_true_rtx && arg == STORE_FLAG_VALUE)
528 return const_true_rtx;
529#endif
530
c13e8210 531 /* Look up the CONST_INT in the hash table. */
aebf76a2
TS
532 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
533 INSERT);
29105cea 534 if (*slot == 0)
1f8f4a0b 535 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210 536
aebf76a2 537 return *slot;
3b80f6ca
RH
538}
539
2496c7bd 540rtx
0c12fc9b 541gen_int_mode (poly_int64 c, machine_mode mode)
2496c7bd 542{
0c12fc9b
RS
543 c = trunc_int_for_mode (c, mode);
544 if (c.is_constant ())
545 return GEN_INT (c.coeffs[0]);
546 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
547 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
2496c7bd
LB
548}
549
5692c7bc
ZW
550/* CONST_DOUBLEs might be created from pairs of integers, or from
551 REAL_VALUE_TYPEs. Also, their length is known only at run time,
552 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
553
554/* Determine whether REAL, a CONST_DOUBLE, already exists in the
555 hash table. If so, return its counterpart; otherwise add it
556 to the hash table and return it. */
557static rtx
502b8322 558lookup_const_double (rtx real)
5692c7bc 559{
aebf76a2 560 rtx *slot = const_double_htab->find_slot (real, INSERT);
5692c7bc
ZW
561 if (*slot == 0)
562 *slot = real;
563
aebf76a2 564 return *slot;
5692c7bc 565}
29105cea 566
5692c7bc
ZW
567/* Return a CONST_DOUBLE rtx for a floating-point value specified by
568 VALUE in mode MODE. */
0133b7d9 569rtx
ef4bddc2 570const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
0133b7d9 571{
5692c7bc
ZW
572 rtx real = rtx_alloc (CONST_DOUBLE);
573 PUT_MODE (real, mode);
574
9e254451 575 real->u.rv = value;
5692c7bc
ZW
576
577 return lookup_const_double (real);
578}
579
091a3ac7
CF
580/* Determine whether FIXED, a CONST_FIXED, already exists in the
581 hash table. If so, return its counterpart; otherwise add it
582 to the hash table and return it. */
583
584static rtx
585lookup_const_fixed (rtx fixed)
586{
aebf76a2 587 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
091a3ac7
CF
588 if (*slot == 0)
589 *slot = fixed;
590
aebf76a2 591 return *slot;
091a3ac7
CF
592}
593
594/* Return a CONST_FIXED rtx for a fixed-point value specified by
595 VALUE in mode MODE. */
596
597rtx
ef4bddc2 598const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
091a3ac7
CF
599{
600 rtx fixed = rtx_alloc (CONST_FIXED);
601 PUT_MODE (fixed, mode);
602
603 fixed->u.fv = value;
604
605 return lookup_const_fixed (fixed);
606}
607
807e902e 608#if TARGET_SUPPORTS_WIDE_INT == 0
3e93ff81
AS
609/* Constructs double_int from rtx CST. */
610
611double_int
612rtx_to_double_int (const_rtx cst)
613{
614 double_int r;
615
616 if (CONST_INT_P (cst))
27bcd47c 617 r = double_int::from_shwi (INTVAL (cst));
48175537 618 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
619 {
620 r.low = CONST_DOUBLE_LOW (cst);
621 r.high = CONST_DOUBLE_HIGH (cst);
622 }
623 else
624 gcc_unreachable ();
625
626 return r;
627}
807e902e 628#endif
3e93ff81 629
807e902e
KZ
630#if TARGET_SUPPORTS_WIDE_INT
631/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
632 If so, return its counterpart; otherwise add it to the hash table and
633 return it. */
3e93ff81 634
807e902e
KZ
635static rtx
636lookup_const_wide_int (rtx wint)
637{
aebf76a2 638 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
807e902e
KZ
639 if (*slot == 0)
640 *slot = wint;
641
aebf76a2 642 return *slot;
807e902e
KZ
643}
644#endif
645
646/* Return an rtx constant for V, given that the constant has mode MODE.
647 The returned rtx will be a CONST_INT if V fits, otherwise it will be
648 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
649 (if TARGET_SUPPORTS_WIDE_INT). */
54fb1ae0 650
0c12fc9b
RS
651static rtx
652immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
54fb1ae0 653{
807e902e 654 unsigned int len = v.get_len ();
db61b7f9
RS
655 /* Not scalar_int_mode because we also allow pointer bound modes. */
656 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
807e902e
KZ
657
658 /* Allow truncation but not extension since we do not know if the
659 number is signed or unsigned. */
660 gcc_assert (prec <= v.get_precision ());
661
662 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
663 return gen_int_mode (v.elt (0), mode);
664
665#if TARGET_SUPPORTS_WIDE_INT
666 {
667 unsigned int i;
668 rtx value;
669 unsigned int blocks_needed
670 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
671
672 if (len > blocks_needed)
673 len = blocks_needed;
674
675 value = const_wide_int_alloc (len);
676
677 /* It is so tempting to just put the mode in here. Must control
678 myself ... */
679 PUT_MODE (value, VOIDmode);
680 CWI_PUT_NUM_ELEM (value, len);
681
682 for (i = 0; i < len; i++)
683 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
684
685 return lookup_const_wide_int (value);
686 }
687#else
688 return immed_double_const (v.elt (0), v.elt (1), mode);
689#endif
54fb1ae0
AS
690}
691
807e902e 692#if TARGET_SUPPORTS_WIDE_INT == 0
5692c7bc
ZW
693/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
694 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 695 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
696 implied upper bits are copies of the high bit of i1. The value
697 itself is neither signed nor unsigned. Do not use this routine for
698 non-integer modes; convert to REAL_VALUE_TYPE and use
555affd7 699 const_double_from_real_value. */
5692c7bc
ZW
700
701rtx
ef4bddc2 702immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
5692c7bc
ZW
703{
704 rtx value;
705 unsigned int i;
706
65acccdd 707 /* There are the following cases (note that there are no modes with
49ab6098 708 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
709
710 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
711 gen_int_mode.
929e10f4
MS
712 2) If the value of the integer fits into HOST_WIDE_INT anyway
713 (i.e., i1 consists only from copies of the sign bit, and sign
714 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 715 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
db61b7f9
RS
716 scalar_mode smode;
717 if (is_a <scalar_mode> (mode, &smode)
718 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
719 return gen_int_mode (i0, mode);
5692c7bc
ZW
720
721 /* If this integer fits in one word, return a CONST_INT. */
722 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
723 return GEN_INT (i0);
724
725 /* We use VOIDmode for integers. */
726 value = rtx_alloc (CONST_DOUBLE);
727 PUT_MODE (value, VOIDmode);
728
729 CONST_DOUBLE_LOW (value) = i0;
730 CONST_DOUBLE_HIGH (value) = i1;
731
732 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
733 XWINT (value, i) = 0;
734
735 return lookup_const_double (value);
0133b7d9 736}
807e902e 737#endif
0133b7d9 738
0c12fc9b
RS
739/* Return an rtx representation of C in mode MODE. */
740
741rtx
742immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
743{
744 if (c.is_constant ())
745 return immed_wide_int_const_1 (c.coeffs[0], mode);
746
747 /* Not scalar_int_mode because we also allow pointer bound modes. */
748 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
749
750 /* Allow truncation but not extension since we do not know if the
751 number is signed or unsigned. */
752 gcc_assert (prec <= c.coeffs[0].get_precision ());
753 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
754
755 /* See whether we already have an rtx for this constant. */
756 inchash::hash h;
757 h.add_int (mode);
758 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
759 h.add_wide_int (newc.coeffs[i]);
760 const_poly_int_hasher::compare_type typed_value (mode, newc);
761 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
762 h.end (), INSERT);
763 rtx x = *slot;
764 if (x)
765 return x;
766
767 /* Create a new rtx. There's a choice to be made here between installing
768 the actual mode of the rtx or leaving it as VOIDmode (for consistency
769 with CONST_INT). In practice the handling of the codes is different
770 enough that we get no benefit from using VOIDmode, and various places
771 assume that VOIDmode implies CONST_INT. Using the real mode seems like
772 the right long-term direction anyway. */
773 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
774 size_t extra_size = twi::extra_size (prec);
775 x = rtx_alloc_v (CONST_POLY_INT,
776 sizeof (struct const_poly_int_def) + extra_size);
777 PUT_MODE (x, mode);
778 CONST_POLY_INT_COEFFS (x).set_precision (prec);
779 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
780 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
781
782 *slot = x;
783 return x;
784}
785
3b80f6ca 786rtx
ef4bddc2 787gen_rtx_REG (machine_mode mode, unsigned int regno)
3b80f6ca
RH
788{
789 /* In case the MD file explicitly references the frame pointer, have
790 all such references point to the same frame pointer. This is
791 used during frame pointer elimination to distinguish the explicit
792 references to these registers from pseudos that happened to be
793 assigned to them.
794
795 If we have eliminated the frame pointer or arg pointer, we will
796 be using it as a normal register, for example as a spill
797 register. In such cases, we might be accessing it in a mode that
798 is not Pmode and therefore cannot use the pre-allocated rtx.
799
800 Also don't do this when we are making new REGs in reload, since
801 we don't want to get confused with the real pointers. */
802
55a2c322 803 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 804 {
e10c79fe
LB
805 if (regno == FRAME_POINTER_REGNUM
806 && (!reload_completed || frame_pointer_needed))
3b80f6ca 807 return frame_pointer_rtx;
c3e08036
TS
808
809 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
810 && regno == HARD_FRAME_POINTER_REGNUM
e10c79fe 811 && (!reload_completed || frame_pointer_needed))
3b80f6ca 812 return hard_frame_pointer_rtx;
3f393fc6
TS
813#if !HARD_FRAME_POINTER_IS_ARG_POINTER
814 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
815 && regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
816 return arg_pointer_rtx;
817#endif
818#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 819 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
820 return return_address_pointer_rtx;
821#endif
fc555370 822 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 823 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 824 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 825 return pic_offset_table_rtx;
bcb33994 826 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
827 return stack_pointer_rtx;
828 }
829
006a94b0 830#if 0
6cde4876 831 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
832 an existing entry in that table to avoid useless generation of RTL.
833
834 This code is disabled for now until we can fix the various backends
835 which depend on having non-shared hard registers in some cases. Long
836 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
837 on the amount of useless RTL that gets generated.
838
839 We'll also need to fix some code that runs after reload that wants to
840 set ORIGINAL_REGNO. */
841
6cde4876
JL
842 if (cfun
843 && cfun->emit
844 && regno_reg_rtx
845 && regno < FIRST_PSEUDO_REGISTER
846 && reg_raw_mode[regno] == mode)
847 return regno_reg_rtx[regno];
006a94b0 848#endif
6cde4876 849
08394eef 850 return gen_raw_REG (mode, regno);
3b80f6ca
RH
851}
852
41472af8 853rtx
ef4bddc2 854gen_rtx_MEM (machine_mode mode, rtx addr)
41472af8
MM
855{
856 rtx rt = gen_rtx_raw_MEM (mode, addr);
857
858 /* This field is not cleared by the mere allocation of the rtx, so
859 we clear it here. */
173b24b9 860 MEM_ATTRS (rt) = 0;
41472af8
MM
861
862 return rt;
863}
ddef6bc7 864
542a8afa
RH
865/* Generate a memory referring to non-trapping constant memory. */
866
867rtx
ef4bddc2 868gen_const_mem (machine_mode mode, rtx addr)
542a8afa
RH
869{
870 rtx mem = gen_rtx_MEM (mode, addr);
871 MEM_READONLY_P (mem) = 1;
872 MEM_NOTRAP_P (mem) = 1;
873 return mem;
874}
875
bf877a76
R
876/* Generate a MEM referring to fixed portions of the frame, e.g., register
877 save areas. */
878
879rtx
ef4bddc2 880gen_frame_mem (machine_mode mode, rtx addr)
bf877a76
R
881{
882 rtx mem = gen_rtx_MEM (mode, addr);
883 MEM_NOTRAP_P (mem) = 1;
884 set_mem_alias_set (mem, get_frame_alias_set ());
885 return mem;
886}
887
888/* Generate a MEM referring to a temporary use of the stack, not part
889 of the fixed stack frame. For example, something which is pushed
890 by a target splitter. */
891rtx
ef4bddc2 892gen_tmp_stack_mem (machine_mode mode, rtx addr)
bf877a76
R
893{
894 rtx mem = gen_rtx_MEM (mode, addr);
895 MEM_NOTRAP_P (mem) = 1;
e3b5732b 896 if (!cfun->calls_alloca)
bf877a76
R
897 set_mem_alias_set (mem, get_frame_alias_set ());
898 return mem;
899}
900
beb72684
RH
901/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
902 this construct would be valid, and false otherwise. */
903
904bool
ef4bddc2 905validate_subreg (machine_mode omode, machine_mode imode,
91914e56 906 const_rtx reg, poly_uint64 offset)
ddef6bc7 907{
fad2288b
RS
908 poly_uint64 isize = GET_MODE_SIZE (imode);
909 poly_uint64 osize = GET_MODE_SIZE (omode);
910
911 /* The sizes must be ordered, so that we know whether the subreg
912 is partial, paradoxical or complete. */
913 if (!ordered_p (isize, osize))
914 return false;
beb72684
RH
915
916 /* All subregs must be aligned. */
91914e56 917 if (!multiple_p (offset, osize))
beb72684
RH
918 return false;
919
920 /* The subreg offset cannot be outside the inner object. */
91914e56 921 if (maybe_ge (offset, isize))
beb72684
RH
922 return false;
923
fad2288b 924 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
1eae67f8 925
beb72684
RH
926 /* ??? This should not be here. Temporarily continue to allow word_mode
927 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
928 Generally, backends are doing something sketchy but it'll take time to
929 fix them all. */
930 if (omode == word_mode)
931 ;
932 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
933 is the culprit here, and not the backends. */
fad2288b 934 else if (known_ge (osize, regsize) && known_ge (isize, osize))
beb72684
RH
935 ;
936 /* Allow component subregs of complex and vector. Though given the below
937 extraction rules, it's not always clear what that means. */
938 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
939 && GET_MODE_INNER (imode) == omode)
940 ;
941 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
942 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
943 represent this. It's questionable if this ought to be represented at
944 all -- why can't this all be hidden in post-reload splitters that make
945 arbitrarily mode changes to the registers themselves. */
946 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
947 ;
948 /* Subregs involving floating point modes are not allowed to
949 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
950 (subreg:SI (reg:DF) 0) isn't. */
951 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
952 {
fad2288b 953 if (! (known_eq (isize, osize)
55a2c322
VM
954 /* LRA can use subreg to store a floating point value in
955 an integer mode. Although the floating point and the
956 integer modes need the same number of hard registers,
957 the size of floating point mode can be less than the
958 integer mode. LRA also uses subregs for a register
959 should be used in different mode in on insn. */
960 || lra_in_progress))
beb72684
RH
961 return false;
962 }
ddef6bc7 963
beb72684 964 /* Paradoxical subregs must have offset zero. */
fad2288b 965 if (maybe_gt (osize, isize))
91914e56 966 return known_eq (offset, 0U);
beb72684
RH
967
968 /* This is a normal subreg. Verify that the offset is representable. */
969
970 /* For hard registers, we already have most of these rules collected in
971 subreg_offset_representable_p. */
972 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
973 {
974 unsigned int regno = REGNO (reg);
975
beb72684
RH
976 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
977 && GET_MODE_INNER (imode) == omode)
978 ;
0d803030 979 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
beb72684 980 return false;
beb72684
RH
981
982 return subreg_offset_representable_p (regno, imode, offset, omode);
983 }
984
fad2288b
RS
985 /* The outer size must be ordered wrt the register size, otherwise
986 we wouldn't know at compile time how many registers the outer
987 mode occupies. */
988 if (!ordered_p (osize, regsize))
989 return false;
990
beb72684 991 /* For pseudo registers, we want most of the same checks. Namely:
1eae67f8
RS
992
993 Assume that the pseudo register will be allocated to hard registers
994 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
995 the remainder must correspond to the lowpart of the containing hard
996 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
997 otherwise it is at the lowest offset.
998
999 Given that we've already checked the mode and offset alignment,
1000 we only have to check subblock subregs here. */
fad2288b 1001 if (maybe_lt (osize, regsize)
55a2c322 1002 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684 1003 {
fad2288b
RS
1004 /* It is invalid for the target to pick a register size for a mode
1005 that isn't ordered wrt to the size of that mode. */
1006 poly_uint64 block_size = ordered_min (isize, regsize);
91914e56
RS
1007 unsigned int start_reg;
1008 poly_uint64 offset_within_reg;
1009 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1010 || (BYTES_BIG_ENDIAN
1011 ? maybe_ne (offset_within_reg, block_size - osize)
1012 : maybe_ne (offset_within_reg, 0U)))
beb72684
RH
1013 return false;
1014 }
1015 return true;
1016}
1017
1018rtx
91914e56 1019gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
beb72684
RH
1020{
1021 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 1022 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
1023}
1024
173b24b9
RK
1025/* Generate a SUBREG representing the least-significant part of REG if MODE
1026 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1027
ddef6bc7 1028rtx
ef4bddc2 1029gen_lowpart_SUBREG (machine_mode mode, rtx reg)
ddef6bc7 1030{
ef4bddc2 1031 machine_mode inmode;
ddef6bc7
JJ
1032
1033 inmode = GET_MODE (reg);
1034 if (inmode == VOIDmode)
1035 inmode = mode;
e0e08ac2
JH
1036 return gen_rtx_SUBREG (mode, reg,
1037 subreg_lowpart_offset (mode, inmode));
ddef6bc7 1038}
fcc74520
RS
1039
1040rtx
ef4bddc2 1041gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
fcc74520
RS
1042 enum var_init_status status)
1043{
1044 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1045 PAT_VAR_LOCATION_STATUS (x) = status;
1046 return x;
1047}
c5c76735 1048\f
23b2ce53 1049
80379f51
PB
1050/* Create an rtvec and stores within it the RTXen passed in the arguments. */
1051
23b2ce53 1052rtvec
e34d07f2 1053gen_rtvec (int n, ...)
23b2ce53 1054{
80379f51
PB
1055 int i;
1056 rtvec rt_val;
e34d07f2 1057 va_list p;
23b2ce53 1058
e34d07f2 1059 va_start (p, n);
23b2ce53 1060
80379f51 1061 /* Don't allocate an empty rtvec... */
23b2ce53 1062 if (n == 0)
0edf1bb2
JL
1063 {
1064 va_end (p);
1065 return NULL_RTVEC;
1066 }
23b2ce53 1067
80379f51 1068 rt_val = rtvec_alloc (n);
4f90e4a0 1069
23b2ce53 1070 for (i = 0; i < n; i++)
80379f51 1071 rt_val->elem[i] = va_arg (p, rtx);
6268b922 1072
e34d07f2 1073 va_end (p);
80379f51 1074 return rt_val;
23b2ce53
RS
1075}
1076
1077rtvec
502b8322 1078gen_rtvec_v (int n, rtx *argp)
23b2ce53 1079{
b3694847
SS
1080 int i;
1081 rtvec rt_val;
23b2ce53 1082
80379f51 1083 /* Don't allocate an empty rtvec... */
23b2ce53 1084 if (n == 0)
80379f51 1085 return NULL_RTVEC;
23b2ce53 1086
80379f51 1087 rt_val = rtvec_alloc (n);
23b2ce53
RS
1088
1089 for (i = 0; i < n; i++)
8f985ec4 1090 rt_val->elem[i] = *argp++;
23b2ce53
RS
1091
1092 return rt_val;
1093}
e6eda746
DM
1094
1095rtvec
1096gen_rtvec_v (int n, rtx_insn **argp)
1097{
1098 int i;
1099 rtvec rt_val;
1100
1101 /* Don't allocate an empty rtvec... */
1102 if (n == 0)
1103 return NULL_RTVEC;
1104
1105 rt_val = rtvec_alloc (n);
1106
1107 for (i = 0; i < n; i++)
1108 rt_val->elem[i] = *argp++;
1109
1110 return rt_val;
1111}
1112
23b2ce53 1113\f
38ae7651
RS
1114/* Return the number of bytes between the start of an OUTER_MODE
1115 in-memory value and the start of an INNER_MODE in-memory value,
1116 given that the former is a lowpart of the latter. It may be a
1117 paradoxical lowpart, in which case the offset will be negative
1118 on big-endian targets. */
1119
91914e56 1120poly_int64
ef4bddc2
RS
1121byte_lowpart_offset (machine_mode outer_mode,
1122 machine_mode inner_mode)
38ae7651 1123{
03a95621 1124 if (paradoxical_subreg_p (outer_mode, inner_mode))
38ae7651 1125 return -subreg_lowpart_offset (inner_mode, outer_mode);
03a95621
RS
1126 else
1127 return subreg_lowpart_offset (outer_mode, inner_mode);
38ae7651 1128}
3d09ba95
RS
1129
1130/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1131 from address X. For paradoxical big-endian subregs this is a
1132 negative value, otherwise it's the same as OFFSET. */
1133
91914e56 1134poly_int64
3d09ba95 1135subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
91914e56 1136 poly_uint64 offset)
3d09ba95
RS
1137{
1138 if (paradoxical_subreg_p (outer_mode, inner_mode))
1139 {
91914e56 1140 gcc_assert (known_eq (offset, 0U));
3d09ba95
RS
1141 return -subreg_lowpart_offset (inner_mode, outer_mode);
1142 }
1143 return offset;
1144}
1145
1146/* As above, but return the offset that existing subreg X would have
1147 if SUBREG_REG (X) were stored in memory. The only significant thing
1148 about the current SUBREG_REG is its mode. */
1149
91914e56 1150poly_int64
3d09ba95
RS
1151subreg_memory_offset (const_rtx x)
1152{
1153 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1154 SUBREG_BYTE (x));
1155}
38ae7651 1156\f
23b2ce53
RS
1157/* Generate a REG rtx for a new pseudo register of mode MODE.
1158 This pseudo is assigned the next sequential register number. */
1159
1160rtx
ef4bddc2 1161gen_reg_rtx (machine_mode mode)
23b2ce53 1162{
b3694847 1163 rtx val;
2e3f842f 1164 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 1165
f8335a4f 1166 gcc_assert (can_create_pseudo_p ());
23b2ce53 1167
2e3f842f
L
1168 /* If a virtual register with bigger mode alignment is generated,
1169 increase stack alignment estimation because it might be spilled
1170 to stack later. */
b8698a0f 1171 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
1172 && crtl->stack_alignment_estimated < align
1173 && !crtl->stack_realign_processed)
ae58e548
JJ
1174 {
1175 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1176 if (crtl->stack_alignment_estimated < min_align)
1177 crtl->stack_alignment_estimated = min_align;
1178 }
2e3f842f 1179
1b3d8f8a
GK
1180 if (generating_concat_p
1181 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1182 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
1183 {
1184 /* For complex modes, don't make a single pseudo.
1185 Instead, make a CONCAT of two pseudos.
1186 This allows noncontiguous allocation of the real and imaginary parts,
1187 which makes much better code. Besides, allocating DCmode
1188 pseudos overstrains reload on some machines like the 386. */
1189 rtx realpart, imagpart;
ef4bddc2 1190 machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
1191
1192 realpart = gen_reg_rtx (partmode);
1193 imagpart = gen_reg_rtx (partmode);
3b80f6ca 1194 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
1195 }
1196
004a7e45
UB
1197 /* Do not call gen_reg_rtx with uninitialized crtl. */
1198 gcc_assert (crtl->emit.regno_pointer_align_length);
1199
f44986d7
DM
1200 crtl->emit.ensure_regno_capacity ();
1201 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
23b2ce53 1202
f44986d7
DM
1203 val = gen_raw_REG (mode, reg_rtx_no);
1204 regno_reg_rtx[reg_rtx_no++] = val;
1205 return val;
1206}
0d4903b8 1207
f44986d7
DM
1208/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1209 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
49ad7cfa 1210
f44986d7
DM
1211void
1212emit_status::ensure_regno_capacity ()
1213{
1214 int old_size = regno_pointer_align_length;
23b2ce53 1215
f44986d7
DM
1216 if (reg_rtx_no < old_size)
1217 return;
23b2ce53 1218
f44986d7
DM
1219 int new_size = old_size * 2;
1220 while (reg_rtx_no >= new_size)
1221 new_size *= 2;
1222
1223 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1224 memset (tmp + old_size, 0, new_size - old_size);
1225 regno_pointer_align = (unsigned char *) tmp;
1226
1227 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1228 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1229 regno_reg_rtx = new1;
1230
1231 crtl->emit.regno_pointer_align_length = new_size;
23b2ce53
RS
1232}
1233
a698cc03
JL
1234/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1235
1236bool
1237reg_is_parm_p (rtx reg)
1238{
1239 tree decl;
1240
1241 gcc_assert (REG_P (reg));
1242 decl = REG_EXPR (reg);
1243 return (decl && TREE_CODE (decl) == PARM_DECL);
1244}
1245
38ae7651
RS
1246/* Update NEW with the same attributes as REG, but with OFFSET added
1247 to the REG_OFFSET. */
a560d4d4 1248
e53a16e7 1249static void
84bc717b 1250update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
a560d4d4 1251{
60564289 1252 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
84bc717b 1253 REG_OFFSET (reg) + offset);
e53a16e7
ILT
1254}
1255
38ae7651
RS
1256/* Generate a register with same attributes as REG, but with OFFSET
1257 added to the REG_OFFSET. */
e53a16e7
ILT
1258
1259rtx
ef4bddc2 1260gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
84bc717b 1261 poly_int64 offset)
e53a16e7 1262{
60564289 1263 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 1264
60564289
KG
1265 update_reg_offset (new_rtx, reg, offset);
1266 return new_rtx;
e53a16e7
ILT
1267}
1268
1269/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 1270 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
1271
1272rtx
ef4bddc2 1273gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
e53a16e7 1274{
60564289 1275 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 1276
60564289
KG
1277 update_reg_offset (new_rtx, reg, offset);
1278 return new_rtx;
a560d4d4
JH
1279}
1280
38ae7651
RS
1281/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1282 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
1283
1284void
ef4bddc2 1285adjust_reg_mode (rtx reg, machine_mode mode)
a560d4d4 1286{
38ae7651
RS
1287 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1288 PUT_MODE (reg, mode);
1289}
1290
1291/* Copy REG's attributes from X, if X has any attributes. If REG and X
1292 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1293
1294void
1295set_reg_attrs_from_value (rtx reg, rtx x)
1296{
84bc717b 1297 poly_int64 offset;
de6f3f7a
L
1298 bool can_be_reg_pointer = true;
1299
1300 /* Don't call mark_reg_pointer for incompatible pointer sign
1301 extension. */
1302 while (GET_CODE (x) == SIGN_EXTEND
1303 || GET_CODE (x) == ZERO_EXTEND
1304 || GET_CODE (x) == TRUNCATE
1305 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1306 {
2a870875
RS
1307#if defined(POINTERS_EXTEND_UNSIGNED)
1308 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
8d8e740c
BE
1309 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1310 || (paradoxical_subreg_p (x)
1311 && ! (SUBREG_PROMOTED_VAR_P (x)
1312 && SUBREG_CHECK_PROMOTED_SIGN (x,
1313 POINTERS_EXTEND_UNSIGNED))))
2a870875 1314 && !targetm.have_ptr_extend ())
de6f3f7a
L
1315 can_be_reg_pointer = false;
1316#endif
1317 x = XEXP (x, 0);
1318 }
38ae7651 1319
923ba36f
JJ
1320 /* Hard registers can be reused for multiple purposes within the same
1321 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1322 on them is wrong. */
1323 if (HARD_REGISTER_P (reg))
1324 return;
1325
38ae7651 1326 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
1327 if (MEM_P (x))
1328 {
527210c4
RS
1329 if (MEM_OFFSET_KNOWN_P (x))
1330 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1331 MEM_OFFSET (x) + offset);
de6f3f7a 1332 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1333 mark_reg_pointer (reg, 0);
46b71b03
PB
1334 }
1335 else if (REG_P (x))
1336 {
1337 if (REG_ATTRS (x))
1338 update_reg_offset (reg, x, offset);
de6f3f7a 1339 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1340 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1341 }
1342}
1343
1344/* Generate a REG rtx for a new pseudo register, copying the mode
1345 and attributes from X. */
1346
1347rtx
1348gen_reg_rtx_and_attrs (rtx x)
1349{
1350 rtx reg = gen_reg_rtx (GET_MODE (x));
1351 set_reg_attrs_from_value (reg, x);
1352 return reg;
a560d4d4
JH
1353}
1354
9d18e06b
JZ
1355/* Set the register attributes for registers contained in PARM_RTX.
1356 Use needed values from memory attributes of MEM. */
1357
1358void
502b8322 1359set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1360{
f8cfc6aa 1361 if (REG_P (parm_rtx))
38ae7651 1362 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1363 else if (GET_CODE (parm_rtx) == PARALLEL)
1364 {
1365 /* Check for a NULL entry in the first slot, used to indicate that the
1366 parameter goes both on the stack and in registers. */
1367 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1368 for (; i < XVECLEN (parm_rtx, 0); i++)
1369 {
1370 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1371 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1372 REG_ATTRS (XEXP (x, 0))
1373 = get_reg_attrs (MEM_EXPR (mem),
1374 INTVAL (XEXP (x, 1)));
1375 }
1376 }
1377}
1378
38ae7651
RS
1379/* Set the REG_ATTRS for registers in value X, given that X represents
1380 decl T. */
a560d4d4 1381
4e3825db 1382void
38ae7651
RS
1383set_reg_attrs_for_decl_rtl (tree t, rtx x)
1384{
1f9ceff1
AO
1385 if (!t)
1386 return;
1387 tree tdecl = t;
38ae7651 1388 if (GET_CODE (x) == SUBREG)
fbe6ec81 1389 {
38ae7651
RS
1390 gcc_assert (subreg_lowpart_p (x));
1391 x = SUBREG_REG (x);
fbe6ec81 1392 }
f8cfc6aa 1393 if (REG_P (x))
38ae7651
RS
1394 REG_ATTRS (x)
1395 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1f9ceff1
AO
1396 DECL_P (tdecl)
1397 ? DECL_MODE (tdecl)
1398 : TYPE_MODE (TREE_TYPE (tdecl))));
a560d4d4
JH
1399 if (GET_CODE (x) == CONCAT)
1400 {
1401 if (REG_P (XEXP (x, 0)))
1402 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1403 if (REG_P (XEXP (x, 1)))
1404 REG_ATTRS (XEXP (x, 1))
1405 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1406 }
1407 if (GET_CODE (x) == PARALLEL)
1408 {
d4afac5b
JZ
1409 int i, start;
1410
1411 /* Check for a NULL entry, used to indicate that the parameter goes
1412 both on the stack and in registers. */
1413 if (XEXP (XVECEXP (x, 0, 0), 0))
1414 start = 0;
1415 else
1416 start = 1;
1417
1418 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1419 {
1420 rtx y = XVECEXP (x, 0, i);
1421 if (REG_P (XEXP (y, 0)))
1422 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1423 }
1424 }
1425}
1426
38ae7651
RS
1427/* Assign the RTX X to declaration T. */
1428
1429void
1430set_decl_rtl (tree t, rtx x)
1431{
1432 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1433 if (x)
1434 set_reg_attrs_for_decl_rtl (t, x);
1435}
1436
5141868d
RS
1437/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1438 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1439
1440void
5141868d 1441set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1442{
1443 DECL_INCOMING_RTL (t) = x;
5141868d 1444 if (x && !by_reference_p)
38ae7651
RS
1445 set_reg_attrs_for_decl_rtl (t, x);
1446}
1447
754fdcca
RK
1448/* Identify REG (which may be a CONCAT) as a user register. */
1449
1450void
502b8322 1451mark_user_reg (rtx reg)
754fdcca
RK
1452{
1453 if (GET_CODE (reg) == CONCAT)
1454 {
1455 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1456 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1457 }
754fdcca 1458 else
5b0264cb
NS
1459 {
1460 gcc_assert (REG_P (reg));
1461 REG_USERVAR_P (reg) = 1;
1462 }
754fdcca
RK
1463}
1464
86fe05e0
RK
1465/* Identify REG as a probable pointer register and show its alignment
1466 as ALIGN, if nonzero. */
23b2ce53
RS
1467
1468void
502b8322 1469mark_reg_pointer (rtx reg, int align)
23b2ce53 1470{
3502dc9c 1471 if (! REG_POINTER (reg))
00995e78 1472 {
3502dc9c 1473 REG_POINTER (reg) = 1;
86fe05e0 1474
00995e78
RE
1475 if (align)
1476 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1477 }
1478 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1479 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1480 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1481}
1482
1483/* Return 1 plus largest pseudo reg number used in the current function. */
1484
1485int
502b8322 1486max_reg_num (void)
23b2ce53
RS
1487{
1488 return reg_rtx_no;
1489}
1490
1491/* Return 1 + the largest label number used so far in the current function. */
1492
1493int
502b8322 1494max_label_num (void)
23b2ce53 1495{
23b2ce53
RS
1496 return label_num;
1497}
1498
1499/* Return first label number used in this function (if any were used). */
1500
1501int
502b8322 1502get_first_label_num (void)
23b2ce53
RS
1503{
1504 return first_label_num;
1505}
6de9cd9a
DN
1506
1507/* If the rtx for label was created during the expansion of a nested
1508 function, then first_label_num won't include this label number.
fa10beec 1509 Fix this now so that array indices work later. */
6de9cd9a
DN
1510
1511void
9aa50db7 1512maybe_set_first_label_num (rtx_code_label *x)
6de9cd9a
DN
1513{
1514 if (CODE_LABEL_NUMBER (x) < first_label_num)
1515 first_label_num = CODE_LABEL_NUMBER (x);
1516}
51b86113
DM
1517
1518/* For use by the RTL function loader, when mingling with normal
1519 functions.
1520 Ensure that label_num is greater than the label num of X, to avoid
1521 duplicate labels in the generated assembler. */
1522
1523void
1524maybe_set_max_label_num (rtx_code_label *x)
1525{
1526 if (CODE_LABEL_NUMBER (x) >= label_num)
1527 label_num = CODE_LABEL_NUMBER (x) + 1;
1528}
1529
23b2ce53
RS
1530\f
1531/* Return a value representing some low-order bits of X, where the number
1532 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1533 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1534 representation is returned.
1535
1536 This function handles the cases in common between gen_lowpart, below,
1537 and two variants in cse.c and combine.c. These are the cases that can
1538 be safely handled at all points in the compilation.
1539
1540 If this is not a case we can handle, return 0. */
1541
1542rtx
ef4bddc2 1543gen_lowpart_common (machine_mode mode, rtx x)
23b2ce53 1544{
fad2288b 1545 poly_uint64 msize = GET_MODE_SIZE (mode);
ef4bddc2 1546 machine_mode innermode;
550d1387
GK
1547
1548 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1549 so we have to make one up. Yuk. */
1550 innermode = GET_MODE (x);
481683e1 1551 if (CONST_INT_P (x)
fad2288b
RS
1552 && known_le (msize * BITS_PER_UNIT,
1553 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
f4b31647 1554 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
550d1387 1555 else if (innermode == VOIDmode)
f4b31647 1556 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
b8698a0f 1557
5b0264cb 1558 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1559
550d1387 1560 if (innermode == mode)
23b2ce53
RS
1561 return x;
1562
fad2288b
RS
1563 /* The size of the outer and inner modes must be ordered. */
1564 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1565 if (!ordered_p (msize, xsize))
1566 return 0;
1567
1eae67f8
RS
1568 if (SCALAR_FLOAT_MODE_P (mode))
1569 {
1570 /* Don't allow paradoxical FLOAT_MODE subregs. */
fad2288b 1571 if (maybe_gt (msize, xsize))
1eae67f8
RS
1572 return 0;
1573 }
1574 else
1575 {
1576 /* MODE must occupy no more of the underlying registers than X. */
fad2288b
RS
1577 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1578 unsigned int mregs, xregs;
1579 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1580 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1581 || mregs > xregs)
1eae67f8
RS
1582 return 0;
1583 }
53501a19 1584
54651377 1585 scalar_int_mode int_mode, int_innermode, from_mode;
23b2ce53 1586 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
54651377
RS
1587 && is_a <scalar_int_mode> (mode, &int_mode)
1588 && is_a <scalar_int_mode> (innermode, &int_innermode)
1589 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
23b2ce53
RS
1590 {
1591 /* If we are getting the low-order part of something that has been
1592 sign- or zero-extended, we can either just use the object being
1593 extended or make a narrower extension. If we want an even smaller
1594 piece than the size of the object being extended, call ourselves
1595 recursively.
1596
1597 This case is used mostly by combine and cse. */
1598
54651377 1599 if (from_mode == int_mode)
23b2ce53 1600 return XEXP (x, 0);
54651377
RS
1601 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1602 return gen_lowpart_common (int_mode, XEXP (x, 0));
1603 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1604 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
23b2ce53 1605 }
f8cfc6aa 1606 else if (GET_CODE (x) == SUBREG || REG_P (x)
2072a319 1607 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
0c12fc9b
RS
1608 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1609 || CONST_POLY_INT_P (x))
3403a1a9 1610 return lowpart_subreg (mode, x, innermode);
8aada4ad 1611
23b2ce53
RS
1612 /* Otherwise, we can't do this. */
1613 return 0;
1614}
1615\f
ccba022b 1616rtx
ef4bddc2 1617gen_highpart (machine_mode mode, rtx x)
ccba022b 1618{
cf098191 1619 poly_uint64 msize = GET_MODE_SIZE (mode);
e0e08ac2 1620 rtx result;
ddef6bc7 1621
ccba022b
RS
1622 /* This case loses if X is a subreg. To catch bugs early,
1623 complain if an invalid MODE is used even in other cases. */
cf098191
RS
1624 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1625 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
ddef6bc7 1626
e0e08ac2
JH
1627 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1628 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1629 gcc_assert (result);
b8698a0f 1630
09482e0d
JW
1631 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1632 the target if we have a MEM. gen_highpart must return a valid operand,
1633 emitting code if necessary to do so. */
5b0264cb
NS
1634 if (MEM_P (result))
1635 {
1636 result = validize_mem (result);
1637 gcc_assert (result);
1638 }
b8698a0f 1639
e0e08ac2
JH
1640 return result;
1641}
5222e470 1642
26d249eb 1643/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1644 be VOIDmode constant. */
1645rtx
ef4bddc2 1646gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
5222e470
JH
1647{
1648 if (GET_MODE (exp) != VOIDmode)
1649 {
5b0264cb 1650 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1651 return gen_highpart (outermode, exp);
1652 }
1653 return simplify_gen_subreg (outermode, exp, innermode,
1654 subreg_highpart_offset (outermode, innermode));
1655}
68252e27 1656
33951763
RS
1657/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1658 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
8698cce3 1659
91914e56
RS
1660poly_uint64
1661subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
e0e08ac2 1662{
91914e56
RS
1663 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1664 if (maybe_gt (outer_bytes, inner_bytes))
33951763
RS
1665 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1666 return 0;
ddef6bc7 1667
33951763
RS
1668 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1669 return inner_bytes - outer_bytes;
1670 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1671 return 0;
1672 else
1673 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
ccba022b 1674}
eea50aa0 1675
33951763
RS
1676/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1677 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1678
91914e56
RS
1679poly_uint64
1680subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
eea50aa0 1681{
91914e56 1682 gcc_assert (known_ge (inner_bytes, outer_bytes));
eea50aa0 1683
33951763
RS
1684 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1685 return 0;
1686 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1687 return inner_bytes - outer_bytes;
1688 else
1689 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1690 (inner_bytes - outer_bytes)
1691 * BITS_PER_UNIT);
eea50aa0 1692}
ccba022b 1693
23b2ce53
RS
1694/* Return 1 iff X, assumed to be a SUBREG,
1695 refers to the least significant part of its containing reg.
1696 If X is not a SUBREG, always return 1 (it is its own low part!). */
1697
1698int
fa233e34 1699subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1700{
1701 if (GET_CODE (x) != SUBREG)
1702 return 1;
a3a03040
RK
1703 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1704 return 0;
23b2ce53 1705
91914e56
RS
1706 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1707 GET_MODE (SUBREG_REG (x))),
1708 SUBREG_BYTE (x));
23b2ce53
RS
1709}
1710\f
ddef6bc7
JJ
1711/* Return subword OFFSET of operand OP.
1712 The word number, OFFSET, is interpreted as the word number starting
1713 at the low-order address. OFFSET 0 is the low-order word if not
1714 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1715
1716 If we cannot extract the required word, we return zero. Otherwise,
1717 an rtx corresponding to the requested word will be returned.
1718
1719 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1720 reload has completed, a valid address will always be returned. After
1721 reload, if a valid address cannot be returned, we return zero.
1722
1723 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1724 it is the responsibility of the caller.
1725
1726 MODE is the mode of OP in case it is a CONST_INT.
1727
1728 ??? This is still rather broken for some cases. The problem for the
1729 moment is that all callers of this thing provide no 'goal mode' to
1730 tell us to work with. This exists because all callers were written
0631e0bf
JH
1731 in a word based SUBREG world.
1732 Now use of this function can be deprecated by simplify_subreg in most
1733 cases.
1734 */
ddef6bc7
JJ
1735
1736rtx
fdbfe4e5
RS
1737operand_subword (rtx op, poly_uint64 offset, int validate_address,
1738 machine_mode mode)
ddef6bc7
JJ
1739{
1740 if (mode == VOIDmode)
1741 mode = GET_MODE (op);
1742
5b0264cb 1743 gcc_assert (mode != VOIDmode);
ddef6bc7 1744
30f7a378 1745 /* If OP is narrower than a word, fail. */
ddef6bc7 1746 if (mode != BLKmode
fdbfe4e5 1747 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
ddef6bc7
JJ
1748 return 0;
1749
30f7a378 1750 /* If we want a word outside OP, return zero. */
ddef6bc7 1751 if (mode != BLKmode
fdbfe4e5 1752 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
ddef6bc7
JJ
1753 return const0_rtx;
1754
ddef6bc7 1755 /* Form a new MEM at the requested address. */
3c0cb5de 1756 if (MEM_P (op))
ddef6bc7 1757 {
60564289 1758 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1759
f1ec5147 1760 if (! validate_address)
60564289 1761 return new_rtx;
f1ec5147
RK
1762
1763 else if (reload_completed)
ddef6bc7 1764 {
09e881c9
BE
1765 if (! strict_memory_address_addr_space_p (word_mode,
1766 XEXP (new_rtx, 0),
1767 MEM_ADDR_SPACE (op)))
f1ec5147 1768 return 0;
ddef6bc7 1769 }
f1ec5147 1770 else
60564289 1771 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1772 }
1773
0631e0bf
JH
1774 /* Rest can be handled by simplify_subreg. */
1775 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1776}
1777
535a42b1
NS
1778/* Similar to `operand_subword', but never return 0. If we can't
1779 extract the required subword, put OP into a register and try again.
1780 The second attempt must succeed. We always validate the address in
1781 this case.
23b2ce53
RS
1782
1783 MODE is the mode of OP, in case it is CONST_INT. */
1784
1785rtx
fdbfe4e5 1786operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
23b2ce53 1787{
ddef6bc7 1788 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1789
1790 if (result)
1791 return result;
1792
1793 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb 1794 {
67914693 1795 /* If this is a register which cannot be accessed by words, copy it
77e6b0eb 1796 to a pseudo register. */
f8cfc6aa 1797 if (REG_P (op))
77e6b0eb
JC
1798 op = copy_to_reg (op);
1799 else
1800 op = force_reg (mode, op);
1801 }
23b2ce53 1802
ddef6bc7 1803 result = operand_subword (op, offset, 1, mode);
5b0264cb 1804 gcc_assert (result);
23b2ce53
RS
1805
1806 return result;
1807}
1808\f
d05d7551
RS
1809mem_attrs::mem_attrs ()
1810 : expr (NULL_TREE),
1811 offset (0),
1812 size (0),
1813 alias (0),
1814 align (0),
1815 addrspace (ADDR_SPACE_GENERIC),
1816 offset_known_p (false),
1817 size_known_p (false)
1818{}
1819
2b3493c8
AK
1820/* Returns 1 if both MEM_EXPR can be considered equal
1821 and 0 otherwise. */
1822
1823int
4f588890 1824mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1825{
1826 if (expr1 == expr2)
1827 return 1;
1828
1829 if (! expr1 || ! expr2)
1830 return 0;
1831
1832 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1833 return 0;
1834
55b34b5f 1835 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1836}
1837
805903b5
JJ
1838/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1839 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1840 -1 if not known. */
1841
1842int
d9223014 1843get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1844{
1845 tree expr;
d05d7551 1846 poly_uint64 offset;
805903b5
JJ
1847
1848 /* This function can't use
527210c4 1849 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1850 || (MAX (MEM_ALIGN (mem),
0eb77834 1851 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1852 < align))
1853 return -1;
1854 else
527210c4 1855 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1856 for two reasons:
1857 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1858 for <variable>. get_inner_reference doesn't handle it and
1859 even if it did, the alignment in that case needs to be determined
1860 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1861 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1862 isn't sufficiently aligned, the object it is in might be. */
1863 gcc_assert (MEM_P (mem));
1864 expr = MEM_EXPR (mem);
527210c4 1865 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1866 return -1;
1867
527210c4 1868 offset = MEM_OFFSET (mem);
805903b5
JJ
1869 if (DECL_P (expr))
1870 {
1871 if (DECL_ALIGN (expr) < align)
1872 return -1;
1873 }
1874 else if (INDIRECT_REF_P (expr))
1875 {
1876 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1877 return -1;
1878 }
1879 else if (TREE_CODE (expr) == COMPONENT_REF)
1880 {
1881 while (1)
1882 {
1883 tree inner = TREE_OPERAND (expr, 0);
1884 tree field = TREE_OPERAND (expr, 1);
1885 tree byte_offset = component_ref_field_offset (expr);
1886 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1887
d05d7551 1888 poly_uint64 suboffset;
805903b5 1889 if (!byte_offset
d05d7551 1890 || !poly_int_tree_p (byte_offset, &suboffset)
cc269bb6 1891 || !tree_fits_uhwi_p (bit_offset))
805903b5
JJ
1892 return -1;
1893
d05d7551 1894 offset += suboffset;
ae7e9ddd 1895 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
805903b5
JJ
1896
1897 if (inner == NULL_TREE)
1898 {
1899 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1900 < (unsigned int) align)
1901 return -1;
1902 break;
1903 }
1904 else if (DECL_P (inner))
1905 {
1906 if (DECL_ALIGN (inner) < align)
1907 return -1;
1908 break;
1909 }
1910 else if (TREE_CODE (inner) != COMPONENT_REF)
1911 return -1;
1912 expr = inner;
1913 }
1914 }
1915 else
1916 return -1;
1917
d05d7551
RS
1918 HOST_WIDE_INT misalign;
1919 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1920 return -1;
1921 return misalign;
805903b5
JJ
1922}
1923
6926c713 1924/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1925 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1926 if we are making a new object of this type. BITPOS is nonzero if
1927 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1928
1929void
502b8322 1930set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
d05d7551 1931 poly_int64 bitpos)
173b24b9 1932{
d05d7551 1933 poly_int64 apply_bitpos = 0;
173b24b9 1934 tree type;
99b1c316 1935 class mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1936 addr_space_t as;
173b24b9
RK
1937
1938 /* It can happen that type_for_mode was given a mode for which there
1939 is no language-level type. In which case it returns NULL, which
1940 we can see here. */
1941 if (t == NULL_TREE)
1942 return;
1943
1944 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1945 if (type == error_mark_node)
1946 return;
173b24b9 1947
173b24b9
RK
1948 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1949 wrong answer, as it assumes that DECL_RTL already has the right alias
1950 info. Callers should not set DECL_RTL until after the call to
1951 set_mem_attributes. */
5b0264cb 1952 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1953
738cc472 1954 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1955 front-end routine) and use it. */
f12144dd 1956 attrs.alias = get_alias_set (t);
173b24b9 1957
a5e9c810 1958 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1959 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1960
268f7033 1961 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1962 refattrs = MEM_ATTRS (ref);
1963 if (refattrs)
268f7033
UW
1964 {
1965 /* ??? Can this ever happen? Calling this routine on a MEM that
1966 already carries memory attributes should probably be invalid. */
f12144dd 1967 attrs.expr = refattrs->expr;
754c3d5d 1968 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1969 attrs.offset = refattrs->offset;
754c3d5d 1970 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1971 attrs.size = refattrs->size;
1972 attrs.align = refattrs->align;
268f7033
UW
1973 }
1974
1975 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1976 else
268f7033 1977 {
f12144dd
RS
1978 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1979 gcc_assert (!defattrs->expr);
754c3d5d 1980 gcc_assert (!defattrs->offset_known_p);
f12144dd 1981
268f7033 1982 /* Respect mode size. */
754c3d5d 1983 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1984 attrs.size = defattrs->size;
268f7033
UW
1985 /* ??? Is this really necessary? We probably should always get
1986 the size from the type below. */
1987
1988 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1989 if T is an object, always compute the object alignment below. */
f12144dd
RS
1990 if (TYPE_P (t))
1991 attrs.align = defattrs->align;
1992 else
1993 attrs.align = BITS_PER_UNIT;
268f7033
UW
1994 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1995 e.g. if the type carries an alignment attribute. Should we be
1996 able to simply always use TYPE_ALIGN? */
1997 }
1998
25b75a48
BE
1999 /* We can set the alignment from the type if we are making an object or if
2000 this is an INDIRECT_REF. */
2001 if (objectp || TREE_CODE (t) == INDIRECT_REF)
f12144dd 2002 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 2003
738cc472 2004 /* If the size is known, we can set that. */
a787ccc3 2005 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 2006
30b0317c
RB
2007 /* The address-space is that of the type. */
2008 as = TYPE_ADDR_SPACE (type);
2009
80965c18
RK
2010 /* If T is not a type, we may be able to deduce some more information about
2011 the expression. */
2012 if (! TYPE_P (t))
8ac61af7 2013 {
8476af98 2014 tree base;
389fdba0 2015
8ac61af7
RK
2016 if (TREE_THIS_VOLATILE (t))
2017 MEM_VOLATILE_P (ref) = 1;
173b24b9 2018
c56e3582
RK
2019 /* Now remove any conversions: they don't change what the underlying
2020 object is. Likewise for SAVE_EXPR. */
1043771b 2021 while (CONVERT_EXPR_P (t)
c56e3582
RK
2022 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2023 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
2024 t = TREE_OPERAND (t, 0);
2025
4994da65
RG
2026 /* Note whether this expression can trap. */
2027 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2028
2029 base = get_base_address (t);
f18a7b25
MJ
2030 if (base)
2031 {
2032 if (DECL_P (base)
2033 && TREE_READONLY (base)
2034 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2035 && !TREE_THIS_VOLATILE (base))
2036 MEM_READONLY_P (ref) = 1;
2037
2038 /* Mark static const strings readonly as well. */
2039 if (TREE_CODE (base) == STRING_CST
2040 && TREE_READONLY (base)
2041 && TREE_STATIC (base))
2042 MEM_READONLY_P (ref) = 1;
2043
30b0317c 2044 /* Address-space information is on the base object. */
f18a7b25
MJ
2045 if (TREE_CODE (base) == MEM_REF
2046 || TREE_CODE (base) == TARGET_MEM_REF)
2047 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2048 0))));
2049 else
2050 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2051 }
ba30e50d 2052
2039d7aa
RH
2053 /* If this expression uses it's parent's alias set, mark it such
2054 that we won't change it. */
b4ada065 2055 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
10b76d73
RK
2056 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2057
8ac61af7
RK
2058 /* If this is a decl, set the attributes of the MEM from it. */
2059 if (DECL_P (t))
2060 {
f12144dd 2061 attrs.expr = t;
754c3d5d
RS
2062 attrs.offset_known_p = true;
2063 attrs.offset = 0;
6f1087be 2064 apply_bitpos = bitpos;
a787ccc3 2065 new_size = DECL_SIZE_UNIT (t);
8ac61af7
RK
2066 }
2067
30b0317c 2068 /* ??? If we end up with a constant here do record a MEM_EXPR. */
6615c446 2069 else if (CONSTANT_CLASS_P (t))
30b0317c 2070 ;
998d7deb 2071
a787ccc3
RS
2072 /* If this is a field reference, record it. */
2073 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 2074 {
f12144dd 2075 attrs.expr = t;
754c3d5d
RS
2076 attrs.offset_known_p = true;
2077 attrs.offset = 0;
6f1087be 2078 apply_bitpos = bitpos;
a787ccc3
RS
2079 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2080 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
2081 }
2082
2083 /* If this is an array reference, look for an outer field reference. */
2084 else if (TREE_CODE (t) == ARRAY_REF)
2085 {
2086 tree off_tree = size_zero_node;
1b1838b6
JW
2087 /* We can't modify t, because we use it at the end of the
2088 function. */
2089 tree t2 = t;
998d7deb
RH
2090
2091 do
2092 {
1b1838b6 2093 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
2094 tree low_bound = array_ref_low_bound (t2);
2095 tree unit_size = array_ref_element_size (t2);
2567406a
JH
2096
2097 /* We assume all arrays have sizes that are a multiple of a byte.
2098 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
2099 index, then convert to sizetype and multiply by the size of
2100 the array element. */
2101 if (! integer_zerop (low_bound))
4845b383
KH
2102 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2103 index, low_bound);
2567406a 2104
44de5aeb 2105 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
2106 size_binop (MULT_EXPR,
2107 fold_convert (sizetype,
2108 index),
44de5aeb
RK
2109 unit_size),
2110 off_tree);
1b1838b6 2111 t2 = TREE_OPERAND (t2, 0);
998d7deb 2112 }
1b1838b6 2113 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 2114
30b0317c 2115 if (DECL_P (t2)
12ead254
RB
2116 || (TREE_CODE (t2) == COMPONENT_REF
2117 /* For trailing arrays t2 doesn't have a size that
2118 covers all valid accesses. */
c3e46927 2119 && ! array_at_struct_end_p (t)))
998d7deb 2120 {
f12144dd 2121 attrs.expr = t2;
754c3d5d 2122 attrs.offset_known_p = false;
d05d7551 2123 if (poly_int_tree_p (off_tree, &attrs.offset))
6f1087be 2124 {
754c3d5d 2125 attrs.offset_known_p = true;
6f1087be
RH
2126 apply_bitpos = bitpos;
2127 }
998d7deb 2128 }
30b0317c 2129 /* Else do not record a MEM_EXPR. */
c67a1cf6
RH
2130 }
2131
56c47f22 2132 /* If this is an indirect reference, record it. */
70f34814 2133 else if (TREE_CODE (t) == MEM_REF
be1ac4ec 2134 || TREE_CODE (t) == TARGET_MEM_REF)
56c47f22 2135 {
f12144dd 2136 attrs.expr = t;
754c3d5d
RS
2137 attrs.offset_known_p = true;
2138 attrs.offset = 0;
56c47f22
RG
2139 apply_bitpos = bitpos;
2140 }
2141
fa70c221
RB
2142 /* If this is a reference based on a partitioned decl replace the
2143 base with a MEM_REF of the pointer representative we created
2144 during stack slot partitioning. */
2145 if (attrs.expr
2146 && VAR_P (base)
2147 && ! is_global_var (base)
2148 && cfun->gimple_df->decls_to_pointers != NULL)
2149 {
2150 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2151 if (namep)
2152 {
2153 attrs.expr = unshare_expr (attrs.expr);
2154 tree *orig_base = &attrs.expr;
2155 while (handled_component_p (*orig_base))
2156 orig_base = &TREE_OPERAND (*orig_base, 0);
2157 tree aptrt = reference_alias_ptr_type (*orig_base);
2158 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2159 build_int_cst (aptrt, 0));
2160 }
2161 }
2162
30b0317c
RB
2163 /* Compute the alignment. */
2164 unsigned int obj_align;
2165 unsigned HOST_WIDE_INT obj_bitpos;
2166 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
d05d7551
RS
2167 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2168 if (diff_align != 0)
2169 obj_align = MIN (obj_align, diff_align);
30b0317c 2170 attrs.align = MAX (attrs.align, obj_align);
8ac61af7
RK
2171 }
2172
d05d7551
RS
2173 poly_uint64 const_size;
2174 if (poly_int_tree_p (new_size, &const_size))
a787ccc3
RS
2175 {
2176 attrs.size_known_p = true;
d05d7551 2177 attrs.size = const_size;
a787ccc3
RS
2178 }
2179
15c812e3 2180 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
2181 bit position offset. Similarly, increase the size of the accessed
2182 object to contain the negative offset. */
d05d7551 2183 if (maybe_ne (apply_bitpos, 0))
8c317c5f 2184 {
754c3d5d 2185 gcc_assert (attrs.offset_known_p);
d05d7551
RS
2186 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2187 attrs.offset -= bytepos;
754c3d5d 2188 if (attrs.size_known_p)
d05d7551 2189 attrs.size += bytepos;
8c317c5f 2190 }
6f1087be 2191
8ac61af7 2192 /* Now set the attributes we computed above. */
f18a7b25 2193 attrs.addrspace = as;
f12144dd 2194 set_mem_attrs (ref, &attrs);
173b24b9
RK
2195}
2196
6f1087be 2197void
502b8322 2198set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
2199{
2200 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2201}
2202
173b24b9
RK
2203/* Set the alias set of MEM to SET. */
2204
2205void
4862826d 2206set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 2207{
173b24b9 2208 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 2209 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
d05d7551 2210 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2211 attrs.alias = set;
2212 set_mem_attrs (mem, &attrs);
09e881c9
BE
2213}
2214
2215/* Set the address space of MEM to ADDRSPACE (target-defined). */
2216
2217void
2218set_mem_addr_space (rtx mem, addr_space_t addrspace)
2219{
d05d7551 2220 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2221 attrs.addrspace = addrspace;
2222 set_mem_attrs (mem, &attrs);
173b24b9 2223}
738cc472 2224
d022d93e 2225/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
2226
2227void
502b8322 2228set_mem_align (rtx mem, unsigned int align)
738cc472 2229{
d05d7551 2230 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2231 attrs.align = align;
2232 set_mem_attrs (mem, &attrs);
738cc472 2233}
1285011e 2234
998d7deb 2235/* Set the expr for MEM to EXPR. */
1285011e
RK
2236
2237void
502b8322 2238set_mem_expr (rtx mem, tree expr)
1285011e 2239{
d05d7551 2240 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2241 attrs.expr = expr;
2242 set_mem_attrs (mem, &attrs);
1285011e 2243}
998d7deb
RH
2244
2245/* Set the offset of MEM to OFFSET. */
2246
2247void
d05d7551 2248set_mem_offset (rtx mem, poly_int64 offset)
998d7deb 2249{
d05d7551 2250 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d
RS
2251 attrs.offset_known_p = true;
2252 attrs.offset = offset;
527210c4
RS
2253 set_mem_attrs (mem, &attrs);
2254}
2255
2256/* Clear the offset of MEM. */
2257
2258void
2259clear_mem_offset (rtx mem)
2260{
d05d7551 2261 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d 2262 attrs.offset_known_p = false;
f12144dd 2263 set_mem_attrs (mem, &attrs);
35aff10b
AM
2264}
2265
2266/* Set the size of MEM to SIZE. */
2267
2268void
d05d7551 2269set_mem_size (rtx mem, poly_int64 size)
35aff10b 2270{
d05d7551 2271 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d
RS
2272 attrs.size_known_p = true;
2273 attrs.size = size;
f5541398
RS
2274 set_mem_attrs (mem, &attrs);
2275}
2276
2277/* Clear the size of MEM. */
2278
2279void
2280clear_mem_size (rtx mem)
2281{
d05d7551 2282 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d 2283 attrs.size_known_p = false;
f12144dd 2284 set_mem_attrs (mem, &attrs);
998d7deb 2285}
173b24b9 2286\f
738cc472
RK
2287/* Return a memory reference like MEMREF, but with its mode changed to MODE
2288 and its address changed to ADDR. (VOIDmode means don't change the mode.
2289 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
23b33725
RS
2290 returned memory location is required to be valid. INPLACE is true if any
2291 changes can be made directly to MEMREF or false if MEMREF must be treated
2292 as immutable.
2293
2294 The memory attributes are not changed. */
23b2ce53 2295
738cc472 2296static rtx
ef4bddc2 2297change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
23b33725 2298 bool inplace)
23b2ce53 2299{
09e881c9 2300 addr_space_t as;
60564289 2301 rtx new_rtx;
23b2ce53 2302
5b0264cb 2303 gcc_assert (MEM_P (memref));
09e881c9 2304 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
2305 if (mode == VOIDmode)
2306 mode = GET_MODE (memref);
2307 if (addr == 0)
2308 addr = XEXP (memref, 0);
a74ff877 2309 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2310 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2311 return memref;
23b2ce53 2312
91c5ee5b
VM
2313 /* Don't validate address for LRA. LRA can make the address valid
2314 by itself in most efficient way. */
2315 if (validate && !lra_in_progress)
23b2ce53 2316 {
f1ec5147 2317 if (reload_in_progress || reload_completed)
09e881c9 2318 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2319 else
09e881c9 2320 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2321 }
750c9258 2322
9b04c6a8
RK
2323 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2324 return memref;
2325
23b33725
RS
2326 if (inplace)
2327 {
2328 XEXP (memref, 0) = addr;
2329 return memref;
2330 }
2331
60564289
KG
2332 new_rtx = gen_rtx_MEM (mode, addr);
2333 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2334 return new_rtx;
23b2ce53 2335}
792760b9 2336
738cc472
RK
2337/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2338 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2339
2340rtx
ef4bddc2 2341change_address (rtx memref, machine_mode mode, rtx addr)
f4ef873c 2342{
23b33725 2343 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
ef4bddc2 2344 machine_mode mmode = GET_MODE (new_rtx);
99b1c316 2345 class mem_attrs *defattrs;
4e44c1ef 2346
d05d7551 2347 mem_attrs attrs (*get_mem_attrs (memref));
f12144dd 2348 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2349 attrs.expr = NULL_TREE;
2350 attrs.offset_known_p = false;
2351 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2352 attrs.size = defattrs->size;
2353 attrs.align = defattrs->align;
c2f7bcc3 2354
fdb1c7b3 2355 /* If there are no changes, just return the original memory reference. */
60564289 2356 if (new_rtx == memref)
4e44c1ef 2357 {
f12144dd 2358 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2359 return new_rtx;
4e44c1ef 2360
60564289
KG
2361 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2362 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2363 }
fdb1c7b3 2364
f12144dd 2365 set_mem_attrs (new_rtx, &attrs);
60564289 2366 return new_rtx;
f4ef873c 2367}
792760b9 2368
738cc472
RK
2369/* Return a memory reference like MEMREF, but with its mode changed
2370 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2371 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2372 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2373 and the caller is responsible for adjusting MEMREF base register.
2374 If ADJUST_OBJECT is zero, the underlying object associated with the
2375 memory reference is left unchanged and the caller is responsible for
2376 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2377 the underlying object, even partially, then the object is dropped.
2378 SIZE, if nonzero, is the size of an access in cases where MODE
2379 has no inherent size. */
f1ec5147
RK
2380
2381rtx
d05d7551 2382adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
5f2cbd0d 2383 int validate, int adjust_address, int adjust_object,
d05d7551 2384 poly_int64 size)
f1ec5147 2385{
823e3574 2386 rtx addr = XEXP (memref, 0);
60564289 2387 rtx new_rtx;
095a2d76 2388 scalar_int_mode address_mode;
99b1c316 2389 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
f12144dd 2390 unsigned HOST_WIDE_INT max_align;
0207fa90 2391#ifdef POINTERS_EXTEND_UNSIGNED
095a2d76 2392 scalar_int_mode pointer_mode
0207fa90
EB
2393 = targetm.addr_space.pointer_mode (attrs.addrspace);
2394#endif
823e3574 2395
ee88e690
EB
2396 /* VOIDmode means no mode change for change_address_1. */
2397 if (mode == VOIDmode)
2398 mode = GET_MODE (memref);
2399
5f2cbd0d
RS
2400 /* Take the size of non-BLKmode accesses from the mode. */
2401 defattrs = mode_mem_attrs[(int) mode];
2402 if (defattrs->size_known_p)
2403 size = defattrs->size;
2404
fdb1c7b3 2405 /* If there are no changes, just return the original memory reference. */
d05d7551
RS
2406 if (mode == GET_MODE (memref)
2407 && known_eq (offset, 0)
2408 && (known_eq (size, 0)
2409 || (attrs.size_known_p && known_eq (attrs.size, size)))
f12144dd
RS
2410 && (!validate || memory_address_addr_space_p (mode, addr,
2411 attrs.addrspace)))
fdb1c7b3
JH
2412 return memref;
2413
d14419e4 2414 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2415 This may happen even if offset is nonzero -- consider
d14419e4
RH
2416 (plus (plus reg reg) const_int) -- so do this always. */
2417 addr = copy_rtx (addr);
2418
a6fe9ed4
JM
2419 /* Convert a possibly large offset to a signed value within the
2420 range of the target address space. */
372d6395 2421 address_mode = get_address_mode (memref);
d05d7551 2422 offset = trunc_int_for_mode (offset, address_mode);
a6fe9ed4 2423
5ef0b50d 2424 if (adjust_address)
4a78c787
RH
2425 {
2426 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2427 object, we can merge it into the LO_SUM. */
d05d7551
RS
2428 if (GET_MODE (memref) != BLKmode
2429 && GET_CODE (addr) == LO_SUM
2430 && known_in_range_p (offset,
2431 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2432 / BITS_PER_UNIT)))
d4ebfa65 2433 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2434 plus_constant (address_mode,
2435 XEXP (addr, 1), offset));
0207fa90
EB
2436#ifdef POINTERS_EXTEND_UNSIGNED
2437 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2438 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2439 the fact that pointers are not allowed to overflow. */
2440 else if (POINTERS_EXTEND_UNSIGNED > 0
2441 && GET_CODE (addr) == ZERO_EXTEND
2442 && GET_MODE (XEXP (addr, 0)) == pointer_mode
d05d7551 2443 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
0207fa90
EB
2444 addr = gen_rtx_ZERO_EXTEND (address_mode,
2445 plus_constant (pointer_mode,
2446 XEXP (addr, 0), offset));
2447#endif
4a78c787 2448 else
0a81f074 2449 addr = plus_constant (address_mode, addr, offset);
4a78c787 2450 }
823e3574 2451
23b33725 2452 new_rtx = change_address_1 (memref, mode, addr, validate, false);
738cc472 2453
09efeca1
PB
2454 /* If the address is a REG, change_address_1 rightfully returns memref,
2455 but this would destroy memref's MEM_ATTRS. */
d05d7551 2456 if (new_rtx == memref && maybe_ne (offset, 0))
09efeca1
PB
2457 new_rtx = copy_rtx (new_rtx);
2458
5ef0b50d
EB
2459 /* Conservatively drop the object if we don't know where we start from. */
2460 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2461 {
2462 attrs.expr = NULL_TREE;
2463 attrs.alias = 0;
2464 }
2465
738cc472
RK
2466 /* Compute the new values of the memory attributes due to this adjustment.
2467 We add the offsets and update the alignment. */
754c3d5d 2468 if (attrs.offset_known_p)
5ef0b50d
EB
2469 {
2470 attrs.offset += offset;
2471
2472 /* Drop the object if the new left end is not within its bounds. */
d05d7551 2473 if (adjust_object && maybe_lt (attrs.offset, 0))
5ef0b50d
EB
2474 {
2475 attrs.expr = NULL_TREE;
2476 attrs.alias = 0;
2477 }
2478 }
738cc472 2479
03bf2c23
RK
2480 /* Compute the new alignment by taking the MIN of the alignment and the
2481 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2482 if zero. */
d05d7551 2483 if (maybe_ne (offset, 0))
f12144dd 2484 {
d05d7551 2485 max_align = known_alignment (offset) * BITS_PER_UNIT;
f12144dd
RS
2486 attrs.align = MIN (attrs.align, max_align);
2487 }
738cc472 2488
d05d7551 2489 if (maybe_ne (size, 0))
754c3d5d 2490 {
5ef0b50d 2491 /* Drop the object if the new right end is not within its bounds. */
d05d7551 2492 if (adjust_object && maybe_gt (offset + size, attrs.size))
5ef0b50d
EB
2493 {
2494 attrs.expr = NULL_TREE;
2495 attrs.alias = 0;
2496 }
754c3d5d 2497 attrs.size_known_p = true;
5f2cbd0d 2498 attrs.size = size;
754c3d5d
RS
2499 }
2500 else if (attrs.size_known_p)
5ef0b50d 2501 {
5f2cbd0d 2502 gcc_assert (!adjust_object);
5ef0b50d 2503 attrs.size -= offset;
5f2cbd0d
RS
2504 /* ??? The store_by_pieces machinery generates negative sizes,
2505 so don't assert for that here. */
5ef0b50d 2506 }
10b76d73 2507
f12144dd 2508 set_mem_attrs (new_rtx, &attrs);
738cc472 2509
60564289 2510 return new_rtx;
f1ec5147
RK
2511}
2512
630036c6
JJ
2513/* Return a memory reference like MEMREF, but with its mode changed
2514 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2515 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2516 nonzero, the memory address is forced to be valid. */
2517
2518rtx
ef4bddc2 2519adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
d05d7551 2520 poly_int64 offset, int validate)
630036c6 2521{
23b33725 2522 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
5f2cbd0d 2523 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2524}
2525
8ac61af7
RK
2526/* Return a memory reference like MEMREF, but whose address is changed by
2527 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2528 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2529
2530rtx
502b8322 2531offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2532{
60564289 2533 rtx new_rtx, addr = XEXP (memref, 0);
ef4bddc2 2534 machine_mode address_mode;
99b1c316 2535 class mem_attrs *defattrs;
e3c8ea67 2536
d05d7551 2537 mem_attrs attrs (*get_mem_attrs (memref));
372d6395 2538 address_mode = get_address_mode (memref);
d4ebfa65 2539 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2540
68252e27 2541 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2542 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2543
2544 However, if we did go and rearrange things, we can wind up not
2545 being able to recognize the magic around pic_offset_table_rtx.
2546 This stuff is fragile, and is yet another example of why it is
2547 bad to expose PIC machinery too early. */
f12144dd
RS
2548 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2549 attrs.addrspace)
e3c8ea67
RH
2550 && GET_CODE (addr) == PLUS
2551 && XEXP (addr, 0) == pic_offset_table_rtx)
2552 {
2553 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2554 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2555 }
2556
60564289 2557 update_temp_slot_address (XEXP (memref, 0), new_rtx);
23b33725 2558 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
0d4903b8 2559
fdb1c7b3 2560 /* If there are no changes, just return the original memory reference. */
60564289
KG
2561 if (new_rtx == memref)
2562 return new_rtx;
fdb1c7b3 2563
0d4903b8
RK
2564 /* Update the alignment to reflect the offset. Reset the offset, which
2565 we don't know. */
754c3d5d
RS
2566 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2567 attrs.offset_known_p = false;
2568 attrs.size_known_p = defattrs->size_known_p;
2569 attrs.size = defattrs->size;
f12144dd
RS
2570 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2571 set_mem_attrs (new_rtx, &attrs);
60564289 2572 return new_rtx;
0d4903b8 2573}
68252e27 2574
792760b9
RK
2575/* Return a memory reference like MEMREF, but with its address changed to
2576 ADDR. The caller is asserting that the actual piece of memory pointed
2577 to is the same, just the form of the address is being changed, such as
23b33725
RS
2578 by putting something into a register. INPLACE is true if any changes
2579 can be made directly to MEMREF or false if MEMREF must be treated as
2580 immutable. */
792760b9
RK
2581
2582rtx
23b33725 2583replace_equiv_address (rtx memref, rtx addr, bool inplace)
792760b9 2584{
738cc472
RK
2585 /* change_address_1 copies the memory attribute structure without change
2586 and that's exactly what we want here. */
40c0668b 2587 update_temp_slot_address (XEXP (memref, 0), addr);
23b33725 2588 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
792760b9 2589}
738cc472 2590
f1ec5147
RK
2591/* Likewise, but the reference is not required to be valid. */
2592
2593rtx
23b33725 2594replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
f1ec5147 2595{
23b33725 2596 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
f1ec5147 2597}
e7dfe4bb
RH
2598
2599/* Return a memory reference like MEMREF, but with its mode widened to
2600 MODE and offset by OFFSET. This would be used by targets that e.g.
2601 cannot issue QImode memory operations and have to use SImode memory
2602 operations plus masking logic. */
2603
2604rtx
d05d7551 2605widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
e7dfe4bb 2606{
5f2cbd0d 2607 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
cf098191 2608 poly_uint64 size = GET_MODE_SIZE (mode);
e7dfe4bb 2609
fdb1c7b3 2610 /* If there are no changes, just return the original memory reference. */
60564289
KG
2611 if (new_rtx == memref)
2612 return new_rtx;
fdb1c7b3 2613
d05d7551 2614 mem_attrs attrs (*get_mem_attrs (new_rtx));
f12144dd 2615
e7dfe4bb
RH
2616 /* If we don't know what offset we were at within the expression, then
2617 we can't know if we've overstepped the bounds. */
754c3d5d 2618 if (! attrs.offset_known_p)
f12144dd 2619 attrs.expr = NULL_TREE;
e7dfe4bb 2620
f12144dd 2621 while (attrs.expr)
e7dfe4bb 2622 {
f12144dd 2623 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2624 {
f12144dd
RS
2625 tree field = TREE_OPERAND (attrs.expr, 1);
2626 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2627
2628 if (! DECL_SIZE_UNIT (field))
2629 {
f12144dd 2630 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2631 break;
2632 }
2633
2634 /* Is the field at least as large as the access? If so, ok,
2635 otherwise strip back to the containing structure. */
d05d7551
RS
2636 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2637 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2638 && known_ge (attrs.offset, 0))
e7dfe4bb
RH
2639 break;
2640
d05d7551
RS
2641 poly_uint64 suboffset;
2642 if (!poly_int_tree_p (offset, &suboffset))
e7dfe4bb 2643 {
f12144dd 2644 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2645 break;
2646 }
2647
f12144dd 2648 attrs.expr = TREE_OPERAND (attrs.expr, 0);
d05d7551 2649 attrs.offset += suboffset;
ae7e9ddd 2650 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
754c3d5d 2651 / BITS_PER_UNIT);
e7dfe4bb
RH
2652 }
2653 /* Similarly for the decl. */
f12144dd
RS
2654 else if (DECL_P (attrs.expr)
2655 && DECL_SIZE_UNIT (attrs.expr)
d05d7551
RS
2656 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2657 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2658 size)
2659 && known_ge (attrs.offset, 0))
e7dfe4bb
RH
2660 break;
2661 else
2662 {
2663 /* The widened memory access overflows the expression, which means
2664 that it could alias another expression. Zap it. */
f12144dd 2665 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2666 break;
2667 }
2668 }
2669
f12144dd 2670 if (! attrs.expr)
754c3d5d 2671 attrs.offset_known_p = false;
e7dfe4bb
RH
2672
2673 /* The widened memory may alias other stuff, so zap the alias set. */
2674 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2675 attrs.alias = 0;
754c3d5d
RS
2676 attrs.size_known_p = true;
2677 attrs.size = size;
f12144dd 2678 set_mem_attrs (new_rtx, &attrs);
60564289 2679 return new_rtx;
e7dfe4bb 2680}
23b2ce53 2681\f
f6129d66
RH
2682/* A fake decl that is used as the MEM_EXPR of spill slots. */
2683static GTY(()) tree spill_slot_decl;
2684
3d7e23f6
RH
2685tree
2686get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2687{
2688 tree d = spill_slot_decl;
2689 rtx rd;
2690
3d7e23f6 2691 if (d || !force_build_p)
f6129d66
RH
2692 return d;
2693
c2255bc4
AH
2694 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2695 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2696 DECL_ARTIFICIAL (d) = 1;
2697 DECL_IGNORED_P (d) = 1;
2698 TREE_USED (d) = 1;
f6129d66
RH
2699 spill_slot_decl = d;
2700
2701 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2702 MEM_NOTRAP_P (rd) = 1;
d05d7551 2703 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
f12144dd
RS
2704 attrs.alias = new_alias_set ();
2705 attrs.expr = d;
2706 set_mem_attrs (rd, &attrs);
f6129d66
RH
2707 SET_DECL_RTL (d, rd);
2708
2709 return d;
2710}
2711
2712/* Given MEM, a result from assign_stack_local, fill in the memory
2713 attributes as appropriate for a register allocator spill slot.
2714 These slots are not aliasable by other memory. We arrange for
2715 them all to use a single MEM_EXPR, so that the aliasing code can
2716 work properly in the case of shared spill slots. */
2717
2718void
2719set_mem_attrs_for_spill (rtx mem)
2720{
f12144dd 2721 rtx addr;
f6129d66 2722
d05d7551 2723 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2724 attrs.expr = get_spill_slot_decl (true);
2725 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2726 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2727
2728 /* We expect the incoming memory to be of the form:
2729 (mem:MODE (plus (reg sfp) (const_int offset)))
2730 with perhaps the plus missing for offset = 0. */
2731 addr = XEXP (mem, 0);
754c3d5d 2732 attrs.offset_known_p = true;
d05d7551 2733 strip_offset (addr, &attrs.offset);
f6129d66 2734
f12144dd 2735 set_mem_attrs (mem, &attrs);
f6129d66
RH
2736 MEM_NOTRAP_P (mem) = 1;
2737}
2738\f
23b2ce53
RS
2739/* Return a newly created CODE_LABEL rtx with a unique label number. */
2740
7dcc3ab5 2741rtx_code_label *
502b8322 2742gen_label_rtx (void)
23b2ce53 2743{
7dcc3ab5
DM
2744 return as_a <rtx_code_label *> (
2745 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2746 NULL, label_num++, NULL));
23b2ce53
RS
2747}
2748\f
2749/* For procedure integration. */
2750
23b2ce53 2751/* Install new pointers to the first and last insns in the chain.
86fe05e0 2752 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2753 Used for an inline-procedure after copying the insn chain. */
2754
2755void
fee3e72c 2756set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
23b2ce53 2757{
fee3e72c 2758 rtx_insn *insn;
86fe05e0 2759
5936d944
JH
2760 set_first_insn (first);
2761 set_last_insn (last);
86fe05e0
RK
2762 cur_insn_uid = 0;
2763
028d4092 2764 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
b5b8b0ac
AO
2765 {
2766 int debug_count = 0;
2767
028d4092 2768 cur_insn_uid = param_min_nondebug_insn_uid - 1;
b5b8b0ac
AO
2769 cur_debug_insn_uid = 0;
2770
2771 for (insn = first; insn; insn = NEXT_INSN (insn))
028d4092 2772 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
b5b8b0ac
AO
2773 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2774 else
2775 {
2776 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2777 if (DEBUG_INSN_P (insn))
2778 debug_count++;
2779 }
2780
2781 if (debug_count)
028d4092 2782 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
b5b8b0ac
AO
2783 else
2784 cur_debug_insn_uid++;
2785 }
2786 else
2787 for (insn = first; insn; insn = NEXT_INSN (insn))
2788 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2789
2790 cur_insn_uid++;
23b2ce53 2791}
23b2ce53 2792\f
750c9258 2793/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2794 structure. This routine should only be called once. */
23b2ce53 2795
fd743bc1 2796static void
6bb9bf63 2797unshare_all_rtl_1 (rtx_insn *insn)
23b2ce53 2798{
d1b81779 2799 /* Unshare just about everything else. */
2c07f13b 2800 unshare_all_rtl_in_chain (insn);
750c9258 2801
23b2ce53
RS
2802 /* Make sure the addresses of stack slots found outside the insn chain
2803 (such as, in DECL_RTL of a variable) are not shared
2804 with the insn chain.
2805
2806 This special care is necessary when the stack slot MEM does not
2807 actually appear in the insn chain. If it does appear, its address
2808 is unshared from all else at that point. */
8c39f8ae
TS
2809 unsigned int i;
2810 rtx temp;
2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2812 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
23b2ce53
RS
2813}
2814
750c9258 2815/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2816 structure, again. This is a fairly expensive thing to do so it
2817 should be done sparingly. */
2818
2819void
6bb9bf63 2820unshare_all_rtl_again (rtx_insn *insn)
d1b81779 2821{
6bb9bf63 2822 rtx_insn *p;
624c87aa
RE
2823 tree decl;
2824
d1b81779 2825 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2826 if (INSN_P (p))
d1b81779
GK
2827 {
2828 reset_used_flags (PATTERN (p));
2829 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2830 if (CALL_P (p))
2831 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2832 }
624c87aa 2833
2d4aecb3 2834 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2835 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2836
624c87aa 2837 /* Make sure that virtual parameters are not shared. */
910ad8de 2838 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2839 set_used_flags (DECL_RTL (decl));
624c87aa 2840
8c39f8ae
TS
2841 rtx temp;
2842 unsigned int i;
2843 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2844 reset_used_flags (temp);
624c87aa 2845
b4aaa77b 2846 unshare_all_rtl_1 (insn);
fd743bc1
PB
2847}
2848
c2924966 2849unsigned int
fd743bc1
PB
2850unshare_all_rtl (void)
2851{
b4aaa77b 2852 unshare_all_rtl_1 (get_insns ());
60ebe8ce
JJ
2853
2854 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2855 {
2856 if (DECL_RTL_SET_P (decl))
2857 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2858 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2859 }
2860
c2924966 2861 return 0;
d1b81779
GK
2862}
2863
ef330312 2864
2c07f13b
JH
2865/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2866 Recursively does the same for subexpressions. */
2867
2868static void
2869verify_rtx_sharing (rtx orig, rtx insn)
2870{
2871 rtx x = orig;
2872 int i;
2873 enum rtx_code code;
2874 const char *format_ptr;
2875
2876 if (x == 0)
2877 return;
2878
2879 code = GET_CODE (x);
2880
2881 /* These types may be freely shared. */
2882
2883 switch (code)
2884 {
2885 case REG:
0ca5af51
AO
2886 case DEBUG_EXPR:
2887 case VALUE:
d8116890 2888 CASE_CONST_ANY:
2c07f13b
JH
2889 case SYMBOL_REF:
2890 case LABEL_REF:
2891 case CODE_LABEL:
2892 case PC:
2893 case CC0:
3810076b 2894 case RETURN:
26898771 2895 case SIMPLE_RETURN:
2c07f13b 2896 case SCRATCH:
3e89ed8d 2897 /* SCRATCH must be shared because they represent distinct values. */
c5c5ba89 2898 return;
3e89ed8d 2899 case CLOBBER:
c5c5ba89
JH
2900 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2901 clobbers or clobbers of hard registers that originated as pseudos.
2902 This is needed to allow safe register renaming. */
d7ae3739
EB
2903 if (REG_P (XEXP (x, 0))
2904 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2905 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
2906 return;
2907 break;
2c07f13b
JH
2908
2909 case CONST:
6fb5fa3c 2910 if (shared_const_p (orig))
2c07f13b
JH
2911 return;
2912 break;
2913
2914 case MEM:
2915 /* A MEM is allowed to be shared if its address is constant. */
2916 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2917 || reload_completed || reload_in_progress)
2918 return;
2919
2920 break;
2921
2922 default:
2923 break;
2924 }
2925
2926 /* This rtx may not be shared. If it has already been seen,
2927 replace it with a copy of itself. */
b2b29377 2928 if (flag_checking && RTX_FLAG (x, used))
2c07f13b 2929 {
ab532386 2930 error ("invalid rtl sharing found in the insn");
2c07f13b 2931 debug_rtx (insn);
ab532386 2932 error ("shared rtx");
2c07f13b 2933 debug_rtx (x);
ab532386 2934 internal_error ("internal consistency failure");
2c07f13b 2935 }
1a2caa7a 2936 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2937
2c07f13b
JH
2938 RTX_FLAG (x, used) = 1;
2939
6614fd40 2940 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2941
2942 format_ptr = GET_RTX_FORMAT (code);
2943
2944 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2945 {
2946 switch (*format_ptr++)
2947 {
2948 case 'e':
2949 verify_rtx_sharing (XEXP (x, i), insn);
2950 break;
2951
2952 case 'E':
2953 if (XVEC (x, i) != NULL)
2954 {
2955 int j;
2956 int len = XVECLEN (x, i);
2957
2958 for (j = 0; j < len; j++)
2959 {
1a2caa7a
NS
2960 /* We allow sharing of ASM_OPERANDS inside single
2961 instruction. */
2c07f13b 2962 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2963 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2964 == ASM_OPERANDS))
2c07f13b
JH
2965 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2966 else
2967 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2968 }
2969 }
2970 break;
2971 }
2972 }
2973 return;
2974}
2975
0e0f87d4
SB
2976/* Reset used-flags for INSN. */
2977
2978static void
2979reset_insn_used_flags (rtx insn)
2980{
2981 gcc_assert (INSN_P (insn));
2982 reset_used_flags (PATTERN (insn));
2983 reset_used_flags (REG_NOTES (insn));
2984 if (CALL_P (insn))
2985 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2986}
2987
a24243a0 2988/* Go through all the RTL insn bodies and clear all the USED bits. */
2c07f13b 2989
a24243a0
AK
2990static void
2991reset_all_used_flags (void)
2c07f13b 2992{
dc01c3d1 2993 rtx_insn *p;
2c07f13b
JH
2994
2995 for (p = get_insns (); p; p = NEXT_INSN (p))
2996 if (INSN_P (p))
2997 {
0e0f87d4
SB
2998 rtx pat = PATTERN (p);
2999 if (GET_CODE (pat) != SEQUENCE)
3000 reset_insn_used_flags (p);
3001 else
2954a813 3002 {
0e0f87d4
SB
3003 gcc_assert (REG_NOTES (p) == NULL);
3004 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
3005 {
3006 rtx insn = XVECEXP (pat, 0, i);
3007 if (INSN_P (insn))
3008 reset_insn_used_flags (insn);
3009 }
2954a813 3010 }
2c07f13b 3011 }
a24243a0
AK
3012}
3013
0e0f87d4
SB
3014/* Verify sharing in INSN. */
3015
3016static void
3017verify_insn_sharing (rtx insn)
3018{
3019 gcc_assert (INSN_P (insn));
4b498f72
JJ
3020 verify_rtx_sharing (PATTERN (insn), insn);
3021 verify_rtx_sharing (REG_NOTES (insn), insn);
0e0f87d4 3022 if (CALL_P (insn))
4b498f72 3023 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
0e0f87d4
SB
3024}
3025
a24243a0
AK
3026/* Go through all the RTL insn bodies and check that there is no unexpected
3027 sharing in between the subexpressions. */
3028
3029DEBUG_FUNCTION void
3030verify_rtl_sharing (void)
3031{
dc01c3d1 3032 rtx_insn *p;
a24243a0
AK
3033
3034 timevar_push (TV_VERIFY_RTL_SHARING);
3035
3036 reset_all_used_flags ();
2c07f13b
JH
3037
3038 for (p = get_insns (); p; p = NEXT_INSN (p))
3039 if (INSN_P (p))
3040 {
0e0f87d4
SB
3041 rtx pat = PATTERN (p);
3042 if (GET_CODE (pat) != SEQUENCE)
3043 verify_insn_sharing (p);
3044 else
3045 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
3046 {
3047 rtx insn = XVECEXP (pat, 0, i);
3048 if (INSN_P (insn))
3049 verify_insn_sharing (insn);
3050 }
2c07f13b 3051 }
a222c01a 3052
a24243a0
AK
3053 reset_all_used_flags ();
3054
a222c01a 3055 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
3056}
3057
d1b81779
GK
3058/* Go through all the RTL insn bodies and copy any invalid shared structure.
3059 Assumes the mark bits are cleared at entry. */
3060
2c07f13b 3061void
dc01c3d1 3062unshare_all_rtl_in_chain (rtx_insn *insn)
d1b81779
GK
3063{
3064 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 3065 if (INSN_P (insn))
d1b81779
GK
3066 {
3067 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3068 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
3069 if (CALL_P (insn))
3070 CALL_INSN_FUNCTION_USAGE (insn)
3071 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
3072 }
3073}
3074
2d4aecb3 3075/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
3076 shared. We never replace the DECL_RTLs themselves with a copy,
3077 but expressions mentioned into a DECL_RTL cannot be shared with
3078 expressions in the instruction stream.
3079
3080 Note that reload may convert pseudo registers into memories in-place.
3081 Pseudo registers are always shared, but MEMs never are. Thus if we
3082 reset the used flags on MEMs in the instruction stream, we must set
3083 them again on MEMs that appear in DECL_RTLs. */
3084
2d4aecb3 3085static void
5eb2a9f2 3086set_used_decls (tree blk)
2d4aecb3
AO
3087{
3088 tree t;
3089
3090 /* Mark decls. */
910ad8de 3091 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 3092 if (DECL_RTL_SET_P (t))
5eb2a9f2 3093 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
3094
3095 /* Now process sub-blocks. */
87caf699 3096 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 3097 set_used_decls (t);
2d4aecb3
AO
3098}
3099
23b2ce53 3100/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
3101 Recursively does the same for subexpressions. Uses
3102 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
3103
3104rtx
502b8322 3105copy_rtx_if_shared (rtx orig)
23b2ce53 3106{
32b32b16
AP
3107 copy_rtx_if_shared_1 (&orig);
3108 return orig;
3109}
3110
ff954f39
AP
3111/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3112 use. Recursively does the same for subexpressions. */
3113
32b32b16
AP
3114static void
3115copy_rtx_if_shared_1 (rtx *orig1)
3116{
3117 rtx x;
b3694847
SS
3118 int i;
3119 enum rtx_code code;
32b32b16 3120 rtx *last_ptr;
b3694847 3121 const char *format_ptr;
23b2ce53 3122 int copied = 0;
32b32b16
AP
3123 int length;
3124
3125 /* Repeat is used to turn tail-recursion into iteration. */
3126repeat:
3127 x = *orig1;
23b2ce53
RS
3128
3129 if (x == 0)
32b32b16 3130 return;
23b2ce53
RS
3131
3132 code = GET_CODE (x);
3133
3134 /* These types may be freely shared. */
3135
3136 switch (code)
3137 {
3138 case REG:
0ca5af51
AO
3139 case DEBUG_EXPR:
3140 case VALUE:
d8116890 3141 CASE_CONST_ANY:
23b2ce53 3142 case SYMBOL_REF:
2c07f13b 3143 case LABEL_REF:
23b2ce53
RS
3144 case CODE_LABEL:
3145 case PC:
3146 case CC0:
276e0224 3147 case RETURN:
26898771 3148 case SIMPLE_RETURN:
23b2ce53 3149 case SCRATCH:
0f41302f 3150 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 3151 return;
3e89ed8d 3152 case CLOBBER:
c5c5ba89
JH
3153 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3154 clobbers or clobbers of hard registers that originated as pseudos.
3155 This is needed to allow safe register renaming. */
d7ae3739
EB
3156 if (REG_P (XEXP (x, 0))
3157 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3158 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
3159 return;
3160 break;
23b2ce53 3161
b851ea09 3162 case CONST:
6fb5fa3c 3163 if (shared_const_p (x))
32b32b16 3164 return;
b851ea09
RK
3165 break;
3166
b5b8b0ac 3167 case DEBUG_INSN:
23b2ce53
RS
3168 case INSN:
3169 case JUMP_INSN:
3170 case CALL_INSN:
3171 case NOTE:
23b2ce53
RS
3172 case BARRIER:
3173 /* The chain of insns is not being copied. */
32b32b16 3174 return;
23b2ce53 3175
e9a25f70
JL
3176 default:
3177 break;
23b2ce53
RS
3178 }
3179
3180 /* This rtx may not be shared. If it has already been seen,
3181 replace it with a copy of itself. */
3182
2adc7f12 3183 if (RTX_FLAG (x, used))
23b2ce53 3184 {
aacd3885 3185 x = shallow_copy_rtx (x);
23b2ce53
RS
3186 copied = 1;
3187 }
2adc7f12 3188 RTX_FLAG (x, used) = 1;
23b2ce53
RS
3189
3190 /* Now scan the subexpressions recursively.
3191 We can store any replaced subexpressions directly into X
3192 since we know X is not shared! Any vectors in X
3193 must be copied if X was copied. */
3194
3195 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
3196 length = GET_RTX_LENGTH (code);
3197 last_ptr = NULL;
b8698a0f 3198
32b32b16 3199 for (i = 0; i < length; i++)
23b2ce53
RS
3200 {
3201 switch (*format_ptr++)
3202 {
3203 case 'e':
32b32b16
AP
3204 if (last_ptr)
3205 copy_rtx_if_shared_1 (last_ptr);
3206 last_ptr = &XEXP (x, i);
23b2ce53
RS
3207 break;
3208
3209 case 'E':
3210 if (XVEC (x, i) != NULL)
3211 {
b3694847 3212 int j;
f0722107 3213 int len = XVECLEN (x, i);
b8698a0f 3214
6614fd40
KH
3215 /* Copy the vector iff I copied the rtx and the length
3216 is nonzero. */
f0722107 3217 if (copied && len > 0)
8f985ec4 3218 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 3219
5d3cc252 3220 /* Call recursively on all inside the vector. */
f0722107 3221 for (j = 0; j < len; j++)
32b32b16
AP
3222 {
3223 if (last_ptr)
3224 copy_rtx_if_shared_1 (last_ptr);
3225 last_ptr = &XVECEXP (x, i, j);
3226 }
23b2ce53
RS
3227 }
3228 break;
3229 }
3230 }
32b32b16
AP
3231 *orig1 = x;
3232 if (last_ptr)
3233 {
3234 orig1 = last_ptr;
3235 goto repeat;
3236 }
3237 return;
23b2ce53
RS
3238}
3239
76369a82 3240/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 3241
76369a82
NF
3242static void
3243mark_used_flags (rtx x, int flag)
23b2ce53 3244{
b3694847
SS
3245 int i, j;
3246 enum rtx_code code;
3247 const char *format_ptr;
32b32b16 3248 int length;
23b2ce53 3249
32b32b16
AP
3250 /* Repeat is used to turn tail-recursion into iteration. */
3251repeat:
23b2ce53
RS
3252 if (x == 0)
3253 return;
3254
3255 code = GET_CODE (x);
3256
9faa82d8 3257 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
3258 for them. */
3259
3260 switch (code)
3261 {
3262 case REG:
0ca5af51
AO
3263 case DEBUG_EXPR:
3264 case VALUE:
d8116890 3265 CASE_CONST_ANY:
23b2ce53
RS
3266 case SYMBOL_REF:
3267 case CODE_LABEL:
3268 case PC:
3269 case CC0:
276e0224 3270 case RETURN:
26898771 3271 case SIMPLE_RETURN:
23b2ce53
RS
3272 return;
3273
b5b8b0ac 3274 case DEBUG_INSN:
23b2ce53
RS
3275 case INSN:
3276 case JUMP_INSN:
3277 case CALL_INSN:
3278 case NOTE:
3279 case LABEL_REF:
3280 case BARRIER:
3281 /* The chain of insns is not being copied. */
3282 return;
750c9258 3283
e9a25f70
JL
3284 default:
3285 break;
23b2ce53
RS
3286 }
3287
76369a82 3288 RTX_FLAG (x, used) = flag;
23b2ce53
RS
3289
3290 format_ptr = GET_RTX_FORMAT (code);
32b32b16 3291 length = GET_RTX_LENGTH (code);
b8698a0f 3292
32b32b16 3293 for (i = 0; i < length; i++)
23b2ce53
RS
3294 {
3295 switch (*format_ptr++)
3296 {
3297 case 'e':
32b32b16
AP
3298 if (i == length-1)
3299 {
3300 x = XEXP (x, i);
3301 goto repeat;
3302 }
76369a82 3303 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
3304 break;
3305
3306 case 'E':
3307 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 3308 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
3309 break;
3310 }
3311 }
3312}
2c07f13b 3313
76369a82 3314/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
3315 to look for shared sub-parts. */
3316
3317void
76369a82 3318reset_used_flags (rtx x)
2c07f13b 3319{
76369a82
NF
3320 mark_used_flags (x, 0);
3321}
2c07f13b 3322
76369a82
NF
3323/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3324 to look for shared sub-parts. */
2c07f13b 3325
76369a82
NF
3326void
3327set_used_flags (rtx x)
3328{
3329 mark_used_flags (x, 1);
2c07f13b 3330}
23b2ce53
RS
3331\f
3332/* Copy X if necessary so that it won't be altered by changes in OTHER.
3333 Return X or the rtx for the pseudo reg the value of X was copied into.
3334 OTHER must be valid as a SET_DEST. */
3335
3336rtx
502b8322 3337make_safe_from (rtx x, rtx other)
23b2ce53
RS
3338{
3339 while (1)
3340 switch (GET_CODE (other))
3341 {
3342 case SUBREG:
3343 other = SUBREG_REG (other);
3344 break;
3345 case STRICT_LOW_PART:
3346 case SIGN_EXTEND:
3347 case ZERO_EXTEND:
3348 other = XEXP (other, 0);
3349 break;
3350 default:
3351 goto done;
3352 }
3353 done:
3c0cb5de 3354 if ((MEM_P (other)
23b2ce53 3355 && ! CONSTANT_P (x)
f8cfc6aa 3356 && !REG_P (x)
23b2ce53 3357 && GET_CODE (x) != SUBREG)
f8cfc6aa 3358 || (REG_P (other)
23b2ce53
RS
3359 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3360 || reg_mentioned_p (other, x))))
3361 {
3362 rtx temp = gen_reg_rtx (GET_MODE (x));
3363 emit_move_insn (temp, x);
3364 return temp;
3365 }
3366 return x;
3367}
3368\f
3369/* Emission of insns (adding them to the doubly-linked list). */
3370
23b2ce53
RS
3371/* Return the last insn emitted, even if it is in a sequence now pushed. */
3372
db76cf1e 3373rtx_insn *
502b8322 3374get_last_insn_anywhere (void)
23b2ce53 3375{
614d5bd8
AM
3376 struct sequence_stack *seq;
3377 for (seq = get_current_sequence (); seq; seq = seq->next)
3378 if (seq->last != 0)
3379 return seq->last;
23b2ce53
RS
3380 return 0;
3381}
3382
2a496e8b
JDA
3383/* Return the first nonnote insn emitted in current sequence or current
3384 function. This routine looks inside SEQUENCEs. */
3385
e4685bc8 3386rtx_insn *
502b8322 3387get_first_nonnote_insn (void)
2a496e8b 3388{
dc01c3d1 3389 rtx_insn *insn = get_insns ();
91373fe8
JDA
3390
3391 if (insn)
3392 {
3393 if (NOTE_P (insn))
3394 for (insn = next_insn (insn);
3395 insn && NOTE_P (insn);
3396 insn = next_insn (insn))
3397 continue;
3398 else
3399 {
2ca202e7 3400 if (NONJUMP_INSN_P (insn)
91373fe8 3401 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3402 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
91373fe8
JDA
3403 }
3404 }
2a496e8b
JDA
3405
3406 return insn;
3407}
3408
3409/* Return the last nonnote insn emitted in current sequence or current
3410 function. This routine looks inside SEQUENCEs. */
3411
e4685bc8 3412rtx_insn *
502b8322 3413get_last_nonnote_insn (void)
2a496e8b 3414{
dc01c3d1 3415 rtx_insn *insn = get_last_insn ();
91373fe8
JDA
3416
3417 if (insn)
3418 {
3419 if (NOTE_P (insn))
3420 for (insn = previous_insn (insn);
3421 insn && NOTE_P (insn);
3422 insn = previous_insn (insn))
3423 continue;
3424 else
3425 {
dc01c3d1
DM
3426 if (NONJUMP_INSN_P (insn))
3427 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3428 insn = seq->insn (seq->len () - 1);
91373fe8
JDA
3429 }
3430 }
2a496e8b
JDA
3431
3432 return insn;
3433}
3434
b5b8b0ac
AO
3435/* Return the number of actual (non-debug) insns emitted in this
3436 function. */
3437
3438int
3439get_max_insn_count (void)
3440{
3441 int n = cur_insn_uid;
3442
3443 /* The table size must be stable across -g, to avoid codegen
3444 differences due to debug insns, and not be affected by
3445 -fmin-insn-uid, to avoid excessive table size and to simplify
3446 debugging of -fcompare-debug failures. */
028d4092 3447 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
b5b8b0ac
AO
3448 n -= cur_debug_insn_uid;
3449 else
028d4092 3450 n -= param_min_nondebug_insn_uid;
b5b8b0ac
AO
3451
3452 return n;
3453}
3454
23b2ce53
RS
3455\f
3456/* Return the next insn. If it is a SEQUENCE, return the first insn
3457 of the sequence. */
3458
eb51c837 3459rtx_insn *
4ce524a1 3460next_insn (rtx_insn *insn)
23b2ce53 3461{
75547801
KG
3462 if (insn)
3463 {
3464 insn = NEXT_INSN (insn);
3465 if (insn && NONJUMP_INSN_P (insn)
3466 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3467 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
75547801 3468 }
23b2ce53 3469
dc01c3d1 3470 return insn;
23b2ce53
RS
3471}
3472
3473/* Return the previous insn. If it is a SEQUENCE, return the last insn
3474 of the sequence. */
3475
eb51c837 3476rtx_insn *
4ce524a1 3477previous_insn (rtx_insn *insn)
23b2ce53 3478{
75547801
KG
3479 if (insn)
3480 {
3481 insn = PREV_INSN (insn);
dc01c3d1
DM
3482 if (insn && NONJUMP_INSN_P (insn))
3483 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3484 insn = seq->insn (seq->len () - 1);
75547801 3485 }
23b2ce53 3486
dc01c3d1 3487 return insn;
23b2ce53
RS
3488}
3489
3490/* Return the next insn after INSN that is not a NOTE. This routine does not
3491 look inside SEQUENCEs. */
3492
eb51c837 3493rtx_insn *
c9b0a227 3494next_nonnote_insn (rtx_insn *insn)
23b2ce53 3495{
75547801
KG
3496 while (insn)
3497 {
3498 insn = NEXT_INSN (insn);
3499 if (insn == 0 || !NOTE_P (insn))
3500 break;
3501 }
23b2ce53 3502
dc01c3d1 3503 return insn;
23b2ce53
RS
3504}
3505
f40dd646
AO
3506/* Return the next insn after INSN that is not a DEBUG_INSN. This
3507 routine does not look inside SEQUENCEs. */
1e211590 3508
eb51c837 3509rtx_insn *
f40dd646 3510next_nondebug_insn (rtx_insn *insn)
1e211590
DD
3511{
3512 while (insn)
3513 {
3514 insn = NEXT_INSN (insn);
f40dd646 3515 if (insn == 0 || !DEBUG_INSN_P (insn))
1e211590 3516 break;
1e211590
DD
3517 }
3518
dc01c3d1 3519 return insn;
1e211590
DD
3520}
3521
23b2ce53
RS
3522/* Return the previous insn before INSN that is not a NOTE. This routine does
3523 not look inside SEQUENCEs. */
3524
eb51c837 3525rtx_insn *
c9b0a227 3526prev_nonnote_insn (rtx_insn *insn)
23b2ce53 3527{
75547801
KG
3528 while (insn)
3529 {
3530 insn = PREV_INSN (insn);
3531 if (insn == 0 || !NOTE_P (insn))
3532 break;
3533 }
23b2ce53 3534
dc01c3d1 3535 return insn;
23b2ce53
RS
3536}
3537
f40dd646
AO
3538/* Return the previous insn before INSN that is not a DEBUG_INSN.
3539 This routine does not look inside SEQUENCEs. */
896aa4ea 3540
eb51c837 3541rtx_insn *
f40dd646 3542prev_nondebug_insn (rtx_insn *insn)
896aa4ea
DD
3543{
3544 while (insn)
3545 {
3546 insn = PREV_INSN (insn);
f40dd646 3547 if (insn == 0 || !DEBUG_INSN_P (insn))
896aa4ea 3548 break;
896aa4ea
DD
3549 }
3550
dc01c3d1 3551 return insn;
896aa4ea
DD
3552}
3553
f40dd646
AO
3554/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3555 This routine does not look inside SEQUENCEs. */
b5b8b0ac 3556
eb51c837 3557rtx_insn *
f40dd646 3558next_nonnote_nondebug_insn (rtx_insn *insn)
b5b8b0ac
AO
3559{
3560 while (insn)
3561 {
3562 insn = NEXT_INSN (insn);
f40dd646 3563 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
b5b8b0ac
AO
3564 break;
3565 }
3566
dc01c3d1 3567 return insn;
b5b8b0ac
AO
3568}
3569
f40dd646
AO
3570/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3571 but stop the search before we enter another basic block. This
3572 routine does not look inside SEQUENCEs. */
b5b8b0ac 3573
eb51c837 3574rtx_insn *
f40dd646 3575next_nonnote_nondebug_insn_bb (rtx_insn *insn)
b5b8b0ac
AO
3576{
3577 while (insn)
3578 {
f40dd646
AO
3579 insn = NEXT_INSN (insn);
3580 if (insn == 0)
3581 break;
3582 if (DEBUG_INSN_P (insn))
3583 continue;
3584 if (!NOTE_P (insn))
b5b8b0ac 3585 break;
f40dd646
AO
3586 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3587 return NULL;
b5b8b0ac
AO
3588 }
3589
dc01c3d1 3590 return insn;
b5b8b0ac
AO
3591}
3592
f40dd646 3593/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
f0fc0803
JJ
3594 This routine does not look inside SEQUENCEs. */
3595
eb51c837 3596rtx_insn *
f40dd646 3597prev_nonnote_nondebug_insn (rtx_insn *insn)
f0fc0803
JJ
3598{
3599 while (insn)
3600 {
f40dd646 3601 insn = PREV_INSN (insn);
f0fc0803
JJ
3602 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3603 break;
3604 }
3605
dc01c3d1 3606 return insn;
f0fc0803
JJ
3607}
3608
f40dd646
AO
3609/* Return the previous insn before INSN that is not a NOTE nor
3610 DEBUG_INSN, but stop the search before we enter another basic
3611 block. This routine does not look inside SEQUENCEs. */
f0fc0803 3612
eb51c837 3613rtx_insn *
f40dd646 3614prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
f0fc0803
JJ
3615{
3616 while (insn)
3617 {
3618 insn = PREV_INSN (insn);
f40dd646 3619 if (insn == 0)
f0fc0803 3620 break;
f40dd646
AO
3621 if (DEBUG_INSN_P (insn))
3622 continue;
3623 if (!NOTE_P (insn))
3624 break;
3625 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3626 return NULL;
f0fc0803
JJ
3627 }
3628
dc01c3d1 3629 return insn;
f0fc0803
JJ
3630}
3631
ec2d7121 3632/* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
23b2ce53 3633 or 0, if there is none. This routine does not look inside
0f41302f 3634 SEQUENCEs. */
23b2ce53 3635
eb51c837 3636rtx_insn *
4dea3bff 3637next_real_insn (rtx_insn *insn)
23b2ce53 3638{
75547801
KG
3639 while (insn)
3640 {
3641 insn = NEXT_INSN (insn);
3642 if (insn == 0 || INSN_P (insn))
3643 break;
3644 }
23b2ce53 3645
dc01c3d1 3646 return insn;
23b2ce53
RS
3647}
3648
ec2d7121 3649/* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
23b2ce53
RS
3650 or 0, if there is none. This routine does not look inside
3651 SEQUENCEs. */
3652
eb51c837 3653rtx_insn *
d8fd56b2 3654prev_real_insn (rtx_insn *insn)
23b2ce53 3655{
75547801
KG
3656 while (insn)
3657 {
3658 insn = PREV_INSN (insn);
3659 if (insn == 0 || INSN_P (insn))
3660 break;
3661 }
23b2ce53 3662
dc01c3d1 3663 return insn;
23b2ce53
RS
3664}
3665
ec2d7121
JJ
3666/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3667 or 0, if there is none. This routine does not look inside
3668 SEQUENCEs. */
3669
3670rtx_insn *
3671next_real_nondebug_insn (rtx uncast_insn)
3672{
3673 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3674
3675 while (insn)
3676 {
3677 insn = NEXT_INSN (insn);
3678 if (insn == 0 || NONDEBUG_INSN_P (insn))
3679 break;
3680 }
3681
3682 return insn;
3683}
3684
3685/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3686 or 0, if there is none. This routine does not look inside
3687 SEQUENCEs. */
3688
3689rtx_insn *
3690prev_real_nondebug_insn (rtx_insn *insn)
3691{
3692 while (insn)
3693 {
3694 insn = PREV_INSN (insn);
3695 if (insn == 0 || NONDEBUG_INSN_P (insn))
3696 break;
3697 }
3698
3699 return insn;
3700}
3701
ee960939
OH
3702/* Return the last CALL_INSN in the current list, or 0 if there is none.
3703 This routine does not look inside SEQUENCEs. */
3704
049cfc4a 3705rtx_call_insn *
502b8322 3706last_call_insn (void)
ee960939 3707{
049cfc4a 3708 rtx_insn *insn;
ee960939
OH
3709
3710 for (insn = get_last_insn ();
4b4bf941 3711 insn && !CALL_P (insn);
ee960939
OH
3712 insn = PREV_INSN (insn))
3713 ;
3714
049cfc4a 3715 return safe_as_a <rtx_call_insn *> (insn);
ee960939
OH
3716}
3717
23b2ce53 3718/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3719 does not look inside SEQUENCEs. After reload this also skips over
3720 standalone USE and CLOBBER insn. */
23b2ce53 3721
69732dcb 3722int
7c9796ed 3723active_insn_p (const rtx_insn *insn)
69732dcb 3724{
4b4bf941 3725 return (CALL_P (insn) || JUMP_P (insn)
39718607 3726 || JUMP_TABLE_DATA_P (insn) /* FIXME */
4b4bf941 3727 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3728 && (! reload_completed
3729 || (GET_CODE (PATTERN (insn)) != USE
3730 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3731}
3732
eb51c837 3733rtx_insn *
7c9796ed 3734next_active_insn (rtx_insn *insn)
23b2ce53 3735{
75547801
KG
3736 while (insn)
3737 {
3738 insn = NEXT_INSN (insn);
3739 if (insn == 0 || active_insn_p (insn))
3740 break;
3741 }
23b2ce53 3742
dc01c3d1 3743 return insn;
23b2ce53
RS
3744}
3745
3746/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3747 does not look inside SEQUENCEs. After reload this also skips over
3748 standalone USE and CLOBBER insn. */
23b2ce53 3749
eb51c837 3750rtx_insn *
7c9796ed 3751prev_active_insn (rtx_insn *insn)
23b2ce53 3752{
75547801
KG
3753 while (insn)
3754 {
3755 insn = PREV_INSN (insn);
3756 if (insn == 0 || active_insn_p (insn))
3757 break;
3758 }
23b2ce53 3759
dc01c3d1 3760 return insn;
23b2ce53 3761}
23b2ce53 3762\f
23b2ce53
RS
3763/* Return the next insn that uses CC0 after INSN, which is assumed to
3764 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3765 applied to the result of this function should yield INSN).
3766
3767 Normally, this is simply the next insn. However, if a REG_CC_USER note
3768 is present, it contains the insn that uses CC0.
3769
3770 Return 0 if we can't find the insn. */
3771
75b46023 3772rtx_insn *
475edec0 3773next_cc0_user (rtx_insn *insn)
23b2ce53 3774{
906c4e36 3775 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3776
3777 if (note)
75b46023 3778 return safe_as_a <rtx_insn *> (XEXP (note, 0));
23b2ce53
RS
3779
3780 insn = next_nonnote_insn (insn);
4b4bf941 3781 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3782 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
23b2ce53 3783
2c3c49de 3784 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
dc01c3d1 3785 return insn;
23b2ce53
RS
3786
3787 return 0;
3788}
3789
3790/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3791 note, it is the previous insn. */
3792
75b46023 3793rtx_insn *
5c8db5b4 3794prev_cc0_setter (rtx_insn *insn)
23b2ce53 3795{
906c4e36 3796 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3797
3798 if (note)
75b46023 3799 return safe_as_a <rtx_insn *> (XEXP (note, 0));
23b2ce53
RS
3800
3801 insn = prev_nonnote_insn (insn);
5b0264cb 3802 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53 3803
dc01c3d1 3804 return insn;
23b2ce53 3805}
e5bef2e4 3806
594f8779
RZ
3807/* Find a RTX_AUTOINC class rtx which matches DATA. */
3808
3809static int
9021b8ec 3810find_auto_inc (const_rtx x, const_rtx reg)
594f8779 3811{
9021b8ec
RS
3812 subrtx_iterator::array_type array;
3813 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
594f8779 3814 {
9021b8ec
RS
3815 const_rtx x = *iter;
3816 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3817 && rtx_equal_p (reg, XEXP (x, 0)))
3818 return true;
594f8779 3819 }
9021b8ec 3820 return false;
594f8779 3821}
594f8779 3822
e5bef2e4
HB
3823/* Increment the label uses for all labels present in rtx. */
3824
3825static void
502b8322 3826mark_label_nuses (rtx x)
e5bef2e4 3827{
b3694847
SS
3828 enum rtx_code code;
3829 int i, j;
3830 const char *fmt;
e5bef2e4
HB
3831
3832 code = GET_CODE (x);
04a121a7
TS
3833 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3834 LABEL_NUSES (label_ref_label (x))++;
e5bef2e4
HB
3835
3836 fmt = GET_RTX_FORMAT (code);
3837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3838 {
3839 if (fmt[i] == 'e')
0fb7aeda 3840 mark_label_nuses (XEXP (x, i));
e5bef2e4 3841 else if (fmt[i] == 'E')
0fb7aeda 3842 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3843 mark_label_nuses (XVECEXP (x, i, j));
3844 }
3845}
3846
23b2ce53
RS
3847\f
3848/* Try splitting insns that can be split for better scheduling.
3849 PAT is the pattern which might split.
3850 TRIAL is the insn providing PAT.
cc2902df 3851 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3852
3853 If this routine succeeds in splitting, it returns the first or last
11147ebe 3854 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3855 returns TRIAL. If the insn to be returned can be split, it will be. */
3856
53f04688 3857rtx_insn *
bb5c4956 3858try_split (rtx pat, rtx_insn *trial, int last)
23b2ce53 3859{
d4eff95b 3860 rtx_insn *before, *after;
dc01c3d1
DM
3861 rtx note;
3862 rtx_insn *seq, *tem;
5fa396ad 3863 profile_probability probability;
dc01c3d1 3864 rtx_insn *insn_last, *insn;
599aedd9 3865 int njumps = 0;
e67d1102 3866 rtx_insn *call_insn = NULL;
6b24c259 3867
cd9c1ca8
RH
3868 /* We're not good at redistributing frame information. */
3869 if (RTX_FRAME_RELATED_P (trial))
dc01c3d1 3870 return trial;
cd9c1ca8 3871
6b24c259
JH
3872 if (any_condjump_p (trial)
3873 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
5fa396ad
JH
3874 split_branch_probability
3875 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3876 else
3877 split_branch_probability = profile_probability::uninitialized ();
3878
6b24c259
JH
3879 probability = split_branch_probability;
3880
bb5c4956 3881 seq = split_insns (pat, trial);
6b24c259 3882
5fa396ad 3883 split_branch_probability = profile_probability::uninitialized ();
23b2ce53 3884
599aedd9 3885 if (!seq)
dc01c3d1 3886 return trial;
599aedd9
RH
3887
3888 /* Avoid infinite loop if any insn of the result matches
3889 the original pattern. */
3890 insn_last = seq;
3891 while (1)
23b2ce53 3892 {
599aedd9
RH
3893 if (INSN_P (insn_last)
3894 && rtx_equal_p (PATTERN (insn_last), pat))
dc01c3d1 3895 return trial;
599aedd9
RH
3896 if (!NEXT_INSN (insn_last))
3897 break;
3898 insn_last = NEXT_INSN (insn_last);
3899 }
750c9258 3900
6fb5fa3c
DB
3901 /* We will be adding the new sequence to the function. The splitters
3902 may have introduced invalid RTL sharing, so unshare the sequence now. */
3903 unshare_all_rtl_in_chain (seq);
3904
339ba33b 3905 /* Mark labels and copy flags. */
599aedd9
RH
3906 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3907 {
4b4bf941 3908 if (JUMP_P (insn))
599aedd9 3909 {
339ba33b
RS
3910 if (JUMP_P (trial))
3911 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
599aedd9
RH
3912 mark_jump_label (PATTERN (insn), insn, 0);
3913 njumps++;
5fa396ad 3914 if (probability.initialized_p ()
599aedd9
RH
3915 && any_condjump_p (insn)
3916 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3917 {
599aedd9
RH
3918 /* We can preserve the REG_BR_PROB notes only if exactly
3919 one jump is created, otherwise the machine description
3920 is responsible for this step using
3921 split_branch_probability variable. */
5b0264cb 3922 gcc_assert (njumps == 1);
5fa396ad 3923 add_reg_br_prob_note (insn, probability);
2f937369 3924 }
599aedd9
RH
3925 }
3926 }
3927
3928 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3929 in SEQ and copy any additional information across. */
4b4bf941 3930 if (CALL_P (trial))
599aedd9
RH
3931 {
3932 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3933 if (CALL_P (insn))
599aedd9 3934 {
4f660b15
RO
3935 gcc_assert (call_insn == NULL_RTX);
3936 call_insn = insn;
3937
65712d5c
RS
3938 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3939 target may have explicitly specified. */
00b94487 3940 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3941 while (*p)
3942 p = &XEXP (*p, 1);
3943 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3944
3945 /* If the old call was a sibling call, the new one must
3946 be too. */
599aedd9
RH
3947 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3948 }
3949 }
4b5e8abe 3950
599aedd9
RH
3951 /* Copy notes, particularly those related to the CFG. */
3952 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3953 {
3954 switch (REG_NOTE_KIND (note))
3955 {
3956 case REG_EH_REGION:
1d65f45c 3957 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3958 break;
216183ce 3959
599aedd9
RH
3960 case REG_NORETURN:
3961 case REG_SETJMP:
0a35513e 3962 case REG_TM:
5c5f0b65 3963 case REG_CALL_NOCF_CHECK:
00b94487 3964 case REG_CALL_ARG_LOCATION:
594f8779 3965 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3966 {
4b4bf941 3967 if (CALL_P (insn))
65c5f2a6 3968 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3969 }
599aedd9 3970 break;
d6e95df8 3971
599aedd9 3972 case REG_NON_LOCAL_GOTO:
73f1289e 3973 case REG_LABEL_TARGET:
594f8779 3974 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3975 {
4b4bf941 3976 if (JUMP_P (insn))
65c5f2a6 3977 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3978 }
599aedd9 3979 break;
e5bef2e4 3980
594f8779 3981 case REG_INC:
760edf20
TS
3982 if (!AUTO_INC_DEC)
3983 break;
3984
594f8779
RZ
3985 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3986 {
3987 rtx reg = XEXP (note, 0);
3988 if (!FIND_REG_INC_NOTE (insn, reg)
9021b8ec 3989 && find_auto_inc (PATTERN (insn), reg))
65c5f2a6 3990 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3991 }
3992 break;
594f8779 3993
9a08d230 3994 case REG_ARGS_SIZE:
68184180 3995 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
9a08d230
RH
3996 break;
3997
4f660b15
RO
3998 case REG_CALL_DECL:
3999 gcc_assert (call_insn != NULL_RTX);
4000 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
4001 break;
4002
599aedd9
RH
4003 default:
4004 break;
23b2ce53 4005 }
599aedd9
RH
4006 }
4007
4008 /* If there are LABELS inside the split insns increment the
4009 usage count so we don't delete the label. */
cf7c4aa6 4010 if (INSN_P (trial))
599aedd9
RH
4011 {
4012 insn = insn_last;
4013 while (insn != NULL_RTX)
23b2ce53 4014 {
cf7c4aa6 4015 /* JUMP_P insns have already been "marked" above. */
4b4bf941 4016 if (NONJUMP_INSN_P (insn))
599aedd9 4017 mark_label_nuses (PATTERN (insn));
23b2ce53 4018
599aedd9
RH
4019 insn = PREV_INSN (insn);
4020 }
23b2ce53
RS
4021 }
4022
d4eff95b
JC
4023 before = PREV_INSN (trial);
4024 after = NEXT_INSN (trial);
4025
45309d28 4026 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
4027
4028 delete_insn (trial);
599aedd9
RH
4029
4030 /* Recursively call try_split for each new insn created; by the
4031 time control returns here that insn will be fully split, so
4032 set LAST and continue from the insn after the one returned.
4033 We can't use next_active_insn here since AFTER may be a note.
4034 Ignore deleted insns, which can be occur if not optimizing. */
4035 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4654c0cf 4036 if (! tem->deleted () && INSN_P (tem))
599aedd9
RH
4037 tem = try_split (PATTERN (tem), tem, 1);
4038
4039 /* Return either the first or the last insn, depending on which was
4040 requested. */
4041 return last
5936d944 4042 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 4043 : NEXT_INSN (before);
23b2ce53
RS
4044}
4045\f
4046/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 4047 Store PATTERN in the pattern slots. */
23b2ce53 4048
167b9fae 4049rtx_insn *
502b8322 4050make_insn_raw (rtx pattern)
23b2ce53 4051{
167b9fae 4052 rtx_insn *insn;
23b2ce53 4053
167b9fae 4054 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
23b2ce53 4055
43127294 4056 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
4057 PATTERN (insn) = pattern;
4058 INSN_CODE (insn) = -1;
1632afca 4059 REG_NOTES (insn) = NULL;
5368224f 4060 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4061 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 4062
47984720
NC
4063#ifdef ENABLE_RTL_CHECKING
4064 if (insn
2c3c49de 4065 && INSN_P (insn)
47984720
NC
4066 && (returnjump_p (insn)
4067 || (GET_CODE (insn) == SET
4068 && SET_DEST (insn) == pc_rtx)))
4069 {
d4ee4d25 4070 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
4071 debug_rtx (insn);
4072 }
4073#endif
750c9258 4074
23b2ce53
RS
4075 return insn;
4076}
4077
b5b8b0ac
AO
4078/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4079
167b9fae 4080static rtx_insn *
b5b8b0ac
AO
4081make_debug_insn_raw (rtx pattern)
4082{
167b9fae 4083 rtx_debug_insn *insn;
b5b8b0ac 4084
167b9fae 4085 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
b5b8b0ac 4086 INSN_UID (insn) = cur_debug_insn_uid++;
028d4092 4087 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
b5b8b0ac
AO
4088 INSN_UID (insn) = cur_insn_uid++;
4089
4090 PATTERN (insn) = pattern;
4091 INSN_CODE (insn) = -1;
4092 REG_NOTES (insn) = NULL;
5368224f 4093 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
4094 BLOCK_FOR_INSN (insn) = NULL;
4095
4096 return insn;
4097}
4098
2f937369 4099/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 4100
167b9fae 4101static rtx_insn *
502b8322 4102make_jump_insn_raw (rtx pattern)
23b2ce53 4103{
167b9fae 4104 rtx_jump_insn *insn;
23b2ce53 4105
167b9fae 4106 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
1632afca 4107 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
4108
4109 PATTERN (insn) = pattern;
4110 INSN_CODE (insn) = -1;
1632afca
RS
4111 REG_NOTES (insn) = NULL;
4112 JUMP_LABEL (insn) = NULL;
5368224f 4113 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4114 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
4115
4116 return insn;
4117}
aff507f4 4118
2f937369 4119/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4 4120
167b9fae 4121static rtx_insn *
502b8322 4122make_call_insn_raw (rtx pattern)
aff507f4 4123{
167b9fae 4124 rtx_call_insn *insn;
aff507f4 4125
167b9fae 4126 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
aff507f4
RK
4127 INSN_UID (insn) = cur_insn_uid++;
4128
4129 PATTERN (insn) = pattern;
4130 INSN_CODE (insn) = -1;
aff507f4
RK
4131 REG_NOTES (insn) = NULL;
4132 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 4133 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4134 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
4135
4136 return insn;
4137}
96fba521
SB
4138
4139/* Like `make_insn_raw' but make a NOTE instead of an insn. */
4140
66e8df53 4141static rtx_note *
96fba521
SB
4142make_note_raw (enum insn_note subtype)
4143{
4144 /* Some notes are never created this way at all. These notes are
4145 only created by patching out insns. */
4146 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4147 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4148
66e8df53 4149 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
96fba521
SB
4150 INSN_UID (note) = cur_insn_uid++;
4151 NOTE_KIND (note) = subtype;
4152 BLOCK_FOR_INSN (note) = NULL;
4153 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4154 return note;
4155}
23b2ce53 4156\f
96fba521
SB
4157/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4158 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4159 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4160
4161static inline void
9152e0aa 4162link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
96fba521 4163{
0f82e5c9
DM
4164 SET_PREV_INSN (insn) = prev;
4165 SET_NEXT_INSN (insn) = next;
96fba521
SB
4166 if (prev != NULL)
4167 {
0f82e5c9 4168 SET_NEXT_INSN (prev) = insn;
96fba521
SB
4169 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4170 {
e6eda746
DM
4171 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4172 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
96fba521
SB
4173 }
4174 }
4175 if (next != NULL)
4176 {
0f82e5c9 4177 SET_PREV_INSN (next) = insn;
96fba521 4178 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4179 {
4180 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4181 SET_PREV_INSN (sequence->insn (0)) = insn;
4182 }
96fba521 4183 }
3ccb989e
SB
4184
4185 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4186 {
e6eda746
DM
4187 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4188 SET_PREV_INSN (sequence->insn (0)) = prev;
4189 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3ccb989e 4190 }
96fba521
SB
4191}
4192
23b2ce53
RS
4193/* Add INSN to the end of the doubly-linked list.
4194 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4195
4196void
9152e0aa 4197add_insn (rtx_insn *insn)
23b2ce53 4198{
9152e0aa 4199 rtx_insn *prev = get_last_insn ();
96fba521 4200 link_insn_into_chain (insn, prev, NULL);
01512446 4201 if (get_insns () == NULL)
5936d944 4202 set_first_insn (insn);
5936d944 4203 set_last_insn (insn);
23b2ce53
RS
4204}
4205
96fba521 4206/* Add INSN into the doubly-linked list after insn AFTER. */
23b2ce53 4207
96fba521 4208static void
9152e0aa 4209add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
23b2ce53 4210{
9152e0aa 4211 rtx_insn *next = NEXT_INSN (after);
23b2ce53 4212
4654c0cf 4213 gcc_assert (!optimize || !after->deleted ());
ba213285 4214
96fba521 4215 link_insn_into_chain (insn, after, next);
23b2ce53 4216
96fba521 4217 if (next == NULL)
23b2ce53 4218 {
614d5bd8
AM
4219 struct sequence_stack *seq;
4220
4221 for (seq = get_current_sequence (); seq; seq = seq->next)
4222 if (after == seq->last)
4223 {
4224 seq->last = insn;
4225 break;
4226 }
23b2ce53 4227 }
96fba521
SB
4228}
4229
4230/* Add INSN into the doubly-linked list before insn BEFORE. */
4231
4232static void
9152e0aa 4233add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
96fba521 4234{
9152e0aa 4235 rtx_insn *prev = PREV_INSN (before);
96fba521 4236
4654c0cf 4237 gcc_assert (!optimize || !before->deleted ());
96fba521
SB
4238
4239 link_insn_into_chain (insn, prev, before);
4240
4241 if (prev == NULL)
23b2ce53 4242 {
614d5bd8 4243 struct sequence_stack *seq;
a0ae8e8d 4244
614d5bd8
AM
4245 for (seq = get_current_sequence (); seq; seq = seq->next)
4246 if (before == seq->first)
4247 {
4248 seq->first = insn;
4249 break;
4250 }
4251
4252 gcc_assert (seq);
23b2ce53 4253 }
96fba521
SB
4254}
4255
4256/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4257 If BB is NULL, an attempt is made to infer the bb from before.
4258
4259 This and the next function should be the only functions called
4260 to insert an insn once delay slots have been filled since only
4261 they know how to update a SEQUENCE. */
23b2ce53 4262
96fba521 4263void
4dea3bff 4264add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
96fba521
SB
4265{
4266 add_insn_after_nobb (insn, after);
4b4bf941
JQ
4267 if (!BARRIER_P (after)
4268 && !BARRIER_P (insn)
3c030e88
JH
4269 && (bb = BLOCK_FOR_INSN (after)))
4270 {
4271 set_block_for_insn (insn, bb);
38c1593d 4272 if (INSN_P (insn))
6fb5fa3c 4273 df_insn_rescan (insn);
3c030e88 4274 /* Should not happen as first in the BB is always
a1f300c0 4275 either NOTE or LABEL. */
a813c111 4276 if (BB_END (bb) == after
3c030e88 4277 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 4278 && !BARRIER_P (insn)
a38e7aa5 4279 && !NOTE_INSN_BASIC_BLOCK_P (insn))
1130d5e3 4280 BB_END (bb) = insn;
3c030e88 4281 }
23b2ce53
RS
4282}
4283
96fba521
SB
4284/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4285 If BB is NULL, an attempt is made to infer the bb from before.
4286
4287 This and the previous function should be the only functions called
4288 to insert an insn once delay slots have been filled since only
4289 they know how to update a SEQUENCE. */
a0ae8e8d
RK
4290
4291void
4dea3bff 4292add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
a0ae8e8d 4293{
96fba521 4294 add_insn_before_nobb (insn, before);
a0ae8e8d 4295
b8698a0f 4296 if (!bb
6fb5fa3c
DB
4297 && !BARRIER_P (before)
4298 && !BARRIER_P (insn))
4299 bb = BLOCK_FOR_INSN (before);
4300
4301 if (bb)
3c030e88
JH
4302 {
4303 set_block_for_insn (insn, bb);
38c1593d 4304 if (INSN_P (insn))
6fb5fa3c 4305 df_insn_rescan (insn);
5b0264cb 4306 /* Should not happen as first in the BB is always either NOTE or
43e05e45 4307 LABEL. */
5b0264cb
NS
4308 gcc_assert (BB_HEAD (bb) != insn
4309 /* Avoid clobbering of structure when creating new BB. */
4310 || BARRIER_P (insn)
a38e7aa5 4311 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88 4312 }
a0ae8e8d
RK
4313}
4314
6fb5fa3c
DB
4315/* Replace insn with an deleted instruction note. */
4316
0ce2b299 4317void
df0b55f0 4318set_insn_deleted (rtx_insn *insn)
6fb5fa3c 4319{
39718607 4320 if (INSN_P (insn))
df0b55f0 4321 df_insn_delete (insn);
6fb5fa3c
DB
4322 PUT_CODE (insn, NOTE);
4323 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4324}
4325
4326
1f397f45
SB
4327/* Unlink INSN from the insn chain.
4328
4329 This function knows how to handle sequences.
4330
4331 This function does not invalidate data flow information associated with
4332 INSN (i.e. does not call df_insn_delete). That makes this function
4333 usable for only disconnecting an insn from the chain, and re-emit it
4334 elsewhere later.
4335
4336 To later insert INSN elsewhere in the insn chain via add_insn and
4337 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4338 the caller. Nullifying them here breaks many insn chain walks.
4339
4340 To really delete an insn and related DF information, use delete_insn. */
4341
89e99eea 4342void
4dea3bff 4343remove_insn (rtx_insn *insn)
89e99eea 4344{
1130d5e3
DM
4345 rtx_insn *next = NEXT_INSN (insn);
4346 rtx_insn *prev = PREV_INSN (insn);
53c17031
JH
4347 basic_block bb;
4348
89e99eea
DB
4349 if (prev)
4350 {
0f82e5c9 4351 SET_NEXT_INSN (prev) = next;
4b4bf941 4352 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea 4353 {
e6eda746
DM
4354 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4355 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
89e99eea
DB
4356 }
4357 }
89e99eea
DB
4358 else
4359 {
614d5bd8
AM
4360 struct sequence_stack *seq;
4361
4362 for (seq = get_current_sequence (); seq; seq = seq->next)
4363 if (insn == seq->first)
89e99eea 4364 {
614d5bd8 4365 seq->first = next;
89e99eea
DB
4366 break;
4367 }
4368
614d5bd8 4369 gcc_assert (seq);
89e99eea
DB
4370 }
4371
4372 if (next)
4373 {
0f82e5c9 4374 SET_PREV_INSN (next) = prev;
4b4bf941 4375 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4376 {
4377 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4378 SET_PREV_INSN (sequence->insn (0)) = prev;
4379 }
89e99eea 4380 }
89e99eea
DB
4381 else
4382 {
614d5bd8
AM
4383 struct sequence_stack *seq;
4384
4385 for (seq = get_current_sequence (); seq; seq = seq->next)
4386 if (insn == seq->last)
89e99eea 4387 {
614d5bd8 4388 seq->last = prev;
89e99eea
DB
4389 break;
4390 }
4391
614d5bd8 4392 gcc_assert (seq);
89e99eea 4393 }
80eb8028 4394
80eb8028 4395 /* Fix up basic block boundaries, if necessary. */
4b4bf941 4396 if (!BARRIER_P (insn)
53c17031
JH
4397 && (bb = BLOCK_FOR_INSN (insn)))
4398 {
a813c111 4399 if (BB_HEAD (bb) == insn)
53c17031 4400 {
3bf1e984
RK
4401 /* Never ever delete the basic block note without deleting whole
4402 basic block. */
5b0264cb 4403 gcc_assert (!NOTE_P (insn));
1130d5e3 4404 BB_HEAD (bb) = next;
53c17031 4405 }
a813c111 4406 if (BB_END (bb) == insn)
1130d5e3 4407 BB_END (bb) = prev;
53c17031 4408 }
89e99eea
DB
4409}
4410
ee960939
OH
4411/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4412
4413void
502b8322 4414add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4415{
5b0264cb 4416 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4417
4418 /* Put the register usage information on the CALL. If there is already
4419 some usage information, put ours at the end. */
4420 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4421 {
4422 rtx link;
4423
4424 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4425 link = XEXP (link, 1))
4426 ;
4427
4428 XEXP (link, 1) = call_fusage;
4429 }
4430 else
4431 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4432}
4433
23b2ce53
RS
4434/* Delete all insns made since FROM.
4435 FROM becomes the new last instruction. */
4436
4437void
fee3e72c 4438delete_insns_since (rtx_insn *from)
23b2ce53
RS
4439{
4440 if (from == 0)
5936d944 4441 set_first_insn (0);
23b2ce53 4442 else
0f82e5c9 4443 SET_NEXT_INSN (from) = 0;
5936d944 4444 set_last_insn (from);
23b2ce53
RS
4445}
4446
5dab5552
MS
4447/* This function is deprecated, please use sequences instead.
4448
4449 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4450 The insns to be moved are those between FROM and TO.
4451 They are moved to a new position after the insn AFTER.
4452 AFTER must not be FROM or TO or any insn in between.
4453
4454 This function does not know about SEQUENCEs and hence should not be
4455 called after delay-slot filling has been done. */
4456
4457void
fee3e72c 4458reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
23b2ce53 4459{
b2b29377
MM
4460 if (flag_checking)
4461 {
4462 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4463 gcc_assert (after != x);
4464 gcc_assert (after != to);
4465 }
4f8344eb 4466
23b2ce53
RS
4467 /* Splice this bunch out of where it is now. */
4468 if (PREV_INSN (from))
0f82e5c9 4469 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
23b2ce53 4470 if (NEXT_INSN (to))
0f82e5c9 4471 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4472 if (get_last_insn () == to)
4473 set_last_insn (PREV_INSN (from));
4474 if (get_insns () == from)
4475 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4476
4477 /* Make the new neighbors point to it and it to them. */
4478 if (NEXT_INSN (after))
0f82e5c9 4479 SET_PREV_INSN (NEXT_INSN (after)) = to;
23b2ce53 4480
0f82e5c9
DM
4481 SET_NEXT_INSN (to) = NEXT_INSN (after);
4482 SET_PREV_INSN (from) = after;
4483 SET_NEXT_INSN (after) = from;
c3284718 4484 if (after == get_last_insn ())
5936d944 4485 set_last_insn (to);
23b2ce53
RS
4486}
4487
3c030e88
JH
4488/* Same as function above, but take care to update BB boundaries. */
4489void
ac9d2d2c 4490reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
3c030e88 4491{
ac9d2d2c 4492 rtx_insn *prev = PREV_INSN (from);
3c030e88
JH
4493 basic_block bb, bb2;
4494
4495 reorder_insns_nobb (from, to, after);
4496
4b4bf941 4497 if (!BARRIER_P (after)
3c030e88
JH
4498 && (bb = BLOCK_FOR_INSN (after)))
4499 {
b2908ba6 4500 rtx_insn *x;
6fb5fa3c 4501 df_set_bb_dirty (bb);
68252e27 4502
4b4bf941 4503 if (!BARRIER_P (from)
3c030e88
JH
4504 && (bb2 = BLOCK_FOR_INSN (from)))
4505 {
a813c111 4506 if (BB_END (bb2) == to)
1130d5e3 4507 BB_END (bb2) = prev;
6fb5fa3c 4508 df_set_bb_dirty (bb2);
3c030e88
JH
4509 }
4510
a813c111 4511 if (BB_END (bb) == after)
1130d5e3 4512 BB_END (bb) = to;
3c030e88
JH
4513
4514 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4515 if (!BARRIER_P (x))
63642d5a 4516 df_insn_change_bb (x, bb);
3c030e88
JH
4517 }
4518}
4519
23b2ce53 4520\f
2f937369
DM
4521/* Emit insn(s) of given code and pattern
4522 at a specified place within the doubly-linked list.
23b2ce53 4523
2f937369
DM
4524 All of the emit_foo global entry points accept an object
4525 X which is either an insn list or a PATTERN of a single
4526 instruction.
23b2ce53 4527
2f937369
DM
4528 There are thus a few canonical ways to generate code and
4529 emit it at a specific place in the instruction stream. For
4530 example, consider the instruction named SPOT and the fact that
4531 we would like to emit some instructions before SPOT. We might
4532 do it like this:
23b2ce53 4533
2f937369
DM
4534 start_sequence ();
4535 ... emit the new instructions ...
4536 insns_head = get_insns ();
4537 end_sequence ();
23b2ce53 4538
2f937369 4539 emit_insn_before (insns_head, SPOT);
23b2ce53 4540
2f937369
DM
4541 It used to be common to generate SEQUENCE rtl instead, but that
4542 is a relic of the past which no longer occurs. The reason is that
4543 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4544 generated would almost certainly die right after it was created. */
23b2ce53 4545
cd459bf8 4546static rtx_insn *
4dea3bff
DM
4547emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4548 basic_block bb,
167b9fae 4549 rtx_insn *(*make_raw) (rtx))
23b2ce53 4550{
167b9fae 4551 rtx_insn *insn;
23b2ce53 4552
5b0264cb 4553 gcc_assert (before);
2f937369
DM
4554
4555 if (x == NULL_RTX)
4dea3bff 4556 return last;
2f937369
DM
4557
4558 switch (GET_CODE (x))
23b2ce53 4559 {
b5b8b0ac 4560 case DEBUG_INSN:
2f937369
DM
4561 case INSN:
4562 case JUMP_INSN:
4563 case CALL_INSN:
4564 case CODE_LABEL:
4565 case BARRIER:
4566 case NOTE:
167b9fae 4567 insn = as_a <rtx_insn *> (x);
2f937369
DM
4568 while (insn)
4569 {
167b9fae 4570 rtx_insn *next = NEXT_INSN (insn);
6fb5fa3c 4571 add_insn_before (insn, before, bb);
2f937369
DM
4572 last = insn;
4573 insn = next;
4574 }
4575 break;
4576
4577#ifdef ENABLE_RTL_CHECKING
4578 case SEQUENCE:
5b0264cb 4579 gcc_unreachable ();
2f937369
DM
4580 break;
4581#endif
4582
4583 default:
5f02387d 4584 last = (*make_raw) (x);
6fb5fa3c 4585 add_insn_before (last, before, bb);
2f937369 4586 break;
23b2ce53
RS
4587 }
4588
4dea3bff 4589 return last;
23b2ce53
RS
4590}
4591
5f02387d
NF
4592/* Make X be output before the instruction BEFORE. */
4593
cd459bf8 4594rtx_insn *
596f2b17 4595emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f02387d
NF
4596{
4597 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4598}
4599
2f937369 4600/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4601 and output it before the instruction BEFORE. */
4602
1476d1bd 4603rtx_jump_insn *
596f2b17 4604emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
23b2ce53 4605{
1476d1bd 4606 return as_a <rtx_jump_insn *> (
4dea3bff 4607 emit_pattern_before_noloc (x, before, NULL, NULL,
1476d1bd 4608 make_jump_insn_raw));
23b2ce53
RS
4609}
4610
2f937369 4611/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4612 and output it before the instruction BEFORE. */
4613
cd459bf8 4614rtx_insn *
596f2b17 4615emit_call_insn_before_noloc (rtx x, rtx_insn *before)
969d70ca 4616{
4dea3bff 4617 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f02387d 4618 make_call_insn_raw);
969d70ca
JH
4619}
4620
b5b8b0ac
AO
4621/* Make an instruction with body X and code DEBUG_INSN
4622 and output it before the instruction BEFORE. */
4623
cd459bf8 4624rtx_insn *
4dea3bff 4625emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
b5b8b0ac 4626{
4dea3bff 4627 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f02387d 4628 make_debug_insn_raw);
b5b8b0ac
AO
4629}
4630
23b2ce53 4631/* Make an insn of code BARRIER
e881bb1b 4632 and output it before the insn BEFORE. */
23b2ce53 4633
cd459bf8 4634rtx_barrier *
4dea3bff 4635emit_barrier_before (rtx_insn *before)
23b2ce53 4636{
cd459bf8 4637 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4638
4639 INSN_UID (insn) = cur_insn_uid++;
4640
6fb5fa3c 4641 add_insn_before (insn, before, NULL);
23b2ce53
RS
4642 return insn;
4643}
4644
e881bb1b
RH
4645/* Emit the label LABEL before the insn BEFORE. */
4646
1476d1bd 4647rtx_code_label *
4dea3bff 4648emit_label_before (rtx_code_label *label, rtx_insn *before)
e881bb1b 4649{
468660d3
SB
4650 gcc_checking_assert (INSN_UID (label) == 0);
4651 INSN_UID (label) = cur_insn_uid++;
4652 add_insn_before (label, before, NULL);
4dea3bff 4653 return label;
e881bb1b 4654}
23b2ce53 4655\f
2f937369
DM
4656/* Helper for emit_insn_after, handles lists of instructions
4657 efficiently. */
23b2ce53 4658
e6eda746 4659static rtx_insn *
4dea3bff 4660emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
23b2ce53 4661{
1130d5e3
DM
4662 rtx_insn *last;
4663 rtx_insn *after_after;
6fb5fa3c
DB
4664 if (!bb && !BARRIER_P (after))
4665 bb = BLOCK_FOR_INSN (after);
23b2ce53 4666
6fb5fa3c 4667 if (bb)
23b2ce53 4668 {
6fb5fa3c 4669 df_set_bb_dirty (bb);
2f937369 4670 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4671 if (!BARRIER_P (last))
6fb5fa3c
DB
4672 {
4673 set_block_for_insn (last, bb);
4674 df_insn_rescan (last);
4675 }
4b4bf941 4676 if (!BARRIER_P (last))
6fb5fa3c
DB
4677 {
4678 set_block_for_insn (last, bb);
4679 df_insn_rescan (last);
4680 }
a813c111 4681 if (BB_END (bb) == after)
1130d5e3 4682 BB_END (bb) = last;
23b2ce53
RS
4683 }
4684 else
2f937369
DM
4685 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4686 continue;
4687
4688 after_after = NEXT_INSN (after);
4689
0f82e5c9
DM
4690 SET_NEXT_INSN (after) = first;
4691 SET_PREV_INSN (first) = after;
4692 SET_NEXT_INSN (last) = after_after;
2f937369 4693 if (after_after)
0f82e5c9 4694 SET_PREV_INSN (after_after) = last;
2f937369 4695
c3284718 4696 if (after == get_last_insn ())
5936d944 4697 set_last_insn (last);
e855c69d 4698
2f937369
DM
4699 return last;
4700}
4701
cd459bf8 4702static rtx_insn *
4dea3bff 4703emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
167b9fae 4704 rtx_insn *(*make_raw)(rtx))
2f937369 4705{
e6eda746 4706 rtx_insn *last = after;
2f937369 4707
5b0264cb 4708 gcc_assert (after);
2f937369
DM
4709
4710 if (x == NULL_RTX)
e6eda746 4711 return last;
2f937369
DM
4712
4713 switch (GET_CODE (x))
23b2ce53 4714 {
b5b8b0ac 4715 case DEBUG_INSN:
2f937369
DM
4716 case INSN:
4717 case JUMP_INSN:
4718 case CALL_INSN:
4719 case CODE_LABEL:
4720 case BARRIER:
4721 case NOTE:
1130d5e3 4722 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
2f937369
DM
4723 break;
4724
4725#ifdef ENABLE_RTL_CHECKING
4726 case SEQUENCE:
5b0264cb 4727 gcc_unreachable ();
2f937369
DM
4728 break;
4729#endif
4730
4731 default:
5f02387d 4732 last = (*make_raw) (x);
6fb5fa3c 4733 add_insn_after (last, after, bb);
2f937369 4734 break;
23b2ce53
RS
4735 }
4736
e6eda746 4737 return last;
23b2ce53
RS
4738}
4739
5f02387d
NF
4740/* Make X be output after the insn AFTER and set the BB of insn. If
4741 BB is NULL, an attempt is made to infer the BB from AFTER. */
4742
cd459bf8 4743rtx_insn *
4dea3bff 4744emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
5f02387d
NF
4745{
4746 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4747}
4748
255680cf 4749
2f937369 4750/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4751 and output it after the insn AFTER. */
4752
1476d1bd 4753rtx_jump_insn *
4dea3bff 4754emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
23b2ce53 4755{
1476d1bd
MM
4756 return as_a <rtx_jump_insn *> (
4757 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
2f937369
DM
4758}
4759
4760/* Make an instruction with body X and code CALL_INSN
4761 and output it after the instruction AFTER. */
4762
cd459bf8 4763rtx_insn *
4dea3bff 4764emit_call_insn_after_noloc (rtx x, rtx_insn *after)
2f937369 4765{
5f02387d 4766 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4767}
4768
b5b8b0ac
AO
4769/* Make an instruction with body X and code CALL_INSN
4770 and output it after the instruction AFTER. */
4771
cd459bf8 4772rtx_insn *
4dea3bff 4773emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
b5b8b0ac 4774{
5f02387d 4775 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4776}
4777
23b2ce53
RS
4778/* Make an insn of code BARRIER
4779 and output it after the insn AFTER. */
4780
cd459bf8 4781rtx_barrier *
4dea3bff 4782emit_barrier_after (rtx_insn *after)
23b2ce53 4783{
cd459bf8 4784 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4785
4786 INSN_UID (insn) = cur_insn_uid++;
4787
6fb5fa3c 4788 add_insn_after (insn, after, NULL);
23b2ce53
RS
4789 return insn;
4790}
4791
4792/* Emit the label LABEL after the insn AFTER. */
4793
cd459bf8 4794rtx_insn *
4dea3bff 4795emit_label_after (rtx_insn *label, rtx_insn *after)
23b2ce53 4796{
468660d3
SB
4797 gcc_checking_assert (INSN_UID (label) == 0);
4798 INSN_UID (label) = cur_insn_uid++;
4799 add_insn_after (label, after, NULL);
4dea3bff 4800 return label;
23b2ce53 4801}
96fba521
SB
4802\f
4803/* Notes require a bit of special handling: Some notes need to have their
4804 BLOCK_FOR_INSN set, others should never have it set, and some should
4805 have it set or clear depending on the context. */
4806
4807/* Return true iff a note of kind SUBTYPE should be emitted with routines
4808 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4809 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4810
4811static bool
4812note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4813{
4814 switch (subtype)
4815 {
4816 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4817 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4818 return true;
4819
4820 /* Notes for var tracking and EH region markers can appear between or
4821 inside basic blocks. If the caller is emitting on the basic block
4822 boundary, do not set BLOCK_FOR_INSN on the new note. */
4823 case NOTE_INSN_VAR_LOCATION:
96fba521
SB
4824 case NOTE_INSN_EH_REGION_BEG:
4825 case NOTE_INSN_EH_REGION_END:
4826 return on_bb_boundary_p;
4827
4828 /* Otherwise, BLOCK_FOR_INSN must be set. */
4829 default:
4830 return false;
4831 }
4832}
23b2ce53
RS
4833
4834/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4835
66e8df53 4836rtx_note *
589e43f9 4837emit_note_after (enum insn_note subtype, rtx_insn *after)
23b2ce53 4838{
66e8df53 4839 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4840 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4841 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4842
4843 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4844 add_insn_after_nobb (note, after);
4845 else
4846 add_insn_after (note, after, bb);
4847 return note;
4848}
4849
4850/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4851
66e8df53 4852rtx_note *
89b6250d 4853emit_note_before (enum insn_note subtype, rtx_insn *before)
96fba521 4854{
66e8df53 4855 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4856 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4857 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4858
4859 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4860 add_insn_before_nobb (note, before);
4861 else
4862 add_insn_before (note, before, bb);
23b2ce53
RS
4863 return note;
4864}
23b2ce53 4865\f
e8110d6f
NF
4866/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4867 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4868
cd459bf8 4869static rtx_insn *
4dea3bff 4870emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
167b9fae 4871 rtx_insn *(*make_raw) (rtx))
0d682900 4872{
e67d1102 4873 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4874
a7102479 4875 if (pattern == NULL_RTX || !loc)
e67d1102 4876 return last;
dd3adcf8 4877
2f937369
DM
4878 after = NEXT_INSN (after);
4879 while (1)
4880 {
20d4397a
EB
4881 if (active_insn_p (after)
4882 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4883 && !INSN_LOCATION (after))
5368224f 4884 INSN_LOCATION (after) = loc;
2f937369
DM
4885 if (after == last)
4886 break;
4887 after = NEXT_INSN (after);
4888 }
e67d1102 4889 return last;
0d682900
JH
4890}
4891
e8110d6f
NF
4892/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4893 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4894 any DEBUG_INSNs. */
4895
cd459bf8 4896static rtx_insn *
df0b55f0 4897emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
167b9fae 4898 rtx_insn *(*make_raw) (rtx))
a7102479 4899{
dc01c3d1 4900 rtx_insn *prev = after;
b5b8b0ac 4901
e8110d6f
NF
4902 if (skip_debug_insns)
4903 while (DEBUG_INSN_P (prev))
4904 prev = PREV_INSN (prev);
b5b8b0ac
AO
4905
4906 if (INSN_P (prev))
5368224f 4907 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4908 make_raw);
a7102479 4909 else
e8110d6f 4910 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4911}
4912
5368224f 4913/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4914rtx_insn *
4dea3bff 4915emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
0d682900 4916{
e8110d6f
NF
4917 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4918}
2f937369 4919
5368224f 4920/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4921rtx_insn *
df0b55f0 4922emit_insn_after (rtx pattern, rtx_insn *after)
e8110d6f
NF
4923{
4924 return emit_pattern_after (pattern, after, true, make_insn_raw);
4925}
dd3adcf8 4926
5368224f 4927/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4928rtx_jump_insn *
4dea3bff 4929emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
e8110d6f 4930{
1476d1bd
MM
4931 return as_a <rtx_jump_insn *> (
4932 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
0d682900
JH
4933}
4934
5368224f 4935/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
1476d1bd 4936rtx_jump_insn *
df0b55f0 4937emit_jump_insn_after (rtx pattern, rtx_insn *after)
a7102479 4938{
1476d1bd
MM
4939 return as_a <rtx_jump_insn *> (
4940 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
a7102479
JH
4941}
4942
5368224f 4943/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4944rtx_insn *
4dea3bff 4945emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
0d682900 4946{
e8110d6f 4947 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4948}
4949
5368224f 4950/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4951rtx_insn *
df0b55f0 4952emit_call_insn_after (rtx pattern, rtx_insn *after)
a7102479 4953{
e8110d6f 4954 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4955}
4956
5368224f 4957/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4958rtx_insn *
4dea3bff 4959emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
b5b8b0ac 4960{
e8110d6f 4961 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4962}
4963
5368224f 4964/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4965rtx_insn *
df0b55f0 4966emit_debug_insn_after (rtx pattern, rtx_insn *after)
b5b8b0ac 4967{
e8110d6f 4968 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4969}
4970
e8110d6f
NF
4971/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4972 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4973 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4974 CALL_INSN, etc. */
4975
cd459bf8 4976static rtx_insn *
4dea3bff
DM
4977emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4978 bool insnp, rtx_insn *(*make_raw) (rtx))
0d682900 4979{
dc01c3d1
DM
4980 rtx_insn *first = PREV_INSN (before);
4981 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4dea3bff 4982 insnp ? before : NULL,
dc01c3d1 4983 NULL, make_raw);
a7102479
JH
4984
4985 if (pattern == NULL_RTX || !loc)
dc01c3d1 4986 return last;
a7102479 4987
26cb3993
JH
4988 if (!first)
4989 first = get_insns ();
4990 else
4991 first = NEXT_INSN (first);
a7102479
JH
4992 while (1)
4993 {
20d4397a
EB
4994 if (active_insn_p (first)
4995 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4996 && !INSN_LOCATION (first))
5368224f 4997 INSN_LOCATION (first) = loc;
a7102479
JH
4998 if (first == last)
4999 break;
5000 first = NEXT_INSN (first);
5001 }
dc01c3d1 5002 return last;
a7102479
JH
5003}
5004
e8110d6f
NF
5005/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
5006 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
5007 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
5008 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
5009
cd459bf8 5010static rtx_insn *
df0b55f0 5011emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
167b9fae 5012 bool insnp, rtx_insn *(*make_raw) (rtx))
a7102479 5013{
dc01c3d1 5014 rtx_insn *next = before;
b5b8b0ac 5015
e8110d6f
NF
5016 if (skip_debug_insns)
5017 while (DEBUG_INSN_P (next))
5018 next = PREV_INSN (next);
b5b8b0ac
AO
5019
5020 if (INSN_P (next))
5368224f 5021 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 5022 insnp, make_raw);
a7102479 5023 else
e8110d6f 5024 return emit_pattern_before_noloc (pattern, before,
4dea3bff 5025 insnp ? before : NULL,
e8110d6f 5026 NULL, make_raw);
a7102479
JH
5027}
5028
5368224f 5029/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 5030rtx_insn *
4dea3bff 5031emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
a7102479 5032{
e8110d6f
NF
5033 return emit_pattern_before_setloc (pattern, before, loc, true,
5034 make_insn_raw);
5035}
a7102479 5036
5368224f 5037/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
cd459bf8 5038rtx_insn *
df0b55f0 5039emit_insn_before (rtx pattern, rtx_insn *before)
e8110d6f
NF
5040{
5041 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
5042}
a7102479 5043
5368224f 5044/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 5045rtx_jump_insn *
4dea3bff 5046emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
e8110d6f 5047{
1476d1bd
MM
5048 return as_a <rtx_jump_insn *> (
5049 emit_pattern_before_setloc (pattern, before, loc, false,
5050 make_jump_insn_raw));
a7102479
JH
5051}
5052
5368224f 5053/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
1476d1bd 5054rtx_jump_insn *
df0b55f0 5055emit_jump_insn_before (rtx pattern, rtx_insn *before)
a7102479 5056{
1476d1bd
MM
5057 return as_a <rtx_jump_insn *> (
5058 emit_pattern_before (pattern, before, true, false,
5059 make_jump_insn_raw));
a7102479
JH
5060}
5061
5368224f 5062/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 5063rtx_insn *
4dea3bff 5064emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
a7102479 5065{
e8110d6f
NF
5066 return emit_pattern_before_setloc (pattern, before, loc, false,
5067 make_call_insn_raw);
0d682900 5068}
a7102479 5069
e8110d6f 5070/* Like emit_call_insn_before_noloc,
5368224f 5071 but set insn_location according to BEFORE. */
cd459bf8 5072rtx_insn *
596f2b17 5073emit_call_insn_before (rtx pattern, rtx_insn *before)
a7102479 5074{
e8110d6f
NF
5075 return emit_pattern_before (pattern, before, true, false,
5076 make_call_insn_raw);
a7102479 5077}
b5b8b0ac 5078
5368224f 5079/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 5080rtx_insn *
4dea3bff 5081emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
b5b8b0ac 5082{
e8110d6f
NF
5083 return emit_pattern_before_setloc (pattern, before, loc, false,
5084 make_debug_insn_raw);
b5b8b0ac
AO
5085}
5086
e8110d6f 5087/* Like emit_debug_insn_before_noloc,
5368224f 5088 but set insn_location according to BEFORE. */
cd459bf8 5089rtx_insn *
3a6216b0 5090emit_debug_insn_before (rtx pattern, rtx_insn *before)
b5b8b0ac 5091{
e8110d6f
NF
5092 return emit_pattern_before (pattern, before, false, false,
5093 make_debug_insn_raw);
b5b8b0ac 5094}
0d682900 5095\f
2f937369
DM
5096/* Take X and emit it at the end of the doubly-linked
5097 INSN list.
23b2ce53
RS
5098
5099 Returns the last insn emitted. */
5100
cd459bf8 5101rtx_insn *
502b8322 5102emit_insn (rtx x)
23b2ce53 5103{
cd459bf8
DM
5104 rtx_insn *last = get_last_insn ();
5105 rtx_insn *insn;
23b2ce53 5106
2f937369
DM
5107 if (x == NULL_RTX)
5108 return last;
23b2ce53 5109
2f937369
DM
5110 switch (GET_CODE (x))
5111 {
b5b8b0ac 5112 case DEBUG_INSN:
2f937369
DM
5113 case INSN:
5114 case JUMP_INSN:
5115 case CALL_INSN:
5116 case CODE_LABEL:
5117 case BARRIER:
5118 case NOTE:
cd459bf8 5119 insn = as_a <rtx_insn *> (x);
2f937369 5120 while (insn)
23b2ce53 5121 {
cd459bf8 5122 rtx_insn *next = NEXT_INSN (insn);
23b2ce53 5123 add_insn (insn);
2f937369
DM
5124 last = insn;
5125 insn = next;
23b2ce53 5126 }
2f937369 5127 break;
23b2ce53 5128
2f937369 5129#ifdef ENABLE_RTL_CHECKING
39718607 5130 case JUMP_TABLE_DATA:
2f937369 5131 case SEQUENCE:
5b0264cb 5132 gcc_unreachable ();
2f937369
DM
5133 break;
5134#endif
23b2ce53 5135
2f937369
DM
5136 default:
5137 last = make_insn_raw (x);
5138 add_insn (last);
5139 break;
23b2ce53
RS
5140 }
5141
5142 return last;
5143}
5144
b5b8b0ac
AO
5145/* Make an insn of code DEBUG_INSN with pattern X
5146 and add it to the end of the doubly-linked list. */
5147
cd459bf8 5148rtx_insn *
b5b8b0ac
AO
5149emit_debug_insn (rtx x)
5150{
cd459bf8
DM
5151 rtx_insn *last = get_last_insn ();
5152 rtx_insn *insn;
b5b8b0ac
AO
5153
5154 if (x == NULL_RTX)
5155 return last;
5156
5157 switch (GET_CODE (x))
5158 {
5159 case DEBUG_INSN:
5160 case INSN:
5161 case JUMP_INSN:
5162 case CALL_INSN:
5163 case CODE_LABEL:
5164 case BARRIER:
5165 case NOTE:
cd459bf8 5166 insn = as_a <rtx_insn *> (x);
b5b8b0ac
AO
5167 while (insn)
5168 {
cd459bf8 5169 rtx_insn *next = NEXT_INSN (insn);
b5b8b0ac
AO
5170 add_insn (insn);
5171 last = insn;
5172 insn = next;
5173 }
5174 break;
5175
5176#ifdef ENABLE_RTL_CHECKING
39718607 5177 case JUMP_TABLE_DATA:
b5b8b0ac
AO
5178 case SEQUENCE:
5179 gcc_unreachable ();
5180 break;
5181#endif
5182
5183 default:
5184 last = make_debug_insn_raw (x);
5185 add_insn (last);
5186 break;
5187 }
5188
5189 return last;
5190}
5191
2f937369
DM
5192/* Make an insn of code JUMP_INSN with pattern X
5193 and add it to the end of the doubly-linked list. */
23b2ce53 5194
cd459bf8 5195rtx_insn *
502b8322 5196emit_jump_insn (rtx x)
23b2ce53 5197{
cd459bf8
DM
5198 rtx_insn *last = NULL;
5199 rtx_insn *insn;
23b2ce53 5200
2f937369 5201 switch (GET_CODE (x))
23b2ce53 5202 {
b5b8b0ac 5203 case DEBUG_INSN:
2f937369
DM
5204 case INSN:
5205 case JUMP_INSN:
5206 case CALL_INSN:
5207 case CODE_LABEL:
5208 case BARRIER:
5209 case NOTE:
cd459bf8 5210 insn = as_a <rtx_insn *> (x);
2f937369
DM
5211 while (insn)
5212 {
cd459bf8 5213 rtx_insn *next = NEXT_INSN (insn);
2f937369
DM
5214 add_insn (insn);
5215 last = insn;
5216 insn = next;
5217 }
5218 break;
e0a5c5eb 5219
2f937369 5220#ifdef ENABLE_RTL_CHECKING
39718607 5221 case JUMP_TABLE_DATA:
2f937369 5222 case SEQUENCE:
5b0264cb 5223 gcc_unreachable ();
2f937369
DM
5224 break;
5225#endif
e0a5c5eb 5226
2f937369
DM
5227 default:
5228 last = make_jump_insn_raw (x);
5229 add_insn (last);
5230 break;
3c030e88 5231 }
e0a5c5eb
RS
5232
5233 return last;
5234}
5235
2f937369 5236/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
5237 and add it to the end of the doubly-linked list. */
5238
cd459bf8 5239rtx_insn *
502b8322 5240emit_call_insn (rtx x)
23b2ce53 5241{
cd459bf8 5242 rtx_insn *insn;
2f937369
DM
5243
5244 switch (GET_CODE (x))
23b2ce53 5245 {
b5b8b0ac 5246 case DEBUG_INSN:
2f937369
DM
5247 case INSN:
5248 case JUMP_INSN:
5249 case CALL_INSN:
5250 case CODE_LABEL:
5251 case BARRIER:
5252 case NOTE:
5253 insn = emit_insn (x);
5254 break;
23b2ce53 5255
2f937369
DM
5256#ifdef ENABLE_RTL_CHECKING
5257 case SEQUENCE:
39718607 5258 case JUMP_TABLE_DATA:
5b0264cb 5259 gcc_unreachable ();
2f937369
DM
5260 break;
5261#endif
23b2ce53 5262
2f937369
DM
5263 default:
5264 insn = make_call_insn_raw (x);
23b2ce53 5265 add_insn (insn);
2f937369 5266 break;
23b2ce53 5267 }
2f937369
DM
5268
5269 return insn;
23b2ce53
RS
5270}
5271
5272/* Add the label LABEL to the end of the doubly-linked list. */
5273
1476d1bd
MM
5274rtx_code_label *
5275emit_label (rtx uncast_label)
23b2ce53 5276{
1476d1bd
MM
5277 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5278
468660d3
SB
5279 gcc_checking_assert (INSN_UID (label) == 0);
5280 INSN_UID (label) = cur_insn_uid++;
1476d1bd
MM
5281 add_insn (label);
5282 return label;
23b2ce53
RS
5283}
5284
39718607
SB
5285/* Make an insn of code JUMP_TABLE_DATA
5286 and add it to the end of the doubly-linked list. */
5287
4598afdd 5288rtx_jump_table_data *
39718607
SB
5289emit_jump_table_data (rtx table)
5290{
4598afdd
DM
5291 rtx_jump_table_data *jump_table_data =
5292 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
39718607
SB
5293 INSN_UID (jump_table_data) = cur_insn_uid++;
5294 PATTERN (jump_table_data) = table;
5295 BLOCK_FOR_INSN (jump_table_data) = NULL;
5296 add_insn (jump_table_data);
5297 return jump_table_data;
5298}
5299
23b2ce53
RS
5300/* Make an insn of code BARRIER
5301 and add it to the end of the doubly-linked list. */
5302
cd459bf8 5303rtx_barrier *
502b8322 5304emit_barrier (void)
23b2ce53 5305{
cd459bf8 5306 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
5307 INSN_UID (barrier) = cur_insn_uid++;
5308 add_insn (barrier);
5309 return barrier;
5310}
5311
5f2fc772 5312/* Emit a copy of note ORIG. */
502b8322 5313
66e8df53
DM
5314rtx_note *
5315emit_note_copy (rtx_note *orig)
5f2fc772 5316{
96fba521 5317 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
66e8df53 5318 rtx_note *note = make_note_raw (kind);
5f2fc772 5319 NOTE_DATA (note) = NOTE_DATA (orig);
5f2fc772 5320 add_insn (note);
2e040219 5321 return note;
23b2ce53
RS
5322}
5323
2e040219
NS
5324/* Make an insn of code NOTE or type NOTE_NO
5325 and add it to the end of the doubly-linked list. */
23b2ce53 5326
66e8df53 5327rtx_note *
a38e7aa5 5328emit_note (enum insn_note kind)
23b2ce53 5329{
66e8df53 5330 rtx_note *note = make_note_raw (kind);
23b2ce53
RS
5331 add_insn (note);
5332 return note;
5333}
5334
c41c1387
RS
5335/* Emit a clobber of lvalue X. */
5336
cd459bf8 5337rtx_insn *
c41c1387
RS
5338emit_clobber (rtx x)
5339{
5340 /* CONCATs should not appear in the insn stream. */
5341 if (GET_CODE (x) == CONCAT)
5342 {
5343 emit_clobber (XEXP (x, 0));
5344 return emit_clobber (XEXP (x, 1));
5345 }
5346 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5347}
5348
5349/* Return a sequence of insns to clobber lvalue X. */
5350
cd459bf8 5351rtx_insn *
c41c1387
RS
5352gen_clobber (rtx x)
5353{
cd459bf8 5354 rtx_insn *seq;
c41c1387
RS
5355
5356 start_sequence ();
5357 emit_clobber (x);
5358 seq = get_insns ();
5359 end_sequence ();
5360 return seq;
5361}
5362
5363/* Emit a use of rvalue X. */
5364
cd459bf8 5365rtx_insn *
c41c1387
RS
5366emit_use (rtx x)
5367{
5368 /* CONCATs should not appear in the insn stream. */
5369 if (GET_CODE (x) == CONCAT)
5370 {
5371 emit_use (XEXP (x, 0));
5372 return emit_use (XEXP (x, 1));
5373 }
5374 return emit_insn (gen_rtx_USE (VOIDmode, x));
5375}
5376
5377/* Return a sequence of insns to use rvalue X. */
5378
cd459bf8 5379rtx_insn *
c41c1387
RS
5380gen_use (rtx x)
5381{
cd459bf8 5382 rtx_insn *seq;
c41c1387
RS
5383
5384 start_sequence ();
5385 emit_use (x);
5386 seq = get_insns ();
5387 end_sequence ();
5388 return seq;
5389}
5390
c8912e53
RS
5391/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5392 Return the set in INSN that such notes describe, or NULL if the notes
5393 have no meaning for INSN. */
5394
5395rtx
5396set_for_reg_notes (rtx insn)
5397{
5398 rtx pat, reg;
5399
5400 if (!INSN_P (insn))
5401 return NULL_RTX;
5402
5403 pat = PATTERN (insn);
5404 if (GET_CODE (pat) == PARALLEL)
5405 {
5406 /* We do not use single_set because that ignores SETs of unused
5407 registers. REG_EQUAL and REG_EQUIV notes really do require the
5408 PARALLEL to have a single SET. */
5409 if (multiple_sets (insn))
5410 return NULL_RTX;
5411 pat = XVECEXP (pat, 0, 0);
5412 }
5413
5414 if (GET_CODE (pat) != SET)
5415 return NULL_RTX;
5416
5417 reg = SET_DEST (pat);
5418
5419 /* Notes apply to the contents of a STRICT_LOW_PART. */
7f7379f6
KV
5420 if (GET_CODE (reg) == STRICT_LOW_PART
5421 || GET_CODE (reg) == ZERO_EXTRACT)
c8912e53
RS
5422 reg = XEXP (reg, 0);
5423
5424 /* Check that we have a register. */
5425 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5426 return NULL_RTX;
5427
5428 return pat;
5429}
5430
87b47c85 5431/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5432 note of this type already exists, remove it first. */
87b47c85 5433
3d238248 5434rtx
502b8322 5435set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5436{
5437 rtx note = find_reg_note (insn, kind, NULL_RTX);
5438
52488da1
JW
5439 switch (kind)
5440 {
5441 case REG_EQUAL:
5442 case REG_EQUIV:
8073cbd4
EB
5443 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5444 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
c8912e53 5445 return NULL_RTX;
52488da1
JW
5446
5447 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5448 It serves no useful purpose and breaks eliminate_regs. */
5449 if (GET_CODE (datum) == ASM_OPERANDS)
5450 return NULL_RTX;
109374e2
RS
5451
5452 /* Notes with side effects are dangerous. Even if the side-effect
5453 initially mirrors one in PATTERN (INSN), later optimizations
5454 might alter the way that the final register value is calculated
5455 and so move or alter the side-effect in some way. The note would
5456 then no longer be a valid substitution for SET_SRC. */
5457 if (side_effects_p (datum))
5458 return NULL_RTX;
52488da1
JW
5459 break;
5460
5461 default:
5462 break;
5463 }
3d238248 5464
c8912e53
RS
5465 if (note)
5466 XEXP (note, 0) = datum;
5467 else
5468 {
5469 add_reg_note (insn, kind, datum);
5470 note = REG_NOTES (insn);
5471 }
6fb5fa3c
DB
5472
5473 switch (kind)
3d238248 5474 {
6fb5fa3c
DB
5475 case REG_EQUAL:
5476 case REG_EQUIV:
b2908ba6 5477 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
5478 break;
5479 default:
5480 break;
3d238248 5481 }
87b47c85 5482
c8912e53 5483 return note;
87b47c85 5484}
7543f918
JR
5485
5486/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5487rtx
5488set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5489{
c8912e53 5490 rtx set = set_for_reg_notes (insn);
7543f918
JR
5491
5492 if (set && SET_DEST (set) == dst)
5493 return set_unique_reg_note (insn, kind, datum);
5494 return NULL_RTX;
5495}
23b2ce53 5496\f
9d8895c9
RS
5497/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5498 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5499 is true.
5500
23b2ce53
RS
5501 If X is a label, it is simply added into the insn chain. */
5502
cd459bf8 5503rtx_insn *
9d8895c9 5504emit (rtx x, bool allow_barrier_p)
23b2ce53
RS
5505{
5506 enum rtx_code code = classify_insn (x);
5507
5b0264cb 5508 switch (code)
23b2ce53 5509 {
5b0264cb
NS
5510 case CODE_LABEL:
5511 return emit_label (x);
5512 case INSN:
5513 return emit_insn (x);
5514 case JUMP_INSN:
5515 {
cd459bf8 5516 rtx_insn *insn = emit_jump_insn (x);
9d8895c9
RS
5517 if (allow_barrier_p
5518 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5b0264cb
NS
5519 return emit_barrier ();
5520 return insn;
5521 }
5522 case CALL_INSN:
5523 return emit_call_insn (x);
b5b8b0ac
AO
5524 case DEBUG_INSN:
5525 return emit_debug_insn (x);
5b0264cb
NS
5526 default:
5527 gcc_unreachable ();
23b2ce53 5528 }
23b2ce53
RS
5529}
5530\f
e2500fed 5531/* Space for free sequence stack entries. */
1431042e 5532static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5533
4dfa0342
RH
5534/* Begin emitting insns to a sequence. If this sequence will contain
5535 something that might cause the compiler to pop arguments to function
5536 calls (because those pops have previously been deferred; see
5537 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5538 before calling this function. That will ensure that the deferred
5539 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5540
5541void
502b8322 5542start_sequence (void)
23b2ce53
RS
5543{
5544 struct sequence_stack *tem;
5545
e2500fed
GK
5546 if (free_sequence_stack != NULL)
5547 {
5548 tem = free_sequence_stack;
5549 free_sequence_stack = tem->next;
5550 }
5551 else
766090c2 5552 tem = ggc_alloc<sequence_stack> ();
23b2ce53 5553
614d5bd8 5554 tem->next = get_current_sequence ()->next;
5936d944
JH
5555 tem->first = get_insns ();
5556 tem->last = get_last_insn ();
614d5bd8 5557 get_current_sequence ()->next = tem;
23b2ce53 5558
5936d944
JH
5559 set_first_insn (0);
5560 set_last_insn (0);
23b2ce53
RS
5561}
5562
5c7a310f
MM
5563/* Set up the insn chain starting with FIRST as the current sequence,
5564 saving the previously current one. See the documentation for
5565 start_sequence for more information about how to use this function. */
23b2ce53
RS
5566
5567void
fee3e72c 5568push_to_sequence (rtx_insn *first)
23b2ce53 5569{
fee3e72c 5570 rtx_insn *last;
23b2ce53
RS
5571
5572 start_sequence ();
5573
e84a58ff
EB
5574 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5575 ;
23b2ce53 5576
5936d944
JH
5577 set_first_insn (first);
5578 set_last_insn (last);
23b2ce53
RS
5579}
5580
bb27eeda
SE
5581/* Like push_to_sequence, but take the last insn as an argument to avoid
5582 looping through the list. */
5583
5584void
fee3e72c 5585push_to_sequence2 (rtx_insn *first, rtx_insn *last)
bb27eeda
SE
5586{
5587 start_sequence ();
5588
5936d944
JH
5589 set_first_insn (first);
5590 set_last_insn (last);
bb27eeda
SE
5591}
5592
f15ae3a1
TW
5593/* Set up the outer-level insn chain
5594 as the current sequence, saving the previously current one. */
5595
5596void
502b8322 5597push_topmost_sequence (void)
f15ae3a1 5598{
614d5bd8 5599 struct sequence_stack *top;
f15ae3a1
TW
5600
5601 start_sequence ();
5602
614d5bd8 5603 top = get_topmost_sequence ();
5936d944
JH
5604 set_first_insn (top->first);
5605 set_last_insn (top->last);
f15ae3a1
TW
5606}
5607
5608/* After emitting to the outer-level insn chain, update the outer-level
5609 insn chain, and restore the previous saved state. */
5610
5611void
502b8322 5612pop_topmost_sequence (void)
f15ae3a1 5613{
614d5bd8 5614 struct sequence_stack *top;
f15ae3a1 5615
614d5bd8 5616 top = get_topmost_sequence ();
5936d944
JH
5617 top->first = get_insns ();
5618 top->last = get_last_insn ();
f15ae3a1
TW
5619
5620 end_sequence ();
5621}
5622
23b2ce53
RS
5623/* After emitting to a sequence, restore previous saved state.
5624
5c7a310f 5625 To get the contents of the sequence just made, you must call
2f937369 5626 `get_insns' *before* calling here.
5c7a310f
MM
5627
5628 If the compiler might have deferred popping arguments while
5629 generating this sequence, and this sequence will not be immediately
5630 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5631 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5632 pops are inserted into this sequence, and not into some random
5633 location in the instruction stream. See INHIBIT_DEFER_POP for more
5634 information about deferred popping of arguments. */
23b2ce53
RS
5635
5636void
502b8322 5637end_sequence (void)
23b2ce53 5638{
614d5bd8 5639 struct sequence_stack *tem = get_current_sequence ()->next;
23b2ce53 5640
5936d944
JH
5641 set_first_insn (tem->first);
5642 set_last_insn (tem->last);
614d5bd8 5643 get_current_sequence ()->next = tem->next;
23b2ce53 5644
e2500fed
GK
5645 memset (tem, 0, sizeof (*tem));
5646 tem->next = free_sequence_stack;
5647 free_sequence_stack = tem;
23b2ce53
RS
5648}
5649
5650/* Return 1 if currently emitting into a sequence. */
5651
5652int
502b8322 5653in_sequence_p (void)
23b2ce53 5654{
614d5bd8 5655 return get_current_sequence ()->next != 0;
23b2ce53 5656}
23b2ce53 5657\f
59ec66dc
MM
5658/* Put the various virtual registers into REGNO_REG_RTX. */
5659
2bbdec73 5660static void
bd60bab2 5661init_virtual_regs (void)
59ec66dc 5662{
bd60bab2
JH
5663 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5664 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5665 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5666 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5667 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5668 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5669 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5670}
5671
da43a810
BS
5672\f
5673/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5674static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5675static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5676static int copy_insn_n_scratches;
5677
5678/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5679 copied an ASM_OPERANDS.
5680 In that case, it is the original input-operand vector. */
5681static rtvec orig_asm_operands_vector;
5682
5683/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5684 copied an ASM_OPERANDS.
5685 In that case, it is the copied input-operand vector. */
5686static rtvec copy_asm_operands_vector;
5687
5688/* Likewise for the constraints vector. */
5689static rtvec orig_asm_constraints_vector;
5690static rtvec copy_asm_constraints_vector;
5691
5692/* Recursively create a new copy of an rtx for copy_insn.
5693 This function differs from copy_rtx in that it handles SCRATCHes and
5694 ASM_OPERANDs properly.
5695 Normally, this function is not used directly; use copy_insn as front end.
5696 However, you could first copy an insn pattern with copy_insn and then use
5697 this function afterwards to properly copy any REG_NOTEs containing
5698 SCRATCHes. */
5699
5700rtx
502b8322 5701copy_insn_1 (rtx orig)
da43a810 5702{
b3694847
SS
5703 rtx copy;
5704 int i, j;
5705 RTX_CODE code;
5706 const char *format_ptr;
da43a810 5707
cd9c1ca8
RH
5708 if (orig == NULL)
5709 return NULL;
5710
da43a810
BS
5711 code = GET_CODE (orig);
5712
5713 switch (code)
5714 {
5715 case REG:
a52a87c3 5716 case DEBUG_EXPR:
d8116890 5717 CASE_CONST_ANY:
da43a810
BS
5718 case SYMBOL_REF:
5719 case CODE_LABEL:
5720 case PC:
5721 case CC0:
276e0224 5722 case RETURN:
26898771 5723 case SIMPLE_RETURN:
da43a810 5724 return orig;
3e89ed8d 5725 case CLOBBER:
c5c5ba89
JH
5726 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5727 clobbers or clobbers of hard registers that originated as pseudos.
5728 This is needed to allow safe register renaming. */
d7ae3739
EB
5729 if (REG_P (XEXP (orig, 0))
5730 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5731 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
3e89ed8d
JH
5732 return orig;
5733 break;
da43a810
BS
5734
5735 case SCRATCH:
5736 for (i = 0; i < copy_insn_n_scratches; i++)
5737 if (copy_insn_scratch_in[i] == orig)
5738 return copy_insn_scratch_out[i];
5739 break;
5740
5741 case CONST:
6fb5fa3c 5742 if (shared_const_p (orig))
da43a810
BS
5743 return orig;
5744 break;
750c9258 5745
da43a810
BS
5746 /* A MEM with a constant address is not sharable. The problem is that
5747 the constant address may need to be reloaded. If the mem is shared,
5748 then reloading one copy of this mem will cause all copies to appear
5749 to have been reloaded. */
5750
5751 default:
5752 break;
5753 }
5754
aacd3885
RS
5755 /* Copy the various flags, fields, and other information. We assume
5756 that all fields need copying, and then clear the fields that should
da43a810
BS
5757 not be copied. That is the sensible default behavior, and forces
5758 us to explicitly document why we are *not* copying a flag. */
aacd3885 5759 copy = shallow_copy_rtx (orig);
da43a810 5760
da43a810 5761 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5762 if (INSN_P (orig))
da43a810 5763 {
2adc7f12
JJ
5764 RTX_FLAG (copy, jump) = 0;
5765 RTX_FLAG (copy, call) = 0;
5766 RTX_FLAG (copy, frame_related) = 0;
da43a810 5767 }
750c9258 5768
da43a810
BS
5769 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5770
5771 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5772 switch (*format_ptr++)
5773 {
5774 case 'e':
5775 if (XEXP (orig, i) != NULL)
5776 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5777 break;
da43a810 5778
aacd3885
RS
5779 case 'E':
5780 case 'V':
5781 if (XVEC (orig, i) == orig_asm_constraints_vector)
5782 XVEC (copy, i) = copy_asm_constraints_vector;
5783 else if (XVEC (orig, i) == orig_asm_operands_vector)
5784 XVEC (copy, i) = copy_asm_operands_vector;
5785 else if (XVEC (orig, i) != NULL)
5786 {
5787 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5788 for (j = 0; j < XVECLEN (copy, i); j++)
5789 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5790 }
5791 break;
da43a810 5792
aacd3885
RS
5793 case 't':
5794 case 'w':
5795 case 'i':
91914e56 5796 case 'p':
aacd3885
RS
5797 case 's':
5798 case 'S':
5799 case 'u':
5800 case '0':
5801 /* These are left unchanged. */
5802 break;
da43a810 5803
aacd3885
RS
5804 default:
5805 gcc_unreachable ();
5806 }
da43a810
BS
5807
5808 if (code == SCRATCH)
5809 {
5810 i = copy_insn_n_scratches++;
5b0264cb 5811 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5812 copy_insn_scratch_in[i] = orig;
5813 copy_insn_scratch_out[i] = copy;
5814 }
5815 else if (code == ASM_OPERANDS)
5816 {
6462bb43
AO
5817 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5818 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5819 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5820 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5821 }
5822
5823 return copy;
5824}
5825
5826/* Create a new copy of an rtx.
5827 This function differs from copy_rtx in that it handles SCRATCHes and
5828 ASM_OPERANDs properly.
5829 INSN doesn't really have to be a full INSN; it could be just the
5830 pattern. */
5831rtx
502b8322 5832copy_insn (rtx insn)
da43a810
BS
5833{
5834 copy_insn_n_scratches = 0;
5835 orig_asm_operands_vector = 0;
5836 orig_asm_constraints_vector = 0;
5837 copy_asm_operands_vector = 0;
5838 copy_asm_constraints_vector = 0;
5839 return copy_insn_1 (insn);
5840}
59ec66dc 5841
8e383849
JR
5842/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5843 on that assumption that INSN itself remains in its original place. */
5844
f8f0516e
DM
5845rtx_insn *
5846copy_delay_slot_insn (rtx_insn *insn)
8e383849
JR
5847{
5848 /* Copy INSN with its rtx_code, all its notes, location etc. */
f8f0516e 5849 insn = as_a <rtx_insn *> (copy_rtx (insn));
8e383849
JR
5850 INSN_UID (insn) = cur_insn_uid++;
5851 return insn;
5852}
5853
23b2ce53
RS
5854/* Initialize data structures and variables in this file
5855 before generating rtl for each function. */
5856
5857void
502b8322 5858init_emit (void)
23b2ce53 5859{
5936d944
JH
5860 set_first_insn (NULL);
5861 set_last_insn (NULL);
028d4092
ML
5862 if (param_min_nondebug_insn_uid)
5863 cur_insn_uid = param_min_nondebug_insn_uid;
b5b8b0ac
AO
5864 else
5865 cur_insn_uid = 1;
5866 cur_debug_insn_uid = 1;
23b2ce53 5867 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5868 first_label_num = label_num;
614d5bd8 5869 get_current_sequence ()->next = NULL;
23b2ce53 5870
23b2ce53
RS
5871 /* Init the tables that describe all the pseudo regs. */
5872
3e029763 5873 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5874
3e029763 5875 crtl->emit.regno_pointer_align
1b4572a8 5876 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5877
f44986d7
DM
5878 regno_reg_rtx
5879 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
0d4903b8 5880
e50126e8 5881 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5882 memcpy (regno_reg_rtx,
5fb0e246 5883 initial_regno_reg_rtx,
6cde4876 5884 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5885
23b2ce53 5886 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5887 init_virtual_regs ();
740ab4a2
RK
5888
5889 /* Indicate that the virtual registers and stack locations are
5890 all pointers. */
3502dc9c
JDA
5891 REG_POINTER (stack_pointer_rtx) = 1;
5892 REG_POINTER (frame_pointer_rtx) = 1;
5893 REG_POINTER (hard_frame_pointer_rtx) = 1;
5894 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5895
3502dc9c
JDA
5896 REG_POINTER (virtual_incoming_args_rtx) = 1;
5897 REG_POINTER (virtual_stack_vars_rtx) = 1;
5898 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5899 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5900 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5901
86fe05e0 5902#ifdef STACK_BOUNDARY
bdb429a5
RK
5903 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5904 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5905 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5906 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5907
5908 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5909 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5910 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5911 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
da75ca93 5912
bdb429a5 5913 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5914#endif
5915
5e82e7bd
JVA
5916#ifdef INIT_EXPANDERS
5917 INIT_EXPANDERS;
5918#endif
23b2ce53
RS
5919}
5920
cd5ff7bc
RS
5921/* Return the value of element I of CONST_VECTOR X as a wide_int. */
5922
5923wide_int
5924const_vector_int_elt (const_rtx x, unsigned int i)
5925{
5926 /* First handle elements that are directly encoded. */
5927 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5928 if (i < (unsigned int) XVECLEN (x, 0))
5929 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5930
5931 /* Identify the pattern that contains element I and work out the index of
5932 the last encoded element for that pattern. */
5933 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5934 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5935 unsigned int count = i / npatterns;
5936 unsigned int pattern = i % npatterns;
5937 unsigned int final_i = encoded_nelts - npatterns + pattern;
5938
5939 /* If there are no steps, the final encoded value is the right one. */
5940 if (!CONST_VECTOR_STEPPED_P (x))
5941 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5942
5943 /* Otherwise work out the value from the last two encoded elements. */
5944 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5945 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5946 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5947 rtx_mode_t (v1, elt_mode));
5948 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5949}
5950
5951/* Return the value of element I of CONST_VECTOR X. */
5952
5953rtx
5954const_vector_elt (const_rtx x, unsigned int i)
5955{
5956 /* First handle elements that are directly encoded. */
5957 if (i < (unsigned int) XVECLEN (x, 0))
5958 return CONST_VECTOR_ENCODED_ELT (x, i);
5959
5960 /* If there are no steps, the final encoded value is the right one. */
5961 if (!CONST_VECTOR_STEPPED_P (x))
5962 {
5963 /* Identify the pattern that contains element I and work out the index of
5964 the last encoded element for that pattern. */
5965 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5966 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5967 unsigned int pattern = i % npatterns;
5968 unsigned int final_i = encoded_nelts - npatterns + pattern;
5969 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5970 }
5971
5972 /* Otherwise work out the value from the last two encoded elements. */
5973 return immed_wide_int_const (const_vector_int_elt (x, i),
5974 GET_MODE_INNER (GET_MODE (x)));
5975}
5976
c0cc00c4
JJ
5977/* Return true if X is a valid element for a CONST_VECTOR of the given
5978 mode. */
9b4473b6
RS
5979
5980bool
c0cc00c4 5981valid_for_const_vector_p (machine_mode, rtx x)
9b4473b6
RS
5982{
5983 return (CONST_SCALAR_INT_P (x)
5984 || CONST_DOUBLE_AS_FLOAT_P (x)
5985 || CONST_FIXED_P (x));
5986}
5987
59d06c05
RS
5988/* Generate a vector constant of mode MODE in which every element has
5989 value ELT. */
69ef87e2 5990
59d06c05
RS
5991rtx
5992gen_const_vec_duplicate (machine_mode mode, rtx elt)
5993{
3877c560
RS
5994 rtx_vector_builder builder (mode, 1, 1);
5995 builder.quick_push (elt);
5996 return builder.build ();
59d06c05
RS
5997}
5998
5999/* Return a vector rtx of mode MODE in which every element has value X.
6000 The result will be a constant if X is constant. */
6001
6002rtx
6003gen_vec_duplicate (machine_mode mode, rtx x)
6004{
c0cc00c4 6005 if (valid_for_const_vector_p (mode, x))
59d06c05
RS
6006 return gen_const_vec_duplicate (mode, x);
6007 return gen_rtx_VEC_DUPLICATE (mode, x);
6008}
15ed7b52 6009
3877c560
RS
6010/* A subroutine of const_vec_series_p that handles the case in which:
6011
6012 (GET_CODE (X) == CONST_VECTOR
6013 && CONST_VECTOR_NPATTERNS (X) == 1
6014 && !CONST_VECTOR_DUPLICATE_P (X))
6015
6016 is known to hold. */
ef339d6e
RS
6017
6018bool
6019const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
6020{
3877c560
RS
6021 /* Stepped sequences are only defined for integers, to avoid specifying
6022 rounding behavior. */
6023 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
6024 return false;
6025
6026 /* A non-duplicated vector with two elements can always be seen as a
6027 series with a nonzero step. Longer vectors must have a stepped
6028 encoding. */
7b777afa 6029 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
3877c560 6030 && !CONST_VECTOR_STEPPED_P (x))
ef339d6e
RS
6031 return false;
6032
3877c560 6033 /* Calculate the step between the first and second elements. */
ef339d6e
RS
6034 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
6035 rtx base = CONST_VECTOR_ELT (x, 0);
6036 rtx step = simplify_binary_operation (MINUS, inner,
3877c560 6037 CONST_VECTOR_ENCODED_ELT (x, 1), base);
ef339d6e
RS
6038 if (rtx_equal_p (step, CONST0_RTX (inner)))
6039 return false;
6040
3877c560
RS
6041 /* If we have a stepped encoding, check that the step between the
6042 second and third elements is the same as STEP. */
6043 if (CONST_VECTOR_STEPPED_P (x))
ef339d6e
RS
6044 {
6045 rtx diff = simplify_binary_operation (MINUS, inner,
3877c560
RS
6046 CONST_VECTOR_ENCODED_ELT (x, 2),
6047 CONST_VECTOR_ENCODED_ELT (x, 1));
ef339d6e
RS
6048 if (!rtx_equal_p (step, diff))
6049 return false;
6050 }
6051
6052 *base_out = base;
6053 *step_out = step;
6054 return true;
6055}
6056
6057/* Generate a vector constant of mode MODE in which element I has
6058 the value BASE + I * STEP. */
6059
6060rtx
6061gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6062{
af2e4475
RS
6063 gcc_assert (valid_for_const_vector_p (mode, base)
6064 && valid_for_const_vector_p (mode, step));
ef339d6e 6065
3877c560
RS
6066 rtx_vector_builder builder (mode, 1, 3);
6067 builder.quick_push (base);
6068 for (int i = 1; i < 3; ++i)
6069 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6070 builder[i - 1], step));
6071 return builder.build ();
ef339d6e
RS
6072}
6073
6074/* Generate a vector of mode MODE in which element I has the value
6075 BASE + I * STEP. The result will be a constant if BASE and STEP
6076 are both constants. */
6077
6078rtx
6079gen_vec_series (machine_mode mode, rtx base, rtx step)
6080{
6081 if (step == const0_rtx)
6082 return gen_vec_duplicate (mode, base);
af2e4475
RS
6083 if (valid_for_const_vector_p (mode, base)
6084 && valid_for_const_vector_p (mode, step))
ef339d6e
RS
6085 return gen_const_vec_series (mode, base, step);
6086 return gen_rtx_VEC_SERIES (mode, base, step);
6087}
6088
59d06c05
RS
6089/* Generate a new vector constant for mode MODE and constant value
6090 CONSTANT. */
69ef87e2 6091
59d06c05
RS
6092static rtx
6093gen_const_vector (machine_mode mode, int constant)
6094{
6095 machine_mode inner = GET_MODE_INNER (mode);
69ef87e2 6096
59d06c05
RS
6097 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6098
6099 rtx el = const_tiny_rtx[constant][(int) inner];
6100 gcc_assert (el);
69ef87e2 6101
3877c560 6102 return gen_const_vec_duplicate (mode, el);
69ef87e2
AH
6103}
6104
a06e3c40 6105/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 6106 all elements are zero, and the one vector when all elements are one. */
a06e3c40 6107rtx
ef4bddc2 6108gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
a06e3c40 6109{
7b777afa 6110 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
a73b091d
JW
6111
6112 /* If the values are all the same, check to see if we can use one of the
6113 standard constant vectors. */
59d06c05
RS
6114 if (rtvec_all_equal_p (v))
6115 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
a73b091d 6116
3877c560
RS
6117 unsigned int nunits = GET_NUM_ELEM (v);
6118 rtx_vector_builder builder (mode, nunits, 1);
6119 for (unsigned int i = 0; i < nunits; ++i)
6120 builder.quick_push (RTVEC_ELT (v, i));
6121 return builder.build (v);
a06e3c40
R
6122}
6123
b5deb7b6
SL
6124/* Initialise global register information required by all functions. */
6125
6126void
6127init_emit_regs (void)
6128{
6129 int i;
ef4bddc2 6130 machine_mode mode;
1c3f523e 6131 mem_attrs *attrs;
b5deb7b6
SL
6132
6133 /* Reset register attributes */
aebf76a2 6134 reg_attrs_htab->empty ();
b5deb7b6
SL
6135
6136 /* We need reg_raw_mode, so initialize the modes now. */
6137 init_reg_modes_target ();
6138
6139 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
6140 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6141 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6142 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6143 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6144 virtual_incoming_args_rtx =
6145 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6146 virtual_stack_vars_rtx =
6147 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6148 virtual_stack_dynamic_rtx =
6149 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6150 virtual_outgoing_args_rtx =
6151 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6152 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
6153 virtual_preferred_stack_boundary_rtx =
6154 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
6155
6156 /* Initialize RTL for commonly used hard registers. These are
6157 copied into regno_reg_rtx as we begin to compile each function. */
6158 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 6159 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
6160
6161#ifdef RETURN_ADDRESS_POINTER_REGNUM
6162 return_address_pointer_rtx
6163 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6164#endif
6165
ca72dad5 6166 pic_offset_table_rtx = NULL_RTX;
b5deb7b6
SL
6167 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6168 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
1c3f523e
RS
6169
6170 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6171 {
ef4bddc2 6172 mode = (machine_mode) i;
766090c2 6173 attrs = ggc_cleared_alloc<mem_attrs> ();
1c3f523e
RS
6174 attrs->align = BITS_PER_UNIT;
6175 attrs->addrspace = ADDR_SPACE_GENERIC;
532c7a45 6176 if (mode != BLKmode && mode != VOIDmode)
1c3f523e 6177 {
754c3d5d
RS
6178 attrs->size_known_p = true;
6179 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
6180 if (STRICT_ALIGNMENT)
6181 attrs->align = GET_MODE_ALIGNMENT (mode);
6182 }
6183 mode_mem_attrs[i] = attrs;
6184 }
af364399
ML
6185
6186 split_branch_probability = profile_probability::uninitialized ();
b5deb7b6
SL
6187}
6188
aa3a12d6
RS
6189/* Initialize global machine_mode variables. */
6190
6191void
6192init_derived_machine_modes (void)
6193{
501623d4
RS
6194 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6195 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
aa3a12d6 6196 {
501623d4
RS
6197 scalar_int_mode mode = mode_iter.require ();
6198
aa3a12d6 6199 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
501623d4
RS
6200 && !opt_byte_mode.exists ())
6201 opt_byte_mode = mode;
aa3a12d6
RS
6202
6203 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
501623d4
RS
6204 && !opt_word_mode.exists ())
6205 opt_word_mode = mode;
aa3a12d6
RS
6206 }
6207
501623d4
RS
6208 byte_mode = opt_byte_mode.require ();
6209 word_mode = opt_word_mode.require ();
f95c5b8e
RS
6210 ptr_mode = as_a <scalar_int_mode>
6211 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
aa3a12d6
RS
6212}
6213
2d888286 6214/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
6215
6216void
2d888286 6217init_emit_once (void)
23b2ce53
RS
6218{
6219 int i;
ef4bddc2 6220 machine_mode mode;
857c7b46 6221 scalar_float_mode double_mode;
16d22000 6222 opt_scalar_mode smode_iter;
23b2ce53 6223
807e902e
KZ
6224 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6225 CONST_FIXED, and memory attribute hash tables. */
aebf76a2 6226 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
173b24b9 6227
807e902e 6228#if TARGET_SUPPORTS_WIDE_INT
aebf76a2 6229 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
807e902e 6230#endif
aebf76a2 6231 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5692c7bc 6232
0c12fc9b
RS
6233 if (NUM_POLY_INT_COEFFS > 1)
6234 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6235
aebf76a2 6236 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
091a3ac7 6237
aebf76a2 6238 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
67673f5c 6239
5da077de 6240#ifdef INIT_EXPANDERS
414c4dc4
NC
6241 /* This is to initialize {init|mark|free}_machine_status before the first
6242 call to push_function_context_to. This is needed by the Chill front
a1f300c0 6243 end which calls push_function_context_to before the first call to
5da077de
AS
6244 init_function_start. */
6245 INIT_EXPANDERS;
6246#endif
6247
23b2ce53
RS
6248 /* Create the unique rtx's for certain rtx codes and operand values. */
6249
ecf835e9
KN
6250 /* Process stack-limiting command-line options. */
6251 if (opt_fstack_limit_symbol_arg != NULL)
6252 stack_limit_rtx
6253 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6254 if (opt_fstack_limit_register_no >= 0)
6255 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6256
a2a8cc44 6257 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 6258 tries to use these variables. */
23b2ce53 6259 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 6260 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 6261 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 6262
68d75312
JC
6263 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6264 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 6265 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 6266 else
3b80f6ca 6267 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 6268
857c7b46 6269 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
aa3a12d6 6270
807e902e
KZ
6271 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6272 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6273 real_from_integer (&dconst2, double_mode, 2, SIGNED);
aefa9d43
KG
6274
6275 dconstm1 = dconst1;
6276 dconstm1.sign = 1;
03f2ea93
RS
6277
6278 dconsthalf = dconst1;
1e92bbb9 6279 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 6280
e7c82a99 6281 for (i = 0; i < 3; i++)
23b2ce53 6282 {
aefa9d43 6283 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
6284 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6285
c94843d2 6286 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
15ed7b52 6287 const_tiny_rtx[i][(int) mode] =
555affd7 6288 const_double_from_real_value (*r, mode);
15ed7b52 6289
c94843d2 6290 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5692c7bc 6291 const_tiny_rtx[i][(int) mode] =
555affd7 6292 const_double_from_real_value (*r, mode);
23b2ce53 6293
906c4e36 6294 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 6295
c94843d2 6296 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
906c4e36 6297 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 6298
ede6c734
MS
6299 for (mode = MIN_MODE_PARTIAL_INT;
6300 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6301 mode = (machine_mode)((int)(mode) + 1))
33d3e559 6302 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
6303 }
6304
e7c82a99
JJ
6305 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6306
c94843d2 6307 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
e7c82a99
JJ
6308 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6309
5c0caeb3
RS
6310 /* For BImode, 1 and -1 are unsigned and signed interpretations
6311 of the same value. */
6312 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6313 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6314 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6315
ede6c734
MS
6316 for (mode = MIN_MODE_PARTIAL_INT;
6317 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6318 mode = (machine_mode)((int)(mode) + 1))
c8a89d2a 6319 const_tiny_rtx[3][(int) mode] = constm1_rtx;
c94843d2
RS
6320
6321 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
e90721b1
AP
6322 {
6323 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6324 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6325 }
6326
c94843d2 6327 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
e90721b1
AP
6328 {
6329 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6330 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6331 }
6332
5c0caeb3
RS
6333 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6334 interpretations of the same value. */
6335 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6336 {
6337 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6338 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6339 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6340 }
6341
c94843d2 6342 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
a73b091d
JW
6343 {
6344 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6345 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 6346 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 6347 }
69ef87e2 6348
c94843d2 6349 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
a73b091d
JW
6350 {
6351 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6352 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6353 }
69ef87e2 6354
16d22000 6355 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
325217ed 6356 {
16d22000
RS
6357 scalar_mode smode = smode_iter.require ();
6358 FCONST0 (smode).data.high = 0;
6359 FCONST0 (smode).data.low = 0;
6360 FCONST0 (smode).mode = smode;
6361 const_tiny_rtx[0][(int) smode]
6362 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6363 }
6364
16d22000 6365 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
325217ed 6366 {
16d22000
RS
6367 scalar_mode smode = smode_iter.require ();
6368 FCONST0 (smode).data.high = 0;
6369 FCONST0 (smode).data.low = 0;
6370 FCONST0 (smode).mode = smode;
6371 const_tiny_rtx[0][(int) smode]
6372 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6373 }
6374
16d22000 6375 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
325217ed 6376 {
16d22000
RS
6377 scalar_mode smode = smode_iter.require ();
6378 FCONST0 (smode).data.high = 0;
6379 FCONST0 (smode).data.low = 0;
6380 FCONST0 (smode).mode = smode;
6381 const_tiny_rtx[0][(int) smode]
6382 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6383
6384 /* We store the value 1. */
16d22000
RS
6385 FCONST1 (smode).data.high = 0;
6386 FCONST1 (smode).data.low = 0;
6387 FCONST1 (smode).mode = smode;
6388 FCONST1 (smode).data
6389 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6390 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6391 SIGNED_FIXED_POINT_MODE_P (smode));
6392 const_tiny_rtx[1][(int) smode]
6393 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
325217ed
CF
6394 }
6395
16d22000 6396 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
325217ed 6397 {
16d22000
RS
6398 scalar_mode smode = smode_iter.require ();
6399 FCONST0 (smode).data.high = 0;
6400 FCONST0 (smode).data.low = 0;
6401 FCONST0 (smode).mode = smode;
6402 const_tiny_rtx[0][(int) smode]
6403 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6404
6405 /* We store the value 1. */
16d22000
RS
6406 FCONST1 (smode).data.high = 0;
6407 FCONST1 (smode).data.low = 0;
6408 FCONST1 (smode).mode = smode;
6409 FCONST1 (smode).data
6410 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6411 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6412 SIGNED_FIXED_POINT_MODE_P (smode));
6413 const_tiny_rtx[1][(int) smode]
6414 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
091a3ac7
CF
6415 }
6416
c94843d2 6417 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
091a3ac7
CF
6418 {
6419 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6420 }
6421
c94843d2 6422 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
091a3ac7
CF
6423 {
6424 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6425 }
6426
c94843d2 6427 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
091a3ac7
CF
6428 {
6429 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6430 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6431 }
6432
c94843d2 6433 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
091a3ac7
CF
6434 {
6435 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6436 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
6437 }
6438
dbbbbf3b 6439 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
ef4bddc2 6440 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
dbbbbf3b 6441 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 6442
ca4adc91
RS
6443 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6444 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6445 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6446 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
1476d1bd
MM
6447 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6448 /*prev_insn=*/NULL,
6449 /*next_insn=*/NULL,
6450 /*bb=*/NULL,
6451 /*pattern=*/NULL_RTX,
6452 /*location=*/-1,
6453 CODE_FOR_nothing,
6454 /*reg_notes=*/NULL_RTX);
23b2ce53 6455}
a11759a3 6456\f
969d70ca
JH
6457/* Produce exact duplicate of insn INSN after AFTER.
6458 Care updating of libcall regions if present. */
6459
cd459bf8 6460rtx_insn *
a1950df3 6461emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
969d70ca 6462{
cd459bf8
DM
6463 rtx_insn *new_rtx;
6464 rtx link;
969d70ca
JH
6465
6466 switch (GET_CODE (insn))
6467 {
6468 case INSN:
60564289 6469 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
6470 break;
6471
6472 case JUMP_INSN:
60564289 6473 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
ec27069c 6474 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
969d70ca
JH
6475 break;
6476
b5b8b0ac
AO
6477 case DEBUG_INSN:
6478 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6479 break;
6480
969d70ca 6481 case CALL_INSN:
60564289 6482 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 6483 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 6484 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 6485 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
6486 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6487 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6488 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 6489 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 6490 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
6491 break;
6492
6493 default:
5b0264cb 6494 gcc_unreachable ();
969d70ca
JH
6495 }
6496
6497 /* Update LABEL_NUSES. */
60564289 6498 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 6499
5368224f 6500 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 6501
0a3d71f5
JW
6502 /* If the old insn is frame related, then so is the new one. This is
6503 primarily needed for IA-64 unwind info which marks epilogue insns,
6504 which may be duplicated by the basic block reordering code. */
60564289 6505 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 6506
1581a12c
BS
6507 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6508 rtx *ptail = &REG_NOTES (new_rtx);
6509 while (*ptail != NULL_RTX)
6510 ptail = &XEXP (*ptail, 1);
6511
cf7c4aa6
HPN
6512 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6513 will make them. REG_LABEL_TARGETs are created there too, but are
6514 supposed to be sticky, so we copy them. */
969d70ca 6515 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 6516 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca 6517 {
1581a12c
BS
6518 *ptail = duplicate_reg_note (link);
6519 ptail = &XEXP (*ptail, 1);
969d70ca
JH
6520 }
6521
60564289
KG
6522 INSN_CODE (new_rtx) = INSN_CODE (insn);
6523 return new_rtx;
969d70ca 6524}
e2500fed 6525
1431042e 6526static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d 6527rtx
ef4bddc2 6528gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
3e89ed8d
JH
6529{
6530 if (hard_reg_clobbers[mode][regno])
6531 return hard_reg_clobbers[mode][regno];
6532 else
6533 return (hard_reg_clobbers[mode][regno] =
6534 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6535}
6536
5368224f
DC
6537location_t prologue_location;
6538location_t epilogue_location;
78bde837
SB
6539
6540/* Hold current location information and last location information, so the
6541 datastructures are built lazily only when some instructions in given
6542 place are needed. */
3a50da34 6543static location_t curr_location;
78bde837 6544
5368224f 6545/* Allocate insn location datastructure. */
78bde837 6546void
5368224f 6547insn_locations_init (void)
78bde837 6548{
5368224f 6549 prologue_location = epilogue_location = 0;
78bde837 6550 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6551}
6552
6553/* At the end of emit stage, clear current location. */
6554void
5368224f 6555insn_locations_finalize (void)
78bde837 6556{
5368224f
DC
6557 epilogue_location = curr_location;
6558 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6559}
6560
6561/* Set current location. */
6562void
5368224f 6563set_curr_insn_location (location_t location)
78bde837 6564{
78bde837
SB
6565 curr_location = location;
6566}
6567
6568/* Get current location. */
6569location_t
5368224f 6570curr_insn_location (void)
78bde837
SB
6571{
6572 return curr_location;
6573}
6574
079e0f61
EB
6575/* Set the location of the insn chain starting at INSN to LOC. */
6576void
6577set_insn_locations (rtx_insn *insn, location_t loc)
6578{
6579 while (insn)
6580 {
6581 if (INSN_P (insn))
6582 INSN_LOCATION (insn) = loc;
6583 insn = NEXT_INSN (insn);
6584 }
6585}
6586
78bde837
SB
6587/* Return lexical scope block insn belongs to. */
6588tree
a1950df3 6589insn_scope (const rtx_insn *insn)
78bde837 6590{
5368224f 6591 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
6592}
6593
6594/* Return line number of the statement that produced this insn. */
6595int
a1950df3 6596insn_line (const rtx_insn *insn)
78bde837 6597{
5368224f 6598 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6599}
6600
6601/* Return source file of the statement that produced this insn. */
6602const char *
a1950df3 6603insn_file (const rtx_insn *insn)
78bde837 6604{
5368224f 6605 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6606}
8930883e 6607
ffa4602f
EB
6608/* Return expanded location of the statement that produced this insn. */
6609expanded_location
a1950df3 6610insn_location (const rtx_insn *insn)
ffa4602f
EB
6611{
6612 return expand_location (INSN_LOCATION (insn));
6613}
6614
8930883e
MK
6615/* Return true if memory model MODEL requires a pre-operation (release-style)
6616 barrier or a post-operation (acquire-style) barrier. While not universal,
6617 this function matches behavior of several targets. */
6618
6619bool
6620need_atomic_barrier_p (enum memmodel model, bool pre)
6621{
40ad260d 6622 switch (model & MEMMODEL_BASE_MASK)
8930883e
MK
6623 {
6624 case MEMMODEL_RELAXED:
6625 case MEMMODEL_CONSUME:
6626 return false;
6627 case MEMMODEL_RELEASE:
6628 return pre;
6629 case MEMMODEL_ACQUIRE:
6630 return !pre;
6631 case MEMMODEL_ACQ_REL:
6632 case MEMMODEL_SEQ_CST:
6633 return true;
6634 default:
6635 gcc_unreachable ();
6636 }
6637}
8194c537 6638
abd3c800
RS
6639/* Return a constant shift amount for shifting a value of mode MODE
6640 by VALUE bits. */
6641
6642rtx
0c12fc9b 6643gen_int_shift_amount (machine_mode, poly_int64 value)
abd3c800
RS
6644{
6645 /* Use a 64-bit mode, to avoid any truncation.
6646
6647 ??? Perhaps this should be automatically derived from the .md files
6648 instead, or perhaps have a target hook. */
6649 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6650 ? DImode
6651 : int_mode_for_size (64, 0).require ());
6652 return gen_int_mode (value, shift_mode);
6653}
6654
8194c537
DM
6655/* Initialize fields of rtl_data related to stack alignment. */
6656
6657void
6658rtl_data::init_stack_alignment ()
6659{
6660 stack_alignment_needed = STACK_BOUNDARY;
6661 max_used_stack_slot_alignment = STACK_BOUNDARY;
6662 stack_alignment_estimated = 0;
6663 preferred_stack_boundary = STACK_BOUNDARY;
6664}
6665
8930883e 6666\f
e2500fed 6667#include "gt-emit-rtl.h"