]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Correct a function pre/postcondition [PR102403].
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
99dee823 2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6 36#include "coretypes.h"
4d0cdd0c 37#include "memmodel.h"
c7131fb2 38#include "backend.h"
957060b5 39#include "target.h"
23b2ce53 40#include "rtl.h"
957060b5 41#include "tree.h"
c7131fb2 42#include "df.h"
957060b5
AM
43#include "tm_p.h"
44#include "stringpool.h"
957060b5
AM
45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
c7131fb2 49#include "diagnostic-core.h"
40e23961 50#include "alias.h"
40e23961 51#include "fold-const.h"
d8a2d370 52#include "varasm.h"
60393bbc 53#include "cfgrtl.h"
60393bbc 54#include "tree-eh.h"
36566b39 55#include "explow.h"
23b2ce53 56#include "expr.h"
9b2b7279 57#include "builtins.h"
9021b8ec 58#include "rtl-iter.h"
1f9ceff1 59#include "stor-layout.h"
ecf835e9 60#include "opts.h"
5fa396ad 61#include "predict.h"
3877c560 62#include "rtx-vector-builder.h"
fa70c221
RB
63#include "gimple.h"
64#include "gimple-ssa.h"
65#include "gimplify.h"
ca695ac9 66
5fb0e246
RS
67struct target_rtl default_target_rtl;
68#if SWITCHABLE_TARGET
69struct target_rtl *this_target_rtl = &default_target_rtl;
70#endif
71
72#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
1d445e9e
ILT
74/* Commonly used modes. */
75
501623d4
RS
76scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 79
bd60bab2
JH
80/* Datastructures maintained for currently processed function in RTL form. */
81
3e029763 82struct rtl_data x_rtl;
bd60bab2
JH
83
84/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 85 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
88
89rtx * regno_reg_rtx;
23b2ce53
RS
90
91/* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
93
044b4de3 94static GTY(()) int label_num = 1;
23b2ce53 95
23b2ce53
RS
96/* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 100
e7c82a99 101rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 102
68d75312
JC
103rtx const_true_rtx;
104
23b2ce53
RS
105REAL_VALUE_TYPE dconst0;
106REAL_VALUE_TYPE dconst1;
107REAL_VALUE_TYPE dconst2;
108REAL_VALUE_TYPE dconstm1;
03f2ea93 109REAL_VALUE_TYPE dconsthalf;
23b2ce53 110
325217ed
CF
111/* Record fixed-point constant 0 and 1. */
112FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114
23b2ce53
RS
115/* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
118 integers. */
119
5da077de 120rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 121
ca4adc91
RS
122/* Standard pieces of rtx, to be substituted directly into things. */
123rtx pc_rtx;
124rtx ret_rtx;
125rtx simple_return_rtx;
ca4adc91 126
1476d1bd
MM
127/* Marker used for denoting an INSN, which should never be accessed (i.e.,
128 this pointer should normally never be dereferenced), but is required to be
129 distinct from NULL_RTX. Currently used by peephole2 pass. */
130rtx_insn *invalid_insn_rtx;
131
c13e8210
MM
132/* A hash table storing CONST_INTs whose absolute value is greater
133 than MAX_SAVED_CONST_INT. */
134
6c907cff 135struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
136{
137 typedef HOST_WIDE_INT compare_type;
138
139 static hashval_t hash (rtx i);
140 static bool equal (rtx i, HOST_WIDE_INT h);
141};
c13e8210 142
aebf76a2
TS
143static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
144
6c907cff 145struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
146{
147 static hashval_t hash (rtx x);
148 static bool equal (rtx x, rtx y);
149};
150
151static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
807e902e 152
0c12fc9b
RS
153struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
154{
155 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
156
157 static hashval_t hash (rtx x);
158 static bool equal (rtx x, const compare_type &y);
159};
160
161static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
162
a560d4d4 163/* A hash table storing register attribute structures. */
6c907cff 164struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
aebf76a2
TS
165{
166 static hashval_t hash (reg_attrs *x);
167 static bool equal (reg_attrs *a, reg_attrs *b);
168};
169
170static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
a560d4d4 171
5692c7bc 172/* A hash table storing all CONST_DOUBLEs. */
6c907cff 173struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
174{
175 static hashval_t hash (rtx x);
176 static bool equal (rtx x, rtx y);
177};
178
179static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
5692c7bc 180
091a3ac7 181/* A hash table storing all CONST_FIXEDs. */
6c907cff 182struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
183{
184 static hashval_t hash (rtx x);
185 static bool equal (rtx x, rtx y);
186};
187
188static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
091a3ac7 189
3e029763 190#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 191#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 192#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 193
5eb2a9f2 194static void set_used_decls (tree);
502b8322 195static void mark_label_nuses (rtx);
807e902e 196#if TARGET_SUPPORTS_WIDE_INT
807e902e
KZ
197static rtx lookup_const_wide_int (rtx);
198#endif
502b8322 199static rtx lookup_const_double (rtx);
091a3ac7 200static rtx lookup_const_fixed (rtx);
ef4bddc2 201static rtx gen_const_vector (machine_mode, int);
32b32b16 202static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 203
5fa396ad
JH
204/* Probability of the conditional branch currently proceeded by try_split. */
205profile_probability split_branch_probability;
ca695ac9 206\f
c13e8210
MM
207/* Returns a hash code for X (which is a really a CONST_INT). */
208
aebf76a2
TS
209hashval_t
210const_int_hasher::hash (rtx x)
c13e8210 211{
aebf76a2 212 return (hashval_t) INTVAL (x);
c13e8210
MM
213}
214
cc2902df 215/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
aebf76a2
TS
219bool
220const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
c13e8210 221{
aebf76a2 222 return (INTVAL (x) == y);
5692c7bc
ZW
223}
224
807e902e
KZ
225#if TARGET_SUPPORTS_WIDE_INT
226/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
227
aebf76a2
TS
228hashval_t
229const_wide_int_hasher::hash (rtx x)
807e902e
KZ
230{
231 int i;
d7ca26e4 232 unsigned HOST_WIDE_INT hash = 0;
aebf76a2 233 const_rtx xr = x;
807e902e
KZ
234
235 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
236 hash += CONST_WIDE_INT_ELT (xr, i);
237
238 return (hashval_t) hash;
239}
240
241/* Returns nonzero if the value represented by X (which is really a
242 CONST_WIDE_INT) is the same as that given by Y (which is really a
243 CONST_WIDE_INT). */
244
aebf76a2
TS
245bool
246const_wide_int_hasher::equal (rtx x, rtx y)
807e902e
KZ
247{
248 int i;
aebf76a2
TS
249 const_rtx xr = x;
250 const_rtx yr = y;
807e902e 251 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
aebf76a2 252 return false;
807e902e
KZ
253
254 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
255 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
aebf76a2 256 return false;
807e902e 257
aebf76a2 258 return true;
807e902e
KZ
259}
260#endif
261
0c12fc9b
RS
262/* Returns a hash code for CONST_POLY_INT X. */
263
264hashval_t
265const_poly_int_hasher::hash (rtx x)
266{
267 inchash::hash h;
268 h.add_int (GET_MODE (x));
269 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
270 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
271 return h.end ();
272}
273
274/* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
275
276bool
277const_poly_int_hasher::equal (rtx x, const compare_type &y)
278{
279 if (GET_MODE (x) != y.first)
280 return false;
281 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
282 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
283 return false;
284 return true;
285}
286
5692c7bc 287/* Returns a hash code for X (which is really a CONST_DOUBLE). */
aebf76a2
TS
288hashval_t
289const_double_hasher::hash (rtx x)
5692c7bc 290{
aebf76a2 291 const_rtx const value = x;
46b33600 292 hashval_t h;
5692c7bc 293
807e902e 294 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
46b33600
RH
295 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
296 else
fe352c29 297 {
15c812e3 298 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
299 /* MODE is used in the comparison, so it should be in the hash. */
300 h ^= GET_MODE (value);
301 }
5692c7bc
ZW
302 return h;
303}
304
cc2902df 305/* Returns nonzero if the value represented by X (really a ...)
5692c7bc 306 is the same as that represented by Y (really a ...) */
aebf76a2
TS
307bool
308const_double_hasher::equal (rtx x, rtx y)
5692c7bc 309{
aebf76a2 310 const_rtx const a = x, b = y;
5692c7bc
ZW
311
312 if (GET_MODE (a) != GET_MODE (b))
313 return 0;
807e902e 314 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
8580f7a0
RH
315 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
316 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
317 else
318 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
319 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
320}
321
091a3ac7
CF
322/* Returns a hash code for X (which is really a CONST_FIXED). */
323
aebf76a2
TS
324hashval_t
325const_fixed_hasher::hash (rtx x)
091a3ac7 326{
aebf76a2 327 const_rtx const value = x;
091a3ac7
CF
328 hashval_t h;
329
330 h = fixed_hash (CONST_FIXED_VALUE (value));
331 /* MODE is used in the comparison, so it should be in the hash. */
332 h ^= GET_MODE (value);
333 return h;
334}
335
aebf76a2
TS
336/* Returns nonzero if the value represented by X is the same as that
337 represented by Y. */
091a3ac7 338
aebf76a2
TS
339bool
340const_fixed_hasher::equal (rtx x, rtx y)
091a3ac7 341{
aebf76a2 342 const_rtx const a = x, b = y;
091a3ac7
CF
343
344 if (GET_MODE (a) != GET_MODE (b))
345 return 0;
346 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
347}
348
f12144dd 349/* Return true if the given memory attributes are equal. */
c13e8210 350
96b3c03f 351bool
99b1c316 352mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
c13e8210 353{
96b3c03f
RB
354 if (p == q)
355 return true;
356 if (!p || !q)
357 return false;
754c3d5d
RS
358 return (p->alias == q->alias
359 && p->offset_known_p == q->offset_known_p
d05d7551 360 && (!p->offset_known_p || known_eq (p->offset, q->offset))
754c3d5d 361 && p->size_known_p == q->size_known_p
d05d7551 362 && (!p->size_known_p || known_eq (p->size, q->size))
754c3d5d 363 && p->align == q->align
09e881c9 364 && p->addrspace == q->addrspace
78b76d08
SB
365 && (p->expr == q->expr
366 || (p->expr != NULL_TREE && q->expr != NULL_TREE
367 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
368}
369
f12144dd 370/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 371
f12144dd
RS
372static void
373set_mem_attrs (rtx mem, mem_attrs *attrs)
374{
f12144dd
RS
375 /* If everything is the default, we can just clear the attributes. */
376 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
377 {
378 MEM_ATTRS (mem) = 0;
379 return;
380 }
173b24b9 381
84053e02
RB
382 if (!MEM_ATTRS (mem)
383 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
173b24b9 384 {
766090c2 385 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
84053e02 386 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
173b24b9 387 }
c13e8210
MM
388}
389
a560d4d4
JH
390/* Returns a hash code for X (which is a really a reg_attrs *). */
391
aebf76a2
TS
392hashval_t
393reg_attr_hasher::hash (reg_attrs *x)
a560d4d4 394{
aebf76a2 395 const reg_attrs *const p = x;
a560d4d4 396
84bc717b
RS
397 inchash::hash h;
398 h.add_ptr (p->decl);
399 h.add_poly_hwi (p->offset);
400 return h.end ();
a560d4d4
JH
401}
402
aebf76a2
TS
403/* Returns nonzero if the value represented by X is the same as that given by
404 Y. */
a560d4d4 405
aebf76a2
TS
406bool
407reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
a560d4d4 408{
aebf76a2
TS
409 const reg_attrs *const p = x;
410 const reg_attrs *const q = y;
a560d4d4 411
84bc717b 412 return (p->decl == q->decl && known_eq (p->offset, q->offset));
a560d4d4
JH
413}
414/* Allocate a new reg_attrs structure and insert it into the hash table if
415 one identical to it is not already in the table. We are doing this for
416 MEM of mode MODE. */
417
418static reg_attrs *
84bc717b 419get_reg_attrs (tree decl, poly_int64 offset)
a560d4d4
JH
420{
421 reg_attrs attrs;
a560d4d4
JH
422
423 /* If everything is the default, we can just return zero. */
84bc717b 424 if (decl == 0 && known_eq (offset, 0))
a560d4d4
JH
425 return 0;
426
427 attrs.decl = decl;
428 attrs.offset = offset;
429
aebf76a2 430 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
a560d4d4
JH
431 if (*slot == 0)
432 {
766090c2 433 *slot = ggc_alloc<reg_attrs> ();
a560d4d4
JH
434 memcpy (*slot, &attrs, sizeof (reg_attrs));
435 }
436
aebf76a2 437 return *slot;
a560d4d4
JH
438}
439
6fb5fa3c
DB
440
441#if !HAVE_blockage
adddc347
HPN
442/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
443 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
444
445rtx
446gen_blockage (void)
447{
448 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
449 MEM_VOLATILE_P (x) = true;
450 return x;
451}
452#endif
453
454
8deccbb7
RS
455/* Set the mode and register number of X to MODE and REGNO. */
456
457void
458set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
459{
9188b286 460 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
ad474626 461 ? hard_regno_nregs (regno, mode)
9188b286 462 : 1);
8deccbb7 463 PUT_MODE_RAW (x, mode);
9188b286 464 set_regno_raw (x, regno, nregs);
8deccbb7
RS
465}
466
20fa157e
IL
467/* Initialize a fresh REG rtx with mode MODE and register REGNO. */
468
469rtx
470init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
471{
472 set_mode_and_regno (x, mode, regno);
473 REG_ATTRS (x) = NULL;
474 ORIGINAL_REGNO (x) = regno;
475 return x;
476}
477
08394eef
BS
478/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
479 don't attempt to share with the various global pieces of rtl (such as
480 frame_pointer_rtx). */
481
482rtx
8deccbb7 483gen_raw_REG (machine_mode mode, unsigned int regno)
08394eef 484{
84c2ad23 485 rtx x = rtx_alloc (REG MEM_STAT_INFO);
20fa157e 486 init_raw_REG (x, mode, regno);
08394eef
BS
487 return x;
488}
489
c5c76735
JL
490/* There are some RTL codes that require special attention; the generation
491 functions do the raw handling. If you add to this list, modify
492 special_rtx in gengenrtl.c as well. */
493
38e60c55 494rtx_expr_list *
ef4bddc2 495gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
38e60c55
DM
496{
497 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
498 expr_list));
499}
500
a756c6be 501rtx_insn_list *
ef4bddc2 502gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
a756c6be
DM
503{
504 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
505 insn_list));
506}
507
d6e1e8b8 508rtx_insn *
ef4bddc2 509gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
d6e1e8b8
DM
510 basic_block bb, rtx pattern, int location, int code,
511 rtx reg_notes)
512{
513 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
514 prev_insn, next_insn,
515 bb, pattern, location, code,
516 reg_notes));
517}
518
3b80f6ca 519rtx
ef4bddc2 520gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca
RH
521{
522 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 523 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
524
525#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
526 if (const_true_rtx && arg == STORE_FLAG_VALUE)
527 return const_true_rtx;
528#endif
529
c13e8210 530 /* Look up the CONST_INT in the hash table. */
aebf76a2
TS
531 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
532 INSERT);
29105cea 533 if (*slot == 0)
1f8f4a0b 534 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210 535
aebf76a2 536 return *slot;
3b80f6ca
RH
537}
538
2496c7bd 539rtx
0c12fc9b 540gen_int_mode (poly_int64 c, machine_mode mode)
2496c7bd 541{
0c12fc9b
RS
542 c = trunc_int_for_mode (c, mode);
543 if (c.is_constant ())
544 return GEN_INT (c.coeffs[0]);
545 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
546 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
2496c7bd
LB
547}
548
5692c7bc
ZW
549/* CONST_DOUBLEs might be created from pairs of integers, or from
550 REAL_VALUE_TYPEs. Also, their length is known only at run time,
551 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
552
553/* Determine whether REAL, a CONST_DOUBLE, already exists in the
554 hash table. If so, return its counterpart; otherwise add it
555 to the hash table and return it. */
556static rtx
502b8322 557lookup_const_double (rtx real)
5692c7bc 558{
aebf76a2 559 rtx *slot = const_double_htab->find_slot (real, INSERT);
5692c7bc
ZW
560 if (*slot == 0)
561 *slot = real;
562
aebf76a2 563 return *slot;
5692c7bc 564}
29105cea 565
5692c7bc
ZW
566/* Return a CONST_DOUBLE rtx for a floating-point value specified by
567 VALUE in mode MODE. */
0133b7d9 568rtx
ef4bddc2 569const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
0133b7d9 570{
5692c7bc
ZW
571 rtx real = rtx_alloc (CONST_DOUBLE);
572 PUT_MODE (real, mode);
573
9e254451 574 real->u.rv = value;
5692c7bc
ZW
575
576 return lookup_const_double (real);
577}
578
091a3ac7
CF
579/* Determine whether FIXED, a CONST_FIXED, already exists in the
580 hash table. If so, return its counterpart; otherwise add it
581 to the hash table and return it. */
582
583static rtx
584lookup_const_fixed (rtx fixed)
585{
aebf76a2 586 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
091a3ac7
CF
587 if (*slot == 0)
588 *slot = fixed;
589
aebf76a2 590 return *slot;
091a3ac7
CF
591}
592
593/* Return a CONST_FIXED rtx for a fixed-point value specified by
594 VALUE in mode MODE. */
595
596rtx
ef4bddc2 597const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
091a3ac7
CF
598{
599 rtx fixed = rtx_alloc (CONST_FIXED);
600 PUT_MODE (fixed, mode);
601
602 fixed->u.fv = value;
603
604 return lookup_const_fixed (fixed);
605}
606
807e902e 607#if TARGET_SUPPORTS_WIDE_INT == 0
3e93ff81
AS
608/* Constructs double_int from rtx CST. */
609
610double_int
611rtx_to_double_int (const_rtx cst)
612{
613 double_int r;
614
615 if (CONST_INT_P (cst))
27bcd47c 616 r = double_int::from_shwi (INTVAL (cst));
48175537 617 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
618 {
619 r.low = CONST_DOUBLE_LOW (cst);
620 r.high = CONST_DOUBLE_HIGH (cst);
621 }
622 else
623 gcc_unreachable ();
624
625 return r;
626}
807e902e 627#endif
3e93ff81 628
807e902e
KZ
629#if TARGET_SUPPORTS_WIDE_INT
630/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
631 If so, return its counterpart; otherwise add it to the hash table and
632 return it. */
3e93ff81 633
807e902e
KZ
634static rtx
635lookup_const_wide_int (rtx wint)
636{
aebf76a2 637 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
807e902e
KZ
638 if (*slot == 0)
639 *slot = wint;
640
aebf76a2 641 return *slot;
807e902e
KZ
642}
643#endif
644
645/* Return an rtx constant for V, given that the constant has mode MODE.
646 The returned rtx will be a CONST_INT if V fits, otherwise it will be
647 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
648 (if TARGET_SUPPORTS_WIDE_INT). */
54fb1ae0 649
0c12fc9b
RS
650static rtx
651immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
54fb1ae0 652{
807e902e 653 unsigned int len = v.get_len ();
db61b7f9
RS
654 /* Not scalar_int_mode because we also allow pointer bound modes. */
655 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
807e902e
KZ
656
657 /* Allow truncation but not extension since we do not know if the
658 number is signed or unsigned. */
659 gcc_assert (prec <= v.get_precision ());
660
661 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
662 return gen_int_mode (v.elt (0), mode);
663
664#if TARGET_SUPPORTS_WIDE_INT
665 {
666 unsigned int i;
667 rtx value;
668 unsigned int blocks_needed
669 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
670
671 if (len > blocks_needed)
672 len = blocks_needed;
673
674 value = const_wide_int_alloc (len);
675
676 /* It is so tempting to just put the mode in here. Must control
677 myself ... */
678 PUT_MODE (value, VOIDmode);
679 CWI_PUT_NUM_ELEM (value, len);
680
681 for (i = 0; i < len; i++)
682 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
683
684 return lookup_const_wide_int (value);
685 }
686#else
687 return immed_double_const (v.elt (0), v.elt (1), mode);
688#endif
54fb1ae0
AS
689}
690
807e902e 691#if TARGET_SUPPORTS_WIDE_INT == 0
5692c7bc
ZW
692/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
693 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 694 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
695 implied upper bits are copies of the high bit of i1. The value
696 itself is neither signed nor unsigned. Do not use this routine for
697 non-integer modes; convert to REAL_VALUE_TYPE and use
555affd7 698 const_double_from_real_value. */
5692c7bc
ZW
699
700rtx
ef4bddc2 701immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
5692c7bc
ZW
702{
703 rtx value;
704 unsigned int i;
705
65acccdd 706 /* There are the following cases (note that there are no modes with
49ab6098 707 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
708
709 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
710 gen_int_mode.
929e10f4
MS
711 2) If the value of the integer fits into HOST_WIDE_INT anyway
712 (i.e., i1 consists only from copies of the sign bit, and sign
713 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 714 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
db61b7f9
RS
715 scalar_mode smode;
716 if (is_a <scalar_mode> (mode, &smode)
717 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
718 return gen_int_mode (i0, mode);
5692c7bc
ZW
719
720 /* If this integer fits in one word, return a CONST_INT. */
721 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
722 return GEN_INT (i0);
723
724 /* We use VOIDmode for integers. */
725 value = rtx_alloc (CONST_DOUBLE);
726 PUT_MODE (value, VOIDmode);
727
728 CONST_DOUBLE_LOW (value) = i0;
729 CONST_DOUBLE_HIGH (value) = i1;
730
731 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
732 XWINT (value, i) = 0;
733
734 return lookup_const_double (value);
0133b7d9 735}
807e902e 736#endif
0133b7d9 737
0c12fc9b
RS
738/* Return an rtx representation of C in mode MODE. */
739
740rtx
741immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
742{
743 if (c.is_constant ())
744 return immed_wide_int_const_1 (c.coeffs[0], mode);
745
746 /* Not scalar_int_mode because we also allow pointer bound modes. */
747 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
748
749 /* Allow truncation but not extension since we do not know if the
750 number is signed or unsigned. */
751 gcc_assert (prec <= c.coeffs[0].get_precision ());
752 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
753
754 /* See whether we already have an rtx for this constant. */
755 inchash::hash h;
756 h.add_int (mode);
757 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
758 h.add_wide_int (newc.coeffs[i]);
759 const_poly_int_hasher::compare_type typed_value (mode, newc);
760 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
761 h.end (), INSERT);
762 rtx x = *slot;
763 if (x)
764 return x;
765
766 /* Create a new rtx. There's a choice to be made here between installing
767 the actual mode of the rtx or leaving it as VOIDmode (for consistency
768 with CONST_INT). In practice the handling of the codes is different
769 enough that we get no benefit from using VOIDmode, and various places
770 assume that VOIDmode implies CONST_INT. Using the real mode seems like
771 the right long-term direction anyway. */
772 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
773 size_t extra_size = twi::extra_size (prec);
774 x = rtx_alloc_v (CONST_POLY_INT,
775 sizeof (struct const_poly_int_def) + extra_size);
776 PUT_MODE (x, mode);
777 CONST_POLY_INT_COEFFS (x).set_precision (prec);
778 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
779 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
780
781 *slot = x;
782 return x;
783}
784
3b80f6ca 785rtx
ef4bddc2 786gen_rtx_REG (machine_mode mode, unsigned int regno)
3b80f6ca
RH
787{
788 /* In case the MD file explicitly references the frame pointer, have
789 all such references point to the same frame pointer. This is
790 used during frame pointer elimination to distinguish the explicit
791 references to these registers from pseudos that happened to be
792 assigned to them.
793
794 If we have eliminated the frame pointer or arg pointer, we will
795 be using it as a normal register, for example as a spill
796 register. In such cases, we might be accessing it in a mode that
797 is not Pmode and therefore cannot use the pre-allocated rtx.
798
799 Also don't do this when we are making new REGs in reload, since
800 we don't want to get confused with the real pointers. */
801
55a2c322 802 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 803 {
e10c79fe
LB
804 if (regno == FRAME_POINTER_REGNUM
805 && (!reload_completed || frame_pointer_needed))
3b80f6ca 806 return frame_pointer_rtx;
c3e08036
TS
807
808 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
809 && regno == HARD_FRAME_POINTER_REGNUM
e10c79fe 810 && (!reload_completed || frame_pointer_needed))
3b80f6ca 811 return hard_frame_pointer_rtx;
3f393fc6
TS
812#if !HARD_FRAME_POINTER_IS_ARG_POINTER
813 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
814 && regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
815 return arg_pointer_rtx;
816#endif
817#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 818 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
819 return return_address_pointer_rtx;
820#endif
fc555370 821 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 822 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 823 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 824 return pic_offset_table_rtx;
bcb33994 825 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
826 return stack_pointer_rtx;
827 }
828
006a94b0 829#if 0
6cde4876 830 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
831 an existing entry in that table to avoid useless generation of RTL.
832
833 This code is disabled for now until we can fix the various backends
834 which depend on having non-shared hard registers in some cases. Long
835 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
836 on the amount of useless RTL that gets generated.
837
838 We'll also need to fix some code that runs after reload that wants to
839 set ORIGINAL_REGNO. */
840
6cde4876
JL
841 if (cfun
842 && cfun->emit
843 && regno_reg_rtx
844 && regno < FIRST_PSEUDO_REGISTER
845 && reg_raw_mode[regno] == mode)
846 return regno_reg_rtx[regno];
006a94b0 847#endif
6cde4876 848
08394eef 849 return gen_raw_REG (mode, regno);
3b80f6ca
RH
850}
851
41472af8 852rtx
ef4bddc2 853gen_rtx_MEM (machine_mode mode, rtx addr)
41472af8
MM
854{
855 rtx rt = gen_rtx_raw_MEM (mode, addr);
856
857 /* This field is not cleared by the mere allocation of the rtx, so
858 we clear it here. */
173b24b9 859 MEM_ATTRS (rt) = 0;
41472af8
MM
860
861 return rt;
862}
ddef6bc7 863
542a8afa
RH
864/* Generate a memory referring to non-trapping constant memory. */
865
866rtx
ef4bddc2 867gen_const_mem (machine_mode mode, rtx addr)
542a8afa
RH
868{
869 rtx mem = gen_rtx_MEM (mode, addr);
870 MEM_READONLY_P (mem) = 1;
871 MEM_NOTRAP_P (mem) = 1;
872 return mem;
873}
874
bf877a76
R
875/* Generate a MEM referring to fixed portions of the frame, e.g., register
876 save areas. */
877
878rtx
ef4bddc2 879gen_frame_mem (machine_mode mode, rtx addr)
bf877a76
R
880{
881 rtx mem = gen_rtx_MEM (mode, addr);
882 MEM_NOTRAP_P (mem) = 1;
883 set_mem_alias_set (mem, get_frame_alias_set ());
884 return mem;
885}
886
887/* Generate a MEM referring to a temporary use of the stack, not part
888 of the fixed stack frame. For example, something which is pushed
889 by a target splitter. */
890rtx
ef4bddc2 891gen_tmp_stack_mem (machine_mode mode, rtx addr)
bf877a76
R
892{
893 rtx mem = gen_rtx_MEM (mode, addr);
894 MEM_NOTRAP_P (mem) = 1;
e3b5732b 895 if (!cfun->calls_alloca)
bf877a76
R
896 set_mem_alias_set (mem, get_frame_alias_set ());
897 return mem;
898}
899
beb72684
RH
900/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
901 this construct would be valid, and false otherwise. */
902
903bool
ef4bddc2 904validate_subreg (machine_mode omode, machine_mode imode,
91914e56 905 const_rtx reg, poly_uint64 offset)
ddef6bc7 906{
fad2288b
RS
907 poly_uint64 isize = GET_MODE_SIZE (imode);
908 poly_uint64 osize = GET_MODE_SIZE (omode);
909
910 /* The sizes must be ordered, so that we know whether the subreg
911 is partial, paradoxical or complete. */
912 if (!ordered_p (isize, osize))
913 return false;
beb72684
RH
914
915 /* All subregs must be aligned. */
91914e56 916 if (!multiple_p (offset, osize))
beb72684
RH
917 return false;
918
919 /* The subreg offset cannot be outside the inner object. */
91914e56 920 if (maybe_ge (offset, isize))
beb72684
RH
921 return false;
922
fad2288b 923 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
1eae67f8 924
57b7c432 925 /* ??? This should not be here. Temporarily continue to allow word_mode
926 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
927 Generally, backends are doing something sketchy but it'll take time to
928 fix them all. */
929 if (omode == word_mode)
930 ;
931 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
932 is the culprit here, and not the backends. */
933 else if (known_ge (osize, regsize) && known_ge (isize, osize))
934 ;
935 /* Allow component subregs of complex and vector. Though given the below
936 extraction rules, it's not always clear what that means. */
937 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
938 && GET_MODE_INNER (imode) == omode)
939 ;
940 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
941 i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0). This
942 surely isn't the cleanest way to represent this. It's questionable
943 if this ought to be represented at all -- why can't this all be hidden
944 in post-reload splitters that make arbitrarily mode changes to the
945 registers themselves. */
946 else if (VECTOR_MODE_P (omode)
947 && GET_MODE_INNER (omode) == GET_MODE_INNER (imode))
948 ;
949 /* Subregs involving floating point modes are not allowed to
950 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
951 (subreg:SI (reg:DF) 0) isn't. */
952 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
953 {
954 if (! (known_eq (isize, osize)
955 /* LRA can use subreg to store a floating point value in
956 an integer mode. Although the floating point and the
957 integer modes need the same number of hard registers,
958 the size of floating point mode can be less than the
959 integer mode. LRA also uses subregs for a register
960 should be used in different mode in on insn. */
961 || lra_in_progress))
962 return false;
963 }
964
beb72684 965 /* Paradoxical subregs must have offset zero. */
fad2288b 966 if (maybe_gt (osize, isize))
91914e56 967 return known_eq (offset, 0U);
beb72684
RH
968
969 /* This is a normal subreg. Verify that the offset is representable. */
970
971 /* For hard registers, we already have most of these rules collected in
972 subreg_offset_representable_p. */
973 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
974 {
975 unsigned int regno = REGNO (reg);
976
beb72684
RH
977 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
978 && GET_MODE_INNER (imode) == omode)
979 ;
0d803030 980 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
beb72684 981 return false;
beb72684
RH
982
983 return subreg_offset_representable_p (regno, imode, offset, omode);
984 }
985
fad2288b
RS
986 /* The outer size must be ordered wrt the register size, otherwise
987 we wouldn't know at compile time how many registers the outer
988 mode occupies. */
989 if (!ordered_p (osize, regsize))
990 return false;
991
beb72684 992 /* For pseudo registers, we want most of the same checks. Namely:
1eae67f8
RS
993
994 Assume that the pseudo register will be allocated to hard registers
995 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
996 the remainder must correspond to the lowpart of the containing hard
997 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
998 otherwise it is at the lowest offset.
999
1000 Given that we've already checked the mode and offset alignment,
1001 we only have to check subblock subregs here. */
fad2288b 1002 if (maybe_lt (osize, regsize)
55a2c322 1003 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684 1004 {
fad2288b
RS
1005 /* It is invalid for the target to pick a register size for a mode
1006 that isn't ordered wrt to the size of that mode. */
1007 poly_uint64 block_size = ordered_min (isize, regsize);
91914e56
RS
1008 unsigned int start_reg;
1009 poly_uint64 offset_within_reg;
1010 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1011 || (BYTES_BIG_ENDIAN
1012 ? maybe_ne (offset_within_reg, block_size - osize)
1013 : maybe_ne (offset_within_reg, 0U)))
beb72684
RH
1014 return false;
1015 }
1016 return true;
1017}
1018
1019rtx
91914e56 1020gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
beb72684
RH
1021{
1022 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 1023 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
1024}
1025
173b24b9
RK
1026/* Generate a SUBREG representing the least-significant part of REG if MODE
1027 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1028
ddef6bc7 1029rtx
ef4bddc2 1030gen_lowpart_SUBREG (machine_mode mode, rtx reg)
ddef6bc7 1031{
ef4bddc2 1032 machine_mode inmode;
ddef6bc7
JJ
1033
1034 inmode = GET_MODE (reg);
1035 if (inmode == VOIDmode)
1036 inmode = mode;
e0e08ac2
JH
1037 return gen_rtx_SUBREG (mode, reg,
1038 subreg_lowpart_offset (mode, inmode));
ddef6bc7 1039}
fcc74520
RS
1040
1041rtx
ef4bddc2 1042gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
fcc74520
RS
1043 enum var_init_status status)
1044{
1045 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1046 PAT_VAR_LOCATION_STATUS (x) = status;
1047 return x;
1048}
c5c76735 1049\f
23b2ce53 1050
80379f51
PB
1051/* Create an rtvec and stores within it the RTXen passed in the arguments. */
1052
23b2ce53 1053rtvec
e34d07f2 1054gen_rtvec (int n, ...)
23b2ce53 1055{
80379f51
PB
1056 int i;
1057 rtvec rt_val;
e34d07f2 1058 va_list p;
23b2ce53 1059
e34d07f2 1060 va_start (p, n);
23b2ce53 1061
80379f51 1062 /* Don't allocate an empty rtvec... */
23b2ce53 1063 if (n == 0)
0edf1bb2
JL
1064 {
1065 va_end (p);
1066 return NULL_RTVEC;
1067 }
23b2ce53 1068
80379f51 1069 rt_val = rtvec_alloc (n);
4f90e4a0 1070
23b2ce53 1071 for (i = 0; i < n; i++)
80379f51 1072 rt_val->elem[i] = va_arg (p, rtx);
6268b922 1073
e34d07f2 1074 va_end (p);
80379f51 1075 return rt_val;
23b2ce53
RS
1076}
1077
1078rtvec
502b8322 1079gen_rtvec_v (int n, rtx *argp)
23b2ce53 1080{
b3694847
SS
1081 int i;
1082 rtvec rt_val;
23b2ce53 1083
80379f51 1084 /* Don't allocate an empty rtvec... */
23b2ce53 1085 if (n == 0)
80379f51 1086 return NULL_RTVEC;
23b2ce53 1087
80379f51 1088 rt_val = rtvec_alloc (n);
23b2ce53
RS
1089
1090 for (i = 0; i < n; i++)
8f985ec4 1091 rt_val->elem[i] = *argp++;
23b2ce53
RS
1092
1093 return rt_val;
1094}
e6eda746
DM
1095
1096rtvec
1097gen_rtvec_v (int n, rtx_insn **argp)
1098{
1099 int i;
1100 rtvec rt_val;
1101
1102 /* Don't allocate an empty rtvec... */
1103 if (n == 0)
1104 return NULL_RTVEC;
1105
1106 rt_val = rtvec_alloc (n);
1107
1108 for (i = 0; i < n; i++)
1109 rt_val->elem[i] = *argp++;
1110
1111 return rt_val;
1112}
1113
23b2ce53 1114\f
38ae7651
RS
1115/* Return the number of bytes between the start of an OUTER_MODE
1116 in-memory value and the start of an INNER_MODE in-memory value,
1117 given that the former is a lowpart of the latter. It may be a
1118 paradoxical lowpart, in which case the offset will be negative
1119 on big-endian targets. */
1120
91914e56 1121poly_int64
ef4bddc2
RS
1122byte_lowpart_offset (machine_mode outer_mode,
1123 machine_mode inner_mode)
38ae7651 1124{
03a95621 1125 if (paradoxical_subreg_p (outer_mode, inner_mode))
38ae7651 1126 return -subreg_lowpart_offset (inner_mode, outer_mode);
03a95621
RS
1127 else
1128 return subreg_lowpart_offset (outer_mode, inner_mode);
38ae7651 1129}
3d09ba95
RS
1130
1131/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1132 from address X. For paradoxical big-endian subregs this is a
1133 negative value, otherwise it's the same as OFFSET. */
1134
91914e56 1135poly_int64
3d09ba95 1136subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
91914e56 1137 poly_uint64 offset)
3d09ba95
RS
1138{
1139 if (paradoxical_subreg_p (outer_mode, inner_mode))
1140 {
91914e56 1141 gcc_assert (known_eq (offset, 0U));
3d09ba95
RS
1142 return -subreg_lowpart_offset (inner_mode, outer_mode);
1143 }
1144 return offset;
1145}
1146
1147/* As above, but return the offset that existing subreg X would have
1148 if SUBREG_REG (X) were stored in memory. The only significant thing
1149 about the current SUBREG_REG is its mode. */
1150
91914e56 1151poly_int64
3d09ba95
RS
1152subreg_memory_offset (const_rtx x)
1153{
1154 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1155 SUBREG_BYTE (x));
1156}
38ae7651 1157\f
23b2ce53
RS
1158/* Generate a REG rtx for a new pseudo register of mode MODE.
1159 This pseudo is assigned the next sequential register number. */
1160
1161rtx
ef4bddc2 1162gen_reg_rtx (machine_mode mode)
23b2ce53 1163{
b3694847 1164 rtx val;
2e3f842f 1165 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 1166
f8335a4f 1167 gcc_assert (can_create_pseudo_p ());
23b2ce53 1168
2e3f842f
L
1169 /* If a virtual register with bigger mode alignment is generated,
1170 increase stack alignment estimation because it might be spilled
1171 to stack later. */
b8698a0f 1172 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
1173 && crtl->stack_alignment_estimated < align
1174 && !crtl->stack_realign_processed)
ae58e548
JJ
1175 {
1176 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1177 if (crtl->stack_alignment_estimated < min_align)
1178 crtl->stack_alignment_estimated = min_align;
1179 }
2e3f842f 1180
1b3d8f8a
GK
1181 if (generating_concat_p
1182 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1183 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
1184 {
1185 /* For complex modes, don't make a single pseudo.
1186 Instead, make a CONCAT of two pseudos.
1187 This allows noncontiguous allocation of the real and imaginary parts,
1188 which makes much better code. Besides, allocating DCmode
1189 pseudos overstrains reload on some machines like the 386. */
1190 rtx realpart, imagpart;
ef4bddc2 1191 machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
1192
1193 realpart = gen_reg_rtx (partmode);
1194 imagpart = gen_reg_rtx (partmode);
3b80f6ca 1195 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
1196 }
1197
004a7e45
UB
1198 /* Do not call gen_reg_rtx with uninitialized crtl. */
1199 gcc_assert (crtl->emit.regno_pointer_align_length);
1200
f44986d7
DM
1201 crtl->emit.ensure_regno_capacity ();
1202 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
23b2ce53 1203
f44986d7
DM
1204 val = gen_raw_REG (mode, reg_rtx_no);
1205 regno_reg_rtx[reg_rtx_no++] = val;
1206 return val;
1207}
0d4903b8 1208
f44986d7
DM
1209/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1210 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
49ad7cfa 1211
f44986d7
DM
1212void
1213emit_status::ensure_regno_capacity ()
1214{
1215 int old_size = regno_pointer_align_length;
23b2ce53 1216
f44986d7
DM
1217 if (reg_rtx_no < old_size)
1218 return;
23b2ce53 1219
f44986d7
DM
1220 int new_size = old_size * 2;
1221 while (reg_rtx_no >= new_size)
1222 new_size *= 2;
1223
1224 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1225 memset (tmp + old_size, 0, new_size - old_size);
1226 regno_pointer_align = (unsigned char *) tmp;
1227
1228 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1229 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1230 regno_reg_rtx = new1;
1231
1232 crtl->emit.regno_pointer_align_length = new_size;
23b2ce53
RS
1233}
1234
a698cc03
JL
1235/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1236
1237bool
1238reg_is_parm_p (rtx reg)
1239{
1240 tree decl;
1241
1242 gcc_assert (REG_P (reg));
1243 decl = REG_EXPR (reg);
1244 return (decl && TREE_CODE (decl) == PARM_DECL);
1245}
1246
38ae7651
RS
1247/* Update NEW with the same attributes as REG, but with OFFSET added
1248 to the REG_OFFSET. */
a560d4d4 1249
e53a16e7 1250static void
84bc717b 1251update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
a560d4d4 1252{
60564289 1253 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
84bc717b 1254 REG_OFFSET (reg) + offset);
e53a16e7
ILT
1255}
1256
38ae7651
RS
1257/* Generate a register with same attributes as REG, but with OFFSET
1258 added to the REG_OFFSET. */
e53a16e7
ILT
1259
1260rtx
ef4bddc2 1261gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
84bc717b 1262 poly_int64 offset)
e53a16e7 1263{
60564289 1264 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 1265
60564289
KG
1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
e53a16e7
ILT
1268}
1269
1270/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 1271 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
1272
1273rtx
ef4bddc2 1274gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
e53a16e7 1275{
60564289 1276 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 1277
60564289
KG
1278 update_reg_offset (new_rtx, reg, offset);
1279 return new_rtx;
a560d4d4
JH
1280}
1281
38ae7651
RS
1282/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1283 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
1284
1285void
ef4bddc2 1286adjust_reg_mode (rtx reg, machine_mode mode)
a560d4d4 1287{
38ae7651
RS
1288 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1289 PUT_MODE (reg, mode);
1290}
1291
1292/* Copy REG's attributes from X, if X has any attributes. If REG and X
1293 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1294
1295void
1296set_reg_attrs_from_value (rtx reg, rtx x)
1297{
84bc717b 1298 poly_int64 offset;
de6f3f7a
L
1299 bool can_be_reg_pointer = true;
1300
1301 /* Don't call mark_reg_pointer for incompatible pointer sign
1302 extension. */
1303 while (GET_CODE (x) == SIGN_EXTEND
1304 || GET_CODE (x) == ZERO_EXTEND
1305 || GET_CODE (x) == TRUNCATE
1306 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1307 {
2a870875
RS
1308#if defined(POINTERS_EXTEND_UNSIGNED)
1309 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
8d8e740c
BE
1310 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1311 || (paradoxical_subreg_p (x)
1312 && ! (SUBREG_PROMOTED_VAR_P (x)
1313 && SUBREG_CHECK_PROMOTED_SIGN (x,
1314 POINTERS_EXTEND_UNSIGNED))))
2a870875 1315 && !targetm.have_ptr_extend ())
de6f3f7a
L
1316 can_be_reg_pointer = false;
1317#endif
1318 x = XEXP (x, 0);
1319 }
38ae7651 1320
923ba36f
JJ
1321 /* Hard registers can be reused for multiple purposes within the same
1322 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1323 on them is wrong. */
1324 if (HARD_REGISTER_P (reg))
1325 return;
1326
38ae7651 1327 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
1328 if (MEM_P (x))
1329 {
527210c4
RS
1330 if (MEM_OFFSET_KNOWN_P (x))
1331 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1332 MEM_OFFSET (x) + offset);
de6f3f7a 1333 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1334 mark_reg_pointer (reg, 0);
46b71b03
PB
1335 }
1336 else if (REG_P (x))
1337 {
1338 if (REG_ATTRS (x))
1339 update_reg_offset (reg, x, offset);
de6f3f7a 1340 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1341 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1342 }
1343}
1344
1345/* Generate a REG rtx for a new pseudo register, copying the mode
1346 and attributes from X. */
1347
1348rtx
1349gen_reg_rtx_and_attrs (rtx x)
1350{
1351 rtx reg = gen_reg_rtx (GET_MODE (x));
1352 set_reg_attrs_from_value (reg, x);
1353 return reg;
a560d4d4
JH
1354}
1355
9d18e06b
JZ
1356/* Set the register attributes for registers contained in PARM_RTX.
1357 Use needed values from memory attributes of MEM. */
1358
1359void
502b8322 1360set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1361{
f8cfc6aa 1362 if (REG_P (parm_rtx))
38ae7651 1363 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1364 else if (GET_CODE (parm_rtx) == PARALLEL)
1365 {
1366 /* Check for a NULL entry in the first slot, used to indicate that the
1367 parameter goes both on the stack and in registers. */
1368 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1369 for (; i < XVECLEN (parm_rtx, 0); i++)
1370 {
1371 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1372 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1373 REG_ATTRS (XEXP (x, 0))
1374 = get_reg_attrs (MEM_EXPR (mem),
1375 INTVAL (XEXP (x, 1)));
1376 }
1377 }
1378}
1379
38ae7651
RS
1380/* Set the REG_ATTRS for registers in value X, given that X represents
1381 decl T. */
a560d4d4 1382
4e3825db 1383void
38ae7651
RS
1384set_reg_attrs_for_decl_rtl (tree t, rtx x)
1385{
1f9ceff1
AO
1386 if (!t)
1387 return;
1388 tree tdecl = t;
38ae7651 1389 if (GET_CODE (x) == SUBREG)
fbe6ec81 1390 {
38ae7651
RS
1391 gcc_assert (subreg_lowpart_p (x));
1392 x = SUBREG_REG (x);
fbe6ec81 1393 }
f8cfc6aa 1394 if (REG_P (x))
38ae7651
RS
1395 REG_ATTRS (x)
1396 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1f9ceff1
AO
1397 DECL_P (tdecl)
1398 ? DECL_MODE (tdecl)
1399 : TYPE_MODE (TREE_TYPE (tdecl))));
a560d4d4
JH
1400 if (GET_CODE (x) == CONCAT)
1401 {
1402 if (REG_P (XEXP (x, 0)))
1403 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1404 if (REG_P (XEXP (x, 1)))
1405 REG_ATTRS (XEXP (x, 1))
1406 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1407 }
1408 if (GET_CODE (x) == PARALLEL)
1409 {
d4afac5b
JZ
1410 int i, start;
1411
1412 /* Check for a NULL entry, used to indicate that the parameter goes
1413 both on the stack and in registers. */
1414 if (XEXP (XVECEXP (x, 0, 0), 0))
1415 start = 0;
1416 else
1417 start = 1;
1418
1419 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1420 {
1421 rtx y = XVECEXP (x, 0, i);
1422 if (REG_P (XEXP (y, 0)))
1423 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1424 }
1425 }
1426}
1427
38ae7651
RS
1428/* Assign the RTX X to declaration T. */
1429
1430void
1431set_decl_rtl (tree t, rtx x)
1432{
1433 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1434 if (x)
1435 set_reg_attrs_for_decl_rtl (t, x);
1436}
1437
5141868d
RS
1438/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1439 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1440
1441void
5141868d 1442set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1443{
1444 DECL_INCOMING_RTL (t) = x;
5141868d 1445 if (x && !by_reference_p)
38ae7651
RS
1446 set_reg_attrs_for_decl_rtl (t, x);
1447}
1448
754fdcca
RK
1449/* Identify REG (which may be a CONCAT) as a user register. */
1450
1451void
502b8322 1452mark_user_reg (rtx reg)
754fdcca
RK
1453{
1454 if (GET_CODE (reg) == CONCAT)
1455 {
1456 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1457 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1458 }
754fdcca 1459 else
5b0264cb
NS
1460 {
1461 gcc_assert (REG_P (reg));
1462 REG_USERVAR_P (reg) = 1;
1463 }
754fdcca
RK
1464}
1465
86fe05e0
RK
1466/* Identify REG as a probable pointer register and show its alignment
1467 as ALIGN, if nonzero. */
23b2ce53
RS
1468
1469void
502b8322 1470mark_reg_pointer (rtx reg, int align)
23b2ce53 1471{
3502dc9c 1472 if (! REG_POINTER (reg))
00995e78 1473 {
3502dc9c 1474 REG_POINTER (reg) = 1;
86fe05e0 1475
00995e78
RE
1476 if (align)
1477 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1478 }
1479 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1480 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1481 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1482}
1483
1484/* Return 1 plus largest pseudo reg number used in the current function. */
1485
1486int
502b8322 1487max_reg_num (void)
23b2ce53
RS
1488{
1489 return reg_rtx_no;
1490}
1491
1492/* Return 1 + the largest label number used so far in the current function. */
1493
1494int
502b8322 1495max_label_num (void)
23b2ce53 1496{
23b2ce53
RS
1497 return label_num;
1498}
1499
1500/* Return first label number used in this function (if any were used). */
1501
1502int
502b8322 1503get_first_label_num (void)
23b2ce53
RS
1504{
1505 return first_label_num;
1506}
6de9cd9a
DN
1507
1508/* If the rtx for label was created during the expansion of a nested
1509 function, then first_label_num won't include this label number.
fa10beec 1510 Fix this now so that array indices work later. */
6de9cd9a
DN
1511
1512void
9aa50db7 1513maybe_set_first_label_num (rtx_code_label *x)
6de9cd9a
DN
1514{
1515 if (CODE_LABEL_NUMBER (x) < first_label_num)
1516 first_label_num = CODE_LABEL_NUMBER (x);
1517}
51b86113
DM
1518
1519/* For use by the RTL function loader, when mingling with normal
1520 functions.
1521 Ensure that label_num is greater than the label num of X, to avoid
1522 duplicate labels in the generated assembler. */
1523
1524void
1525maybe_set_max_label_num (rtx_code_label *x)
1526{
1527 if (CODE_LABEL_NUMBER (x) >= label_num)
1528 label_num = CODE_LABEL_NUMBER (x) + 1;
1529}
1530
23b2ce53
RS
1531\f
1532/* Return a value representing some low-order bits of X, where the number
1533 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1534 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1535 representation is returned.
1536
1537 This function handles the cases in common between gen_lowpart, below,
1538 and two variants in cse.c and combine.c. These are the cases that can
1539 be safely handled at all points in the compilation.
1540
1541 If this is not a case we can handle, return 0. */
1542
1543rtx
ef4bddc2 1544gen_lowpart_common (machine_mode mode, rtx x)
23b2ce53 1545{
fad2288b 1546 poly_uint64 msize = GET_MODE_SIZE (mode);
ef4bddc2 1547 machine_mode innermode;
550d1387
GK
1548
1549 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1550 so we have to make one up. Yuk. */
1551 innermode = GET_MODE (x);
481683e1 1552 if (CONST_INT_P (x)
fad2288b
RS
1553 && known_le (msize * BITS_PER_UNIT,
1554 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
f4b31647 1555 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
550d1387 1556 else if (innermode == VOIDmode)
f4b31647 1557 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
b8698a0f 1558
5b0264cb 1559 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1560
550d1387 1561 if (innermode == mode)
23b2ce53
RS
1562 return x;
1563
fad2288b
RS
1564 /* The size of the outer and inner modes must be ordered. */
1565 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1566 if (!ordered_p (msize, xsize))
1567 return 0;
1568
1eae67f8
RS
1569 if (SCALAR_FLOAT_MODE_P (mode))
1570 {
1571 /* Don't allow paradoxical FLOAT_MODE subregs. */
fad2288b 1572 if (maybe_gt (msize, xsize))
1eae67f8
RS
1573 return 0;
1574 }
1575 else
1576 {
1577 /* MODE must occupy no more of the underlying registers than X. */
fad2288b
RS
1578 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1579 unsigned int mregs, xregs;
1580 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1581 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1582 || mregs > xregs)
1eae67f8
RS
1583 return 0;
1584 }
53501a19 1585
54651377 1586 scalar_int_mode int_mode, int_innermode, from_mode;
23b2ce53 1587 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
54651377
RS
1588 && is_a <scalar_int_mode> (mode, &int_mode)
1589 && is_a <scalar_int_mode> (innermode, &int_innermode)
1590 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
23b2ce53
RS
1591 {
1592 /* If we are getting the low-order part of something that has been
1593 sign- or zero-extended, we can either just use the object being
1594 extended or make a narrower extension. If we want an even smaller
1595 piece than the size of the object being extended, call ourselves
1596 recursively.
1597
1598 This case is used mostly by combine and cse. */
1599
54651377 1600 if (from_mode == int_mode)
23b2ce53 1601 return XEXP (x, 0);
54651377
RS
1602 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1603 return gen_lowpart_common (int_mode, XEXP (x, 0));
1604 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1605 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
23b2ce53 1606 }
f8cfc6aa 1607 else if (GET_CODE (x) == SUBREG || REG_P (x)
2072a319 1608 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
0c12fc9b
RS
1609 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1610 || CONST_POLY_INT_P (x))
3403a1a9 1611 return lowpart_subreg (mode, x, innermode);
8aada4ad 1612
23b2ce53
RS
1613 /* Otherwise, we can't do this. */
1614 return 0;
1615}
1616\f
ccba022b 1617rtx
ef4bddc2 1618gen_highpart (machine_mode mode, rtx x)
ccba022b 1619{
cf098191 1620 poly_uint64 msize = GET_MODE_SIZE (mode);
e0e08ac2 1621 rtx result;
ddef6bc7 1622
ccba022b
RS
1623 /* This case loses if X is a subreg. To catch bugs early,
1624 complain if an invalid MODE is used even in other cases. */
cf098191
RS
1625 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1626 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
ddef6bc7 1627
408e8b90
RE
1628 /* gen_lowpart_common handles a lot of special cases due to needing to handle
1629 paradoxical subregs; it only calls simplify_gen_subreg when certain that
1630 it will produce something meaningful. The only case we need to handle
1631 specially here is MEM. */
1632 if (MEM_P (x))
5b0264cb 1633 {
408e8b90
RE
1634 poly_int64 offset = subreg_highpart_offset (mode, GET_MODE (x));
1635 return adjust_address (x, mode, offset);
5b0264cb 1636 }
b8698a0f 1637
408e8b90
RE
1638 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1639 subreg_highpart_offset (mode, GET_MODE (x)));
1640 /* Since we handle MEM directly above, we should never get a MEM back
1641 from simplify_gen_subreg. */
1642 gcc_assert (result && !MEM_P (result));
1643
e0e08ac2
JH
1644 return result;
1645}
5222e470 1646
26d249eb 1647/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1648 be VOIDmode constant. */
1649rtx
ef4bddc2 1650gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
5222e470
JH
1651{
1652 if (GET_MODE (exp) != VOIDmode)
1653 {
5b0264cb 1654 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1655 return gen_highpart (outermode, exp);
1656 }
1657 return simplify_gen_subreg (outermode, exp, innermode,
1658 subreg_highpart_offset (outermode, innermode));
1659}
68252e27 1660
33951763
RS
1661/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1662 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
8698cce3 1663
91914e56
RS
1664poly_uint64
1665subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
e0e08ac2 1666{
91914e56
RS
1667 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1668 if (maybe_gt (outer_bytes, inner_bytes))
33951763
RS
1669 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1670 return 0;
ddef6bc7 1671
33951763
RS
1672 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1673 return inner_bytes - outer_bytes;
1674 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1675 return 0;
1676 else
1677 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
ccba022b 1678}
eea50aa0 1679
33951763
RS
1680/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1681 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1682
91914e56
RS
1683poly_uint64
1684subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
eea50aa0 1685{
91914e56 1686 gcc_assert (known_ge (inner_bytes, outer_bytes));
eea50aa0 1687
33951763
RS
1688 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1689 return 0;
1690 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1691 return inner_bytes - outer_bytes;
1692 else
1693 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1694 (inner_bytes - outer_bytes)
1695 * BITS_PER_UNIT);
eea50aa0 1696}
ccba022b 1697
23b2ce53
RS
1698/* Return 1 iff X, assumed to be a SUBREG,
1699 refers to the least significant part of its containing reg.
1700 If X is not a SUBREG, always return 1 (it is its own low part!). */
1701
1702int
fa233e34 1703subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1704{
1705 if (GET_CODE (x) != SUBREG)
1706 return 1;
a3a03040
RK
1707 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1708 return 0;
23b2ce53 1709
91914e56
RS
1710 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1711 GET_MODE (SUBREG_REG (x))),
1712 SUBREG_BYTE (x));
23b2ce53
RS
1713}
1714\f
ddef6bc7
JJ
1715/* Return subword OFFSET of operand OP.
1716 The word number, OFFSET, is interpreted as the word number starting
1717 at the low-order address. OFFSET 0 is the low-order word if not
1718 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1719
1720 If we cannot extract the required word, we return zero. Otherwise,
1721 an rtx corresponding to the requested word will be returned.
1722
1723 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1724 reload has completed, a valid address will always be returned. After
1725 reload, if a valid address cannot be returned, we return zero.
1726
1727 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1728 it is the responsibility of the caller.
1729
1730 MODE is the mode of OP in case it is a CONST_INT.
1731
1732 ??? This is still rather broken for some cases. The problem for the
1733 moment is that all callers of this thing provide no 'goal mode' to
1734 tell us to work with. This exists because all callers were written
0631e0bf
JH
1735 in a word based SUBREG world.
1736 Now use of this function can be deprecated by simplify_subreg in most
1737 cases.
1738 */
ddef6bc7
JJ
1739
1740rtx
fdbfe4e5
RS
1741operand_subword (rtx op, poly_uint64 offset, int validate_address,
1742 machine_mode mode)
ddef6bc7
JJ
1743{
1744 if (mode == VOIDmode)
1745 mode = GET_MODE (op);
1746
5b0264cb 1747 gcc_assert (mode != VOIDmode);
ddef6bc7 1748
30f7a378 1749 /* If OP is narrower than a word, fail. */
ddef6bc7 1750 if (mode != BLKmode
fdbfe4e5 1751 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
ddef6bc7
JJ
1752 return 0;
1753
30f7a378 1754 /* If we want a word outside OP, return zero. */
ddef6bc7 1755 if (mode != BLKmode
fdbfe4e5 1756 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
ddef6bc7
JJ
1757 return const0_rtx;
1758
ddef6bc7 1759 /* Form a new MEM at the requested address. */
3c0cb5de 1760 if (MEM_P (op))
ddef6bc7 1761 {
60564289 1762 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1763
f1ec5147 1764 if (! validate_address)
60564289 1765 return new_rtx;
f1ec5147
RK
1766
1767 else if (reload_completed)
ddef6bc7 1768 {
09e881c9
BE
1769 if (! strict_memory_address_addr_space_p (word_mode,
1770 XEXP (new_rtx, 0),
1771 MEM_ADDR_SPACE (op)))
f1ec5147 1772 return 0;
ddef6bc7 1773 }
f1ec5147 1774 else
60564289 1775 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1776 }
1777
0631e0bf
JH
1778 /* Rest can be handled by simplify_subreg. */
1779 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1780}
1781
535a42b1
NS
1782/* Similar to `operand_subword', but never return 0. If we can't
1783 extract the required subword, put OP into a register and try again.
1784 The second attempt must succeed. We always validate the address in
1785 this case.
23b2ce53
RS
1786
1787 MODE is the mode of OP, in case it is CONST_INT. */
1788
1789rtx
fdbfe4e5 1790operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
23b2ce53 1791{
ddef6bc7 1792 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1793
1794 if (result)
1795 return result;
1796
1797 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb 1798 {
67914693 1799 /* If this is a register which cannot be accessed by words, copy it
77e6b0eb 1800 to a pseudo register. */
f8cfc6aa 1801 if (REG_P (op))
77e6b0eb
JC
1802 op = copy_to_reg (op);
1803 else
1804 op = force_reg (mode, op);
1805 }
23b2ce53 1806
ddef6bc7 1807 result = operand_subword (op, offset, 1, mode);
5b0264cb 1808 gcc_assert (result);
23b2ce53
RS
1809
1810 return result;
1811}
1812\f
d05d7551
RS
1813mem_attrs::mem_attrs ()
1814 : expr (NULL_TREE),
1815 offset (0),
1816 size (0),
1817 alias (0),
1818 align (0),
1819 addrspace (ADDR_SPACE_GENERIC),
1820 offset_known_p (false),
1821 size_known_p (false)
1822{}
1823
2b3493c8
AK
1824/* Returns 1 if both MEM_EXPR can be considered equal
1825 and 0 otherwise. */
1826
1827int
4f588890 1828mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1829{
1830 if (expr1 == expr2)
1831 return 1;
1832
1833 if (! expr1 || ! expr2)
1834 return 0;
1835
1836 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1837 return 0;
1838
55b34b5f 1839 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1840}
1841
805903b5
JJ
1842/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1843 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1844 -1 if not known. */
1845
1846int
d9223014 1847get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1848{
1849 tree expr;
d05d7551 1850 poly_uint64 offset;
805903b5
JJ
1851
1852 /* This function can't use
527210c4 1853 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1854 || (MAX (MEM_ALIGN (mem),
0eb77834 1855 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1856 < align))
1857 return -1;
1858 else
527210c4 1859 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1860 for two reasons:
1861 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1862 for <variable>. get_inner_reference doesn't handle it and
1863 even if it did, the alignment in that case needs to be determined
1864 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1865 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1866 isn't sufficiently aligned, the object it is in might be. */
1867 gcc_assert (MEM_P (mem));
1868 expr = MEM_EXPR (mem);
527210c4 1869 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1870 return -1;
1871
527210c4 1872 offset = MEM_OFFSET (mem);
805903b5
JJ
1873 if (DECL_P (expr))
1874 {
1875 if (DECL_ALIGN (expr) < align)
1876 return -1;
1877 }
1878 else if (INDIRECT_REF_P (expr))
1879 {
1880 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1881 return -1;
1882 }
1883 else if (TREE_CODE (expr) == COMPONENT_REF)
1884 {
1885 while (1)
1886 {
1887 tree inner = TREE_OPERAND (expr, 0);
1888 tree field = TREE_OPERAND (expr, 1);
1889 tree byte_offset = component_ref_field_offset (expr);
1890 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1891
d05d7551 1892 poly_uint64 suboffset;
805903b5 1893 if (!byte_offset
d05d7551 1894 || !poly_int_tree_p (byte_offset, &suboffset)
cc269bb6 1895 || !tree_fits_uhwi_p (bit_offset))
805903b5
JJ
1896 return -1;
1897
d05d7551 1898 offset += suboffset;
ae7e9ddd 1899 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
805903b5
JJ
1900
1901 if (inner == NULL_TREE)
1902 {
1903 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1904 < (unsigned int) align)
1905 return -1;
1906 break;
1907 }
1908 else if (DECL_P (inner))
1909 {
1910 if (DECL_ALIGN (inner) < align)
1911 return -1;
1912 break;
1913 }
1914 else if (TREE_CODE (inner) != COMPONENT_REF)
1915 return -1;
1916 expr = inner;
1917 }
1918 }
1919 else
1920 return -1;
1921
d05d7551
RS
1922 HOST_WIDE_INT misalign;
1923 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1924 return -1;
1925 return misalign;
805903b5
JJ
1926}
1927
6926c713 1928/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1929 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1930 if we are making a new object of this type. BITPOS is nonzero if
1931 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1932
1933void
502b8322 1934set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
d05d7551 1935 poly_int64 bitpos)
173b24b9 1936{
d05d7551 1937 poly_int64 apply_bitpos = 0;
173b24b9 1938 tree type;
99b1c316 1939 class mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1940 addr_space_t as;
173b24b9
RK
1941
1942 /* It can happen that type_for_mode was given a mode for which there
1943 is no language-level type. In which case it returns NULL, which
1944 we can see here. */
1945 if (t == NULL_TREE)
1946 return;
1947
1948 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1949 if (type == error_mark_node)
1950 return;
173b24b9 1951
173b24b9
RK
1952 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1953 wrong answer, as it assumes that DECL_RTL already has the right alias
1954 info. Callers should not set DECL_RTL until after the call to
1955 set_mem_attributes. */
5b0264cb 1956 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1957
738cc472 1958 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1959 front-end routine) and use it. */
f12144dd 1960 attrs.alias = get_alias_set (t);
173b24b9 1961
a5e9c810 1962 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1963 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1964
268f7033 1965 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1966 refattrs = MEM_ATTRS (ref);
1967 if (refattrs)
268f7033
UW
1968 {
1969 /* ??? Can this ever happen? Calling this routine on a MEM that
1970 already carries memory attributes should probably be invalid. */
f12144dd 1971 attrs.expr = refattrs->expr;
754c3d5d 1972 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1973 attrs.offset = refattrs->offset;
754c3d5d 1974 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1975 attrs.size = refattrs->size;
1976 attrs.align = refattrs->align;
268f7033
UW
1977 }
1978
1979 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1980 else
268f7033 1981 {
f12144dd
RS
1982 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1983 gcc_assert (!defattrs->expr);
754c3d5d 1984 gcc_assert (!defattrs->offset_known_p);
f12144dd 1985
268f7033 1986 /* Respect mode size. */
754c3d5d 1987 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1988 attrs.size = defattrs->size;
268f7033
UW
1989 /* ??? Is this really necessary? We probably should always get
1990 the size from the type below. */
1991
1992 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1993 if T is an object, always compute the object alignment below. */
f12144dd
RS
1994 if (TYPE_P (t))
1995 attrs.align = defattrs->align;
1996 else
1997 attrs.align = BITS_PER_UNIT;
268f7033
UW
1998 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1999 e.g. if the type carries an alignment attribute. Should we be
2000 able to simply always use TYPE_ALIGN? */
2001 }
2002
25b75a48
BE
2003 /* We can set the alignment from the type if we are making an object or if
2004 this is an INDIRECT_REF. */
2005 if (objectp || TREE_CODE (t) == INDIRECT_REF)
f12144dd 2006 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 2007
738cc472 2008 /* If the size is known, we can set that. */
a787ccc3 2009 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 2010
30b0317c
RB
2011 /* The address-space is that of the type. */
2012 as = TYPE_ADDR_SPACE (type);
2013
80965c18
RK
2014 /* If T is not a type, we may be able to deduce some more information about
2015 the expression. */
2016 if (! TYPE_P (t))
8ac61af7 2017 {
8476af98 2018 tree base;
389fdba0 2019
8ac61af7
RK
2020 if (TREE_THIS_VOLATILE (t))
2021 MEM_VOLATILE_P (ref) = 1;
173b24b9 2022
c56e3582
RK
2023 /* Now remove any conversions: they don't change what the underlying
2024 object is. Likewise for SAVE_EXPR. */
1043771b 2025 while (CONVERT_EXPR_P (t)
c56e3582
RK
2026 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2027 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
2028 t = TREE_OPERAND (t, 0);
2029
4994da65
RG
2030 /* Note whether this expression can trap. */
2031 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2032
2033 base = get_base_address (t);
f18a7b25
MJ
2034 if (base)
2035 {
2036 if (DECL_P (base)
2037 && TREE_READONLY (base)
2038 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2039 && !TREE_THIS_VOLATILE (base))
2040 MEM_READONLY_P (ref) = 1;
2041
2042 /* Mark static const strings readonly as well. */
2043 if (TREE_CODE (base) == STRING_CST
2044 && TREE_READONLY (base)
2045 && TREE_STATIC (base))
2046 MEM_READONLY_P (ref) = 1;
2047
30b0317c 2048 /* Address-space information is on the base object. */
f18a7b25
MJ
2049 if (TREE_CODE (base) == MEM_REF
2050 || TREE_CODE (base) == TARGET_MEM_REF)
2051 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2052 0))));
2053 else
2054 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2055 }
ba30e50d 2056
2039d7aa
RH
2057 /* If this expression uses it's parent's alias set, mark it such
2058 that we won't change it. */
b4ada065 2059 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
10b76d73
RK
2060 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2061
8ac61af7
RK
2062 /* If this is a decl, set the attributes of the MEM from it. */
2063 if (DECL_P (t))
2064 {
f12144dd 2065 attrs.expr = t;
754c3d5d
RS
2066 attrs.offset_known_p = true;
2067 attrs.offset = 0;
6f1087be 2068 apply_bitpos = bitpos;
a787ccc3 2069 new_size = DECL_SIZE_UNIT (t);
8ac61af7
RK
2070 }
2071
80d6f89e
RB
2072 /* ??? If we end up with a constant or a descriptor do not
2073 record a MEM_EXPR. */
2074 else if (CONSTANT_CLASS_P (t)
2075 || TREE_CODE (t) == CONSTRUCTOR)
30b0317c 2076 ;
998d7deb 2077
a787ccc3
RS
2078 /* If this is a field reference, record it. */
2079 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 2080 {
f12144dd 2081 attrs.expr = t;
754c3d5d
RS
2082 attrs.offset_known_p = true;
2083 attrs.offset = 0;
6f1087be 2084 apply_bitpos = bitpos;
a787ccc3
RS
2085 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2086 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
2087 }
2088
80d6f89e
RB
2089 /* Else record it. */
2090 else
56c47f22 2091 {
80d6f89e
RB
2092 gcc_assert (handled_component_p (t)
2093 || TREE_CODE (t) == MEM_REF
2094 || TREE_CODE (t) == TARGET_MEM_REF);
f12144dd 2095 attrs.expr = t;
754c3d5d
RS
2096 attrs.offset_known_p = true;
2097 attrs.offset = 0;
56c47f22
RG
2098 apply_bitpos = bitpos;
2099 }
2100
fa70c221
RB
2101 /* If this is a reference based on a partitioned decl replace the
2102 base with a MEM_REF of the pointer representative we created
2103 during stack slot partitioning. */
2104 if (attrs.expr
2105 && VAR_P (base)
2106 && ! is_global_var (base)
2107 && cfun->gimple_df->decls_to_pointers != NULL)
2108 {
2109 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2110 if (namep)
2111 {
2112 attrs.expr = unshare_expr (attrs.expr);
2113 tree *orig_base = &attrs.expr;
2114 while (handled_component_p (*orig_base))
2115 orig_base = &TREE_OPERAND (*orig_base, 0);
2116 tree aptrt = reference_alias_ptr_type (*orig_base);
2117 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2118 build_int_cst (aptrt, 0));
2119 }
2120 }
2121
30b0317c
RB
2122 /* Compute the alignment. */
2123 unsigned int obj_align;
2124 unsigned HOST_WIDE_INT obj_bitpos;
2125 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
d05d7551
RS
2126 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2127 if (diff_align != 0)
2128 obj_align = MIN (obj_align, diff_align);
30b0317c 2129 attrs.align = MAX (attrs.align, obj_align);
8ac61af7
RK
2130 }
2131
d05d7551
RS
2132 poly_uint64 const_size;
2133 if (poly_int_tree_p (new_size, &const_size))
a787ccc3
RS
2134 {
2135 attrs.size_known_p = true;
d05d7551 2136 attrs.size = const_size;
a787ccc3
RS
2137 }
2138
15c812e3 2139 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
2140 bit position offset. Similarly, increase the size of the accessed
2141 object to contain the negative offset. */
d05d7551 2142 if (maybe_ne (apply_bitpos, 0))
8c317c5f 2143 {
754c3d5d 2144 gcc_assert (attrs.offset_known_p);
d05d7551
RS
2145 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2146 attrs.offset -= bytepos;
754c3d5d 2147 if (attrs.size_known_p)
d05d7551 2148 attrs.size += bytepos;
8c317c5f 2149 }
6f1087be 2150
8ac61af7 2151 /* Now set the attributes we computed above. */
f18a7b25 2152 attrs.addrspace = as;
f12144dd 2153 set_mem_attrs (ref, &attrs);
173b24b9
RK
2154}
2155
6f1087be 2156void
502b8322 2157set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
2158{
2159 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2160}
2161
173b24b9
RK
2162/* Set the alias set of MEM to SET. */
2163
2164void
4862826d 2165set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 2166{
173b24b9 2167 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 2168 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
d05d7551 2169 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2170 attrs.alias = set;
2171 set_mem_attrs (mem, &attrs);
09e881c9
BE
2172}
2173
2174/* Set the address space of MEM to ADDRSPACE (target-defined). */
2175
2176void
2177set_mem_addr_space (rtx mem, addr_space_t addrspace)
2178{
d05d7551 2179 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2180 attrs.addrspace = addrspace;
2181 set_mem_attrs (mem, &attrs);
173b24b9 2182}
738cc472 2183
d022d93e 2184/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
2185
2186void
502b8322 2187set_mem_align (rtx mem, unsigned int align)
738cc472 2188{
d05d7551 2189 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2190 attrs.align = align;
2191 set_mem_attrs (mem, &attrs);
738cc472 2192}
1285011e 2193
998d7deb 2194/* Set the expr for MEM to EXPR. */
1285011e
RK
2195
2196void
502b8322 2197set_mem_expr (rtx mem, tree expr)
1285011e 2198{
d05d7551 2199 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2200 attrs.expr = expr;
2201 set_mem_attrs (mem, &attrs);
1285011e 2202}
998d7deb
RH
2203
2204/* Set the offset of MEM to OFFSET. */
2205
2206void
d05d7551 2207set_mem_offset (rtx mem, poly_int64 offset)
998d7deb 2208{
d05d7551 2209 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d
RS
2210 attrs.offset_known_p = true;
2211 attrs.offset = offset;
527210c4
RS
2212 set_mem_attrs (mem, &attrs);
2213}
2214
2215/* Clear the offset of MEM. */
2216
2217void
2218clear_mem_offset (rtx mem)
2219{
d05d7551 2220 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d 2221 attrs.offset_known_p = false;
f12144dd 2222 set_mem_attrs (mem, &attrs);
35aff10b
AM
2223}
2224
2225/* Set the size of MEM to SIZE. */
2226
2227void
d05d7551 2228set_mem_size (rtx mem, poly_int64 size)
35aff10b 2229{
d05d7551 2230 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d
RS
2231 attrs.size_known_p = true;
2232 attrs.size = size;
f5541398
RS
2233 set_mem_attrs (mem, &attrs);
2234}
2235
2236/* Clear the size of MEM. */
2237
2238void
2239clear_mem_size (rtx mem)
2240{
d05d7551 2241 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d 2242 attrs.size_known_p = false;
f12144dd 2243 set_mem_attrs (mem, &attrs);
998d7deb 2244}
173b24b9 2245\f
738cc472
RK
2246/* Return a memory reference like MEMREF, but with its mode changed to MODE
2247 and its address changed to ADDR. (VOIDmode means don't change the mode.
2248 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
23b33725
RS
2249 returned memory location is required to be valid. INPLACE is true if any
2250 changes can be made directly to MEMREF or false if MEMREF must be treated
2251 as immutable.
2252
2253 The memory attributes are not changed. */
23b2ce53 2254
738cc472 2255static rtx
ef4bddc2 2256change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
23b33725 2257 bool inplace)
23b2ce53 2258{
09e881c9 2259 addr_space_t as;
60564289 2260 rtx new_rtx;
23b2ce53 2261
5b0264cb 2262 gcc_assert (MEM_P (memref));
09e881c9 2263 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
2264 if (mode == VOIDmode)
2265 mode = GET_MODE (memref);
2266 if (addr == 0)
2267 addr = XEXP (memref, 0);
a74ff877 2268 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2269 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2270 return memref;
23b2ce53 2271
91c5ee5b
VM
2272 /* Don't validate address for LRA. LRA can make the address valid
2273 by itself in most efficient way. */
2274 if (validate && !lra_in_progress)
23b2ce53 2275 {
f1ec5147 2276 if (reload_in_progress || reload_completed)
09e881c9 2277 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2278 else
09e881c9 2279 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2280 }
750c9258 2281
9b04c6a8
RK
2282 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2283 return memref;
2284
23b33725
RS
2285 if (inplace)
2286 {
2287 XEXP (memref, 0) = addr;
2288 return memref;
2289 }
2290
60564289
KG
2291 new_rtx = gen_rtx_MEM (mode, addr);
2292 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2293 return new_rtx;
23b2ce53 2294}
792760b9 2295
738cc472
RK
2296/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2297 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2298
2299rtx
ef4bddc2 2300change_address (rtx memref, machine_mode mode, rtx addr)
f4ef873c 2301{
23b33725 2302 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
ef4bddc2 2303 machine_mode mmode = GET_MODE (new_rtx);
99b1c316 2304 class mem_attrs *defattrs;
4e44c1ef 2305
d05d7551 2306 mem_attrs attrs (*get_mem_attrs (memref));
f12144dd 2307 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2308 attrs.expr = NULL_TREE;
2309 attrs.offset_known_p = false;
2310 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2311 attrs.size = defattrs->size;
2312 attrs.align = defattrs->align;
c2f7bcc3 2313
fdb1c7b3 2314 /* If there are no changes, just return the original memory reference. */
60564289 2315 if (new_rtx == memref)
4e44c1ef 2316 {
f12144dd 2317 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2318 return new_rtx;
4e44c1ef 2319
60564289
KG
2320 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2321 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2322 }
fdb1c7b3 2323
f12144dd 2324 set_mem_attrs (new_rtx, &attrs);
60564289 2325 return new_rtx;
f4ef873c 2326}
792760b9 2327
738cc472
RK
2328/* Return a memory reference like MEMREF, but with its mode changed
2329 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2330 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2331 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2332 and the caller is responsible for adjusting MEMREF base register.
2333 If ADJUST_OBJECT is zero, the underlying object associated with the
2334 memory reference is left unchanged and the caller is responsible for
2335 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2336 the underlying object, even partially, then the object is dropped.
2337 SIZE, if nonzero, is the size of an access in cases where MODE
2338 has no inherent size. */
f1ec5147
RK
2339
2340rtx
d05d7551 2341adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
5f2cbd0d 2342 int validate, int adjust_address, int adjust_object,
d05d7551 2343 poly_int64 size)
f1ec5147 2344{
823e3574 2345 rtx addr = XEXP (memref, 0);
60564289 2346 rtx new_rtx;
095a2d76 2347 scalar_int_mode address_mode;
99b1c316 2348 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
f12144dd 2349 unsigned HOST_WIDE_INT max_align;
0207fa90 2350#ifdef POINTERS_EXTEND_UNSIGNED
095a2d76 2351 scalar_int_mode pointer_mode
0207fa90
EB
2352 = targetm.addr_space.pointer_mode (attrs.addrspace);
2353#endif
823e3574 2354
ee88e690
EB
2355 /* VOIDmode means no mode change for change_address_1. */
2356 if (mode == VOIDmode)
2357 mode = GET_MODE (memref);
2358
5f2cbd0d
RS
2359 /* Take the size of non-BLKmode accesses from the mode. */
2360 defattrs = mode_mem_attrs[(int) mode];
2361 if (defattrs->size_known_p)
2362 size = defattrs->size;
2363
fdb1c7b3 2364 /* If there are no changes, just return the original memory reference. */
d05d7551
RS
2365 if (mode == GET_MODE (memref)
2366 && known_eq (offset, 0)
2367 && (known_eq (size, 0)
2368 || (attrs.size_known_p && known_eq (attrs.size, size)))
f12144dd
RS
2369 && (!validate || memory_address_addr_space_p (mode, addr,
2370 attrs.addrspace)))
fdb1c7b3
JH
2371 return memref;
2372
d14419e4 2373 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2374 This may happen even if offset is nonzero -- consider
d14419e4
RH
2375 (plus (plus reg reg) const_int) -- so do this always. */
2376 addr = copy_rtx (addr);
2377
a6fe9ed4
JM
2378 /* Convert a possibly large offset to a signed value within the
2379 range of the target address space. */
372d6395 2380 address_mode = get_address_mode (memref);
d05d7551 2381 offset = trunc_int_for_mode (offset, address_mode);
a6fe9ed4 2382
5ef0b50d 2383 if (adjust_address)
4a78c787
RH
2384 {
2385 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2386 object, we can merge it into the LO_SUM. */
d05d7551
RS
2387 if (GET_MODE (memref) != BLKmode
2388 && GET_CODE (addr) == LO_SUM
2389 && known_in_range_p (offset,
2390 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2391 / BITS_PER_UNIT)))
d4ebfa65 2392 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2393 plus_constant (address_mode,
2394 XEXP (addr, 1), offset));
0207fa90
EB
2395#ifdef POINTERS_EXTEND_UNSIGNED
2396 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2397 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2398 the fact that pointers are not allowed to overflow. */
2399 else if (POINTERS_EXTEND_UNSIGNED > 0
2400 && GET_CODE (addr) == ZERO_EXTEND
2401 && GET_MODE (XEXP (addr, 0)) == pointer_mode
d05d7551 2402 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
0207fa90
EB
2403 addr = gen_rtx_ZERO_EXTEND (address_mode,
2404 plus_constant (pointer_mode,
2405 XEXP (addr, 0), offset));
2406#endif
4a78c787 2407 else
0a81f074 2408 addr = plus_constant (address_mode, addr, offset);
4a78c787 2409 }
823e3574 2410
23b33725 2411 new_rtx = change_address_1 (memref, mode, addr, validate, false);
738cc472 2412
09efeca1
PB
2413 /* If the address is a REG, change_address_1 rightfully returns memref,
2414 but this would destroy memref's MEM_ATTRS. */
d05d7551 2415 if (new_rtx == memref && maybe_ne (offset, 0))
09efeca1
PB
2416 new_rtx = copy_rtx (new_rtx);
2417
5ef0b50d
EB
2418 /* Conservatively drop the object if we don't know where we start from. */
2419 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2420 {
2421 attrs.expr = NULL_TREE;
2422 attrs.alias = 0;
2423 }
2424
738cc472
RK
2425 /* Compute the new values of the memory attributes due to this adjustment.
2426 We add the offsets and update the alignment. */
754c3d5d 2427 if (attrs.offset_known_p)
5ef0b50d
EB
2428 {
2429 attrs.offset += offset;
2430
2431 /* Drop the object if the new left end is not within its bounds. */
d05d7551 2432 if (adjust_object && maybe_lt (attrs.offset, 0))
5ef0b50d
EB
2433 {
2434 attrs.expr = NULL_TREE;
2435 attrs.alias = 0;
2436 }
2437 }
738cc472 2438
03bf2c23
RK
2439 /* Compute the new alignment by taking the MIN of the alignment and the
2440 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2441 if zero. */
d05d7551 2442 if (maybe_ne (offset, 0))
f12144dd 2443 {
d05d7551 2444 max_align = known_alignment (offset) * BITS_PER_UNIT;
f12144dd
RS
2445 attrs.align = MIN (attrs.align, max_align);
2446 }
738cc472 2447
d05d7551 2448 if (maybe_ne (size, 0))
754c3d5d 2449 {
5ef0b50d 2450 /* Drop the object if the new right end is not within its bounds. */
d05d7551 2451 if (adjust_object && maybe_gt (offset + size, attrs.size))
5ef0b50d
EB
2452 {
2453 attrs.expr = NULL_TREE;
2454 attrs.alias = 0;
2455 }
754c3d5d 2456 attrs.size_known_p = true;
5f2cbd0d 2457 attrs.size = size;
754c3d5d
RS
2458 }
2459 else if (attrs.size_known_p)
5ef0b50d 2460 {
5f2cbd0d 2461 gcc_assert (!adjust_object);
5ef0b50d 2462 attrs.size -= offset;
5f2cbd0d
RS
2463 /* ??? The store_by_pieces machinery generates negative sizes,
2464 so don't assert for that here. */
5ef0b50d 2465 }
10b76d73 2466
f12144dd 2467 set_mem_attrs (new_rtx, &attrs);
738cc472 2468
60564289 2469 return new_rtx;
f1ec5147
RK
2470}
2471
630036c6
JJ
2472/* Return a memory reference like MEMREF, but with its mode changed
2473 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2474 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2475 nonzero, the memory address is forced to be valid. */
2476
2477rtx
ef4bddc2 2478adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
d05d7551 2479 poly_int64 offset, int validate)
630036c6 2480{
23b33725 2481 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
5f2cbd0d 2482 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2483}
2484
8ac61af7
RK
2485/* Return a memory reference like MEMREF, but whose address is changed by
2486 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2487 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2488
2489rtx
502b8322 2490offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2491{
60564289 2492 rtx new_rtx, addr = XEXP (memref, 0);
ef4bddc2 2493 machine_mode address_mode;
99b1c316 2494 class mem_attrs *defattrs;
e3c8ea67 2495
d05d7551 2496 mem_attrs attrs (*get_mem_attrs (memref));
372d6395 2497 address_mode = get_address_mode (memref);
d4ebfa65 2498 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2499
68252e27 2500 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2501 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2502
2503 However, if we did go and rearrange things, we can wind up not
2504 being able to recognize the magic around pic_offset_table_rtx.
2505 This stuff is fragile, and is yet another example of why it is
2506 bad to expose PIC machinery too early. */
f12144dd
RS
2507 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2508 attrs.addrspace)
e3c8ea67
RH
2509 && GET_CODE (addr) == PLUS
2510 && XEXP (addr, 0) == pic_offset_table_rtx)
2511 {
2512 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2513 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2514 }
2515
60564289 2516 update_temp_slot_address (XEXP (memref, 0), new_rtx);
23b33725 2517 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
0d4903b8 2518
fdb1c7b3 2519 /* If there are no changes, just return the original memory reference. */
60564289
KG
2520 if (new_rtx == memref)
2521 return new_rtx;
fdb1c7b3 2522
0d4903b8
RK
2523 /* Update the alignment to reflect the offset. Reset the offset, which
2524 we don't know. */
754c3d5d
RS
2525 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2526 attrs.offset_known_p = false;
2527 attrs.size_known_p = defattrs->size_known_p;
2528 attrs.size = defattrs->size;
f12144dd
RS
2529 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2530 set_mem_attrs (new_rtx, &attrs);
60564289 2531 return new_rtx;
0d4903b8 2532}
68252e27 2533
792760b9
RK
2534/* Return a memory reference like MEMREF, but with its address changed to
2535 ADDR. The caller is asserting that the actual piece of memory pointed
2536 to is the same, just the form of the address is being changed, such as
23b33725
RS
2537 by putting something into a register. INPLACE is true if any changes
2538 can be made directly to MEMREF or false if MEMREF must be treated as
2539 immutable. */
792760b9
RK
2540
2541rtx
23b33725 2542replace_equiv_address (rtx memref, rtx addr, bool inplace)
792760b9 2543{
738cc472
RK
2544 /* change_address_1 copies the memory attribute structure without change
2545 and that's exactly what we want here. */
40c0668b 2546 update_temp_slot_address (XEXP (memref, 0), addr);
23b33725 2547 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
792760b9 2548}
738cc472 2549
f1ec5147
RK
2550/* Likewise, but the reference is not required to be valid. */
2551
2552rtx
23b33725 2553replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
f1ec5147 2554{
23b33725 2555 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
f1ec5147 2556}
e7dfe4bb
RH
2557
2558/* Return a memory reference like MEMREF, but with its mode widened to
2559 MODE and offset by OFFSET. This would be used by targets that e.g.
2560 cannot issue QImode memory operations and have to use SImode memory
2561 operations plus masking logic. */
2562
2563rtx
d05d7551 2564widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
e7dfe4bb 2565{
5f2cbd0d 2566 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
cf098191 2567 poly_uint64 size = GET_MODE_SIZE (mode);
e7dfe4bb 2568
fdb1c7b3 2569 /* If there are no changes, just return the original memory reference. */
60564289
KG
2570 if (new_rtx == memref)
2571 return new_rtx;
fdb1c7b3 2572
d05d7551 2573 mem_attrs attrs (*get_mem_attrs (new_rtx));
f12144dd 2574
e7dfe4bb
RH
2575 /* If we don't know what offset we were at within the expression, then
2576 we can't know if we've overstepped the bounds. */
754c3d5d 2577 if (! attrs.offset_known_p)
f12144dd 2578 attrs.expr = NULL_TREE;
e7dfe4bb 2579
f12144dd 2580 while (attrs.expr)
e7dfe4bb 2581 {
f12144dd 2582 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2583 {
f12144dd
RS
2584 tree field = TREE_OPERAND (attrs.expr, 1);
2585 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2586
2587 if (! DECL_SIZE_UNIT (field))
2588 {
f12144dd 2589 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2590 break;
2591 }
2592
2593 /* Is the field at least as large as the access? If so, ok,
2594 otherwise strip back to the containing structure. */
d05d7551
RS
2595 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2596 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2597 && known_ge (attrs.offset, 0))
e7dfe4bb
RH
2598 break;
2599
d05d7551
RS
2600 poly_uint64 suboffset;
2601 if (!poly_int_tree_p (offset, &suboffset))
e7dfe4bb 2602 {
f12144dd 2603 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2604 break;
2605 }
2606
f12144dd 2607 attrs.expr = TREE_OPERAND (attrs.expr, 0);
d05d7551 2608 attrs.offset += suboffset;
ae7e9ddd 2609 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
754c3d5d 2610 / BITS_PER_UNIT);
e7dfe4bb
RH
2611 }
2612 /* Similarly for the decl. */
f12144dd
RS
2613 else if (DECL_P (attrs.expr)
2614 && DECL_SIZE_UNIT (attrs.expr)
d05d7551
RS
2615 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2616 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2617 size)
2618 && known_ge (attrs.offset, 0))
e7dfe4bb
RH
2619 break;
2620 else
2621 {
2622 /* The widened memory access overflows the expression, which means
2623 that it could alias another expression. Zap it. */
f12144dd 2624 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2625 break;
2626 }
2627 }
2628
f12144dd 2629 if (! attrs.expr)
754c3d5d 2630 attrs.offset_known_p = false;
e7dfe4bb
RH
2631
2632 /* The widened memory may alias other stuff, so zap the alias set. */
2633 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2634 attrs.alias = 0;
754c3d5d
RS
2635 attrs.size_known_p = true;
2636 attrs.size = size;
f12144dd 2637 set_mem_attrs (new_rtx, &attrs);
60564289 2638 return new_rtx;
e7dfe4bb 2639}
23b2ce53 2640\f
f6129d66
RH
2641/* A fake decl that is used as the MEM_EXPR of spill slots. */
2642static GTY(()) tree spill_slot_decl;
2643
3d7e23f6
RH
2644tree
2645get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2646{
2647 tree d = spill_slot_decl;
2648 rtx rd;
2649
3d7e23f6 2650 if (d || !force_build_p)
f6129d66
RH
2651 return d;
2652
c2255bc4
AH
2653 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2654 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2655 DECL_ARTIFICIAL (d) = 1;
2656 DECL_IGNORED_P (d) = 1;
2657 TREE_USED (d) = 1;
f6129d66
RH
2658 spill_slot_decl = d;
2659
2660 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2661 MEM_NOTRAP_P (rd) = 1;
d05d7551 2662 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
f12144dd
RS
2663 attrs.alias = new_alias_set ();
2664 attrs.expr = d;
2665 set_mem_attrs (rd, &attrs);
f6129d66
RH
2666 SET_DECL_RTL (d, rd);
2667
2668 return d;
2669}
2670
2671/* Given MEM, a result from assign_stack_local, fill in the memory
2672 attributes as appropriate for a register allocator spill slot.
2673 These slots are not aliasable by other memory. We arrange for
2674 them all to use a single MEM_EXPR, so that the aliasing code can
2675 work properly in the case of shared spill slots. */
2676
2677void
2678set_mem_attrs_for_spill (rtx mem)
2679{
f12144dd 2680 rtx addr;
f6129d66 2681
d05d7551 2682 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2683 attrs.expr = get_spill_slot_decl (true);
2684 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2685 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2686
2687 /* We expect the incoming memory to be of the form:
2688 (mem:MODE (plus (reg sfp) (const_int offset)))
2689 with perhaps the plus missing for offset = 0. */
2690 addr = XEXP (mem, 0);
754c3d5d 2691 attrs.offset_known_p = true;
d05d7551 2692 strip_offset (addr, &attrs.offset);
f6129d66 2693
f12144dd 2694 set_mem_attrs (mem, &attrs);
f6129d66
RH
2695 MEM_NOTRAP_P (mem) = 1;
2696}
2697\f
23b2ce53
RS
2698/* Return a newly created CODE_LABEL rtx with a unique label number. */
2699
7dcc3ab5 2700rtx_code_label *
502b8322 2701gen_label_rtx (void)
23b2ce53 2702{
7dcc3ab5
DM
2703 return as_a <rtx_code_label *> (
2704 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2705 NULL, label_num++, NULL));
23b2ce53
RS
2706}
2707\f
2708/* For procedure integration. */
2709
23b2ce53 2710/* Install new pointers to the first and last insns in the chain.
86fe05e0 2711 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2712 Used for an inline-procedure after copying the insn chain. */
2713
2714void
fee3e72c 2715set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
23b2ce53 2716{
fee3e72c 2717 rtx_insn *insn;
86fe05e0 2718
5936d944
JH
2719 set_first_insn (first);
2720 set_last_insn (last);
86fe05e0
RK
2721 cur_insn_uid = 0;
2722
028d4092 2723 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
b5b8b0ac
AO
2724 {
2725 int debug_count = 0;
2726
028d4092 2727 cur_insn_uid = param_min_nondebug_insn_uid - 1;
b5b8b0ac
AO
2728 cur_debug_insn_uid = 0;
2729
2730 for (insn = first; insn; insn = NEXT_INSN (insn))
028d4092 2731 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
b5b8b0ac
AO
2732 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2733 else
2734 {
2735 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2736 if (DEBUG_INSN_P (insn))
2737 debug_count++;
2738 }
2739
2740 if (debug_count)
028d4092 2741 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
b5b8b0ac
AO
2742 else
2743 cur_debug_insn_uid++;
2744 }
2745 else
2746 for (insn = first; insn; insn = NEXT_INSN (insn))
2747 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2748
2749 cur_insn_uid++;
23b2ce53 2750}
23b2ce53 2751\f
750c9258 2752/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2753 structure. This routine should only be called once. */
23b2ce53 2754
fd743bc1 2755static void
6bb9bf63 2756unshare_all_rtl_1 (rtx_insn *insn)
23b2ce53 2757{
d1b81779 2758 /* Unshare just about everything else. */
2c07f13b 2759 unshare_all_rtl_in_chain (insn);
750c9258 2760
23b2ce53
RS
2761 /* Make sure the addresses of stack slots found outside the insn chain
2762 (such as, in DECL_RTL of a variable) are not shared
2763 with the insn chain.
2764
2765 This special care is necessary when the stack slot MEM does not
2766 actually appear in the insn chain. If it does appear, its address
2767 is unshared from all else at that point. */
8c39f8ae
TS
2768 unsigned int i;
2769 rtx temp;
2770 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2771 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
23b2ce53
RS
2772}
2773
750c9258 2774/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2775 structure, again. This is a fairly expensive thing to do so it
2776 should be done sparingly. */
2777
2778void
6bb9bf63 2779unshare_all_rtl_again (rtx_insn *insn)
d1b81779 2780{
6bb9bf63 2781 rtx_insn *p;
624c87aa
RE
2782 tree decl;
2783
d1b81779 2784 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2785 if (INSN_P (p))
d1b81779
GK
2786 {
2787 reset_used_flags (PATTERN (p));
2788 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2789 if (CALL_P (p))
2790 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2791 }
624c87aa 2792
2d4aecb3 2793 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2794 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2795
624c87aa 2796 /* Make sure that virtual parameters are not shared. */
910ad8de 2797 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2798 set_used_flags (DECL_RTL (decl));
624c87aa 2799
8c39f8ae
TS
2800 rtx temp;
2801 unsigned int i;
2802 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2803 reset_used_flags (temp);
624c87aa 2804
b4aaa77b 2805 unshare_all_rtl_1 (insn);
fd743bc1
PB
2806}
2807
c2924966 2808unsigned int
fd743bc1
PB
2809unshare_all_rtl (void)
2810{
b4aaa77b 2811 unshare_all_rtl_1 (get_insns ());
60ebe8ce
JJ
2812
2813 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2814 {
2815 if (DECL_RTL_SET_P (decl))
2816 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2817 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2818 }
2819
c2924966 2820 return 0;
d1b81779
GK
2821}
2822
ef330312 2823
2c07f13b
JH
2824/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2825 Recursively does the same for subexpressions. */
2826
2827static void
2828verify_rtx_sharing (rtx orig, rtx insn)
2829{
2830 rtx x = orig;
2831 int i;
2832 enum rtx_code code;
2833 const char *format_ptr;
2834
2835 if (x == 0)
2836 return;
2837
2838 code = GET_CODE (x);
2839
2840 /* These types may be freely shared. */
2841
2842 switch (code)
2843 {
2844 case REG:
0ca5af51
AO
2845 case DEBUG_EXPR:
2846 case VALUE:
d8116890 2847 CASE_CONST_ANY:
2c07f13b
JH
2848 case SYMBOL_REF:
2849 case LABEL_REF:
2850 case CODE_LABEL:
2851 case PC:
3810076b 2852 case RETURN:
26898771 2853 case SIMPLE_RETURN:
2c07f13b 2854 case SCRATCH:
3e89ed8d 2855 /* SCRATCH must be shared because they represent distinct values. */
c5c5ba89 2856 return;
3e89ed8d 2857 case CLOBBER:
bd1cd0d0 2858 /* Share clobbers of hard registers, but do not share pseudo reg
c5c5ba89
JH
2859 clobbers or clobbers of hard registers that originated as pseudos.
2860 This is needed to allow safe register renaming. */
d7ae3739
EB
2861 if (REG_P (XEXP (x, 0))
2862 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2863 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
2864 return;
2865 break;
2c07f13b
JH
2866
2867 case CONST:
6fb5fa3c 2868 if (shared_const_p (orig))
2c07f13b
JH
2869 return;
2870 break;
2871
2872 case MEM:
2873 /* A MEM is allowed to be shared if its address is constant. */
2874 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2875 || reload_completed || reload_in_progress)
2876 return;
2877
2878 break;
2879
2880 default:
2881 break;
2882 }
2883
2884 /* This rtx may not be shared. If it has already been seen,
2885 replace it with a copy of itself. */
b2b29377 2886 if (flag_checking && RTX_FLAG (x, used))
2c07f13b 2887 {
ab532386 2888 error ("invalid rtl sharing found in the insn");
2c07f13b 2889 debug_rtx (insn);
ab532386 2890 error ("shared rtx");
2c07f13b 2891 debug_rtx (x);
ab532386 2892 internal_error ("internal consistency failure");
2c07f13b 2893 }
1a2caa7a 2894 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2895
2c07f13b
JH
2896 RTX_FLAG (x, used) = 1;
2897
6614fd40 2898 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2899
2900 format_ptr = GET_RTX_FORMAT (code);
2901
2902 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2903 {
2904 switch (*format_ptr++)
2905 {
2906 case 'e':
2907 verify_rtx_sharing (XEXP (x, i), insn);
2908 break;
2909
2910 case 'E':
2911 if (XVEC (x, i) != NULL)
2912 {
2913 int j;
2914 int len = XVECLEN (x, i);
2915
2916 for (j = 0; j < len; j++)
2917 {
1a2caa7a
NS
2918 /* We allow sharing of ASM_OPERANDS inside single
2919 instruction. */
2c07f13b 2920 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2921 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2922 == ASM_OPERANDS))
2c07f13b
JH
2923 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2924 else
2925 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2926 }
2927 }
2928 break;
2929 }
2930 }
2931 return;
2932}
2933
0e0f87d4
SB
2934/* Reset used-flags for INSN. */
2935
2936static void
2937reset_insn_used_flags (rtx insn)
2938{
2939 gcc_assert (INSN_P (insn));
2940 reset_used_flags (PATTERN (insn));
2941 reset_used_flags (REG_NOTES (insn));
2942 if (CALL_P (insn))
2943 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2944}
2945
a24243a0 2946/* Go through all the RTL insn bodies and clear all the USED bits. */
2c07f13b 2947
a24243a0
AK
2948static void
2949reset_all_used_flags (void)
2c07f13b 2950{
dc01c3d1 2951 rtx_insn *p;
2c07f13b
JH
2952
2953 for (p = get_insns (); p; p = NEXT_INSN (p))
2954 if (INSN_P (p))
2955 {
0e0f87d4
SB
2956 rtx pat = PATTERN (p);
2957 if (GET_CODE (pat) != SEQUENCE)
2958 reset_insn_used_flags (p);
2959 else
2954a813 2960 {
0e0f87d4
SB
2961 gcc_assert (REG_NOTES (p) == NULL);
2962 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2963 {
2964 rtx insn = XVECEXP (pat, 0, i);
2965 if (INSN_P (insn))
2966 reset_insn_used_flags (insn);
2967 }
2954a813 2968 }
2c07f13b 2969 }
a24243a0
AK
2970}
2971
0e0f87d4
SB
2972/* Verify sharing in INSN. */
2973
2974static void
2975verify_insn_sharing (rtx insn)
2976{
2977 gcc_assert (INSN_P (insn));
4b498f72
JJ
2978 verify_rtx_sharing (PATTERN (insn), insn);
2979 verify_rtx_sharing (REG_NOTES (insn), insn);
0e0f87d4 2980 if (CALL_P (insn))
4b498f72 2981 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
0e0f87d4
SB
2982}
2983
a24243a0
AK
2984/* Go through all the RTL insn bodies and check that there is no unexpected
2985 sharing in between the subexpressions. */
2986
2987DEBUG_FUNCTION void
2988verify_rtl_sharing (void)
2989{
dc01c3d1 2990 rtx_insn *p;
a24243a0
AK
2991
2992 timevar_push (TV_VERIFY_RTL_SHARING);
2993
2994 reset_all_used_flags ();
2c07f13b
JH
2995
2996 for (p = get_insns (); p; p = NEXT_INSN (p))
2997 if (INSN_P (p))
2998 {
0e0f87d4
SB
2999 rtx pat = PATTERN (p);
3000 if (GET_CODE (pat) != SEQUENCE)
3001 verify_insn_sharing (p);
3002 else
3003 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
3004 {
3005 rtx insn = XVECEXP (pat, 0, i);
3006 if (INSN_P (insn))
3007 verify_insn_sharing (insn);
3008 }
2c07f13b 3009 }
a222c01a 3010
a24243a0
AK
3011 reset_all_used_flags ();
3012
a222c01a 3013 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
3014}
3015
d1b81779
GK
3016/* Go through all the RTL insn bodies and copy any invalid shared structure.
3017 Assumes the mark bits are cleared at entry. */
3018
2c07f13b 3019void
dc01c3d1 3020unshare_all_rtl_in_chain (rtx_insn *insn)
d1b81779
GK
3021{
3022 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 3023 if (INSN_P (insn))
d1b81779
GK
3024 {
3025 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3026 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
3027 if (CALL_P (insn))
3028 CALL_INSN_FUNCTION_USAGE (insn)
3029 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
3030 }
3031}
3032
2d4aecb3 3033/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
3034 shared. We never replace the DECL_RTLs themselves with a copy,
3035 but expressions mentioned into a DECL_RTL cannot be shared with
3036 expressions in the instruction stream.
3037
3038 Note that reload may convert pseudo registers into memories in-place.
3039 Pseudo registers are always shared, but MEMs never are. Thus if we
3040 reset the used flags on MEMs in the instruction stream, we must set
3041 them again on MEMs that appear in DECL_RTLs. */
3042
2d4aecb3 3043static void
5eb2a9f2 3044set_used_decls (tree blk)
2d4aecb3
AO
3045{
3046 tree t;
3047
3048 /* Mark decls. */
910ad8de 3049 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 3050 if (DECL_RTL_SET_P (t))
5eb2a9f2 3051 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
3052
3053 /* Now process sub-blocks. */
87caf699 3054 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 3055 set_used_decls (t);
2d4aecb3
AO
3056}
3057
23b2ce53 3058/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
3059 Recursively does the same for subexpressions. Uses
3060 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
3061
3062rtx
502b8322 3063copy_rtx_if_shared (rtx orig)
23b2ce53 3064{
32b32b16
AP
3065 copy_rtx_if_shared_1 (&orig);
3066 return orig;
3067}
3068
ff954f39
AP
3069/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3070 use. Recursively does the same for subexpressions. */
3071
32b32b16
AP
3072static void
3073copy_rtx_if_shared_1 (rtx *orig1)
3074{
3075 rtx x;
b3694847
SS
3076 int i;
3077 enum rtx_code code;
32b32b16 3078 rtx *last_ptr;
b3694847 3079 const char *format_ptr;
23b2ce53 3080 int copied = 0;
32b32b16
AP
3081 int length;
3082
3083 /* Repeat is used to turn tail-recursion into iteration. */
3084repeat:
3085 x = *orig1;
23b2ce53
RS
3086
3087 if (x == 0)
32b32b16 3088 return;
23b2ce53
RS
3089
3090 code = GET_CODE (x);
3091
3092 /* These types may be freely shared. */
3093
3094 switch (code)
3095 {
3096 case REG:
0ca5af51
AO
3097 case DEBUG_EXPR:
3098 case VALUE:
d8116890 3099 CASE_CONST_ANY:
23b2ce53 3100 case SYMBOL_REF:
2c07f13b 3101 case LABEL_REF:
23b2ce53
RS
3102 case CODE_LABEL:
3103 case PC:
276e0224 3104 case RETURN:
26898771 3105 case SIMPLE_RETURN:
23b2ce53 3106 case SCRATCH:
0f41302f 3107 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 3108 return;
3e89ed8d 3109 case CLOBBER:
bd1cd0d0 3110 /* Share clobbers of hard registers, but do not share pseudo reg
c5c5ba89
JH
3111 clobbers or clobbers of hard registers that originated as pseudos.
3112 This is needed to allow safe register renaming. */
d7ae3739
EB
3113 if (REG_P (XEXP (x, 0))
3114 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3115 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
3116 return;
3117 break;
23b2ce53 3118
b851ea09 3119 case CONST:
6fb5fa3c 3120 if (shared_const_p (x))
32b32b16 3121 return;
b851ea09
RK
3122 break;
3123
b5b8b0ac 3124 case DEBUG_INSN:
23b2ce53
RS
3125 case INSN:
3126 case JUMP_INSN:
3127 case CALL_INSN:
3128 case NOTE:
23b2ce53
RS
3129 case BARRIER:
3130 /* The chain of insns is not being copied. */
32b32b16 3131 return;
23b2ce53 3132
e9a25f70
JL
3133 default:
3134 break;
23b2ce53
RS
3135 }
3136
3137 /* This rtx may not be shared. If it has already been seen,
3138 replace it with a copy of itself. */
3139
2adc7f12 3140 if (RTX_FLAG (x, used))
23b2ce53 3141 {
aacd3885 3142 x = shallow_copy_rtx (x);
23b2ce53
RS
3143 copied = 1;
3144 }
2adc7f12 3145 RTX_FLAG (x, used) = 1;
23b2ce53
RS
3146
3147 /* Now scan the subexpressions recursively.
3148 We can store any replaced subexpressions directly into X
3149 since we know X is not shared! Any vectors in X
3150 must be copied if X was copied. */
3151
3152 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
3153 length = GET_RTX_LENGTH (code);
3154 last_ptr = NULL;
b8698a0f 3155
32b32b16 3156 for (i = 0; i < length; i++)
23b2ce53
RS
3157 {
3158 switch (*format_ptr++)
3159 {
3160 case 'e':
32b32b16
AP
3161 if (last_ptr)
3162 copy_rtx_if_shared_1 (last_ptr);
3163 last_ptr = &XEXP (x, i);
23b2ce53
RS
3164 break;
3165
3166 case 'E':
3167 if (XVEC (x, i) != NULL)
3168 {
b3694847 3169 int j;
f0722107 3170 int len = XVECLEN (x, i);
b8698a0f 3171
6614fd40
KH
3172 /* Copy the vector iff I copied the rtx and the length
3173 is nonzero. */
f0722107 3174 if (copied && len > 0)
8f985ec4 3175 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 3176
5d3cc252 3177 /* Call recursively on all inside the vector. */
f0722107 3178 for (j = 0; j < len; j++)
32b32b16
AP
3179 {
3180 if (last_ptr)
3181 copy_rtx_if_shared_1 (last_ptr);
3182 last_ptr = &XVECEXP (x, i, j);
3183 }
23b2ce53
RS
3184 }
3185 break;
3186 }
3187 }
32b32b16
AP
3188 *orig1 = x;
3189 if (last_ptr)
3190 {
3191 orig1 = last_ptr;
3192 goto repeat;
3193 }
3194 return;
23b2ce53
RS
3195}
3196
76369a82 3197/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 3198
76369a82
NF
3199static void
3200mark_used_flags (rtx x, int flag)
23b2ce53 3201{
b3694847
SS
3202 int i, j;
3203 enum rtx_code code;
3204 const char *format_ptr;
32b32b16 3205 int length;
23b2ce53 3206
32b32b16
AP
3207 /* Repeat is used to turn tail-recursion into iteration. */
3208repeat:
23b2ce53
RS
3209 if (x == 0)
3210 return;
3211
3212 code = GET_CODE (x);
3213
9faa82d8 3214 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
3215 for them. */
3216
3217 switch (code)
3218 {
3219 case REG:
0ca5af51
AO
3220 case DEBUG_EXPR:
3221 case VALUE:
d8116890 3222 CASE_CONST_ANY:
23b2ce53
RS
3223 case SYMBOL_REF:
3224 case CODE_LABEL:
3225 case PC:
276e0224 3226 case RETURN:
26898771 3227 case SIMPLE_RETURN:
23b2ce53
RS
3228 return;
3229
b5b8b0ac 3230 case DEBUG_INSN:
23b2ce53
RS
3231 case INSN:
3232 case JUMP_INSN:
3233 case CALL_INSN:
3234 case NOTE:
3235 case LABEL_REF:
3236 case BARRIER:
3237 /* The chain of insns is not being copied. */
3238 return;
750c9258 3239
e9a25f70
JL
3240 default:
3241 break;
23b2ce53
RS
3242 }
3243
76369a82 3244 RTX_FLAG (x, used) = flag;
23b2ce53
RS
3245
3246 format_ptr = GET_RTX_FORMAT (code);
32b32b16 3247 length = GET_RTX_LENGTH (code);
b8698a0f 3248
32b32b16 3249 for (i = 0; i < length; i++)
23b2ce53
RS
3250 {
3251 switch (*format_ptr++)
3252 {
3253 case 'e':
32b32b16
AP
3254 if (i == length-1)
3255 {
3256 x = XEXP (x, i);
3257 goto repeat;
3258 }
76369a82 3259 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
3260 break;
3261
3262 case 'E':
3263 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 3264 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
3265 break;
3266 }
3267 }
3268}
2c07f13b 3269
76369a82 3270/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
3271 to look for shared sub-parts. */
3272
3273void
76369a82 3274reset_used_flags (rtx x)
2c07f13b 3275{
76369a82
NF
3276 mark_used_flags (x, 0);
3277}
2c07f13b 3278
76369a82
NF
3279/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3280 to look for shared sub-parts. */
2c07f13b 3281
76369a82
NF
3282void
3283set_used_flags (rtx x)
3284{
3285 mark_used_flags (x, 1);
2c07f13b 3286}
23b2ce53
RS
3287\f
3288/* Copy X if necessary so that it won't be altered by changes in OTHER.
3289 Return X or the rtx for the pseudo reg the value of X was copied into.
3290 OTHER must be valid as a SET_DEST. */
3291
3292rtx
502b8322 3293make_safe_from (rtx x, rtx other)
23b2ce53
RS
3294{
3295 while (1)
3296 switch (GET_CODE (other))
3297 {
3298 case SUBREG:
3299 other = SUBREG_REG (other);
3300 break;
3301 case STRICT_LOW_PART:
3302 case SIGN_EXTEND:
3303 case ZERO_EXTEND:
3304 other = XEXP (other, 0);
3305 break;
3306 default:
3307 goto done;
3308 }
3309 done:
3c0cb5de 3310 if ((MEM_P (other)
23b2ce53 3311 && ! CONSTANT_P (x)
f8cfc6aa 3312 && !REG_P (x)
23b2ce53 3313 && GET_CODE (x) != SUBREG)
f8cfc6aa 3314 || (REG_P (other)
23b2ce53
RS
3315 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3316 || reg_mentioned_p (other, x))))
3317 {
3318 rtx temp = gen_reg_rtx (GET_MODE (x));
3319 emit_move_insn (temp, x);
3320 return temp;
3321 }
3322 return x;
3323}
3324\f
3325/* Emission of insns (adding them to the doubly-linked list). */
3326
23b2ce53
RS
3327/* Return the last insn emitted, even if it is in a sequence now pushed. */
3328
db76cf1e 3329rtx_insn *
502b8322 3330get_last_insn_anywhere (void)
23b2ce53 3331{
614d5bd8
AM
3332 struct sequence_stack *seq;
3333 for (seq = get_current_sequence (); seq; seq = seq->next)
3334 if (seq->last != 0)
3335 return seq->last;
23b2ce53
RS
3336 return 0;
3337}
3338
2a496e8b
JDA
3339/* Return the first nonnote insn emitted in current sequence or current
3340 function. This routine looks inside SEQUENCEs. */
3341
e4685bc8 3342rtx_insn *
502b8322 3343get_first_nonnote_insn (void)
2a496e8b 3344{
dc01c3d1 3345 rtx_insn *insn = get_insns ();
91373fe8
JDA
3346
3347 if (insn)
3348 {
3349 if (NOTE_P (insn))
3350 for (insn = next_insn (insn);
3351 insn && NOTE_P (insn);
3352 insn = next_insn (insn))
3353 continue;
3354 else
3355 {
2ca202e7 3356 if (NONJUMP_INSN_P (insn)
91373fe8 3357 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3358 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
91373fe8
JDA
3359 }
3360 }
2a496e8b
JDA
3361
3362 return insn;
3363}
3364
3365/* Return the last nonnote insn emitted in current sequence or current
3366 function. This routine looks inside SEQUENCEs. */
3367
e4685bc8 3368rtx_insn *
502b8322 3369get_last_nonnote_insn (void)
2a496e8b 3370{
dc01c3d1 3371 rtx_insn *insn = get_last_insn ();
91373fe8
JDA
3372
3373 if (insn)
3374 {
3375 if (NOTE_P (insn))
3376 for (insn = previous_insn (insn);
3377 insn && NOTE_P (insn);
3378 insn = previous_insn (insn))
3379 continue;
3380 else
3381 {
dc01c3d1
DM
3382 if (NONJUMP_INSN_P (insn))
3383 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3384 insn = seq->insn (seq->len () - 1);
91373fe8
JDA
3385 }
3386 }
2a496e8b
JDA
3387
3388 return insn;
3389}
3390
b5b8b0ac
AO
3391/* Return the number of actual (non-debug) insns emitted in this
3392 function. */
3393
3394int
3395get_max_insn_count (void)
3396{
3397 int n = cur_insn_uid;
3398
3399 /* The table size must be stable across -g, to avoid codegen
3400 differences due to debug insns, and not be affected by
3401 -fmin-insn-uid, to avoid excessive table size and to simplify
3402 debugging of -fcompare-debug failures. */
028d4092 3403 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
b5b8b0ac
AO
3404 n -= cur_debug_insn_uid;
3405 else
028d4092 3406 n -= param_min_nondebug_insn_uid;
b5b8b0ac
AO
3407
3408 return n;
3409}
3410
23b2ce53
RS
3411\f
3412/* Return the next insn. If it is a SEQUENCE, return the first insn
3413 of the sequence. */
3414
eb51c837 3415rtx_insn *
4ce524a1 3416next_insn (rtx_insn *insn)
23b2ce53 3417{
75547801
KG
3418 if (insn)
3419 {
3420 insn = NEXT_INSN (insn);
3421 if (insn && NONJUMP_INSN_P (insn)
3422 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3423 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
75547801 3424 }
23b2ce53 3425
dc01c3d1 3426 return insn;
23b2ce53
RS
3427}
3428
3429/* Return the previous insn. If it is a SEQUENCE, return the last insn
3430 of the sequence. */
3431
eb51c837 3432rtx_insn *
4ce524a1 3433previous_insn (rtx_insn *insn)
23b2ce53 3434{
75547801
KG
3435 if (insn)
3436 {
3437 insn = PREV_INSN (insn);
dc01c3d1
DM
3438 if (insn && NONJUMP_INSN_P (insn))
3439 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3440 insn = seq->insn (seq->len () - 1);
75547801 3441 }
23b2ce53 3442
dc01c3d1 3443 return insn;
23b2ce53
RS
3444}
3445
3446/* Return the next insn after INSN that is not a NOTE. This routine does not
3447 look inside SEQUENCEs. */
3448
eb51c837 3449rtx_insn *
c9b0a227 3450next_nonnote_insn (rtx_insn *insn)
23b2ce53 3451{
75547801
KG
3452 while (insn)
3453 {
3454 insn = NEXT_INSN (insn);
3455 if (insn == 0 || !NOTE_P (insn))
3456 break;
3457 }
23b2ce53 3458
dc01c3d1 3459 return insn;
23b2ce53
RS
3460}
3461
f40dd646
AO
3462/* Return the next insn after INSN that is not a DEBUG_INSN. This
3463 routine does not look inside SEQUENCEs. */
1e211590 3464
eb51c837 3465rtx_insn *
f40dd646 3466next_nondebug_insn (rtx_insn *insn)
1e211590
DD
3467{
3468 while (insn)
3469 {
3470 insn = NEXT_INSN (insn);
f40dd646 3471 if (insn == 0 || !DEBUG_INSN_P (insn))
1e211590 3472 break;
1e211590
DD
3473 }
3474
dc01c3d1 3475 return insn;
1e211590
DD
3476}
3477
23b2ce53
RS
3478/* Return the previous insn before INSN that is not a NOTE. This routine does
3479 not look inside SEQUENCEs. */
3480
eb51c837 3481rtx_insn *
c9b0a227 3482prev_nonnote_insn (rtx_insn *insn)
23b2ce53 3483{
75547801
KG
3484 while (insn)
3485 {
3486 insn = PREV_INSN (insn);
3487 if (insn == 0 || !NOTE_P (insn))
3488 break;
3489 }
23b2ce53 3490
dc01c3d1 3491 return insn;
23b2ce53
RS
3492}
3493
f40dd646
AO
3494/* Return the previous insn before INSN that is not a DEBUG_INSN.
3495 This routine does not look inside SEQUENCEs. */
896aa4ea 3496
eb51c837 3497rtx_insn *
f40dd646 3498prev_nondebug_insn (rtx_insn *insn)
896aa4ea
DD
3499{
3500 while (insn)
3501 {
3502 insn = PREV_INSN (insn);
f40dd646 3503 if (insn == 0 || !DEBUG_INSN_P (insn))
896aa4ea 3504 break;
896aa4ea
DD
3505 }
3506
dc01c3d1 3507 return insn;
896aa4ea
DD
3508}
3509
f40dd646
AO
3510/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3511 This routine does not look inside SEQUENCEs. */
b5b8b0ac 3512
eb51c837 3513rtx_insn *
f40dd646 3514next_nonnote_nondebug_insn (rtx_insn *insn)
b5b8b0ac
AO
3515{
3516 while (insn)
3517 {
3518 insn = NEXT_INSN (insn);
f40dd646 3519 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
b5b8b0ac
AO
3520 break;
3521 }
3522
dc01c3d1 3523 return insn;
b5b8b0ac
AO
3524}
3525
f40dd646
AO
3526/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3527 but stop the search before we enter another basic block. This
3528 routine does not look inside SEQUENCEs. */
b5b8b0ac 3529
eb51c837 3530rtx_insn *
f40dd646 3531next_nonnote_nondebug_insn_bb (rtx_insn *insn)
b5b8b0ac
AO
3532{
3533 while (insn)
3534 {
f40dd646
AO
3535 insn = NEXT_INSN (insn);
3536 if (insn == 0)
3537 break;
3538 if (DEBUG_INSN_P (insn))
3539 continue;
3540 if (!NOTE_P (insn))
b5b8b0ac 3541 break;
f40dd646
AO
3542 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3543 return NULL;
b5b8b0ac
AO
3544 }
3545
dc01c3d1 3546 return insn;
b5b8b0ac
AO
3547}
3548
f40dd646 3549/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
f0fc0803
JJ
3550 This routine does not look inside SEQUENCEs. */
3551
eb51c837 3552rtx_insn *
f40dd646 3553prev_nonnote_nondebug_insn (rtx_insn *insn)
f0fc0803
JJ
3554{
3555 while (insn)
3556 {
f40dd646 3557 insn = PREV_INSN (insn);
f0fc0803
JJ
3558 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3559 break;
3560 }
3561
dc01c3d1 3562 return insn;
f0fc0803
JJ
3563}
3564
f40dd646
AO
3565/* Return the previous insn before INSN that is not a NOTE nor
3566 DEBUG_INSN, but stop the search before we enter another basic
3567 block. This routine does not look inside SEQUENCEs. */
f0fc0803 3568
eb51c837 3569rtx_insn *
f40dd646 3570prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
f0fc0803
JJ
3571{
3572 while (insn)
3573 {
3574 insn = PREV_INSN (insn);
f40dd646 3575 if (insn == 0)
f0fc0803 3576 break;
f40dd646
AO
3577 if (DEBUG_INSN_P (insn))
3578 continue;
3579 if (!NOTE_P (insn))
3580 break;
3581 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3582 return NULL;
f0fc0803
JJ
3583 }
3584
dc01c3d1 3585 return insn;
f0fc0803
JJ
3586}
3587
ec2d7121 3588/* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
23b2ce53 3589 or 0, if there is none. This routine does not look inside
0f41302f 3590 SEQUENCEs. */
23b2ce53 3591
eb51c837 3592rtx_insn *
4dea3bff 3593next_real_insn (rtx_insn *insn)
23b2ce53 3594{
75547801
KG
3595 while (insn)
3596 {
3597 insn = NEXT_INSN (insn);
3598 if (insn == 0 || INSN_P (insn))
3599 break;
3600 }
23b2ce53 3601
dc01c3d1 3602 return insn;
23b2ce53
RS
3603}
3604
ec2d7121 3605/* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
23b2ce53
RS
3606 or 0, if there is none. This routine does not look inside
3607 SEQUENCEs. */
3608
eb51c837 3609rtx_insn *
d8fd56b2 3610prev_real_insn (rtx_insn *insn)
23b2ce53 3611{
75547801
KG
3612 while (insn)
3613 {
3614 insn = PREV_INSN (insn);
3615 if (insn == 0 || INSN_P (insn))
3616 break;
3617 }
23b2ce53 3618
dc01c3d1 3619 return insn;
23b2ce53
RS
3620}
3621
ec2d7121
JJ
3622/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3623 or 0, if there is none. This routine does not look inside
3624 SEQUENCEs. */
3625
3626rtx_insn *
3627next_real_nondebug_insn (rtx uncast_insn)
3628{
3629 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3630
3631 while (insn)
3632 {
3633 insn = NEXT_INSN (insn);
3634 if (insn == 0 || NONDEBUG_INSN_P (insn))
3635 break;
3636 }
3637
3638 return insn;
3639}
3640
3641/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3642 or 0, if there is none. This routine does not look inside
3643 SEQUENCEs. */
3644
3645rtx_insn *
3646prev_real_nondebug_insn (rtx_insn *insn)
3647{
3648 while (insn)
3649 {
3650 insn = PREV_INSN (insn);
3651 if (insn == 0 || NONDEBUG_INSN_P (insn))
3652 break;
3653 }
3654
3655 return insn;
3656}
3657
ee960939
OH
3658/* Return the last CALL_INSN in the current list, or 0 if there is none.
3659 This routine does not look inside SEQUENCEs. */
3660
049cfc4a 3661rtx_call_insn *
502b8322 3662last_call_insn (void)
ee960939 3663{
049cfc4a 3664 rtx_insn *insn;
ee960939
OH
3665
3666 for (insn = get_last_insn ();
4b4bf941 3667 insn && !CALL_P (insn);
ee960939
OH
3668 insn = PREV_INSN (insn))
3669 ;
3670
049cfc4a 3671 return safe_as_a <rtx_call_insn *> (insn);
ee960939
OH
3672}
3673
23b2ce53 3674/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3675 does not look inside SEQUENCEs. After reload this also skips over
3676 standalone USE and CLOBBER insn. */
23b2ce53 3677
69732dcb 3678int
7c9796ed 3679active_insn_p (const rtx_insn *insn)
69732dcb 3680{
4b4bf941 3681 return (CALL_P (insn) || JUMP_P (insn)
39718607 3682 || JUMP_TABLE_DATA_P (insn) /* FIXME */
4b4bf941 3683 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3684 && (! reload_completed
3685 || (GET_CODE (PATTERN (insn)) != USE
3686 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3687}
3688
eb51c837 3689rtx_insn *
7c9796ed 3690next_active_insn (rtx_insn *insn)
23b2ce53 3691{
75547801
KG
3692 while (insn)
3693 {
3694 insn = NEXT_INSN (insn);
3695 if (insn == 0 || active_insn_p (insn))
3696 break;
3697 }
23b2ce53 3698
dc01c3d1 3699 return insn;
23b2ce53
RS
3700}
3701
3702/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3703 does not look inside SEQUENCEs. After reload this also skips over
3704 standalone USE and CLOBBER insn. */
23b2ce53 3705
eb51c837 3706rtx_insn *
7c9796ed 3707prev_active_insn (rtx_insn *insn)
23b2ce53 3708{
75547801
KG
3709 while (insn)
3710 {
3711 insn = PREV_INSN (insn);
3712 if (insn == 0 || active_insn_p (insn))
3713 break;
3714 }
23b2ce53 3715
dc01c3d1 3716 return insn;
23b2ce53 3717}
23b2ce53 3718\f
594f8779
RZ
3719/* Find a RTX_AUTOINC class rtx which matches DATA. */
3720
3721static int
9021b8ec 3722find_auto_inc (const_rtx x, const_rtx reg)
594f8779 3723{
9021b8ec
RS
3724 subrtx_iterator::array_type array;
3725 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
594f8779 3726 {
9021b8ec
RS
3727 const_rtx x = *iter;
3728 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3729 && rtx_equal_p (reg, XEXP (x, 0)))
3730 return true;
594f8779 3731 }
9021b8ec 3732 return false;
594f8779 3733}
594f8779 3734
e5bef2e4
HB
3735/* Increment the label uses for all labels present in rtx. */
3736
3737static void
502b8322 3738mark_label_nuses (rtx x)
e5bef2e4 3739{
b3694847
SS
3740 enum rtx_code code;
3741 int i, j;
3742 const char *fmt;
e5bef2e4
HB
3743
3744 code = GET_CODE (x);
04a121a7
TS
3745 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3746 LABEL_NUSES (label_ref_label (x))++;
e5bef2e4
HB
3747
3748 fmt = GET_RTX_FORMAT (code);
3749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3750 {
3751 if (fmt[i] == 'e')
0fb7aeda 3752 mark_label_nuses (XEXP (x, i));
e5bef2e4 3753 else if (fmt[i] == 'E')
0fb7aeda 3754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3755 mark_label_nuses (XVECEXP (x, i, j));
3756 }
3757}
3758
23b2ce53
RS
3759\f
3760/* Try splitting insns that can be split for better scheduling.
3761 PAT is the pattern which might split.
3762 TRIAL is the insn providing PAT.
cc2902df 3763 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3764
3765 If this routine succeeds in splitting, it returns the first or last
11147ebe 3766 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3767 returns TRIAL. If the insn to be returned can be split, it will be. */
3768
53f04688 3769rtx_insn *
bb5c4956 3770try_split (rtx pat, rtx_insn *trial, int last)
23b2ce53 3771{
d4eff95b 3772 rtx_insn *before, *after;
dc01c3d1
DM
3773 rtx note;
3774 rtx_insn *seq, *tem;
5fa396ad 3775 profile_probability probability;
dc01c3d1 3776 rtx_insn *insn_last, *insn;
599aedd9 3777 int njumps = 0;
e67d1102 3778 rtx_insn *call_insn = NULL;
6b24c259
JH
3779
3780 if (any_condjump_p (trial)
3781 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
5fa396ad
JH
3782 split_branch_probability
3783 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3784 else
3785 split_branch_probability = profile_probability::uninitialized ();
3786
6b24c259
JH
3787 probability = split_branch_probability;
3788
bb5c4956 3789 seq = split_insns (pat, trial);
6b24c259 3790
5fa396ad 3791 split_branch_probability = profile_probability::uninitialized ();
23b2ce53 3792
599aedd9 3793 if (!seq)
dc01c3d1 3794 return trial;
599aedd9 3795
e7d55c6b 3796 int split_insn_count = 0;
599aedd9
RH
3797 /* Avoid infinite loop if any insn of the result matches
3798 the original pattern. */
3799 insn_last = seq;
3800 while (1)
23b2ce53 3801 {
599aedd9
RH
3802 if (INSN_P (insn_last)
3803 && rtx_equal_p (PATTERN (insn_last), pat))
dc01c3d1 3804 return trial;
e7d55c6b 3805 split_insn_count++;
599aedd9
RH
3806 if (!NEXT_INSN (insn_last))
3807 break;
3808 insn_last = NEXT_INSN (insn_last);
3809 }
750c9258 3810
e7d55c6b
SKS
3811 /* We're not good at redistributing frame information if
3812 the split occurs before reload or if it results in more
3813 than one insn. */
3814 if (RTX_FRAME_RELATED_P (trial))
3815 {
3816 if (!reload_completed || split_insn_count != 1)
3817 return trial;
3818
3819 rtx_insn *new_insn = seq;
3820 rtx_insn *old_insn = trial;
3821 copy_frame_info_to_split_insn (old_insn, new_insn);
3822 }
3823
6fb5fa3c
DB
3824 /* We will be adding the new sequence to the function. The splitters
3825 may have introduced invalid RTL sharing, so unshare the sequence now. */
3826 unshare_all_rtl_in_chain (seq);
3827
339ba33b 3828 /* Mark labels and copy flags. */
599aedd9
RH
3829 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3830 {
4b4bf941 3831 if (JUMP_P (insn))
599aedd9 3832 {
339ba33b
RS
3833 if (JUMP_P (trial))
3834 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
599aedd9
RH
3835 mark_jump_label (PATTERN (insn), insn, 0);
3836 njumps++;
5fa396ad 3837 if (probability.initialized_p ()
599aedd9
RH
3838 && any_condjump_p (insn)
3839 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3840 {
599aedd9
RH
3841 /* We can preserve the REG_BR_PROB notes only if exactly
3842 one jump is created, otherwise the machine description
3843 is responsible for this step using
3844 split_branch_probability variable. */
5b0264cb 3845 gcc_assert (njumps == 1);
5fa396ad 3846 add_reg_br_prob_note (insn, probability);
2f937369 3847 }
599aedd9
RH
3848 }
3849 }
3850
3851 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3852 in SEQ and copy any additional information across. */
4b4bf941 3853 if (CALL_P (trial))
599aedd9
RH
3854 {
3855 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3856 if (CALL_P (insn))
599aedd9 3857 {
4f660b15
RO
3858 gcc_assert (call_insn == NULL_RTX);
3859 call_insn = insn;
3860
65712d5c
RS
3861 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3862 target may have explicitly specified. */
00b94487 3863 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3864 while (*p)
3865 p = &XEXP (*p, 1);
3866 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3867
3868 /* If the old call was a sibling call, the new one must
3869 be too. */
599aedd9
RH
3870 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3871 }
3872 }
4b5e8abe 3873
599aedd9
RH
3874 /* Copy notes, particularly those related to the CFG. */
3875 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3876 {
3877 switch (REG_NOTE_KIND (note))
3878 {
3879 case REG_EH_REGION:
1d65f45c 3880 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3881 break;
216183ce 3882
599aedd9
RH
3883 case REG_NORETURN:
3884 case REG_SETJMP:
0a35513e 3885 case REG_TM:
5c5f0b65 3886 case REG_CALL_NOCF_CHECK:
00b94487 3887 case REG_CALL_ARG_LOCATION:
594f8779 3888 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3889 {
4b4bf941 3890 if (CALL_P (insn))
65c5f2a6 3891 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3892 }
599aedd9 3893 break;
d6e95df8 3894
599aedd9 3895 case REG_NON_LOCAL_GOTO:
73f1289e 3896 case REG_LABEL_TARGET:
594f8779 3897 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3898 {
4b4bf941 3899 if (JUMP_P (insn))
65c5f2a6 3900 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3901 }
599aedd9 3902 break;
e5bef2e4 3903
594f8779 3904 case REG_INC:
760edf20
TS
3905 if (!AUTO_INC_DEC)
3906 break;
3907
594f8779
RZ
3908 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3909 {
3910 rtx reg = XEXP (note, 0);
3911 if (!FIND_REG_INC_NOTE (insn, reg)
9021b8ec 3912 && find_auto_inc (PATTERN (insn), reg))
65c5f2a6 3913 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3914 }
3915 break;
594f8779 3916
9a08d230 3917 case REG_ARGS_SIZE:
68184180 3918 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
9a08d230
RH
3919 break;
3920
4f660b15 3921 case REG_CALL_DECL:
49e65199 3922 case REG_UNTYPED_CALL:
4f660b15
RO
3923 gcc_assert (call_insn != NULL_RTX);
3924 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3925 break;
3926
599aedd9
RH
3927 default:
3928 break;
23b2ce53 3929 }
599aedd9
RH
3930 }
3931
3932 /* If there are LABELS inside the split insns increment the
3933 usage count so we don't delete the label. */
cf7c4aa6 3934 if (INSN_P (trial))
599aedd9
RH
3935 {
3936 insn = insn_last;
3937 while (insn != NULL_RTX)
23b2ce53 3938 {
cf7c4aa6 3939 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3940 if (NONJUMP_INSN_P (insn))
599aedd9 3941 mark_label_nuses (PATTERN (insn));
23b2ce53 3942
599aedd9
RH
3943 insn = PREV_INSN (insn);
3944 }
23b2ce53
RS
3945 }
3946
d4eff95b
JC
3947 before = PREV_INSN (trial);
3948 after = NEXT_INSN (trial);
3949
45309d28 3950 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
3951
3952 delete_insn (trial);
599aedd9
RH
3953
3954 /* Recursively call try_split for each new insn created; by the
3955 time control returns here that insn will be fully split, so
3956 set LAST and continue from the insn after the one returned.
3957 We can't use next_active_insn here since AFTER may be a note.
3958 Ignore deleted insns, which can be occur if not optimizing. */
3959 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4654c0cf 3960 if (! tem->deleted () && INSN_P (tem))
599aedd9
RH
3961 tem = try_split (PATTERN (tem), tem, 1);
3962
3963 /* Return either the first or the last insn, depending on which was
3964 requested. */
3965 return last
5936d944 3966 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3967 : NEXT_INSN (before);
23b2ce53
RS
3968}
3969\f
3970/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3971 Store PATTERN in the pattern slots. */
23b2ce53 3972
167b9fae 3973rtx_insn *
502b8322 3974make_insn_raw (rtx pattern)
23b2ce53 3975{
167b9fae 3976 rtx_insn *insn;
23b2ce53 3977
167b9fae 3978 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
23b2ce53 3979
43127294 3980 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3981 PATTERN (insn) = pattern;
3982 INSN_CODE (insn) = -1;
1632afca 3983 REG_NOTES (insn) = NULL;
5368224f 3984 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3985 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3986
47984720
NC
3987#ifdef ENABLE_RTL_CHECKING
3988 if (insn
2c3c49de 3989 && INSN_P (insn)
47984720
NC
3990 && (returnjump_p (insn)
3991 || (GET_CODE (insn) == SET
3992 && SET_DEST (insn) == pc_rtx)))
3993 {
d4ee4d25 3994 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3995 debug_rtx (insn);
3996 }
3997#endif
750c9258 3998
23b2ce53
RS
3999 return insn;
4000}
4001
b5b8b0ac
AO
4002/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4003
167b9fae 4004static rtx_insn *
b5b8b0ac
AO
4005make_debug_insn_raw (rtx pattern)
4006{
167b9fae 4007 rtx_debug_insn *insn;
b5b8b0ac 4008
167b9fae 4009 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
b5b8b0ac 4010 INSN_UID (insn) = cur_debug_insn_uid++;
028d4092 4011 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
b5b8b0ac
AO
4012 INSN_UID (insn) = cur_insn_uid++;
4013
4014 PATTERN (insn) = pattern;
4015 INSN_CODE (insn) = -1;
4016 REG_NOTES (insn) = NULL;
5368224f 4017 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
4018 BLOCK_FOR_INSN (insn) = NULL;
4019
4020 return insn;
4021}
4022
2f937369 4023/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 4024
167b9fae 4025static rtx_insn *
502b8322 4026make_jump_insn_raw (rtx pattern)
23b2ce53 4027{
167b9fae 4028 rtx_jump_insn *insn;
23b2ce53 4029
167b9fae 4030 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
1632afca 4031 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
4032
4033 PATTERN (insn) = pattern;
4034 INSN_CODE (insn) = -1;
1632afca
RS
4035 REG_NOTES (insn) = NULL;
4036 JUMP_LABEL (insn) = NULL;
5368224f 4037 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4038 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
4039
4040 return insn;
4041}
aff507f4 4042
2f937369 4043/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4 4044
167b9fae 4045static rtx_insn *
502b8322 4046make_call_insn_raw (rtx pattern)
aff507f4 4047{
167b9fae 4048 rtx_call_insn *insn;
aff507f4 4049
167b9fae 4050 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
aff507f4
RK
4051 INSN_UID (insn) = cur_insn_uid++;
4052
4053 PATTERN (insn) = pattern;
4054 INSN_CODE (insn) = -1;
aff507f4
RK
4055 REG_NOTES (insn) = NULL;
4056 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 4057 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4058 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
4059
4060 return insn;
4061}
96fba521
SB
4062
4063/* Like `make_insn_raw' but make a NOTE instead of an insn. */
4064
66e8df53 4065static rtx_note *
96fba521
SB
4066make_note_raw (enum insn_note subtype)
4067{
4068 /* Some notes are never created this way at all. These notes are
4069 only created by patching out insns. */
4070 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4071 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4072
66e8df53 4073 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
96fba521
SB
4074 INSN_UID (note) = cur_insn_uid++;
4075 NOTE_KIND (note) = subtype;
4076 BLOCK_FOR_INSN (note) = NULL;
4077 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4078 return note;
4079}
23b2ce53 4080\f
96fba521
SB
4081/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4082 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4083 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4084
4085static inline void
9152e0aa 4086link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
96fba521 4087{
0f82e5c9
DM
4088 SET_PREV_INSN (insn) = prev;
4089 SET_NEXT_INSN (insn) = next;
96fba521
SB
4090 if (prev != NULL)
4091 {
0f82e5c9 4092 SET_NEXT_INSN (prev) = insn;
96fba521
SB
4093 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4094 {
e6eda746
DM
4095 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4096 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
96fba521
SB
4097 }
4098 }
4099 if (next != NULL)
4100 {
0f82e5c9 4101 SET_PREV_INSN (next) = insn;
96fba521 4102 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4103 {
4104 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4105 SET_PREV_INSN (sequence->insn (0)) = insn;
4106 }
96fba521 4107 }
3ccb989e
SB
4108
4109 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4110 {
e6eda746
DM
4111 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4112 SET_PREV_INSN (sequence->insn (0)) = prev;
4113 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3ccb989e 4114 }
96fba521
SB
4115}
4116
23b2ce53
RS
4117/* Add INSN to the end of the doubly-linked list.
4118 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4119
4120void
9152e0aa 4121add_insn (rtx_insn *insn)
23b2ce53 4122{
9152e0aa 4123 rtx_insn *prev = get_last_insn ();
96fba521 4124 link_insn_into_chain (insn, prev, NULL);
01512446 4125 if (get_insns () == NULL)
5936d944 4126 set_first_insn (insn);
5936d944 4127 set_last_insn (insn);
23b2ce53
RS
4128}
4129
96fba521 4130/* Add INSN into the doubly-linked list after insn AFTER. */
23b2ce53 4131
96fba521 4132static void
9152e0aa 4133add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
23b2ce53 4134{
9152e0aa 4135 rtx_insn *next = NEXT_INSN (after);
23b2ce53 4136
4654c0cf 4137 gcc_assert (!optimize || !after->deleted ());
ba213285 4138
96fba521 4139 link_insn_into_chain (insn, after, next);
23b2ce53 4140
96fba521 4141 if (next == NULL)
23b2ce53 4142 {
614d5bd8
AM
4143 struct sequence_stack *seq;
4144
4145 for (seq = get_current_sequence (); seq; seq = seq->next)
4146 if (after == seq->last)
4147 {
4148 seq->last = insn;
4149 break;
4150 }
23b2ce53 4151 }
96fba521
SB
4152}
4153
4154/* Add INSN into the doubly-linked list before insn BEFORE. */
4155
4156static void
9152e0aa 4157add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
96fba521 4158{
9152e0aa 4159 rtx_insn *prev = PREV_INSN (before);
96fba521 4160
4654c0cf 4161 gcc_assert (!optimize || !before->deleted ());
96fba521
SB
4162
4163 link_insn_into_chain (insn, prev, before);
4164
4165 if (prev == NULL)
23b2ce53 4166 {
614d5bd8 4167 struct sequence_stack *seq;
a0ae8e8d 4168
614d5bd8
AM
4169 for (seq = get_current_sequence (); seq; seq = seq->next)
4170 if (before == seq->first)
4171 {
4172 seq->first = insn;
4173 break;
4174 }
4175
4176 gcc_assert (seq);
23b2ce53 4177 }
96fba521
SB
4178}
4179
4180/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4181 If BB is NULL, an attempt is made to infer the bb from before.
4182
4183 This and the next function should be the only functions called
4184 to insert an insn once delay slots have been filled since only
4185 they know how to update a SEQUENCE. */
23b2ce53 4186
96fba521 4187void
4dea3bff 4188add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
96fba521
SB
4189{
4190 add_insn_after_nobb (insn, after);
4b4bf941
JQ
4191 if (!BARRIER_P (after)
4192 && !BARRIER_P (insn)
3c030e88
JH
4193 && (bb = BLOCK_FOR_INSN (after)))
4194 {
4195 set_block_for_insn (insn, bb);
38c1593d 4196 if (INSN_P (insn))
6fb5fa3c 4197 df_insn_rescan (insn);
3c030e88 4198 /* Should not happen as first in the BB is always
a1f300c0 4199 either NOTE or LABEL. */
a813c111 4200 if (BB_END (bb) == after
3c030e88 4201 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 4202 && !BARRIER_P (insn)
a38e7aa5 4203 && !NOTE_INSN_BASIC_BLOCK_P (insn))
1130d5e3 4204 BB_END (bb) = insn;
3c030e88 4205 }
23b2ce53
RS
4206}
4207
96fba521
SB
4208/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4209 If BB is NULL, an attempt is made to infer the bb from before.
4210
4211 This and the previous function should be the only functions called
4212 to insert an insn once delay slots have been filled since only
4213 they know how to update a SEQUENCE. */
a0ae8e8d
RK
4214
4215void
4dea3bff 4216add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
a0ae8e8d 4217{
96fba521 4218 add_insn_before_nobb (insn, before);
a0ae8e8d 4219
b8698a0f 4220 if (!bb
6fb5fa3c
DB
4221 && !BARRIER_P (before)
4222 && !BARRIER_P (insn))
4223 bb = BLOCK_FOR_INSN (before);
4224
4225 if (bb)
3c030e88
JH
4226 {
4227 set_block_for_insn (insn, bb);
38c1593d 4228 if (INSN_P (insn))
6fb5fa3c 4229 df_insn_rescan (insn);
5b0264cb 4230 /* Should not happen as first in the BB is always either NOTE or
43e05e45 4231 LABEL. */
5b0264cb
NS
4232 gcc_assert (BB_HEAD (bb) != insn
4233 /* Avoid clobbering of structure when creating new BB. */
4234 || BARRIER_P (insn)
a38e7aa5 4235 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88 4236 }
a0ae8e8d
RK
4237}
4238
6fb5fa3c
DB
4239/* Replace insn with an deleted instruction note. */
4240
0ce2b299 4241void
df0b55f0 4242set_insn_deleted (rtx_insn *insn)
6fb5fa3c 4243{
39718607 4244 if (INSN_P (insn))
df0b55f0 4245 df_insn_delete (insn);
6fb5fa3c
DB
4246 PUT_CODE (insn, NOTE);
4247 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4248}
4249
4250
1f397f45
SB
4251/* Unlink INSN from the insn chain.
4252
4253 This function knows how to handle sequences.
4254
4255 This function does not invalidate data flow information associated with
4256 INSN (i.e. does not call df_insn_delete). That makes this function
4257 usable for only disconnecting an insn from the chain, and re-emit it
4258 elsewhere later.
4259
4260 To later insert INSN elsewhere in the insn chain via add_insn and
4261 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4262 the caller. Nullifying them here breaks many insn chain walks.
4263
4264 To really delete an insn and related DF information, use delete_insn. */
4265
89e99eea 4266void
4dea3bff 4267remove_insn (rtx_insn *insn)
89e99eea 4268{
1130d5e3
DM
4269 rtx_insn *next = NEXT_INSN (insn);
4270 rtx_insn *prev = PREV_INSN (insn);
53c17031
JH
4271 basic_block bb;
4272
89e99eea
DB
4273 if (prev)
4274 {
0f82e5c9 4275 SET_NEXT_INSN (prev) = next;
4b4bf941 4276 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea 4277 {
e6eda746
DM
4278 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4279 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
89e99eea
DB
4280 }
4281 }
89e99eea
DB
4282 else
4283 {
614d5bd8
AM
4284 struct sequence_stack *seq;
4285
4286 for (seq = get_current_sequence (); seq; seq = seq->next)
4287 if (insn == seq->first)
89e99eea 4288 {
614d5bd8 4289 seq->first = next;
89e99eea
DB
4290 break;
4291 }
4292
614d5bd8 4293 gcc_assert (seq);
89e99eea
DB
4294 }
4295
4296 if (next)
4297 {
0f82e5c9 4298 SET_PREV_INSN (next) = prev;
4b4bf941 4299 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4300 {
4301 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4302 SET_PREV_INSN (sequence->insn (0)) = prev;
4303 }
89e99eea 4304 }
89e99eea
DB
4305 else
4306 {
614d5bd8
AM
4307 struct sequence_stack *seq;
4308
4309 for (seq = get_current_sequence (); seq; seq = seq->next)
4310 if (insn == seq->last)
89e99eea 4311 {
614d5bd8 4312 seq->last = prev;
89e99eea
DB
4313 break;
4314 }
4315
614d5bd8 4316 gcc_assert (seq);
89e99eea 4317 }
80eb8028 4318
80eb8028 4319 /* Fix up basic block boundaries, if necessary. */
4b4bf941 4320 if (!BARRIER_P (insn)
53c17031
JH
4321 && (bb = BLOCK_FOR_INSN (insn)))
4322 {
a813c111 4323 if (BB_HEAD (bb) == insn)
53c17031 4324 {
3bf1e984
RK
4325 /* Never ever delete the basic block note without deleting whole
4326 basic block. */
5b0264cb 4327 gcc_assert (!NOTE_P (insn));
1130d5e3 4328 BB_HEAD (bb) = next;
53c17031 4329 }
a813c111 4330 if (BB_END (bb) == insn)
1130d5e3 4331 BB_END (bb) = prev;
53c17031 4332 }
89e99eea
DB
4333}
4334
ee960939
OH
4335/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4336
4337void
502b8322 4338add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4339{
5b0264cb 4340 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4341
4342 /* Put the register usage information on the CALL. If there is already
4343 some usage information, put ours at the end. */
4344 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4345 {
4346 rtx link;
4347
4348 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4349 link = XEXP (link, 1))
4350 ;
4351
4352 XEXP (link, 1) = call_fusage;
4353 }
4354 else
4355 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4356}
4357
23b2ce53
RS
4358/* Delete all insns made since FROM.
4359 FROM becomes the new last instruction. */
4360
4361void
fee3e72c 4362delete_insns_since (rtx_insn *from)
23b2ce53
RS
4363{
4364 if (from == 0)
5936d944 4365 set_first_insn (0);
23b2ce53 4366 else
0f82e5c9 4367 SET_NEXT_INSN (from) = 0;
5936d944 4368 set_last_insn (from);
23b2ce53
RS
4369}
4370
5dab5552
MS
4371/* This function is deprecated, please use sequences instead.
4372
4373 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4374 The insns to be moved are those between FROM and TO.
4375 They are moved to a new position after the insn AFTER.
4376 AFTER must not be FROM or TO or any insn in between.
4377
4378 This function does not know about SEQUENCEs and hence should not be
4379 called after delay-slot filling has been done. */
4380
4381void
fee3e72c 4382reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
23b2ce53 4383{
b2b29377
MM
4384 if (flag_checking)
4385 {
4386 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4387 gcc_assert (after != x);
4388 gcc_assert (after != to);
4389 }
4f8344eb 4390
23b2ce53
RS
4391 /* Splice this bunch out of where it is now. */
4392 if (PREV_INSN (from))
0f82e5c9 4393 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
23b2ce53 4394 if (NEXT_INSN (to))
0f82e5c9 4395 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4396 if (get_last_insn () == to)
4397 set_last_insn (PREV_INSN (from));
4398 if (get_insns () == from)
4399 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4400
4401 /* Make the new neighbors point to it and it to them. */
4402 if (NEXT_INSN (after))
0f82e5c9 4403 SET_PREV_INSN (NEXT_INSN (after)) = to;
23b2ce53 4404
0f82e5c9
DM
4405 SET_NEXT_INSN (to) = NEXT_INSN (after);
4406 SET_PREV_INSN (from) = after;
4407 SET_NEXT_INSN (after) = from;
c3284718 4408 if (after == get_last_insn ())
5936d944 4409 set_last_insn (to);
23b2ce53
RS
4410}
4411
3c030e88
JH
4412/* Same as function above, but take care to update BB boundaries. */
4413void
ac9d2d2c 4414reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
3c030e88 4415{
ac9d2d2c 4416 rtx_insn *prev = PREV_INSN (from);
3c030e88
JH
4417 basic_block bb, bb2;
4418
4419 reorder_insns_nobb (from, to, after);
4420
4b4bf941 4421 if (!BARRIER_P (after)
3c030e88
JH
4422 && (bb = BLOCK_FOR_INSN (after)))
4423 {
b2908ba6 4424 rtx_insn *x;
6fb5fa3c 4425 df_set_bb_dirty (bb);
68252e27 4426
4b4bf941 4427 if (!BARRIER_P (from)
3c030e88
JH
4428 && (bb2 = BLOCK_FOR_INSN (from)))
4429 {
a813c111 4430 if (BB_END (bb2) == to)
1130d5e3 4431 BB_END (bb2) = prev;
6fb5fa3c 4432 df_set_bb_dirty (bb2);
3c030e88
JH
4433 }
4434
a813c111 4435 if (BB_END (bb) == after)
1130d5e3 4436 BB_END (bb) = to;
3c030e88
JH
4437
4438 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4439 if (!BARRIER_P (x))
63642d5a 4440 df_insn_change_bb (x, bb);
3c030e88
JH
4441 }
4442}
4443
23b2ce53 4444\f
2f937369
DM
4445/* Emit insn(s) of given code and pattern
4446 at a specified place within the doubly-linked list.
23b2ce53 4447
2f937369
DM
4448 All of the emit_foo global entry points accept an object
4449 X which is either an insn list or a PATTERN of a single
4450 instruction.
23b2ce53 4451
2f937369
DM
4452 There are thus a few canonical ways to generate code and
4453 emit it at a specific place in the instruction stream. For
4454 example, consider the instruction named SPOT and the fact that
4455 we would like to emit some instructions before SPOT. We might
4456 do it like this:
23b2ce53 4457
2f937369
DM
4458 start_sequence ();
4459 ... emit the new instructions ...
4460 insns_head = get_insns ();
4461 end_sequence ();
23b2ce53 4462
2f937369 4463 emit_insn_before (insns_head, SPOT);
23b2ce53 4464
2f937369
DM
4465 It used to be common to generate SEQUENCE rtl instead, but that
4466 is a relic of the past which no longer occurs. The reason is that
4467 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4468 generated would almost certainly die right after it was created. */
23b2ce53 4469
cd459bf8 4470static rtx_insn *
4dea3bff
DM
4471emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4472 basic_block bb,
167b9fae 4473 rtx_insn *(*make_raw) (rtx))
23b2ce53 4474{
167b9fae 4475 rtx_insn *insn;
23b2ce53 4476
5b0264cb 4477 gcc_assert (before);
2f937369
DM
4478
4479 if (x == NULL_RTX)
4dea3bff 4480 return last;
2f937369
DM
4481
4482 switch (GET_CODE (x))
23b2ce53 4483 {
b5b8b0ac 4484 case DEBUG_INSN:
2f937369
DM
4485 case INSN:
4486 case JUMP_INSN:
4487 case CALL_INSN:
4488 case CODE_LABEL:
4489 case BARRIER:
4490 case NOTE:
167b9fae 4491 insn = as_a <rtx_insn *> (x);
2f937369
DM
4492 while (insn)
4493 {
167b9fae 4494 rtx_insn *next = NEXT_INSN (insn);
6fb5fa3c 4495 add_insn_before (insn, before, bb);
2f937369
DM
4496 last = insn;
4497 insn = next;
4498 }
4499 break;
4500
4501#ifdef ENABLE_RTL_CHECKING
4502 case SEQUENCE:
5b0264cb 4503 gcc_unreachable ();
2f937369
DM
4504 break;
4505#endif
4506
4507 default:
5f02387d 4508 last = (*make_raw) (x);
6fb5fa3c 4509 add_insn_before (last, before, bb);
2f937369 4510 break;
23b2ce53
RS
4511 }
4512
4dea3bff 4513 return last;
23b2ce53
RS
4514}
4515
5f02387d
NF
4516/* Make X be output before the instruction BEFORE. */
4517
cd459bf8 4518rtx_insn *
596f2b17 4519emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f02387d
NF
4520{
4521 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4522}
4523
2f937369 4524/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4525 and output it before the instruction BEFORE. */
4526
1476d1bd 4527rtx_jump_insn *
596f2b17 4528emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
23b2ce53 4529{
1476d1bd 4530 return as_a <rtx_jump_insn *> (
4dea3bff 4531 emit_pattern_before_noloc (x, before, NULL, NULL,
1476d1bd 4532 make_jump_insn_raw));
23b2ce53
RS
4533}
4534
2f937369 4535/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4536 and output it before the instruction BEFORE. */
4537
cd459bf8 4538rtx_insn *
596f2b17 4539emit_call_insn_before_noloc (rtx x, rtx_insn *before)
969d70ca 4540{
4dea3bff 4541 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f02387d 4542 make_call_insn_raw);
969d70ca
JH
4543}
4544
b5b8b0ac
AO
4545/* Make an instruction with body X and code DEBUG_INSN
4546 and output it before the instruction BEFORE. */
4547
cd459bf8 4548rtx_insn *
4dea3bff 4549emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
b5b8b0ac 4550{
4dea3bff 4551 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f02387d 4552 make_debug_insn_raw);
b5b8b0ac
AO
4553}
4554
23b2ce53 4555/* Make an insn of code BARRIER
e881bb1b 4556 and output it before the insn BEFORE. */
23b2ce53 4557
cd459bf8 4558rtx_barrier *
4dea3bff 4559emit_barrier_before (rtx_insn *before)
23b2ce53 4560{
cd459bf8 4561 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4562
4563 INSN_UID (insn) = cur_insn_uid++;
4564
6fb5fa3c 4565 add_insn_before (insn, before, NULL);
23b2ce53
RS
4566 return insn;
4567}
4568
e881bb1b
RH
4569/* Emit the label LABEL before the insn BEFORE. */
4570
1476d1bd 4571rtx_code_label *
4dea3bff 4572emit_label_before (rtx_code_label *label, rtx_insn *before)
e881bb1b 4573{
468660d3
SB
4574 gcc_checking_assert (INSN_UID (label) == 0);
4575 INSN_UID (label) = cur_insn_uid++;
4576 add_insn_before (label, before, NULL);
4dea3bff 4577 return label;
e881bb1b 4578}
23b2ce53 4579\f
2f937369
DM
4580/* Helper for emit_insn_after, handles lists of instructions
4581 efficiently. */
23b2ce53 4582
e6eda746 4583static rtx_insn *
4dea3bff 4584emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
23b2ce53 4585{
1130d5e3
DM
4586 rtx_insn *last;
4587 rtx_insn *after_after;
6fb5fa3c
DB
4588 if (!bb && !BARRIER_P (after))
4589 bb = BLOCK_FOR_INSN (after);
23b2ce53 4590
6fb5fa3c 4591 if (bb)
23b2ce53 4592 {
6fb5fa3c 4593 df_set_bb_dirty (bb);
2f937369 4594 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4595 if (!BARRIER_P (last))
6fb5fa3c
DB
4596 {
4597 set_block_for_insn (last, bb);
4598 df_insn_rescan (last);
4599 }
4b4bf941 4600 if (!BARRIER_P (last))
6fb5fa3c
DB
4601 {
4602 set_block_for_insn (last, bb);
4603 df_insn_rescan (last);
4604 }
a813c111 4605 if (BB_END (bb) == after)
1130d5e3 4606 BB_END (bb) = last;
23b2ce53
RS
4607 }
4608 else
2f937369
DM
4609 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4610 continue;
4611
4612 after_after = NEXT_INSN (after);
4613
0f82e5c9
DM
4614 SET_NEXT_INSN (after) = first;
4615 SET_PREV_INSN (first) = after;
4616 SET_NEXT_INSN (last) = after_after;
2f937369 4617 if (after_after)
0f82e5c9 4618 SET_PREV_INSN (after_after) = last;
2f937369 4619
c3284718 4620 if (after == get_last_insn ())
5936d944 4621 set_last_insn (last);
e855c69d 4622
2f937369
DM
4623 return last;
4624}
4625
cd459bf8 4626static rtx_insn *
4dea3bff 4627emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
167b9fae 4628 rtx_insn *(*make_raw)(rtx))
2f937369 4629{
e6eda746 4630 rtx_insn *last = after;
2f937369 4631
5b0264cb 4632 gcc_assert (after);
2f937369
DM
4633
4634 if (x == NULL_RTX)
e6eda746 4635 return last;
2f937369
DM
4636
4637 switch (GET_CODE (x))
23b2ce53 4638 {
b5b8b0ac 4639 case DEBUG_INSN:
2f937369
DM
4640 case INSN:
4641 case JUMP_INSN:
4642 case CALL_INSN:
4643 case CODE_LABEL:
4644 case BARRIER:
4645 case NOTE:
1130d5e3 4646 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
2f937369
DM
4647 break;
4648
4649#ifdef ENABLE_RTL_CHECKING
4650 case SEQUENCE:
5b0264cb 4651 gcc_unreachable ();
2f937369
DM
4652 break;
4653#endif
4654
4655 default:
5f02387d 4656 last = (*make_raw) (x);
6fb5fa3c 4657 add_insn_after (last, after, bb);
2f937369 4658 break;
23b2ce53
RS
4659 }
4660
e6eda746 4661 return last;
23b2ce53
RS
4662}
4663
5f02387d
NF
4664/* Make X be output after the insn AFTER and set the BB of insn. If
4665 BB is NULL, an attempt is made to infer the BB from AFTER. */
4666
cd459bf8 4667rtx_insn *
4dea3bff 4668emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
5f02387d
NF
4669{
4670 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4671}
4672
255680cf 4673
2f937369 4674/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4675 and output it after the insn AFTER. */
4676
1476d1bd 4677rtx_jump_insn *
4dea3bff 4678emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
23b2ce53 4679{
1476d1bd
MM
4680 return as_a <rtx_jump_insn *> (
4681 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
2f937369
DM
4682}
4683
4684/* Make an instruction with body X and code CALL_INSN
4685 and output it after the instruction AFTER. */
4686
cd459bf8 4687rtx_insn *
4dea3bff 4688emit_call_insn_after_noloc (rtx x, rtx_insn *after)
2f937369 4689{
5f02387d 4690 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4691}
4692
b5b8b0ac
AO
4693/* Make an instruction with body X and code CALL_INSN
4694 and output it after the instruction AFTER. */
4695
cd459bf8 4696rtx_insn *
4dea3bff 4697emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
b5b8b0ac 4698{
5f02387d 4699 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4700}
4701
23b2ce53
RS
4702/* Make an insn of code BARRIER
4703 and output it after the insn AFTER. */
4704
cd459bf8 4705rtx_barrier *
4dea3bff 4706emit_barrier_after (rtx_insn *after)
23b2ce53 4707{
cd459bf8 4708 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4709
4710 INSN_UID (insn) = cur_insn_uid++;
4711
6fb5fa3c 4712 add_insn_after (insn, after, NULL);
23b2ce53
RS
4713 return insn;
4714}
4715
4716/* Emit the label LABEL after the insn AFTER. */
4717
cd459bf8 4718rtx_insn *
4dea3bff 4719emit_label_after (rtx_insn *label, rtx_insn *after)
23b2ce53 4720{
468660d3
SB
4721 gcc_checking_assert (INSN_UID (label) == 0);
4722 INSN_UID (label) = cur_insn_uid++;
4723 add_insn_after (label, after, NULL);
4dea3bff 4724 return label;
23b2ce53 4725}
96fba521
SB
4726\f
4727/* Notes require a bit of special handling: Some notes need to have their
4728 BLOCK_FOR_INSN set, others should never have it set, and some should
4729 have it set or clear depending on the context. */
4730
4731/* Return true iff a note of kind SUBTYPE should be emitted with routines
4732 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4733 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4734
4735static bool
4736note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4737{
4738 switch (subtype)
4739 {
4740 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4741 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4742 return true;
4743
4744 /* Notes for var tracking and EH region markers can appear between or
4745 inside basic blocks. If the caller is emitting on the basic block
4746 boundary, do not set BLOCK_FOR_INSN on the new note. */
4747 case NOTE_INSN_VAR_LOCATION:
96fba521
SB
4748 case NOTE_INSN_EH_REGION_BEG:
4749 case NOTE_INSN_EH_REGION_END:
4750 return on_bb_boundary_p;
4751
4752 /* Otherwise, BLOCK_FOR_INSN must be set. */
4753 default:
4754 return false;
4755 }
4756}
23b2ce53
RS
4757
4758/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4759
66e8df53 4760rtx_note *
589e43f9 4761emit_note_after (enum insn_note subtype, rtx_insn *after)
23b2ce53 4762{
66e8df53 4763 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4764 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4765 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4766
4767 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4768 add_insn_after_nobb (note, after);
4769 else
4770 add_insn_after (note, after, bb);
4771 return note;
4772}
4773
4774/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4775
66e8df53 4776rtx_note *
89b6250d 4777emit_note_before (enum insn_note subtype, rtx_insn *before)
96fba521 4778{
66e8df53 4779 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4780 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4781 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4782
4783 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4784 add_insn_before_nobb (note, before);
4785 else
4786 add_insn_before (note, before, bb);
23b2ce53
RS
4787 return note;
4788}
23b2ce53 4789\f
e8110d6f
NF
4790/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4791 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4792
cd459bf8 4793static rtx_insn *
4dea3bff 4794emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
167b9fae 4795 rtx_insn *(*make_raw) (rtx))
0d682900 4796{
e67d1102 4797 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4798
a7102479 4799 if (pattern == NULL_RTX || !loc)
e67d1102 4800 return last;
dd3adcf8 4801
2f937369
DM
4802 after = NEXT_INSN (after);
4803 while (1)
4804 {
20d4397a
EB
4805 if (active_insn_p (after)
4806 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4807 && !INSN_LOCATION (after))
5368224f 4808 INSN_LOCATION (after) = loc;
2f937369
DM
4809 if (after == last)
4810 break;
4811 after = NEXT_INSN (after);
4812 }
e67d1102 4813 return last;
0d682900
JH
4814}
4815
e8110d6f
NF
4816/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4817 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4818 any DEBUG_INSNs. */
4819
cd459bf8 4820static rtx_insn *
df0b55f0 4821emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
167b9fae 4822 rtx_insn *(*make_raw) (rtx))
a7102479 4823{
dc01c3d1 4824 rtx_insn *prev = after;
b5b8b0ac 4825
e8110d6f
NF
4826 if (skip_debug_insns)
4827 while (DEBUG_INSN_P (prev))
4828 prev = PREV_INSN (prev);
b5b8b0ac
AO
4829
4830 if (INSN_P (prev))
5368224f 4831 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4832 make_raw);
a7102479 4833 else
e8110d6f 4834 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4835}
4836
5368224f 4837/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4838rtx_insn *
4dea3bff 4839emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
0d682900 4840{
e8110d6f
NF
4841 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4842}
2f937369 4843
5368224f 4844/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4845rtx_insn *
df0b55f0 4846emit_insn_after (rtx pattern, rtx_insn *after)
e8110d6f
NF
4847{
4848 return emit_pattern_after (pattern, after, true, make_insn_raw);
4849}
dd3adcf8 4850
5368224f 4851/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4852rtx_jump_insn *
4dea3bff 4853emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
e8110d6f 4854{
1476d1bd
MM
4855 return as_a <rtx_jump_insn *> (
4856 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
0d682900
JH
4857}
4858
5368224f 4859/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
1476d1bd 4860rtx_jump_insn *
df0b55f0 4861emit_jump_insn_after (rtx pattern, rtx_insn *after)
a7102479 4862{
1476d1bd
MM
4863 return as_a <rtx_jump_insn *> (
4864 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
a7102479
JH
4865}
4866
5368224f 4867/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4868rtx_insn *
4dea3bff 4869emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
0d682900 4870{
e8110d6f 4871 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4872}
4873
5368224f 4874/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4875rtx_insn *
df0b55f0 4876emit_call_insn_after (rtx pattern, rtx_insn *after)
a7102479 4877{
e8110d6f 4878 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4879}
4880
5368224f 4881/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4882rtx_insn *
4dea3bff 4883emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
b5b8b0ac 4884{
e8110d6f 4885 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4886}
4887
5368224f 4888/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4889rtx_insn *
df0b55f0 4890emit_debug_insn_after (rtx pattern, rtx_insn *after)
b5b8b0ac 4891{
e8110d6f 4892 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4893}
4894
e8110d6f
NF
4895/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4896 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4897 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4898 CALL_INSN, etc. */
4899
cd459bf8 4900static rtx_insn *
4dea3bff
DM
4901emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4902 bool insnp, rtx_insn *(*make_raw) (rtx))
0d682900 4903{
dc01c3d1
DM
4904 rtx_insn *first = PREV_INSN (before);
4905 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4dea3bff 4906 insnp ? before : NULL,
dc01c3d1 4907 NULL, make_raw);
a7102479
JH
4908
4909 if (pattern == NULL_RTX || !loc)
dc01c3d1 4910 return last;
a7102479 4911
26cb3993
JH
4912 if (!first)
4913 first = get_insns ();
4914 else
4915 first = NEXT_INSN (first);
a7102479
JH
4916 while (1)
4917 {
20d4397a
EB
4918 if (active_insn_p (first)
4919 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4920 && !INSN_LOCATION (first))
5368224f 4921 INSN_LOCATION (first) = loc;
a7102479
JH
4922 if (first == last)
4923 break;
4924 first = NEXT_INSN (first);
4925 }
dc01c3d1 4926 return last;
a7102479
JH
4927}
4928
e8110d6f
NF
4929/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4930 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4931 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4932 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4933
cd459bf8 4934static rtx_insn *
df0b55f0 4935emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
167b9fae 4936 bool insnp, rtx_insn *(*make_raw) (rtx))
a7102479 4937{
dc01c3d1 4938 rtx_insn *next = before;
b5b8b0ac 4939
e8110d6f
NF
4940 if (skip_debug_insns)
4941 while (DEBUG_INSN_P (next))
4942 next = PREV_INSN (next);
b5b8b0ac
AO
4943
4944 if (INSN_P (next))
5368224f 4945 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 4946 insnp, make_raw);
a7102479 4947 else
e8110d6f 4948 return emit_pattern_before_noloc (pattern, before,
4dea3bff 4949 insnp ? before : NULL,
e8110d6f 4950 NULL, make_raw);
a7102479
JH
4951}
4952
5368224f 4953/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4954rtx_insn *
4dea3bff 4955emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
a7102479 4956{
e8110d6f
NF
4957 return emit_pattern_before_setloc (pattern, before, loc, true,
4958 make_insn_raw);
4959}
a7102479 4960
5368224f 4961/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
cd459bf8 4962rtx_insn *
df0b55f0 4963emit_insn_before (rtx pattern, rtx_insn *before)
e8110d6f
NF
4964{
4965 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4966}
a7102479 4967
5368224f 4968/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4969rtx_jump_insn *
4dea3bff 4970emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
e8110d6f 4971{
1476d1bd
MM
4972 return as_a <rtx_jump_insn *> (
4973 emit_pattern_before_setloc (pattern, before, loc, false,
4974 make_jump_insn_raw));
a7102479
JH
4975}
4976
5368224f 4977/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
1476d1bd 4978rtx_jump_insn *
df0b55f0 4979emit_jump_insn_before (rtx pattern, rtx_insn *before)
a7102479 4980{
1476d1bd
MM
4981 return as_a <rtx_jump_insn *> (
4982 emit_pattern_before (pattern, before, true, false,
4983 make_jump_insn_raw));
a7102479
JH
4984}
4985
5368224f 4986/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4987rtx_insn *
4dea3bff 4988emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
a7102479 4989{
e8110d6f
NF
4990 return emit_pattern_before_setloc (pattern, before, loc, false,
4991 make_call_insn_raw);
0d682900 4992}
a7102479 4993
e8110d6f 4994/* Like emit_call_insn_before_noloc,
5368224f 4995 but set insn_location according to BEFORE. */
cd459bf8 4996rtx_insn *
596f2b17 4997emit_call_insn_before (rtx pattern, rtx_insn *before)
a7102479 4998{
e8110d6f
NF
4999 return emit_pattern_before (pattern, before, true, false,
5000 make_call_insn_raw);
a7102479 5001}
b5b8b0ac 5002
5368224f 5003/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 5004rtx_insn *
4dea3bff 5005emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
b5b8b0ac 5006{
e8110d6f
NF
5007 return emit_pattern_before_setloc (pattern, before, loc, false,
5008 make_debug_insn_raw);
b5b8b0ac
AO
5009}
5010
e8110d6f 5011/* Like emit_debug_insn_before_noloc,
5368224f 5012 but set insn_location according to BEFORE. */
cd459bf8 5013rtx_insn *
3a6216b0 5014emit_debug_insn_before (rtx pattern, rtx_insn *before)
b5b8b0ac 5015{
e8110d6f
NF
5016 return emit_pattern_before (pattern, before, false, false,
5017 make_debug_insn_raw);
b5b8b0ac 5018}
0d682900 5019\f
2f937369
DM
5020/* Take X and emit it at the end of the doubly-linked
5021 INSN list.
23b2ce53
RS
5022
5023 Returns the last insn emitted. */
5024
cd459bf8 5025rtx_insn *
502b8322 5026emit_insn (rtx x)
23b2ce53 5027{
cd459bf8
DM
5028 rtx_insn *last = get_last_insn ();
5029 rtx_insn *insn;
23b2ce53 5030
2f937369
DM
5031 if (x == NULL_RTX)
5032 return last;
23b2ce53 5033
2f937369
DM
5034 switch (GET_CODE (x))
5035 {
b5b8b0ac 5036 case DEBUG_INSN:
2f937369
DM
5037 case INSN:
5038 case JUMP_INSN:
5039 case CALL_INSN:
5040 case CODE_LABEL:
5041 case BARRIER:
5042 case NOTE:
cd459bf8 5043 insn = as_a <rtx_insn *> (x);
2f937369 5044 while (insn)
23b2ce53 5045 {
cd459bf8 5046 rtx_insn *next = NEXT_INSN (insn);
23b2ce53 5047 add_insn (insn);
2f937369
DM
5048 last = insn;
5049 insn = next;
23b2ce53 5050 }
2f937369 5051 break;
23b2ce53 5052
2f937369 5053#ifdef ENABLE_RTL_CHECKING
39718607 5054 case JUMP_TABLE_DATA:
2f937369 5055 case SEQUENCE:
5b0264cb 5056 gcc_unreachable ();
2f937369
DM
5057 break;
5058#endif
23b2ce53 5059
2f937369
DM
5060 default:
5061 last = make_insn_raw (x);
5062 add_insn (last);
5063 break;
23b2ce53
RS
5064 }
5065
5066 return last;
5067}
5068
b5b8b0ac
AO
5069/* Make an insn of code DEBUG_INSN with pattern X
5070 and add it to the end of the doubly-linked list. */
5071
cd459bf8 5072rtx_insn *
b5b8b0ac
AO
5073emit_debug_insn (rtx x)
5074{
cd459bf8
DM
5075 rtx_insn *last = get_last_insn ();
5076 rtx_insn *insn;
b5b8b0ac
AO
5077
5078 if (x == NULL_RTX)
5079 return last;
5080
5081 switch (GET_CODE (x))
5082 {
5083 case DEBUG_INSN:
5084 case INSN:
5085 case JUMP_INSN:
5086 case CALL_INSN:
5087 case CODE_LABEL:
5088 case BARRIER:
5089 case NOTE:
cd459bf8 5090 insn = as_a <rtx_insn *> (x);
b5b8b0ac
AO
5091 while (insn)
5092 {
cd459bf8 5093 rtx_insn *next = NEXT_INSN (insn);
b5b8b0ac
AO
5094 add_insn (insn);
5095 last = insn;
5096 insn = next;
5097 }
5098 break;
5099
5100#ifdef ENABLE_RTL_CHECKING
39718607 5101 case JUMP_TABLE_DATA:
b5b8b0ac
AO
5102 case SEQUENCE:
5103 gcc_unreachable ();
5104 break;
5105#endif
5106
5107 default:
5108 last = make_debug_insn_raw (x);
5109 add_insn (last);
5110 break;
5111 }
5112
5113 return last;
5114}
5115
2f937369
DM
5116/* Make an insn of code JUMP_INSN with pattern X
5117 and add it to the end of the doubly-linked list. */
23b2ce53 5118
cd459bf8 5119rtx_insn *
502b8322 5120emit_jump_insn (rtx x)
23b2ce53 5121{
cd459bf8
DM
5122 rtx_insn *last = NULL;
5123 rtx_insn *insn;
23b2ce53 5124
2f937369 5125 switch (GET_CODE (x))
23b2ce53 5126 {
b5b8b0ac 5127 case DEBUG_INSN:
2f937369
DM
5128 case INSN:
5129 case JUMP_INSN:
5130 case CALL_INSN:
5131 case CODE_LABEL:
5132 case BARRIER:
5133 case NOTE:
cd459bf8 5134 insn = as_a <rtx_insn *> (x);
2f937369
DM
5135 while (insn)
5136 {
cd459bf8 5137 rtx_insn *next = NEXT_INSN (insn);
2f937369
DM
5138 add_insn (insn);
5139 last = insn;
5140 insn = next;
5141 }
5142 break;
e0a5c5eb 5143
2f937369 5144#ifdef ENABLE_RTL_CHECKING
39718607 5145 case JUMP_TABLE_DATA:
2f937369 5146 case SEQUENCE:
5b0264cb 5147 gcc_unreachable ();
2f937369
DM
5148 break;
5149#endif
e0a5c5eb 5150
2f937369
DM
5151 default:
5152 last = make_jump_insn_raw (x);
5153 add_insn (last);
5154 break;
3c030e88 5155 }
e0a5c5eb
RS
5156
5157 return last;
5158}
5159
2f937369 5160/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
5161 and add it to the end of the doubly-linked list. */
5162
cd459bf8 5163rtx_insn *
502b8322 5164emit_call_insn (rtx x)
23b2ce53 5165{
cd459bf8 5166 rtx_insn *insn;
2f937369
DM
5167
5168 switch (GET_CODE (x))
23b2ce53 5169 {
b5b8b0ac 5170 case DEBUG_INSN:
2f937369
DM
5171 case INSN:
5172 case JUMP_INSN:
5173 case CALL_INSN:
5174 case CODE_LABEL:
5175 case BARRIER:
5176 case NOTE:
5177 insn = emit_insn (x);
5178 break;
23b2ce53 5179
2f937369
DM
5180#ifdef ENABLE_RTL_CHECKING
5181 case SEQUENCE:
39718607 5182 case JUMP_TABLE_DATA:
5b0264cb 5183 gcc_unreachable ();
2f937369
DM
5184 break;
5185#endif
23b2ce53 5186
2f937369
DM
5187 default:
5188 insn = make_call_insn_raw (x);
23b2ce53 5189 add_insn (insn);
2f937369 5190 break;
23b2ce53 5191 }
2f937369
DM
5192
5193 return insn;
23b2ce53
RS
5194}
5195
5196/* Add the label LABEL to the end of the doubly-linked list. */
5197
1476d1bd
MM
5198rtx_code_label *
5199emit_label (rtx uncast_label)
23b2ce53 5200{
1476d1bd
MM
5201 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5202
468660d3
SB
5203 gcc_checking_assert (INSN_UID (label) == 0);
5204 INSN_UID (label) = cur_insn_uid++;
1476d1bd
MM
5205 add_insn (label);
5206 return label;
23b2ce53
RS
5207}
5208
39718607
SB
5209/* Make an insn of code JUMP_TABLE_DATA
5210 and add it to the end of the doubly-linked list. */
5211
4598afdd 5212rtx_jump_table_data *
39718607
SB
5213emit_jump_table_data (rtx table)
5214{
4598afdd
DM
5215 rtx_jump_table_data *jump_table_data =
5216 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
39718607
SB
5217 INSN_UID (jump_table_data) = cur_insn_uid++;
5218 PATTERN (jump_table_data) = table;
5219 BLOCK_FOR_INSN (jump_table_data) = NULL;
5220 add_insn (jump_table_data);
5221 return jump_table_data;
5222}
5223
23b2ce53
RS
5224/* Make an insn of code BARRIER
5225 and add it to the end of the doubly-linked list. */
5226
cd459bf8 5227rtx_barrier *
502b8322 5228emit_barrier (void)
23b2ce53 5229{
cd459bf8 5230 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
5231 INSN_UID (barrier) = cur_insn_uid++;
5232 add_insn (barrier);
5233 return barrier;
5234}
5235
5f2fc772 5236/* Emit a copy of note ORIG. */
502b8322 5237
66e8df53
DM
5238rtx_note *
5239emit_note_copy (rtx_note *orig)
5f2fc772 5240{
96fba521 5241 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
66e8df53 5242 rtx_note *note = make_note_raw (kind);
5f2fc772 5243 NOTE_DATA (note) = NOTE_DATA (orig);
5f2fc772 5244 add_insn (note);
2e040219 5245 return note;
23b2ce53
RS
5246}
5247
2e040219
NS
5248/* Make an insn of code NOTE or type NOTE_NO
5249 and add it to the end of the doubly-linked list. */
23b2ce53 5250
66e8df53 5251rtx_note *
a38e7aa5 5252emit_note (enum insn_note kind)
23b2ce53 5253{
66e8df53 5254 rtx_note *note = make_note_raw (kind);
23b2ce53
RS
5255 add_insn (note);
5256 return note;
5257}
5258
c41c1387
RS
5259/* Emit a clobber of lvalue X. */
5260
cd459bf8 5261rtx_insn *
c41c1387
RS
5262emit_clobber (rtx x)
5263{
5264 /* CONCATs should not appear in the insn stream. */
5265 if (GET_CODE (x) == CONCAT)
5266 {
5267 emit_clobber (XEXP (x, 0));
5268 return emit_clobber (XEXP (x, 1));
5269 }
5270 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5271}
5272
5273/* Return a sequence of insns to clobber lvalue X. */
5274
cd459bf8 5275rtx_insn *
c41c1387
RS
5276gen_clobber (rtx x)
5277{
cd459bf8 5278 rtx_insn *seq;
c41c1387
RS
5279
5280 start_sequence ();
5281 emit_clobber (x);
5282 seq = get_insns ();
5283 end_sequence ();
5284 return seq;
5285}
5286
5287/* Emit a use of rvalue X. */
5288
cd459bf8 5289rtx_insn *
c41c1387
RS
5290emit_use (rtx x)
5291{
5292 /* CONCATs should not appear in the insn stream. */
5293 if (GET_CODE (x) == CONCAT)
5294 {
5295 emit_use (XEXP (x, 0));
5296 return emit_use (XEXP (x, 1));
5297 }
5298 return emit_insn (gen_rtx_USE (VOIDmode, x));
5299}
5300
5301/* Return a sequence of insns to use rvalue X. */
5302
cd459bf8 5303rtx_insn *
c41c1387
RS
5304gen_use (rtx x)
5305{
cd459bf8 5306 rtx_insn *seq;
c41c1387
RS
5307
5308 start_sequence ();
5309 emit_use (x);
5310 seq = get_insns ();
5311 end_sequence ();
5312 return seq;
5313}
5314
c8912e53
RS
5315/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5316 Return the set in INSN that such notes describe, or NULL if the notes
5317 have no meaning for INSN. */
5318
5319rtx
5320set_for_reg_notes (rtx insn)
5321{
5322 rtx pat, reg;
5323
5324 if (!INSN_P (insn))
5325 return NULL_RTX;
5326
5327 pat = PATTERN (insn);
5328 if (GET_CODE (pat) == PARALLEL)
5329 {
5330 /* We do not use single_set because that ignores SETs of unused
5331 registers. REG_EQUAL and REG_EQUIV notes really do require the
5332 PARALLEL to have a single SET. */
5333 if (multiple_sets (insn))
5334 return NULL_RTX;
5335 pat = XVECEXP (pat, 0, 0);
5336 }
5337
5338 if (GET_CODE (pat) != SET)
5339 return NULL_RTX;
5340
5341 reg = SET_DEST (pat);
5342
5343 /* Notes apply to the contents of a STRICT_LOW_PART. */
7f7379f6
KV
5344 if (GET_CODE (reg) == STRICT_LOW_PART
5345 || GET_CODE (reg) == ZERO_EXTRACT)
c8912e53
RS
5346 reg = XEXP (reg, 0);
5347
5348 /* Check that we have a register. */
5349 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5350 return NULL_RTX;
5351
5352 return pat;
5353}
5354
87b47c85 5355/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5356 note of this type already exists, remove it first. */
87b47c85 5357
3d238248 5358rtx
502b8322 5359set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5360{
5361 rtx note = find_reg_note (insn, kind, NULL_RTX);
5362
52488da1
JW
5363 switch (kind)
5364 {
5365 case REG_EQUAL:
5366 case REG_EQUIV:
8073cbd4
EB
5367 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5368 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
c8912e53 5369 return NULL_RTX;
52488da1
JW
5370
5371 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5372 It serves no useful purpose and breaks eliminate_regs. */
5373 if (GET_CODE (datum) == ASM_OPERANDS)
5374 return NULL_RTX;
109374e2
RS
5375
5376 /* Notes with side effects are dangerous. Even if the side-effect
5377 initially mirrors one in PATTERN (INSN), later optimizations
5378 might alter the way that the final register value is calculated
5379 and so move or alter the side-effect in some way. The note would
5380 then no longer be a valid substitution for SET_SRC. */
5381 if (side_effects_p (datum))
5382 return NULL_RTX;
52488da1
JW
5383 break;
5384
5385 default:
5386 break;
5387 }
3d238248 5388
c8912e53
RS
5389 if (note)
5390 XEXP (note, 0) = datum;
5391 else
5392 {
5393 add_reg_note (insn, kind, datum);
5394 note = REG_NOTES (insn);
5395 }
6fb5fa3c
DB
5396
5397 switch (kind)
3d238248 5398 {
6fb5fa3c
DB
5399 case REG_EQUAL:
5400 case REG_EQUIV:
b2908ba6 5401 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
5402 break;
5403 default:
5404 break;
3d238248 5405 }
87b47c85 5406
c8912e53 5407 return note;
87b47c85 5408}
7543f918
JR
5409
5410/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5411rtx
5412set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5413{
c8912e53 5414 rtx set = set_for_reg_notes (insn);
7543f918
JR
5415
5416 if (set && SET_DEST (set) == dst)
5417 return set_unique_reg_note (insn, kind, datum);
5418 return NULL_RTX;
5419}
23b2ce53 5420\f
9d8895c9
RS
5421/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5422 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5423 is true.
5424
23b2ce53
RS
5425 If X is a label, it is simply added into the insn chain. */
5426
cd459bf8 5427rtx_insn *
9d8895c9 5428emit (rtx x, bool allow_barrier_p)
23b2ce53
RS
5429{
5430 enum rtx_code code = classify_insn (x);
5431
5b0264cb 5432 switch (code)
23b2ce53 5433 {
5b0264cb
NS
5434 case CODE_LABEL:
5435 return emit_label (x);
5436 case INSN:
5437 return emit_insn (x);
5438 case JUMP_INSN:
5439 {
cd459bf8 5440 rtx_insn *insn = emit_jump_insn (x);
9d8895c9
RS
5441 if (allow_barrier_p
5442 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5b0264cb
NS
5443 return emit_barrier ();
5444 return insn;
5445 }
5446 case CALL_INSN:
5447 return emit_call_insn (x);
b5b8b0ac
AO
5448 case DEBUG_INSN:
5449 return emit_debug_insn (x);
5b0264cb
NS
5450 default:
5451 gcc_unreachable ();
23b2ce53 5452 }
23b2ce53
RS
5453}
5454\f
e2500fed 5455/* Space for free sequence stack entries. */
1431042e 5456static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5457
4dfa0342
RH
5458/* Begin emitting insns to a sequence. If this sequence will contain
5459 something that might cause the compiler to pop arguments to function
5460 calls (because those pops have previously been deferred; see
5461 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5462 before calling this function. That will ensure that the deferred
5463 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5464
5465void
502b8322 5466start_sequence (void)
23b2ce53
RS
5467{
5468 struct sequence_stack *tem;
5469
e2500fed
GK
5470 if (free_sequence_stack != NULL)
5471 {
5472 tem = free_sequence_stack;
5473 free_sequence_stack = tem->next;
5474 }
5475 else
766090c2 5476 tem = ggc_alloc<sequence_stack> ();
23b2ce53 5477
614d5bd8 5478 tem->next = get_current_sequence ()->next;
5936d944
JH
5479 tem->first = get_insns ();
5480 tem->last = get_last_insn ();
614d5bd8 5481 get_current_sequence ()->next = tem;
23b2ce53 5482
5936d944
JH
5483 set_first_insn (0);
5484 set_last_insn (0);
23b2ce53
RS
5485}
5486
5c7a310f
MM
5487/* Set up the insn chain starting with FIRST as the current sequence,
5488 saving the previously current one. See the documentation for
5489 start_sequence for more information about how to use this function. */
23b2ce53
RS
5490
5491void
fee3e72c 5492push_to_sequence (rtx_insn *first)
23b2ce53 5493{
fee3e72c 5494 rtx_insn *last;
23b2ce53
RS
5495
5496 start_sequence ();
5497
e84a58ff
EB
5498 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5499 ;
23b2ce53 5500
5936d944
JH
5501 set_first_insn (first);
5502 set_last_insn (last);
23b2ce53
RS
5503}
5504
bb27eeda
SE
5505/* Like push_to_sequence, but take the last insn as an argument to avoid
5506 looping through the list. */
5507
5508void
fee3e72c 5509push_to_sequence2 (rtx_insn *first, rtx_insn *last)
bb27eeda
SE
5510{
5511 start_sequence ();
5512
5936d944
JH
5513 set_first_insn (first);
5514 set_last_insn (last);
bb27eeda
SE
5515}
5516
f15ae3a1
TW
5517/* Set up the outer-level insn chain
5518 as the current sequence, saving the previously current one. */
5519
5520void
502b8322 5521push_topmost_sequence (void)
f15ae3a1 5522{
614d5bd8 5523 struct sequence_stack *top;
f15ae3a1
TW
5524
5525 start_sequence ();
5526
614d5bd8 5527 top = get_topmost_sequence ();
5936d944
JH
5528 set_first_insn (top->first);
5529 set_last_insn (top->last);
f15ae3a1
TW
5530}
5531
5532/* After emitting to the outer-level insn chain, update the outer-level
5533 insn chain, and restore the previous saved state. */
5534
5535void
502b8322 5536pop_topmost_sequence (void)
f15ae3a1 5537{
614d5bd8 5538 struct sequence_stack *top;
f15ae3a1 5539
614d5bd8 5540 top = get_topmost_sequence ();
5936d944
JH
5541 top->first = get_insns ();
5542 top->last = get_last_insn ();
f15ae3a1
TW
5543
5544 end_sequence ();
5545}
5546
23b2ce53
RS
5547/* After emitting to a sequence, restore previous saved state.
5548
5c7a310f 5549 To get the contents of the sequence just made, you must call
2f937369 5550 `get_insns' *before* calling here.
5c7a310f
MM
5551
5552 If the compiler might have deferred popping arguments while
5553 generating this sequence, and this sequence will not be immediately
5554 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5555 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5556 pops are inserted into this sequence, and not into some random
5557 location in the instruction stream. See INHIBIT_DEFER_POP for more
5558 information about deferred popping of arguments. */
23b2ce53
RS
5559
5560void
502b8322 5561end_sequence (void)
23b2ce53 5562{
614d5bd8 5563 struct sequence_stack *tem = get_current_sequence ()->next;
23b2ce53 5564
5936d944
JH
5565 set_first_insn (tem->first);
5566 set_last_insn (tem->last);
614d5bd8 5567 get_current_sequence ()->next = tem->next;
23b2ce53 5568
e2500fed
GK
5569 memset (tem, 0, sizeof (*tem));
5570 tem->next = free_sequence_stack;
5571 free_sequence_stack = tem;
23b2ce53
RS
5572}
5573
5574/* Return 1 if currently emitting into a sequence. */
5575
5576int
502b8322 5577in_sequence_p (void)
23b2ce53 5578{
614d5bd8 5579 return get_current_sequence ()->next != 0;
23b2ce53 5580}
23b2ce53 5581\f
59ec66dc
MM
5582/* Put the various virtual registers into REGNO_REG_RTX. */
5583
2bbdec73 5584static void
bd60bab2 5585init_virtual_regs (void)
59ec66dc 5586{
bd60bab2
JH
5587 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5588 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5589 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5590 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5591 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5592 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5593 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5594}
5595
da43a810
BS
5596\f
5597/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5598static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5599static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5600static int copy_insn_n_scratches;
5601
5602/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5603 copied an ASM_OPERANDS.
5604 In that case, it is the original input-operand vector. */
5605static rtvec orig_asm_operands_vector;
5606
5607/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5608 copied an ASM_OPERANDS.
5609 In that case, it is the copied input-operand vector. */
5610static rtvec copy_asm_operands_vector;
5611
5612/* Likewise for the constraints vector. */
5613static rtvec orig_asm_constraints_vector;
5614static rtvec copy_asm_constraints_vector;
5615
5616/* Recursively create a new copy of an rtx for copy_insn.
5617 This function differs from copy_rtx in that it handles SCRATCHes and
5618 ASM_OPERANDs properly.
5619 Normally, this function is not used directly; use copy_insn as front end.
5620 However, you could first copy an insn pattern with copy_insn and then use
5621 this function afterwards to properly copy any REG_NOTEs containing
5622 SCRATCHes. */
5623
5624rtx
502b8322 5625copy_insn_1 (rtx orig)
da43a810 5626{
b3694847
SS
5627 rtx copy;
5628 int i, j;
5629 RTX_CODE code;
5630 const char *format_ptr;
da43a810 5631
cd9c1ca8
RH
5632 if (orig == NULL)
5633 return NULL;
5634
da43a810
BS
5635 code = GET_CODE (orig);
5636
5637 switch (code)
5638 {
5639 case REG:
a52a87c3 5640 case DEBUG_EXPR:
d8116890 5641 CASE_CONST_ANY:
da43a810
BS
5642 case SYMBOL_REF:
5643 case CODE_LABEL:
5644 case PC:
276e0224 5645 case RETURN:
26898771 5646 case SIMPLE_RETURN:
da43a810 5647 return orig;
3e89ed8d 5648 case CLOBBER:
bd1cd0d0 5649 /* Share clobbers of hard registers, but do not share pseudo reg
c5c5ba89
JH
5650 clobbers or clobbers of hard registers that originated as pseudos.
5651 This is needed to allow safe register renaming. */
d7ae3739
EB
5652 if (REG_P (XEXP (orig, 0))
5653 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5654 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
3e89ed8d
JH
5655 return orig;
5656 break;
da43a810
BS
5657
5658 case SCRATCH:
5659 for (i = 0; i < copy_insn_n_scratches; i++)
5660 if (copy_insn_scratch_in[i] == orig)
5661 return copy_insn_scratch_out[i];
5662 break;
5663
5664 case CONST:
6fb5fa3c 5665 if (shared_const_p (orig))
da43a810
BS
5666 return orig;
5667 break;
750c9258 5668
da43a810
BS
5669 /* A MEM with a constant address is not sharable. The problem is that
5670 the constant address may need to be reloaded. If the mem is shared,
5671 then reloading one copy of this mem will cause all copies to appear
5672 to have been reloaded. */
5673
5674 default:
5675 break;
5676 }
5677
aacd3885
RS
5678 /* Copy the various flags, fields, and other information. We assume
5679 that all fields need copying, and then clear the fields that should
da43a810
BS
5680 not be copied. That is the sensible default behavior, and forces
5681 us to explicitly document why we are *not* copying a flag. */
aacd3885 5682 copy = shallow_copy_rtx (orig);
da43a810 5683
da43a810 5684 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5685 if (INSN_P (orig))
da43a810 5686 {
2adc7f12
JJ
5687 RTX_FLAG (copy, jump) = 0;
5688 RTX_FLAG (copy, call) = 0;
5689 RTX_FLAG (copy, frame_related) = 0;
da43a810 5690 }
750c9258 5691
da43a810
BS
5692 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5693
5694 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5695 switch (*format_ptr++)
5696 {
5697 case 'e':
5698 if (XEXP (orig, i) != NULL)
5699 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5700 break;
da43a810 5701
aacd3885
RS
5702 case 'E':
5703 case 'V':
5704 if (XVEC (orig, i) == orig_asm_constraints_vector)
5705 XVEC (copy, i) = copy_asm_constraints_vector;
5706 else if (XVEC (orig, i) == orig_asm_operands_vector)
5707 XVEC (copy, i) = copy_asm_operands_vector;
5708 else if (XVEC (orig, i) != NULL)
5709 {
5710 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5711 for (j = 0; j < XVECLEN (copy, i); j++)
5712 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5713 }
5714 break;
da43a810 5715
aacd3885
RS
5716 case 't':
5717 case 'w':
5718 case 'i':
91914e56 5719 case 'p':
aacd3885
RS
5720 case 's':
5721 case 'S':
5722 case 'u':
5723 case '0':
5724 /* These are left unchanged. */
5725 break;
da43a810 5726
aacd3885
RS
5727 default:
5728 gcc_unreachable ();
5729 }
da43a810
BS
5730
5731 if (code == SCRATCH)
5732 {
5733 i = copy_insn_n_scratches++;
5b0264cb 5734 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5735 copy_insn_scratch_in[i] = orig;
5736 copy_insn_scratch_out[i] = copy;
5737 }
5738 else if (code == ASM_OPERANDS)
5739 {
6462bb43
AO
5740 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5741 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5742 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5743 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5744 }
5745
5746 return copy;
5747}
5748
5749/* Create a new copy of an rtx.
5750 This function differs from copy_rtx in that it handles SCRATCHes and
5751 ASM_OPERANDs properly.
5752 INSN doesn't really have to be a full INSN; it could be just the
5753 pattern. */
5754rtx
502b8322 5755copy_insn (rtx insn)
da43a810
BS
5756{
5757 copy_insn_n_scratches = 0;
5758 orig_asm_operands_vector = 0;
5759 orig_asm_constraints_vector = 0;
5760 copy_asm_operands_vector = 0;
5761 copy_asm_constraints_vector = 0;
5762 return copy_insn_1 (insn);
5763}
59ec66dc 5764
8e383849
JR
5765/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5766 on that assumption that INSN itself remains in its original place. */
5767
f8f0516e
DM
5768rtx_insn *
5769copy_delay_slot_insn (rtx_insn *insn)
8e383849
JR
5770{
5771 /* Copy INSN with its rtx_code, all its notes, location etc. */
f8f0516e 5772 insn = as_a <rtx_insn *> (copy_rtx (insn));
8e383849
JR
5773 INSN_UID (insn) = cur_insn_uid++;
5774 return insn;
5775}
5776
23b2ce53
RS
5777/* Initialize data structures and variables in this file
5778 before generating rtl for each function. */
5779
5780void
502b8322 5781init_emit (void)
23b2ce53 5782{
5936d944
JH
5783 set_first_insn (NULL);
5784 set_last_insn (NULL);
028d4092
ML
5785 if (param_min_nondebug_insn_uid)
5786 cur_insn_uid = param_min_nondebug_insn_uid;
b5b8b0ac
AO
5787 else
5788 cur_insn_uid = 1;
5789 cur_debug_insn_uid = 1;
23b2ce53 5790 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5791 first_label_num = label_num;
614d5bd8 5792 get_current_sequence ()->next = NULL;
23b2ce53 5793
23b2ce53
RS
5794 /* Init the tables that describe all the pseudo regs. */
5795
3e029763 5796 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5797
3e029763 5798 crtl->emit.regno_pointer_align
1b4572a8 5799 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5800
f44986d7
DM
5801 regno_reg_rtx
5802 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
0d4903b8 5803
e50126e8 5804 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5805 memcpy (regno_reg_rtx,
5fb0e246 5806 initial_regno_reg_rtx,
6cde4876 5807 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5808
23b2ce53 5809 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5810 init_virtual_regs ();
740ab4a2
RK
5811
5812 /* Indicate that the virtual registers and stack locations are
5813 all pointers. */
3502dc9c
JDA
5814 REG_POINTER (stack_pointer_rtx) = 1;
5815 REG_POINTER (frame_pointer_rtx) = 1;
5816 REG_POINTER (hard_frame_pointer_rtx) = 1;
5817 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5818
3502dc9c
JDA
5819 REG_POINTER (virtual_incoming_args_rtx) = 1;
5820 REG_POINTER (virtual_stack_vars_rtx) = 1;
5821 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5822 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5823 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5824
86fe05e0 5825#ifdef STACK_BOUNDARY
bdb429a5
RK
5826 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5827 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5828 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5829 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5830
5831 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5832 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5833 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5834 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
da75ca93 5835
bdb429a5 5836 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5837#endif
5838
5e82e7bd
JVA
5839#ifdef INIT_EXPANDERS
5840 INIT_EXPANDERS;
5841#endif
23b2ce53
RS
5842}
5843
cd5ff7bc
RS
5844/* Return the value of element I of CONST_VECTOR X as a wide_int. */
5845
5846wide_int
5847const_vector_int_elt (const_rtx x, unsigned int i)
5848{
5849 /* First handle elements that are directly encoded. */
5850 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5851 if (i < (unsigned int) XVECLEN (x, 0))
5852 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5853
5854 /* Identify the pattern that contains element I and work out the index of
5855 the last encoded element for that pattern. */
5856 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5857 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5858 unsigned int count = i / npatterns;
5859 unsigned int pattern = i % npatterns;
5860 unsigned int final_i = encoded_nelts - npatterns + pattern;
5861
5862 /* If there are no steps, the final encoded value is the right one. */
5863 if (!CONST_VECTOR_STEPPED_P (x))
5864 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5865
5866 /* Otherwise work out the value from the last two encoded elements. */
5867 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5868 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5869 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5870 rtx_mode_t (v1, elt_mode));
5871 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5872}
5873
5874/* Return the value of element I of CONST_VECTOR X. */
5875
5876rtx
5877const_vector_elt (const_rtx x, unsigned int i)
5878{
5879 /* First handle elements that are directly encoded. */
5880 if (i < (unsigned int) XVECLEN (x, 0))
5881 return CONST_VECTOR_ENCODED_ELT (x, i);
5882
5883 /* If there are no steps, the final encoded value is the right one. */
5884 if (!CONST_VECTOR_STEPPED_P (x))
5885 {
5886 /* Identify the pattern that contains element I and work out the index of
5887 the last encoded element for that pattern. */
5888 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5889 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5890 unsigned int pattern = i % npatterns;
5891 unsigned int final_i = encoded_nelts - npatterns + pattern;
5892 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5893 }
5894
5895 /* Otherwise work out the value from the last two encoded elements. */
5896 return immed_wide_int_const (const_vector_int_elt (x, i),
5897 GET_MODE_INNER (GET_MODE (x)));
5898}
5899
c0cc00c4
JJ
5900/* Return true if X is a valid element for a CONST_VECTOR of the given
5901 mode. */
9b4473b6
RS
5902
5903bool
c0cc00c4 5904valid_for_const_vector_p (machine_mode, rtx x)
9b4473b6
RS
5905{
5906 return (CONST_SCALAR_INT_P (x)
1b5f74e8 5907 || CONST_POLY_INT_P (x)
9b4473b6
RS
5908 || CONST_DOUBLE_AS_FLOAT_P (x)
5909 || CONST_FIXED_P (x));
5910}
5911
59d06c05
RS
5912/* Generate a vector constant of mode MODE in which every element has
5913 value ELT. */
69ef87e2 5914
59d06c05
RS
5915rtx
5916gen_const_vec_duplicate (machine_mode mode, rtx elt)
5917{
3877c560
RS
5918 rtx_vector_builder builder (mode, 1, 1);
5919 builder.quick_push (elt);
5920 return builder.build ();
59d06c05
RS
5921}
5922
5923/* Return a vector rtx of mode MODE in which every element has value X.
5924 The result will be a constant if X is constant. */
5925
5926rtx
5927gen_vec_duplicate (machine_mode mode, rtx x)
5928{
c0cc00c4 5929 if (valid_for_const_vector_p (mode, x))
59d06c05
RS
5930 return gen_const_vec_duplicate (mode, x);
5931 return gen_rtx_VEC_DUPLICATE (mode, x);
5932}
15ed7b52 5933
3877c560
RS
5934/* A subroutine of const_vec_series_p that handles the case in which:
5935
5936 (GET_CODE (X) == CONST_VECTOR
5937 && CONST_VECTOR_NPATTERNS (X) == 1
5938 && !CONST_VECTOR_DUPLICATE_P (X))
5939
5940 is known to hold. */
ef339d6e
RS
5941
5942bool
5943const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5944{
3877c560
RS
5945 /* Stepped sequences are only defined for integers, to avoid specifying
5946 rounding behavior. */
5947 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5948 return false;
5949
5950 /* A non-duplicated vector with two elements can always be seen as a
5951 series with a nonzero step. Longer vectors must have a stepped
5952 encoding. */
7b777afa 5953 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
3877c560 5954 && !CONST_VECTOR_STEPPED_P (x))
ef339d6e
RS
5955 return false;
5956
3877c560 5957 /* Calculate the step between the first and second elements. */
ef339d6e
RS
5958 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5959 rtx base = CONST_VECTOR_ELT (x, 0);
5960 rtx step = simplify_binary_operation (MINUS, inner,
3877c560 5961 CONST_VECTOR_ENCODED_ELT (x, 1), base);
ef339d6e
RS
5962 if (rtx_equal_p (step, CONST0_RTX (inner)))
5963 return false;
5964
3877c560
RS
5965 /* If we have a stepped encoding, check that the step between the
5966 second and third elements is the same as STEP. */
5967 if (CONST_VECTOR_STEPPED_P (x))
ef339d6e
RS
5968 {
5969 rtx diff = simplify_binary_operation (MINUS, inner,
3877c560
RS
5970 CONST_VECTOR_ENCODED_ELT (x, 2),
5971 CONST_VECTOR_ENCODED_ELT (x, 1));
ef339d6e
RS
5972 if (!rtx_equal_p (step, diff))
5973 return false;
5974 }
5975
5976 *base_out = base;
5977 *step_out = step;
5978 return true;
5979}
5980
5981/* Generate a vector constant of mode MODE in which element I has
5982 the value BASE + I * STEP. */
5983
5984rtx
5985gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5986{
af2e4475
RS
5987 gcc_assert (valid_for_const_vector_p (mode, base)
5988 && valid_for_const_vector_p (mode, step));
ef339d6e 5989
3877c560
RS
5990 rtx_vector_builder builder (mode, 1, 3);
5991 builder.quick_push (base);
5992 for (int i = 1; i < 3; ++i)
5993 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
5994 builder[i - 1], step));
5995 return builder.build ();
ef339d6e
RS
5996}
5997
5998/* Generate a vector of mode MODE in which element I has the value
5999 BASE + I * STEP. The result will be a constant if BASE and STEP
6000 are both constants. */
6001
6002rtx
6003gen_vec_series (machine_mode mode, rtx base, rtx step)
6004{
6005 if (step == const0_rtx)
6006 return gen_vec_duplicate (mode, base);
af2e4475
RS
6007 if (valid_for_const_vector_p (mode, base)
6008 && valid_for_const_vector_p (mode, step))
ef339d6e
RS
6009 return gen_const_vec_series (mode, base, step);
6010 return gen_rtx_VEC_SERIES (mode, base, step);
6011}
6012
59d06c05
RS
6013/* Generate a new vector constant for mode MODE and constant value
6014 CONSTANT. */
69ef87e2 6015
59d06c05
RS
6016static rtx
6017gen_const_vector (machine_mode mode, int constant)
6018{
6019 machine_mode inner = GET_MODE_INNER (mode);
69ef87e2 6020
59d06c05
RS
6021 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6022
6023 rtx el = const_tiny_rtx[constant][(int) inner];
6024 gcc_assert (el);
69ef87e2 6025
3877c560 6026 return gen_const_vec_duplicate (mode, el);
69ef87e2
AH
6027}
6028
a06e3c40 6029/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 6030 all elements are zero, and the one vector when all elements are one. */
a06e3c40 6031rtx
ef4bddc2 6032gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
a06e3c40 6033{
7b777afa 6034 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
a73b091d
JW
6035
6036 /* If the values are all the same, check to see if we can use one of the
6037 standard constant vectors. */
59d06c05
RS
6038 if (rtvec_all_equal_p (v))
6039 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
a73b091d 6040
3877c560
RS
6041 unsigned int nunits = GET_NUM_ELEM (v);
6042 rtx_vector_builder builder (mode, nunits, 1);
6043 for (unsigned int i = 0; i < nunits; ++i)
6044 builder.quick_push (RTVEC_ELT (v, i));
6045 return builder.build (v);
a06e3c40
R
6046}
6047
b5deb7b6
SL
6048/* Initialise global register information required by all functions. */
6049
6050void
6051init_emit_regs (void)
6052{
6053 int i;
ef4bddc2 6054 machine_mode mode;
1c3f523e 6055 mem_attrs *attrs;
b5deb7b6
SL
6056
6057 /* Reset register attributes */
aebf76a2 6058 reg_attrs_htab->empty ();
b5deb7b6
SL
6059
6060 /* We need reg_raw_mode, so initialize the modes now. */
6061 init_reg_modes_target ();
6062
6063 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
6064 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6065 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6066 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6067 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6068 virtual_incoming_args_rtx =
6069 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6070 virtual_stack_vars_rtx =
6071 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6072 virtual_stack_dynamic_rtx =
6073 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6074 virtual_outgoing_args_rtx =
6075 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6076 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
6077 virtual_preferred_stack_boundary_rtx =
6078 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
6079
6080 /* Initialize RTL for commonly used hard registers. These are
6081 copied into regno_reg_rtx as we begin to compile each function. */
6082 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 6083 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
6084
6085#ifdef RETURN_ADDRESS_POINTER_REGNUM
6086 return_address_pointer_rtx
6087 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6088#endif
6089
ca72dad5 6090 pic_offset_table_rtx = NULL_RTX;
b5deb7b6
SL
6091 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6092 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
1c3f523e
RS
6093
6094 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6095 {
ef4bddc2 6096 mode = (machine_mode) i;
766090c2 6097 attrs = ggc_cleared_alloc<mem_attrs> ();
1c3f523e
RS
6098 attrs->align = BITS_PER_UNIT;
6099 attrs->addrspace = ADDR_SPACE_GENERIC;
532c7a45 6100 if (mode != BLKmode && mode != VOIDmode)
1c3f523e 6101 {
754c3d5d
RS
6102 attrs->size_known_p = true;
6103 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
6104 if (STRICT_ALIGNMENT)
6105 attrs->align = GET_MODE_ALIGNMENT (mode);
6106 }
6107 mode_mem_attrs[i] = attrs;
6108 }
af364399
ML
6109
6110 split_branch_probability = profile_probability::uninitialized ();
b5deb7b6
SL
6111}
6112
aa3a12d6
RS
6113/* Initialize global machine_mode variables. */
6114
6115void
6116init_derived_machine_modes (void)
6117{
501623d4
RS
6118 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6119 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
aa3a12d6 6120 {
501623d4
RS
6121 scalar_int_mode mode = mode_iter.require ();
6122
aa3a12d6 6123 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
501623d4
RS
6124 && !opt_byte_mode.exists ())
6125 opt_byte_mode = mode;
aa3a12d6
RS
6126
6127 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
501623d4
RS
6128 && !opt_word_mode.exists ())
6129 opt_word_mode = mode;
aa3a12d6
RS
6130 }
6131
501623d4
RS
6132 byte_mode = opt_byte_mode.require ();
6133 word_mode = opt_word_mode.require ();
f95c5b8e
RS
6134 ptr_mode = as_a <scalar_int_mode>
6135 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
aa3a12d6
RS
6136}
6137
2d888286 6138/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
6139
6140void
2d888286 6141init_emit_once (void)
23b2ce53
RS
6142{
6143 int i;
ef4bddc2 6144 machine_mode mode;
857c7b46 6145 scalar_float_mode double_mode;
16d22000 6146 opt_scalar_mode smode_iter;
23b2ce53 6147
807e902e
KZ
6148 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6149 CONST_FIXED, and memory attribute hash tables. */
aebf76a2 6150 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
173b24b9 6151
807e902e 6152#if TARGET_SUPPORTS_WIDE_INT
aebf76a2 6153 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
807e902e 6154#endif
aebf76a2 6155 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5692c7bc 6156
0c12fc9b
RS
6157 if (NUM_POLY_INT_COEFFS > 1)
6158 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6159
aebf76a2 6160 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
091a3ac7 6161
aebf76a2 6162 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
67673f5c 6163
5da077de 6164#ifdef INIT_EXPANDERS
414c4dc4
NC
6165 /* This is to initialize {init|mark|free}_machine_status before the first
6166 call to push_function_context_to. This is needed by the Chill front
a1f300c0 6167 end which calls push_function_context_to before the first call to
5da077de
AS
6168 init_function_start. */
6169 INIT_EXPANDERS;
6170#endif
6171
23b2ce53
RS
6172 /* Create the unique rtx's for certain rtx codes and operand values. */
6173
ecf835e9
KN
6174 /* Process stack-limiting command-line options. */
6175 if (opt_fstack_limit_symbol_arg != NULL)
6176 stack_limit_rtx
6177 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6178 if (opt_fstack_limit_register_no >= 0)
6179 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6180
a2a8cc44 6181 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 6182 tries to use these variables. */
23b2ce53 6183 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 6184 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 6185 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 6186
68d75312
JC
6187 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6188 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 6189 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 6190 else
3b80f6ca 6191 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 6192
857c7b46 6193 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
aa3a12d6 6194
807e902e
KZ
6195 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6196 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6197 real_from_integer (&dconst2, double_mode, 2, SIGNED);
aefa9d43
KG
6198
6199 dconstm1 = dconst1;
6200 dconstm1.sign = 1;
03f2ea93
RS
6201
6202 dconsthalf = dconst1;
1e92bbb9 6203 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 6204
e7c82a99 6205 for (i = 0; i < 3; i++)
23b2ce53 6206 {
aefa9d43 6207 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
6208 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6209
c94843d2 6210 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
15ed7b52 6211 const_tiny_rtx[i][(int) mode] =
555affd7 6212 const_double_from_real_value (*r, mode);
15ed7b52 6213
c94843d2 6214 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5692c7bc 6215 const_tiny_rtx[i][(int) mode] =
555affd7 6216 const_double_from_real_value (*r, mode);
23b2ce53 6217
906c4e36 6218 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 6219
c94843d2 6220 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
906c4e36 6221 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 6222
ede6c734
MS
6223 for (mode = MIN_MODE_PARTIAL_INT;
6224 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6225 mode = (machine_mode)((int)(mode) + 1))
33d3e559 6226 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
6227 }
6228
e7c82a99
JJ
6229 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6230
c94843d2 6231 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
e7c82a99
JJ
6232 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6233
5c0caeb3
RS
6234 /* For BImode, 1 and -1 are unsigned and signed interpretations
6235 of the same value. */
6236 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6237 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6238 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6239
ede6c734
MS
6240 for (mode = MIN_MODE_PARTIAL_INT;
6241 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6242 mode = (machine_mode)((int)(mode) + 1))
c8a89d2a 6243 const_tiny_rtx[3][(int) mode] = constm1_rtx;
c94843d2
RS
6244
6245 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
e90721b1
AP
6246 {
6247 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6248 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6249 }
6250
c94843d2 6251 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
e90721b1
AP
6252 {
6253 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6254 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6255 }
6256
5c0caeb3
RS
6257 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6258 interpretations of the same value. */
6259 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6260 {
6261 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6262 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6263 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6264 }
6265
c94843d2 6266 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
a73b091d
JW
6267 {
6268 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6269 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 6270 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 6271 }
69ef87e2 6272
c94843d2 6273 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
a73b091d
JW
6274 {
6275 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6276 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6277 }
69ef87e2 6278
16d22000 6279 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
325217ed 6280 {
16d22000
RS
6281 scalar_mode smode = smode_iter.require ();
6282 FCONST0 (smode).data.high = 0;
6283 FCONST0 (smode).data.low = 0;
6284 FCONST0 (smode).mode = smode;
6285 const_tiny_rtx[0][(int) smode]
6286 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6287 }
6288
16d22000 6289 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
325217ed 6290 {
16d22000
RS
6291 scalar_mode smode = smode_iter.require ();
6292 FCONST0 (smode).data.high = 0;
6293 FCONST0 (smode).data.low = 0;
6294 FCONST0 (smode).mode = smode;
6295 const_tiny_rtx[0][(int) smode]
6296 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6297 }
6298
16d22000 6299 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
325217ed 6300 {
16d22000
RS
6301 scalar_mode smode = smode_iter.require ();
6302 FCONST0 (smode).data.high = 0;
6303 FCONST0 (smode).data.low = 0;
6304 FCONST0 (smode).mode = smode;
6305 const_tiny_rtx[0][(int) smode]
6306 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6307
6308 /* We store the value 1. */
16d22000
RS
6309 FCONST1 (smode).data.high = 0;
6310 FCONST1 (smode).data.low = 0;
6311 FCONST1 (smode).mode = smode;
6312 FCONST1 (smode).data
6313 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6314 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6315 SIGNED_FIXED_POINT_MODE_P (smode));
6316 const_tiny_rtx[1][(int) smode]
6317 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
325217ed
CF
6318 }
6319
16d22000 6320 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
325217ed 6321 {
16d22000
RS
6322 scalar_mode smode = smode_iter.require ();
6323 FCONST0 (smode).data.high = 0;
6324 FCONST0 (smode).data.low = 0;
6325 FCONST0 (smode).mode = smode;
6326 const_tiny_rtx[0][(int) smode]
6327 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6328
6329 /* We store the value 1. */
16d22000
RS
6330 FCONST1 (smode).data.high = 0;
6331 FCONST1 (smode).data.low = 0;
6332 FCONST1 (smode).mode = smode;
6333 FCONST1 (smode).data
6334 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6335 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6336 SIGNED_FIXED_POINT_MODE_P (smode));
6337 const_tiny_rtx[1][(int) smode]
6338 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
091a3ac7
CF
6339 }
6340
c94843d2 6341 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
091a3ac7
CF
6342 {
6343 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6344 }
6345
c94843d2 6346 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
091a3ac7
CF
6347 {
6348 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6349 }
6350
c94843d2 6351 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
091a3ac7
CF
6352 {
6353 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6354 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6355 }
6356
c94843d2 6357 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
091a3ac7
CF
6358 {
6359 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6360 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
6361 }
6362
dbbbbf3b 6363 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
ef4bddc2 6364 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
dbbbbf3b 6365 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 6366
ca4adc91
RS
6367 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6368 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6369 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
1476d1bd
MM
6370 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6371 /*prev_insn=*/NULL,
6372 /*next_insn=*/NULL,
6373 /*bb=*/NULL,
6374 /*pattern=*/NULL_RTX,
6375 /*location=*/-1,
6376 CODE_FOR_nothing,
6377 /*reg_notes=*/NULL_RTX);
23b2ce53 6378}
a11759a3 6379\f
969d70ca
JH
6380/* Produce exact duplicate of insn INSN after AFTER.
6381 Care updating of libcall regions if present. */
6382
cd459bf8 6383rtx_insn *
a1950df3 6384emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
969d70ca 6385{
cd459bf8
DM
6386 rtx_insn *new_rtx;
6387 rtx link;
969d70ca
JH
6388
6389 switch (GET_CODE (insn))
6390 {
6391 case INSN:
60564289 6392 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
6393 break;
6394
6395 case JUMP_INSN:
60564289 6396 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
ec27069c 6397 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
969d70ca
JH
6398 break;
6399
b5b8b0ac
AO
6400 case DEBUG_INSN:
6401 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6402 break;
6403
969d70ca 6404 case CALL_INSN:
60564289 6405 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 6406 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 6407 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 6408 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
6409 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6410 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6411 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 6412 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 6413 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
6414 break;
6415
6416 default:
5b0264cb 6417 gcc_unreachable ();
969d70ca
JH
6418 }
6419
6420 /* Update LABEL_NUSES. */
60564289 6421 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 6422
5368224f 6423 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 6424
0a3d71f5
JW
6425 /* If the old insn is frame related, then so is the new one. This is
6426 primarily needed for IA-64 unwind info which marks epilogue insns,
6427 which may be duplicated by the basic block reordering code. */
60564289 6428 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 6429
1581a12c
BS
6430 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6431 rtx *ptail = &REG_NOTES (new_rtx);
6432 while (*ptail != NULL_RTX)
6433 ptail = &XEXP (*ptail, 1);
6434
cf7c4aa6
HPN
6435 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6436 will make them. REG_LABEL_TARGETs are created there too, but are
6437 supposed to be sticky, so we copy them. */
969d70ca 6438 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 6439 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca 6440 {
1581a12c
BS
6441 *ptail = duplicate_reg_note (link);
6442 ptail = &XEXP (*ptail, 1);
969d70ca
JH
6443 }
6444
60564289
KG
6445 INSN_CODE (new_rtx) = INSN_CODE (insn);
6446 return new_rtx;
969d70ca 6447}
e2500fed 6448
1431042e 6449static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d 6450rtx
ef4bddc2 6451gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
3e89ed8d
JH
6452{
6453 if (hard_reg_clobbers[mode][regno])
6454 return hard_reg_clobbers[mode][regno];
6455 else
6456 return (hard_reg_clobbers[mode][regno] =
6457 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6458}
6459
5368224f
DC
6460location_t prologue_location;
6461location_t epilogue_location;
78bde837
SB
6462
6463/* Hold current location information and last location information, so the
6464 datastructures are built lazily only when some instructions in given
6465 place are needed. */
3a50da34 6466static location_t curr_location;
78bde837 6467
5368224f 6468/* Allocate insn location datastructure. */
78bde837 6469void
5368224f 6470insn_locations_init (void)
78bde837 6471{
5368224f 6472 prologue_location = epilogue_location = 0;
78bde837 6473 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6474}
6475
6476/* At the end of emit stage, clear current location. */
6477void
5368224f 6478insn_locations_finalize (void)
78bde837 6479{
5368224f
DC
6480 epilogue_location = curr_location;
6481 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6482}
6483
6484/* Set current location. */
6485void
5368224f 6486set_curr_insn_location (location_t location)
78bde837 6487{
78bde837
SB
6488 curr_location = location;
6489}
6490
6491/* Get current location. */
6492location_t
5368224f 6493curr_insn_location (void)
78bde837
SB
6494{
6495 return curr_location;
6496}
6497
079e0f61
EB
6498/* Set the location of the insn chain starting at INSN to LOC. */
6499void
6500set_insn_locations (rtx_insn *insn, location_t loc)
6501{
6502 while (insn)
6503 {
6504 if (INSN_P (insn))
6505 INSN_LOCATION (insn) = loc;
6506 insn = NEXT_INSN (insn);
6507 }
6508}
6509
78bde837
SB
6510/* Return lexical scope block insn belongs to. */
6511tree
a1950df3 6512insn_scope (const rtx_insn *insn)
78bde837 6513{
5368224f 6514 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
6515}
6516
6517/* Return line number of the statement that produced this insn. */
6518int
a1950df3 6519insn_line (const rtx_insn *insn)
78bde837 6520{
5368224f 6521 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6522}
6523
6524/* Return source file of the statement that produced this insn. */
6525const char *
a1950df3 6526insn_file (const rtx_insn *insn)
78bde837 6527{
5368224f 6528 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6529}
8930883e 6530
ffa4602f
EB
6531/* Return expanded location of the statement that produced this insn. */
6532expanded_location
a1950df3 6533insn_location (const rtx_insn *insn)
ffa4602f
EB
6534{
6535 return expand_location (INSN_LOCATION (insn));
6536}
6537
8930883e
MK
6538/* Return true if memory model MODEL requires a pre-operation (release-style)
6539 barrier or a post-operation (acquire-style) barrier. While not universal,
6540 this function matches behavior of several targets. */
6541
6542bool
6543need_atomic_barrier_p (enum memmodel model, bool pre)
6544{
40ad260d 6545 switch (model & MEMMODEL_BASE_MASK)
8930883e
MK
6546 {
6547 case MEMMODEL_RELAXED:
6548 case MEMMODEL_CONSUME:
6549 return false;
6550 case MEMMODEL_RELEASE:
6551 return pre;
6552 case MEMMODEL_ACQUIRE:
6553 return !pre;
6554 case MEMMODEL_ACQ_REL:
6555 case MEMMODEL_SEQ_CST:
6556 return true;
6557 default:
6558 gcc_unreachable ();
6559 }
6560}
8194c537 6561
abd3c800
RS
6562/* Return a constant shift amount for shifting a value of mode MODE
6563 by VALUE bits. */
6564
6565rtx
0c12fc9b 6566gen_int_shift_amount (machine_mode, poly_int64 value)
abd3c800
RS
6567{
6568 /* Use a 64-bit mode, to avoid any truncation.
6569
6570 ??? Perhaps this should be automatically derived from the .md files
6571 instead, or perhaps have a target hook. */
6572 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6573 ? DImode
6574 : int_mode_for_size (64, 0).require ());
6575 return gen_int_mode (value, shift_mode);
6576}
6577
8194c537
DM
6578/* Initialize fields of rtl_data related to stack alignment. */
6579
6580void
6581rtl_data::init_stack_alignment ()
6582{
6583 stack_alignment_needed = STACK_BOUNDARY;
6584 max_used_stack_slot_alignment = STACK_BOUNDARY;
6585 stack_alignment_estimated = 0;
6586 preferred_stack_boundary = STACK_BOUNDARY;
6587}
6588
8930883e 6589\f
e2500fed 6590#include "gt-emit-rtl.h"