]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
* cfgbuild.c (find_sub_basic_blocks): Handle insns that can throw.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
15bbde2b 1/* Emit RTL for the GNU C-Compiler expander.
ddca3e9d 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
5377f687 3 1999, 2000, 2001 Free Software Foundation, Inc.
15bbde2b 4
f12b58b3 5This file is part of GCC.
15bbde2b 6
f12b58b3 7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
15bbde2b 11
f12b58b3 12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
15bbde2b 16
17You should have received a copy of the GNU General Public License
f12b58b3 18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
15bbde2b 21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
405711de 39#include "system.h"
d3b64f2d 40#include "toplev.h"
15bbde2b 41#include "rtl.h"
3fd7e17f 42#include "tree.h"
7953c610 43#include "tm_p.h"
15bbde2b 44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
c6b6c51f 48#include "hard-reg-set.h"
73f5c1e3 49#include "hashtab.h"
15bbde2b 50#include "insn-config.h"
0dbd1c74 51#include "recog.h"
15bbde2b 52#include "real.h"
649d8da6 53#include "obstack.h"
a3426c4c 54#include "bitmap.h"
f3d96a58 55#include "basic-block.h"
a7b0c170 56#include "ggc.h"
b29760a8 57#include "debug.h"
649d8da6 58
399d45d3 59/* Commonly used modes. */
60
a92771b8 61enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9e042f31 63enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
a92771b8 64enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 65
15bbde2b 66
67/* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70static int label_num = 1;
71
15bbde2b 72/* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76static int last_label_num;
77
78/* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81static int base_label_num;
82
83/* Nonzero means do not generate NOTEs for source line numbers. */
84
85static int no_line_numbers;
86
87/* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
91
57c097d5 92rtx global_rtl[GR_MAX];
15bbde2b 93
94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
1a60f06a 100rtx const_true_rtx;
101
15bbde2b 102REAL_VALUE_TYPE dconst0;
103REAL_VALUE_TYPE dconst1;
104REAL_VALUE_TYPE dconst2;
105REAL_VALUE_TYPE dconstm1;
106
107/* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
110
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
115
90c25824 116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
d823ba47 118 should be used if it is being set, and frame_pointer_rtx otherwise. After
90c25824 119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
122
15bbde2b 123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
15bbde2b 125rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
4b0c5859 131/* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
15bbde2b 135/* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
57c097d5 140rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 141
73f5c1e3 142/* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145static htab_t const_int_htab;
146
15bbde2b 147/* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
149
1bfd55c5 150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
155 redone.
15bbde2b 156
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
159
160#define SEQUENCE_RESULT_SIZE 5
161
15bbde2b 162static rtx sequence_result[SEQUENCE_RESULT_SIZE];
163
a92771b8 164/* During RTL generation, we also keep a list of free INSN rtl codes. */
575333f9 165static rtx free_insn;
166
08513b52 167#define first_insn (cfun->emit->x_first_insn)
168#define last_insn (cfun->emit->x_last_insn)
169#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170#define last_linenum (cfun->emit->x_last_linenum)
171#define last_filename (cfun->emit->x_last_filename)
172#define first_label_num (cfun->emit->x_first_label_num)
15bbde2b 173
621f6678 174static rtx make_jump_insn_raw PARAMS ((rtx));
175static rtx make_call_insn_raw PARAMS ((rtx));
176static rtx find_line_note PARAMS ((rtx));
177static void mark_sequence_stack PARAMS ((struct sequence_stack *));
2d96a59a 178static void unshare_all_rtl_1 PARAMS ((rtx));
72ec8878 179static void unshare_all_decls PARAMS ((tree));
01dc9f0c 180static void reset_used_decls PARAMS ((tree));
344dc2fa 181static void mark_label_nuses PARAMS ((rtx));
73f5c1e3 182static hashval_t const_int_htab_hash PARAMS ((const void *));
183static int const_int_htab_eq PARAMS ((const void *,
184 const void *));
185static int rtx_htab_mark_1 PARAMS ((void **, void *));
186static void rtx_htab_mark PARAMS ((void *));
187
3cd757b1 188/* Probability of the conditional branch currently proceeded by try_split.
189 Set to -1 otherwise. */
190int split_branch_probability = -1;
191
649d8da6 192\f
73f5c1e3 193/* Returns a hash code for X (which is a really a CONST_INT). */
194
195static hashval_t
196const_int_htab_hash (x)
197 const void *x;
198{
5e431971 199 return (hashval_t) INTVAL ((const struct rtx_def *) x);
73f5c1e3 200}
201
202/* Returns non-zero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206static int
207const_int_htab_eq (x, y)
208 const void *x;
209 const void *y;
210{
5e431971 211 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
73f5c1e3 212}
213
214/* Mark the hash-table element X (which is really a pointer to an
215 rtx). */
216
217static int
218rtx_htab_mark_1 (x, data)
219 void **x;
220 void *data ATTRIBUTE_UNUSED;
221{
222 ggc_mark_rtx (*x);
223 return 1;
224}
225
226/* Mark all the elements of HTAB (which is really an htab_t full of
227 rtxs). */
228
229static void
230rtx_htab_mark (htab)
231 void *htab;
232{
233 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
234}
235
22cf44bc 236/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
237 don't attempt to share with the various global pieces of rtl (such as
238 frame_pointer_rtx). */
239
240rtx
241gen_raw_REG (mode, regno)
242 enum machine_mode mode;
243 int regno;
244{
245 rtx x = gen_rtx_raw_REG (mode, regno);
246 ORIGINAL_REGNO (x) = regno;
247 return x;
248}
249
7014838c 250/* There are some RTL codes that require special attention; the generation
251 functions do the raw handling. If you add to this list, modify
252 special_rtx in gengenrtl.c as well. */
253
3ad7bb1c 254rtx
255gen_rtx_CONST_INT (mode, arg)
73f5c1e3 256 enum machine_mode mode ATTRIBUTE_UNUSED;
3ad7bb1c 257 HOST_WIDE_INT arg;
258{
73f5c1e3 259 void **slot;
260
3ad7bb1c 261 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 262 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 263
264#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
265 if (const_true_rtx && arg == STORE_FLAG_VALUE)
266 return const_true_rtx;
267#endif
268
73f5c1e3 269 /* Look up the CONST_INT in the hash table. */
2b3dbc20 270 slot = htab_find_slot_with_hash (const_int_htab, &arg,
271 (hashval_t) arg, INSERT);
7f2875d3 272 if (*slot == 0)
d7c47c0e 273 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 274
275 return (rtx) *slot;
3ad7bb1c 276}
277
7f2875d3 278/* CONST_DOUBLEs needs special handling because their length is known
67f2a2eb 279 only at run-time. */
7f2875d3 280
67f2a2eb 281rtx
282gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
283 enum machine_mode mode;
284 rtx arg0;
285 HOST_WIDE_INT arg1, arg2;
286{
287 rtx r = rtx_alloc (CONST_DOUBLE);
4e929432 288 int i;
289
67f2a2eb 290 PUT_MODE (r, mode);
291 XEXP (r, 0) = arg0;
25999090 292 X0EXP (r, 1) = NULL_RTX;
4e929432 293 XWINT (r, 2) = arg1;
294 XWINT (r, 3) = arg2;
295
296 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
297 XWINT (r, i) = 0;
298
67f2a2eb 299 return r;
300}
301
3ad7bb1c 302rtx
303gen_rtx_REG (mode, regno)
304 enum machine_mode mode;
305 int regno;
306{
307 /* In case the MD file explicitly references the frame pointer, have
308 all such references point to the same frame pointer. This is
309 used during frame pointer elimination to distinguish the explicit
310 references to these registers from pseudos that happened to be
311 assigned to them.
312
313 If we have eliminated the frame pointer or arg pointer, we will
314 be using it as a normal register, for example as a spill
315 register. In such cases, we might be accessing it in a mode that
316 is not Pmode and therefore cannot use the pre-allocated rtx.
317
318 Also don't do this when we are making new REGs in reload, since
319 we don't want to get confused with the real pointers. */
320
321 if (mode == Pmode && !reload_in_progress)
322 {
e8b59353 323 if (regno == FRAME_POINTER_REGNUM)
3ad7bb1c 324 return frame_pointer_rtx;
325#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e8b59353 326 if (regno == HARD_FRAME_POINTER_REGNUM)
3ad7bb1c 327 return hard_frame_pointer_rtx;
328#endif
329#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
e8b59353 330 if (regno == ARG_POINTER_REGNUM)
3ad7bb1c 331 return arg_pointer_rtx;
332#endif
333#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 334 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 335 return return_address_pointer_rtx;
336#endif
e8b59353 337 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 338 return stack_pointer_rtx;
339 }
340
22cf44bc 341 return gen_raw_REG (mode, regno);
3ad7bb1c 342}
343
b5ba9f3a 344rtx
345gen_rtx_MEM (mode, addr)
346 enum machine_mode mode;
347 rtx addr;
348{
349 rtx rt = gen_rtx_raw_MEM (mode, addr);
350
351 /* This field is not cleared by the mere allocation of the rtx, so
352 we clear it here. */
353 MEM_ALIAS_SET (rt) = 0;
354
355 return rt;
356}
701e46d0 357
358rtx
359gen_rtx_SUBREG (mode, reg, offset)
360 enum machine_mode mode;
361 rtx reg;
362 int offset;
363{
364 /* This is the most common failure type.
365 Catch it early so we can see who does it. */
366 if ((offset % GET_MODE_SIZE (mode)) != 0)
367 abort ();
368
369 /* This check isn't usable right now because combine will
370 throw arbitrary crap like a CALL into a SUBREG in
371 gen_lowpart_for_combine so we must just eat it. */
372#if 0
373 /* Check for this too. */
374 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
375 abort ();
376#endif
377 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
378}
379
380/* Generate a SUBREG representing the least-significant part
381 * of REG if MODE is smaller than mode of REG, otherwise
6312a35e 382 * paradoxical SUBREG. */
701e46d0 383rtx
384gen_lowpart_SUBREG (mode, reg)
385 enum machine_mode mode;
386 rtx reg;
387{
388 enum machine_mode inmode;
701e46d0 389
390 inmode = GET_MODE (reg);
391 if (inmode == VOIDmode)
392 inmode = mode;
81802af6 393 return gen_rtx_SUBREG (mode, reg,
394 subreg_lowpart_offset (mode, inmode));
701e46d0 395}
7014838c 396\f
15bbde2b 397/* rtx gen_rtx (code, mode, [element1, ..., elementn])
398**
399** This routine generates an RTX of the size specified by
400** <code>, which is an RTX code. The RTX structure is initialized
401** from the arguments <element1> through <elementn>, which are
402** interpreted according to the specific RTX type's format. The
403** special machine mode associated with the rtx (if any) is specified
404** in <mode>.
405**
fc92fa61 406** gen_rtx can be invoked in a way which resembles the lisp-like
15bbde2b 407** rtx it will generate. For example, the following rtx structure:
408**
409** (plus:QI (mem:QI (reg:SI 1))
410** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
411**
412** ...would be generated by the following C code:
413**
d823ba47 414** gen_rtx (PLUS, QImode,
15bbde2b 415** gen_rtx (MEM, QImode,
416** gen_rtx (REG, SImode, 1)),
417** gen_rtx (MEM, QImode,
418** gen_rtx (PLUS, SImode,
419** gen_rtx (REG, SImode, 2),
420** gen_rtx (REG, SImode, 3)))),
421*/
422
423/*VARARGS2*/
424rtx
621f6678 425gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
15bbde2b 426{
15bbde2b 427 register int i; /* Array indices... */
d2ca078f 428 register const char *fmt; /* Current rtx's format... */
15bbde2b 429 register rtx rt_val; /* RTX to return to caller... */
430
0903457a 431 VA_OPEN (p, mode);
432 VA_FIXEDARG (p, enum rtx_code, code);
433 VA_FIXEDARG (p, enum machine_mode, mode);
15bbde2b 434
67f2a2eb 435 switch (code)
15bbde2b 436 {
67f2a2eb 437 case CONST_INT:
438 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
439 break;
440
441 case CONST_DOUBLE:
442 {
443 rtx arg0 = va_arg (p, rtx);
444 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
445 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
446 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
447 }
448 break;
449
450 case REG:
451 rt_val = gen_rtx_REG (mode, va_arg (p, int));
452 break;
453
454 case MEM:
455 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
456 break;
457
458 default:
15bbde2b 459 rt_val = rtx_alloc (code); /* Allocate the storage space. */
460 rt_val->mode = mode; /* Store the machine mode... */
461
462 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
463 for (i = 0; i < GET_RTX_LENGTH (code); i++)
464 {
465 switch (*fmt++)
466 {
467 case '0': /* Unused field. */
468 break;
469
470 case 'i': /* An integer? */
471 XINT (rt_val, i) = va_arg (p, int);
472 break;
473
b572011e 474 case 'w': /* A wide integer? */
475 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
476 break;
477
15bbde2b 478 case 's': /* A string? */
479 XSTR (rt_val, i) = va_arg (p, char *);
480 break;
481
482 case 'e': /* An expression? */
483 case 'u': /* An insn? Same except when printing. */
484 XEXP (rt_val, i) = va_arg (p, rtx);
485 break;
486
487 case 'E': /* An RTX vector? */
488 XVEC (rt_val, i) = va_arg (p, rtvec);
489 break;
490
a3426c4c 491 case 'b': /* A bitmap? */
492 XBITMAP (rt_val, i) = va_arg (p, bitmap);
493 break;
494
495 case 't': /* A tree? */
496 XTREE (rt_val, i) = va_arg (p, tree);
497 break;
498
15bbde2b 499 default:
fc92fa61 500 abort ();
15bbde2b 501 }
502 }
67f2a2eb 503 break;
15bbde2b 504 }
67f2a2eb 505
0903457a 506 VA_CLOSE (p);
67f2a2eb 507 return rt_val;
15bbde2b 508}
509
510/* gen_rtvec (n, [rt1, ..., rtn])
511**
512** This routine creates an rtvec and stores within it the
513** pointers to rtx's which are its arguments.
514*/
515
516/*VARARGS1*/
517rtvec
621f6678 518gen_rtvec VPARAMS ((int n, ...))
15bbde2b 519{
7ad77798 520 int i, save_n;
15bbde2b 521 rtx *vector;
522
0903457a 523 VA_OPEN (p, n);
524 VA_FIXEDARG (p, int, n);
15bbde2b 525
526 if (n == 0)
527 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
528
529 vector = (rtx *) alloca (n * sizeof (rtx));
e5fcd76a 530
15bbde2b 531 for (i = 0; i < n; i++)
532 vector[i] = va_arg (p, rtx);
7ad77798 533
534 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
535 save_n = n;
0903457a 536 VA_CLOSE (p);
15bbde2b 537
7ad77798 538 return gen_rtvec_v (save_n, vector);
15bbde2b 539}
540
541rtvec
542gen_rtvec_v (n, argp)
543 int n;
544 rtx *argp;
545{
546 register int i;
547 register rtvec rt_val;
548
549 if (n == 0)
550 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
551
552 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
553
554 for (i = 0; i < n; i++)
a4070a91 555 rt_val->elem[i] = *argp++;
15bbde2b 556
557 return rt_val;
558}
fbaa9422 559
15bbde2b 560\f
561/* Generate a REG rtx for a new pseudo register of mode MODE.
562 This pseudo is assigned the next sequential register number. */
563
564rtx
565gen_reg_rtx (mode)
566 enum machine_mode mode;
567{
08513b52 568 struct function *f = cfun;
15bbde2b 569 register rtx val;
570
9e519b97 571 /* Don't let anything called after initial flow analysis create new
572 registers. */
573 if (no_new_pseudos)
15bbde2b 574 abort ();
575
316bc009 576 if (generating_concat_p
577 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
578 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 579 {
580 /* For complex modes, don't make a single pseudo.
581 Instead, make a CONCAT of two pseudos.
582 This allows noncontiguous allocation of the real and imaginary parts,
583 which makes much better code. Besides, allocating DCmode
584 pseudos overstrains reload on some machines like the 386. */
585 rtx realpart, imagpart;
586 int size = GET_MODE_UNIT_SIZE (mode);
587 enum machine_mode partmode
588 = mode_for_size (size * BITS_PER_UNIT,
589 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
590 ? MODE_FLOAT : MODE_INT),
591 0);
592
593 realpart = gen_reg_rtx (partmode);
594 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 595 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 596 }
597
e61a0a7f 598 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
599 to have an element for this pseudo reg number. */
15bbde2b 600
e61a0a7f 601 if (reg_rtx_no == f->emit->regno_pointer_align_length)
15bbde2b 602 {
e61a0a7f 603 int old_size = f->emit->regno_pointer_align_length;
15bbde2b 604 rtx *new1;
26df1c5e 605 char *new;
26df1c5e 606 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
0a893c29 607 memset (new + old_size, 0, old_size);
4491f79f 608 f->emit->regno_pointer_align = (unsigned char *) new;
0a893c29 609
26df1c5e 610 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
611 old_size * 2 * sizeof (rtx));
0a893c29 612 memset (new1 + old_size, 0, old_size * sizeof (rtx));
15bbde2b 613 regno_reg_rtx = new1;
614
e61a0a7f 615 f->emit->regno_pointer_align_length = old_size * 2;
15bbde2b 616 }
617
22cf44bc 618 val = gen_raw_REG (mode, reg_rtx_no);
15bbde2b 619 regno_reg_rtx[reg_rtx_no++] = val;
620 return val;
621}
622
de8ecfb5 623/* Identify REG (which may be a CONCAT) as a user register. */
624
625void
626mark_user_reg (reg)
627 rtx reg;
628{
629 if (GET_CODE (reg) == CONCAT)
630 {
631 REG_USERVAR_P (XEXP (reg, 0)) = 1;
632 REG_USERVAR_P (XEXP (reg, 1)) = 1;
633 }
634 else if (GET_CODE (reg) == REG)
635 REG_USERVAR_P (reg) = 1;
636 else
637 abort ();
638}
639
d4c332ff 640/* Identify REG as a probable pointer register and show its alignment
641 as ALIGN, if nonzero. */
15bbde2b 642
643void
d4c332ff 644mark_reg_pointer (reg, align)
15bbde2b 645 rtx reg;
d4c332ff 646 int align;
15bbde2b 647{
e61a0a7f 648 if (! REG_POINTER (reg))
612409a6 649 {
e61a0a7f 650 REG_POINTER (reg) = 1;
d4c332ff 651
612409a6 652 if (align)
653 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
654 }
655 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
656 /* We can no-longer be sure just how aligned this pointer is */
d4c332ff 657 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 658}
659
660/* Return 1 plus largest pseudo reg number used in the current function. */
661
662int
663max_reg_num ()
664{
665 return reg_rtx_no;
666}
667
668/* Return 1 + the largest label number used so far in the current function. */
669
670int
671max_label_num ()
672{
673 if (last_label_num && label_num == base_label_num)
674 return last_label_num;
675 return label_num;
676}
677
678/* Return first label number used in this function (if any were used). */
679
680int
681get_first_label_num ()
682{
683 return first_label_num;
684}
685\f
701e46d0 686/* Return the final regno of X, which is a SUBREG of a hard
687 register. */
688int
689subreg_hard_regno (x, check_mode)
690 register rtx x;
691 int check_mode;
692{
693 enum machine_mode mode = GET_MODE (x);
694 unsigned int byte_offset, base_regno, final_regno;
695 rtx reg = SUBREG_REG (x);
696
697 /* This is where we attempt to catch illegal subregs
698 created by the compiler. */
699 if (GET_CODE (x) != SUBREG
700 || GET_CODE (reg) != REG)
701 abort ();
702 base_regno = REGNO (reg);
703 if (base_regno >= FIRST_PSEUDO_REGISTER)
704 abort ();
475fa9bd 705 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
701e46d0 706 abort ();
707
708 /* Catch non-congruent offsets too. */
709 byte_offset = SUBREG_BYTE (x);
710 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
711 abort ();
712
713 final_regno = subreg_regno (x);
714
715 return final_regno;
716}
717
15bbde2b 718/* Return a value representing some low-order bits of X, where the number
719 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 720 between floating-point and fixed-point values, rather, the bit
15bbde2b 721 representation is returned.
722
723 This function handles the cases in common between gen_lowpart, below,
724 and two variants in cse.c and combine.c. These are the cases that can
725 be safely handled at all points in the compilation.
726
727 If this is not a case we can handle, return 0. */
728
729rtx
730gen_lowpart_common (mode, x)
731 enum machine_mode mode;
732 register rtx x;
733{
701e46d0 734 int msize = GET_MODE_SIZE (mode);
735 int xsize = GET_MODE_SIZE (GET_MODE (x));
736 int offset = 0;
15bbde2b 737
738 if (GET_MODE (x) == mode)
739 return x;
740
741 /* MODE must occupy no more words than the mode of X. */
742 if (GET_MODE (x) != VOIDmode
701e46d0 743 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
744 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
15bbde2b 745 return 0;
746
81802af6 747 offset = subreg_lowpart_offset (mode, GET_MODE (x));
15bbde2b 748
749 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
64115b39 750 && (GET_MODE_CLASS (mode) == MODE_INT
751 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
15bbde2b 752 {
753 /* If we are getting the low-order part of something that has been
754 sign- or zero-extended, we can either just use the object being
755 extended or make a narrower extension. If we want an even smaller
756 piece than the size of the object being extended, call ourselves
757 recursively.
758
759 This case is used mostly by combine and cse. */
760
761 if (GET_MODE (XEXP (x, 0)) == mode)
762 return XEXP (x, 0);
763 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
764 return gen_lowpart_common (mode, XEXP (x, 0));
765 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3ad7bb1c 766 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
15bbde2b 767 }
3c27c2b2 768 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
769 || GET_CODE (x) == CONCAT)
81802af6 770 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
15bbde2b 771 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
772 from the low-order part of the constant. */
64115b39 773 else if ((GET_MODE_CLASS (mode) == MODE_INT
774 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
775 && GET_MODE (x) == VOIDmode
15bbde2b 776 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
99e0010b 777 {
778 /* If MODE is twice the host word size, X is already the desired
779 representation. Otherwise, if MODE is wider than a word, we can't
b3b27b2a 780 do this. If MODE is exactly a word, return just one CONST_INT. */
99e0010b 781
d347deeb 782 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
99e0010b 783 return x;
b572011e 784 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
99e0010b 785 return 0;
b572011e 786 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
99e0010b 787 return (GET_CODE (x) == CONST_INT ? x
b572011e 788 : GEN_INT (CONST_DOUBLE_LOW (x)));
99e0010b 789 else
790 {
a0d52dee 791 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
b572011e 792 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
793 : CONST_DOUBLE_LOW (x));
99e0010b 794
a0d52dee 795 /* Sign extend to HOST_WIDE_INT. */
b3b27b2a 796 val = trunc_int_for_mode (val, mode);
99e0010b 797
798 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
b572011e 799 : GEN_INT (val));
99e0010b 800 }
801 }
15bbde2b 802
c8971cad 803#ifndef REAL_ARITHMETIC
4a307dd5 804 /* If X is an integral constant but we want it in floating-point, it
805 must be the case that we have a union of an integer and a floating-point
806 value. If the machine-parameters allow it, simulate that union here
d823ba47 807 and return the result. The two-word and single-word cases are
414a3664 808 different. */
4a307dd5 809
f51cb679 810 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 811 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 812 || flag_pretend_float)
4a307dd5 813 && GET_MODE_CLASS (mode) == MODE_FLOAT
414a3664 814 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
815 && GET_CODE (x) == CONST_INT
b572011e 816 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
414a3664 817 {
b572011e 818 union {HOST_WIDE_INT i; float d; } u;
414a3664 819
820 u.i = INTVAL (x);
715907c0 821 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
414a3664 822 }
414a3664 823 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 824 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
414a3664 825 || flag_pretend_float)
826 && GET_MODE_CLASS (mode) == MODE_FLOAT
827 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
4a307dd5 828 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
829 && GET_MODE (x) == VOIDmode
b572011e 830 && (sizeof (double) * HOST_BITS_PER_CHAR
831 == 2 * HOST_BITS_PER_WIDE_INT))
4a307dd5 832 {
b572011e 833 union {HOST_WIDE_INT i[2]; double d; } u;
834 HOST_WIDE_INT low, high;
4a307dd5 835
836 if (GET_CODE (x) == CONST_INT)
b572011e 837 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
4a307dd5 838 else
839 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
840
841#ifdef HOST_WORDS_BIG_ENDIAN
842 u.i[0] = high, u.i[1] = low;
843#else
844 u.i[0] = low, u.i[1] = high;
845#endif
846
715907c0 847 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
4a307dd5 848 }
e21bed9e 849
f51cb679 850 /* Similarly, if this is converting a floating-point value into a
851 single-word integer. Only do this is the host and target parameters are
852 compatible. */
853
854 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 855 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 856 || flag_pretend_float)
64115b39 857 && (GET_MODE_CLASS (mode) == MODE_INT
858 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
f51cb679 859 && GET_CODE (x) == CONST_DOUBLE
860 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
861 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
701e46d0 862 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
f51cb679 863
4a307dd5 864 /* Similarly, if this is converting a floating-point value into a
865 two-word integer, we can do this one word at a time and make an
866 integer. Only do this is the host and target parameters are
867 compatible. */
868
f51cb679 869 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 870 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 871 || flag_pretend_float)
64115b39 872 && (GET_MODE_CLASS (mode) == MODE_INT
6ff0332a 873 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4a307dd5 874 && GET_CODE (x) == CONST_DOUBLE
875 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
876 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
877 {
701e46d0 878 rtx lowpart, highpart;
879
880 lowpart = constant_subword (x,
881 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
882 GET_MODE (x));
883 highpart = constant_subword (x,
884 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
885 GET_MODE (x));
4a307dd5 886 if (lowpart && GET_CODE (lowpart) == CONST_INT
887 && highpart && GET_CODE (highpart) == CONST_INT)
888 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
889 }
c8971cad 890#else /* ifndef REAL_ARITHMETIC */
891
892 /* When we have a FP emulator, we can handle all conversions between
893 FP and integer operands. This simplifies reload because it
894 doesn't have to deal with constructs like (subreg:DI
895 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
7547817f 896 /* Single-precision floats are always 32-bits and double-precision
897 floats are always 64-bits. */
c8971cad 898
3c27c2b2 899 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
7547817f 900 && GET_MODE_BITSIZE (mode) == 32
c8971cad 901 && GET_CODE (x) == CONST_INT)
3c27c2b2 902 {
c8971cad 903 REAL_VALUE_TYPE r;
904 HOST_WIDE_INT i;
905
906 i = INTVAL (x);
907 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
908 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
3c27c2b2 909 }
910 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
7547817f 911 && GET_MODE_BITSIZE (mode) == 64
c8971cad 912 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
913 && GET_MODE (x) == VOIDmode)
914 {
915 REAL_VALUE_TYPE r;
916 HOST_WIDE_INT i[2];
917 HOST_WIDE_INT low, high;
918
919 if (GET_CODE (x) == CONST_INT)
920 {
921 low = INTVAL (x);
922 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
923 }
924 else
925 {
d823ba47 926 low = CONST_DOUBLE_LOW (x);
c8971cad 927 high = CONST_DOUBLE_HIGH (x);
928 }
929
930 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
931 target machine. */
932 if (WORDS_BIG_ENDIAN)
933 i[0] = high, i[1] = low;
934 else
935 i[0] = low, i[1] = high;
936
937 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
938 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
939 }
940 else if ((GET_MODE_CLASS (mode) == MODE_INT
941 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
942 && GET_CODE (x) == CONST_DOUBLE
943 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
944 {
945 REAL_VALUE_TYPE r;
946 long i[4]; /* Only the low 32 bits of each 'long' are used. */
947 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
948
949 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
7547817f 950 switch (GET_MODE_BITSIZE (GET_MODE (x)))
c8971cad 951 {
7547817f 952 case 32:
c8971cad 953 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
a774762c 954 i[1 - endian] = 0;
c8971cad 955 break;
7547817f 956 case 64:
c8971cad 957 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
958 break;
7547817f 959 case 96:
3f980cf7 960 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
961 i[3-3*endian] = 0;
3c27c2b2 962 break;
7547817f 963 case 128:
c8971cad 964 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
965 break;
966 default:
a774762c 967 abort ();
c8971cad 968 }
969
970 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
971 and return it. */
972#if HOST_BITS_PER_WIDE_INT == 32
a774762c 973 return immed_double_const (i[endian], i[1 - endian], mode);
c8971cad 974#else
83e32a86 975 {
976 int c;
977
978 if (HOST_BITS_PER_WIDE_INT != 64)
a774762c 979 abort ();
980
83e32a86 981 for (c = 0; c < 4; c++)
a774762c 982 i[c] &= ~ (0L);
3f980cf7 983
7547817f 984 switch (GET_MODE_BITSIZE (GET_MODE (x)))
3f980cf7 985 {
7547817f 986 case 32:
987 case 64:
3f980cf7 988 return immed_double_const (((unsigned long) i[endian]) |
989 (((HOST_WIDE_INT) i[1-endian]) << 32),
990 0, mode);
7547817f 991 case 96:
992 case 128:
3f980cf7 993 return immed_double_const (((unsigned long) i[endian*3]) |
994 (((HOST_WIDE_INT) i[1+endian]) << 32),
995 ((unsigned long) i[2-endian]) |
996 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
997 mode);
3c27c2b2 998 default:
999 abort ();
3f980cf7 1000 }
83e32a86 1001 }
c8971cad 1002#endif
1003 }
1004#endif /* ifndef REAL_ARITHMETIC */
4a307dd5 1005
15bbde2b 1006 /* Otherwise, we can't do this. */
1007 return 0;
1008}
1009\f
568f439b 1010/* Return the real part (which has mode MODE) of a complex value X.
1011 This always comes at the low address in memory. */
1012
1013rtx
1014gen_realpart (mode, x)
1015 enum machine_mode mode;
1016 register rtx x;
1017{
81802af6 1018 if (WORDS_BIG_ENDIAN
1019 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1020 && REG_P (x)
1021 && REGNO (x) < FIRST_PSEUDO_REGISTER)
f060a027 1022 internal_error
1023 ("Can't access real part of complex value in hard register");
0864dc1b 1024 else if (WORDS_BIG_ENDIAN)
568f439b 1025 return gen_highpart (mode, x);
1026 else
1027 return gen_lowpart (mode, x);
1028}
1029
1030/* Return the imaginary part (which has mode MODE) of a complex value X.
1031 This always comes at the high address in memory. */
1032
1033rtx
1034gen_imagpart (mode, x)
1035 enum machine_mode mode;
1036 register rtx x;
1037{
81802af6 1038 if (WORDS_BIG_ENDIAN)
568f439b 1039 return gen_lowpart (mode, x);
701e46d0 1040 else if (! WORDS_BIG_ENDIAN
ea9a92b6 1041 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1042 && REG_P (x)
1043 && REGNO (x) < FIRST_PSEUDO_REGISTER)
f060a027 1044 internal_error
1045 ("can't access imaginary part of complex value in hard register");
568f439b 1046 else
1047 return gen_highpart (mode, x);
1048}
48c70a46 1049
1050/* Return 1 iff X, assumed to be a SUBREG,
1051 refers to the real part of the complex value in its containing reg.
1052 Complex values are always stored with the real part in the first word,
1053 regardless of WORDS_BIG_ENDIAN. */
1054
1055int
1056subreg_realpart_p (x)
1057 rtx x;
1058{
1059 if (GET_CODE (x) != SUBREG)
1060 abort ();
1061
701e46d0 1062 return ((unsigned int) SUBREG_BYTE (x)
02e7a332 1063 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
48c70a46 1064}
568f439b 1065\f
15bbde2b 1066/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1067 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1068 least-significant part of X.
1069 MODE specifies how big a part of X to return;
1070 it usually should not be larger than a word.
1071 If X is a MEM whose address is a QUEUED, the value may be so also. */
1072
1073rtx
1074gen_lowpart (mode, x)
1075 enum machine_mode mode;
1076 register rtx x;
1077{
1078 rtx result = gen_lowpart_common (mode, x);
1079
1080 if (result)
1081 return result;
365c9063 1082 else if (GET_CODE (x) == REG)
1083 {
1084 /* Must be a hard reg that's not valid in MODE. */
1085 result = gen_lowpart_common (mode, copy_to_reg (x));
1086 if (result == 0)
1087 abort ();
314d6ec8 1088 return result;
365c9063 1089 }
15bbde2b 1090 else if (GET_CODE (x) == MEM)
1091 {
1092 /* The only additional case we can do is MEM. */
1093 register int offset = 0;
1094 if (WORDS_BIG_ENDIAN)
1095 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1096 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1097
1098 if (BYTES_BIG_ENDIAN)
1099 /* Adjust the address so that the address-after-the-data
1100 is unchanged. */
1101 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1102 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1103
e513d163 1104 return adjust_address (x, mode, offset);
15bbde2b 1105 }
0dbd1c74 1106 else if (GET_CODE (x) == ADDRESSOF)
1107 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
15bbde2b 1108 else
1109 abort ();
1110}
1111
d823ba47 1112/* Like `gen_lowpart', but refer to the most significant part.
d56d0ca2 1113 This is used to access the imaginary part of a complex number. */
1114
1115rtx
1116gen_highpart (mode, x)
1117 enum machine_mode mode;
1118 register rtx x;
1119{
701e46d0 1120 unsigned int msize = GET_MODE_SIZE (mode);
81802af6 1121 rtx result;
701e46d0 1122
d56d0ca2 1123 /* This case loses if X is a subreg. To catch bugs early,
1124 complain if an invalid MODE is used even in other cases. */
701e46d0 1125 if (msize > UNITS_PER_WORD
1126 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
d56d0ca2 1127 abort ();
701e46d0 1128
81802af6 1129 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1130 subreg_highpart_offset (mode, GET_MODE (x)));
a8c36ab2 1131
1132 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1133 the target if we have a MEM. gen_highpart must return a valid operand,
1134 emitting code if necessary to do so. */
1135 if (GET_CODE (result) == MEM)
1136 result = validize_mem (result);
1137
81802af6 1138 if (!result)
1139 abort ();
1140 return result;
1141}
704fcf2b 1142
1143/* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1144 be VOIDmode constant. */
1145rtx
1146gen_highpart_mode (outermode, innermode, exp)
1147 enum machine_mode outermode, innermode;
1148 rtx exp;
1149{
1150 if (GET_MODE (exp) != VOIDmode)
1151 {
1152 if (GET_MODE (exp) != innermode)
1153 abort ();
1154 return gen_highpart (outermode, exp);
1155 }
1156 return simplify_gen_subreg (outermode, exp, innermode,
1157 subreg_highpart_offset (outermode, innermode));
1158}
81802af6 1159/* Return offset in bytes to get OUTERMODE low part
1160 of the value in mode INNERMODE stored in memory in target format. */
10ef59ac 1161
81802af6 1162unsigned int
1163subreg_lowpart_offset (outermode, innermode)
1164 enum machine_mode outermode, innermode;
1165{
1166 unsigned int offset = 0;
1167 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
10ef59ac 1168
81802af6 1169 if (difference > 0)
d56d0ca2 1170 {
81802af6 1171 if (WORDS_BIG_ENDIAN)
1172 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1173 if (BYTES_BIG_ENDIAN)
1174 offset += difference % UNITS_PER_WORD;
d56d0ca2 1175 }
701e46d0 1176
81802af6 1177 return offset;
d56d0ca2 1178}
64ab453f 1179
81802af6 1180/* Return offset in bytes to get OUTERMODE high part
1181 of the value in mode INNERMODE stored in memory in target format. */
1182unsigned int
1183subreg_highpart_offset (outermode, innermode)
64ab453f 1184 enum machine_mode outermode, innermode;
64ab453f 1185{
1186 unsigned int offset = 0;
1187 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1188
81802af6 1189 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1190 abort ();
1191
64ab453f 1192 if (difference > 0)
1193 {
81802af6 1194 if (! WORDS_BIG_ENDIAN)
64ab453f 1195 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
81802af6 1196 if (! BYTES_BIG_ENDIAN)
64ab453f 1197 offset += difference % UNITS_PER_WORD;
1198 }
1199
81802af6 1200 return offset;
64ab453f 1201}
d56d0ca2 1202
15bbde2b 1203/* Return 1 iff X, assumed to be a SUBREG,
1204 refers to the least significant part of its containing reg.
1205 If X is not a SUBREG, always return 1 (it is its own low part!). */
1206
1207int
1208subreg_lowpart_p (x)
1209 rtx x;
1210{
1211 if (GET_CODE (x) != SUBREG)
1212 return 1;
7e14c1bf 1213 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1214 return 0;
15bbde2b 1215
81802af6 1216 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1217 == SUBREG_BYTE (x));
15bbde2b 1218}
1219\f
15bbde2b 1220
701e46d0 1221/* Helper routine for all the constant cases of operand_subword.
1222 Some places invoke this directly. */
15bbde2b 1223
1224rtx
701e46d0 1225constant_subword (op, offset, mode)
15bbde2b 1226 rtx op;
701e46d0 1227 int offset;
15bbde2b 1228 enum machine_mode mode;
1229{
b572011e 1230 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
701e46d0 1231 HOST_WIDE_INT val;
15bbde2b 1232
1233 /* If OP is already an integer word, return it. */
1234 if (GET_MODE_CLASS (mode) == MODE_INT
1235 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1236 return op;
1237
fc92fa61 1238#ifdef REAL_ARITHMETIC
915c336f 1239 /* The output is some bits, the width of the target machine's word.
1240 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1241 host can't. */
0477aa9f 1242 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
fc92fa61 1243 && GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1244 && GET_MODE_BITSIZE (mode) == 64
fc92fa61 1245 && GET_CODE (op) == CONST_DOUBLE)
1246 {
0477aa9f 1247 long k[2];
fc92fa61 1248 REAL_VALUE_TYPE rv;
1249
1250 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1251 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
48509d90 1252
0477aa9f 1253 /* We handle 32-bit and >= 64-bit words here. Note that the order in
48509d90 1254 which the words are written depends on the word endianness.
48509d90 1255 ??? This is a potential portability problem and should
cd1091f4 1256 be fixed at some point.
1257
1258 We must excercise caution with the sign bit. By definition there
1259 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1260 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1261 So we explicitly mask and sign-extend as necessary. */
0477aa9f 1262 if (BITS_PER_WORD == 32)
cd1091f4 1263 {
701e46d0 1264 val = k[offset];
cd1091f4 1265 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1266 return GEN_INT (val);
1267 }
1268#if HOST_BITS_PER_WIDE_INT >= 64
701e46d0 1269 else if (BITS_PER_WORD >= 64 && offset == 0)
cd1091f4 1270 {
1271 val = k[! WORDS_BIG_ENDIAN];
1272 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1273 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1274 return GEN_INT (val);
1275 }
0477aa9f 1276#endif
de8de626 1277 else if (BITS_PER_WORD == 16)
1278 {
701e46d0 1279 val = k[offset >> 1];
1280 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
cd1091f4 1281 val >>= 16;
bfc60c50 1282 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
cd1091f4 1283 return GEN_INT (val);
de8de626 1284 }
48509d90 1285 else
1286 abort ();
fc92fa61 1287 }
61f41e95 1288 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1289 && GET_MODE_CLASS (mode) == MODE_FLOAT
1290 && GET_MODE_BITSIZE (mode) > 64
1291 && GET_CODE (op) == CONST_DOUBLE)
915c336f 1292 {
1293 long k[4];
1294 REAL_VALUE_TYPE rv;
61f41e95 1295
915c336f 1296 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1297 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
61f41e95 1298
915c336f 1299 if (BITS_PER_WORD == 32)
1300 {
701e46d0 1301 val = k[offset];
915c336f 1302 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1303 return GEN_INT (val);
1304 }
1305#if HOST_BITS_PER_WIDE_INT >= 64
701e46d0 1306 else if (BITS_PER_WORD >= 64 && offset <= 1)
915c336f 1307 {
701e46d0 1308 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
915c336f 1309 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
701e46d0 1310 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
915c336f 1311 return GEN_INT (val);
1312 }
1313#endif
1314 else
1315 abort ();
1316 }
fc92fa61 1317#else /* no REAL_ARITHMETIC */
15bbde2b 1318 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1319 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1320 || flag_pretend_float)
1321 && GET_MODE_CLASS (mode) == MODE_FLOAT
1322 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1323 && GET_CODE (op) == CONST_DOUBLE)
35bb04fc 1324 {
1325 /* The constant is stored in the host's word-ordering,
1326 but we want to access it in the target's word-ordering. Some
1327 compilers don't like a conditional inside macro args, so we have two
1328 copies of the return. */
06683233 1329#ifdef HOST_WORDS_BIG_ENDIAN
701e46d0 1330 return GEN_INT (offset == WORDS_BIG_ENDIAN
35bb04fc 1331 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1332#else
701e46d0 1333 return GEN_INT (offset != WORDS_BIG_ENDIAN
35bb04fc 1334 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1335#endif
35bb04fc 1336 }
fc92fa61 1337#endif /* no REAL_ARITHMETIC */
15bbde2b 1338
1339 /* Single word float is a little harder, since single- and double-word
1340 values often do not have the same high-order bits. We have already
1341 verified that we want the only defined word of the single-word value. */
fc92fa61 1342#ifdef REAL_ARITHMETIC
0477aa9f 1343 if (GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1344 && GET_MODE_BITSIZE (mode) == 32
fc92fa61 1345 && GET_CODE (op) == CONST_DOUBLE)
1346 {
0477aa9f 1347 long l;
fc92fa61 1348 REAL_VALUE_TYPE rv;
1349
1350 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1351 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
587a9fdf 1352
cd1091f4 1353 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1354 val = l;
1355 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
eb294a2f 1356
587a9fdf 1357 if (BITS_PER_WORD == 16)
1358 {
701e46d0 1359 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
cd1091f4 1360 val >>= 16;
bfc60c50 1361 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
587a9fdf 1362 }
cd1091f4 1363
1364 return GEN_INT (val);
fc92fa61 1365 }
1366#else
15bbde2b 1367 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1368 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1369 || flag_pretend_float)
dc611f66 1370 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
15bbde2b 1371 && GET_MODE_CLASS (mode) == MODE_FLOAT
1372 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1373 && GET_CODE (op) == CONST_DOUBLE)
1374 {
1375 double d;
b572011e 1376 union {float f; HOST_WIDE_INT i; } u;
15bbde2b 1377
1378 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1379
1380 u.f = d;
b572011e 1381 return GEN_INT (u.i);
15bbde2b 1382 }
dc611f66 1383 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1384 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1385 || flag_pretend_float)
1386 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1387 && GET_MODE_CLASS (mode) == MODE_FLOAT
1388 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1389 && GET_CODE (op) == CONST_DOUBLE)
1390 {
1391 double d;
1392 union {double d; HOST_WIDE_INT i; } u;
1393
1394 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1395
1396 u.d = d;
1397 return GEN_INT (u.i);
1398 }
fc92fa61 1399#endif /* no REAL_ARITHMETIC */
d823ba47 1400
15bbde2b 1401 /* The only remaining cases that we can handle are integers.
1402 Convert to proper endianness now since these cases need it.
d823ba47 1403 At this point, offset == 0 means the low-order word.
15bbde2b 1404
870288ea 1405 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1406 in general. However, if OP is (const_int 0), we can just return
1407 it for any word. */
1408
1409 if (op == const0_rtx)
1410 return op;
15bbde2b 1411
1412 if (GET_MODE_CLASS (mode) != MODE_INT
870288ea 1413 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
5c1fd70d 1414 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
15bbde2b 1415 return 0;
1416
1417 if (WORDS_BIG_ENDIAN)
701e46d0 1418 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
15bbde2b 1419
1420 /* Find out which word on the host machine this value is in and get
1421 it from the constant. */
701e46d0 1422 val = (offset / size_ratio == 0
15bbde2b 1423 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1424 : (GET_CODE (op) == CONST_INT
1425 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1426
5418f2a8 1427 /* Get the value we want into the low bits of val. */
b572011e 1428 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
701e46d0 1429 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
5418f2a8 1430
b2345915 1431 val = trunc_int_for_mode (val, word_mode);
15bbde2b 1432
b572011e 1433 return GEN_INT (val);
15bbde2b 1434}
1435
701e46d0 1436/* Return subword OFFSET of operand OP.
1437 The word number, OFFSET, is interpreted as the word number starting
1438 at the low-order address. OFFSET 0 is the low-order word if not
1439 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1440
1441 If we cannot extract the required word, we return zero. Otherwise,
1442 an rtx corresponding to the requested word will be returned.
1443
1444 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1445 reload has completed, a valid address will always be returned. After
1446 reload, if a valid address cannot be returned, we return zero.
1447
1448 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1449 it is the responsibility of the caller.
1450
1451 MODE is the mode of OP in case it is a CONST_INT.
1452
1453 ??? This is still rather broken for some cases. The problem for the
1454 moment is that all callers of this thing provide no 'goal mode' to
1455 tell us to work with. This exists because all callers were written
84e81e84 1456 in a word based SUBREG world.
1457 Now use of this function can be deprecated by simplify_subreg in most
1458 cases.
1459 */
701e46d0 1460
1461rtx
1462operand_subword (op, offset, validate_address, mode)
1463 rtx op;
1464 unsigned int offset;
1465 int validate_address;
1466 enum machine_mode mode;
1467{
1468 if (mode == VOIDmode)
1469 mode = GET_MODE (op);
1470
1471 if (mode == VOIDmode)
1472 abort ();
1473
6312a35e 1474 /* If OP is narrower than a word, fail. */
701e46d0 1475 if (mode != BLKmode
1476 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1477 return 0;
1478
6312a35e 1479 /* If we want a word outside OP, return zero. */
701e46d0 1480 if (mode != BLKmode
1481 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1482 return const0_rtx;
1483
701e46d0 1484 /* Form a new MEM at the requested address. */
1485 if (GET_CODE (op) == MEM)
1486 {
e4e86ec5 1487 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1488
e4e86ec5 1489 if (! validate_address)
1490 return new;
1491
1492 else if (reload_completed)
701e46d0 1493 {
e4e86ec5 1494 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1495 return 0;
701e46d0 1496 }
e4e86ec5 1497 else
1498 return replace_equiv_address (new, XEXP (new, 0));
701e46d0 1499 }
1500
84e81e84 1501 /* Rest can be handled by simplify_subreg. */
1502 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1503}
1504
15bbde2b 1505/* Similar to `operand_subword', but never return 0. If we can't extract
1506 the required subword, put OP into a register and try again. If that fails,
d823ba47 1507 abort. We always validate the address in this case.
15bbde2b 1508
1509 MODE is the mode of OP, in case it is CONST_INT. */
1510
1511rtx
701e46d0 1512operand_subword_force (op, offset, mode)
15bbde2b 1513 rtx op;
701e46d0 1514 unsigned int offset;
15bbde2b 1515 enum machine_mode mode;
1516{
701e46d0 1517 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1518
1519 if (result)
1520 return result;
1521
1522 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1523 {
1524 /* If this is a register which can not be accessed by words, copy it
1525 to a pseudo register. */
1526 if (GET_CODE (op) == REG)
1527 op = copy_to_reg (op);
1528 else
1529 op = force_reg (mode, op);
1530 }
15bbde2b 1531
701e46d0 1532 result = operand_subword (op, offset, 1, mode);
15bbde2b 1533 if (result == 0)
1534 abort ();
1535
1536 return result;
1537}
1538\f
1539/* Given a compare instruction, swap the operands.
1540 A test instruction is changed into a compare of 0 against the operand. */
1541
1542void
1543reverse_comparison (insn)
1544 rtx insn;
1545{
1546 rtx body = PATTERN (insn);
1547 rtx comp;
1548
1549 if (GET_CODE (body) == SET)
1550 comp = SET_SRC (body);
1551 else
1552 comp = SET_SRC (XVECEXP (body, 0, 0));
1553
1554 if (GET_CODE (comp) == COMPARE)
1555 {
1556 rtx op0 = XEXP (comp, 0);
1557 rtx op1 = XEXP (comp, 1);
1558 XEXP (comp, 0) = op1;
1559 XEXP (comp, 1) = op0;
1560 }
1561 else
1562 {
7014838c 1563 rtx new = gen_rtx_COMPARE (VOIDmode,
1564 CONST0_RTX (GET_MODE (comp)), comp);
15bbde2b 1565 if (GET_CODE (body) == SET)
1566 SET_SRC (body) = new;
1567 else
1568 SET_SRC (XVECEXP (body, 0, 0)) = new;
1569 }
1570}
1571\f
1572/* Return a memory reference like MEMREF, but with its mode changed
1573 to MODE and its address changed to ADDR.
1574 (VOIDmode means don't change the mode.
e4e86ec5 1575 NULL for ADDR means don't change the address.)
1576 VALIDATE is nonzero if the returned memory location is required to be
1577 valid. */
15bbde2b 1578
1579rtx
e4e86ec5 1580change_address_1 (memref, mode, addr, validate)
15bbde2b 1581 rtx memref;
1582 enum machine_mode mode;
1583 rtx addr;
e4e86ec5 1584 int validate;
15bbde2b 1585{
1586 rtx new;
1587
1588 if (GET_CODE (memref) != MEM)
1589 abort ();
1590 if (mode == VOIDmode)
1591 mode = GET_MODE (memref);
1592 if (addr == 0)
1593 addr = XEXP (memref, 0);
1594
e4e86ec5 1595 if (validate)
15bbde2b 1596 {
e4e86ec5 1597 if (reload_in_progress || reload_completed)
1598 {
1599 if (! memory_address_p (mode, addr))
1600 abort ();
1601 }
1602 else
1603 addr = memory_address (mode, addr);
15bbde2b 1604 }
d823ba47 1605
e8976cd7 1606 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1607 return memref;
1608
3ad7bb1c 1609 new = gen_rtx_MEM (mode, addr);
6a0934dd 1610 MEM_COPY_ATTRIBUTES (new, memref);
15bbde2b 1611 return new;
1612}
537ffcfc 1613
e513d163 1614/* Return a memory reference like MEMREF, but with its mode changed
1615 to MODE and its address offset by OFFSET bytes. */
1616
1617rtx
1618adjust_address (memref, mode, offset)
1619 rtx memref;
1620 enum machine_mode mode;
1621 HOST_WIDE_INT offset;
1622{
1623 /* For now, this is just a wrapper for change_address, but eventually
1624 will do memref tracking. */
fb257ae6 1625 rtx addr = XEXP (memref, 0);
1626
6cc60c4d 1627 /* ??? Prefer to create garbage instead of creating shared rtl. */
1628 addr = copy_rtx (addr);
1629
9c5033bb 1630 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
fb257ae6 1631 object, we can merge it into the LO_SUM. */
1632 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
9c5033bb 1633 && offset >= 0
eca1c9c0 1634 && (unsigned HOST_WIDE_INT) offset
1635 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
dc556e72 1636 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
fb257ae6 1637 plus_constant (XEXP (addr, 1), offset));
1638 else
1639 addr = plus_constant (addr, offset);
1640
1641 return change_address (memref, mode, addr);
e513d163 1642}
537ffcfc 1643
e4e86ec5 1644/* Likewise, but the reference is not required to be valid. */
1645
1646rtx
1647adjust_address_nv (memref, mode, offset)
1648 rtx memref;
1649 enum machine_mode mode;
1650 HOST_WIDE_INT offset;
1651{
1652 /* For now, this is just a wrapper for change_address, but eventually
1653 will do memref tracking. */
fb257ae6 1654 rtx addr = XEXP (memref, 0);
1655
1656 /* If MEMREF is a LO_SUM and the offset is within the size of the
1657 object, we can merge it into the LO_SUM. */
1658 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
9c5033bb 1659 && offset >= 0
eca1c9c0 1660 && (unsigned HOST_WIDE_INT) offset
1661 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
fb257ae6 1662 addr = gen_rtx_LO_SUM (mode, XEXP (addr, 0),
1663 plus_constant (XEXP (addr, 1), offset));
1664 else
1665 addr = plus_constant (addr, offset);
1666
1667 return change_address_1 (memref, mode, addr, 0);
e4e86ec5 1668}
1669
537ffcfc 1670/* Return a memory reference like MEMREF, but with its address changed to
1671 ADDR. The caller is asserting that the actual piece of memory pointed
1672 to is the same, just the form of the address is being changed, such as
1673 by putting something into a register. */
1674
1675rtx
1676replace_equiv_address (memref, addr)
1677 rtx memref;
1678 rtx addr;
1679{
1680 /* For now, this is just a wrapper for change_address, but eventually
1681 will do memref tracking. */
1682 return change_address (memref, VOIDmode, addr);
1683}
e4e86ec5 1684/* Likewise, but the reference is not required to be valid. */
1685
1686rtx
1687replace_equiv_address_nv (memref, addr)
1688 rtx memref;
1689 rtx addr;
1690{
1691 /* For now, this is just a wrapper for change_address, but eventually
1692 will do memref tracking. */
1693 return change_address_1 (memref, VOIDmode, addr, 0);
1694}
15bbde2b 1695\f
1696/* Return a newly created CODE_LABEL rtx with a unique label number. */
1697
1698rtx
1699gen_label_rtx ()
1700{
649d8da6 1701 register rtx label;
1702
b54842d8 1703 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
4679ade3 1704 NULL_RTX, label_num++, NULL, NULL);
649d8da6 1705
15bbde2b 1706 LABEL_NUSES (label) = 0;
bfee5366 1707 LABEL_ALTERNATE_NAME (label) = NULL;
15bbde2b 1708 return label;
1709}
1710\f
1711/* For procedure integration. */
1712
15bbde2b 1713/* Install new pointers to the first and last insns in the chain.
d4c332ff 1714 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 1715 Used for an inline-procedure after copying the insn chain. */
1716
1717void
1718set_new_first_and_last_insn (first, last)
1719 rtx first, last;
1720{
d4c332ff 1721 rtx insn;
1722
15bbde2b 1723 first_insn = first;
1724 last_insn = last;
d4c332ff 1725 cur_insn_uid = 0;
1726
1727 for (insn = first; insn; insn = NEXT_INSN (insn))
1728 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1729
1730 cur_insn_uid++;
15bbde2b 1731}
1732
1733/* Set the range of label numbers found in the current function.
1734 This is used when belatedly compiling an inline function. */
1735
1736void
1737set_new_first_and_last_label_num (first, last)
1738 int first, last;
1739{
1740 base_label_num = label_num;
1741 first_label_num = first;
1742 last_label_num = last;
1743}
0a893c29 1744
1745/* Set the last label number found in the current function.
1746 This is used when belatedly compiling an inline function. */
15bbde2b 1747
1748void
0a893c29 1749set_new_last_label_num (last)
1750 int last;
15bbde2b 1751{
0a893c29 1752 base_label_num = label_num;
1753 last_label_num = last;
15bbde2b 1754}
0a893c29 1755\f
15bbde2b 1756/* Restore all variables describing the current status from the structure *P.
1757 This is used after a nested function. */
1758
1759void
1760restore_emit_status (p)
c5b89159 1761 struct function *p ATTRIBUTE_UNUSED;
15bbde2b 1762{
bb9d6298 1763 last_label_num = 0;
0a893c29 1764 clear_emit_caches ();
15bbde2b 1765}
26df1c5e 1766
c788feb1 1767/* Clear out all parts of the state in F that can safely be discarded
26df1c5e 1768 after the function has been compiled, to let garbage collection
a57bcb3b 1769 reclaim the memory. */
c788feb1 1770
26df1c5e 1771void
a57bcb3b 1772free_emit_status (f)
26df1c5e 1773 struct function *f;
1774{
1775 free (f->emit->x_regno_reg_rtx);
26df1c5e 1776 free (f->emit->regno_pointer_align);
3c3bb268 1777 free (f->emit);
1778 f->emit = NULL;
26df1c5e 1779}
15bbde2b 1780\f
d823ba47 1781/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 1782 structure. This routine should only be called once. */
15bbde2b 1783
1784void
2d96a59a 1785unshare_all_rtl (fndecl, insn)
1786 tree fndecl;
1787 rtx insn;
15bbde2b 1788{
2d96a59a 1789 tree decl;
15bbde2b 1790
2d96a59a 1791 /* Make sure that virtual parameters are not shared. */
1792 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
0e8e37b2 1793 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2d96a59a 1794
72ec8878 1795 /* Make sure that virtual stack slots are not shared. */
1796 unshare_all_decls (DECL_INITIAL (fndecl));
1797
2d96a59a 1798 /* Unshare just about everything else. */
1799 unshare_all_rtl_1 (insn);
d823ba47 1800
15bbde2b 1801 /* Make sure the addresses of stack slots found outside the insn chain
1802 (such as, in DECL_RTL of a variable) are not shared
1803 with the insn chain.
1804
1805 This special care is necessary when the stack slot MEM does not
1806 actually appear in the insn chain. If it does appear, its address
1807 is unshared from all else at that point. */
45733446 1808 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
15bbde2b 1809}
1810
d823ba47 1811/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 1812 structure, again. This is a fairly expensive thing to do so it
1813 should be done sparingly. */
1814
1815void
1816unshare_all_rtl_again (insn)
1817 rtx insn;
1818{
1819 rtx p;
5244079b 1820 tree decl;
1821
2d96a59a 1822 for (p = insn; p; p = NEXT_INSN (p))
9204e736 1823 if (INSN_P (p))
2d96a59a 1824 {
1825 reset_used_flags (PATTERN (p));
1826 reset_used_flags (REG_NOTES (p));
1827 reset_used_flags (LOG_LINKS (p));
1828 }
5244079b 1829
01dc9f0c 1830 /* Make sure that virtual stack slots are not shared. */
1831 reset_used_decls (DECL_INITIAL (cfun->decl));
1832
5244079b 1833 /* Make sure that virtual parameters are not shared. */
1834 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1835 reset_used_flags (DECL_RTL (decl));
1836
1837 reset_used_flags (stack_slot_list);
1838
1839 unshare_all_rtl (cfun->decl, insn);
2d96a59a 1840}
1841
1842/* Go through all the RTL insn bodies and copy any invalid shared structure.
1843 Assumes the mark bits are cleared at entry. */
1844
1845static void
1846unshare_all_rtl_1 (insn)
1847 rtx insn;
1848{
1849 for (; insn; insn = NEXT_INSN (insn))
9204e736 1850 if (INSN_P (insn))
2d96a59a 1851 {
1852 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1853 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1854 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1855 }
1856}
1857
72ec8878 1858/* Go through all virtual stack slots of a function and copy any
1859 shared structure. */
1860static void
1861unshare_all_decls (blk)
1862 tree blk;
1863{
1864 tree t;
1865
1866 /* Copy shared decls. */
1867 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
0e8e37b2 1868 if (DECL_RTL_SET_P (t))
1869 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
72ec8878 1870
1871 /* Now process sub-blocks. */
1872 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1873 unshare_all_decls (t);
1874}
1875
01dc9f0c 1876/* Go through all virtual stack slots of a function and mark them as
6312a35e 1877 not shared. */
01dc9f0c 1878static void
1879reset_used_decls (blk)
1880 tree blk;
1881{
1882 tree t;
1883
1884 /* Mark decls. */
1885 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
0e8e37b2 1886 if (DECL_RTL_SET_P (t))
1887 reset_used_flags (DECL_RTL (t));
01dc9f0c 1888
1889 /* Now process sub-blocks. */
1890 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1891 reset_used_decls (t);
1892}
1893
15bbde2b 1894/* Mark ORIG as in use, and return a copy of it if it was already in use.
1895 Recursively does the same for subexpressions. */
1896
1897rtx
1898copy_rtx_if_shared (orig)
1899 rtx orig;
1900{
1901 register rtx x = orig;
1902 register int i;
1903 register enum rtx_code code;
d2ca078f 1904 register const char *format_ptr;
15bbde2b 1905 int copied = 0;
1906
1907 if (x == 0)
1908 return 0;
1909
1910 code = GET_CODE (x);
1911
1912 /* These types may be freely shared. */
1913
1914 switch (code)
1915 {
1916 case REG:
1917 case QUEUED:
1918 case CONST_INT:
1919 case CONST_DOUBLE:
1920 case SYMBOL_REF:
1921 case CODE_LABEL:
1922 case PC:
1923 case CC0:
1924 case SCRATCH:
a92771b8 1925 /* SCRATCH must be shared because they represent distinct values. */
15bbde2b 1926 return x;
1927
f63d12e3 1928 case CONST:
1929 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1930 a LABEL_REF, it isn't sharable. */
1931 if (GET_CODE (XEXP (x, 0)) == PLUS
1932 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1933 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1934 return x;
1935 break;
1936
15bbde2b 1937 case INSN:
1938 case JUMP_INSN:
1939 case CALL_INSN:
1940 case NOTE:
15bbde2b 1941 case BARRIER:
1942 /* The chain of insns is not being copied. */
1943 return x;
1944
1945 case MEM:
baf55c37 1946 /* A MEM is allowed to be shared if its address is constant.
1947
d823ba47 1948 We used to allow sharing of MEMs which referenced
baf55c37 1949 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1950 that can lose. instantiate_virtual_regs will not unshare
1951 the MEMs, and combine may change the structure of the address
1952 because it looks safe and profitable in one context, but
1953 in some other context it creates unrecognizable RTL. */
1954 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
15bbde2b 1955 return x;
1956
0dbd1c74 1957 break;
1958
1959 default:
1960 break;
15bbde2b 1961 }
1962
1963 /* This rtx may not be shared. If it has already been seen,
1964 replace it with a copy of itself. */
1965
1966 if (x->used)
1967 {
1968 register rtx copy;
1969
1970 copy = rtx_alloc (code);
b1b63592 1971 memcpy (copy, x,
748e6d74 1972 (sizeof (*copy) - sizeof (copy->fld)
1973 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
15bbde2b 1974 x = copy;
1975 copied = 1;
1976 }
1977 x->used = 1;
1978
1979 /* Now scan the subexpressions recursively.
1980 We can store any replaced subexpressions directly into X
1981 since we know X is not shared! Any vectors in X
1982 must be copied if X was copied. */
1983
1984 format_ptr = GET_RTX_FORMAT (code);
1985
1986 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1987 {
1988 switch (*format_ptr++)
1989 {
1990 case 'e':
1991 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1992 break;
1993
1994 case 'E':
1995 if (XVEC (x, i) != NULL)
1996 {
1997 register int j;
ffe0869b 1998 int len = XVECLEN (x, i);
15bbde2b 1999
ffe0869b 2000 if (copied && len > 0)
a4070a91 2001 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
ffe0869b 2002 for (j = 0; j < len; j++)
2003 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
15bbde2b 2004 }
2005 break;
2006 }
2007 }
2008 return x;
2009}
2010
2011/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2012 to look for shared sub-parts. */
2013
2014void
2015reset_used_flags (x)
2016 rtx x;
2017{
2018 register int i, j;
2019 register enum rtx_code code;
d2ca078f 2020 register const char *format_ptr;
15bbde2b 2021
2022 if (x == 0)
2023 return;
2024
2025 code = GET_CODE (x);
2026
c3418f42 2027 /* These types may be freely shared so we needn't do any resetting
15bbde2b 2028 for them. */
2029
2030 switch (code)
2031 {
2032 case REG:
2033 case QUEUED:
2034 case CONST_INT:
2035 case CONST_DOUBLE:
2036 case SYMBOL_REF:
2037 case CODE_LABEL:
2038 case PC:
2039 case CC0:
2040 return;
2041
2042 case INSN:
2043 case JUMP_INSN:
2044 case CALL_INSN:
2045 case NOTE:
2046 case LABEL_REF:
2047 case BARRIER:
2048 /* The chain of insns is not being copied. */
2049 return;
d823ba47 2050
0dbd1c74 2051 default:
2052 break;
15bbde2b 2053 }
2054
2055 x->used = 0;
2056
2057 format_ptr = GET_RTX_FORMAT (code);
2058 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2059 {
2060 switch (*format_ptr++)
2061 {
2062 case 'e':
2063 reset_used_flags (XEXP (x, i));
2064 break;
2065
2066 case 'E':
2067 for (j = 0; j < XVECLEN (x, i); j++)
2068 reset_used_flags (XVECEXP (x, i, j));
2069 break;
2070 }
2071 }
2072}
2073\f
2074/* Copy X if necessary so that it won't be altered by changes in OTHER.
2075 Return X or the rtx for the pseudo reg the value of X was copied into.
2076 OTHER must be valid as a SET_DEST. */
2077
2078rtx
2079make_safe_from (x, other)
2080 rtx x, other;
2081{
2082 while (1)
2083 switch (GET_CODE (other))
2084 {
2085 case SUBREG:
2086 other = SUBREG_REG (other);
2087 break;
2088 case STRICT_LOW_PART:
2089 case SIGN_EXTEND:
2090 case ZERO_EXTEND:
2091 other = XEXP (other, 0);
2092 break;
2093 default:
2094 goto done;
2095 }
2096 done:
2097 if ((GET_CODE (other) == MEM
2098 && ! CONSTANT_P (x)
2099 && GET_CODE (x) != REG
2100 && GET_CODE (x) != SUBREG)
2101 || (GET_CODE (other) == REG
2102 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2103 || reg_mentioned_p (other, x))))
2104 {
2105 rtx temp = gen_reg_rtx (GET_MODE (x));
2106 emit_move_insn (temp, x);
2107 return temp;
2108 }
2109 return x;
2110}
2111\f
2112/* Emission of insns (adding them to the doubly-linked list). */
2113
2114/* Return the first insn of the current sequence or current function. */
2115
2116rtx
2117get_insns ()
2118{
2119 return first_insn;
2120}
2121
2122/* Return the last insn emitted in current sequence or current function. */
2123
2124rtx
2125get_last_insn ()
2126{
2127 return last_insn;
2128}
2129
2130/* Specify a new insn as the last in the chain. */
2131
2132void
2133set_last_insn (insn)
2134 rtx insn;
2135{
2136 if (NEXT_INSN (insn) != 0)
2137 abort ();
2138 last_insn = insn;
2139}
2140
2141/* Return the last insn emitted, even if it is in a sequence now pushed. */
2142
2143rtx
2144get_last_insn_anywhere ()
2145{
2146 struct sequence_stack *stack;
2147 if (last_insn)
2148 return last_insn;
0a893c29 2149 for (stack = seq_stack; stack; stack = stack->next)
15bbde2b 2150 if (stack->last != 0)
2151 return stack->last;
2152 return 0;
2153}
2154
2155/* Return a number larger than any instruction's uid in this function. */
2156
2157int
2158get_max_uid ()
2159{
2160 return cur_insn_uid;
2161}
90b89d2c 2162
214d02d0 2163/* Renumber instructions so that no instruction UIDs are wasted. */
2164
90b89d2c 2165void
214d02d0 2166renumber_insns (stream)
2167 FILE *stream;
90b89d2c 2168{
2169 rtx insn;
90b89d2c 2170
214d02d0 2171 /* If we're not supposed to renumber instructions, don't. */
2172 if (!flag_renumber_insns)
2173 return;
2174
90b89d2c 2175 /* If there aren't that many instructions, then it's not really
2176 worth renumbering them. */
214d02d0 2177 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
90b89d2c 2178 return;
2179
2180 cur_insn_uid = 1;
2181
2182 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
214d02d0 2183 {
2184 if (stream)
d823ba47 2185 fprintf (stream, "Renumbering insn %d to %d\n",
214d02d0 2186 INSN_UID (insn), cur_insn_uid);
2187 INSN_UID (insn) = cur_insn_uid++;
2188 }
90b89d2c 2189}
15bbde2b 2190\f
2191/* Return the next insn. If it is a SEQUENCE, return the first insn
2192 of the sequence. */
2193
2194rtx
2195next_insn (insn)
2196 rtx insn;
2197{
2198 if (insn)
2199 {
2200 insn = NEXT_INSN (insn);
2201 if (insn && GET_CODE (insn) == INSN
2202 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2203 insn = XVECEXP (PATTERN (insn), 0, 0);
2204 }
2205
2206 return insn;
2207}
2208
2209/* Return the previous insn. If it is a SEQUENCE, return the last insn
2210 of the sequence. */
2211
2212rtx
2213previous_insn (insn)
2214 rtx insn;
2215{
2216 if (insn)
2217 {
2218 insn = PREV_INSN (insn);
2219 if (insn && GET_CODE (insn) == INSN
2220 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2221 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2222 }
2223
2224 return insn;
2225}
2226
2227/* Return the next insn after INSN that is not a NOTE. This routine does not
2228 look inside SEQUENCEs. */
2229
2230rtx
2231next_nonnote_insn (insn)
2232 rtx insn;
2233{
2234 while (insn)
2235 {
2236 insn = NEXT_INSN (insn);
2237 if (insn == 0 || GET_CODE (insn) != NOTE)
2238 break;
2239 }
2240
2241 return insn;
2242}
2243
2244/* Return the previous insn before INSN that is not a NOTE. This routine does
2245 not look inside SEQUENCEs. */
2246
2247rtx
2248prev_nonnote_insn (insn)
2249 rtx insn;
2250{
2251 while (insn)
2252 {
2253 insn = PREV_INSN (insn);
2254 if (insn == 0 || GET_CODE (insn) != NOTE)
2255 break;
2256 }
2257
2258 return insn;
2259}
2260
2261/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2262 or 0, if there is none. This routine does not look inside
a92771b8 2263 SEQUENCEs. */
15bbde2b 2264
2265rtx
2266next_real_insn (insn)
2267 rtx insn;
2268{
2269 while (insn)
2270 {
2271 insn = NEXT_INSN (insn);
2272 if (insn == 0 || GET_CODE (insn) == INSN
2273 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2274 break;
2275 }
2276
2277 return insn;
2278}
2279
2280/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2281 or 0, if there is none. This routine does not look inside
2282 SEQUENCEs. */
2283
2284rtx
2285prev_real_insn (insn)
2286 rtx insn;
2287{
2288 while (insn)
2289 {
2290 insn = PREV_INSN (insn);
2291 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2292 || GET_CODE (insn) == JUMP_INSN)
2293 break;
2294 }
2295
2296 return insn;
2297}
2298
2299/* Find the next insn after INSN that really does something. This routine
2300 does not look inside SEQUENCEs. Until reload has completed, this is the
2301 same as next_real_insn. */
2302
2215ca0d 2303int
2304active_insn_p (insn)
2305 rtx insn;
2306{
2307 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2308 || (GET_CODE (insn) == INSN
2309 && (! reload_completed
2310 || (GET_CODE (PATTERN (insn)) != USE
2311 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2312}
2313
15bbde2b 2314rtx
2315next_active_insn (insn)
2316 rtx insn;
2317{
2318 while (insn)
2319 {
2320 insn = NEXT_INSN (insn);
2215ca0d 2321 if (insn == 0 || active_insn_p (insn))
15bbde2b 2322 break;
2323 }
2324
2325 return insn;
2326}
2327
2328/* Find the last insn before INSN that really does something. This routine
2329 does not look inside SEQUENCEs. Until reload has completed, this is the
2330 same as prev_real_insn. */
2331
2332rtx
2333prev_active_insn (insn)
2334 rtx insn;
2335{
2336 while (insn)
2337 {
2338 insn = PREV_INSN (insn);
2215ca0d 2339 if (insn == 0 || active_insn_p (insn))
15bbde2b 2340 break;
2341 }
2342
2343 return insn;
2344}
2345
2346/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2347
2348rtx
2349next_label (insn)
2350 rtx insn;
2351{
2352 while (insn)
2353 {
2354 insn = NEXT_INSN (insn);
2355 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2356 break;
2357 }
2358
2359 return insn;
2360}
2361
2362/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2363
2364rtx
2365prev_label (insn)
2366 rtx insn;
2367{
2368 while (insn)
2369 {
2370 insn = PREV_INSN (insn);
2371 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2372 break;
2373 }
2374
2375 return insn;
2376}
2377\f
2378#ifdef HAVE_cc0
b15e0bba 2379/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2380 and REG_CC_USER notes so we can find it. */
2381
2382void
2383link_cc0_insns (insn)
2384 rtx insn;
2385{
2386 rtx user = next_nonnote_insn (insn);
2387
2388 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2389 user = XVECEXP (PATTERN (user), 0, 0);
2390
7014838c 2391 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2392 REG_NOTES (user));
3ad7bb1c 2393 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
b15e0bba 2394}
2395
15bbde2b 2396/* Return the next insn that uses CC0 after INSN, which is assumed to
2397 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2398 applied to the result of this function should yield INSN).
2399
2400 Normally, this is simply the next insn. However, if a REG_CC_USER note
2401 is present, it contains the insn that uses CC0.
2402
2403 Return 0 if we can't find the insn. */
2404
2405rtx
2406next_cc0_user (insn)
2407 rtx insn;
2408{
b572011e 2409 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 2410
2411 if (note)
2412 return XEXP (note, 0);
2413
2414 insn = next_nonnote_insn (insn);
2415 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2416 insn = XVECEXP (PATTERN (insn), 0, 0);
2417
9204e736 2418 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
15bbde2b 2419 return insn;
2420
2421 return 0;
2422}
2423
2424/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2425 note, it is the previous insn. */
2426
2427rtx
2428prev_cc0_setter (insn)
2429 rtx insn;
2430{
b572011e 2431 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 2432
2433 if (note)
2434 return XEXP (note, 0);
2435
2436 insn = prev_nonnote_insn (insn);
2437 if (! sets_cc0_p (PATTERN (insn)))
2438 abort ();
2439
2440 return insn;
2441}
2442#endif
344dc2fa 2443
2444/* Increment the label uses for all labels present in rtx. */
2445
2446static void
2447mark_label_nuses(x)
2448 rtx x;
2449{
2450 register enum rtx_code code;
2451 register int i, j;
2452 register const char *fmt;
2453
2454 code = GET_CODE (x);
2455 if (code == LABEL_REF)
2456 LABEL_NUSES (XEXP (x, 0))++;
2457
2458 fmt = GET_RTX_FORMAT (code);
2459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2460 {
2461 if (fmt[i] == 'e')
2462 mark_label_nuses (XEXP (x, i));
2463 else if (fmt[i] == 'E')
2464 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2465 mark_label_nuses (XVECEXP (x, i, j));
2466 }
2467}
2468
15bbde2b 2469\f
2470/* Try splitting insns that can be split for better scheduling.
2471 PAT is the pattern which might split.
2472 TRIAL is the insn providing PAT.
0e69a50a 2473 LAST is non-zero if we should return the last insn of the sequence produced.
15bbde2b 2474
2475 If this routine succeeds in splitting, it returns the first or last
0e69a50a 2476 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 2477 returns TRIAL. If the insn to be returned can be split, it will be. */
2478
2479rtx
0e69a50a 2480try_split (pat, trial, last)
15bbde2b 2481 rtx pat, trial;
0e69a50a 2482 int last;
15bbde2b 2483{
2484 rtx before = PREV_INSN (trial);
2485 rtx after = NEXT_INSN (trial);
15bbde2b 2486 int has_barrier = 0;
2487 rtx tem;
3cd757b1 2488 rtx note, seq;
2489 int probability;
2490
2491 if (any_condjump_p (trial)
2492 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2493 split_branch_probability = INTVAL (XEXP (note, 0));
2494 probability = split_branch_probability;
2495
2496 seq = split_insns (pat, trial);
2497
2498 split_branch_probability = -1;
15bbde2b 2499
2500 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2501 We may need to handle this specially. */
2502 if (after && GET_CODE (after) == BARRIER)
2503 {
2504 has_barrier = 1;
2505 after = NEXT_INSN (after);
2506 }
2507
2508 if (seq)
2509 {
2510 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2511 The latter case will normally arise only when being done so that
2512 it, in turn, will be split (SFmode on the 29k is an example). */
2513 if (GET_CODE (seq) == SEQUENCE)
2514 {
3cd757b1 2515 int i, njumps = 0;
5bb27a4b 2516 rtx eh_note;
d823ba47 2517
2518 /* Avoid infinite loop if any insn of the result matches
5262c253 2519 the original pattern. */
2520 for (i = 0; i < XVECLEN (seq, 0); i++)
d823ba47 2521 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
5262c253 2522 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
d823ba47 2523 return trial;
5262c253 2524
5377f687 2525 /* Mark labels. */
2526 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2527 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
3cd757b1 2528 {
2529 rtx insn = XVECEXP (seq, 0, i);
2530 mark_jump_label (PATTERN (insn),
2531 XVECEXP (seq, 0, i), 0);
2532 njumps++;
2533 if (probability != -1
2534 && any_condjump_p (insn)
2535 && !find_reg_note (insn, REG_BR_PROB, 0))
2536 {
2537 /* We can preserve the REG_BR_PROB notes only if exactly
2538 one jump is created, otherwise the machinde description
2539 is responsible for this step using
2540 split_branch_probability variable. */
2541 if (njumps != 1)
2542 abort ();
2543 REG_NOTES (insn)
2544 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2545 GEN_INT (probability),
2546 REG_NOTES (insn));
2547 }
2548 }
1b3a64a8 2549 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2550 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2551 if (GET_CODE (trial) == CALL_INSN)
2552 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2553 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2554 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2555 = CALL_INSN_FUNCTION_USAGE (trial);
2556
5bb27a4b 2557 /* Copy EH notes. */
2558 if ((eh_note = find_reg_note (trial, REG_EH_REGION, NULL_RTX)))
2559 for (i = 0; i < XVECLEN (seq, 0); i++)
2560 {
2561 rtx insn = XVECEXP (seq, 0, i);
2562 if (GET_CODE (insn) == CALL_INSN
d823ba47 2563 || (flag_non_call_exceptions
5bb27a4b 2564 && may_trap_p (PATTERN (insn))))
d823ba47 2565 REG_NOTES (insn)
5bb27a4b 2566 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
2567 REG_NOTES (insn));
2568 }
2569
344dc2fa 2570 /* If there are LABELS inside the split insns increment the
2571 usage count so we don't delete the label. */
2572 if (GET_CODE (trial) == INSN)
2573 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2574 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2575 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2576
9dda7915 2577 tem = emit_insn_after (seq, trial);
15bbde2b 2578
2579 delete_insn (trial);
2580 if (has_barrier)
2581 emit_barrier_after (tem);
0e69a50a 2582
2583 /* Recursively call try_split for each new insn created; by the
2584 time control returns here that insn will be fully split, so
2585 set LAST and continue from the insn after the one returned.
06343e77 2586 We can't use next_active_insn here since AFTER may be a note.
ab6683d6 2587 Ignore deleted insns, which can be occur if not optimizing. */
9204e736 2588 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2589 if (! INSN_DELETED_P (tem) && INSN_P (tem))
06343e77 2590 tem = try_split (PATTERN (tem), tem, 1);
15bbde2b 2591 }
2592 /* Avoid infinite loop if the result matches the original pattern. */
2593 else if (rtx_equal_p (seq, pat))
2594 return trial;
2595 else
2596 {
2597 PATTERN (trial) = seq;
2598 INSN_CODE (trial) = -1;
0e69a50a 2599 try_split (seq, trial, last);
15bbde2b 2600 }
2601
0e69a50a 2602 /* Return either the first or the last insn, depending on which was
2603 requested. */
d823ba47 2604 return last
3cd757b1 2605 ? (after ? PREV_INSN (after) : last_insn)
2606 : NEXT_INSN (before);
15bbde2b 2607 }
2608
2609 return trial;
2610}
2611\f
2612/* Make and return an INSN rtx, initializing all its slots.
6a84e367 2613 Store PATTERN in the pattern slots. */
15bbde2b 2614
2615rtx
6a84e367 2616make_insn_raw (pattern)
15bbde2b 2617 rtx pattern;
15bbde2b 2618{
2619 register rtx insn;
2620
d7c47c0e 2621 insn = rtx_alloc (INSN);
15bbde2b 2622
575333f9 2623 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 2624 PATTERN (insn) = pattern;
2625 INSN_CODE (insn) = -1;
fc92fa61 2626 LOG_LINKS (insn) = NULL;
2627 REG_NOTES (insn) = NULL;
15bbde2b 2628
fe7f701d 2629#ifdef ENABLE_RTL_CHECKING
2630 if (insn
9204e736 2631 && INSN_P (insn)
fe7f701d 2632 && (returnjump_p (insn)
2633 || (GET_CODE (insn) == SET
2634 && SET_DEST (insn) == pc_rtx)))
2635 {
2636 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2637 debug_rtx (insn);
2638 }
2639#endif
d823ba47 2640
15bbde2b 2641 return insn;
2642}
2643
2644/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2645
2646static rtx
6a84e367 2647make_jump_insn_raw (pattern)
15bbde2b 2648 rtx pattern;
15bbde2b 2649{
2650 register rtx insn;
2651
6a84e367 2652 insn = rtx_alloc (JUMP_INSN);
fc92fa61 2653 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 2654
2655 PATTERN (insn) = pattern;
2656 INSN_CODE (insn) = -1;
fc92fa61 2657 LOG_LINKS (insn) = NULL;
2658 REG_NOTES (insn) = NULL;
2659 JUMP_LABEL (insn) = NULL;
15bbde2b 2660
2661 return insn;
2662}
6e911104 2663
2664/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2665
2666static rtx
2667make_call_insn_raw (pattern)
2668 rtx pattern;
2669{
2670 register rtx insn;
2671
2672 insn = rtx_alloc (CALL_INSN);
2673 INSN_UID (insn) = cur_insn_uid++;
2674
2675 PATTERN (insn) = pattern;
2676 INSN_CODE (insn) = -1;
2677 LOG_LINKS (insn) = NULL;
2678 REG_NOTES (insn) = NULL;
2679 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2680
2681 return insn;
2682}
15bbde2b 2683\f
2684/* Add INSN to the end of the doubly-linked list.
2685 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2686
2687void
2688add_insn (insn)
2689 register rtx insn;
2690{
2691 PREV_INSN (insn) = last_insn;
2692 NEXT_INSN (insn) = 0;
2693
2694 if (NULL != last_insn)
2695 NEXT_INSN (last_insn) = insn;
2696
2697 if (NULL == first_insn)
2698 first_insn = insn;
2699
2700 last_insn = insn;
2701}
2702
312de84d 2703/* Add INSN into the doubly-linked list after insn AFTER. This and
2704 the next should be the only functions called to insert an insn once
f65c10c0 2705 delay slots have been filled since only they know how to update a
312de84d 2706 SEQUENCE. */
15bbde2b 2707
2708void
2709add_insn_after (insn, after)
2710 rtx insn, after;
2711{
2712 rtx next = NEXT_INSN (after);
9dda7915 2713 basic_block bb;
15bbde2b 2714
9ea33026 2715 if (optimize && INSN_DELETED_P (after))
f65c10c0 2716 abort ();
2717
15bbde2b 2718 NEXT_INSN (insn) = next;
2719 PREV_INSN (insn) = after;
2720
2721 if (next)
2722 {
2723 PREV_INSN (next) = insn;
2724 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2725 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2726 }
2727 else if (last_insn == after)
2728 last_insn = insn;
2729 else
2730 {
0a893c29 2731 struct sequence_stack *stack = seq_stack;
15bbde2b 2732 /* Scan all pending sequences too. */
2733 for (; stack; stack = stack->next)
2734 if (after == stack->last)
398f4855 2735 {
2736 stack->last = insn;
2737 break;
2738 }
312de84d 2739
2740 if (stack == 0)
2741 abort ();
15bbde2b 2742 }
2743
9dda7915 2744 if (basic_block_for_insn
2745 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
2746 && (bb = BLOCK_FOR_INSN (after)))
2747 {
2748 set_block_for_insn (insn, bb);
2749 /* Should not happen as first in the BB is always
2750 eigther NOTE or LABEL. */
2751 if (bb->end == after
2752 /* Avoid clobbering of structure when creating new BB. */
2753 && GET_CODE (insn) != BARRIER
2754 && (GET_CODE (insn) != NOTE
2755 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
2756 bb->end = insn;
2757 }
2758
15bbde2b 2759 NEXT_INSN (after) = insn;
2760 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2761 {
2762 rtx sequence = PATTERN (after);
2763 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2764 }
2765}
2766
312de84d 2767/* Add INSN into the doubly-linked list before insn BEFORE. This and
2768 the previous should be the only functions called to insert an insn once
f65c10c0 2769 delay slots have been filled since only they know how to update a
312de84d 2770 SEQUENCE. */
2771
2772void
2773add_insn_before (insn, before)
2774 rtx insn, before;
2775{
2776 rtx prev = PREV_INSN (before);
9dda7915 2777 basic_block bb;
312de84d 2778
9ea33026 2779 if (optimize && INSN_DELETED_P (before))
f65c10c0 2780 abort ();
2781
312de84d 2782 PREV_INSN (insn) = prev;
2783 NEXT_INSN (insn) = before;
2784
2785 if (prev)
2786 {
2787 NEXT_INSN (prev) = insn;
2788 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2789 {
2790 rtx sequence = PATTERN (prev);
2791 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2792 }
2793 }
2794 else if (first_insn == before)
2795 first_insn = insn;
2796 else
2797 {
0a893c29 2798 struct sequence_stack *stack = seq_stack;
312de84d 2799 /* Scan all pending sequences too. */
2800 for (; stack; stack = stack->next)
2801 if (before == stack->first)
398f4855 2802 {
2803 stack->first = insn;
2804 break;
2805 }
312de84d 2806
2807 if (stack == 0)
2808 abort ();
2809 }
2810
9dda7915 2811 if (basic_block_for_insn
2812 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
2813 && (bb = BLOCK_FOR_INSN (before)))
2814 {
2815 set_block_for_insn (insn, bb);
2816 /* Should not happen as first in the BB is always
2817 eigther NOTE or LABEl. */
2818 if (bb->head == insn
2819 /* Avoid clobbering of structure when creating new BB. */
2820 && GET_CODE (insn) != BARRIER
2821 && (GET_CODE (insn) != NOTE
2822 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
2823 abort ();
2824 }
2825
312de84d 2826 PREV_INSN (before) = insn;
2827 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2828 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2829}
2830
7ddcf2bf 2831/* Remove an insn from its doubly-linked list. This function knows how
2832 to handle sequences. */
2833void
2834remove_insn (insn)
2835 rtx insn;
2836{
2837 rtx next = NEXT_INSN (insn);
2838 rtx prev = PREV_INSN (insn);
2839 if (prev)
2840 {
2841 NEXT_INSN (prev) = next;
2842 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2843 {
2844 rtx sequence = PATTERN (prev);
2845 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2846 }
2847 }
2848 else if (first_insn == insn)
2849 first_insn = next;
2850 else
2851 {
0a893c29 2852 struct sequence_stack *stack = seq_stack;
7ddcf2bf 2853 /* Scan all pending sequences too. */
2854 for (; stack; stack = stack->next)
2855 if (insn == stack->first)
2856 {
2857 stack->first = next;
2858 break;
2859 }
2860
2861 if (stack == 0)
2862 abort ();
2863 }
2864
2865 if (next)
2866 {
2867 PREV_INSN (next) = prev;
2868 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2869 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2870 }
2871 else if (last_insn == insn)
2872 last_insn = prev;
2873 else
2874 {
0a893c29 2875 struct sequence_stack *stack = seq_stack;
7ddcf2bf 2876 /* Scan all pending sequences too. */
2877 for (; stack; stack = stack->next)
2878 if (insn == stack->last)
2879 {
2880 stack->last = prev;
2881 break;
2882 }
2883
2884 if (stack == 0)
2885 abort ();
2886 }
2887}
2888
15bbde2b 2889/* Delete all insns made since FROM.
2890 FROM becomes the new last instruction. */
2891
2892void
2893delete_insns_since (from)
2894 rtx from;
2895{
2896 if (from == 0)
2897 first_insn = 0;
2898 else
2899 NEXT_INSN (from) = 0;
2900 last_insn = from;
2901}
2902
34e2ddcd 2903/* This function is deprecated, please use sequences instead.
2904
2905 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 2906 The insns to be moved are those between FROM and TO.
2907 They are moved to a new position after the insn AFTER.
2908 AFTER must not be FROM or TO or any insn in between.
2909
2910 This function does not know about SEQUENCEs and hence should not be
2911 called after delay-slot filling has been done. */
2912
2913void
9dda7915 2914reorder_insns_nobb (from, to, after)
15bbde2b 2915 rtx from, to, after;
2916{
2917 /* Splice this bunch out of where it is now. */
2918 if (PREV_INSN (from))
2919 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2920 if (NEXT_INSN (to))
2921 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2922 if (last_insn == to)
2923 last_insn = PREV_INSN (from);
2924 if (first_insn == from)
2925 first_insn = NEXT_INSN (to);
2926
2927 /* Make the new neighbors point to it and it to them. */
2928 if (NEXT_INSN (after))
2929 PREV_INSN (NEXT_INSN (after)) = to;
2930
2931 NEXT_INSN (to) = NEXT_INSN (after);
2932 PREV_INSN (from) = after;
2933 NEXT_INSN (after) = from;
2934 if (after == last_insn)
2935 last_insn = to;
2936}
2937
9dda7915 2938/* Same as function above, but take care to update BB boundaries. */
2939void
2940reorder_insns (from, to, after)
2941 rtx from, to, after;
2942{
2943 rtx prev = PREV_INSN (from);
2944 basic_block bb, bb2;
2945
2946 reorder_insns_nobb (from, to, after);
2947
2948 if (basic_block_for_insn
2949 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
2950 && (bb = BLOCK_FOR_INSN (after)))
2951 {
2952 rtx x;
2953
2954 if (basic_block_for_insn
2955 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
2956 && (bb2 = BLOCK_FOR_INSN (from)))
2957 {
2958 if (bb2->end == to)
2959 bb2->end = prev;
2960 }
2961
2962 if (bb->end == after)
2963 bb->end = to;
2964
2965 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
2966 set_block_for_insn (x, bb);
2967 }
2968}
2969
15bbde2b 2970/* Return the line note insn preceding INSN. */
2971
2972static rtx
2973find_line_note (insn)
2974 rtx insn;
2975{
2976 if (no_line_numbers)
2977 return 0;
2978
2979 for (; insn; insn = PREV_INSN (insn))
2980 if (GET_CODE (insn) == NOTE
2981 && NOTE_LINE_NUMBER (insn) >= 0)
2982 break;
2983
2984 return insn;
2985}
2986
2987/* Like reorder_insns, but inserts line notes to preserve the line numbers
2988 of the moved insns when debugging. This may insert a note between AFTER
2989 and FROM, and another one after TO. */
2990
2991void
2992reorder_insns_with_line_notes (from, to, after)
2993 rtx from, to, after;
2994{
2995 rtx from_line = find_line_note (from);
2996 rtx after_line = find_line_note (after);
2997
2998 reorder_insns (from, to, after);
2999
3000 if (from_line == after_line)
3001 return;
3002
3003 if (from_line)
3004 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3005 NOTE_LINE_NUMBER (from_line),
3006 after);
3007 if (after_line)
3008 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3009 NOTE_LINE_NUMBER (after_line),
3010 to);
3011}
90b89d2c 3012
0a78547b 3013/* Remove unnecessary notes from the instruction stream. */
90b89d2c 3014
3015void
0a78547b 3016remove_unnecessary_notes ()
90b89d2c 3017{
92cfc4a8 3018 rtx block_stack = NULL_RTX;
3019 rtx eh_stack = NULL_RTX;
90b89d2c 3020 rtx insn;
3021 rtx next;
92cfc4a8 3022 rtx tmp;
90b89d2c 3023
f1ab82be 3024 /* We must not remove the first instruction in the function because
3025 the compiler depends on the first instruction being a note. */
90b89d2c 3026 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3027 {
3028 /* Remember what's next. */
3029 next = NEXT_INSN (insn);
3030
3031 /* We're only interested in notes. */
3032 if (GET_CODE (insn) != NOTE)
3033 continue;
3034
92cfc4a8 3035 switch (NOTE_LINE_NUMBER (insn))
5846cb0f 3036 {
92cfc4a8 3037 case NOTE_INSN_DELETED:
3038 remove_insn (insn);
3039 break;
3040
3041 case NOTE_INSN_EH_REGION_BEG:
3042 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3043 break;
3044
3045 case NOTE_INSN_EH_REGION_END:
3046 /* Too many end notes. */
3047 if (eh_stack == NULL_RTX)
3048 abort ();
3049 /* Mismatched nesting. */
3050 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3051 abort ();
3052 tmp = eh_stack;
3053 eh_stack = XEXP (eh_stack, 1);
3054 free_INSN_LIST_node (tmp);
3055 break;
3056
3057 case NOTE_INSN_BLOCK_BEG:
3058 /* By now, all notes indicating lexical blocks should have
3059 NOTE_BLOCK filled in. */
3060 if (NOTE_BLOCK (insn) == NULL_TREE)
3061 abort ();
3062 block_stack = alloc_INSN_LIST (insn, block_stack);
3063 break;
3064
3065 case NOTE_INSN_BLOCK_END:
3066 /* Too many end notes. */
3067 if (block_stack == NULL_RTX)
3068 abort ();
3069 /* Mismatched nesting. */
3070 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3071 abort ();
3072 tmp = block_stack;
3073 block_stack = XEXP (block_stack, 1);
3074 free_INSN_LIST_node (tmp);
3075
5846cb0f 3076 /* Scan back to see if there are any non-note instructions
3077 between INSN and the beginning of this block. If not,
3078 then there is no PC range in the generated code that will
3079 actually be in this block, so there's no point in
3080 remembering the existence of the block. */
92cfc4a8 3081 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
5846cb0f 3082 {
3083 /* This block contains a real instruction. Note that we
3084 don't include labels; if the only thing in the block
3085 is a label, then there are still no PC values that
3086 lie within the block. */
92cfc4a8 3087 if (INSN_P (tmp))
5846cb0f 3088 break;
3089
3090 /* We're only interested in NOTEs. */
92cfc4a8 3091 if (GET_CODE (tmp) != NOTE)
5846cb0f 3092 continue;
3093
92cfc4a8 3094 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
5846cb0f 3095 {
b29760a8 3096 /* We just verified that this BLOCK matches us with
3097 the block_stack check above. Never delete the
3098 BLOCK for the outermost scope of the function; we
3099 can refer to names from that scope even if the
3100 block notes are messed up. */
3101 if (! is_body_block (NOTE_BLOCK (insn))
3102 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
e33dbbdf 3103 {
92cfc4a8 3104 remove_insn (tmp);
e33dbbdf 3105 remove_insn (insn);
3106 }
5846cb0f 3107 break;
3108 }
92cfc4a8 3109 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
5846cb0f 3110 /* There's a nested block. We need to leave the
3111 current block in place since otherwise the debugger
3112 wouldn't be able to show symbols from our block in
3113 the nested block. */
3114 break;
3115 }
3116 }
90b89d2c 3117 }
92cfc4a8 3118
3119 /* Too many begin notes. */
3120 if (block_stack || eh_stack)
3121 abort ();
90b89d2c 3122}
3123
15bbde2b 3124\f
3125/* Emit an insn of given code and pattern
3126 at a specified place within the doubly-linked list. */
3127
3128/* Make an instruction with body PATTERN
3129 and output it before the instruction BEFORE. */
3130
3131rtx
3132emit_insn_before (pattern, before)
3133 register rtx pattern, before;
3134{
3135 register rtx insn = before;
3136
3137 if (GET_CODE (pattern) == SEQUENCE)
3138 {
3139 register int i;
3140
3141 for (i = 0; i < XVECLEN (pattern, 0); i++)
3142 {
3143 insn = XVECEXP (pattern, 0, i);
312de84d 3144 add_insn_before (insn, before);
15bbde2b 3145 }
15bbde2b 3146 }
3147 else
3148 {
6a84e367 3149 insn = make_insn_raw (pattern);
312de84d 3150 add_insn_before (insn, before);
15bbde2b 3151 }
3152
3153 return insn;
3154}
3155
3156/* Make an instruction with body PATTERN and code JUMP_INSN
3157 and output it before the instruction BEFORE. */
3158
3159rtx
3160emit_jump_insn_before (pattern, before)
3161 register rtx pattern, before;
3162{
3163 register rtx insn;
3164
3165 if (GET_CODE (pattern) == SEQUENCE)
3166 insn = emit_insn_before (pattern, before);
3167 else
3168 {
8f060628 3169 insn = make_jump_insn_raw (pattern);
312de84d 3170 add_insn_before (insn, before);
15bbde2b 3171 }
3172
3173 return insn;
3174}
3175
3176/* Make an instruction with body PATTERN and code CALL_INSN
3177 and output it before the instruction BEFORE. */
3178
3179rtx
3180emit_call_insn_before (pattern, before)
3181 register rtx pattern, before;
3182{
6e911104 3183 register rtx insn;
3184
3185 if (GET_CODE (pattern) == SEQUENCE)
3186 insn = emit_insn_before (pattern, before);
3187 else
3188 {
3189 insn = make_call_insn_raw (pattern);
312de84d 3190 add_insn_before (insn, before);
6e911104 3191 PUT_CODE (insn, CALL_INSN);
3192 }
3193
15bbde2b 3194 return insn;
3195}
3196
3197/* Make an insn of code BARRIER
71caadc0 3198 and output it before the insn BEFORE. */
15bbde2b 3199
3200rtx
3201emit_barrier_before (before)
3202 register rtx before;
3203{
3204 register rtx insn = rtx_alloc (BARRIER);
3205
3206 INSN_UID (insn) = cur_insn_uid++;
3207
312de84d 3208 add_insn_before (insn, before);
15bbde2b 3209 return insn;
3210}
3211
71caadc0 3212/* Emit the label LABEL before the insn BEFORE. */
3213
3214rtx
3215emit_label_before (label, before)
3216 rtx label, before;
3217{
3218 /* This can be called twice for the same label as a result of the
3219 confusion that follows a syntax error! So make it harmless. */
3220 if (INSN_UID (label) == 0)
3221 {
3222 INSN_UID (label) = cur_insn_uid++;
3223 add_insn_before (label, before);
3224 }
3225
3226 return label;
3227}
3228
15bbde2b 3229/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3230
3231rtx
3232emit_note_before (subtype, before)
3233 int subtype;
3234 rtx before;
3235{
3236 register rtx note = rtx_alloc (NOTE);
3237 INSN_UID (note) = cur_insn_uid++;
3238 NOTE_SOURCE_FILE (note) = 0;
3239 NOTE_LINE_NUMBER (note) = subtype;
3240
312de84d 3241 add_insn_before (note, before);
15bbde2b 3242 return note;
3243}
3244\f
3245/* Make an insn of code INSN with body PATTERN
3246 and output it after the insn AFTER. */
3247
3248rtx
3249emit_insn_after (pattern, after)
3250 register rtx pattern, after;
3251{
3252 register rtx insn = after;
3253
3254 if (GET_CODE (pattern) == SEQUENCE)
3255 {
3256 register int i;
3257
3258 for (i = 0; i < XVECLEN (pattern, 0); i++)
3259 {
3260 insn = XVECEXP (pattern, 0, i);
3261 add_insn_after (insn, after);
3262 after = insn;
3263 }
15bbde2b 3264 }
3265 else
3266 {
6a84e367 3267 insn = make_insn_raw (pattern);
15bbde2b 3268 add_insn_after (insn, after);
3269 }
3270
3271 return insn;
3272}
3273
1bea98fb 3274/* Similar to emit_insn_after, except that line notes are to be inserted so
3275 as to act as if this insn were at FROM. */
3276
3277void
3278emit_insn_after_with_line_notes (pattern, after, from)
3279 rtx pattern, after, from;
3280{
3281 rtx from_line = find_line_note (from);
3282 rtx after_line = find_line_note (after);
3283 rtx insn = emit_insn_after (pattern, after);
3284
3285 if (from_line)
3286 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3287 NOTE_LINE_NUMBER (from_line),
3288 after);
3289
3290 if (after_line)
3291 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3292 NOTE_LINE_NUMBER (after_line),
3293 insn);
3294}
3295
15bbde2b 3296/* Make an insn of code JUMP_INSN with body PATTERN
3297 and output it after the insn AFTER. */
3298
3299rtx
3300emit_jump_insn_after (pattern, after)
3301 register rtx pattern, after;
3302{
3303 register rtx insn;
3304
3305 if (GET_CODE (pattern) == SEQUENCE)
3306 insn = emit_insn_after (pattern, after);
3307 else
3308 {
8f060628 3309 insn = make_jump_insn_raw (pattern);
15bbde2b 3310 add_insn_after (insn, after);
3311 }
3312
3313 return insn;
3314}
3315
3316/* Make an insn of code BARRIER
3317 and output it after the insn AFTER. */
3318
3319rtx
3320emit_barrier_after (after)
3321 register rtx after;
3322{
3323 register rtx insn = rtx_alloc (BARRIER);
3324
3325 INSN_UID (insn) = cur_insn_uid++;
3326
3327 add_insn_after (insn, after);
3328 return insn;
3329}
3330
3331/* Emit the label LABEL after the insn AFTER. */
3332
3333rtx
3334emit_label_after (label, after)
3335 rtx label, after;
3336{
3337 /* This can be called twice for the same label
3338 as a result of the confusion that follows a syntax error!
3339 So make it harmless. */
3340 if (INSN_UID (label) == 0)
3341 {
3342 INSN_UID (label) = cur_insn_uid++;
3343 add_insn_after (label, after);
3344 }
3345
3346 return label;
3347}
3348
3349/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3350
3351rtx
3352emit_note_after (subtype, after)
3353 int subtype;
3354 rtx after;
3355{
3356 register rtx note = rtx_alloc (NOTE);
3357 INSN_UID (note) = cur_insn_uid++;
3358 NOTE_SOURCE_FILE (note) = 0;
3359 NOTE_LINE_NUMBER (note) = subtype;
3360 add_insn_after (note, after);
3361 return note;
3362}
3363
3364/* Emit a line note for FILE and LINE after the insn AFTER. */
3365
3366rtx
3367emit_line_note_after (file, line, after)
9a356c3c 3368 const char *file;
15bbde2b 3369 int line;
3370 rtx after;
3371{
3372 register rtx note;
3373
3374 if (no_line_numbers && line > 0)
3375 {
3376 cur_insn_uid++;
3377 return 0;
3378 }
3379
3380 note = rtx_alloc (NOTE);
3381 INSN_UID (note) = cur_insn_uid++;
3382 NOTE_SOURCE_FILE (note) = file;
3383 NOTE_LINE_NUMBER (note) = line;
3384 add_insn_after (note, after);
3385 return note;
3386}
3387\f
3388/* Make an insn of code INSN with pattern PATTERN
3389 and add it to the end of the doubly-linked list.
3390 If PATTERN is a SEQUENCE, take the elements of it
3391 and emit an insn for each element.
3392
3393 Returns the last insn emitted. */
3394
3395rtx
3396emit_insn (pattern)
3397 rtx pattern;
3398{
3399 rtx insn = last_insn;
3400
3401 if (GET_CODE (pattern) == SEQUENCE)
3402 {
3403 register int i;
3404
3405 for (i = 0; i < XVECLEN (pattern, 0); i++)
3406 {
3407 insn = XVECEXP (pattern, 0, i);
3408 add_insn (insn);
3409 }
15bbde2b 3410 }
3411 else
3412 {
6a84e367 3413 insn = make_insn_raw (pattern);
15bbde2b 3414 add_insn (insn);
3415 }
3416
3417 return insn;
3418}
3419
3420/* Emit the insns in a chain starting with INSN.
3421 Return the last insn emitted. */
3422
3423rtx
3424emit_insns (insn)
3425 rtx insn;
3426{
3427 rtx last = 0;
3428
3429 while (insn)
3430 {
3431 rtx next = NEXT_INSN (insn);
3432 add_insn (insn);
3433 last = insn;
3434 insn = next;
3435 }
3436
3437 return last;
3438}
3439
3440/* Emit the insns in a chain starting with INSN and place them in front of
3441 the insn BEFORE. Return the last insn emitted. */
3442
3443rtx
3444emit_insns_before (insn, before)
3445 rtx insn;
3446 rtx before;
3447{
3448 rtx last = 0;
3449
3450 while (insn)
3451 {
3452 rtx next = NEXT_INSN (insn);
312de84d 3453 add_insn_before (insn, before);
15bbde2b 3454 last = insn;
3455 insn = next;
3456 }
3457
3458 return last;
3459}
3460
b36b07d8 3461/* Emit the insns in a chain starting with FIRST and place them in back of
3462 the insn AFTER. Return the last insn emitted. */
3463
3464rtx
3465emit_insns_after (first, after)
3466 register rtx first;
3467 register rtx after;
3468{
3469 register rtx last;
3470 register rtx after_after;
9dda7915 3471 basic_block bb;
b36b07d8 3472
3473 if (!after)
3474 abort ();
3475
3476 if (!first)
3477 return first;
3478
9dda7915 3479 if (basic_block_for_insn
3480 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3481 && (bb = BLOCK_FOR_INSN (after)))
3482 {
3483 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3484 set_block_for_insn (last, bb);
3485 set_block_for_insn (last, bb);
3486 if (bb->end == after)
3487 bb->end = last;
3488 }
3489 else
3490 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3491 continue;
b36b07d8 3492
3493 after_after = NEXT_INSN (after);
3494
3495 NEXT_INSN (after) = first;
3496 PREV_INSN (first) = after;
3497 NEXT_INSN (last) = after_after;
3498 if (after_after)
3499 PREV_INSN (after_after) = last;
3500
0c905390 3501 if (after == last_insn)
3502 last_insn = last;
b36b07d8 3503 return last;
3504}
3505
15bbde2b 3506/* Make an insn of code JUMP_INSN with pattern PATTERN
3507 and add it to the end of the doubly-linked list. */
3508
3509rtx
3510emit_jump_insn (pattern)
3511 rtx pattern;
3512{
3513 if (GET_CODE (pattern) == SEQUENCE)
3514 return emit_insn (pattern);
3515 else
3516 {
8f060628 3517 register rtx insn = make_jump_insn_raw (pattern);
15bbde2b 3518 add_insn (insn);
3519 return insn;
3520 }
3521}
3522
3523/* Make an insn of code CALL_INSN with pattern PATTERN
3524 and add it to the end of the doubly-linked list. */
3525
3526rtx
3527emit_call_insn (pattern)
3528 rtx pattern;
3529{
3530 if (GET_CODE (pattern) == SEQUENCE)
3531 return emit_insn (pattern);
3532 else
3533 {
6e911104 3534 register rtx insn = make_call_insn_raw (pattern);
15bbde2b 3535 add_insn (insn);
3536 PUT_CODE (insn, CALL_INSN);
3537 return insn;
3538 }
3539}
3540
3541/* Add the label LABEL to the end of the doubly-linked list. */
3542
3543rtx
3544emit_label (label)
3545 rtx label;
3546{
3547 /* This can be called twice for the same label
3548 as a result of the confusion that follows a syntax error!
3549 So make it harmless. */
3550 if (INSN_UID (label) == 0)
3551 {
3552 INSN_UID (label) = cur_insn_uid++;
3553 add_insn (label);
3554 }
3555 return label;
3556}
3557
3558/* Make an insn of code BARRIER
3559 and add it to the end of the doubly-linked list. */
3560
3561rtx
3562emit_barrier ()
3563{
3564 register rtx barrier = rtx_alloc (BARRIER);
3565 INSN_UID (barrier) = cur_insn_uid++;
3566 add_insn (barrier);
3567 return barrier;
3568}
3569
3570/* Make an insn of code NOTE
3571 with data-fields specified by FILE and LINE
3572 and add it to the end of the doubly-linked list,
3573 but only if line-numbers are desired for debugging info. */
3574
3575rtx
3576emit_line_note (file, line)
9a356c3c 3577 const char *file;
15bbde2b 3578 int line;
3579{
21b005ed 3580 set_file_and_line_for_stmt (file, line);
15bbde2b 3581
3582#if 0
3583 if (no_line_numbers)
3584 return 0;
3585#endif
3586
3587 return emit_note (file, line);
3588}
3589
3590/* Make an insn of code NOTE
3591 with data-fields specified by FILE and LINE
3592 and add it to the end of the doubly-linked list.
3593 If it is a line-number NOTE, omit it if it matches the previous one. */
3594
3595rtx
3596emit_note (file, line)
9a356c3c 3597 const char *file;
15bbde2b 3598 int line;
3599{
3600 register rtx note;
3601
3602 if (line > 0)
3603 {
3604 if (file && last_filename && !strcmp (file, last_filename)
3605 && line == last_linenum)
3606 return 0;
3607 last_filename = file;
3608 last_linenum = line;
3609 }
3610
3611 if (no_line_numbers && line > 0)
3612 {
3613 cur_insn_uid++;
3614 return 0;
3615 }
3616
3617 note = rtx_alloc (NOTE);
3618 INSN_UID (note) = cur_insn_uid++;
3619 NOTE_SOURCE_FILE (note) = file;
3620 NOTE_LINE_NUMBER (note) = line;
3621 add_insn (note);
3622 return note;
3623}
3624
8d54063f 3625/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
15bbde2b 3626
3627rtx
3628emit_line_note_force (file, line)
9a356c3c 3629 const char *file;
15bbde2b 3630 int line;
3631{
3632 last_linenum = -1;
3633 return emit_line_note (file, line);
3634}
3635
3636/* Cause next statement to emit a line note even if the line number
3637 has not changed. This is used at the beginning of a function. */
3638
3639void
3640force_next_line_note ()
3641{
3642 last_linenum = -1;
3643}
f1934a33 3644
3645/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 3646 note of this type already exists, remove it first. */
f1934a33 3647
d823ba47 3648void
f1934a33 3649set_unique_reg_note (insn, kind, datum)
3650 rtx insn;
3651 enum reg_note kind;
3652 rtx datum;
3653{
3654 rtx note = find_reg_note (insn, kind, NULL_RTX);
3655
3656 /* First remove the note if there already is one. */
d823ba47 3657 if (note)
f1934a33 3658 remove_note (insn, note);
3659
3660 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3661}
15bbde2b 3662\f
3663/* Return an indication of which type of insn should have X as a body.
3664 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3665
3666enum rtx_code
3667classify_insn (x)
3668 rtx x;
3669{
3670 if (GET_CODE (x) == CODE_LABEL)
3671 return CODE_LABEL;
3672 if (GET_CODE (x) == CALL)
3673 return CALL_INSN;
3674 if (GET_CODE (x) == RETURN)
3675 return JUMP_INSN;
3676 if (GET_CODE (x) == SET)
3677 {
3678 if (SET_DEST (x) == pc_rtx)
3679 return JUMP_INSN;
3680 else if (GET_CODE (SET_SRC (x)) == CALL)
3681 return CALL_INSN;
3682 else
3683 return INSN;
3684 }
3685 if (GET_CODE (x) == PARALLEL)
3686 {
3687 register int j;
3688 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3689 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3690 return CALL_INSN;
3691 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3692 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3693 return JUMP_INSN;
3694 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3695 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3696 return CALL_INSN;
3697 }
3698 return INSN;
3699}
3700
3701/* Emit the rtl pattern X as an appropriate kind of insn.
3702 If X is a label, it is simply added into the insn chain. */
3703
3704rtx
3705emit (x)
3706 rtx x;
3707{
3708 enum rtx_code code = classify_insn (x);
3709
3710 if (code == CODE_LABEL)
3711 return emit_label (x);
3712 else if (code == INSN)
3713 return emit_insn (x);
3714 else if (code == JUMP_INSN)
3715 {
3716 register rtx insn = emit_jump_insn (x);
b2816317 3717 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
15bbde2b 3718 return emit_barrier ();
3719 return insn;
3720 }
3721 else if (code == CALL_INSN)
3722 return emit_call_insn (x);
3723 else
3724 abort ();
3725}
3726\f
b49854c6 3727/* Begin emitting insns to a sequence which can be packaged in an
3728 RTL_EXPR. If this sequence will contain something that might cause
3729 the compiler to pop arguments to function calls (because those
3730 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3731 details), use do_pending_stack_adjust before calling this function.
3732 That will ensure that the deferred pops are not accidentally
9588521d 3733 emitted in the middle of this sequence. */
15bbde2b 3734
3735void
3736start_sequence ()
3737{
3738 struct sequence_stack *tem;
3739
1bfd55c5 3740 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
15bbde2b 3741
0a893c29 3742 tem->next = seq_stack;
15bbde2b 3743 tem->first = first_insn;
3744 tem->last = last_insn;
961819fb 3745 tem->sequence_rtl_expr = seq_rtl_expr;
15bbde2b 3746
0a893c29 3747 seq_stack = tem;
15bbde2b 3748
3749 first_insn = 0;
3750 last_insn = 0;
3751}
3752
961819fb 3753/* Similarly, but indicate that this sequence will be placed in T, an
3754 RTL_EXPR. See the documentation for start_sequence for more
3755 information about how to use this function. */
3756
3757void
3758start_sequence_for_rtl_expr (t)
3759 tree t;
3760{
3761 start_sequence ();
3762
3763 seq_rtl_expr = t;
3764}
3765
b49854c6 3766/* Set up the insn chain starting with FIRST as the current sequence,
3767 saving the previously current one. See the documentation for
3768 start_sequence for more information about how to use this function. */
15bbde2b 3769
3770void
3771push_to_sequence (first)
3772 rtx first;
3773{
3774 rtx last;
3775
3776 start_sequence ();
3777
3778 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3779
3780 first_insn = first;
3781 last_insn = last;
3782}
3783
78147e84 3784/* Set up the insn chain from a chain stort in FIRST to LAST. */
3785
3786void
3787push_to_full_sequence (first, last)
3788 rtx first, last;
3789{
3790 start_sequence ();
3791 first_insn = first;
3792 last_insn = last;
3793 /* We really should have the end of the insn chain here. */
3794 if (last && NEXT_INSN (last))
3795 abort ();
3796}
3797
ab74c92f 3798/* Set up the outer-level insn chain
3799 as the current sequence, saving the previously current one. */
3800
3801void
3802push_topmost_sequence ()
3803{
2041cfd9 3804 struct sequence_stack *stack, *top = NULL;
ab74c92f 3805
3806 start_sequence ();
3807
0a893c29 3808 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 3809 top = stack;
3810
3811 first_insn = top->first;
3812 last_insn = top->last;
961819fb 3813 seq_rtl_expr = top->sequence_rtl_expr;
ab74c92f 3814}
3815
3816/* After emitting to the outer-level insn chain, update the outer-level
3817 insn chain, and restore the previous saved state. */
3818
3819void
3820pop_topmost_sequence ()
3821{
2041cfd9 3822 struct sequence_stack *stack, *top = NULL;
ab74c92f 3823
0a893c29 3824 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 3825 top = stack;
3826
3827 top->first = first_insn;
3828 top->last = last_insn;
961819fb 3829 /* ??? Why don't we save seq_rtl_expr here? */
ab74c92f 3830
3831 end_sequence ();
3832}
3833
15bbde2b 3834/* After emitting to a sequence, restore previous saved state.
3835
b49854c6 3836 To get the contents of the sequence just made, you must call
d823ba47 3837 `gen_sequence' *before* calling here.
b49854c6 3838
3839 If the compiler might have deferred popping arguments while
3840 generating this sequence, and this sequence will not be immediately
3841 inserted into the instruction stream, use do_pending_stack_adjust
3842 before calling gen_sequence. That will ensure that the deferred
3843 pops are inserted into this sequence, and not into some random
3844 location in the instruction stream. See INHIBIT_DEFER_POP for more
3845 information about deferred popping of arguments. */
15bbde2b 3846
3847void
3848end_sequence ()
3849{
0a893c29 3850 struct sequence_stack *tem = seq_stack;
15bbde2b 3851
3852 first_insn = tem->first;
3853 last_insn = tem->last;
961819fb 3854 seq_rtl_expr = tem->sequence_rtl_expr;
0a893c29 3855 seq_stack = tem->next;
15bbde2b 3856
1bfd55c5 3857 free (tem);
15bbde2b 3858}
3859
78147e84 3860/* This works like end_sequence, but records the old sequence in FIRST
3861 and LAST. */
3862
3863void
3864end_full_sequence (first, last)
3865 rtx *first, *last;
3866{
3867 *first = first_insn;
3868 *last = last_insn;
3869 end_sequence();
3870}
3871
15bbde2b 3872/* Return 1 if currently emitting into a sequence. */
3873
3874int
3875in_sequence_p ()
3876{
0a893c29 3877 return seq_stack != 0;
15bbde2b 3878}
3879
3880/* Generate a SEQUENCE rtx containing the insns already emitted
3881 to the current sequence.
3882
3883 This is how the gen_... function from a DEFINE_EXPAND
3884 constructs the SEQUENCE that it returns. */
3885
3886rtx
3887gen_sequence ()
3888{
3889 rtx result;
3890 rtx tem;
15bbde2b 3891 int i;
3892 int len;
3893
3894 /* Count the insns in the chain. */
3895 len = 0;
3896 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3897 len++;
3898
88bbcaa6 3899 /* If only one insn, return it rather than a SEQUENCE.
15bbde2b 3900 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
d823ba47 3901 the case of an empty list.)
88bbcaa6 3902 We only return the pattern of an insn if its code is INSN and it
3903 has no notes. This ensures that no information gets lost. */
15bbde2b 3904 if (len == 1
447a9eb9 3905 && ! RTX_FRAME_RELATED_P (first_insn)
88bbcaa6 3906 && GET_CODE (first_insn) == INSN
6312a35e 3907 /* Don't throw away any reg notes. */
88bbcaa6 3908 && REG_NOTES (first_insn) == 0)
d7c47c0e 3909 return PATTERN (first_insn);
15bbde2b 3910
d7c47c0e 3911 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
15bbde2b 3912
3913 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3914 XVECEXP (result, 0, i) = tem;
3915
3916 return result;
3917}
3918\f
02ebfa52 3919/* Put the various virtual registers into REGNO_REG_RTX. */
3920
3921void
0a893c29 3922init_virtual_regs (es)
3923 struct emit_status *es;
02ebfa52 3924{
0a893c29 3925 rtx *ptr = es->x_regno_reg_rtx;
3926 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3927 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3928 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3929 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3930 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3931}
3932
3933void
3934clear_emit_caches ()
3935{
3936 int i;
3937
3938 /* Clear the start_sequence/gen_sequence cache. */
0a893c29 3939 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3940 sequence_result[i] = 0;
3941 free_insn = 0;
02ebfa52 3942}
928d57e3 3943\f
3944/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3945static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3946static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3947static int copy_insn_n_scratches;
3948
3949/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3950 copied an ASM_OPERANDS.
3951 In that case, it is the original input-operand vector. */
3952static rtvec orig_asm_operands_vector;
3953
3954/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3955 copied an ASM_OPERANDS.
3956 In that case, it is the copied input-operand vector. */
3957static rtvec copy_asm_operands_vector;
3958
3959/* Likewise for the constraints vector. */
3960static rtvec orig_asm_constraints_vector;
3961static rtvec copy_asm_constraints_vector;
3962
3963/* Recursively create a new copy of an rtx for copy_insn.
3964 This function differs from copy_rtx in that it handles SCRATCHes and
3965 ASM_OPERANDs properly.
3966 Normally, this function is not used directly; use copy_insn as front end.
3967 However, you could first copy an insn pattern with copy_insn and then use
3968 this function afterwards to properly copy any REG_NOTEs containing
3969 SCRATCHes. */
3970
3971rtx
3972copy_insn_1 (orig)
3973 register rtx orig;
3974{
3975 register rtx copy;
3976 register int i, j;
3977 register RTX_CODE code;
90bf951c 3978 register const char *format_ptr;
928d57e3 3979
3980 code = GET_CODE (orig);
3981
3982 switch (code)
3983 {
3984 case REG:
3985 case QUEUED:
3986 case CONST_INT:
3987 case CONST_DOUBLE:
3988 case SYMBOL_REF:
3989 case CODE_LABEL:
3990 case PC:
3991 case CC0:
3992 case ADDRESSOF:
3993 return orig;
3994
3995 case SCRATCH:
3996 for (i = 0; i < copy_insn_n_scratches; i++)
3997 if (copy_insn_scratch_in[i] == orig)
3998 return copy_insn_scratch_out[i];
3999 break;
4000
4001 case CONST:
4002 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4003 a LABEL_REF, it isn't sharable. */
4004 if (GET_CODE (XEXP (orig, 0)) == PLUS
4005 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4006 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4007 return orig;
4008 break;
d823ba47 4009
928d57e3 4010 /* A MEM with a constant address is not sharable. The problem is that
4011 the constant address may need to be reloaded. If the mem is shared,
4012 then reloading one copy of this mem will cause all copies to appear
4013 to have been reloaded. */
4014
4015 default:
4016 break;
4017 }
4018
4019 copy = rtx_alloc (code);
4020
4021 /* Copy the various flags, and other information. We assume that
4022 all fields need copying, and then clear the fields that should
4023 not be copied. That is the sensible default behavior, and forces
4024 us to explicitly document why we are *not* copying a flag. */
4025 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4026
4027 /* We do not copy the USED flag, which is used as a mark bit during
4028 walks over the RTL. */
4029 copy->used = 0;
4030
4031 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4032 if (GET_RTX_CLASS (code) == 'i')
4033 {
4034 copy->jump = 0;
4035 copy->call = 0;
4036 copy->frame_related = 0;
4037 }
d823ba47 4038
928d57e3 4039 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4040
4041 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4042 {
d925550d 4043 copy->fld[i] = orig->fld[i];
928d57e3 4044 switch (*format_ptr++)
4045 {
4046 case 'e':
928d57e3 4047 if (XEXP (orig, i) != NULL)
4048 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4049 break;
4050
928d57e3 4051 case 'E':
4052 case 'V':
928d57e3 4053 if (XVEC (orig, i) == orig_asm_constraints_vector)
4054 XVEC (copy, i) = copy_asm_constraints_vector;
4055 else if (XVEC (orig, i) == orig_asm_operands_vector)
4056 XVEC (copy, i) = copy_asm_operands_vector;
4057 else if (XVEC (orig, i) != NULL)
4058 {
4059 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4060 for (j = 0; j < XVECLEN (copy, i); j++)
4061 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4062 }
4063 break;
4064
928d57e3 4065 case 't':
928d57e3 4066 case 'w':
928d57e3 4067 case 'i':
928d57e3 4068 case 's':
4069 case 'S':
d925550d 4070 case 'u':
4071 case '0':
4072 /* These are left unchanged. */
928d57e3 4073 break;
4074
4075 default:
4076 abort ();
4077 }
4078 }
4079
4080 if (code == SCRATCH)
4081 {
4082 i = copy_insn_n_scratches++;
4083 if (i >= MAX_RECOG_OPERANDS)
4084 abort ();
4085 copy_insn_scratch_in[i] = orig;
4086 copy_insn_scratch_out[i] = copy;
4087 }
4088 else if (code == ASM_OPERANDS)
4089 {
d91f2122 4090 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4091 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4092 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4093 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 4094 }
4095
4096 return copy;
4097}
4098
4099/* Create a new copy of an rtx.
4100 This function differs from copy_rtx in that it handles SCRATCHes and
4101 ASM_OPERANDs properly.
4102 INSN doesn't really have to be a full INSN; it could be just the
4103 pattern. */
4104rtx
4105copy_insn (insn)
4106 rtx insn;
4107{
4108 copy_insn_n_scratches = 0;
4109 orig_asm_operands_vector = 0;
4110 orig_asm_constraints_vector = 0;
4111 copy_asm_operands_vector = 0;
4112 copy_asm_constraints_vector = 0;
4113 return copy_insn_1 (insn);
4114}
02ebfa52 4115
15bbde2b 4116/* Initialize data structures and variables in this file
4117 before generating rtl for each function. */
4118
4119void
4120init_emit ()
4121{
08513b52 4122 struct function *f = cfun;
15bbde2b 4123
0a893c29 4124 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
15bbde2b 4125 first_insn = NULL;
4126 last_insn = NULL;
961819fb 4127 seq_rtl_expr = NULL;
15bbde2b 4128 cur_insn_uid = 1;
4129 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4130 last_linenum = 0;
4131 last_filename = 0;
4132 first_label_num = label_num;
4133 last_label_num = 0;
0a893c29 4134 seq_stack = NULL;
15bbde2b 4135
0a893c29 4136 clear_emit_caches ();
15bbde2b 4137
4138 /* Init the tables that describe all the pseudo regs. */
4139
e61a0a7f 4140 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 4141
0a893c29 4142 f->emit->regno_pointer_align
e61a0a7f 4143 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4491f79f 4144 sizeof (unsigned char));
d4c332ff 4145
d823ba47 4146 regno_reg_rtx
e61a0a7f 4147 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
1bfd55c5 4148 sizeof (rtx));
15bbde2b 4149
4150 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
0a893c29 4151 init_virtual_regs (f->emit);
888e0d33 4152
4153 /* Indicate that the virtual registers and stack locations are
4154 all pointers. */
e61a0a7f 4155 REG_POINTER (stack_pointer_rtx) = 1;
4156 REG_POINTER (frame_pointer_rtx) = 1;
4157 REG_POINTER (hard_frame_pointer_rtx) = 1;
4158 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 4159
e61a0a7f 4160 REG_POINTER (virtual_incoming_args_rtx) = 1;
4161 REG_POINTER (virtual_stack_vars_rtx) = 1;
4162 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4163 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4164 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 4165
d4c332ff 4166#ifdef STACK_BOUNDARY
80909c64 4167 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4168 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4169 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4170 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4171
4172 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4173 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4174 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4175 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4176 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 4177#endif
4178
89525da0 4179#ifdef INIT_EXPANDERS
4180 INIT_EXPANDERS;
4181#endif
15bbde2b 4182}
4183
a7b0c170 4184/* Mark SS for GC. */
4185
4186static void
4187mark_sequence_stack (ss)
4188 struct sequence_stack *ss;
4189{
4190 while (ss)
4191 {
4192 ggc_mark_rtx (ss->first);
961819fb 4193 ggc_mark_tree (ss->sequence_rtl_expr);
a7b0c170 4194 ss = ss->next;
4195 }
4196}
4197
4198/* Mark ES for GC. */
4199
4200void
3c3bb268 4201mark_emit_status (es)
a7b0c170 4202 struct emit_status *es;
4203{
4204 rtx *r;
4205 int i;
4206
4207 if (es == 0)
4208 return;
4209
e61a0a7f 4210 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
a7b0c170 4211 i > 0; --i, ++r)
4212 ggc_mark_rtx (*r);
4213
4214 mark_sequence_stack (es->sequence_stack);
961819fb 4215 ggc_mark_tree (es->sequence_rtl_expr);
a7b0c170 4216 ggc_mark_rtx (es->x_first_insn);
4217}
4218
15bbde2b 4219/* Create some permanent unique rtl objects shared between all functions.
4220 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4221
4222void
4223init_emit_once (line_numbers)
4224 int line_numbers;
4225{
4226 int i;
4227 enum machine_mode mode;
9e042f31 4228 enum machine_mode double_mode;
15bbde2b 4229
77695070 4230 /* Initialize the CONST_INT hash table. */
d823ba47 4231 const_int_htab = htab_create (37, const_int_htab_hash,
77695070 4232 const_int_htab_eq, NULL);
d823ba47 4233 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
77695070 4234 rtx_htab_mark);
4235
15bbde2b 4236 no_line_numbers = ! line_numbers;
4237
71d7daa2 4238 /* Compute the word and byte modes. */
4239
4240 byte_mode = VOIDmode;
4241 word_mode = VOIDmode;
4242 double_mode = VOIDmode;
4243
4244 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4245 mode = GET_MODE_WIDER_MODE (mode))
4246 {
4247 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4248 && byte_mode == VOIDmode)
4249 byte_mode = mode;
4250
4251 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4252 && word_mode == VOIDmode)
4253 word_mode = mode;
4254 }
4255
71d7daa2 4256 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4257 mode = GET_MODE_WIDER_MODE (mode))
4258 {
4259 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4260 && double_mode == VOIDmode)
4261 double_mode = mode;
4262 }
4263
4264 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4265
57c097d5 4266 /* Assign register numbers to the globally defined register rtx.
4267 This must be done at runtime because the register number field
4268 is in a union and some compilers can't initialize unions. */
4269
4270 pc_rtx = gen_rtx (PC, VOIDmode);
4271 cc0_rtx = gen_rtx (CC0, VOIDmode);
22cf44bc 4272 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4273 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
57c097d5 4274 if (hard_frame_pointer_rtx == 0)
d823ba47 4275 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
22cf44bc 4276 HARD_FRAME_POINTER_REGNUM);
57c097d5 4277 if (arg_pointer_rtx == 0)
22cf44bc 4278 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
d823ba47 4279 virtual_incoming_args_rtx =
22cf44bc 4280 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
d823ba47 4281 virtual_stack_vars_rtx =
22cf44bc 4282 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
d823ba47 4283 virtual_stack_dynamic_rtx =
22cf44bc 4284 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
d823ba47 4285 virtual_outgoing_args_rtx =
4286 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
22cf44bc 4287 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
57c097d5 4288
4289 /* These rtx must be roots if GC is enabled. */
d7c47c0e 4290 ggc_add_rtx_root (global_rtl, GR_MAX);
57c097d5 4291
57c097d5 4292#ifdef INIT_EXPANDERS
ab5beff9 4293 /* This is to initialize {init|mark|free}_machine_status before the first
4294 call to push_function_context_to. This is needed by the Chill front
4295 end which calls push_function_context_to before the first cal to
57c097d5 4296 init_function_start. */
4297 INIT_EXPANDERS;
4298#endif
4299
15bbde2b 4300 /* Create the unique rtx's for certain rtx codes and operand values. */
4301
7014838c 4302 /* Don't use gen_rtx here since gen_rtx in this case
4303 tries to use these variables. */
15bbde2b 4304 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 4305 const_int_rtx[i + MAX_SAVED_CONST_INT] =
57c097d5 4306 gen_rtx_raw_CONST_INT (VOIDmode, i);
d7c47c0e 4307 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
15bbde2b 4308
1a60f06a 4309 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4310 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 4311 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 4312 else
3ad7bb1c 4313 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 4314
9e042f31 4315 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4316 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4317 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4318 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
15bbde2b 4319
4320 for (i = 0; i <= 2; i++)
4321 {
4322 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4323 mode = GET_MODE_WIDER_MODE (mode))
4324 {
4325 rtx tem = rtx_alloc (CONST_DOUBLE);
4326 union real_extract u;
4327
fd781f88 4328 /* Zero any holes in a structure. */
4329 memset ((char *) &u, 0, sizeof u);
15bbde2b 4330 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4331
fd781f88 4332 /* Avoid trailing garbage in the rtx. */
4333 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4334 CONST_DOUBLE_LOW (tem) = 0;
4335 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4336 CONST_DOUBLE_HIGH (tem) = 0;
4337
b1b63592 4338 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
15bbde2b 4339 CONST_DOUBLE_MEM (tem) = cc0_rtx;
791ceafe 4340 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
15bbde2b 4341 PUT_MODE (tem, mode);
4342
4343 const_tiny_rtx[i][(int) mode] = tem;
4344 }
4345
b572011e 4346 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 4347
4348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4349 mode = GET_MODE_WIDER_MODE (mode))
b572011e 4350 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 4351
4352 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4353 mode != VOIDmode;
4354 mode = GET_MODE_WIDER_MODE (mode))
4355 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 4356 }
4357
0fd4500a 4358 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4359 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4360 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 4361
065336b4 4362 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4363 if (STORE_FLAG_VALUE == 1)
4364 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4365
3098b2d3 4366 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4367 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4368 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4369 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
c788feb1 4370 ggc_add_rtx_root (&const_true_rtx, 1);
f4bffa58 4371
4372#ifdef RETURN_ADDRESS_POINTER_REGNUM
4373 return_address_pointer_rtx
22cf44bc 4374 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
f4bffa58 4375#endif
4376
4377#ifdef STRUCT_VALUE
4378 struct_value_rtx = STRUCT_VALUE;
4379#else
4380 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4381#endif
4382
4383#ifdef STRUCT_VALUE_INCOMING
4384 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4385#else
4386#ifdef STRUCT_VALUE_INCOMING_REGNUM
4387 struct_value_incoming_rtx
4388 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4389#else
4390 struct_value_incoming_rtx = struct_value_rtx;
4391#endif
4392#endif
4393
4394#ifdef STATIC_CHAIN_REGNUM
4395 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4396
4397#ifdef STATIC_CHAIN_INCOMING_REGNUM
4398 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4399 static_chain_incoming_rtx
4400 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4401 else
4402#endif
4403 static_chain_incoming_rtx = static_chain_rtx;
4404#endif
4405
4406#ifdef STATIC_CHAIN
4407 static_chain_rtx = STATIC_CHAIN;
4408
4409#ifdef STATIC_CHAIN_INCOMING
4410 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4411#else
4412 static_chain_incoming_rtx = static_chain_rtx;
4413#endif
4414#endif
4415
14e6e4d4 4416 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4417 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
f4bffa58 4418
521dd524 4419 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4420 ggc_add_rtx_root (&struct_value_rtx, 1);
4421 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4422 ggc_add_rtx_root (&static_chain_rtx, 1);
4423 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4424 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
15bbde2b 4425}
ac6c481d 4426\f
4427/* Query and clear/ restore no_line_numbers. This is used by the
4428 switch / case handling in stmt.c to give proper line numbers in
4429 warnings about unreachable code. */
4430
4431int
4432force_line_numbers ()
4433{
4434 int old = no_line_numbers;
4435
4436 no_line_numbers = 0;
4437 if (old)
4438 force_next_line_note ();
4439 return old;
4440}
4441
4442void
4443restore_line_number_status (old_value)
4444 int old_value;
4445{
4446 no_line_numbers = old_value;
4447}