]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
* i386.c (ix86_comparison_operator, put_condition_code,
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
15bbde2b 1/* Emit RTL for the GNU C-Compiler expander.
ddca3e9d 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
15bbde2b 4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
8d62a21c 19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
15bbde2b 21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
405711de 39#include "system.h"
d3b64f2d 40#include "toplev.h"
15bbde2b 41#include "rtl.h"
3fd7e17f 42#include "tree.h"
7953c610 43#include "tm_p.h"
15bbde2b 44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
c6b6c51f 48#include "hard-reg-set.h"
73f5c1e3 49#include "hashtab.h"
15bbde2b 50#include "insn-config.h"
0dbd1c74 51#include "recog.h"
15bbde2b 52#include "real.h"
649d8da6 53#include "obstack.h"
a3426c4c 54#include "bitmap.h"
f3d96a58 55#include "basic-block.h"
a7b0c170 56#include "ggc.h"
0e66aa75 57#include "defaults.h"
649d8da6 58
399d45d3 59/* Commonly used modes. */
60
a92771b8 61enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9e042f31 63enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
a92771b8 64enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 65
15bbde2b 66
67/* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70static int label_num = 1;
71
15bbde2b 72/* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76static int last_label_num;
77
78/* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81static int base_label_num;
82
83/* Nonzero means do not generate NOTEs for source line numbers. */
84
85static int no_line_numbers;
86
87/* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
91
57c097d5 92rtx global_rtl[GR_MAX];
15bbde2b 93
94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
1a60f06a 100rtx const_true_rtx;
101
15bbde2b 102REAL_VALUE_TYPE dconst0;
103REAL_VALUE_TYPE dconst1;
104REAL_VALUE_TYPE dconst2;
105REAL_VALUE_TYPE dconstm1;
106
107/* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
110
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
115
90c25824 116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
122
15bbde2b 123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
15bbde2b 125rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
4b0c5859 131/* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
15bbde2b 135/* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
57c097d5 140rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 141
73f5c1e3 142/* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145static htab_t const_int_htab;
146
15bbde2b 147/* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
149
1bfd55c5 150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
155 redone.
15bbde2b 156
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
159
160#define SEQUENCE_RESULT_SIZE 5
161
15bbde2b 162static rtx sequence_result[SEQUENCE_RESULT_SIZE];
163
a92771b8 164/* During RTL generation, we also keep a list of free INSN rtl codes. */
575333f9 165static rtx free_insn;
166
08513b52 167#define first_insn (cfun->emit->x_first_insn)
168#define last_insn (cfun->emit->x_last_insn)
169#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170#define last_linenum (cfun->emit->x_last_linenum)
171#define last_filename (cfun->emit->x_last_filename)
172#define first_label_num (cfun->emit->x_first_label_num)
15bbde2b 173
621f6678 174static rtx make_jump_insn_raw PARAMS ((rtx));
175static rtx make_call_insn_raw PARAMS ((rtx));
176static rtx find_line_note PARAMS ((rtx));
177static void mark_sequence_stack PARAMS ((struct sequence_stack *));
2d96a59a 178static void unshare_all_rtl_1 PARAMS ((rtx));
72ec8878 179static void unshare_all_decls PARAMS ((tree));
01dc9f0c 180static void reset_used_decls PARAMS ((tree));
73f5c1e3 181static hashval_t const_int_htab_hash PARAMS ((const void *));
182static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184static int rtx_htab_mark_1 PARAMS ((void **, void *));
185static void rtx_htab_mark PARAMS ((void *));
186
649d8da6 187\f
73f5c1e3 188/* Returns a hash code for X (which is a really a CONST_INT). */
189
190static hashval_t
191const_int_htab_hash (x)
192 const void *x;
193{
5e431971 194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
73f5c1e3 195}
196
197/* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
200
201static int
202const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
205{
5e431971 206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
73f5c1e3 207}
208
209/* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
211
212static int
213rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
216{
217 ggc_mark_rtx (*x);
218 return 1;
219}
220
221/* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
223
224static void
225rtx_htab_mark (htab)
226 void *htab;
227{
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
229}
230
7014838c 231/* There are some RTL codes that require special attention; the generation
232 functions do the raw handling. If you add to this list, modify
233 special_rtx in gengenrtl.c as well. */
234
3ad7bb1c 235rtx
236gen_rtx_CONST_INT (mode, arg)
73f5c1e3 237 enum machine_mode mode ATTRIBUTE_UNUSED;
3ad7bb1c 238 HOST_WIDE_INT arg;
239{
73f5c1e3 240 void **slot;
241
3ad7bb1c 242 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 243 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 244
245#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
246 if (const_true_rtx && arg == STORE_FLAG_VALUE)
247 return const_true_rtx;
248#endif
249
73f5c1e3 250 /* Look up the CONST_INT in the hash table. */
2b3dbc20 251 slot = htab_find_slot_with_hash (const_int_htab, &arg,
252 (hashval_t) arg, INSERT);
7f2875d3 253 if (*slot == 0)
d7c47c0e 254 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 255
256 return (rtx) *slot;
3ad7bb1c 257}
258
7f2875d3 259/* CONST_DOUBLEs needs special handling because their length is known
67f2a2eb 260 only at run-time. */
7f2875d3 261
67f2a2eb 262rtx
263gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
264 enum machine_mode mode;
265 rtx arg0;
266 HOST_WIDE_INT arg1, arg2;
267{
268 rtx r = rtx_alloc (CONST_DOUBLE);
4e929432 269 int i;
270
67f2a2eb 271 PUT_MODE (r, mode);
272 XEXP (r, 0) = arg0;
25999090 273 X0EXP (r, 1) = NULL_RTX;
4e929432 274 XWINT (r, 2) = arg1;
275 XWINT (r, 3) = arg2;
276
277 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
278 XWINT (r, i) = 0;
279
67f2a2eb 280 return r;
281}
282
3ad7bb1c 283rtx
284gen_rtx_REG (mode, regno)
285 enum machine_mode mode;
286 int regno;
287{
288 /* In case the MD file explicitly references the frame pointer, have
289 all such references point to the same frame pointer. This is
290 used during frame pointer elimination to distinguish the explicit
291 references to these registers from pseudos that happened to be
292 assigned to them.
293
294 If we have eliminated the frame pointer or arg pointer, we will
295 be using it as a normal register, for example as a spill
296 register. In such cases, we might be accessing it in a mode that
297 is not Pmode and therefore cannot use the pre-allocated rtx.
298
299 Also don't do this when we are making new REGs in reload, since
300 we don't want to get confused with the real pointers. */
301
302 if (mode == Pmode && !reload_in_progress)
303 {
e8b59353 304 if (regno == FRAME_POINTER_REGNUM)
3ad7bb1c 305 return frame_pointer_rtx;
306#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e8b59353 307 if (regno == HARD_FRAME_POINTER_REGNUM)
3ad7bb1c 308 return hard_frame_pointer_rtx;
309#endif
310#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
e8b59353 311 if (regno == ARG_POINTER_REGNUM)
3ad7bb1c 312 return arg_pointer_rtx;
313#endif
314#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 315 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 316 return return_address_pointer_rtx;
317#endif
e8b59353 318 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 319 return stack_pointer_rtx;
320 }
321
322 return gen_rtx_raw_REG (mode, regno);
323}
324
b5ba9f3a 325rtx
326gen_rtx_MEM (mode, addr)
327 enum machine_mode mode;
328 rtx addr;
329{
330 rtx rt = gen_rtx_raw_MEM (mode, addr);
331
332 /* This field is not cleared by the mere allocation of the rtx, so
333 we clear it here. */
334 MEM_ALIAS_SET (rt) = 0;
335
336 return rt;
337}
7014838c 338\f
15bbde2b 339/* rtx gen_rtx (code, mode, [element1, ..., elementn])
340**
341** This routine generates an RTX of the size specified by
342** <code>, which is an RTX code. The RTX structure is initialized
343** from the arguments <element1> through <elementn>, which are
344** interpreted according to the specific RTX type's format. The
345** special machine mode associated with the rtx (if any) is specified
346** in <mode>.
347**
fc92fa61 348** gen_rtx can be invoked in a way which resembles the lisp-like
15bbde2b 349** rtx it will generate. For example, the following rtx structure:
350**
351** (plus:QI (mem:QI (reg:SI 1))
352** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
353**
354** ...would be generated by the following C code:
355**
356** gen_rtx (PLUS, QImode,
357** gen_rtx (MEM, QImode,
358** gen_rtx (REG, SImode, 1)),
359** gen_rtx (MEM, QImode,
360** gen_rtx (PLUS, SImode,
361** gen_rtx (REG, SImode, 2),
362** gen_rtx (REG, SImode, 3)))),
363*/
364
365/*VARARGS2*/
366rtx
621f6678 367gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
15bbde2b 368{
7bca031c 369#ifndef ANSI_PROTOTYPES
15bbde2b 370 enum rtx_code code;
371 enum machine_mode mode;
e5fcd76a 372#endif
373 va_list p;
15bbde2b 374 register int i; /* Array indices... */
d2ca078f 375 register const char *fmt; /* Current rtx's format... */
15bbde2b 376 register rtx rt_val; /* RTX to return to caller... */
377
e5fcd76a 378 VA_START (p, mode);
379
7bca031c 380#ifndef ANSI_PROTOTYPES
15bbde2b 381 code = va_arg (p, enum rtx_code);
382 mode = va_arg (p, enum machine_mode);
e5fcd76a 383#endif
15bbde2b 384
67f2a2eb 385 switch (code)
15bbde2b 386 {
67f2a2eb 387 case CONST_INT:
388 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
389 break;
390
391 case CONST_DOUBLE:
392 {
393 rtx arg0 = va_arg (p, rtx);
394 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
395 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
396 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
397 }
398 break;
399
400 case REG:
401 rt_val = gen_rtx_REG (mode, va_arg (p, int));
402 break;
403
404 case MEM:
405 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
406 break;
407
408 default:
15bbde2b 409 rt_val = rtx_alloc (code); /* Allocate the storage space. */
410 rt_val->mode = mode; /* Store the machine mode... */
411
412 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
413 for (i = 0; i < GET_RTX_LENGTH (code); i++)
414 {
415 switch (*fmt++)
416 {
417 case '0': /* Unused field. */
418 break;
419
420 case 'i': /* An integer? */
421 XINT (rt_val, i) = va_arg (p, int);
422 break;
423
b572011e 424 case 'w': /* A wide integer? */
425 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
426 break;
427
15bbde2b 428 case 's': /* A string? */
429 XSTR (rt_val, i) = va_arg (p, char *);
430 break;
431
432 case 'e': /* An expression? */
433 case 'u': /* An insn? Same except when printing. */
434 XEXP (rt_val, i) = va_arg (p, rtx);
435 break;
436
437 case 'E': /* An RTX vector? */
438 XVEC (rt_val, i) = va_arg (p, rtvec);
439 break;
440
a3426c4c 441 case 'b': /* A bitmap? */
442 XBITMAP (rt_val, i) = va_arg (p, bitmap);
443 break;
444
445 case 't': /* A tree? */
446 XTREE (rt_val, i) = va_arg (p, tree);
447 break;
448
15bbde2b 449 default:
fc92fa61 450 abort ();
15bbde2b 451 }
452 }
67f2a2eb 453 break;
15bbde2b 454 }
67f2a2eb 455
15bbde2b 456 va_end (p);
67f2a2eb 457 return rt_val;
15bbde2b 458}
459
460/* gen_rtvec (n, [rt1, ..., rtn])
461**
462** This routine creates an rtvec and stores within it the
463** pointers to rtx's which are its arguments.
464*/
465
466/*VARARGS1*/
467rtvec
621f6678 468gen_rtvec VPARAMS ((int n, ...))
15bbde2b 469{
7bca031c 470#ifndef ANSI_PROTOTYPES
e5fcd76a 471 int n;
472#endif
473 int i;
15bbde2b 474 va_list p;
475 rtx *vector;
476
e5fcd76a 477 VA_START (p, n);
478
7bca031c 479#ifndef ANSI_PROTOTYPES
15bbde2b 480 n = va_arg (p, int);
e5fcd76a 481#endif
15bbde2b 482
483 if (n == 0)
484 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
485
486 vector = (rtx *) alloca (n * sizeof (rtx));
e5fcd76a 487
15bbde2b 488 for (i = 0; i < n; i++)
489 vector[i] = va_arg (p, rtx);
490 va_end (p);
491
492 return gen_rtvec_v (n, vector);
493}
494
495rtvec
496gen_rtvec_v (n, argp)
497 int n;
498 rtx *argp;
499{
500 register int i;
501 register rtvec rt_val;
502
503 if (n == 0)
504 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
505
506 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
507
508 for (i = 0; i < n; i++)
a4070a91 509 rt_val->elem[i] = *argp++;
15bbde2b 510
511 return rt_val;
512}
fbaa9422 513
15bbde2b 514\f
515/* Generate a REG rtx for a new pseudo register of mode MODE.
516 This pseudo is assigned the next sequential register number. */
517
518rtx
519gen_reg_rtx (mode)
520 enum machine_mode mode;
521{
08513b52 522 struct function *f = cfun;
15bbde2b 523 register rtx val;
524
9e519b97 525 /* Don't let anything called after initial flow analysis create new
526 registers. */
527 if (no_new_pseudos)
15bbde2b 528 abort ();
529
316bc009 530 if (generating_concat_p
531 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
532 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 533 {
534 /* For complex modes, don't make a single pseudo.
535 Instead, make a CONCAT of two pseudos.
536 This allows noncontiguous allocation of the real and imaginary parts,
537 which makes much better code. Besides, allocating DCmode
538 pseudos overstrains reload on some machines like the 386. */
539 rtx realpart, imagpart;
540 int size = GET_MODE_UNIT_SIZE (mode);
541 enum machine_mode partmode
542 = mode_for_size (size * BITS_PER_UNIT,
543 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
544 ? MODE_FLOAT : MODE_INT),
545 0);
546
547 realpart = gen_reg_rtx (partmode);
548 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 549 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 550 }
551
15bbde2b 552 /* Make sure regno_pointer_flag and regno_reg_rtx are large
553 enough to have an element for this pseudo reg number. */
554
0a893c29 555 if (reg_rtx_no == f->emit->regno_pointer_flag_length)
15bbde2b 556 {
0a893c29 557 int old_size = f->emit->regno_pointer_flag_length;
15bbde2b 558 rtx *new1;
26df1c5e 559 char *new;
560 new = xrealloc (f->emit->regno_pointer_flag, old_size * 2);
0a893c29 561 memset (new + old_size, 0, old_size);
562 f->emit->regno_pointer_flag = new;
563
26df1c5e 564 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
0a893c29 565 memset (new + old_size, 0, old_size);
4491f79f 566 f->emit->regno_pointer_align = (unsigned char *) new;
0a893c29 567
26df1c5e 568 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
569 old_size * 2 * sizeof (rtx));
0a893c29 570 memset (new1 + old_size, 0, old_size * sizeof (rtx));
15bbde2b 571 regno_reg_rtx = new1;
572
0a893c29 573 f->emit->regno_pointer_flag_length = old_size * 2;
15bbde2b 574 }
575
3ad7bb1c 576 val = gen_rtx_raw_REG (mode, reg_rtx_no);
15bbde2b 577 regno_reg_rtx[reg_rtx_no++] = val;
578 return val;
579}
580
de8ecfb5 581/* Identify REG (which may be a CONCAT) as a user register. */
582
583void
584mark_user_reg (reg)
585 rtx reg;
586{
587 if (GET_CODE (reg) == CONCAT)
588 {
589 REG_USERVAR_P (XEXP (reg, 0)) = 1;
590 REG_USERVAR_P (XEXP (reg, 1)) = 1;
591 }
592 else if (GET_CODE (reg) == REG)
593 REG_USERVAR_P (reg) = 1;
594 else
595 abort ();
596}
597
d4c332ff 598/* Identify REG as a probable pointer register and show its alignment
599 as ALIGN, if nonzero. */
15bbde2b 600
601void
d4c332ff 602mark_reg_pointer (reg, align)
15bbde2b 603 rtx reg;
d4c332ff 604 int align;
15bbde2b 605{
612409a6 606 if (! REGNO_POINTER_FLAG (REGNO (reg)))
607 {
608 REGNO_POINTER_FLAG (REGNO (reg)) = 1;
d4c332ff 609
612409a6 610 if (align)
611 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
612 }
613 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
614 /* We can no-longer be sure just how aligned this pointer is */
d4c332ff 615 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 616}
617
618/* Return 1 plus largest pseudo reg number used in the current function. */
619
620int
621max_reg_num ()
622{
623 return reg_rtx_no;
624}
625
626/* Return 1 + the largest label number used so far in the current function. */
627
628int
629max_label_num ()
630{
631 if (last_label_num && label_num == base_label_num)
632 return last_label_num;
633 return label_num;
634}
635
636/* Return first label number used in this function (if any were used). */
637
638int
639get_first_label_num ()
640{
641 return first_label_num;
642}
643\f
644/* Return a value representing some low-order bits of X, where the number
645 of low-order bits is given by MODE. Note that no conversion is done
646 between floating-point and fixed-point values, rather, the bit
647 representation is returned.
648
649 This function handles the cases in common between gen_lowpart, below,
650 and two variants in cse.c and combine.c. These are the cases that can
651 be safely handled at all points in the compilation.
652
653 If this is not a case we can handle, return 0. */
654
655rtx
656gen_lowpart_common (mode, x)
657 enum machine_mode mode;
658 register rtx x;
659{
660 int word = 0;
661
662 if (GET_MODE (x) == mode)
663 return x;
664
665 /* MODE must occupy no more words than the mode of X. */
666 if (GET_MODE (x) != VOIDmode
667 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
668 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
669 / UNITS_PER_WORD)))
670 return 0;
671
672 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
673 word = ((GET_MODE_SIZE (GET_MODE (x))
674 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
675 / UNITS_PER_WORD);
676
677 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
64115b39 678 && (GET_MODE_CLASS (mode) == MODE_INT
679 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
15bbde2b 680 {
681 /* If we are getting the low-order part of something that has been
682 sign- or zero-extended, we can either just use the object being
683 extended or make a narrower extension. If we want an even smaller
684 piece than the size of the object being extended, call ourselves
685 recursively.
686
687 This case is used mostly by combine and cse. */
688
689 if (GET_MODE (XEXP (x, 0)) == mode)
690 return XEXP (x, 0);
691 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
692 return gen_lowpart_common (mode, XEXP (x, 0));
693 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3ad7bb1c 694 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
15bbde2b 695 }
696 else if (GET_CODE (x) == SUBREG
8a7af1a8 697 && (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
698 || GET_MODE_SIZE (mode) <= UNITS_PER_WORD
15bbde2b 699 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
700 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
701 ? SUBREG_REG (x)
3ad7bb1c 702 : gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
15bbde2b 703 else if (GET_CODE (x) == REG)
704 {
cfff67e2 705 /* Let the backend decide how many registers to skip. This is needed
706 in particular for Sparc64 where fp regs are smaller than a word. */
707 /* ??? Note that subregs are now ambiguous, in that those against
708 pseudos are sized by the Word Size, while those against hard
709 regs are sized by the underlying register size. Better would be
710 to always interpret the subreg offset parameter as bytes or bits. */
711
712 if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER)
713 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
714 - HARD_REGNO_NREGS (REGNO (x), mode));
715
15bbde2b 716 /* If the register is not valid for MODE, return 0. If we don't
c84a933e 717 do this, there is no way to fix up the resulting REG later.
718 But we do do this if the current REG is not valid for its
719 mode. This latter is a kludge, but is required due to the
720 way that parameters are passed on some machines, most
721 notably Sparc. */
15bbde2b 722 if (REGNO (x) < FIRST_PSEUDO_REGISTER
c84a933e 723 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
724 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
15bbde2b 725 return 0;
726 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
727 /* integrate.c can't handle parts of a return value register. */
728 && (! REG_FUNCTION_VALUE_P (x)
8dc5a78e 729 || ! rtx_equal_function_value_matters)
c5af420e 730#ifdef CLASS_CANNOT_CHANGE_MODE
731 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
c6b6c51f 732 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
733 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
734 && (TEST_HARD_REG_BIT
c5af420e 735 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
c6b6c51f 736 REGNO (x))))
737#endif
8dc5a78e 738 /* We want to keep the stack, frame, and arg pointers
739 special. */
c1c63d0b 740 && x != frame_pointer_rtx
8dc5a78e 741#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
c1c63d0b 742 && x != arg_pointer_rtx
8dc5a78e 743#endif
c1c63d0b 744 && x != stack_pointer_rtx)
3ad7bb1c 745 return gen_rtx_REG (mode, REGNO (x) + word);
15bbde2b 746 else
3ad7bb1c 747 return gen_rtx_SUBREG (mode, x, word);
15bbde2b 748 }
15bbde2b 749 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
750 from the low-order part of the constant. */
64115b39 751 else if ((GET_MODE_CLASS (mode) == MODE_INT
752 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
753 && GET_MODE (x) == VOIDmode
15bbde2b 754 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
99e0010b 755 {
756 /* If MODE is twice the host word size, X is already the desired
757 representation. Otherwise, if MODE is wider than a word, we can't
b3b27b2a 758 do this. If MODE is exactly a word, return just one CONST_INT. */
99e0010b 759
d347deeb 760 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
99e0010b 761 return x;
b572011e 762 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
99e0010b 763 return 0;
b572011e 764 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
99e0010b 765 return (GET_CODE (x) == CONST_INT ? x
b572011e 766 : GEN_INT (CONST_DOUBLE_LOW (x)));
99e0010b 767 else
768 {
a0d52dee 769 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
b572011e 770 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
771 : CONST_DOUBLE_LOW (x));
99e0010b 772
a0d52dee 773 /* Sign extend to HOST_WIDE_INT. */
b3b27b2a 774 val = trunc_int_for_mode (val, mode);
99e0010b 775
776 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
b572011e 777 : GEN_INT (val));
99e0010b 778 }
779 }
15bbde2b 780
c8971cad 781#ifndef REAL_ARITHMETIC
4a307dd5 782 /* If X is an integral constant but we want it in floating-point, it
783 must be the case that we have a union of an integer and a floating-point
784 value. If the machine-parameters allow it, simulate that union here
414a3664 785 and return the result. The two-word and single-word cases are
786 different. */
4a307dd5 787
f51cb679 788 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 789 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 790 || flag_pretend_float)
4a307dd5 791 && GET_MODE_CLASS (mode) == MODE_FLOAT
414a3664 792 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
793 && GET_CODE (x) == CONST_INT
b572011e 794 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
414a3664 795 {
b572011e 796 union {HOST_WIDE_INT i; float d; } u;
414a3664 797
798 u.i = INTVAL (x);
715907c0 799 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
414a3664 800 }
414a3664 801 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 802 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
414a3664 803 || flag_pretend_float)
804 && GET_MODE_CLASS (mode) == MODE_FLOAT
805 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
4a307dd5 806 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
807 && GET_MODE (x) == VOIDmode
b572011e 808 && (sizeof (double) * HOST_BITS_PER_CHAR
809 == 2 * HOST_BITS_PER_WIDE_INT))
4a307dd5 810 {
b572011e 811 union {HOST_WIDE_INT i[2]; double d; } u;
812 HOST_WIDE_INT low, high;
4a307dd5 813
814 if (GET_CODE (x) == CONST_INT)
b572011e 815 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
4a307dd5 816 else
817 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
818
819#ifdef HOST_WORDS_BIG_ENDIAN
820 u.i[0] = high, u.i[1] = low;
821#else
822 u.i[0] = low, u.i[1] = high;
823#endif
824
715907c0 825 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
4a307dd5 826 }
e21bed9e 827
f51cb679 828 /* Similarly, if this is converting a floating-point value into a
829 single-word integer. Only do this is the host and target parameters are
830 compatible. */
831
832 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 833 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 834 || flag_pretend_float)
64115b39 835 && (GET_MODE_CLASS (mode) == MODE_INT
836 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
f51cb679 837 && GET_CODE (x) == CONST_DOUBLE
838 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
839 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
ff2f5877 840 return operand_subword (x, word, 0, GET_MODE (x));
f51cb679 841
4a307dd5 842 /* Similarly, if this is converting a floating-point value into a
843 two-word integer, we can do this one word at a time and make an
844 integer. Only do this is the host and target parameters are
845 compatible. */
846
f51cb679 847 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 848 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 849 || flag_pretend_float)
64115b39 850 && (GET_MODE_CLASS (mode) == MODE_INT
6ff0332a 851 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4a307dd5 852 && GET_CODE (x) == CONST_DOUBLE
853 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
854 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
855 {
ff2f5877 856 rtx lowpart
857 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
858 rtx highpart
859 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
4a307dd5 860
861 if (lowpart && GET_CODE (lowpart) == CONST_INT
862 && highpart && GET_CODE (highpart) == CONST_INT)
863 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
864 }
c8971cad 865#else /* ifndef REAL_ARITHMETIC */
866
867 /* When we have a FP emulator, we can handle all conversions between
868 FP and integer operands. This simplifies reload because it
869 doesn't have to deal with constructs like (subreg:DI
870 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
871
872 else if (mode == SFmode
873 && GET_CODE (x) == CONST_INT)
874 {
875 REAL_VALUE_TYPE r;
876 HOST_WIDE_INT i;
877
878 i = INTVAL (x);
879 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
880 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
881 }
882 else if (mode == DFmode
883 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
884 && GET_MODE (x) == VOIDmode)
885 {
886 REAL_VALUE_TYPE r;
887 HOST_WIDE_INT i[2];
888 HOST_WIDE_INT low, high;
889
890 if (GET_CODE (x) == CONST_INT)
891 {
892 low = INTVAL (x);
893 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
894 }
895 else
896 {
897 low = CONST_DOUBLE_LOW (x);
898 high = CONST_DOUBLE_HIGH (x);
899 }
900
901 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
902 target machine. */
903 if (WORDS_BIG_ENDIAN)
904 i[0] = high, i[1] = low;
905 else
906 i[0] = low, i[1] = high;
907
908 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
909 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
910 }
911 else if ((GET_MODE_CLASS (mode) == MODE_INT
912 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
913 && GET_CODE (x) == CONST_DOUBLE
914 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
915 {
916 REAL_VALUE_TYPE r;
917 long i[4]; /* Only the low 32 bits of each 'long' are used. */
918 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
919
920 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
921 switch (GET_MODE (x))
922 {
923 case SFmode:
924 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
a774762c 925 i[1 - endian] = 0;
c8971cad 926 break;
927 case DFmode:
928 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
929 break;
930#if LONG_DOUBLE_TYPE_SIZE == 96
931 case XFmode:
3f980cf7 932 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
933 i[3-3*endian] = 0;
c8971cad 934#else
935 case TFmode:
c8971cad 936 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
3f980cf7 937#endif
c8971cad 938 break;
939 default:
a774762c 940 abort ();
c8971cad 941 }
942
943 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
944 and return it. */
945#if HOST_BITS_PER_WIDE_INT == 32
a774762c 946 return immed_double_const (i[endian], i[1 - endian], mode);
c8971cad 947#else
83e32a86 948 {
949 int c;
950
951 if (HOST_BITS_PER_WIDE_INT != 64)
a774762c 952 abort ();
953
83e32a86 954 for (c = 0; c < 4; c++)
a774762c 955 i[c] &= ~ (0L);
3f980cf7 956
957 switch (GET_MODE (x))
958 {
959 case SFmode:
960 case DFmode:
961 return immed_double_const (((unsigned long) i[endian]) |
962 (((HOST_WIDE_INT) i[1-endian]) << 32),
963 0, mode);
964 default:
965 return immed_double_const (((unsigned long) i[endian*3]) |
966 (((HOST_WIDE_INT) i[1+endian]) << 32),
967 ((unsigned long) i[2-endian]) |
968 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
969 mode);
970 }
83e32a86 971 }
c8971cad 972#endif
973 }
974#endif /* ifndef REAL_ARITHMETIC */
4a307dd5 975
15bbde2b 976 /* Otherwise, we can't do this. */
977 return 0;
978}
979\f
568f439b 980/* Return the real part (which has mode MODE) of a complex value X.
981 This always comes at the low address in memory. */
982
983rtx
984gen_realpart (mode, x)
985 enum machine_mode mode;
986 register rtx x;
987{
0864dc1b 988 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
989 return XEXP (x, 0);
ea9a92b6 990 else if (WORDS_BIG_ENDIAN
991 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
992 && REG_P (x)
993 && REGNO (x) < FIRST_PSEUDO_REGISTER)
994 fatal ("Unable to access real part of complex value in a hard register on this target");
0864dc1b 995 else if (WORDS_BIG_ENDIAN)
568f439b 996 return gen_highpart (mode, x);
997 else
998 return gen_lowpart (mode, x);
999}
1000
1001/* Return the imaginary part (which has mode MODE) of a complex value X.
1002 This always comes at the high address in memory. */
1003
1004rtx
1005gen_imagpart (mode, x)
1006 enum machine_mode mode;
1007 register rtx x;
1008{
0864dc1b 1009 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1010 return XEXP (x, 1);
1011 else if (WORDS_BIG_ENDIAN)
568f439b 1012 return gen_lowpart (mode, x);
ea9a92b6 1013 else if (!WORDS_BIG_ENDIAN
1014 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1015 && REG_P (x)
1016 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1017 fatal ("Unable to access imaginary part of complex value in a hard register on this target");
568f439b 1018 else
1019 return gen_highpart (mode, x);
1020}
48c70a46 1021
1022/* Return 1 iff X, assumed to be a SUBREG,
1023 refers to the real part of the complex value in its containing reg.
1024 Complex values are always stored with the real part in the first word,
1025 regardless of WORDS_BIG_ENDIAN. */
1026
1027int
1028subreg_realpart_p (x)
1029 rtx x;
1030{
1031 if (GET_CODE (x) != SUBREG)
1032 abort ();
1033
02e7a332 1034 return ((unsigned int) SUBREG_WORD (x) * UNITS_PER_WORD
1035 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
48c70a46 1036}
568f439b 1037\f
15bbde2b 1038/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1039 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1040 least-significant part of X.
1041 MODE specifies how big a part of X to return;
1042 it usually should not be larger than a word.
1043 If X is a MEM whose address is a QUEUED, the value may be so also. */
1044
1045rtx
1046gen_lowpart (mode, x)
1047 enum machine_mode mode;
1048 register rtx x;
1049{
1050 rtx result = gen_lowpart_common (mode, x);
1051
1052 if (result)
1053 return result;
365c9063 1054 else if (GET_CODE (x) == REG)
1055 {
1056 /* Must be a hard reg that's not valid in MODE. */
1057 result = gen_lowpart_common (mode, copy_to_reg (x));
1058 if (result == 0)
1059 abort ();
314d6ec8 1060 return result;
365c9063 1061 }
15bbde2b 1062 else if (GET_CODE (x) == MEM)
1063 {
1064 /* The only additional case we can do is MEM. */
1065 register int offset = 0;
1066 if (WORDS_BIG_ENDIAN)
1067 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1068 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1069
1070 if (BYTES_BIG_ENDIAN)
1071 /* Adjust the address so that the address-after-the-data
1072 is unchanged. */
1073 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1074 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1075
1076 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1077 }
0dbd1c74 1078 else if (GET_CODE (x) == ADDRESSOF)
1079 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
15bbde2b 1080 else
1081 abort ();
1082}
1083
d56d0ca2 1084/* Like `gen_lowpart', but refer to the most significant part.
1085 This is used to access the imaginary part of a complex number. */
1086
1087rtx
1088gen_highpart (mode, x)
1089 enum machine_mode mode;
1090 register rtx x;
1091{
1092 /* This case loses if X is a subreg. To catch bugs early,
1093 complain if an invalid MODE is used even in other cases. */
1094 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
1095 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1096 abort ();
1097 if (GET_CODE (x) == CONST_DOUBLE
fc92fa61 1098#if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
d56d0ca2 1099 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1100#endif
1101 )
3ad7bb1c 1102 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
d56d0ca2 1103 else if (GET_CODE (x) == CONST_INT)
a0d52dee 1104 {
1105 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1106 return const0_rtx;
1107 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1108 }
d56d0ca2 1109 else if (GET_CODE (x) == MEM)
1110 {
1111 register int offset = 0;
10ef59ac 1112 if (! WORDS_BIG_ENDIAN)
1113 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1114 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1115
1116 if (! BYTES_BIG_ENDIAN
1117 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
d56d0ca2 1118 offset -= (GET_MODE_SIZE (mode)
1119 - MIN (UNITS_PER_WORD,
1120 GET_MODE_SIZE (GET_MODE (x))));
10ef59ac 1121
d56d0ca2 1122 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1123 }
1124 else if (GET_CODE (x) == SUBREG)
1125 {
1126 /* The only time this should occur is when we are looking at a
1127 multi-word item with a SUBREG whose mode is the same as that of the
1128 item. It isn't clear what we would do if it wasn't. */
1129 if (SUBREG_WORD (x) != 0)
1130 abort ();
1131 return gen_highpart (mode, SUBREG_REG (x));
1132 }
1133 else if (GET_CODE (x) == REG)
1134 {
6ec4ccb1 1135 int word;
d56d0ca2 1136
cfff67e2 1137 /* Let the backend decide how many registers to skip. This is needed
1138 in particular for sparc64 where fp regs are smaller than a word. */
1139 /* ??? Note that subregs are now ambiguous, in that those against
6ec4ccb1 1140 pseudos are sized by the word size, while those against hard
cfff67e2 1141 regs are sized by the underlying register size. Better would be
1142 to always interpret the subreg offset parameter as bytes or bits. */
1143
6ec4ccb1 1144 if (WORDS_BIG_ENDIAN)
1145 word = 0;
1146 else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
cfff67e2 1147 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
1148 - HARD_REGNO_NREGS (REGNO (x), mode));
6ec4ccb1 1149 else
1150 word = ((GET_MODE_SIZE (GET_MODE (x))
1151 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1152 / UNITS_PER_WORD);
e484899c 1153
8dc5a78e 1154 if (REGNO (x) < FIRST_PSEUDO_REGISTER
a92771b8 1155 /* integrate.c can't handle parts of a return value register. */
baeb2e0e 1156 && (! REG_FUNCTION_VALUE_P (x)
1157 || ! rtx_equal_function_value_matters)
8dc5a78e 1158 /* We want to keep the stack, frame, and arg pointers special. */
c1c63d0b 1159 && x != frame_pointer_rtx
8dc5a78e 1160#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
c1c63d0b 1161 && x != arg_pointer_rtx
8dc5a78e 1162#endif
c1c63d0b 1163 && x != stack_pointer_rtx)
3ad7bb1c 1164 return gen_rtx_REG (mode, REGNO (x) + word);
d56d0ca2 1165 else
3ad7bb1c 1166 return gen_rtx_SUBREG (mode, x, word);
d56d0ca2 1167 }
1168 else
1169 abort ();
1170}
1171
15bbde2b 1172/* Return 1 iff X, assumed to be a SUBREG,
1173 refers to the least significant part of its containing reg.
1174 If X is not a SUBREG, always return 1 (it is its own low part!). */
1175
1176int
1177subreg_lowpart_p (x)
1178 rtx x;
1179{
1180 if (GET_CODE (x) != SUBREG)
1181 return 1;
7e14c1bf 1182 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1183 return 0;
15bbde2b 1184
1185 if (WORDS_BIG_ENDIAN
1186 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1187 return (SUBREG_WORD (x)
1188 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1189 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1190 / UNITS_PER_WORD));
1191
1192 return SUBREG_WORD (x) == 0;
1193}
1194\f
1195/* Return subword I of operand OP.
1196 The word number, I, is interpreted as the word number starting at the
1197 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1198 otherwise it is the high-order word.
1199
1200 If we cannot extract the required word, we return zero. Otherwise, an
1201 rtx corresponding to the requested word will be returned.
1202
1203 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1204 reload has completed, a valid address will always be returned. After
1205 reload, if a valid address cannot be returned, we return zero.
1206
1207 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1208 it is the responsibility of the caller.
1209
1210 MODE is the mode of OP in case it is a CONST_INT. */
1211
1212rtx
1213operand_subword (op, i, validate_address, mode)
1214 rtx op;
02e7a332 1215 unsigned int i;
15bbde2b 1216 int validate_address;
1217 enum machine_mode mode;
1218{
b572011e 1219 HOST_WIDE_INT val;
1220 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
15bbde2b 1221
1222 if (mode == VOIDmode)
1223 mode = GET_MODE (op);
1224
1225 if (mode == VOIDmode)
1226 abort ();
1227
10c64b6a 1228 /* If OP is narrower than a word, fail. */
15bbde2b 1229 if (mode != BLKmode
10c64b6a 1230 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
15bbde2b 1231 return 0;
10c64b6a 1232
1233 /* If we want a word outside OP, return zero. */
1234 if (mode != BLKmode
1235 && (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1236 return const0_rtx;
15bbde2b 1237
1238 /* If OP is already an integer word, return it. */
1239 if (GET_MODE_CLASS (mode) == MODE_INT
1240 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1241 return op;
1242
1243 /* If OP is a REG or SUBREG, we can handle it very simply. */
1244 if (GET_CODE (op) == REG)
1245 {
ab0f6ce8 1246 /* ??? There is a potential problem with this code. It does not
1247 properly handle extractions of a subword from a hard register
1248 that is larger than word_mode. Presumably the check for
1249 HARD_REGNO_MODE_OK catches these most of these cases. */
1250
1251 /* If OP is a hard register, but OP + I is not a hard register,
1252 then extracting a subword is impossible.
1253
1254 For example, consider if OP is the last hard register and it is
1255 larger than word_mode. If we wanted word N (for N > 0) because a
1256 part of that hard register was known to contain a useful value,
1257 then OP + I would refer to a pseudo, not the hard register we
1258 actually wanted. */
1259 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1260 && REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
1261 return 0;
1262
1263 /* If the register is not valid for MODE, return 0. Note we
1264 have to check both OP and OP + I since they may refer to
1265 different parts of the register file.
1266
1267 Consider if OP refers to the last 96bit FP register and we want
1268 subword 3 because that subword is known to contain a value we
1269 needed. */
15bbde2b 1270 if (REGNO (op) < FIRST_PSEUDO_REGISTER
ab0f6ce8 1271 && (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
1272 || ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
15bbde2b 1273 return 0;
1274 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1275 || (REG_FUNCTION_VALUE_P (op)
8dc5a78e 1276 && rtx_equal_function_value_matters)
1277 /* We want to keep the stack, frame, and arg pointers
1278 special. */
c1c63d0b 1279 || op == frame_pointer_rtx
8dc5a78e 1280#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
c1c63d0b 1281 || op == arg_pointer_rtx
8dc5a78e 1282#endif
c1c63d0b 1283 || op == stack_pointer_rtx)
3ad7bb1c 1284 return gen_rtx_SUBREG (word_mode, op, i);
15bbde2b 1285 else
3ad7bb1c 1286 return gen_rtx_REG (word_mode, REGNO (op) + i);
15bbde2b 1287 }
1288 else if (GET_CODE (op) == SUBREG)
3ad7bb1c 1289 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
76c37538 1290 else if (GET_CODE (op) == CONCAT)
1291 {
02e7a332 1292 unsigned int partwords
1293 = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1294
76c37538 1295 if (i < partwords)
1296 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1297 return operand_subword (XEXP (op, 1), i - partwords,
1298 validate_address, mode);
1299 }
15bbde2b 1300
1301 /* Form a new MEM at the requested address. */
1302 if (GET_CODE (op) == MEM)
1303 {
1304 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1305 rtx new;
1306
1307 if (validate_address)
1308 {
1309 if (reload_completed)
1310 {
1311 if (! strict_memory_address_p (word_mode, addr))
1312 return 0;
1313 }
1314 else
1315 addr = memory_address (word_mode, addr);
1316 }
1317
3ad7bb1c 1318 new = gen_rtx_MEM (word_mode, addr);
6a0934dd 1319 MEM_COPY_ATTRIBUTES (new, op);
15bbde2b 1320 return new;
1321 }
1322
1323 /* The only remaining cases are when OP is a constant. If the host and
1324 target floating formats are the same, handling two-word floating
48509d90 1325 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
0477aa9f 1326 are defined as returning one or two 32 bit values, respectively,
1327 and not values of BITS_PER_WORD bits. */
fc92fa61 1328#ifdef REAL_ARITHMETIC
915c336f 1329 /* The output is some bits, the width of the target machine's word.
1330 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1331 host can't. */
0477aa9f 1332 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
fc92fa61 1333 && GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1334 && GET_MODE_BITSIZE (mode) == 64
fc92fa61 1335 && GET_CODE (op) == CONST_DOUBLE)
1336 {
0477aa9f 1337 long k[2];
fc92fa61 1338 REAL_VALUE_TYPE rv;
1339
1340 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1341 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
48509d90 1342
0477aa9f 1343 /* We handle 32-bit and >= 64-bit words here. Note that the order in
48509d90 1344 which the words are written depends on the word endianness.
48509d90 1345 ??? This is a potential portability problem and should
cd1091f4 1346 be fixed at some point.
1347
1348 We must excercise caution with the sign bit. By definition there
1349 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1350 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1351 So we explicitly mask and sign-extend as necessary. */
0477aa9f 1352 if (BITS_PER_WORD == 32)
cd1091f4 1353 {
1354 val = k[i];
1355 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1356 return GEN_INT (val);
1357 }
1358#if HOST_BITS_PER_WIDE_INT >= 64
0477aa9f 1359 else if (BITS_PER_WORD >= 64 && i == 0)
cd1091f4 1360 {
1361 val = k[! WORDS_BIG_ENDIAN];
1362 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1363 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1364 return GEN_INT (val);
1365 }
0477aa9f 1366#endif
de8de626 1367 else if (BITS_PER_WORD == 16)
1368 {
cd1091f4 1369 val = k[i >> 1];
1370 if ((i & 1) == !WORDS_BIG_ENDIAN)
1371 val >>= 16;
1372 val &= 0xffff;
1373 return GEN_INT (val);
de8de626 1374 }
48509d90 1375 else
1376 abort ();
fc92fa61 1377 }
61f41e95 1378 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1379 && GET_MODE_CLASS (mode) == MODE_FLOAT
1380 && GET_MODE_BITSIZE (mode) > 64
1381 && GET_CODE (op) == CONST_DOUBLE)
915c336f 1382 {
1383 long k[4];
1384 REAL_VALUE_TYPE rv;
61f41e95 1385
915c336f 1386 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1387 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
61f41e95 1388
915c336f 1389 if (BITS_PER_WORD == 32)
1390 {
1391 val = k[i];
1392 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1393 return GEN_INT (val);
1394 }
1395#if HOST_BITS_PER_WIDE_INT >= 64
1396 else if (BITS_PER_WORD >= 64 && i <= 1)
1397 {
1398 val = k[i*2 + ! WORDS_BIG_ENDIAN];
1399 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1400 val |= (HOST_WIDE_INT) k[i*2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1401 return GEN_INT (val);
1402 }
1403#endif
1404 else
1405 abort ();
1406 }
fc92fa61 1407#else /* no REAL_ARITHMETIC */
15bbde2b 1408 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1409 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1410 || flag_pretend_float)
1411 && GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1413 && GET_CODE (op) == CONST_DOUBLE)
35bb04fc 1414 {
1415 /* The constant is stored in the host's word-ordering,
1416 but we want to access it in the target's word-ordering. Some
1417 compilers don't like a conditional inside macro args, so we have two
1418 copies of the return. */
06683233 1419#ifdef HOST_WORDS_BIG_ENDIAN
35bb04fc 1420 return GEN_INT (i == WORDS_BIG_ENDIAN
1421 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1422#else
35bb04fc 1423 return GEN_INT (i != WORDS_BIG_ENDIAN
1424 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1425#endif
35bb04fc 1426 }
fc92fa61 1427#endif /* no REAL_ARITHMETIC */
15bbde2b 1428
1429 /* Single word float is a little harder, since single- and double-word
1430 values often do not have the same high-order bits. We have already
1431 verified that we want the only defined word of the single-word value. */
fc92fa61 1432#ifdef REAL_ARITHMETIC
0477aa9f 1433 if (GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1434 && GET_MODE_BITSIZE (mode) == 32
fc92fa61 1435 && GET_CODE (op) == CONST_DOUBLE)
1436 {
0477aa9f 1437 long l;
fc92fa61 1438 REAL_VALUE_TYPE rv;
1439
1440 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1441 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
587a9fdf 1442
cd1091f4 1443 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1444 val = l;
1445 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
eb294a2f 1446
587a9fdf 1447 if (BITS_PER_WORD == 16)
1448 {
cd1091f4 1449 if ((i & 1) == !WORDS_BIG_ENDIAN)
1450 val >>= 16;
1451 val &= 0xffff;
587a9fdf 1452 }
cd1091f4 1453
1454 return GEN_INT (val);
fc92fa61 1455 }
1456#else
15bbde2b 1457 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1458 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1459 || flag_pretend_float)
dc611f66 1460 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
15bbde2b 1461 && GET_MODE_CLASS (mode) == MODE_FLOAT
1462 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1463 && GET_CODE (op) == CONST_DOUBLE)
1464 {
1465 double d;
b572011e 1466 union {float f; HOST_WIDE_INT i; } u;
15bbde2b 1467
1468 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1469
1470 u.f = d;
b572011e 1471 return GEN_INT (u.i);
15bbde2b 1472 }
dc611f66 1473 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1474 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1475 || flag_pretend_float)
1476 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1477 && GET_MODE_CLASS (mode) == MODE_FLOAT
1478 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1479 && GET_CODE (op) == CONST_DOUBLE)
1480 {
1481 double d;
1482 union {double d; HOST_WIDE_INT i; } u;
1483
1484 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1485
1486 u.d = d;
1487 return GEN_INT (u.i);
1488 }
fc92fa61 1489#endif /* no REAL_ARITHMETIC */
15bbde2b 1490
1491 /* The only remaining cases that we can handle are integers.
1492 Convert to proper endianness now since these cases need it.
1493 At this point, i == 0 means the low-order word.
1494
870288ea 1495 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1496 in general. However, if OP is (const_int 0), we can just return
1497 it for any word. */
1498
1499 if (op == const0_rtx)
1500 return op;
15bbde2b 1501
1502 if (GET_MODE_CLASS (mode) != MODE_INT
870288ea 1503 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
5c1fd70d 1504 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
15bbde2b 1505 return 0;
1506
1507 if (WORDS_BIG_ENDIAN)
1508 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1509
1510 /* Find out which word on the host machine this value is in and get
1511 it from the constant. */
1512 val = (i / size_ratio == 0
1513 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1514 : (GET_CODE (op) == CONST_INT
1515 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1516
5418f2a8 1517 /* Get the value we want into the low bits of val. */
b572011e 1518 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
5418f2a8 1519 val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
1520
b2345915 1521 val = trunc_int_for_mode (val, word_mode);
15bbde2b 1522
b572011e 1523 return GEN_INT (val);
15bbde2b 1524}
1525
1526/* Similar to `operand_subword', but never return 0. If we can't extract
1527 the required subword, put OP into a register and try again. If that fails,
1528 abort. We always validate the address in this case. It is not valid
1529 to call this function after reload; it is mostly meant for RTL
1530 generation.
1531
1532 MODE is the mode of OP, in case it is CONST_INT. */
1533
1534rtx
1535operand_subword_force (op, i, mode)
1536 rtx op;
02e7a332 1537 unsigned int i;
15bbde2b 1538 enum machine_mode mode;
1539{
1540 rtx result = operand_subword (op, i, 1, mode);
1541
1542 if (result)
1543 return result;
1544
1545 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1546 {
1547 /* If this is a register which can not be accessed by words, copy it
1548 to a pseudo register. */
1549 if (GET_CODE (op) == REG)
1550 op = copy_to_reg (op);
1551 else
1552 op = force_reg (mode, op);
1553 }
15bbde2b 1554
1555 result = operand_subword (op, i, 1, mode);
1556 if (result == 0)
1557 abort ();
1558
1559 return result;
1560}
1561\f
1562/* Given a compare instruction, swap the operands.
1563 A test instruction is changed into a compare of 0 against the operand. */
1564
1565void
1566reverse_comparison (insn)
1567 rtx insn;
1568{
1569 rtx body = PATTERN (insn);
1570 rtx comp;
1571
1572 if (GET_CODE (body) == SET)
1573 comp = SET_SRC (body);
1574 else
1575 comp = SET_SRC (XVECEXP (body, 0, 0));
1576
1577 if (GET_CODE (comp) == COMPARE)
1578 {
1579 rtx op0 = XEXP (comp, 0);
1580 rtx op1 = XEXP (comp, 1);
1581 XEXP (comp, 0) = op1;
1582 XEXP (comp, 1) = op0;
1583 }
1584 else
1585 {
7014838c 1586 rtx new = gen_rtx_COMPARE (VOIDmode,
1587 CONST0_RTX (GET_MODE (comp)), comp);
15bbde2b 1588 if (GET_CODE (body) == SET)
1589 SET_SRC (body) = new;
1590 else
1591 SET_SRC (XVECEXP (body, 0, 0)) = new;
1592 }
1593}
1594\f
1595/* Return a memory reference like MEMREF, but with its mode changed
1596 to MODE and its address changed to ADDR.
1597 (VOIDmode means don't change the mode.
1598 NULL for ADDR means don't change the address.) */
1599
1600rtx
1601change_address (memref, mode, addr)
1602 rtx memref;
1603 enum machine_mode mode;
1604 rtx addr;
1605{
1606 rtx new;
1607
1608 if (GET_CODE (memref) != MEM)
1609 abort ();
1610 if (mode == VOIDmode)
1611 mode = GET_MODE (memref);
1612 if (addr == 0)
1613 addr = XEXP (memref, 0);
1614
1615 /* If reload is in progress or has completed, ADDR must be valid.
1616 Otherwise, we can call memory_address to make it valid. */
1617 if (reload_completed || reload_in_progress)
1618 {
1619 if (! memory_address_p (mode, addr))
1620 abort ();
1621 }
1622 else
1623 addr = memory_address (mode, addr);
1624
e8976cd7 1625 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1626 return memref;
1627
3ad7bb1c 1628 new = gen_rtx_MEM (mode, addr);
6a0934dd 1629 MEM_COPY_ATTRIBUTES (new, memref);
15bbde2b 1630 return new;
1631}
1632\f
1633/* Return a newly created CODE_LABEL rtx with a unique label number. */
1634
1635rtx
1636gen_label_rtx ()
1637{
649d8da6 1638 register rtx label;
1639
b54842d8 1640 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
bfee5366 1641 NULL_RTX, label_num++, NULL_PTR, NULL_PTR);
649d8da6 1642
15bbde2b 1643 LABEL_NUSES (label) = 0;
bfee5366 1644 LABEL_ALTERNATE_NAME (label) = NULL;
15bbde2b 1645 return label;
1646}
1647\f
1648/* For procedure integration. */
1649
15bbde2b 1650/* Install new pointers to the first and last insns in the chain.
d4c332ff 1651 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 1652 Used for an inline-procedure after copying the insn chain. */
1653
1654void
1655set_new_first_and_last_insn (first, last)
1656 rtx first, last;
1657{
d4c332ff 1658 rtx insn;
1659
15bbde2b 1660 first_insn = first;
1661 last_insn = last;
d4c332ff 1662 cur_insn_uid = 0;
1663
1664 for (insn = first; insn; insn = NEXT_INSN (insn))
1665 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1666
1667 cur_insn_uid++;
15bbde2b 1668}
1669
1670/* Set the range of label numbers found in the current function.
1671 This is used when belatedly compiling an inline function. */
1672
1673void
1674set_new_first_and_last_label_num (first, last)
1675 int first, last;
1676{
1677 base_label_num = label_num;
1678 first_label_num = first;
1679 last_label_num = last;
1680}
0a893c29 1681
1682/* Set the last label number found in the current function.
1683 This is used when belatedly compiling an inline function. */
15bbde2b 1684
1685void
0a893c29 1686set_new_last_label_num (last)
1687 int last;
15bbde2b 1688{
0a893c29 1689 base_label_num = label_num;
1690 last_label_num = last;
15bbde2b 1691}
0a893c29 1692\f
15bbde2b 1693/* Restore all variables describing the current status from the structure *P.
1694 This is used after a nested function. */
1695
1696void
1697restore_emit_status (p)
c5b89159 1698 struct function *p ATTRIBUTE_UNUSED;
15bbde2b 1699{
bb9d6298 1700 last_label_num = 0;
0a893c29 1701 clear_emit_caches ();
15bbde2b 1702}
26df1c5e 1703
c788feb1 1704/* Clear out all parts of the state in F that can safely be discarded
26df1c5e 1705 after the function has been compiled, to let garbage collection
a57bcb3b 1706 reclaim the memory. */
c788feb1 1707
26df1c5e 1708void
a57bcb3b 1709free_emit_status (f)
26df1c5e 1710 struct function *f;
1711{
1712 free (f->emit->x_regno_reg_rtx);
1713 free (f->emit->regno_pointer_flag);
1714 free (f->emit->regno_pointer_align);
3c3bb268 1715 free (f->emit);
1716 f->emit = NULL;
26df1c5e 1717}
15bbde2b 1718\f
2d96a59a 1719/* Go through all the RTL insn bodies and copy any invalid shared
1720 structure. This routine should only be called once. */
15bbde2b 1721
1722void
2d96a59a 1723unshare_all_rtl (fndecl, insn)
1724 tree fndecl;
1725 rtx insn;
15bbde2b 1726{
2d96a59a 1727 tree decl;
15bbde2b 1728
2d96a59a 1729 /* Make sure that virtual parameters are not shared. */
1730 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
45733446 1731 DECL_RTL (decl) = copy_rtx_if_shared (DECL_RTL (decl));
2d96a59a 1732
72ec8878 1733 /* Make sure that virtual stack slots are not shared. */
1734 unshare_all_decls (DECL_INITIAL (fndecl));
1735
2d96a59a 1736 /* Unshare just about everything else. */
1737 unshare_all_rtl_1 (insn);
1738
15bbde2b 1739 /* Make sure the addresses of stack slots found outside the insn chain
1740 (such as, in DECL_RTL of a variable) are not shared
1741 with the insn chain.
1742
1743 This special care is necessary when the stack slot MEM does not
1744 actually appear in the insn chain. If it does appear, its address
1745 is unshared from all else at that point. */
45733446 1746 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
15bbde2b 1747}
1748
2d96a59a 1749/* Go through all the RTL insn bodies and copy any invalid shared
1750 structure, again. This is a fairly expensive thing to do so it
1751 should be done sparingly. */
1752
1753void
1754unshare_all_rtl_again (insn)
1755 rtx insn;
1756{
1757 rtx p;
5244079b 1758 tree decl;
1759
2d96a59a 1760 for (p = insn; p; p = NEXT_INSN (p))
9204e736 1761 if (INSN_P (p))
2d96a59a 1762 {
1763 reset_used_flags (PATTERN (p));
1764 reset_used_flags (REG_NOTES (p));
1765 reset_used_flags (LOG_LINKS (p));
1766 }
5244079b 1767
01dc9f0c 1768 /* Make sure that virtual stack slots are not shared. */
1769 reset_used_decls (DECL_INITIAL (cfun->decl));
1770
5244079b 1771 /* Make sure that virtual parameters are not shared. */
1772 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1773 reset_used_flags (DECL_RTL (decl));
1774
1775 reset_used_flags (stack_slot_list);
1776
1777 unshare_all_rtl (cfun->decl, insn);
2d96a59a 1778}
1779
1780/* Go through all the RTL insn bodies and copy any invalid shared structure.
1781 Assumes the mark bits are cleared at entry. */
1782
1783static void
1784unshare_all_rtl_1 (insn)
1785 rtx insn;
1786{
1787 for (; insn; insn = NEXT_INSN (insn))
9204e736 1788 if (INSN_P (insn))
2d96a59a 1789 {
1790 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1791 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1792 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1793 }
1794}
1795
72ec8878 1796/* Go through all virtual stack slots of a function and copy any
1797 shared structure. */
1798static void
1799unshare_all_decls (blk)
1800 tree blk;
1801{
1802 tree t;
1803
1804 /* Copy shared decls. */
1805 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
01dc9f0c 1806 DECL_RTL (t) = copy_rtx_if_shared (DECL_RTL (t));
72ec8878 1807
1808 /* Now process sub-blocks. */
1809 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1810 unshare_all_decls (t);
1811}
1812
01dc9f0c 1813/* Go through all virtual stack slots of a function and mark them as
1814 not shared. */
1815static void
1816reset_used_decls (blk)
1817 tree blk;
1818{
1819 tree t;
1820
1821 /* Mark decls. */
1822 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1823 reset_used_flags (DECL_RTL (t));
1824
1825 /* Now process sub-blocks. */
1826 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1827 reset_used_decls (t);
1828}
1829
15bbde2b 1830/* Mark ORIG as in use, and return a copy of it if it was already in use.
1831 Recursively does the same for subexpressions. */
1832
1833rtx
1834copy_rtx_if_shared (orig)
1835 rtx orig;
1836{
1837 register rtx x = orig;
1838 register int i;
1839 register enum rtx_code code;
d2ca078f 1840 register const char *format_ptr;
15bbde2b 1841 int copied = 0;
1842
1843 if (x == 0)
1844 return 0;
1845
1846 code = GET_CODE (x);
1847
1848 /* These types may be freely shared. */
1849
1850 switch (code)
1851 {
1852 case REG:
1853 case QUEUED:
1854 case CONST_INT:
1855 case CONST_DOUBLE:
1856 case SYMBOL_REF:
1857 case CODE_LABEL:
1858 case PC:
1859 case CC0:
1860 case SCRATCH:
a92771b8 1861 /* SCRATCH must be shared because they represent distinct values. */
15bbde2b 1862 return x;
1863
f63d12e3 1864 case CONST:
1865 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1866 a LABEL_REF, it isn't sharable. */
1867 if (GET_CODE (XEXP (x, 0)) == PLUS
1868 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1869 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1870 return x;
1871 break;
1872
15bbde2b 1873 case INSN:
1874 case JUMP_INSN:
1875 case CALL_INSN:
1876 case NOTE:
15bbde2b 1877 case BARRIER:
1878 /* The chain of insns is not being copied. */
1879 return x;
1880
1881 case MEM:
baf55c37 1882 /* A MEM is allowed to be shared if its address is constant.
1883
1884 We used to allow sharing of MEMs which referenced
1885 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1886 that can lose. instantiate_virtual_regs will not unshare
1887 the MEMs, and combine may change the structure of the address
1888 because it looks safe and profitable in one context, but
1889 in some other context it creates unrecognizable RTL. */
1890 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
15bbde2b 1891 return x;
1892
0dbd1c74 1893 break;
1894
1895 default:
1896 break;
15bbde2b 1897 }
1898
1899 /* This rtx may not be shared. If it has already been seen,
1900 replace it with a copy of itself. */
1901
1902 if (x->used)
1903 {
1904 register rtx copy;
1905
1906 copy = rtx_alloc (code);
748e6d74 1907 bcopy ((char *) x, (char *) copy,
1908 (sizeof (*copy) - sizeof (copy->fld)
1909 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
15bbde2b 1910 x = copy;
1911 copied = 1;
1912 }
1913 x->used = 1;
1914
1915 /* Now scan the subexpressions recursively.
1916 We can store any replaced subexpressions directly into X
1917 since we know X is not shared! Any vectors in X
1918 must be copied if X was copied. */
1919
1920 format_ptr = GET_RTX_FORMAT (code);
1921
1922 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1923 {
1924 switch (*format_ptr++)
1925 {
1926 case 'e':
1927 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1928 break;
1929
1930 case 'E':
1931 if (XVEC (x, i) != NULL)
1932 {
1933 register int j;
ffe0869b 1934 int len = XVECLEN (x, i);
15bbde2b 1935
ffe0869b 1936 if (copied && len > 0)
a4070a91 1937 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
ffe0869b 1938 for (j = 0; j < len; j++)
1939 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
15bbde2b 1940 }
1941 break;
1942 }
1943 }
1944 return x;
1945}
1946
1947/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1948 to look for shared sub-parts. */
1949
1950void
1951reset_used_flags (x)
1952 rtx x;
1953{
1954 register int i, j;
1955 register enum rtx_code code;
d2ca078f 1956 register const char *format_ptr;
15bbde2b 1957
1958 if (x == 0)
1959 return;
1960
1961 code = GET_CODE (x);
1962
c3418f42 1963 /* These types may be freely shared so we needn't do any resetting
15bbde2b 1964 for them. */
1965
1966 switch (code)
1967 {
1968 case REG:
1969 case QUEUED:
1970 case CONST_INT:
1971 case CONST_DOUBLE:
1972 case SYMBOL_REF:
1973 case CODE_LABEL:
1974 case PC:
1975 case CC0:
1976 return;
1977
1978 case INSN:
1979 case JUMP_INSN:
1980 case CALL_INSN:
1981 case NOTE:
1982 case LABEL_REF:
1983 case BARRIER:
1984 /* The chain of insns is not being copied. */
1985 return;
0dbd1c74 1986
1987 default:
1988 break;
15bbde2b 1989 }
1990
1991 x->used = 0;
1992
1993 format_ptr = GET_RTX_FORMAT (code);
1994 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1995 {
1996 switch (*format_ptr++)
1997 {
1998 case 'e':
1999 reset_used_flags (XEXP (x, i));
2000 break;
2001
2002 case 'E':
2003 for (j = 0; j < XVECLEN (x, i); j++)
2004 reset_used_flags (XVECEXP (x, i, j));
2005 break;
2006 }
2007 }
2008}
2009\f
2010/* Copy X if necessary so that it won't be altered by changes in OTHER.
2011 Return X or the rtx for the pseudo reg the value of X was copied into.
2012 OTHER must be valid as a SET_DEST. */
2013
2014rtx
2015make_safe_from (x, other)
2016 rtx x, other;
2017{
2018 while (1)
2019 switch (GET_CODE (other))
2020 {
2021 case SUBREG:
2022 other = SUBREG_REG (other);
2023 break;
2024 case STRICT_LOW_PART:
2025 case SIGN_EXTEND:
2026 case ZERO_EXTEND:
2027 other = XEXP (other, 0);
2028 break;
2029 default:
2030 goto done;
2031 }
2032 done:
2033 if ((GET_CODE (other) == MEM
2034 && ! CONSTANT_P (x)
2035 && GET_CODE (x) != REG
2036 && GET_CODE (x) != SUBREG)
2037 || (GET_CODE (other) == REG
2038 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2039 || reg_mentioned_p (other, x))))
2040 {
2041 rtx temp = gen_reg_rtx (GET_MODE (x));
2042 emit_move_insn (temp, x);
2043 return temp;
2044 }
2045 return x;
2046}
2047\f
2048/* Emission of insns (adding them to the doubly-linked list). */
2049
2050/* Return the first insn of the current sequence or current function. */
2051
2052rtx
2053get_insns ()
2054{
2055 return first_insn;
2056}
2057
2058/* Return the last insn emitted in current sequence or current function. */
2059
2060rtx
2061get_last_insn ()
2062{
2063 return last_insn;
2064}
2065
2066/* Specify a new insn as the last in the chain. */
2067
2068void
2069set_last_insn (insn)
2070 rtx insn;
2071{
2072 if (NEXT_INSN (insn) != 0)
2073 abort ();
2074 last_insn = insn;
2075}
2076
2077/* Return the last insn emitted, even if it is in a sequence now pushed. */
2078
2079rtx
2080get_last_insn_anywhere ()
2081{
2082 struct sequence_stack *stack;
2083 if (last_insn)
2084 return last_insn;
0a893c29 2085 for (stack = seq_stack; stack; stack = stack->next)
15bbde2b 2086 if (stack->last != 0)
2087 return stack->last;
2088 return 0;
2089}
2090
2091/* Return a number larger than any instruction's uid in this function. */
2092
2093int
2094get_max_uid ()
2095{
2096 return cur_insn_uid;
2097}
90b89d2c 2098
214d02d0 2099/* Renumber instructions so that no instruction UIDs are wasted. */
2100
90b89d2c 2101void
214d02d0 2102renumber_insns (stream)
2103 FILE *stream;
90b89d2c 2104{
2105 rtx insn;
90b89d2c 2106
214d02d0 2107 /* If we're not supposed to renumber instructions, don't. */
2108 if (!flag_renumber_insns)
2109 return;
2110
90b89d2c 2111 /* If there aren't that many instructions, then it's not really
2112 worth renumbering them. */
214d02d0 2113 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
90b89d2c 2114 return;
2115
2116 cur_insn_uid = 1;
2117
2118 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
214d02d0 2119 {
2120 if (stream)
2121 fprintf (stream, "Renumbering insn %d to %d\n",
2122 INSN_UID (insn), cur_insn_uid);
2123 INSN_UID (insn) = cur_insn_uid++;
2124 }
90b89d2c 2125}
15bbde2b 2126\f
2127/* Return the next insn. If it is a SEQUENCE, return the first insn
2128 of the sequence. */
2129
2130rtx
2131next_insn (insn)
2132 rtx insn;
2133{
2134 if (insn)
2135 {
2136 insn = NEXT_INSN (insn);
2137 if (insn && GET_CODE (insn) == INSN
2138 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2139 insn = XVECEXP (PATTERN (insn), 0, 0);
2140 }
2141
2142 return insn;
2143}
2144
2145/* Return the previous insn. If it is a SEQUENCE, return the last insn
2146 of the sequence. */
2147
2148rtx
2149previous_insn (insn)
2150 rtx insn;
2151{
2152 if (insn)
2153 {
2154 insn = PREV_INSN (insn);
2155 if (insn && GET_CODE (insn) == INSN
2156 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2157 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2158 }
2159
2160 return insn;
2161}
2162
2163/* Return the next insn after INSN that is not a NOTE. This routine does not
2164 look inside SEQUENCEs. */
2165
2166rtx
2167next_nonnote_insn (insn)
2168 rtx insn;
2169{
2170 while (insn)
2171 {
2172 insn = NEXT_INSN (insn);
2173 if (insn == 0 || GET_CODE (insn) != NOTE)
2174 break;
2175 }
2176
2177 return insn;
2178}
2179
2180/* Return the previous insn before INSN that is not a NOTE. This routine does
2181 not look inside SEQUENCEs. */
2182
2183rtx
2184prev_nonnote_insn (insn)
2185 rtx insn;
2186{
2187 while (insn)
2188 {
2189 insn = PREV_INSN (insn);
2190 if (insn == 0 || GET_CODE (insn) != NOTE)
2191 break;
2192 }
2193
2194 return insn;
2195}
2196
2197/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2198 or 0, if there is none. This routine does not look inside
a92771b8 2199 SEQUENCEs. */
15bbde2b 2200
2201rtx
2202next_real_insn (insn)
2203 rtx insn;
2204{
2205 while (insn)
2206 {
2207 insn = NEXT_INSN (insn);
2208 if (insn == 0 || GET_CODE (insn) == INSN
2209 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2210 break;
2211 }
2212
2213 return insn;
2214}
2215
2216/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2217 or 0, if there is none. This routine does not look inside
2218 SEQUENCEs. */
2219
2220rtx
2221prev_real_insn (insn)
2222 rtx insn;
2223{
2224 while (insn)
2225 {
2226 insn = PREV_INSN (insn);
2227 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2228 || GET_CODE (insn) == JUMP_INSN)
2229 break;
2230 }
2231
2232 return insn;
2233}
2234
2235/* Find the next insn after INSN that really does something. This routine
2236 does not look inside SEQUENCEs. Until reload has completed, this is the
2237 same as next_real_insn. */
2238
2215ca0d 2239int
2240active_insn_p (insn)
2241 rtx insn;
2242{
2243 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2244 || (GET_CODE (insn) == INSN
2245 && (! reload_completed
2246 || (GET_CODE (PATTERN (insn)) != USE
2247 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2248}
2249
15bbde2b 2250rtx
2251next_active_insn (insn)
2252 rtx insn;
2253{
2254 while (insn)
2255 {
2256 insn = NEXT_INSN (insn);
2215ca0d 2257 if (insn == 0 || active_insn_p (insn))
15bbde2b 2258 break;
2259 }
2260
2261 return insn;
2262}
2263
2264/* Find the last insn before INSN that really does something. This routine
2265 does not look inside SEQUENCEs. Until reload has completed, this is the
2266 same as prev_real_insn. */
2267
2268rtx
2269prev_active_insn (insn)
2270 rtx insn;
2271{
2272 while (insn)
2273 {
2274 insn = PREV_INSN (insn);
2215ca0d 2275 if (insn == 0 || active_insn_p (insn))
15bbde2b 2276 break;
2277 }
2278
2279 return insn;
2280}
2281
2282/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2283
2284rtx
2285next_label (insn)
2286 rtx insn;
2287{
2288 while (insn)
2289 {
2290 insn = NEXT_INSN (insn);
2291 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2292 break;
2293 }
2294
2295 return insn;
2296}
2297
2298/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2299
2300rtx
2301prev_label (insn)
2302 rtx insn;
2303{
2304 while (insn)
2305 {
2306 insn = PREV_INSN (insn);
2307 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2308 break;
2309 }
2310
2311 return insn;
2312}
2313\f
2314#ifdef HAVE_cc0
b15e0bba 2315/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2316 and REG_CC_USER notes so we can find it. */
2317
2318void
2319link_cc0_insns (insn)
2320 rtx insn;
2321{
2322 rtx user = next_nonnote_insn (insn);
2323
2324 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2325 user = XVECEXP (PATTERN (user), 0, 0);
2326
7014838c 2327 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2328 REG_NOTES (user));
3ad7bb1c 2329 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
b15e0bba 2330}
2331
15bbde2b 2332/* Return the next insn that uses CC0 after INSN, which is assumed to
2333 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2334 applied to the result of this function should yield INSN).
2335
2336 Normally, this is simply the next insn. However, if a REG_CC_USER note
2337 is present, it contains the insn that uses CC0.
2338
2339 Return 0 if we can't find the insn. */
2340
2341rtx
2342next_cc0_user (insn)
2343 rtx insn;
2344{
b572011e 2345 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 2346
2347 if (note)
2348 return XEXP (note, 0);
2349
2350 insn = next_nonnote_insn (insn);
2351 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2352 insn = XVECEXP (PATTERN (insn), 0, 0);
2353
9204e736 2354 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
15bbde2b 2355 return insn;
2356
2357 return 0;
2358}
2359
2360/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2361 note, it is the previous insn. */
2362
2363rtx
2364prev_cc0_setter (insn)
2365 rtx insn;
2366{
b572011e 2367 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 2368
2369 if (note)
2370 return XEXP (note, 0);
2371
2372 insn = prev_nonnote_insn (insn);
2373 if (! sets_cc0_p (PATTERN (insn)))
2374 abort ();
2375
2376 return insn;
2377}
2378#endif
2379\f
2380/* Try splitting insns that can be split for better scheduling.
2381 PAT is the pattern which might split.
2382 TRIAL is the insn providing PAT.
0e69a50a 2383 LAST is non-zero if we should return the last insn of the sequence produced.
15bbde2b 2384
2385 If this routine succeeds in splitting, it returns the first or last
0e69a50a 2386 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 2387 returns TRIAL. If the insn to be returned can be split, it will be. */
2388
2389rtx
0e69a50a 2390try_split (pat, trial, last)
15bbde2b 2391 rtx pat, trial;
0e69a50a 2392 int last;
15bbde2b 2393{
2394 rtx before = PREV_INSN (trial);
2395 rtx after = NEXT_INSN (trial);
2396 rtx seq = split_insns (pat, trial);
2397 int has_barrier = 0;
2398 rtx tem;
2399
2400 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2401 We may need to handle this specially. */
2402 if (after && GET_CODE (after) == BARRIER)
2403 {
2404 has_barrier = 1;
2405 after = NEXT_INSN (after);
2406 }
2407
2408 if (seq)
2409 {
2410 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2411 The latter case will normally arise only when being done so that
2412 it, in turn, will be split (SFmode on the 29k is an example). */
2413 if (GET_CODE (seq) == SEQUENCE)
2414 {
5262c253 2415 int i;
2416
2417 /* Avoid infinite loop if any insn of the result matches
2418 the original pattern. */
2419 for (i = 0; i < XVECLEN (seq, 0); i++)
2420 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2421 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2422 return trial;
2423
15bbde2b 2424 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2425 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2426 increment the usage count so we don't delete the label. */
15bbde2b 2427
2428 if (GET_CODE (trial) == JUMP_INSN)
2429 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2430 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2431 {
2432 JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
2433
2434 if (JUMP_LABEL (trial))
2435 LABEL_NUSES (JUMP_LABEL (trial))++;
2436 }
2437
2438 tem = emit_insn_after (seq, before);
2439
2440 delete_insn (trial);
2441 if (has_barrier)
2442 emit_barrier_after (tem);
0e69a50a 2443
2444 /* Recursively call try_split for each new insn created; by the
2445 time control returns here that insn will be fully split, so
2446 set LAST and continue from the insn after the one returned.
06343e77 2447 We can't use next_active_insn here since AFTER may be a note.
ab6683d6 2448 Ignore deleted insns, which can be occur if not optimizing. */
9204e736 2449 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2450 if (! INSN_DELETED_P (tem) && INSN_P (tem))
06343e77 2451 tem = try_split (PATTERN (tem), tem, 1);
15bbde2b 2452 }
2453 /* Avoid infinite loop if the result matches the original pattern. */
2454 else if (rtx_equal_p (seq, pat))
2455 return trial;
2456 else
2457 {
2458 PATTERN (trial) = seq;
2459 INSN_CODE (trial) = -1;
0e69a50a 2460 try_split (seq, trial, last);
15bbde2b 2461 }
2462
0e69a50a 2463 /* Return either the first or the last insn, depending on which was
2464 requested. */
068a89d7 2465 return last
2466 ? (after ? prev_active_insn (after) : last_insn)
2467 : next_active_insn (before);
15bbde2b 2468 }
2469
2470 return trial;
2471}
2472\f
2473/* Make and return an INSN rtx, initializing all its slots.
6a84e367 2474 Store PATTERN in the pattern slots. */
15bbde2b 2475
2476rtx
6a84e367 2477make_insn_raw (pattern)
15bbde2b 2478 rtx pattern;
15bbde2b 2479{
2480 register rtx insn;
2481
d7c47c0e 2482 insn = rtx_alloc (INSN);
15bbde2b 2483
575333f9 2484 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 2485 PATTERN (insn) = pattern;
2486 INSN_CODE (insn) = -1;
fc92fa61 2487 LOG_LINKS (insn) = NULL;
2488 REG_NOTES (insn) = NULL;
15bbde2b 2489
fe7f701d 2490#ifdef ENABLE_RTL_CHECKING
2491 if (insn
9204e736 2492 && INSN_P (insn)
fe7f701d 2493 && (returnjump_p (insn)
2494 || (GET_CODE (insn) == SET
2495 && SET_DEST (insn) == pc_rtx)))
2496 {
2497 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2498 debug_rtx (insn);
2499 }
2500#endif
2501
15bbde2b 2502 return insn;
2503}
2504
2505/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2506
2507static rtx
6a84e367 2508make_jump_insn_raw (pattern)
15bbde2b 2509 rtx pattern;
15bbde2b 2510{
2511 register rtx insn;
2512
6a84e367 2513 insn = rtx_alloc (JUMP_INSN);
fc92fa61 2514 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 2515
2516 PATTERN (insn) = pattern;
2517 INSN_CODE (insn) = -1;
fc92fa61 2518 LOG_LINKS (insn) = NULL;
2519 REG_NOTES (insn) = NULL;
2520 JUMP_LABEL (insn) = NULL;
15bbde2b 2521
2522 return insn;
2523}
6e911104 2524
2525/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2526
2527static rtx
2528make_call_insn_raw (pattern)
2529 rtx pattern;
2530{
2531 register rtx insn;
2532
2533 insn = rtx_alloc (CALL_INSN);
2534 INSN_UID (insn) = cur_insn_uid++;
2535
2536 PATTERN (insn) = pattern;
2537 INSN_CODE (insn) = -1;
2538 LOG_LINKS (insn) = NULL;
2539 REG_NOTES (insn) = NULL;
2540 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2541
2542 return insn;
2543}
15bbde2b 2544\f
2545/* Add INSN to the end of the doubly-linked list.
2546 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2547
2548void
2549add_insn (insn)
2550 register rtx insn;
2551{
2552 PREV_INSN (insn) = last_insn;
2553 NEXT_INSN (insn) = 0;
2554
2555 if (NULL != last_insn)
2556 NEXT_INSN (last_insn) = insn;
2557
2558 if (NULL == first_insn)
2559 first_insn = insn;
2560
2561 last_insn = insn;
2562}
2563
312de84d 2564/* Add INSN into the doubly-linked list after insn AFTER. This and
2565 the next should be the only functions called to insert an insn once
f65c10c0 2566 delay slots have been filled since only they know how to update a
312de84d 2567 SEQUENCE. */
15bbde2b 2568
2569void
2570add_insn_after (insn, after)
2571 rtx insn, after;
2572{
2573 rtx next = NEXT_INSN (after);
2574
9ea33026 2575 if (optimize && INSN_DELETED_P (after))
f65c10c0 2576 abort ();
2577
15bbde2b 2578 NEXT_INSN (insn) = next;
2579 PREV_INSN (insn) = after;
2580
2581 if (next)
2582 {
2583 PREV_INSN (next) = insn;
2584 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2585 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2586 }
2587 else if (last_insn == after)
2588 last_insn = insn;
2589 else
2590 {
0a893c29 2591 struct sequence_stack *stack = seq_stack;
15bbde2b 2592 /* Scan all pending sequences too. */
2593 for (; stack; stack = stack->next)
2594 if (after == stack->last)
398f4855 2595 {
2596 stack->last = insn;
2597 break;
2598 }
312de84d 2599
2600 if (stack == 0)
2601 abort ();
15bbde2b 2602 }
2603
2604 NEXT_INSN (after) = insn;
2605 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2606 {
2607 rtx sequence = PATTERN (after);
2608 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2609 }
2610}
2611
312de84d 2612/* Add INSN into the doubly-linked list before insn BEFORE. This and
2613 the previous should be the only functions called to insert an insn once
f65c10c0 2614 delay slots have been filled since only they know how to update a
312de84d 2615 SEQUENCE. */
2616
2617void
2618add_insn_before (insn, before)
2619 rtx insn, before;
2620{
2621 rtx prev = PREV_INSN (before);
2622
9ea33026 2623 if (optimize && INSN_DELETED_P (before))
f65c10c0 2624 abort ();
2625
312de84d 2626 PREV_INSN (insn) = prev;
2627 NEXT_INSN (insn) = before;
2628
2629 if (prev)
2630 {
2631 NEXT_INSN (prev) = insn;
2632 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2633 {
2634 rtx sequence = PATTERN (prev);
2635 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2636 }
2637 }
2638 else if (first_insn == before)
2639 first_insn = insn;
2640 else
2641 {
0a893c29 2642 struct sequence_stack *stack = seq_stack;
312de84d 2643 /* Scan all pending sequences too. */
2644 for (; stack; stack = stack->next)
2645 if (before == stack->first)
398f4855 2646 {
2647 stack->first = insn;
2648 break;
2649 }
312de84d 2650
2651 if (stack == 0)
2652 abort ();
2653 }
2654
2655 PREV_INSN (before) = insn;
2656 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2657 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2658}
2659
7ddcf2bf 2660/* Remove an insn from its doubly-linked list. This function knows how
2661 to handle sequences. */
2662void
2663remove_insn (insn)
2664 rtx insn;
2665{
2666 rtx next = NEXT_INSN (insn);
2667 rtx prev = PREV_INSN (insn);
2668 if (prev)
2669 {
2670 NEXT_INSN (prev) = next;
2671 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2672 {
2673 rtx sequence = PATTERN (prev);
2674 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2675 }
2676 }
2677 else if (first_insn == insn)
2678 first_insn = next;
2679 else
2680 {
0a893c29 2681 struct sequence_stack *stack = seq_stack;
7ddcf2bf 2682 /* Scan all pending sequences too. */
2683 for (; stack; stack = stack->next)
2684 if (insn == stack->first)
2685 {
2686 stack->first = next;
2687 break;
2688 }
2689
2690 if (stack == 0)
2691 abort ();
2692 }
2693
2694 if (next)
2695 {
2696 PREV_INSN (next) = prev;
2697 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2698 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2699 }
2700 else if (last_insn == insn)
2701 last_insn = prev;
2702 else
2703 {
0a893c29 2704 struct sequence_stack *stack = seq_stack;
7ddcf2bf 2705 /* Scan all pending sequences too. */
2706 for (; stack; stack = stack->next)
2707 if (insn == stack->last)
2708 {
2709 stack->last = prev;
2710 break;
2711 }
2712
2713 if (stack == 0)
2714 abort ();
2715 }
2716}
2717
15bbde2b 2718/* Delete all insns made since FROM.
2719 FROM becomes the new last instruction. */
2720
2721void
2722delete_insns_since (from)
2723 rtx from;
2724{
2725 if (from == 0)
2726 first_insn = 0;
2727 else
2728 NEXT_INSN (from) = 0;
2729 last_insn = from;
2730}
2731
34e2ddcd 2732/* This function is deprecated, please use sequences instead.
2733
2734 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 2735 The insns to be moved are those between FROM and TO.
2736 They are moved to a new position after the insn AFTER.
2737 AFTER must not be FROM or TO or any insn in between.
2738
2739 This function does not know about SEQUENCEs and hence should not be
2740 called after delay-slot filling has been done. */
2741
2742void
2743reorder_insns (from, to, after)
2744 rtx from, to, after;
2745{
2746 /* Splice this bunch out of where it is now. */
2747 if (PREV_INSN (from))
2748 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2749 if (NEXT_INSN (to))
2750 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2751 if (last_insn == to)
2752 last_insn = PREV_INSN (from);
2753 if (first_insn == from)
2754 first_insn = NEXT_INSN (to);
2755
2756 /* Make the new neighbors point to it and it to them. */
2757 if (NEXT_INSN (after))
2758 PREV_INSN (NEXT_INSN (after)) = to;
2759
2760 NEXT_INSN (to) = NEXT_INSN (after);
2761 PREV_INSN (from) = after;
2762 NEXT_INSN (after) = from;
2763 if (after == last_insn)
2764 last_insn = to;
2765}
2766
2767/* Return the line note insn preceding INSN. */
2768
2769static rtx
2770find_line_note (insn)
2771 rtx insn;
2772{
2773 if (no_line_numbers)
2774 return 0;
2775
2776 for (; insn; insn = PREV_INSN (insn))
2777 if (GET_CODE (insn) == NOTE
2778 && NOTE_LINE_NUMBER (insn) >= 0)
2779 break;
2780
2781 return insn;
2782}
2783
2784/* Like reorder_insns, but inserts line notes to preserve the line numbers
2785 of the moved insns when debugging. This may insert a note between AFTER
2786 and FROM, and another one after TO. */
2787
2788void
2789reorder_insns_with_line_notes (from, to, after)
2790 rtx from, to, after;
2791{
2792 rtx from_line = find_line_note (from);
2793 rtx after_line = find_line_note (after);
2794
2795 reorder_insns (from, to, after);
2796
2797 if (from_line == after_line)
2798 return;
2799
2800 if (from_line)
2801 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2802 NOTE_LINE_NUMBER (from_line),
2803 after);
2804 if (after_line)
2805 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2806 NOTE_LINE_NUMBER (after_line),
2807 to);
2808}
90b89d2c 2809
0a78547b 2810/* Remove unnecessary notes from the instruction stream. */
90b89d2c 2811
2812void
0a78547b 2813remove_unnecessary_notes ()
90b89d2c 2814{
2815 rtx insn;
2816 rtx next;
90b89d2c 2817
f1ab82be 2818 /* We must not remove the first instruction in the function because
2819 the compiler depends on the first instruction being a note. */
90b89d2c 2820 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
2821 {
2822 /* Remember what's next. */
2823 next = NEXT_INSN (insn);
2824
2825 /* We're only interested in notes. */
2826 if (GET_CODE (insn) != NOTE)
2827 continue;
2828
f1ab82be 2829 /* By now, all notes indicating lexical blocks should have
2830 NOTE_BLOCK filled in. */
2831 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2832 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2833 && NOTE_BLOCK (insn) == NULL_TREE)
2834 abort ();
2835
2836 /* Remove NOTE_INSN_DELETED notes. */
90b89d2c 2837 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2838 remove_insn (insn);
5846cb0f 2839 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2840 {
2841 /* Scan back to see if there are any non-note instructions
2842 between INSN and the beginning of this block. If not,
2843 then there is no PC range in the generated code that will
2844 actually be in this block, so there's no point in
2845 remembering the existence of the block. */
2846 rtx prev;
2847
2848 for (prev = PREV_INSN (insn); prev; prev = PREV_INSN (prev))
2849 {
2850 /* This block contains a real instruction. Note that we
2851 don't include labels; if the only thing in the block
2852 is a label, then there are still no PC values that
2853 lie within the block. */
9204e736 2854 if (INSN_P (prev))
5846cb0f 2855 break;
2856
2857 /* We're only interested in NOTEs. */
2858 if (GET_CODE (prev) != NOTE)
2859 continue;
2860
2861 if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_BEG)
2862 {
2863 /* If the BLOCKs referred to by these notes don't
2864 match, then something is wrong with our BLOCK
2865 nesting structure. */
2866 if (NOTE_BLOCK (prev) != NOTE_BLOCK (insn))
2867 abort ();
ad2fe2cd 2868
0a78547b 2869 if (debug_ignore_block (NOTE_BLOCK (insn)))
e33dbbdf 2870 {
e33dbbdf 2871 remove_insn (prev);
2872 remove_insn (insn);
2873 }
5846cb0f 2874 break;
2875 }
2876 else if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_END)
2877 /* There's a nested block. We need to leave the
2878 current block in place since otherwise the debugger
2879 wouldn't be able to show symbols from our block in
2880 the nested block. */
2881 break;
2882 }
2883 }
90b89d2c 2884 }
2885}
2886
15bbde2b 2887\f
2888/* Emit an insn of given code and pattern
2889 at a specified place within the doubly-linked list. */
2890
2891/* Make an instruction with body PATTERN
2892 and output it before the instruction BEFORE. */
2893
2894rtx
2895emit_insn_before (pattern, before)
2896 register rtx pattern, before;
2897{
2898 register rtx insn = before;
2899
2900 if (GET_CODE (pattern) == SEQUENCE)
2901 {
2902 register int i;
2903
2904 for (i = 0; i < XVECLEN (pattern, 0); i++)
2905 {
2906 insn = XVECEXP (pattern, 0, i);
312de84d 2907 add_insn_before (insn, before);
15bbde2b 2908 }
15bbde2b 2909 }
2910 else
2911 {
6a84e367 2912 insn = make_insn_raw (pattern);
312de84d 2913 add_insn_before (insn, before);
15bbde2b 2914 }
2915
2916 return insn;
2917}
2918
f3d96a58 2919/* Similar to emit_insn_before, but update basic block boundaries as well. */
2920
2921rtx
2922emit_block_insn_before (pattern, before, block)
2923 rtx pattern, before;
2924 basic_block block;
2925{
2926 rtx prev = PREV_INSN (before);
2927 rtx r = emit_insn_before (pattern, before);
2928 if (block && block->head == before)
2929 block->head = NEXT_INSN (prev);
2930 return r;
2931}
2932
15bbde2b 2933/* Make an instruction with body PATTERN and code JUMP_INSN
2934 and output it before the instruction BEFORE. */
2935
2936rtx
2937emit_jump_insn_before (pattern, before)
2938 register rtx pattern, before;
2939{
2940 register rtx insn;
2941
2942 if (GET_CODE (pattern) == SEQUENCE)
2943 insn = emit_insn_before (pattern, before);
2944 else
2945 {
8f060628 2946 insn = make_jump_insn_raw (pattern);
312de84d 2947 add_insn_before (insn, before);
15bbde2b 2948 }
2949
2950 return insn;
2951}
2952
2953/* Make an instruction with body PATTERN and code CALL_INSN
2954 and output it before the instruction BEFORE. */
2955
2956rtx
2957emit_call_insn_before (pattern, before)
2958 register rtx pattern, before;
2959{
6e911104 2960 register rtx insn;
2961
2962 if (GET_CODE (pattern) == SEQUENCE)
2963 insn = emit_insn_before (pattern, before);
2964 else
2965 {
2966 insn = make_call_insn_raw (pattern);
312de84d 2967 add_insn_before (insn, before);
6e911104 2968 PUT_CODE (insn, CALL_INSN);
2969 }
2970
15bbde2b 2971 return insn;
2972}
2973
2974/* Make an insn of code BARRIER
71caadc0 2975 and output it before the insn BEFORE. */
15bbde2b 2976
2977rtx
2978emit_barrier_before (before)
2979 register rtx before;
2980{
2981 register rtx insn = rtx_alloc (BARRIER);
2982
2983 INSN_UID (insn) = cur_insn_uid++;
2984
312de84d 2985 add_insn_before (insn, before);
15bbde2b 2986 return insn;
2987}
2988
71caadc0 2989/* Emit the label LABEL before the insn BEFORE. */
2990
2991rtx
2992emit_label_before (label, before)
2993 rtx label, before;
2994{
2995 /* This can be called twice for the same label as a result of the
2996 confusion that follows a syntax error! So make it harmless. */
2997 if (INSN_UID (label) == 0)
2998 {
2999 INSN_UID (label) = cur_insn_uid++;
3000 add_insn_before (label, before);
3001 }
3002
3003 return label;
3004}
3005
15bbde2b 3006/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3007
3008rtx
3009emit_note_before (subtype, before)
3010 int subtype;
3011 rtx before;
3012{
3013 register rtx note = rtx_alloc (NOTE);
3014 INSN_UID (note) = cur_insn_uid++;
3015 NOTE_SOURCE_FILE (note) = 0;
3016 NOTE_LINE_NUMBER (note) = subtype;
3017
312de84d 3018 add_insn_before (note, before);
15bbde2b 3019 return note;
3020}
3021\f
3022/* Make an insn of code INSN with body PATTERN
3023 and output it after the insn AFTER. */
3024
3025rtx
3026emit_insn_after (pattern, after)
3027 register rtx pattern, after;
3028{
3029 register rtx insn = after;
3030
3031 if (GET_CODE (pattern) == SEQUENCE)
3032 {
3033 register int i;
3034
3035 for (i = 0; i < XVECLEN (pattern, 0); i++)
3036 {
3037 insn = XVECEXP (pattern, 0, i);
3038 add_insn_after (insn, after);
3039 after = insn;
3040 }
15bbde2b 3041 }
3042 else
3043 {
6a84e367 3044 insn = make_insn_raw (pattern);
15bbde2b 3045 add_insn_after (insn, after);
3046 }
3047
3048 return insn;
3049}
3050
1bea98fb 3051/* Similar to emit_insn_after, except that line notes are to be inserted so
3052 as to act as if this insn were at FROM. */
3053
3054void
3055emit_insn_after_with_line_notes (pattern, after, from)
3056 rtx pattern, after, from;
3057{
3058 rtx from_line = find_line_note (from);
3059 rtx after_line = find_line_note (after);
3060 rtx insn = emit_insn_after (pattern, after);
3061
3062 if (from_line)
3063 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3064 NOTE_LINE_NUMBER (from_line),
3065 after);
3066
3067 if (after_line)
3068 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3069 NOTE_LINE_NUMBER (after_line),
3070 insn);
3071}
3072
f3d96a58 3073/* Similar to emit_insn_after, but update basic block boundaries as well. */
3074
3075rtx
3076emit_block_insn_after (pattern, after, block)
3077 rtx pattern, after;
3078 basic_block block;
3079{
3080 rtx r = emit_insn_after (pattern, after);
3081 if (block && block->end == after)
3082 block->end = r;
3083 return r;
3084}
3085
15bbde2b 3086/* Make an insn of code JUMP_INSN with body PATTERN
3087 and output it after the insn AFTER. */
3088
3089rtx
3090emit_jump_insn_after (pattern, after)
3091 register rtx pattern, after;
3092{
3093 register rtx insn;
3094
3095 if (GET_CODE (pattern) == SEQUENCE)
3096 insn = emit_insn_after (pattern, after);
3097 else
3098 {
8f060628 3099 insn = make_jump_insn_raw (pattern);
15bbde2b 3100 add_insn_after (insn, after);
3101 }
3102
3103 return insn;
3104}
3105
3106/* Make an insn of code BARRIER
3107 and output it after the insn AFTER. */
3108
3109rtx
3110emit_barrier_after (after)
3111 register rtx after;
3112{
3113 register rtx insn = rtx_alloc (BARRIER);
3114
3115 INSN_UID (insn) = cur_insn_uid++;
3116
3117 add_insn_after (insn, after);
3118 return insn;
3119}
3120
3121/* Emit the label LABEL after the insn AFTER. */
3122
3123rtx
3124emit_label_after (label, after)
3125 rtx label, after;
3126{
3127 /* This can be called twice for the same label
3128 as a result of the confusion that follows a syntax error!
3129 So make it harmless. */
3130 if (INSN_UID (label) == 0)
3131 {
3132 INSN_UID (label) = cur_insn_uid++;
3133 add_insn_after (label, after);
3134 }
3135
3136 return label;
3137}
3138
3139/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3140
3141rtx
3142emit_note_after (subtype, after)
3143 int subtype;
3144 rtx after;
3145{
3146 register rtx note = rtx_alloc (NOTE);
3147 INSN_UID (note) = cur_insn_uid++;
3148 NOTE_SOURCE_FILE (note) = 0;
3149 NOTE_LINE_NUMBER (note) = subtype;
3150 add_insn_after (note, after);
3151 return note;
3152}
3153
3154/* Emit a line note for FILE and LINE after the insn AFTER. */
3155
3156rtx
3157emit_line_note_after (file, line, after)
9a356c3c 3158 const char *file;
15bbde2b 3159 int line;
3160 rtx after;
3161{
3162 register rtx note;
3163
3164 if (no_line_numbers && line > 0)
3165 {
3166 cur_insn_uid++;
3167 return 0;
3168 }
3169
3170 note = rtx_alloc (NOTE);
3171 INSN_UID (note) = cur_insn_uid++;
3172 NOTE_SOURCE_FILE (note) = file;
3173 NOTE_LINE_NUMBER (note) = line;
3174 add_insn_after (note, after);
3175 return note;
3176}
3177\f
3178/* Make an insn of code INSN with pattern PATTERN
3179 and add it to the end of the doubly-linked list.
3180 If PATTERN is a SEQUENCE, take the elements of it
3181 and emit an insn for each element.
3182
3183 Returns the last insn emitted. */
3184
3185rtx
3186emit_insn (pattern)
3187 rtx pattern;
3188{
3189 rtx insn = last_insn;
3190
3191 if (GET_CODE (pattern) == SEQUENCE)
3192 {
3193 register int i;
3194
3195 for (i = 0; i < XVECLEN (pattern, 0); i++)
3196 {
3197 insn = XVECEXP (pattern, 0, i);
3198 add_insn (insn);
3199 }
15bbde2b 3200 }
3201 else
3202 {
6a84e367 3203 insn = make_insn_raw (pattern);
15bbde2b 3204 add_insn (insn);
3205 }
3206
3207 return insn;
3208}
3209
3210/* Emit the insns in a chain starting with INSN.
3211 Return the last insn emitted. */
3212
3213rtx
3214emit_insns (insn)
3215 rtx insn;
3216{
3217 rtx last = 0;
3218
3219 while (insn)
3220 {
3221 rtx next = NEXT_INSN (insn);
3222 add_insn (insn);
3223 last = insn;
3224 insn = next;
3225 }
3226
3227 return last;
3228}
3229
3230/* Emit the insns in a chain starting with INSN and place them in front of
3231 the insn BEFORE. Return the last insn emitted. */
3232
3233rtx
3234emit_insns_before (insn, before)
3235 rtx insn;
3236 rtx before;
3237{
3238 rtx last = 0;
3239
3240 while (insn)
3241 {
3242 rtx next = NEXT_INSN (insn);
312de84d 3243 add_insn_before (insn, before);
15bbde2b 3244 last = insn;
3245 insn = next;
3246 }
3247
3248 return last;
3249}
3250
b36b07d8 3251/* Emit the insns in a chain starting with FIRST and place them in back of
3252 the insn AFTER. Return the last insn emitted. */
3253
3254rtx
3255emit_insns_after (first, after)
3256 register rtx first;
3257 register rtx after;
3258{
3259 register rtx last;
3260 register rtx after_after;
3261
3262 if (!after)
3263 abort ();
3264
3265 if (!first)
3266 return first;
3267
3268 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3269 continue;
3270
3271 after_after = NEXT_INSN (after);
3272
3273 NEXT_INSN (after) = first;
3274 PREV_INSN (first) = after;
3275 NEXT_INSN (last) = after_after;
3276 if (after_after)
3277 PREV_INSN (after_after) = last;
3278
0c905390 3279 if (after == last_insn)
3280 last_insn = last;
b36b07d8 3281 return last;
3282}
3283
15bbde2b 3284/* Make an insn of code JUMP_INSN with pattern PATTERN
3285 and add it to the end of the doubly-linked list. */
3286
3287rtx
3288emit_jump_insn (pattern)
3289 rtx pattern;
3290{
3291 if (GET_CODE (pattern) == SEQUENCE)
3292 return emit_insn (pattern);
3293 else
3294 {
8f060628 3295 register rtx insn = make_jump_insn_raw (pattern);
15bbde2b 3296 add_insn (insn);
3297 return insn;
3298 }
3299}
3300
3301/* Make an insn of code CALL_INSN with pattern PATTERN
3302 and add it to the end of the doubly-linked list. */
3303
3304rtx
3305emit_call_insn (pattern)
3306 rtx pattern;
3307{
3308 if (GET_CODE (pattern) == SEQUENCE)
3309 return emit_insn (pattern);
3310 else
3311 {
6e911104 3312 register rtx insn = make_call_insn_raw (pattern);
15bbde2b 3313 add_insn (insn);
3314 PUT_CODE (insn, CALL_INSN);
3315 return insn;
3316 }
3317}
3318
3319/* Add the label LABEL to the end of the doubly-linked list. */
3320
3321rtx
3322emit_label (label)
3323 rtx label;
3324{
3325 /* This can be called twice for the same label
3326 as a result of the confusion that follows a syntax error!
3327 So make it harmless. */
3328 if (INSN_UID (label) == 0)
3329 {
3330 INSN_UID (label) = cur_insn_uid++;
3331 add_insn (label);
3332 }
3333 return label;
3334}
3335
3336/* Make an insn of code BARRIER
3337 and add it to the end of the doubly-linked list. */
3338
3339rtx
3340emit_barrier ()
3341{
3342 register rtx barrier = rtx_alloc (BARRIER);
3343 INSN_UID (barrier) = cur_insn_uid++;
3344 add_insn (barrier);
3345 return barrier;
3346}
3347
3348/* Make an insn of code NOTE
3349 with data-fields specified by FILE and LINE
3350 and add it to the end of the doubly-linked list,
3351 but only if line-numbers are desired for debugging info. */
3352
3353rtx
3354emit_line_note (file, line)
9a356c3c 3355 const char *file;
15bbde2b 3356 int line;
3357{
21b005ed 3358 set_file_and_line_for_stmt (file, line);
15bbde2b 3359
3360#if 0
3361 if (no_line_numbers)
3362 return 0;
3363#endif
3364
3365 return emit_note (file, line);
3366}
3367
3368/* Make an insn of code NOTE
3369 with data-fields specified by FILE and LINE
3370 and add it to the end of the doubly-linked list.
3371 If it is a line-number NOTE, omit it if it matches the previous one. */
3372
3373rtx
3374emit_note (file, line)
9a356c3c 3375 const char *file;
15bbde2b 3376 int line;
3377{
3378 register rtx note;
3379
3380 if (line > 0)
3381 {
3382 if (file && last_filename && !strcmp (file, last_filename)
3383 && line == last_linenum)
3384 return 0;
3385 last_filename = file;
3386 last_linenum = line;
3387 }
3388
3389 if (no_line_numbers && line > 0)
3390 {
3391 cur_insn_uid++;
3392 return 0;
3393 }
3394
3395 note = rtx_alloc (NOTE);
3396 INSN_UID (note) = cur_insn_uid++;
3397 NOTE_SOURCE_FILE (note) = file;
3398 NOTE_LINE_NUMBER (note) = line;
3399 add_insn (note);
3400 return note;
3401}
3402
8d54063f 3403/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
15bbde2b 3404
3405rtx
3406emit_line_note_force (file, line)
9a356c3c 3407 const char *file;
15bbde2b 3408 int line;
3409{
3410 last_linenum = -1;
3411 return emit_line_note (file, line);
3412}
3413
3414/* Cause next statement to emit a line note even if the line number
3415 has not changed. This is used at the beginning of a function. */
3416
3417void
3418force_next_line_note ()
3419{
3420 last_linenum = -1;
3421}
f1934a33 3422
3423/* Place a note of KIND on insn INSN with DATUM as the datum. If a
3424 note of this type already exists, remove it first. */
3425
3426void
3427set_unique_reg_note (insn, kind, datum)
3428 rtx insn;
3429 enum reg_note kind;
3430 rtx datum;
3431{
3432 rtx note = find_reg_note (insn, kind, NULL_RTX);
3433
3434 /* First remove the note if there already is one. */
3435 if (note)
3436 remove_note (insn, note);
3437
3438 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3439}
15bbde2b 3440\f
3441/* Return an indication of which type of insn should have X as a body.
3442 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3443
3444enum rtx_code
3445classify_insn (x)
3446 rtx x;
3447{
3448 if (GET_CODE (x) == CODE_LABEL)
3449 return CODE_LABEL;
3450 if (GET_CODE (x) == CALL)
3451 return CALL_INSN;
3452 if (GET_CODE (x) == RETURN)
3453 return JUMP_INSN;
3454 if (GET_CODE (x) == SET)
3455 {
3456 if (SET_DEST (x) == pc_rtx)
3457 return JUMP_INSN;
3458 else if (GET_CODE (SET_SRC (x)) == CALL)
3459 return CALL_INSN;
3460 else
3461 return INSN;
3462 }
3463 if (GET_CODE (x) == PARALLEL)
3464 {
3465 register int j;
3466 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3467 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3468 return CALL_INSN;
3469 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3470 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3471 return JUMP_INSN;
3472 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3473 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3474 return CALL_INSN;
3475 }
3476 return INSN;
3477}
3478
3479/* Emit the rtl pattern X as an appropriate kind of insn.
3480 If X is a label, it is simply added into the insn chain. */
3481
3482rtx
3483emit (x)
3484 rtx x;
3485{
3486 enum rtx_code code = classify_insn (x);
3487
3488 if (code == CODE_LABEL)
3489 return emit_label (x);
3490 else if (code == INSN)
3491 return emit_insn (x);
3492 else if (code == JUMP_INSN)
3493 {
3494 register rtx insn = emit_jump_insn (x);
b2816317 3495 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
15bbde2b 3496 return emit_barrier ();
3497 return insn;
3498 }
3499 else if (code == CALL_INSN)
3500 return emit_call_insn (x);
3501 else
3502 abort ();
3503}
3504\f
b49854c6 3505/* Begin emitting insns to a sequence which can be packaged in an
3506 RTL_EXPR. If this sequence will contain something that might cause
3507 the compiler to pop arguments to function calls (because those
3508 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3509 details), use do_pending_stack_adjust before calling this function.
3510 That will ensure that the deferred pops are not accidentally
9588521d 3511 emitted in the middle of this sequence. */
15bbde2b 3512
3513void
3514start_sequence ()
3515{
3516 struct sequence_stack *tem;
3517
1bfd55c5 3518 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
15bbde2b 3519
0a893c29 3520 tem->next = seq_stack;
15bbde2b 3521 tem->first = first_insn;
3522 tem->last = last_insn;
961819fb 3523 tem->sequence_rtl_expr = seq_rtl_expr;
15bbde2b 3524
0a893c29 3525 seq_stack = tem;
15bbde2b 3526
3527 first_insn = 0;
3528 last_insn = 0;
3529}
3530
961819fb 3531/* Similarly, but indicate that this sequence will be placed in T, an
3532 RTL_EXPR. See the documentation for start_sequence for more
3533 information about how to use this function. */
3534
3535void
3536start_sequence_for_rtl_expr (t)
3537 tree t;
3538{
3539 start_sequence ();
3540
3541 seq_rtl_expr = t;
3542}
3543
b49854c6 3544/* Set up the insn chain starting with FIRST as the current sequence,
3545 saving the previously current one. See the documentation for
3546 start_sequence for more information about how to use this function. */
15bbde2b 3547
3548void
3549push_to_sequence (first)
3550 rtx first;
3551{
3552 rtx last;
3553
3554 start_sequence ();
3555
3556 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3557
3558 first_insn = first;
3559 last_insn = last;
3560}
3561
78147e84 3562/* Set up the insn chain from a chain stort in FIRST to LAST. */
3563
3564void
3565push_to_full_sequence (first, last)
3566 rtx first, last;
3567{
3568 start_sequence ();
3569 first_insn = first;
3570 last_insn = last;
3571 /* We really should have the end of the insn chain here. */
3572 if (last && NEXT_INSN (last))
3573 abort ();
3574}
3575
ab74c92f 3576/* Set up the outer-level insn chain
3577 as the current sequence, saving the previously current one. */
3578
3579void
3580push_topmost_sequence ()
3581{
2041cfd9 3582 struct sequence_stack *stack, *top = NULL;
ab74c92f 3583
3584 start_sequence ();
3585
0a893c29 3586 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 3587 top = stack;
3588
3589 first_insn = top->first;
3590 last_insn = top->last;
961819fb 3591 seq_rtl_expr = top->sequence_rtl_expr;
ab74c92f 3592}
3593
3594/* After emitting to the outer-level insn chain, update the outer-level
3595 insn chain, and restore the previous saved state. */
3596
3597void
3598pop_topmost_sequence ()
3599{
2041cfd9 3600 struct sequence_stack *stack, *top = NULL;
ab74c92f 3601
0a893c29 3602 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 3603 top = stack;
3604
3605 top->first = first_insn;
3606 top->last = last_insn;
961819fb 3607 /* ??? Why don't we save seq_rtl_expr here? */
ab74c92f 3608
3609 end_sequence ();
3610}
3611
15bbde2b 3612/* After emitting to a sequence, restore previous saved state.
3613
b49854c6 3614 To get the contents of the sequence just made, you must call
3615 `gen_sequence' *before* calling here.
3616
3617 If the compiler might have deferred popping arguments while
3618 generating this sequence, and this sequence will not be immediately
3619 inserted into the instruction stream, use do_pending_stack_adjust
3620 before calling gen_sequence. That will ensure that the deferred
3621 pops are inserted into this sequence, and not into some random
3622 location in the instruction stream. See INHIBIT_DEFER_POP for more
3623 information about deferred popping of arguments. */
15bbde2b 3624
3625void
3626end_sequence ()
3627{
0a893c29 3628 struct sequence_stack *tem = seq_stack;
15bbde2b 3629
3630 first_insn = tem->first;
3631 last_insn = tem->last;
961819fb 3632 seq_rtl_expr = tem->sequence_rtl_expr;
0a893c29 3633 seq_stack = tem->next;
15bbde2b 3634
1bfd55c5 3635 free (tem);
15bbde2b 3636}
3637
78147e84 3638/* This works like end_sequence, but records the old sequence in FIRST
3639 and LAST. */
3640
3641void
3642end_full_sequence (first, last)
3643 rtx *first, *last;
3644{
3645 *first = first_insn;
3646 *last = last_insn;
3647 end_sequence();
3648}
3649
15bbde2b 3650/* Return 1 if currently emitting into a sequence. */
3651
3652int
3653in_sequence_p ()
3654{
0a893c29 3655 return seq_stack != 0;
15bbde2b 3656}
3657
3658/* Generate a SEQUENCE rtx containing the insns already emitted
3659 to the current sequence.
3660
3661 This is how the gen_... function from a DEFINE_EXPAND
3662 constructs the SEQUENCE that it returns. */
3663
3664rtx
3665gen_sequence ()
3666{
3667 rtx result;
3668 rtx tem;
15bbde2b 3669 int i;
3670 int len;
3671
3672 /* Count the insns in the chain. */
3673 len = 0;
3674 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3675 len++;
3676
88bbcaa6 3677 /* If only one insn, return it rather than a SEQUENCE.
15bbde2b 3678 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
88bbcaa6 3679 the case of an empty list.)
3680 We only return the pattern of an insn if its code is INSN and it
3681 has no notes. This ensures that no information gets lost. */
15bbde2b 3682 if (len == 1
447a9eb9 3683 && ! RTX_FRAME_RELATED_P (first_insn)
88bbcaa6 3684 && GET_CODE (first_insn) == INSN
3685 /* Don't throw away any reg notes. */
3686 && REG_NOTES (first_insn) == 0)
d7c47c0e 3687 return PATTERN (first_insn);
15bbde2b 3688
d7c47c0e 3689 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
15bbde2b 3690
3691 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3692 XVECEXP (result, 0, i) = tem;
3693
3694 return result;
3695}
3696\f
02ebfa52 3697/* Put the various virtual registers into REGNO_REG_RTX. */
3698
3699void
0a893c29 3700init_virtual_regs (es)
3701 struct emit_status *es;
02ebfa52 3702{
0a893c29 3703 rtx *ptr = es->x_regno_reg_rtx;
3704 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3705 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3706 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3707 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3708 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3709}
3710
3711void
3712clear_emit_caches ()
3713{
3714 int i;
3715
3716 /* Clear the start_sequence/gen_sequence cache. */
0a893c29 3717 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3718 sequence_result[i] = 0;
3719 free_insn = 0;
02ebfa52 3720}
928d57e3 3721\f
3722/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3723static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3724static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3725static int copy_insn_n_scratches;
3726
3727/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3728 copied an ASM_OPERANDS.
3729 In that case, it is the original input-operand vector. */
3730static rtvec orig_asm_operands_vector;
3731
3732/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3733 copied an ASM_OPERANDS.
3734 In that case, it is the copied input-operand vector. */
3735static rtvec copy_asm_operands_vector;
3736
3737/* Likewise for the constraints vector. */
3738static rtvec orig_asm_constraints_vector;
3739static rtvec copy_asm_constraints_vector;
3740
3741/* Recursively create a new copy of an rtx for copy_insn.
3742 This function differs from copy_rtx in that it handles SCRATCHes and
3743 ASM_OPERANDs properly.
3744 Normally, this function is not used directly; use copy_insn as front end.
3745 However, you could first copy an insn pattern with copy_insn and then use
3746 this function afterwards to properly copy any REG_NOTEs containing
3747 SCRATCHes. */
3748
3749rtx
3750copy_insn_1 (orig)
3751 register rtx orig;
3752{
3753 register rtx copy;
3754 register int i, j;
3755 register RTX_CODE code;
90bf951c 3756 register const char *format_ptr;
928d57e3 3757
3758 code = GET_CODE (orig);
3759
3760 switch (code)
3761 {
3762 case REG:
3763 case QUEUED:
3764 case CONST_INT:
3765 case CONST_DOUBLE:
3766 case SYMBOL_REF:
3767 case CODE_LABEL:
3768 case PC:
3769 case CC0:
3770 case ADDRESSOF:
3771 return orig;
3772
3773 case SCRATCH:
3774 for (i = 0; i < copy_insn_n_scratches; i++)
3775 if (copy_insn_scratch_in[i] == orig)
3776 return copy_insn_scratch_out[i];
3777 break;
3778
3779 case CONST:
3780 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3781 a LABEL_REF, it isn't sharable. */
3782 if (GET_CODE (XEXP (orig, 0)) == PLUS
3783 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
3784 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
3785 return orig;
3786 break;
3787
3788 /* A MEM with a constant address is not sharable. The problem is that
3789 the constant address may need to be reloaded. If the mem is shared,
3790 then reloading one copy of this mem will cause all copies to appear
3791 to have been reloaded. */
3792
3793 default:
3794 break;
3795 }
3796
3797 copy = rtx_alloc (code);
3798
3799 /* Copy the various flags, and other information. We assume that
3800 all fields need copying, and then clear the fields that should
3801 not be copied. That is the sensible default behavior, and forces
3802 us to explicitly document why we are *not* copying a flag. */
3803 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
3804
3805 /* We do not copy the USED flag, which is used as a mark bit during
3806 walks over the RTL. */
3807 copy->used = 0;
3808
3809 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3810 if (GET_RTX_CLASS (code) == 'i')
3811 {
3812 copy->jump = 0;
3813 copy->call = 0;
3814 copy->frame_related = 0;
3815 }
3816
3817 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
3818
3819 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
3820 {
d925550d 3821 copy->fld[i] = orig->fld[i];
928d57e3 3822 switch (*format_ptr++)
3823 {
3824 case 'e':
928d57e3 3825 if (XEXP (orig, i) != NULL)
3826 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
3827 break;
3828
928d57e3 3829 case 'E':
3830 case 'V':
928d57e3 3831 if (XVEC (orig, i) == orig_asm_constraints_vector)
3832 XVEC (copy, i) = copy_asm_constraints_vector;
3833 else if (XVEC (orig, i) == orig_asm_operands_vector)
3834 XVEC (copy, i) = copy_asm_operands_vector;
3835 else if (XVEC (orig, i) != NULL)
3836 {
3837 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
3838 for (j = 0; j < XVECLEN (copy, i); j++)
3839 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
3840 }
3841 break;
3842
928d57e3 3843 case 't':
928d57e3 3844 case 'w':
928d57e3 3845 case 'i':
928d57e3 3846 case 's':
3847 case 'S':
d925550d 3848 case 'u':
3849 case '0':
3850 /* These are left unchanged. */
928d57e3 3851 break;
3852
3853 default:
3854 abort ();
3855 }
3856 }
3857
3858 if (code == SCRATCH)
3859 {
3860 i = copy_insn_n_scratches++;
3861 if (i >= MAX_RECOG_OPERANDS)
3862 abort ();
3863 copy_insn_scratch_in[i] = orig;
3864 copy_insn_scratch_out[i] = copy;
3865 }
3866 else if (code == ASM_OPERANDS)
3867 {
d91f2122 3868 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
3869 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
3870 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
3871 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 3872 }
3873
3874 return copy;
3875}
3876
3877/* Create a new copy of an rtx.
3878 This function differs from copy_rtx in that it handles SCRATCHes and
3879 ASM_OPERANDs properly.
3880 INSN doesn't really have to be a full INSN; it could be just the
3881 pattern. */
3882rtx
3883copy_insn (insn)
3884 rtx insn;
3885{
3886 copy_insn_n_scratches = 0;
3887 orig_asm_operands_vector = 0;
3888 orig_asm_constraints_vector = 0;
3889 copy_asm_operands_vector = 0;
3890 copy_asm_constraints_vector = 0;
3891 return copy_insn_1 (insn);
3892}
02ebfa52 3893
15bbde2b 3894/* Initialize data structures and variables in this file
3895 before generating rtl for each function. */
3896
3897void
3898init_emit ()
3899{
08513b52 3900 struct function *f = cfun;
15bbde2b 3901
0a893c29 3902 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
15bbde2b 3903 first_insn = NULL;
3904 last_insn = NULL;
961819fb 3905 seq_rtl_expr = NULL;
15bbde2b 3906 cur_insn_uid = 1;
3907 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3908 last_linenum = 0;
3909 last_filename = 0;
3910 first_label_num = label_num;
3911 last_label_num = 0;
0a893c29 3912 seq_stack = NULL;
15bbde2b 3913
0a893c29 3914 clear_emit_caches ();
15bbde2b 3915
3916 /* Init the tables that describe all the pseudo regs. */
3917
0a893c29 3918 f->emit->regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 3919
0a893c29 3920 f->emit->regno_pointer_flag
1bfd55c5 3921 = (char *) xcalloc (f->emit->regno_pointer_flag_length, sizeof (char));
15bbde2b 3922
0a893c29 3923 f->emit->regno_pointer_align
4491f79f 3924 = (unsigned char *) xcalloc (f->emit->regno_pointer_flag_length,
3925 sizeof (unsigned char));
d4c332ff 3926
15bbde2b 3927 regno_reg_rtx
1bfd55c5 3928 = (rtx *) xcalloc (f->emit->regno_pointer_flag_length * sizeof (rtx),
3929 sizeof (rtx));
15bbde2b 3930
3931 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
0a893c29 3932 init_virtual_regs (f->emit);
888e0d33 3933
3934 /* Indicate that the virtual registers and stack locations are
3935 all pointers. */
3936 REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
3937 REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
069b19ee 3938 REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
888e0d33 3939 REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
3940
3941 REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
3942 REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
3943 REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
3944 REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
ec37ccb4 3945 REGNO_POINTER_FLAG (VIRTUAL_CFA_REGNUM) = 1;
89525da0 3946
d4c332ff 3947#ifdef STACK_BOUNDARY
80909c64 3948 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
3949 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3950 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3951 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
3952
3953 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
3954 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
3955 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
3956 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
3957 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 3958#endif
3959
89525da0 3960#ifdef INIT_EXPANDERS
3961 INIT_EXPANDERS;
3962#endif
15bbde2b 3963}
3964
a7b0c170 3965/* Mark SS for GC. */
3966
3967static void
3968mark_sequence_stack (ss)
3969 struct sequence_stack *ss;
3970{
3971 while (ss)
3972 {
3973 ggc_mark_rtx (ss->first);
961819fb 3974 ggc_mark_tree (ss->sequence_rtl_expr);
a7b0c170 3975 ss = ss->next;
3976 }
3977}
3978
3979/* Mark ES for GC. */
3980
3981void
3c3bb268 3982mark_emit_status (es)
a7b0c170 3983 struct emit_status *es;
3984{
3985 rtx *r;
3986 int i;
3987
3988 if (es == 0)
3989 return;
3990
3991 for (i = es->regno_pointer_flag_length, r = es->x_regno_reg_rtx;
3992 i > 0; --i, ++r)
3993 ggc_mark_rtx (*r);
3994
3995 mark_sequence_stack (es->sequence_stack);
961819fb 3996 ggc_mark_tree (es->sequence_rtl_expr);
a7b0c170 3997 ggc_mark_rtx (es->x_first_insn);
3998}
3999
15bbde2b 4000/* Create some permanent unique rtl objects shared between all functions.
4001 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4002
4003void
4004init_emit_once (line_numbers)
4005 int line_numbers;
4006{
4007 int i;
4008 enum machine_mode mode;
9e042f31 4009 enum machine_mode double_mode;
15bbde2b 4010
4011 no_line_numbers = ! line_numbers;
4012
71d7daa2 4013 /* Compute the word and byte modes. */
4014
4015 byte_mode = VOIDmode;
4016 word_mode = VOIDmode;
4017 double_mode = VOIDmode;
4018
4019 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4020 mode = GET_MODE_WIDER_MODE (mode))
4021 {
4022 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4023 && byte_mode == VOIDmode)
4024 byte_mode = mode;
4025
4026 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4027 && word_mode == VOIDmode)
4028 word_mode = mode;
4029 }
4030
71d7daa2 4031 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4032 mode = GET_MODE_WIDER_MODE (mode))
4033 {
4034 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4035 && double_mode == VOIDmode)
4036 double_mode = mode;
4037 }
4038
4039 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4040
57c097d5 4041 /* Assign register numbers to the globally defined register rtx.
4042 This must be done at runtime because the register number field
4043 is in a union and some compilers can't initialize unions. */
4044
4045 pc_rtx = gen_rtx (PC, VOIDmode);
4046 cc0_rtx = gen_rtx (CC0, VOIDmode);
4047 stack_pointer_rtx = gen_rtx_raw_REG (Pmode, STACK_POINTER_REGNUM);
4048 frame_pointer_rtx = gen_rtx_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4049 if (hard_frame_pointer_rtx == 0)
4050 hard_frame_pointer_rtx = gen_rtx_raw_REG (Pmode,
4051 HARD_FRAME_POINTER_REGNUM);
4052 if (arg_pointer_rtx == 0)
4053 arg_pointer_rtx = gen_rtx_raw_REG (Pmode, ARG_POINTER_REGNUM);
4054 virtual_incoming_args_rtx =
4055 gen_rtx_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4056 virtual_stack_vars_rtx =
4057 gen_rtx_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4058 virtual_stack_dynamic_rtx =
4059 gen_rtx_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4060 virtual_outgoing_args_rtx =
4061 gen_rtx_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4062 virtual_cfa_rtx = gen_rtx_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4063
4064 /* These rtx must be roots if GC is enabled. */
d7c47c0e 4065 ggc_add_rtx_root (global_rtl, GR_MAX);
57c097d5 4066
57c097d5 4067#ifdef INIT_EXPANDERS
4068 /* This is to initialize save_machine_status and restore_machine_status before
4069 the first call to push_function_context_to. This is needed by the Chill
4070 front end which calls push_function_context_to before the first cal to
4071 init_function_start. */
4072 INIT_EXPANDERS;
4073#endif
4074
15bbde2b 4075 /* Create the unique rtx's for certain rtx codes and operand values. */
4076
7014838c 4077 /* Don't use gen_rtx here since gen_rtx in this case
4078 tries to use these variables. */
15bbde2b 4079 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
57c097d5 4080 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4081 gen_rtx_raw_CONST_INT (VOIDmode, i);
d7c47c0e 4082 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
15bbde2b 4083
1a60f06a 4084 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4085 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 4086 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 4087 else
3ad7bb1c 4088 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 4089
9e042f31 4090 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4091 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4092 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4093 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
15bbde2b 4094
4095 for (i = 0; i <= 2; i++)
4096 {
4097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4098 mode = GET_MODE_WIDER_MODE (mode))
4099 {
4100 rtx tem = rtx_alloc (CONST_DOUBLE);
4101 union real_extract u;
4102
748e6d74 4103 bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
15bbde2b 4104 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4105
748e6d74 4106 bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
15bbde2b 4107 CONST_DOUBLE_MEM (tem) = cc0_rtx;
791ceafe 4108 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
15bbde2b 4109 PUT_MODE (tem, mode);
4110
4111 const_tiny_rtx[i][(int) mode] = tem;
4112 }
4113
b572011e 4114 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 4115
4116 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4117 mode = GET_MODE_WIDER_MODE (mode))
b572011e 4118 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 4119
4120 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4121 mode != VOIDmode;
4122 mode = GET_MODE_WIDER_MODE (mode))
4123 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 4124 }
4125
e2fbcc74 4126 for (mode = CCmode; mode < MAX_MACHINE_MODE; ++mode)
4127 if (GET_MODE_CLASS (mode) == MODE_CC)
4128 const_tiny_rtx[0][(int) mode] = const0_rtx;
15bbde2b 4129
065336b4 4130 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4131 if (STORE_FLAG_VALUE == 1)
4132 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4133
3098b2d3 4134 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4135 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4136 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4137 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
c788feb1 4138 ggc_add_rtx_root (&const_true_rtx, 1);
f4bffa58 4139
4140#ifdef RETURN_ADDRESS_POINTER_REGNUM
4141 return_address_pointer_rtx
4142 = gen_rtx_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4143#endif
4144
4145#ifdef STRUCT_VALUE
4146 struct_value_rtx = STRUCT_VALUE;
4147#else
4148 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4149#endif
4150
4151#ifdef STRUCT_VALUE_INCOMING
4152 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4153#else
4154#ifdef STRUCT_VALUE_INCOMING_REGNUM
4155 struct_value_incoming_rtx
4156 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4157#else
4158 struct_value_incoming_rtx = struct_value_rtx;
4159#endif
4160#endif
4161
4162#ifdef STATIC_CHAIN_REGNUM
4163 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4164
4165#ifdef STATIC_CHAIN_INCOMING_REGNUM
4166 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4167 static_chain_incoming_rtx
4168 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4169 else
4170#endif
4171 static_chain_incoming_rtx = static_chain_rtx;
4172#endif
4173
4174#ifdef STATIC_CHAIN
4175 static_chain_rtx = STATIC_CHAIN;
4176
4177#ifdef STATIC_CHAIN_INCOMING
4178 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4179#else
4180 static_chain_incoming_rtx = static_chain_rtx;
4181#endif
4182#endif
4183
4184#ifdef PIC_OFFSET_TABLE_REGNUM
4185 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4186#endif
4187
521dd524 4188 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4189 ggc_add_rtx_root (&struct_value_rtx, 1);
4190 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4191 ggc_add_rtx_root (&static_chain_rtx, 1);
4192 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4193 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
73f5c1e3 4194
4195 /* Initialize the CONST_INT hash table. */
7f2875d3 4196 const_int_htab = htab_create (37, const_int_htab_hash,
4197 const_int_htab_eq, NULL);
73f5c1e3 4198 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4199 rtx_htab_mark);
15bbde2b 4200}
ac6c481d 4201\f
4202/* Query and clear/ restore no_line_numbers. This is used by the
4203 switch / case handling in stmt.c to give proper line numbers in
4204 warnings about unreachable code. */
4205
4206int
4207force_line_numbers ()
4208{
4209 int old = no_line_numbers;
4210
4211 no_line_numbers = 0;
4212 if (old)
4213 force_next_line_note ();
4214 return old;
4215}
4216
4217void
4218restore_line_number_status (old_value)
4219 int old_value;
4220{
4221 no_line_numbers = old_value;
4222}