]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
i386.c (decide_alg): Be more conservative about optimizing for size.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2d593c86 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
b6f65e3c 4 Free Software Foundation, Inc.
23b2ce53 5
1322177d 6This file is part of GCC.
23b2ce53 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
23b2ce53 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
23b2ce53
RS
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
f822fcf7
KH
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
23b2ce53
RS
35
36#include "config.h"
670ee920 37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
325217ed 53#include "fixed-value.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ef330312 59#include "tree-pass.h"
6fb5fa3c 60#include "df.h"
ca695ac9 61
1d445e9e
ILT
62/* Commonly used modes. */
63
0f41302f
MS
64enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 66enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 67enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 68
bd60bab2
JH
69/* Datastructures maintained for currently processed function in RTL form. */
70
3e029763 71struct rtl_data x_rtl;
bd60bab2
JH
72
73/* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78rtx * regno_reg_rtx;
23b2ce53
RS
79
80/* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
044b4de3 83static GTY(()) int label_num = 1;
23b2ce53 84
23b2ce53
RS
85/* Nonzero means do not generate NOTEs for source line numbers. */
86
87static int no_line_numbers;
88
89/* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
5692c7bc
ZW
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
23b2ce53 93
5da077de 94rtx global_rtl[GR_MAX];
23b2ce53 95
6cde4876
JL
96/* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
23b2ce53
RS
102/* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
68d75312
JC
108rtx const_true_rtx;
109
23b2ce53
RS
110REAL_VALUE_TYPE dconst0;
111REAL_VALUE_TYPE dconst1;
112REAL_VALUE_TYPE dconst2;
113REAL_VALUE_TYPE dconstm1;
03f2ea93 114REAL_VALUE_TYPE dconsthalf;
23b2ce53 115
325217ed
CF
116/* Record fixed-point constant 0 and 1. */
117FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
23b2ce53
RS
120/* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
ac6f08b0
DE
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 131 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
23b2ce53
RS
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
23b2ce53
RS
138rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
a4417a86
JW
142/* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
23b2ce53
RS
146/* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
5da077de 151rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 152
c13e8210
MM
153/* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
e2500fed
GK
156static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
c13e8210 158
173b24b9 159/* A hash table storing memory attribute structures. */
e2500fed
GK
160static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
173b24b9 162
a560d4d4
JH
163/* A hash table storing register attribute structures. */
164static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
5692c7bc 167/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
168static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
5692c7bc 170
091a3ac7
CF
171/* A hash table storing all CONST_FIXEDs. */
172static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
3e029763
JH
175#define first_insn (crtl->emit.x_first_insn)
176#define last_insn (crtl->emit.x_last_insn)
177#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178#define last_location (crtl->emit.x_last_location)
179#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 180
502b8322 181static rtx make_call_insn_raw (rtx);
502b8322 182static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 183static void set_used_decls (tree);
502b8322
AJ
184static void mark_label_nuses (rtx);
185static hashval_t const_int_htab_hash (const void *);
186static int const_int_htab_eq (const void *, const void *);
187static hashval_t const_double_htab_hash (const void *);
188static int const_double_htab_eq (const void *, const void *);
189static rtx lookup_const_double (rtx);
091a3ac7
CF
190static hashval_t const_fixed_htab_hash (const void *);
191static int const_fixed_htab_eq (const void *, const void *);
192static rtx lookup_const_fixed (rtx);
502b8322
AJ
193static hashval_t mem_attrs_htab_hash (const void *);
194static int mem_attrs_htab_eq (const void *, const void *);
4862826d 195static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
502b8322
AJ
196 enum machine_mode);
197static hashval_t reg_attrs_htab_hash (const void *);
198static int reg_attrs_htab_eq (const void *, const void *);
199static reg_attrs *get_reg_attrs (tree, int);
200static tree component_ref_for_mem_expr (tree);
a73b091d 201static rtx gen_const_vector (enum machine_mode, int);
32b32b16 202static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 203
6b24c259
JH
204/* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206int split_branch_probability = -1;
ca695ac9 207\f
c13e8210
MM
208/* Returns a hash code for X (which is a really a CONST_INT). */
209
210static hashval_t
502b8322 211const_int_htab_hash (const void *x)
c13e8210 212{
f7d504c2 213 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
214}
215
cc2902df 216/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220static int
502b8322 221const_int_htab_eq (const void *x, const void *y)
c13e8210 222{
f7d504c2 223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
224}
225
226/* Returns a hash code for X (which is really a CONST_DOUBLE). */
227static hashval_t
502b8322 228const_double_htab_hash (const void *x)
5692c7bc 229{
f7d504c2 230 const_rtx const value = (const_rtx) x;
46b33600 231 hashval_t h;
5692c7bc 232
46b33600
RH
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
fe352c29 236 {
15c812e3 237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
240 }
5692c7bc
ZW
241 return h;
242}
243
cc2902df 244/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
245 is the same as that represented by Y (really a ...) */
246static int
502b8322 247const_double_htab_eq (const void *x, const void *y)
5692c7bc 248{
f7d504c2 249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
250
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
8580f7a0
RH
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
259}
260
091a3ac7
CF
261/* Returns a hash code for X (which is really a CONST_FIXED). */
262
263static hashval_t
264const_fixed_htab_hash (const void *x)
265{
3101faab 266 const_rtx const value = (const_rtx) x;
091a3ac7
CF
267 hashval_t h;
268
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
273}
274
275/* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
277
278static int
279const_fixed_htab_eq (const void *x, const void *y)
280{
3101faab 281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
282
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
286}
287
173b24b9
RK
288/* Returns a hash code for X (which is a really a mem_attrs *). */
289
290static hashval_t
502b8322 291mem_attrs_htab_hash (const void *x)
173b24b9 292{
f7d504c2 293 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
294
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
78b76d08 298 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
299}
300
cc2902df 301/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
c13e8210
MM
304
305static int
502b8322 306mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 307{
741ac903
KG
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
173b24b9 310
78b76d08
SB
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
316}
317
173b24b9 318/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
173b24b9
RK
321
322static mem_attrs *
4862826d 323get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
502b8322 324 unsigned int align, enum machine_mode mode)
173b24b9
RK
325{
326 mem_attrs attrs;
327 void **slot;
328
bb056a77
OH
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
998d7deb 332 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
337 return 0;
338
173b24b9 339 attrs.alias = alias;
998d7deb 340 attrs.expr = expr;
173b24b9
RK
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
344
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
347 {
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
350 }
351
1b4572a8 352 return (mem_attrs *) *slot;
c13e8210
MM
353}
354
a560d4d4
JH
355/* Returns a hash code for X (which is a really a reg_attrs *). */
356
357static hashval_t
502b8322 358reg_attrs_htab_hash (const void *x)
a560d4d4 359{
741ac903 360 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4
JH
361
362 return ((p->offset * 1000) ^ (long) p->decl);
363}
364
6356f892 365/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
368
369static int
502b8322 370reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 371{
741ac903
KG
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
374
375 return (p->decl == q->decl && p->offset == q->offset);
376}
377/* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
380
381static reg_attrs *
502b8322 382get_reg_attrs (tree decl, int offset)
a560d4d4
JH
383{
384 reg_attrs attrs;
385 void **slot;
386
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
390
391 attrs.decl = decl;
392 attrs.offset = offset;
393
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
396 {
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
399 }
400
1b4572a8 401 return (reg_attrs *) *slot;
a560d4d4
JH
402}
403
6fb5fa3c
DB
404
405#if !HAVE_blockage
406/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
408
409rtx
410gen_blockage (void)
411{
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
415}
416#endif
417
418
08394eef
BS
419/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
422
423rtx
502b8322 424gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
425{
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
429}
430
c5c76735
JL
431/* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
434
3b80f6ca 435rtx
502b8322 436gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 437{
c13e8210
MM
438 void **slot;
439
3b80f6ca 440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
442
443#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446#endif
447
c13e8210 448 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
29105cea 451 if (*slot == 0)
1f8f4a0b 452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
453
454 return (rtx) *slot;
3b80f6ca
RH
455}
456
2496c7bd 457rtx
502b8322 458gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
459{
460 return GEN_INT (trunc_int_for_mode (c, mode));
461}
462
5692c7bc
ZW
463/* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466
467/* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470static rtx
502b8322 471lookup_const_double (rtx real)
5692c7bc
ZW
472{
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
476
477 return (rtx) *slot;
478}
29105cea 479
5692c7bc
ZW
480/* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
0133b7d9 482rtx
502b8322 483const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 484{
5692c7bc
ZW
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
487
9e254451 488 real->u.rv = value;
5692c7bc
ZW
489
490 return lookup_const_double (real);
491}
492
091a3ac7
CF
493/* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
496
497static rtx
498lookup_const_fixed (rtx fixed)
499{
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
503
504 return (rtx) *slot;
505}
506
507/* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
509
510rtx
511const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512{
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
515
516 fixed->u.fv = value;
517
518 return lookup_const_fixed (fixed);
519}
520
5692c7bc
ZW
521/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
525
526rtx
502b8322 527immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
528{
529 rtx value;
530 unsigned int i;
531
65acccdd
ZD
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
542 if (mode != VOIDmode)
543 {
5b0264cb
NS
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 549
65acccdd
ZD
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
552
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
5692c7bc
ZW
554 }
555
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
559
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
563
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
566
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
569
570 return lookup_const_double (value);
0133b7d9
RH
571}
572
3b80f6ca 573rtx
502b8322 574gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
575{
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
581
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
586
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
589
590 if (mode == Pmode && !reload_in_progress)
591 {
e10c79fe
LB
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
594 return frame_pointer_rtx;
595#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
598 return hard_frame_pointer_rtx;
599#endif
600#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 601 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
602 return arg_pointer_rtx;
603#endif
604#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
606 return return_address_pointer_rtx;
607#endif
fc555370 608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 610 return pic_offset_table_rtx;
bcb33994 611 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
612 return stack_pointer_rtx;
613 }
614
006a94b0 615#if 0
6cde4876 616 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
617 an existing entry in that table to avoid useless generation of RTL.
618
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
622 on the amount of useless RTL that gets generated.
623
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
626
6cde4876
JL
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
006a94b0 633#endif
6cde4876 634
08394eef 635 return gen_raw_REG (mode, regno);
3b80f6ca
RH
636}
637
41472af8 638rtx
502b8322 639gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
640{
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
173b24b9 645 MEM_ATTRS (rt) = 0;
41472af8
MM
646
647 return rt;
648}
ddef6bc7 649
542a8afa
RH
650/* Generate a memory referring to non-trapping constant memory. */
651
652rtx
653gen_const_mem (enum machine_mode mode, rtx addr)
654{
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
659}
660
bf877a76
R
661/* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
663
664rtx
665gen_frame_mem (enum machine_mode mode, rtx addr)
666{
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
671}
672
673/* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
676rtx
677gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678{
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
e3b5732b 681 if (!cfun->calls_alloca)
bf877a76
R
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
684}
685
beb72684
RH
686/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
688
689bool
690validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 691 const_rtx reg, unsigned int offset)
ddef6bc7 692{
beb72684
RH
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
695
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
699
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
703
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
709 ;
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 ;
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
718 ;
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 ;
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 {
731 if (isize != osize)
732 return false;
733 }
ddef6bc7 734
beb72684
RH
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
738
739 /* This is a normal subreg. Verify that the offset is representable. */
740
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 {
745 unsigned int regno = REGNO (reg);
746
747#ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
750 ;
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
ddef6bc7 753#endif
beb72684
RH
754
755 return subreg_offset_representable_p (regno, imode, offset, omode);
756 }
757
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772}
773
774rtx
775gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776{
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 778 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
779}
780
173b24b9
RK
781/* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
ddef6bc7 784rtx
502b8322 785gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
786{
787 enum machine_mode inmode;
ddef6bc7
JJ
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
e0e08ac2
JH
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
ddef6bc7 794}
c5c76735 795\f
23b2ce53
RS
796/* gen_rtvec (n, [rt1, ..., rtn])
797**
798** This routine creates an rtvec and stores within it the
799** pointers to rtx's which are its arguments.
800*/
801
802/*VARARGS1*/
803rtvec
e34d07f2 804gen_rtvec (int n, ...)
23b2ce53 805{
6268b922 806 int i, save_n;
23b2ce53 807 rtx *vector;
e34d07f2 808 va_list p;
23b2ce53 809
e34d07f2 810 va_start (p, n);
23b2ce53
RS
811
812 if (n == 0)
813 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
814
1b4572a8 815 vector = XALLOCAVEC (rtx, n);
4f90e4a0 816
23b2ce53
RS
817 for (i = 0; i < n; i++)
818 vector[i] = va_arg (p, rtx);
6268b922
KG
819
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
821 save_n = n;
e34d07f2 822 va_end (p);
23b2ce53 823
6268b922 824 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
825}
826
827rtvec
502b8322 828gen_rtvec_v (int n, rtx *argp)
23b2ce53 829{
b3694847
SS
830 int i;
831 rtvec rt_val;
23b2ce53
RS
832
833 if (n == 0)
834 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
835
836 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
837
838 for (i = 0; i < n; i++)
8f985ec4 839 rt_val->elem[i] = *argp++;
23b2ce53
RS
840
841 return rt_val;
842}
843\f
38ae7651
RS
844/* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
849
850int
851byte_lowpart_offset (enum machine_mode outer_mode,
852 enum machine_mode inner_mode)
853{
854 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
855 return subreg_lowpart_offset (outer_mode, inner_mode);
856 else
857 return -subreg_lowpart_offset (inner_mode, outer_mode);
858}
859\f
23b2ce53
RS
860/* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
862
863rtx
502b8322 864gen_reg_rtx (enum machine_mode mode)
23b2ce53 865{
b3694847 866 rtx val;
2e3f842f 867 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 868
f8335a4f 869 gcc_assert (can_create_pseudo_p ());
23b2ce53 870
2e3f842f
L
871 /* If a virtual register with bigger mode alignment is generated,
872 increase stack alignment estimation because it might be spilled
873 to stack later. */
874 if (SUPPORTS_STACK_ALIGNMENT
875 && crtl->stack_alignment_estimated < align
876 && !crtl->stack_realign_processed)
877 crtl->stack_alignment_estimated = align;
878
1b3d8f8a
GK
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
882 {
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart, imagpart;
27e58a70 889 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
890
891 realpart = gen_reg_rtx (partmode);
892 imagpart = gen_reg_rtx (partmode);
3b80f6ca 893 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
894 }
895
a560d4d4 896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 897 enough to have an element for this pseudo reg number. */
23b2ce53 898
3e029763 899 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 900 {
3e029763 901 int old_size = crtl->emit.regno_pointer_align_length;
60564289 902 char *tmp;
0d4903b8 903 rtx *new1;
0d4903b8 904
60564289
KG
905 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
906 memset (tmp + old_size, 0, old_size);
907 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
49ad7cfa 908
1b4572a8 909 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
49ad7cfa 910 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
911 regno_reg_rtx = new1;
912
3e029763 913 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
914 }
915
08394eef 916 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
917 regno_reg_rtx[reg_rtx_no++] = val;
918 return val;
919}
920
38ae7651
RS
921/* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
a560d4d4 923
e53a16e7 924static void
60564289 925update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 926{
60564289 927 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 928 REG_OFFSET (reg) + offset);
e53a16e7
ILT
929}
930
38ae7651
RS
931/* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
e53a16e7
ILT
933
934rtx
935gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
936 int offset)
937{
60564289 938 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 939
60564289
KG
940 update_reg_offset (new_rtx, reg, offset);
941 return new_rtx;
e53a16e7
ILT
942}
943
944/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 945 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
946
947rtx
948gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
949{
60564289 950 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 951
60564289
KG
952 update_reg_offset (new_rtx, reg, offset);
953 return new_rtx;
a560d4d4
JH
954}
955
38ae7651
RS
956/* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
958
959void
38ae7651 960adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 961{
38ae7651
RS
962 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
963 PUT_MODE (reg, mode);
964}
965
966/* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
968
969void
970set_reg_attrs_from_value (rtx reg, rtx x)
971{
972 int offset;
973
923ba36f
JJ
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
976 on them is wrong. */
977 if (HARD_REGISTER_P (reg))
978 return;
979
38ae7651 980 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
981 if (MEM_P (x))
982 {
983 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
984 REG_ATTRS (reg)
985 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
986 if (MEM_POINTER (x))
987 mark_reg_pointer (reg, MEM_ALIGN (x));
988 }
989 else if (REG_P (x))
990 {
991 if (REG_ATTRS (x))
992 update_reg_offset (reg, x, offset);
993 if (REG_POINTER (x))
994 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
995 }
996}
997
998/* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1000
1001rtx
1002gen_reg_rtx_and_attrs (rtx x)
1003{
1004 rtx reg = gen_reg_rtx (GET_MODE (x));
1005 set_reg_attrs_from_value (reg, x);
1006 return reg;
a560d4d4
JH
1007}
1008
9d18e06b
JZ
1009/* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1011
1012void
502b8322 1013set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1014{
f8cfc6aa 1015 if (REG_P (parm_rtx))
38ae7651 1016 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1017 else if (GET_CODE (parm_rtx) == PARALLEL)
1018 {
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1022 for (; i < XVECLEN (parm_rtx, 0); i++)
1023 {
1024 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1025 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1026 REG_ATTRS (XEXP (x, 0))
1027 = get_reg_attrs (MEM_EXPR (mem),
1028 INTVAL (XEXP (x, 1)));
1029 }
1030 }
1031}
1032
38ae7651
RS
1033/* Set the REG_ATTRS for registers in value X, given that X represents
1034 decl T. */
a560d4d4 1035
38ae7651
RS
1036static void
1037set_reg_attrs_for_decl_rtl (tree t, rtx x)
1038{
1039 if (GET_CODE (x) == SUBREG)
fbe6ec81 1040 {
38ae7651
RS
1041 gcc_assert (subreg_lowpart_p (x));
1042 x = SUBREG_REG (x);
fbe6ec81 1043 }
f8cfc6aa 1044 if (REG_P (x))
38ae7651
RS
1045 REG_ATTRS (x)
1046 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
726612d2 1047 DECL_MODE (t)));
a560d4d4
JH
1048 if (GET_CODE (x) == CONCAT)
1049 {
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1052 if (REG_P (XEXP (x, 1)))
1053 REG_ATTRS (XEXP (x, 1))
1054 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1055 }
1056 if (GET_CODE (x) == PARALLEL)
1057 {
d4afac5b
JZ
1058 int i, start;
1059
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x, 0, 0), 0))
1063 start = 0;
1064 else
1065 start = 1;
1066
1067 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1068 {
1069 rtx y = XVECEXP (x, 0, i);
1070 if (REG_P (XEXP (y, 0)))
1071 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1072 }
1073 }
1074}
1075
38ae7651
RS
1076/* Assign the RTX X to declaration T. */
1077
1078void
1079set_decl_rtl (tree t, rtx x)
1080{
1081 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1082 if (x)
1083 set_reg_attrs_for_decl_rtl (t, x);
1084}
1085
5141868d
RS
1086/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1088
1089void
5141868d 1090set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1091{
1092 DECL_INCOMING_RTL (t) = x;
5141868d 1093 if (x && !by_reference_p)
38ae7651
RS
1094 set_reg_attrs_for_decl_rtl (t, x);
1095}
1096
754fdcca
RK
1097/* Identify REG (which may be a CONCAT) as a user register. */
1098
1099void
502b8322 1100mark_user_reg (rtx reg)
754fdcca
RK
1101{
1102 if (GET_CODE (reg) == CONCAT)
1103 {
1104 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1106 }
754fdcca 1107 else
5b0264cb
NS
1108 {
1109 gcc_assert (REG_P (reg));
1110 REG_USERVAR_P (reg) = 1;
1111 }
754fdcca
RK
1112}
1113
86fe05e0
RK
1114/* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
23b2ce53
RS
1116
1117void
502b8322 1118mark_reg_pointer (rtx reg, int align)
23b2ce53 1119{
3502dc9c 1120 if (! REG_POINTER (reg))
00995e78 1121 {
3502dc9c 1122 REG_POINTER (reg) = 1;
86fe05e0 1123
00995e78
RE
1124 if (align)
1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1126 }
1127 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1128 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1129 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1130}
1131
1132/* Return 1 plus largest pseudo reg number used in the current function. */
1133
1134int
502b8322 1135max_reg_num (void)
23b2ce53
RS
1136{
1137 return reg_rtx_no;
1138}
1139
1140/* Return 1 + the largest label number used so far in the current function. */
1141
1142int
502b8322 1143max_label_num (void)
23b2ce53 1144{
23b2ce53
RS
1145 return label_num;
1146}
1147
1148/* Return first label number used in this function (if any were used). */
1149
1150int
502b8322 1151get_first_label_num (void)
23b2ce53
RS
1152{
1153 return first_label_num;
1154}
6de9cd9a
DN
1155
1156/* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
fa10beec 1158 Fix this now so that array indices work later. */
6de9cd9a
DN
1159
1160void
1161maybe_set_first_label_num (rtx x)
1162{
1163 if (CODE_LABEL_NUMBER (x) < first_label_num)
1164 first_label_num = CODE_LABEL_NUMBER (x);
1165}
23b2ce53
RS
1166\f
1167/* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1169 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1170 representation is returned.
1171
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1175
1176 If this is not a case we can handle, return 0. */
1177
1178rtx
502b8322 1179gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1180{
ddef6bc7 1181 int msize = GET_MODE_SIZE (mode);
550d1387 1182 int xsize;
ddef6bc7 1183 int offset = 0;
550d1387
GK
1184 enum machine_mode innermode;
1185
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode = GET_MODE (x);
db487452
R
1189 if (GET_CODE (x) == CONST_INT
1190 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1192 else if (innermode == VOIDmode)
1193 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1194
1195 xsize = GET_MODE_SIZE (innermode);
1196
5b0264cb 1197 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1198
550d1387 1199 if (innermode == mode)
23b2ce53
RS
1200 return x;
1201
1202 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1203 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1204 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1205 return 0;
1206
53501a19 1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1208 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1209 return 0;
1210
550d1387 1211 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1212
1213 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1214 && (GET_MODE_CLASS (mode) == MODE_INT
1215 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1216 {
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1221 recursively.
1222
1223 This case is used mostly by combine and cse. */
1224
1225 if (GET_MODE (XEXP (x, 0)) == mode)
1226 return XEXP (x, 0);
550d1387 1227 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1228 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1229 else if (msize < xsize)
3b80f6ca 1230 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1231 }
f8cfc6aa 1232 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387
GK
1233 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1234 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1235 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1236
23b2ce53
RS
1237 /* Otherwise, we can't do this. */
1238 return 0;
1239}
1240\f
ccba022b 1241rtx
502b8322 1242gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1243{
ddef6bc7 1244 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1245 rtx result;
ddef6bc7 1246
ccba022b
RS
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1249 gcc_assert (msize <= UNITS_PER_WORD
1250 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1251
e0e08ac2
JH
1252 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1253 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb
NS
1254 gcc_assert (result);
1255
09482e0d
JW
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
5b0264cb
NS
1259 if (MEM_P (result))
1260 {
1261 result = validize_mem (result);
1262 gcc_assert (result);
1263 }
1264
e0e08ac2
JH
1265 return result;
1266}
5222e470 1267
26d249eb 1268/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1269 be VOIDmode constant. */
1270rtx
502b8322 1271gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1272{
1273 if (GET_MODE (exp) != VOIDmode)
1274 {
5b0264cb 1275 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1276 return gen_highpart (outermode, exp);
1277 }
1278 return simplify_gen_subreg (outermode, exp, innermode,
1279 subreg_highpart_offset (outermode, innermode));
1280}
68252e27 1281
38ae7651 1282/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1283
e0e08ac2 1284unsigned int
502b8322 1285subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1286{
1287 unsigned int offset = 0;
1288 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1289
e0e08ac2 1290 if (difference > 0)
ccba022b 1291 {
e0e08ac2
JH
1292 if (WORDS_BIG_ENDIAN)
1293 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1294 if (BYTES_BIG_ENDIAN)
1295 offset += difference % UNITS_PER_WORD;
ccba022b 1296 }
ddef6bc7 1297
e0e08ac2 1298 return offset;
ccba022b 1299}
eea50aa0 1300
e0e08ac2
JH
1301/* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1303unsigned int
502b8322 1304subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1305{
1306 unsigned int offset = 0;
1307 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1308
5b0264cb 1309 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1310
eea50aa0
JH
1311 if (difference > 0)
1312 {
e0e08ac2 1313 if (! WORDS_BIG_ENDIAN)
eea50aa0 1314 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1315 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1316 offset += difference % UNITS_PER_WORD;
1317 }
1318
e0e08ac2 1319 return offset;
eea50aa0 1320}
ccba022b 1321
23b2ce53
RS
1322/* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1325
1326int
fa233e34 1327subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1328{
1329 if (GET_CODE (x) != SUBREG)
1330 return 1;
a3a03040
RK
1331 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1332 return 0;
23b2ce53 1333
e0e08ac2
JH
1334 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1335 == SUBREG_BYTE (x));
23b2ce53
RS
1336}
1337\f
ddef6bc7
JJ
1338/* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1342
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1345
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1349
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1352
1353 MODE is the mode of OP in case it is a CONST_INT.
1354
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
0631e0bf
JH
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1360 cases.
1361 */
ddef6bc7
JJ
1362
1363rtx
502b8322 1364operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1365{
1366 if (mode == VOIDmode)
1367 mode = GET_MODE (op);
1368
5b0264cb 1369 gcc_assert (mode != VOIDmode);
ddef6bc7 1370
30f7a378 1371 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1372 if (mode != BLKmode
1373 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1374 return 0;
1375
30f7a378 1376 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1377 if (mode != BLKmode
1378 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1379 return const0_rtx;
1380
ddef6bc7 1381 /* Form a new MEM at the requested address. */
3c0cb5de 1382 if (MEM_P (op))
ddef6bc7 1383 {
60564289 1384 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1385
f1ec5147 1386 if (! validate_address)
60564289 1387 return new_rtx;
f1ec5147
RK
1388
1389 else if (reload_completed)
ddef6bc7 1390 {
60564289 1391 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
f1ec5147 1392 return 0;
ddef6bc7 1393 }
f1ec5147 1394 else
60564289 1395 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1396 }
1397
0631e0bf
JH
1398 /* Rest can be handled by simplify_subreg. */
1399 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1400}
1401
535a42b1
NS
1402/* Similar to `operand_subword', but never return 0. If we can't
1403 extract the required subword, put OP into a register and try again.
1404 The second attempt must succeed. We always validate the address in
1405 this case.
23b2ce53
RS
1406
1407 MODE is the mode of OP, in case it is CONST_INT. */
1408
1409rtx
502b8322 1410operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1411{
ddef6bc7 1412 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1413
1414 if (result)
1415 return result;
1416
1417 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1418 {
1419 /* If this is a register which can not be accessed by words, copy it
1420 to a pseudo register. */
f8cfc6aa 1421 if (REG_P (op))
77e6b0eb
JC
1422 op = copy_to_reg (op);
1423 else
1424 op = force_reg (mode, op);
1425 }
23b2ce53 1426
ddef6bc7 1427 result = operand_subword (op, offset, 1, mode);
5b0264cb 1428 gcc_assert (result);
23b2ce53
RS
1429
1430 return result;
1431}
1432\f
998d7deb
RH
1433/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1434 or (2) a component ref of something variable. Represent the later with
1435 a NULL expression. */
1436
1437static tree
502b8322 1438component_ref_for_mem_expr (tree ref)
998d7deb
RH
1439{
1440 tree inner = TREE_OPERAND (ref, 0);
1441
1442 if (TREE_CODE (inner) == COMPONENT_REF)
1443 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1444 else
1445 {
c56e3582 1446 /* Now remove any conversions: they don't change what the underlying
6fce44af 1447 object is. Likewise for SAVE_EXPR. */
1043771b 1448 while (CONVERT_EXPR_P (inner)
c56e3582 1449 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
6fce44af
RK
1450 || TREE_CODE (inner) == SAVE_EXPR)
1451 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1452
1453 if (! DECL_P (inner))
1454 inner = NULL_TREE;
1455 }
998d7deb
RH
1456
1457 if (inner == TREE_OPERAND (ref, 0))
1458 return ref;
1459 else
3244e67d
RS
1460 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1461 TREE_OPERAND (ref, 1), NULL_TREE);
998d7deb 1462}
173b24b9 1463
2b3493c8
AK
1464/* Returns 1 if both MEM_EXPR can be considered equal
1465 and 0 otherwise. */
1466
1467int
4f588890 1468mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1469{
1470 if (expr1 == expr2)
1471 return 1;
1472
1473 if (! expr1 || ! expr2)
1474 return 0;
1475
1476 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1477 return 0;
1478
1479 if (TREE_CODE (expr1) == COMPONENT_REF)
1480 return
1481 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1482 TREE_OPERAND (expr2, 0))
1483 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1484 TREE_OPERAND (expr2, 1));
1485
1b096a0a 1486 if (INDIRECT_REF_P (expr1))
2b3493c8
AK
1487 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1488 TREE_OPERAND (expr2, 0));
2b3493c8 1489
5b0264cb 1490 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
2b3493c8 1491 have been resolved here. */
5b0264cb
NS
1492 gcc_assert (DECL_P (expr1));
1493
1494 /* Decls with different pointers can't be equal. */
1495 return 0;
2b3493c8
AK
1496}
1497
6926c713 1498/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1499 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1500 if we are making a new object of this type. BITPOS is nonzero if
1501 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1502
1503void
502b8322
AJ
1504set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1505 HOST_WIDE_INT bitpos)
173b24b9 1506{
4862826d 1507 alias_set_type alias = MEM_ALIAS_SET (ref);
998d7deb 1508 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1509 rtx offset = MEM_OFFSET (ref);
1510 rtx size = MEM_SIZE (ref);
1511 unsigned int align = MEM_ALIGN (ref);
6f1087be 1512 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1513 tree type;
1514
1515 /* It can happen that type_for_mode was given a mode for which there
1516 is no language-level type. In which case it returns NULL, which
1517 we can see here. */
1518 if (t == NULL_TREE)
1519 return;
1520
1521 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1522 if (type == error_mark_node)
1523 return;
173b24b9 1524
173b24b9
RK
1525 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1526 wrong answer, as it assumes that DECL_RTL already has the right alias
1527 info. Callers should not set DECL_RTL until after the call to
1528 set_mem_attributes. */
5b0264cb 1529 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1530
738cc472 1531 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1532 front-end routine) and use it. */
1533 alias = get_alias_set (t);
173b24b9 1534
a5e9c810 1535 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
07cb6e8c
JM
1536 MEM_IN_STRUCT_P (ref)
1537 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
f8ad8d7c 1538 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1539
8ac61af7
RK
1540 /* If we are making an object of this type, or if this is a DECL, we know
1541 that it is a scalar if the type is not an aggregate. */
07cb6e8c
JM
1542 if ((objectp || DECL_P (t))
1543 && ! AGGREGATE_TYPE_P (type)
1544 && TREE_CODE (type) != COMPLEX_TYPE)
173b24b9
RK
1545 MEM_SCALAR_P (ref) = 1;
1546
c3d32120
RK
1547 /* We can set the alignment from the type if we are making an object,
1548 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
7ccf35ed
DN
1549 if (objectp || TREE_CODE (t) == INDIRECT_REF
1550 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1551 || TYPE_ALIGN_OK (type))
c3d32120 1552 align = MAX (align, TYPE_ALIGN (type));
7ccf35ed
DN
1553 else
1554 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1555 {
1556 if (integer_zerop (TREE_OPERAND (t, 1)))
1557 /* We don't know anything about the alignment. */
1558 align = BITS_PER_UNIT;
1559 else
1560 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1561 }
40c0668b 1562
738cc472
RK
1563 /* If the size is known, we can set that. */
1564 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1565 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1566
80965c18
RK
1567 /* If T is not a type, we may be able to deduce some more information about
1568 the expression. */
1569 if (! TYPE_P (t))
8ac61af7 1570 {
8476af98 1571 tree base;
389fdba0 1572
8ac61af7
RK
1573 if (TREE_THIS_VOLATILE (t))
1574 MEM_VOLATILE_P (ref) = 1;
173b24b9 1575
c56e3582
RK
1576 /* Now remove any conversions: they don't change what the underlying
1577 object is. Likewise for SAVE_EXPR. */
1043771b 1578 while (CONVERT_EXPR_P (t)
c56e3582
RK
1579 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1580 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1581 t = TREE_OPERAND (t, 0);
1582
8476af98
RH
1583 /* We may look through structure-like accesses for the purposes of
1584 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1585 base = t;
1586 while (TREE_CODE (base) == COMPONENT_REF
1587 || TREE_CODE (base) == REALPART_EXPR
1588 || TREE_CODE (base) == IMAGPART_EXPR
1589 || TREE_CODE (base) == BIT_FIELD_REF)
1590 base = TREE_OPERAND (base, 0);
1591
1592 if (DECL_P (base))
1593 {
1594 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1595 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1596 else
1597 MEM_NOTRAP_P (ref) = 1;
1598 }
1599 else
1600 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1601
1602 base = get_base_address (base);
1603 if (base && DECL_P (base)
1604 && TREE_READONLY (base)
1605 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1606 {
1607 tree base_type = TREE_TYPE (base);
1608 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1609 || DECL_ARTIFICIAL (base));
1610 MEM_READONLY_P (ref) = 1;
1611 }
1612
2039d7aa
RH
1613 /* If this expression uses it's parent's alias set, mark it such
1614 that we won't change it. */
1615 if (component_uses_parent_alias_set (t))
10b76d73
RK
1616 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1617
8ac61af7
RK
1618 /* If this is a decl, set the attributes of the MEM from it. */
1619 if (DECL_P (t))
1620 {
998d7deb
RH
1621 expr = t;
1622 offset = const0_rtx;
6f1087be 1623 apply_bitpos = bitpos;
8ac61af7
RK
1624 size = (DECL_SIZE_UNIT (t)
1625 && host_integerp (DECL_SIZE_UNIT (t), 1)
1626 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1627 align = DECL_ALIGN (t);
8ac61af7
RK
1628 }
1629
40c0668b 1630 /* If this is a constant, we know the alignment. */
6615c446 1631 else if (CONSTANT_CLASS_P (t))
9ddfb1a7
RK
1632 {
1633 align = TYPE_ALIGN (type);
1634#ifdef CONSTANT_ALIGNMENT
1635 align = CONSTANT_ALIGNMENT (t, align);
1636#endif
1637 }
998d7deb
RH
1638
1639 /* If this is a field reference and not a bit-field, record it. */
fa10beec 1640 /* ??? There is some information that can be gleaned from bit-fields,
998d7deb
RH
1641 such as the word offset in the structure that might be modified.
1642 But skip it for now. */
1643 else if (TREE_CODE (t) == COMPONENT_REF
1644 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1645 {
1646 expr = component_ref_for_mem_expr (t);
1647 offset = const0_rtx;
6f1087be 1648 apply_bitpos = bitpos;
998d7deb
RH
1649 /* ??? Any reason the field size would be different than
1650 the size we got from the type? */
1651 }
1652
1653 /* If this is an array reference, look for an outer field reference. */
1654 else if (TREE_CODE (t) == ARRAY_REF)
1655 {
1656 tree off_tree = size_zero_node;
1b1838b6
JW
1657 /* We can't modify t, because we use it at the end of the
1658 function. */
1659 tree t2 = t;
998d7deb
RH
1660
1661 do
1662 {
1b1838b6 1663 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1664 tree low_bound = array_ref_low_bound (t2);
1665 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1666
1667 /* We assume all arrays have sizes that are a multiple of a byte.
1668 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1669 index, then convert to sizetype and multiply by the size of
1670 the array element. */
1671 if (! integer_zerop (low_bound))
4845b383
KH
1672 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1673 index, low_bound);
2567406a 1674
44de5aeb 1675 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1676 size_binop (MULT_EXPR,
1677 fold_convert (sizetype,
1678 index),
44de5aeb
RK
1679 unit_size),
1680 off_tree);
1b1838b6 1681 t2 = TREE_OPERAND (t2, 0);
998d7deb 1682 }
1b1838b6 1683 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1684
1b1838b6 1685 if (DECL_P (t2))
c67a1cf6 1686 {
1b1838b6 1687 expr = t2;
40cb04f1 1688 offset = NULL;
c67a1cf6 1689 if (host_integerp (off_tree, 1))
40cb04f1
RH
1690 {
1691 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1692 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1b1838b6 1693 align = DECL_ALIGN (t2);
fc555370 1694 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1
RH
1695 align = aoff;
1696 offset = GEN_INT (ioff);
6f1087be 1697 apply_bitpos = bitpos;
40cb04f1 1698 }
c67a1cf6 1699 }
1b1838b6 1700 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1701 {
1b1838b6 1702 expr = component_ref_for_mem_expr (t2);
998d7deb 1703 if (host_integerp (off_tree, 1))
6f1087be
RH
1704 {
1705 offset = GEN_INT (tree_low_cst (off_tree, 1));
1706 apply_bitpos = bitpos;
1707 }
998d7deb
RH
1708 /* ??? Any reason the field size would be different than
1709 the size we got from the type? */
1710 }
c67a1cf6 1711 else if (flag_argument_noalias > 1
1b096a0a 1712 && (INDIRECT_REF_P (t2))
1b1838b6 1713 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
c67a1cf6 1714 {
1b1838b6 1715 expr = t2;
c67a1cf6
RH
1716 offset = NULL;
1717 }
1718 }
1719
1720 /* If this is a Fortran indirect argument reference, record the
1721 parameter decl. */
1722 else if (flag_argument_noalias > 1
1b096a0a 1723 && (INDIRECT_REF_P (t))
c67a1cf6
RH
1724 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1725 {
1726 expr = t;
1727 offset = NULL;
998d7deb 1728 }
8ac61af7
RK
1729 }
1730
15c812e3 1731 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1732 bit position offset. Similarly, increase the size of the accessed
1733 object to contain the negative offset. */
6f1087be 1734 if (apply_bitpos)
8c317c5f
RH
1735 {
1736 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1737 if (size)
1738 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1739 }
6f1087be 1740
7ccf35ed
DN
1741 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1742 {
fa10beec 1743 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
7ccf35ed
DN
1744 we're overlapping. */
1745 offset = NULL;
1746 expr = NULL;
1747 }
1748
8ac61af7 1749 /* Now set the attributes we computed above. */
10b76d73 1750 MEM_ATTRS (ref)
998d7deb 1751 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1752
1753 /* If this is already known to be a scalar or aggregate, we are done. */
1754 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1755 return;
1756
8ac61af7
RK
1757 /* If it is a reference into an aggregate, this is part of an aggregate.
1758 Otherwise we don't know. */
173b24b9
RK
1759 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1760 || TREE_CODE (t) == ARRAY_RANGE_REF
1761 || TREE_CODE (t) == BIT_FIELD_REF)
1762 MEM_IN_STRUCT_P (ref) = 1;
1763}
1764
6f1087be 1765void
502b8322 1766set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1767{
1768 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1769}
1770
895a8136 1771/* Set MEM to the decl that REG refers to. */
a560d4d4
JH
1772
1773void
502b8322 1774set_mem_attrs_from_reg (rtx mem, rtx reg)
a560d4d4
JH
1775{
1776 MEM_ATTRS (mem)
1777 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1778 GEN_INT (REG_OFFSET (reg)),
1779 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1780}
1781
173b24b9
RK
1782/* Set the alias set of MEM to SET. */
1783
1784void
4862826d 1785set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1786{
68252e27 1787#ifdef ENABLE_CHECKING
173b24b9 1788 /* If the new and old alias sets don't conflict, something is wrong. */
5b0264cb 1789 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
173b24b9
RK
1790#endif
1791
998d7deb 1792 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
1793 MEM_SIZE (mem), MEM_ALIGN (mem),
1794 GET_MODE (mem));
173b24b9 1795}
738cc472 1796
d022d93e 1797/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1798
1799void
502b8322 1800set_mem_align (rtx mem, unsigned int align)
738cc472 1801{
998d7deb 1802 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
1803 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1804 GET_MODE (mem));
738cc472 1805}
1285011e 1806
998d7deb 1807/* Set the expr for MEM to EXPR. */
1285011e
RK
1808
1809void
502b8322 1810set_mem_expr (rtx mem, tree expr)
1285011e
RK
1811{
1812 MEM_ATTRS (mem)
998d7deb 1813 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
1814 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1815}
998d7deb
RH
1816
1817/* Set the offset of MEM to OFFSET. */
1818
1819void
502b8322 1820set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
1821{
1822 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1823 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1824 GET_MODE (mem));
35aff10b
AM
1825}
1826
1827/* Set the size of MEM to SIZE. */
1828
1829void
502b8322 1830set_mem_size (rtx mem, rtx size)
35aff10b
AM
1831{
1832 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1833 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1834 GET_MODE (mem));
998d7deb 1835}
173b24b9 1836\f
738cc472
RK
1837/* Return a memory reference like MEMREF, but with its mode changed to MODE
1838 and its address changed to ADDR. (VOIDmode means don't change the mode.
1839 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1840 returned memory location is required to be valid. The memory
1841 attributes are not changed. */
23b2ce53 1842
738cc472 1843static rtx
502b8322 1844change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53 1845{
60564289 1846 rtx new_rtx;
23b2ce53 1847
5b0264cb 1848 gcc_assert (MEM_P (memref));
23b2ce53
RS
1849 if (mode == VOIDmode)
1850 mode = GET_MODE (memref);
1851 if (addr == 0)
1852 addr = XEXP (memref, 0);
a74ff877
JH
1853 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1854 && (!validate || memory_address_p (mode, addr)))
1855 return memref;
23b2ce53 1856
f1ec5147 1857 if (validate)
23b2ce53 1858 {
f1ec5147 1859 if (reload_in_progress || reload_completed)
5b0264cb 1860 gcc_assert (memory_address_p (mode, addr));
f1ec5147
RK
1861 else
1862 addr = memory_address (mode, addr);
23b2ce53 1863 }
750c9258 1864
9b04c6a8
RK
1865 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1866 return memref;
1867
60564289
KG
1868 new_rtx = gen_rtx_MEM (mode, addr);
1869 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1870 return new_rtx;
23b2ce53 1871}
792760b9 1872
738cc472
RK
1873/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1874 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1875
1876rtx
502b8322 1877change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 1878{
60564289
KG
1879 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1880 enum machine_mode mmode = GET_MODE (new_rtx);
4e44c1ef
JJ
1881 unsigned int align;
1882
1883 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1884 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
c2f7bcc3 1885
fdb1c7b3 1886 /* If there are no changes, just return the original memory reference. */
60564289 1887 if (new_rtx == memref)
4e44c1ef
JJ
1888 {
1889 if (MEM_ATTRS (memref) == 0
1890 || (MEM_EXPR (memref) == NULL
1891 && MEM_OFFSET (memref) == NULL
1892 && MEM_SIZE (memref) == size
1893 && MEM_ALIGN (memref) == align))
60564289 1894 return new_rtx;
4e44c1ef 1895
60564289
KG
1896 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1897 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 1898 }
fdb1c7b3 1899
60564289 1900 MEM_ATTRS (new_rtx)
4e44c1ef 1901 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
823e3574 1902
60564289 1903 return new_rtx;
f4ef873c 1904}
792760b9 1905
738cc472
RK
1906/* Return a memory reference like MEMREF, but with its mode changed
1907 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1908 nonzero, the memory address is forced to be valid.
1909 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1910 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1911
1912rtx
502b8322
AJ
1913adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1914 int validate, int adjust)
f1ec5147 1915{
823e3574 1916 rtx addr = XEXP (memref, 0);
60564289 1917 rtx new_rtx;
738cc472 1918 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1919 rtx size = 0;
738cc472 1920 unsigned int memalign = MEM_ALIGN (memref);
823e3574 1921
fdb1c7b3
JH
1922 /* If there are no changes, just return the original memory reference. */
1923 if (mode == GET_MODE (memref) && !offset
1924 && (!validate || memory_address_p (mode, addr)))
1925 return memref;
1926
d14419e4 1927 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 1928 This may happen even if offset is nonzero -- consider
d14419e4
RH
1929 (plus (plus reg reg) const_int) -- so do this always. */
1930 addr = copy_rtx (addr);
1931
4a78c787
RH
1932 if (adjust)
1933 {
1934 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1935 object, we can merge it into the LO_SUM. */
1936 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1937 && offset >= 0
1938 && (unsigned HOST_WIDE_INT) offset
1939 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1940 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1941 plus_constant (XEXP (addr, 1), offset));
1942 else
1943 addr = plus_constant (addr, offset);
1944 }
823e3574 1945
60564289 1946 new_rtx = change_address_1 (memref, mode, addr, validate);
738cc472
RK
1947
1948 /* Compute the new values of the memory attributes due to this adjustment.
1949 We add the offsets and update the alignment. */
1950 if (memoffset)
1951 memoffset = GEN_INT (offset + INTVAL (memoffset));
1952
03bf2c23
RK
1953 /* Compute the new alignment by taking the MIN of the alignment and the
1954 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1955 if zero. */
1956 if (offset != 0)
3bf1e984
RK
1957 memalign
1958 = MIN (memalign,
1959 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 1960
10b76d73 1961 /* We can compute the size in a number of ways. */
60564289
KG
1962 if (GET_MODE (new_rtx) != BLKmode)
1963 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
10b76d73
RK
1964 else if (MEM_SIZE (memref))
1965 size = plus_constant (MEM_SIZE (memref), -offset);
1966
60564289
KG
1967 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1968 memoffset, size, memalign, GET_MODE (new_rtx));
738cc472
RK
1969
1970 /* At some point, we should validate that this offset is within the object,
1971 if all the appropriate values are known. */
60564289 1972 return new_rtx;
f1ec5147
RK
1973}
1974
630036c6
JJ
1975/* Return a memory reference like MEMREF, but with its mode changed
1976 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 1977 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1978 nonzero, the memory address is forced to be valid. */
1979
1980rtx
502b8322
AJ
1981adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1982 HOST_WIDE_INT offset, int validate)
630036c6
JJ
1983{
1984 memref = change_address_1 (memref, VOIDmode, addr, validate);
1985 return adjust_address_1 (memref, mode, offset, validate, 0);
1986}
1987
8ac61af7
RK
1988/* Return a memory reference like MEMREF, but whose address is changed by
1989 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1990 known to be in OFFSET (possibly 1). */
0d4903b8
RK
1991
1992rtx
502b8322 1993offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 1994{
60564289 1995 rtx new_rtx, addr = XEXP (memref, 0);
e3c8ea67 1996
60564289 1997 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
e3c8ea67 1998
68252e27 1999 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2000 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2001
2002 However, if we did go and rearrange things, we can wind up not
2003 being able to recognize the magic around pic_offset_table_rtx.
2004 This stuff is fragile, and is yet another example of why it is
2005 bad to expose PIC machinery too early. */
60564289 2006 if (! memory_address_p (GET_MODE (memref), new_rtx)
e3c8ea67
RH
2007 && GET_CODE (addr) == PLUS
2008 && XEXP (addr, 0) == pic_offset_table_rtx)
2009 {
2010 addr = force_reg (GET_MODE (addr), addr);
60564289 2011 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
e3c8ea67
RH
2012 }
2013
60564289
KG
2014 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2015 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
0d4903b8 2016
fdb1c7b3 2017 /* If there are no changes, just return the original memory reference. */
60564289
KG
2018 if (new_rtx == memref)
2019 return new_rtx;
fdb1c7b3 2020
0d4903b8
RK
2021 /* Update the alignment to reflect the offset. Reset the offset, which
2022 we don't know. */
60564289 2023 MEM_ATTRS (new_rtx)
2cc2d4bb 2024 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 2025 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
60564289
KG
2026 GET_MODE (new_rtx));
2027 return new_rtx;
0d4903b8 2028}
68252e27 2029
792760b9
RK
2030/* Return a memory reference like MEMREF, but with its address changed to
2031 ADDR. The caller is asserting that the actual piece of memory pointed
2032 to is the same, just the form of the address is being changed, such as
2033 by putting something into a register. */
2034
2035rtx
502b8322 2036replace_equiv_address (rtx memref, rtx addr)
792760b9 2037{
738cc472
RK
2038 /* change_address_1 copies the memory attribute structure without change
2039 and that's exactly what we want here. */
40c0668b 2040 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2041 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2042}
738cc472 2043
f1ec5147
RK
2044/* Likewise, but the reference is not required to be valid. */
2045
2046rtx
502b8322 2047replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2048{
f1ec5147
RK
2049 return change_address_1 (memref, VOIDmode, addr, 0);
2050}
e7dfe4bb
RH
2051
2052/* Return a memory reference like MEMREF, but with its mode widened to
2053 MODE and offset by OFFSET. This would be used by targets that e.g.
2054 cannot issue QImode memory operations and have to use SImode memory
2055 operations plus masking logic. */
2056
2057rtx
502b8322 2058widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2059{
60564289
KG
2060 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2061 tree expr = MEM_EXPR (new_rtx);
2062 rtx memoffset = MEM_OFFSET (new_rtx);
e7dfe4bb
RH
2063 unsigned int size = GET_MODE_SIZE (mode);
2064
fdb1c7b3 2065 /* If there are no changes, just return the original memory reference. */
60564289
KG
2066 if (new_rtx == memref)
2067 return new_rtx;
fdb1c7b3 2068
e7dfe4bb
RH
2069 /* If we don't know what offset we were at within the expression, then
2070 we can't know if we've overstepped the bounds. */
fa1591cb 2071 if (! memoffset)
e7dfe4bb
RH
2072 expr = NULL_TREE;
2073
2074 while (expr)
2075 {
2076 if (TREE_CODE (expr) == COMPONENT_REF)
2077 {
2078 tree field = TREE_OPERAND (expr, 1);
44de5aeb 2079 tree offset = component_ref_field_offset (expr);
e7dfe4bb
RH
2080
2081 if (! DECL_SIZE_UNIT (field))
2082 {
2083 expr = NULL_TREE;
2084 break;
2085 }
2086
2087 /* Is the field at least as large as the access? If so, ok,
2088 otherwise strip back to the containing structure. */
03667700
RK
2089 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2090 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2091 && INTVAL (memoffset) >= 0)
2092 break;
2093
44de5aeb 2094 if (! host_integerp (offset, 1))
e7dfe4bb
RH
2095 {
2096 expr = NULL_TREE;
2097 break;
2098 }
2099
2100 expr = TREE_OPERAND (expr, 0);
44de5aeb
RK
2101 memoffset
2102 = (GEN_INT (INTVAL (memoffset)
2103 + tree_low_cst (offset, 1)
2104 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2105 / BITS_PER_UNIT)));
e7dfe4bb
RH
2106 }
2107 /* Similarly for the decl. */
2108 else if (DECL_P (expr)
2109 && DECL_SIZE_UNIT (expr)
45f79783 2110 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2111 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2112 && (! memoffset || INTVAL (memoffset) >= 0))
2113 break;
2114 else
2115 {
2116 /* The widened memory access overflows the expression, which means
2117 that it could alias another expression. Zap it. */
2118 expr = NULL_TREE;
2119 break;
2120 }
2121 }
2122
2123 if (! expr)
2124 memoffset = NULL_RTX;
2125
2126 /* The widened memory may alias other stuff, so zap the alias set. */
2127 /* ??? Maybe use get_alias_set on any remaining expression. */
2128
60564289
KG
2129 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2130 MEM_ALIGN (new_rtx), mode);
e7dfe4bb 2131
60564289 2132 return new_rtx;
e7dfe4bb 2133}
23b2ce53
RS
2134\f
2135/* Return a newly created CODE_LABEL rtx with a unique label number. */
2136
2137rtx
502b8322 2138gen_label_rtx (void)
23b2ce53 2139{
0dc36574 2140 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2141 NULL, label_num++, NULL);
23b2ce53
RS
2142}
2143\f
2144/* For procedure integration. */
2145
23b2ce53 2146/* Install new pointers to the first and last insns in the chain.
86fe05e0 2147 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2148 Used for an inline-procedure after copying the insn chain. */
2149
2150void
502b8322 2151set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2152{
86fe05e0
RK
2153 rtx insn;
2154
23b2ce53
RS
2155 first_insn = first;
2156 last_insn = last;
86fe05e0
RK
2157 cur_insn_uid = 0;
2158
2159 for (insn = first; insn; insn = NEXT_INSN (insn))
2160 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2161
2162 cur_insn_uid++;
23b2ce53 2163}
23b2ce53 2164\f
750c9258 2165/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2166 structure. This routine should only be called once. */
23b2ce53 2167
fd743bc1 2168static void
b4aaa77b 2169unshare_all_rtl_1 (rtx insn)
23b2ce53 2170{
d1b81779 2171 /* Unshare just about everything else. */
2c07f13b 2172 unshare_all_rtl_in_chain (insn);
750c9258 2173
23b2ce53
RS
2174 /* Make sure the addresses of stack slots found outside the insn chain
2175 (such as, in DECL_RTL of a variable) are not shared
2176 with the insn chain.
2177
2178 This special care is necessary when the stack slot MEM does not
2179 actually appear in the insn chain. If it does appear, its address
2180 is unshared from all else at that point. */
242b0ce6 2181 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2182}
2183
750c9258 2184/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2185 structure, again. This is a fairly expensive thing to do so it
2186 should be done sparingly. */
2187
2188void
502b8322 2189unshare_all_rtl_again (rtx insn)
d1b81779
GK
2190{
2191 rtx p;
624c87aa
RE
2192 tree decl;
2193
d1b81779 2194 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2195 if (INSN_P (p))
d1b81779
GK
2196 {
2197 reset_used_flags (PATTERN (p));
2198 reset_used_flags (REG_NOTES (p));
d1b81779 2199 }
624c87aa 2200
2d4aecb3 2201 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2202 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2203
624c87aa
RE
2204 /* Make sure that virtual parameters are not shared. */
2205 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
5eb2a9f2 2206 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2207
2208 reset_used_flags (stack_slot_list);
2209
b4aaa77b 2210 unshare_all_rtl_1 (insn);
fd743bc1
PB
2211}
2212
c2924966 2213unsigned int
fd743bc1
PB
2214unshare_all_rtl (void)
2215{
b4aaa77b 2216 unshare_all_rtl_1 (get_insns ());
c2924966 2217 return 0;
d1b81779
GK
2218}
2219
8ddbbcae 2220struct rtl_opt_pass pass_unshare_all_rtl =
ef330312 2221{
8ddbbcae
JH
2222 {
2223 RTL_PASS,
defb77dc 2224 "unshare", /* name */
ef330312
PB
2225 NULL, /* gate */
2226 unshare_all_rtl, /* execute */
2227 NULL, /* sub */
2228 NULL, /* next */
2229 0, /* static_pass_number */
2230 0, /* tv_id */
2231 0, /* properties_required */
2232 0, /* properties_provided */
2233 0, /* properties_destroyed */
2234 0, /* todo_flags_start */
8ddbbcae
JH
2235 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2236 }
ef330312
PB
2237};
2238
2239
2c07f13b
JH
2240/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2241 Recursively does the same for subexpressions. */
2242
2243static void
2244verify_rtx_sharing (rtx orig, rtx insn)
2245{
2246 rtx x = orig;
2247 int i;
2248 enum rtx_code code;
2249 const char *format_ptr;
2250
2251 if (x == 0)
2252 return;
2253
2254 code = GET_CODE (x);
2255
2256 /* These types may be freely shared. */
2257
2258 switch (code)
2259 {
2260 case REG:
2c07f13b
JH
2261 case CONST_INT:
2262 case CONST_DOUBLE:
091a3ac7 2263 case CONST_FIXED:
2c07f13b
JH
2264 case CONST_VECTOR:
2265 case SYMBOL_REF:
2266 case LABEL_REF:
2267 case CODE_LABEL:
2268 case PC:
2269 case CC0:
2270 case SCRATCH:
2c07f13b 2271 return;
3e89ed8d
JH
2272 /* SCRATCH must be shared because they represent distinct values. */
2273 case CLOBBER:
2274 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2275 return;
2276 break;
2c07f13b
JH
2277
2278 case CONST:
6fb5fa3c 2279 if (shared_const_p (orig))
2c07f13b
JH
2280 return;
2281 break;
2282
2283 case MEM:
2284 /* A MEM is allowed to be shared if its address is constant. */
2285 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2286 || reload_completed || reload_in_progress)
2287 return;
2288
2289 break;
2290
2291 default:
2292 break;
2293 }
2294
2295 /* This rtx may not be shared. If it has already been seen,
2296 replace it with a copy of itself. */
1a2caa7a 2297#ifdef ENABLE_CHECKING
2c07f13b
JH
2298 if (RTX_FLAG (x, used))
2299 {
ab532386 2300 error ("invalid rtl sharing found in the insn");
2c07f13b 2301 debug_rtx (insn);
ab532386 2302 error ("shared rtx");
2c07f13b 2303 debug_rtx (x);
ab532386 2304 internal_error ("internal consistency failure");
2c07f13b 2305 }
1a2caa7a
NS
2306#endif
2307 gcc_assert (!RTX_FLAG (x, used));
2308
2c07f13b
JH
2309 RTX_FLAG (x, used) = 1;
2310
6614fd40 2311 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2312
2313 format_ptr = GET_RTX_FORMAT (code);
2314
2315 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2316 {
2317 switch (*format_ptr++)
2318 {
2319 case 'e':
2320 verify_rtx_sharing (XEXP (x, i), insn);
2321 break;
2322
2323 case 'E':
2324 if (XVEC (x, i) != NULL)
2325 {
2326 int j;
2327 int len = XVECLEN (x, i);
2328
2329 for (j = 0; j < len; j++)
2330 {
1a2caa7a
NS
2331 /* We allow sharing of ASM_OPERANDS inside single
2332 instruction. */
2c07f13b 2333 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2334 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2335 == ASM_OPERANDS))
2c07f13b
JH
2336 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2337 else
2338 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2339 }
2340 }
2341 break;
2342 }
2343 }
2344 return;
2345}
2346
ba228239 2347/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2348 sharing in between the subexpressions. */
2349
2350void
2351verify_rtl_sharing (void)
2352{
2353 rtx p;
2354
2355 for (p = get_insns (); p; p = NEXT_INSN (p))
2356 if (INSN_P (p))
2357 {
2358 reset_used_flags (PATTERN (p));
2359 reset_used_flags (REG_NOTES (p));
2954a813
KK
2360 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2361 {
2362 int i;
2363 rtx q, sequence = PATTERN (p);
2364
2365 for (i = 0; i < XVECLEN (sequence, 0); i++)
2366 {
2367 q = XVECEXP (sequence, 0, i);
2368 gcc_assert (INSN_P (q));
2369 reset_used_flags (PATTERN (q));
2370 reset_used_flags (REG_NOTES (q));
2954a813
KK
2371 }
2372 }
2c07f13b
JH
2373 }
2374
2375 for (p = get_insns (); p; p = NEXT_INSN (p))
2376 if (INSN_P (p))
2377 {
2378 verify_rtx_sharing (PATTERN (p), p);
2379 verify_rtx_sharing (REG_NOTES (p), p);
2c07f13b
JH
2380 }
2381}
2382
d1b81779
GK
2383/* Go through all the RTL insn bodies and copy any invalid shared structure.
2384 Assumes the mark bits are cleared at entry. */
2385
2c07f13b
JH
2386void
2387unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2388{
2389 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2390 if (INSN_P (insn))
d1b81779
GK
2391 {
2392 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2393 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
d1b81779
GK
2394 }
2395}
2396
2d4aecb3 2397/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2398 shared. We never replace the DECL_RTLs themselves with a copy,
2399 but expressions mentioned into a DECL_RTL cannot be shared with
2400 expressions in the instruction stream.
2401
2402 Note that reload may convert pseudo registers into memories in-place.
2403 Pseudo registers are always shared, but MEMs never are. Thus if we
2404 reset the used flags on MEMs in the instruction stream, we must set
2405 them again on MEMs that appear in DECL_RTLs. */
2406
2d4aecb3 2407static void
5eb2a9f2 2408set_used_decls (tree blk)
2d4aecb3
AO
2409{
2410 tree t;
2411
2412 /* Mark decls. */
2413 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c 2414 if (DECL_RTL_SET_P (t))
5eb2a9f2 2415 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2416
2417 /* Now process sub-blocks. */
87caf699 2418 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2419 set_used_decls (t);
2d4aecb3
AO
2420}
2421
23b2ce53 2422/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2423 Recursively does the same for subexpressions. Uses
2424 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2425
2426rtx
502b8322 2427copy_rtx_if_shared (rtx orig)
23b2ce53 2428{
32b32b16
AP
2429 copy_rtx_if_shared_1 (&orig);
2430 return orig;
2431}
2432
ff954f39
AP
2433/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2434 use. Recursively does the same for subexpressions. */
2435
32b32b16
AP
2436static void
2437copy_rtx_if_shared_1 (rtx *orig1)
2438{
2439 rtx x;
b3694847
SS
2440 int i;
2441 enum rtx_code code;
32b32b16 2442 rtx *last_ptr;
b3694847 2443 const char *format_ptr;
23b2ce53 2444 int copied = 0;
32b32b16
AP
2445 int length;
2446
2447 /* Repeat is used to turn tail-recursion into iteration. */
2448repeat:
2449 x = *orig1;
23b2ce53
RS
2450
2451 if (x == 0)
32b32b16 2452 return;
23b2ce53
RS
2453
2454 code = GET_CODE (x);
2455
2456 /* These types may be freely shared. */
2457
2458 switch (code)
2459 {
2460 case REG:
23b2ce53
RS
2461 case CONST_INT:
2462 case CONST_DOUBLE:
091a3ac7 2463 case CONST_FIXED:
69ef87e2 2464 case CONST_VECTOR:
23b2ce53 2465 case SYMBOL_REF:
2c07f13b 2466 case LABEL_REF:
23b2ce53
RS
2467 case CODE_LABEL:
2468 case PC:
2469 case CC0:
2470 case SCRATCH:
0f41302f 2471 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2472 return;
3e89ed8d
JH
2473 case CLOBBER:
2474 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2475 return;
2476 break;
23b2ce53 2477
b851ea09 2478 case CONST:
6fb5fa3c 2479 if (shared_const_p (x))
32b32b16 2480 return;
b851ea09
RK
2481 break;
2482
23b2ce53
RS
2483 case INSN:
2484 case JUMP_INSN:
2485 case CALL_INSN:
2486 case NOTE:
23b2ce53
RS
2487 case BARRIER:
2488 /* The chain of insns is not being copied. */
32b32b16 2489 return;
23b2ce53 2490
e9a25f70
JL
2491 default:
2492 break;
23b2ce53
RS
2493 }
2494
2495 /* This rtx may not be shared. If it has already been seen,
2496 replace it with a copy of itself. */
2497
2adc7f12 2498 if (RTX_FLAG (x, used))
23b2ce53 2499 {
aacd3885 2500 x = shallow_copy_rtx (x);
23b2ce53
RS
2501 copied = 1;
2502 }
2adc7f12 2503 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2504
2505 /* Now scan the subexpressions recursively.
2506 We can store any replaced subexpressions directly into X
2507 since we know X is not shared! Any vectors in X
2508 must be copied if X was copied. */
2509
2510 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2511 length = GET_RTX_LENGTH (code);
2512 last_ptr = NULL;
2513
2514 for (i = 0; i < length; i++)
23b2ce53
RS
2515 {
2516 switch (*format_ptr++)
2517 {
2518 case 'e':
32b32b16
AP
2519 if (last_ptr)
2520 copy_rtx_if_shared_1 (last_ptr);
2521 last_ptr = &XEXP (x, i);
23b2ce53
RS
2522 break;
2523
2524 case 'E':
2525 if (XVEC (x, i) != NULL)
2526 {
b3694847 2527 int j;
f0722107 2528 int len = XVECLEN (x, i);
32b32b16 2529
6614fd40
KH
2530 /* Copy the vector iff I copied the rtx and the length
2531 is nonzero. */
f0722107 2532 if (copied && len > 0)
8f985ec4 2533 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
32b32b16 2534
5d3cc252 2535 /* Call recursively on all inside the vector. */
f0722107 2536 for (j = 0; j < len; j++)
32b32b16
AP
2537 {
2538 if (last_ptr)
2539 copy_rtx_if_shared_1 (last_ptr);
2540 last_ptr = &XVECEXP (x, i, j);
2541 }
23b2ce53
RS
2542 }
2543 break;
2544 }
2545 }
32b32b16
AP
2546 *orig1 = x;
2547 if (last_ptr)
2548 {
2549 orig1 = last_ptr;
2550 goto repeat;
2551 }
2552 return;
23b2ce53
RS
2553}
2554
2555/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2556 to look for shared sub-parts. */
2557
2558void
502b8322 2559reset_used_flags (rtx x)
23b2ce53 2560{
b3694847
SS
2561 int i, j;
2562 enum rtx_code code;
2563 const char *format_ptr;
32b32b16 2564 int length;
23b2ce53 2565
32b32b16
AP
2566 /* Repeat is used to turn tail-recursion into iteration. */
2567repeat:
23b2ce53
RS
2568 if (x == 0)
2569 return;
2570
2571 code = GET_CODE (x);
2572
9faa82d8 2573 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2574 for them. */
2575
2576 switch (code)
2577 {
2578 case REG:
23b2ce53
RS
2579 case CONST_INT:
2580 case CONST_DOUBLE:
091a3ac7 2581 case CONST_FIXED:
69ef87e2 2582 case CONST_VECTOR:
23b2ce53
RS
2583 case SYMBOL_REF:
2584 case CODE_LABEL:
2585 case PC:
2586 case CC0:
2587 return;
2588
2589 case INSN:
2590 case JUMP_INSN:
2591 case CALL_INSN:
2592 case NOTE:
2593 case LABEL_REF:
2594 case BARRIER:
2595 /* The chain of insns is not being copied. */
2596 return;
750c9258 2597
e9a25f70
JL
2598 default:
2599 break;
23b2ce53
RS
2600 }
2601
2adc7f12 2602 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2603
2604 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2605 length = GET_RTX_LENGTH (code);
2606
2607 for (i = 0; i < length; i++)
23b2ce53
RS
2608 {
2609 switch (*format_ptr++)
2610 {
2611 case 'e':
32b32b16
AP
2612 if (i == length-1)
2613 {
2614 x = XEXP (x, i);
2615 goto repeat;
2616 }
23b2ce53
RS
2617 reset_used_flags (XEXP (x, i));
2618 break;
2619
2620 case 'E':
2621 for (j = 0; j < XVECLEN (x, i); j++)
2622 reset_used_flags (XVECEXP (x, i, j));
2623 break;
2624 }
2625 }
2626}
2c07f13b
JH
2627
2628/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2629 to look for shared sub-parts. */
2630
2631void
2632set_used_flags (rtx x)
2633{
2634 int i, j;
2635 enum rtx_code code;
2636 const char *format_ptr;
2637
2638 if (x == 0)
2639 return;
2640
2641 code = GET_CODE (x);
2642
2643 /* These types may be freely shared so we needn't do any resetting
2644 for them. */
2645
2646 switch (code)
2647 {
2648 case REG:
2c07f13b
JH
2649 case CONST_INT:
2650 case CONST_DOUBLE:
091a3ac7 2651 case CONST_FIXED:
2c07f13b
JH
2652 case CONST_VECTOR:
2653 case SYMBOL_REF:
2654 case CODE_LABEL:
2655 case PC:
2656 case CC0:
2657 return;
2658
2659 case INSN:
2660 case JUMP_INSN:
2661 case CALL_INSN:
2662 case NOTE:
2663 case LABEL_REF:
2664 case BARRIER:
2665 /* The chain of insns is not being copied. */
2666 return;
2667
2668 default:
2669 break;
2670 }
2671
2672 RTX_FLAG (x, used) = 1;
2673
2674 format_ptr = GET_RTX_FORMAT (code);
2675 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2676 {
2677 switch (*format_ptr++)
2678 {
2679 case 'e':
2680 set_used_flags (XEXP (x, i));
2681 break;
2682
2683 case 'E':
2684 for (j = 0; j < XVECLEN (x, i); j++)
2685 set_used_flags (XVECEXP (x, i, j));
2686 break;
2687 }
2688 }
2689}
23b2ce53
RS
2690\f
2691/* Copy X if necessary so that it won't be altered by changes in OTHER.
2692 Return X or the rtx for the pseudo reg the value of X was copied into.
2693 OTHER must be valid as a SET_DEST. */
2694
2695rtx
502b8322 2696make_safe_from (rtx x, rtx other)
23b2ce53
RS
2697{
2698 while (1)
2699 switch (GET_CODE (other))
2700 {
2701 case SUBREG:
2702 other = SUBREG_REG (other);
2703 break;
2704 case STRICT_LOW_PART:
2705 case SIGN_EXTEND:
2706 case ZERO_EXTEND:
2707 other = XEXP (other, 0);
2708 break;
2709 default:
2710 goto done;
2711 }
2712 done:
3c0cb5de 2713 if ((MEM_P (other)
23b2ce53 2714 && ! CONSTANT_P (x)
f8cfc6aa 2715 && !REG_P (x)
23b2ce53 2716 && GET_CODE (x) != SUBREG)
f8cfc6aa 2717 || (REG_P (other)
23b2ce53
RS
2718 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2719 || reg_mentioned_p (other, x))))
2720 {
2721 rtx temp = gen_reg_rtx (GET_MODE (x));
2722 emit_move_insn (temp, x);
2723 return temp;
2724 }
2725 return x;
2726}
2727\f
2728/* Emission of insns (adding them to the doubly-linked list). */
2729
2730/* Return the first insn of the current sequence or current function. */
2731
2732rtx
502b8322 2733get_insns (void)
23b2ce53
RS
2734{
2735 return first_insn;
2736}
2737
3dec4024
JH
2738/* Specify a new insn as the first in the chain. */
2739
2740void
502b8322 2741set_first_insn (rtx insn)
3dec4024 2742{
5b0264cb 2743 gcc_assert (!PREV_INSN (insn));
3dec4024
JH
2744 first_insn = insn;
2745}
2746
23b2ce53
RS
2747/* Return the last insn emitted in current sequence or current function. */
2748
2749rtx
502b8322 2750get_last_insn (void)
23b2ce53
RS
2751{
2752 return last_insn;
2753}
2754
2755/* Specify a new insn as the last in the chain. */
2756
2757void
502b8322 2758set_last_insn (rtx insn)
23b2ce53 2759{
5b0264cb 2760 gcc_assert (!NEXT_INSN (insn));
23b2ce53
RS
2761 last_insn = insn;
2762}
2763
2764/* Return the last insn emitted, even if it is in a sequence now pushed. */
2765
2766rtx
502b8322 2767get_last_insn_anywhere (void)
23b2ce53
RS
2768{
2769 struct sequence_stack *stack;
2770 if (last_insn)
2771 return last_insn;
49ad7cfa 2772 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2773 if (stack->last != 0)
2774 return stack->last;
2775 return 0;
2776}
2777
2a496e8b
JDA
2778/* Return the first nonnote insn emitted in current sequence or current
2779 function. This routine looks inside SEQUENCEs. */
2780
2781rtx
502b8322 2782get_first_nonnote_insn (void)
2a496e8b 2783{
91373fe8
JDA
2784 rtx insn = first_insn;
2785
2786 if (insn)
2787 {
2788 if (NOTE_P (insn))
2789 for (insn = next_insn (insn);
2790 insn && NOTE_P (insn);
2791 insn = next_insn (insn))
2792 continue;
2793 else
2794 {
2ca202e7 2795 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2796 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2797 insn = XVECEXP (PATTERN (insn), 0, 0);
2798 }
2799 }
2a496e8b
JDA
2800
2801 return insn;
2802}
2803
2804/* Return the last nonnote insn emitted in current sequence or current
2805 function. This routine looks inside SEQUENCEs. */
2806
2807rtx
502b8322 2808get_last_nonnote_insn (void)
2a496e8b 2809{
91373fe8
JDA
2810 rtx insn = last_insn;
2811
2812 if (insn)
2813 {
2814 if (NOTE_P (insn))
2815 for (insn = previous_insn (insn);
2816 insn && NOTE_P (insn);
2817 insn = previous_insn (insn))
2818 continue;
2819 else
2820 {
2ca202e7 2821 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2822 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2823 insn = XVECEXP (PATTERN (insn), 0,
2824 XVECLEN (PATTERN (insn), 0) - 1);
2825 }
2826 }
2a496e8b
JDA
2827
2828 return insn;
2829}
2830
23b2ce53
RS
2831/* Return a number larger than any instruction's uid in this function. */
2832
2833int
502b8322 2834get_max_uid (void)
23b2ce53
RS
2835{
2836 return cur_insn_uid;
2837}
2838\f
2839/* Return the next insn. If it is a SEQUENCE, return the first insn
2840 of the sequence. */
2841
2842rtx
502b8322 2843next_insn (rtx insn)
23b2ce53 2844{
75547801
KG
2845 if (insn)
2846 {
2847 insn = NEXT_INSN (insn);
2848 if (insn && NONJUMP_INSN_P (insn)
2849 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2850 insn = XVECEXP (PATTERN (insn), 0, 0);
2851 }
23b2ce53 2852
75547801 2853 return insn;
23b2ce53
RS
2854}
2855
2856/* Return the previous insn. If it is a SEQUENCE, return the last insn
2857 of the sequence. */
2858
2859rtx
502b8322 2860previous_insn (rtx insn)
23b2ce53 2861{
75547801
KG
2862 if (insn)
2863 {
2864 insn = PREV_INSN (insn);
2865 if (insn && NONJUMP_INSN_P (insn)
2866 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2867 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2868 }
23b2ce53 2869
75547801 2870 return insn;
23b2ce53
RS
2871}
2872
2873/* Return the next insn after INSN that is not a NOTE. This routine does not
2874 look inside SEQUENCEs. */
2875
2876rtx
502b8322 2877next_nonnote_insn (rtx insn)
23b2ce53 2878{
75547801
KG
2879 while (insn)
2880 {
2881 insn = NEXT_INSN (insn);
2882 if (insn == 0 || !NOTE_P (insn))
2883 break;
2884 }
23b2ce53 2885
75547801 2886 return insn;
23b2ce53
RS
2887}
2888
2889/* Return the previous insn before INSN that is not a NOTE. This routine does
2890 not look inside SEQUENCEs. */
2891
2892rtx
502b8322 2893prev_nonnote_insn (rtx insn)
23b2ce53 2894{
75547801
KG
2895 while (insn)
2896 {
2897 insn = PREV_INSN (insn);
2898 if (insn == 0 || !NOTE_P (insn))
2899 break;
2900 }
23b2ce53 2901
75547801 2902 return insn;
23b2ce53
RS
2903}
2904
2905/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2906 or 0, if there is none. This routine does not look inside
0f41302f 2907 SEQUENCEs. */
23b2ce53
RS
2908
2909rtx
502b8322 2910next_real_insn (rtx insn)
23b2ce53 2911{
75547801
KG
2912 while (insn)
2913 {
2914 insn = NEXT_INSN (insn);
2915 if (insn == 0 || INSN_P (insn))
2916 break;
2917 }
23b2ce53 2918
75547801 2919 return insn;
23b2ce53
RS
2920}
2921
2922/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2923 or 0, if there is none. This routine does not look inside
2924 SEQUENCEs. */
2925
2926rtx
502b8322 2927prev_real_insn (rtx insn)
23b2ce53 2928{
75547801
KG
2929 while (insn)
2930 {
2931 insn = PREV_INSN (insn);
2932 if (insn == 0 || INSN_P (insn))
2933 break;
2934 }
23b2ce53 2935
75547801 2936 return insn;
23b2ce53
RS
2937}
2938
ee960939
OH
2939/* Return the last CALL_INSN in the current list, or 0 if there is none.
2940 This routine does not look inside SEQUENCEs. */
2941
2942rtx
502b8322 2943last_call_insn (void)
ee960939
OH
2944{
2945 rtx insn;
2946
2947 for (insn = get_last_insn ();
4b4bf941 2948 insn && !CALL_P (insn);
ee960939
OH
2949 insn = PREV_INSN (insn))
2950 ;
2951
2952 return insn;
2953}
2954
23b2ce53
RS
2955/* Find the next insn after INSN that really does something. This routine
2956 does not look inside SEQUENCEs. Until reload has completed, this is the
2957 same as next_real_insn. */
2958
69732dcb 2959int
4f588890 2960active_insn_p (const_rtx insn)
69732dcb 2961{
4b4bf941
JQ
2962 return (CALL_P (insn) || JUMP_P (insn)
2963 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
2964 && (! reload_completed
2965 || (GET_CODE (PATTERN (insn)) != USE
2966 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
2967}
2968
23b2ce53 2969rtx
502b8322 2970next_active_insn (rtx insn)
23b2ce53 2971{
75547801
KG
2972 while (insn)
2973 {
2974 insn = NEXT_INSN (insn);
2975 if (insn == 0 || active_insn_p (insn))
2976 break;
2977 }
23b2ce53 2978
75547801 2979 return insn;
23b2ce53
RS
2980}
2981
2982/* Find the last insn before INSN that really does something. This routine
2983 does not look inside SEQUENCEs. Until reload has completed, this is the
2984 same as prev_real_insn. */
2985
2986rtx
502b8322 2987prev_active_insn (rtx insn)
23b2ce53 2988{
75547801
KG
2989 while (insn)
2990 {
2991 insn = PREV_INSN (insn);
2992 if (insn == 0 || active_insn_p (insn))
2993 break;
2994 }
23b2ce53 2995
75547801 2996 return insn;
23b2ce53
RS
2997}
2998
2999/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3000
3001rtx
502b8322 3002next_label (rtx insn)
23b2ce53 3003{
75547801
KG
3004 while (insn)
3005 {
3006 insn = NEXT_INSN (insn);
3007 if (insn == 0 || LABEL_P (insn))
3008 break;
3009 }
23b2ce53 3010
75547801 3011 return insn;
23b2ce53
RS
3012}
3013
3014/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3015
3016rtx
502b8322 3017prev_label (rtx insn)
23b2ce53 3018{
75547801
KG
3019 while (insn)
3020 {
3021 insn = PREV_INSN (insn);
3022 if (insn == 0 || LABEL_P (insn))
3023 break;
3024 }
23b2ce53 3025
75547801 3026 return insn;
23b2ce53 3027}
6c2511d3
RS
3028
3029/* Return the last label to mark the same position as LABEL. Return null
3030 if LABEL itself is null. */
3031
3032rtx
3033skip_consecutive_labels (rtx label)
3034{
3035 rtx insn;
3036
3037 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3038 if (LABEL_P (insn))
3039 label = insn;
3040
3041 return label;
3042}
23b2ce53
RS
3043\f
3044#ifdef HAVE_cc0
c572e5ba
JVA
3045/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3046 and REG_CC_USER notes so we can find it. */
3047
3048void
502b8322 3049link_cc0_insns (rtx insn)
c572e5ba
JVA
3050{
3051 rtx user = next_nonnote_insn (insn);
3052
4b4bf941 3053 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3054 user = XVECEXP (PATTERN (user), 0, 0);
3055
65c5f2a6
ILT
3056 add_reg_note (user, REG_CC_SETTER, insn);
3057 add_reg_note (insn, REG_CC_USER, user);
c572e5ba
JVA
3058}
3059
23b2ce53
RS
3060/* Return the next insn that uses CC0 after INSN, which is assumed to
3061 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3062 applied to the result of this function should yield INSN).
3063
3064 Normally, this is simply the next insn. However, if a REG_CC_USER note
3065 is present, it contains the insn that uses CC0.
3066
3067 Return 0 if we can't find the insn. */
3068
3069rtx
502b8322 3070next_cc0_user (rtx insn)
23b2ce53 3071{
906c4e36 3072 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3073
3074 if (note)
3075 return XEXP (note, 0);
3076
3077 insn = next_nonnote_insn (insn);
4b4bf941 3078 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3079 insn = XVECEXP (PATTERN (insn), 0, 0);
3080
2c3c49de 3081 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3082 return insn;
3083
3084 return 0;
3085}
3086
3087/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3088 note, it is the previous insn. */
3089
3090rtx
502b8322 3091prev_cc0_setter (rtx insn)
23b2ce53 3092{
906c4e36 3093 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3094
3095 if (note)
3096 return XEXP (note, 0);
3097
3098 insn = prev_nonnote_insn (insn);
5b0264cb 3099 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3100
3101 return insn;
3102}
3103#endif
e5bef2e4 3104
594f8779
RZ
3105#ifdef AUTO_INC_DEC
3106/* Find a RTX_AUTOINC class rtx which matches DATA. */
3107
3108static int
3109find_auto_inc (rtx *xp, void *data)
3110{
3111 rtx x = *xp;
5ead67f6 3112 rtx reg = (rtx) data;
594f8779
RZ
3113
3114 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3115 return 0;
3116
3117 switch (GET_CODE (x))
3118 {
3119 case PRE_DEC:
3120 case PRE_INC:
3121 case POST_DEC:
3122 case POST_INC:
3123 case PRE_MODIFY:
3124 case POST_MODIFY:
3125 if (rtx_equal_p (reg, XEXP (x, 0)))
3126 return 1;
3127 break;
3128
3129 default:
3130 gcc_unreachable ();
3131 }
3132 return -1;
3133}
3134#endif
3135
e5bef2e4
HB
3136/* Increment the label uses for all labels present in rtx. */
3137
3138static void
502b8322 3139mark_label_nuses (rtx x)
e5bef2e4 3140{
b3694847
SS
3141 enum rtx_code code;
3142 int i, j;
3143 const char *fmt;
e5bef2e4
HB
3144
3145 code = GET_CODE (x);
7537fc90 3146 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3147 LABEL_NUSES (XEXP (x, 0))++;
3148
3149 fmt = GET_RTX_FORMAT (code);
3150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3151 {
3152 if (fmt[i] == 'e')
0fb7aeda 3153 mark_label_nuses (XEXP (x, i));
e5bef2e4 3154 else if (fmt[i] == 'E')
0fb7aeda 3155 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3156 mark_label_nuses (XVECEXP (x, i, j));
3157 }
3158}
3159
23b2ce53
RS
3160\f
3161/* Try splitting insns that can be split for better scheduling.
3162 PAT is the pattern which might split.
3163 TRIAL is the insn providing PAT.
cc2902df 3164 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3165
3166 If this routine succeeds in splitting, it returns the first or last
11147ebe 3167 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3168 returns TRIAL. If the insn to be returned can be split, it will be. */
3169
3170rtx
502b8322 3171try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3172{
3173 rtx before = PREV_INSN (trial);
3174 rtx after = NEXT_INSN (trial);
23b2ce53 3175 int has_barrier = 0;
4a8cae83 3176 rtx note, seq, tem;
6b24c259 3177 int probability;
599aedd9
RH
3178 rtx insn_last, insn;
3179 int njumps = 0;
6b24c259
JH
3180
3181 if (any_condjump_p (trial)
3182 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3183 split_branch_probability = INTVAL (XEXP (note, 0));
3184 probability = split_branch_probability;
3185
3186 seq = split_insns (pat, trial);
3187
3188 split_branch_probability = -1;
23b2ce53
RS
3189
3190 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3191 We may need to handle this specially. */
4b4bf941 3192 if (after && BARRIER_P (after))
23b2ce53
RS
3193 {
3194 has_barrier = 1;
3195 after = NEXT_INSN (after);
3196 }
3197
599aedd9
RH
3198 if (!seq)
3199 return trial;
3200
3201 /* Avoid infinite loop if any insn of the result matches
3202 the original pattern. */
3203 insn_last = seq;
3204 while (1)
23b2ce53 3205 {
599aedd9
RH
3206 if (INSN_P (insn_last)
3207 && rtx_equal_p (PATTERN (insn_last), pat))
3208 return trial;
3209 if (!NEXT_INSN (insn_last))
3210 break;
3211 insn_last = NEXT_INSN (insn_last);
3212 }
750c9258 3213
6fb5fa3c
DB
3214 /* We will be adding the new sequence to the function. The splitters
3215 may have introduced invalid RTL sharing, so unshare the sequence now. */
3216 unshare_all_rtl_in_chain (seq);
3217
599aedd9
RH
3218 /* Mark labels. */
3219 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3220 {
4b4bf941 3221 if (JUMP_P (insn))
599aedd9
RH
3222 {
3223 mark_jump_label (PATTERN (insn), insn, 0);
3224 njumps++;
3225 if (probability != -1
3226 && any_condjump_p (insn)
3227 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3228 {
599aedd9
RH
3229 /* We can preserve the REG_BR_PROB notes only if exactly
3230 one jump is created, otherwise the machine description
3231 is responsible for this step using
3232 split_branch_probability variable. */
5b0264cb 3233 gcc_assert (njumps == 1);
65c5f2a6 3234 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
2f937369 3235 }
599aedd9
RH
3236 }
3237 }
3238
3239 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3240 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
4b4bf941 3241 if (CALL_P (trial))
599aedd9
RH
3242 {
3243 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3244 if (CALL_P (insn))
599aedd9 3245 {
f6a1f3f6
RH
3246 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3247 while (*p)
3248 p = &XEXP (*p, 1);
3249 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9
RH
3250 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3251 }
3252 }
4b5e8abe 3253
599aedd9
RH
3254 /* Copy notes, particularly those related to the CFG. */
3255 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3256 {
3257 switch (REG_NOTE_KIND (note))
3258 {
3259 case REG_EH_REGION:
594f8779 3260 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3261 {
4b4bf941 3262 if (CALL_P (insn)
d3a583b1 3263 || (flag_non_call_exceptions && INSN_P (insn)
599aedd9 3264 && may_trap_p (PATTERN (insn))))
65c5f2a6 3265 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
2f937369 3266 }
599aedd9 3267 break;
216183ce 3268
599aedd9
RH
3269 case REG_NORETURN:
3270 case REG_SETJMP:
594f8779 3271 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3272 {
4b4bf941 3273 if (CALL_P (insn))
65c5f2a6 3274 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3275 }
599aedd9 3276 break;
d6e95df8 3277
599aedd9 3278 case REG_NON_LOCAL_GOTO:
594f8779 3279 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3280 {
4b4bf941 3281 if (JUMP_P (insn))
65c5f2a6 3282 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3283 }
599aedd9 3284 break;
e5bef2e4 3285
594f8779
RZ
3286#ifdef AUTO_INC_DEC
3287 case REG_INC:
3288 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3289 {
3290 rtx reg = XEXP (note, 0);
3291 if (!FIND_REG_INC_NOTE (insn, reg)
3292 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
65c5f2a6 3293 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3294 }
3295 break;
3296#endif
3297
599aedd9
RH
3298 default:
3299 break;
23b2ce53 3300 }
599aedd9
RH
3301 }
3302
3303 /* If there are LABELS inside the split insns increment the
3304 usage count so we don't delete the label. */
cf7c4aa6 3305 if (INSN_P (trial))
599aedd9
RH
3306 {
3307 insn = insn_last;
3308 while (insn != NULL_RTX)
23b2ce53 3309 {
cf7c4aa6 3310 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3311 if (NONJUMP_INSN_P (insn))
599aedd9 3312 mark_label_nuses (PATTERN (insn));
23b2ce53 3313
599aedd9
RH
3314 insn = PREV_INSN (insn);
3315 }
23b2ce53
RS
3316 }
3317
0435312e 3318 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3319
3320 delete_insn (trial);
3321 if (has_barrier)
3322 emit_barrier_after (tem);
3323
3324 /* Recursively call try_split for each new insn created; by the
3325 time control returns here that insn will be fully split, so
3326 set LAST and continue from the insn after the one returned.
3327 We can't use next_active_insn here since AFTER may be a note.
3328 Ignore deleted insns, which can be occur if not optimizing. */
3329 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3330 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3331 tem = try_split (PATTERN (tem), tem, 1);
3332
3333 /* Return either the first or the last insn, depending on which was
3334 requested. */
3335 return last
3336 ? (after ? PREV_INSN (after) : last_insn)
3337 : NEXT_INSN (before);
23b2ce53
RS
3338}
3339\f
3340/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3341 Store PATTERN in the pattern slots. */
23b2ce53
RS
3342
3343rtx
502b8322 3344make_insn_raw (rtx pattern)
23b2ce53 3345{
b3694847 3346 rtx insn;
23b2ce53 3347
1f8f4a0b 3348 insn = rtx_alloc (INSN);
23b2ce53 3349
43127294 3350 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3351 PATTERN (insn) = pattern;
3352 INSN_CODE (insn) = -1;
1632afca 3353 REG_NOTES (insn) = NULL;
55e092c4 3354 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3355 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3356
47984720
NC
3357#ifdef ENABLE_RTL_CHECKING
3358 if (insn
2c3c49de 3359 && INSN_P (insn)
47984720
NC
3360 && (returnjump_p (insn)
3361 || (GET_CODE (insn) == SET
3362 && SET_DEST (insn) == pc_rtx)))
3363 {
d4ee4d25 3364 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3365 debug_rtx (insn);
3366 }
3367#endif
750c9258 3368
23b2ce53
RS
3369 return insn;
3370}
3371
2f937369 3372/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3373
38109dab 3374rtx
502b8322 3375make_jump_insn_raw (rtx pattern)
23b2ce53 3376{
b3694847 3377 rtx insn;
23b2ce53 3378
4b1f5e8c 3379 insn = rtx_alloc (JUMP_INSN);
1632afca 3380 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3381
3382 PATTERN (insn) = pattern;
3383 INSN_CODE (insn) = -1;
1632afca
RS
3384 REG_NOTES (insn) = NULL;
3385 JUMP_LABEL (insn) = NULL;
55e092c4 3386 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3387 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3388
3389 return insn;
3390}
aff507f4 3391
2f937369 3392/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3393
3394static rtx
502b8322 3395make_call_insn_raw (rtx pattern)
aff507f4 3396{
b3694847 3397 rtx insn;
aff507f4
RK
3398
3399 insn = rtx_alloc (CALL_INSN);
3400 INSN_UID (insn) = cur_insn_uid++;
3401
3402 PATTERN (insn) = pattern;
3403 INSN_CODE (insn) = -1;
aff507f4
RK
3404 REG_NOTES (insn) = NULL;
3405 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
55e092c4 3406 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3407 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3408
3409 return insn;
3410}
23b2ce53
RS
3411\f
3412/* Add INSN to the end of the doubly-linked list.
3413 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3414
3415void
502b8322 3416add_insn (rtx insn)
23b2ce53
RS
3417{
3418 PREV_INSN (insn) = last_insn;
3419 NEXT_INSN (insn) = 0;
3420
3421 if (NULL != last_insn)
3422 NEXT_INSN (last_insn) = insn;
3423
3424 if (NULL == first_insn)
3425 first_insn = insn;
3426
3427 last_insn = insn;
3428}
3429
a0ae8e8d
RK
3430/* Add INSN into the doubly-linked list after insn AFTER. This and
3431 the next should be the only functions called to insert an insn once
ba213285 3432 delay slots have been filled since only they know how to update a
a0ae8e8d 3433 SEQUENCE. */
23b2ce53
RS
3434
3435void
6fb5fa3c 3436add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3437{
3438 rtx next = NEXT_INSN (after);
3439
5b0264cb 3440 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3441
23b2ce53
RS
3442 NEXT_INSN (insn) = next;
3443 PREV_INSN (insn) = after;
3444
3445 if (next)
3446 {
3447 PREV_INSN (next) = insn;
4b4bf941 3448 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3449 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3450 }
3451 else if (last_insn == after)
3452 last_insn = insn;
3453 else
3454 {
49ad7cfa 3455 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3456 /* Scan all pending sequences too. */
3457 for (; stack; stack = stack->next)
3458 if (after == stack->last)
fef0509b
RK
3459 {
3460 stack->last = insn;
3461 break;
3462 }
a0ae8e8d 3463
5b0264cb 3464 gcc_assert (stack);
23b2ce53
RS
3465 }
3466
4b4bf941
JQ
3467 if (!BARRIER_P (after)
3468 && !BARRIER_P (insn)
3c030e88
JH
3469 && (bb = BLOCK_FOR_INSN (after)))
3470 {
3471 set_block_for_insn (insn, bb);
38c1593d 3472 if (INSN_P (insn))
6fb5fa3c 3473 df_insn_rescan (insn);
3c030e88 3474 /* Should not happen as first in the BB is always
a1f300c0 3475 either NOTE or LABEL. */
a813c111 3476 if (BB_END (bb) == after
3c030e88 3477 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3478 && !BARRIER_P (insn)
a38e7aa5 3479 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3480 BB_END (bb) = insn;
3c030e88
JH
3481 }
3482
23b2ce53 3483 NEXT_INSN (after) = insn;
4b4bf941 3484 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3485 {
3486 rtx sequence = PATTERN (after);
3487 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3488 }
3489}
3490
a0ae8e8d 3491/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3492 the previous should be the only functions called to insert an insn
3493 once delay slots have been filled since only they know how to
3494 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3495 bb from before. */
a0ae8e8d
RK
3496
3497void
6fb5fa3c 3498add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3499{
3500 rtx prev = PREV_INSN (before);
3501
5b0264cb 3502 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3503
a0ae8e8d
RK
3504 PREV_INSN (insn) = prev;
3505 NEXT_INSN (insn) = before;
3506
3507 if (prev)
3508 {
3509 NEXT_INSN (prev) = insn;
4b4bf941 3510 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3511 {
3512 rtx sequence = PATTERN (prev);
3513 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3514 }
3515 }
3516 else if (first_insn == before)
3517 first_insn = insn;
3518 else
3519 {
49ad7cfa 3520 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3521 /* Scan all pending sequences too. */
3522 for (; stack; stack = stack->next)
3523 if (before == stack->first)
fef0509b
RK
3524 {
3525 stack->first = insn;
3526 break;
3527 }
a0ae8e8d 3528
5b0264cb 3529 gcc_assert (stack);
a0ae8e8d
RK
3530 }
3531
6fb5fa3c
DB
3532 if (!bb
3533 && !BARRIER_P (before)
3534 && !BARRIER_P (insn))
3535 bb = BLOCK_FOR_INSN (before);
3536
3537 if (bb)
3c030e88
JH
3538 {
3539 set_block_for_insn (insn, bb);
38c1593d 3540 if (INSN_P (insn))
6fb5fa3c 3541 df_insn_rescan (insn);
5b0264cb 3542 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3543 LABEL. */
5b0264cb
NS
3544 gcc_assert (BB_HEAD (bb) != insn
3545 /* Avoid clobbering of structure when creating new BB. */
3546 || BARRIER_P (insn)
a38e7aa5 3547 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3548 }
3549
a0ae8e8d 3550 PREV_INSN (before) = insn;
4b4bf941 3551 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3552 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3553}
3554
6fb5fa3c
DB
3555
3556/* Replace insn with an deleted instruction note. */
3557
3558void set_insn_deleted (rtx insn)
3559{
3560 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3561 PUT_CODE (insn, NOTE);
3562 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3563}
3564
3565
89e99eea
DB
3566/* Remove an insn from its doubly-linked list. This function knows how
3567 to handle sequences. */
3568void
502b8322 3569remove_insn (rtx insn)
89e99eea
DB
3570{
3571 rtx next = NEXT_INSN (insn);
3572 rtx prev = PREV_INSN (insn);
53c17031
JH
3573 basic_block bb;
3574
6fb5fa3c
DB
3575 /* Later in the code, the block will be marked dirty. */
3576 df_insn_delete (NULL, INSN_UID (insn));
3577
89e99eea
DB
3578 if (prev)
3579 {
3580 NEXT_INSN (prev) = next;
4b4bf941 3581 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3582 {
3583 rtx sequence = PATTERN (prev);
3584 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3585 }
3586 }
3587 else if (first_insn == insn)
3588 first_insn = next;
3589 else
3590 {
49ad7cfa 3591 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3592 /* Scan all pending sequences too. */
3593 for (; stack; stack = stack->next)
3594 if (insn == stack->first)
3595 {
3596 stack->first = next;
3597 break;
3598 }
3599
5b0264cb 3600 gcc_assert (stack);
89e99eea
DB
3601 }
3602
3603 if (next)
3604 {
3605 PREV_INSN (next) = prev;
4b4bf941 3606 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3607 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3608 }
3609 else if (last_insn == insn)
3610 last_insn = prev;
3611 else
3612 {
49ad7cfa 3613 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3614 /* Scan all pending sequences too. */
3615 for (; stack; stack = stack->next)
3616 if (insn == stack->last)
3617 {
3618 stack->last = prev;
3619 break;
3620 }
3621
5b0264cb 3622 gcc_assert (stack);
89e99eea 3623 }
4b4bf941 3624 if (!BARRIER_P (insn)
53c17031
JH
3625 && (bb = BLOCK_FOR_INSN (insn)))
3626 {
38c1593d 3627 if (INSN_P (insn))
6fb5fa3c 3628 df_set_bb_dirty (bb);
a813c111 3629 if (BB_HEAD (bb) == insn)
53c17031 3630 {
3bf1e984
RK
3631 /* Never ever delete the basic block note without deleting whole
3632 basic block. */
5b0264cb 3633 gcc_assert (!NOTE_P (insn));
a813c111 3634 BB_HEAD (bb) = next;
53c17031 3635 }
a813c111
SB
3636 if (BB_END (bb) == insn)
3637 BB_END (bb) = prev;
53c17031 3638 }
89e99eea
DB
3639}
3640
ee960939
OH
3641/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3642
3643void
502b8322 3644add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 3645{
5b0264cb 3646 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
3647
3648 /* Put the register usage information on the CALL. If there is already
3649 some usage information, put ours at the end. */
3650 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3651 {
3652 rtx link;
3653
3654 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3655 link = XEXP (link, 1))
3656 ;
3657
3658 XEXP (link, 1) = call_fusage;
3659 }
3660 else
3661 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3662}
3663
23b2ce53
RS
3664/* Delete all insns made since FROM.
3665 FROM becomes the new last instruction. */
3666
3667void
502b8322 3668delete_insns_since (rtx from)
23b2ce53
RS
3669{
3670 if (from == 0)
3671 first_insn = 0;
3672 else
3673 NEXT_INSN (from) = 0;
3674 last_insn = from;
3675}
3676
5dab5552
MS
3677/* This function is deprecated, please use sequences instead.
3678
3679 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3680 The insns to be moved are those between FROM and TO.
3681 They are moved to a new position after the insn AFTER.
3682 AFTER must not be FROM or TO or any insn in between.
3683
3684 This function does not know about SEQUENCEs and hence should not be
3685 called after delay-slot filling has been done. */
3686
3687void
502b8322 3688reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53
RS
3689{
3690 /* Splice this bunch out of where it is now. */
3691 if (PREV_INSN (from))
3692 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3693 if (NEXT_INSN (to))
3694 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3695 if (last_insn == to)
3696 last_insn = PREV_INSN (from);
3697 if (first_insn == from)
3698 first_insn = NEXT_INSN (to);
3699
3700 /* Make the new neighbors point to it and it to them. */
3701 if (NEXT_INSN (after))
3702 PREV_INSN (NEXT_INSN (after)) = to;
3703
3704 NEXT_INSN (to) = NEXT_INSN (after);
3705 PREV_INSN (from) = after;
3706 NEXT_INSN (after) = from;
3707 if (after == last_insn)
3708 last_insn = to;
3709}
3710
3c030e88
JH
3711/* Same as function above, but take care to update BB boundaries. */
3712void
502b8322 3713reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3714{
3715 rtx prev = PREV_INSN (from);
3716 basic_block bb, bb2;
3717
3718 reorder_insns_nobb (from, to, after);
3719
4b4bf941 3720 if (!BARRIER_P (after)
3c030e88
JH
3721 && (bb = BLOCK_FOR_INSN (after)))
3722 {
3723 rtx x;
6fb5fa3c 3724 df_set_bb_dirty (bb);
68252e27 3725
4b4bf941 3726 if (!BARRIER_P (from)
3c030e88
JH
3727 && (bb2 = BLOCK_FOR_INSN (from)))
3728 {
a813c111
SB
3729 if (BB_END (bb2) == to)
3730 BB_END (bb2) = prev;
6fb5fa3c 3731 df_set_bb_dirty (bb2);
3c030e88
JH
3732 }
3733
a813c111
SB
3734 if (BB_END (bb) == after)
3735 BB_END (bb) = to;
3c030e88
JH
3736
3737 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 3738 if (!BARRIER_P (x))
63642d5a 3739 df_insn_change_bb (x, bb);
3c030e88
JH
3740 }
3741}
3742
23b2ce53 3743\f
2f937369
DM
3744/* Emit insn(s) of given code and pattern
3745 at a specified place within the doubly-linked list.
23b2ce53 3746
2f937369
DM
3747 All of the emit_foo global entry points accept an object
3748 X which is either an insn list or a PATTERN of a single
3749 instruction.
23b2ce53 3750
2f937369
DM
3751 There are thus a few canonical ways to generate code and
3752 emit it at a specific place in the instruction stream. For
3753 example, consider the instruction named SPOT and the fact that
3754 we would like to emit some instructions before SPOT. We might
3755 do it like this:
23b2ce53 3756
2f937369
DM
3757 start_sequence ();
3758 ... emit the new instructions ...
3759 insns_head = get_insns ();
3760 end_sequence ();
23b2ce53 3761
2f937369 3762 emit_insn_before (insns_head, SPOT);
23b2ce53 3763
2f937369
DM
3764 It used to be common to generate SEQUENCE rtl instead, but that
3765 is a relic of the past which no longer occurs. The reason is that
3766 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3767 generated would almost certainly die right after it was created. */
23b2ce53 3768
2f937369 3769/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
3770
3771rtx
6fb5fa3c 3772emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
23b2ce53 3773{
2f937369 3774 rtx last = before;
b3694847 3775 rtx insn;
23b2ce53 3776
5b0264cb 3777 gcc_assert (before);
2f937369
DM
3778
3779 if (x == NULL_RTX)
3780 return last;
3781
3782 switch (GET_CODE (x))
23b2ce53 3783 {
2f937369
DM
3784 case INSN:
3785 case JUMP_INSN:
3786 case CALL_INSN:
3787 case CODE_LABEL:
3788 case BARRIER:
3789 case NOTE:
3790 insn = x;
3791 while (insn)
3792 {
3793 rtx next = NEXT_INSN (insn);
6fb5fa3c 3794 add_insn_before (insn, before, bb);
2f937369
DM
3795 last = insn;
3796 insn = next;
3797 }
3798 break;
3799
3800#ifdef ENABLE_RTL_CHECKING
3801 case SEQUENCE:
5b0264cb 3802 gcc_unreachable ();
2f937369
DM
3803 break;
3804#endif
3805
3806 default:
3807 last = make_insn_raw (x);
6fb5fa3c 3808 add_insn_before (last, before, bb);
2f937369 3809 break;
23b2ce53
RS
3810 }
3811
2f937369 3812 return last;
23b2ce53
RS
3813}
3814
2f937369 3815/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
3816 and output it before the instruction BEFORE. */
3817
3818rtx
a7102479 3819emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 3820{
d950dee3 3821 rtx insn, last = NULL_RTX;
aff507f4 3822
5b0264cb 3823 gcc_assert (before);
2f937369
DM
3824
3825 switch (GET_CODE (x))
aff507f4 3826 {
2f937369
DM
3827 case INSN:
3828 case JUMP_INSN:
3829 case CALL_INSN:
3830 case CODE_LABEL:
3831 case BARRIER:
3832 case NOTE:
3833 insn = x;
3834 while (insn)
3835 {
3836 rtx next = NEXT_INSN (insn);
6fb5fa3c 3837 add_insn_before (insn, before, NULL);
2f937369
DM
3838 last = insn;
3839 insn = next;
3840 }
3841 break;
3842
3843#ifdef ENABLE_RTL_CHECKING
3844 case SEQUENCE:
5b0264cb 3845 gcc_unreachable ();
2f937369
DM
3846 break;
3847#endif
3848
3849 default:
3850 last = make_jump_insn_raw (x);
6fb5fa3c 3851 add_insn_before (last, before, NULL);
2f937369 3852 break;
aff507f4
RK
3853 }
3854
2f937369 3855 return last;
23b2ce53
RS
3856}
3857
2f937369 3858/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
3859 and output it before the instruction BEFORE. */
3860
3861rtx
a7102479 3862emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 3863{
d950dee3 3864 rtx last = NULL_RTX, insn;
969d70ca 3865
5b0264cb 3866 gcc_assert (before);
2f937369
DM
3867
3868 switch (GET_CODE (x))
969d70ca 3869 {
2f937369
DM
3870 case INSN:
3871 case JUMP_INSN:
3872 case CALL_INSN:
3873 case CODE_LABEL:
3874 case BARRIER:
3875 case NOTE:
3876 insn = x;
3877 while (insn)
3878 {
3879 rtx next = NEXT_INSN (insn);
6fb5fa3c 3880 add_insn_before (insn, before, NULL);
2f937369
DM
3881 last = insn;
3882 insn = next;
3883 }
3884 break;
3885
3886#ifdef ENABLE_RTL_CHECKING
3887 case SEQUENCE:
5b0264cb 3888 gcc_unreachable ();
2f937369
DM
3889 break;
3890#endif
3891
3892 default:
3893 last = make_call_insn_raw (x);
6fb5fa3c 3894 add_insn_before (last, before, NULL);
2f937369 3895 break;
969d70ca
JH
3896 }
3897
2f937369 3898 return last;
969d70ca
JH
3899}
3900
23b2ce53 3901/* Make an insn of code BARRIER
e881bb1b 3902 and output it before the insn BEFORE. */
23b2ce53
RS
3903
3904rtx
502b8322 3905emit_barrier_before (rtx before)
23b2ce53 3906{
b3694847 3907 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
3908
3909 INSN_UID (insn) = cur_insn_uid++;
3910
6fb5fa3c 3911 add_insn_before (insn, before, NULL);
23b2ce53
RS
3912 return insn;
3913}
3914
e881bb1b
RH
3915/* Emit the label LABEL before the insn BEFORE. */
3916
3917rtx
502b8322 3918emit_label_before (rtx label, rtx before)
e881bb1b
RH
3919{
3920 /* This can be called twice for the same label as a result of the
3921 confusion that follows a syntax error! So make it harmless. */
3922 if (INSN_UID (label) == 0)
3923 {
3924 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 3925 add_insn_before (label, before, NULL);
e881bb1b
RH
3926 }
3927
3928 return label;
3929}
3930
23b2ce53
RS
3931/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3932
3933rtx
a38e7aa5 3934emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 3935{
b3694847 3936 rtx note = rtx_alloc (NOTE);
23b2ce53 3937 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 3938 NOTE_KIND (note) = subtype;
ba4f7968 3939 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 3940 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 3941
6fb5fa3c 3942 add_insn_before (note, before, NULL);
23b2ce53
RS
3943 return note;
3944}
3945\f
2f937369
DM
3946/* Helper for emit_insn_after, handles lists of instructions
3947 efficiently. */
23b2ce53 3948
2f937369 3949static rtx
6fb5fa3c 3950emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 3951{
2f937369
DM
3952 rtx last;
3953 rtx after_after;
6fb5fa3c
DB
3954 if (!bb && !BARRIER_P (after))
3955 bb = BLOCK_FOR_INSN (after);
23b2ce53 3956
6fb5fa3c 3957 if (bb)
23b2ce53 3958 {
6fb5fa3c 3959 df_set_bb_dirty (bb);
2f937369 3960 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 3961 if (!BARRIER_P (last))
6fb5fa3c
DB
3962 {
3963 set_block_for_insn (last, bb);
3964 df_insn_rescan (last);
3965 }
4b4bf941 3966 if (!BARRIER_P (last))
6fb5fa3c
DB
3967 {
3968 set_block_for_insn (last, bb);
3969 df_insn_rescan (last);
3970 }
a813c111
SB
3971 if (BB_END (bb) == after)
3972 BB_END (bb) = last;
23b2ce53
RS
3973 }
3974 else
2f937369
DM
3975 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3976 continue;
3977
3978 after_after = NEXT_INSN (after);
3979
3980 NEXT_INSN (after) = first;
3981 PREV_INSN (first) = after;
3982 NEXT_INSN (last) = after_after;
3983 if (after_after)
3984 PREV_INSN (after_after) = last;
3985
3986 if (after == last_insn)
3987 last_insn = last;
e855c69d 3988
2f937369
DM
3989 return last;
3990}
3991
6fb5fa3c
DB
3992/* Make X be output after the insn AFTER and set the BB of insn. If
3993 BB is NULL, an attempt is made to infer the BB from AFTER. */
2f937369
DM
3994
3995rtx
6fb5fa3c 3996emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
2f937369
DM
3997{
3998 rtx last = after;
3999
5b0264cb 4000 gcc_assert (after);
2f937369
DM
4001
4002 if (x == NULL_RTX)
4003 return last;
4004
4005 switch (GET_CODE (x))
23b2ce53 4006 {
2f937369
DM
4007 case INSN:
4008 case JUMP_INSN:
4009 case CALL_INSN:
4010 case CODE_LABEL:
4011 case BARRIER:
4012 case NOTE:
6fb5fa3c 4013 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4014 break;
4015
4016#ifdef ENABLE_RTL_CHECKING
4017 case SEQUENCE:
5b0264cb 4018 gcc_unreachable ();
2f937369
DM
4019 break;
4020#endif
4021
4022 default:
4023 last = make_insn_raw (x);
6fb5fa3c 4024 add_insn_after (last, after, bb);
2f937369 4025 break;
23b2ce53
RS
4026 }
4027
2f937369 4028 return last;
23b2ce53
RS
4029}
4030
255680cf 4031
2f937369 4032/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4033 and output it after the insn AFTER. */
4034
4035rtx
a7102479 4036emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4037{
2f937369 4038 rtx last;
23b2ce53 4039
5b0264cb 4040 gcc_assert (after);
2f937369
DM
4041
4042 switch (GET_CODE (x))
23b2ce53 4043 {
2f937369
DM
4044 case INSN:
4045 case JUMP_INSN:
4046 case CALL_INSN:
4047 case CODE_LABEL:
4048 case BARRIER:
4049 case NOTE:
6fb5fa3c 4050 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4051 break;
4052
4053#ifdef ENABLE_RTL_CHECKING
4054 case SEQUENCE:
5b0264cb 4055 gcc_unreachable ();
2f937369
DM
4056 break;
4057#endif
4058
4059 default:
4060 last = make_jump_insn_raw (x);
6fb5fa3c 4061 add_insn_after (last, after, NULL);
2f937369 4062 break;
23b2ce53
RS
4063 }
4064
2f937369
DM
4065 return last;
4066}
4067
4068/* Make an instruction with body X and code CALL_INSN
4069 and output it after the instruction AFTER. */
4070
4071rtx
a7102479 4072emit_call_insn_after_noloc (rtx x, rtx after)
2f937369
DM
4073{
4074 rtx last;
4075
5b0264cb 4076 gcc_assert (after);
2f937369
DM
4077
4078 switch (GET_CODE (x))
4079 {
4080 case INSN:
4081 case JUMP_INSN:
4082 case CALL_INSN:
4083 case CODE_LABEL:
4084 case BARRIER:
4085 case NOTE:
6fb5fa3c 4086 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4087 break;
4088
4089#ifdef ENABLE_RTL_CHECKING
4090 case SEQUENCE:
5b0264cb 4091 gcc_unreachable ();
2f937369
DM
4092 break;
4093#endif
4094
4095 default:
4096 last = make_call_insn_raw (x);
6fb5fa3c 4097 add_insn_after (last, after, NULL);
2f937369
DM
4098 break;
4099 }
4100
4101 return last;
23b2ce53
RS
4102}
4103
4104/* Make an insn of code BARRIER
4105 and output it after the insn AFTER. */
4106
4107rtx
502b8322 4108emit_barrier_after (rtx after)
23b2ce53 4109{
b3694847 4110 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4111
4112 INSN_UID (insn) = cur_insn_uid++;
4113
6fb5fa3c 4114 add_insn_after (insn, after, NULL);
23b2ce53
RS
4115 return insn;
4116}
4117
4118/* Emit the label LABEL after the insn AFTER. */
4119
4120rtx
502b8322 4121emit_label_after (rtx label, rtx after)
23b2ce53
RS
4122{
4123 /* This can be called twice for the same label
4124 as a result of the confusion that follows a syntax error!
4125 So make it harmless. */
4126 if (INSN_UID (label) == 0)
4127 {
4128 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4129 add_insn_after (label, after, NULL);
23b2ce53
RS
4130 }
4131
4132 return label;
4133}
4134
4135/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4136
4137rtx
a38e7aa5 4138emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4139{
b3694847 4140 rtx note = rtx_alloc (NOTE);
23b2ce53 4141 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4142 NOTE_KIND (note) = subtype;
ba4f7968 4143 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4144 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4145 add_insn_after (note, after, NULL);
23b2ce53
RS
4146 return note;
4147}
23b2ce53 4148\f
a7102479 4149/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4150rtx
502b8322 4151emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4152{
6fb5fa3c 4153 rtx last = emit_insn_after_noloc (pattern, after, NULL);
0d682900 4154
a7102479 4155 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4156 return last;
4157
2f937369
DM
4158 after = NEXT_INSN (after);
4159 while (1)
4160 {
a7102479 4161 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4162 INSN_LOCATOR (after) = loc;
2f937369
DM
4163 if (after == last)
4164 break;
4165 after = NEXT_INSN (after);
4166 }
0d682900
JH
4167 return last;
4168}
4169
a7102479
JH
4170/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4171rtx
4172emit_insn_after (rtx pattern, rtx after)
4173{
4174 if (INSN_P (after))
4175 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4176 else
6fb5fa3c 4177 return emit_insn_after_noloc (pattern, after, NULL);
a7102479
JH
4178}
4179
4180/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4181rtx
502b8322 4182emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4183{
a7102479 4184 rtx last = emit_jump_insn_after_noloc (pattern, after);
2f937369 4185
a7102479 4186 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4187 return last;
4188
2f937369
DM
4189 after = NEXT_INSN (after);
4190 while (1)
4191 {
a7102479 4192 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4193 INSN_LOCATOR (after) = loc;
2f937369
DM
4194 if (after == last)
4195 break;
4196 after = NEXT_INSN (after);
4197 }
0d682900
JH
4198 return last;
4199}
4200
a7102479
JH
4201/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4202rtx
4203emit_jump_insn_after (rtx pattern, rtx after)
4204{
4205 if (INSN_P (after))
4206 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4207 else
4208 return emit_jump_insn_after_noloc (pattern, after);
4209}
4210
4211/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4212rtx
502b8322 4213emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4214{
a7102479 4215 rtx last = emit_call_insn_after_noloc (pattern, after);
2f937369 4216
a7102479 4217 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4218 return last;
4219
2f937369
DM
4220 after = NEXT_INSN (after);
4221 while (1)
4222 {
a7102479 4223 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4224 INSN_LOCATOR (after) = loc;
2f937369
DM
4225 if (after == last)
4226 break;
4227 after = NEXT_INSN (after);
4228 }
0d682900
JH
4229 return last;
4230}
4231
a7102479
JH
4232/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4233rtx
4234emit_call_insn_after (rtx pattern, rtx after)
4235{
4236 if (INSN_P (after))
4237 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4238 else
4239 return emit_call_insn_after_noloc (pattern, after);
4240}
4241
4242/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4243rtx
502b8322 4244emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0d682900
JH
4245{
4246 rtx first = PREV_INSN (before);
6fb5fa3c 4247 rtx last = emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4248
4249 if (pattern == NULL_RTX || !loc)
4250 return last;
4251
26cb3993
JH
4252 if (!first)
4253 first = get_insns ();
4254 else
4255 first = NEXT_INSN (first);
a7102479
JH
4256 while (1)
4257 {
4258 if (active_insn_p (first) && !INSN_LOCATOR (first))
4259 INSN_LOCATOR (first) = loc;
4260 if (first == last)
4261 break;
4262 first = NEXT_INSN (first);
4263 }
4264 return last;
4265}
4266
4267/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4268rtx
4269emit_insn_before (rtx pattern, rtx before)
4270{
4271 if (INSN_P (before))
4272 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4273 else
6fb5fa3c 4274 return emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4275}
4276
4277/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4278rtx
4279emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4280{
4281 rtx first = PREV_INSN (before);
4282 rtx last = emit_jump_insn_before_noloc (pattern, before);
4283
4284 if (pattern == NULL_RTX)
4285 return last;
4286
4287 first = NEXT_INSN (first);
4288 while (1)
4289 {
4290 if (active_insn_p (first) && !INSN_LOCATOR (first))
4291 INSN_LOCATOR (first) = loc;
4292 if (first == last)
4293 break;
4294 first = NEXT_INSN (first);
4295 }
4296 return last;
4297}
4298
4299/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4300rtx
4301emit_jump_insn_before (rtx pattern, rtx before)
4302{
4303 if (INSN_P (before))
4304 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4305 else
4306 return emit_jump_insn_before_noloc (pattern, before);
4307}
4308
4309/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4310rtx
4311emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4312{
4313 rtx first = PREV_INSN (before);
4314 rtx last = emit_call_insn_before_noloc (pattern, before);
0d682900 4315
dd3adcf8
DJ
4316 if (pattern == NULL_RTX)
4317 return last;
4318
2f937369
DM
4319 first = NEXT_INSN (first);
4320 while (1)
4321 {
a7102479 4322 if (active_insn_p (first) && !INSN_LOCATOR (first))
0435312e 4323 INSN_LOCATOR (first) = loc;
2f937369
DM
4324 if (first == last)
4325 break;
4326 first = NEXT_INSN (first);
4327 }
0d682900
JH
4328 return last;
4329}
a7102479
JH
4330
4331/* like emit_call_insn_before_noloc,
4332 but set insn_locator according to before. */
4333rtx
4334emit_call_insn_before (rtx pattern, rtx before)
4335{
4336 if (INSN_P (before))
4337 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4338 else
4339 return emit_call_insn_before_noloc (pattern, before);
4340}
0d682900 4341\f
2f937369
DM
4342/* Take X and emit it at the end of the doubly-linked
4343 INSN list.
23b2ce53
RS
4344
4345 Returns the last insn emitted. */
4346
4347rtx
502b8322 4348emit_insn (rtx x)
23b2ce53 4349{
2f937369
DM
4350 rtx last = last_insn;
4351 rtx insn;
23b2ce53 4352
2f937369
DM
4353 if (x == NULL_RTX)
4354 return last;
23b2ce53 4355
2f937369
DM
4356 switch (GET_CODE (x))
4357 {
4358 case INSN:
4359 case JUMP_INSN:
4360 case CALL_INSN:
4361 case CODE_LABEL:
4362 case BARRIER:
4363 case NOTE:
4364 insn = x;
4365 while (insn)
23b2ce53 4366 {
2f937369 4367 rtx next = NEXT_INSN (insn);
23b2ce53 4368 add_insn (insn);
2f937369
DM
4369 last = insn;
4370 insn = next;
23b2ce53 4371 }
2f937369 4372 break;
23b2ce53 4373
2f937369
DM
4374#ifdef ENABLE_RTL_CHECKING
4375 case SEQUENCE:
5b0264cb 4376 gcc_unreachable ();
2f937369
DM
4377 break;
4378#endif
23b2ce53 4379
2f937369
DM
4380 default:
4381 last = make_insn_raw (x);
4382 add_insn (last);
4383 break;
23b2ce53
RS
4384 }
4385
4386 return last;
4387}
4388
2f937369
DM
4389/* Make an insn of code JUMP_INSN with pattern X
4390 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4391
4392rtx
502b8322 4393emit_jump_insn (rtx x)
23b2ce53 4394{
d950dee3 4395 rtx last = NULL_RTX, insn;
23b2ce53 4396
2f937369 4397 switch (GET_CODE (x))
23b2ce53 4398 {
2f937369
DM
4399 case INSN:
4400 case JUMP_INSN:
4401 case CALL_INSN:
4402 case CODE_LABEL:
4403 case BARRIER:
4404 case NOTE:
4405 insn = x;
4406 while (insn)
4407 {
4408 rtx next = NEXT_INSN (insn);
4409 add_insn (insn);
4410 last = insn;
4411 insn = next;
4412 }
4413 break;
e0a5c5eb 4414
2f937369
DM
4415#ifdef ENABLE_RTL_CHECKING
4416 case SEQUENCE:
5b0264cb 4417 gcc_unreachable ();
2f937369
DM
4418 break;
4419#endif
e0a5c5eb 4420
2f937369
DM
4421 default:
4422 last = make_jump_insn_raw (x);
4423 add_insn (last);
4424 break;
3c030e88 4425 }
e0a5c5eb
RS
4426
4427 return last;
4428}
4429
2f937369 4430/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4431 and add it to the end of the doubly-linked list. */
4432
4433rtx
502b8322 4434emit_call_insn (rtx x)
23b2ce53 4435{
2f937369
DM
4436 rtx insn;
4437
4438 switch (GET_CODE (x))
23b2ce53 4439 {
2f937369
DM
4440 case INSN:
4441 case JUMP_INSN:
4442 case CALL_INSN:
4443 case CODE_LABEL:
4444 case BARRIER:
4445 case NOTE:
4446 insn = emit_insn (x);
4447 break;
23b2ce53 4448
2f937369
DM
4449#ifdef ENABLE_RTL_CHECKING
4450 case SEQUENCE:
5b0264cb 4451 gcc_unreachable ();
2f937369
DM
4452 break;
4453#endif
23b2ce53 4454
2f937369
DM
4455 default:
4456 insn = make_call_insn_raw (x);
23b2ce53 4457 add_insn (insn);
2f937369 4458 break;
23b2ce53 4459 }
2f937369
DM
4460
4461 return insn;
23b2ce53
RS
4462}
4463
4464/* Add the label LABEL to the end of the doubly-linked list. */
4465
4466rtx
502b8322 4467emit_label (rtx label)
23b2ce53
RS
4468{
4469 /* This can be called twice for the same label
4470 as a result of the confusion that follows a syntax error!
4471 So make it harmless. */
4472 if (INSN_UID (label) == 0)
4473 {
4474 INSN_UID (label) = cur_insn_uid++;
4475 add_insn (label);
4476 }
4477 return label;
4478}
4479
4480/* Make an insn of code BARRIER
4481 and add it to the end of the doubly-linked list. */
4482
4483rtx
502b8322 4484emit_barrier (void)
23b2ce53 4485{
b3694847 4486 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4487 INSN_UID (barrier) = cur_insn_uid++;
4488 add_insn (barrier);
4489 return barrier;
4490}
4491
5f2fc772 4492/* Emit a copy of note ORIG. */
502b8322 4493
5f2fc772
NS
4494rtx
4495emit_note_copy (rtx orig)
4496{
4497 rtx note;
4498
5f2fc772
NS
4499 note = rtx_alloc (NOTE);
4500
4501 INSN_UID (note) = cur_insn_uid++;
4502 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4503 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4504 BLOCK_FOR_INSN (note) = NULL;
4505 add_insn (note);
4506
2e040219 4507 return note;
23b2ce53
RS
4508}
4509
2e040219
NS
4510/* Make an insn of code NOTE or type NOTE_NO
4511 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4512
4513rtx
a38e7aa5 4514emit_note (enum insn_note kind)
23b2ce53 4515{
b3694847 4516 rtx note;
23b2ce53 4517
23b2ce53
RS
4518 note = rtx_alloc (NOTE);
4519 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4520 NOTE_KIND (note) = kind;
dd107e66 4521 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4522 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4523 add_insn (note);
4524 return note;
4525}
4526
c41c1387
RS
4527/* Emit a clobber of lvalue X. */
4528
4529rtx
4530emit_clobber (rtx x)
4531{
4532 /* CONCATs should not appear in the insn stream. */
4533 if (GET_CODE (x) == CONCAT)
4534 {
4535 emit_clobber (XEXP (x, 0));
4536 return emit_clobber (XEXP (x, 1));
4537 }
4538 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4539}
4540
4541/* Return a sequence of insns to clobber lvalue X. */
4542
4543rtx
4544gen_clobber (rtx x)
4545{
4546 rtx seq;
4547
4548 start_sequence ();
4549 emit_clobber (x);
4550 seq = get_insns ();
4551 end_sequence ();
4552 return seq;
4553}
4554
4555/* Emit a use of rvalue X. */
4556
4557rtx
4558emit_use (rtx x)
4559{
4560 /* CONCATs should not appear in the insn stream. */
4561 if (GET_CODE (x) == CONCAT)
4562 {
4563 emit_use (XEXP (x, 0));
4564 return emit_use (XEXP (x, 1));
4565 }
4566 return emit_insn (gen_rtx_USE (VOIDmode, x));
4567}
4568
4569/* Return a sequence of insns to use rvalue X. */
4570
4571rtx
4572gen_use (rtx x)
4573{
4574 rtx seq;
4575
4576 start_sequence ();
4577 emit_use (x);
4578 seq = get_insns ();
4579 end_sequence ();
4580 return seq;
4581}
4582
23b2ce53 4583/* Cause next statement to emit a line note even if the line number
0cea056b 4584 has not changed. */
23b2ce53
RS
4585
4586void
502b8322 4587force_next_line_note (void)
23b2ce53 4588{
6773e15f 4589 last_location = -1;
23b2ce53 4590}
87b47c85
AM
4591
4592/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4593 note of this type already exists, remove it first. */
87b47c85 4594
3d238248 4595rtx
502b8322 4596set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4597{
4598 rtx note = find_reg_note (insn, kind, NULL_RTX);
4599
52488da1
JW
4600 switch (kind)
4601 {
4602 case REG_EQUAL:
4603 case REG_EQUIV:
4604 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4605 has multiple sets (some callers assume single_set
4606 means the insn only has one set, when in fact it
4607 means the insn only has one * useful * set). */
4608 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4609 {
5b0264cb 4610 gcc_assert (!note);
52488da1
JW
4611 return NULL_RTX;
4612 }
4613
4614 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4615 It serves no useful purpose and breaks eliminate_regs. */
4616 if (GET_CODE (datum) == ASM_OPERANDS)
4617 return NULL_RTX;
6fb5fa3c
DB
4618
4619 if (note)
4620 {
4621 XEXP (note, 0) = datum;
4622 df_notes_rescan (insn);
4623 return note;
4624 }
52488da1
JW
4625 break;
4626
4627 default:
6fb5fa3c
DB
4628 if (note)
4629 {
4630 XEXP (note, 0) = datum;
4631 return note;
4632 }
52488da1
JW
4633 break;
4634 }
3d238248 4635
65c5f2a6 4636 add_reg_note (insn, kind, datum);
6fb5fa3c
DB
4637
4638 switch (kind)
3d238248 4639 {
6fb5fa3c
DB
4640 case REG_EQUAL:
4641 case REG_EQUIV:
4642 df_notes_rescan (insn);
4643 break;
4644 default:
4645 break;
3d238248 4646 }
87b47c85 4647
3d238248 4648 return REG_NOTES (insn);
87b47c85 4649}
23b2ce53
RS
4650\f
4651/* Return an indication of which type of insn should have X as a body.
4652 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4653
d78db459 4654static enum rtx_code
502b8322 4655classify_insn (rtx x)
23b2ce53 4656{
4b4bf941 4657 if (LABEL_P (x))
23b2ce53
RS
4658 return CODE_LABEL;
4659 if (GET_CODE (x) == CALL)
4660 return CALL_INSN;
4661 if (GET_CODE (x) == RETURN)
4662 return JUMP_INSN;
4663 if (GET_CODE (x) == SET)
4664 {
4665 if (SET_DEST (x) == pc_rtx)
4666 return JUMP_INSN;
4667 else if (GET_CODE (SET_SRC (x)) == CALL)
4668 return CALL_INSN;
4669 else
4670 return INSN;
4671 }
4672 if (GET_CODE (x) == PARALLEL)
4673 {
b3694847 4674 int j;
23b2ce53
RS
4675 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4676 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4677 return CALL_INSN;
4678 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4679 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4680 return JUMP_INSN;
4681 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4682 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4683 return CALL_INSN;
4684 }
4685 return INSN;
4686}
4687
4688/* Emit the rtl pattern X as an appropriate kind of insn.
4689 If X is a label, it is simply added into the insn chain. */
4690
4691rtx
502b8322 4692emit (rtx x)
23b2ce53
RS
4693{
4694 enum rtx_code code = classify_insn (x);
4695
5b0264cb 4696 switch (code)
23b2ce53 4697 {
5b0264cb
NS
4698 case CODE_LABEL:
4699 return emit_label (x);
4700 case INSN:
4701 return emit_insn (x);
4702 case JUMP_INSN:
4703 {
4704 rtx insn = emit_jump_insn (x);
4705 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4706 return emit_barrier ();
4707 return insn;
4708 }
4709 case CALL_INSN:
4710 return emit_call_insn (x);
4711 default:
4712 gcc_unreachable ();
23b2ce53 4713 }
23b2ce53
RS
4714}
4715\f
e2500fed 4716/* Space for free sequence stack entries. */
1431042e 4717static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 4718
4dfa0342
RH
4719/* Begin emitting insns to a sequence. If this sequence will contain
4720 something that might cause the compiler to pop arguments to function
4721 calls (because those pops have previously been deferred; see
4722 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4723 before calling this function. That will ensure that the deferred
4724 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
4725
4726void
502b8322 4727start_sequence (void)
23b2ce53
RS
4728{
4729 struct sequence_stack *tem;
4730
e2500fed
GK
4731 if (free_sequence_stack != NULL)
4732 {
4733 tem = free_sequence_stack;
4734 free_sequence_stack = tem->next;
4735 }
4736 else
1b4572a8 4737 tem = GGC_NEW (struct sequence_stack);
23b2ce53 4738
49ad7cfa 4739 tem->next = seq_stack;
23b2ce53
RS
4740 tem->first = first_insn;
4741 tem->last = last_insn;
4742
49ad7cfa 4743 seq_stack = tem;
23b2ce53
RS
4744
4745 first_insn = 0;
4746 last_insn = 0;
4747}
4748
5c7a310f
MM
4749/* Set up the insn chain starting with FIRST as the current sequence,
4750 saving the previously current one. See the documentation for
4751 start_sequence for more information about how to use this function. */
23b2ce53
RS
4752
4753void
502b8322 4754push_to_sequence (rtx first)
23b2ce53
RS
4755{
4756 rtx last;
4757
4758 start_sequence ();
4759
4760 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4761
4762 first_insn = first;
4763 last_insn = last;
4764}
4765
bb27eeda
SE
4766/* Like push_to_sequence, but take the last insn as an argument to avoid
4767 looping through the list. */
4768
4769void
4770push_to_sequence2 (rtx first, rtx last)
4771{
4772 start_sequence ();
4773
4774 first_insn = first;
4775 last_insn = last;
4776}
4777
f15ae3a1
TW
4778/* Set up the outer-level insn chain
4779 as the current sequence, saving the previously current one. */
4780
4781void
502b8322 4782push_topmost_sequence (void)
f15ae3a1 4783{
aefdd5ab 4784 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4785
4786 start_sequence ();
4787
49ad7cfa 4788 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4789 top = stack;
4790
4791 first_insn = top->first;
4792 last_insn = top->last;
4793}
4794
4795/* After emitting to the outer-level insn chain, update the outer-level
4796 insn chain, and restore the previous saved state. */
4797
4798void
502b8322 4799pop_topmost_sequence (void)
f15ae3a1 4800{
aefdd5ab 4801 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4802
49ad7cfa 4803 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4804 top = stack;
4805
4806 top->first = first_insn;
4807 top->last = last_insn;
4808
4809 end_sequence ();
4810}
4811
23b2ce53
RS
4812/* After emitting to a sequence, restore previous saved state.
4813
5c7a310f 4814 To get the contents of the sequence just made, you must call
2f937369 4815 `get_insns' *before* calling here.
5c7a310f
MM
4816
4817 If the compiler might have deferred popping arguments while
4818 generating this sequence, and this sequence will not be immediately
4819 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4820 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4821 pops are inserted into this sequence, and not into some random
4822 location in the instruction stream. See INHIBIT_DEFER_POP for more
4823 information about deferred popping of arguments. */
23b2ce53
RS
4824
4825void
502b8322 4826end_sequence (void)
23b2ce53 4827{
49ad7cfa 4828 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4829
4830 first_insn = tem->first;
4831 last_insn = tem->last;
49ad7cfa 4832 seq_stack = tem->next;
23b2ce53 4833
e2500fed
GK
4834 memset (tem, 0, sizeof (*tem));
4835 tem->next = free_sequence_stack;
4836 free_sequence_stack = tem;
23b2ce53
RS
4837}
4838
4839/* Return 1 if currently emitting into a sequence. */
4840
4841int
502b8322 4842in_sequence_p (void)
23b2ce53 4843{
49ad7cfa 4844 return seq_stack != 0;
23b2ce53 4845}
23b2ce53 4846\f
59ec66dc
MM
4847/* Put the various virtual registers into REGNO_REG_RTX. */
4848
2bbdec73 4849static void
bd60bab2 4850init_virtual_regs (void)
59ec66dc 4851{
bd60bab2
JH
4852 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4853 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4854 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4855 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4856 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
49ad7cfa
BS
4857}
4858
da43a810
BS
4859\f
4860/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4861static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4862static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4863static int copy_insn_n_scratches;
4864
4865/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4866 copied an ASM_OPERANDS.
4867 In that case, it is the original input-operand vector. */
4868static rtvec orig_asm_operands_vector;
4869
4870/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4871 copied an ASM_OPERANDS.
4872 In that case, it is the copied input-operand vector. */
4873static rtvec copy_asm_operands_vector;
4874
4875/* Likewise for the constraints vector. */
4876static rtvec orig_asm_constraints_vector;
4877static rtvec copy_asm_constraints_vector;
4878
4879/* Recursively create a new copy of an rtx for copy_insn.
4880 This function differs from copy_rtx in that it handles SCRATCHes and
4881 ASM_OPERANDs properly.
4882 Normally, this function is not used directly; use copy_insn as front end.
4883 However, you could first copy an insn pattern with copy_insn and then use
4884 this function afterwards to properly copy any REG_NOTEs containing
4885 SCRATCHes. */
4886
4887rtx
502b8322 4888copy_insn_1 (rtx orig)
da43a810 4889{
b3694847
SS
4890 rtx copy;
4891 int i, j;
4892 RTX_CODE code;
4893 const char *format_ptr;
da43a810
BS
4894
4895 code = GET_CODE (orig);
4896
4897 switch (code)
4898 {
4899 case REG:
da43a810
BS
4900 case CONST_INT:
4901 case CONST_DOUBLE:
091a3ac7 4902 case CONST_FIXED:
69ef87e2 4903 case CONST_VECTOR:
da43a810
BS
4904 case SYMBOL_REF:
4905 case CODE_LABEL:
4906 case PC:
4907 case CC0:
da43a810 4908 return orig;
3e89ed8d
JH
4909 case CLOBBER:
4910 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4911 return orig;
4912 break;
da43a810
BS
4913
4914 case SCRATCH:
4915 for (i = 0; i < copy_insn_n_scratches; i++)
4916 if (copy_insn_scratch_in[i] == orig)
4917 return copy_insn_scratch_out[i];
4918 break;
4919
4920 case CONST:
6fb5fa3c 4921 if (shared_const_p (orig))
da43a810
BS
4922 return orig;
4923 break;
750c9258 4924
da43a810
BS
4925 /* A MEM with a constant address is not sharable. The problem is that
4926 the constant address may need to be reloaded. If the mem is shared,
4927 then reloading one copy of this mem will cause all copies to appear
4928 to have been reloaded. */
4929
4930 default:
4931 break;
4932 }
4933
aacd3885
RS
4934 /* Copy the various flags, fields, and other information. We assume
4935 that all fields need copying, and then clear the fields that should
da43a810
BS
4936 not be copied. That is the sensible default behavior, and forces
4937 us to explicitly document why we are *not* copying a flag. */
aacd3885 4938 copy = shallow_copy_rtx (orig);
da43a810
BS
4939
4940 /* We do not copy the USED flag, which is used as a mark bit during
4941 walks over the RTL. */
2adc7f12 4942 RTX_FLAG (copy, used) = 0;
da43a810
BS
4943
4944 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 4945 if (INSN_P (orig))
da43a810 4946 {
2adc7f12
JJ
4947 RTX_FLAG (copy, jump) = 0;
4948 RTX_FLAG (copy, call) = 0;
4949 RTX_FLAG (copy, frame_related) = 0;
da43a810 4950 }
750c9258 4951
da43a810
BS
4952 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4953
4954 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
4955 switch (*format_ptr++)
4956 {
4957 case 'e':
4958 if (XEXP (orig, i) != NULL)
4959 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4960 break;
da43a810 4961
aacd3885
RS
4962 case 'E':
4963 case 'V':
4964 if (XVEC (orig, i) == orig_asm_constraints_vector)
4965 XVEC (copy, i) = copy_asm_constraints_vector;
4966 else if (XVEC (orig, i) == orig_asm_operands_vector)
4967 XVEC (copy, i) = copy_asm_operands_vector;
4968 else if (XVEC (orig, i) != NULL)
4969 {
4970 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4971 for (j = 0; j < XVECLEN (copy, i); j++)
4972 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4973 }
4974 break;
da43a810 4975
aacd3885
RS
4976 case 't':
4977 case 'w':
4978 case 'i':
4979 case 's':
4980 case 'S':
4981 case 'u':
4982 case '0':
4983 /* These are left unchanged. */
4984 break;
da43a810 4985
aacd3885
RS
4986 default:
4987 gcc_unreachable ();
4988 }
da43a810
BS
4989
4990 if (code == SCRATCH)
4991 {
4992 i = copy_insn_n_scratches++;
5b0264cb 4993 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
4994 copy_insn_scratch_in[i] = orig;
4995 copy_insn_scratch_out[i] = copy;
4996 }
4997 else if (code == ASM_OPERANDS)
4998 {
6462bb43
AO
4999 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5000 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5001 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5002 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5003 }
5004
5005 return copy;
5006}
5007
5008/* Create a new copy of an rtx.
5009 This function differs from copy_rtx in that it handles SCRATCHes and
5010 ASM_OPERANDs properly.
5011 INSN doesn't really have to be a full INSN; it could be just the
5012 pattern. */
5013rtx
502b8322 5014copy_insn (rtx insn)
da43a810
BS
5015{
5016 copy_insn_n_scratches = 0;
5017 orig_asm_operands_vector = 0;
5018 orig_asm_constraints_vector = 0;
5019 copy_asm_operands_vector = 0;
5020 copy_asm_constraints_vector = 0;
5021 return copy_insn_1 (insn);
5022}
59ec66dc 5023
23b2ce53
RS
5024/* Initialize data structures and variables in this file
5025 before generating rtl for each function. */
5026
5027void
502b8322 5028init_emit (void)
23b2ce53 5029{
23b2ce53
RS
5030 first_insn = NULL;
5031 last_insn = NULL;
5032 cur_insn_uid = 1;
5033 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
6773e15f 5034 last_location = UNKNOWN_LOCATION;
23b2ce53 5035 first_label_num = label_num;
49ad7cfa 5036 seq_stack = NULL;
23b2ce53 5037
23b2ce53
RS
5038 /* Init the tables that describe all the pseudo regs. */
5039
3e029763 5040 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5041
3e029763 5042 crtl->emit.regno_pointer_align
1b4572a8 5043 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5044
750c9258 5045 regno_reg_rtx
1b4572a8 5046 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
0d4903b8 5047
e50126e8 5048 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
5049 memcpy (regno_reg_rtx,
5050 static_regno_reg_rtx,
5051 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5052
23b2ce53 5053 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5054 init_virtual_regs ();
740ab4a2
RK
5055
5056 /* Indicate that the virtual registers and stack locations are
5057 all pointers. */
3502dc9c
JDA
5058 REG_POINTER (stack_pointer_rtx) = 1;
5059 REG_POINTER (frame_pointer_rtx) = 1;
5060 REG_POINTER (hard_frame_pointer_rtx) = 1;
5061 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5062
3502dc9c
JDA
5063 REG_POINTER (virtual_incoming_args_rtx) = 1;
5064 REG_POINTER (virtual_stack_vars_rtx) = 1;
5065 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5066 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5067 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5068
86fe05e0 5069#ifdef STACK_BOUNDARY
bdb429a5
RK
5070 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5071 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5072 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5073 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5074
5075 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5076 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5077 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5078 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5079 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5080#endif
5081
5e82e7bd
JVA
5082#ifdef INIT_EXPANDERS
5083 INIT_EXPANDERS;
5084#endif
23b2ce53
RS
5085}
5086
a73b091d 5087/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5088
5089static rtx
a73b091d 5090gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5091{
5092 rtx tem;
5093 rtvec v;
5094 int units, i;
5095 enum machine_mode inner;
5096
5097 units = GET_MODE_NUNITS (mode);
5098 inner = GET_MODE_INNER (mode);
5099
15ed7b52
JG
5100 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5101
69ef87e2
AH
5102 v = rtvec_alloc (units);
5103
a73b091d
JW
5104 /* We need to call this function after we set the scalar const_tiny_rtx
5105 entries. */
5106 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5107
5108 for (i = 0; i < units; ++i)
a73b091d 5109 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5110
a06e3c40 5111 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5112 return tem;
5113}
5114
a06e3c40 5115/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5116 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5117rtx
502b8322 5118gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5119{
a73b091d
JW
5120 enum machine_mode inner = GET_MODE_INNER (mode);
5121 int nunits = GET_MODE_NUNITS (mode);
5122 rtx x;
a06e3c40
R
5123 int i;
5124
a73b091d
JW
5125 /* Check to see if all of the elements have the same value. */
5126 x = RTVEC_ELT (v, nunits - 1);
5127 for (i = nunits - 2; i >= 0; i--)
5128 if (RTVEC_ELT (v, i) != x)
5129 break;
5130
5131 /* If the values are all the same, check to see if we can use one of the
5132 standard constant vectors. */
5133 if (i == -1)
5134 {
5135 if (x == CONST0_RTX (inner))
5136 return CONST0_RTX (mode);
5137 else if (x == CONST1_RTX (inner))
5138 return CONST1_RTX (mode);
5139 }
5140
5141 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5142}
5143
b5deb7b6
SL
5144/* Initialise global register information required by all functions. */
5145
5146void
5147init_emit_regs (void)
5148{
5149 int i;
5150
5151 /* Reset register attributes */
5152 htab_empty (reg_attrs_htab);
5153
5154 /* We need reg_raw_mode, so initialize the modes now. */
5155 init_reg_modes_target ();
5156
5157 /* Assign register numbers to the globally defined register rtx. */
5158 pc_rtx = gen_rtx_PC (VOIDmode);
5159 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5160 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5161 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5162 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5163 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5164 virtual_incoming_args_rtx =
5165 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5166 virtual_stack_vars_rtx =
5167 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5168 virtual_stack_dynamic_rtx =
5169 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5170 virtual_outgoing_args_rtx =
5171 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5172 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5173
5174 /* Initialize RTL for commonly used hard registers. These are
5175 copied into regno_reg_rtx as we begin to compile each function. */
5176 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5177 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5178
5179#ifdef RETURN_ADDRESS_POINTER_REGNUM
5180 return_address_pointer_rtx
5181 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5182#endif
5183
5184#ifdef STATIC_CHAIN_REGNUM
5185 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5186
5187#ifdef STATIC_CHAIN_INCOMING_REGNUM
5188 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5189 static_chain_incoming_rtx
5190 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5191 else
5192#endif
5193 static_chain_incoming_rtx = static_chain_rtx;
5194#endif
5195
5196#ifdef STATIC_CHAIN
5197 static_chain_rtx = STATIC_CHAIN;
5198
5199#ifdef STATIC_CHAIN_INCOMING
5200 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5201#else
5202 static_chain_incoming_rtx = static_chain_rtx;
5203#endif
5204#endif
5205
5206 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5207 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5208 else
5209 pic_offset_table_rtx = NULL_RTX;
5210}
5211
23b2ce53
RS
5212/* Create some permanent unique rtl objects shared between all functions.
5213 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5214
5215void
502b8322 5216init_emit_once (int line_numbers)
23b2ce53
RS
5217{
5218 int i;
5219 enum machine_mode mode;
9ec36da5 5220 enum machine_mode double_mode;
23b2ce53 5221
091a3ac7
CF
5222 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5223 hash tables. */
17211ab5
GK
5224 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5225 const_int_htab_eq, NULL);
173b24b9 5226
17211ab5
GK
5227 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5228 const_double_htab_eq, NULL);
5692c7bc 5229
091a3ac7
CF
5230 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5231 const_fixed_htab_eq, NULL);
5232
17211ab5
GK
5233 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5234 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5235 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5236 reg_attrs_htab_eq, NULL);
67673f5c 5237
23b2ce53
RS
5238 no_line_numbers = ! line_numbers;
5239
43fa6302
AS
5240 /* Compute the word and byte modes. */
5241
5242 byte_mode = VOIDmode;
5243 word_mode = VOIDmode;
5244 double_mode = VOIDmode;
5245
15ed7b52
JG
5246 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5247 mode != VOIDmode;
43fa6302
AS
5248 mode = GET_MODE_WIDER_MODE (mode))
5249 {
5250 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5251 && byte_mode == VOIDmode)
5252 byte_mode = mode;
5253
5254 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5255 && word_mode == VOIDmode)
5256 word_mode = mode;
5257 }
5258
15ed7b52
JG
5259 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5260 mode != VOIDmode;
43fa6302
AS
5261 mode = GET_MODE_WIDER_MODE (mode))
5262 {
5263 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5264 && double_mode == VOIDmode)
5265 double_mode = mode;
5266 }
5267
5268 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5269
5da077de 5270#ifdef INIT_EXPANDERS
414c4dc4
NC
5271 /* This is to initialize {init|mark|free}_machine_status before the first
5272 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5273 end which calls push_function_context_to before the first call to
5da077de
AS
5274 init_function_start. */
5275 INIT_EXPANDERS;
5276#endif
5277
23b2ce53
RS
5278 /* Create the unique rtx's for certain rtx codes and operand values. */
5279
a2a8cc44 5280 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5281 tries to use these variables. */
23b2ce53 5282 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5283 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5284 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5285
68d75312
JC
5286 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5287 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5288 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5289 else
3b80f6ca 5290 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5291
5692c7bc
ZW
5292 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5293 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5294 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
aefa9d43
KG
5295
5296 dconstm1 = dconst1;
5297 dconstm1.sign = 1;
03f2ea93
RS
5298
5299 dconsthalf = dconst1;
1e92bbb9 5300 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5301
f7657db9 5302 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
23b2ce53 5303 {
aefa9d43 5304 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5305 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5306
15ed7b52
JG
5307 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5308 mode != VOIDmode;
5309 mode = GET_MODE_WIDER_MODE (mode))
5310 const_tiny_rtx[i][(int) mode] =
5311 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5312
5313 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5314 mode != VOIDmode;
23b2ce53 5315 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5316 const_tiny_rtx[i][(int) mode] =
5317 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5318
906c4e36 5319 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5320
15ed7b52
JG
5321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5322 mode != VOIDmode;
23b2ce53 5323 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5324 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5325
5326 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5327 mode != VOIDmode;
5328 mode = GET_MODE_WIDER_MODE (mode))
5329 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5330 }
5331
e90721b1
AP
5332 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5333 mode != VOIDmode;
5334 mode = GET_MODE_WIDER_MODE (mode))
5335 {
5336 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5337 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5338 }
5339
5340 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5341 mode != VOIDmode;
5342 mode = GET_MODE_WIDER_MODE (mode))
5343 {
5344 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5345 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5346 }
5347
69ef87e2
AH
5348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5349 mode != VOIDmode;
5350 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5351 {
5352 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5353 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5354 }
69ef87e2
AH
5355
5356 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5357 mode != VOIDmode;
5358 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5359 {
5360 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5361 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5362 }
69ef87e2 5363
325217ed
CF
5364 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5365 mode != VOIDmode;
5366 mode = GET_MODE_WIDER_MODE (mode))
5367 {
5368 FCONST0(mode).data.high = 0;
5369 FCONST0(mode).data.low = 0;
5370 FCONST0(mode).mode = mode;
091a3ac7
CF
5371 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5372 FCONST0 (mode), mode);
325217ed
CF
5373 }
5374
5375 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5376 mode != VOIDmode;
5377 mode = GET_MODE_WIDER_MODE (mode))
5378 {
5379 FCONST0(mode).data.high = 0;
5380 FCONST0(mode).data.low = 0;
5381 FCONST0(mode).mode = mode;
091a3ac7
CF
5382 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5383 FCONST0 (mode), mode);
325217ed
CF
5384 }
5385
5386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5387 mode != VOIDmode;
5388 mode = GET_MODE_WIDER_MODE (mode))
5389 {
5390 FCONST0(mode).data.high = 0;
5391 FCONST0(mode).data.low = 0;
5392 FCONST0(mode).mode = mode;
091a3ac7
CF
5393 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5394 FCONST0 (mode), mode);
325217ed
CF
5395
5396 /* We store the value 1. */
5397 FCONST1(mode).data.high = 0;
5398 FCONST1(mode).data.low = 0;
5399 FCONST1(mode).mode = mode;
5400 lshift_double (1, 0, GET_MODE_FBIT (mode),
5401 2 * HOST_BITS_PER_WIDE_INT,
5402 &FCONST1(mode).data.low,
5403 &FCONST1(mode).data.high,
5404 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5405 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5406 FCONST1 (mode), mode);
325217ed
CF
5407 }
5408
5409 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5410 mode != VOIDmode;
5411 mode = GET_MODE_WIDER_MODE (mode))
5412 {
5413 FCONST0(mode).data.high = 0;
5414 FCONST0(mode).data.low = 0;
5415 FCONST0(mode).mode = mode;
091a3ac7
CF
5416 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5417 FCONST0 (mode), mode);
325217ed
CF
5418
5419 /* We store the value 1. */
5420 FCONST1(mode).data.high = 0;
5421 FCONST1(mode).data.low = 0;
5422 FCONST1(mode).mode = mode;
5423 lshift_double (1, 0, GET_MODE_FBIT (mode),
5424 2 * HOST_BITS_PER_WIDE_INT,
5425 &FCONST1(mode).data.low,
5426 &FCONST1(mode).data.high,
5427 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5428 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5429 FCONST1 (mode), mode);
5430 }
5431
5432 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5433 mode != VOIDmode;
5434 mode = GET_MODE_WIDER_MODE (mode))
5435 {
5436 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5437 }
5438
5439 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5440 mode != VOIDmode;
5441 mode = GET_MODE_WIDER_MODE (mode))
5442 {
5443 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5444 }
5445
5446 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5447 mode != VOIDmode;
5448 mode = GET_MODE_WIDER_MODE (mode))
5449 {
5450 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5451 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5452 }
5453
5454 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5455 mode != VOIDmode;
5456 mode = GET_MODE_WIDER_MODE (mode))
5457 {
5458 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5459 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5460 }
5461
dbbbbf3b
JDA
5462 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5463 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5464 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5465
f0417c82
RH
5466 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5467 if (STORE_FLAG_VALUE == 1)
5468 const_tiny_rtx[1][(int) BImode] = const1_rtx;
23b2ce53 5469}
a11759a3 5470\f
969d70ca
JH
5471/* Produce exact duplicate of insn INSN after AFTER.
5472 Care updating of libcall regions if present. */
5473
5474rtx
502b8322 5475emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca 5476{
60564289 5477 rtx new_rtx, link;
969d70ca
JH
5478
5479 switch (GET_CODE (insn))
5480 {
5481 case INSN:
60564289 5482 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5483 break;
5484
5485 case JUMP_INSN:
60564289 5486 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5487 break;
5488
5489 case CALL_INSN:
60564289 5490 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 5491 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 5492 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 5493 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
5494 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5495 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5496 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5497 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 5498 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
5499 break;
5500
5501 default:
5b0264cb 5502 gcc_unreachable ();
969d70ca
JH
5503 }
5504
5505 /* Update LABEL_NUSES. */
60564289 5506 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 5507
60564289 5508 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
ba4f7968 5509
0a3d71f5
JW
5510 /* If the old insn is frame related, then so is the new one. This is
5511 primarily needed for IA-64 unwind info which marks epilogue insns,
5512 which may be duplicated by the basic block reordering code. */
60564289 5513 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 5514
cf7c4aa6
HPN
5515 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5516 will make them. REG_LABEL_TARGETs are created there too, but are
5517 supposed to be sticky, so we copy them. */
969d70ca 5518 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 5519 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
5520 {
5521 if (GET_CODE (link) == EXPR_LIST)
60564289 5522 add_reg_note (new_rtx, REG_NOTE_KIND (link),
65c5f2a6 5523 copy_insn_1 (XEXP (link, 0)));
969d70ca 5524 else
60564289 5525 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
969d70ca
JH
5526 }
5527
60564289
KG
5528 INSN_CODE (new_rtx) = INSN_CODE (insn);
5529 return new_rtx;
969d70ca 5530}
e2500fed 5531
1431042e 5532static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
5533rtx
5534gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5535{
5536 if (hard_reg_clobbers[mode][regno])
5537 return hard_reg_clobbers[mode][regno];
5538 else
5539 return (hard_reg_clobbers[mode][regno] =
5540 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5541}
5542
e2500fed 5543#include "gt-emit-rtl.h"