]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
[4/77] Add FOR_EACH iterators for modes
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
bccafa26 1/* Emit RTL for the GCC expander.
aad93da1 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
15bbde2b 3
f12b58b3 4This file is part of GCC.
15bbde2b 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
15bbde2b 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15bbde2b 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15bbde2b 19
20
21/* Middle-to-low level generation of rtx code and insns.
22
74efa612 23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
15bbde2b 25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
74efa612 28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
8fd5918e 31 dependent is the kind of rtx's they make and what arguments they
32 use. */
15bbde2b 33
34#include "config.h"
405711de 35#include "system.h"
805e22b2 36#include "coretypes.h"
ad7b10a2 37#include "memmodel.h"
9ef16211 38#include "backend.h"
7c29e30e 39#include "target.h"
15bbde2b 40#include "rtl.h"
7c29e30e 41#include "tree.h"
9ef16211 42#include "df.h"
7c29e30e 43#include "tm_p.h"
44#include "stringpool.h"
7c29e30e 45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
9ef16211 49#include "diagnostic-core.h"
b20a8bb4 50#include "alias.h"
b20a8bb4 51#include "fold-const.h"
9ed99284 52#include "varasm.h"
94ea8568 53#include "cfgrtl.h"
94ea8568 54#include "tree-eh.h"
d53441c8 55#include "explow.h"
15bbde2b 56#include "expr.h"
9845d120 57#include "params.h"
f7715905 58#include "builtins.h"
4073adaa 59#include "rtl-iter.h"
94f92c36 60#include "stor-layout.h"
48a7e3d1 61#include "opts.h"
61cb1816 62#include "predict.h"
649d8da6 63
679bcc8d 64struct target_rtl default_target_rtl;
65#if SWITCHABLE_TARGET
66struct target_rtl *this_target_rtl = &default_target_rtl;
67#endif
68
69#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
399d45d3 71/* Commonly used modes. */
72
3754d046 73machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 77
b079a207 78/* Datastructures maintained for currently processed function in RTL form. */
79
fd6ffb7c 80struct rtl_data x_rtl;
b079a207 81
82/* Indexed by pseudo register number, gives the rtx for that pseudo.
48e1416a 83 Allocated in parallel with regno_pointer_align.
b079a207 84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87rtx * regno_reg_rtx;
15bbde2b 88
89/* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
9105005a 92static GTY(()) int label_num = 1;
15bbde2b 93
15bbde2b 94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
ba8dfb08 96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
15bbde2b 98
ba8dfb08 99rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
15bbde2b 100
1a60f06a 101rtx const_true_rtx;
102
15bbde2b 103REAL_VALUE_TYPE dconst0;
104REAL_VALUE_TYPE dconst1;
105REAL_VALUE_TYPE dconst2;
106REAL_VALUE_TYPE dconstm1;
77e89269 107REAL_VALUE_TYPE dconsthalf;
15bbde2b 108
06f0b99c 109/* Record fixed-point constant 0 and 1. */
110FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112
15bbde2b 113/* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
117
57c097d5 118rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 119
7d7b0bac 120/* Standard pieces of rtx, to be substituted directly into things. */
121rtx pc_rtx;
122rtx ret_rtx;
123rtx simple_return_rtx;
124rtx cc0_rtx;
125
f9a00e9e 126/* Marker used for denoting an INSN, which should never be accessed (i.e.,
127 this pointer should normally never be dereferenced), but is required to be
128 distinct from NULL_RTX. Currently used by peephole2 pass. */
129rtx_insn *invalid_insn_rtx;
130
73f5c1e3 131/* A hash table storing CONST_INTs whose absolute value is greater
132 than MAX_SAVED_CONST_INT. */
133
eae1ecb4 134struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 135{
136 typedef HOST_WIDE_INT compare_type;
137
138 static hashval_t hash (rtx i);
139 static bool equal (rtx i, HOST_WIDE_INT h);
140};
73f5c1e3 141
f863a586 142static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
143
eae1ecb4 144struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 145{
146 static hashval_t hash (rtx x);
147 static bool equal (rtx x, rtx y);
148};
149
150static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
e913b5cd 151
ca74b940 152/* A hash table storing register attribute structures. */
eae1ecb4 153struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
f863a586 154{
155 static hashval_t hash (reg_attrs *x);
156 static bool equal (reg_attrs *a, reg_attrs *b);
157};
158
159static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
ca74b940 160
2ff23ed0 161/* A hash table storing all CONST_DOUBLEs. */
eae1ecb4 162struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 163{
164 static hashval_t hash (rtx x);
165 static bool equal (rtx x, rtx y);
166};
167
168static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
2ff23ed0 169
e397ad8e 170/* A hash table storing all CONST_FIXEDs. */
eae1ecb4 171struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 172{
173 static hashval_t hash (rtx x);
174 static bool equal (rtx x, rtx y);
175};
176
177static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
e397ad8e 178
fd6ffb7c 179#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
9845d120 180#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
fd6ffb7c 181#define first_label_num (crtl->emit.x_first_label_num)
15bbde2b 182
265be050 183static void set_used_decls (tree);
35cb5232 184static void mark_label_nuses (rtx);
e913b5cd 185#if TARGET_SUPPORTS_WIDE_INT
e913b5cd 186static rtx lookup_const_wide_int (rtx);
187#endif
35cb5232 188static rtx lookup_const_double (rtx);
e397ad8e 189static rtx lookup_const_fixed (rtx);
35cb5232 190static reg_attrs *get_reg_attrs (tree, int);
3754d046 191static rtx gen_const_vector (machine_mode, int);
0e0727c4 192static void copy_rtx_if_shared_1 (rtx *orig);
73f5c1e3 193
61cb1816 194/* Probability of the conditional branch currently proceeded by try_split. */
195profile_probability split_branch_probability;
649d8da6 196\f
73f5c1e3 197/* Returns a hash code for X (which is a really a CONST_INT). */
198
f863a586 199hashval_t
200const_int_hasher::hash (rtx x)
73f5c1e3 201{
f863a586 202 return (hashval_t) INTVAL (x);
73f5c1e3 203}
204
6ef828f9 205/* Returns nonzero if the value represented by X (which is really a
73f5c1e3 206 CONST_INT) is the same as that given by Y (which is really a
207 HOST_WIDE_INT *). */
208
f863a586 209bool
210const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
73f5c1e3 211{
f863a586 212 return (INTVAL (x) == y);
2ff23ed0 213}
214
e913b5cd 215#if TARGET_SUPPORTS_WIDE_INT
216/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
217
f863a586 218hashval_t
219const_wide_int_hasher::hash (rtx x)
e913b5cd 220{
221 int i;
06b8401d 222 unsigned HOST_WIDE_INT hash = 0;
f863a586 223 const_rtx xr = x;
e913b5cd 224
225 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
226 hash += CONST_WIDE_INT_ELT (xr, i);
227
228 return (hashval_t) hash;
229}
230
231/* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
233 CONST_WIDE_INT). */
234
f863a586 235bool
236const_wide_int_hasher::equal (rtx x, rtx y)
e913b5cd 237{
238 int i;
f863a586 239 const_rtx xr = x;
240 const_rtx yr = y;
e913b5cd 241 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
f863a586 242 return false;
e913b5cd 243
244 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
245 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
f863a586 246 return false;
ddb1be65 247
f863a586 248 return true;
e913b5cd 249}
250#endif
251
2ff23ed0 252/* Returns a hash code for X (which is really a CONST_DOUBLE). */
f863a586 253hashval_t
254const_double_hasher::hash (rtx x)
2ff23ed0 255{
f863a586 256 const_rtx const value = x;
3393215f 257 hashval_t h;
2ff23ed0 258
e913b5cd 259 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
3393215f 260 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
261 else
a5760913 262 {
e2e205b3 263 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
a5760913 264 /* MODE is used in the comparison, so it should be in the hash. */
265 h ^= GET_MODE (value);
266 }
2ff23ed0 267 return h;
268}
269
6ef828f9 270/* Returns nonzero if the value represented by X (really a ...)
2ff23ed0 271 is the same as that represented by Y (really a ...) */
f863a586 272bool
273const_double_hasher::equal (rtx x, rtx y)
2ff23ed0 274{
f863a586 275 const_rtx const a = x, b = y;
2ff23ed0 276
277 if (GET_MODE (a) != GET_MODE (b))
278 return 0;
e913b5cd 279 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
f82a103d 280 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
281 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
282 else
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
284 CONST_DOUBLE_REAL_VALUE (b));
73f5c1e3 285}
286
e397ad8e 287/* Returns a hash code for X (which is really a CONST_FIXED). */
288
f863a586 289hashval_t
290const_fixed_hasher::hash (rtx x)
e397ad8e 291{
f863a586 292 const_rtx const value = x;
e397ad8e 293 hashval_t h;
294
295 h = fixed_hash (CONST_FIXED_VALUE (value));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h ^= GET_MODE (value);
298 return h;
299}
300
f863a586 301/* Returns nonzero if the value represented by X is the same as that
302 represented by Y. */
e397ad8e 303
f863a586 304bool
305const_fixed_hasher::equal (rtx x, rtx y)
e397ad8e 306{
f863a586 307 const_rtx const a = x, b = y;
e397ad8e 308
309 if (GET_MODE (a) != GET_MODE (b))
310 return 0;
311 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
312}
313
d72886b5 314/* Return true if the given memory attributes are equal. */
73f5c1e3 315
7e304b71 316bool
d72886b5 317mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
73f5c1e3 318{
7e304b71 319 if (p == q)
320 return true;
321 if (!p || !q)
322 return false;
6d58bcba 323 return (p->alias == q->alias
324 && p->offset_known_p == q->offset_known_p
325 && (!p->offset_known_p || p->offset == q->offset)
326 && p->size_known_p == q->size_known_p
327 && (!p->size_known_p || p->size == q->size)
328 && p->align == q->align
bd1a81f7 329 && p->addrspace == q->addrspace
2f16183e 330 && (p->expr == q->expr
331 || (p->expr != NULL_TREE && q->expr != NULL_TREE
332 && operand_equal_p (p->expr, q->expr, 0))));
73f5c1e3 333}
334
d72886b5 335/* Set MEM's memory attributes so that they are the same as ATTRS. */
5cc193e7 336
d72886b5 337static void
338set_mem_attrs (rtx mem, mem_attrs *attrs)
339{
d72886b5 340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
342 {
343 MEM_ATTRS (mem) = 0;
344 return;
345 }
c6259b83 346
8dc3230c 347 if (!MEM_ATTRS (mem)
348 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
c6259b83 349 {
25a27413 350 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
8dc3230c 351 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
c6259b83 352 }
73f5c1e3 353}
354
ca74b940 355/* Returns a hash code for X (which is a really a reg_attrs *). */
356
f863a586 357hashval_t
358reg_attr_hasher::hash (reg_attrs *x)
ca74b940 359{
f863a586 360 const reg_attrs *const p = x;
ca74b940 361
e19e0a33 362 return ((p->offset * 1000) ^ (intptr_t) p->decl);
ca74b940 363}
364
f863a586 365/* Returns nonzero if the value represented by X is the same as that given by
366 Y. */
ca74b940 367
f863a586 368bool
369reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
ca74b940 370{
f863a586 371 const reg_attrs *const p = x;
372 const reg_attrs *const q = y;
ca74b940 373
374 return (p->decl == q->decl && p->offset == q->offset);
375}
376/* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380static reg_attrs *
35cb5232 381get_reg_attrs (tree decl, int offset)
ca74b940 382{
383 reg_attrs attrs;
ca74b940 384
385 /* If everything is the default, we can just return zero. */
386 if (decl == 0 && offset == 0)
387 return 0;
388
389 attrs.decl = decl;
390 attrs.offset = offset;
391
f863a586 392 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
ca74b940 393 if (*slot == 0)
394 {
25a27413 395 *slot = ggc_alloc<reg_attrs> ();
ca74b940 396 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 }
398
f863a586 399 return *slot;
ca74b940 400}
401
3072d30e 402
403#if !HAVE_blockage
e12b44a3 404/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
3072d30e 406
407rtx
408gen_blockage (void)
409{
410 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
411 MEM_VOLATILE_P (x) = true;
412 return x;
413}
414#endif
415
416
937ca48e 417/* Set the mode and register number of X to MODE and REGNO. */
418
419void
420set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
421{
1c0849e5 422 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
423 ? hard_regno_nregs[regno][mode]
424 : 1);
937ca48e 425 PUT_MODE_RAW (x, mode);
1c0849e5 426 set_regno_raw (x, regno, nregs);
937ca48e 427}
428
22cf44bc 429/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
432
433rtx
937ca48e 434gen_raw_REG (machine_mode mode, unsigned int regno)
22cf44bc 435{
68095389 436 rtx x = rtx_alloc (REG MEM_STAT_INFO);
937ca48e 437 set_mode_and_regno (x, mode, regno);
15183fd2 438 REG_ATTRS (x) = NULL;
22cf44bc 439 ORIGINAL_REGNO (x) = regno;
440 return x;
441}
442
7014838c 443/* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
446
ede4900a 447rtx_expr_list *
3754d046 448gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
ede4900a 449{
450 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
451 expr_list));
452}
453
13be9dc6 454rtx_insn_list *
3754d046 455gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
13be9dc6 456{
457 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
458 insn_list));
459}
460
f935868a 461rtx_insn *
3754d046 462gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
f935868a 463 basic_block bb, rtx pattern, int location, int code,
464 rtx reg_notes)
465{
466 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
467 prev_insn, next_insn,
468 bb, pattern, location, code,
469 reg_notes));
470}
471
3ad7bb1c 472rtx
3754d046 473gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3ad7bb1c 474{
475 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 476 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 477
478#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx && arg == STORE_FLAG_VALUE)
480 return const_true_rtx;
481#endif
482
73f5c1e3 483 /* Look up the CONST_INT in the hash table. */
f863a586 484 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
485 INSERT);
7f2875d3 486 if (*slot == 0)
d7c47c0e 487 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 488
f863a586 489 return *slot;
3ad7bb1c 490}
491
2d232d05 492rtx
3754d046 493gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
2d232d05 494{
495 return GEN_INT (trunc_int_for_mode (c, mode));
496}
497
2ff23ed0 498/* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501
502/* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
505static rtx
35cb5232 506lookup_const_double (rtx real)
2ff23ed0 507{
f863a586 508 rtx *slot = const_double_htab->find_slot (real, INSERT);
2ff23ed0 509 if (*slot == 0)
510 *slot = real;
511
f863a586 512 return *slot;
2ff23ed0 513}
7f2875d3 514
2ff23ed0 515/* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
67f2a2eb 517rtx
3754d046 518const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
67f2a2eb 519{
2ff23ed0 520 rtx real = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (real, mode);
522
e8aaae4e 523 real->u.rv = value;
2ff23ed0 524
525 return lookup_const_double (real);
526}
527
e397ad8e 528/* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
531
532static rtx
533lookup_const_fixed (rtx fixed)
534{
f863a586 535 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
e397ad8e 536 if (*slot == 0)
537 *slot = fixed;
538
f863a586 539 return *slot;
e397ad8e 540}
541
542/* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
544
545rtx
3754d046 546const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
e397ad8e 547{
548 rtx fixed = rtx_alloc (CONST_FIXED);
549 PUT_MODE (fixed, mode);
550
551 fixed->u.fv = value;
552
553 return lookup_const_fixed (fixed);
554}
555
e913b5cd 556#if TARGET_SUPPORTS_WIDE_INT == 0
33274180 557/* Constructs double_int from rtx CST. */
558
559double_int
560rtx_to_double_int (const_rtx cst)
561{
562 double_int r;
563
564 if (CONST_INT_P (cst))
cf8f0e63 565 r = double_int::from_shwi (INTVAL (cst));
78f1962f 566 else if (CONST_DOUBLE_AS_INT_P (cst))
33274180 567 {
568 r.low = CONST_DOUBLE_LOW (cst);
569 r.high = CONST_DOUBLE_HIGH (cst);
570 }
571 else
572 gcc_unreachable ();
573
574 return r;
575}
e913b5cd 576#endif
577
578#if TARGET_SUPPORTS_WIDE_INT
a342dbb2 579/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
e913b5cd 581 return it. */
33274180 582
e913b5cd 583static rtx
584lookup_const_wide_int (rtx wint)
585{
f863a586 586 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
e913b5cd 587 if (*slot == 0)
588 *slot = wint;
33274180 589
f863a586 590 return *slot;
e913b5cd 591}
592#endif
3e052aec 593
a342dbb2 594/* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
598
3e052aec 599rtx
3754d046 600immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
3e052aec 601{
e913b5cd 602 unsigned int len = v.get_len ();
603 unsigned int prec = GET_MODE_PRECISION (mode);
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612#if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
ddb1be65 616 unsigned int blocks_needed
e913b5cd 617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
05c25ee6 627 CWI_PUT_NUM_ELEM (value, len);
e913b5cd 628
629 for (i = 0; i < len; i++)
05363b4a 630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
e913b5cd 631
632 return lookup_const_wide_int (value);
633 }
634#else
05363b4a 635 return immed_double_const (v.elt (0), v.elt (1), mode);
e913b5cd 636#endif
3e052aec 637}
638
e913b5cd 639#if TARGET_SUPPORTS_WIDE_INT == 0
2ff23ed0 640/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
24cd46a7 642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
db20fb47 643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
d5f9611d 646 const_double_from_real_value. */
2ff23ed0 647
648rtx
3754d046 649immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
2ff23ed0 650{
651 rtx value;
652 unsigned int i;
653
b1ca4af4 654 /* There are the following cases (note that there are no modes with
24cd46a7 655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
b1ca4af4 656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
db20fb47 659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
b1ca4af4 662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
2ff23ed0 663 if (mode != VOIDmode)
664 {
611234b4 665 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
666 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
058a1b7a 669 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
2ff23ed0 671
b1ca4af4 672 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
673 return gen_int_mode (i0, mode);
2ff23ed0 674 }
675
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
678 return GEN_INT (i0);
679
680 /* We use VOIDmode for integers. */
681 value = rtx_alloc (CONST_DOUBLE);
682 PUT_MODE (value, VOIDmode);
683
684 CONST_DOUBLE_LOW (value) = i0;
685 CONST_DOUBLE_HIGH (value) = i1;
686
687 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
688 XWINT (value, i) = 0;
689
690 return lookup_const_double (value);
67f2a2eb 691}
e913b5cd 692#endif
67f2a2eb 693
3ad7bb1c 694rtx
3754d046 695gen_rtx_REG (machine_mode mode, unsigned int regno)
3ad7bb1c 696{
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
701 assigned to them.
702
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
707
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
710
c6a6cdaa 711 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3ad7bb1c 712 {
71801afc 713 if (regno == FRAME_POINTER_REGNUM
714 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 715 return frame_pointer_rtx;
f703b3d6 716
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno == HARD_FRAME_POINTER_REGNUM
71801afc 719 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 720 return hard_frame_pointer_rtx;
c6bb296a 721#if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
723 && regno == ARG_POINTER_REGNUM)
3ad7bb1c 724 return arg_pointer_rtx;
725#endif
726#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 727 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 728 return return_address_pointer_rtx;
729#endif
3473aefe 730 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
8d43ad05 731 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
6ea47475 732 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
d4c5e26d 733 return pic_offset_table_rtx;
e8b59353 734 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 735 return stack_pointer_rtx;
736 }
737
32b53d83 738#if 0
90295bd2 739 /* If the per-function register table has been set up, try to re-use
32b53d83 740 an existing entry in that table to avoid useless generation of RTL.
741
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
71801afc 745 on the amount of useless RTL that gets generated.
746
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
749
90295bd2 750 if (cfun
751 && cfun->emit
752 && regno_reg_rtx
753 && regno < FIRST_PSEUDO_REGISTER
754 && reg_raw_mode[regno] == mode)
755 return regno_reg_rtx[regno];
32b53d83 756#endif
90295bd2 757
22cf44bc 758 return gen_raw_REG (mode, regno);
3ad7bb1c 759}
760
b5ba9f3a 761rtx
3754d046 762gen_rtx_MEM (machine_mode mode, rtx addr)
b5ba9f3a 763{
764 rtx rt = gen_rtx_raw_MEM (mode, addr);
765
766 /* This field is not cleared by the mere allocation of the rtx, so
767 we clear it here. */
c6259b83 768 MEM_ATTRS (rt) = 0;
b5ba9f3a 769
770 return rt;
771}
701e46d0 772
e265a6da 773/* Generate a memory referring to non-trapping constant memory. */
774
775rtx
3754d046 776gen_const_mem (machine_mode mode, rtx addr)
e265a6da 777{
778 rtx mem = gen_rtx_MEM (mode, addr);
779 MEM_READONLY_P (mem) = 1;
780 MEM_NOTRAP_P (mem) = 1;
781 return mem;
782}
783
00060fc2 784/* Generate a MEM referring to fixed portions of the frame, e.g., register
785 save areas. */
786
787rtx
3754d046 788gen_frame_mem (machine_mode mode, rtx addr)
00060fc2 789{
790 rtx mem = gen_rtx_MEM (mode, addr);
791 MEM_NOTRAP_P (mem) = 1;
792 set_mem_alias_set (mem, get_frame_alias_set ());
793 return mem;
794}
795
796/* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
799rtx
3754d046 800gen_tmp_stack_mem (machine_mode mode, rtx addr)
00060fc2 801{
802 rtx mem = gen_rtx_MEM (mode, addr);
803 MEM_NOTRAP_P (mem) = 1;
18d50ae6 804 if (!cfun->calls_alloca)
00060fc2 805 set_mem_alias_set (mem, get_frame_alias_set ());
806 return mem;
807}
808
2166bbaa 809/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
811
812bool
3754d046 813validate_subreg (machine_mode omode, machine_mode imode,
7ecb5bb2 814 const_rtx reg, unsigned int offset)
701e46d0 815{
2166bbaa 816 unsigned int isize = GET_MODE_SIZE (imode);
817 unsigned int osize = GET_MODE_SIZE (omode);
818
819 /* All subregs must be aligned. */
820 if (offset % osize != 0)
821 return false;
822
823 /* The subreg offset cannot be outside the inner object. */
824 if (offset >= isize)
825 return false;
826
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
830 fix them all. */
831 if (omode == word_mode)
832 ;
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize >= UNITS_PER_WORD && isize >= osize)
836 ;
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
840 && GET_MODE_INNER (imode) == omode)
841 ;
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
848 ;
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
853 {
c6a6cdaa 854 if (! (isize == osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
861 || lra_in_progress))
2166bbaa 862 return false;
863 }
701e46d0 864
2166bbaa 865 /* Paradoxical subregs must have offset zero. */
866 if (osize > isize)
867 return offset == 0;
868
869 /* This is a normal subreg. Verify that the offset is representable. */
870
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
874 {
875 unsigned int regno = REGNO (reg);
876
877#ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
879 && GET_MODE_INNER (imode) == omode)
880 ;
881 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
882 return false;
701e46d0 883#endif
2166bbaa 884
885 return subreg_offset_representable_p (regno, imode, offset, omode);
886 }
887
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
c6a6cdaa 894 if (osize < UNITS_PER_WORD
895 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
2166bbaa 896 {
3754d046 897 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
2166bbaa 898 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
899 if (offset % UNITS_PER_WORD != low_off)
900 return false;
901 }
902 return true;
903}
904
905rtx
3754d046 906gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
2166bbaa 907{
908 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
2ff23ed0 909 return gen_rtx_raw_SUBREG (mode, reg, offset);
701e46d0 910}
911
c6259b83 912/* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
914
701e46d0 915rtx
3754d046 916gen_lowpart_SUBREG (machine_mode mode, rtx reg)
701e46d0 917{
3754d046 918 machine_mode inmode;
701e46d0 919
920 inmode = GET_MODE (reg);
921 if (inmode == VOIDmode)
922 inmode = mode;
81802af6 923 return gen_rtx_SUBREG (mode, reg,
924 subreg_lowpart_offset (mode, inmode));
701e46d0 925}
e1398578 926
927rtx
3754d046 928gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
e1398578 929 enum var_init_status status)
930{
931 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
932 PAT_VAR_LOCATION_STATUS (x) = status;
933 return x;
934}
7014838c 935\f
15bbde2b 936
cf9ac040 937/* Create an rtvec and stores within it the RTXen passed in the arguments. */
938
15bbde2b 939rtvec
ee582a61 940gen_rtvec (int n, ...)
15bbde2b 941{
cf9ac040 942 int i;
943 rtvec rt_val;
ee582a61 944 va_list p;
15bbde2b 945
ee582a61 946 va_start (p, n);
15bbde2b 947
cf9ac040 948 /* Don't allocate an empty rtvec... */
15bbde2b 949 if (n == 0)
451c8e2f 950 {
951 va_end (p);
952 return NULL_RTVEC;
953 }
15bbde2b 954
cf9ac040 955 rt_val = rtvec_alloc (n);
e5fcd76a 956
15bbde2b 957 for (i = 0; i < n; i++)
cf9ac040 958 rt_val->elem[i] = va_arg (p, rtx);
7ad77798 959
ee582a61 960 va_end (p);
cf9ac040 961 return rt_val;
15bbde2b 962}
963
964rtvec
35cb5232 965gen_rtvec_v (int n, rtx *argp)
15bbde2b 966{
19cb6b50 967 int i;
968 rtvec rt_val;
15bbde2b 969
cf9ac040 970 /* Don't allocate an empty rtvec... */
15bbde2b 971 if (n == 0)
cf9ac040 972 return NULL_RTVEC;
15bbde2b 973
cf9ac040 974 rt_val = rtvec_alloc (n);
15bbde2b 975
976 for (i = 0; i < n; i++)
a4070a91 977 rt_val->elem[i] = *argp++;
15bbde2b 978
979 return rt_val;
980}
f17e3fff 981
982rtvec
983gen_rtvec_v (int n, rtx_insn **argp)
984{
985 int i;
986 rtvec rt_val;
987
988 /* Don't allocate an empty rtvec... */
989 if (n == 0)
990 return NULL_RTVEC;
991
992 rt_val = rtvec_alloc (n);
993
994 for (i = 0; i < n; i++)
995 rt_val->elem[i] = *argp++;
996
997 return rt_val;
998}
999
15bbde2b 1000\f
80c70e76 1001/* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1006
1007int
3754d046 1008byte_lowpart_offset (machine_mode outer_mode,
1009 machine_mode inner_mode)
80c70e76 1010{
d0257d43 1011 if (paradoxical_subreg_p (outer_mode, inner_mode))
80c70e76 1012 return -subreg_lowpart_offset (inner_mode, outer_mode);
d0257d43 1013 else
1014 return subreg_lowpart_offset (outer_mode, inner_mode);
80c70e76 1015}
1016\f
15bbde2b 1017/* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1019
1020rtx
3754d046 1021gen_reg_rtx (machine_mode mode)
15bbde2b 1022{
19cb6b50 1023 rtx val;
27a7a23a 1024 unsigned int align = GET_MODE_ALIGNMENT (mode);
15bbde2b 1025
1b7ff857 1026 gcc_assert (can_create_pseudo_p ());
15bbde2b 1027
27a7a23a 1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1030 to stack later. */
48e1416a 1031 if (SUPPORTS_STACK_ALIGNMENT
27a7a23a 1032 && crtl->stack_alignment_estimated < align
1033 && !crtl->stack_realign_processed)
8645d3e7 1034 {
1035 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1036 if (crtl->stack_alignment_estimated < min_align)
1037 crtl->stack_alignment_estimated = min_align;
1038 }
27a7a23a 1039
316bc009 1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 1043 {
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart, imagpart;
3754d046 1050 machine_mode partmode = GET_MODE_INNER (mode);
76c37538 1051
1052 realpart = gen_reg_rtx (partmode);
1053 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 1054 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 1055 }
1056
b4c6ce9b 1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl->emit.regno_pointer_align_length);
1059
cd769037 1060 crtl->emit.ensure_regno_capacity ();
1061 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
15bbde2b 1062
cd769037 1063 val = gen_raw_REG (mode, reg_rtx_no);
1064 regno_reg_rtx[reg_rtx_no++] = val;
1065 return val;
1066}
fcdc122e 1067
cd769037 1068/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1069 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
0a893c29 1070
cd769037 1071void
1072emit_status::ensure_regno_capacity ()
1073{
1074 int old_size = regno_pointer_align_length;
15bbde2b 1075
cd769037 1076 if (reg_rtx_no < old_size)
1077 return;
15bbde2b 1078
cd769037 1079 int new_size = old_size * 2;
1080 while (reg_rtx_no >= new_size)
1081 new_size *= 2;
1082
1083 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1084 memset (tmp + old_size, 0, new_size - old_size);
1085 regno_pointer_align = (unsigned char *) tmp;
1086
1087 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1088 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1089 regno_reg_rtx = new1;
1090
1091 crtl->emit.regno_pointer_align_length = new_size;
15bbde2b 1092}
1093
ea239197 1094/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1095
1096bool
1097reg_is_parm_p (rtx reg)
1098{
1099 tree decl;
1100
1101 gcc_assert (REG_P (reg));
1102 decl = REG_EXPR (reg);
1103 return (decl && TREE_CODE (decl) == PARM_DECL);
1104}
1105
80c70e76 1106/* Update NEW with the same attributes as REG, but with OFFSET added
1107 to the REG_OFFSET. */
ca74b940 1108
1a6a0f2a 1109static void
9ce37fa7 1110update_reg_offset (rtx new_rtx, rtx reg, int offset)
ca74b940 1111{
9ce37fa7 1112 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
35cb5232 1113 REG_OFFSET (reg) + offset);
1a6a0f2a 1114}
1115
80c70e76 1116/* Generate a register with same attributes as REG, but with OFFSET
1117 added to the REG_OFFSET. */
1a6a0f2a 1118
1119rtx
3754d046 1120gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1a6a0f2a 1121 int offset)
1122{
9ce37fa7 1123 rtx new_rtx = gen_rtx_REG (mode, regno);
1a6a0f2a 1124
9ce37fa7 1125 update_reg_offset (new_rtx, reg, offset);
1126 return new_rtx;
1a6a0f2a 1127}
1128
1129/* Generate a new pseudo-register with the same attributes as REG, but
80c70e76 1130 with OFFSET added to the REG_OFFSET. */
1a6a0f2a 1131
1132rtx
3754d046 1133gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1a6a0f2a 1134{
9ce37fa7 1135 rtx new_rtx = gen_reg_rtx (mode);
1a6a0f2a 1136
9ce37fa7 1137 update_reg_offset (new_rtx, reg, offset);
1138 return new_rtx;
ca74b940 1139}
1140
80c70e76 1141/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1142 new register is a (possibly paradoxical) lowpart of the old one. */
ca74b940 1143
1144void
3754d046 1145adjust_reg_mode (rtx reg, machine_mode mode)
ca74b940 1146{
80c70e76 1147 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1148 PUT_MODE (reg, mode);
1149}
1150
1151/* Copy REG's attributes from X, if X has any attributes. If REG and X
1152 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1153
1154void
1155set_reg_attrs_from_value (rtx reg, rtx x)
1156{
1157 int offset;
e623c80a 1158 bool can_be_reg_pointer = true;
1159
1160 /* Don't call mark_reg_pointer for incompatible pointer sign
1161 extension. */
1162 while (GET_CODE (x) == SIGN_EXTEND
1163 || GET_CODE (x) == ZERO_EXTEND
1164 || GET_CODE (x) == TRUNCATE
1165 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1166 {
4dd7c283 1167#if defined(POINTERS_EXTEND_UNSIGNED)
1168 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
afcace5c 1169 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1170 || (paradoxical_subreg_p (x)
1171 && ! (SUBREG_PROMOTED_VAR_P (x)
1172 && SUBREG_CHECK_PROMOTED_SIGN (x,
1173 POINTERS_EXTEND_UNSIGNED))))
4dd7c283 1174 && !targetm.have_ptr_extend ())
e623c80a 1175 can_be_reg_pointer = false;
1176#endif
1177 x = XEXP (x, 0);
1178 }
80c70e76 1179
ac56145e 1180 /* Hard registers can be reused for multiple purposes within the same
1181 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1182 on them is wrong. */
1183 if (HARD_REGISTER_P (reg))
1184 return;
1185
80c70e76 1186 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
ae12ddda 1187 if (MEM_P (x))
1188 {
da443c27 1189 if (MEM_OFFSET_KNOWN_P (x))
1190 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1191 MEM_OFFSET (x) + offset);
e623c80a 1192 if (can_be_reg_pointer && MEM_POINTER (x))
40b93dba 1193 mark_reg_pointer (reg, 0);
ae12ddda 1194 }
1195 else if (REG_P (x))
1196 {
1197 if (REG_ATTRS (x))
1198 update_reg_offset (reg, x, offset);
e623c80a 1199 if (can_be_reg_pointer && REG_POINTER (x))
ae12ddda 1200 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1201 }
1202}
1203
1204/* Generate a REG rtx for a new pseudo register, copying the mode
1205 and attributes from X. */
1206
1207rtx
1208gen_reg_rtx_and_attrs (rtx x)
1209{
1210 rtx reg = gen_reg_rtx (GET_MODE (x));
1211 set_reg_attrs_from_value (reg, x);
1212 return reg;
ca74b940 1213}
1214
263c416c 1215/* Set the register attributes for registers contained in PARM_RTX.
1216 Use needed values from memory attributes of MEM. */
1217
1218void
35cb5232 1219set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
263c416c 1220{
8ad4c111 1221 if (REG_P (parm_rtx))
80c70e76 1222 set_reg_attrs_from_value (parm_rtx, mem);
263c416c 1223 else if (GET_CODE (parm_rtx) == PARALLEL)
1224 {
1225 /* Check for a NULL entry in the first slot, used to indicate that the
1226 parameter goes both on the stack and in registers. */
1227 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1228 for (; i < XVECLEN (parm_rtx, 0); i++)
1229 {
1230 rtx x = XVECEXP (parm_rtx, 0, i);
8ad4c111 1231 if (REG_P (XEXP (x, 0)))
263c416c 1232 REG_ATTRS (XEXP (x, 0))
1233 = get_reg_attrs (MEM_EXPR (mem),
1234 INTVAL (XEXP (x, 1)));
1235 }
1236 }
1237}
1238
80c70e76 1239/* Set the REG_ATTRS for registers in value X, given that X represents
1240 decl T. */
ca74b940 1241
a8dd994c 1242void
80c70e76 1243set_reg_attrs_for_decl_rtl (tree t, rtx x)
1244{
94f92c36 1245 if (!t)
1246 return;
1247 tree tdecl = t;
80c70e76 1248 if (GET_CODE (x) == SUBREG)
ebfc27f5 1249 {
80c70e76 1250 gcc_assert (subreg_lowpart_p (x));
1251 x = SUBREG_REG (x);
ebfc27f5 1252 }
8ad4c111 1253 if (REG_P (x))
80c70e76 1254 REG_ATTRS (x)
1255 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
94f92c36 1256 DECL_P (tdecl)
1257 ? DECL_MODE (tdecl)
1258 : TYPE_MODE (TREE_TYPE (tdecl))));
ca74b940 1259 if (GET_CODE (x) == CONCAT)
1260 {
1261 if (REG_P (XEXP (x, 0)))
1262 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1263 if (REG_P (XEXP (x, 1)))
1264 REG_ATTRS (XEXP (x, 1))
1265 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1266 }
1267 if (GET_CODE (x) == PARALLEL)
1268 {
85d25060 1269 int i, start;
1270
1271 /* Check for a NULL entry, used to indicate that the parameter goes
1272 both on the stack and in registers. */
1273 if (XEXP (XVECEXP (x, 0, 0), 0))
1274 start = 0;
1275 else
1276 start = 1;
1277
1278 for (i = start; i < XVECLEN (x, 0); i++)
ca74b940 1279 {
1280 rtx y = XVECEXP (x, 0, i);
1281 if (REG_P (XEXP (y, 0)))
1282 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1283 }
1284 }
1285}
1286
80c70e76 1287/* Assign the RTX X to declaration T. */
1288
1289void
1290set_decl_rtl (tree t, rtx x)
1291{
1292 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1293 if (x)
1294 set_reg_attrs_for_decl_rtl (t, x);
1295}
1296
d91cf567 1297/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1298 if the ABI requires the parameter to be passed by reference. */
80c70e76 1299
1300void
d91cf567 1301set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
80c70e76 1302{
1303 DECL_INCOMING_RTL (t) = x;
d91cf567 1304 if (x && !by_reference_p)
80c70e76 1305 set_reg_attrs_for_decl_rtl (t, x);
1306}
1307
de8ecfb5 1308/* Identify REG (which may be a CONCAT) as a user register. */
1309
1310void
35cb5232 1311mark_user_reg (rtx reg)
de8ecfb5 1312{
1313 if (GET_CODE (reg) == CONCAT)
1314 {
1315 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1316 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1317 }
de8ecfb5 1318 else
611234b4 1319 {
1320 gcc_assert (REG_P (reg));
1321 REG_USERVAR_P (reg) = 1;
1322 }
de8ecfb5 1323}
1324
d4c332ff 1325/* Identify REG as a probable pointer register and show its alignment
1326 as ALIGN, if nonzero. */
15bbde2b 1327
1328void
35cb5232 1329mark_reg_pointer (rtx reg, int align)
15bbde2b 1330{
e61a0a7f 1331 if (! REG_POINTER (reg))
612409a6 1332 {
e61a0a7f 1333 REG_POINTER (reg) = 1;
d4c332ff 1334
612409a6 1335 if (align)
1336 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1337 }
1338 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
8b332087 1339 /* We can no-longer be sure just how aligned this pointer is. */
d4c332ff 1340 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 1341}
1342
1343/* Return 1 plus largest pseudo reg number used in the current function. */
1344
1345int
35cb5232 1346max_reg_num (void)
15bbde2b 1347{
1348 return reg_rtx_no;
1349}
1350
1351/* Return 1 + the largest label number used so far in the current function. */
1352
1353int
35cb5232 1354max_label_num (void)
15bbde2b 1355{
15bbde2b 1356 return label_num;
1357}
1358
1359/* Return first label number used in this function (if any were used). */
1360
1361int
35cb5232 1362get_first_label_num (void)
15bbde2b 1363{
1364 return first_label_num;
1365}
4ee9c684 1366
1367/* If the rtx for label was created during the expansion of a nested
1368 function, then first_label_num won't include this label number.
f0b5f617 1369 Fix this now so that array indices work later. */
4ee9c684 1370
1371void
6313d5da 1372maybe_set_first_label_num (rtx_code_label *x)
4ee9c684 1373{
1374 if (CODE_LABEL_NUMBER (x) < first_label_num)
1375 first_label_num = CODE_LABEL_NUMBER (x);
1376}
836c1c68 1377
1378/* For use by the RTL function loader, when mingling with normal
1379 functions.
1380 Ensure that label_num is greater than the label num of X, to avoid
1381 duplicate labels in the generated assembler. */
1382
1383void
1384maybe_set_max_label_num (rtx_code_label *x)
1385{
1386 if (CODE_LABEL_NUMBER (x) >= label_num)
1387 label_num = CODE_LABEL_NUMBER (x) + 1;
1388}
1389
15bbde2b 1390\f
1391/* Return a value representing some low-order bits of X, where the number
1392 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 1393 between floating-point and fixed-point values, rather, the bit
15bbde2b 1394 representation is returned.
1395
1396 This function handles the cases in common between gen_lowpart, below,
1397 and two variants in cse.c and combine.c. These are the cases that can
1398 be safely handled at all points in the compilation.
1399
1400 If this is not a case we can handle, return 0. */
1401
1402rtx
3754d046 1403gen_lowpart_common (machine_mode mode, rtx x)
15bbde2b 1404{
701e46d0 1405 int msize = GET_MODE_SIZE (mode);
791172c5 1406 int xsize;
3754d046 1407 machine_mode innermode;
791172c5 1408
1409 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1410 so we have to make one up. Yuk. */
1411 innermode = GET_MODE (x);
971ba038 1412 if (CONST_INT_P (x)
6c799a83 1413 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
791172c5 1414 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1415 else if (innermode == VOIDmode)
24cd46a7 1416 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
48e1416a 1417
791172c5 1418 xsize = GET_MODE_SIZE (innermode);
1419
611234b4 1420 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
15bbde2b 1421
791172c5 1422 if (innermode == mode)
15bbde2b 1423 return x;
1424
1425 /* MODE must occupy no more words than the mode of X. */
791172c5 1426 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1427 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
15bbde2b 1428 return 0;
1429
9abe1e73 1430 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
cee7491d 1431 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
9abe1e73 1432 return 0;
1433
15bbde2b 1434 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
64115b39 1435 && (GET_MODE_CLASS (mode) == MODE_INT
1436 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
15bbde2b 1437 {
1438 /* If we are getting the low-order part of something that has been
1439 sign- or zero-extended, we can either just use the object being
1440 extended or make a narrower extension. If we want an even smaller
1441 piece than the size of the object being extended, call ourselves
1442 recursively.
1443
1444 This case is used mostly by combine and cse. */
1445
1446 if (GET_MODE (XEXP (x, 0)) == mode)
1447 return XEXP (x, 0);
791172c5 1448 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
15bbde2b 1449 return gen_lowpart_common (mode, XEXP (x, 0));
791172c5 1450 else if (msize < xsize)
3ad7bb1c 1451 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
15bbde2b 1452 }
8ad4c111 1453 else if (GET_CODE (x) == SUBREG || REG_P (x)
791172c5 1454 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
efa08fc2 1455 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
a8a727ad 1456 return lowpart_subreg (mode, x, innermode);
4a307dd5 1457
15bbde2b 1458 /* Otherwise, we can't do this. */
1459 return 0;
1460}
1461\f
d56d0ca2 1462rtx
3754d046 1463gen_highpart (machine_mode mode, rtx x)
d56d0ca2 1464{
701e46d0 1465 unsigned int msize = GET_MODE_SIZE (mode);
81802af6 1466 rtx result;
701e46d0 1467
d56d0ca2 1468 /* This case loses if X is a subreg. To catch bugs early,
1469 complain if an invalid MODE is used even in other cases. */
611234b4 1470 gcc_assert (msize <= UNITS_PER_WORD
1471 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
701e46d0 1472
81802af6 1473 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1474 subreg_highpart_offset (mode, GET_MODE (x)));
611234b4 1475 gcc_assert (result);
48e1416a 1476
a8c36ab2 1477 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1478 the target if we have a MEM. gen_highpart must return a valid operand,
1479 emitting code if necessary to do so. */
611234b4 1480 if (MEM_P (result))
1481 {
1482 result = validize_mem (result);
1483 gcc_assert (result);
1484 }
48e1416a 1485
81802af6 1486 return result;
1487}
704fcf2b 1488
29d56731 1489/* Like gen_highpart, but accept mode of EXP operand in case EXP can
704fcf2b 1490 be VOIDmode constant. */
1491rtx
3754d046 1492gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
704fcf2b 1493{
1494 if (GET_MODE (exp) != VOIDmode)
1495 {
611234b4 1496 gcc_assert (GET_MODE (exp) == innermode);
704fcf2b 1497 return gen_highpart (outermode, exp);
1498 }
1499 return simplify_gen_subreg (outermode, exp, innermode,
1500 subreg_highpart_offset (outermode, innermode));
1501}
d4c5e26d 1502
ca99c787 1503/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1504 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
10ef59ac 1505
81802af6 1506unsigned int
ca99c787 1507subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
81802af6 1508{
ca99c787 1509 if (outer_bytes > inner_bytes)
1510 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1511 return 0;
701e46d0 1512
ca99c787 1513 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1514 return inner_bytes - outer_bytes;
1515 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1516 return 0;
1517 else
1518 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
d56d0ca2 1519}
64ab453f 1520
ca99c787 1521/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1522 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1523
81802af6 1524unsigned int
ca99c787 1525subreg_size_highpart_offset (unsigned int outer_bytes,
1526 unsigned int inner_bytes)
64ab453f 1527{
ca99c787 1528 gcc_assert (inner_bytes >= outer_bytes);
64ab453f 1529
ca99c787 1530 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1531 return 0;
1532 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1533 return inner_bytes - outer_bytes;
1534 else
1535 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1536 (inner_bytes - outer_bytes)
1537 * BITS_PER_UNIT);
64ab453f 1538}
d56d0ca2 1539
15bbde2b 1540/* Return 1 iff X, assumed to be a SUBREG,
1541 refers to the least significant part of its containing reg.
1542 If X is not a SUBREG, always return 1 (it is its own low part!). */
1543
1544int
b7bf20db 1545subreg_lowpart_p (const_rtx x)
15bbde2b 1546{
1547 if (GET_CODE (x) != SUBREG)
1548 return 1;
7e14c1bf 1549 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1550 return 0;
15bbde2b 1551
81802af6 1552 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1553 == SUBREG_BYTE (x));
15bbde2b 1554}
1555\f
701e46d0 1556/* Return subword OFFSET of operand OP.
1557 The word number, OFFSET, is interpreted as the word number starting
1558 at the low-order address. OFFSET 0 is the low-order word if not
1559 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1560
1561 If we cannot extract the required word, we return zero. Otherwise,
1562 an rtx corresponding to the requested word will be returned.
1563
1564 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1565 reload has completed, a valid address will always be returned. After
1566 reload, if a valid address cannot be returned, we return zero.
1567
1568 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1569 it is the responsibility of the caller.
1570
1571 MODE is the mode of OP in case it is a CONST_INT.
1572
1573 ??? This is still rather broken for some cases. The problem for the
1574 moment is that all callers of this thing provide no 'goal mode' to
1575 tell us to work with. This exists because all callers were written
84e81e84 1576 in a word based SUBREG world.
1577 Now use of this function can be deprecated by simplify_subreg in most
1578 cases.
1579 */
701e46d0 1580
1581rtx
3754d046 1582operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
701e46d0 1583{
1584 if (mode == VOIDmode)
1585 mode = GET_MODE (op);
1586
611234b4 1587 gcc_assert (mode != VOIDmode);
701e46d0 1588
6312a35e 1589 /* If OP is narrower than a word, fail. */
701e46d0 1590 if (mode != BLKmode
1591 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1592 return 0;
1593
6312a35e 1594 /* If we want a word outside OP, return zero. */
701e46d0 1595 if (mode != BLKmode
1596 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1597 return const0_rtx;
1598
701e46d0 1599 /* Form a new MEM at the requested address. */
e16ceb8e 1600 if (MEM_P (op))
701e46d0 1601 {
9ce37fa7 1602 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1603
e4e86ec5 1604 if (! validate_address)
9ce37fa7 1605 return new_rtx;
e4e86ec5 1606
1607 else if (reload_completed)
701e46d0 1608 {
bd1a81f7 1609 if (! strict_memory_address_addr_space_p (word_mode,
1610 XEXP (new_rtx, 0),
1611 MEM_ADDR_SPACE (op)))
e4e86ec5 1612 return 0;
701e46d0 1613 }
e4e86ec5 1614 else
9ce37fa7 1615 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
701e46d0 1616 }
1617
84e81e84 1618 /* Rest can be handled by simplify_subreg. */
1619 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1620}
1621
89f18f73 1622/* Similar to `operand_subword', but never return 0. If we can't
1623 extract the required subword, put OP into a register and try again.
1624 The second attempt must succeed. We always validate the address in
1625 this case.
15bbde2b 1626
1627 MODE is the mode of OP, in case it is CONST_INT. */
1628
1629rtx
3754d046 1630operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
15bbde2b 1631{
701e46d0 1632 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1633
1634 if (result)
1635 return result;
1636
1637 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1638 {
1639 /* If this is a register which can not be accessed by words, copy it
1640 to a pseudo register. */
8ad4c111 1641 if (REG_P (op))
ac825d29 1642 op = copy_to_reg (op);
1643 else
1644 op = force_reg (mode, op);
1645 }
15bbde2b 1646
701e46d0 1647 result = operand_subword (op, offset, 1, mode);
611234b4 1648 gcc_assert (result);
15bbde2b 1649
1650 return result;
1651}
1652\f
b3ff8d90 1653/* Returns 1 if both MEM_EXPR can be considered equal
1654 and 0 otherwise. */
1655
1656int
52d07779 1657mem_expr_equal_p (const_tree expr1, const_tree expr2)
b3ff8d90 1658{
1659 if (expr1 == expr2)
1660 return 1;
1661
1662 if (! expr1 || ! expr2)
1663 return 0;
1664
1665 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1666 return 0;
1667
3a443843 1668 return operand_equal_p (expr1, expr2, 0);
b3ff8d90 1669}
1670
ad0a178f 1671/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1672 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1673 -1 if not known. */
1674
1675int
7cfdc2f0 1676get_mem_align_offset (rtx mem, unsigned int align)
ad0a178f 1677{
1678 tree expr;
1679 unsigned HOST_WIDE_INT offset;
1680
1681 /* This function can't use
da443c27 1682 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
98ab9e8f 1683 || (MAX (MEM_ALIGN (mem),
957d0361 1684 MAX (align, get_object_alignment (MEM_EXPR (mem))))
ad0a178f 1685 < align))
1686 return -1;
1687 else
da443c27 1688 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
ad0a178f 1689 for two reasons:
1690 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1691 for <variable>. get_inner_reference doesn't handle it and
1692 even if it did, the alignment in that case needs to be determined
1693 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1694 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1695 isn't sufficiently aligned, the object it is in might be. */
1696 gcc_assert (MEM_P (mem));
1697 expr = MEM_EXPR (mem);
da443c27 1698 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
ad0a178f 1699 return -1;
1700
da443c27 1701 offset = MEM_OFFSET (mem);
ad0a178f 1702 if (DECL_P (expr))
1703 {
1704 if (DECL_ALIGN (expr) < align)
1705 return -1;
1706 }
1707 else if (INDIRECT_REF_P (expr))
1708 {
1709 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1710 return -1;
1711 }
1712 else if (TREE_CODE (expr) == COMPONENT_REF)
1713 {
1714 while (1)
1715 {
1716 tree inner = TREE_OPERAND (expr, 0);
1717 tree field = TREE_OPERAND (expr, 1);
1718 tree byte_offset = component_ref_field_offset (expr);
1719 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1720
1721 if (!byte_offset
e913b5cd 1722 || !tree_fits_uhwi_p (byte_offset)
1723 || !tree_fits_uhwi_p (bit_offset))
ad0a178f 1724 return -1;
1725
e913b5cd 1726 offset += tree_to_uhwi (byte_offset);
1727 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
ad0a178f 1728
1729 if (inner == NULL_TREE)
1730 {
1731 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1732 < (unsigned int) align)
1733 return -1;
1734 break;
1735 }
1736 else if (DECL_P (inner))
1737 {
1738 if (DECL_ALIGN (inner) < align)
1739 return -1;
1740 break;
1741 }
1742 else if (TREE_CODE (inner) != COMPONENT_REF)
1743 return -1;
1744 expr = inner;
1745 }
1746 }
1747 else
1748 return -1;
1749
1750 return offset & ((align / BITS_PER_UNIT) - 1);
1751}
1752
310b57a1 1753/* Given REF (a MEM) and T, either the type of X or the expression
c6259b83 1754 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f717f77 1755 if we are making a new object of this type. BITPOS is nonzero if
1756 there is an offset outstanding on T that will be applied later. */
c6259b83 1757
1758void
35cb5232 1759set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1760 HOST_WIDE_INT bitpos)
c6259b83 1761{
6f717f77 1762 HOST_WIDE_INT apply_bitpos = 0;
c6259b83 1763 tree type;
d72886b5 1764 struct mem_attrs attrs, *defattrs, *refattrs;
3f06bd1b 1765 addr_space_t as;
c6259b83 1766
1767 /* It can happen that type_for_mode was given a mode for which there
1768 is no language-level type. In which case it returns NULL, which
1769 we can see here. */
1770 if (t == NULL_TREE)
1771 return;
1772
1773 type = TYPE_P (t) ? t : TREE_TYPE (t);
4ccffa39 1774 if (type == error_mark_node)
1775 return;
c6259b83 1776
c6259b83 1777 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1778 wrong answer, as it assumes that DECL_RTL already has the right alias
1779 info. Callers should not set DECL_RTL until after the call to
1780 set_mem_attributes. */
611234b4 1781 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
c6259b83 1782
d72886b5 1783 memset (&attrs, 0, sizeof (attrs));
1784
96216d37 1785 /* Get the alias set from the expression or type (perhaps using a
2a631e19 1786 front-end routine) and use it. */
d72886b5 1787 attrs.alias = get_alias_set (t);
c6259b83 1788
fbc6244b 1789 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
8d350e69 1790 MEM_POINTER (ref) = POINTER_TYPE_P (type);
c6259b83 1791
d8dccfe9 1792 /* Default values from pre-existing memory attributes if present. */
d72886b5 1793 refattrs = MEM_ATTRS (ref);
1794 if (refattrs)
d8dccfe9 1795 {
1796 /* ??? Can this ever happen? Calling this routine on a MEM that
1797 already carries memory attributes should probably be invalid. */
d72886b5 1798 attrs.expr = refattrs->expr;
6d58bcba 1799 attrs.offset_known_p = refattrs->offset_known_p;
d72886b5 1800 attrs.offset = refattrs->offset;
6d58bcba 1801 attrs.size_known_p = refattrs->size_known_p;
d72886b5 1802 attrs.size = refattrs->size;
1803 attrs.align = refattrs->align;
d8dccfe9 1804 }
1805
1806 /* Otherwise, default values from the mode of the MEM reference. */
d72886b5 1807 else
d8dccfe9 1808 {
d72886b5 1809 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1810 gcc_assert (!defattrs->expr);
6d58bcba 1811 gcc_assert (!defattrs->offset_known_p);
d72886b5 1812
d8dccfe9 1813 /* Respect mode size. */
6d58bcba 1814 attrs.size_known_p = defattrs->size_known_p;
d72886b5 1815 attrs.size = defattrs->size;
d8dccfe9 1816 /* ??? Is this really necessary? We probably should always get
1817 the size from the type below. */
1818
1819 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1820 if T is an object, always compute the object alignment below. */
d72886b5 1821 if (TYPE_P (t))
1822 attrs.align = defattrs->align;
1823 else
1824 attrs.align = BITS_PER_UNIT;
d8dccfe9 1825 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1826 e.g. if the type carries an alignment attribute. Should we be
1827 able to simply always use TYPE_ALIGN? */
1828 }
1829
b3b6e4b5 1830 /* We can set the alignment from the type if we are making an object or if
1831 this is an INDIRECT_REF. */
1832 if (objectp || TREE_CODE (t) == INDIRECT_REF)
d72886b5 1833 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
679e0056 1834
96216d37 1835 /* If the size is known, we can set that. */
50ba3acc 1836 tree new_size = TYPE_SIZE_UNIT (type);
96216d37 1837
9eec20bf 1838 /* The address-space is that of the type. */
1839 as = TYPE_ADDR_SPACE (type);
1840
579bccf9 1841 /* If T is not a type, we may be able to deduce some more information about
1842 the expression. */
1843 if (! TYPE_P (t))
2a631e19 1844 {
ae2dd339 1845 tree base;
b04fab2a 1846
2a631e19 1847 if (TREE_THIS_VOLATILE (t))
1848 MEM_VOLATILE_P (ref) = 1;
c6259b83 1849
3c00f11c 1850 /* Now remove any conversions: they don't change what the underlying
1851 object is. Likewise for SAVE_EXPR. */
72dd6141 1852 while (CONVERT_EXPR_P (t)
3c00f11c 1853 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1854 || TREE_CODE (t) == SAVE_EXPR)
2a631e19 1855 t = TREE_OPERAND (t, 0);
1856
73eb0a09 1857 /* Note whether this expression can trap. */
1858 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1859
1860 base = get_base_address (t);
3f06bd1b 1861 if (base)
1862 {
1863 if (DECL_P (base)
1864 && TREE_READONLY (base)
1865 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1866 && !TREE_THIS_VOLATILE (base))
1867 MEM_READONLY_P (ref) = 1;
1868
1869 /* Mark static const strings readonly as well. */
1870 if (TREE_CODE (base) == STRING_CST
1871 && TREE_READONLY (base)
1872 && TREE_STATIC (base))
1873 MEM_READONLY_P (ref) = 1;
1874
9eec20bf 1875 /* Address-space information is on the base object. */
3f06bd1b 1876 if (TREE_CODE (base) == MEM_REF
1877 || TREE_CODE (base) == TARGET_MEM_REF)
1878 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1879 0))));
1880 else
1881 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1882 }
cab98a0d 1883
2b02580f 1884 /* If this expression uses it's parent's alias set, mark it such
1885 that we won't change it. */
d400f5e1 1886 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
5cc193e7 1887 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1888
2a631e19 1889 /* If this is a decl, set the attributes of the MEM from it. */
1890 if (DECL_P (t))
1891 {
d72886b5 1892 attrs.expr = t;
6d58bcba 1893 attrs.offset_known_p = true;
1894 attrs.offset = 0;
6f717f77 1895 apply_bitpos = bitpos;
50ba3acc 1896 new_size = DECL_SIZE_UNIT (t);
2a631e19 1897 }
1898
9eec20bf 1899 /* ??? If we end up with a constant here do record a MEM_EXPR. */
ce45a448 1900 else if (CONSTANT_CLASS_P (t))
9eec20bf 1901 ;
b10dbbca 1902
50ba3acc 1903 /* If this is a field reference, record it. */
1904 else if (TREE_CODE (t) == COMPONENT_REF)
b10dbbca 1905 {
d72886b5 1906 attrs.expr = t;
6d58bcba 1907 attrs.offset_known_p = true;
1908 attrs.offset = 0;
6f717f77 1909 apply_bitpos = bitpos;
50ba3acc 1910 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1911 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
b10dbbca 1912 }
1913
1914 /* If this is an array reference, look for an outer field reference. */
1915 else if (TREE_CODE (t) == ARRAY_REF)
1916 {
1917 tree off_tree = size_zero_node;
6b039979 1918 /* We can't modify t, because we use it at the end of the
1919 function. */
1920 tree t2 = t;
b10dbbca 1921
1922 do
1923 {
6b039979 1924 tree index = TREE_OPERAND (t2, 1);
6374121b 1925 tree low_bound = array_ref_low_bound (t2);
1926 tree unit_size = array_ref_element_size (t2);
97f8ce30 1927
1928 /* We assume all arrays have sizes that are a multiple of a byte.
1929 First subtract the lower bound, if any, in the type of the
6374121b 1930 index, then convert to sizetype and multiply by the size of
1931 the array element. */
1932 if (! integer_zerop (low_bound))
faa43f85 1933 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1934 index, low_bound);
97f8ce30 1935
6374121b 1936 off_tree = size_binop (PLUS_EXPR,
535664e3 1937 size_binop (MULT_EXPR,
1938 fold_convert (sizetype,
1939 index),
6374121b 1940 unit_size),
1941 off_tree);
6b039979 1942 t2 = TREE_OPERAND (t2, 0);
b10dbbca 1943 }
6b039979 1944 while (TREE_CODE (t2) == ARRAY_REF);
b10dbbca 1945
9eec20bf 1946 if (DECL_P (t2)
6a57a1e8 1947 || (TREE_CODE (t2) == COMPONENT_REF
1948 /* For trailing arrays t2 doesn't have a size that
1949 covers all valid accesses. */
07110764 1950 && ! array_at_struct_end_p (t)))
b10dbbca 1951 {
d72886b5 1952 attrs.expr = t2;
6d58bcba 1953 attrs.offset_known_p = false;
e913b5cd 1954 if (tree_fits_uhwi_p (off_tree))
6f717f77 1955 {
6d58bcba 1956 attrs.offset_known_p = true;
e913b5cd 1957 attrs.offset = tree_to_uhwi (off_tree);
6f717f77 1958 apply_bitpos = bitpos;
1959 }
b10dbbca 1960 }
9eec20bf 1961 /* Else do not record a MEM_EXPR. */
2d8fe5d0 1962 }
1963
6d72287b 1964 /* If this is an indirect reference, record it. */
182cf5a9 1965 else if (TREE_CODE (t) == MEM_REF
5d9de213 1966 || TREE_CODE (t) == TARGET_MEM_REF)
6d72287b 1967 {
d72886b5 1968 attrs.expr = t;
6d58bcba 1969 attrs.offset_known_p = true;
1970 attrs.offset = 0;
6d72287b 1971 apply_bitpos = bitpos;
1972 }
1973
9eec20bf 1974 /* Compute the alignment. */
1975 unsigned int obj_align;
1976 unsigned HOST_WIDE_INT obj_bitpos;
1977 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1978 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1979 if (obj_bitpos != 0)
ac29ece2 1980 obj_align = least_bit_hwi (obj_bitpos);
9eec20bf 1981 attrs.align = MAX (attrs.align, obj_align);
2a631e19 1982 }
1983
e913b5cd 1984 if (tree_fits_uhwi_p (new_size))
50ba3acc 1985 {
1986 attrs.size_known_p = true;
e913b5cd 1987 attrs.size = tree_to_uhwi (new_size);
50ba3acc 1988 }
1989
e2e205b3 1990 /* If we modified OFFSET based on T, then subtract the outstanding
595f1461 1991 bit position offset. Similarly, increase the size of the accessed
1992 object to contain the negative offset. */
6f717f77 1993 if (apply_bitpos)
595f1461 1994 {
6d58bcba 1995 gcc_assert (attrs.offset_known_p);
1996 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1997 if (attrs.size_known_p)
1998 attrs.size += apply_bitpos / BITS_PER_UNIT;
595f1461 1999 }
6f717f77 2000
2a631e19 2001 /* Now set the attributes we computed above. */
3f06bd1b 2002 attrs.addrspace = as;
d72886b5 2003 set_mem_attrs (ref, &attrs);
c6259b83 2004}
2005
6f717f77 2006void
35cb5232 2007set_mem_attributes (rtx ref, tree t, int objectp)
6f717f77 2008{
2009 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2010}
2011
c6259b83 2012/* Set the alias set of MEM to SET. */
2013
2014void
32c2fdea 2015set_mem_alias_set (rtx mem, alias_set_type set)
c6259b83 2016{
d72886b5 2017 struct mem_attrs attrs;
2018
c6259b83 2019 /* If the new and old alias sets don't conflict, something is wrong. */
1b4345f7 2020 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
d72886b5 2021 attrs = *get_mem_attrs (mem);
2022 attrs.alias = set;
2023 set_mem_attrs (mem, &attrs);
bd1a81f7 2024}
2025
2026/* Set the address space of MEM to ADDRSPACE (target-defined). */
2027
2028void
2029set_mem_addr_space (rtx mem, addr_space_t addrspace)
2030{
d72886b5 2031 struct mem_attrs attrs;
2032
2033 attrs = *get_mem_attrs (mem);
2034 attrs.addrspace = addrspace;
2035 set_mem_attrs (mem, &attrs);
c6259b83 2036}
96216d37 2037
1c4512da 2038/* Set the alignment of MEM to ALIGN bits. */
96216d37 2039
2040void
35cb5232 2041set_mem_align (rtx mem, unsigned int align)
96216d37 2042{
d72886b5 2043 struct mem_attrs attrs;
2044
2045 attrs = *get_mem_attrs (mem);
2046 attrs.align = align;
2047 set_mem_attrs (mem, &attrs);
96216d37 2048}
278fe152 2049
b10dbbca 2050/* Set the expr for MEM to EXPR. */
278fe152 2051
2052void
35cb5232 2053set_mem_expr (rtx mem, tree expr)
278fe152 2054{
d72886b5 2055 struct mem_attrs attrs;
2056
2057 attrs = *get_mem_attrs (mem);
2058 attrs.expr = expr;
2059 set_mem_attrs (mem, &attrs);
278fe152 2060}
b10dbbca 2061
2062/* Set the offset of MEM to OFFSET. */
2063
2064void
da443c27 2065set_mem_offset (rtx mem, HOST_WIDE_INT offset)
b10dbbca 2066{
d72886b5 2067 struct mem_attrs attrs;
2068
2069 attrs = *get_mem_attrs (mem);
6d58bcba 2070 attrs.offset_known_p = true;
2071 attrs.offset = offset;
da443c27 2072 set_mem_attrs (mem, &attrs);
2073}
2074
2075/* Clear the offset of MEM. */
2076
2077void
2078clear_mem_offset (rtx mem)
2079{
2080 struct mem_attrs attrs;
2081
2082 attrs = *get_mem_attrs (mem);
6d58bcba 2083 attrs.offset_known_p = false;
d72886b5 2084 set_mem_attrs (mem, &attrs);
f0500469 2085}
2086
2087/* Set the size of MEM to SIZE. */
2088
2089void
5b2a69fa 2090set_mem_size (rtx mem, HOST_WIDE_INT size)
f0500469 2091{
d72886b5 2092 struct mem_attrs attrs;
2093
2094 attrs = *get_mem_attrs (mem);
6d58bcba 2095 attrs.size_known_p = true;
2096 attrs.size = size;
5b2a69fa 2097 set_mem_attrs (mem, &attrs);
2098}
2099
2100/* Clear the size of MEM. */
2101
2102void
2103clear_mem_size (rtx mem)
2104{
2105 struct mem_attrs attrs;
2106
2107 attrs = *get_mem_attrs (mem);
6d58bcba 2108 attrs.size_known_p = false;
d72886b5 2109 set_mem_attrs (mem, &attrs);
b10dbbca 2110}
c6259b83 2111\f
96216d37 2112/* Return a memory reference like MEMREF, but with its mode changed to MODE
2113 and its address changed to ADDR. (VOIDmode means don't change the mode.
2114 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
5cc04e45 2115 returned memory location is required to be valid. INPLACE is true if any
2116 changes can be made directly to MEMREF or false if MEMREF must be treated
2117 as immutable.
2118
2119 The memory attributes are not changed. */
15bbde2b 2120
96216d37 2121static rtx
3754d046 2122change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
5cc04e45 2123 bool inplace)
15bbde2b 2124{
bd1a81f7 2125 addr_space_t as;
9ce37fa7 2126 rtx new_rtx;
15bbde2b 2127
611234b4 2128 gcc_assert (MEM_P (memref));
bd1a81f7 2129 as = MEM_ADDR_SPACE (memref);
15bbde2b 2130 if (mode == VOIDmode)
2131 mode = GET_MODE (memref);
2132 if (addr == 0)
2133 addr = XEXP (memref, 0);
3988ef8b 2134 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
bd1a81f7 2135 && (!validate || memory_address_addr_space_p (mode, addr, as)))
3988ef8b 2136 return memref;
15bbde2b 2137
73a18f44 2138 /* Don't validate address for LRA. LRA can make the address valid
2139 by itself in most efficient way. */
2140 if (validate && !lra_in_progress)
15bbde2b 2141 {
e4e86ec5 2142 if (reload_in_progress || reload_completed)
bd1a81f7 2143 gcc_assert (memory_address_addr_space_p (mode, addr, as));
e4e86ec5 2144 else
bd1a81f7 2145 addr = memory_address_addr_space (mode, addr, as);
15bbde2b 2146 }
d823ba47 2147
e8976cd7 2148 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2149 return memref;
2150
5cc04e45 2151 if (inplace)
2152 {
2153 XEXP (memref, 0) = addr;
2154 return memref;
2155 }
2156
9ce37fa7 2157 new_rtx = gen_rtx_MEM (mode, addr);
2158 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2159 return new_rtx;
15bbde2b 2160}
537ffcfc 2161
96216d37 2162/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2163 way we are changing MEMREF, so we only preserve the alias set. */
e513d163 2164
2165rtx
3754d046 2166change_address (rtx memref, machine_mode mode, rtx addr)
e513d163 2167{
5cc04e45 2168 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
3754d046 2169 machine_mode mmode = GET_MODE (new_rtx);
d72886b5 2170 struct mem_attrs attrs, *defattrs;
0ab96142 2171
d72886b5 2172 attrs = *get_mem_attrs (memref);
2173 defattrs = mode_mem_attrs[(int) mmode];
6d58bcba 2174 attrs.expr = NULL_TREE;
2175 attrs.offset_known_p = false;
2176 attrs.size_known_p = defattrs->size_known_p;
d72886b5 2177 attrs.size = defattrs->size;
2178 attrs.align = defattrs->align;
6cc60c4d 2179
d28edf0d 2180 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2181 if (new_rtx == memref)
0ab96142 2182 {
d72886b5 2183 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
9ce37fa7 2184 return new_rtx;
0ab96142 2185
9ce37fa7 2186 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2187 MEM_COPY_ATTRIBUTES (new_rtx, memref);
0ab96142 2188 }
d28edf0d 2189
d72886b5 2190 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2191 return new_rtx;
e513d163 2192}
537ffcfc 2193
96216d37 2194/* Return a memory reference like MEMREF, but with its mode changed
2195 to MODE and its address offset by OFFSET bytes. If VALIDATE is
bf42c62d 2196 nonzero, the memory address is forced to be valid.
2d0fd66d 2197 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2198 and the caller is responsible for adjusting MEMREF base register.
2199 If ADJUST_OBJECT is zero, the underlying object associated with the
2200 memory reference is left unchanged and the caller is responsible for
2201 dealing with it. Otherwise, if the new memory reference is outside
226c6baf 2202 the underlying object, even partially, then the object is dropped.
2203 SIZE, if nonzero, is the size of an access in cases where MODE
2204 has no inherent size. */
e4e86ec5 2205
2206rtx
3754d046 2207adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
226c6baf 2208 int validate, int adjust_address, int adjust_object,
2209 HOST_WIDE_INT size)
e4e86ec5 2210{
fb257ae6 2211 rtx addr = XEXP (memref, 0);
9ce37fa7 2212 rtx new_rtx;
3754d046 2213 machine_mode address_mode;
cfb75cdf 2214 int pbits;
21b8bc7e 2215 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
d72886b5 2216 unsigned HOST_WIDE_INT max_align;
21b8bc7e 2217#ifdef POINTERS_EXTEND_UNSIGNED
3754d046 2218 machine_mode pointer_mode
21b8bc7e 2219 = targetm.addr_space.pointer_mode (attrs.addrspace);
2220#endif
fb257ae6 2221
4733f549 2222 /* VOIDmode means no mode change for change_address_1. */
2223 if (mode == VOIDmode)
2224 mode = GET_MODE (memref);
2225
226c6baf 2226 /* Take the size of non-BLKmode accesses from the mode. */
2227 defattrs = mode_mem_attrs[(int) mode];
2228 if (defattrs->size_known_p)
2229 size = defattrs->size;
2230
d28edf0d 2231 /* If there are no changes, just return the original memory reference. */
2232 if (mode == GET_MODE (memref) && !offset
226c6baf 2233 && (size == 0 || (attrs.size_known_p && attrs.size == size))
d72886b5 2234 && (!validate || memory_address_addr_space_p (mode, addr,
2235 attrs.addrspace)))
d28edf0d 2236 return memref;
2237
e36c3d58 2238 /* ??? Prefer to create garbage instead of creating shared rtl.
6ef828f9 2239 This may happen even if offset is nonzero -- consider
e36c3d58 2240 (plus (plus reg reg) const_int) -- so do this always. */
2241 addr = copy_rtx (addr);
2242
cfb75cdf 2243 /* Convert a possibly large offset to a signed value within the
2244 range of the target address space. */
87cf5753 2245 address_mode = get_address_mode (memref);
98155838 2246 pbits = GET_MODE_BITSIZE (address_mode);
cfb75cdf 2247 if (HOST_BITS_PER_WIDE_INT > pbits)
2248 {
2249 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2250 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2251 >> shift);
2252 }
2253
2d0fd66d 2254 if (adjust_address)
cd358719 2255 {
2256 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2257 object, we can merge it into the LO_SUM. */
2258 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2259 && offset >= 0
2260 && (unsigned HOST_WIDE_INT) offset
2261 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
98155838 2262 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
29c05e22 2263 plus_constant (address_mode,
2264 XEXP (addr, 1), offset));
21b8bc7e 2265#ifdef POINTERS_EXTEND_UNSIGNED
2266 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2267 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2268 the fact that pointers are not allowed to overflow. */
2269 else if (POINTERS_EXTEND_UNSIGNED > 0
2270 && GET_CODE (addr) == ZERO_EXTEND
2271 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2272 && trunc_int_for_mode (offset, pointer_mode) == offset)
2273 addr = gen_rtx_ZERO_EXTEND (address_mode,
2274 plus_constant (pointer_mode,
2275 XEXP (addr, 0), offset));
2276#endif
cd358719 2277 else
29c05e22 2278 addr = plus_constant (address_mode, addr, offset);
cd358719 2279 }
fb257ae6 2280
5cc04e45 2281 new_rtx = change_address_1 (memref, mode, addr, validate, false);
96216d37 2282
e077413c 2283 /* If the address is a REG, change_address_1 rightfully returns memref,
2284 but this would destroy memref's MEM_ATTRS. */
2285 if (new_rtx == memref && offset != 0)
2286 new_rtx = copy_rtx (new_rtx);
2287
2d0fd66d 2288 /* Conservatively drop the object if we don't know where we start from. */
2289 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2290 {
2291 attrs.expr = NULL_TREE;
2292 attrs.alias = 0;
2293 }
2294
96216d37 2295 /* Compute the new values of the memory attributes due to this adjustment.
2296 We add the offsets and update the alignment. */
6d58bcba 2297 if (attrs.offset_known_p)
2d0fd66d 2298 {
2299 attrs.offset += offset;
2300
2301 /* Drop the object if the new left end is not within its bounds. */
2302 if (adjust_object && attrs.offset < 0)
2303 {
2304 attrs.expr = NULL_TREE;
2305 attrs.alias = 0;
2306 }
2307 }
96216d37 2308
b8098e5b 2309 /* Compute the new alignment by taking the MIN of the alignment and the
2310 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2311 if zero. */
2312 if (offset != 0)
d72886b5 2313 {
ac29ece2 2314 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
d72886b5 2315 attrs.align = MIN (attrs.align, max_align);
2316 }
96216d37 2317
226c6baf 2318 if (size)
6d58bcba 2319 {
2d0fd66d 2320 /* Drop the object if the new right end is not within its bounds. */
226c6baf 2321 if (adjust_object && (offset + size) > attrs.size)
2d0fd66d 2322 {
2323 attrs.expr = NULL_TREE;
2324 attrs.alias = 0;
2325 }
6d58bcba 2326 attrs.size_known_p = true;
226c6baf 2327 attrs.size = size;
6d58bcba 2328 }
2329 else if (attrs.size_known_p)
2d0fd66d 2330 {
226c6baf 2331 gcc_assert (!adjust_object);
2d0fd66d 2332 attrs.size -= offset;
226c6baf 2333 /* ??? The store_by_pieces machinery generates negative sizes,
2334 so don't assert for that here. */
2d0fd66d 2335 }
5cc193e7 2336
d72886b5 2337 set_mem_attrs (new_rtx, &attrs);
96216d37 2338
9ce37fa7 2339 return new_rtx;
e4e86ec5 2340}
2341
bf42c62d 2342/* Return a memory reference like MEMREF, but with its mode changed
2343 to MODE and its address changed to ADDR, which is assumed to be
f0b5f617 2344 MEMREF offset by OFFSET bytes. If VALIDATE is
bf42c62d 2345 nonzero, the memory address is forced to be valid. */
2346
2347rtx
3754d046 2348adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
35cb5232 2349 HOST_WIDE_INT offset, int validate)
bf42c62d 2350{
5cc04e45 2351 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
226c6baf 2352 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
bf42c62d 2353}
2354
2a631e19 2355/* Return a memory reference like MEMREF, but whose address is changed by
2356 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2357 known to be in OFFSET (possibly 1). */
fcdc122e 2358
2359rtx
35cb5232 2360offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
fcdc122e 2361{
9ce37fa7 2362 rtx new_rtx, addr = XEXP (memref, 0);
3754d046 2363 machine_mode address_mode;
6d58bcba 2364 struct mem_attrs attrs, *defattrs;
fac6aae6 2365
d72886b5 2366 attrs = *get_mem_attrs (memref);
87cf5753 2367 address_mode = get_address_mode (memref);
98155838 2368 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2369
d4c5e26d 2370 /* At this point we don't know _why_ the address is invalid. It
917bbcab 2371 could have secondary memory references, multiplies or anything.
fac6aae6 2372
2373 However, if we did go and rearrange things, we can wind up not
2374 being able to recognize the magic around pic_offset_table_rtx.
2375 This stuff is fragile, and is yet another example of why it is
2376 bad to expose PIC machinery too early. */
d72886b5 2377 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2378 attrs.addrspace)
fac6aae6 2379 && GET_CODE (addr) == PLUS
2380 && XEXP (addr, 0) == pic_offset_table_rtx)
2381 {
2382 addr = force_reg (GET_MODE (addr), addr);
98155838 2383 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2384 }
2385
9ce37fa7 2386 update_temp_slot_address (XEXP (memref, 0), new_rtx);
5cc04e45 2387 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
fcdc122e 2388
d28edf0d 2389 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2390 if (new_rtx == memref)
2391 return new_rtx;
d28edf0d 2392
fcdc122e 2393 /* Update the alignment to reflect the offset. Reset the offset, which
2394 we don't know. */
6d58bcba 2395 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2396 attrs.offset_known_p = false;
2397 attrs.size_known_p = defattrs->size_known_p;
2398 attrs.size = defattrs->size;
d72886b5 2399 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2400 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2401 return new_rtx;
fcdc122e 2402}
d4c5e26d 2403
537ffcfc 2404/* Return a memory reference like MEMREF, but with its address changed to
2405 ADDR. The caller is asserting that the actual piece of memory pointed
2406 to is the same, just the form of the address is being changed, such as
5cc04e45 2407 by putting something into a register. INPLACE is true if any changes
2408 can be made directly to MEMREF or false if MEMREF must be treated as
2409 immutable. */
537ffcfc 2410
2411rtx
5cc04e45 2412replace_equiv_address (rtx memref, rtx addr, bool inplace)
537ffcfc 2413{
96216d37 2414 /* change_address_1 copies the memory attribute structure without change
2415 and that's exactly what we want here. */
ecfe4ca9 2416 update_temp_slot_address (XEXP (memref, 0), addr);
5cc04e45 2417 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
537ffcfc 2418}
96216d37 2419
e4e86ec5 2420/* Likewise, but the reference is not required to be valid. */
2421
2422rtx
5cc04e45 2423replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
e4e86ec5 2424{
5cc04e45 2425 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
e4e86ec5 2426}
8259ab07 2427
2428/* Return a memory reference like MEMREF, but with its mode widened to
2429 MODE and offset by OFFSET. This would be used by targets that e.g.
2430 cannot issue QImode memory operations and have to use SImode memory
2431 operations plus masking logic. */
2432
2433rtx
3754d046 2434widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
8259ab07 2435{
226c6baf 2436 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
d72886b5 2437 struct mem_attrs attrs;
8259ab07 2438 unsigned int size = GET_MODE_SIZE (mode);
2439
d28edf0d 2440 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2441 if (new_rtx == memref)
2442 return new_rtx;
d28edf0d 2443
d72886b5 2444 attrs = *get_mem_attrs (new_rtx);
2445
8259ab07 2446 /* If we don't know what offset we were at within the expression, then
2447 we can't know if we've overstepped the bounds. */
6d58bcba 2448 if (! attrs.offset_known_p)
d72886b5 2449 attrs.expr = NULL_TREE;
8259ab07 2450
d72886b5 2451 while (attrs.expr)
8259ab07 2452 {
d72886b5 2453 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
8259ab07 2454 {
d72886b5 2455 tree field = TREE_OPERAND (attrs.expr, 1);
2456 tree offset = component_ref_field_offset (attrs.expr);
8259ab07 2457
2458 if (! DECL_SIZE_UNIT (field))
2459 {
d72886b5 2460 attrs.expr = NULL_TREE;
8259ab07 2461 break;
2462 }
2463
2464 /* Is the field at least as large as the access? If so, ok,
2465 otherwise strip back to the containing structure. */
8359cfb4 2466 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2467 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
6d58bcba 2468 && attrs.offset >= 0)
8259ab07 2469 break;
2470
e913b5cd 2471 if (! tree_fits_uhwi_p (offset))
8259ab07 2472 {
d72886b5 2473 attrs.expr = NULL_TREE;
8259ab07 2474 break;
2475 }
2476
d72886b5 2477 attrs.expr = TREE_OPERAND (attrs.expr, 0);
e913b5cd 2478 attrs.offset += tree_to_uhwi (offset);
2479 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
6d58bcba 2480 / BITS_PER_UNIT);
8259ab07 2481 }
2482 /* Similarly for the decl. */
d72886b5 2483 else if (DECL_P (attrs.expr)
2484 && DECL_SIZE_UNIT (attrs.expr)
2485 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2486 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
6d58bcba 2487 && (! attrs.offset_known_p || attrs.offset >= 0))
8259ab07 2488 break;
2489 else
2490 {
2491 /* The widened memory access overflows the expression, which means
2492 that it could alias another expression. Zap it. */
d72886b5 2493 attrs.expr = NULL_TREE;
8259ab07 2494 break;
2495 }
2496 }
2497
d72886b5 2498 if (! attrs.expr)
6d58bcba 2499 attrs.offset_known_p = false;
8259ab07 2500
2501 /* The widened memory may alias other stuff, so zap the alias set. */
2502 /* ??? Maybe use get_alias_set on any remaining expression. */
d72886b5 2503 attrs.alias = 0;
6d58bcba 2504 attrs.size_known_p = true;
2505 attrs.size = size;
d72886b5 2506 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2507 return new_rtx;
8259ab07 2508}
15bbde2b 2509\f
ac681e84 2510/* A fake decl that is used as the MEM_EXPR of spill slots. */
2511static GTY(()) tree spill_slot_decl;
2512
58029e61 2513tree
2514get_spill_slot_decl (bool force_build_p)
ac681e84 2515{
2516 tree d = spill_slot_decl;
2517 rtx rd;
d72886b5 2518 struct mem_attrs attrs;
ac681e84 2519
58029e61 2520 if (d || !force_build_p)
ac681e84 2521 return d;
2522
e60a6f7b 2523 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2524 VAR_DECL, get_identifier ("%sfp"), void_type_node);
ac681e84 2525 DECL_ARTIFICIAL (d) = 1;
2526 DECL_IGNORED_P (d) = 1;
2527 TREE_USED (d) = 1;
ac681e84 2528 spill_slot_decl = d;
2529
2530 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2531 MEM_NOTRAP_P (rd) = 1;
d72886b5 2532 attrs = *mode_mem_attrs[(int) BLKmode];
2533 attrs.alias = new_alias_set ();
2534 attrs.expr = d;
2535 set_mem_attrs (rd, &attrs);
ac681e84 2536 SET_DECL_RTL (d, rd);
2537
2538 return d;
2539}
2540
2541/* Given MEM, a result from assign_stack_local, fill in the memory
2542 attributes as appropriate for a register allocator spill slot.
2543 These slots are not aliasable by other memory. We arrange for
2544 them all to use a single MEM_EXPR, so that the aliasing code can
2545 work properly in the case of shared spill slots. */
2546
2547void
2548set_mem_attrs_for_spill (rtx mem)
2549{
d72886b5 2550 struct mem_attrs attrs;
2551 rtx addr;
ac681e84 2552
d72886b5 2553 attrs = *get_mem_attrs (mem);
2554 attrs.expr = get_spill_slot_decl (true);
2555 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2556 attrs.addrspace = ADDR_SPACE_GENERIC;
ac681e84 2557
2558 /* We expect the incoming memory to be of the form:
2559 (mem:MODE (plus (reg sfp) (const_int offset)))
2560 with perhaps the plus missing for offset = 0. */
2561 addr = XEXP (mem, 0);
6d58bcba 2562 attrs.offset_known_p = true;
2563 attrs.offset = 0;
ac681e84 2564 if (GET_CODE (addr) == PLUS
971ba038 2565 && CONST_INT_P (XEXP (addr, 1)))
6d58bcba 2566 attrs.offset = INTVAL (XEXP (addr, 1));
ac681e84 2567
d72886b5 2568 set_mem_attrs (mem, &attrs);
ac681e84 2569 MEM_NOTRAP_P (mem) = 1;
2570}
2571\f
15bbde2b 2572/* Return a newly created CODE_LABEL rtx with a unique label number. */
2573
be95c7c7 2574rtx_code_label *
35cb5232 2575gen_label_rtx (void)
15bbde2b 2576{
be95c7c7 2577 return as_a <rtx_code_label *> (
2578 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2579 NULL, label_num++, NULL));
15bbde2b 2580}
2581\f
2582/* For procedure integration. */
2583
15bbde2b 2584/* Install new pointers to the first and last insns in the chain.
d4c332ff 2585 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 2586 Used for an inline-procedure after copying the insn chain. */
2587
2588void
57c26b3a 2589set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
15bbde2b 2590{
57c26b3a 2591 rtx_insn *insn;
d4c332ff 2592
06f9d6ef 2593 set_first_insn (first);
2594 set_last_insn (last);
d4c332ff 2595 cur_insn_uid = 0;
2596
9845d120 2597 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2598 {
2599 int debug_count = 0;
2600
2601 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2602 cur_debug_insn_uid = 0;
2603
2604 for (insn = first; insn; insn = NEXT_INSN (insn))
2605 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2606 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2607 else
2608 {
2609 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2610 if (DEBUG_INSN_P (insn))
2611 debug_count++;
2612 }
2613
2614 if (debug_count)
2615 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2616 else
2617 cur_debug_insn_uid++;
2618 }
2619 else
2620 for (insn = first; insn; insn = NEXT_INSN (insn))
2621 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
d4c332ff 2622
2623 cur_insn_uid++;
15bbde2b 2624}
15bbde2b 2625\f
d823ba47 2626/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2627 structure. This routine should only be called once. */
15bbde2b 2628
a40c0eeb 2629static void
58945f46 2630unshare_all_rtl_1 (rtx_insn *insn)
15bbde2b 2631{
2d96a59a 2632 /* Unshare just about everything else. */
1cd4cfea 2633 unshare_all_rtl_in_chain (insn);
d823ba47 2634
15bbde2b 2635 /* Make sure the addresses of stack slots found outside the insn chain
2636 (such as, in DECL_RTL of a variable) are not shared
2637 with the insn chain.
2638
2639 This special care is necessary when the stack slot MEM does not
2640 actually appear in the insn chain. If it does appear, its address
2641 is unshared from all else at that point. */
84f4f7bf 2642 unsigned int i;
2643 rtx temp;
2644 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2645 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
15bbde2b 2646}
2647
d823ba47 2648/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2649 structure, again. This is a fairly expensive thing to do so it
2650 should be done sparingly. */
2651
2652void
58945f46 2653unshare_all_rtl_again (rtx_insn *insn)
2d96a59a 2654{
58945f46 2655 rtx_insn *p;
5244079b 2656 tree decl;
2657
2d96a59a 2658 for (p = insn; p; p = NEXT_INSN (p))
9204e736 2659 if (INSN_P (p))
2d96a59a 2660 {
2661 reset_used_flags (PATTERN (p));
2662 reset_used_flags (REG_NOTES (p));
6d2a4bac 2663 if (CALL_P (p))
2664 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2d96a59a 2665 }
5244079b 2666
01dc9f0c 2667 /* Make sure that virtual stack slots are not shared. */
265be050 2668 set_used_decls (DECL_INITIAL (cfun->decl));
01dc9f0c 2669
5244079b 2670 /* Make sure that virtual parameters are not shared. */
1767a056 2671 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
265be050 2672 set_used_flags (DECL_RTL (decl));
5244079b 2673
84f4f7bf 2674 rtx temp;
2675 unsigned int i;
2676 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2677 reset_used_flags (temp);
5244079b 2678
df329266 2679 unshare_all_rtl_1 (insn);
a40c0eeb 2680}
2681
2a1990e9 2682unsigned int
a40c0eeb 2683unshare_all_rtl (void)
2684{
df329266 2685 unshare_all_rtl_1 (get_insns ());
607381a9 2686
2687 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2688 {
2689 if (DECL_RTL_SET_P (decl))
2690 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2691 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2692 }
2693
2a1990e9 2694 return 0;
2d96a59a 2695}
2696
77fce4cd 2697
1cd4cfea 2698/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2699 Recursively does the same for subexpressions. */
2700
2701static void
2702verify_rtx_sharing (rtx orig, rtx insn)
2703{
2704 rtx x = orig;
2705 int i;
2706 enum rtx_code code;
2707 const char *format_ptr;
2708
2709 if (x == 0)
2710 return;
2711
2712 code = GET_CODE (x);
2713
2714 /* These types may be freely shared. */
2715
2716 switch (code)
2717 {
2718 case REG:
688ff29b 2719 case DEBUG_EXPR:
2720 case VALUE:
0349edce 2721 CASE_CONST_ANY:
1cd4cfea 2722 case SYMBOL_REF:
2723 case LABEL_REF:
2724 case CODE_LABEL:
2725 case PC:
2726 case CC0:
1a860023 2727 case RETURN:
9cb2517e 2728 case SIMPLE_RETURN:
1cd4cfea 2729 case SCRATCH:
c09425a0 2730 /* SCRATCH must be shared because they represent distinct values. */
b291008a 2731 return;
c09425a0 2732 case CLOBBER:
b291008a 2733 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2734 clobbers or clobbers of hard registers that originated as pseudos.
2735 This is needed to allow safe register renaming. */
2b5f32ae 2736 if (REG_P (XEXP (x, 0))
2737 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2738 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
c09425a0 2739 return;
2740 break;
1cd4cfea 2741
2742 case CONST:
3072d30e 2743 if (shared_const_p (orig))
1cd4cfea 2744 return;
2745 break;
2746
2747 case MEM:
2748 /* A MEM is allowed to be shared if its address is constant. */
2749 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2750 || reload_completed || reload_in_progress)
2751 return;
2752
2753 break;
2754
2755 default:
2756 break;
2757 }
2758
2759 /* This rtx may not be shared. If it has already been seen,
2760 replace it with a copy of itself. */
382ecba7 2761 if (flag_checking && RTX_FLAG (x, used))
1cd4cfea 2762 {
0a81f5a0 2763 error ("invalid rtl sharing found in the insn");
1cd4cfea 2764 debug_rtx (insn);
0a81f5a0 2765 error ("shared rtx");
1cd4cfea 2766 debug_rtx (x);
0a81f5a0 2767 internal_error ("internal consistency failure");
1cd4cfea 2768 }
9cee7c3f 2769 gcc_assert (!RTX_FLAG (x, used));
48e1416a 2770
1cd4cfea 2771 RTX_FLAG (x, used) = 1;
2772
8b332087 2773 /* Now scan the subexpressions recursively. */
1cd4cfea 2774
2775 format_ptr = GET_RTX_FORMAT (code);
2776
2777 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2778 {
2779 switch (*format_ptr++)
2780 {
2781 case 'e':
2782 verify_rtx_sharing (XEXP (x, i), insn);
2783 break;
2784
2785 case 'E':
2786 if (XVEC (x, i) != NULL)
2787 {
2788 int j;
2789 int len = XVECLEN (x, i);
2790
2791 for (j = 0; j < len; j++)
2792 {
9cee7c3f 2793 /* We allow sharing of ASM_OPERANDS inside single
2794 instruction. */
1cd4cfea 2795 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
9cee7c3f 2796 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2797 == ASM_OPERANDS))
1cd4cfea 2798 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2799 else
2800 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2801 }
2802 }
2803 break;
2804 }
2805 }
2806 return;
2807}
2808
1e9af25c 2809/* Reset used-flags for INSN. */
2810
2811static void
2812reset_insn_used_flags (rtx insn)
2813{
2814 gcc_assert (INSN_P (insn));
2815 reset_used_flags (PATTERN (insn));
2816 reset_used_flags (REG_NOTES (insn));
2817 if (CALL_P (insn))
2818 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2819}
2820
7cdd84a2 2821/* Go through all the RTL insn bodies and clear all the USED bits. */
1cd4cfea 2822
7cdd84a2 2823static void
2824reset_all_used_flags (void)
1cd4cfea 2825{
4cd001d5 2826 rtx_insn *p;
1cd4cfea 2827
2828 for (p = get_insns (); p; p = NEXT_INSN (p))
2829 if (INSN_P (p))
2830 {
1e9af25c 2831 rtx pat = PATTERN (p);
2832 if (GET_CODE (pat) != SEQUENCE)
2833 reset_insn_used_flags (p);
2834 else
764f640f 2835 {
1e9af25c 2836 gcc_assert (REG_NOTES (p) == NULL);
2837 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 2838 {
2839 rtx insn = XVECEXP (pat, 0, i);
2840 if (INSN_P (insn))
2841 reset_insn_used_flags (insn);
2842 }
764f640f 2843 }
1cd4cfea 2844 }
7cdd84a2 2845}
2846
1e9af25c 2847/* Verify sharing in INSN. */
2848
2849static void
2850verify_insn_sharing (rtx insn)
2851{
2852 gcc_assert (INSN_P (insn));
44bf3f4e 2853 verify_rtx_sharing (PATTERN (insn), insn);
2854 verify_rtx_sharing (REG_NOTES (insn), insn);
1e9af25c 2855 if (CALL_P (insn))
44bf3f4e 2856 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
1e9af25c 2857}
2858
7cdd84a2 2859/* Go through all the RTL insn bodies and check that there is no unexpected
2860 sharing in between the subexpressions. */
2861
2862DEBUG_FUNCTION void
2863verify_rtl_sharing (void)
2864{
4cd001d5 2865 rtx_insn *p;
7cdd84a2 2866
2867 timevar_push (TV_VERIFY_RTL_SHARING);
2868
2869 reset_all_used_flags ();
1cd4cfea 2870
2871 for (p = get_insns (); p; p = NEXT_INSN (p))
2872 if (INSN_P (p))
2873 {
1e9af25c 2874 rtx pat = PATTERN (p);
2875 if (GET_CODE (pat) != SEQUENCE)
2876 verify_insn_sharing (p);
2877 else
2878 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 2879 {
2880 rtx insn = XVECEXP (pat, 0, i);
2881 if (INSN_P (insn))
2882 verify_insn_sharing (insn);
2883 }
1cd4cfea 2884 }
4b366dd3 2885
7cdd84a2 2886 reset_all_used_flags ();
2887
4b366dd3 2888 timevar_pop (TV_VERIFY_RTL_SHARING);
1cd4cfea 2889}
2890
2d96a59a 2891/* Go through all the RTL insn bodies and copy any invalid shared structure.
2892 Assumes the mark bits are cleared at entry. */
2893
1cd4cfea 2894void
4cd001d5 2895unshare_all_rtl_in_chain (rtx_insn *insn)
2d96a59a 2896{
2897 for (; insn; insn = NEXT_INSN (insn))
9204e736 2898 if (INSN_P (insn))
2d96a59a 2899 {
2900 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2901 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
6d2a4bac 2902 if (CALL_P (insn))
2903 CALL_INSN_FUNCTION_USAGE (insn)
2904 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2d96a59a 2905 }
2906}
2907
01dc9f0c 2908/* Go through all virtual stack slots of a function and mark them as
265be050 2909 shared. We never replace the DECL_RTLs themselves with a copy,
2910 but expressions mentioned into a DECL_RTL cannot be shared with
2911 expressions in the instruction stream.
2912
2913 Note that reload may convert pseudo registers into memories in-place.
2914 Pseudo registers are always shared, but MEMs never are. Thus if we
2915 reset the used flags on MEMs in the instruction stream, we must set
2916 them again on MEMs that appear in DECL_RTLs. */
2917
01dc9f0c 2918static void
265be050 2919set_used_decls (tree blk)
01dc9f0c 2920{
2921 tree t;
2922
2923 /* Mark decls. */
1767a056 2924 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
0e8e37b2 2925 if (DECL_RTL_SET_P (t))
265be050 2926 set_used_flags (DECL_RTL (t));
01dc9f0c 2927
2928 /* Now process sub-blocks. */
93110716 2929 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
265be050 2930 set_used_decls (t);
01dc9f0c 2931}
2932
15bbde2b 2933/* Mark ORIG as in use, and return a copy of it if it was already in use.
7ba6ce7a 2934 Recursively does the same for subexpressions. Uses
2935 copy_rtx_if_shared_1 to reduce stack space. */
15bbde2b 2936
2937rtx
35cb5232 2938copy_rtx_if_shared (rtx orig)
15bbde2b 2939{
0e0727c4 2940 copy_rtx_if_shared_1 (&orig);
2941 return orig;
2942}
2943
7ba6ce7a 2944/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2945 use. Recursively does the same for subexpressions. */
2946
0e0727c4 2947static void
2948copy_rtx_if_shared_1 (rtx *orig1)
2949{
2950 rtx x;
19cb6b50 2951 int i;
2952 enum rtx_code code;
0e0727c4 2953 rtx *last_ptr;
19cb6b50 2954 const char *format_ptr;
15bbde2b 2955 int copied = 0;
0e0727c4 2956 int length;
2957
2958 /* Repeat is used to turn tail-recursion into iteration. */
2959repeat:
2960 x = *orig1;
15bbde2b 2961
2962 if (x == 0)
0e0727c4 2963 return;
15bbde2b 2964
2965 code = GET_CODE (x);
2966
2967 /* These types may be freely shared. */
2968
2969 switch (code)
2970 {
2971 case REG:
688ff29b 2972 case DEBUG_EXPR:
2973 case VALUE:
0349edce 2974 CASE_CONST_ANY:
15bbde2b 2975 case SYMBOL_REF:
1cd4cfea 2976 case LABEL_REF:
15bbde2b 2977 case CODE_LABEL:
2978 case PC:
2979 case CC0:
e0691b9a 2980 case RETURN:
9cb2517e 2981 case SIMPLE_RETURN:
15bbde2b 2982 case SCRATCH:
a92771b8 2983 /* SCRATCH must be shared because they represent distinct values. */
0e0727c4 2984 return;
c09425a0 2985 case CLOBBER:
b291008a 2986 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2987 clobbers or clobbers of hard registers that originated as pseudos.
2988 This is needed to allow safe register renaming. */
2b5f32ae 2989 if (REG_P (XEXP (x, 0))
2990 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2991 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
c09425a0 2992 return;
2993 break;
15bbde2b 2994
f63d12e3 2995 case CONST:
3072d30e 2996 if (shared_const_p (x))
0e0727c4 2997 return;
f63d12e3 2998 break;
2999
9845d120 3000 case DEBUG_INSN:
15bbde2b 3001 case INSN:
3002 case JUMP_INSN:
3003 case CALL_INSN:
3004 case NOTE:
15bbde2b 3005 case BARRIER:
3006 /* The chain of insns is not being copied. */
0e0727c4 3007 return;
15bbde2b 3008
0dbd1c74 3009 default:
3010 break;
15bbde2b 3011 }
3012
3013 /* This rtx may not be shared. If it has already been seen,
3014 replace it with a copy of itself. */
3015
7c25cb91 3016 if (RTX_FLAG (x, used))
15bbde2b 3017 {
f2d0e9f1 3018 x = shallow_copy_rtx (x);
15bbde2b 3019 copied = 1;
3020 }
7c25cb91 3021 RTX_FLAG (x, used) = 1;
15bbde2b 3022
3023 /* Now scan the subexpressions recursively.
3024 We can store any replaced subexpressions directly into X
3025 since we know X is not shared! Any vectors in X
3026 must be copied if X was copied. */
3027
3028 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3029 length = GET_RTX_LENGTH (code);
3030 last_ptr = NULL;
48e1416a 3031
0e0727c4 3032 for (i = 0; i < length; i++)
15bbde2b 3033 {
3034 switch (*format_ptr++)
3035 {
3036 case 'e':
0e0727c4 3037 if (last_ptr)
3038 copy_rtx_if_shared_1 (last_ptr);
3039 last_ptr = &XEXP (x, i);
15bbde2b 3040 break;
3041
3042 case 'E':
3043 if (XVEC (x, i) != NULL)
3044 {
19cb6b50 3045 int j;
ffe0869b 3046 int len = XVECLEN (x, i);
48e1416a 3047
8b332087 3048 /* Copy the vector iff I copied the rtx and the length
3049 is nonzero. */
ffe0869b 3050 if (copied && len > 0)
a4070a91 3051 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
48e1416a 3052
d632b59a 3053 /* Call recursively on all inside the vector. */
ffe0869b 3054 for (j = 0; j < len; j++)
0e0727c4 3055 {
3056 if (last_ptr)
3057 copy_rtx_if_shared_1 (last_ptr);
3058 last_ptr = &XVECEXP (x, i, j);
3059 }
15bbde2b 3060 }
3061 break;
3062 }
3063 }
0e0727c4 3064 *orig1 = x;
3065 if (last_ptr)
3066 {
3067 orig1 = last_ptr;
3068 goto repeat;
3069 }
3070 return;
15bbde2b 3071}
3072
709947e6 3073/* Set the USED bit in X and its non-shareable subparts to FLAG. */
15bbde2b 3074
709947e6 3075static void
3076mark_used_flags (rtx x, int flag)
15bbde2b 3077{
19cb6b50 3078 int i, j;
3079 enum rtx_code code;
3080 const char *format_ptr;
0e0727c4 3081 int length;
15bbde2b 3082
0e0727c4 3083 /* Repeat is used to turn tail-recursion into iteration. */
3084repeat:
15bbde2b 3085 if (x == 0)
3086 return;
3087
3088 code = GET_CODE (x);
3089
c3418f42 3090 /* These types may be freely shared so we needn't do any resetting
15bbde2b 3091 for them. */
3092
3093 switch (code)
3094 {
3095 case REG:
688ff29b 3096 case DEBUG_EXPR:
3097 case VALUE:
0349edce 3098 CASE_CONST_ANY:
15bbde2b 3099 case SYMBOL_REF:
3100 case CODE_LABEL:
3101 case PC:
3102 case CC0:
e0691b9a 3103 case RETURN:
9cb2517e 3104 case SIMPLE_RETURN:
15bbde2b 3105 return;
3106
9845d120 3107 case DEBUG_INSN:
15bbde2b 3108 case INSN:
3109 case JUMP_INSN:
3110 case CALL_INSN:
3111 case NOTE:
3112 case LABEL_REF:
3113 case BARRIER:
3114 /* The chain of insns is not being copied. */
3115 return;
d823ba47 3116
0dbd1c74 3117 default:
3118 break;
15bbde2b 3119 }
3120
709947e6 3121 RTX_FLAG (x, used) = flag;
15bbde2b 3122
3123 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3124 length = GET_RTX_LENGTH (code);
48e1416a 3125
0e0727c4 3126 for (i = 0; i < length; i++)
15bbde2b 3127 {
3128 switch (*format_ptr++)
3129 {
3130 case 'e':
0e0727c4 3131 if (i == length-1)
3132 {
3133 x = XEXP (x, i);
3134 goto repeat;
3135 }
709947e6 3136 mark_used_flags (XEXP (x, i), flag);
15bbde2b 3137 break;
3138
3139 case 'E':
3140 for (j = 0; j < XVECLEN (x, i); j++)
709947e6 3141 mark_used_flags (XVECEXP (x, i, j), flag);
15bbde2b 3142 break;
3143 }
3144 }
3145}
1cd4cfea 3146
709947e6 3147/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1cd4cfea 3148 to look for shared sub-parts. */
3149
3150void
709947e6 3151reset_used_flags (rtx x)
1cd4cfea 3152{
709947e6 3153 mark_used_flags (x, 0);
3154}
1cd4cfea 3155
709947e6 3156/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3157 to look for shared sub-parts. */
1cd4cfea 3158
709947e6 3159void
3160set_used_flags (rtx x)
3161{
3162 mark_used_flags (x, 1);
1cd4cfea 3163}
15bbde2b 3164\f
3165/* Copy X if necessary so that it won't be altered by changes in OTHER.
3166 Return X or the rtx for the pseudo reg the value of X was copied into.
3167 OTHER must be valid as a SET_DEST. */
3168
3169rtx
35cb5232 3170make_safe_from (rtx x, rtx other)
15bbde2b 3171{
3172 while (1)
3173 switch (GET_CODE (other))
3174 {
3175 case SUBREG:
3176 other = SUBREG_REG (other);
3177 break;
3178 case STRICT_LOW_PART:
3179 case SIGN_EXTEND:
3180 case ZERO_EXTEND:
3181 other = XEXP (other, 0);
3182 break;
3183 default:
3184 goto done;
3185 }
3186 done:
e16ceb8e 3187 if ((MEM_P (other)
15bbde2b 3188 && ! CONSTANT_P (x)
8ad4c111 3189 && !REG_P (x)
15bbde2b 3190 && GET_CODE (x) != SUBREG)
8ad4c111 3191 || (REG_P (other)
15bbde2b 3192 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3193 || reg_mentioned_p (other, x))))
3194 {
3195 rtx temp = gen_reg_rtx (GET_MODE (x));
3196 emit_move_insn (temp, x);
3197 return temp;
3198 }
3199 return x;
3200}
3201\f
3202/* Emission of insns (adding them to the doubly-linked list). */
3203
15bbde2b 3204/* Return the last insn emitted, even if it is in a sequence now pushed. */
3205
447ab0fc 3206rtx_insn *
35cb5232 3207get_last_insn_anywhere (void)
15bbde2b 3208{
c36aa54b 3209 struct sequence_stack *seq;
3210 for (seq = get_current_sequence (); seq; seq = seq->next)
3211 if (seq->last != 0)
3212 return seq->last;
15bbde2b 3213 return 0;
3214}
3215
70545de4 3216/* Return the first nonnote insn emitted in current sequence or current
3217 function. This routine looks inside SEQUENCEs. */
3218
2eb8c261 3219rtx_insn *
35cb5232 3220get_first_nonnote_insn (void)
70545de4 3221{
4cd001d5 3222 rtx_insn *insn = get_insns ();
f86e856e 3223
3224 if (insn)
3225 {
3226 if (NOTE_P (insn))
3227 for (insn = next_insn (insn);
3228 insn && NOTE_P (insn);
3229 insn = next_insn (insn))
3230 continue;
3231 else
3232 {
1c14a50e 3233 if (NONJUMP_INSN_P (insn)
f86e856e 3234 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3235 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
f86e856e 3236 }
3237 }
70545de4 3238
3239 return insn;
3240}
3241
3242/* Return the last nonnote insn emitted in current sequence or current
3243 function. This routine looks inside SEQUENCEs. */
3244
2eb8c261 3245rtx_insn *
35cb5232 3246get_last_nonnote_insn (void)
70545de4 3247{
4cd001d5 3248 rtx_insn *insn = get_last_insn ();
f86e856e 3249
3250 if (insn)
3251 {
3252 if (NOTE_P (insn))
3253 for (insn = previous_insn (insn);
3254 insn && NOTE_P (insn);
3255 insn = previous_insn (insn))
3256 continue;
3257 else
3258 {
4cd001d5 3259 if (NONJUMP_INSN_P (insn))
3260 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3261 insn = seq->insn (seq->len () - 1);
f86e856e 3262 }
3263 }
70545de4 3264
3265 return insn;
3266}
3267
9845d120 3268/* Return the number of actual (non-debug) insns emitted in this
3269 function. */
3270
3271int
3272get_max_insn_count (void)
3273{
3274 int n = cur_insn_uid;
3275
3276 /* The table size must be stable across -g, to avoid codegen
3277 differences due to debug insns, and not be affected by
3278 -fmin-insn-uid, to avoid excessive table size and to simplify
3279 debugging of -fcompare-debug failures. */
3280 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3281 n -= cur_debug_insn_uid;
3282 else
3283 n -= MIN_NONDEBUG_INSN_UID;
3284
3285 return n;
3286}
3287
15bbde2b 3288\f
3289/* Return the next insn. If it is a SEQUENCE, return the first insn
3290 of the sequence. */
3291
7bac25b3 3292rtx_insn *
50895eab 3293next_insn (rtx_insn *insn)
15bbde2b 3294{
ce4469fa 3295 if (insn)
3296 {
3297 insn = NEXT_INSN (insn);
3298 if (insn && NONJUMP_INSN_P (insn)
3299 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3300 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
ce4469fa 3301 }
15bbde2b 3302
4cd001d5 3303 return insn;
15bbde2b 3304}
3305
3306/* Return the previous insn. If it is a SEQUENCE, return the last insn
3307 of the sequence. */
3308
7bac25b3 3309rtx_insn *
50895eab 3310previous_insn (rtx_insn *insn)
15bbde2b 3311{
ce4469fa 3312 if (insn)
3313 {
3314 insn = PREV_INSN (insn);
4cd001d5 3315 if (insn && NONJUMP_INSN_P (insn))
3316 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3317 insn = seq->insn (seq->len () - 1);
ce4469fa 3318 }
15bbde2b 3319
4cd001d5 3320 return insn;
15bbde2b 3321}
3322
3323/* Return the next insn after INSN that is not a NOTE. This routine does not
3324 look inside SEQUENCEs. */
3325
7bac25b3 3326rtx_insn *
4066f31e 3327next_nonnote_insn (rtx_insn *insn)
15bbde2b 3328{
ce4469fa 3329 while (insn)
3330 {
3331 insn = NEXT_INSN (insn);
3332 if (insn == 0 || !NOTE_P (insn))
3333 break;
3334 }
15bbde2b 3335
4cd001d5 3336 return insn;
15bbde2b 3337}
3338
c4d13c5c 3339/* Return the next insn after INSN that is not a NOTE, but stop the
3340 search before we enter another basic block. This routine does not
3341 look inside SEQUENCEs. */
3342
7bac25b3 3343rtx_insn *
2eb8c261 3344next_nonnote_insn_bb (rtx_insn *insn)
c4d13c5c 3345{
3346 while (insn)
3347 {
3348 insn = NEXT_INSN (insn);
3349 if (insn == 0 || !NOTE_P (insn))
3350 break;
3351 if (NOTE_INSN_BASIC_BLOCK_P (insn))
7bac25b3 3352 return NULL;
c4d13c5c 3353 }
3354
4cd001d5 3355 return insn;
c4d13c5c 3356}
3357
15bbde2b 3358/* Return the previous insn before INSN that is not a NOTE. This routine does
3359 not look inside SEQUENCEs. */
3360
7bac25b3 3361rtx_insn *
4066f31e 3362prev_nonnote_insn (rtx_insn *insn)
15bbde2b 3363{
ce4469fa 3364 while (insn)
3365 {
3366 insn = PREV_INSN (insn);
3367 if (insn == 0 || !NOTE_P (insn))
3368 break;
3369 }
15bbde2b 3370
4cd001d5 3371 return insn;
15bbde2b 3372}
3373
bcc66782 3374/* Return the previous insn before INSN that is not a NOTE, but stop
3375 the search before we enter another basic block. This routine does
3376 not look inside SEQUENCEs. */
3377
7bac25b3 3378rtx_insn *
89bcfdab 3379prev_nonnote_insn_bb (rtx_insn *insn)
bcc66782 3380{
4cd001d5 3381
bcc66782 3382 while (insn)
3383 {
3384 insn = PREV_INSN (insn);
3385 if (insn == 0 || !NOTE_P (insn))
3386 break;
3387 if (NOTE_INSN_BASIC_BLOCK_P (insn))
7bac25b3 3388 return NULL;
bcc66782 3389 }
3390
4cd001d5 3391 return insn;
bcc66782 3392}
3393
9845d120 3394/* Return the next insn after INSN that is not a DEBUG_INSN. This
3395 routine does not look inside SEQUENCEs. */
3396
7bac25b3 3397rtx_insn *
3a8bb9ce 3398next_nondebug_insn (rtx_insn *insn)
9845d120 3399{
3400 while (insn)
3401 {
3402 insn = NEXT_INSN (insn);
3403 if (insn == 0 || !DEBUG_INSN_P (insn))
3404 break;
3405 }
3406
4cd001d5 3407 return insn;
9845d120 3408}
3409
3410/* Return the previous insn before INSN that is not a DEBUG_INSN.
3411 This routine does not look inside SEQUENCEs. */
3412
7bac25b3 3413rtx_insn *
3a8bb9ce 3414prev_nondebug_insn (rtx_insn *insn)
9845d120 3415{
3416 while (insn)
3417 {
3418 insn = PREV_INSN (insn);
3419 if (insn == 0 || !DEBUG_INSN_P (insn))
3420 break;
3421 }
3422
4cd001d5 3423 return insn;
9845d120 3424}
3425
5b8537a8 3426/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3427 This routine does not look inside SEQUENCEs. */
3428
7bac25b3 3429rtx_insn *
15b80194 3430next_nonnote_nondebug_insn (rtx_insn *insn)
5b8537a8 3431{
3432 while (insn)
3433 {
3434 insn = NEXT_INSN (insn);
3435 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3436 break;
3437 }
3438
4cd001d5 3439 return insn;
5b8537a8 3440}
3441
3442/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3443 This routine does not look inside SEQUENCEs. */
3444
7bac25b3 3445rtx_insn *
15b80194 3446prev_nonnote_nondebug_insn (rtx_insn *insn)
5b8537a8 3447{
3448 while (insn)
3449 {
3450 insn = PREV_INSN (insn);
3451 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3452 break;
3453 }
3454
4cd001d5 3455 return insn;
5b8537a8 3456}
3457
15bbde2b 3458/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3459 or 0, if there is none. This routine does not look inside
a92771b8 3460 SEQUENCEs. */
15bbde2b 3461
7bac25b3 3462rtx_insn *
4cd001d5 3463next_real_insn (rtx uncast_insn)
15bbde2b 3464{
4cd001d5 3465 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3466
ce4469fa 3467 while (insn)
3468 {
3469 insn = NEXT_INSN (insn);
3470 if (insn == 0 || INSN_P (insn))
3471 break;
3472 }
15bbde2b 3473
4cd001d5 3474 return insn;
15bbde2b 3475}
3476
3477/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3478 or 0, if there is none. This routine does not look inside
3479 SEQUENCEs. */
3480
7bac25b3 3481rtx_insn *
4067fcc6 3482prev_real_insn (rtx_insn *insn)
15bbde2b 3483{
ce4469fa 3484 while (insn)
3485 {
3486 insn = PREV_INSN (insn);
3487 if (insn == 0 || INSN_P (insn))
3488 break;
3489 }
15bbde2b 3490
4cd001d5 3491 return insn;
15bbde2b 3492}
3493
d5f9786f 3494/* Return the last CALL_INSN in the current list, or 0 if there is none.
3495 This routine does not look inside SEQUENCEs. */
3496
ec22da62 3497rtx_call_insn *
35cb5232 3498last_call_insn (void)
d5f9786f 3499{
ec22da62 3500 rtx_insn *insn;
d5f9786f 3501
3502 for (insn = get_last_insn ();
6d7dc5b9 3503 insn && !CALL_P (insn);
d5f9786f 3504 insn = PREV_INSN (insn))
3505 ;
3506
ec22da62 3507 return safe_as_a <rtx_call_insn *> (insn);
d5f9786f 3508}
3509
15bbde2b 3510/* Find the next insn after INSN that really does something. This routine
084950ee 3511 does not look inside SEQUENCEs. After reload this also skips over
3512 standalone USE and CLOBBER insn. */
15bbde2b 3513
2215ca0d 3514int
41503955 3515active_insn_p (const rtx_insn *insn)
2215ca0d 3516{
6d7dc5b9 3517 return (CALL_P (insn) || JUMP_P (insn)
91f71fa3 3518 || JUMP_TABLE_DATA_P (insn) /* FIXME */
6d7dc5b9 3519 || (NONJUMP_INSN_P (insn)
3a66feab 3520 && (! reload_completed
3521 || (GET_CODE (PATTERN (insn)) != USE
3522 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2215ca0d 3523}
3524
7bac25b3 3525rtx_insn *
41503955 3526next_active_insn (rtx_insn *insn)
15bbde2b 3527{
ce4469fa 3528 while (insn)
3529 {
3530 insn = NEXT_INSN (insn);
3531 if (insn == 0 || active_insn_p (insn))
3532 break;
3533 }
15bbde2b 3534
4cd001d5 3535 return insn;
15bbde2b 3536}
3537
3538/* Find the last insn before INSN that really does something. This routine
084950ee 3539 does not look inside SEQUENCEs. After reload this also skips over
3540 standalone USE and CLOBBER insn. */
15bbde2b 3541
7bac25b3 3542rtx_insn *
41503955 3543prev_active_insn (rtx_insn *insn)
15bbde2b 3544{
ce4469fa 3545 while (insn)
3546 {
3547 insn = PREV_INSN (insn);
3548 if (insn == 0 || active_insn_p (insn))
3549 break;
3550 }
15bbde2b 3551
4cd001d5 3552 return insn;
15bbde2b 3553}
15bbde2b 3554\f
15bbde2b 3555/* Return the next insn that uses CC0 after INSN, which is assumed to
3556 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3557 applied to the result of this function should yield INSN).
3558
3559 Normally, this is simply the next insn. However, if a REG_CC_USER note
3560 is present, it contains the insn that uses CC0.
3561
3562 Return 0 if we can't find the insn. */
3563
0be88abd 3564rtx_insn *
924a5cee 3565next_cc0_user (rtx_insn *insn)
15bbde2b 3566{
b572011e 3567 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 3568
3569 if (note)
0be88abd 3570 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3571
3572 insn = next_nonnote_insn (insn);
6d7dc5b9 3573 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3574 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
15bbde2b 3575
9204e736 3576 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
4cd001d5 3577 return insn;
15bbde2b 3578
3579 return 0;
3580}
3581
3582/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3583 note, it is the previous insn. */
3584
0be88abd 3585rtx_insn *
fd8b0a1a 3586prev_cc0_setter (rtx_insn *insn)
15bbde2b 3587{
b572011e 3588 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 3589
3590 if (note)
0be88abd 3591 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3592
3593 insn = prev_nonnote_insn (insn);
611234b4 3594 gcc_assert (sets_cc0_p (PATTERN (insn)));
15bbde2b 3595
4cd001d5 3596 return insn;
15bbde2b 3597}
344dc2fa 3598
698ff1f0 3599/* Find a RTX_AUTOINC class rtx which matches DATA. */
3600
3601static int
4073adaa 3602find_auto_inc (const_rtx x, const_rtx reg)
698ff1f0 3603{
4073adaa 3604 subrtx_iterator::array_type array;
3605 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
698ff1f0 3606 {
4073adaa 3607 const_rtx x = *iter;
3608 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3609 && rtx_equal_p (reg, XEXP (x, 0)))
3610 return true;
698ff1f0 3611 }
4073adaa 3612 return false;
698ff1f0 3613}
698ff1f0 3614
344dc2fa 3615/* Increment the label uses for all labels present in rtx. */
3616
3617static void
35cb5232 3618mark_label_nuses (rtx x)
344dc2fa 3619{
19cb6b50 3620 enum rtx_code code;
3621 int i, j;
3622 const char *fmt;
344dc2fa 3623
3624 code = GET_CODE (x);
c7799456 3625 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3626 LABEL_NUSES (label_ref_label (x))++;
344dc2fa 3627
3628 fmt = GET_RTX_FORMAT (code);
3629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3630 {
3631 if (fmt[i] == 'e')
ff385626 3632 mark_label_nuses (XEXP (x, i));
344dc2fa 3633 else if (fmt[i] == 'E')
ff385626 3634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
344dc2fa 3635 mark_label_nuses (XVECEXP (x, i, j));
3636 }
3637}
3638
15bbde2b 3639\f
3640/* Try splitting insns that can be split for better scheduling.
3641 PAT is the pattern which might split.
3642 TRIAL is the insn providing PAT.
6ef828f9 3643 LAST is nonzero if we should return the last insn of the sequence produced.
15bbde2b 3644
3645 If this routine succeeds in splitting, it returns the first or last
0e69a50a 3646 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 3647 returns TRIAL. If the insn to be returned can be split, it will be. */
3648
bffa1357 3649rtx_insn *
58a87a29 3650try_split (rtx pat, rtx_insn *trial, int last)
15bbde2b 3651{
3b50f202 3652 rtx_insn *before, *after;
4cd001d5 3653 rtx note;
3654 rtx_insn *seq, *tem;
61cb1816 3655 profile_probability probability;
4cd001d5 3656 rtx_insn *insn_last, *insn;
e13693ec 3657 int njumps = 0;
9ed997be 3658 rtx_insn *call_insn = NULL;
3cd757b1 3659
25e880b1 3660 /* We're not good at redistributing frame information. */
3661 if (RTX_FRAME_RELATED_P (trial))
4cd001d5 3662 return trial;
25e880b1 3663
3cd757b1 3664 if (any_condjump_p (trial)
3665 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
61cb1816 3666 split_branch_probability
3667 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3668 else
3669 split_branch_probability = profile_probability::uninitialized ();
3670
3cd757b1 3671 probability = split_branch_probability;
3672
58a87a29 3673 seq = split_insns (pat, trial);
3cd757b1 3674
61cb1816 3675 split_branch_probability = profile_probability::uninitialized ();
15bbde2b 3676
e13693ec 3677 if (!seq)
4cd001d5 3678 return trial;
e13693ec 3679
3680 /* Avoid infinite loop if any insn of the result matches
3681 the original pattern. */
3682 insn_last = seq;
3683 while (1)
15bbde2b 3684 {
e13693ec 3685 if (INSN_P (insn_last)
3686 && rtx_equal_p (PATTERN (insn_last), pat))
4cd001d5 3687 return trial;
e13693ec 3688 if (!NEXT_INSN (insn_last))
3689 break;
3690 insn_last = NEXT_INSN (insn_last);
3691 }
d823ba47 3692
3072d30e 3693 /* We will be adding the new sequence to the function. The splitters
3694 may have introduced invalid RTL sharing, so unshare the sequence now. */
3695 unshare_all_rtl_in_chain (seq);
3696
8f869004 3697 /* Mark labels and copy flags. */
e13693ec 3698 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3699 {
6d7dc5b9 3700 if (JUMP_P (insn))
e13693ec 3701 {
8f869004 3702 if (JUMP_P (trial))
3703 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
e13693ec 3704 mark_jump_label (PATTERN (insn), insn, 0);
3705 njumps++;
61cb1816 3706 if (probability.initialized_p ()
e13693ec 3707 && any_condjump_p (insn)
3708 && !find_reg_note (insn, REG_BR_PROB, 0))
31d3e01c 3709 {
e13693ec 3710 /* We can preserve the REG_BR_PROB notes only if exactly
3711 one jump is created, otherwise the machine description
3712 is responsible for this step using
3713 split_branch_probability variable. */
611234b4 3714 gcc_assert (njumps == 1);
61cb1816 3715 add_reg_br_prob_note (insn, probability);
31d3e01c 3716 }
e13693ec 3717 }
3718 }
3719
3720 /* If we are splitting a CALL_INSN, look for the CALL_INSN
b0bd0491 3721 in SEQ and copy any additional information across. */
6d7dc5b9 3722 if (CALL_P (trial))
e13693ec 3723 {
3724 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
6d7dc5b9 3725 if (CALL_P (insn))
e13693ec 3726 {
4cd001d5 3727 rtx_insn *next;
3728 rtx *p;
b0bd0491 3729
2e3b0d0f 3730 gcc_assert (call_insn == NULL_RTX);
3731 call_insn = insn;
3732
b0bd0491 3733 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3734 target may have explicitly specified. */
3735 p = &CALL_INSN_FUNCTION_USAGE (insn);
0bb5a6cd 3736 while (*p)
3737 p = &XEXP (*p, 1);
3738 *p = CALL_INSN_FUNCTION_USAGE (trial);
b0bd0491 3739
3740 /* If the old call was a sibling call, the new one must
3741 be too. */
e13693ec 3742 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
b0bd0491 3743
3744 /* If the new call is the last instruction in the sequence,
3745 it will effectively replace the old call in-situ. Otherwise
3746 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3747 so that it comes immediately after the new call. */
3748 if (NEXT_INSN (insn))
47e1410d 3749 for (next = NEXT_INSN (trial);
3750 next && NOTE_P (next);
3751 next = NEXT_INSN (next))
3752 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
b0bd0491 3753 {
3754 remove_insn (next);
3755 add_insn_after (next, insn, NULL);
47e1410d 3756 break;
b0bd0491 3757 }
e13693ec 3758 }
3759 }
5262c253 3760
e13693ec 3761 /* Copy notes, particularly those related to the CFG. */
3762 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3763 {
3764 switch (REG_NOTE_KIND (note))
3765 {
3766 case REG_EH_REGION:
e38def9c 3767 copy_reg_eh_region_note_backward (note, insn_last, NULL);
e13693ec 3768 break;
381eb1e7 3769
e13693ec 3770 case REG_NORETURN:
3771 case REG_SETJMP:
4c0315d0 3772 case REG_TM:
698ff1f0 3773 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
381eb1e7 3774 {
6d7dc5b9 3775 if (CALL_P (insn))
a1ddb869 3776 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
381eb1e7 3777 }
e13693ec 3778 break;
5bb27a4b 3779
e13693ec 3780 case REG_NON_LOCAL_GOTO:
698ff1f0 3781 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
31d3e01c 3782 {
6d7dc5b9 3783 if (JUMP_P (insn))
a1ddb869 3784 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
31d3e01c 3785 }
e13693ec 3786 break;
344dc2fa 3787
698ff1f0 3788 case REG_INC:
32aa77d9 3789 if (!AUTO_INC_DEC)
3790 break;
3791
698ff1f0 3792 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3793 {
3794 rtx reg = XEXP (note, 0);
3795 if (!FIND_REG_INC_NOTE (insn, reg)
4073adaa 3796 && find_auto_inc (PATTERN (insn), reg))
a1ddb869 3797 add_reg_note (insn, REG_INC, reg);
698ff1f0 3798 }
3799 break;
698ff1f0 3800
dfe00a8f 3801 case REG_ARGS_SIZE:
32f1a0c8 3802 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
dfe00a8f 3803 break;
3804
2e3b0d0f 3805 case REG_CALL_DECL:
3806 gcc_assert (call_insn != NULL_RTX);
3807 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3808 break;
3809
e13693ec 3810 default:
3811 break;
15bbde2b 3812 }
e13693ec 3813 }
3814
3815 /* If there are LABELS inside the split insns increment the
3816 usage count so we don't delete the label. */
19d2fe05 3817 if (INSN_P (trial))
e13693ec 3818 {
3819 insn = insn_last;
3820 while (insn != NULL_RTX)
15bbde2b 3821 {
19d2fe05 3822 /* JUMP_P insns have already been "marked" above. */
6d7dc5b9 3823 if (NONJUMP_INSN_P (insn))
e13693ec 3824 mark_label_nuses (PATTERN (insn));
15bbde2b 3825
e13693ec 3826 insn = PREV_INSN (insn);
3827 }
15bbde2b 3828 }
3829
3b50f202 3830 before = PREV_INSN (trial);
3831 after = NEXT_INSN (trial);
3832
5169661d 3833 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
e13693ec 3834
3835 delete_insn (trial);
e13693ec 3836
3837 /* Recursively call try_split for each new insn created; by the
3838 time control returns here that insn will be fully split, so
3839 set LAST and continue from the insn after the one returned.
3840 We can't use next_active_insn here since AFTER may be a note.
3841 Ignore deleted insns, which can be occur if not optimizing. */
3842 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
dd1286fb 3843 if (! tem->deleted () && INSN_P (tem))
e13693ec 3844 tem = try_split (PATTERN (tem), tem, 1);
3845
3846 /* Return either the first or the last insn, depending on which was
3847 requested. */
3848 return last
06f9d6ef 3849 ? (after ? PREV_INSN (after) : get_last_insn ())
e13693ec 3850 : NEXT_INSN (before);
15bbde2b 3851}
3852\f
3853/* Make and return an INSN rtx, initializing all its slots.
6a84e367 3854 Store PATTERN in the pattern slots. */
15bbde2b 3855
2c57d586 3856rtx_insn *
35cb5232 3857make_insn_raw (rtx pattern)
15bbde2b 3858{
2c57d586 3859 rtx_insn *insn;
15bbde2b 3860
2c57d586 3861 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
15bbde2b 3862
575333f9 3863 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 3864 PATTERN (insn) = pattern;
3865 INSN_CODE (insn) = -1;
fc92fa61 3866 REG_NOTES (insn) = NULL;
5169661d 3867 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 3868 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 3869
fe7f701d 3870#ifdef ENABLE_RTL_CHECKING
3871 if (insn
9204e736 3872 && INSN_P (insn)
fe7f701d 3873 && (returnjump_p (insn)
3874 || (GET_CODE (insn) == SET
3875 && SET_DEST (insn) == pc_rtx)))
3876 {
c3ceba8e 3877 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
fe7f701d 3878 debug_rtx (insn);
3879 }
3880#endif
d823ba47 3881
15bbde2b 3882 return insn;
3883}
3884
9845d120 3885/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3886
2c57d586 3887static rtx_insn *
9845d120 3888make_debug_insn_raw (rtx pattern)
3889{
2c57d586 3890 rtx_debug_insn *insn;
9845d120 3891
2c57d586 3892 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
9845d120 3893 INSN_UID (insn) = cur_debug_insn_uid++;
3894 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3895 INSN_UID (insn) = cur_insn_uid++;
3896
3897 PATTERN (insn) = pattern;
3898 INSN_CODE (insn) = -1;
3899 REG_NOTES (insn) = NULL;
5169661d 3900 INSN_LOCATION (insn) = curr_insn_location ();
9845d120 3901 BLOCK_FOR_INSN (insn) = NULL;
3902
3903 return insn;
3904}
3905
31d3e01c 3906/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
15bbde2b 3907
2c57d586 3908static rtx_insn *
35cb5232 3909make_jump_insn_raw (rtx pattern)
15bbde2b 3910{
2c57d586 3911 rtx_jump_insn *insn;
15bbde2b 3912
2c57d586 3913 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
fc92fa61 3914 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 3915
3916 PATTERN (insn) = pattern;
3917 INSN_CODE (insn) = -1;
fc92fa61 3918 REG_NOTES (insn) = NULL;
3919 JUMP_LABEL (insn) = NULL;
5169661d 3920 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 3921 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 3922
3923 return insn;
3924}
6e911104 3925
31d3e01c 3926/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
6e911104 3927
2c57d586 3928static rtx_insn *
35cb5232 3929make_call_insn_raw (rtx pattern)
6e911104 3930{
2c57d586 3931 rtx_call_insn *insn;
6e911104 3932
2c57d586 3933 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
6e911104 3934 INSN_UID (insn) = cur_insn_uid++;
3935
3936 PATTERN (insn) = pattern;
3937 INSN_CODE (insn) = -1;
6e911104 3938 REG_NOTES (insn) = NULL;
3939 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5169661d 3940 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 3941 BLOCK_FOR_INSN (insn) = NULL;
6e911104 3942
3943 return insn;
3944}
35f3420b 3945
3946/* Like `make_insn_raw' but make a NOTE instead of an insn. */
3947
cef3d8ad 3948static rtx_note *
35f3420b 3949make_note_raw (enum insn_note subtype)
3950{
3951 /* Some notes are never created this way at all. These notes are
3952 only created by patching out insns. */
3953 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3954 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3955
cef3d8ad 3956 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
35f3420b 3957 INSN_UID (note) = cur_insn_uid++;
3958 NOTE_KIND (note) = subtype;
3959 BLOCK_FOR_INSN (note) = NULL;
3960 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3961 return note;
3962}
15bbde2b 3963\f
35f3420b 3964/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3965 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3966 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3967
3968static inline void
3e75e92b 3969link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
35f3420b 3970{
4a57a2e8 3971 SET_PREV_INSN (insn) = prev;
3972 SET_NEXT_INSN (insn) = next;
35f3420b 3973 if (prev != NULL)
3974 {
4a57a2e8 3975 SET_NEXT_INSN (prev) = insn;
35f3420b 3976 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3977 {
f17e3fff 3978 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3979 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
35f3420b 3980 }
3981 }
3982 if (next != NULL)
3983 {
4a57a2e8 3984 SET_PREV_INSN (next) = insn;
35f3420b 3985 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
f17e3fff 3986 {
3987 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3988 SET_PREV_INSN (sequence->insn (0)) = insn;
3989 }
35f3420b 3990 }
34f5b9ac 3991
3992 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3993 {
f17e3fff 3994 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3995 SET_PREV_INSN (sequence->insn (0)) = prev;
3996 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
34f5b9ac 3997 }
35f3420b 3998}
3999
15bbde2b 4000/* Add INSN to the end of the doubly-linked list.
4001 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4002
4003void
3e75e92b 4004add_insn (rtx_insn *insn)
15bbde2b 4005{
3e75e92b 4006 rtx_insn *prev = get_last_insn ();
35f3420b 4007 link_insn_into_chain (insn, prev, NULL);
06f9d6ef 4008 if (NULL == get_insns ())
4009 set_first_insn (insn);
06f9d6ef 4010 set_last_insn (insn);
15bbde2b 4011}
4012
35f3420b 4013/* Add INSN into the doubly-linked list after insn AFTER. */
15bbde2b 4014
35f3420b 4015static void
3e75e92b 4016add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
15bbde2b 4017{
3e75e92b 4018 rtx_insn *next = NEXT_INSN (after);
15bbde2b 4019
dd1286fb 4020 gcc_assert (!optimize || !after->deleted ());
f65c10c0 4021
35f3420b 4022 link_insn_into_chain (insn, after, next);
15bbde2b 4023
35f3420b 4024 if (next == NULL)
15bbde2b 4025 {
c36aa54b 4026 struct sequence_stack *seq;
4027
4028 for (seq = get_current_sequence (); seq; seq = seq->next)
4029 if (after == seq->last)
4030 {
4031 seq->last = insn;
4032 break;
4033 }
15bbde2b 4034 }
35f3420b 4035}
4036
4037/* Add INSN into the doubly-linked list before insn BEFORE. */
4038
4039static void
3e75e92b 4040add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
35f3420b 4041{
3e75e92b 4042 rtx_insn *prev = PREV_INSN (before);
35f3420b 4043
dd1286fb 4044 gcc_assert (!optimize || !before->deleted ());
35f3420b 4045
4046 link_insn_into_chain (insn, prev, before);
4047
4048 if (prev == NULL)
15bbde2b 4049 {
c36aa54b 4050 struct sequence_stack *seq;
312de84d 4051
c36aa54b 4052 for (seq = get_current_sequence (); seq; seq = seq->next)
4053 if (before == seq->first)
4054 {
4055 seq->first = insn;
4056 break;
4057 }
4058
4059 gcc_assert (seq);
15bbde2b 4060 }
35f3420b 4061}
4062
4063/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4064 If BB is NULL, an attempt is made to infer the bb from before.
4065
4066 This and the next function should be the only functions called
4067 to insert an insn once delay slots have been filled since only
4068 they know how to update a SEQUENCE. */
15bbde2b 4069
35f3420b 4070void
3e75e92b 4071add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
35f3420b 4072{
26bb3cb2 4073 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
3e75e92b 4074 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
35f3420b 4075 add_insn_after_nobb (insn, after);
6d7dc5b9 4076 if (!BARRIER_P (after)
4077 && !BARRIER_P (insn)
9dda7915 4078 && (bb = BLOCK_FOR_INSN (after)))
4079 {
4080 set_block_for_insn (insn, bb);
308f9b79 4081 if (INSN_P (insn))
3072d30e 4082 df_insn_rescan (insn);
9dda7915 4083 /* Should not happen as first in the BB is always
3fb1e43b 4084 either NOTE or LABEL. */
5496dbfc 4085 if (BB_END (bb) == after
9dda7915 4086 /* Avoid clobbering of structure when creating new BB. */
6d7dc5b9 4087 && !BARRIER_P (insn)
ad4583d9 4088 && !NOTE_INSN_BASIC_BLOCK_P (insn))
26bb3cb2 4089 BB_END (bb) = insn;
9dda7915 4090 }
15bbde2b 4091}
4092
35f3420b 4093/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4094 If BB is NULL, an attempt is made to infer the bb from before.
4095
4096 This and the previous function should be the only functions called
4097 to insert an insn once delay slots have been filled since only
4098 they know how to update a SEQUENCE. */
312de84d 4099
4100void
3e75e92b 4101add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
312de84d 4102{
3e75e92b 4103 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4104 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
35f3420b 4105 add_insn_before_nobb (insn, before);
312de84d 4106
48e1416a 4107 if (!bb
3072d30e 4108 && !BARRIER_P (before)
4109 && !BARRIER_P (insn))
4110 bb = BLOCK_FOR_INSN (before);
4111
4112 if (bb)
9dda7915 4113 {
4114 set_block_for_insn (insn, bb);
308f9b79 4115 if (INSN_P (insn))
3072d30e 4116 df_insn_rescan (insn);
611234b4 4117 /* Should not happen as first in the BB is always either NOTE or
ba821eb1 4118 LABEL. */
611234b4 4119 gcc_assert (BB_HEAD (bb) != insn
4120 /* Avoid clobbering of structure when creating new BB. */
4121 || BARRIER_P (insn)
ad4583d9 4122 || NOTE_INSN_BASIC_BLOCK_P (insn));
9dda7915 4123 }
312de84d 4124}
4125
3072d30e 4126/* Replace insn with an deleted instruction note. */
4127
fc3d1695 4128void
4129set_insn_deleted (rtx insn)
3072d30e 4130{
91f71fa3 4131 if (INSN_P (insn))
e149ca56 4132 df_insn_delete (as_a <rtx_insn *> (insn));
3072d30e 4133 PUT_CODE (insn, NOTE);
4134 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4135}
4136
4137
93ff53d3 4138/* Unlink INSN from the insn chain.
4139
4140 This function knows how to handle sequences.
4141
4142 This function does not invalidate data flow information associated with
4143 INSN (i.e. does not call df_insn_delete). That makes this function
4144 usable for only disconnecting an insn from the chain, and re-emit it
4145 elsewhere later.
4146
4147 To later insert INSN elsewhere in the insn chain via add_insn and
4148 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4149 the caller. Nullifying them here breaks many insn chain walks.
4150
4151 To really delete an insn and related DF information, use delete_insn. */
4152
7ddcf2bf 4153void
4cd001d5 4154remove_insn (rtx uncast_insn)
7ddcf2bf 4155{
4cd001d5 4156 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
26bb3cb2 4157 rtx_insn *next = NEXT_INSN (insn);
4158 rtx_insn *prev = PREV_INSN (insn);
e4bf866d 4159 basic_block bb;
4160
7ddcf2bf 4161 if (prev)
4162 {
4a57a2e8 4163 SET_NEXT_INSN (prev) = next;
6d7dc5b9 4164 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
7ddcf2bf 4165 {
f17e3fff 4166 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4167 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
7ddcf2bf 4168 }
4169 }
7ddcf2bf 4170 else
4171 {
c36aa54b 4172 struct sequence_stack *seq;
4173
4174 for (seq = get_current_sequence (); seq; seq = seq->next)
4175 if (insn == seq->first)
7ddcf2bf 4176 {
c36aa54b 4177 seq->first = next;
7ddcf2bf 4178 break;
4179 }
4180
c36aa54b 4181 gcc_assert (seq);
7ddcf2bf 4182 }
4183
4184 if (next)
4185 {
4a57a2e8 4186 SET_PREV_INSN (next) = prev;
6d7dc5b9 4187 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
f17e3fff 4188 {
4189 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4190 SET_PREV_INSN (sequence->insn (0)) = prev;
4191 }
7ddcf2bf 4192 }
7ddcf2bf 4193 else
4194 {
c36aa54b 4195 struct sequence_stack *seq;
4196
4197 for (seq = get_current_sequence (); seq; seq = seq->next)
4198 if (insn == seq->last)
7ddcf2bf 4199 {
c36aa54b 4200 seq->last = prev;
7ddcf2bf 4201 break;
4202 }
4203
c36aa54b 4204 gcc_assert (seq);
7ddcf2bf 4205 }
b983ea33 4206
b983ea33 4207 /* Fix up basic block boundaries, if necessary. */
6d7dc5b9 4208 if (!BARRIER_P (insn)
e4bf866d 4209 && (bb = BLOCK_FOR_INSN (insn)))
4210 {
5496dbfc 4211 if (BB_HEAD (bb) == insn)
e4bf866d 4212 {
f4aee538 4213 /* Never ever delete the basic block note without deleting whole
4214 basic block. */
611234b4 4215 gcc_assert (!NOTE_P (insn));
26bb3cb2 4216 BB_HEAD (bb) = next;
e4bf866d 4217 }
5496dbfc 4218 if (BB_END (bb) == insn)
26bb3cb2 4219 BB_END (bb) = prev;
e4bf866d 4220 }
7ddcf2bf 4221}
4222
d5f9786f 4223/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4224
4225void
35cb5232 4226add_function_usage_to (rtx call_insn, rtx call_fusage)
d5f9786f 4227{
611234b4 4228 gcc_assert (call_insn && CALL_P (call_insn));
d5f9786f 4229
4230 /* Put the register usage information on the CALL. If there is already
4231 some usage information, put ours at the end. */
4232 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4233 {
4234 rtx link;
4235
4236 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4237 link = XEXP (link, 1))
4238 ;
4239
4240 XEXP (link, 1) = call_fusage;
4241 }
4242 else
4243 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4244}
4245
15bbde2b 4246/* Delete all insns made since FROM.
4247 FROM becomes the new last instruction. */
4248
4249void
57c26b3a 4250delete_insns_since (rtx_insn *from)
15bbde2b 4251{
4252 if (from == 0)
06f9d6ef 4253 set_first_insn (0);
15bbde2b 4254 else
4a57a2e8 4255 SET_NEXT_INSN (from) = 0;
06f9d6ef 4256 set_last_insn (from);
15bbde2b 4257}
4258
34e2ddcd 4259/* This function is deprecated, please use sequences instead.
4260
4261 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 4262 The insns to be moved are those between FROM and TO.
4263 They are moved to a new position after the insn AFTER.
4264 AFTER must not be FROM or TO or any insn in between.
4265
4266 This function does not know about SEQUENCEs and hence should not be
4267 called after delay-slot filling has been done. */
4268
4269void
57c26b3a 4270reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
15bbde2b 4271{
382ecba7 4272 if (flag_checking)
4273 {
4274 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4275 gcc_assert (after != x);
4276 gcc_assert (after != to);
4277 }
7f6ca11f 4278
15bbde2b 4279 /* Splice this bunch out of where it is now. */
4280 if (PREV_INSN (from))
4a57a2e8 4281 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
15bbde2b 4282 if (NEXT_INSN (to))
4a57a2e8 4283 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
06f9d6ef 4284 if (get_last_insn () == to)
4285 set_last_insn (PREV_INSN (from));
4286 if (get_insns () == from)
4287 set_first_insn (NEXT_INSN (to));
15bbde2b 4288
4289 /* Make the new neighbors point to it and it to them. */
4290 if (NEXT_INSN (after))
4a57a2e8 4291 SET_PREV_INSN (NEXT_INSN (after)) = to;
15bbde2b 4292
4a57a2e8 4293 SET_NEXT_INSN (to) = NEXT_INSN (after);
4294 SET_PREV_INSN (from) = after;
4295 SET_NEXT_INSN (after) = from;
9af5ce0c 4296 if (after == get_last_insn ())
06f9d6ef 4297 set_last_insn (to);
15bbde2b 4298}
4299
9dda7915 4300/* Same as function above, but take care to update BB boundaries. */
4301void
4a3fb716 4302reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
9dda7915 4303{
4a3fb716 4304 rtx_insn *prev = PREV_INSN (from);
9dda7915 4305 basic_block bb, bb2;
4306
4307 reorder_insns_nobb (from, to, after);
4308
6d7dc5b9 4309 if (!BARRIER_P (after)
9dda7915 4310 && (bb = BLOCK_FOR_INSN (after)))
4311 {
e149ca56 4312 rtx_insn *x;
3072d30e 4313 df_set_bb_dirty (bb);
d4c5e26d 4314
6d7dc5b9 4315 if (!BARRIER_P (from)
9dda7915 4316 && (bb2 = BLOCK_FOR_INSN (from)))
4317 {
5496dbfc 4318 if (BB_END (bb2) == to)
26bb3cb2 4319 BB_END (bb2) = prev;
3072d30e 4320 df_set_bb_dirty (bb2);
9dda7915 4321 }
4322
5496dbfc 4323 if (BB_END (bb) == after)
26bb3cb2 4324 BB_END (bb) = to;
9dda7915 4325
4326 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7097dd0c 4327 if (!BARRIER_P (x))
a2bdd643 4328 df_insn_change_bb (x, bb);
9dda7915 4329 }
4330}
4331
15bbde2b 4332\f
31d3e01c 4333/* Emit insn(s) of given code and pattern
4334 at a specified place within the doubly-linked list.
15bbde2b 4335
31d3e01c 4336 All of the emit_foo global entry points accept an object
4337 X which is either an insn list or a PATTERN of a single
4338 instruction.
15bbde2b 4339
31d3e01c 4340 There are thus a few canonical ways to generate code and
4341 emit it at a specific place in the instruction stream. For
4342 example, consider the instruction named SPOT and the fact that
4343 we would like to emit some instructions before SPOT. We might
4344 do it like this:
15bbde2b 4345
31d3e01c 4346 start_sequence ();
4347 ... emit the new instructions ...
4348 insns_head = get_insns ();
4349 end_sequence ();
15bbde2b 4350
31d3e01c 4351 emit_insn_before (insns_head, SPOT);
15bbde2b 4352
31d3e01c 4353 It used to be common to generate SEQUENCE rtl instead, but that
4354 is a relic of the past which no longer occurs. The reason is that
4355 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4356 generated would almost certainly die right after it was created. */
15bbde2b 4357
722334ea 4358static rtx_insn *
5f7c5ddd 4359emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
2c57d586 4360 rtx_insn *(*make_raw) (rtx))
15bbde2b 4361{
2c57d586 4362 rtx_insn *insn;
15bbde2b 4363
611234b4 4364 gcc_assert (before);
31d3e01c 4365
4366 if (x == NULL_RTX)
722334ea 4367 return safe_as_a <rtx_insn *> (last);
31d3e01c 4368
4369 switch (GET_CODE (x))
15bbde2b 4370 {
9845d120 4371 case DEBUG_INSN:
31d3e01c 4372 case INSN:
4373 case JUMP_INSN:
4374 case CALL_INSN:
4375 case CODE_LABEL:
4376 case BARRIER:
4377 case NOTE:
2c57d586 4378 insn = as_a <rtx_insn *> (x);
31d3e01c 4379 while (insn)
4380 {
2c57d586 4381 rtx_insn *next = NEXT_INSN (insn);
3072d30e 4382 add_insn_before (insn, before, bb);
31d3e01c 4383 last = insn;
4384 insn = next;
4385 }
4386 break;
4387
4388#ifdef ENABLE_RTL_CHECKING
4389 case SEQUENCE:
611234b4 4390 gcc_unreachable ();
31d3e01c 4391 break;
4392#endif
4393
4394 default:
5f7c5ddd 4395 last = (*make_raw) (x);
3072d30e 4396 add_insn_before (last, before, bb);
31d3e01c 4397 break;
15bbde2b 4398 }
4399
722334ea 4400 return safe_as_a <rtx_insn *> (last);
15bbde2b 4401}
4402
5f7c5ddd 4403/* Make X be output before the instruction BEFORE. */
4404
722334ea 4405rtx_insn *
c9a09955 4406emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f7c5ddd 4407{
4408 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4409}
4410
31d3e01c 4411/* Make an instruction with body X and code JUMP_INSN
15bbde2b 4412 and output it before the instruction BEFORE. */
4413
f9a00e9e 4414rtx_jump_insn *
c9a09955 4415emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
15bbde2b 4416{
f9a00e9e 4417 return as_a <rtx_jump_insn *> (
4418 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4419 make_jump_insn_raw));
15bbde2b 4420}
4421
31d3e01c 4422/* Make an instruction with body X and code CALL_INSN
cd0fe062 4423 and output it before the instruction BEFORE. */
4424
722334ea 4425rtx_insn *
c9a09955 4426emit_call_insn_before_noloc (rtx x, rtx_insn *before)
cd0fe062 4427{
5f7c5ddd 4428 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4429 make_call_insn_raw);
cd0fe062 4430}
4431
9845d120 4432/* Make an instruction with body X and code DEBUG_INSN
4433 and output it before the instruction BEFORE. */
4434
722334ea 4435rtx_insn *
9845d120 4436emit_debug_insn_before_noloc (rtx x, rtx before)
4437{
5f7c5ddd 4438 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4439 make_debug_insn_raw);
9845d120 4440}
4441
15bbde2b 4442/* Make an insn of code BARRIER
71caadc0 4443 and output it before the insn BEFORE. */
15bbde2b 4444
722334ea 4445rtx_barrier *
35cb5232 4446emit_barrier_before (rtx before)
15bbde2b 4447{
722334ea 4448 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4449
4450 INSN_UID (insn) = cur_insn_uid++;
4451
3072d30e 4452 add_insn_before (insn, before, NULL);
15bbde2b 4453 return insn;
4454}
4455
71caadc0 4456/* Emit the label LABEL before the insn BEFORE. */
4457
f9a00e9e 4458rtx_code_label *
c9a09955 4459emit_label_before (rtx label, rtx_insn *before)
71caadc0 4460{
596ef494 4461 gcc_checking_assert (INSN_UID (label) == 0);
4462 INSN_UID (label) = cur_insn_uid++;
4463 add_insn_before (label, before, NULL);
f9a00e9e 4464 return as_a <rtx_code_label *> (label);
71caadc0 4465}
15bbde2b 4466\f
31d3e01c 4467/* Helper for emit_insn_after, handles lists of instructions
4468 efficiently. */
15bbde2b 4469
f17e3fff 4470static rtx_insn *
4471emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
15bbde2b 4472{
f17e3fff 4473 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
26bb3cb2 4474 rtx_insn *last;
4475 rtx_insn *after_after;
3072d30e 4476 if (!bb && !BARRIER_P (after))
4477 bb = BLOCK_FOR_INSN (after);
15bbde2b 4478
3072d30e 4479 if (bb)
15bbde2b 4480 {
3072d30e 4481 df_set_bb_dirty (bb);
31d3e01c 4482 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
6d7dc5b9 4483 if (!BARRIER_P (last))
3072d30e 4484 {
4485 set_block_for_insn (last, bb);
4486 df_insn_rescan (last);
4487 }
6d7dc5b9 4488 if (!BARRIER_P (last))
3072d30e 4489 {
4490 set_block_for_insn (last, bb);
4491 df_insn_rescan (last);
4492 }
5496dbfc 4493 if (BB_END (bb) == after)
26bb3cb2 4494 BB_END (bb) = last;
15bbde2b 4495 }
4496 else
31d3e01c 4497 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4498 continue;
4499
4500 after_after = NEXT_INSN (after);
4501
4a57a2e8 4502 SET_NEXT_INSN (after) = first;
4503 SET_PREV_INSN (first) = after;
4504 SET_NEXT_INSN (last) = after_after;
31d3e01c 4505 if (after_after)
4a57a2e8 4506 SET_PREV_INSN (after_after) = last;
31d3e01c 4507
9af5ce0c 4508 if (after == get_last_insn ())
06f9d6ef 4509 set_last_insn (last);
e1ab7874 4510
31d3e01c 4511 return last;
4512}
4513
722334ea 4514static rtx_insn *
f17e3fff 4515emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
2c57d586 4516 rtx_insn *(*make_raw)(rtx))
31d3e01c 4517{
f17e3fff 4518 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4519 rtx_insn *last = after;
31d3e01c 4520
611234b4 4521 gcc_assert (after);
31d3e01c 4522
4523 if (x == NULL_RTX)
f17e3fff 4524 return last;
31d3e01c 4525
4526 switch (GET_CODE (x))
15bbde2b 4527 {
9845d120 4528 case DEBUG_INSN:
31d3e01c 4529 case INSN:
4530 case JUMP_INSN:
4531 case CALL_INSN:
4532 case CODE_LABEL:
4533 case BARRIER:
4534 case NOTE:
26bb3cb2 4535 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
31d3e01c 4536 break;
4537
4538#ifdef ENABLE_RTL_CHECKING
4539 case SEQUENCE:
611234b4 4540 gcc_unreachable ();
31d3e01c 4541 break;
4542#endif
4543
4544 default:
5f7c5ddd 4545 last = (*make_raw) (x);
3072d30e 4546 add_insn_after (last, after, bb);
31d3e01c 4547 break;
15bbde2b 4548 }
4549
f17e3fff 4550 return last;
15bbde2b 4551}
4552
5f7c5ddd 4553/* Make X be output after the insn AFTER and set the BB of insn. If
4554 BB is NULL, an attempt is made to infer the BB from AFTER. */
4555
722334ea 4556rtx_insn *
5f7c5ddd 4557emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4558{
4559 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4560}
4561
1bea98fb 4562
31d3e01c 4563/* Make an insn of code JUMP_INSN with body X
15bbde2b 4564 and output it after the insn AFTER. */
4565
f9a00e9e 4566rtx_jump_insn *
0891f67c 4567emit_jump_insn_after_noloc (rtx x, rtx after)
15bbde2b 4568{
f9a00e9e 4569 return as_a <rtx_jump_insn *> (
4570 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
31d3e01c 4571}
4572
4573/* Make an instruction with body X and code CALL_INSN
4574 and output it after the instruction AFTER. */
4575
722334ea 4576rtx_insn *
0891f67c 4577emit_call_insn_after_noloc (rtx x, rtx after)
31d3e01c 4578{
5f7c5ddd 4579 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
15bbde2b 4580}
4581
9845d120 4582/* Make an instruction with body X and code CALL_INSN
4583 and output it after the instruction AFTER. */
4584
722334ea 4585rtx_insn *
9845d120 4586emit_debug_insn_after_noloc (rtx x, rtx after)
4587{
5f7c5ddd 4588 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
9845d120 4589}
4590
15bbde2b 4591/* Make an insn of code BARRIER
4592 and output it after the insn AFTER. */
4593
722334ea 4594rtx_barrier *
35cb5232 4595emit_barrier_after (rtx after)
15bbde2b 4596{
722334ea 4597 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4598
4599 INSN_UID (insn) = cur_insn_uid++;
4600
3072d30e 4601 add_insn_after (insn, after, NULL);
15bbde2b 4602 return insn;
4603}
4604
4605/* Emit the label LABEL after the insn AFTER. */
4606
722334ea 4607rtx_insn *
c9a09955 4608emit_label_after (rtx label, rtx_insn *after)
15bbde2b 4609{
596ef494 4610 gcc_checking_assert (INSN_UID (label) == 0);
4611 INSN_UID (label) = cur_insn_uid++;
4612 add_insn_after (label, after, NULL);
722334ea 4613 return as_a <rtx_insn *> (label);
15bbde2b 4614}
35f3420b 4615\f
4616/* Notes require a bit of special handling: Some notes need to have their
4617 BLOCK_FOR_INSN set, others should never have it set, and some should
4618 have it set or clear depending on the context. */
4619
4620/* Return true iff a note of kind SUBTYPE should be emitted with routines
4621 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4622 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4623
4624static bool
4625note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4626{
4627 switch (subtype)
4628 {
4629 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4630 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4631 return true;
4632
4633 /* Notes for var tracking and EH region markers can appear between or
4634 inside basic blocks. If the caller is emitting on the basic block
4635 boundary, do not set BLOCK_FOR_INSN on the new note. */
4636 case NOTE_INSN_VAR_LOCATION:
4637 case NOTE_INSN_CALL_ARG_LOCATION:
4638 case NOTE_INSN_EH_REGION_BEG:
4639 case NOTE_INSN_EH_REGION_END:
4640 return on_bb_boundary_p;
4641
4642 /* Otherwise, BLOCK_FOR_INSN must be set. */
4643 default:
4644 return false;
4645 }
4646}
15bbde2b 4647
4648/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4649
cef3d8ad 4650rtx_note *
4d86329d 4651emit_note_after (enum insn_note subtype, rtx_insn *after)
15bbde2b 4652{
cef3d8ad 4653 rtx_note *note = make_note_raw (subtype);
35f3420b 4654 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4655 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4656
4657 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4658 add_insn_after_nobb (note, after);
4659 else
4660 add_insn_after (note, after, bb);
4661 return note;
4662}
4663
4664/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4665
cef3d8ad 4666rtx_note *
1dc26636 4667emit_note_before (enum insn_note subtype, rtx_insn *before)
35f3420b 4668{
cef3d8ad 4669 rtx_note *note = make_note_raw (subtype);
35f3420b 4670 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4671 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4672
4673 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4674 add_insn_before_nobb (note, before);
4675 else
4676 add_insn_before (note, before, bb);
15bbde2b 4677 return note;
4678}
15bbde2b 4679\f
ede4ebcb 4680/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4681 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4682
722334ea 4683static rtx_insn *
4cd001d5 4684emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
2c57d586 4685 rtx_insn *(*make_raw) (rtx))
d321a68b 4686{
4cd001d5 4687 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
9ed997be 4688 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
d321a68b 4689
0891f67c 4690 if (pattern == NULL_RTX || !loc)
9ed997be 4691 return last;
ca154f3f 4692
31d3e01c 4693 after = NEXT_INSN (after);
4694 while (1)
4695 {
57e999d9 4696 if (active_insn_p (after)
4697 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4698 && !INSN_LOCATION (after))
5169661d 4699 INSN_LOCATION (after) = loc;
31d3e01c 4700 if (after == last)
4701 break;
4702 after = NEXT_INSN (after);
4703 }
9ed997be 4704 return last;
d321a68b 4705}
4706
ede4ebcb 4707/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4708 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4709 any DEBUG_INSNs. */
4710
722334ea 4711static rtx_insn *
4cd001d5 4712emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
2c57d586 4713 rtx_insn *(*make_raw) (rtx))
0891f67c 4714{
4cd001d5 4715 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4716 rtx_insn *prev = after;
9845d120 4717
ede4ebcb 4718 if (skip_debug_insns)
4719 while (DEBUG_INSN_P (prev))
4720 prev = PREV_INSN (prev);
9845d120 4721
4722 if (INSN_P (prev))
5169661d 4723 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
ede4ebcb 4724 make_raw);
0891f67c 4725 else
ede4ebcb 4726 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0891f67c 4727}
4728
5169661d 4729/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4730rtx_insn *
ede4ebcb 4731emit_insn_after_setloc (rtx pattern, rtx after, int loc)
d321a68b 4732{
ede4ebcb 4733 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4734}
31d3e01c 4735
5169661d 4736/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4737rtx_insn *
ede4ebcb 4738emit_insn_after (rtx pattern, rtx after)
4739{
4740 return emit_pattern_after (pattern, after, true, make_insn_raw);
4741}
ca154f3f 4742
5169661d 4743/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
f9a00e9e 4744rtx_jump_insn *
ede4ebcb 4745emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4746{
f9a00e9e 4747 return as_a <rtx_jump_insn *> (
4748 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
d321a68b 4749}
4750
5169661d 4751/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
f9a00e9e 4752rtx_jump_insn *
0891f67c 4753emit_jump_insn_after (rtx pattern, rtx after)
4754{
f9a00e9e 4755 return as_a <rtx_jump_insn *> (
4756 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
0891f67c 4757}
4758
5169661d 4759/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4760rtx_insn *
35cb5232 4761emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
d321a68b 4762{
ede4ebcb 4763 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
d321a68b 4764}
4765
5169661d 4766/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4767rtx_insn *
0891f67c 4768emit_call_insn_after (rtx pattern, rtx after)
4769{
ede4ebcb 4770 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
0891f67c 4771}
4772
5169661d 4773/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4774rtx_insn *
9845d120 4775emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4776{
ede4ebcb 4777 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
9845d120 4778}
4779
5169661d 4780/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4781rtx_insn *
9845d120 4782emit_debug_insn_after (rtx pattern, rtx after)
4783{
ede4ebcb 4784 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
9845d120 4785}
4786
ede4ebcb 4787/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4788 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4789 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4790 CALL_INSN, etc. */
4791
722334ea 4792static rtx_insn *
4cd001d5 4793emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
2c57d586 4794 rtx_insn *(*make_raw) (rtx))
d321a68b 4795{
4cd001d5 4796 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4797 rtx_insn *first = PREV_INSN (before);
4798 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4799 insnp ? before : NULL_RTX,
4800 NULL, make_raw);
0891f67c 4801
4802 if (pattern == NULL_RTX || !loc)
4cd001d5 4803 return last;
0891f67c 4804
4486418e 4805 if (!first)
4806 first = get_insns ();
4807 else
4808 first = NEXT_INSN (first);
0891f67c 4809 while (1)
4810 {
57e999d9 4811 if (active_insn_p (first)
4812 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4813 && !INSN_LOCATION (first))
5169661d 4814 INSN_LOCATION (first) = loc;
0891f67c 4815 if (first == last)
4816 break;
4817 first = NEXT_INSN (first);
4818 }
4cd001d5 4819 return last;
0891f67c 4820}
4821
ede4ebcb 4822/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4823 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4824 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4825 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4826
722334ea 4827static rtx_insn *
4cd001d5 4828emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
2c57d586 4829 bool insnp, rtx_insn *(*make_raw) (rtx))
0891f67c 4830{
4cd001d5 4831 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4832 rtx_insn *next = before;
9845d120 4833
ede4ebcb 4834 if (skip_debug_insns)
4835 while (DEBUG_INSN_P (next))
4836 next = PREV_INSN (next);
9845d120 4837
4838 if (INSN_P (next))
5169661d 4839 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
ede4ebcb 4840 insnp, make_raw);
0891f67c 4841 else
ede4ebcb 4842 return emit_pattern_before_noloc (pattern, before,
db7dd023 4843 insnp ? before : NULL_RTX,
ede4ebcb 4844 NULL, make_raw);
0891f67c 4845}
4846
5169661d 4847/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4848rtx_insn *
c9a09955 4849emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
0891f67c 4850{
ede4ebcb 4851 return emit_pattern_before_setloc (pattern, before, loc, true,
4852 make_insn_raw);
4853}
0891f67c 4854
5169661d 4855/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
722334ea 4856rtx_insn *
ede4ebcb 4857emit_insn_before (rtx pattern, rtx before)
4858{
4859 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4860}
0891f67c 4861
5169661d 4862/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
f9a00e9e 4863rtx_jump_insn *
c9a09955 4864emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
ede4ebcb 4865{
f9a00e9e 4866 return as_a <rtx_jump_insn *> (
4867 emit_pattern_before_setloc (pattern, before, loc, false,
4868 make_jump_insn_raw));
0891f67c 4869}
4870
5169661d 4871/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
f9a00e9e 4872rtx_jump_insn *
0891f67c 4873emit_jump_insn_before (rtx pattern, rtx before)
4874{
f9a00e9e 4875 return as_a <rtx_jump_insn *> (
4876 emit_pattern_before (pattern, before, true, false,
4877 make_jump_insn_raw));
0891f67c 4878}
4879
5169661d 4880/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4881rtx_insn *
c9a09955 4882emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
0891f67c 4883{
ede4ebcb 4884 return emit_pattern_before_setloc (pattern, before, loc, false,
4885 make_call_insn_raw);
d321a68b 4886}
0891f67c 4887
ede4ebcb 4888/* Like emit_call_insn_before_noloc,
5169661d 4889 but set insn_location according to BEFORE. */
722334ea 4890rtx_insn *
c9a09955 4891emit_call_insn_before (rtx pattern, rtx_insn *before)
0891f67c 4892{
ede4ebcb 4893 return emit_pattern_before (pattern, before, true, false,
4894 make_call_insn_raw);
0891f67c 4895}
9845d120 4896
5169661d 4897/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4898rtx_insn *
9845d120 4899emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4900{
ede4ebcb 4901 return emit_pattern_before_setloc (pattern, before, loc, false,
4902 make_debug_insn_raw);
9845d120 4903}
4904
ede4ebcb 4905/* Like emit_debug_insn_before_noloc,
5169661d 4906 but set insn_location according to BEFORE. */
722334ea 4907rtx_insn *
5518cf83 4908emit_debug_insn_before (rtx pattern, rtx_insn *before)
9845d120 4909{
ede4ebcb 4910 return emit_pattern_before (pattern, before, false, false,
4911 make_debug_insn_raw);
9845d120 4912}
d321a68b 4913\f
31d3e01c 4914/* Take X and emit it at the end of the doubly-linked
4915 INSN list.
15bbde2b 4916
4917 Returns the last insn emitted. */
4918
722334ea 4919rtx_insn *
35cb5232 4920emit_insn (rtx x)
15bbde2b 4921{
722334ea 4922 rtx_insn *last = get_last_insn ();
4923 rtx_insn *insn;
15bbde2b 4924
31d3e01c 4925 if (x == NULL_RTX)
4926 return last;
15bbde2b 4927
31d3e01c 4928 switch (GET_CODE (x))
4929 {
9845d120 4930 case DEBUG_INSN:
31d3e01c 4931 case INSN:
4932 case JUMP_INSN:
4933 case CALL_INSN:
4934 case CODE_LABEL:
4935 case BARRIER:
4936 case NOTE:
722334ea 4937 insn = as_a <rtx_insn *> (x);
31d3e01c 4938 while (insn)
15bbde2b 4939 {
722334ea 4940 rtx_insn *next = NEXT_INSN (insn);
15bbde2b 4941 add_insn (insn);
31d3e01c 4942 last = insn;
4943 insn = next;
15bbde2b 4944 }
31d3e01c 4945 break;
15bbde2b 4946
31d3e01c 4947#ifdef ENABLE_RTL_CHECKING
91f71fa3 4948 case JUMP_TABLE_DATA:
31d3e01c 4949 case SEQUENCE:
611234b4 4950 gcc_unreachable ();
31d3e01c 4951 break;
4952#endif
15bbde2b 4953
31d3e01c 4954 default:
4955 last = make_insn_raw (x);
4956 add_insn (last);
4957 break;
15bbde2b 4958 }
4959
4960 return last;
4961}
4962
9845d120 4963/* Make an insn of code DEBUG_INSN with pattern X
4964 and add it to the end of the doubly-linked list. */
4965
722334ea 4966rtx_insn *
9845d120 4967emit_debug_insn (rtx x)
4968{
722334ea 4969 rtx_insn *last = get_last_insn ();
4970 rtx_insn *insn;
9845d120 4971
4972 if (x == NULL_RTX)
4973 return last;
4974
4975 switch (GET_CODE (x))
4976 {
4977 case DEBUG_INSN:
4978 case INSN:
4979 case JUMP_INSN:
4980 case CALL_INSN:
4981 case CODE_LABEL:
4982 case BARRIER:
4983 case NOTE:
722334ea 4984 insn = as_a <rtx_insn *> (x);
9845d120 4985 while (insn)
4986 {
722334ea 4987 rtx_insn *next = NEXT_INSN (insn);
9845d120 4988 add_insn (insn);
4989 last = insn;
4990 insn = next;
4991 }
4992 break;
4993
4994#ifdef ENABLE_RTL_CHECKING
91f71fa3 4995 case JUMP_TABLE_DATA:
9845d120 4996 case SEQUENCE:
4997 gcc_unreachable ();
4998 break;
4999#endif
5000
5001 default:
5002 last = make_debug_insn_raw (x);
5003 add_insn (last);
5004 break;
5005 }
5006
5007 return last;
5008}
5009
31d3e01c 5010/* Make an insn of code JUMP_INSN with pattern X
5011 and add it to the end of the doubly-linked list. */
15bbde2b 5012
722334ea 5013rtx_insn *
35cb5232 5014emit_jump_insn (rtx x)
15bbde2b 5015{
722334ea 5016 rtx_insn *last = NULL;
5017 rtx_insn *insn;
15bbde2b 5018
31d3e01c 5019 switch (GET_CODE (x))
15bbde2b 5020 {
9845d120 5021 case DEBUG_INSN:
31d3e01c 5022 case INSN:
5023 case JUMP_INSN:
5024 case CALL_INSN:
5025 case CODE_LABEL:
5026 case BARRIER:
5027 case NOTE:
722334ea 5028 insn = as_a <rtx_insn *> (x);
31d3e01c 5029 while (insn)
5030 {
722334ea 5031 rtx_insn *next = NEXT_INSN (insn);
31d3e01c 5032 add_insn (insn);
5033 last = insn;
5034 insn = next;
5035 }
5036 break;
b36b07d8 5037
31d3e01c 5038#ifdef ENABLE_RTL_CHECKING
91f71fa3 5039 case JUMP_TABLE_DATA:
31d3e01c 5040 case SEQUENCE:
611234b4 5041 gcc_unreachable ();
31d3e01c 5042 break;
5043#endif
b36b07d8 5044
31d3e01c 5045 default:
5046 last = make_jump_insn_raw (x);
5047 add_insn (last);
5048 break;
9dda7915 5049 }
b36b07d8 5050
5051 return last;
5052}
5053
31d3e01c 5054/* Make an insn of code CALL_INSN with pattern X
15bbde2b 5055 and add it to the end of the doubly-linked list. */
5056
722334ea 5057rtx_insn *
35cb5232 5058emit_call_insn (rtx x)
15bbde2b 5059{
722334ea 5060 rtx_insn *insn;
31d3e01c 5061
5062 switch (GET_CODE (x))
15bbde2b 5063 {
9845d120 5064 case DEBUG_INSN:
31d3e01c 5065 case INSN:
5066 case JUMP_INSN:
5067 case CALL_INSN:
5068 case CODE_LABEL:
5069 case BARRIER:
5070 case NOTE:
5071 insn = emit_insn (x);
5072 break;
15bbde2b 5073
31d3e01c 5074#ifdef ENABLE_RTL_CHECKING
5075 case SEQUENCE:
91f71fa3 5076 case JUMP_TABLE_DATA:
611234b4 5077 gcc_unreachable ();
31d3e01c 5078 break;
5079#endif
15bbde2b 5080
31d3e01c 5081 default:
5082 insn = make_call_insn_raw (x);
15bbde2b 5083 add_insn (insn);
31d3e01c 5084 break;
15bbde2b 5085 }
31d3e01c 5086
5087 return insn;
15bbde2b 5088}
5089
5090/* Add the label LABEL to the end of the doubly-linked list. */
5091
f9a00e9e 5092rtx_code_label *
5093emit_label (rtx uncast_label)
15bbde2b 5094{
f9a00e9e 5095 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5096
596ef494 5097 gcc_checking_assert (INSN_UID (label) == 0);
5098 INSN_UID (label) = cur_insn_uid++;
f9a00e9e 5099 add_insn (label);
5100 return label;
15bbde2b 5101}
5102
91f71fa3 5103/* Make an insn of code JUMP_TABLE_DATA
5104 and add it to the end of the doubly-linked list. */
5105
e41badc0 5106rtx_jump_table_data *
91f71fa3 5107emit_jump_table_data (rtx table)
5108{
e41badc0 5109 rtx_jump_table_data *jump_table_data =
5110 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
91f71fa3 5111 INSN_UID (jump_table_data) = cur_insn_uid++;
5112 PATTERN (jump_table_data) = table;
5113 BLOCK_FOR_INSN (jump_table_data) = NULL;
5114 add_insn (jump_table_data);
5115 return jump_table_data;
5116}
5117
15bbde2b 5118/* Make an insn of code BARRIER
5119 and add it to the end of the doubly-linked list. */
5120
722334ea 5121rtx_barrier *
35cb5232 5122emit_barrier (void)
15bbde2b 5123{
722334ea 5124 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 5125 INSN_UID (barrier) = cur_insn_uid++;
5126 add_insn (barrier);
5127 return barrier;
5128}
5129
2f57e3d9 5130/* Emit a copy of note ORIG. */
35cb5232 5131
cef3d8ad 5132rtx_note *
5133emit_note_copy (rtx_note *orig)
2f57e3d9 5134{
35f3420b 5135 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
cef3d8ad 5136 rtx_note *note = make_note_raw (kind);
2f57e3d9 5137 NOTE_DATA (note) = NOTE_DATA (orig);
2f57e3d9 5138 add_insn (note);
31b97e8f 5139 return note;
15bbde2b 5140}
5141
31b97e8f 5142/* Make an insn of code NOTE or type NOTE_NO
5143 and add it to the end of the doubly-linked list. */
15bbde2b 5144
cef3d8ad 5145rtx_note *
ad4583d9 5146emit_note (enum insn_note kind)
15bbde2b 5147{
cef3d8ad 5148 rtx_note *note = make_note_raw (kind);
15bbde2b 5149 add_insn (note);
5150 return note;
5151}
5152
18b42941 5153/* Emit a clobber of lvalue X. */
5154
722334ea 5155rtx_insn *
18b42941 5156emit_clobber (rtx x)
5157{
5158 /* CONCATs should not appear in the insn stream. */
5159 if (GET_CODE (x) == CONCAT)
5160 {
5161 emit_clobber (XEXP (x, 0));
5162 return emit_clobber (XEXP (x, 1));
5163 }
5164 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5165}
5166
5167/* Return a sequence of insns to clobber lvalue X. */
5168
722334ea 5169rtx_insn *
18b42941 5170gen_clobber (rtx x)
5171{
722334ea 5172 rtx_insn *seq;
18b42941 5173
5174 start_sequence ();
5175 emit_clobber (x);
5176 seq = get_insns ();
5177 end_sequence ();
5178 return seq;
5179}
5180
5181/* Emit a use of rvalue X. */
5182
722334ea 5183rtx_insn *
18b42941 5184emit_use (rtx x)
5185{
5186 /* CONCATs should not appear in the insn stream. */
5187 if (GET_CODE (x) == CONCAT)
5188 {
5189 emit_use (XEXP (x, 0));
5190 return emit_use (XEXP (x, 1));
5191 }
5192 return emit_insn (gen_rtx_USE (VOIDmode, x));
5193}
5194
5195/* Return a sequence of insns to use rvalue X. */
5196
722334ea 5197rtx_insn *
18b42941 5198gen_use (rtx x)
5199{
722334ea 5200 rtx_insn *seq;
18b42941 5201
5202 start_sequence ();
5203 emit_use (x);
5204 seq = get_insns ();
5205 end_sequence ();
5206 return seq;
5207}
5208
3a286419 5209/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5210 Return the set in INSN that such notes describe, or NULL if the notes
5211 have no meaning for INSN. */
5212
5213rtx
5214set_for_reg_notes (rtx insn)
5215{
5216 rtx pat, reg;
5217
5218 if (!INSN_P (insn))
5219 return NULL_RTX;
5220
5221 pat = PATTERN (insn);
5222 if (GET_CODE (pat) == PARALLEL)
5223 {
5224 /* We do not use single_set because that ignores SETs of unused
5225 registers. REG_EQUAL and REG_EQUIV notes really do require the
5226 PARALLEL to have a single SET. */
5227 if (multiple_sets (insn))
5228 return NULL_RTX;
5229 pat = XVECEXP (pat, 0, 0);
5230 }
5231
5232 if (GET_CODE (pat) != SET)
5233 return NULL_RTX;
5234
5235 reg = SET_DEST (pat);
5236
5237 /* Notes apply to the contents of a STRICT_LOW_PART. */
f2c7e335 5238 if (GET_CODE (reg) == STRICT_LOW_PART
5239 || GET_CODE (reg) == ZERO_EXTRACT)
3a286419 5240 reg = XEXP (reg, 0);
5241
5242 /* Check that we have a register. */
5243 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5244 return NULL_RTX;
5245
5246 return pat;
5247}
5248
f1934a33 5249/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 5250 note of this type already exists, remove it first. */
f1934a33 5251
c080d8f0 5252rtx
35cb5232 5253set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
f1934a33 5254{
5255 rtx note = find_reg_note (insn, kind, NULL_RTX);
5256
7e6224ab 5257 switch (kind)
5258 {
5259 case REG_EQUAL:
5260 case REG_EQUIV:
7b0b2add 5261 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5262 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
3a286419 5263 return NULL_RTX;
7e6224ab 5264
5265 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5266 It serves no useful purpose and breaks eliminate_regs. */
5267 if (GET_CODE (datum) == ASM_OPERANDS)
5268 return NULL_RTX;
2f8cf22c 5269
5270 /* Notes with side effects are dangerous. Even if the side-effect
5271 initially mirrors one in PATTERN (INSN), later optimizations
5272 might alter the way that the final register value is calculated
5273 and so move or alter the side-effect in some way. The note would
5274 then no longer be a valid substitution for SET_SRC. */
5275 if (side_effects_p (datum))
5276 return NULL_RTX;
7e6224ab 5277 break;
5278
5279 default:
5280 break;
5281 }
c080d8f0 5282
3a286419 5283 if (note)
5284 XEXP (note, 0) = datum;
5285 else
5286 {
5287 add_reg_note (insn, kind, datum);
5288 note = REG_NOTES (insn);
5289 }
3072d30e 5290
5291 switch (kind)
c080d8f0 5292 {
3072d30e 5293 case REG_EQUAL:
5294 case REG_EQUIV:
e149ca56 5295 df_notes_rescan (as_a <rtx_insn *> (insn));
3072d30e 5296 break;
5297 default:
5298 break;
c080d8f0 5299 }
f1934a33 5300
3a286419 5301 return note;
f1934a33 5302}
41cf444a 5303
5304/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5305rtx
5306set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5307{
3a286419 5308 rtx set = set_for_reg_notes (insn);
41cf444a 5309
5310 if (set && SET_DEST (set) == dst)
5311 return set_unique_reg_note (insn, kind, datum);
5312 return NULL_RTX;
5313}
15bbde2b 5314\f
16d83c02 5315/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5316 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5317 is true.
5318
15bbde2b 5319 If X is a label, it is simply added into the insn chain. */
5320
722334ea 5321rtx_insn *
16d83c02 5322emit (rtx x, bool allow_barrier_p)
15bbde2b 5323{
5324 enum rtx_code code = classify_insn (x);
5325
611234b4 5326 switch (code)
15bbde2b 5327 {
611234b4 5328 case CODE_LABEL:
5329 return emit_label (x);
5330 case INSN:
5331 return emit_insn (x);
5332 case JUMP_INSN:
5333 {
722334ea 5334 rtx_insn *insn = emit_jump_insn (x);
16d83c02 5335 if (allow_barrier_p
5336 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
611234b4 5337 return emit_barrier ();
5338 return insn;
5339 }
5340 case CALL_INSN:
5341 return emit_call_insn (x);
9845d120 5342 case DEBUG_INSN:
5343 return emit_debug_insn (x);
611234b4 5344 default:
5345 gcc_unreachable ();
15bbde2b 5346 }
15bbde2b 5347}
5348\f
1f3233d1 5349/* Space for free sequence stack entries. */
7035b2ab 5350static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
1f3233d1 5351
735f4358 5352/* Begin emitting insns to a sequence. If this sequence will contain
5353 something that might cause the compiler to pop arguments to function
5354 calls (because those pops have previously been deferred; see
5355 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5356 before calling this function. That will ensure that the deferred
5357 pops are not accidentally emitted in the middle of this sequence. */
15bbde2b 5358
5359void
35cb5232 5360start_sequence (void)
15bbde2b 5361{
5362 struct sequence_stack *tem;
5363
1f3233d1 5364 if (free_sequence_stack != NULL)
5365 {
5366 tem = free_sequence_stack;
5367 free_sequence_stack = tem->next;
5368 }
5369 else
25a27413 5370 tem = ggc_alloc<sequence_stack> ();
15bbde2b 5371
c36aa54b 5372 tem->next = get_current_sequence ()->next;
06f9d6ef 5373 tem->first = get_insns ();
5374 tem->last = get_last_insn ();
c36aa54b 5375 get_current_sequence ()->next = tem;
15bbde2b 5376
06f9d6ef 5377 set_first_insn (0);
5378 set_last_insn (0);
15bbde2b 5379}
5380
b49854c6 5381/* Set up the insn chain starting with FIRST as the current sequence,
5382 saving the previously current one. See the documentation for
5383 start_sequence for more information about how to use this function. */
15bbde2b 5384
5385void
57c26b3a 5386push_to_sequence (rtx_insn *first)
15bbde2b 5387{
57c26b3a 5388 rtx_insn *last;
15bbde2b 5389
5390 start_sequence ();
5391
3c802a1e 5392 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5393 ;
15bbde2b 5394
06f9d6ef 5395 set_first_insn (first);
5396 set_last_insn (last);
15bbde2b 5397}
5398
28bf151d 5399/* Like push_to_sequence, but take the last insn as an argument to avoid
5400 looping through the list. */
5401
5402void
57c26b3a 5403push_to_sequence2 (rtx_insn *first, rtx_insn *last)
28bf151d 5404{
5405 start_sequence ();
5406
06f9d6ef 5407 set_first_insn (first);
5408 set_last_insn (last);
28bf151d 5409}
5410
ab74c92f 5411/* Set up the outer-level insn chain
5412 as the current sequence, saving the previously current one. */
5413
5414void
35cb5232 5415push_topmost_sequence (void)
ab74c92f 5416{
c36aa54b 5417 struct sequence_stack *top;
ab74c92f 5418
5419 start_sequence ();
5420
c36aa54b 5421 top = get_topmost_sequence ();
06f9d6ef 5422 set_first_insn (top->first);
5423 set_last_insn (top->last);
ab74c92f 5424}
5425
5426/* After emitting to the outer-level insn chain, update the outer-level
5427 insn chain, and restore the previous saved state. */
5428
5429void
35cb5232 5430pop_topmost_sequence (void)
ab74c92f 5431{
c36aa54b 5432 struct sequence_stack *top;
ab74c92f 5433
c36aa54b 5434 top = get_topmost_sequence ();
06f9d6ef 5435 top->first = get_insns ();
5436 top->last = get_last_insn ();
ab74c92f 5437
5438 end_sequence ();
5439}
5440
15bbde2b 5441/* After emitting to a sequence, restore previous saved state.
5442
b49854c6 5443 To get the contents of the sequence just made, you must call
31d3e01c 5444 `get_insns' *before* calling here.
b49854c6 5445
5446 If the compiler might have deferred popping arguments while
5447 generating this sequence, and this sequence will not be immediately
5448 inserted into the instruction stream, use do_pending_stack_adjust
31d3e01c 5449 before calling get_insns. That will ensure that the deferred
b49854c6 5450 pops are inserted into this sequence, and not into some random
5451 location in the instruction stream. See INHIBIT_DEFER_POP for more
5452 information about deferred popping of arguments. */
15bbde2b 5453
5454void
35cb5232 5455end_sequence (void)
15bbde2b 5456{
c36aa54b 5457 struct sequence_stack *tem = get_current_sequence ()->next;
15bbde2b 5458
06f9d6ef 5459 set_first_insn (tem->first);
5460 set_last_insn (tem->last);
c36aa54b 5461 get_current_sequence ()->next = tem->next;
15bbde2b 5462
1f3233d1 5463 memset (tem, 0, sizeof (*tem));
5464 tem->next = free_sequence_stack;
5465 free_sequence_stack = tem;
15bbde2b 5466}
5467
5468/* Return 1 if currently emitting into a sequence. */
5469
5470int
35cb5232 5471in_sequence_p (void)
15bbde2b 5472{
c36aa54b 5473 return get_current_sequence ()->next != 0;
15bbde2b 5474}
15bbde2b 5475\f
02ebfa52 5476/* Put the various virtual registers into REGNO_REG_RTX. */
5477
2f3874ce 5478static void
b079a207 5479init_virtual_regs (void)
02ebfa52 5480{
b079a207 5481 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5482 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5483 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5484 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5485 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
60778e62 5486 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5487 = virtual_preferred_stack_boundary_rtx;
0a893c29 5488}
5489
928d57e3 5490\f
5491/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5492static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5493static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5494static int copy_insn_n_scratches;
5495
5496/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5497 copied an ASM_OPERANDS.
5498 In that case, it is the original input-operand vector. */
5499static rtvec orig_asm_operands_vector;
5500
5501/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5502 copied an ASM_OPERANDS.
5503 In that case, it is the copied input-operand vector. */
5504static rtvec copy_asm_operands_vector;
5505
5506/* Likewise for the constraints vector. */
5507static rtvec orig_asm_constraints_vector;
5508static rtvec copy_asm_constraints_vector;
5509
5510/* Recursively create a new copy of an rtx for copy_insn.
5511 This function differs from copy_rtx in that it handles SCRATCHes and
5512 ASM_OPERANDs properly.
5513 Normally, this function is not used directly; use copy_insn as front end.
5514 However, you could first copy an insn pattern with copy_insn and then use
5515 this function afterwards to properly copy any REG_NOTEs containing
5516 SCRATCHes. */
5517
5518rtx
35cb5232 5519copy_insn_1 (rtx orig)
928d57e3 5520{
19cb6b50 5521 rtx copy;
5522 int i, j;
5523 RTX_CODE code;
5524 const char *format_ptr;
928d57e3 5525
25e880b1 5526 if (orig == NULL)
5527 return NULL;
5528
928d57e3 5529 code = GET_CODE (orig);
5530
5531 switch (code)
5532 {
5533 case REG:
d7fce3c8 5534 case DEBUG_EXPR:
0349edce 5535 CASE_CONST_ANY:
928d57e3 5536 case SYMBOL_REF:
5537 case CODE_LABEL:
5538 case PC:
5539 case CC0:
e0691b9a 5540 case RETURN:
9cb2517e 5541 case SIMPLE_RETURN:
928d57e3 5542 return orig;
c09425a0 5543 case CLOBBER:
b291008a 5544 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5545 clobbers or clobbers of hard registers that originated as pseudos.
5546 This is needed to allow safe register renaming. */
2b5f32ae 5547 if (REG_P (XEXP (orig, 0))
5548 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5549 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
c09425a0 5550 return orig;
5551 break;
928d57e3 5552
5553 case SCRATCH:
5554 for (i = 0; i < copy_insn_n_scratches; i++)
5555 if (copy_insn_scratch_in[i] == orig)
5556 return copy_insn_scratch_out[i];
5557 break;
5558
5559 case CONST:
3072d30e 5560 if (shared_const_p (orig))
928d57e3 5561 return orig;
5562 break;
d823ba47 5563
928d57e3 5564 /* A MEM with a constant address is not sharable. The problem is that
5565 the constant address may need to be reloaded. If the mem is shared,
5566 then reloading one copy of this mem will cause all copies to appear
5567 to have been reloaded. */
5568
5569 default:
5570 break;
5571 }
5572
f2d0e9f1 5573 /* Copy the various flags, fields, and other information. We assume
5574 that all fields need copying, and then clear the fields that should
928d57e3 5575 not be copied. That is the sensible default behavior, and forces
5576 us to explicitly document why we are *not* copying a flag. */
f2d0e9f1 5577 copy = shallow_copy_rtx (orig);
928d57e3 5578
928d57e3 5579 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
6720e96c 5580 if (INSN_P (orig))
928d57e3 5581 {
7c25cb91 5582 RTX_FLAG (copy, jump) = 0;
5583 RTX_FLAG (copy, call) = 0;
5584 RTX_FLAG (copy, frame_related) = 0;
928d57e3 5585 }
d823ba47 5586
928d57e3 5587 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5588
5589 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
f2d0e9f1 5590 switch (*format_ptr++)
5591 {
5592 case 'e':
5593 if (XEXP (orig, i) != NULL)
5594 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5595 break;
928d57e3 5596
f2d0e9f1 5597 case 'E':
5598 case 'V':
5599 if (XVEC (orig, i) == orig_asm_constraints_vector)
5600 XVEC (copy, i) = copy_asm_constraints_vector;
5601 else if (XVEC (orig, i) == orig_asm_operands_vector)
5602 XVEC (copy, i) = copy_asm_operands_vector;
5603 else if (XVEC (orig, i) != NULL)
5604 {
5605 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5606 for (j = 0; j < XVECLEN (copy, i); j++)
5607 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5608 }
5609 break;
928d57e3 5610
f2d0e9f1 5611 case 't':
5612 case 'w':
5613 case 'i':
5614 case 's':
5615 case 'S':
5616 case 'u':
5617 case '0':
5618 /* These are left unchanged. */
5619 break;
928d57e3 5620
f2d0e9f1 5621 default:
5622 gcc_unreachable ();
5623 }
928d57e3 5624
5625 if (code == SCRATCH)
5626 {
5627 i = copy_insn_n_scratches++;
611234b4 5628 gcc_assert (i < MAX_RECOG_OPERANDS);
928d57e3 5629 copy_insn_scratch_in[i] = orig;
5630 copy_insn_scratch_out[i] = copy;
5631 }
5632 else if (code == ASM_OPERANDS)
5633 {
d91f2122 5634 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5635 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5636 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5637 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 5638 }
5639
5640 return copy;
5641}
5642
5643/* Create a new copy of an rtx.
5644 This function differs from copy_rtx in that it handles SCRATCHes and
5645 ASM_OPERANDs properly.
5646 INSN doesn't really have to be a full INSN; it could be just the
5647 pattern. */
5648rtx
35cb5232 5649copy_insn (rtx insn)
928d57e3 5650{
5651 copy_insn_n_scratches = 0;
5652 orig_asm_operands_vector = 0;
5653 orig_asm_constraints_vector = 0;
5654 copy_asm_operands_vector = 0;
5655 copy_asm_constraints_vector = 0;
5656 return copy_insn_1 (insn);
5657}
02ebfa52 5658
a9abe1f1 5659/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5660 on that assumption that INSN itself remains in its original place. */
5661
575a12f2 5662rtx_insn *
5663copy_delay_slot_insn (rtx_insn *insn)
a9abe1f1 5664{
5665 /* Copy INSN with its rtx_code, all its notes, location etc. */
575a12f2 5666 insn = as_a <rtx_insn *> (copy_rtx (insn));
a9abe1f1 5667 INSN_UID (insn) = cur_insn_uid++;
5668 return insn;
5669}
5670
15bbde2b 5671/* Initialize data structures and variables in this file
5672 before generating rtl for each function. */
5673
5674void
35cb5232 5675init_emit (void)
15bbde2b 5676{
06f9d6ef 5677 set_first_insn (NULL);
5678 set_last_insn (NULL);
9845d120 5679 if (MIN_NONDEBUG_INSN_UID)
5680 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5681 else
5682 cur_insn_uid = 1;
5683 cur_debug_insn_uid = 1;
15bbde2b 5684 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
15bbde2b 5685 first_label_num = label_num;
c36aa54b 5686 get_current_sequence ()->next = NULL;
15bbde2b 5687
15bbde2b 5688 /* Init the tables that describe all the pseudo regs. */
5689
fd6ffb7c 5690 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 5691
fd6ffb7c 5692 crtl->emit.regno_pointer_align
2457c754 5693 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
d4c332ff 5694
cd769037 5695 regno_reg_rtx
5696 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
fcdc122e 5697
936082bb 5698 /* Put copies of all the hard registers into regno_reg_rtx. */
90295bd2 5699 memcpy (regno_reg_rtx,
679bcc8d 5700 initial_regno_reg_rtx,
90295bd2 5701 FIRST_PSEUDO_REGISTER * sizeof (rtx));
936082bb 5702
15bbde2b 5703 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
b079a207 5704 init_virtual_regs ();
888e0d33 5705
5706 /* Indicate that the virtual registers and stack locations are
5707 all pointers. */
e61a0a7f 5708 REG_POINTER (stack_pointer_rtx) = 1;
5709 REG_POINTER (frame_pointer_rtx) = 1;
5710 REG_POINTER (hard_frame_pointer_rtx) = 1;
5711 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 5712
e61a0a7f 5713 REG_POINTER (virtual_incoming_args_rtx) = 1;
5714 REG_POINTER (virtual_stack_vars_rtx) = 1;
5715 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5716 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5717 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 5718
d4c332ff 5719#ifdef STACK_BOUNDARY
80909c64 5720 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5721 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5722 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5723 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5724
213d1448 5725 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5726 32-bit SPARC and cannot be all fixed because of the ABI). */
80909c64 5727 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5728 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5729 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5730 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
213d1448 5731
80909c64 5732 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 5733#endif
5734
89525da0 5735#ifdef INIT_EXPANDERS
5736 INIT_EXPANDERS;
5737#endif
15bbde2b 5738}
5739
6e68dcb2 5740/* Generate a vector constant for mode MODE and constant value CONSTANT. */
886cfd4f 5741
5742static rtx
3754d046 5743gen_const_vector (machine_mode mode, int constant)
886cfd4f 5744{
5745 rtx tem;
5746 rtvec v;
5747 int units, i;
3754d046 5748 machine_mode inner;
886cfd4f 5749
5750 units = GET_MODE_NUNITS (mode);
5751 inner = GET_MODE_INNER (mode);
5752
069b07bf 5753 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5754
886cfd4f 5755 v = rtvec_alloc (units);
5756
6e68dcb2 5757 /* We need to call this function after we set the scalar const_tiny_rtx
5758 entries. */
5759 gcc_assert (const_tiny_rtx[constant][(int) inner]);
886cfd4f 5760
5761 for (i = 0; i < units; ++i)
6e68dcb2 5762 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
886cfd4f 5763
9426b612 5764 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
886cfd4f 5765 return tem;
5766}
5767
9426b612 5768/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6e68dcb2 5769 all elements are zero, and the one vector when all elements are one. */
9426b612 5770rtx
3754d046 5771gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
9426b612 5772{
3754d046 5773 machine_mode inner = GET_MODE_INNER (mode);
6e68dcb2 5774 int nunits = GET_MODE_NUNITS (mode);
5775 rtx x;
9426b612 5776 int i;
5777
6e68dcb2 5778 /* Check to see if all of the elements have the same value. */
5779 x = RTVEC_ELT (v, nunits - 1);
5780 for (i = nunits - 2; i >= 0; i--)
5781 if (RTVEC_ELT (v, i) != x)
5782 break;
5783
5784 /* If the values are all the same, check to see if we can use one of the
5785 standard constant vectors. */
5786 if (i == -1)
5787 {
5788 if (x == CONST0_RTX (inner))
5789 return CONST0_RTX (mode);
5790 else if (x == CONST1_RTX (inner))
5791 return CONST1_RTX (mode);
ba8dfb08 5792 else if (x == CONSTM1_RTX (inner))
5793 return CONSTM1_RTX (mode);
6e68dcb2 5794 }
5795
5796 return gen_rtx_raw_CONST_VECTOR (mode, v);
9426b612 5797}
5798
6d8b68a3 5799/* Initialise global register information required by all functions. */
5800
5801void
5802init_emit_regs (void)
5803{
5804 int i;
3754d046 5805 machine_mode mode;
d83fcaa1 5806 mem_attrs *attrs;
6d8b68a3 5807
5808 /* Reset register attributes */
f863a586 5809 reg_attrs_htab->empty ();
6d8b68a3 5810
5811 /* We need reg_raw_mode, so initialize the modes now. */
5812 init_reg_modes_target ();
5813
5814 /* Assign register numbers to the globally defined register rtx. */
6d8b68a3 5815 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5816 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5817 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5818 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5819 virtual_incoming_args_rtx =
5820 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5821 virtual_stack_vars_rtx =
5822 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5823 virtual_stack_dynamic_rtx =
5824 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5825 virtual_outgoing_args_rtx =
5826 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5827 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
60778e62 5828 virtual_preferred_stack_boundary_rtx =
5829 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6d8b68a3 5830
5831 /* Initialize RTL for commonly used hard registers. These are
5832 copied into regno_reg_rtx as we begin to compile each function. */
5833 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
679bcc8d 5834 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6d8b68a3 5835
5836#ifdef RETURN_ADDRESS_POINTER_REGNUM
5837 return_address_pointer_rtx
5838 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5839#endif
5840
639f32a2 5841 pic_offset_table_rtx = NULL_RTX;
6d8b68a3 5842 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5843 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
d83fcaa1 5844
5845 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5846 {
3754d046 5847 mode = (machine_mode) i;
25a27413 5848 attrs = ggc_cleared_alloc<mem_attrs> ();
d83fcaa1 5849 attrs->align = BITS_PER_UNIT;
5850 attrs->addrspace = ADDR_SPACE_GENERIC;
5851 if (mode != BLKmode)
5852 {
6d58bcba 5853 attrs->size_known_p = true;
5854 attrs->size = GET_MODE_SIZE (mode);
d83fcaa1 5855 if (STRICT_ALIGNMENT)
5856 attrs->align = GET_MODE_ALIGNMENT (mode);
5857 }
5858 mode_mem_attrs[i] = attrs;
5859 }
6d8b68a3 5860}
5861
8059b95a 5862/* Initialize global machine_mode variables. */
5863
5864void
5865init_derived_machine_modes (void)
5866{
5867 byte_mode = VOIDmode;
5868 word_mode = VOIDmode;
5869
19a4dce4 5870 machine_mode mode;
5871 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
8059b95a 5872 {
5873 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5874 && byte_mode == VOIDmode)
5875 byte_mode = mode;
5876
5877 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5878 && word_mode == VOIDmode)
5879 word_mode = mode;
5880 }
5881
5882 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5883}
5884
01703575 5885/* Create some permanent unique rtl objects shared between all functions. */
15bbde2b 5886
5887void
01703575 5888init_emit_once (void)
15bbde2b 5889{
5890 int i;
3754d046 5891 machine_mode mode;
5892 machine_mode double_mode;
15bbde2b 5893
e913b5cd 5894 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5895 CONST_FIXED, and memory attribute hash tables. */
f863a586 5896 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
c6259b83 5897
e913b5cd 5898#if TARGET_SUPPORTS_WIDE_INT
f863a586 5899 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
e913b5cd 5900#endif
f863a586 5901 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
2ff23ed0 5902
f863a586 5903 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
e397ad8e 5904
f863a586 5905 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
77695070 5906
57c097d5 5907#ifdef INIT_EXPANDERS
ab5beff9 5908 /* This is to initialize {init|mark|free}_machine_status before the first
5909 call to push_function_context_to. This is needed by the Chill front
3fb1e43b 5910 end which calls push_function_context_to before the first call to
57c097d5 5911 init_function_start. */
5912 INIT_EXPANDERS;
5913#endif
5914
15bbde2b 5915 /* Create the unique rtx's for certain rtx codes and operand values. */
5916
48a7e3d1 5917 /* Process stack-limiting command-line options. */
5918 if (opt_fstack_limit_symbol_arg != NULL)
5919 stack_limit_rtx
5920 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5921 if (opt_fstack_limit_register_no >= 0)
5922 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5923
8fd5918e 5924 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
7014838c 5925 tries to use these variables. */
15bbde2b 5926 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 5927 const_int_rtx[i + MAX_SAVED_CONST_INT] =
a717d5b4 5928 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
15bbde2b 5929
1a60f06a 5930 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5931 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 5932 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 5933 else
3ad7bb1c 5934 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 5935
8059b95a 5936 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5937
cc69d08a 5938 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5939 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5940 real_from_integer (&dconst2, double_mode, 2, SIGNED);
3fa759a9 5941
5942 dconstm1 = dconst1;
5943 dconstm1.sign = 1;
77e89269 5944
5945 dconsthalf = dconst1;
9d96125b 5946 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
15bbde2b 5947
ba8dfb08 5948 for (i = 0; i < 3; i++)
15bbde2b 5949 {
3fa759a9 5950 const REAL_VALUE_TYPE *const r =
badfe841 5951 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5952
19a4dce4 5953 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
069b07bf 5954 const_tiny_rtx[i][(int) mode] =
d5f9611d 5955 const_double_from_real_value (*r, mode);
069b07bf 5956
19a4dce4 5957 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
2ff23ed0 5958 const_tiny_rtx[i][(int) mode] =
d5f9611d 5959 const_double_from_real_value (*r, mode);
15bbde2b 5960
b572011e 5961 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 5962
19a4dce4 5963 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
b572011e 5964 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 5965
8c20007a 5966 for (mode = MIN_MODE_PARTIAL_INT;
5967 mode <= MAX_MODE_PARTIAL_INT;
3754d046 5968 mode = (machine_mode)((int)(mode) + 1))
7540dcc4 5969 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 5970 }
5971
ba8dfb08 5972 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5973
19a4dce4 5974 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
ba8dfb08 5975 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5976
8c20007a 5977 for (mode = MIN_MODE_PARTIAL_INT;
5978 mode <= MAX_MODE_PARTIAL_INT;
3754d046 5979 mode = (machine_mode)((int)(mode) + 1))
dd276d20 5980 const_tiny_rtx[3][(int) mode] = constm1_rtx;
19a4dce4 5981
5982 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
4248fc32 5983 {
5984 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5985 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5986 }
5987
19a4dce4 5988 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
4248fc32 5989 {
5990 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5991 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5992 }
5993
19a4dce4 5994 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6e68dcb2 5995 {
5996 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5997 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
ba8dfb08 5998 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6e68dcb2 5999 }
886cfd4f 6000
19a4dce4 6001 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6e68dcb2 6002 {
6003 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6004 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6005 }
886cfd4f 6006
19a4dce4 6007 FOR_EACH_MODE_IN_CLASS (mode, MODE_FRACT)
06f0b99c 6008 {
9af5ce0c 6009 FCONST0 (mode).data.high = 0;
6010 FCONST0 (mode).data.low = 0;
6011 FCONST0 (mode).mode = mode;
e397ad8e 6012 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6013 FCONST0 (mode), mode);
06f0b99c 6014 }
6015
19a4dce4 6016 FOR_EACH_MODE_IN_CLASS (mode, MODE_UFRACT)
06f0b99c 6017 {
9af5ce0c 6018 FCONST0 (mode).data.high = 0;
6019 FCONST0 (mode).data.low = 0;
6020 FCONST0 (mode).mode = mode;
e397ad8e 6021 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6022 FCONST0 (mode), mode);
06f0b99c 6023 }
6024
19a4dce4 6025 FOR_EACH_MODE_IN_CLASS (mode, MODE_ACCUM)
06f0b99c 6026 {
9af5ce0c 6027 FCONST0 (mode).data.high = 0;
6028 FCONST0 (mode).data.low = 0;
6029 FCONST0 (mode).mode = mode;
e397ad8e 6030 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6031 FCONST0 (mode), mode);
06f0b99c 6032
6033 /* We store the value 1. */
9af5ce0c 6034 FCONST1 (mode).data.high = 0;
6035 FCONST1 (mode).data.low = 0;
6036 FCONST1 (mode).mode = mode;
6037 FCONST1 (mode).data
d67b7119 6038 = double_int_one.lshift (GET_MODE_FBIT (mode),
6039 HOST_BITS_PER_DOUBLE_INT,
6040 SIGNED_FIXED_POINT_MODE_P (mode));
e397ad8e 6041 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6042 FCONST1 (mode), mode);
06f0b99c 6043 }
6044
19a4dce4 6045 FOR_EACH_MODE_IN_CLASS (mode, MODE_UACCUM)
06f0b99c 6046 {
9af5ce0c 6047 FCONST0 (mode).data.high = 0;
6048 FCONST0 (mode).data.low = 0;
6049 FCONST0 (mode).mode = mode;
e397ad8e 6050 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6051 FCONST0 (mode), mode);
06f0b99c 6052
6053 /* We store the value 1. */
9af5ce0c 6054 FCONST1 (mode).data.high = 0;
6055 FCONST1 (mode).data.low = 0;
6056 FCONST1 (mode).mode = mode;
6057 FCONST1 (mode).data
d67b7119 6058 = double_int_one.lshift (GET_MODE_FBIT (mode),
6059 HOST_BITS_PER_DOUBLE_INT,
6060 SIGNED_FIXED_POINT_MODE_P (mode));
e397ad8e 6061 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6062 FCONST1 (mode), mode);
6063 }
6064
19a4dce4 6065 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
e397ad8e 6066 {
6067 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6068 }
6069
19a4dce4 6070 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
e397ad8e 6071 {
6072 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6073 }
6074
19a4dce4 6075 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
e397ad8e 6076 {
6077 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6078 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6079 }
6080
19a4dce4 6081 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
e397ad8e 6082 {
6083 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6084 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
06f0b99c 6085 }
6086
0fd4500a 6087 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
3754d046 6088 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
0fd4500a 6089 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 6090
065336b4 6091 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6092 if (STORE_FLAG_VALUE == 1)
6093 const_tiny_rtx[1][(int) BImode] = const1_rtx;
7d7b0bac 6094
19a4dce4 6095 FOR_EACH_MODE_IN_CLASS (mode, MODE_POINTER_BOUNDS)
058a1b7a 6096 {
6097 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6098 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6099 }
6100
7d7b0bac 6101 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6102 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6103 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6104 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
f9a00e9e 6105 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6106 /*prev_insn=*/NULL,
6107 /*next_insn=*/NULL,
6108 /*bb=*/NULL,
6109 /*pattern=*/NULL_RTX,
6110 /*location=*/-1,
6111 CODE_FOR_nothing,
6112 /*reg_notes=*/NULL_RTX);
15bbde2b 6113}
ac6c481d 6114\f
cd0fe062 6115/* Produce exact duplicate of insn INSN after AFTER.
6116 Care updating of libcall regions if present. */
6117
722334ea 6118rtx_insn *
5e9c670f 6119emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
cd0fe062 6120{
722334ea 6121 rtx_insn *new_rtx;
6122 rtx link;
cd0fe062 6123
6124 switch (GET_CODE (insn))
6125 {
6126 case INSN:
9ce37fa7 6127 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6128 break;
6129
6130 case JUMP_INSN:
9ce37fa7 6131 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
01762951 6132 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
cd0fe062 6133 break;
6134
9845d120 6135 case DEBUG_INSN:
6136 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6137 break;
6138
cd0fe062 6139 case CALL_INSN:
9ce37fa7 6140 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6141 if (CALL_INSN_FUNCTION_USAGE (insn))
9ce37fa7 6142 CALL_INSN_FUNCTION_USAGE (new_rtx)
cd0fe062 6143 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
9ce37fa7 6144 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6145 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6146 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
48e1416a 6147 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
9c2a0c05 6148 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
cd0fe062 6149 break;
6150
6151 default:
611234b4 6152 gcc_unreachable ();
cd0fe062 6153 }
6154
6155 /* Update LABEL_NUSES. */
9ce37fa7 6156 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
cd0fe062 6157
5169661d 6158 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ab87d1bc 6159
98116afd 6160 /* If the old insn is frame related, then so is the new one. This is
6161 primarily needed for IA-64 unwind info which marks epilogue insns,
6162 which may be duplicated by the basic block reordering code. */
9ce37fa7 6163 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
98116afd 6164
bb99ba64 6165 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6166 rtx *ptail = &REG_NOTES (new_rtx);
6167 while (*ptail != NULL_RTX)
6168 ptail = &XEXP (*ptail, 1);
6169
19d2fe05 6170 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6171 will make them. REG_LABEL_TARGETs are created there too, but are
6172 supposed to be sticky, so we copy them. */
cd0fe062 6173 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
19d2fe05 6174 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
cd0fe062 6175 {
bb99ba64 6176 *ptail = duplicate_reg_note (link);
6177 ptail = &XEXP (*ptail, 1);
cd0fe062 6178 }
6179
9ce37fa7 6180 INSN_CODE (new_rtx) = INSN_CODE (insn);
6181 return new_rtx;
cd0fe062 6182}
1f3233d1 6183
7035b2ab 6184static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
c09425a0 6185rtx
3754d046 6186gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
c09425a0 6187{
6188 if (hard_reg_clobbers[mode][regno])
6189 return hard_reg_clobbers[mode][regno];
6190 else
6191 return (hard_reg_clobbers[mode][regno] =
6192 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6193}
6194
5169661d 6195location_t prologue_location;
6196location_t epilogue_location;
23a070f3 6197
6198/* Hold current location information and last location information, so the
6199 datastructures are built lazily only when some instructions in given
6200 place are needed. */
c7abeac5 6201static location_t curr_location;
23a070f3 6202
5169661d 6203/* Allocate insn location datastructure. */
23a070f3 6204void
5169661d 6205insn_locations_init (void)
23a070f3 6206{
5169661d 6207 prologue_location = epilogue_location = 0;
23a070f3 6208 curr_location = UNKNOWN_LOCATION;
23a070f3 6209}
6210
6211/* At the end of emit stage, clear current location. */
6212void
5169661d 6213insn_locations_finalize (void)
23a070f3 6214{
5169661d 6215 epilogue_location = curr_location;
6216 curr_location = UNKNOWN_LOCATION;
23a070f3 6217}
6218
6219/* Set current location. */
6220void
5169661d 6221set_curr_insn_location (location_t location)
23a070f3 6222{
23a070f3 6223 curr_location = location;
6224}
6225
6226/* Get current location. */
6227location_t
5169661d 6228curr_insn_location (void)
23a070f3 6229{
6230 return curr_location;
6231}
6232
23a070f3 6233/* Return lexical scope block insn belongs to. */
6234tree
5e9c670f 6235insn_scope (const rtx_insn *insn)
23a070f3 6236{
5169661d 6237 return LOCATION_BLOCK (INSN_LOCATION (insn));
23a070f3 6238}
6239
6240/* Return line number of the statement that produced this insn. */
6241int
5e9c670f 6242insn_line (const rtx_insn *insn)
23a070f3 6243{
5169661d 6244 return LOCATION_LINE (INSN_LOCATION (insn));
23a070f3 6245}
6246
6247/* Return source file of the statement that produced this insn. */
6248const char *
5e9c670f 6249insn_file (const rtx_insn *insn)
23a070f3 6250{
5169661d 6251 return LOCATION_FILE (INSN_LOCATION (insn));
23a070f3 6252}
30c3c442 6253
0e7ae557 6254/* Return expanded location of the statement that produced this insn. */
6255expanded_location
5e9c670f 6256insn_location (const rtx_insn *insn)
0e7ae557 6257{
6258 return expand_location (INSN_LOCATION (insn));
6259}
6260
30c3c442 6261/* Return true if memory model MODEL requires a pre-operation (release-style)
6262 barrier or a post-operation (acquire-style) barrier. While not universal,
6263 this function matches behavior of several targets. */
6264
6265bool
6266need_atomic_barrier_p (enum memmodel model, bool pre)
6267{
e205c62d 6268 switch (model & MEMMODEL_BASE_MASK)
30c3c442 6269 {
6270 case MEMMODEL_RELAXED:
6271 case MEMMODEL_CONSUME:
6272 return false;
6273 case MEMMODEL_RELEASE:
6274 return pre;
6275 case MEMMODEL_ACQUIRE:
6276 return !pre;
6277 case MEMMODEL_ACQ_REL:
6278 case MEMMODEL_SEQ_CST:
6279 return true;
6280 default:
6281 gcc_unreachable ();
6282 }
6283}
2add0b64 6284
6285/* Initialize fields of rtl_data related to stack alignment. */
6286
6287void
6288rtl_data::init_stack_alignment ()
6289{
6290 stack_alignment_needed = STACK_BOUNDARY;
6291 max_used_stack_slot_alignment = STACK_BOUNDARY;
6292 stack_alignment_estimated = 0;
6293 preferred_stack_boundary = STACK_BOUNDARY;
6294}
6295
30c3c442 6296\f
1f3233d1 6297#include "gt-emit-rtl.h"