]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
cp-array-notation.c (expand_sec_reduce_builtin): Use INDIRECT_REF_P.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
5624e564 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6
ZW
36#include "coretypes.h"
37#include "tm.h"
718f9c0f 38#include "diagnostic-core.h"
23b2ce53 39#include "rtl.h"
40e23961
MC
40#include "alias.h"
41#include "symtab.h"
a25c7971 42#include "tree.h"
40e23961 43#include "fold-const.h"
d8a2d370 44#include "varasm.h"
60393bbc 45#include "predict.h"
83685514 46#include "hard-reg-set.h"
23b2ce53 47#include "function.h"
60393bbc
AM
48#include "cfgrtl.h"
49#include "basic-block.h"
50#include "tree-eh.h"
51#include "tm_p.h"
52#include "flags.h"
d8a2d370 53#include "stringpool.h"
36566b39
PK
54#include "insn-config.h"
55#include "expmed.h"
56#include "dojump.h"
57#include "explow.h"
58#include "calls.h"
59#include "emit-rtl.h"
60#include "stmt.h"
23b2ce53
RS
61#include "expr.h"
62#include "regs.h"
e9a25f70 63#include "recog.h"
0dfa1860 64#include "bitmap.h"
e1772ac0 65#include "debug.h"
d23c55c2 66#include "langhooks.h"
6fb5fa3c 67#include "df.h"
b5b8b0ac 68#include "params.h"
d4ebfa65 69#include "target.h"
9b2b7279 70#include "builtins.h"
9021b8ec 71#include "rtl-iter.h"
ca695ac9 72
5fb0e246
RS
73struct target_rtl default_target_rtl;
74#if SWITCHABLE_TARGET
75struct target_rtl *this_target_rtl = &default_target_rtl;
76#endif
77
78#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
79
1d445e9e
ILT
80/* Commonly used modes. */
81
ef4bddc2
RS
82machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
83machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
84machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
85machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 86
bd60bab2
JH
87/* Datastructures maintained for currently processed function in RTL form. */
88
3e029763 89struct rtl_data x_rtl;
bd60bab2
JH
90
91/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 92 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
93 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
94 with length attribute nested in top level structures. */
95
96rtx * regno_reg_rtx;
23b2ce53
RS
97
98/* This is *not* reset after each function. It gives each CODE_LABEL
99 in the entire compilation a unique label number. */
100
044b4de3 101static GTY(()) int label_num = 1;
23b2ce53 102
23b2ce53
RS
103/* We record floating-point CONST_DOUBLEs in each floating-point mode for
104 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
105 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
106 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 107
e7c82a99 108rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 109
68d75312
JC
110rtx const_true_rtx;
111
23b2ce53
RS
112REAL_VALUE_TYPE dconst0;
113REAL_VALUE_TYPE dconst1;
114REAL_VALUE_TYPE dconst2;
115REAL_VALUE_TYPE dconstm1;
03f2ea93 116REAL_VALUE_TYPE dconsthalf;
23b2ce53 117
325217ed
CF
118/* Record fixed-point constant 0 and 1. */
119FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
120FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
121
23b2ce53
RS
122/* We make one copy of (const_int C) where C is in
123 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
124 to save space during the compilation and simplify comparisons of
125 integers. */
126
5da077de 127rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 128
ca4adc91
RS
129/* Standard pieces of rtx, to be substituted directly into things. */
130rtx pc_rtx;
131rtx ret_rtx;
132rtx simple_return_rtx;
133rtx cc0_rtx;
134
1476d1bd
MM
135/* Marker used for denoting an INSN, which should never be accessed (i.e.,
136 this pointer should normally never be dereferenced), but is required to be
137 distinct from NULL_RTX. Currently used by peephole2 pass. */
138rtx_insn *invalid_insn_rtx;
139
c13e8210
MM
140/* A hash table storing CONST_INTs whose absolute value is greater
141 than MAX_SAVED_CONST_INT. */
142
6c907cff 143struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
144{
145 typedef HOST_WIDE_INT compare_type;
146
147 static hashval_t hash (rtx i);
148 static bool equal (rtx i, HOST_WIDE_INT h);
149};
c13e8210 150
aebf76a2
TS
151static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
152
6c907cff 153struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
154{
155 static hashval_t hash (rtx x);
156 static bool equal (rtx x, rtx y);
157};
158
159static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
807e902e 160
a560d4d4 161/* A hash table storing register attribute structures. */
6c907cff 162struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
aebf76a2
TS
163{
164 static hashval_t hash (reg_attrs *x);
165 static bool equal (reg_attrs *a, reg_attrs *b);
166};
167
168static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
a560d4d4 169
5692c7bc 170/* A hash table storing all CONST_DOUBLEs. */
6c907cff 171struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
172{
173 static hashval_t hash (rtx x);
174 static bool equal (rtx x, rtx y);
175};
176
177static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
5692c7bc 178
091a3ac7 179/* A hash table storing all CONST_FIXEDs. */
6c907cff 180struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
181{
182 static hashval_t hash (rtx x);
183 static bool equal (rtx x, rtx y);
184};
185
186static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
091a3ac7 187
3e029763 188#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 189#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 190#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 191
5eb2a9f2 192static void set_used_decls (tree);
502b8322 193static void mark_label_nuses (rtx);
807e902e 194#if TARGET_SUPPORTS_WIDE_INT
807e902e
KZ
195static rtx lookup_const_wide_int (rtx);
196#endif
502b8322 197static rtx lookup_const_double (rtx);
091a3ac7 198static rtx lookup_const_fixed (rtx);
502b8322 199static reg_attrs *get_reg_attrs (tree, int);
ef4bddc2 200static rtx gen_const_vector (machine_mode, int);
32b32b16 201static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 202
6b24c259
JH
203/* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205int split_branch_probability = -1;
ca695ac9 206\f
c13e8210
MM
207/* Returns a hash code for X (which is a really a CONST_INT). */
208
aebf76a2
TS
209hashval_t
210const_int_hasher::hash (rtx x)
c13e8210 211{
aebf76a2 212 return (hashval_t) INTVAL (x);
c13e8210
MM
213}
214
cc2902df 215/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
aebf76a2
TS
219bool
220const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
c13e8210 221{
aebf76a2 222 return (INTVAL (x) == y);
5692c7bc
ZW
223}
224
807e902e
KZ
225#if TARGET_SUPPORTS_WIDE_INT
226/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
227
aebf76a2
TS
228hashval_t
229const_wide_int_hasher::hash (rtx x)
807e902e
KZ
230{
231 int i;
d7ca26e4 232 unsigned HOST_WIDE_INT hash = 0;
aebf76a2 233 const_rtx xr = x;
807e902e
KZ
234
235 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
236 hash += CONST_WIDE_INT_ELT (xr, i);
237
238 return (hashval_t) hash;
239}
240
241/* Returns nonzero if the value represented by X (which is really a
242 CONST_WIDE_INT) is the same as that given by Y (which is really a
243 CONST_WIDE_INT). */
244
aebf76a2
TS
245bool
246const_wide_int_hasher::equal (rtx x, rtx y)
807e902e
KZ
247{
248 int i;
aebf76a2
TS
249 const_rtx xr = x;
250 const_rtx yr = y;
807e902e 251 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
aebf76a2 252 return false;
807e902e
KZ
253
254 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
255 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
aebf76a2 256 return false;
807e902e 257
aebf76a2 258 return true;
807e902e
KZ
259}
260#endif
261
5692c7bc 262/* Returns a hash code for X (which is really a CONST_DOUBLE). */
aebf76a2
TS
263hashval_t
264const_double_hasher::hash (rtx x)
5692c7bc 265{
aebf76a2 266 const_rtx const value = x;
46b33600 267 hashval_t h;
5692c7bc 268
807e902e 269 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
46b33600
RH
270 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
271 else
fe352c29 272 {
15c812e3 273 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
274 /* MODE is used in the comparison, so it should be in the hash. */
275 h ^= GET_MODE (value);
276 }
5692c7bc
ZW
277 return h;
278}
279
cc2902df 280/* Returns nonzero if the value represented by X (really a ...)
5692c7bc 281 is the same as that represented by Y (really a ...) */
aebf76a2
TS
282bool
283const_double_hasher::equal (rtx x, rtx y)
5692c7bc 284{
aebf76a2 285 const_rtx const a = x, b = y;
5692c7bc
ZW
286
287 if (GET_MODE (a) != GET_MODE (b))
288 return 0;
807e902e 289 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
8580f7a0
RH
290 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
291 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
292 else
293 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
294 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
295}
296
091a3ac7
CF
297/* Returns a hash code for X (which is really a CONST_FIXED). */
298
aebf76a2
TS
299hashval_t
300const_fixed_hasher::hash (rtx x)
091a3ac7 301{
aebf76a2 302 const_rtx const value = x;
091a3ac7
CF
303 hashval_t h;
304
305 h = fixed_hash (CONST_FIXED_VALUE (value));
306 /* MODE is used in the comparison, so it should be in the hash. */
307 h ^= GET_MODE (value);
308 return h;
309}
310
aebf76a2
TS
311/* Returns nonzero if the value represented by X is the same as that
312 represented by Y. */
091a3ac7 313
aebf76a2
TS
314bool
315const_fixed_hasher::equal (rtx x, rtx y)
091a3ac7 316{
aebf76a2 317 const_rtx const a = x, b = y;
091a3ac7
CF
318
319 if (GET_MODE (a) != GET_MODE (b))
320 return 0;
321 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
322}
323
f12144dd 324/* Return true if the given memory attributes are equal. */
c13e8210 325
96b3c03f 326bool
f12144dd 327mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
c13e8210 328{
96b3c03f
RB
329 if (p == q)
330 return true;
331 if (!p || !q)
332 return false;
754c3d5d
RS
333 return (p->alias == q->alias
334 && p->offset_known_p == q->offset_known_p
335 && (!p->offset_known_p || p->offset == q->offset)
336 && p->size_known_p == q->size_known_p
337 && (!p->size_known_p || p->size == q->size)
338 && p->align == q->align
09e881c9 339 && p->addrspace == q->addrspace
78b76d08
SB
340 && (p->expr == q->expr
341 || (p->expr != NULL_TREE && q->expr != NULL_TREE
342 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
343}
344
f12144dd 345/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 346
f12144dd
RS
347static void
348set_mem_attrs (rtx mem, mem_attrs *attrs)
349{
f12144dd
RS
350 /* If everything is the default, we can just clear the attributes. */
351 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
352 {
353 MEM_ATTRS (mem) = 0;
354 return;
355 }
173b24b9 356
84053e02
RB
357 if (!MEM_ATTRS (mem)
358 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
173b24b9 359 {
766090c2 360 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
84053e02 361 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
173b24b9 362 }
c13e8210
MM
363}
364
a560d4d4
JH
365/* Returns a hash code for X (which is a really a reg_attrs *). */
366
aebf76a2
TS
367hashval_t
368reg_attr_hasher::hash (reg_attrs *x)
a560d4d4 369{
aebf76a2 370 const reg_attrs *const p = x;
a560d4d4 371
9841210f 372 return ((p->offset * 1000) ^ (intptr_t) p->decl);
a560d4d4
JH
373}
374
aebf76a2
TS
375/* Returns nonzero if the value represented by X is the same as that given by
376 Y. */
a560d4d4 377
aebf76a2
TS
378bool
379reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
a560d4d4 380{
aebf76a2
TS
381 const reg_attrs *const p = x;
382 const reg_attrs *const q = y;
a560d4d4
JH
383
384 return (p->decl == q->decl && p->offset == q->offset);
385}
386/* Allocate a new reg_attrs structure and insert it into the hash table if
387 one identical to it is not already in the table. We are doing this for
388 MEM of mode MODE. */
389
390static reg_attrs *
502b8322 391get_reg_attrs (tree decl, int offset)
a560d4d4
JH
392{
393 reg_attrs attrs;
a560d4d4
JH
394
395 /* If everything is the default, we can just return zero. */
396 if (decl == 0 && offset == 0)
397 return 0;
398
399 attrs.decl = decl;
400 attrs.offset = offset;
401
aebf76a2 402 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
a560d4d4
JH
403 if (*slot == 0)
404 {
766090c2 405 *slot = ggc_alloc<reg_attrs> ();
a560d4d4
JH
406 memcpy (*slot, &attrs, sizeof (reg_attrs));
407 }
408
aebf76a2 409 return *slot;
a560d4d4
JH
410}
411
6fb5fa3c
DB
412
413#if !HAVE_blockage
adddc347
HPN
414/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
415 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
416
417rtx
418gen_blockage (void)
419{
420 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
421 MEM_VOLATILE_P (x) = true;
422 return x;
423}
424#endif
425
426
8deccbb7
RS
427/* Set the mode and register number of X to MODE and REGNO. */
428
429void
430set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
431{
9188b286
RS
432 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
433 ? hard_regno_nregs[regno][mode]
434 : 1);
8deccbb7 435 PUT_MODE_RAW (x, mode);
9188b286 436 set_regno_raw (x, regno, nregs);
8deccbb7
RS
437}
438
08394eef
BS
439/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
440 don't attempt to share with the various global pieces of rtl (such as
441 frame_pointer_rtx). */
442
443rtx
8deccbb7 444gen_raw_REG (machine_mode mode, unsigned int regno)
08394eef 445{
2d44c7de 446 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
8deccbb7 447 set_mode_and_regno (x, mode, regno);
9fccb335 448 REG_ATTRS (x) = NULL;
08394eef
BS
449 ORIGINAL_REGNO (x) = regno;
450 return x;
451}
452
c5c76735
JL
453/* There are some RTL codes that require special attention; the generation
454 functions do the raw handling. If you add to this list, modify
455 special_rtx in gengenrtl.c as well. */
456
38e60c55 457rtx_expr_list *
ef4bddc2 458gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
38e60c55
DM
459{
460 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
461 expr_list));
462}
463
a756c6be 464rtx_insn_list *
ef4bddc2 465gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
a756c6be
DM
466{
467 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
468 insn_list));
469}
470
d6e1e8b8 471rtx_insn *
ef4bddc2 472gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
d6e1e8b8
DM
473 basic_block bb, rtx pattern, int location, int code,
474 rtx reg_notes)
475{
476 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
477 prev_insn, next_insn,
478 bb, pattern, location, code,
479 reg_notes));
480}
481
3b80f6ca 482rtx
ef4bddc2 483gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca
RH
484{
485 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 486 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
487
488#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
489 if (const_true_rtx && arg == STORE_FLAG_VALUE)
490 return const_true_rtx;
491#endif
492
c13e8210 493 /* Look up the CONST_INT in the hash table. */
aebf76a2
TS
494 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
495 INSERT);
29105cea 496 if (*slot == 0)
1f8f4a0b 497 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210 498
aebf76a2 499 return *slot;
3b80f6ca
RH
500}
501
2496c7bd 502rtx
ef4bddc2 503gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
2496c7bd
LB
504{
505 return GEN_INT (trunc_int_for_mode (c, mode));
506}
507
5692c7bc
ZW
508/* CONST_DOUBLEs might be created from pairs of integers, or from
509 REAL_VALUE_TYPEs. Also, their length is known only at run time,
510 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
511
512/* Determine whether REAL, a CONST_DOUBLE, already exists in the
513 hash table. If so, return its counterpart; otherwise add it
514 to the hash table and return it. */
515static rtx
502b8322 516lookup_const_double (rtx real)
5692c7bc 517{
aebf76a2 518 rtx *slot = const_double_htab->find_slot (real, INSERT);
5692c7bc
ZW
519 if (*slot == 0)
520 *slot = real;
521
aebf76a2 522 return *slot;
5692c7bc 523}
29105cea 524
5692c7bc
ZW
525/* Return a CONST_DOUBLE rtx for a floating-point value specified by
526 VALUE in mode MODE. */
0133b7d9 527rtx
ef4bddc2 528const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
0133b7d9 529{
5692c7bc
ZW
530 rtx real = rtx_alloc (CONST_DOUBLE);
531 PUT_MODE (real, mode);
532
9e254451 533 real->u.rv = value;
5692c7bc
ZW
534
535 return lookup_const_double (real);
536}
537
091a3ac7
CF
538/* Determine whether FIXED, a CONST_FIXED, already exists in the
539 hash table. If so, return its counterpart; otherwise add it
540 to the hash table and return it. */
541
542static rtx
543lookup_const_fixed (rtx fixed)
544{
aebf76a2 545 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
091a3ac7
CF
546 if (*slot == 0)
547 *slot = fixed;
548
aebf76a2 549 return *slot;
091a3ac7
CF
550}
551
552/* Return a CONST_FIXED rtx for a fixed-point value specified by
553 VALUE in mode MODE. */
554
555rtx
ef4bddc2 556const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
091a3ac7
CF
557{
558 rtx fixed = rtx_alloc (CONST_FIXED);
559 PUT_MODE (fixed, mode);
560
561 fixed->u.fv = value;
562
563 return lookup_const_fixed (fixed);
564}
565
807e902e 566#if TARGET_SUPPORTS_WIDE_INT == 0
3e93ff81
AS
567/* Constructs double_int from rtx CST. */
568
569double_int
570rtx_to_double_int (const_rtx cst)
571{
572 double_int r;
573
574 if (CONST_INT_P (cst))
27bcd47c 575 r = double_int::from_shwi (INTVAL (cst));
48175537 576 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
577 {
578 r.low = CONST_DOUBLE_LOW (cst);
579 r.high = CONST_DOUBLE_HIGH (cst);
580 }
581 else
582 gcc_unreachable ();
583
584 return r;
585}
807e902e 586#endif
3e93ff81 587
807e902e
KZ
588#if TARGET_SUPPORTS_WIDE_INT
589/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
590 If so, return its counterpart; otherwise add it to the hash table and
591 return it. */
3e93ff81 592
807e902e
KZ
593static rtx
594lookup_const_wide_int (rtx wint)
595{
aebf76a2 596 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
807e902e
KZ
597 if (*slot == 0)
598 *slot = wint;
599
aebf76a2 600 return *slot;
807e902e
KZ
601}
602#endif
603
604/* Return an rtx constant for V, given that the constant has mode MODE.
605 The returned rtx will be a CONST_INT if V fits, otherwise it will be
606 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
607 (if TARGET_SUPPORTS_WIDE_INT). */
54fb1ae0
AS
608
609rtx
ef4bddc2 610immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
54fb1ae0 611{
807e902e
KZ
612 unsigned int len = v.get_len ();
613 unsigned int prec = GET_MODE_PRECISION (mode);
614
615 /* Allow truncation but not extension since we do not know if the
616 number is signed or unsigned. */
617 gcc_assert (prec <= v.get_precision ());
618
619 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
620 return gen_int_mode (v.elt (0), mode);
621
622#if TARGET_SUPPORTS_WIDE_INT
623 {
624 unsigned int i;
625 rtx value;
626 unsigned int blocks_needed
627 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
628
629 if (len > blocks_needed)
630 len = blocks_needed;
631
632 value = const_wide_int_alloc (len);
633
634 /* It is so tempting to just put the mode in here. Must control
635 myself ... */
636 PUT_MODE (value, VOIDmode);
637 CWI_PUT_NUM_ELEM (value, len);
638
639 for (i = 0; i < len; i++)
640 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
641
642 return lookup_const_wide_int (value);
643 }
644#else
645 return immed_double_const (v.elt (0), v.elt (1), mode);
646#endif
54fb1ae0
AS
647}
648
807e902e 649#if TARGET_SUPPORTS_WIDE_INT == 0
5692c7bc
ZW
650/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
651 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 652 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
653 implied upper bits are copies of the high bit of i1. The value
654 itself is neither signed nor unsigned. Do not use this routine for
655 non-integer modes; convert to REAL_VALUE_TYPE and use
656 CONST_DOUBLE_FROM_REAL_VALUE. */
5692c7bc
ZW
657
658rtx
ef4bddc2 659immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
5692c7bc
ZW
660{
661 rtx value;
662 unsigned int i;
663
65acccdd 664 /* There are the following cases (note that there are no modes with
49ab6098 665 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
666
667 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
668 gen_int_mode.
929e10f4
MS
669 2) If the value of the integer fits into HOST_WIDE_INT anyway
670 (i.e., i1 consists only from copies of the sign bit, and sign
671 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 672 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
673 if (mode != VOIDmode)
674 {
5b0264cb
NS
675 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
676 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
677 /* We can get a 0 for an error mark. */
678 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
d5e254e1
IE
679 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
680 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
5692c7bc 681
65acccdd
ZD
682 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
683 return gen_int_mode (i0, mode);
5692c7bc
ZW
684 }
685
686 /* If this integer fits in one word, return a CONST_INT. */
687 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
688 return GEN_INT (i0);
689
690 /* We use VOIDmode for integers. */
691 value = rtx_alloc (CONST_DOUBLE);
692 PUT_MODE (value, VOIDmode);
693
694 CONST_DOUBLE_LOW (value) = i0;
695 CONST_DOUBLE_HIGH (value) = i1;
696
697 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
698 XWINT (value, i) = 0;
699
700 return lookup_const_double (value);
0133b7d9 701}
807e902e 702#endif
0133b7d9 703
3b80f6ca 704rtx
ef4bddc2 705gen_rtx_REG (machine_mode mode, unsigned int regno)
3b80f6ca
RH
706{
707 /* In case the MD file explicitly references the frame pointer, have
708 all such references point to the same frame pointer. This is
709 used during frame pointer elimination to distinguish the explicit
710 references to these registers from pseudos that happened to be
711 assigned to them.
712
713 If we have eliminated the frame pointer or arg pointer, we will
714 be using it as a normal register, for example as a spill
715 register. In such cases, we might be accessing it in a mode that
716 is not Pmode and therefore cannot use the pre-allocated rtx.
717
718 Also don't do this when we are making new REGs in reload, since
719 we don't want to get confused with the real pointers. */
720
55a2c322 721 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 722 {
e10c79fe
LB
723 if (regno == FRAME_POINTER_REGNUM
724 && (!reload_completed || frame_pointer_needed))
3b80f6ca 725 return frame_pointer_rtx;
c3e08036
TS
726
727 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
728 && regno == HARD_FRAME_POINTER_REGNUM
e10c79fe 729 && (!reload_completed || frame_pointer_needed))
3b80f6ca 730 return hard_frame_pointer_rtx;
3f393fc6
TS
731#if !HARD_FRAME_POINTER_IS_ARG_POINTER
732 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
733 && regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
734 return arg_pointer_rtx;
735#endif
736#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 737 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
738 return return_address_pointer_rtx;
739#endif
fc555370 740 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 741 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 742 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 743 return pic_offset_table_rtx;
bcb33994 744 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
745 return stack_pointer_rtx;
746 }
747
006a94b0 748#if 0
6cde4876 749 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
750 an existing entry in that table to avoid useless generation of RTL.
751
752 This code is disabled for now until we can fix the various backends
753 which depend on having non-shared hard registers in some cases. Long
754 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
755 on the amount of useless RTL that gets generated.
756
757 We'll also need to fix some code that runs after reload that wants to
758 set ORIGINAL_REGNO. */
759
6cde4876
JL
760 if (cfun
761 && cfun->emit
762 && regno_reg_rtx
763 && regno < FIRST_PSEUDO_REGISTER
764 && reg_raw_mode[regno] == mode)
765 return regno_reg_rtx[regno];
006a94b0 766#endif
6cde4876 767
08394eef 768 return gen_raw_REG (mode, regno);
3b80f6ca
RH
769}
770
41472af8 771rtx
ef4bddc2 772gen_rtx_MEM (machine_mode mode, rtx addr)
41472af8
MM
773{
774 rtx rt = gen_rtx_raw_MEM (mode, addr);
775
776 /* This field is not cleared by the mere allocation of the rtx, so
777 we clear it here. */
173b24b9 778 MEM_ATTRS (rt) = 0;
41472af8
MM
779
780 return rt;
781}
ddef6bc7 782
542a8afa
RH
783/* Generate a memory referring to non-trapping constant memory. */
784
785rtx
ef4bddc2 786gen_const_mem (machine_mode mode, rtx addr)
542a8afa
RH
787{
788 rtx mem = gen_rtx_MEM (mode, addr);
789 MEM_READONLY_P (mem) = 1;
790 MEM_NOTRAP_P (mem) = 1;
791 return mem;
792}
793
bf877a76
R
794/* Generate a MEM referring to fixed portions of the frame, e.g., register
795 save areas. */
796
797rtx
ef4bddc2 798gen_frame_mem (machine_mode mode, rtx addr)
bf877a76
R
799{
800 rtx mem = gen_rtx_MEM (mode, addr);
801 MEM_NOTRAP_P (mem) = 1;
802 set_mem_alias_set (mem, get_frame_alias_set ());
803 return mem;
804}
805
806/* Generate a MEM referring to a temporary use of the stack, not part
807 of the fixed stack frame. For example, something which is pushed
808 by a target splitter. */
809rtx
ef4bddc2 810gen_tmp_stack_mem (machine_mode mode, rtx addr)
bf877a76
R
811{
812 rtx mem = gen_rtx_MEM (mode, addr);
813 MEM_NOTRAP_P (mem) = 1;
e3b5732b 814 if (!cfun->calls_alloca)
bf877a76
R
815 set_mem_alias_set (mem, get_frame_alias_set ());
816 return mem;
817}
818
beb72684
RH
819/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
820 this construct would be valid, and false otherwise. */
821
822bool
ef4bddc2 823validate_subreg (machine_mode omode, machine_mode imode,
ed7a4b4b 824 const_rtx reg, unsigned int offset)
ddef6bc7 825{
beb72684
RH
826 unsigned int isize = GET_MODE_SIZE (imode);
827 unsigned int osize = GET_MODE_SIZE (omode);
828
829 /* All subregs must be aligned. */
830 if (offset % osize != 0)
831 return false;
832
833 /* The subreg offset cannot be outside the inner object. */
834 if (offset >= isize)
835 return false;
836
837 /* ??? This should not be here. Temporarily continue to allow word_mode
838 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
839 Generally, backends are doing something sketchy but it'll take time to
840 fix them all. */
841 if (omode == word_mode)
842 ;
843 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
844 is the culprit here, and not the backends. */
845 else if (osize >= UNITS_PER_WORD && isize >= osize)
846 ;
847 /* Allow component subregs of complex and vector. Though given the below
848 extraction rules, it's not always clear what that means. */
849 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
850 && GET_MODE_INNER (imode) == omode)
851 ;
852 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
853 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
854 represent this. It's questionable if this ought to be represented at
855 all -- why can't this all be hidden in post-reload splitters that make
856 arbitrarily mode changes to the registers themselves. */
857 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
858 ;
859 /* Subregs involving floating point modes are not allowed to
860 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
861 (subreg:SI (reg:DF) 0) isn't. */
862 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
863 {
55a2c322
VM
864 if (! (isize == osize
865 /* LRA can use subreg to store a floating point value in
866 an integer mode. Although the floating point and the
867 integer modes need the same number of hard registers,
868 the size of floating point mode can be less than the
869 integer mode. LRA also uses subregs for a register
870 should be used in different mode in on insn. */
871 || lra_in_progress))
beb72684
RH
872 return false;
873 }
ddef6bc7 874
beb72684
RH
875 /* Paradoxical subregs must have offset zero. */
876 if (osize > isize)
877 return offset == 0;
878
879 /* This is a normal subreg. Verify that the offset is representable. */
880
881 /* For hard registers, we already have most of these rules collected in
882 subreg_offset_representable_p. */
883 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
884 {
885 unsigned int regno = REGNO (reg);
886
887#ifdef CANNOT_CHANGE_MODE_CLASS
888 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
889 && GET_MODE_INNER (imode) == omode)
890 ;
891 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
892 return false;
ddef6bc7 893#endif
beb72684
RH
894
895 return subreg_offset_representable_p (regno, imode, offset, omode);
896 }
897
898 /* For pseudo registers, we want most of the same checks. Namely:
899 If the register no larger than a word, the subreg must be lowpart.
900 If the register is larger than a word, the subreg must be the lowpart
901 of a subword. A subreg does *not* perform arbitrary bit extraction.
902 Given that we've already checked mode/offset alignment, we only have
903 to check subword subregs here. */
55a2c322
VM
904 if (osize < UNITS_PER_WORD
905 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684 906 {
ef4bddc2 907 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
beb72684
RH
908 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
909 if (offset % UNITS_PER_WORD != low_off)
910 return false;
911 }
912 return true;
913}
914
915rtx
ef4bddc2 916gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
beb72684
RH
917{
918 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 919 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
920}
921
173b24b9
RK
922/* Generate a SUBREG representing the least-significant part of REG if MODE
923 is smaller than mode of REG, otherwise paradoxical SUBREG. */
924
ddef6bc7 925rtx
ef4bddc2 926gen_lowpart_SUBREG (machine_mode mode, rtx reg)
ddef6bc7 927{
ef4bddc2 928 machine_mode inmode;
ddef6bc7
JJ
929
930 inmode = GET_MODE (reg);
931 if (inmode == VOIDmode)
932 inmode = mode;
e0e08ac2
JH
933 return gen_rtx_SUBREG (mode, reg,
934 subreg_lowpart_offset (mode, inmode));
ddef6bc7 935}
fcc74520
RS
936
937rtx
ef4bddc2 938gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
fcc74520
RS
939 enum var_init_status status)
940{
941 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
942 PAT_VAR_LOCATION_STATUS (x) = status;
943 return x;
944}
c5c76735 945\f
23b2ce53 946
80379f51
PB
947/* Create an rtvec and stores within it the RTXen passed in the arguments. */
948
23b2ce53 949rtvec
e34d07f2 950gen_rtvec (int n, ...)
23b2ce53 951{
80379f51
PB
952 int i;
953 rtvec rt_val;
e34d07f2 954 va_list p;
23b2ce53 955
e34d07f2 956 va_start (p, n);
23b2ce53 957
80379f51 958 /* Don't allocate an empty rtvec... */
23b2ce53 959 if (n == 0)
0edf1bb2
JL
960 {
961 va_end (p);
962 return NULL_RTVEC;
963 }
23b2ce53 964
80379f51 965 rt_val = rtvec_alloc (n);
4f90e4a0 966
23b2ce53 967 for (i = 0; i < n; i++)
80379f51 968 rt_val->elem[i] = va_arg (p, rtx);
6268b922 969
e34d07f2 970 va_end (p);
80379f51 971 return rt_val;
23b2ce53
RS
972}
973
974rtvec
502b8322 975gen_rtvec_v (int n, rtx *argp)
23b2ce53 976{
b3694847
SS
977 int i;
978 rtvec rt_val;
23b2ce53 979
80379f51 980 /* Don't allocate an empty rtvec... */
23b2ce53 981 if (n == 0)
80379f51 982 return NULL_RTVEC;
23b2ce53 983
80379f51 984 rt_val = rtvec_alloc (n);
23b2ce53
RS
985
986 for (i = 0; i < n; i++)
8f985ec4 987 rt_val->elem[i] = *argp++;
23b2ce53
RS
988
989 return rt_val;
990}
e6eda746
DM
991
992rtvec
993gen_rtvec_v (int n, rtx_insn **argp)
994{
995 int i;
996 rtvec rt_val;
997
998 /* Don't allocate an empty rtvec... */
999 if (n == 0)
1000 return NULL_RTVEC;
1001
1002 rt_val = rtvec_alloc (n);
1003
1004 for (i = 0; i < n; i++)
1005 rt_val->elem[i] = *argp++;
1006
1007 return rt_val;
1008}
1009
23b2ce53 1010\f
38ae7651
RS
1011/* Return the number of bytes between the start of an OUTER_MODE
1012 in-memory value and the start of an INNER_MODE in-memory value,
1013 given that the former is a lowpart of the latter. It may be a
1014 paradoxical lowpart, in which case the offset will be negative
1015 on big-endian targets. */
1016
1017int
ef4bddc2
RS
1018byte_lowpart_offset (machine_mode outer_mode,
1019 machine_mode inner_mode)
38ae7651
RS
1020{
1021 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1022 return subreg_lowpart_offset (outer_mode, inner_mode);
1023 else
1024 return -subreg_lowpart_offset (inner_mode, outer_mode);
1025}
1026\f
23b2ce53
RS
1027/* Generate a REG rtx for a new pseudo register of mode MODE.
1028 This pseudo is assigned the next sequential register number. */
1029
1030rtx
ef4bddc2 1031gen_reg_rtx (machine_mode mode)
23b2ce53 1032{
b3694847 1033 rtx val;
2e3f842f 1034 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 1035
f8335a4f 1036 gcc_assert (can_create_pseudo_p ());
23b2ce53 1037
2e3f842f
L
1038 /* If a virtual register with bigger mode alignment is generated,
1039 increase stack alignment estimation because it might be spilled
1040 to stack later. */
b8698a0f 1041 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
1042 && crtl->stack_alignment_estimated < align
1043 && !crtl->stack_realign_processed)
ae58e548
JJ
1044 {
1045 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1046 if (crtl->stack_alignment_estimated < min_align)
1047 crtl->stack_alignment_estimated = min_align;
1048 }
2e3f842f 1049
1b3d8f8a
GK
1050 if (generating_concat_p
1051 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1052 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
1053 {
1054 /* For complex modes, don't make a single pseudo.
1055 Instead, make a CONCAT of two pseudos.
1056 This allows noncontiguous allocation of the real and imaginary parts,
1057 which makes much better code. Besides, allocating DCmode
1058 pseudos overstrains reload on some machines like the 386. */
1059 rtx realpart, imagpart;
ef4bddc2 1060 machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
1061
1062 realpart = gen_reg_rtx (partmode);
1063 imagpart = gen_reg_rtx (partmode);
3b80f6ca 1064 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
1065 }
1066
004a7e45
UB
1067 /* Do not call gen_reg_rtx with uninitialized crtl. */
1068 gcc_assert (crtl->emit.regno_pointer_align_length);
1069
a560d4d4 1070 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 1071 enough to have an element for this pseudo reg number. */
23b2ce53 1072
3e029763 1073 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 1074 {
3e029763 1075 int old_size = crtl->emit.regno_pointer_align_length;
60564289 1076 char *tmp;
0d4903b8 1077 rtx *new1;
0d4903b8 1078
60564289
KG
1079 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1080 memset (tmp + old_size, 0, old_size);
1081 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
49ad7cfa 1082
1b4572a8 1083 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
49ad7cfa 1084 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
1085 regno_reg_rtx = new1;
1086
3e029763 1087 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
1088 }
1089
08394eef 1090 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
1091 regno_reg_rtx[reg_rtx_no++] = val;
1092 return val;
1093}
1094
a698cc03
JL
1095/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1096
1097bool
1098reg_is_parm_p (rtx reg)
1099{
1100 tree decl;
1101
1102 gcc_assert (REG_P (reg));
1103 decl = REG_EXPR (reg);
1104 return (decl && TREE_CODE (decl) == PARM_DECL);
1105}
1106
38ae7651
RS
1107/* Update NEW with the same attributes as REG, but with OFFSET added
1108 to the REG_OFFSET. */
a560d4d4 1109
e53a16e7 1110static void
60564289 1111update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 1112{
60564289 1113 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 1114 REG_OFFSET (reg) + offset);
e53a16e7
ILT
1115}
1116
38ae7651
RS
1117/* Generate a register with same attributes as REG, but with OFFSET
1118 added to the REG_OFFSET. */
e53a16e7
ILT
1119
1120rtx
ef4bddc2 1121gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
e53a16e7
ILT
1122 int offset)
1123{
60564289 1124 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 1125
60564289
KG
1126 update_reg_offset (new_rtx, reg, offset);
1127 return new_rtx;
e53a16e7
ILT
1128}
1129
1130/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 1131 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
1132
1133rtx
ef4bddc2 1134gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
e53a16e7 1135{
60564289 1136 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 1137
60564289
KG
1138 update_reg_offset (new_rtx, reg, offset);
1139 return new_rtx;
a560d4d4
JH
1140}
1141
38ae7651
RS
1142/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1143 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
1144
1145void
ef4bddc2 1146adjust_reg_mode (rtx reg, machine_mode mode)
a560d4d4 1147{
38ae7651
RS
1148 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1149 PUT_MODE (reg, mode);
1150}
1151
1152/* Copy REG's attributes from X, if X has any attributes. If REG and X
1153 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1154
1155void
1156set_reg_attrs_from_value (rtx reg, rtx x)
1157{
1158 int offset;
de6f3f7a
L
1159 bool can_be_reg_pointer = true;
1160
1161 /* Don't call mark_reg_pointer for incompatible pointer sign
1162 extension. */
1163 while (GET_CODE (x) == SIGN_EXTEND
1164 || GET_CODE (x) == ZERO_EXTEND
1165 || GET_CODE (x) == TRUNCATE
1166 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1167 {
1168#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1169 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1170 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1171 can_be_reg_pointer = false;
1172#endif
1173 x = XEXP (x, 0);
1174 }
38ae7651 1175
923ba36f
JJ
1176 /* Hard registers can be reused for multiple purposes within the same
1177 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1178 on them is wrong. */
1179 if (HARD_REGISTER_P (reg))
1180 return;
1181
38ae7651 1182 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
1183 if (MEM_P (x))
1184 {
527210c4
RS
1185 if (MEM_OFFSET_KNOWN_P (x))
1186 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1187 MEM_OFFSET (x) + offset);
de6f3f7a 1188 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1189 mark_reg_pointer (reg, 0);
46b71b03
PB
1190 }
1191 else if (REG_P (x))
1192 {
1193 if (REG_ATTRS (x))
1194 update_reg_offset (reg, x, offset);
de6f3f7a 1195 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1196 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1197 }
1198}
1199
1200/* Generate a REG rtx for a new pseudo register, copying the mode
1201 and attributes from X. */
1202
1203rtx
1204gen_reg_rtx_and_attrs (rtx x)
1205{
1206 rtx reg = gen_reg_rtx (GET_MODE (x));
1207 set_reg_attrs_from_value (reg, x);
1208 return reg;
a560d4d4
JH
1209}
1210
9d18e06b
JZ
1211/* Set the register attributes for registers contained in PARM_RTX.
1212 Use needed values from memory attributes of MEM. */
1213
1214void
502b8322 1215set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1216{
f8cfc6aa 1217 if (REG_P (parm_rtx))
38ae7651 1218 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1219 else if (GET_CODE (parm_rtx) == PARALLEL)
1220 {
1221 /* Check for a NULL entry in the first slot, used to indicate that the
1222 parameter goes both on the stack and in registers. */
1223 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1224 for (; i < XVECLEN (parm_rtx, 0); i++)
1225 {
1226 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1227 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1228 REG_ATTRS (XEXP (x, 0))
1229 = get_reg_attrs (MEM_EXPR (mem),
1230 INTVAL (XEXP (x, 1)));
1231 }
1232 }
1233}
1234
38ae7651
RS
1235/* Set the REG_ATTRS for registers in value X, given that X represents
1236 decl T. */
a560d4d4 1237
4e3825db 1238void
38ae7651
RS
1239set_reg_attrs_for_decl_rtl (tree t, rtx x)
1240{
1241 if (GET_CODE (x) == SUBREG)
fbe6ec81 1242 {
38ae7651
RS
1243 gcc_assert (subreg_lowpart_p (x));
1244 x = SUBREG_REG (x);
fbe6ec81 1245 }
f8cfc6aa 1246 if (REG_P (x))
38ae7651
RS
1247 REG_ATTRS (x)
1248 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
0f9f9784 1249 DECL_MODE (t)));
a560d4d4
JH
1250 if (GET_CODE (x) == CONCAT)
1251 {
1252 if (REG_P (XEXP (x, 0)))
1253 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1254 if (REG_P (XEXP (x, 1)))
1255 REG_ATTRS (XEXP (x, 1))
1256 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1257 }
1258 if (GET_CODE (x) == PARALLEL)
1259 {
d4afac5b
JZ
1260 int i, start;
1261
1262 /* Check for a NULL entry, used to indicate that the parameter goes
1263 both on the stack and in registers. */
1264 if (XEXP (XVECEXP (x, 0, 0), 0))
1265 start = 0;
1266 else
1267 start = 1;
1268
1269 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1270 {
1271 rtx y = XVECEXP (x, 0, i);
1272 if (REG_P (XEXP (y, 0)))
1273 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1274 }
1275 }
1276}
1277
38ae7651
RS
1278/* Assign the RTX X to declaration T. */
1279
1280void
1281set_decl_rtl (tree t, rtx x)
1282{
1283 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1284 if (x)
1285 set_reg_attrs_for_decl_rtl (t, x);
1286}
1287
5141868d
RS
1288/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1289 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1290
1291void
5141868d 1292set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1293{
1294 DECL_INCOMING_RTL (t) = x;
5141868d 1295 if (x && !by_reference_p)
38ae7651
RS
1296 set_reg_attrs_for_decl_rtl (t, x);
1297}
1298
754fdcca
RK
1299/* Identify REG (which may be a CONCAT) as a user register. */
1300
1301void
502b8322 1302mark_user_reg (rtx reg)
754fdcca
RK
1303{
1304 if (GET_CODE (reg) == CONCAT)
1305 {
1306 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1307 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1308 }
754fdcca 1309 else
5b0264cb
NS
1310 {
1311 gcc_assert (REG_P (reg));
1312 REG_USERVAR_P (reg) = 1;
1313 }
754fdcca
RK
1314}
1315
86fe05e0
RK
1316/* Identify REG as a probable pointer register and show its alignment
1317 as ALIGN, if nonzero. */
23b2ce53
RS
1318
1319void
502b8322 1320mark_reg_pointer (rtx reg, int align)
23b2ce53 1321{
3502dc9c 1322 if (! REG_POINTER (reg))
00995e78 1323 {
3502dc9c 1324 REG_POINTER (reg) = 1;
86fe05e0 1325
00995e78
RE
1326 if (align)
1327 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1328 }
1329 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1330 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1331 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1332}
1333
1334/* Return 1 plus largest pseudo reg number used in the current function. */
1335
1336int
502b8322 1337max_reg_num (void)
23b2ce53
RS
1338{
1339 return reg_rtx_no;
1340}
1341
1342/* Return 1 + the largest label number used so far in the current function. */
1343
1344int
502b8322 1345max_label_num (void)
23b2ce53 1346{
23b2ce53
RS
1347 return label_num;
1348}
1349
1350/* Return first label number used in this function (if any were used). */
1351
1352int
502b8322 1353get_first_label_num (void)
23b2ce53
RS
1354{
1355 return first_label_num;
1356}
6de9cd9a
DN
1357
1358/* If the rtx for label was created during the expansion of a nested
1359 function, then first_label_num won't include this label number.
fa10beec 1360 Fix this now so that array indices work later. */
6de9cd9a
DN
1361
1362void
1363maybe_set_first_label_num (rtx x)
1364{
1365 if (CODE_LABEL_NUMBER (x) < first_label_num)
1366 first_label_num = CODE_LABEL_NUMBER (x);
1367}
23b2ce53
RS
1368\f
1369/* Return a value representing some low-order bits of X, where the number
1370 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1371 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1372 representation is returned.
1373
1374 This function handles the cases in common between gen_lowpart, below,
1375 and two variants in cse.c and combine.c. These are the cases that can
1376 be safely handled at all points in the compilation.
1377
1378 If this is not a case we can handle, return 0. */
1379
1380rtx
ef4bddc2 1381gen_lowpart_common (machine_mode mode, rtx x)
23b2ce53 1382{
ddef6bc7 1383 int msize = GET_MODE_SIZE (mode);
550d1387 1384 int xsize;
ddef6bc7 1385 int offset = 0;
ef4bddc2 1386 machine_mode innermode;
550d1387
GK
1387
1388 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1389 so we have to make one up. Yuk. */
1390 innermode = GET_MODE (x);
481683e1 1391 if (CONST_INT_P (x)
db487452 1392 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1393 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1394 else if (innermode == VOIDmode)
49ab6098 1395 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
b8698a0f 1396
550d1387
GK
1397 xsize = GET_MODE_SIZE (innermode);
1398
5b0264cb 1399 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1400
550d1387 1401 if (innermode == mode)
23b2ce53
RS
1402 return x;
1403
1404 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1405 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1406 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1407 return 0;
1408
53501a19 1409 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1410 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1411 return 0;
1412
550d1387 1413 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1414
1415 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1416 && (GET_MODE_CLASS (mode) == MODE_INT
1417 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1418 {
1419 /* If we are getting the low-order part of something that has been
1420 sign- or zero-extended, we can either just use the object being
1421 extended or make a narrower extension. If we want an even smaller
1422 piece than the size of the object being extended, call ourselves
1423 recursively.
1424
1425 This case is used mostly by combine and cse. */
1426
1427 if (GET_MODE (XEXP (x, 0)) == mode)
1428 return XEXP (x, 0);
550d1387 1429 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1430 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1431 else if (msize < xsize)
3b80f6ca 1432 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1433 }
f8cfc6aa 1434 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387 1435 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
33ffb5c5 1436 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
550d1387 1437 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1438
23b2ce53
RS
1439 /* Otherwise, we can't do this. */
1440 return 0;
1441}
1442\f
ccba022b 1443rtx
ef4bddc2 1444gen_highpart (machine_mode mode, rtx x)
ccba022b 1445{
ddef6bc7 1446 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1447 rtx result;
ddef6bc7 1448
ccba022b
RS
1449 /* This case loses if X is a subreg. To catch bugs early,
1450 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1451 gcc_assert (msize <= UNITS_PER_WORD
1452 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1453
e0e08ac2
JH
1454 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1455 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1456 gcc_assert (result);
b8698a0f 1457
09482e0d
JW
1458 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1459 the target if we have a MEM. gen_highpart must return a valid operand,
1460 emitting code if necessary to do so. */
5b0264cb
NS
1461 if (MEM_P (result))
1462 {
1463 result = validize_mem (result);
1464 gcc_assert (result);
1465 }
b8698a0f 1466
e0e08ac2
JH
1467 return result;
1468}
5222e470 1469
26d249eb 1470/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1471 be VOIDmode constant. */
1472rtx
ef4bddc2 1473gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
5222e470
JH
1474{
1475 if (GET_MODE (exp) != VOIDmode)
1476 {
5b0264cb 1477 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1478 return gen_highpart (outermode, exp);
1479 }
1480 return simplify_gen_subreg (outermode, exp, innermode,
1481 subreg_highpart_offset (outermode, innermode));
1482}
68252e27 1483
38ae7651 1484/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1485
e0e08ac2 1486unsigned int
ef4bddc2 1487subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
e0e08ac2
JH
1488{
1489 unsigned int offset = 0;
1490 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1491
e0e08ac2 1492 if (difference > 0)
ccba022b 1493 {
e0e08ac2
JH
1494 if (WORDS_BIG_ENDIAN)
1495 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1496 if (BYTES_BIG_ENDIAN)
1497 offset += difference % UNITS_PER_WORD;
ccba022b 1498 }
ddef6bc7 1499
e0e08ac2 1500 return offset;
ccba022b 1501}
eea50aa0 1502
e0e08ac2
JH
1503/* Return offset in bytes to get OUTERMODE high part
1504 of the value in mode INNERMODE stored in memory in target format. */
1505unsigned int
ef4bddc2 1506subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
eea50aa0
JH
1507{
1508 unsigned int offset = 0;
1509 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1510
5b0264cb 1511 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1512
eea50aa0
JH
1513 if (difference > 0)
1514 {
e0e08ac2 1515 if (! WORDS_BIG_ENDIAN)
eea50aa0 1516 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1517 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1518 offset += difference % UNITS_PER_WORD;
1519 }
1520
e0e08ac2 1521 return offset;
eea50aa0 1522}
ccba022b 1523
23b2ce53
RS
1524/* Return 1 iff X, assumed to be a SUBREG,
1525 refers to the least significant part of its containing reg.
1526 If X is not a SUBREG, always return 1 (it is its own low part!). */
1527
1528int
fa233e34 1529subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1530{
1531 if (GET_CODE (x) != SUBREG)
1532 return 1;
a3a03040
RK
1533 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1534 return 0;
23b2ce53 1535
e0e08ac2
JH
1536 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1537 == SUBREG_BYTE (x));
23b2ce53 1538}
6a4bdc79
BS
1539
1540/* Return true if X is a paradoxical subreg, false otherwise. */
1541bool
1542paradoxical_subreg_p (const_rtx x)
1543{
1544 if (GET_CODE (x) != SUBREG)
1545 return false;
1546 return (GET_MODE_PRECISION (GET_MODE (x))
1547 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1548}
23b2ce53 1549\f
ddef6bc7
JJ
1550/* Return subword OFFSET of operand OP.
1551 The word number, OFFSET, is interpreted as the word number starting
1552 at the low-order address. OFFSET 0 is the low-order word if not
1553 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1554
1555 If we cannot extract the required word, we return zero. Otherwise,
1556 an rtx corresponding to the requested word will be returned.
1557
1558 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1559 reload has completed, a valid address will always be returned. After
1560 reload, if a valid address cannot be returned, we return zero.
1561
1562 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1563 it is the responsibility of the caller.
1564
1565 MODE is the mode of OP in case it is a CONST_INT.
1566
1567 ??? This is still rather broken for some cases. The problem for the
1568 moment is that all callers of this thing provide no 'goal mode' to
1569 tell us to work with. This exists because all callers were written
0631e0bf
JH
1570 in a word based SUBREG world.
1571 Now use of this function can be deprecated by simplify_subreg in most
1572 cases.
1573 */
ddef6bc7
JJ
1574
1575rtx
ef4bddc2 1576operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
ddef6bc7
JJ
1577{
1578 if (mode == VOIDmode)
1579 mode = GET_MODE (op);
1580
5b0264cb 1581 gcc_assert (mode != VOIDmode);
ddef6bc7 1582
30f7a378 1583 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1584 if (mode != BLKmode
1585 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1586 return 0;
1587
30f7a378 1588 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1589 if (mode != BLKmode
1590 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1591 return const0_rtx;
1592
ddef6bc7 1593 /* Form a new MEM at the requested address. */
3c0cb5de 1594 if (MEM_P (op))
ddef6bc7 1595 {
60564289 1596 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1597
f1ec5147 1598 if (! validate_address)
60564289 1599 return new_rtx;
f1ec5147
RK
1600
1601 else if (reload_completed)
ddef6bc7 1602 {
09e881c9
BE
1603 if (! strict_memory_address_addr_space_p (word_mode,
1604 XEXP (new_rtx, 0),
1605 MEM_ADDR_SPACE (op)))
f1ec5147 1606 return 0;
ddef6bc7 1607 }
f1ec5147 1608 else
60564289 1609 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1610 }
1611
0631e0bf
JH
1612 /* Rest can be handled by simplify_subreg. */
1613 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1614}
1615
535a42b1
NS
1616/* Similar to `operand_subword', but never return 0. If we can't
1617 extract the required subword, put OP into a register and try again.
1618 The second attempt must succeed. We always validate the address in
1619 this case.
23b2ce53
RS
1620
1621 MODE is the mode of OP, in case it is CONST_INT. */
1622
1623rtx
ef4bddc2 1624operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
23b2ce53 1625{
ddef6bc7 1626 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1627
1628 if (result)
1629 return result;
1630
1631 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1632 {
1633 /* If this is a register which can not be accessed by words, copy it
1634 to a pseudo register. */
f8cfc6aa 1635 if (REG_P (op))
77e6b0eb
JC
1636 op = copy_to_reg (op);
1637 else
1638 op = force_reg (mode, op);
1639 }
23b2ce53 1640
ddef6bc7 1641 result = operand_subword (op, offset, 1, mode);
5b0264cb 1642 gcc_assert (result);
23b2ce53
RS
1643
1644 return result;
1645}
1646\f
2b3493c8
AK
1647/* Returns 1 if both MEM_EXPR can be considered equal
1648 and 0 otherwise. */
1649
1650int
4f588890 1651mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1652{
1653 if (expr1 == expr2)
1654 return 1;
1655
1656 if (! expr1 || ! expr2)
1657 return 0;
1658
1659 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1660 return 0;
1661
55b34b5f 1662 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1663}
1664
805903b5
JJ
1665/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1666 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1667 -1 if not known. */
1668
1669int
d9223014 1670get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1671{
1672 tree expr;
1673 unsigned HOST_WIDE_INT offset;
1674
1675 /* This function can't use
527210c4 1676 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1677 || (MAX (MEM_ALIGN (mem),
0eb77834 1678 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1679 < align))
1680 return -1;
1681 else
527210c4 1682 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1683 for two reasons:
1684 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1685 for <variable>. get_inner_reference doesn't handle it and
1686 even if it did, the alignment in that case needs to be determined
1687 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1688 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1689 isn't sufficiently aligned, the object it is in might be. */
1690 gcc_assert (MEM_P (mem));
1691 expr = MEM_EXPR (mem);
527210c4 1692 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1693 return -1;
1694
527210c4 1695 offset = MEM_OFFSET (mem);
805903b5
JJ
1696 if (DECL_P (expr))
1697 {
1698 if (DECL_ALIGN (expr) < align)
1699 return -1;
1700 }
1701 else if (INDIRECT_REF_P (expr))
1702 {
1703 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1704 return -1;
1705 }
1706 else if (TREE_CODE (expr) == COMPONENT_REF)
1707 {
1708 while (1)
1709 {
1710 tree inner = TREE_OPERAND (expr, 0);
1711 tree field = TREE_OPERAND (expr, 1);
1712 tree byte_offset = component_ref_field_offset (expr);
1713 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1714
1715 if (!byte_offset
cc269bb6
RS
1716 || !tree_fits_uhwi_p (byte_offset)
1717 || !tree_fits_uhwi_p (bit_offset))
805903b5
JJ
1718 return -1;
1719
ae7e9ddd
RS
1720 offset += tree_to_uhwi (byte_offset);
1721 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
805903b5
JJ
1722
1723 if (inner == NULL_TREE)
1724 {
1725 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1726 < (unsigned int) align)
1727 return -1;
1728 break;
1729 }
1730 else if (DECL_P (inner))
1731 {
1732 if (DECL_ALIGN (inner) < align)
1733 return -1;
1734 break;
1735 }
1736 else if (TREE_CODE (inner) != COMPONENT_REF)
1737 return -1;
1738 expr = inner;
1739 }
1740 }
1741 else
1742 return -1;
1743
1744 return offset & ((align / BITS_PER_UNIT) - 1);
1745}
1746
6926c713 1747/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1748 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1749 if we are making a new object of this type. BITPOS is nonzero if
1750 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1751
1752void
502b8322
AJ
1753set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1754 HOST_WIDE_INT bitpos)
173b24b9 1755{
6f1087be 1756 HOST_WIDE_INT apply_bitpos = 0;
173b24b9 1757 tree type;
f12144dd 1758 struct mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1759 addr_space_t as;
173b24b9
RK
1760
1761 /* It can happen that type_for_mode was given a mode for which there
1762 is no language-level type. In which case it returns NULL, which
1763 we can see here. */
1764 if (t == NULL_TREE)
1765 return;
1766
1767 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1768 if (type == error_mark_node)
1769 return;
173b24b9 1770
173b24b9
RK
1771 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1772 wrong answer, as it assumes that DECL_RTL already has the right alias
1773 info. Callers should not set DECL_RTL until after the call to
1774 set_mem_attributes. */
5b0264cb 1775 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1776
f12144dd
RS
1777 memset (&attrs, 0, sizeof (attrs));
1778
738cc472 1779 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1780 front-end routine) and use it. */
f12144dd 1781 attrs.alias = get_alias_set (t);
173b24b9 1782
a5e9c810 1783 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1784 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1785
268f7033 1786 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1787 refattrs = MEM_ATTRS (ref);
1788 if (refattrs)
268f7033
UW
1789 {
1790 /* ??? Can this ever happen? Calling this routine on a MEM that
1791 already carries memory attributes should probably be invalid. */
f12144dd 1792 attrs.expr = refattrs->expr;
754c3d5d 1793 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1794 attrs.offset = refattrs->offset;
754c3d5d 1795 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1796 attrs.size = refattrs->size;
1797 attrs.align = refattrs->align;
268f7033
UW
1798 }
1799
1800 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1801 else
268f7033 1802 {
f12144dd
RS
1803 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1804 gcc_assert (!defattrs->expr);
754c3d5d 1805 gcc_assert (!defattrs->offset_known_p);
f12144dd 1806
268f7033 1807 /* Respect mode size. */
754c3d5d 1808 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1809 attrs.size = defattrs->size;
268f7033
UW
1810 /* ??? Is this really necessary? We probably should always get
1811 the size from the type below. */
1812
1813 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1814 if T is an object, always compute the object alignment below. */
f12144dd
RS
1815 if (TYPE_P (t))
1816 attrs.align = defattrs->align;
1817 else
1818 attrs.align = BITS_PER_UNIT;
268f7033
UW
1819 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1820 e.g. if the type carries an alignment attribute. Should we be
1821 able to simply always use TYPE_ALIGN? */
1822 }
1823
c3d32120
RK
1824 /* We can set the alignment from the type if we are making an object,
1825 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
a80903ff 1826 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
f12144dd 1827 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 1828
738cc472 1829 /* If the size is known, we can set that. */
a787ccc3 1830 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 1831
30b0317c
RB
1832 /* The address-space is that of the type. */
1833 as = TYPE_ADDR_SPACE (type);
1834
80965c18
RK
1835 /* If T is not a type, we may be able to deduce some more information about
1836 the expression. */
1837 if (! TYPE_P (t))
8ac61af7 1838 {
8476af98 1839 tree base;
389fdba0 1840
8ac61af7
RK
1841 if (TREE_THIS_VOLATILE (t))
1842 MEM_VOLATILE_P (ref) = 1;
173b24b9 1843
c56e3582
RK
1844 /* Now remove any conversions: they don't change what the underlying
1845 object is. Likewise for SAVE_EXPR. */
1043771b 1846 while (CONVERT_EXPR_P (t)
c56e3582
RK
1847 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1848 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1849 t = TREE_OPERAND (t, 0);
1850
4994da65
RG
1851 /* Note whether this expression can trap. */
1852 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1853
1854 base = get_base_address (t);
f18a7b25
MJ
1855 if (base)
1856 {
1857 if (DECL_P (base)
1858 && TREE_READONLY (base)
1859 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1860 && !TREE_THIS_VOLATILE (base))
1861 MEM_READONLY_P (ref) = 1;
1862
1863 /* Mark static const strings readonly as well. */
1864 if (TREE_CODE (base) == STRING_CST
1865 && TREE_READONLY (base)
1866 && TREE_STATIC (base))
1867 MEM_READONLY_P (ref) = 1;
1868
30b0317c 1869 /* Address-space information is on the base object. */
f18a7b25
MJ
1870 if (TREE_CODE (base) == MEM_REF
1871 || TREE_CODE (base) == TARGET_MEM_REF)
1872 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1873 0))));
1874 else
1875 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1876 }
ba30e50d 1877
2039d7aa
RH
1878 /* If this expression uses it's parent's alias set, mark it such
1879 that we won't change it. */
b4ada065 1880 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
10b76d73
RK
1881 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1882
8ac61af7
RK
1883 /* If this is a decl, set the attributes of the MEM from it. */
1884 if (DECL_P (t))
1885 {
f12144dd 1886 attrs.expr = t;
754c3d5d
RS
1887 attrs.offset_known_p = true;
1888 attrs.offset = 0;
6f1087be 1889 apply_bitpos = bitpos;
a787ccc3 1890 new_size = DECL_SIZE_UNIT (t);
8ac61af7
RK
1891 }
1892
30b0317c 1893 /* ??? If we end up with a constant here do record a MEM_EXPR. */
6615c446 1894 else if (CONSTANT_CLASS_P (t))
30b0317c 1895 ;
998d7deb 1896
a787ccc3
RS
1897 /* If this is a field reference, record it. */
1898 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 1899 {
f12144dd 1900 attrs.expr = t;
754c3d5d
RS
1901 attrs.offset_known_p = true;
1902 attrs.offset = 0;
6f1087be 1903 apply_bitpos = bitpos;
a787ccc3
RS
1904 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1905 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
1906 }
1907
1908 /* If this is an array reference, look for an outer field reference. */
1909 else if (TREE_CODE (t) == ARRAY_REF)
1910 {
1911 tree off_tree = size_zero_node;
1b1838b6
JW
1912 /* We can't modify t, because we use it at the end of the
1913 function. */
1914 tree t2 = t;
998d7deb
RH
1915
1916 do
1917 {
1b1838b6 1918 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1919 tree low_bound = array_ref_low_bound (t2);
1920 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1921
1922 /* We assume all arrays have sizes that are a multiple of a byte.
1923 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1924 index, then convert to sizetype and multiply by the size of
1925 the array element. */
1926 if (! integer_zerop (low_bound))
4845b383
KH
1927 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1928 index, low_bound);
2567406a 1929
44de5aeb 1930 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1931 size_binop (MULT_EXPR,
1932 fold_convert (sizetype,
1933 index),
44de5aeb
RK
1934 unit_size),
1935 off_tree);
1b1838b6 1936 t2 = TREE_OPERAND (t2, 0);
998d7deb 1937 }
1b1838b6 1938 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1939
30b0317c
RB
1940 if (DECL_P (t2)
1941 || TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1942 {
f12144dd 1943 attrs.expr = t2;
754c3d5d 1944 attrs.offset_known_p = false;
cc269bb6 1945 if (tree_fits_uhwi_p (off_tree))
6f1087be 1946 {
754c3d5d 1947 attrs.offset_known_p = true;
ae7e9ddd 1948 attrs.offset = tree_to_uhwi (off_tree);
6f1087be
RH
1949 apply_bitpos = bitpos;
1950 }
998d7deb 1951 }
30b0317c 1952 /* Else do not record a MEM_EXPR. */
c67a1cf6
RH
1953 }
1954
56c47f22 1955 /* If this is an indirect reference, record it. */
70f34814 1956 else if (TREE_CODE (t) == MEM_REF
be1ac4ec 1957 || TREE_CODE (t) == TARGET_MEM_REF)
56c47f22 1958 {
f12144dd 1959 attrs.expr = t;
754c3d5d
RS
1960 attrs.offset_known_p = true;
1961 attrs.offset = 0;
56c47f22
RG
1962 apply_bitpos = bitpos;
1963 }
1964
30b0317c
RB
1965 /* Compute the alignment. */
1966 unsigned int obj_align;
1967 unsigned HOST_WIDE_INT obj_bitpos;
1968 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1969 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1970 if (obj_bitpos != 0)
1971 obj_align = (obj_bitpos & -obj_bitpos);
1972 attrs.align = MAX (attrs.align, obj_align);
8ac61af7
RK
1973 }
1974
cc269bb6 1975 if (tree_fits_uhwi_p (new_size))
a787ccc3
RS
1976 {
1977 attrs.size_known_p = true;
ae7e9ddd 1978 attrs.size = tree_to_uhwi (new_size);
a787ccc3
RS
1979 }
1980
15c812e3 1981 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1982 bit position offset. Similarly, increase the size of the accessed
1983 object to contain the negative offset. */
6f1087be 1984 if (apply_bitpos)
8c317c5f 1985 {
754c3d5d
RS
1986 gcc_assert (attrs.offset_known_p);
1987 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1988 if (attrs.size_known_p)
1989 attrs.size += apply_bitpos / BITS_PER_UNIT;
8c317c5f 1990 }
6f1087be 1991
8ac61af7 1992 /* Now set the attributes we computed above. */
f18a7b25 1993 attrs.addrspace = as;
f12144dd 1994 set_mem_attrs (ref, &attrs);
173b24b9
RK
1995}
1996
6f1087be 1997void
502b8322 1998set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1999{
2000 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2001}
2002
173b24b9
RK
2003/* Set the alias set of MEM to SET. */
2004
2005void
4862826d 2006set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 2007{
f12144dd
RS
2008 struct mem_attrs attrs;
2009
173b24b9 2010 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 2011 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
f12144dd
RS
2012 attrs = *get_mem_attrs (mem);
2013 attrs.alias = set;
2014 set_mem_attrs (mem, &attrs);
09e881c9
BE
2015}
2016
2017/* Set the address space of MEM to ADDRSPACE (target-defined). */
2018
2019void
2020set_mem_addr_space (rtx mem, addr_space_t addrspace)
2021{
f12144dd
RS
2022 struct mem_attrs attrs;
2023
2024 attrs = *get_mem_attrs (mem);
2025 attrs.addrspace = addrspace;
2026 set_mem_attrs (mem, &attrs);
173b24b9 2027}
738cc472 2028
d022d93e 2029/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
2030
2031void
502b8322 2032set_mem_align (rtx mem, unsigned int align)
738cc472 2033{
f12144dd
RS
2034 struct mem_attrs attrs;
2035
2036 attrs = *get_mem_attrs (mem);
2037 attrs.align = align;
2038 set_mem_attrs (mem, &attrs);
738cc472 2039}
1285011e 2040
998d7deb 2041/* Set the expr for MEM to EXPR. */
1285011e
RK
2042
2043void
502b8322 2044set_mem_expr (rtx mem, tree expr)
1285011e 2045{
f12144dd
RS
2046 struct mem_attrs attrs;
2047
2048 attrs = *get_mem_attrs (mem);
2049 attrs.expr = expr;
2050 set_mem_attrs (mem, &attrs);
1285011e 2051}
998d7deb
RH
2052
2053/* Set the offset of MEM to OFFSET. */
2054
2055void
527210c4 2056set_mem_offset (rtx mem, HOST_WIDE_INT offset)
998d7deb 2057{
f12144dd
RS
2058 struct mem_attrs attrs;
2059
2060 attrs = *get_mem_attrs (mem);
754c3d5d
RS
2061 attrs.offset_known_p = true;
2062 attrs.offset = offset;
527210c4
RS
2063 set_mem_attrs (mem, &attrs);
2064}
2065
2066/* Clear the offset of MEM. */
2067
2068void
2069clear_mem_offset (rtx mem)
2070{
2071 struct mem_attrs attrs;
2072
2073 attrs = *get_mem_attrs (mem);
754c3d5d 2074 attrs.offset_known_p = false;
f12144dd 2075 set_mem_attrs (mem, &attrs);
35aff10b
AM
2076}
2077
2078/* Set the size of MEM to SIZE. */
2079
2080void
f5541398 2081set_mem_size (rtx mem, HOST_WIDE_INT size)
35aff10b 2082{
f12144dd
RS
2083 struct mem_attrs attrs;
2084
2085 attrs = *get_mem_attrs (mem);
754c3d5d
RS
2086 attrs.size_known_p = true;
2087 attrs.size = size;
f5541398
RS
2088 set_mem_attrs (mem, &attrs);
2089}
2090
2091/* Clear the size of MEM. */
2092
2093void
2094clear_mem_size (rtx mem)
2095{
2096 struct mem_attrs attrs;
2097
2098 attrs = *get_mem_attrs (mem);
754c3d5d 2099 attrs.size_known_p = false;
f12144dd 2100 set_mem_attrs (mem, &attrs);
998d7deb 2101}
173b24b9 2102\f
738cc472
RK
2103/* Return a memory reference like MEMREF, but with its mode changed to MODE
2104 and its address changed to ADDR. (VOIDmode means don't change the mode.
2105 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
23b33725
RS
2106 returned memory location is required to be valid. INPLACE is true if any
2107 changes can be made directly to MEMREF or false if MEMREF must be treated
2108 as immutable.
2109
2110 The memory attributes are not changed. */
23b2ce53 2111
738cc472 2112static rtx
ef4bddc2 2113change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
23b33725 2114 bool inplace)
23b2ce53 2115{
09e881c9 2116 addr_space_t as;
60564289 2117 rtx new_rtx;
23b2ce53 2118
5b0264cb 2119 gcc_assert (MEM_P (memref));
09e881c9 2120 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
2121 if (mode == VOIDmode)
2122 mode = GET_MODE (memref);
2123 if (addr == 0)
2124 addr = XEXP (memref, 0);
a74ff877 2125 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2126 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2127 return memref;
23b2ce53 2128
91c5ee5b
VM
2129 /* Don't validate address for LRA. LRA can make the address valid
2130 by itself in most efficient way. */
2131 if (validate && !lra_in_progress)
23b2ce53 2132 {
f1ec5147 2133 if (reload_in_progress || reload_completed)
09e881c9 2134 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2135 else
09e881c9 2136 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2137 }
750c9258 2138
9b04c6a8
RK
2139 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2140 return memref;
2141
23b33725
RS
2142 if (inplace)
2143 {
2144 XEXP (memref, 0) = addr;
2145 return memref;
2146 }
2147
60564289
KG
2148 new_rtx = gen_rtx_MEM (mode, addr);
2149 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2150 return new_rtx;
23b2ce53 2151}
792760b9 2152
738cc472
RK
2153/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2154 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2155
2156rtx
ef4bddc2 2157change_address (rtx memref, machine_mode mode, rtx addr)
f4ef873c 2158{
23b33725 2159 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
ef4bddc2 2160 machine_mode mmode = GET_MODE (new_rtx);
f12144dd 2161 struct mem_attrs attrs, *defattrs;
4e44c1ef 2162
f12144dd
RS
2163 attrs = *get_mem_attrs (memref);
2164 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2165 attrs.expr = NULL_TREE;
2166 attrs.offset_known_p = false;
2167 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2168 attrs.size = defattrs->size;
2169 attrs.align = defattrs->align;
c2f7bcc3 2170
fdb1c7b3 2171 /* If there are no changes, just return the original memory reference. */
60564289 2172 if (new_rtx == memref)
4e44c1ef 2173 {
f12144dd 2174 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2175 return new_rtx;
4e44c1ef 2176
60564289
KG
2177 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2178 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2179 }
fdb1c7b3 2180
f12144dd 2181 set_mem_attrs (new_rtx, &attrs);
60564289 2182 return new_rtx;
f4ef873c 2183}
792760b9 2184
738cc472
RK
2185/* Return a memory reference like MEMREF, but with its mode changed
2186 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2187 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2188 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2189 and the caller is responsible for adjusting MEMREF base register.
2190 If ADJUST_OBJECT is zero, the underlying object associated with the
2191 memory reference is left unchanged and the caller is responsible for
2192 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2193 the underlying object, even partially, then the object is dropped.
2194 SIZE, if nonzero, is the size of an access in cases where MODE
2195 has no inherent size. */
f1ec5147
RK
2196
2197rtx
ef4bddc2 2198adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
5f2cbd0d
RS
2199 int validate, int adjust_address, int adjust_object,
2200 HOST_WIDE_INT size)
f1ec5147 2201{
823e3574 2202 rtx addr = XEXP (memref, 0);
60564289 2203 rtx new_rtx;
ef4bddc2 2204 machine_mode address_mode;
a6fe9ed4 2205 int pbits;
0207fa90 2206 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
f12144dd 2207 unsigned HOST_WIDE_INT max_align;
0207fa90 2208#ifdef POINTERS_EXTEND_UNSIGNED
ef4bddc2 2209 machine_mode pointer_mode
0207fa90
EB
2210 = targetm.addr_space.pointer_mode (attrs.addrspace);
2211#endif
823e3574 2212
ee88e690
EB
2213 /* VOIDmode means no mode change for change_address_1. */
2214 if (mode == VOIDmode)
2215 mode = GET_MODE (memref);
2216
5f2cbd0d
RS
2217 /* Take the size of non-BLKmode accesses from the mode. */
2218 defattrs = mode_mem_attrs[(int) mode];
2219 if (defattrs->size_known_p)
2220 size = defattrs->size;
2221
fdb1c7b3
JH
2222 /* If there are no changes, just return the original memory reference. */
2223 if (mode == GET_MODE (memref) && !offset
5f2cbd0d 2224 && (size == 0 || (attrs.size_known_p && attrs.size == size))
f12144dd
RS
2225 && (!validate || memory_address_addr_space_p (mode, addr,
2226 attrs.addrspace)))
fdb1c7b3
JH
2227 return memref;
2228
d14419e4 2229 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2230 This may happen even if offset is nonzero -- consider
d14419e4
RH
2231 (plus (plus reg reg) const_int) -- so do this always. */
2232 addr = copy_rtx (addr);
2233
a6fe9ed4
JM
2234 /* Convert a possibly large offset to a signed value within the
2235 range of the target address space. */
372d6395 2236 address_mode = get_address_mode (memref);
d4ebfa65 2237 pbits = GET_MODE_BITSIZE (address_mode);
a6fe9ed4
JM
2238 if (HOST_BITS_PER_WIDE_INT > pbits)
2239 {
2240 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2241 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2242 >> shift);
2243 }
2244
5ef0b50d 2245 if (adjust_address)
4a78c787
RH
2246 {
2247 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2248 object, we can merge it into the LO_SUM. */
2249 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2250 && offset >= 0
2251 && (unsigned HOST_WIDE_INT) offset
2252 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
d4ebfa65 2253 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2254 plus_constant (address_mode,
2255 XEXP (addr, 1), offset));
0207fa90
EB
2256#ifdef POINTERS_EXTEND_UNSIGNED
2257 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2258 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2259 the fact that pointers are not allowed to overflow. */
2260 else if (POINTERS_EXTEND_UNSIGNED > 0
2261 && GET_CODE (addr) == ZERO_EXTEND
2262 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2263 && trunc_int_for_mode (offset, pointer_mode) == offset)
2264 addr = gen_rtx_ZERO_EXTEND (address_mode,
2265 plus_constant (pointer_mode,
2266 XEXP (addr, 0), offset));
2267#endif
4a78c787 2268 else
0a81f074 2269 addr = plus_constant (address_mode, addr, offset);
4a78c787 2270 }
823e3574 2271
23b33725 2272 new_rtx = change_address_1 (memref, mode, addr, validate, false);
738cc472 2273
09efeca1
PB
2274 /* If the address is a REG, change_address_1 rightfully returns memref,
2275 but this would destroy memref's MEM_ATTRS. */
2276 if (new_rtx == memref && offset != 0)
2277 new_rtx = copy_rtx (new_rtx);
2278
5ef0b50d
EB
2279 /* Conservatively drop the object if we don't know where we start from. */
2280 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2281 {
2282 attrs.expr = NULL_TREE;
2283 attrs.alias = 0;
2284 }
2285
738cc472
RK
2286 /* Compute the new values of the memory attributes due to this adjustment.
2287 We add the offsets and update the alignment. */
754c3d5d 2288 if (attrs.offset_known_p)
5ef0b50d
EB
2289 {
2290 attrs.offset += offset;
2291
2292 /* Drop the object if the new left end is not within its bounds. */
2293 if (adjust_object && attrs.offset < 0)
2294 {
2295 attrs.expr = NULL_TREE;
2296 attrs.alias = 0;
2297 }
2298 }
738cc472 2299
03bf2c23
RK
2300 /* Compute the new alignment by taking the MIN of the alignment and the
2301 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2302 if zero. */
2303 if (offset != 0)
f12144dd
RS
2304 {
2305 max_align = (offset & -offset) * BITS_PER_UNIT;
2306 attrs.align = MIN (attrs.align, max_align);
2307 }
738cc472 2308
5f2cbd0d 2309 if (size)
754c3d5d 2310 {
5ef0b50d 2311 /* Drop the object if the new right end is not within its bounds. */
5f2cbd0d 2312 if (adjust_object && (offset + size) > attrs.size)
5ef0b50d
EB
2313 {
2314 attrs.expr = NULL_TREE;
2315 attrs.alias = 0;
2316 }
754c3d5d 2317 attrs.size_known_p = true;
5f2cbd0d 2318 attrs.size = size;
754c3d5d
RS
2319 }
2320 else if (attrs.size_known_p)
5ef0b50d 2321 {
5f2cbd0d 2322 gcc_assert (!adjust_object);
5ef0b50d 2323 attrs.size -= offset;
5f2cbd0d
RS
2324 /* ??? The store_by_pieces machinery generates negative sizes,
2325 so don't assert for that here. */
5ef0b50d 2326 }
10b76d73 2327
f12144dd 2328 set_mem_attrs (new_rtx, &attrs);
738cc472 2329
60564289 2330 return new_rtx;
f1ec5147
RK
2331}
2332
630036c6
JJ
2333/* Return a memory reference like MEMREF, but with its mode changed
2334 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2335 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2336 nonzero, the memory address is forced to be valid. */
2337
2338rtx
ef4bddc2 2339adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
502b8322 2340 HOST_WIDE_INT offset, int validate)
630036c6 2341{
23b33725 2342 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
5f2cbd0d 2343 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2344}
2345
8ac61af7
RK
2346/* Return a memory reference like MEMREF, but whose address is changed by
2347 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2348 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2349
2350rtx
502b8322 2351offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2352{
60564289 2353 rtx new_rtx, addr = XEXP (memref, 0);
ef4bddc2 2354 machine_mode address_mode;
754c3d5d 2355 struct mem_attrs attrs, *defattrs;
e3c8ea67 2356
f12144dd 2357 attrs = *get_mem_attrs (memref);
372d6395 2358 address_mode = get_address_mode (memref);
d4ebfa65 2359 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2360
68252e27 2361 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2362 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2363
2364 However, if we did go and rearrange things, we can wind up not
2365 being able to recognize the magic around pic_offset_table_rtx.
2366 This stuff is fragile, and is yet another example of why it is
2367 bad to expose PIC machinery too early. */
f12144dd
RS
2368 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2369 attrs.addrspace)
e3c8ea67
RH
2370 && GET_CODE (addr) == PLUS
2371 && XEXP (addr, 0) == pic_offset_table_rtx)
2372 {
2373 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2374 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2375 }
2376
60564289 2377 update_temp_slot_address (XEXP (memref, 0), new_rtx);
23b33725 2378 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
0d4903b8 2379
fdb1c7b3 2380 /* If there are no changes, just return the original memory reference. */
60564289
KG
2381 if (new_rtx == memref)
2382 return new_rtx;
fdb1c7b3 2383
0d4903b8
RK
2384 /* Update the alignment to reflect the offset. Reset the offset, which
2385 we don't know. */
754c3d5d
RS
2386 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2387 attrs.offset_known_p = false;
2388 attrs.size_known_p = defattrs->size_known_p;
2389 attrs.size = defattrs->size;
f12144dd
RS
2390 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2391 set_mem_attrs (new_rtx, &attrs);
60564289 2392 return new_rtx;
0d4903b8 2393}
68252e27 2394
792760b9
RK
2395/* Return a memory reference like MEMREF, but with its address changed to
2396 ADDR. The caller is asserting that the actual piece of memory pointed
2397 to is the same, just the form of the address is being changed, such as
23b33725
RS
2398 by putting something into a register. INPLACE is true if any changes
2399 can be made directly to MEMREF or false if MEMREF must be treated as
2400 immutable. */
792760b9
RK
2401
2402rtx
23b33725 2403replace_equiv_address (rtx memref, rtx addr, bool inplace)
792760b9 2404{
738cc472
RK
2405 /* change_address_1 copies the memory attribute structure without change
2406 and that's exactly what we want here. */
40c0668b 2407 update_temp_slot_address (XEXP (memref, 0), addr);
23b33725 2408 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
792760b9 2409}
738cc472 2410
f1ec5147
RK
2411/* Likewise, but the reference is not required to be valid. */
2412
2413rtx
23b33725 2414replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
f1ec5147 2415{
23b33725 2416 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
f1ec5147 2417}
e7dfe4bb
RH
2418
2419/* Return a memory reference like MEMREF, but with its mode widened to
2420 MODE and offset by OFFSET. This would be used by targets that e.g.
2421 cannot issue QImode memory operations and have to use SImode memory
2422 operations plus masking logic. */
2423
2424rtx
ef4bddc2 2425widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2426{
5f2cbd0d 2427 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
f12144dd 2428 struct mem_attrs attrs;
e7dfe4bb
RH
2429 unsigned int size = GET_MODE_SIZE (mode);
2430
fdb1c7b3 2431 /* If there are no changes, just return the original memory reference. */
60564289
KG
2432 if (new_rtx == memref)
2433 return new_rtx;
fdb1c7b3 2434
f12144dd
RS
2435 attrs = *get_mem_attrs (new_rtx);
2436
e7dfe4bb
RH
2437 /* If we don't know what offset we were at within the expression, then
2438 we can't know if we've overstepped the bounds. */
754c3d5d 2439 if (! attrs.offset_known_p)
f12144dd 2440 attrs.expr = NULL_TREE;
e7dfe4bb 2441
f12144dd 2442 while (attrs.expr)
e7dfe4bb 2443 {
f12144dd 2444 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2445 {
f12144dd
RS
2446 tree field = TREE_OPERAND (attrs.expr, 1);
2447 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2448
2449 if (! DECL_SIZE_UNIT (field))
2450 {
f12144dd 2451 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2452 break;
2453 }
2454
2455 /* Is the field at least as large as the access? If so, ok,
2456 otherwise strip back to the containing structure. */
03667700
RK
2457 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2458 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
754c3d5d 2459 && attrs.offset >= 0)
e7dfe4bb
RH
2460 break;
2461
cc269bb6 2462 if (! tree_fits_uhwi_p (offset))
e7dfe4bb 2463 {
f12144dd 2464 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2465 break;
2466 }
2467
f12144dd 2468 attrs.expr = TREE_OPERAND (attrs.expr, 0);
ae7e9ddd
RS
2469 attrs.offset += tree_to_uhwi (offset);
2470 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
754c3d5d 2471 / BITS_PER_UNIT);
e7dfe4bb
RH
2472 }
2473 /* Similarly for the decl. */
f12144dd
RS
2474 else if (DECL_P (attrs.expr)
2475 && DECL_SIZE_UNIT (attrs.expr)
2476 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2477 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
754c3d5d 2478 && (! attrs.offset_known_p || attrs.offset >= 0))
e7dfe4bb
RH
2479 break;
2480 else
2481 {
2482 /* The widened memory access overflows the expression, which means
2483 that it could alias another expression. Zap it. */
f12144dd 2484 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2485 break;
2486 }
2487 }
2488
f12144dd 2489 if (! attrs.expr)
754c3d5d 2490 attrs.offset_known_p = false;
e7dfe4bb
RH
2491
2492 /* The widened memory may alias other stuff, so zap the alias set. */
2493 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2494 attrs.alias = 0;
754c3d5d
RS
2495 attrs.size_known_p = true;
2496 attrs.size = size;
f12144dd 2497 set_mem_attrs (new_rtx, &attrs);
60564289 2498 return new_rtx;
e7dfe4bb 2499}
23b2ce53 2500\f
f6129d66
RH
2501/* A fake decl that is used as the MEM_EXPR of spill slots. */
2502static GTY(()) tree spill_slot_decl;
2503
3d7e23f6
RH
2504tree
2505get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2506{
2507 tree d = spill_slot_decl;
2508 rtx rd;
f12144dd 2509 struct mem_attrs attrs;
f6129d66 2510
3d7e23f6 2511 if (d || !force_build_p)
f6129d66
RH
2512 return d;
2513
c2255bc4
AH
2514 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2515 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2516 DECL_ARTIFICIAL (d) = 1;
2517 DECL_IGNORED_P (d) = 1;
2518 TREE_USED (d) = 1;
f6129d66
RH
2519 spill_slot_decl = d;
2520
2521 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2522 MEM_NOTRAP_P (rd) = 1;
f12144dd
RS
2523 attrs = *mode_mem_attrs[(int) BLKmode];
2524 attrs.alias = new_alias_set ();
2525 attrs.expr = d;
2526 set_mem_attrs (rd, &attrs);
f6129d66
RH
2527 SET_DECL_RTL (d, rd);
2528
2529 return d;
2530}
2531
2532/* Given MEM, a result from assign_stack_local, fill in the memory
2533 attributes as appropriate for a register allocator spill slot.
2534 These slots are not aliasable by other memory. We arrange for
2535 them all to use a single MEM_EXPR, so that the aliasing code can
2536 work properly in the case of shared spill slots. */
2537
2538void
2539set_mem_attrs_for_spill (rtx mem)
2540{
f12144dd
RS
2541 struct mem_attrs attrs;
2542 rtx addr;
f6129d66 2543
f12144dd
RS
2544 attrs = *get_mem_attrs (mem);
2545 attrs.expr = get_spill_slot_decl (true);
2546 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2547 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2548
2549 /* We expect the incoming memory to be of the form:
2550 (mem:MODE (plus (reg sfp) (const_int offset)))
2551 with perhaps the plus missing for offset = 0. */
2552 addr = XEXP (mem, 0);
754c3d5d
RS
2553 attrs.offset_known_p = true;
2554 attrs.offset = 0;
f6129d66 2555 if (GET_CODE (addr) == PLUS
481683e1 2556 && CONST_INT_P (XEXP (addr, 1)))
754c3d5d 2557 attrs.offset = INTVAL (XEXP (addr, 1));
f6129d66 2558
f12144dd 2559 set_mem_attrs (mem, &attrs);
f6129d66
RH
2560 MEM_NOTRAP_P (mem) = 1;
2561}
2562\f
23b2ce53
RS
2563/* Return a newly created CODE_LABEL rtx with a unique label number. */
2564
7dcc3ab5 2565rtx_code_label *
502b8322 2566gen_label_rtx (void)
23b2ce53 2567{
7dcc3ab5
DM
2568 return as_a <rtx_code_label *> (
2569 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2570 NULL, label_num++, NULL));
23b2ce53
RS
2571}
2572\f
2573/* For procedure integration. */
2574
23b2ce53 2575/* Install new pointers to the first and last insns in the chain.
86fe05e0 2576 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2577 Used for an inline-procedure after copying the insn chain. */
2578
2579void
fee3e72c 2580set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
23b2ce53 2581{
fee3e72c 2582 rtx_insn *insn;
86fe05e0 2583
5936d944
JH
2584 set_first_insn (first);
2585 set_last_insn (last);
86fe05e0
RK
2586 cur_insn_uid = 0;
2587
b5b8b0ac
AO
2588 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2589 {
2590 int debug_count = 0;
2591
2592 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2593 cur_debug_insn_uid = 0;
2594
2595 for (insn = first; insn; insn = NEXT_INSN (insn))
2596 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2597 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2598 else
2599 {
2600 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2601 if (DEBUG_INSN_P (insn))
2602 debug_count++;
2603 }
2604
2605 if (debug_count)
2606 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2607 else
2608 cur_debug_insn_uid++;
2609 }
2610 else
2611 for (insn = first; insn; insn = NEXT_INSN (insn))
2612 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2613
2614 cur_insn_uid++;
23b2ce53 2615}
23b2ce53 2616\f
750c9258 2617/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2618 structure. This routine should only be called once. */
23b2ce53 2619
fd743bc1 2620static void
6bb9bf63 2621unshare_all_rtl_1 (rtx_insn *insn)
23b2ce53 2622{
d1b81779 2623 /* Unshare just about everything else. */
2c07f13b 2624 unshare_all_rtl_in_chain (insn);
750c9258 2625
23b2ce53
RS
2626 /* Make sure the addresses of stack slots found outside the insn chain
2627 (such as, in DECL_RTL of a variable) are not shared
2628 with the insn chain.
2629
2630 This special care is necessary when the stack slot MEM does not
2631 actually appear in the insn chain. If it does appear, its address
2632 is unshared from all else at that point. */
0f4783c7
DM
2633 stack_slot_list = safe_as_a <rtx_expr_list *> (
2634 copy_rtx_if_shared (stack_slot_list));
23b2ce53
RS
2635}
2636
750c9258 2637/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2638 structure, again. This is a fairly expensive thing to do so it
2639 should be done sparingly. */
2640
2641void
6bb9bf63 2642unshare_all_rtl_again (rtx_insn *insn)
d1b81779 2643{
6bb9bf63 2644 rtx_insn *p;
624c87aa
RE
2645 tree decl;
2646
d1b81779 2647 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2648 if (INSN_P (p))
d1b81779
GK
2649 {
2650 reset_used_flags (PATTERN (p));
2651 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2652 if (CALL_P (p))
2653 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2654 }
624c87aa 2655
2d4aecb3 2656 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2657 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2658
624c87aa 2659 /* Make sure that virtual parameters are not shared. */
910ad8de 2660 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2661 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2662
2663 reset_used_flags (stack_slot_list);
2664
b4aaa77b 2665 unshare_all_rtl_1 (insn);
fd743bc1
PB
2666}
2667
c2924966 2668unsigned int
fd743bc1
PB
2669unshare_all_rtl (void)
2670{
b4aaa77b 2671 unshare_all_rtl_1 (get_insns ());
c2924966 2672 return 0;
d1b81779
GK
2673}
2674
ef330312 2675
2c07f13b
JH
2676/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2677 Recursively does the same for subexpressions. */
2678
2679static void
2680verify_rtx_sharing (rtx orig, rtx insn)
2681{
2682 rtx x = orig;
2683 int i;
2684 enum rtx_code code;
2685 const char *format_ptr;
2686
2687 if (x == 0)
2688 return;
2689
2690 code = GET_CODE (x);
2691
2692 /* These types may be freely shared. */
2693
2694 switch (code)
2695 {
2696 case REG:
0ca5af51
AO
2697 case DEBUG_EXPR:
2698 case VALUE:
d8116890 2699 CASE_CONST_ANY:
2c07f13b
JH
2700 case SYMBOL_REF:
2701 case LABEL_REF:
2702 case CODE_LABEL:
2703 case PC:
2704 case CC0:
3810076b 2705 case RETURN:
26898771 2706 case SIMPLE_RETURN:
2c07f13b 2707 case SCRATCH:
3e89ed8d 2708 /* SCRATCH must be shared because they represent distinct values. */
c5c5ba89 2709 return;
3e89ed8d 2710 case CLOBBER:
c5c5ba89
JH
2711 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2712 clobbers or clobbers of hard registers that originated as pseudos.
2713 This is needed to allow safe register renaming. */
2714 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2715 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
3e89ed8d
JH
2716 return;
2717 break;
2c07f13b
JH
2718
2719 case CONST:
6fb5fa3c 2720 if (shared_const_p (orig))
2c07f13b
JH
2721 return;
2722 break;
2723
2724 case MEM:
2725 /* A MEM is allowed to be shared if its address is constant. */
2726 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2727 || reload_completed || reload_in_progress)
2728 return;
2729
2730 break;
2731
2732 default:
2733 break;
2734 }
2735
2736 /* This rtx may not be shared. If it has already been seen,
2737 replace it with a copy of itself. */
1a2caa7a 2738#ifdef ENABLE_CHECKING
2c07f13b
JH
2739 if (RTX_FLAG (x, used))
2740 {
ab532386 2741 error ("invalid rtl sharing found in the insn");
2c07f13b 2742 debug_rtx (insn);
ab532386 2743 error ("shared rtx");
2c07f13b 2744 debug_rtx (x);
ab532386 2745 internal_error ("internal consistency failure");
2c07f13b 2746 }
1a2caa7a
NS
2747#endif
2748 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2749
2c07f13b
JH
2750 RTX_FLAG (x, used) = 1;
2751
6614fd40 2752 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2753
2754 format_ptr = GET_RTX_FORMAT (code);
2755
2756 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2757 {
2758 switch (*format_ptr++)
2759 {
2760 case 'e':
2761 verify_rtx_sharing (XEXP (x, i), insn);
2762 break;
2763
2764 case 'E':
2765 if (XVEC (x, i) != NULL)
2766 {
2767 int j;
2768 int len = XVECLEN (x, i);
2769
2770 for (j = 0; j < len; j++)
2771 {
1a2caa7a
NS
2772 /* We allow sharing of ASM_OPERANDS inside single
2773 instruction. */
2c07f13b 2774 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2775 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2776 == ASM_OPERANDS))
2c07f13b
JH
2777 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2778 else
2779 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2780 }
2781 }
2782 break;
2783 }
2784 }
2785 return;
2786}
2787
0e0f87d4
SB
2788/* Reset used-flags for INSN. */
2789
2790static void
2791reset_insn_used_flags (rtx insn)
2792{
2793 gcc_assert (INSN_P (insn));
2794 reset_used_flags (PATTERN (insn));
2795 reset_used_flags (REG_NOTES (insn));
2796 if (CALL_P (insn))
2797 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2798}
2799
a24243a0 2800/* Go through all the RTL insn bodies and clear all the USED bits. */
2c07f13b 2801
a24243a0
AK
2802static void
2803reset_all_used_flags (void)
2c07f13b 2804{
dc01c3d1 2805 rtx_insn *p;
2c07f13b
JH
2806
2807 for (p = get_insns (); p; p = NEXT_INSN (p))
2808 if (INSN_P (p))
2809 {
0e0f87d4
SB
2810 rtx pat = PATTERN (p);
2811 if (GET_CODE (pat) != SEQUENCE)
2812 reset_insn_used_flags (p);
2813 else
2954a813 2814 {
0e0f87d4
SB
2815 gcc_assert (REG_NOTES (p) == NULL);
2816 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2817 {
2818 rtx insn = XVECEXP (pat, 0, i);
2819 if (INSN_P (insn))
2820 reset_insn_used_flags (insn);
2821 }
2954a813 2822 }
2c07f13b 2823 }
a24243a0
AK
2824}
2825
0e0f87d4
SB
2826/* Verify sharing in INSN. */
2827
2828static void
2829verify_insn_sharing (rtx insn)
2830{
2831 gcc_assert (INSN_P (insn));
2832 reset_used_flags (PATTERN (insn));
2833 reset_used_flags (REG_NOTES (insn));
2834 if (CALL_P (insn))
2835 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2836}
2837
a24243a0
AK
2838/* Go through all the RTL insn bodies and check that there is no unexpected
2839 sharing in between the subexpressions. */
2840
2841DEBUG_FUNCTION void
2842verify_rtl_sharing (void)
2843{
dc01c3d1 2844 rtx_insn *p;
a24243a0
AK
2845
2846 timevar_push (TV_VERIFY_RTL_SHARING);
2847
2848 reset_all_used_flags ();
2c07f13b
JH
2849
2850 for (p = get_insns (); p; p = NEXT_INSN (p))
2851 if (INSN_P (p))
2852 {
0e0f87d4
SB
2853 rtx pat = PATTERN (p);
2854 if (GET_CODE (pat) != SEQUENCE)
2855 verify_insn_sharing (p);
2856 else
2857 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2858 {
2859 rtx insn = XVECEXP (pat, 0, i);
2860 if (INSN_P (insn))
2861 verify_insn_sharing (insn);
2862 }
2c07f13b 2863 }
a222c01a 2864
a24243a0
AK
2865 reset_all_used_flags ();
2866
a222c01a 2867 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
2868}
2869
d1b81779
GK
2870/* Go through all the RTL insn bodies and copy any invalid shared structure.
2871 Assumes the mark bits are cleared at entry. */
2872
2c07f13b 2873void
dc01c3d1 2874unshare_all_rtl_in_chain (rtx_insn *insn)
d1b81779
GK
2875{
2876 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2877 if (INSN_P (insn))
d1b81779
GK
2878 {
2879 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2880 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
2881 if (CALL_P (insn))
2882 CALL_INSN_FUNCTION_USAGE (insn)
2883 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
2884 }
2885}
2886
2d4aecb3 2887/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2888 shared. We never replace the DECL_RTLs themselves with a copy,
2889 but expressions mentioned into a DECL_RTL cannot be shared with
2890 expressions in the instruction stream.
2891
2892 Note that reload may convert pseudo registers into memories in-place.
2893 Pseudo registers are always shared, but MEMs never are. Thus if we
2894 reset the used flags on MEMs in the instruction stream, we must set
2895 them again on MEMs that appear in DECL_RTLs. */
2896
2d4aecb3 2897static void
5eb2a9f2 2898set_used_decls (tree blk)
2d4aecb3
AO
2899{
2900 tree t;
2901
2902 /* Mark decls. */
910ad8de 2903 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 2904 if (DECL_RTL_SET_P (t))
5eb2a9f2 2905 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2906
2907 /* Now process sub-blocks. */
87caf699 2908 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2909 set_used_decls (t);
2d4aecb3
AO
2910}
2911
23b2ce53 2912/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2913 Recursively does the same for subexpressions. Uses
2914 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2915
2916rtx
502b8322 2917copy_rtx_if_shared (rtx orig)
23b2ce53 2918{
32b32b16
AP
2919 copy_rtx_if_shared_1 (&orig);
2920 return orig;
2921}
2922
ff954f39
AP
2923/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2924 use. Recursively does the same for subexpressions. */
2925
32b32b16
AP
2926static void
2927copy_rtx_if_shared_1 (rtx *orig1)
2928{
2929 rtx x;
b3694847
SS
2930 int i;
2931 enum rtx_code code;
32b32b16 2932 rtx *last_ptr;
b3694847 2933 const char *format_ptr;
23b2ce53 2934 int copied = 0;
32b32b16
AP
2935 int length;
2936
2937 /* Repeat is used to turn tail-recursion into iteration. */
2938repeat:
2939 x = *orig1;
23b2ce53
RS
2940
2941 if (x == 0)
32b32b16 2942 return;
23b2ce53
RS
2943
2944 code = GET_CODE (x);
2945
2946 /* These types may be freely shared. */
2947
2948 switch (code)
2949 {
2950 case REG:
0ca5af51
AO
2951 case DEBUG_EXPR:
2952 case VALUE:
d8116890 2953 CASE_CONST_ANY:
23b2ce53 2954 case SYMBOL_REF:
2c07f13b 2955 case LABEL_REF:
23b2ce53
RS
2956 case CODE_LABEL:
2957 case PC:
2958 case CC0:
276e0224 2959 case RETURN:
26898771 2960 case SIMPLE_RETURN:
23b2ce53 2961 case SCRATCH:
0f41302f 2962 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2963 return;
3e89ed8d 2964 case CLOBBER:
c5c5ba89
JH
2965 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2966 clobbers or clobbers of hard registers that originated as pseudos.
2967 This is needed to allow safe register renaming. */
2968 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2969 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
3e89ed8d
JH
2970 return;
2971 break;
23b2ce53 2972
b851ea09 2973 case CONST:
6fb5fa3c 2974 if (shared_const_p (x))
32b32b16 2975 return;
b851ea09
RK
2976 break;
2977
b5b8b0ac 2978 case DEBUG_INSN:
23b2ce53
RS
2979 case INSN:
2980 case JUMP_INSN:
2981 case CALL_INSN:
2982 case NOTE:
23b2ce53
RS
2983 case BARRIER:
2984 /* The chain of insns is not being copied. */
32b32b16 2985 return;
23b2ce53 2986
e9a25f70
JL
2987 default:
2988 break;
23b2ce53
RS
2989 }
2990
2991 /* This rtx may not be shared. If it has already been seen,
2992 replace it with a copy of itself. */
2993
2adc7f12 2994 if (RTX_FLAG (x, used))
23b2ce53 2995 {
aacd3885 2996 x = shallow_copy_rtx (x);
23b2ce53
RS
2997 copied = 1;
2998 }
2adc7f12 2999 RTX_FLAG (x, used) = 1;
23b2ce53
RS
3000
3001 /* Now scan the subexpressions recursively.
3002 We can store any replaced subexpressions directly into X
3003 since we know X is not shared! Any vectors in X
3004 must be copied if X was copied. */
3005
3006 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
3007 length = GET_RTX_LENGTH (code);
3008 last_ptr = NULL;
b8698a0f 3009
32b32b16 3010 for (i = 0; i < length; i++)
23b2ce53
RS
3011 {
3012 switch (*format_ptr++)
3013 {
3014 case 'e':
32b32b16
AP
3015 if (last_ptr)
3016 copy_rtx_if_shared_1 (last_ptr);
3017 last_ptr = &XEXP (x, i);
23b2ce53
RS
3018 break;
3019
3020 case 'E':
3021 if (XVEC (x, i) != NULL)
3022 {
b3694847 3023 int j;
f0722107 3024 int len = XVECLEN (x, i);
b8698a0f 3025
6614fd40
KH
3026 /* Copy the vector iff I copied the rtx and the length
3027 is nonzero. */
f0722107 3028 if (copied && len > 0)
8f985ec4 3029 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 3030
5d3cc252 3031 /* Call recursively on all inside the vector. */
f0722107 3032 for (j = 0; j < len; j++)
32b32b16
AP
3033 {
3034 if (last_ptr)
3035 copy_rtx_if_shared_1 (last_ptr);
3036 last_ptr = &XVECEXP (x, i, j);
3037 }
23b2ce53
RS
3038 }
3039 break;
3040 }
3041 }
32b32b16
AP
3042 *orig1 = x;
3043 if (last_ptr)
3044 {
3045 orig1 = last_ptr;
3046 goto repeat;
3047 }
3048 return;
23b2ce53
RS
3049}
3050
76369a82 3051/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 3052
76369a82
NF
3053static void
3054mark_used_flags (rtx x, int flag)
23b2ce53 3055{
b3694847
SS
3056 int i, j;
3057 enum rtx_code code;
3058 const char *format_ptr;
32b32b16 3059 int length;
23b2ce53 3060
32b32b16
AP
3061 /* Repeat is used to turn tail-recursion into iteration. */
3062repeat:
23b2ce53
RS
3063 if (x == 0)
3064 return;
3065
3066 code = GET_CODE (x);
3067
9faa82d8 3068 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
3069 for them. */
3070
3071 switch (code)
3072 {
3073 case REG:
0ca5af51
AO
3074 case DEBUG_EXPR:
3075 case VALUE:
d8116890 3076 CASE_CONST_ANY:
23b2ce53
RS
3077 case SYMBOL_REF:
3078 case CODE_LABEL:
3079 case PC:
3080 case CC0:
276e0224 3081 case RETURN:
26898771 3082 case SIMPLE_RETURN:
23b2ce53
RS
3083 return;
3084
b5b8b0ac 3085 case DEBUG_INSN:
23b2ce53
RS
3086 case INSN:
3087 case JUMP_INSN:
3088 case CALL_INSN:
3089 case NOTE:
3090 case LABEL_REF:
3091 case BARRIER:
3092 /* The chain of insns is not being copied. */
3093 return;
750c9258 3094
e9a25f70
JL
3095 default:
3096 break;
23b2ce53
RS
3097 }
3098
76369a82 3099 RTX_FLAG (x, used) = flag;
23b2ce53
RS
3100
3101 format_ptr = GET_RTX_FORMAT (code);
32b32b16 3102 length = GET_RTX_LENGTH (code);
b8698a0f 3103
32b32b16 3104 for (i = 0; i < length; i++)
23b2ce53
RS
3105 {
3106 switch (*format_ptr++)
3107 {
3108 case 'e':
32b32b16
AP
3109 if (i == length-1)
3110 {
3111 x = XEXP (x, i);
3112 goto repeat;
3113 }
76369a82 3114 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
3115 break;
3116
3117 case 'E':
3118 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 3119 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
3120 break;
3121 }
3122 }
3123}
2c07f13b 3124
76369a82 3125/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
3126 to look for shared sub-parts. */
3127
3128void
76369a82 3129reset_used_flags (rtx x)
2c07f13b 3130{
76369a82
NF
3131 mark_used_flags (x, 0);
3132}
2c07f13b 3133
76369a82
NF
3134/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3135 to look for shared sub-parts. */
2c07f13b 3136
76369a82
NF
3137void
3138set_used_flags (rtx x)
3139{
3140 mark_used_flags (x, 1);
2c07f13b 3141}
23b2ce53
RS
3142\f
3143/* Copy X if necessary so that it won't be altered by changes in OTHER.
3144 Return X or the rtx for the pseudo reg the value of X was copied into.
3145 OTHER must be valid as a SET_DEST. */
3146
3147rtx
502b8322 3148make_safe_from (rtx x, rtx other)
23b2ce53
RS
3149{
3150 while (1)
3151 switch (GET_CODE (other))
3152 {
3153 case SUBREG:
3154 other = SUBREG_REG (other);
3155 break;
3156 case STRICT_LOW_PART:
3157 case SIGN_EXTEND:
3158 case ZERO_EXTEND:
3159 other = XEXP (other, 0);
3160 break;
3161 default:
3162 goto done;
3163 }
3164 done:
3c0cb5de 3165 if ((MEM_P (other)
23b2ce53 3166 && ! CONSTANT_P (x)
f8cfc6aa 3167 && !REG_P (x)
23b2ce53 3168 && GET_CODE (x) != SUBREG)
f8cfc6aa 3169 || (REG_P (other)
23b2ce53
RS
3170 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3171 || reg_mentioned_p (other, x))))
3172 {
3173 rtx temp = gen_reg_rtx (GET_MODE (x));
3174 emit_move_insn (temp, x);
3175 return temp;
3176 }
3177 return x;
3178}
3179\f
3180/* Emission of insns (adding them to the doubly-linked list). */
3181
23b2ce53
RS
3182/* Return the last insn emitted, even if it is in a sequence now pushed. */
3183
db76cf1e 3184rtx_insn *
502b8322 3185get_last_insn_anywhere (void)
23b2ce53 3186{
614d5bd8
AM
3187 struct sequence_stack *seq;
3188 for (seq = get_current_sequence (); seq; seq = seq->next)
3189 if (seq->last != 0)
3190 return seq->last;
23b2ce53
RS
3191 return 0;
3192}
3193
2a496e8b
JDA
3194/* Return the first nonnote insn emitted in current sequence or current
3195 function. This routine looks inside SEQUENCEs. */
3196
e4685bc8 3197rtx_insn *
502b8322 3198get_first_nonnote_insn (void)
2a496e8b 3199{
dc01c3d1 3200 rtx_insn *insn = get_insns ();
91373fe8
JDA
3201
3202 if (insn)
3203 {
3204 if (NOTE_P (insn))
3205 for (insn = next_insn (insn);
3206 insn && NOTE_P (insn);
3207 insn = next_insn (insn))
3208 continue;
3209 else
3210 {
2ca202e7 3211 if (NONJUMP_INSN_P (insn)
91373fe8 3212 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3213 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
91373fe8
JDA
3214 }
3215 }
2a496e8b
JDA
3216
3217 return insn;
3218}
3219
3220/* Return the last nonnote insn emitted in current sequence or current
3221 function. This routine looks inside SEQUENCEs. */
3222
e4685bc8 3223rtx_insn *
502b8322 3224get_last_nonnote_insn (void)
2a496e8b 3225{
dc01c3d1 3226 rtx_insn *insn = get_last_insn ();
91373fe8
JDA
3227
3228 if (insn)
3229 {
3230 if (NOTE_P (insn))
3231 for (insn = previous_insn (insn);
3232 insn && NOTE_P (insn);
3233 insn = previous_insn (insn))
3234 continue;
3235 else
3236 {
dc01c3d1
DM
3237 if (NONJUMP_INSN_P (insn))
3238 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3239 insn = seq->insn (seq->len () - 1);
91373fe8
JDA
3240 }
3241 }
2a496e8b
JDA
3242
3243 return insn;
3244}
3245
b5b8b0ac
AO
3246/* Return the number of actual (non-debug) insns emitted in this
3247 function. */
3248
3249int
3250get_max_insn_count (void)
3251{
3252 int n = cur_insn_uid;
3253
3254 /* The table size must be stable across -g, to avoid codegen
3255 differences due to debug insns, and not be affected by
3256 -fmin-insn-uid, to avoid excessive table size and to simplify
3257 debugging of -fcompare-debug failures. */
3258 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3259 n -= cur_debug_insn_uid;
3260 else
3261 n -= MIN_NONDEBUG_INSN_UID;
3262
3263 return n;
3264}
3265
23b2ce53
RS
3266\f
3267/* Return the next insn. If it is a SEQUENCE, return the first insn
3268 of the sequence. */
3269
eb51c837 3270rtx_insn *
4ce524a1 3271next_insn (rtx_insn *insn)
23b2ce53 3272{
75547801
KG
3273 if (insn)
3274 {
3275 insn = NEXT_INSN (insn);
3276 if (insn && NONJUMP_INSN_P (insn)
3277 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3278 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
75547801 3279 }
23b2ce53 3280
dc01c3d1 3281 return insn;
23b2ce53
RS
3282}
3283
3284/* Return the previous insn. If it is a SEQUENCE, return the last insn
3285 of the sequence. */
3286
eb51c837 3287rtx_insn *
4ce524a1 3288previous_insn (rtx_insn *insn)
23b2ce53 3289{
75547801
KG
3290 if (insn)
3291 {
3292 insn = PREV_INSN (insn);
dc01c3d1
DM
3293 if (insn && NONJUMP_INSN_P (insn))
3294 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3295 insn = seq->insn (seq->len () - 1);
75547801 3296 }
23b2ce53 3297
dc01c3d1 3298 return insn;
23b2ce53
RS
3299}
3300
3301/* Return the next insn after INSN that is not a NOTE. This routine does not
3302 look inside SEQUENCEs. */
3303
eb51c837 3304rtx_insn *
dc01c3d1 3305next_nonnote_insn (rtx uncast_insn)
23b2ce53 3306{
dc01c3d1 3307 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
75547801
KG
3308 while (insn)
3309 {
3310 insn = NEXT_INSN (insn);
3311 if (insn == 0 || !NOTE_P (insn))
3312 break;
3313 }
23b2ce53 3314
dc01c3d1 3315 return insn;
23b2ce53
RS
3316}
3317
1e211590
DD
3318/* Return the next insn after INSN that is not a NOTE, but stop the
3319 search before we enter another basic block. This routine does not
3320 look inside SEQUENCEs. */
3321
eb51c837 3322rtx_insn *
e4685bc8 3323next_nonnote_insn_bb (rtx_insn *insn)
1e211590
DD
3324{
3325 while (insn)
3326 {
3327 insn = NEXT_INSN (insn);
3328 if (insn == 0 || !NOTE_P (insn))
3329 break;
3330 if (NOTE_INSN_BASIC_BLOCK_P (insn))
eb51c837 3331 return NULL;
1e211590
DD
3332 }
3333
dc01c3d1 3334 return insn;
1e211590
DD
3335}
3336
23b2ce53
RS
3337/* Return the previous insn before INSN that is not a NOTE. This routine does
3338 not look inside SEQUENCEs. */
3339
eb51c837 3340rtx_insn *
dc01c3d1 3341prev_nonnote_insn (rtx uncast_insn)
23b2ce53 3342{
dc01c3d1
DM
3343 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3344
75547801
KG
3345 while (insn)
3346 {
3347 insn = PREV_INSN (insn);
3348 if (insn == 0 || !NOTE_P (insn))
3349 break;
3350 }
23b2ce53 3351
dc01c3d1 3352 return insn;
23b2ce53
RS
3353}
3354
896aa4ea
DD
3355/* Return the previous insn before INSN that is not a NOTE, but stop
3356 the search before we enter another basic block. This routine does
3357 not look inside SEQUENCEs. */
3358
eb51c837 3359rtx_insn *
dc01c3d1 3360prev_nonnote_insn_bb (rtx uncast_insn)
896aa4ea 3361{
dc01c3d1
DM
3362 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3363
896aa4ea
DD
3364 while (insn)
3365 {
3366 insn = PREV_INSN (insn);
3367 if (insn == 0 || !NOTE_P (insn))
3368 break;
3369 if (NOTE_INSN_BASIC_BLOCK_P (insn))
eb51c837 3370 return NULL;
896aa4ea
DD
3371 }
3372
dc01c3d1 3373 return insn;
896aa4ea
DD
3374}
3375
b5b8b0ac
AO
3376/* Return the next insn after INSN that is not a DEBUG_INSN. This
3377 routine does not look inside SEQUENCEs. */
3378
eb51c837 3379rtx_insn *
dc01c3d1 3380next_nondebug_insn (rtx uncast_insn)
b5b8b0ac 3381{
dc01c3d1
DM
3382 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3383
b5b8b0ac
AO
3384 while (insn)
3385 {
3386 insn = NEXT_INSN (insn);
3387 if (insn == 0 || !DEBUG_INSN_P (insn))
3388 break;
3389 }
3390
dc01c3d1 3391 return insn;
b5b8b0ac
AO
3392}
3393
3394/* Return the previous insn before INSN that is not a DEBUG_INSN.
3395 This routine does not look inside SEQUENCEs. */
3396
eb51c837 3397rtx_insn *
dc01c3d1 3398prev_nondebug_insn (rtx uncast_insn)
b5b8b0ac 3399{
dc01c3d1
DM
3400 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3401
b5b8b0ac
AO
3402 while (insn)
3403 {
3404 insn = PREV_INSN (insn);
3405 if (insn == 0 || !DEBUG_INSN_P (insn))
3406 break;
3407 }
3408
dc01c3d1 3409 return insn;
b5b8b0ac
AO
3410}
3411
f0fc0803
JJ
3412/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3413 This routine does not look inside SEQUENCEs. */
3414
eb51c837 3415rtx_insn *
dc01c3d1 3416next_nonnote_nondebug_insn (rtx uncast_insn)
f0fc0803 3417{
dc01c3d1
DM
3418 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3419
f0fc0803
JJ
3420 while (insn)
3421 {
3422 insn = NEXT_INSN (insn);
3423 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3424 break;
3425 }
3426
dc01c3d1 3427 return insn;
f0fc0803
JJ
3428}
3429
3430/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3431 This routine does not look inside SEQUENCEs. */
3432
eb51c837 3433rtx_insn *
dc01c3d1 3434prev_nonnote_nondebug_insn (rtx uncast_insn)
f0fc0803 3435{
dc01c3d1
DM
3436 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3437
f0fc0803
JJ
3438 while (insn)
3439 {
3440 insn = PREV_INSN (insn);
3441 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3442 break;
3443 }
3444
dc01c3d1 3445 return insn;
f0fc0803
JJ
3446}
3447
23b2ce53
RS
3448/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3449 or 0, if there is none. This routine does not look inside
0f41302f 3450 SEQUENCEs. */
23b2ce53 3451
eb51c837 3452rtx_insn *
dc01c3d1 3453next_real_insn (rtx uncast_insn)
23b2ce53 3454{
dc01c3d1
DM
3455 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3456
75547801
KG
3457 while (insn)
3458 {
3459 insn = NEXT_INSN (insn);
3460 if (insn == 0 || INSN_P (insn))
3461 break;
3462 }
23b2ce53 3463
dc01c3d1 3464 return insn;
23b2ce53
RS
3465}
3466
3467/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3468 or 0, if there is none. This routine does not look inside
3469 SEQUENCEs. */
3470
eb51c837 3471rtx_insn *
dc01c3d1 3472prev_real_insn (rtx uncast_insn)
23b2ce53 3473{
dc01c3d1
DM
3474 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3475
75547801
KG
3476 while (insn)
3477 {
3478 insn = PREV_INSN (insn);
3479 if (insn == 0 || INSN_P (insn))
3480 break;
3481 }
23b2ce53 3482
dc01c3d1 3483 return insn;
23b2ce53
RS
3484}
3485
ee960939
OH
3486/* Return the last CALL_INSN in the current list, or 0 if there is none.
3487 This routine does not look inside SEQUENCEs. */
3488
049cfc4a 3489rtx_call_insn *
502b8322 3490last_call_insn (void)
ee960939 3491{
049cfc4a 3492 rtx_insn *insn;
ee960939
OH
3493
3494 for (insn = get_last_insn ();
4b4bf941 3495 insn && !CALL_P (insn);
ee960939
OH
3496 insn = PREV_INSN (insn))
3497 ;
3498
049cfc4a 3499 return safe_as_a <rtx_call_insn *> (insn);
ee960939
OH
3500}
3501
23b2ce53 3502/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3503 does not look inside SEQUENCEs. After reload this also skips over
3504 standalone USE and CLOBBER insn. */
23b2ce53 3505
69732dcb 3506int
4f588890 3507active_insn_p (const_rtx insn)
69732dcb 3508{
4b4bf941 3509 return (CALL_P (insn) || JUMP_P (insn)
39718607 3510 || JUMP_TABLE_DATA_P (insn) /* FIXME */
4b4bf941 3511 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3512 && (! reload_completed
3513 || (GET_CODE (PATTERN (insn)) != USE
3514 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3515}
3516
eb51c837 3517rtx_insn *
dc01c3d1 3518next_active_insn (rtx uncast_insn)
23b2ce53 3519{
dc01c3d1
DM
3520 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3521
75547801
KG
3522 while (insn)
3523 {
3524 insn = NEXT_INSN (insn);
3525 if (insn == 0 || active_insn_p (insn))
3526 break;
3527 }
23b2ce53 3528
dc01c3d1 3529 return insn;
23b2ce53
RS
3530}
3531
3532/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3533 does not look inside SEQUENCEs. After reload this also skips over
3534 standalone USE and CLOBBER insn. */
23b2ce53 3535
eb51c837 3536rtx_insn *
dc01c3d1 3537prev_active_insn (rtx uncast_insn)
23b2ce53 3538{
dc01c3d1
DM
3539 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3540
75547801
KG
3541 while (insn)
3542 {
3543 insn = PREV_INSN (insn);
3544 if (insn == 0 || active_insn_p (insn))
3545 break;
3546 }
23b2ce53 3547
dc01c3d1 3548 return insn;
23b2ce53 3549}
23b2ce53 3550\f
23b2ce53
RS
3551/* Return the next insn that uses CC0 after INSN, which is assumed to
3552 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3553 applied to the result of this function should yield INSN).
3554
3555 Normally, this is simply the next insn. However, if a REG_CC_USER note
3556 is present, it contains the insn that uses CC0.
3557
3558 Return 0 if we can't find the insn. */
3559
75b46023 3560rtx_insn *
dc01c3d1 3561next_cc0_user (rtx uncast_insn)
23b2ce53 3562{
dc01c3d1
DM
3563 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3564
906c4e36 3565 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3566
3567 if (note)
75b46023 3568 return safe_as_a <rtx_insn *> (XEXP (note, 0));
23b2ce53
RS
3569
3570 insn = next_nonnote_insn (insn);
4b4bf941 3571 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3572 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
23b2ce53 3573
2c3c49de 3574 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
dc01c3d1 3575 return insn;
23b2ce53
RS
3576
3577 return 0;
3578}
3579
3580/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3581 note, it is the previous insn. */
3582
75b46023 3583rtx_insn *
5c8db5b4 3584prev_cc0_setter (rtx_insn *insn)
23b2ce53 3585{
906c4e36 3586 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3587
3588 if (note)
75b46023 3589 return safe_as_a <rtx_insn *> (XEXP (note, 0));
23b2ce53
RS
3590
3591 insn = prev_nonnote_insn (insn);
5b0264cb 3592 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53 3593
dc01c3d1 3594 return insn;
23b2ce53 3595}
e5bef2e4 3596
594f8779
RZ
3597#ifdef AUTO_INC_DEC
3598/* Find a RTX_AUTOINC class rtx which matches DATA. */
3599
3600static int
9021b8ec 3601find_auto_inc (const_rtx x, const_rtx reg)
594f8779 3602{
9021b8ec
RS
3603 subrtx_iterator::array_type array;
3604 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
594f8779 3605 {
9021b8ec
RS
3606 const_rtx x = *iter;
3607 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3608 && rtx_equal_p (reg, XEXP (x, 0)))
3609 return true;
594f8779 3610 }
9021b8ec 3611 return false;
594f8779
RZ
3612}
3613#endif
3614
e5bef2e4
HB
3615/* Increment the label uses for all labels present in rtx. */
3616
3617static void
502b8322 3618mark_label_nuses (rtx x)
e5bef2e4 3619{
b3694847
SS
3620 enum rtx_code code;
3621 int i, j;
3622 const char *fmt;
e5bef2e4
HB
3623
3624 code = GET_CODE (x);
a827d9b1
DM
3625 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3626 LABEL_NUSES (LABEL_REF_LABEL (x))++;
e5bef2e4
HB
3627
3628 fmt = GET_RTX_FORMAT (code);
3629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3630 {
3631 if (fmt[i] == 'e')
0fb7aeda 3632 mark_label_nuses (XEXP (x, i));
e5bef2e4 3633 else if (fmt[i] == 'E')
0fb7aeda 3634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3635 mark_label_nuses (XVECEXP (x, i, j));
3636 }
3637}
3638
23b2ce53
RS
3639\f
3640/* Try splitting insns that can be split for better scheduling.
3641 PAT is the pattern which might split.
3642 TRIAL is the insn providing PAT.
cc2902df 3643 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3644
3645 If this routine succeeds in splitting, it returns the first or last
11147ebe 3646 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3647 returns TRIAL. If the insn to be returned can be split, it will be. */
3648
53f04688 3649rtx_insn *
bb5c4956 3650try_split (rtx pat, rtx_insn *trial, int last)
23b2ce53 3651{
53f04688
DM
3652 rtx_insn *before = PREV_INSN (trial);
3653 rtx_insn *after = NEXT_INSN (trial);
dc01c3d1
DM
3654 rtx note;
3655 rtx_insn *seq, *tem;
6b24c259 3656 int probability;
dc01c3d1 3657 rtx_insn *insn_last, *insn;
599aedd9 3658 int njumps = 0;
e67d1102 3659 rtx_insn *call_insn = NULL;
6b24c259 3660
cd9c1ca8
RH
3661 /* We're not good at redistributing frame information. */
3662 if (RTX_FRAME_RELATED_P (trial))
dc01c3d1 3663 return trial;
cd9c1ca8 3664
6b24c259
JH
3665 if (any_condjump_p (trial)
3666 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
e5af9ddd 3667 split_branch_probability = XINT (note, 0);
6b24c259
JH
3668 probability = split_branch_probability;
3669
bb5c4956 3670 seq = split_insns (pat, trial);
6b24c259
JH
3671
3672 split_branch_probability = -1;
23b2ce53 3673
599aedd9 3674 if (!seq)
dc01c3d1 3675 return trial;
599aedd9
RH
3676
3677 /* Avoid infinite loop if any insn of the result matches
3678 the original pattern. */
3679 insn_last = seq;
3680 while (1)
23b2ce53 3681 {
599aedd9
RH
3682 if (INSN_P (insn_last)
3683 && rtx_equal_p (PATTERN (insn_last), pat))
dc01c3d1 3684 return trial;
599aedd9
RH
3685 if (!NEXT_INSN (insn_last))
3686 break;
3687 insn_last = NEXT_INSN (insn_last);
3688 }
750c9258 3689
6fb5fa3c
DB
3690 /* We will be adding the new sequence to the function. The splitters
3691 may have introduced invalid RTL sharing, so unshare the sequence now. */
3692 unshare_all_rtl_in_chain (seq);
3693
339ba33b 3694 /* Mark labels and copy flags. */
599aedd9
RH
3695 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3696 {
4b4bf941 3697 if (JUMP_P (insn))
599aedd9 3698 {
339ba33b
RS
3699 if (JUMP_P (trial))
3700 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
599aedd9
RH
3701 mark_jump_label (PATTERN (insn), insn, 0);
3702 njumps++;
3703 if (probability != -1
3704 && any_condjump_p (insn)
3705 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3706 {
599aedd9
RH
3707 /* We can preserve the REG_BR_PROB notes only if exactly
3708 one jump is created, otherwise the machine description
3709 is responsible for this step using
3710 split_branch_probability variable. */
5b0264cb 3711 gcc_assert (njumps == 1);
e5af9ddd 3712 add_int_reg_note (insn, REG_BR_PROB, probability);
2f937369 3713 }
599aedd9
RH
3714 }
3715 }
3716
3717 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3718 in SEQ and copy any additional information across. */
4b4bf941 3719 if (CALL_P (trial))
599aedd9
RH
3720 {
3721 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3722 if (CALL_P (insn))
599aedd9 3723 {
dc01c3d1
DM
3724 rtx_insn *next;
3725 rtx *p;
65712d5c 3726
4f660b15
RO
3727 gcc_assert (call_insn == NULL_RTX);
3728 call_insn = insn;
3729
65712d5c
RS
3730 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3731 target may have explicitly specified. */
3732 p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3733 while (*p)
3734 p = &XEXP (*p, 1);
3735 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3736
3737 /* If the old call was a sibling call, the new one must
3738 be too. */
599aedd9 3739 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
65712d5c
RS
3740
3741 /* If the new call is the last instruction in the sequence,
3742 it will effectively replace the old call in-situ. Otherwise
3743 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3744 so that it comes immediately after the new call. */
3745 if (NEXT_INSN (insn))
65f3dedb
RS
3746 for (next = NEXT_INSN (trial);
3747 next && NOTE_P (next);
3748 next = NEXT_INSN (next))
3749 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
65712d5c
RS
3750 {
3751 remove_insn (next);
3752 add_insn_after (next, insn, NULL);
65f3dedb 3753 break;
65712d5c 3754 }
599aedd9
RH
3755 }
3756 }
4b5e8abe 3757
599aedd9
RH
3758 /* Copy notes, particularly those related to the CFG. */
3759 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3760 {
3761 switch (REG_NOTE_KIND (note))
3762 {
3763 case REG_EH_REGION:
1d65f45c 3764 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3765 break;
216183ce 3766
599aedd9
RH
3767 case REG_NORETURN:
3768 case REG_SETJMP:
0a35513e 3769 case REG_TM:
594f8779 3770 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3771 {
4b4bf941 3772 if (CALL_P (insn))
65c5f2a6 3773 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3774 }
599aedd9 3775 break;
d6e95df8 3776
599aedd9 3777 case REG_NON_LOCAL_GOTO:
594f8779 3778 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3779 {
4b4bf941 3780 if (JUMP_P (insn))
65c5f2a6 3781 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3782 }
599aedd9 3783 break;
e5bef2e4 3784
594f8779
RZ
3785#ifdef AUTO_INC_DEC
3786 case REG_INC:
3787 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3788 {
3789 rtx reg = XEXP (note, 0);
3790 if (!FIND_REG_INC_NOTE (insn, reg)
9021b8ec 3791 && find_auto_inc (PATTERN (insn), reg))
65c5f2a6 3792 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3793 }
3794 break;
3795#endif
3796
9a08d230 3797 case REG_ARGS_SIZE:
e5b51ca0 3798 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
9a08d230
RH
3799 break;
3800
4f660b15
RO
3801 case REG_CALL_DECL:
3802 gcc_assert (call_insn != NULL_RTX);
3803 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3804 break;
3805
599aedd9
RH
3806 default:
3807 break;
23b2ce53 3808 }
599aedd9
RH
3809 }
3810
3811 /* If there are LABELS inside the split insns increment the
3812 usage count so we don't delete the label. */
cf7c4aa6 3813 if (INSN_P (trial))
599aedd9
RH
3814 {
3815 insn = insn_last;
3816 while (insn != NULL_RTX)
23b2ce53 3817 {
cf7c4aa6 3818 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3819 if (NONJUMP_INSN_P (insn))
599aedd9 3820 mark_label_nuses (PATTERN (insn));
23b2ce53 3821
599aedd9
RH
3822 insn = PREV_INSN (insn);
3823 }
23b2ce53
RS
3824 }
3825
5368224f 3826 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
3827
3828 delete_insn (trial);
599aedd9
RH
3829
3830 /* Recursively call try_split for each new insn created; by the
3831 time control returns here that insn will be fully split, so
3832 set LAST and continue from the insn after the one returned.
3833 We can't use next_active_insn here since AFTER may be a note.
3834 Ignore deleted insns, which can be occur if not optimizing. */
3835 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4654c0cf 3836 if (! tem->deleted () && INSN_P (tem))
599aedd9
RH
3837 tem = try_split (PATTERN (tem), tem, 1);
3838
3839 /* Return either the first or the last insn, depending on which was
3840 requested. */
3841 return last
5936d944 3842 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3843 : NEXT_INSN (before);
23b2ce53
RS
3844}
3845\f
3846/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3847 Store PATTERN in the pattern slots. */
23b2ce53 3848
167b9fae 3849rtx_insn *
502b8322 3850make_insn_raw (rtx pattern)
23b2ce53 3851{
167b9fae 3852 rtx_insn *insn;
23b2ce53 3853
167b9fae 3854 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
23b2ce53 3855
43127294 3856 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3857 PATTERN (insn) = pattern;
3858 INSN_CODE (insn) = -1;
1632afca 3859 REG_NOTES (insn) = NULL;
5368224f 3860 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3861 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3862
47984720
NC
3863#ifdef ENABLE_RTL_CHECKING
3864 if (insn
2c3c49de 3865 && INSN_P (insn)
47984720
NC
3866 && (returnjump_p (insn)
3867 || (GET_CODE (insn) == SET
3868 && SET_DEST (insn) == pc_rtx)))
3869 {
d4ee4d25 3870 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3871 debug_rtx (insn);
3872 }
3873#endif
750c9258 3874
23b2ce53
RS
3875 return insn;
3876}
3877
b5b8b0ac
AO
3878/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3879
167b9fae 3880static rtx_insn *
b5b8b0ac
AO
3881make_debug_insn_raw (rtx pattern)
3882{
167b9fae 3883 rtx_debug_insn *insn;
b5b8b0ac 3884
167b9fae 3885 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
b5b8b0ac
AO
3886 INSN_UID (insn) = cur_debug_insn_uid++;
3887 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3888 INSN_UID (insn) = cur_insn_uid++;
3889
3890 PATTERN (insn) = pattern;
3891 INSN_CODE (insn) = -1;
3892 REG_NOTES (insn) = NULL;
5368224f 3893 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
3894 BLOCK_FOR_INSN (insn) = NULL;
3895
3896 return insn;
3897}
3898
2f937369 3899/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3900
167b9fae 3901static rtx_insn *
502b8322 3902make_jump_insn_raw (rtx pattern)
23b2ce53 3903{
167b9fae 3904 rtx_jump_insn *insn;
23b2ce53 3905
167b9fae 3906 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
1632afca 3907 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3908
3909 PATTERN (insn) = pattern;
3910 INSN_CODE (insn) = -1;
1632afca
RS
3911 REG_NOTES (insn) = NULL;
3912 JUMP_LABEL (insn) = NULL;
5368224f 3913 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3914 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3915
3916 return insn;
3917}
aff507f4 3918
2f937369 3919/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4 3920
167b9fae 3921static rtx_insn *
502b8322 3922make_call_insn_raw (rtx pattern)
aff507f4 3923{
167b9fae 3924 rtx_call_insn *insn;
aff507f4 3925
167b9fae 3926 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
aff507f4
RK
3927 INSN_UID (insn) = cur_insn_uid++;
3928
3929 PATTERN (insn) = pattern;
3930 INSN_CODE (insn) = -1;
aff507f4
RK
3931 REG_NOTES (insn) = NULL;
3932 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 3933 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3934 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3935
3936 return insn;
3937}
96fba521
SB
3938
3939/* Like `make_insn_raw' but make a NOTE instead of an insn. */
3940
66e8df53 3941static rtx_note *
96fba521
SB
3942make_note_raw (enum insn_note subtype)
3943{
3944 /* Some notes are never created this way at all. These notes are
3945 only created by patching out insns. */
3946 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3947 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3948
66e8df53 3949 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
96fba521
SB
3950 INSN_UID (note) = cur_insn_uid++;
3951 NOTE_KIND (note) = subtype;
3952 BLOCK_FOR_INSN (note) = NULL;
3953 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3954 return note;
3955}
23b2ce53 3956\f
96fba521
SB
3957/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3958 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3959 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3960
3961static inline void
9152e0aa 3962link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
96fba521 3963{
0f82e5c9
DM
3964 SET_PREV_INSN (insn) = prev;
3965 SET_NEXT_INSN (insn) = next;
96fba521
SB
3966 if (prev != NULL)
3967 {
0f82e5c9 3968 SET_NEXT_INSN (prev) = insn;
96fba521
SB
3969 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3970 {
e6eda746
DM
3971 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3972 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
96fba521
SB
3973 }
3974 }
3975 if (next != NULL)
3976 {
0f82e5c9 3977 SET_PREV_INSN (next) = insn;
96fba521 3978 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
3979 {
3980 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3981 SET_PREV_INSN (sequence->insn (0)) = insn;
3982 }
96fba521 3983 }
3ccb989e
SB
3984
3985 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3986 {
e6eda746
DM
3987 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3988 SET_PREV_INSN (sequence->insn (0)) = prev;
3989 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3ccb989e 3990 }
96fba521
SB
3991}
3992
23b2ce53
RS
3993/* Add INSN to the end of the doubly-linked list.
3994 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3995
3996void
9152e0aa 3997add_insn (rtx_insn *insn)
23b2ce53 3998{
9152e0aa 3999 rtx_insn *prev = get_last_insn ();
96fba521 4000 link_insn_into_chain (insn, prev, NULL);
5936d944
JH
4001 if (NULL == get_insns ())
4002 set_first_insn (insn);
5936d944 4003 set_last_insn (insn);
23b2ce53
RS
4004}
4005
96fba521 4006/* Add INSN into the doubly-linked list after insn AFTER. */
23b2ce53 4007
96fba521 4008static void
9152e0aa 4009add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
23b2ce53 4010{
9152e0aa 4011 rtx_insn *next = NEXT_INSN (after);
23b2ce53 4012
4654c0cf 4013 gcc_assert (!optimize || !after->deleted ());
ba213285 4014
96fba521 4015 link_insn_into_chain (insn, after, next);
23b2ce53 4016
96fba521 4017 if (next == NULL)
23b2ce53 4018 {
614d5bd8
AM
4019 struct sequence_stack *seq;
4020
4021 for (seq = get_current_sequence (); seq; seq = seq->next)
4022 if (after == seq->last)
4023 {
4024 seq->last = insn;
4025 break;
4026 }
23b2ce53 4027 }
96fba521
SB
4028}
4029
4030/* Add INSN into the doubly-linked list before insn BEFORE. */
4031
4032static void
9152e0aa 4033add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
96fba521 4034{
9152e0aa 4035 rtx_insn *prev = PREV_INSN (before);
96fba521 4036
4654c0cf 4037 gcc_assert (!optimize || !before->deleted ());
96fba521
SB
4038
4039 link_insn_into_chain (insn, prev, before);
4040
4041 if (prev == NULL)
23b2ce53 4042 {
614d5bd8 4043 struct sequence_stack *seq;
a0ae8e8d 4044
614d5bd8
AM
4045 for (seq = get_current_sequence (); seq; seq = seq->next)
4046 if (before == seq->first)
4047 {
4048 seq->first = insn;
4049 break;
4050 }
4051
4052 gcc_assert (seq);
23b2ce53 4053 }
96fba521
SB
4054}
4055
4056/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4057 If BB is NULL, an attempt is made to infer the bb from before.
4058
4059 This and the next function should be the only functions called
4060 to insert an insn once delay slots have been filled since only
4061 they know how to update a SEQUENCE. */
23b2ce53 4062
96fba521 4063void
9152e0aa 4064add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
96fba521 4065{
1130d5e3 4066 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
9152e0aa 4067 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
96fba521 4068 add_insn_after_nobb (insn, after);
4b4bf941
JQ
4069 if (!BARRIER_P (after)
4070 && !BARRIER_P (insn)
3c030e88
JH
4071 && (bb = BLOCK_FOR_INSN (after)))
4072 {
4073 set_block_for_insn (insn, bb);
38c1593d 4074 if (INSN_P (insn))
6fb5fa3c 4075 df_insn_rescan (insn);
3c030e88 4076 /* Should not happen as first in the BB is always
a1f300c0 4077 either NOTE or LABEL. */
a813c111 4078 if (BB_END (bb) == after
3c030e88 4079 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 4080 && !BARRIER_P (insn)
a38e7aa5 4081 && !NOTE_INSN_BASIC_BLOCK_P (insn))
1130d5e3 4082 BB_END (bb) = insn;
3c030e88 4083 }
23b2ce53
RS
4084}
4085
96fba521
SB
4086/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4087 If BB is NULL, an attempt is made to infer the bb from before.
4088
4089 This and the previous function should be the only functions called
4090 to insert an insn once delay slots have been filled since only
4091 they know how to update a SEQUENCE. */
a0ae8e8d
RK
4092
4093void
9152e0aa 4094add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
a0ae8e8d 4095{
9152e0aa
DM
4096 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4097 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
96fba521 4098 add_insn_before_nobb (insn, before);
a0ae8e8d 4099
b8698a0f 4100 if (!bb
6fb5fa3c
DB
4101 && !BARRIER_P (before)
4102 && !BARRIER_P (insn))
4103 bb = BLOCK_FOR_INSN (before);
4104
4105 if (bb)
3c030e88
JH
4106 {
4107 set_block_for_insn (insn, bb);
38c1593d 4108 if (INSN_P (insn))
6fb5fa3c 4109 df_insn_rescan (insn);
5b0264cb 4110 /* Should not happen as first in the BB is always either NOTE or
43e05e45 4111 LABEL. */
5b0264cb
NS
4112 gcc_assert (BB_HEAD (bb) != insn
4113 /* Avoid clobbering of structure when creating new BB. */
4114 || BARRIER_P (insn)
a38e7aa5 4115 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88 4116 }
a0ae8e8d
RK
4117}
4118
6fb5fa3c
DB
4119/* Replace insn with an deleted instruction note. */
4120
0ce2b299
EB
4121void
4122set_insn_deleted (rtx insn)
6fb5fa3c 4123{
39718607 4124 if (INSN_P (insn))
b2908ba6 4125 df_insn_delete (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
4126 PUT_CODE (insn, NOTE);
4127 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4128}
4129
4130
1f397f45
SB
4131/* Unlink INSN from the insn chain.
4132
4133 This function knows how to handle sequences.
4134
4135 This function does not invalidate data flow information associated with
4136 INSN (i.e. does not call df_insn_delete). That makes this function
4137 usable for only disconnecting an insn from the chain, and re-emit it
4138 elsewhere later.
4139
4140 To later insert INSN elsewhere in the insn chain via add_insn and
4141 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4142 the caller. Nullifying them here breaks many insn chain walks.
4143
4144 To really delete an insn and related DF information, use delete_insn. */
4145
89e99eea 4146void
dc01c3d1 4147remove_insn (rtx uncast_insn)
89e99eea 4148{
dc01c3d1 4149 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1130d5e3
DM
4150 rtx_insn *next = NEXT_INSN (insn);
4151 rtx_insn *prev = PREV_INSN (insn);
53c17031
JH
4152 basic_block bb;
4153
89e99eea
DB
4154 if (prev)
4155 {
0f82e5c9 4156 SET_NEXT_INSN (prev) = next;
4b4bf941 4157 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea 4158 {
e6eda746
DM
4159 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4160 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
89e99eea
DB
4161 }
4162 }
89e99eea
DB
4163 else
4164 {
614d5bd8
AM
4165 struct sequence_stack *seq;
4166
4167 for (seq = get_current_sequence (); seq; seq = seq->next)
4168 if (insn == seq->first)
89e99eea 4169 {
614d5bd8 4170 seq->first = next;
89e99eea
DB
4171 break;
4172 }
4173
614d5bd8 4174 gcc_assert (seq);
89e99eea
DB
4175 }
4176
4177 if (next)
4178 {
0f82e5c9 4179 SET_PREV_INSN (next) = prev;
4b4bf941 4180 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4181 {
4182 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4183 SET_PREV_INSN (sequence->insn (0)) = prev;
4184 }
89e99eea 4185 }
89e99eea
DB
4186 else
4187 {
614d5bd8
AM
4188 struct sequence_stack *seq;
4189
4190 for (seq = get_current_sequence (); seq; seq = seq->next)
4191 if (insn == seq->last)
89e99eea 4192 {
614d5bd8 4193 seq->last = prev;
89e99eea
DB
4194 break;
4195 }
4196
614d5bd8 4197 gcc_assert (seq);
89e99eea 4198 }
80eb8028 4199
80eb8028 4200 /* Fix up basic block boundaries, if necessary. */
4b4bf941 4201 if (!BARRIER_P (insn)
53c17031
JH
4202 && (bb = BLOCK_FOR_INSN (insn)))
4203 {
a813c111 4204 if (BB_HEAD (bb) == insn)
53c17031 4205 {
3bf1e984
RK
4206 /* Never ever delete the basic block note without deleting whole
4207 basic block. */
5b0264cb 4208 gcc_assert (!NOTE_P (insn));
1130d5e3 4209 BB_HEAD (bb) = next;
53c17031 4210 }
a813c111 4211 if (BB_END (bb) == insn)
1130d5e3 4212 BB_END (bb) = prev;
53c17031 4213 }
89e99eea
DB
4214}
4215
ee960939
OH
4216/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4217
4218void
502b8322 4219add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4220{
5b0264cb 4221 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4222
4223 /* Put the register usage information on the CALL. If there is already
4224 some usage information, put ours at the end. */
4225 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4226 {
4227 rtx link;
4228
4229 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4230 link = XEXP (link, 1))
4231 ;
4232
4233 XEXP (link, 1) = call_fusage;
4234 }
4235 else
4236 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4237}
4238
23b2ce53
RS
4239/* Delete all insns made since FROM.
4240 FROM becomes the new last instruction. */
4241
4242void
fee3e72c 4243delete_insns_since (rtx_insn *from)
23b2ce53
RS
4244{
4245 if (from == 0)
5936d944 4246 set_first_insn (0);
23b2ce53 4247 else
0f82e5c9 4248 SET_NEXT_INSN (from) = 0;
5936d944 4249 set_last_insn (from);
23b2ce53
RS
4250}
4251
5dab5552
MS
4252/* This function is deprecated, please use sequences instead.
4253
4254 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4255 The insns to be moved are those between FROM and TO.
4256 They are moved to a new position after the insn AFTER.
4257 AFTER must not be FROM or TO or any insn in between.
4258
4259 This function does not know about SEQUENCEs and hence should not be
4260 called after delay-slot filling has been done. */
4261
4262void
fee3e72c 4263reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
23b2ce53 4264{
4f8344eb 4265#ifdef ENABLE_CHECKING
fee3e72c 4266 rtx_insn *x;
4f8344eb
HPN
4267 for (x = from; x != to; x = NEXT_INSN (x))
4268 gcc_assert (after != x);
4269 gcc_assert (after != to);
4270#endif
4271
23b2ce53
RS
4272 /* Splice this bunch out of where it is now. */
4273 if (PREV_INSN (from))
0f82e5c9 4274 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
23b2ce53 4275 if (NEXT_INSN (to))
0f82e5c9 4276 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4277 if (get_last_insn () == to)
4278 set_last_insn (PREV_INSN (from));
4279 if (get_insns () == from)
4280 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4281
4282 /* Make the new neighbors point to it and it to them. */
4283 if (NEXT_INSN (after))
0f82e5c9 4284 SET_PREV_INSN (NEXT_INSN (after)) = to;
23b2ce53 4285
0f82e5c9
DM
4286 SET_NEXT_INSN (to) = NEXT_INSN (after);
4287 SET_PREV_INSN (from) = after;
4288 SET_NEXT_INSN (after) = from;
c3284718 4289 if (after == get_last_insn ())
5936d944 4290 set_last_insn (to);
23b2ce53
RS
4291}
4292
3c030e88
JH
4293/* Same as function above, but take care to update BB boundaries. */
4294void
ac9d2d2c 4295reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
3c030e88 4296{
ac9d2d2c 4297 rtx_insn *prev = PREV_INSN (from);
3c030e88
JH
4298 basic_block bb, bb2;
4299
4300 reorder_insns_nobb (from, to, after);
4301
4b4bf941 4302 if (!BARRIER_P (after)
3c030e88
JH
4303 && (bb = BLOCK_FOR_INSN (after)))
4304 {
b2908ba6 4305 rtx_insn *x;
6fb5fa3c 4306 df_set_bb_dirty (bb);
68252e27 4307
4b4bf941 4308 if (!BARRIER_P (from)
3c030e88
JH
4309 && (bb2 = BLOCK_FOR_INSN (from)))
4310 {
a813c111 4311 if (BB_END (bb2) == to)
1130d5e3 4312 BB_END (bb2) = prev;
6fb5fa3c 4313 df_set_bb_dirty (bb2);
3c030e88
JH
4314 }
4315
a813c111 4316 if (BB_END (bb) == after)
1130d5e3 4317 BB_END (bb) = to;
3c030e88
JH
4318
4319 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4320 if (!BARRIER_P (x))
63642d5a 4321 df_insn_change_bb (x, bb);
3c030e88
JH
4322 }
4323}
4324
23b2ce53 4325\f
2f937369
DM
4326/* Emit insn(s) of given code and pattern
4327 at a specified place within the doubly-linked list.
23b2ce53 4328
2f937369
DM
4329 All of the emit_foo global entry points accept an object
4330 X which is either an insn list or a PATTERN of a single
4331 instruction.
23b2ce53 4332
2f937369
DM
4333 There are thus a few canonical ways to generate code and
4334 emit it at a specific place in the instruction stream. For
4335 example, consider the instruction named SPOT and the fact that
4336 we would like to emit some instructions before SPOT. We might
4337 do it like this:
23b2ce53 4338
2f937369
DM
4339 start_sequence ();
4340 ... emit the new instructions ...
4341 insns_head = get_insns ();
4342 end_sequence ();
23b2ce53 4343
2f937369 4344 emit_insn_before (insns_head, SPOT);
23b2ce53 4345
2f937369
DM
4346 It used to be common to generate SEQUENCE rtl instead, but that
4347 is a relic of the past which no longer occurs. The reason is that
4348 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4349 generated would almost certainly die right after it was created. */
23b2ce53 4350
cd459bf8 4351static rtx_insn *
5f02387d 4352emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
167b9fae 4353 rtx_insn *(*make_raw) (rtx))
23b2ce53 4354{
167b9fae 4355 rtx_insn *insn;
23b2ce53 4356
5b0264cb 4357 gcc_assert (before);
2f937369
DM
4358
4359 if (x == NULL_RTX)
cd459bf8 4360 return safe_as_a <rtx_insn *> (last);
2f937369
DM
4361
4362 switch (GET_CODE (x))
23b2ce53 4363 {
b5b8b0ac 4364 case DEBUG_INSN:
2f937369
DM
4365 case INSN:
4366 case JUMP_INSN:
4367 case CALL_INSN:
4368 case CODE_LABEL:
4369 case BARRIER:
4370 case NOTE:
167b9fae 4371 insn = as_a <rtx_insn *> (x);
2f937369
DM
4372 while (insn)
4373 {
167b9fae 4374 rtx_insn *next = NEXT_INSN (insn);
6fb5fa3c 4375 add_insn_before (insn, before, bb);
2f937369
DM
4376 last = insn;
4377 insn = next;
4378 }
4379 break;
4380
4381#ifdef ENABLE_RTL_CHECKING
4382 case SEQUENCE:
5b0264cb 4383 gcc_unreachable ();
2f937369
DM
4384 break;
4385#endif
4386
4387 default:
5f02387d 4388 last = (*make_raw) (x);
6fb5fa3c 4389 add_insn_before (last, before, bb);
2f937369 4390 break;
23b2ce53
RS
4391 }
4392
cd459bf8 4393 return safe_as_a <rtx_insn *> (last);
23b2ce53
RS
4394}
4395
5f02387d
NF
4396/* Make X be output before the instruction BEFORE. */
4397
cd459bf8 4398rtx_insn *
596f2b17 4399emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f02387d
NF
4400{
4401 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4402}
4403
2f937369 4404/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4405 and output it before the instruction BEFORE. */
4406
1476d1bd 4407rtx_jump_insn *
596f2b17 4408emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
23b2ce53 4409{
1476d1bd
MM
4410 return as_a <rtx_jump_insn *> (
4411 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4412 make_jump_insn_raw));
23b2ce53
RS
4413}
4414
2f937369 4415/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4416 and output it before the instruction BEFORE. */
4417
cd459bf8 4418rtx_insn *
596f2b17 4419emit_call_insn_before_noloc (rtx x, rtx_insn *before)
969d70ca 4420{
5f02387d
NF
4421 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4422 make_call_insn_raw);
969d70ca
JH
4423}
4424
b5b8b0ac
AO
4425/* Make an instruction with body X and code DEBUG_INSN
4426 and output it before the instruction BEFORE. */
4427
cd459bf8 4428rtx_insn *
b5b8b0ac
AO
4429emit_debug_insn_before_noloc (rtx x, rtx before)
4430{
5f02387d
NF
4431 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4432 make_debug_insn_raw);
b5b8b0ac
AO
4433}
4434
23b2ce53 4435/* Make an insn of code BARRIER
e881bb1b 4436 and output it before the insn BEFORE. */
23b2ce53 4437
cd459bf8 4438rtx_barrier *
502b8322 4439emit_barrier_before (rtx before)
23b2ce53 4440{
cd459bf8 4441 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4442
4443 INSN_UID (insn) = cur_insn_uid++;
4444
6fb5fa3c 4445 add_insn_before (insn, before, NULL);
23b2ce53
RS
4446 return insn;
4447}
4448
e881bb1b
RH
4449/* Emit the label LABEL before the insn BEFORE. */
4450
1476d1bd 4451rtx_code_label *
596f2b17 4452emit_label_before (rtx label, rtx_insn *before)
e881bb1b 4453{
468660d3
SB
4454 gcc_checking_assert (INSN_UID (label) == 0);
4455 INSN_UID (label) = cur_insn_uid++;
4456 add_insn_before (label, before, NULL);
1476d1bd 4457 return as_a <rtx_code_label *> (label);
e881bb1b 4458}
23b2ce53 4459\f
2f937369
DM
4460/* Helper for emit_insn_after, handles lists of instructions
4461 efficiently. */
23b2ce53 4462
e6eda746
DM
4463static rtx_insn *
4464emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
23b2ce53 4465{
e6eda746 4466 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
1130d5e3
DM
4467 rtx_insn *last;
4468 rtx_insn *after_after;
6fb5fa3c
DB
4469 if (!bb && !BARRIER_P (after))
4470 bb = BLOCK_FOR_INSN (after);
23b2ce53 4471
6fb5fa3c 4472 if (bb)
23b2ce53 4473 {
6fb5fa3c 4474 df_set_bb_dirty (bb);
2f937369 4475 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4476 if (!BARRIER_P (last))
6fb5fa3c
DB
4477 {
4478 set_block_for_insn (last, bb);
4479 df_insn_rescan (last);
4480 }
4b4bf941 4481 if (!BARRIER_P (last))
6fb5fa3c
DB
4482 {
4483 set_block_for_insn (last, bb);
4484 df_insn_rescan (last);
4485 }
a813c111 4486 if (BB_END (bb) == after)
1130d5e3 4487 BB_END (bb) = last;
23b2ce53
RS
4488 }
4489 else
2f937369
DM
4490 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4491 continue;
4492
4493 after_after = NEXT_INSN (after);
4494
0f82e5c9
DM
4495 SET_NEXT_INSN (after) = first;
4496 SET_PREV_INSN (first) = after;
4497 SET_NEXT_INSN (last) = after_after;
2f937369 4498 if (after_after)
0f82e5c9 4499 SET_PREV_INSN (after_after) = last;
2f937369 4500
c3284718 4501 if (after == get_last_insn ())
5936d944 4502 set_last_insn (last);
e855c69d 4503
2f937369
DM
4504 return last;
4505}
4506
cd459bf8 4507static rtx_insn *
e6eda746 4508emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
167b9fae 4509 rtx_insn *(*make_raw)(rtx))
2f937369 4510{
e6eda746
DM
4511 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4512 rtx_insn *last = after;
2f937369 4513
5b0264cb 4514 gcc_assert (after);
2f937369
DM
4515
4516 if (x == NULL_RTX)
e6eda746 4517 return last;
2f937369
DM
4518
4519 switch (GET_CODE (x))
23b2ce53 4520 {
b5b8b0ac 4521 case DEBUG_INSN:
2f937369
DM
4522 case INSN:
4523 case JUMP_INSN:
4524 case CALL_INSN:
4525 case CODE_LABEL:
4526 case BARRIER:
4527 case NOTE:
1130d5e3 4528 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
2f937369
DM
4529 break;
4530
4531#ifdef ENABLE_RTL_CHECKING
4532 case SEQUENCE:
5b0264cb 4533 gcc_unreachable ();
2f937369
DM
4534 break;
4535#endif
4536
4537 default:
5f02387d 4538 last = (*make_raw) (x);
6fb5fa3c 4539 add_insn_after (last, after, bb);
2f937369 4540 break;
23b2ce53
RS
4541 }
4542
e6eda746 4543 return last;
23b2ce53
RS
4544}
4545
5f02387d
NF
4546/* Make X be output after the insn AFTER and set the BB of insn. If
4547 BB is NULL, an attempt is made to infer the BB from AFTER. */
4548
cd459bf8 4549rtx_insn *
5f02387d
NF
4550emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4551{
4552 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4553}
4554
255680cf 4555
2f937369 4556/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4557 and output it after the insn AFTER. */
4558
1476d1bd 4559rtx_jump_insn *
a7102479 4560emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4561{
1476d1bd
MM
4562 return as_a <rtx_jump_insn *> (
4563 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
2f937369
DM
4564}
4565
4566/* Make an instruction with body X and code CALL_INSN
4567 and output it after the instruction AFTER. */
4568
cd459bf8 4569rtx_insn *
a7102479 4570emit_call_insn_after_noloc (rtx x, rtx after)
2f937369 4571{
5f02387d 4572 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4573}
4574
b5b8b0ac
AO
4575/* Make an instruction with body X and code CALL_INSN
4576 and output it after the instruction AFTER. */
4577
cd459bf8 4578rtx_insn *
b5b8b0ac
AO
4579emit_debug_insn_after_noloc (rtx x, rtx after)
4580{
5f02387d 4581 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4582}
4583
23b2ce53
RS
4584/* Make an insn of code BARRIER
4585 and output it after the insn AFTER. */
4586
cd459bf8 4587rtx_barrier *
502b8322 4588emit_barrier_after (rtx after)
23b2ce53 4589{
cd459bf8 4590 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4591
4592 INSN_UID (insn) = cur_insn_uid++;
4593
6fb5fa3c 4594 add_insn_after (insn, after, NULL);
23b2ce53
RS
4595 return insn;
4596}
4597
4598/* Emit the label LABEL after the insn AFTER. */
4599
cd459bf8 4600rtx_insn *
596f2b17 4601emit_label_after (rtx label, rtx_insn *after)
23b2ce53 4602{
468660d3
SB
4603 gcc_checking_assert (INSN_UID (label) == 0);
4604 INSN_UID (label) = cur_insn_uid++;
4605 add_insn_after (label, after, NULL);
cd459bf8 4606 return as_a <rtx_insn *> (label);
23b2ce53 4607}
96fba521
SB
4608\f
4609/* Notes require a bit of special handling: Some notes need to have their
4610 BLOCK_FOR_INSN set, others should never have it set, and some should
4611 have it set or clear depending on the context. */
4612
4613/* Return true iff a note of kind SUBTYPE should be emitted with routines
4614 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4615 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4616
4617static bool
4618note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4619{
4620 switch (subtype)
4621 {
4622 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4623 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4624 return true;
4625
4626 /* Notes for var tracking and EH region markers can appear between or
4627 inside basic blocks. If the caller is emitting on the basic block
4628 boundary, do not set BLOCK_FOR_INSN on the new note. */
4629 case NOTE_INSN_VAR_LOCATION:
4630 case NOTE_INSN_CALL_ARG_LOCATION:
4631 case NOTE_INSN_EH_REGION_BEG:
4632 case NOTE_INSN_EH_REGION_END:
4633 return on_bb_boundary_p;
4634
4635 /* Otherwise, BLOCK_FOR_INSN must be set. */
4636 default:
4637 return false;
4638 }
4639}
23b2ce53
RS
4640
4641/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4642
66e8df53 4643rtx_note *
589e43f9 4644emit_note_after (enum insn_note subtype, rtx_insn *after)
23b2ce53 4645{
66e8df53 4646 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4647 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4648 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4649
4650 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4651 add_insn_after_nobb (note, after);
4652 else
4653 add_insn_after (note, after, bb);
4654 return note;
4655}
4656
4657/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4658
66e8df53 4659rtx_note *
89b6250d 4660emit_note_before (enum insn_note subtype, rtx_insn *before)
96fba521 4661{
66e8df53 4662 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4663 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4664 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4665
4666 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4667 add_insn_before_nobb (note, before);
4668 else
4669 add_insn_before (note, before, bb);
23b2ce53
RS
4670 return note;
4671}
23b2ce53 4672\f
e8110d6f
NF
4673/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4674 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4675
cd459bf8 4676static rtx_insn *
dc01c3d1 4677emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
167b9fae 4678 rtx_insn *(*make_raw) (rtx))
0d682900 4679{
dc01c3d1 4680 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
e67d1102 4681 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4682
a7102479 4683 if (pattern == NULL_RTX || !loc)
e67d1102 4684 return last;
dd3adcf8 4685
2f937369
DM
4686 after = NEXT_INSN (after);
4687 while (1)
4688 {
20d4397a
EB
4689 if (active_insn_p (after)
4690 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4691 && !INSN_LOCATION (after))
5368224f 4692 INSN_LOCATION (after) = loc;
2f937369
DM
4693 if (after == last)
4694 break;
4695 after = NEXT_INSN (after);
4696 }
e67d1102 4697 return last;
0d682900
JH
4698}
4699
e8110d6f
NF
4700/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4701 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4702 any DEBUG_INSNs. */
4703
cd459bf8 4704static rtx_insn *
dc01c3d1 4705emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
167b9fae 4706 rtx_insn *(*make_raw) (rtx))
a7102479 4707{
dc01c3d1
DM
4708 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4709 rtx_insn *prev = after;
b5b8b0ac 4710
e8110d6f
NF
4711 if (skip_debug_insns)
4712 while (DEBUG_INSN_P (prev))
4713 prev = PREV_INSN (prev);
b5b8b0ac
AO
4714
4715 if (INSN_P (prev))
5368224f 4716 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4717 make_raw);
a7102479 4718 else
e8110d6f 4719 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4720}
4721
5368224f 4722/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4723rtx_insn *
e8110d6f 4724emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4725{
e8110d6f
NF
4726 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4727}
2f937369 4728
5368224f 4729/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4730rtx_insn *
e8110d6f
NF
4731emit_insn_after (rtx pattern, rtx after)
4732{
4733 return emit_pattern_after (pattern, after, true, make_insn_raw);
4734}
dd3adcf8 4735
5368224f 4736/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4737rtx_jump_insn *
e8110d6f
NF
4738emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4739{
1476d1bd
MM
4740 return as_a <rtx_jump_insn *> (
4741 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
0d682900
JH
4742}
4743
5368224f 4744/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
1476d1bd 4745rtx_jump_insn *
a7102479
JH
4746emit_jump_insn_after (rtx pattern, rtx after)
4747{
1476d1bd
MM
4748 return as_a <rtx_jump_insn *> (
4749 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
a7102479
JH
4750}
4751
5368224f 4752/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4753rtx_insn *
502b8322 4754emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4755{
e8110d6f 4756 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4757}
4758
5368224f 4759/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4760rtx_insn *
a7102479
JH
4761emit_call_insn_after (rtx pattern, rtx after)
4762{
e8110d6f 4763 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4764}
4765
5368224f 4766/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4767rtx_insn *
b5b8b0ac
AO
4768emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4769{
e8110d6f 4770 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4771}
4772
5368224f 4773/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4774rtx_insn *
b5b8b0ac
AO
4775emit_debug_insn_after (rtx pattern, rtx after)
4776{
e8110d6f 4777 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4778}
4779
e8110d6f
NF
4780/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4781 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4782 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4783 CALL_INSN, etc. */
4784
cd459bf8 4785static rtx_insn *
dc01c3d1 4786emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
167b9fae 4787 rtx_insn *(*make_raw) (rtx))
0d682900 4788{
dc01c3d1
DM
4789 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4790 rtx_insn *first = PREV_INSN (before);
4791 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4792 insnp ? before : NULL_RTX,
4793 NULL, make_raw);
a7102479
JH
4794
4795 if (pattern == NULL_RTX || !loc)
dc01c3d1 4796 return last;
a7102479 4797
26cb3993
JH
4798 if (!first)
4799 first = get_insns ();
4800 else
4801 first = NEXT_INSN (first);
a7102479
JH
4802 while (1)
4803 {
20d4397a
EB
4804 if (active_insn_p (first)
4805 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4806 && !INSN_LOCATION (first))
5368224f 4807 INSN_LOCATION (first) = loc;
a7102479
JH
4808 if (first == last)
4809 break;
4810 first = NEXT_INSN (first);
4811 }
dc01c3d1 4812 return last;
a7102479
JH
4813}
4814
e8110d6f
NF
4815/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4816 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4817 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4818 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4819
cd459bf8 4820static rtx_insn *
dc01c3d1 4821emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
167b9fae 4822 bool insnp, rtx_insn *(*make_raw) (rtx))
a7102479 4823{
dc01c3d1
DM
4824 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4825 rtx_insn *next = before;
b5b8b0ac 4826
e8110d6f
NF
4827 if (skip_debug_insns)
4828 while (DEBUG_INSN_P (next))
4829 next = PREV_INSN (next);
b5b8b0ac
AO
4830
4831 if (INSN_P (next))
5368224f 4832 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 4833 insnp, make_raw);
a7102479 4834 else
e8110d6f
NF
4835 return emit_pattern_before_noloc (pattern, before,
4836 insnp ? before : NULL_RTX,
4837 NULL, make_raw);
a7102479
JH
4838}
4839
5368224f 4840/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4841rtx_insn *
596f2b17 4842emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
a7102479 4843{
e8110d6f
NF
4844 return emit_pattern_before_setloc (pattern, before, loc, true,
4845 make_insn_raw);
4846}
a7102479 4847
5368224f 4848/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
cd459bf8 4849rtx_insn *
e8110d6f
NF
4850emit_insn_before (rtx pattern, rtx before)
4851{
4852 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4853}
a7102479 4854
5368224f 4855/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4856rtx_jump_insn *
596f2b17 4857emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
e8110d6f 4858{
1476d1bd
MM
4859 return as_a <rtx_jump_insn *> (
4860 emit_pattern_before_setloc (pattern, before, loc, false,
4861 make_jump_insn_raw));
a7102479
JH
4862}
4863
5368224f 4864/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
1476d1bd 4865rtx_jump_insn *
a7102479
JH
4866emit_jump_insn_before (rtx pattern, rtx before)
4867{
1476d1bd
MM
4868 return as_a <rtx_jump_insn *> (
4869 emit_pattern_before (pattern, before, true, false,
4870 make_jump_insn_raw));
a7102479
JH
4871}
4872
5368224f 4873/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4874rtx_insn *
596f2b17 4875emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
a7102479 4876{
e8110d6f
NF
4877 return emit_pattern_before_setloc (pattern, before, loc, false,
4878 make_call_insn_raw);
0d682900 4879}
a7102479 4880
e8110d6f 4881/* Like emit_call_insn_before_noloc,
5368224f 4882 but set insn_location according to BEFORE. */
cd459bf8 4883rtx_insn *
596f2b17 4884emit_call_insn_before (rtx pattern, rtx_insn *before)
a7102479 4885{
e8110d6f
NF
4886 return emit_pattern_before (pattern, before, true, false,
4887 make_call_insn_raw);
a7102479 4888}
b5b8b0ac 4889
5368224f 4890/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4891rtx_insn *
b5b8b0ac
AO
4892emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4893{
e8110d6f
NF
4894 return emit_pattern_before_setloc (pattern, before, loc, false,
4895 make_debug_insn_raw);
b5b8b0ac
AO
4896}
4897
e8110d6f 4898/* Like emit_debug_insn_before_noloc,
5368224f 4899 but set insn_location according to BEFORE. */
cd459bf8 4900rtx_insn *
3a6216b0 4901emit_debug_insn_before (rtx pattern, rtx_insn *before)
b5b8b0ac 4902{
e8110d6f
NF
4903 return emit_pattern_before (pattern, before, false, false,
4904 make_debug_insn_raw);
b5b8b0ac 4905}
0d682900 4906\f
2f937369
DM
4907/* Take X and emit it at the end of the doubly-linked
4908 INSN list.
23b2ce53
RS
4909
4910 Returns the last insn emitted. */
4911
cd459bf8 4912rtx_insn *
502b8322 4913emit_insn (rtx x)
23b2ce53 4914{
cd459bf8
DM
4915 rtx_insn *last = get_last_insn ();
4916 rtx_insn *insn;
23b2ce53 4917
2f937369
DM
4918 if (x == NULL_RTX)
4919 return last;
23b2ce53 4920
2f937369
DM
4921 switch (GET_CODE (x))
4922 {
b5b8b0ac 4923 case DEBUG_INSN:
2f937369
DM
4924 case INSN:
4925 case JUMP_INSN:
4926 case CALL_INSN:
4927 case CODE_LABEL:
4928 case BARRIER:
4929 case NOTE:
cd459bf8 4930 insn = as_a <rtx_insn *> (x);
2f937369 4931 while (insn)
23b2ce53 4932 {
cd459bf8 4933 rtx_insn *next = NEXT_INSN (insn);
23b2ce53 4934 add_insn (insn);
2f937369
DM
4935 last = insn;
4936 insn = next;
23b2ce53 4937 }
2f937369 4938 break;
23b2ce53 4939
2f937369 4940#ifdef ENABLE_RTL_CHECKING
39718607 4941 case JUMP_TABLE_DATA:
2f937369 4942 case SEQUENCE:
5b0264cb 4943 gcc_unreachable ();
2f937369
DM
4944 break;
4945#endif
23b2ce53 4946
2f937369
DM
4947 default:
4948 last = make_insn_raw (x);
4949 add_insn (last);
4950 break;
23b2ce53
RS
4951 }
4952
4953 return last;
4954}
4955
b5b8b0ac
AO
4956/* Make an insn of code DEBUG_INSN with pattern X
4957 and add it to the end of the doubly-linked list. */
4958
cd459bf8 4959rtx_insn *
b5b8b0ac
AO
4960emit_debug_insn (rtx x)
4961{
cd459bf8
DM
4962 rtx_insn *last = get_last_insn ();
4963 rtx_insn *insn;
b5b8b0ac
AO
4964
4965 if (x == NULL_RTX)
4966 return last;
4967
4968 switch (GET_CODE (x))
4969 {
4970 case DEBUG_INSN:
4971 case INSN:
4972 case JUMP_INSN:
4973 case CALL_INSN:
4974 case CODE_LABEL:
4975 case BARRIER:
4976 case NOTE:
cd459bf8 4977 insn = as_a <rtx_insn *> (x);
b5b8b0ac
AO
4978 while (insn)
4979 {
cd459bf8 4980 rtx_insn *next = NEXT_INSN (insn);
b5b8b0ac
AO
4981 add_insn (insn);
4982 last = insn;
4983 insn = next;
4984 }
4985 break;
4986
4987#ifdef ENABLE_RTL_CHECKING
39718607 4988 case JUMP_TABLE_DATA:
b5b8b0ac
AO
4989 case SEQUENCE:
4990 gcc_unreachable ();
4991 break;
4992#endif
4993
4994 default:
4995 last = make_debug_insn_raw (x);
4996 add_insn (last);
4997 break;
4998 }
4999
5000 return last;
5001}
5002
2f937369
DM
5003/* Make an insn of code JUMP_INSN with pattern X
5004 and add it to the end of the doubly-linked list. */
23b2ce53 5005
cd459bf8 5006rtx_insn *
502b8322 5007emit_jump_insn (rtx x)
23b2ce53 5008{
cd459bf8
DM
5009 rtx_insn *last = NULL;
5010 rtx_insn *insn;
23b2ce53 5011
2f937369 5012 switch (GET_CODE (x))
23b2ce53 5013 {
b5b8b0ac 5014 case DEBUG_INSN:
2f937369
DM
5015 case INSN:
5016 case JUMP_INSN:
5017 case CALL_INSN:
5018 case CODE_LABEL:
5019 case BARRIER:
5020 case NOTE:
cd459bf8 5021 insn = as_a <rtx_insn *> (x);
2f937369
DM
5022 while (insn)
5023 {
cd459bf8 5024 rtx_insn *next = NEXT_INSN (insn);
2f937369
DM
5025 add_insn (insn);
5026 last = insn;
5027 insn = next;
5028 }
5029 break;
e0a5c5eb 5030
2f937369 5031#ifdef ENABLE_RTL_CHECKING
39718607 5032 case JUMP_TABLE_DATA:
2f937369 5033 case SEQUENCE:
5b0264cb 5034 gcc_unreachable ();
2f937369
DM
5035 break;
5036#endif
e0a5c5eb 5037
2f937369
DM
5038 default:
5039 last = make_jump_insn_raw (x);
5040 add_insn (last);
5041 break;
3c030e88 5042 }
e0a5c5eb
RS
5043
5044 return last;
5045}
5046
2f937369 5047/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
5048 and add it to the end of the doubly-linked list. */
5049
cd459bf8 5050rtx_insn *
502b8322 5051emit_call_insn (rtx x)
23b2ce53 5052{
cd459bf8 5053 rtx_insn *insn;
2f937369
DM
5054
5055 switch (GET_CODE (x))
23b2ce53 5056 {
b5b8b0ac 5057 case DEBUG_INSN:
2f937369
DM
5058 case INSN:
5059 case JUMP_INSN:
5060 case CALL_INSN:
5061 case CODE_LABEL:
5062 case BARRIER:
5063 case NOTE:
5064 insn = emit_insn (x);
5065 break;
23b2ce53 5066
2f937369
DM
5067#ifdef ENABLE_RTL_CHECKING
5068 case SEQUENCE:
39718607 5069 case JUMP_TABLE_DATA:
5b0264cb 5070 gcc_unreachable ();
2f937369
DM
5071 break;
5072#endif
23b2ce53 5073
2f937369
DM
5074 default:
5075 insn = make_call_insn_raw (x);
23b2ce53 5076 add_insn (insn);
2f937369 5077 break;
23b2ce53 5078 }
2f937369
DM
5079
5080 return insn;
23b2ce53
RS
5081}
5082
5083/* Add the label LABEL to the end of the doubly-linked list. */
5084
1476d1bd
MM
5085rtx_code_label *
5086emit_label (rtx uncast_label)
23b2ce53 5087{
1476d1bd
MM
5088 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5089
468660d3
SB
5090 gcc_checking_assert (INSN_UID (label) == 0);
5091 INSN_UID (label) = cur_insn_uid++;
1476d1bd
MM
5092 add_insn (label);
5093 return label;
23b2ce53
RS
5094}
5095
39718607
SB
5096/* Make an insn of code JUMP_TABLE_DATA
5097 and add it to the end of the doubly-linked list. */
5098
4598afdd 5099rtx_jump_table_data *
39718607
SB
5100emit_jump_table_data (rtx table)
5101{
4598afdd
DM
5102 rtx_jump_table_data *jump_table_data =
5103 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
39718607
SB
5104 INSN_UID (jump_table_data) = cur_insn_uid++;
5105 PATTERN (jump_table_data) = table;
5106 BLOCK_FOR_INSN (jump_table_data) = NULL;
5107 add_insn (jump_table_data);
5108 return jump_table_data;
5109}
5110
23b2ce53
RS
5111/* Make an insn of code BARRIER
5112 and add it to the end of the doubly-linked list. */
5113
cd459bf8 5114rtx_barrier *
502b8322 5115emit_barrier (void)
23b2ce53 5116{
cd459bf8 5117 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
5118 INSN_UID (barrier) = cur_insn_uid++;
5119 add_insn (barrier);
5120 return barrier;
5121}
5122
5f2fc772 5123/* Emit a copy of note ORIG. */
502b8322 5124
66e8df53
DM
5125rtx_note *
5126emit_note_copy (rtx_note *orig)
5f2fc772 5127{
96fba521 5128 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
66e8df53 5129 rtx_note *note = make_note_raw (kind);
5f2fc772 5130 NOTE_DATA (note) = NOTE_DATA (orig);
5f2fc772 5131 add_insn (note);
2e040219 5132 return note;
23b2ce53
RS
5133}
5134
2e040219
NS
5135/* Make an insn of code NOTE or type NOTE_NO
5136 and add it to the end of the doubly-linked list. */
23b2ce53 5137
66e8df53 5138rtx_note *
a38e7aa5 5139emit_note (enum insn_note kind)
23b2ce53 5140{
66e8df53 5141 rtx_note *note = make_note_raw (kind);
23b2ce53
RS
5142 add_insn (note);
5143 return note;
5144}
5145
c41c1387
RS
5146/* Emit a clobber of lvalue X. */
5147
cd459bf8 5148rtx_insn *
c41c1387
RS
5149emit_clobber (rtx x)
5150{
5151 /* CONCATs should not appear in the insn stream. */
5152 if (GET_CODE (x) == CONCAT)
5153 {
5154 emit_clobber (XEXP (x, 0));
5155 return emit_clobber (XEXP (x, 1));
5156 }
5157 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5158}
5159
5160/* Return a sequence of insns to clobber lvalue X. */
5161
cd459bf8 5162rtx_insn *
c41c1387
RS
5163gen_clobber (rtx x)
5164{
cd459bf8 5165 rtx_insn *seq;
c41c1387
RS
5166
5167 start_sequence ();
5168 emit_clobber (x);
5169 seq = get_insns ();
5170 end_sequence ();
5171 return seq;
5172}
5173
5174/* Emit a use of rvalue X. */
5175
cd459bf8 5176rtx_insn *
c41c1387
RS
5177emit_use (rtx x)
5178{
5179 /* CONCATs should not appear in the insn stream. */
5180 if (GET_CODE (x) == CONCAT)
5181 {
5182 emit_use (XEXP (x, 0));
5183 return emit_use (XEXP (x, 1));
5184 }
5185 return emit_insn (gen_rtx_USE (VOIDmode, x));
5186}
5187
5188/* Return a sequence of insns to use rvalue X. */
5189
cd459bf8 5190rtx_insn *
c41c1387
RS
5191gen_use (rtx x)
5192{
cd459bf8 5193 rtx_insn *seq;
c41c1387
RS
5194
5195 start_sequence ();
5196 emit_use (x);
5197 seq = get_insns ();
5198 end_sequence ();
5199 return seq;
5200}
5201
c8912e53
RS
5202/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5203 Return the set in INSN that such notes describe, or NULL if the notes
5204 have no meaning for INSN. */
5205
5206rtx
5207set_for_reg_notes (rtx insn)
5208{
5209 rtx pat, reg;
5210
5211 if (!INSN_P (insn))
5212 return NULL_RTX;
5213
5214 pat = PATTERN (insn);
5215 if (GET_CODE (pat) == PARALLEL)
5216 {
5217 /* We do not use single_set because that ignores SETs of unused
5218 registers. REG_EQUAL and REG_EQUIV notes really do require the
5219 PARALLEL to have a single SET. */
5220 if (multiple_sets (insn))
5221 return NULL_RTX;
5222 pat = XVECEXP (pat, 0, 0);
5223 }
5224
5225 if (GET_CODE (pat) != SET)
5226 return NULL_RTX;
5227
5228 reg = SET_DEST (pat);
5229
5230 /* Notes apply to the contents of a STRICT_LOW_PART. */
5231 if (GET_CODE (reg) == STRICT_LOW_PART)
5232 reg = XEXP (reg, 0);
5233
5234 /* Check that we have a register. */
5235 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5236 return NULL_RTX;
5237
5238 return pat;
5239}
5240
87b47c85 5241/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5242 note of this type already exists, remove it first. */
87b47c85 5243
3d238248 5244rtx
502b8322 5245set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5246{
5247 rtx note = find_reg_note (insn, kind, NULL_RTX);
5248
52488da1
JW
5249 switch (kind)
5250 {
5251 case REG_EQUAL:
5252 case REG_EQUIV:
c8912e53
RS
5253 if (!set_for_reg_notes (insn))
5254 return NULL_RTX;
52488da1
JW
5255
5256 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5257 It serves no useful purpose and breaks eliminate_regs. */
5258 if (GET_CODE (datum) == ASM_OPERANDS)
5259 return NULL_RTX;
109374e2
RS
5260
5261 /* Notes with side effects are dangerous. Even if the side-effect
5262 initially mirrors one in PATTERN (INSN), later optimizations
5263 might alter the way that the final register value is calculated
5264 and so move or alter the side-effect in some way. The note would
5265 then no longer be a valid substitution for SET_SRC. */
5266 if (side_effects_p (datum))
5267 return NULL_RTX;
52488da1
JW
5268 break;
5269
5270 default:
5271 break;
5272 }
3d238248 5273
c8912e53
RS
5274 if (note)
5275 XEXP (note, 0) = datum;
5276 else
5277 {
5278 add_reg_note (insn, kind, datum);
5279 note = REG_NOTES (insn);
5280 }
6fb5fa3c
DB
5281
5282 switch (kind)
3d238248 5283 {
6fb5fa3c
DB
5284 case REG_EQUAL:
5285 case REG_EQUIV:
b2908ba6 5286 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
5287 break;
5288 default:
5289 break;
3d238248 5290 }
87b47c85 5291
c8912e53 5292 return note;
87b47c85 5293}
7543f918
JR
5294
5295/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5296rtx
5297set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5298{
c8912e53 5299 rtx set = set_for_reg_notes (insn);
7543f918
JR
5300
5301 if (set && SET_DEST (set) == dst)
5302 return set_unique_reg_note (insn, kind, datum);
5303 return NULL_RTX;
5304}
23b2ce53 5305\f
23b2ce53
RS
5306/* Emit the rtl pattern X as an appropriate kind of insn.
5307 If X is a label, it is simply added into the insn chain. */
5308
cd459bf8 5309rtx_insn *
502b8322 5310emit (rtx x)
23b2ce53
RS
5311{
5312 enum rtx_code code = classify_insn (x);
5313
5b0264cb 5314 switch (code)
23b2ce53 5315 {
5b0264cb
NS
5316 case CODE_LABEL:
5317 return emit_label (x);
5318 case INSN:
5319 return emit_insn (x);
5320 case JUMP_INSN:
5321 {
cd459bf8 5322 rtx_insn *insn = emit_jump_insn (x);
5b0264cb
NS
5323 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5324 return emit_barrier ();
5325 return insn;
5326 }
5327 case CALL_INSN:
5328 return emit_call_insn (x);
b5b8b0ac
AO
5329 case DEBUG_INSN:
5330 return emit_debug_insn (x);
5b0264cb
NS
5331 default:
5332 gcc_unreachable ();
23b2ce53 5333 }
23b2ce53
RS
5334}
5335\f
e2500fed 5336/* Space for free sequence stack entries. */
1431042e 5337static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5338
4dfa0342
RH
5339/* Begin emitting insns to a sequence. If this sequence will contain
5340 something that might cause the compiler to pop arguments to function
5341 calls (because those pops have previously been deferred; see
5342 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5343 before calling this function. That will ensure that the deferred
5344 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5345
5346void
502b8322 5347start_sequence (void)
23b2ce53
RS
5348{
5349 struct sequence_stack *tem;
5350
e2500fed
GK
5351 if (free_sequence_stack != NULL)
5352 {
5353 tem = free_sequence_stack;
5354 free_sequence_stack = tem->next;
5355 }
5356 else
766090c2 5357 tem = ggc_alloc<sequence_stack> ();
23b2ce53 5358
614d5bd8 5359 tem->next = get_current_sequence ()->next;
5936d944
JH
5360 tem->first = get_insns ();
5361 tem->last = get_last_insn ();
614d5bd8 5362 get_current_sequence ()->next = tem;
23b2ce53 5363
5936d944
JH
5364 set_first_insn (0);
5365 set_last_insn (0);
23b2ce53
RS
5366}
5367
5c7a310f
MM
5368/* Set up the insn chain starting with FIRST as the current sequence,
5369 saving the previously current one. See the documentation for
5370 start_sequence for more information about how to use this function. */
23b2ce53
RS
5371
5372void
fee3e72c 5373push_to_sequence (rtx_insn *first)
23b2ce53 5374{
fee3e72c 5375 rtx_insn *last;
23b2ce53
RS
5376
5377 start_sequence ();
5378
e84a58ff
EB
5379 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5380 ;
23b2ce53 5381
5936d944
JH
5382 set_first_insn (first);
5383 set_last_insn (last);
23b2ce53
RS
5384}
5385
bb27eeda
SE
5386/* Like push_to_sequence, but take the last insn as an argument to avoid
5387 looping through the list. */
5388
5389void
fee3e72c 5390push_to_sequence2 (rtx_insn *first, rtx_insn *last)
bb27eeda
SE
5391{
5392 start_sequence ();
5393
5936d944
JH
5394 set_first_insn (first);
5395 set_last_insn (last);
bb27eeda
SE
5396}
5397
f15ae3a1
TW
5398/* Set up the outer-level insn chain
5399 as the current sequence, saving the previously current one. */
5400
5401void
502b8322 5402push_topmost_sequence (void)
f15ae3a1 5403{
614d5bd8 5404 struct sequence_stack *top;
f15ae3a1
TW
5405
5406 start_sequence ();
5407
614d5bd8 5408 top = get_topmost_sequence ();
5936d944
JH
5409 set_first_insn (top->first);
5410 set_last_insn (top->last);
f15ae3a1
TW
5411}
5412
5413/* After emitting to the outer-level insn chain, update the outer-level
5414 insn chain, and restore the previous saved state. */
5415
5416void
502b8322 5417pop_topmost_sequence (void)
f15ae3a1 5418{
614d5bd8 5419 struct sequence_stack *top;
f15ae3a1 5420
614d5bd8 5421 top = get_topmost_sequence ();
5936d944
JH
5422 top->first = get_insns ();
5423 top->last = get_last_insn ();
f15ae3a1
TW
5424
5425 end_sequence ();
5426}
5427
23b2ce53
RS
5428/* After emitting to a sequence, restore previous saved state.
5429
5c7a310f 5430 To get the contents of the sequence just made, you must call
2f937369 5431 `get_insns' *before* calling here.
5c7a310f
MM
5432
5433 If the compiler might have deferred popping arguments while
5434 generating this sequence, and this sequence will not be immediately
5435 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5436 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5437 pops are inserted into this sequence, and not into some random
5438 location in the instruction stream. See INHIBIT_DEFER_POP for more
5439 information about deferred popping of arguments. */
23b2ce53
RS
5440
5441void
502b8322 5442end_sequence (void)
23b2ce53 5443{
614d5bd8 5444 struct sequence_stack *tem = get_current_sequence ()->next;
23b2ce53 5445
5936d944
JH
5446 set_first_insn (tem->first);
5447 set_last_insn (tem->last);
614d5bd8 5448 get_current_sequence ()->next = tem->next;
23b2ce53 5449
e2500fed
GK
5450 memset (tem, 0, sizeof (*tem));
5451 tem->next = free_sequence_stack;
5452 free_sequence_stack = tem;
23b2ce53
RS
5453}
5454
5455/* Return 1 if currently emitting into a sequence. */
5456
5457int
502b8322 5458in_sequence_p (void)
23b2ce53 5459{
614d5bd8 5460 return get_current_sequence ()->next != 0;
23b2ce53 5461}
23b2ce53 5462\f
59ec66dc
MM
5463/* Put the various virtual registers into REGNO_REG_RTX. */
5464
2bbdec73 5465static void
bd60bab2 5466init_virtual_regs (void)
59ec66dc 5467{
bd60bab2
JH
5468 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5469 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5470 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5471 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5472 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5473 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5474 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5475}
5476
da43a810
BS
5477\f
5478/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5479static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5480static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5481static int copy_insn_n_scratches;
5482
5483/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5484 copied an ASM_OPERANDS.
5485 In that case, it is the original input-operand vector. */
5486static rtvec orig_asm_operands_vector;
5487
5488/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5489 copied an ASM_OPERANDS.
5490 In that case, it is the copied input-operand vector. */
5491static rtvec copy_asm_operands_vector;
5492
5493/* Likewise for the constraints vector. */
5494static rtvec orig_asm_constraints_vector;
5495static rtvec copy_asm_constraints_vector;
5496
5497/* Recursively create a new copy of an rtx for copy_insn.
5498 This function differs from copy_rtx in that it handles SCRATCHes and
5499 ASM_OPERANDs properly.
5500 Normally, this function is not used directly; use copy_insn as front end.
5501 However, you could first copy an insn pattern with copy_insn and then use
5502 this function afterwards to properly copy any REG_NOTEs containing
5503 SCRATCHes. */
5504
5505rtx
502b8322 5506copy_insn_1 (rtx orig)
da43a810 5507{
b3694847
SS
5508 rtx copy;
5509 int i, j;
5510 RTX_CODE code;
5511 const char *format_ptr;
da43a810 5512
cd9c1ca8
RH
5513 if (orig == NULL)
5514 return NULL;
5515
da43a810
BS
5516 code = GET_CODE (orig);
5517
5518 switch (code)
5519 {
5520 case REG:
a52a87c3 5521 case DEBUG_EXPR:
d8116890 5522 CASE_CONST_ANY:
da43a810
BS
5523 case SYMBOL_REF:
5524 case CODE_LABEL:
5525 case PC:
5526 case CC0:
276e0224 5527 case RETURN:
26898771 5528 case SIMPLE_RETURN:
da43a810 5529 return orig;
3e89ed8d 5530 case CLOBBER:
c5c5ba89
JH
5531 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5532 clobbers or clobbers of hard registers that originated as pseudos.
5533 This is needed to allow safe register renaming. */
5534 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5535 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
3e89ed8d
JH
5536 return orig;
5537 break;
da43a810
BS
5538
5539 case SCRATCH:
5540 for (i = 0; i < copy_insn_n_scratches; i++)
5541 if (copy_insn_scratch_in[i] == orig)
5542 return copy_insn_scratch_out[i];
5543 break;
5544
5545 case CONST:
6fb5fa3c 5546 if (shared_const_p (orig))
da43a810
BS
5547 return orig;
5548 break;
750c9258 5549
da43a810
BS
5550 /* A MEM with a constant address is not sharable. The problem is that
5551 the constant address may need to be reloaded. If the mem is shared,
5552 then reloading one copy of this mem will cause all copies to appear
5553 to have been reloaded. */
5554
5555 default:
5556 break;
5557 }
5558
aacd3885
RS
5559 /* Copy the various flags, fields, and other information. We assume
5560 that all fields need copying, and then clear the fields that should
da43a810
BS
5561 not be copied. That is the sensible default behavior, and forces
5562 us to explicitly document why we are *not* copying a flag. */
aacd3885 5563 copy = shallow_copy_rtx (orig);
da43a810
BS
5564
5565 /* We do not copy the USED flag, which is used as a mark bit during
5566 walks over the RTL. */
2adc7f12 5567 RTX_FLAG (copy, used) = 0;
da43a810
BS
5568
5569 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5570 if (INSN_P (orig))
da43a810 5571 {
2adc7f12
JJ
5572 RTX_FLAG (copy, jump) = 0;
5573 RTX_FLAG (copy, call) = 0;
5574 RTX_FLAG (copy, frame_related) = 0;
da43a810 5575 }
750c9258 5576
da43a810
BS
5577 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5578
5579 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5580 switch (*format_ptr++)
5581 {
5582 case 'e':
5583 if (XEXP (orig, i) != NULL)
5584 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5585 break;
da43a810 5586
aacd3885
RS
5587 case 'E':
5588 case 'V':
5589 if (XVEC (orig, i) == orig_asm_constraints_vector)
5590 XVEC (copy, i) = copy_asm_constraints_vector;
5591 else if (XVEC (orig, i) == orig_asm_operands_vector)
5592 XVEC (copy, i) = copy_asm_operands_vector;
5593 else if (XVEC (orig, i) != NULL)
5594 {
5595 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5596 for (j = 0; j < XVECLEN (copy, i); j++)
5597 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5598 }
5599 break;
da43a810 5600
aacd3885
RS
5601 case 't':
5602 case 'w':
5603 case 'i':
5604 case 's':
5605 case 'S':
5606 case 'u':
5607 case '0':
5608 /* These are left unchanged. */
5609 break;
da43a810 5610
aacd3885
RS
5611 default:
5612 gcc_unreachable ();
5613 }
da43a810
BS
5614
5615 if (code == SCRATCH)
5616 {
5617 i = copy_insn_n_scratches++;
5b0264cb 5618 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5619 copy_insn_scratch_in[i] = orig;
5620 copy_insn_scratch_out[i] = copy;
5621 }
5622 else if (code == ASM_OPERANDS)
5623 {
6462bb43
AO
5624 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5625 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5626 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5627 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5628 }
5629
5630 return copy;
5631}
5632
5633/* Create a new copy of an rtx.
5634 This function differs from copy_rtx in that it handles SCRATCHes and
5635 ASM_OPERANDs properly.
5636 INSN doesn't really have to be a full INSN; it could be just the
5637 pattern. */
5638rtx
502b8322 5639copy_insn (rtx insn)
da43a810
BS
5640{
5641 copy_insn_n_scratches = 0;
5642 orig_asm_operands_vector = 0;
5643 orig_asm_constraints_vector = 0;
5644 copy_asm_operands_vector = 0;
5645 copy_asm_constraints_vector = 0;
5646 return copy_insn_1 (insn);
5647}
59ec66dc 5648
8e383849
JR
5649/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5650 on that assumption that INSN itself remains in its original place. */
5651
f8f0516e
DM
5652rtx_insn *
5653copy_delay_slot_insn (rtx_insn *insn)
8e383849
JR
5654{
5655 /* Copy INSN with its rtx_code, all its notes, location etc. */
f8f0516e 5656 insn = as_a <rtx_insn *> (copy_rtx (insn));
8e383849
JR
5657 INSN_UID (insn) = cur_insn_uid++;
5658 return insn;
5659}
5660
23b2ce53
RS
5661/* Initialize data structures and variables in this file
5662 before generating rtl for each function. */
5663
5664void
502b8322 5665init_emit (void)
23b2ce53 5666{
5936d944
JH
5667 set_first_insn (NULL);
5668 set_last_insn (NULL);
b5b8b0ac
AO
5669 if (MIN_NONDEBUG_INSN_UID)
5670 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5671 else
5672 cur_insn_uid = 1;
5673 cur_debug_insn_uid = 1;
23b2ce53 5674 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5675 first_label_num = label_num;
614d5bd8 5676 get_current_sequence ()->next = NULL;
23b2ce53 5677
23b2ce53
RS
5678 /* Init the tables that describe all the pseudo regs. */
5679
3e029763 5680 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5681
3e029763 5682 crtl->emit.regno_pointer_align
1b4572a8 5683 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5684
766090c2 5685 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
0d4903b8 5686
e50126e8 5687 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5688 memcpy (regno_reg_rtx,
5fb0e246 5689 initial_regno_reg_rtx,
6cde4876 5690 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5691
23b2ce53 5692 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5693 init_virtual_regs ();
740ab4a2
RK
5694
5695 /* Indicate that the virtual registers and stack locations are
5696 all pointers. */
3502dc9c
JDA
5697 REG_POINTER (stack_pointer_rtx) = 1;
5698 REG_POINTER (frame_pointer_rtx) = 1;
5699 REG_POINTER (hard_frame_pointer_rtx) = 1;
5700 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5701
3502dc9c
JDA
5702 REG_POINTER (virtual_incoming_args_rtx) = 1;
5703 REG_POINTER (virtual_stack_vars_rtx) = 1;
5704 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5705 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5706 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5707
86fe05e0 5708#ifdef STACK_BOUNDARY
bdb429a5
RK
5709 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5711 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5712 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5713
5714 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5717 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5718 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5719#endif
5720
5e82e7bd
JVA
5721#ifdef INIT_EXPANDERS
5722 INIT_EXPANDERS;
5723#endif
23b2ce53
RS
5724}
5725
a73b091d 5726/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5727
5728static rtx
ef4bddc2 5729gen_const_vector (machine_mode mode, int constant)
69ef87e2
AH
5730{
5731 rtx tem;
5732 rtvec v;
5733 int units, i;
ef4bddc2 5734 machine_mode inner;
69ef87e2
AH
5735
5736 units = GET_MODE_NUNITS (mode);
5737 inner = GET_MODE_INNER (mode);
5738
15ed7b52
JG
5739 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5740
69ef87e2
AH
5741 v = rtvec_alloc (units);
5742
a73b091d
JW
5743 /* We need to call this function after we set the scalar const_tiny_rtx
5744 entries. */
5745 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5746
5747 for (i = 0; i < units; ++i)
a73b091d 5748 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5749
a06e3c40 5750 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5751 return tem;
5752}
5753
a06e3c40 5754/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5755 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5756rtx
ef4bddc2 5757gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
a06e3c40 5758{
ef4bddc2 5759 machine_mode inner = GET_MODE_INNER (mode);
a73b091d
JW
5760 int nunits = GET_MODE_NUNITS (mode);
5761 rtx x;
a06e3c40
R
5762 int i;
5763
a73b091d
JW
5764 /* Check to see if all of the elements have the same value. */
5765 x = RTVEC_ELT (v, nunits - 1);
5766 for (i = nunits - 2; i >= 0; i--)
5767 if (RTVEC_ELT (v, i) != x)
5768 break;
5769
5770 /* If the values are all the same, check to see if we can use one of the
5771 standard constant vectors. */
5772 if (i == -1)
5773 {
5774 if (x == CONST0_RTX (inner))
5775 return CONST0_RTX (mode);
5776 else if (x == CONST1_RTX (inner))
5777 return CONST1_RTX (mode);
e7c82a99
JJ
5778 else if (x == CONSTM1_RTX (inner))
5779 return CONSTM1_RTX (mode);
a73b091d
JW
5780 }
5781
5782 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5783}
5784
b5deb7b6
SL
5785/* Initialise global register information required by all functions. */
5786
5787void
5788init_emit_regs (void)
5789{
5790 int i;
ef4bddc2 5791 machine_mode mode;
1c3f523e 5792 mem_attrs *attrs;
b5deb7b6
SL
5793
5794 /* Reset register attributes */
aebf76a2 5795 reg_attrs_htab->empty ();
b5deb7b6
SL
5796
5797 /* We need reg_raw_mode, so initialize the modes now. */
5798 init_reg_modes_target ();
5799
5800 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
5801 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5802 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5803 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5804 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5805 virtual_incoming_args_rtx =
5806 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5807 virtual_stack_vars_rtx =
5808 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5809 virtual_stack_dynamic_rtx =
5810 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5811 virtual_outgoing_args_rtx =
5812 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5813 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
5814 virtual_preferred_stack_boundary_rtx =
5815 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
5816
5817 /* Initialize RTL for commonly used hard registers. These are
5818 copied into regno_reg_rtx as we begin to compile each function. */
5819 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 5820 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
5821
5822#ifdef RETURN_ADDRESS_POINTER_REGNUM
5823 return_address_pointer_rtx
5824 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5825#endif
5826
ca72dad5 5827 pic_offset_table_rtx = NULL_RTX;
b5deb7b6
SL
5828 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5829 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
1c3f523e
RS
5830
5831 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5832 {
ef4bddc2 5833 mode = (machine_mode) i;
766090c2 5834 attrs = ggc_cleared_alloc<mem_attrs> ();
1c3f523e
RS
5835 attrs->align = BITS_PER_UNIT;
5836 attrs->addrspace = ADDR_SPACE_GENERIC;
5837 if (mode != BLKmode)
5838 {
754c3d5d
RS
5839 attrs->size_known_p = true;
5840 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
5841 if (STRICT_ALIGNMENT)
5842 attrs->align = GET_MODE_ALIGNMENT (mode);
5843 }
5844 mode_mem_attrs[i] = attrs;
5845 }
b5deb7b6
SL
5846}
5847
aa3a12d6
RS
5848/* Initialize global machine_mode variables. */
5849
5850void
5851init_derived_machine_modes (void)
5852{
5853 byte_mode = VOIDmode;
5854 word_mode = VOIDmode;
5855
ef4bddc2 5856 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
aa3a12d6
RS
5857 mode != VOIDmode;
5858 mode = GET_MODE_WIDER_MODE (mode))
5859 {
5860 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5861 && byte_mode == VOIDmode)
5862 byte_mode = mode;
5863
5864 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5865 && word_mode == VOIDmode)
5866 word_mode = mode;
5867 }
5868
5869 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5870}
5871
2d888286 5872/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
5873
5874void
2d888286 5875init_emit_once (void)
23b2ce53
RS
5876{
5877 int i;
ef4bddc2
RS
5878 machine_mode mode;
5879 machine_mode double_mode;
23b2ce53 5880
807e902e
KZ
5881 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5882 CONST_FIXED, and memory attribute hash tables. */
aebf76a2 5883 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
173b24b9 5884
807e902e 5885#if TARGET_SUPPORTS_WIDE_INT
aebf76a2 5886 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
807e902e 5887#endif
aebf76a2 5888 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5692c7bc 5889
aebf76a2 5890 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
091a3ac7 5891
aebf76a2 5892 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
67673f5c 5893
5da077de 5894#ifdef INIT_EXPANDERS
414c4dc4
NC
5895 /* This is to initialize {init|mark|free}_machine_status before the first
5896 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5897 end which calls push_function_context_to before the first call to
5da077de
AS
5898 init_function_start. */
5899 INIT_EXPANDERS;
5900#endif
5901
23b2ce53
RS
5902 /* Create the unique rtx's for certain rtx codes and operand values. */
5903
a2a8cc44 5904 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5905 tries to use these variables. */
23b2ce53 5906 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5907 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5908 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5909
68d75312
JC
5910 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5911 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5912 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5913 else
3b80f6ca 5914 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5915
aa3a12d6
RS
5916 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5917
807e902e
KZ
5918 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5919 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5920 real_from_integer (&dconst2, double_mode, 2, SIGNED);
aefa9d43
KG
5921
5922 dconstm1 = dconst1;
5923 dconstm1.sign = 1;
03f2ea93
RS
5924
5925 dconsthalf = dconst1;
1e92bbb9 5926 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5927
e7c82a99 5928 for (i = 0; i < 3; i++)
23b2ce53 5929 {
aefa9d43 5930 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5931 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5932
15ed7b52
JG
5933 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5934 mode != VOIDmode;
5935 mode = GET_MODE_WIDER_MODE (mode))
5936 const_tiny_rtx[i][(int) mode] =
5937 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5938
5939 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5940 mode != VOIDmode;
23b2ce53 5941 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5942 const_tiny_rtx[i][(int) mode] =
5943 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5944
906c4e36 5945 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5946
15ed7b52
JG
5947 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5948 mode != VOIDmode;
23b2ce53 5949 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5950 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 5951
ede6c734
MS
5952 for (mode = MIN_MODE_PARTIAL_INT;
5953 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 5954 mode = (machine_mode)((int)(mode) + 1))
33d3e559 5955 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5956 }
5957
e7c82a99
JJ
5958 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5959
5960 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5961 mode != VOIDmode;
5962 mode = GET_MODE_WIDER_MODE (mode))
5963 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5964
ede6c734
MS
5965 for (mode = MIN_MODE_PARTIAL_INT;
5966 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 5967 mode = (machine_mode)((int)(mode) + 1))
c8a89d2a
BS
5968 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5969
e90721b1
AP
5970 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5971 mode != VOIDmode;
5972 mode = GET_MODE_WIDER_MODE (mode))
5973 {
5974 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5975 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5976 }
5977
5978 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5979 mode != VOIDmode;
5980 mode = GET_MODE_WIDER_MODE (mode))
5981 {
5982 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5983 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5984 }
5985
69ef87e2
AH
5986 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5987 mode != VOIDmode;
5988 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5989 {
5990 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5991 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 5992 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 5993 }
69ef87e2
AH
5994
5995 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5996 mode != VOIDmode;
5997 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5998 {
5999 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6000 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6001 }
69ef87e2 6002
325217ed
CF
6003 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6004 mode != VOIDmode;
6005 mode = GET_MODE_WIDER_MODE (mode))
6006 {
c3284718
RS
6007 FCONST0 (mode).data.high = 0;
6008 FCONST0 (mode).data.low = 0;
6009 FCONST0 (mode).mode = mode;
091a3ac7
CF
6010 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6011 FCONST0 (mode), mode);
325217ed
CF
6012 }
6013
6014 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6015 mode != VOIDmode;
6016 mode = GET_MODE_WIDER_MODE (mode))
6017 {
c3284718
RS
6018 FCONST0 (mode).data.high = 0;
6019 FCONST0 (mode).data.low = 0;
6020 FCONST0 (mode).mode = mode;
091a3ac7
CF
6021 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6022 FCONST0 (mode), mode);
325217ed
CF
6023 }
6024
6025 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6026 mode != VOIDmode;
6027 mode = GET_MODE_WIDER_MODE (mode))
6028 {
c3284718
RS
6029 FCONST0 (mode).data.high = 0;
6030 FCONST0 (mode).data.low = 0;
6031 FCONST0 (mode).mode = mode;
091a3ac7
CF
6032 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6033 FCONST0 (mode), mode);
325217ed
CF
6034
6035 /* We store the value 1. */
c3284718
RS
6036 FCONST1 (mode).data.high = 0;
6037 FCONST1 (mode).data.low = 0;
6038 FCONST1 (mode).mode = mode;
6039 FCONST1 (mode).data
9be0ac8c
LC
6040 = double_int_one.lshift (GET_MODE_FBIT (mode),
6041 HOST_BITS_PER_DOUBLE_INT,
6042 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
6043 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6044 FCONST1 (mode), mode);
325217ed
CF
6045 }
6046
6047 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6048 mode != VOIDmode;
6049 mode = GET_MODE_WIDER_MODE (mode))
6050 {
c3284718
RS
6051 FCONST0 (mode).data.high = 0;
6052 FCONST0 (mode).data.low = 0;
6053 FCONST0 (mode).mode = mode;
091a3ac7
CF
6054 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6055 FCONST0 (mode), mode);
325217ed
CF
6056
6057 /* We store the value 1. */
c3284718
RS
6058 FCONST1 (mode).data.high = 0;
6059 FCONST1 (mode).data.low = 0;
6060 FCONST1 (mode).mode = mode;
6061 FCONST1 (mode).data
9be0ac8c
LC
6062 = double_int_one.lshift (GET_MODE_FBIT (mode),
6063 HOST_BITS_PER_DOUBLE_INT,
6064 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
6065 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6066 FCONST1 (mode), mode);
6067 }
6068
6069 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6070 mode != VOIDmode;
6071 mode = GET_MODE_WIDER_MODE (mode))
6072 {
6073 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6074 }
6075
6076 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6077 mode != VOIDmode;
6078 mode = GET_MODE_WIDER_MODE (mode))
6079 {
6080 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6081 }
6082
6083 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6084 mode != VOIDmode;
6085 mode = GET_MODE_WIDER_MODE (mode))
6086 {
6087 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6088 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6089 }
6090
6091 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6092 mode != VOIDmode;
6093 mode = GET_MODE_WIDER_MODE (mode))
6094 {
6095 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6096 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
6097 }
6098
dbbbbf3b 6099 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
ef4bddc2 6100 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
dbbbbf3b 6101 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 6102
f0417c82
RH
6103 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6104 if (STORE_FLAG_VALUE == 1)
6105 const_tiny_rtx[1][(int) BImode] = const1_rtx;
ca4adc91 6106
d5e254e1
IE
6107 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6108 mode != VOIDmode;
6109 mode = GET_MODE_WIDER_MODE (mode))
6110 {
6111 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6112 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6113 }
6114
ca4adc91
RS
6115 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6116 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6117 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6118 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
1476d1bd
MM
6119 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6120 /*prev_insn=*/NULL,
6121 /*next_insn=*/NULL,
6122 /*bb=*/NULL,
6123 /*pattern=*/NULL_RTX,
6124 /*location=*/-1,
6125 CODE_FOR_nothing,
6126 /*reg_notes=*/NULL_RTX);
23b2ce53 6127}
a11759a3 6128\f
969d70ca
JH
6129/* Produce exact duplicate of insn INSN after AFTER.
6130 Care updating of libcall regions if present. */
6131
cd459bf8 6132rtx_insn *
a1950df3 6133emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
969d70ca 6134{
cd459bf8
DM
6135 rtx_insn *new_rtx;
6136 rtx link;
969d70ca
JH
6137
6138 switch (GET_CODE (insn))
6139 {
6140 case INSN:
60564289 6141 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
6142 break;
6143
6144 case JUMP_INSN:
60564289 6145 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
ec27069c 6146 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
969d70ca
JH
6147 break;
6148
b5b8b0ac
AO
6149 case DEBUG_INSN:
6150 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6151 break;
6152
969d70ca 6153 case CALL_INSN:
60564289 6154 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 6155 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 6156 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 6157 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
6158 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6159 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6160 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 6161 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 6162 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
6163 break;
6164
6165 default:
5b0264cb 6166 gcc_unreachable ();
969d70ca
JH
6167 }
6168
6169 /* Update LABEL_NUSES. */
60564289 6170 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 6171
5368224f 6172 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 6173
0a3d71f5
JW
6174 /* If the old insn is frame related, then so is the new one. This is
6175 primarily needed for IA-64 unwind info which marks epilogue insns,
6176 which may be duplicated by the basic block reordering code. */
60564289 6177 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 6178
cf7c4aa6
HPN
6179 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6180 will make them. REG_LABEL_TARGETs are created there too, but are
6181 supposed to be sticky, so we copy them. */
969d70ca 6182 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 6183 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
6184 {
6185 if (GET_CODE (link) == EXPR_LIST)
60564289 6186 add_reg_note (new_rtx, REG_NOTE_KIND (link),
65c5f2a6 6187 copy_insn_1 (XEXP (link, 0)));
969d70ca 6188 else
e5af9ddd 6189 add_shallow_copy_of_reg_note (new_rtx, link);
969d70ca
JH
6190 }
6191
60564289
KG
6192 INSN_CODE (new_rtx) = INSN_CODE (insn);
6193 return new_rtx;
969d70ca 6194}
e2500fed 6195
1431042e 6196static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d 6197rtx
ef4bddc2 6198gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
3e89ed8d
JH
6199{
6200 if (hard_reg_clobbers[mode][regno])
6201 return hard_reg_clobbers[mode][regno];
6202 else
6203 return (hard_reg_clobbers[mode][regno] =
6204 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6205}
6206
5368224f
DC
6207location_t prologue_location;
6208location_t epilogue_location;
78bde837
SB
6209
6210/* Hold current location information and last location information, so the
6211 datastructures are built lazily only when some instructions in given
6212 place are needed. */
3a50da34 6213static location_t curr_location;
78bde837 6214
5368224f 6215/* Allocate insn location datastructure. */
78bde837 6216void
5368224f 6217insn_locations_init (void)
78bde837 6218{
5368224f 6219 prologue_location = epilogue_location = 0;
78bde837 6220 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6221}
6222
6223/* At the end of emit stage, clear current location. */
6224void
5368224f 6225insn_locations_finalize (void)
78bde837 6226{
5368224f
DC
6227 epilogue_location = curr_location;
6228 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6229}
6230
6231/* Set current location. */
6232void
5368224f 6233set_curr_insn_location (location_t location)
78bde837 6234{
78bde837
SB
6235 curr_location = location;
6236}
6237
6238/* Get current location. */
6239location_t
5368224f 6240curr_insn_location (void)
78bde837
SB
6241{
6242 return curr_location;
6243}
6244
78bde837
SB
6245/* Return lexical scope block insn belongs to. */
6246tree
a1950df3 6247insn_scope (const rtx_insn *insn)
78bde837 6248{
5368224f 6249 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
6250}
6251
6252/* Return line number of the statement that produced this insn. */
6253int
a1950df3 6254insn_line (const rtx_insn *insn)
78bde837 6255{
5368224f 6256 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6257}
6258
6259/* Return source file of the statement that produced this insn. */
6260const char *
a1950df3 6261insn_file (const rtx_insn *insn)
78bde837 6262{
5368224f 6263 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6264}
8930883e 6265
ffa4602f
EB
6266/* Return expanded location of the statement that produced this insn. */
6267expanded_location
a1950df3 6268insn_location (const rtx_insn *insn)
ffa4602f
EB
6269{
6270 return expand_location (INSN_LOCATION (insn));
6271}
6272
8930883e
MK
6273/* Return true if memory model MODEL requires a pre-operation (release-style)
6274 barrier or a post-operation (acquire-style) barrier. While not universal,
6275 this function matches behavior of several targets. */
6276
6277bool
6278need_atomic_barrier_p (enum memmodel model, bool pre)
6279{
40ad260d 6280 switch (model & MEMMODEL_BASE_MASK)
8930883e
MK
6281 {
6282 case MEMMODEL_RELAXED:
6283 case MEMMODEL_CONSUME:
6284 return false;
6285 case MEMMODEL_RELEASE:
6286 return pre;
6287 case MEMMODEL_ACQUIRE:
6288 return !pre;
6289 case MEMMODEL_ACQ_REL:
6290 case MEMMODEL_SEQ_CST:
6291 return true;
6292 default:
6293 gcc_unreachable ();
6294 }
6295}
6296\f
e2500fed 6297#include "gt-emit-rtl.h"