]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
rtl.def (SUBREG): Update comments.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
e53a16e7 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
b6f65e3c 4 Free Software Foundation, Inc.
23b2ce53 5
1322177d 6This file is part of GCC.
23b2ce53 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
23b2ce53 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
23b2ce53
RS
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
f822fcf7
KH
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
23b2ce53
RS
35
36#include "config.h"
670ee920 37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
325217ed 53#include "fixed-value.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ef330312 59#include "tree-pass.h"
6fb5fa3c 60#include "df.h"
ca695ac9 61
1d445e9e
ILT
62/* Commonly used modes. */
63
0f41302f
MS
64enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 66enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 67enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 68
23b2ce53
RS
69
70/* This is *not* reset after each function. It gives each CODE_LABEL
71 in the entire compilation a unique label number. */
72
044b4de3 73static GTY(()) int label_num = 1;
23b2ce53 74
23b2ce53
RS
75/* Nonzero means do not generate NOTEs for source line numbers. */
76
77static int no_line_numbers;
78
79/* Commonly used rtx's, so that we only need space for one copy.
80 These are initialized once for the entire compilation.
5692c7bc
ZW
81 All of these are unique; no other rtx-object will be equal to any
82 of these. */
23b2ce53 83
5da077de 84rtx global_rtl[GR_MAX];
23b2ce53 85
6cde4876
JL
86/* Commonly used RTL for hard registers. These objects are not necessarily
87 unique, so we allocate them separately from global_rtl. They are
88 initialized once per compilation unit, then copied into regno_reg_rtx
89 at the beginning of each function. */
90static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91
23b2ce53
RS
92/* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx. */
95
96rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97
68d75312
JC
98rtx const_true_rtx;
99
23b2ce53
RS
100REAL_VALUE_TYPE dconst0;
101REAL_VALUE_TYPE dconst1;
102REAL_VALUE_TYPE dconst2;
f7657db9
KG
103REAL_VALUE_TYPE dconst3;
104REAL_VALUE_TYPE dconst10;
23b2ce53 105REAL_VALUE_TYPE dconstm1;
03f2ea93
RS
106REAL_VALUE_TYPE dconstm2;
107REAL_VALUE_TYPE dconsthalf;
f7657db9 108REAL_VALUE_TYPE dconstthird;
b86a760a 109REAL_VALUE_TYPE dconstsqrt2;
ab01a87c 110REAL_VALUE_TYPE dconste;
23b2ce53 111
325217ed
CF
112/* Record fixed-point constant 0 and 1. */
113FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
115
23b2ce53
RS
116/* All references to the following fixed hard registers go through
117 these unique rtl objects. On machines where the frame-pointer and
118 arg-pointer are the same register, they use the same unique object.
119
120 After register allocation, other rtl objects which used to be pseudo-regs
121 may be clobbered to refer to the frame-pointer register.
122 But references that were originally to the frame-pointer can be
123 distinguished from the others because they contain frame_pointer_rtx.
124
ac6f08b0
DE
125 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
126 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 127 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
128 register elimination hard_frame_pointer_rtx should always be used.
129 On machines where the two registers are same (most) then these are the
130 same.
131
23b2ce53
RS
132 In an inline procedure, the stack and frame pointer rtxs may not be
133 used for anything else. */
23b2ce53
RS
134rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
a4417a86
JW
138/* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
23b2ce53
RS
142/* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
146
5da077de 147rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 148
c13e8210
MM
149/* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
151
e2500fed
GK
152static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
c13e8210 154
173b24b9 155/* A hash table storing memory attribute structures. */
e2500fed
GK
156static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
173b24b9 158
a560d4d4
JH
159/* A hash table storing register attribute structures. */
160static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161 htab_t reg_attrs_htab;
162
5692c7bc 163/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
164static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165 htab_t const_double_htab;
5692c7bc 166
091a3ac7
CF
167/* A hash table storing all CONST_FIXEDs. */
168static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_fixed_htab;
170
01d939e8
BS
171#define first_insn (cfun->emit->x_first_insn)
172#define last_insn (cfun->emit->x_last_insn)
173#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
fd3acbb3 174#define last_location (cfun->emit->x_last_location)
01d939e8 175#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 176
502b8322 177static rtx make_call_insn_raw (rtx);
502b8322 178static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 179static void set_used_decls (tree);
502b8322
AJ
180static void mark_label_nuses (rtx);
181static hashval_t const_int_htab_hash (const void *);
182static int const_int_htab_eq (const void *, const void *);
183static hashval_t const_double_htab_hash (const void *);
184static int const_double_htab_eq (const void *, const void *);
185static rtx lookup_const_double (rtx);
091a3ac7
CF
186static hashval_t const_fixed_htab_hash (const void *);
187static int const_fixed_htab_eq (const void *, const void *);
188static rtx lookup_const_fixed (rtx);
502b8322
AJ
189static hashval_t mem_attrs_htab_hash (const void *);
190static int mem_attrs_htab_eq (const void *, const void *);
4862826d 191static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
502b8322
AJ
192 enum machine_mode);
193static hashval_t reg_attrs_htab_hash (const void *);
194static int reg_attrs_htab_eq (const void *, const void *);
195static reg_attrs *get_reg_attrs (tree, int);
196static tree component_ref_for_mem_expr (tree);
a73b091d 197static rtx gen_const_vector (enum machine_mode, int);
32b32b16 198static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 199
6b24c259
JH
200/* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202int split_branch_probability = -1;
ca695ac9 203\f
c13e8210
MM
204/* Returns a hash code for X (which is a really a CONST_INT). */
205
206static hashval_t
502b8322 207const_int_htab_hash (const void *x)
c13e8210 208{
f7d504c2 209 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
210}
211
cc2902df 212/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
215
216static int
502b8322 217const_int_htab_eq (const void *x, const void *y)
c13e8210 218{
f7d504c2 219 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
220}
221
222/* Returns a hash code for X (which is really a CONST_DOUBLE). */
223static hashval_t
502b8322 224const_double_htab_hash (const void *x)
5692c7bc 225{
f7d504c2 226 const_rtx const value = (const_rtx) x;
46b33600 227 hashval_t h;
5692c7bc 228
46b33600
RH
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
fe352c29 232 {
15c812e3 233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 }
5692c7bc
ZW
237 return h;
238}
239
cc2902df 240/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
241 is the same as that represented by Y (really a ...) */
242static int
502b8322 243const_double_htab_eq (const void *x, const void *y)
5692c7bc 244{
f7d504c2 245 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
8580f7a0
RH
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
255}
256
091a3ac7
CF
257/* Returns a hash code for X (which is really a CONST_FIXED). */
258
259static hashval_t
260const_fixed_htab_hash (const void *x)
261{
3101faab 262 const_rtx const value = (const_rtx) x;
091a3ac7
CF
263 hashval_t h;
264
265 h = fixed_hash (CONST_FIXED_VALUE (value));
266 /* MODE is used in the comparison, so it should be in the hash. */
267 h ^= GET_MODE (value);
268 return h;
269}
270
271/* Returns nonzero if the value represented by X (really a ...)
272 is the same as that represented by Y (really a ...). */
273
274static int
275const_fixed_htab_eq (const void *x, const void *y)
276{
3101faab 277 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
278
279 if (GET_MODE (a) != GET_MODE (b))
280 return 0;
281 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
282}
283
173b24b9
RK
284/* Returns a hash code for X (which is a really a mem_attrs *). */
285
286static hashval_t
502b8322 287mem_attrs_htab_hash (const void *x)
173b24b9 288{
f7d504c2 289 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
290
291 return (p->alias ^ (p->align * 1000)
292 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
293 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
78b76d08 294 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
295}
296
cc2902df 297/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
298 mem_attrs *) is the same as that given by Y (which is also really a
299 mem_attrs *). */
c13e8210
MM
300
301static int
502b8322 302mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 303{
741ac903
KG
304 const mem_attrs *const p = (const mem_attrs *) x;
305 const mem_attrs *const q = (const mem_attrs *) y;
173b24b9 306
78b76d08
SB
307 return (p->alias == q->alias && p->offset == q->offset
308 && p->size == q->size && p->align == q->align
309 && (p->expr == q->expr
310 || (p->expr != NULL_TREE && q->expr != NULL_TREE
311 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
312}
313
173b24b9 314/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
315 one identical to it is not already in the table. We are doing this for
316 MEM of mode MODE. */
173b24b9
RK
317
318static mem_attrs *
4862826d 319get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
502b8322 320 unsigned int align, enum machine_mode mode)
173b24b9
RK
321{
322 mem_attrs attrs;
323 void **slot;
324
bb056a77
OH
325 /* If everything is the default, we can just return zero.
326 This must match what the corresponding MEM_* macros return when the
327 field is not present. */
998d7deb 328 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
329 && (size == 0
330 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
331 && (STRICT_ALIGNMENT && mode != BLKmode
332 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
333 return 0;
334
173b24b9 335 attrs.alias = alias;
998d7deb 336 attrs.expr = expr;
173b24b9
RK
337 attrs.offset = offset;
338 attrs.size = size;
339 attrs.align = align;
340
341 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
342 if (*slot == 0)
343 {
344 *slot = ggc_alloc (sizeof (mem_attrs));
345 memcpy (*slot, &attrs, sizeof (mem_attrs));
346 }
347
348 return *slot;
c13e8210
MM
349}
350
a560d4d4
JH
351/* Returns a hash code for X (which is a really a reg_attrs *). */
352
353static hashval_t
502b8322 354reg_attrs_htab_hash (const void *x)
a560d4d4 355{
741ac903 356 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4
JH
357
358 return ((p->offset * 1000) ^ (long) p->decl);
359}
360
6356f892 361/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
362 reg_attrs *) is the same as that given by Y (which is also really a
363 reg_attrs *). */
364
365static int
502b8322 366reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 367{
741ac903
KG
368 const reg_attrs *const p = (const reg_attrs *) x;
369 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
370
371 return (p->decl == q->decl && p->offset == q->offset);
372}
373/* Allocate a new reg_attrs structure and insert it into the hash table if
374 one identical to it is not already in the table. We are doing this for
375 MEM of mode MODE. */
376
377static reg_attrs *
502b8322 378get_reg_attrs (tree decl, int offset)
a560d4d4
JH
379{
380 reg_attrs attrs;
381 void **slot;
382
383 /* If everything is the default, we can just return zero. */
384 if (decl == 0 && offset == 0)
385 return 0;
386
387 attrs.decl = decl;
388 attrs.offset = offset;
389
390 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
391 if (*slot == 0)
392 {
393 *slot = ggc_alloc (sizeof (reg_attrs));
394 memcpy (*slot, &attrs, sizeof (reg_attrs));
395 }
396
397 return *slot;
398}
399
6fb5fa3c
DB
400
401#if !HAVE_blockage
402/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
403 across this insn. */
404
405rtx
406gen_blockage (void)
407{
408 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
409 MEM_VOLATILE_P (x) = true;
410 return x;
411}
412#endif
413
414
08394eef
BS
415/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
416 don't attempt to share with the various global pieces of rtl (such as
417 frame_pointer_rtx). */
418
419rtx
502b8322 420gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
421{
422 rtx x = gen_rtx_raw_REG (mode, regno);
423 ORIGINAL_REGNO (x) = regno;
424 return x;
425}
426
c5c76735
JL
427/* There are some RTL codes that require special attention; the generation
428 functions do the raw handling. If you add to this list, modify
429 special_rtx in gengenrtl.c as well. */
430
3b80f6ca 431rtx
502b8322 432gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 433{
c13e8210
MM
434 void **slot;
435
3b80f6ca 436 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 437 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
438
439#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
440 if (const_true_rtx && arg == STORE_FLAG_VALUE)
441 return const_true_rtx;
442#endif
443
c13e8210 444 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
445 slot = htab_find_slot_with_hash (const_int_htab, &arg,
446 (hashval_t) arg, INSERT);
29105cea 447 if (*slot == 0)
1f8f4a0b 448 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
449
450 return (rtx) *slot;
3b80f6ca
RH
451}
452
2496c7bd 453rtx
502b8322 454gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
455{
456 return GEN_INT (trunc_int_for_mode (c, mode));
457}
458
5692c7bc
ZW
459/* CONST_DOUBLEs might be created from pairs of integers, or from
460 REAL_VALUE_TYPEs. Also, their length is known only at run time,
461 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
462
463/* Determine whether REAL, a CONST_DOUBLE, already exists in the
464 hash table. If so, return its counterpart; otherwise add it
465 to the hash table and return it. */
466static rtx
502b8322 467lookup_const_double (rtx real)
5692c7bc
ZW
468{
469 void **slot = htab_find_slot (const_double_htab, real, INSERT);
470 if (*slot == 0)
471 *slot = real;
472
473 return (rtx) *slot;
474}
29105cea 475
5692c7bc
ZW
476/* Return a CONST_DOUBLE rtx for a floating-point value specified by
477 VALUE in mode MODE. */
0133b7d9 478rtx
502b8322 479const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 480{
5692c7bc
ZW
481 rtx real = rtx_alloc (CONST_DOUBLE);
482 PUT_MODE (real, mode);
483
9e254451 484 real->u.rv = value;
5692c7bc
ZW
485
486 return lookup_const_double (real);
487}
488
091a3ac7
CF
489/* Determine whether FIXED, a CONST_FIXED, already exists in the
490 hash table. If so, return its counterpart; otherwise add it
491 to the hash table and return it. */
492
493static rtx
494lookup_const_fixed (rtx fixed)
495{
496 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
497 if (*slot == 0)
498 *slot = fixed;
499
500 return (rtx) *slot;
501}
502
503/* Return a CONST_FIXED rtx for a fixed-point value specified by
504 VALUE in mode MODE. */
505
506rtx
507const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
508{
509 rtx fixed = rtx_alloc (CONST_FIXED);
510 PUT_MODE (fixed, mode);
511
512 fixed->u.fv = value;
513
514 return lookup_const_fixed (fixed);
515}
516
5692c7bc
ZW
517/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
518 of ints: I0 is the low-order word and I1 is the high-order word.
519 Do not use this routine for non-integer modes; convert to
520 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
521
522rtx
502b8322 523immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
524{
525 rtx value;
526 unsigned int i;
527
65acccdd
ZD
528 /* There are the following cases (note that there are no modes with
529 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
530
531 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
532 gen_int_mode.
533 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
534 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
535 from copies of the sign bit, and sign of i0 and i1 are the same), then
536 we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
538 if (mode != VOIDmode)
539 {
5b0264cb
NS
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 545
65acccdd
ZD
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
548
549 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
5692c7bc
ZW
550 }
551
552 /* If this integer fits in one word, return a CONST_INT. */
553 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
554 return GEN_INT (i0);
555
556 /* We use VOIDmode for integers. */
557 value = rtx_alloc (CONST_DOUBLE);
558 PUT_MODE (value, VOIDmode);
559
560 CONST_DOUBLE_LOW (value) = i0;
561 CONST_DOUBLE_HIGH (value) = i1;
562
563 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
564 XWINT (value, i) = 0;
565
566 return lookup_const_double (value);
0133b7d9
RH
567}
568
3b80f6ca 569rtx
502b8322 570gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
571{
572 /* In case the MD file explicitly references the frame pointer, have
573 all such references point to the same frame pointer. This is
574 used during frame pointer elimination to distinguish the explicit
575 references to these registers from pseudos that happened to be
576 assigned to them.
577
578 If we have eliminated the frame pointer or arg pointer, we will
579 be using it as a normal register, for example as a spill
580 register. In such cases, we might be accessing it in a mode that
581 is not Pmode and therefore cannot use the pre-allocated rtx.
582
583 Also don't do this when we are making new REGs in reload, since
584 we don't want to get confused with the real pointers. */
585
586 if (mode == Pmode && !reload_in_progress)
587 {
e10c79fe
LB
588 if (regno == FRAME_POINTER_REGNUM
589 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
590 return frame_pointer_rtx;
591#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
592 if (regno == HARD_FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
594 return hard_frame_pointer_rtx;
595#endif
596#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 597 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
598 return arg_pointer_rtx;
599#endif
600#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 601 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
602 return return_address_pointer_rtx;
603#endif
fc555370 604 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 605 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 606 return pic_offset_table_rtx;
bcb33994 607 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
608 return stack_pointer_rtx;
609 }
610
006a94b0 611#if 0
6cde4876 612 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
613 an existing entry in that table to avoid useless generation of RTL.
614
615 This code is disabled for now until we can fix the various backends
616 which depend on having non-shared hard registers in some cases. Long
617 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
618 on the amount of useless RTL that gets generated.
619
620 We'll also need to fix some code that runs after reload that wants to
621 set ORIGINAL_REGNO. */
622
6cde4876
JL
623 if (cfun
624 && cfun->emit
625 && regno_reg_rtx
626 && regno < FIRST_PSEUDO_REGISTER
627 && reg_raw_mode[regno] == mode)
628 return regno_reg_rtx[regno];
006a94b0 629#endif
6cde4876 630
08394eef 631 return gen_raw_REG (mode, regno);
3b80f6ca
RH
632}
633
41472af8 634rtx
502b8322 635gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
636{
637 rtx rt = gen_rtx_raw_MEM (mode, addr);
638
639 /* This field is not cleared by the mere allocation of the rtx, so
640 we clear it here. */
173b24b9 641 MEM_ATTRS (rt) = 0;
41472af8
MM
642
643 return rt;
644}
ddef6bc7 645
542a8afa
RH
646/* Generate a memory referring to non-trapping constant memory. */
647
648rtx
649gen_const_mem (enum machine_mode mode, rtx addr)
650{
651 rtx mem = gen_rtx_MEM (mode, addr);
652 MEM_READONLY_P (mem) = 1;
653 MEM_NOTRAP_P (mem) = 1;
654 return mem;
655}
656
bf877a76
R
657/* Generate a MEM referring to fixed portions of the frame, e.g., register
658 save areas. */
659
660rtx
661gen_frame_mem (enum machine_mode mode, rtx addr)
662{
663 rtx mem = gen_rtx_MEM (mode, addr);
664 MEM_NOTRAP_P (mem) = 1;
665 set_mem_alias_set (mem, get_frame_alias_set ());
666 return mem;
667}
668
669/* Generate a MEM referring to a temporary use of the stack, not part
670 of the fixed stack frame. For example, something which is pushed
671 by a target splitter. */
672rtx
673gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
674{
675 rtx mem = gen_rtx_MEM (mode, addr);
676 MEM_NOTRAP_P (mem) = 1;
677 if (!current_function_calls_alloca)
678 set_mem_alias_set (mem, get_frame_alias_set ());
679 return mem;
680}
681
beb72684
RH
682/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
683 this construct would be valid, and false otherwise. */
684
685bool
686validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 687 const_rtx reg, unsigned int offset)
ddef6bc7 688{
beb72684
RH
689 unsigned int isize = GET_MODE_SIZE (imode);
690 unsigned int osize = GET_MODE_SIZE (omode);
691
692 /* All subregs must be aligned. */
693 if (offset % osize != 0)
694 return false;
695
696 /* The subreg offset cannot be outside the inner object. */
697 if (offset >= isize)
698 return false;
699
700 /* ??? This should not be here. Temporarily continue to allow word_mode
701 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
702 Generally, backends are doing something sketchy but it'll take time to
703 fix them all. */
704 if (omode == word_mode)
705 ;
706 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
707 is the culprit here, and not the backends. */
708 else if (osize >= UNITS_PER_WORD && isize >= osize)
709 ;
710 /* Allow component subregs of complex and vector. Though given the below
711 extraction rules, it's not always clear what that means. */
712 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
713 && GET_MODE_INNER (imode) == omode)
714 ;
715 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
716 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
717 represent this. It's questionable if this ought to be represented at
718 all -- why can't this all be hidden in post-reload splitters that make
719 arbitrarily mode changes to the registers themselves. */
720 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
721 ;
722 /* Subregs involving floating point modes are not allowed to
723 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
724 (subreg:SI (reg:DF) 0) isn't. */
725 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
726 {
727 if (isize != osize)
728 return false;
729 }
ddef6bc7 730
beb72684
RH
731 /* Paradoxical subregs must have offset zero. */
732 if (osize > isize)
733 return offset == 0;
734
735 /* This is a normal subreg. Verify that the offset is representable. */
736
737 /* For hard registers, we already have most of these rules collected in
738 subreg_offset_representable_p. */
739 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
740 {
741 unsigned int regno = REGNO (reg);
742
743#ifdef CANNOT_CHANGE_MODE_CLASS
744 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
745 && GET_MODE_INNER (imode) == omode)
746 ;
747 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
748 return false;
ddef6bc7 749#endif
beb72684
RH
750
751 return subreg_offset_representable_p (regno, imode, offset, omode);
752 }
753
754 /* For pseudo registers, we want most of the same checks. Namely:
755 If the register no larger than a word, the subreg must be lowpart.
756 If the register is larger than a word, the subreg must be the lowpart
757 of a subword. A subreg does *not* perform arbitrary bit extraction.
758 Given that we've already checked mode/offset alignment, we only have
759 to check subword subregs here. */
760 if (osize < UNITS_PER_WORD)
761 {
762 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
763 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
764 if (offset % UNITS_PER_WORD != low_off)
765 return false;
766 }
767 return true;
768}
769
770rtx
771gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
772{
773 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 774 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
775}
776
173b24b9
RK
777/* Generate a SUBREG representing the least-significant part of REG if MODE
778 is smaller than mode of REG, otherwise paradoxical SUBREG. */
779
ddef6bc7 780rtx
502b8322 781gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
782{
783 enum machine_mode inmode;
ddef6bc7
JJ
784
785 inmode = GET_MODE (reg);
786 if (inmode == VOIDmode)
787 inmode = mode;
e0e08ac2
JH
788 return gen_rtx_SUBREG (mode, reg,
789 subreg_lowpart_offset (mode, inmode));
ddef6bc7 790}
c5c76735 791\f
23b2ce53
RS
792/* gen_rtvec (n, [rt1, ..., rtn])
793**
794** This routine creates an rtvec and stores within it the
795** pointers to rtx's which are its arguments.
796*/
797
798/*VARARGS1*/
799rtvec
e34d07f2 800gen_rtvec (int n, ...)
23b2ce53 801{
6268b922 802 int i, save_n;
23b2ce53 803 rtx *vector;
e34d07f2 804 va_list p;
23b2ce53 805
e34d07f2 806 va_start (p, n);
23b2ce53
RS
807
808 if (n == 0)
809 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
810
703ad42b 811 vector = alloca (n * sizeof (rtx));
4f90e4a0 812
23b2ce53
RS
813 for (i = 0; i < n; i++)
814 vector[i] = va_arg (p, rtx);
6268b922
KG
815
816 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
817 save_n = n;
e34d07f2 818 va_end (p);
23b2ce53 819
6268b922 820 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
821}
822
823rtvec
502b8322 824gen_rtvec_v (int n, rtx *argp)
23b2ce53 825{
b3694847
SS
826 int i;
827 rtvec rt_val;
23b2ce53
RS
828
829 if (n == 0)
830 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
831
832 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
833
834 for (i = 0; i < n; i++)
8f985ec4 835 rt_val->elem[i] = *argp++;
23b2ce53
RS
836
837 return rt_val;
838}
839\f
38ae7651
RS
840/* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
845
846int
847byte_lowpart_offset (enum machine_mode outer_mode,
848 enum machine_mode inner_mode)
849{
850 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
851 return subreg_lowpart_offset (outer_mode, inner_mode);
852 else
853 return -subreg_lowpart_offset (inner_mode, outer_mode);
854}
855\f
23b2ce53
RS
856/* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
858
859rtx
502b8322 860gen_reg_rtx (enum machine_mode mode)
23b2ce53 861{
01d939e8 862 struct function *f = cfun;
b3694847 863 rtx val;
23b2ce53 864
f8335a4f 865 gcc_assert (can_create_pseudo_p ());
23b2ce53 866
1b3d8f8a
GK
867 if (generating_concat_p
868 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
869 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
870 {
871 /* For complex modes, don't make a single pseudo.
872 Instead, make a CONCAT of two pseudos.
873 This allows noncontiguous allocation of the real and imaginary parts,
874 which makes much better code. Besides, allocating DCmode
875 pseudos overstrains reload on some machines like the 386. */
876 rtx realpart, imagpart;
27e58a70 877 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
878
879 realpart = gen_reg_rtx (partmode);
880 imagpart = gen_reg_rtx (partmode);
3b80f6ca 881 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
882 }
883
a560d4d4 884 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 885 enough to have an element for this pseudo reg number. */
23b2ce53 886
3502dc9c 887 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 888 {
3502dc9c 889 int old_size = f->emit->regno_pointer_align_length;
e2ecd91c 890 char *new;
0d4903b8 891 rtx *new1;
0d4903b8 892
e2500fed 893 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 894 memset (new + old_size, 0, old_size);
f9e158c3 895 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 896
703ad42b
KG
897 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
898 old_size * 2 * sizeof (rtx));
49ad7cfa 899 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
900 regno_reg_rtx = new1;
901
3502dc9c 902 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
903 }
904
08394eef 905 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
906 regno_reg_rtx[reg_rtx_no++] = val;
907 return val;
908}
909
38ae7651
RS
910/* Update NEW with the same attributes as REG, but with OFFSET added
911 to the REG_OFFSET. */
a560d4d4 912
e53a16e7
ILT
913static void
914update_reg_offset (rtx new, rtx reg, int offset)
a560d4d4 915{
a560d4d4 916 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
502b8322 917 REG_OFFSET (reg) + offset);
e53a16e7
ILT
918}
919
38ae7651
RS
920/* Generate a register with same attributes as REG, but with OFFSET
921 added to the REG_OFFSET. */
e53a16e7
ILT
922
923rtx
924gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
925 int offset)
926{
927 rtx new = gen_rtx_REG (mode, regno);
928
929 update_reg_offset (new, reg, offset);
930 return new;
931}
932
933/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 934 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
935
936rtx
937gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
938{
939 rtx new = gen_reg_rtx (mode);
940
941 update_reg_offset (new, reg, offset);
a560d4d4
JH
942 return new;
943}
944
38ae7651
RS
945/* Adjust REG in-place so that it has mode MODE. It is assumed that the
946 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
947
948void
38ae7651 949adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 950{
38ae7651
RS
951 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
952 PUT_MODE (reg, mode);
953}
954
955/* Copy REG's attributes from X, if X has any attributes. If REG and X
956 have different modes, REG is a (possibly paradoxical) lowpart of X. */
957
958void
959set_reg_attrs_from_value (rtx reg, rtx x)
960{
961 int offset;
962
963 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
964 if (MEM_P (x) && MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
a560d4d4 965 REG_ATTRS (reg)
38ae7651
RS
966 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
967 if (REG_P (x) && REG_ATTRS (x))
968 update_reg_offset (reg, x, offset);
a560d4d4
JH
969}
970
9d18e06b
JZ
971/* Set the register attributes for registers contained in PARM_RTX.
972 Use needed values from memory attributes of MEM. */
973
974void
502b8322 975set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 976{
f8cfc6aa 977 if (REG_P (parm_rtx))
38ae7651 978 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
979 else if (GET_CODE (parm_rtx) == PARALLEL)
980 {
981 /* Check for a NULL entry in the first slot, used to indicate that the
982 parameter goes both on the stack and in registers. */
983 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
984 for (; i < XVECLEN (parm_rtx, 0); i++)
985 {
986 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 987 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
988 REG_ATTRS (XEXP (x, 0))
989 = get_reg_attrs (MEM_EXPR (mem),
990 INTVAL (XEXP (x, 1)));
991 }
992 }
993}
994
38ae7651
RS
995/* Set the REG_ATTRS for registers in value X, given that X represents
996 decl T. */
a560d4d4 997
38ae7651
RS
998static void
999set_reg_attrs_for_decl_rtl (tree t, rtx x)
1000{
1001 if (GET_CODE (x) == SUBREG)
fbe6ec81 1002 {
38ae7651
RS
1003 gcc_assert (subreg_lowpart_p (x));
1004 x = SUBREG_REG (x);
fbe6ec81 1005 }
f8cfc6aa 1006 if (REG_P (x))
38ae7651
RS
1007 REG_ATTRS (x)
1008 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1009 TYPE_MODE (TREE_TYPE (t))));
a560d4d4
JH
1010 if (GET_CODE (x) == CONCAT)
1011 {
1012 if (REG_P (XEXP (x, 0)))
1013 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1014 if (REG_P (XEXP (x, 1)))
1015 REG_ATTRS (XEXP (x, 1))
1016 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1017 }
1018 if (GET_CODE (x) == PARALLEL)
1019 {
d4afac5b
JZ
1020 int i, start;
1021
1022 /* Check for a NULL entry, used to indicate that the parameter goes
1023 both on the stack and in registers. */
1024 if (XEXP (XVECEXP (x, 0, 0), 0))
1025 start = 0;
1026 else
1027 start = 1;
1028
1029 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1030 {
1031 rtx y = XVECEXP (x, 0, i);
1032 if (REG_P (XEXP (y, 0)))
1033 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1034 }
1035 }
1036}
1037
38ae7651
RS
1038/* Assign the RTX X to declaration T. */
1039
1040void
1041set_decl_rtl (tree t, rtx x)
1042{
1043 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1044 if (x)
1045 set_reg_attrs_for_decl_rtl (t, x);
1046}
1047
1048/* Assign the RTX X to parameter declaration T. */
1049
1050void
1051set_decl_incoming_rtl (tree t, rtx x)
1052{
1053 DECL_INCOMING_RTL (t) = x;
1054 if (x)
1055 set_reg_attrs_for_decl_rtl (t, x);
1056}
1057
754fdcca
RK
1058/* Identify REG (which may be a CONCAT) as a user register. */
1059
1060void
502b8322 1061mark_user_reg (rtx reg)
754fdcca
RK
1062{
1063 if (GET_CODE (reg) == CONCAT)
1064 {
1065 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1066 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1067 }
754fdcca 1068 else
5b0264cb
NS
1069 {
1070 gcc_assert (REG_P (reg));
1071 REG_USERVAR_P (reg) = 1;
1072 }
754fdcca
RK
1073}
1074
86fe05e0
RK
1075/* Identify REG as a probable pointer register and show its alignment
1076 as ALIGN, if nonzero. */
23b2ce53
RS
1077
1078void
502b8322 1079mark_reg_pointer (rtx reg, int align)
23b2ce53 1080{
3502dc9c 1081 if (! REG_POINTER (reg))
00995e78 1082 {
3502dc9c 1083 REG_POINTER (reg) = 1;
86fe05e0 1084
00995e78
RE
1085 if (align)
1086 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1087 }
1088 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1089 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1090 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1091}
1092
1093/* Return 1 plus largest pseudo reg number used in the current function. */
1094
1095int
502b8322 1096max_reg_num (void)
23b2ce53
RS
1097{
1098 return reg_rtx_no;
1099}
1100
1101/* Return 1 + the largest label number used so far in the current function. */
1102
1103int
502b8322 1104max_label_num (void)
23b2ce53 1105{
23b2ce53
RS
1106 return label_num;
1107}
1108
1109/* Return first label number used in this function (if any were used). */
1110
1111int
502b8322 1112get_first_label_num (void)
23b2ce53
RS
1113{
1114 return first_label_num;
1115}
6de9cd9a
DN
1116
1117/* If the rtx for label was created during the expansion of a nested
1118 function, then first_label_num won't include this label number.
1119 Fix this now so that array indicies work later. */
1120
1121void
1122maybe_set_first_label_num (rtx x)
1123{
1124 if (CODE_LABEL_NUMBER (x) < first_label_num)
1125 first_label_num = CODE_LABEL_NUMBER (x);
1126}
23b2ce53
RS
1127\f
1128/* Return a value representing some low-order bits of X, where the number
1129 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1130 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1131 representation is returned.
1132
1133 This function handles the cases in common between gen_lowpart, below,
1134 and two variants in cse.c and combine.c. These are the cases that can
1135 be safely handled at all points in the compilation.
1136
1137 If this is not a case we can handle, return 0. */
1138
1139rtx
502b8322 1140gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1141{
ddef6bc7 1142 int msize = GET_MODE_SIZE (mode);
550d1387 1143 int xsize;
ddef6bc7 1144 int offset = 0;
550d1387
GK
1145 enum machine_mode innermode;
1146
1147 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1148 so we have to make one up. Yuk. */
1149 innermode = GET_MODE (x);
db487452
R
1150 if (GET_CODE (x) == CONST_INT
1151 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1152 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1153 else if (innermode == VOIDmode)
1154 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1155
1156 xsize = GET_MODE_SIZE (innermode);
1157
5b0264cb 1158 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1159
550d1387 1160 if (innermode == mode)
23b2ce53
RS
1161 return x;
1162
1163 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1164 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1165 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1166 return 0;
1167
53501a19 1168 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1169 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1170 return 0;
1171
550d1387 1172 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1173
1174 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1175 && (GET_MODE_CLASS (mode) == MODE_INT
1176 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1177 {
1178 /* If we are getting the low-order part of something that has been
1179 sign- or zero-extended, we can either just use the object being
1180 extended or make a narrower extension. If we want an even smaller
1181 piece than the size of the object being extended, call ourselves
1182 recursively.
1183
1184 This case is used mostly by combine and cse. */
1185
1186 if (GET_MODE (XEXP (x, 0)) == mode)
1187 return XEXP (x, 0);
550d1387 1188 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1189 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1190 else if (msize < xsize)
3b80f6ca 1191 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1192 }
f8cfc6aa 1193 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387
GK
1194 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1195 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1196 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1197
23b2ce53
RS
1198 /* Otherwise, we can't do this. */
1199 return 0;
1200}
1201\f
ccba022b 1202rtx
502b8322 1203gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1204{
ddef6bc7 1205 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1206 rtx result;
ddef6bc7 1207
ccba022b
RS
1208 /* This case loses if X is a subreg. To catch bugs early,
1209 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1210 gcc_assert (msize <= UNITS_PER_WORD
1211 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1212
e0e08ac2
JH
1213 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1214 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb
NS
1215 gcc_assert (result);
1216
09482e0d
JW
1217 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1218 the target if we have a MEM. gen_highpart must return a valid operand,
1219 emitting code if necessary to do so. */
5b0264cb
NS
1220 if (MEM_P (result))
1221 {
1222 result = validize_mem (result);
1223 gcc_assert (result);
1224 }
1225
e0e08ac2
JH
1226 return result;
1227}
5222e470 1228
26d249eb 1229/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1230 be VOIDmode constant. */
1231rtx
502b8322 1232gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1233{
1234 if (GET_MODE (exp) != VOIDmode)
1235 {
5b0264cb 1236 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1237 return gen_highpart (outermode, exp);
1238 }
1239 return simplify_gen_subreg (outermode, exp, innermode,
1240 subreg_highpart_offset (outermode, innermode));
1241}
68252e27 1242
38ae7651 1243/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1244
e0e08ac2 1245unsigned int
502b8322 1246subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1247{
1248 unsigned int offset = 0;
1249 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1250
e0e08ac2 1251 if (difference > 0)
ccba022b 1252 {
e0e08ac2
JH
1253 if (WORDS_BIG_ENDIAN)
1254 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1255 if (BYTES_BIG_ENDIAN)
1256 offset += difference % UNITS_PER_WORD;
ccba022b 1257 }
ddef6bc7 1258
e0e08ac2 1259 return offset;
ccba022b 1260}
eea50aa0 1261
e0e08ac2
JH
1262/* Return offset in bytes to get OUTERMODE high part
1263 of the value in mode INNERMODE stored in memory in target format. */
1264unsigned int
502b8322 1265subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1266{
1267 unsigned int offset = 0;
1268 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1269
5b0264cb 1270 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1271
eea50aa0
JH
1272 if (difference > 0)
1273 {
e0e08ac2 1274 if (! WORDS_BIG_ENDIAN)
eea50aa0 1275 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1276 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1277 offset += difference % UNITS_PER_WORD;
1278 }
1279
e0e08ac2 1280 return offset;
eea50aa0 1281}
ccba022b 1282
23b2ce53
RS
1283/* Return 1 iff X, assumed to be a SUBREG,
1284 refers to the least significant part of its containing reg.
1285 If X is not a SUBREG, always return 1 (it is its own low part!). */
1286
1287int
fa233e34 1288subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1289{
1290 if (GET_CODE (x) != SUBREG)
1291 return 1;
a3a03040
RK
1292 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1293 return 0;
23b2ce53 1294
e0e08ac2
JH
1295 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1296 == SUBREG_BYTE (x));
23b2ce53
RS
1297}
1298\f
ddef6bc7
JJ
1299/* Return subword OFFSET of operand OP.
1300 The word number, OFFSET, is interpreted as the word number starting
1301 at the low-order address. OFFSET 0 is the low-order word if not
1302 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1303
1304 If we cannot extract the required word, we return zero. Otherwise,
1305 an rtx corresponding to the requested word will be returned.
1306
1307 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1308 reload has completed, a valid address will always be returned. After
1309 reload, if a valid address cannot be returned, we return zero.
1310
1311 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1312 it is the responsibility of the caller.
1313
1314 MODE is the mode of OP in case it is a CONST_INT.
1315
1316 ??? This is still rather broken for some cases. The problem for the
1317 moment is that all callers of this thing provide no 'goal mode' to
1318 tell us to work with. This exists because all callers were written
0631e0bf
JH
1319 in a word based SUBREG world.
1320 Now use of this function can be deprecated by simplify_subreg in most
1321 cases.
1322 */
ddef6bc7
JJ
1323
1324rtx
502b8322 1325operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1326{
1327 if (mode == VOIDmode)
1328 mode = GET_MODE (op);
1329
5b0264cb 1330 gcc_assert (mode != VOIDmode);
ddef6bc7 1331
30f7a378 1332 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1333 if (mode != BLKmode
1334 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1335 return 0;
1336
30f7a378 1337 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1338 if (mode != BLKmode
1339 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1340 return const0_rtx;
1341
ddef6bc7 1342 /* Form a new MEM at the requested address. */
3c0cb5de 1343 if (MEM_P (op))
ddef6bc7 1344 {
f1ec5147 1345 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1346
f1ec5147
RK
1347 if (! validate_address)
1348 return new;
1349
1350 else if (reload_completed)
ddef6bc7 1351 {
f1ec5147
RK
1352 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1353 return 0;
ddef6bc7 1354 }
f1ec5147
RK
1355 else
1356 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1357 }
1358
0631e0bf
JH
1359 /* Rest can be handled by simplify_subreg. */
1360 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1361}
1362
535a42b1
NS
1363/* Similar to `operand_subword', but never return 0. If we can't
1364 extract the required subword, put OP into a register and try again.
1365 The second attempt must succeed. We always validate the address in
1366 this case.
23b2ce53
RS
1367
1368 MODE is the mode of OP, in case it is CONST_INT. */
1369
1370rtx
502b8322 1371operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1372{
ddef6bc7 1373 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1374
1375 if (result)
1376 return result;
1377
1378 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1379 {
1380 /* If this is a register which can not be accessed by words, copy it
1381 to a pseudo register. */
f8cfc6aa 1382 if (REG_P (op))
77e6b0eb
JC
1383 op = copy_to_reg (op);
1384 else
1385 op = force_reg (mode, op);
1386 }
23b2ce53 1387
ddef6bc7 1388 result = operand_subword (op, offset, 1, mode);
5b0264cb 1389 gcc_assert (result);
23b2ce53
RS
1390
1391 return result;
1392}
1393\f
998d7deb
RH
1394/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1395 or (2) a component ref of something variable. Represent the later with
1396 a NULL expression. */
1397
1398static tree
502b8322 1399component_ref_for_mem_expr (tree ref)
998d7deb
RH
1400{
1401 tree inner = TREE_OPERAND (ref, 0);
1402
1403 if (TREE_CODE (inner) == COMPONENT_REF)
1404 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1405 else
1406 {
c56e3582 1407 /* Now remove any conversions: they don't change what the underlying
6fce44af 1408 object is. Likewise for SAVE_EXPR. */
c56e3582
RK
1409 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1410 || TREE_CODE (inner) == NON_LVALUE_EXPR
1411 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
6fce44af
RK
1412 || TREE_CODE (inner) == SAVE_EXPR)
1413 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1414
1415 if (! DECL_P (inner))
1416 inner = NULL_TREE;
1417 }
998d7deb
RH
1418
1419 if (inner == TREE_OPERAND (ref, 0))
1420 return ref;
1421 else
3244e67d
RS
1422 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1423 TREE_OPERAND (ref, 1), NULL_TREE);
998d7deb 1424}
173b24b9 1425
2b3493c8
AK
1426/* Returns 1 if both MEM_EXPR can be considered equal
1427 and 0 otherwise. */
1428
1429int
4f588890 1430mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1431{
1432 if (expr1 == expr2)
1433 return 1;
1434
1435 if (! expr1 || ! expr2)
1436 return 0;
1437
1438 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1439 return 0;
1440
1441 if (TREE_CODE (expr1) == COMPONENT_REF)
1442 return
1443 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1444 TREE_OPERAND (expr2, 0))
1445 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1446 TREE_OPERAND (expr2, 1));
1447
1b096a0a 1448 if (INDIRECT_REF_P (expr1))
2b3493c8
AK
1449 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1450 TREE_OPERAND (expr2, 0));
2b3493c8 1451
5b0264cb 1452 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
2b3493c8 1453 have been resolved here. */
5b0264cb
NS
1454 gcc_assert (DECL_P (expr1));
1455
1456 /* Decls with different pointers can't be equal. */
1457 return 0;
2b3493c8
AK
1458}
1459
173b24b9
RK
1460/* Given REF, a MEM, and T, either the type of X or the expression
1461 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1462 if we are making a new object of this type. BITPOS is nonzero if
1463 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1464
1465void
502b8322
AJ
1466set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1467 HOST_WIDE_INT bitpos)
173b24b9 1468{
4862826d 1469 alias_set_type alias = MEM_ALIAS_SET (ref);
998d7deb 1470 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1471 rtx offset = MEM_OFFSET (ref);
1472 rtx size = MEM_SIZE (ref);
1473 unsigned int align = MEM_ALIGN (ref);
6f1087be 1474 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1475 tree type;
1476
1477 /* It can happen that type_for_mode was given a mode for which there
1478 is no language-level type. In which case it returns NULL, which
1479 we can see here. */
1480 if (t == NULL_TREE)
1481 return;
1482
1483 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1484 if (type == error_mark_node)
1485 return;
173b24b9 1486
173b24b9
RK
1487 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1488 wrong answer, as it assumes that DECL_RTL already has the right alias
1489 info. Callers should not set DECL_RTL until after the call to
1490 set_mem_attributes. */
5b0264cb 1491 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1492
738cc472 1493 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1494 front-end routine) and use it. */
1495 alias = get_alias_set (t);
173b24b9 1496
a5e9c810 1497 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
07cb6e8c
JM
1498 MEM_IN_STRUCT_P (ref)
1499 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
f8ad8d7c 1500 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1501
8ac61af7
RK
1502 /* If we are making an object of this type, or if this is a DECL, we know
1503 that it is a scalar if the type is not an aggregate. */
07cb6e8c
JM
1504 if ((objectp || DECL_P (t))
1505 && ! AGGREGATE_TYPE_P (type)
1506 && TREE_CODE (type) != COMPLEX_TYPE)
173b24b9
RK
1507 MEM_SCALAR_P (ref) = 1;
1508
c3d32120
RK
1509 /* We can set the alignment from the type if we are making an object,
1510 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
7ccf35ed
DN
1511 if (objectp || TREE_CODE (t) == INDIRECT_REF
1512 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1513 || TYPE_ALIGN_OK (type))
c3d32120 1514 align = MAX (align, TYPE_ALIGN (type));
7ccf35ed
DN
1515 else
1516 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1517 {
1518 if (integer_zerop (TREE_OPERAND (t, 1)))
1519 /* We don't know anything about the alignment. */
1520 align = BITS_PER_UNIT;
1521 else
1522 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1523 }
40c0668b 1524
738cc472
RK
1525 /* If the size is known, we can set that. */
1526 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1527 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1528
80965c18
RK
1529 /* If T is not a type, we may be able to deduce some more information about
1530 the expression. */
1531 if (! TYPE_P (t))
8ac61af7 1532 {
8476af98 1533 tree base;
389fdba0 1534
8ac61af7
RK
1535 if (TREE_THIS_VOLATILE (t))
1536 MEM_VOLATILE_P (ref) = 1;
173b24b9 1537
c56e3582
RK
1538 /* Now remove any conversions: they don't change what the underlying
1539 object is. Likewise for SAVE_EXPR. */
8ac61af7 1540 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
c56e3582
RK
1541 || TREE_CODE (t) == NON_LVALUE_EXPR
1542 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1543 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1544 t = TREE_OPERAND (t, 0);
1545
8476af98
RH
1546 /* We may look through structure-like accesses for the purposes of
1547 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1548 base = t;
1549 while (TREE_CODE (base) == COMPONENT_REF
1550 || TREE_CODE (base) == REALPART_EXPR
1551 || TREE_CODE (base) == IMAGPART_EXPR
1552 || TREE_CODE (base) == BIT_FIELD_REF)
1553 base = TREE_OPERAND (base, 0);
1554
1555 if (DECL_P (base))
1556 {
1557 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1558 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1559 else
1560 MEM_NOTRAP_P (ref) = 1;
1561 }
1562 else
1563 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1564
1565 base = get_base_address (base);
1566 if (base && DECL_P (base)
1567 && TREE_READONLY (base)
1568 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1569 {
1570 tree base_type = TREE_TYPE (base);
1571 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1572 || DECL_ARTIFICIAL (base));
1573 MEM_READONLY_P (ref) = 1;
1574 }
1575
2039d7aa
RH
1576 /* If this expression uses it's parent's alias set, mark it such
1577 that we won't change it. */
1578 if (component_uses_parent_alias_set (t))
10b76d73
RK
1579 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1580
8ac61af7
RK
1581 /* If this is a decl, set the attributes of the MEM from it. */
1582 if (DECL_P (t))
1583 {
998d7deb
RH
1584 expr = t;
1585 offset = const0_rtx;
6f1087be 1586 apply_bitpos = bitpos;
8ac61af7
RK
1587 size = (DECL_SIZE_UNIT (t)
1588 && host_integerp (DECL_SIZE_UNIT (t), 1)
1589 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1590 align = DECL_ALIGN (t);
8ac61af7
RK
1591 }
1592
40c0668b 1593 /* If this is a constant, we know the alignment. */
6615c446 1594 else if (CONSTANT_CLASS_P (t))
9ddfb1a7
RK
1595 {
1596 align = TYPE_ALIGN (type);
1597#ifdef CONSTANT_ALIGNMENT
1598 align = CONSTANT_ALIGNMENT (t, align);
1599#endif
1600 }
998d7deb
RH
1601
1602 /* If this is a field reference and not a bit-field, record it. */
1603 /* ??? There is some information that can be gleened from bit-fields,
1604 such as the word offset in the structure that might be modified.
1605 But skip it for now. */
1606 else if (TREE_CODE (t) == COMPONENT_REF
1607 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1608 {
1609 expr = component_ref_for_mem_expr (t);
1610 offset = const0_rtx;
6f1087be 1611 apply_bitpos = bitpos;
998d7deb
RH
1612 /* ??? Any reason the field size would be different than
1613 the size we got from the type? */
1614 }
1615
1616 /* If this is an array reference, look for an outer field reference. */
1617 else if (TREE_CODE (t) == ARRAY_REF)
1618 {
1619 tree off_tree = size_zero_node;
1b1838b6
JW
1620 /* We can't modify t, because we use it at the end of the
1621 function. */
1622 tree t2 = t;
998d7deb
RH
1623
1624 do
1625 {
1b1838b6 1626 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1627 tree low_bound = array_ref_low_bound (t2);
1628 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1629
1630 /* We assume all arrays have sizes that are a multiple of a byte.
1631 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1632 index, then convert to sizetype and multiply by the size of
1633 the array element. */
1634 if (! integer_zerop (low_bound))
4845b383
KH
1635 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1636 index, low_bound);
2567406a 1637
44de5aeb 1638 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1639 size_binop (MULT_EXPR,
1640 fold_convert (sizetype,
1641 index),
44de5aeb
RK
1642 unit_size),
1643 off_tree);
1b1838b6 1644 t2 = TREE_OPERAND (t2, 0);
998d7deb 1645 }
1b1838b6 1646 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1647
1b1838b6 1648 if (DECL_P (t2))
c67a1cf6 1649 {
1b1838b6 1650 expr = t2;
40cb04f1 1651 offset = NULL;
c67a1cf6 1652 if (host_integerp (off_tree, 1))
40cb04f1
RH
1653 {
1654 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1655 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1b1838b6 1656 align = DECL_ALIGN (t2);
fc555370 1657 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1
RH
1658 align = aoff;
1659 offset = GEN_INT (ioff);
6f1087be 1660 apply_bitpos = bitpos;
40cb04f1 1661 }
c67a1cf6 1662 }
1b1838b6 1663 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1664 {
1b1838b6 1665 expr = component_ref_for_mem_expr (t2);
998d7deb 1666 if (host_integerp (off_tree, 1))
6f1087be
RH
1667 {
1668 offset = GEN_INT (tree_low_cst (off_tree, 1));
1669 apply_bitpos = bitpos;
1670 }
998d7deb
RH
1671 /* ??? Any reason the field size would be different than
1672 the size we got from the type? */
1673 }
c67a1cf6 1674 else if (flag_argument_noalias > 1
1b096a0a 1675 && (INDIRECT_REF_P (t2))
1b1838b6 1676 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
c67a1cf6 1677 {
1b1838b6 1678 expr = t2;
c67a1cf6
RH
1679 offset = NULL;
1680 }
1681 }
1682
1683 /* If this is a Fortran indirect argument reference, record the
1684 parameter decl. */
1685 else if (flag_argument_noalias > 1
1b096a0a 1686 && (INDIRECT_REF_P (t))
c67a1cf6
RH
1687 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1688 {
1689 expr = t;
1690 offset = NULL;
998d7deb 1691 }
8ac61af7
RK
1692 }
1693
15c812e3 1694 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1695 bit position offset. Similarly, increase the size of the accessed
1696 object to contain the negative offset. */
6f1087be 1697 if (apply_bitpos)
8c317c5f
RH
1698 {
1699 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1700 if (size)
1701 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1702 }
6f1087be 1703
7ccf35ed
DN
1704 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1705 {
1706 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1707 we're overlapping. */
1708 offset = NULL;
1709 expr = NULL;
1710 }
1711
8ac61af7 1712 /* Now set the attributes we computed above. */
10b76d73 1713 MEM_ATTRS (ref)
998d7deb 1714 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1715
1716 /* If this is already known to be a scalar or aggregate, we are done. */
1717 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1718 return;
1719
8ac61af7
RK
1720 /* If it is a reference into an aggregate, this is part of an aggregate.
1721 Otherwise we don't know. */
173b24b9
RK
1722 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1723 || TREE_CODE (t) == ARRAY_RANGE_REF
1724 || TREE_CODE (t) == BIT_FIELD_REF)
1725 MEM_IN_STRUCT_P (ref) = 1;
1726}
1727
6f1087be 1728void
502b8322 1729set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1730{
1731 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1732}
1733
895a8136 1734/* Set MEM to the decl that REG refers to. */
a560d4d4
JH
1735
1736void
502b8322 1737set_mem_attrs_from_reg (rtx mem, rtx reg)
a560d4d4
JH
1738{
1739 MEM_ATTRS (mem)
1740 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1741 GEN_INT (REG_OFFSET (reg)),
1742 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1743}
1744
173b24b9
RK
1745/* Set the alias set of MEM to SET. */
1746
1747void
4862826d 1748set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1749{
68252e27 1750#ifdef ENABLE_CHECKING
173b24b9 1751 /* If the new and old alias sets don't conflict, something is wrong. */
5b0264cb 1752 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
173b24b9
RK
1753#endif
1754
998d7deb 1755 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
1756 MEM_SIZE (mem), MEM_ALIGN (mem),
1757 GET_MODE (mem));
173b24b9 1758}
738cc472 1759
d022d93e 1760/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1761
1762void
502b8322 1763set_mem_align (rtx mem, unsigned int align)
738cc472 1764{
998d7deb 1765 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
1766 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1767 GET_MODE (mem));
738cc472 1768}
1285011e 1769
998d7deb 1770/* Set the expr for MEM to EXPR. */
1285011e
RK
1771
1772void
502b8322 1773set_mem_expr (rtx mem, tree expr)
1285011e
RK
1774{
1775 MEM_ATTRS (mem)
998d7deb 1776 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
1777 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1778}
998d7deb
RH
1779
1780/* Set the offset of MEM to OFFSET. */
1781
1782void
502b8322 1783set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
1784{
1785 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1786 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1787 GET_MODE (mem));
35aff10b
AM
1788}
1789
1790/* Set the size of MEM to SIZE. */
1791
1792void
502b8322 1793set_mem_size (rtx mem, rtx size)
35aff10b
AM
1794{
1795 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1796 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1797 GET_MODE (mem));
998d7deb 1798}
173b24b9 1799\f
738cc472
RK
1800/* Return a memory reference like MEMREF, but with its mode changed to MODE
1801 and its address changed to ADDR. (VOIDmode means don't change the mode.
1802 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1803 returned memory location is required to be valid. The memory
1804 attributes are not changed. */
23b2ce53 1805
738cc472 1806static rtx
502b8322 1807change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53
RS
1808{
1809 rtx new;
1810
5b0264cb 1811 gcc_assert (MEM_P (memref));
23b2ce53
RS
1812 if (mode == VOIDmode)
1813 mode = GET_MODE (memref);
1814 if (addr == 0)
1815 addr = XEXP (memref, 0);
a74ff877
JH
1816 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1817 && (!validate || memory_address_p (mode, addr)))
1818 return memref;
23b2ce53 1819
f1ec5147 1820 if (validate)
23b2ce53 1821 {
f1ec5147 1822 if (reload_in_progress || reload_completed)
5b0264cb 1823 gcc_assert (memory_address_p (mode, addr));
f1ec5147
RK
1824 else
1825 addr = memory_address (mode, addr);
23b2ce53 1826 }
750c9258 1827
9b04c6a8
RK
1828 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1829 return memref;
1830
3b80f6ca 1831 new = gen_rtx_MEM (mode, addr);
c6df88cb 1832 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1833 return new;
1834}
792760b9 1835
738cc472
RK
1836/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1837 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1838
1839rtx
502b8322 1840change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 1841{
4e44c1ef 1842 rtx new = change_address_1 (memref, mode, addr, 1), size;
738cc472 1843 enum machine_mode mmode = GET_MODE (new);
4e44c1ef
JJ
1844 unsigned int align;
1845
1846 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1847 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
c2f7bcc3 1848
fdb1c7b3
JH
1849 /* If there are no changes, just return the original memory reference. */
1850 if (new == memref)
4e44c1ef
JJ
1851 {
1852 if (MEM_ATTRS (memref) == 0
1853 || (MEM_EXPR (memref) == NULL
1854 && MEM_OFFSET (memref) == NULL
1855 && MEM_SIZE (memref) == size
1856 && MEM_ALIGN (memref) == align))
1857 return new;
1858
64fc7c00 1859 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
4e44c1ef
JJ
1860 MEM_COPY_ATTRIBUTES (new, memref);
1861 }
fdb1c7b3 1862
738cc472 1863 MEM_ATTRS (new)
4e44c1ef 1864 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
823e3574 1865
738cc472 1866 return new;
f4ef873c 1867}
792760b9 1868
738cc472
RK
1869/* Return a memory reference like MEMREF, but with its mode changed
1870 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1871 nonzero, the memory address is forced to be valid.
1872 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1873 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1874
1875rtx
502b8322
AJ
1876adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1877 int validate, int adjust)
f1ec5147 1878{
823e3574 1879 rtx addr = XEXP (memref, 0);
738cc472
RK
1880 rtx new;
1881 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1882 rtx size = 0;
738cc472 1883 unsigned int memalign = MEM_ALIGN (memref);
823e3574 1884
fdb1c7b3
JH
1885 /* If there are no changes, just return the original memory reference. */
1886 if (mode == GET_MODE (memref) && !offset
1887 && (!validate || memory_address_p (mode, addr)))
1888 return memref;
1889
d14419e4 1890 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 1891 This may happen even if offset is nonzero -- consider
d14419e4
RH
1892 (plus (plus reg reg) const_int) -- so do this always. */
1893 addr = copy_rtx (addr);
1894
4a78c787
RH
1895 if (adjust)
1896 {
1897 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1898 object, we can merge it into the LO_SUM. */
1899 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1900 && offset >= 0
1901 && (unsigned HOST_WIDE_INT) offset
1902 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1903 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1904 plus_constant (XEXP (addr, 1), offset));
1905 else
1906 addr = plus_constant (addr, offset);
1907 }
823e3574 1908
738cc472
RK
1909 new = change_address_1 (memref, mode, addr, validate);
1910
1911 /* Compute the new values of the memory attributes due to this adjustment.
1912 We add the offsets and update the alignment. */
1913 if (memoffset)
1914 memoffset = GEN_INT (offset + INTVAL (memoffset));
1915
03bf2c23
RK
1916 /* Compute the new alignment by taking the MIN of the alignment and the
1917 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1918 if zero. */
1919 if (offset != 0)
3bf1e984
RK
1920 memalign
1921 = MIN (memalign,
1922 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 1923
10b76d73 1924 /* We can compute the size in a number of ways. */
a06ef755
RK
1925 if (GET_MODE (new) != BLKmode)
1926 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
1927 else if (MEM_SIZE (memref))
1928 size = plus_constant (MEM_SIZE (memref), -offset);
1929
998d7deb 1930 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
10b76d73 1931 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
1932
1933 /* At some point, we should validate that this offset is within the object,
1934 if all the appropriate values are known. */
1935 return new;
f1ec5147
RK
1936}
1937
630036c6
JJ
1938/* Return a memory reference like MEMREF, but with its mode changed
1939 to MODE and its address changed to ADDR, which is assumed to be
1940 MEMREF offseted by OFFSET bytes. If VALIDATE is
1941 nonzero, the memory address is forced to be valid. */
1942
1943rtx
502b8322
AJ
1944adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1945 HOST_WIDE_INT offset, int validate)
630036c6
JJ
1946{
1947 memref = change_address_1 (memref, VOIDmode, addr, validate);
1948 return adjust_address_1 (memref, mode, offset, validate, 0);
1949}
1950
8ac61af7
RK
1951/* Return a memory reference like MEMREF, but whose address is changed by
1952 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1953 known to be in OFFSET (possibly 1). */
0d4903b8
RK
1954
1955rtx
502b8322 1956offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 1957{
e3c8ea67
RH
1958 rtx new, addr = XEXP (memref, 0);
1959
1960 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1961
68252e27 1962 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 1963 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
1964
1965 However, if we did go and rearrange things, we can wind up not
1966 being able to recognize the magic around pic_offset_table_rtx.
1967 This stuff is fragile, and is yet another example of why it is
1968 bad to expose PIC machinery too early. */
1969 if (! memory_address_p (GET_MODE (memref), new)
1970 && GET_CODE (addr) == PLUS
1971 && XEXP (addr, 0) == pic_offset_table_rtx)
1972 {
1973 addr = force_reg (GET_MODE (addr), addr);
1974 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1975 }
1976
f6041ed8 1977 update_temp_slot_address (XEXP (memref, 0), new);
e3c8ea67 1978 new = change_address_1 (memref, VOIDmode, new, 1);
0d4903b8 1979
fdb1c7b3
JH
1980 /* If there are no changes, just return the original memory reference. */
1981 if (new == memref)
1982 return new;
1983
0d4903b8
RK
1984 /* Update the alignment to reflect the offset. Reset the offset, which
1985 we don't know. */
2cc2d4bb
RK
1986 MEM_ATTRS (new)
1987 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 1988 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2cc2d4bb 1989 GET_MODE (new));
0d4903b8
RK
1990 return new;
1991}
68252e27 1992
792760b9
RK
1993/* Return a memory reference like MEMREF, but with its address changed to
1994 ADDR. The caller is asserting that the actual piece of memory pointed
1995 to is the same, just the form of the address is being changed, such as
1996 by putting something into a register. */
1997
1998rtx
502b8322 1999replace_equiv_address (rtx memref, rtx addr)
792760b9 2000{
738cc472
RK
2001 /* change_address_1 copies the memory attribute structure without change
2002 and that's exactly what we want here. */
40c0668b 2003 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2004 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2005}
738cc472 2006
f1ec5147
RK
2007/* Likewise, but the reference is not required to be valid. */
2008
2009rtx
502b8322 2010replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2011{
f1ec5147
RK
2012 return change_address_1 (memref, VOIDmode, addr, 0);
2013}
e7dfe4bb
RH
2014
2015/* Return a memory reference like MEMREF, but with its mode widened to
2016 MODE and offset by OFFSET. This would be used by targets that e.g.
2017 cannot issue QImode memory operations and have to use SImode memory
2018 operations plus masking logic. */
2019
2020rtx
502b8322 2021widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb
RH
2022{
2023 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2024 tree expr = MEM_EXPR (new);
2025 rtx memoffset = MEM_OFFSET (new);
2026 unsigned int size = GET_MODE_SIZE (mode);
2027
fdb1c7b3
JH
2028 /* If there are no changes, just return the original memory reference. */
2029 if (new == memref)
2030 return new;
2031
e7dfe4bb
RH
2032 /* If we don't know what offset we were at within the expression, then
2033 we can't know if we've overstepped the bounds. */
fa1591cb 2034 if (! memoffset)
e7dfe4bb
RH
2035 expr = NULL_TREE;
2036
2037 while (expr)
2038 {
2039 if (TREE_CODE (expr) == COMPONENT_REF)
2040 {
2041 tree field = TREE_OPERAND (expr, 1);
44de5aeb 2042 tree offset = component_ref_field_offset (expr);
e7dfe4bb
RH
2043
2044 if (! DECL_SIZE_UNIT (field))
2045 {
2046 expr = NULL_TREE;
2047 break;
2048 }
2049
2050 /* Is the field at least as large as the access? If so, ok,
2051 otherwise strip back to the containing structure. */
03667700
RK
2052 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2053 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2054 && INTVAL (memoffset) >= 0)
2055 break;
2056
44de5aeb 2057 if (! host_integerp (offset, 1))
e7dfe4bb
RH
2058 {
2059 expr = NULL_TREE;
2060 break;
2061 }
2062
2063 expr = TREE_OPERAND (expr, 0);
44de5aeb
RK
2064 memoffset
2065 = (GEN_INT (INTVAL (memoffset)
2066 + tree_low_cst (offset, 1)
2067 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2068 / BITS_PER_UNIT)));
e7dfe4bb
RH
2069 }
2070 /* Similarly for the decl. */
2071 else if (DECL_P (expr)
2072 && DECL_SIZE_UNIT (expr)
45f79783 2073 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2074 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2075 && (! memoffset || INTVAL (memoffset) >= 0))
2076 break;
2077 else
2078 {
2079 /* The widened memory access overflows the expression, which means
2080 that it could alias another expression. Zap it. */
2081 expr = NULL_TREE;
2082 break;
2083 }
2084 }
2085
2086 if (! expr)
2087 memoffset = NULL_RTX;
2088
2089 /* The widened memory may alias other stuff, so zap the alias set. */
2090 /* ??? Maybe use get_alias_set on any remaining expression. */
2091
2092 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2093 MEM_ALIGN (new), mode);
2094
2095 return new;
2096}
23b2ce53
RS
2097\f
2098/* Return a newly created CODE_LABEL rtx with a unique label number. */
2099
2100rtx
502b8322 2101gen_label_rtx (void)
23b2ce53 2102{
0dc36574 2103 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2104 NULL, label_num++, NULL);
23b2ce53
RS
2105}
2106\f
2107/* For procedure integration. */
2108
23b2ce53 2109/* Install new pointers to the first and last insns in the chain.
86fe05e0 2110 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2111 Used for an inline-procedure after copying the insn chain. */
2112
2113void
502b8322 2114set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2115{
86fe05e0
RK
2116 rtx insn;
2117
23b2ce53
RS
2118 first_insn = first;
2119 last_insn = last;
86fe05e0
RK
2120 cur_insn_uid = 0;
2121
2122 for (insn = first; insn; insn = NEXT_INSN (insn))
2123 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2124
2125 cur_insn_uid++;
23b2ce53 2126}
23b2ce53 2127\f
750c9258 2128/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2129 structure. This routine should only be called once. */
23b2ce53 2130
fd743bc1 2131static void
b4aaa77b 2132unshare_all_rtl_1 (rtx insn)
23b2ce53 2133{
d1b81779 2134 /* Unshare just about everything else. */
2c07f13b 2135 unshare_all_rtl_in_chain (insn);
750c9258 2136
23b2ce53
RS
2137 /* Make sure the addresses of stack slots found outside the insn chain
2138 (such as, in DECL_RTL of a variable) are not shared
2139 with the insn chain.
2140
2141 This special care is necessary when the stack slot MEM does not
2142 actually appear in the insn chain. If it does appear, its address
2143 is unshared from all else at that point. */
242b0ce6 2144 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2145}
2146
750c9258 2147/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2148 structure, again. This is a fairly expensive thing to do so it
2149 should be done sparingly. */
2150
2151void
502b8322 2152unshare_all_rtl_again (rtx insn)
d1b81779
GK
2153{
2154 rtx p;
624c87aa
RE
2155 tree decl;
2156
d1b81779 2157 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2158 if (INSN_P (p))
d1b81779
GK
2159 {
2160 reset_used_flags (PATTERN (p));
2161 reset_used_flags (REG_NOTES (p));
d1b81779 2162 }
624c87aa 2163
2d4aecb3 2164 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2165 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2166
624c87aa
RE
2167 /* Make sure that virtual parameters are not shared. */
2168 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
5eb2a9f2 2169 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2170
2171 reset_used_flags (stack_slot_list);
2172
b4aaa77b 2173 unshare_all_rtl_1 (insn);
fd743bc1
PB
2174}
2175
c2924966 2176unsigned int
fd743bc1
PB
2177unshare_all_rtl (void)
2178{
b4aaa77b 2179 unshare_all_rtl_1 (get_insns ());
c2924966 2180 return 0;
d1b81779
GK
2181}
2182
ef330312
PB
2183struct tree_opt_pass pass_unshare_all_rtl =
2184{
defb77dc 2185 "unshare", /* name */
ef330312
PB
2186 NULL, /* gate */
2187 unshare_all_rtl, /* execute */
2188 NULL, /* sub */
2189 NULL, /* next */
2190 0, /* static_pass_number */
2191 0, /* tv_id */
2192 0, /* properties_required */
2193 0, /* properties_provided */
2194 0, /* properties_destroyed */
2195 0, /* todo_flags_start */
a36b8a1e 2196 TODO_dump_func | TODO_verify_rtl_sharing, /* todo_flags_finish */
ef330312
PB
2197 0 /* letter */
2198};
2199
2200
2c07f13b
JH
2201/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2202 Recursively does the same for subexpressions. */
2203
2204static void
2205verify_rtx_sharing (rtx orig, rtx insn)
2206{
2207 rtx x = orig;
2208 int i;
2209 enum rtx_code code;
2210 const char *format_ptr;
2211
2212 if (x == 0)
2213 return;
2214
2215 code = GET_CODE (x);
2216
2217 /* These types may be freely shared. */
2218
2219 switch (code)
2220 {
2221 case REG:
2c07f13b
JH
2222 case CONST_INT:
2223 case CONST_DOUBLE:
091a3ac7 2224 case CONST_FIXED:
2c07f13b
JH
2225 case CONST_VECTOR:
2226 case SYMBOL_REF:
2227 case LABEL_REF:
2228 case CODE_LABEL:
2229 case PC:
2230 case CC0:
2231 case SCRATCH:
2c07f13b 2232 return;
3e89ed8d
JH
2233 /* SCRATCH must be shared because they represent distinct values. */
2234 case CLOBBER:
2235 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2236 return;
2237 break;
2c07f13b
JH
2238
2239 case CONST:
6fb5fa3c 2240 if (shared_const_p (orig))
2c07f13b
JH
2241 return;
2242 break;
2243
2244 case MEM:
2245 /* A MEM is allowed to be shared if its address is constant. */
2246 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2247 || reload_completed || reload_in_progress)
2248 return;
2249
2250 break;
2251
2252 default:
2253 break;
2254 }
2255
2256 /* This rtx may not be shared. If it has already been seen,
2257 replace it with a copy of itself. */
1a2caa7a 2258#ifdef ENABLE_CHECKING
2c07f13b
JH
2259 if (RTX_FLAG (x, used))
2260 {
ab532386 2261 error ("invalid rtl sharing found in the insn");
2c07f13b 2262 debug_rtx (insn);
ab532386 2263 error ("shared rtx");
2c07f13b 2264 debug_rtx (x);
ab532386 2265 internal_error ("internal consistency failure");
2c07f13b 2266 }
1a2caa7a
NS
2267#endif
2268 gcc_assert (!RTX_FLAG (x, used));
2269
2c07f13b
JH
2270 RTX_FLAG (x, used) = 1;
2271
6614fd40 2272 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2273
2274 format_ptr = GET_RTX_FORMAT (code);
2275
2276 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2277 {
2278 switch (*format_ptr++)
2279 {
2280 case 'e':
2281 verify_rtx_sharing (XEXP (x, i), insn);
2282 break;
2283
2284 case 'E':
2285 if (XVEC (x, i) != NULL)
2286 {
2287 int j;
2288 int len = XVECLEN (x, i);
2289
2290 for (j = 0; j < len; j++)
2291 {
1a2caa7a
NS
2292 /* We allow sharing of ASM_OPERANDS inside single
2293 instruction. */
2c07f13b 2294 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2295 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2296 == ASM_OPERANDS))
2c07f13b
JH
2297 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2298 else
2299 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2300 }
2301 }
2302 break;
2303 }
2304 }
2305 return;
2306}
2307
ba228239 2308/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2309 sharing in between the subexpressions. */
2310
2311void
2312verify_rtl_sharing (void)
2313{
2314 rtx p;
2315
2316 for (p = get_insns (); p; p = NEXT_INSN (p))
2317 if (INSN_P (p))
2318 {
2319 reset_used_flags (PATTERN (p));
2320 reset_used_flags (REG_NOTES (p));
2954a813
KK
2321 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2322 {
2323 int i;
2324 rtx q, sequence = PATTERN (p);
2325
2326 for (i = 0; i < XVECLEN (sequence, 0); i++)
2327 {
2328 q = XVECEXP (sequence, 0, i);
2329 gcc_assert (INSN_P (q));
2330 reset_used_flags (PATTERN (q));
2331 reset_used_flags (REG_NOTES (q));
2954a813
KK
2332 }
2333 }
2c07f13b
JH
2334 }
2335
2336 for (p = get_insns (); p; p = NEXT_INSN (p))
2337 if (INSN_P (p))
2338 {
2339 verify_rtx_sharing (PATTERN (p), p);
2340 verify_rtx_sharing (REG_NOTES (p), p);
2c07f13b
JH
2341 }
2342}
2343
d1b81779
GK
2344/* Go through all the RTL insn bodies and copy any invalid shared structure.
2345 Assumes the mark bits are cleared at entry. */
2346
2c07f13b
JH
2347void
2348unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2349{
2350 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2351 if (INSN_P (insn))
d1b81779
GK
2352 {
2353 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2354 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
d1b81779
GK
2355 }
2356}
2357
2d4aecb3 2358/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2359 shared. We never replace the DECL_RTLs themselves with a copy,
2360 but expressions mentioned into a DECL_RTL cannot be shared with
2361 expressions in the instruction stream.
2362
2363 Note that reload may convert pseudo registers into memories in-place.
2364 Pseudo registers are always shared, but MEMs never are. Thus if we
2365 reset the used flags on MEMs in the instruction stream, we must set
2366 them again on MEMs that appear in DECL_RTLs. */
2367
2d4aecb3 2368static void
5eb2a9f2 2369set_used_decls (tree blk)
2d4aecb3
AO
2370{
2371 tree t;
2372
2373 /* Mark decls. */
2374 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c 2375 if (DECL_RTL_SET_P (t))
5eb2a9f2 2376 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2377
2378 /* Now process sub-blocks. */
87caf699 2379 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2380 set_used_decls (t);
2d4aecb3
AO
2381}
2382
23b2ce53 2383/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2384 Recursively does the same for subexpressions. Uses
2385 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2386
2387rtx
502b8322 2388copy_rtx_if_shared (rtx orig)
23b2ce53 2389{
32b32b16
AP
2390 copy_rtx_if_shared_1 (&orig);
2391 return orig;
2392}
2393
ff954f39
AP
2394/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2395 use. Recursively does the same for subexpressions. */
2396
32b32b16
AP
2397static void
2398copy_rtx_if_shared_1 (rtx *orig1)
2399{
2400 rtx x;
b3694847
SS
2401 int i;
2402 enum rtx_code code;
32b32b16 2403 rtx *last_ptr;
b3694847 2404 const char *format_ptr;
23b2ce53 2405 int copied = 0;
32b32b16
AP
2406 int length;
2407
2408 /* Repeat is used to turn tail-recursion into iteration. */
2409repeat:
2410 x = *orig1;
23b2ce53
RS
2411
2412 if (x == 0)
32b32b16 2413 return;
23b2ce53
RS
2414
2415 code = GET_CODE (x);
2416
2417 /* These types may be freely shared. */
2418
2419 switch (code)
2420 {
2421 case REG:
23b2ce53
RS
2422 case CONST_INT:
2423 case CONST_DOUBLE:
091a3ac7 2424 case CONST_FIXED:
69ef87e2 2425 case CONST_VECTOR:
23b2ce53 2426 case SYMBOL_REF:
2c07f13b 2427 case LABEL_REF:
23b2ce53
RS
2428 case CODE_LABEL:
2429 case PC:
2430 case CC0:
2431 case SCRATCH:
0f41302f 2432 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2433 return;
3e89ed8d
JH
2434 case CLOBBER:
2435 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2436 return;
2437 break;
23b2ce53 2438
b851ea09 2439 case CONST:
6fb5fa3c 2440 if (shared_const_p (x))
32b32b16 2441 return;
b851ea09
RK
2442 break;
2443
23b2ce53
RS
2444 case INSN:
2445 case JUMP_INSN:
2446 case CALL_INSN:
2447 case NOTE:
23b2ce53
RS
2448 case BARRIER:
2449 /* The chain of insns is not being copied. */
32b32b16 2450 return;
23b2ce53 2451
e9a25f70
JL
2452 default:
2453 break;
23b2ce53
RS
2454 }
2455
2456 /* This rtx may not be shared. If it has already been seen,
2457 replace it with a copy of itself. */
2458
2adc7f12 2459 if (RTX_FLAG (x, used))
23b2ce53 2460 {
aacd3885 2461 x = shallow_copy_rtx (x);
23b2ce53
RS
2462 copied = 1;
2463 }
2adc7f12 2464 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2465
2466 /* Now scan the subexpressions recursively.
2467 We can store any replaced subexpressions directly into X
2468 since we know X is not shared! Any vectors in X
2469 must be copied if X was copied. */
2470
2471 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2472 length = GET_RTX_LENGTH (code);
2473 last_ptr = NULL;
2474
2475 for (i = 0; i < length; i++)
23b2ce53
RS
2476 {
2477 switch (*format_ptr++)
2478 {
2479 case 'e':
32b32b16
AP
2480 if (last_ptr)
2481 copy_rtx_if_shared_1 (last_ptr);
2482 last_ptr = &XEXP (x, i);
23b2ce53
RS
2483 break;
2484
2485 case 'E':
2486 if (XVEC (x, i) != NULL)
2487 {
b3694847 2488 int j;
f0722107 2489 int len = XVECLEN (x, i);
32b32b16 2490
6614fd40
KH
2491 /* Copy the vector iff I copied the rtx and the length
2492 is nonzero. */
f0722107 2493 if (copied && len > 0)
8f985ec4 2494 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
32b32b16 2495
5d3cc252 2496 /* Call recursively on all inside the vector. */
f0722107 2497 for (j = 0; j < len; j++)
32b32b16
AP
2498 {
2499 if (last_ptr)
2500 copy_rtx_if_shared_1 (last_ptr);
2501 last_ptr = &XVECEXP (x, i, j);
2502 }
23b2ce53
RS
2503 }
2504 break;
2505 }
2506 }
32b32b16
AP
2507 *orig1 = x;
2508 if (last_ptr)
2509 {
2510 orig1 = last_ptr;
2511 goto repeat;
2512 }
2513 return;
23b2ce53
RS
2514}
2515
2516/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2517 to look for shared sub-parts. */
2518
2519void
502b8322 2520reset_used_flags (rtx x)
23b2ce53 2521{
b3694847
SS
2522 int i, j;
2523 enum rtx_code code;
2524 const char *format_ptr;
32b32b16 2525 int length;
23b2ce53 2526
32b32b16
AP
2527 /* Repeat is used to turn tail-recursion into iteration. */
2528repeat:
23b2ce53
RS
2529 if (x == 0)
2530 return;
2531
2532 code = GET_CODE (x);
2533
9faa82d8 2534 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2535 for them. */
2536
2537 switch (code)
2538 {
2539 case REG:
23b2ce53
RS
2540 case CONST_INT:
2541 case CONST_DOUBLE:
091a3ac7 2542 case CONST_FIXED:
69ef87e2 2543 case CONST_VECTOR:
23b2ce53
RS
2544 case SYMBOL_REF:
2545 case CODE_LABEL:
2546 case PC:
2547 case CC0:
2548 return;
2549
2550 case INSN:
2551 case JUMP_INSN:
2552 case CALL_INSN:
2553 case NOTE:
2554 case LABEL_REF:
2555 case BARRIER:
2556 /* The chain of insns is not being copied. */
2557 return;
750c9258 2558
e9a25f70
JL
2559 default:
2560 break;
23b2ce53
RS
2561 }
2562
2adc7f12 2563 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2564
2565 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2566 length = GET_RTX_LENGTH (code);
2567
2568 for (i = 0; i < length; i++)
23b2ce53
RS
2569 {
2570 switch (*format_ptr++)
2571 {
2572 case 'e':
32b32b16
AP
2573 if (i == length-1)
2574 {
2575 x = XEXP (x, i);
2576 goto repeat;
2577 }
23b2ce53
RS
2578 reset_used_flags (XEXP (x, i));
2579 break;
2580
2581 case 'E':
2582 for (j = 0; j < XVECLEN (x, i); j++)
2583 reset_used_flags (XVECEXP (x, i, j));
2584 break;
2585 }
2586 }
2587}
2c07f13b
JH
2588
2589/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2590 to look for shared sub-parts. */
2591
2592void
2593set_used_flags (rtx x)
2594{
2595 int i, j;
2596 enum rtx_code code;
2597 const char *format_ptr;
2598
2599 if (x == 0)
2600 return;
2601
2602 code = GET_CODE (x);
2603
2604 /* These types may be freely shared so we needn't do any resetting
2605 for them. */
2606
2607 switch (code)
2608 {
2609 case REG:
2c07f13b
JH
2610 case CONST_INT:
2611 case CONST_DOUBLE:
091a3ac7 2612 case CONST_FIXED:
2c07f13b
JH
2613 case CONST_VECTOR:
2614 case SYMBOL_REF:
2615 case CODE_LABEL:
2616 case PC:
2617 case CC0:
2618 return;
2619
2620 case INSN:
2621 case JUMP_INSN:
2622 case CALL_INSN:
2623 case NOTE:
2624 case LABEL_REF:
2625 case BARRIER:
2626 /* The chain of insns is not being copied. */
2627 return;
2628
2629 default:
2630 break;
2631 }
2632
2633 RTX_FLAG (x, used) = 1;
2634
2635 format_ptr = GET_RTX_FORMAT (code);
2636 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2637 {
2638 switch (*format_ptr++)
2639 {
2640 case 'e':
2641 set_used_flags (XEXP (x, i));
2642 break;
2643
2644 case 'E':
2645 for (j = 0; j < XVECLEN (x, i); j++)
2646 set_used_flags (XVECEXP (x, i, j));
2647 break;
2648 }
2649 }
2650}
23b2ce53
RS
2651\f
2652/* Copy X if necessary so that it won't be altered by changes in OTHER.
2653 Return X or the rtx for the pseudo reg the value of X was copied into.
2654 OTHER must be valid as a SET_DEST. */
2655
2656rtx
502b8322 2657make_safe_from (rtx x, rtx other)
23b2ce53
RS
2658{
2659 while (1)
2660 switch (GET_CODE (other))
2661 {
2662 case SUBREG:
2663 other = SUBREG_REG (other);
2664 break;
2665 case STRICT_LOW_PART:
2666 case SIGN_EXTEND:
2667 case ZERO_EXTEND:
2668 other = XEXP (other, 0);
2669 break;
2670 default:
2671 goto done;
2672 }
2673 done:
3c0cb5de 2674 if ((MEM_P (other)
23b2ce53 2675 && ! CONSTANT_P (x)
f8cfc6aa 2676 && !REG_P (x)
23b2ce53 2677 && GET_CODE (x) != SUBREG)
f8cfc6aa 2678 || (REG_P (other)
23b2ce53
RS
2679 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2680 || reg_mentioned_p (other, x))))
2681 {
2682 rtx temp = gen_reg_rtx (GET_MODE (x));
2683 emit_move_insn (temp, x);
2684 return temp;
2685 }
2686 return x;
2687}
2688\f
2689/* Emission of insns (adding them to the doubly-linked list). */
2690
2691/* Return the first insn of the current sequence or current function. */
2692
2693rtx
502b8322 2694get_insns (void)
23b2ce53
RS
2695{
2696 return first_insn;
2697}
2698
3dec4024
JH
2699/* Specify a new insn as the first in the chain. */
2700
2701void
502b8322 2702set_first_insn (rtx insn)
3dec4024 2703{
5b0264cb 2704 gcc_assert (!PREV_INSN (insn));
3dec4024
JH
2705 first_insn = insn;
2706}
2707
23b2ce53
RS
2708/* Return the last insn emitted in current sequence or current function. */
2709
2710rtx
502b8322 2711get_last_insn (void)
23b2ce53
RS
2712{
2713 return last_insn;
2714}
2715
2716/* Specify a new insn as the last in the chain. */
2717
2718void
502b8322 2719set_last_insn (rtx insn)
23b2ce53 2720{
5b0264cb 2721 gcc_assert (!NEXT_INSN (insn));
23b2ce53
RS
2722 last_insn = insn;
2723}
2724
2725/* Return the last insn emitted, even if it is in a sequence now pushed. */
2726
2727rtx
502b8322 2728get_last_insn_anywhere (void)
23b2ce53
RS
2729{
2730 struct sequence_stack *stack;
2731 if (last_insn)
2732 return last_insn;
49ad7cfa 2733 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2734 if (stack->last != 0)
2735 return stack->last;
2736 return 0;
2737}
2738
2a496e8b
JDA
2739/* Return the first nonnote insn emitted in current sequence or current
2740 function. This routine looks inside SEQUENCEs. */
2741
2742rtx
502b8322 2743get_first_nonnote_insn (void)
2a496e8b 2744{
91373fe8
JDA
2745 rtx insn = first_insn;
2746
2747 if (insn)
2748 {
2749 if (NOTE_P (insn))
2750 for (insn = next_insn (insn);
2751 insn && NOTE_P (insn);
2752 insn = next_insn (insn))
2753 continue;
2754 else
2755 {
2ca202e7 2756 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2757 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2758 insn = XVECEXP (PATTERN (insn), 0, 0);
2759 }
2760 }
2a496e8b
JDA
2761
2762 return insn;
2763}
2764
2765/* Return the last nonnote insn emitted in current sequence or current
2766 function. This routine looks inside SEQUENCEs. */
2767
2768rtx
502b8322 2769get_last_nonnote_insn (void)
2a496e8b 2770{
91373fe8
JDA
2771 rtx insn = last_insn;
2772
2773 if (insn)
2774 {
2775 if (NOTE_P (insn))
2776 for (insn = previous_insn (insn);
2777 insn && NOTE_P (insn);
2778 insn = previous_insn (insn))
2779 continue;
2780 else
2781 {
2ca202e7 2782 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2783 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2784 insn = XVECEXP (PATTERN (insn), 0,
2785 XVECLEN (PATTERN (insn), 0) - 1);
2786 }
2787 }
2a496e8b
JDA
2788
2789 return insn;
2790}
2791
23b2ce53
RS
2792/* Return a number larger than any instruction's uid in this function. */
2793
2794int
502b8322 2795get_max_uid (void)
23b2ce53
RS
2796{
2797 return cur_insn_uid;
2798}
2799\f
2800/* Return the next insn. If it is a SEQUENCE, return the first insn
2801 of the sequence. */
2802
2803rtx
502b8322 2804next_insn (rtx insn)
23b2ce53 2805{
75547801
KG
2806 if (insn)
2807 {
2808 insn = NEXT_INSN (insn);
2809 if (insn && NONJUMP_INSN_P (insn)
2810 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2811 insn = XVECEXP (PATTERN (insn), 0, 0);
2812 }
23b2ce53 2813
75547801 2814 return insn;
23b2ce53
RS
2815}
2816
2817/* Return the previous insn. If it is a SEQUENCE, return the last insn
2818 of the sequence. */
2819
2820rtx
502b8322 2821previous_insn (rtx insn)
23b2ce53 2822{
75547801
KG
2823 if (insn)
2824 {
2825 insn = PREV_INSN (insn);
2826 if (insn && NONJUMP_INSN_P (insn)
2827 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2828 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2829 }
23b2ce53 2830
75547801 2831 return insn;
23b2ce53
RS
2832}
2833
2834/* Return the next insn after INSN that is not a NOTE. This routine does not
2835 look inside SEQUENCEs. */
2836
2837rtx
502b8322 2838next_nonnote_insn (rtx insn)
23b2ce53 2839{
75547801
KG
2840 while (insn)
2841 {
2842 insn = NEXT_INSN (insn);
2843 if (insn == 0 || !NOTE_P (insn))
2844 break;
2845 }
23b2ce53 2846
75547801 2847 return insn;
23b2ce53
RS
2848}
2849
2850/* Return the previous insn before INSN that is not a NOTE. This routine does
2851 not look inside SEQUENCEs. */
2852
2853rtx
502b8322 2854prev_nonnote_insn (rtx insn)
23b2ce53 2855{
75547801
KG
2856 while (insn)
2857 {
2858 insn = PREV_INSN (insn);
2859 if (insn == 0 || !NOTE_P (insn))
2860 break;
2861 }
23b2ce53 2862
75547801 2863 return insn;
23b2ce53
RS
2864}
2865
2866/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2867 or 0, if there is none. This routine does not look inside
0f41302f 2868 SEQUENCEs. */
23b2ce53
RS
2869
2870rtx
502b8322 2871next_real_insn (rtx insn)
23b2ce53 2872{
75547801
KG
2873 while (insn)
2874 {
2875 insn = NEXT_INSN (insn);
2876 if (insn == 0 || INSN_P (insn))
2877 break;
2878 }
23b2ce53 2879
75547801 2880 return insn;
23b2ce53
RS
2881}
2882
2883/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2884 or 0, if there is none. This routine does not look inside
2885 SEQUENCEs. */
2886
2887rtx
502b8322 2888prev_real_insn (rtx insn)
23b2ce53 2889{
75547801
KG
2890 while (insn)
2891 {
2892 insn = PREV_INSN (insn);
2893 if (insn == 0 || INSN_P (insn))
2894 break;
2895 }
23b2ce53 2896
75547801 2897 return insn;
23b2ce53
RS
2898}
2899
ee960939
OH
2900/* Return the last CALL_INSN in the current list, or 0 if there is none.
2901 This routine does not look inside SEQUENCEs. */
2902
2903rtx
502b8322 2904last_call_insn (void)
ee960939
OH
2905{
2906 rtx insn;
2907
2908 for (insn = get_last_insn ();
4b4bf941 2909 insn && !CALL_P (insn);
ee960939
OH
2910 insn = PREV_INSN (insn))
2911 ;
2912
2913 return insn;
2914}
2915
23b2ce53
RS
2916/* Find the next insn after INSN that really does something. This routine
2917 does not look inside SEQUENCEs. Until reload has completed, this is the
2918 same as next_real_insn. */
2919
69732dcb 2920int
4f588890 2921active_insn_p (const_rtx insn)
69732dcb 2922{
4b4bf941
JQ
2923 return (CALL_P (insn) || JUMP_P (insn)
2924 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
2925 && (! reload_completed
2926 || (GET_CODE (PATTERN (insn)) != USE
2927 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
2928}
2929
23b2ce53 2930rtx
502b8322 2931next_active_insn (rtx insn)
23b2ce53 2932{
75547801
KG
2933 while (insn)
2934 {
2935 insn = NEXT_INSN (insn);
2936 if (insn == 0 || active_insn_p (insn))
2937 break;
2938 }
23b2ce53 2939
75547801 2940 return insn;
23b2ce53
RS
2941}
2942
2943/* Find the last insn before INSN that really does something. This routine
2944 does not look inside SEQUENCEs. Until reload has completed, this is the
2945 same as prev_real_insn. */
2946
2947rtx
502b8322 2948prev_active_insn (rtx insn)
23b2ce53 2949{
75547801
KG
2950 while (insn)
2951 {
2952 insn = PREV_INSN (insn);
2953 if (insn == 0 || active_insn_p (insn))
2954 break;
2955 }
23b2ce53 2956
75547801 2957 return insn;
23b2ce53
RS
2958}
2959
2960/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2961
2962rtx
502b8322 2963next_label (rtx insn)
23b2ce53 2964{
75547801
KG
2965 while (insn)
2966 {
2967 insn = NEXT_INSN (insn);
2968 if (insn == 0 || LABEL_P (insn))
2969 break;
2970 }
23b2ce53 2971
75547801 2972 return insn;
23b2ce53
RS
2973}
2974
2975/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2976
2977rtx
502b8322 2978prev_label (rtx insn)
23b2ce53 2979{
75547801
KG
2980 while (insn)
2981 {
2982 insn = PREV_INSN (insn);
2983 if (insn == 0 || LABEL_P (insn))
2984 break;
2985 }
23b2ce53 2986
75547801 2987 return insn;
23b2ce53 2988}
6c2511d3
RS
2989
2990/* Return the last label to mark the same position as LABEL. Return null
2991 if LABEL itself is null. */
2992
2993rtx
2994skip_consecutive_labels (rtx label)
2995{
2996 rtx insn;
2997
2998 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2999 if (LABEL_P (insn))
3000 label = insn;
3001
3002 return label;
3003}
23b2ce53
RS
3004\f
3005#ifdef HAVE_cc0
c572e5ba
JVA
3006/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3007 and REG_CC_USER notes so we can find it. */
3008
3009void
502b8322 3010link_cc0_insns (rtx insn)
c572e5ba
JVA
3011{
3012 rtx user = next_nonnote_insn (insn);
3013
4b4bf941 3014 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3015 user = XVECEXP (PATTERN (user), 0, 0);
3016
c5c76735
JL
3017 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3018 REG_NOTES (user));
3b80f6ca 3019 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
3020}
3021
23b2ce53
RS
3022/* Return the next insn that uses CC0 after INSN, which is assumed to
3023 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3024 applied to the result of this function should yield INSN).
3025
3026 Normally, this is simply the next insn. However, if a REG_CC_USER note
3027 is present, it contains the insn that uses CC0.
3028
3029 Return 0 if we can't find the insn. */
3030
3031rtx
502b8322 3032next_cc0_user (rtx insn)
23b2ce53 3033{
906c4e36 3034 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3035
3036 if (note)
3037 return XEXP (note, 0);
3038
3039 insn = next_nonnote_insn (insn);
4b4bf941 3040 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3041 insn = XVECEXP (PATTERN (insn), 0, 0);
3042
2c3c49de 3043 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3044 return insn;
3045
3046 return 0;
3047}
3048
3049/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3050 note, it is the previous insn. */
3051
3052rtx
502b8322 3053prev_cc0_setter (rtx insn)
23b2ce53 3054{
906c4e36 3055 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3056
3057 if (note)
3058 return XEXP (note, 0);
3059
3060 insn = prev_nonnote_insn (insn);
5b0264cb 3061 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3062
3063 return insn;
3064}
3065#endif
e5bef2e4 3066
594f8779
RZ
3067#ifdef AUTO_INC_DEC
3068/* Find a RTX_AUTOINC class rtx which matches DATA. */
3069
3070static int
3071find_auto_inc (rtx *xp, void *data)
3072{
3073 rtx x = *xp;
3074 rtx reg = data;
3075
3076 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3077 return 0;
3078
3079 switch (GET_CODE (x))
3080 {
3081 case PRE_DEC:
3082 case PRE_INC:
3083 case POST_DEC:
3084 case POST_INC:
3085 case PRE_MODIFY:
3086 case POST_MODIFY:
3087 if (rtx_equal_p (reg, XEXP (x, 0)))
3088 return 1;
3089 break;
3090
3091 default:
3092 gcc_unreachable ();
3093 }
3094 return -1;
3095}
3096#endif
3097
e5bef2e4
HB
3098/* Increment the label uses for all labels present in rtx. */
3099
3100static void
502b8322 3101mark_label_nuses (rtx x)
e5bef2e4 3102{
b3694847
SS
3103 enum rtx_code code;
3104 int i, j;
3105 const char *fmt;
e5bef2e4
HB
3106
3107 code = GET_CODE (x);
7537fc90 3108 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3109 LABEL_NUSES (XEXP (x, 0))++;
3110
3111 fmt = GET_RTX_FORMAT (code);
3112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3113 {
3114 if (fmt[i] == 'e')
0fb7aeda 3115 mark_label_nuses (XEXP (x, i));
e5bef2e4 3116 else if (fmt[i] == 'E')
0fb7aeda 3117 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3118 mark_label_nuses (XVECEXP (x, i, j));
3119 }
3120}
3121
23b2ce53
RS
3122\f
3123/* Try splitting insns that can be split for better scheduling.
3124 PAT is the pattern which might split.
3125 TRIAL is the insn providing PAT.
cc2902df 3126 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3127
3128 If this routine succeeds in splitting, it returns the first or last
11147ebe 3129 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3130 returns TRIAL. If the insn to be returned can be split, it will be. */
3131
3132rtx
502b8322 3133try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3134{
3135 rtx before = PREV_INSN (trial);
3136 rtx after = NEXT_INSN (trial);
23b2ce53 3137 int has_barrier = 0;
1c7f7c66 3138 rtx tem, note_retval;
6b24c259
JH
3139 rtx note, seq;
3140 int probability;
599aedd9
RH
3141 rtx insn_last, insn;
3142 int njumps = 0;
6b24c259
JH
3143
3144 if (any_condjump_p (trial)
3145 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3146 split_branch_probability = INTVAL (XEXP (note, 0));
3147 probability = split_branch_probability;
3148
3149 seq = split_insns (pat, trial);
3150
3151 split_branch_probability = -1;
23b2ce53
RS
3152
3153 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3154 We may need to handle this specially. */
4b4bf941 3155 if (after && BARRIER_P (after))
23b2ce53
RS
3156 {
3157 has_barrier = 1;
3158 after = NEXT_INSN (after);
3159 }
3160
599aedd9
RH
3161 if (!seq)
3162 return trial;
3163
3164 /* Avoid infinite loop if any insn of the result matches
3165 the original pattern. */
3166 insn_last = seq;
3167 while (1)
23b2ce53 3168 {
599aedd9
RH
3169 if (INSN_P (insn_last)
3170 && rtx_equal_p (PATTERN (insn_last), pat))
3171 return trial;
3172 if (!NEXT_INSN (insn_last))
3173 break;
3174 insn_last = NEXT_INSN (insn_last);
3175 }
750c9258 3176
6fb5fa3c
DB
3177 /* We will be adding the new sequence to the function. The splitters
3178 may have introduced invalid RTL sharing, so unshare the sequence now. */
3179 unshare_all_rtl_in_chain (seq);
3180
599aedd9
RH
3181 /* Mark labels. */
3182 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3183 {
4b4bf941 3184 if (JUMP_P (insn))
599aedd9
RH
3185 {
3186 mark_jump_label (PATTERN (insn), insn, 0);
3187 njumps++;
3188 if (probability != -1
3189 && any_condjump_p (insn)
3190 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3191 {
599aedd9
RH
3192 /* We can preserve the REG_BR_PROB notes only if exactly
3193 one jump is created, otherwise the machine description
3194 is responsible for this step using
3195 split_branch_probability variable. */
5b0264cb 3196 gcc_assert (njumps == 1);
599aedd9
RH
3197 REG_NOTES (insn)
3198 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3199 GEN_INT (probability),
3200 REG_NOTES (insn));
2f937369 3201 }
599aedd9
RH
3202 }
3203 }
3204
3205 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3206 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
4b4bf941 3207 if (CALL_P (trial))
599aedd9
RH
3208 {
3209 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3210 if (CALL_P (insn))
599aedd9 3211 {
f6a1f3f6
RH
3212 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3213 while (*p)
3214 p = &XEXP (*p, 1);
3215 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9
RH
3216 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3217 }
3218 }
4b5e8abe 3219
599aedd9
RH
3220 /* Copy notes, particularly those related to the CFG. */
3221 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3222 {
3223 switch (REG_NOTE_KIND (note))
3224 {
3225 case REG_EH_REGION:
594f8779 3226 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3227 {
4b4bf941 3228 if (CALL_P (insn)
d3a583b1 3229 || (flag_non_call_exceptions && INSN_P (insn)
599aedd9
RH
3230 && may_trap_p (PATTERN (insn))))
3231 REG_NOTES (insn)
3232 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3233 XEXP (note, 0),
3234 REG_NOTES (insn));
2f937369 3235 }
599aedd9 3236 break;
216183ce 3237
599aedd9
RH
3238 case REG_NORETURN:
3239 case REG_SETJMP:
594f8779 3240 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3241 {
4b4bf941 3242 if (CALL_P (insn))
599aedd9
RH
3243 REG_NOTES (insn)
3244 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3245 XEXP (note, 0),
3246 REG_NOTES (insn));
216183ce 3247 }
599aedd9 3248 break;
d6e95df8 3249
599aedd9 3250 case REG_NON_LOCAL_GOTO:
594f8779 3251 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3252 {
4b4bf941 3253 if (JUMP_P (insn))
599aedd9
RH
3254 REG_NOTES (insn)
3255 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3256 XEXP (note, 0),
3257 REG_NOTES (insn));
2f937369 3258 }
599aedd9 3259 break;
e5bef2e4 3260
594f8779
RZ
3261#ifdef AUTO_INC_DEC
3262 case REG_INC:
3263 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3264 {
3265 rtx reg = XEXP (note, 0);
3266 if (!FIND_REG_INC_NOTE (insn, reg)
3267 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3268 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3269 REG_NOTES (insn));
3270 }
3271 break;
3272#endif
3273
1c7f7c66
SL
3274 case REG_LIBCALL:
3275 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3276 after split. */
3277 REG_NOTES (insn_last)
49317655 3278 = gen_rtx_INSN_LIST (REG_LIBCALL,
1c7f7c66
SL
3279 XEXP (note, 0),
3280 REG_NOTES (insn_last));
3281
3282 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3283 XEXP (note_retval, 0) = insn_last;
3284 break;
3285
599aedd9
RH
3286 default:
3287 break;
23b2ce53 3288 }
599aedd9
RH
3289 }
3290
3291 /* If there are LABELS inside the split insns increment the
3292 usage count so we don't delete the label. */
cf7c4aa6 3293 if (INSN_P (trial))
599aedd9
RH
3294 {
3295 insn = insn_last;
3296 while (insn != NULL_RTX)
23b2ce53 3297 {
cf7c4aa6 3298 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3299 if (NONJUMP_INSN_P (insn))
599aedd9 3300 mark_label_nuses (PATTERN (insn));
23b2ce53 3301
599aedd9
RH
3302 insn = PREV_INSN (insn);
3303 }
23b2ce53
RS
3304 }
3305
0435312e 3306 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3307
3308 delete_insn (trial);
3309 if (has_barrier)
3310 emit_barrier_after (tem);
3311
3312 /* Recursively call try_split for each new insn created; by the
3313 time control returns here that insn will be fully split, so
3314 set LAST and continue from the insn after the one returned.
3315 We can't use next_active_insn here since AFTER may be a note.
3316 Ignore deleted insns, which can be occur if not optimizing. */
3317 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3318 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3319 tem = try_split (PATTERN (tem), tem, 1);
3320
3321 /* Return either the first or the last insn, depending on which was
3322 requested. */
3323 return last
3324 ? (after ? PREV_INSN (after) : last_insn)
3325 : NEXT_INSN (before);
23b2ce53
RS
3326}
3327\f
3328/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3329 Store PATTERN in the pattern slots. */
23b2ce53
RS
3330
3331rtx
502b8322 3332make_insn_raw (rtx pattern)
23b2ce53 3333{
b3694847 3334 rtx insn;
23b2ce53 3335
1f8f4a0b 3336 insn = rtx_alloc (INSN);
23b2ce53 3337
43127294 3338 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3339 PATTERN (insn) = pattern;
3340 INSN_CODE (insn) = -1;
1632afca 3341 REG_NOTES (insn) = NULL;
55e092c4 3342 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3343 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3344
47984720
NC
3345#ifdef ENABLE_RTL_CHECKING
3346 if (insn
2c3c49de 3347 && INSN_P (insn)
47984720
NC
3348 && (returnjump_p (insn)
3349 || (GET_CODE (insn) == SET
3350 && SET_DEST (insn) == pc_rtx)))
3351 {
d4ee4d25 3352 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3353 debug_rtx (insn);
3354 }
3355#endif
750c9258 3356
23b2ce53
RS
3357 return insn;
3358}
3359
2f937369 3360/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3361
38109dab 3362rtx
502b8322 3363make_jump_insn_raw (rtx pattern)
23b2ce53 3364{
b3694847 3365 rtx insn;
23b2ce53 3366
4b1f5e8c 3367 insn = rtx_alloc (JUMP_INSN);
1632afca 3368 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3369
3370 PATTERN (insn) = pattern;
3371 INSN_CODE (insn) = -1;
1632afca
RS
3372 REG_NOTES (insn) = NULL;
3373 JUMP_LABEL (insn) = NULL;
55e092c4 3374 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3375 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3376
3377 return insn;
3378}
aff507f4 3379
2f937369 3380/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3381
3382static rtx
502b8322 3383make_call_insn_raw (rtx pattern)
aff507f4 3384{
b3694847 3385 rtx insn;
aff507f4
RK
3386
3387 insn = rtx_alloc (CALL_INSN);
3388 INSN_UID (insn) = cur_insn_uid++;
3389
3390 PATTERN (insn) = pattern;
3391 INSN_CODE (insn) = -1;
aff507f4
RK
3392 REG_NOTES (insn) = NULL;
3393 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
55e092c4 3394 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3395 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3396
3397 return insn;
3398}
23b2ce53
RS
3399\f
3400/* Add INSN to the end of the doubly-linked list.
3401 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3402
3403void
502b8322 3404add_insn (rtx insn)
23b2ce53
RS
3405{
3406 PREV_INSN (insn) = last_insn;
3407 NEXT_INSN (insn) = 0;
3408
3409 if (NULL != last_insn)
3410 NEXT_INSN (last_insn) = insn;
3411
3412 if (NULL == first_insn)
3413 first_insn = insn;
3414
3415 last_insn = insn;
3416}
3417
a0ae8e8d
RK
3418/* Add INSN into the doubly-linked list after insn AFTER. This and
3419 the next should be the only functions called to insert an insn once
ba213285 3420 delay slots have been filled since only they know how to update a
a0ae8e8d 3421 SEQUENCE. */
23b2ce53
RS
3422
3423void
6fb5fa3c 3424add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3425{
3426 rtx next = NEXT_INSN (after);
3427
5b0264cb 3428 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3429
23b2ce53
RS
3430 NEXT_INSN (insn) = next;
3431 PREV_INSN (insn) = after;
3432
3433 if (next)
3434 {
3435 PREV_INSN (next) = insn;
4b4bf941 3436 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3437 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3438 }
3439 else if (last_insn == after)
3440 last_insn = insn;
3441 else
3442 {
49ad7cfa 3443 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3444 /* Scan all pending sequences too. */
3445 for (; stack; stack = stack->next)
3446 if (after == stack->last)
fef0509b
RK
3447 {
3448 stack->last = insn;
3449 break;
3450 }
a0ae8e8d 3451
5b0264cb 3452 gcc_assert (stack);
23b2ce53
RS
3453 }
3454
4b4bf941
JQ
3455 if (!BARRIER_P (after)
3456 && !BARRIER_P (insn)
3c030e88
JH
3457 && (bb = BLOCK_FOR_INSN (after)))
3458 {
3459 set_block_for_insn (insn, bb);
38c1593d 3460 if (INSN_P (insn))
6fb5fa3c 3461 df_insn_rescan (insn);
3c030e88 3462 /* Should not happen as first in the BB is always
a1f300c0 3463 either NOTE or LABEL. */
a813c111 3464 if (BB_END (bb) == after
3c030e88 3465 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3466 && !BARRIER_P (insn)
a38e7aa5 3467 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3468 BB_END (bb) = insn;
3c030e88
JH
3469 }
3470
23b2ce53 3471 NEXT_INSN (after) = insn;
4b4bf941 3472 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3473 {
3474 rtx sequence = PATTERN (after);
3475 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3476 }
3477}
3478
a0ae8e8d 3479/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3480 the previous should be the only functions called to insert an insn
3481 once delay slots have been filled since only they know how to
3482 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3483 bb from before. */
a0ae8e8d
RK
3484
3485void
6fb5fa3c 3486add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3487{
3488 rtx prev = PREV_INSN (before);
3489
5b0264cb 3490 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3491
a0ae8e8d
RK
3492 PREV_INSN (insn) = prev;
3493 NEXT_INSN (insn) = before;
3494
3495 if (prev)
3496 {
3497 NEXT_INSN (prev) = insn;
4b4bf941 3498 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3499 {
3500 rtx sequence = PATTERN (prev);
3501 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3502 }
3503 }
3504 else if (first_insn == before)
3505 first_insn = insn;
3506 else
3507 {
49ad7cfa 3508 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3509 /* Scan all pending sequences too. */
3510 for (; stack; stack = stack->next)
3511 if (before == stack->first)
fef0509b
RK
3512 {
3513 stack->first = insn;
3514 break;
3515 }
a0ae8e8d 3516
5b0264cb 3517 gcc_assert (stack);
a0ae8e8d
RK
3518 }
3519
6fb5fa3c
DB
3520 if (!bb
3521 && !BARRIER_P (before)
3522 && !BARRIER_P (insn))
3523 bb = BLOCK_FOR_INSN (before);
3524
3525 if (bb)
3c030e88
JH
3526 {
3527 set_block_for_insn (insn, bb);
38c1593d 3528 if (INSN_P (insn))
6fb5fa3c 3529 df_insn_rescan (insn);
5b0264cb 3530 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3531 LABEL. */
5b0264cb
NS
3532 gcc_assert (BB_HEAD (bb) != insn
3533 /* Avoid clobbering of structure when creating new BB. */
3534 || BARRIER_P (insn)
a38e7aa5 3535 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3536 }
3537
a0ae8e8d 3538 PREV_INSN (before) = insn;
4b4bf941 3539 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3540 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3541}
3542
6fb5fa3c
DB
3543
3544/* Replace insn with an deleted instruction note. */
3545
3546void set_insn_deleted (rtx insn)
3547{
3548 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3549 PUT_CODE (insn, NOTE);
3550 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3551}
3552
3553
89e99eea
DB
3554/* Remove an insn from its doubly-linked list. This function knows how
3555 to handle sequences. */
3556void
502b8322 3557remove_insn (rtx insn)
89e99eea
DB
3558{
3559 rtx next = NEXT_INSN (insn);
3560 rtx prev = PREV_INSN (insn);
53c17031
JH
3561 basic_block bb;
3562
6fb5fa3c
DB
3563 /* Later in the code, the block will be marked dirty. */
3564 df_insn_delete (NULL, INSN_UID (insn));
3565
89e99eea
DB
3566 if (prev)
3567 {
3568 NEXT_INSN (prev) = next;
4b4bf941 3569 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3570 {
3571 rtx sequence = PATTERN (prev);
3572 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3573 }
3574 }
3575 else if (first_insn == insn)
3576 first_insn = next;
3577 else
3578 {
49ad7cfa 3579 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3580 /* Scan all pending sequences too. */
3581 for (; stack; stack = stack->next)
3582 if (insn == stack->first)
3583 {
3584 stack->first = next;
3585 break;
3586 }
3587
5b0264cb 3588 gcc_assert (stack);
89e99eea
DB
3589 }
3590
3591 if (next)
3592 {
3593 PREV_INSN (next) = prev;
4b4bf941 3594 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3595 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3596 }
3597 else if (last_insn == insn)
3598 last_insn = prev;
3599 else
3600 {
49ad7cfa 3601 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3602 /* Scan all pending sequences too. */
3603 for (; stack; stack = stack->next)
3604 if (insn == stack->last)
3605 {
3606 stack->last = prev;
3607 break;
3608 }
3609
5b0264cb 3610 gcc_assert (stack);
89e99eea 3611 }
4b4bf941 3612 if (!BARRIER_P (insn)
53c17031
JH
3613 && (bb = BLOCK_FOR_INSN (insn)))
3614 {
38c1593d 3615 if (INSN_P (insn))
6fb5fa3c 3616 df_set_bb_dirty (bb);
a813c111 3617 if (BB_HEAD (bb) == insn)
53c17031 3618 {
3bf1e984
RK
3619 /* Never ever delete the basic block note without deleting whole
3620 basic block. */
5b0264cb 3621 gcc_assert (!NOTE_P (insn));
a813c111 3622 BB_HEAD (bb) = next;
53c17031 3623 }
a813c111
SB
3624 if (BB_END (bb) == insn)
3625 BB_END (bb) = prev;
53c17031 3626 }
89e99eea
DB
3627}
3628
ee960939
OH
3629/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3630
3631void
502b8322 3632add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 3633{
5b0264cb 3634 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
3635
3636 /* Put the register usage information on the CALL. If there is already
3637 some usage information, put ours at the end. */
3638 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3639 {
3640 rtx link;
3641
3642 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3643 link = XEXP (link, 1))
3644 ;
3645
3646 XEXP (link, 1) = call_fusage;
3647 }
3648 else
3649 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3650}
3651
23b2ce53
RS
3652/* Delete all insns made since FROM.
3653 FROM becomes the new last instruction. */
3654
3655void
502b8322 3656delete_insns_since (rtx from)
23b2ce53
RS
3657{
3658 if (from == 0)
3659 first_insn = 0;
3660 else
3661 NEXT_INSN (from) = 0;
3662 last_insn = from;
3663}
3664
5dab5552
MS
3665/* This function is deprecated, please use sequences instead.
3666
3667 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3668 The insns to be moved are those between FROM and TO.
3669 They are moved to a new position after the insn AFTER.
3670 AFTER must not be FROM or TO or any insn in between.
3671
3672 This function does not know about SEQUENCEs and hence should not be
3673 called after delay-slot filling has been done. */
3674
3675void
502b8322 3676reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53
RS
3677{
3678 /* Splice this bunch out of where it is now. */
3679 if (PREV_INSN (from))
3680 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3681 if (NEXT_INSN (to))
3682 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3683 if (last_insn == to)
3684 last_insn = PREV_INSN (from);
3685 if (first_insn == from)
3686 first_insn = NEXT_INSN (to);
3687
3688 /* Make the new neighbors point to it and it to them. */
3689 if (NEXT_INSN (after))
3690 PREV_INSN (NEXT_INSN (after)) = to;
3691
3692 NEXT_INSN (to) = NEXT_INSN (after);
3693 PREV_INSN (from) = after;
3694 NEXT_INSN (after) = from;
3695 if (after == last_insn)
3696 last_insn = to;
3697}
3698
3c030e88
JH
3699/* Same as function above, but take care to update BB boundaries. */
3700void
502b8322 3701reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3702{
3703 rtx prev = PREV_INSN (from);
3704 basic_block bb, bb2;
3705
3706 reorder_insns_nobb (from, to, after);
3707
4b4bf941 3708 if (!BARRIER_P (after)
3c030e88
JH
3709 && (bb = BLOCK_FOR_INSN (after)))
3710 {
3711 rtx x;
6fb5fa3c 3712 df_set_bb_dirty (bb);
68252e27 3713
4b4bf941 3714 if (!BARRIER_P (from)
3c030e88
JH
3715 && (bb2 = BLOCK_FOR_INSN (from)))
3716 {
a813c111
SB
3717 if (BB_END (bb2) == to)
3718 BB_END (bb2) = prev;
6fb5fa3c 3719 df_set_bb_dirty (bb2);
3c030e88
JH
3720 }
3721
a813c111
SB
3722 if (BB_END (bb) == after)
3723 BB_END (bb) = to;
3c030e88
JH
3724
3725 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 3726 if (!BARRIER_P (x))
6fb5fa3c
DB
3727 {
3728 set_block_for_insn (x, bb);
3729 df_insn_change_bb (x);
3730 }
3c030e88
JH
3731 }
3732}
3733
23b2ce53 3734\f
2f937369
DM
3735/* Emit insn(s) of given code and pattern
3736 at a specified place within the doubly-linked list.
23b2ce53 3737
2f937369
DM
3738 All of the emit_foo global entry points accept an object
3739 X which is either an insn list or a PATTERN of a single
3740 instruction.
23b2ce53 3741
2f937369
DM
3742 There are thus a few canonical ways to generate code and
3743 emit it at a specific place in the instruction stream. For
3744 example, consider the instruction named SPOT and the fact that
3745 we would like to emit some instructions before SPOT. We might
3746 do it like this:
23b2ce53 3747
2f937369
DM
3748 start_sequence ();
3749 ... emit the new instructions ...
3750 insns_head = get_insns ();
3751 end_sequence ();
23b2ce53 3752
2f937369 3753 emit_insn_before (insns_head, SPOT);
23b2ce53 3754
2f937369
DM
3755 It used to be common to generate SEQUENCE rtl instead, but that
3756 is a relic of the past which no longer occurs. The reason is that
3757 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3758 generated would almost certainly die right after it was created. */
23b2ce53 3759
2f937369 3760/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
3761
3762rtx
6fb5fa3c 3763emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
23b2ce53 3764{
2f937369 3765 rtx last = before;
b3694847 3766 rtx insn;
23b2ce53 3767
5b0264cb 3768 gcc_assert (before);
2f937369
DM
3769
3770 if (x == NULL_RTX)
3771 return last;
3772
3773 switch (GET_CODE (x))
23b2ce53 3774 {
2f937369
DM
3775 case INSN:
3776 case JUMP_INSN:
3777 case CALL_INSN:
3778 case CODE_LABEL:
3779 case BARRIER:
3780 case NOTE:
3781 insn = x;
3782 while (insn)
3783 {
3784 rtx next = NEXT_INSN (insn);
6fb5fa3c 3785 add_insn_before (insn, before, bb);
2f937369
DM
3786 last = insn;
3787 insn = next;
3788 }
3789 break;
3790
3791#ifdef ENABLE_RTL_CHECKING
3792 case SEQUENCE:
5b0264cb 3793 gcc_unreachable ();
2f937369
DM
3794 break;
3795#endif
3796
3797 default:
3798 last = make_insn_raw (x);
6fb5fa3c 3799 add_insn_before (last, before, bb);
2f937369 3800 break;
23b2ce53
RS
3801 }
3802
2f937369 3803 return last;
23b2ce53
RS
3804}
3805
2f937369 3806/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
3807 and output it before the instruction BEFORE. */
3808
3809rtx
a7102479 3810emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 3811{
d950dee3 3812 rtx insn, last = NULL_RTX;
aff507f4 3813
5b0264cb 3814 gcc_assert (before);
2f937369
DM
3815
3816 switch (GET_CODE (x))
aff507f4 3817 {
2f937369
DM
3818 case INSN:
3819 case JUMP_INSN:
3820 case CALL_INSN:
3821 case CODE_LABEL:
3822 case BARRIER:
3823 case NOTE:
3824 insn = x;
3825 while (insn)
3826 {
3827 rtx next = NEXT_INSN (insn);
6fb5fa3c 3828 add_insn_before (insn, before, NULL);
2f937369
DM
3829 last = insn;
3830 insn = next;
3831 }
3832 break;
3833
3834#ifdef ENABLE_RTL_CHECKING
3835 case SEQUENCE:
5b0264cb 3836 gcc_unreachable ();
2f937369
DM
3837 break;
3838#endif
3839
3840 default:
3841 last = make_jump_insn_raw (x);
6fb5fa3c 3842 add_insn_before (last, before, NULL);
2f937369 3843 break;
aff507f4
RK
3844 }
3845
2f937369 3846 return last;
23b2ce53
RS
3847}
3848
2f937369 3849/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
3850 and output it before the instruction BEFORE. */
3851
3852rtx
a7102479 3853emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 3854{
d950dee3 3855 rtx last = NULL_RTX, insn;
969d70ca 3856
5b0264cb 3857 gcc_assert (before);
2f937369
DM
3858
3859 switch (GET_CODE (x))
969d70ca 3860 {
2f937369
DM
3861 case INSN:
3862 case JUMP_INSN:
3863 case CALL_INSN:
3864 case CODE_LABEL:
3865 case BARRIER:
3866 case NOTE:
3867 insn = x;
3868 while (insn)
3869 {
3870 rtx next = NEXT_INSN (insn);
6fb5fa3c 3871 add_insn_before (insn, before, NULL);
2f937369
DM
3872 last = insn;
3873 insn = next;
3874 }
3875 break;
3876
3877#ifdef ENABLE_RTL_CHECKING
3878 case SEQUENCE:
5b0264cb 3879 gcc_unreachable ();
2f937369
DM
3880 break;
3881#endif
3882
3883 default:
3884 last = make_call_insn_raw (x);
6fb5fa3c 3885 add_insn_before (last, before, NULL);
2f937369 3886 break;
969d70ca
JH
3887 }
3888
2f937369 3889 return last;
969d70ca
JH
3890}
3891
23b2ce53 3892/* Make an insn of code BARRIER
e881bb1b 3893 and output it before the insn BEFORE. */
23b2ce53
RS
3894
3895rtx
502b8322 3896emit_barrier_before (rtx before)
23b2ce53 3897{
b3694847 3898 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
3899
3900 INSN_UID (insn) = cur_insn_uid++;
3901
6fb5fa3c 3902 add_insn_before (insn, before, NULL);
23b2ce53
RS
3903 return insn;
3904}
3905
e881bb1b
RH
3906/* Emit the label LABEL before the insn BEFORE. */
3907
3908rtx
502b8322 3909emit_label_before (rtx label, rtx before)
e881bb1b
RH
3910{
3911 /* This can be called twice for the same label as a result of the
3912 confusion that follows a syntax error! So make it harmless. */
3913 if (INSN_UID (label) == 0)
3914 {
3915 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 3916 add_insn_before (label, before, NULL);
e881bb1b
RH
3917 }
3918
3919 return label;
3920}
3921
23b2ce53
RS
3922/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3923
3924rtx
a38e7aa5 3925emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 3926{
b3694847 3927 rtx note = rtx_alloc (NOTE);
23b2ce53 3928 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 3929 NOTE_KIND (note) = subtype;
ba4f7968 3930 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 3931 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 3932
6fb5fa3c 3933 add_insn_before (note, before, NULL);
23b2ce53
RS
3934 return note;
3935}
3936\f
2f937369
DM
3937/* Helper for emit_insn_after, handles lists of instructions
3938 efficiently. */
23b2ce53 3939
2f937369 3940static rtx
6fb5fa3c 3941emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 3942{
2f937369
DM
3943 rtx last;
3944 rtx after_after;
6fb5fa3c
DB
3945 if (!bb && !BARRIER_P (after))
3946 bb = BLOCK_FOR_INSN (after);
23b2ce53 3947
6fb5fa3c 3948 if (bb)
23b2ce53 3949 {
6fb5fa3c 3950 df_set_bb_dirty (bb);
2f937369 3951 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 3952 if (!BARRIER_P (last))
6fb5fa3c
DB
3953 {
3954 set_block_for_insn (last, bb);
3955 df_insn_rescan (last);
3956 }
4b4bf941 3957 if (!BARRIER_P (last))
6fb5fa3c
DB
3958 {
3959 set_block_for_insn (last, bb);
3960 df_insn_rescan (last);
3961 }
a813c111
SB
3962 if (BB_END (bb) == after)
3963 BB_END (bb) = last;
23b2ce53
RS
3964 }
3965 else
2f937369
DM
3966 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3967 continue;
3968
3969 after_after = NEXT_INSN (after);
3970
3971 NEXT_INSN (after) = first;
3972 PREV_INSN (first) = after;
3973 NEXT_INSN (last) = after_after;
3974 if (after_after)
3975 PREV_INSN (after_after) = last;
3976
3977 if (after == last_insn)
3978 last_insn = last;
3979 return last;
3980}
3981
6fb5fa3c
DB
3982/* Make X be output after the insn AFTER and set the BB of insn. If
3983 BB is NULL, an attempt is made to infer the BB from AFTER. */
2f937369
DM
3984
3985rtx
6fb5fa3c 3986emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
2f937369
DM
3987{
3988 rtx last = after;
3989
5b0264cb 3990 gcc_assert (after);
2f937369
DM
3991
3992 if (x == NULL_RTX)
3993 return last;
3994
3995 switch (GET_CODE (x))
23b2ce53 3996 {
2f937369
DM
3997 case INSN:
3998 case JUMP_INSN:
3999 case CALL_INSN:
4000 case CODE_LABEL:
4001 case BARRIER:
4002 case NOTE:
6fb5fa3c 4003 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4004 break;
4005
4006#ifdef ENABLE_RTL_CHECKING
4007 case SEQUENCE:
5b0264cb 4008 gcc_unreachable ();
2f937369
DM
4009 break;
4010#endif
4011
4012 default:
4013 last = make_insn_raw (x);
6fb5fa3c 4014 add_insn_after (last, after, bb);
2f937369 4015 break;
23b2ce53
RS
4016 }
4017
2f937369 4018 return last;
23b2ce53
RS
4019}
4020
255680cf 4021
2f937369 4022/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4023 and output it after the insn AFTER. */
4024
4025rtx
a7102479 4026emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4027{
2f937369 4028 rtx last;
23b2ce53 4029
5b0264cb 4030 gcc_assert (after);
2f937369
DM
4031
4032 switch (GET_CODE (x))
23b2ce53 4033 {
2f937369
DM
4034 case INSN:
4035 case JUMP_INSN:
4036 case CALL_INSN:
4037 case CODE_LABEL:
4038 case BARRIER:
4039 case NOTE:
6fb5fa3c 4040 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4041 break;
4042
4043#ifdef ENABLE_RTL_CHECKING
4044 case SEQUENCE:
5b0264cb 4045 gcc_unreachable ();
2f937369
DM
4046 break;
4047#endif
4048
4049 default:
4050 last = make_jump_insn_raw (x);
6fb5fa3c 4051 add_insn_after (last, after, NULL);
2f937369 4052 break;
23b2ce53
RS
4053 }
4054
2f937369
DM
4055 return last;
4056}
4057
4058/* Make an instruction with body X and code CALL_INSN
4059 and output it after the instruction AFTER. */
4060
4061rtx
a7102479 4062emit_call_insn_after_noloc (rtx x, rtx after)
2f937369
DM
4063{
4064 rtx last;
4065
5b0264cb 4066 gcc_assert (after);
2f937369
DM
4067
4068 switch (GET_CODE (x))
4069 {
4070 case INSN:
4071 case JUMP_INSN:
4072 case CALL_INSN:
4073 case CODE_LABEL:
4074 case BARRIER:
4075 case NOTE:
6fb5fa3c 4076 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4077 break;
4078
4079#ifdef ENABLE_RTL_CHECKING
4080 case SEQUENCE:
5b0264cb 4081 gcc_unreachable ();
2f937369
DM
4082 break;
4083#endif
4084
4085 default:
4086 last = make_call_insn_raw (x);
6fb5fa3c 4087 add_insn_after (last, after, NULL);
2f937369
DM
4088 break;
4089 }
4090
4091 return last;
23b2ce53
RS
4092}
4093
4094/* Make an insn of code BARRIER
4095 and output it after the insn AFTER. */
4096
4097rtx
502b8322 4098emit_barrier_after (rtx after)
23b2ce53 4099{
b3694847 4100 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4101
4102 INSN_UID (insn) = cur_insn_uid++;
4103
6fb5fa3c 4104 add_insn_after (insn, after, NULL);
23b2ce53
RS
4105 return insn;
4106}
4107
4108/* Emit the label LABEL after the insn AFTER. */
4109
4110rtx
502b8322 4111emit_label_after (rtx label, rtx after)
23b2ce53
RS
4112{
4113 /* This can be called twice for the same label
4114 as a result of the confusion that follows a syntax error!
4115 So make it harmless. */
4116 if (INSN_UID (label) == 0)
4117 {
4118 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4119 add_insn_after (label, after, NULL);
23b2ce53
RS
4120 }
4121
4122 return label;
4123}
4124
4125/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4126
4127rtx
a38e7aa5 4128emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4129{
b3694847 4130 rtx note = rtx_alloc (NOTE);
23b2ce53 4131 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4132 NOTE_KIND (note) = subtype;
ba4f7968 4133 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4134 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4135 add_insn_after (note, after, NULL);
23b2ce53
RS
4136 return note;
4137}
23b2ce53 4138\f
a7102479 4139/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4140rtx
502b8322 4141emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4142{
6fb5fa3c 4143 rtx last = emit_insn_after_noloc (pattern, after, NULL);
0d682900 4144
a7102479 4145 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4146 return last;
4147
2f937369
DM
4148 after = NEXT_INSN (after);
4149 while (1)
4150 {
a7102479 4151 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4152 INSN_LOCATOR (after) = loc;
2f937369
DM
4153 if (after == last)
4154 break;
4155 after = NEXT_INSN (after);
4156 }
0d682900
JH
4157 return last;
4158}
4159
a7102479
JH
4160/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4161rtx
4162emit_insn_after (rtx pattern, rtx after)
4163{
4164 if (INSN_P (after))
4165 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4166 else
6fb5fa3c 4167 return emit_insn_after_noloc (pattern, after, NULL);
a7102479
JH
4168}
4169
4170/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4171rtx
502b8322 4172emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4173{
a7102479 4174 rtx last = emit_jump_insn_after_noloc (pattern, after);
2f937369 4175
a7102479 4176 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4177 return last;
4178
2f937369
DM
4179 after = NEXT_INSN (after);
4180 while (1)
4181 {
a7102479 4182 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4183 INSN_LOCATOR (after) = loc;
2f937369
DM
4184 if (after == last)
4185 break;
4186 after = NEXT_INSN (after);
4187 }
0d682900
JH
4188 return last;
4189}
4190
a7102479
JH
4191/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4192rtx
4193emit_jump_insn_after (rtx pattern, rtx after)
4194{
4195 if (INSN_P (after))
4196 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4197 else
4198 return emit_jump_insn_after_noloc (pattern, after);
4199}
4200
4201/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4202rtx
502b8322 4203emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4204{
a7102479 4205 rtx last = emit_call_insn_after_noloc (pattern, after);
2f937369 4206
a7102479 4207 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4208 return last;
4209
2f937369
DM
4210 after = NEXT_INSN (after);
4211 while (1)
4212 {
a7102479 4213 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4214 INSN_LOCATOR (after) = loc;
2f937369
DM
4215 if (after == last)
4216 break;
4217 after = NEXT_INSN (after);
4218 }
0d682900
JH
4219 return last;
4220}
4221
a7102479
JH
4222/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4223rtx
4224emit_call_insn_after (rtx pattern, rtx after)
4225{
4226 if (INSN_P (after))
4227 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4228 else
4229 return emit_call_insn_after_noloc (pattern, after);
4230}
4231
4232/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4233rtx
502b8322 4234emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0d682900
JH
4235{
4236 rtx first = PREV_INSN (before);
6fb5fa3c 4237 rtx last = emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4238
4239 if (pattern == NULL_RTX || !loc)
4240 return last;
4241
26cb3993
JH
4242 if (!first)
4243 first = get_insns ();
4244 else
4245 first = NEXT_INSN (first);
a7102479
JH
4246 while (1)
4247 {
4248 if (active_insn_p (first) && !INSN_LOCATOR (first))
4249 INSN_LOCATOR (first) = loc;
4250 if (first == last)
4251 break;
4252 first = NEXT_INSN (first);
4253 }
4254 return last;
4255}
4256
4257/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4258rtx
4259emit_insn_before (rtx pattern, rtx before)
4260{
4261 if (INSN_P (before))
4262 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4263 else
6fb5fa3c 4264 return emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4265}
4266
4267/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4268rtx
4269emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4270{
4271 rtx first = PREV_INSN (before);
4272 rtx last = emit_jump_insn_before_noloc (pattern, before);
4273
4274 if (pattern == NULL_RTX)
4275 return last;
4276
4277 first = NEXT_INSN (first);
4278 while (1)
4279 {
4280 if (active_insn_p (first) && !INSN_LOCATOR (first))
4281 INSN_LOCATOR (first) = loc;
4282 if (first == last)
4283 break;
4284 first = NEXT_INSN (first);
4285 }
4286 return last;
4287}
4288
4289/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4290rtx
4291emit_jump_insn_before (rtx pattern, rtx before)
4292{
4293 if (INSN_P (before))
4294 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4295 else
4296 return emit_jump_insn_before_noloc (pattern, before);
4297}
4298
4299/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4300rtx
4301emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4302{
4303 rtx first = PREV_INSN (before);
4304 rtx last = emit_call_insn_before_noloc (pattern, before);
0d682900 4305
dd3adcf8
DJ
4306 if (pattern == NULL_RTX)
4307 return last;
4308
2f937369
DM
4309 first = NEXT_INSN (first);
4310 while (1)
4311 {
a7102479 4312 if (active_insn_p (first) && !INSN_LOCATOR (first))
0435312e 4313 INSN_LOCATOR (first) = loc;
2f937369
DM
4314 if (first == last)
4315 break;
4316 first = NEXT_INSN (first);
4317 }
0d682900
JH
4318 return last;
4319}
a7102479
JH
4320
4321/* like emit_call_insn_before_noloc,
4322 but set insn_locator according to before. */
4323rtx
4324emit_call_insn_before (rtx pattern, rtx before)
4325{
4326 if (INSN_P (before))
4327 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4328 else
4329 return emit_call_insn_before_noloc (pattern, before);
4330}
0d682900 4331\f
2f937369
DM
4332/* Take X and emit it at the end of the doubly-linked
4333 INSN list.
23b2ce53
RS
4334
4335 Returns the last insn emitted. */
4336
4337rtx
502b8322 4338emit_insn (rtx x)
23b2ce53 4339{
2f937369
DM
4340 rtx last = last_insn;
4341 rtx insn;
23b2ce53 4342
2f937369
DM
4343 if (x == NULL_RTX)
4344 return last;
23b2ce53 4345
2f937369
DM
4346 switch (GET_CODE (x))
4347 {
4348 case INSN:
4349 case JUMP_INSN:
4350 case CALL_INSN:
4351 case CODE_LABEL:
4352 case BARRIER:
4353 case NOTE:
4354 insn = x;
4355 while (insn)
23b2ce53 4356 {
2f937369 4357 rtx next = NEXT_INSN (insn);
23b2ce53 4358 add_insn (insn);
2f937369
DM
4359 last = insn;
4360 insn = next;
23b2ce53 4361 }
2f937369 4362 break;
23b2ce53 4363
2f937369
DM
4364#ifdef ENABLE_RTL_CHECKING
4365 case SEQUENCE:
5b0264cb 4366 gcc_unreachable ();
2f937369
DM
4367 break;
4368#endif
23b2ce53 4369
2f937369
DM
4370 default:
4371 last = make_insn_raw (x);
4372 add_insn (last);
4373 break;
23b2ce53
RS
4374 }
4375
4376 return last;
4377}
4378
2f937369
DM
4379/* Make an insn of code JUMP_INSN with pattern X
4380 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4381
4382rtx
502b8322 4383emit_jump_insn (rtx x)
23b2ce53 4384{
d950dee3 4385 rtx last = NULL_RTX, insn;
23b2ce53 4386
2f937369 4387 switch (GET_CODE (x))
23b2ce53 4388 {
2f937369
DM
4389 case INSN:
4390 case JUMP_INSN:
4391 case CALL_INSN:
4392 case CODE_LABEL:
4393 case BARRIER:
4394 case NOTE:
4395 insn = x;
4396 while (insn)
4397 {
4398 rtx next = NEXT_INSN (insn);
4399 add_insn (insn);
4400 last = insn;
4401 insn = next;
4402 }
4403 break;
e0a5c5eb 4404
2f937369
DM
4405#ifdef ENABLE_RTL_CHECKING
4406 case SEQUENCE:
5b0264cb 4407 gcc_unreachable ();
2f937369
DM
4408 break;
4409#endif
e0a5c5eb 4410
2f937369
DM
4411 default:
4412 last = make_jump_insn_raw (x);
4413 add_insn (last);
4414 break;
3c030e88 4415 }
e0a5c5eb
RS
4416
4417 return last;
4418}
4419
2f937369 4420/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4421 and add it to the end of the doubly-linked list. */
4422
4423rtx
502b8322 4424emit_call_insn (rtx x)
23b2ce53 4425{
2f937369
DM
4426 rtx insn;
4427
4428 switch (GET_CODE (x))
23b2ce53 4429 {
2f937369
DM
4430 case INSN:
4431 case JUMP_INSN:
4432 case CALL_INSN:
4433 case CODE_LABEL:
4434 case BARRIER:
4435 case NOTE:
4436 insn = emit_insn (x);
4437 break;
23b2ce53 4438
2f937369
DM
4439#ifdef ENABLE_RTL_CHECKING
4440 case SEQUENCE:
5b0264cb 4441 gcc_unreachable ();
2f937369
DM
4442 break;
4443#endif
23b2ce53 4444
2f937369
DM
4445 default:
4446 insn = make_call_insn_raw (x);
23b2ce53 4447 add_insn (insn);
2f937369 4448 break;
23b2ce53 4449 }
2f937369
DM
4450
4451 return insn;
23b2ce53
RS
4452}
4453
4454/* Add the label LABEL to the end of the doubly-linked list. */
4455
4456rtx
502b8322 4457emit_label (rtx label)
23b2ce53
RS
4458{
4459 /* This can be called twice for the same label
4460 as a result of the confusion that follows a syntax error!
4461 So make it harmless. */
4462 if (INSN_UID (label) == 0)
4463 {
4464 INSN_UID (label) = cur_insn_uid++;
4465 add_insn (label);
4466 }
4467 return label;
4468}
4469
4470/* Make an insn of code BARRIER
4471 and add it to the end of the doubly-linked list. */
4472
4473rtx
502b8322 4474emit_barrier (void)
23b2ce53 4475{
b3694847 4476 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4477 INSN_UID (barrier) = cur_insn_uid++;
4478 add_insn (barrier);
4479 return barrier;
4480}
4481
5f2fc772 4482/* Emit a copy of note ORIG. */
502b8322 4483
5f2fc772
NS
4484rtx
4485emit_note_copy (rtx orig)
4486{
4487 rtx note;
4488
5f2fc772
NS
4489 note = rtx_alloc (NOTE);
4490
4491 INSN_UID (note) = cur_insn_uid++;
4492 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4493 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4494 BLOCK_FOR_INSN (note) = NULL;
4495 add_insn (note);
4496
2e040219 4497 return note;
23b2ce53
RS
4498}
4499
2e040219
NS
4500/* Make an insn of code NOTE or type NOTE_NO
4501 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4502
4503rtx
a38e7aa5 4504emit_note (enum insn_note kind)
23b2ce53 4505{
b3694847 4506 rtx note;
23b2ce53 4507
23b2ce53
RS
4508 note = rtx_alloc (NOTE);
4509 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4510 NOTE_KIND (note) = kind;
dd107e66 4511 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4512 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4513 add_insn (note);
4514 return note;
4515}
4516
23b2ce53 4517/* Cause next statement to emit a line note even if the line number
0cea056b 4518 has not changed. */
23b2ce53
RS
4519
4520void
502b8322 4521force_next_line_note (void)
23b2ce53 4522{
6773e15f
PB
4523#ifdef USE_MAPPED_LOCATION
4524 last_location = -1;
4525#else
fd3acbb3 4526 last_location.line = -1;
6773e15f 4527#endif
23b2ce53 4528}
87b47c85
AM
4529
4530/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4531 note of this type already exists, remove it first. */
87b47c85 4532
3d238248 4533rtx
502b8322 4534set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4535{
4536 rtx note = find_reg_note (insn, kind, NULL_RTX);
6fb5fa3c 4537 rtx new_note = NULL;
87b47c85 4538
52488da1
JW
4539 switch (kind)
4540 {
4541 case REG_EQUAL:
4542 case REG_EQUIV:
4543 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4544 has multiple sets (some callers assume single_set
4545 means the insn only has one set, when in fact it
4546 means the insn only has one * useful * set). */
4547 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4548 {
5b0264cb 4549 gcc_assert (!note);
52488da1
JW
4550 return NULL_RTX;
4551 }
4552
4553 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4554 It serves no useful purpose and breaks eliminate_regs. */
4555 if (GET_CODE (datum) == ASM_OPERANDS)
4556 return NULL_RTX;
6fb5fa3c
DB
4557
4558 if (note)
4559 {
4560 XEXP (note, 0) = datum;
4561 df_notes_rescan (insn);
4562 return note;
4563 }
52488da1
JW
4564 break;
4565
4566 default:
6fb5fa3c
DB
4567 if (note)
4568 {
4569 XEXP (note, 0) = datum;
4570 return note;
4571 }
52488da1
JW
4572 break;
4573 }
3d238248 4574
6fb5fa3c
DB
4575 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4576 REG_NOTES (insn) = new_note;
4577
4578 switch (kind)
3d238248 4579 {
6fb5fa3c
DB
4580 case REG_EQUAL:
4581 case REG_EQUIV:
4582 df_notes_rescan (insn);
4583 break;
4584 default:
4585 break;
3d238248 4586 }
87b47c85 4587
3d238248 4588 return REG_NOTES (insn);
87b47c85 4589}
23b2ce53
RS
4590\f
4591/* Return an indication of which type of insn should have X as a body.
4592 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4593
d78db459 4594static enum rtx_code
502b8322 4595classify_insn (rtx x)
23b2ce53 4596{
4b4bf941 4597 if (LABEL_P (x))
23b2ce53
RS
4598 return CODE_LABEL;
4599 if (GET_CODE (x) == CALL)
4600 return CALL_INSN;
4601 if (GET_CODE (x) == RETURN)
4602 return JUMP_INSN;
4603 if (GET_CODE (x) == SET)
4604 {
4605 if (SET_DEST (x) == pc_rtx)
4606 return JUMP_INSN;
4607 else if (GET_CODE (SET_SRC (x)) == CALL)
4608 return CALL_INSN;
4609 else
4610 return INSN;
4611 }
4612 if (GET_CODE (x) == PARALLEL)
4613 {
b3694847 4614 int j;
23b2ce53
RS
4615 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4616 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4617 return CALL_INSN;
4618 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4619 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4620 return JUMP_INSN;
4621 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4622 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4623 return CALL_INSN;
4624 }
4625 return INSN;
4626}
4627
4628/* Emit the rtl pattern X as an appropriate kind of insn.
4629 If X is a label, it is simply added into the insn chain. */
4630
4631rtx
502b8322 4632emit (rtx x)
23b2ce53
RS
4633{
4634 enum rtx_code code = classify_insn (x);
4635
5b0264cb 4636 switch (code)
23b2ce53 4637 {
5b0264cb
NS
4638 case CODE_LABEL:
4639 return emit_label (x);
4640 case INSN:
4641 return emit_insn (x);
4642 case JUMP_INSN:
4643 {
4644 rtx insn = emit_jump_insn (x);
4645 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4646 return emit_barrier ();
4647 return insn;
4648 }
4649 case CALL_INSN:
4650 return emit_call_insn (x);
4651 default:
4652 gcc_unreachable ();
23b2ce53 4653 }
23b2ce53
RS
4654}
4655\f
e2500fed 4656/* Space for free sequence stack entries. */
1431042e 4657static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 4658
4dfa0342
RH
4659/* Begin emitting insns to a sequence. If this sequence will contain
4660 something that might cause the compiler to pop arguments to function
4661 calls (because those pops have previously been deferred; see
4662 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4663 before calling this function. That will ensure that the deferred
4664 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
4665
4666void
502b8322 4667start_sequence (void)
23b2ce53
RS
4668{
4669 struct sequence_stack *tem;
4670
e2500fed
GK
4671 if (free_sequence_stack != NULL)
4672 {
4673 tem = free_sequence_stack;
4674 free_sequence_stack = tem->next;
4675 }
4676 else
703ad42b 4677 tem = ggc_alloc (sizeof (struct sequence_stack));
23b2ce53 4678
49ad7cfa 4679 tem->next = seq_stack;
23b2ce53
RS
4680 tem->first = first_insn;
4681 tem->last = last_insn;
4682
49ad7cfa 4683 seq_stack = tem;
23b2ce53
RS
4684
4685 first_insn = 0;
4686 last_insn = 0;
4687}
4688
5c7a310f
MM
4689/* Set up the insn chain starting with FIRST as the current sequence,
4690 saving the previously current one. See the documentation for
4691 start_sequence for more information about how to use this function. */
23b2ce53
RS
4692
4693void
502b8322 4694push_to_sequence (rtx first)
23b2ce53
RS
4695{
4696 rtx last;
4697
4698 start_sequence ();
4699
4700 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4701
4702 first_insn = first;
4703 last_insn = last;
4704}
4705
bb27eeda
SE
4706/* Like push_to_sequence, but take the last insn as an argument to avoid
4707 looping through the list. */
4708
4709void
4710push_to_sequence2 (rtx first, rtx last)
4711{
4712 start_sequence ();
4713
4714 first_insn = first;
4715 last_insn = last;
4716}
4717
f15ae3a1
TW
4718/* Set up the outer-level insn chain
4719 as the current sequence, saving the previously current one. */
4720
4721void
502b8322 4722push_topmost_sequence (void)
f15ae3a1 4723{
aefdd5ab 4724 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4725
4726 start_sequence ();
4727
49ad7cfa 4728 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4729 top = stack;
4730
4731 first_insn = top->first;
4732 last_insn = top->last;
4733}
4734
4735/* After emitting to the outer-level insn chain, update the outer-level
4736 insn chain, and restore the previous saved state. */
4737
4738void
502b8322 4739pop_topmost_sequence (void)
f15ae3a1 4740{
aefdd5ab 4741 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4742
49ad7cfa 4743 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4744 top = stack;
4745
4746 top->first = first_insn;
4747 top->last = last_insn;
4748
4749 end_sequence ();
4750}
4751
23b2ce53
RS
4752/* After emitting to a sequence, restore previous saved state.
4753
5c7a310f 4754 To get the contents of the sequence just made, you must call
2f937369 4755 `get_insns' *before* calling here.
5c7a310f
MM
4756
4757 If the compiler might have deferred popping arguments while
4758 generating this sequence, and this sequence will not be immediately
4759 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4760 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4761 pops are inserted into this sequence, and not into some random
4762 location in the instruction stream. See INHIBIT_DEFER_POP for more
4763 information about deferred popping of arguments. */
23b2ce53
RS
4764
4765void
502b8322 4766end_sequence (void)
23b2ce53 4767{
49ad7cfa 4768 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4769
4770 first_insn = tem->first;
4771 last_insn = tem->last;
49ad7cfa 4772 seq_stack = tem->next;
23b2ce53 4773
e2500fed
GK
4774 memset (tem, 0, sizeof (*tem));
4775 tem->next = free_sequence_stack;
4776 free_sequence_stack = tem;
23b2ce53
RS
4777}
4778
4779/* Return 1 if currently emitting into a sequence. */
4780
4781int
502b8322 4782in_sequence_p (void)
23b2ce53 4783{
49ad7cfa 4784 return seq_stack != 0;
23b2ce53 4785}
23b2ce53 4786\f
59ec66dc
MM
4787/* Put the various virtual registers into REGNO_REG_RTX. */
4788
2bbdec73 4789static void
502b8322 4790init_virtual_regs (struct emit_status *es)
59ec66dc 4791{
49ad7cfa
BS
4792 rtx *ptr = es->x_regno_reg_rtx;
4793 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4794 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4795 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4796 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4797 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4798}
4799
da43a810
BS
4800\f
4801/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4802static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4803static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4804static int copy_insn_n_scratches;
4805
4806/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4807 copied an ASM_OPERANDS.
4808 In that case, it is the original input-operand vector. */
4809static rtvec orig_asm_operands_vector;
4810
4811/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4812 copied an ASM_OPERANDS.
4813 In that case, it is the copied input-operand vector. */
4814static rtvec copy_asm_operands_vector;
4815
4816/* Likewise for the constraints vector. */
4817static rtvec orig_asm_constraints_vector;
4818static rtvec copy_asm_constraints_vector;
4819
4820/* Recursively create a new copy of an rtx for copy_insn.
4821 This function differs from copy_rtx in that it handles SCRATCHes and
4822 ASM_OPERANDs properly.
4823 Normally, this function is not used directly; use copy_insn as front end.
4824 However, you could first copy an insn pattern with copy_insn and then use
4825 this function afterwards to properly copy any REG_NOTEs containing
4826 SCRATCHes. */
4827
4828rtx
502b8322 4829copy_insn_1 (rtx orig)
da43a810 4830{
b3694847
SS
4831 rtx copy;
4832 int i, j;
4833 RTX_CODE code;
4834 const char *format_ptr;
da43a810
BS
4835
4836 code = GET_CODE (orig);
4837
4838 switch (code)
4839 {
4840 case REG:
da43a810
BS
4841 case CONST_INT:
4842 case CONST_DOUBLE:
091a3ac7 4843 case CONST_FIXED:
69ef87e2 4844 case CONST_VECTOR:
da43a810
BS
4845 case SYMBOL_REF:
4846 case CODE_LABEL:
4847 case PC:
4848 case CC0:
da43a810 4849 return orig;
3e89ed8d
JH
4850 case CLOBBER:
4851 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4852 return orig;
4853 break;
da43a810
BS
4854
4855 case SCRATCH:
4856 for (i = 0; i < copy_insn_n_scratches; i++)
4857 if (copy_insn_scratch_in[i] == orig)
4858 return copy_insn_scratch_out[i];
4859 break;
4860
4861 case CONST:
6fb5fa3c 4862 if (shared_const_p (orig))
da43a810
BS
4863 return orig;
4864 break;
750c9258 4865
da43a810
BS
4866 /* A MEM with a constant address is not sharable. The problem is that
4867 the constant address may need to be reloaded. If the mem is shared,
4868 then reloading one copy of this mem will cause all copies to appear
4869 to have been reloaded. */
4870
4871 default:
4872 break;
4873 }
4874
aacd3885
RS
4875 /* Copy the various flags, fields, and other information. We assume
4876 that all fields need copying, and then clear the fields that should
da43a810
BS
4877 not be copied. That is the sensible default behavior, and forces
4878 us to explicitly document why we are *not* copying a flag. */
aacd3885 4879 copy = shallow_copy_rtx (orig);
da43a810
BS
4880
4881 /* We do not copy the USED flag, which is used as a mark bit during
4882 walks over the RTL. */
2adc7f12 4883 RTX_FLAG (copy, used) = 0;
da43a810
BS
4884
4885 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 4886 if (INSN_P (orig))
da43a810 4887 {
2adc7f12
JJ
4888 RTX_FLAG (copy, jump) = 0;
4889 RTX_FLAG (copy, call) = 0;
4890 RTX_FLAG (copy, frame_related) = 0;
da43a810 4891 }
750c9258 4892
da43a810
BS
4893 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4894
4895 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
4896 switch (*format_ptr++)
4897 {
4898 case 'e':
4899 if (XEXP (orig, i) != NULL)
4900 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4901 break;
da43a810 4902
aacd3885
RS
4903 case 'E':
4904 case 'V':
4905 if (XVEC (orig, i) == orig_asm_constraints_vector)
4906 XVEC (copy, i) = copy_asm_constraints_vector;
4907 else if (XVEC (orig, i) == orig_asm_operands_vector)
4908 XVEC (copy, i) = copy_asm_operands_vector;
4909 else if (XVEC (orig, i) != NULL)
4910 {
4911 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4912 for (j = 0; j < XVECLEN (copy, i); j++)
4913 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4914 }
4915 break;
da43a810 4916
aacd3885
RS
4917 case 't':
4918 case 'w':
4919 case 'i':
4920 case 's':
4921 case 'S':
4922 case 'u':
4923 case '0':
4924 /* These are left unchanged. */
4925 break;
da43a810 4926
aacd3885
RS
4927 default:
4928 gcc_unreachable ();
4929 }
da43a810
BS
4930
4931 if (code == SCRATCH)
4932 {
4933 i = copy_insn_n_scratches++;
5b0264cb 4934 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
4935 copy_insn_scratch_in[i] = orig;
4936 copy_insn_scratch_out[i] = copy;
4937 }
4938 else if (code == ASM_OPERANDS)
4939 {
6462bb43
AO
4940 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4941 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4942 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4943 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
4944 }
4945
4946 return copy;
4947}
4948
4949/* Create a new copy of an rtx.
4950 This function differs from copy_rtx in that it handles SCRATCHes and
4951 ASM_OPERANDs properly.
4952 INSN doesn't really have to be a full INSN; it could be just the
4953 pattern. */
4954rtx
502b8322 4955copy_insn (rtx insn)
da43a810
BS
4956{
4957 copy_insn_n_scratches = 0;
4958 orig_asm_operands_vector = 0;
4959 orig_asm_constraints_vector = 0;
4960 copy_asm_operands_vector = 0;
4961 copy_asm_constraints_vector = 0;
4962 return copy_insn_1 (insn);
4963}
59ec66dc 4964
23b2ce53
RS
4965/* Initialize data structures and variables in this file
4966 before generating rtl for each function. */
4967
4968void
502b8322 4969init_emit (void)
23b2ce53 4970{
01d939e8 4971 struct function *f = cfun;
23b2ce53 4972
703ad42b 4973 f->emit = ggc_alloc (sizeof (struct emit_status));
23b2ce53
RS
4974 first_insn = NULL;
4975 last_insn = NULL;
4976 cur_insn_uid = 1;
4977 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
6773e15f 4978 last_location = UNKNOWN_LOCATION;
23b2ce53 4979 first_label_num = label_num;
49ad7cfa 4980 seq_stack = NULL;
23b2ce53 4981
23b2ce53
RS
4982 /* Init the tables that describe all the pseudo regs. */
4983
3502dc9c 4984 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 4985
49ad7cfa 4986 f->emit->regno_pointer_align
703ad42b
KG
4987 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4988 * sizeof (unsigned char));
86fe05e0 4989
750c9258 4990 regno_reg_rtx
703ad42b 4991 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
0d4903b8 4992
e50126e8 4993 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
4994 memcpy (regno_reg_rtx,
4995 static_regno_reg_rtx,
4996 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 4997
23b2ce53 4998 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 4999 init_virtual_regs (f->emit);
740ab4a2
RK
5000
5001 /* Indicate that the virtual registers and stack locations are
5002 all pointers. */
3502dc9c
JDA
5003 REG_POINTER (stack_pointer_rtx) = 1;
5004 REG_POINTER (frame_pointer_rtx) = 1;
5005 REG_POINTER (hard_frame_pointer_rtx) = 1;
5006 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5007
3502dc9c
JDA
5008 REG_POINTER (virtual_incoming_args_rtx) = 1;
5009 REG_POINTER (virtual_stack_vars_rtx) = 1;
5010 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5011 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5012 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5013
86fe05e0 5014#ifdef STACK_BOUNDARY
bdb429a5
RK
5015 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5016 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5017 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5018 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5019
5020 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5021 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5022 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5023 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5024 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5025#endif
5026
5e82e7bd
JVA
5027#ifdef INIT_EXPANDERS
5028 INIT_EXPANDERS;
5029#endif
23b2ce53
RS
5030}
5031
a73b091d 5032/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5033
5034static rtx
a73b091d 5035gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5036{
5037 rtx tem;
5038 rtvec v;
5039 int units, i;
5040 enum machine_mode inner;
5041
5042 units = GET_MODE_NUNITS (mode);
5043 inner = GET_MODE_INNER (mode);
5044
15ed7b52
JG
5045 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5046
69ef87e2
AH
5047 v = rtvec_alloc (units);
5048
a73b091d
JW
5049 /* We need to call this function after we set the scalar const_tiny_rtx
5050 entries. */
5051 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5052
5053 for (i = 0; i < units; ++i)
a73b091d 5054 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5055
a06e3c40 5056 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5057 return tem;
5058}
5059
a06e3c40 5060/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5061 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5062rtx
502b8322 5063gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5064{
a73b091d
JW
5065 enum machine_mode inner = GET_MODE_INNER (mode);
5066 int nunits = GET_MODE_NUNITS (mode);
5067 rtx x;
a06e3c40
R
5068 int i;
5069
a73b091d
JW
5070 /* Check to see if all of the elements have the same value. */
5071 x = RTVEC_ELT (v, nunits - 1);
5072 for (i = nunits - 2; i >= 0; i--)
5073 if (RTVEC_ELT (v, i) != x)
5074 break;
5075
5076 /* If the values are all the same, check to see if we can use one of the
5077 standard constant vectors. */
5078 if (i == -1)
5079 {
5080 if (x == CONST0_RTX (inner))
5081 return CONST0_RTX (mode);
5082 else if (x == CONST1_RTX (inner))
5083 return CONST1_RTX (mode);
5084 }
5085
5086 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5087}
5088
b5deb7b6
SL
5089/* Initialise global register information required by all functions. */
5090
5091void
5092init_emit_regs (void)
5093{
5094 int i;
5095
5096 /* Reset register attributes */
5097 htab_empty (reg_attrs_htab);
5098
5099 /* We need reg_raw_mode, so initialize the modes now. */
5100 init_reg_modes_target ();
5101
5102 /* Assign register numbers to the globally defined register rtx. */
5103 pc_rtx = gen_rtx_PC (VOIDmode);
5104 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5105 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5106 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5107 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5108 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5109 virtual_incoming_args_rtx =
5110 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5111 virtual_stack_vars_rtx =
5112 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5113 virtual_stack_dynamic_rtx =
5114 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5115 virtual_outgoing_args_rtx =
5116 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5117 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5118
5119 /* Initialize RTL for commonly used hard registers. These are
5120 copied into regno_reg_rtx as we begin to compile each function. */
5121 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5122 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5123
5124#ifdef RETURN_ADDRESS_POINTER_REGNUM
5125 return_address_pointer_rtx
5126 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5127#endif
5128
5129#ifdef STATIC_CHAIN_REGNUM
5130 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5131
5132#ifdef STATIC_CHAIN_INCOMING_REGNUM
5133 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5134 static_chain_incoming_rtx
5135 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5136 else
5137#endif
5138 static_chain_incoming_rtx = static_chain_rtx;
5139#endif
5140
5141#ifdef STATIC_CHAIN
5142 static_chain_rtx = STATIC_CHAIN;
5143
5144#ifdef STATIC_CHAIN_INCOMING
5145 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5146#else
5147 static_chain_incoming_rtx = static_chain_rtx;
5148#endif
5149#endif
5150
5151 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5152 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5153 else
5154 pic_offset_table_rtx = NULL_RTX;
5155}
5156
23b2ce53
RS
5157/* Create some permanent unique rtl objects shared between all functions.
5158 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5159
5160void
502b8322 5161init_emit_once (int line_numbers)
23b2ce53
RS
5162{
5163 int i;
5164 enum machine_mode mode;
9ec36da5 5165 enum machine_mode double_mode;
23b2ce53 5166
091a3ac7
CF
5167 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5168 hash tables. */
17211ab5
GK
5169 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5170 const_int_htab_eq, NULL);
173b24b9 5171
17211ab5
GK
5172 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5173 const_double_htab_eq, NULL);
5692c7bc 5174
091a3ac7
CF
5175 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5176 const_fixed_htab_eq, NULL);
5177
17211ab5
GK
5178 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5179 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5180 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5181 reg_attrs_htab_eq, NULL);
67673f5c 5182
23b2ce53
RS
5183 no_line_numbers = ! line_numbers;
5184
43fa6302
AS
5185 /* Compute the word and byte modes. */
5186
5187 byte_mode = VOIDmode;
5188 word_mode = VOIDmode;
5189 double_mode = VOIDmode;
5190
15ed7b52
JG
5191 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5192 mode != VOIDmode;
43fa6302
AS
5193 mode = GET_MODE_WIDER_MODE (mode))
5194 {
5195 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5196 && byte_mode == VOIDmode)
5197 byte_mode = mode;
5198
5199 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5200 && word_mode == VOIDmode)
5201 word_mode = mode;
5202 }
5203
15ed7b52
JG
5204 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5205 mode != VOIDmode;
43fa6302
AS
5206 mode = GET_MODE_WIDER_MODE (mode))
5207 {
5208 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5209 && double_mode == VOIDmode)
5210 double_mode = mode;
5211 }
5212
5213 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5214
5da077de 5215#ifdef INIT_EXPANDERS
414c4dc4
NC
5216 /* This is to initialize {init|mark|free}_machine_status before the first
5217 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5218 end which calls push_function_context_to before the first call to
5da077de
AS
5219 init_function_start. */
5220 INIT_EXPANDERS;
5221#endif
5222
23b2ce53
RS
5223 /* Create the unique rtx's for certain rtx codes and operand values. */
5224
a2a8cc44 5225 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5226 tries to use these variables. */
23b2ce53 5227 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5228 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5229 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5230
68d75312
JC
5231 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5232 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5233 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5234 else
3b80f6ca 5235 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5236
5692c7bc
ZW
5237 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5238 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5239 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
f7657db9
KG
5240 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5241 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5692c7bc 5242 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
03f2ea93
RS
5243 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5244
5245 dconsthalf = dconst1;
1e92bbb9 5246 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5247
f7657db9
KG
5248 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5249
ab01a87c
KG
5250 /* Initialize mathematical constants for constant folding builtins.
5251 These constants need to be given to at least 160 bits precision. */
b86a760a
KG
5252 real_from_string (&dconstsqrt2,
5253 "1.4142135623730950488016887242096980785696718753769480731766797379907");
ab01a87c
KG
5254 real_from_string (&dconste,
5255 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5256
f7657db9 5257 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
23b2ce53 5258 {
b216cd4a
ZW
5259 REAL_VALUE_TYPE *r =
5260 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5261
15ed7b52
JG
5262 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5263 mode != VOIDmode;
5264 mode = GET_MODE_WIDER_MODE (mode))
5265 const_tiny_rtx[i][(int) mode] =
5266 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5267
5268 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5269 mode != VOIDmode;
23b2ce53 5270 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5271 const_tiny_rtx[i][(int) mode] =
5272 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5273
906c4e36 5274 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5275
15ed7b52
JG
5276 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5277 mode != VOIDmode;
23b2ce53 5278 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5279 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5280
5281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5282 mode != VOIDmode;
5283 mode = GET_MODE_WIDER_MODE (mode))
5284 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5285 }
5286
e90721b1
AP
5287 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5288 mode != VOIDmode;
5289 mode = GET_MODE_WIDER_MODE (mode))
5290 {
5291 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5292 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5293 }
5294
5295 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5296 mode != VOIDmode;
5297 mode = GET_MODE_WIDER_MODE (mode))
5298 {
5299 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5300 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5301 }
5302
69ef87e2
AH
5303 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5304 mode != VOIDmode;
5305 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5306 {
5307 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5308 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5309 }
69ef87e2
AH
5310
5311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5312 mode != VOIDmode;
5313 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5314 {
5315 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5316 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5317 }
69ef87e2 5318
325217ed
CF
5319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5320 mode != VOIDmode;
5321 mode = GET_MODE_WIDER_MODE (mode))
5322 {
5323 FCONST0(mode).data.high = 0;
5324 FCONST0(mode).data.low = 0;
5325 FCONST0(mode).mode = mode;
091a3ac7
CF
5326 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5327 FCONST0 (mode), mode);
325217ed
CF
5328 }
5329
5330 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5331 mode != VOIDmode;
5332 mode = GET_MODE_WIDER_MODE (mode))
5333 {
5334 FCONST0(mode).data.high = 0;
5335 FCONST0(mode).data.low = 0;
5336 FCONST0(mode).mode = mode;
091a3ac7
CF
5337 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5338 FCONST0 (mode), mode);
325217ed
CF
5339 }
5340
5341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5342 mode != VOIDmode;
5343 mode = GET_MODE_WIDER_MODE (mode))
5344 {
5345 FCONST0(mode).data.high = 0;
5346 FCONST0(mode).data.low = 0;
5347 FCONST0(mode).mode = mode;
091a3ac7
CF
5348 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5349 FCONST0 (mode), mode);
325217ed
CF
5350
5351 /* We store the value 1. */
5352 FCONST1(mode).data.high = 0;
5353 FCONST1(mode).data.low = 0;
5354 FCONST1(mode).mode = mode;
5355 lshift_double (1, 0, GET_MODE_FBIT (mode),
5356 2 * HOST_BITS_PER_WIDE_INT,
5357 &FCONST1(mode).data.low,
5358 &FCONST1(mode).data.high,
5359 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5360 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5361 FCONST1 (mode), mode);
325217ed
CF
5362 }
5363
5364 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5365 mode != VOIDmode;
5366 mode = GET_MODE_WIDER_MODE (mode))
5367 {
5368 FCONST0(mode).data.high = 0;
5369 FCONST0(mode).data.low = 0;
5370 FCONST0(mode).mode = mode;
091a3ac7
CF
5371 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5372 FCONST0 (mode), mode);
325217ed
CF
5373
5374 /* We store the value 1. */
5375 FCONST1(mode).data.high = 0;
5376 FCONST1(mode).data.low = 0;
5377 FCONST1(mode).mode = mode;
5378 lshift_double (1, 0, GET_MODE_FBIT (mode),
5379 2 * HOST_BITS_PER_WIDE_INT,
5380 &FCONST1(mode).data.low,
5381 &FCONST1(mode).data.high,
5382 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5383 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5384 FCONST1 (mode), mode);
5385 }
5386
5387 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5388 mode != VOIDmode;
5389 mode = GET_MODE_WIDER_MODE (mode))
5390 {
5391 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5392 }
5393
5394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5395 mode != VOIDmode;
5396 mode = GET_MODE_WIDER_MODE (mode))
5397 {
5398 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5399 }
5400
5401 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5402 mode != VOIDmode;
5403 mode = GET_MODE_WIDER_MODE (mode))
5404 {
5405 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5406 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5407 }
5408
5409 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5410 mode != VOIDmode;
5411 mode = GET_MODE_WIDER_MODE (mode))
5412 {
5413 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5414 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5415 }
5416
dbbbbf3b
JDA
5417 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5418 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5419 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5420
f0417c82
RH
5421 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5422 if (STORE_FLAG_VALUE == 1)
5423 const_tiny_rtx[1][(int) BImode] = const1_rtx;
23b2ce53 5424}
a11759a3 5425\f
969d70ca
JH
5426/* Produce exact duplicate of insn INSN after AFTER.
5427 Care updating of libcall regions if present. */
5428
5429rtx
502b8322 5430emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca
JH
5431{
5432 rtx new;
5433 rtx note1, note2, link;
5434
5435 switch (GET_CODE (insn))
5436 {
5437 case INSN:
5438 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5439 break;
5440
5441 case JUMP_INSN:
5442 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5443 break;
5444
5445 case CALL_INSN:
5446 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5447 if (CALL_INSN_FUNCTION_USAGE (insn))
5448 CALL_INSN_FUNCTION_USAGE (new)
5449 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5450 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5451 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5452 break;
5453
5454 default:
5b0264cb 5455 gcc_unreachable ();
969d70ca
JH
5456 }
5457
5458 /* Update LABEL_NUSES. */
5459 mark_jump_label (PATTERN (new), new, 0);
5460
0435312e 5461 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
ba4f7968 5462
0a3d71f5
JW
5463 /* If the old insn is frame related, then so is the new one. This is
5464 primarily needed for IA-64 unwind info which marks epilogue insns,
5465 which may be duplicated by the basic block reordering code. */
5466 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5467
cf7c4aa6
HPN
5468 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5469 will make them. REG_LABEL_TARGETs are created there too, but are
5470 supposed to be sticky, so we copy them. */
969d70ca 5471 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 5472 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
5473 {
5474 if (GET_CODE (link) == EXPR_LIST)
5475 REG_NOTES (new)
4b73962b
JH
5476 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5477 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
969d70ca
JH
5478 else
5479 REG_NOTES (new)
4b73962b 5480 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
95e2a53b 5481 XEXP (link, 0), REG_NOTES (new));
969d70ca
JH
5482 }
5483
5484 /* Fix the libcall sequences. */
5485 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5486 {
5487 rtx p = new;
5488 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5489 p = PREV_INSN (p);
5490 XEXP (note1, 0) = p;
5491 XEXP (note2, 0) = new;
5492 }
6f0d3566 5493 INSN_CODE (new) = INSN_CODE (insn);
969d70ca
JH
5494 return new;
5495}
e2500fed 5496
1431042e 5497static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
5498rtx
5499gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5500{
5501 if (hard_reg_clobbers[mode][regno])
5502 return hard_reg_clobbers[mode][regno];
5503 else
5504 return (hard_reg_clobbers[mode][regno] =
5505 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5506}
5507
e2500fed 5508#include "gt-emit-rtl.h"