]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
* config/x-interix3 (SYSTEM_HEADER_DIR): Put back default.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
23b2ce53 1/* Emit RTL for the GNU C-Compiler expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
90a74703 3 1999, 2000, 2001 Free Software Foundation, Inc.
23b2ce53 4
1322177d 5This file is part of GCC.
23b2ce53 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
23b2ce53 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
23b2ce53
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
670ee920 39#include "system.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
ca695ac9 53#include "obstack.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ca695ac9 59
1d445e9e
ILT
60/* Commonly used modes. */
61
0f41302f
MS
62enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 64enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 65enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 66
23b2ce53
RS
67
68/* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71static int label_num = 1;
72
23b2ce53
RS
73/* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77static int last_label_num;
78
79/* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82static int base_label_num;
83
84/* Nonzero means do not generate NOTEs for source line numbers. */
85
86static int no_line_numbers;
87
88/* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
92
5da077de 93rtx global_rtl[GR_MAX];
23b2ce53
RS
94
95/* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
98
99rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100
68d75312
JC
101rtx const_true_rtx;
102
23b2ce53
RS
103REAL_VALUE_TYPE dconst0;
104REAL_VALUE_TYPE dconst1;
105REAL_VALUE_TYPE dconst2;
106REAL_VALUE_TYPE dconstm1;
107
108/* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
111
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
116
ac6f08b0
DE
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 119 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
123
23b2ce53
RS
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
23b2ce53
RS
126rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
a4417a86
JW
132/* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
23b2ce53
RS
136/* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
5da077de 141rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 142
c13e8210
MM
143/* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146static htab_t const_int_htab;
147
173b24b9
RK
148/* A hash table storing memory attribute structures. */
149static htab_t mem_attrs_htab;
150
23b2ce53
RS
151/* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
153
a3770a81
RH
154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
159 redone.
23b2ce53
RS
160
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
163
164#define SEQUENCE_RESULT_SIZE 5
165
23b2ce53
RS
166static rtx sequence_result[SEQUENCE_RESULT_SIZE];
167
0f41302f 168/* During RTL generation, we also keep a list of free INSN rtl codes. */
43127294
RK
169static rtx free_insn;
170
01d939e8
BS
171#define first_insn (cfun->emit->x_first_insn)
172#define last_insn (cfun->emit->x_last_insn)
173#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174#define last_linenum (cfun->emit->x_last_linenum)
175#define last_filename (cfun->emit->x_last_filename)
176#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 177
711d877c
KG
178static rtx make_jump_insn_raw PARAMS ((rtx));
179static rtx make_call_insn_raw PARAMS ((rtx));
180static rtx find_line_note PARAMS ((rtx));
181static void mark_sequence_stack PARAMS ((struct sequence_stack *));
738cc472
RK
182static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
183 int));
d1b81779 184static void unshare_all_rtl_1 PARAMS ((rtx));
5c6df058 185static void unshare_all_decls PARAMS ((tree));
2d4aecb3 186static void reset_used_decls PARAMS ((tree));
e5bef2e4 187static void mark_label_nuses PARAMS ((rtx));
c13e8210
MM
188static hashval_t const_int_htab_hash PARAMS ((const void *));
189static int const_int_htab_eq PARAMS ((const void *,
190 const void *));
173b24b9
RK
191static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194static void mem_attrs_mark PARAMS ((const void *));
195static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
10b76d73
RK
196 rtx, unsigned int,
197 enum machine_mode));
c13e8210 198
6b24c259
JH
199/* Probability of the conditional branch currently proceeded by try_split.
200 Set to -1 otherwise. */
201int split_branch_probability = -1;
ca695ac9 202\f
c13e8210
MM
203/* Returns a hash code for X (which is a really a CONST_INT). */
204
205static hashval_t
206const_int_htab_hash (x)
207 const void *x;
208{
e77d72cb 209 return (hashval_t) INTVAL ((const struct rtx_def *) x);
c13e8210
MM
210}
211
212/* Returns non-zero if the value represented by X (which is really a
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
215
216static int
217const_int_htab_eq (x, y)
218 const void *x;
219 const void *y;
220{
e77d72cb 221 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
c13e8210
MM
222}
223
173b24b9
RK
224/* Returns a hash code for X (which is a really a mem_attrs *). */
225
226static hashval_t
227mem_attrs_htab_hash (x)
228 const void *x;
229{
230 mem_attrs *p = (mem_attrs *) x;
231
232 return (p->alias ^ (p->align * 1000)
233 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
234 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
235 ^ (long) p->decl);
236}
237
238/* Returns non-zero if the value represented by X (which is really a
239 mem_attrs *) is the same as that given by Y (which is also really a
240 mem_attrs *). */
c13e8210
MM
241
242static int
173b24b9
RK
243mem_attrs_htab_eq (x, y)
244 const void *x;
245 const void *y;
c13e8210 246{
173b24b9
RK
247 mem_attrs *p = (mem_attrs *) x;
248 mem_attrs *q = (mem_attrs *) y;
249
250 return (p->alias == q->alias && p->decl == q->decl && p->offset == q->offset
251 && p->size == q->size && p->align == q->align);
c13e8210
MM
252}
253
173b24b9
RK
254/* This routine is called when we determine that we need a mem_attrs entry.
255 It marks the associated decl and RTL as being used, if present. */
c13e8210
MM
256
257static void
173b24b9
RK
258mem_attrs_mark (x)
259 const void *x;
c13e8210 260{
173b24b9
RK
261 mem_attrs *p = (mem_attrs *) x;
262
263 if (p->decl)
264 ggc_mark_tree (p->decl);
265
266 if (p->offset)
267 ggc_mark_rtx (p->offset);
268
269 if (p->size)
270 ggc_mark_rtx (p->size);
271}
272
273/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
274 one identical to it is not already in the table. We are doing this for
275 MEM of mode MODE. */
173b24b9
RK
276
277static mem_attrs *
10b76d73 278get_mem_attrs (alias, decl, offset, size, align, mode)
173b24b9
RK
279 HOST_WIDE_INT alias;
280 tree decl;
281 rtx offset;
282 rtx size;
283 unsigned int align;
10b76d73 284 enum machine_mode mode;
173b24b9
RK
285{
286 mem_attrs attrs;
287 void **slot;
288
10b76d73
RK
289 /* If everything is the default, we can just return zero. */
290 if (alias == 0 && decl == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
916f389b 293 && (align == BITS_PER_UNIT
10b76d73
RK
294 || (mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
295 return 0;
296
173b24b9
RK
297 attrs.alias = alias;
298 attrs.decl = decl;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
302
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
305 {
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
308 }
309
310 return *slot;
c13e8210
MM
311}
312
08394eef
BS
313/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
314 don't attempt to share with the various global pieces of rtl (such as
315 frame_pointer_rtx). */
316
317rtx
318gen_raw_REG (mode, regno)
319 enum machine_mode mode;
320 int regno;
321{
322 rtx x = gen_rtx_raw_REG (mode, regno);
323 ORIGINAL_REGNO (x) = regno;
324 return x;
325}
326
c5c76735
JL
327/* There are some RTL codes that require special attention; the generation
328 functions do the raw handling. If you add to this list, modify
329 special_rtx in gengenrtl.c as well. */
330
3b80f6ca
RH
331rtx
332gen_rtx_CONST_INT (mode, arg)
c13e8210 333 enum machine_mode mode ATTRIBUTE_UNUSED;
3b80f6ca
RH
334 HOST_WIDE_INT arg;
335{
c13e8210
MM
336 void **slot;
337
3b80f6ca 338 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 339 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
340
341#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
342 if (const_true_rtx && arg == STORE_FLAG_VALUE)
343 return const_true_rtx;
344#endif
345
c13e8210 346 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
347 slot = htab_find_slot_with_hash (const_int_htab, &arg,
348 (hashval_t) arg, INSERT);
29105cea 349 if (*slot == 0)
1f8f4a0b 350 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
351
352 return (rtx) *slot;
3b80f6ca
RH
353}
354
29105cea 355/* CONST_DOUBLEs needs special handling because their length is known
0133b7d9 356 only at run-time. */
29105cea 357
0133b7d9 358rtx
a79e3a45 359gen_rtx_CONST_DOUBLE (mode, arg0, arg1)
0133b7d9 360 enum machine_mode mode;
a79e3a45 361 HOST_WIDE_INT arg0, arg1;
0133b7d9
RH
362{
363 rtx r = rtx_alloc (CONST_DOUBLE);
2454beaf
RH
364 int i;
365
0133b7d9 366 PUT_MODE (r, mode);
a79e3a45
RK
367 X0EXP (r, 0) = NULL_RTX;
368 XWINT (r, 1) = arg0;
2454beaf 369 XWINT (r, 2) = arg1;
2454beaf 370
a79e3a45 371 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 2; --i)
2454beaf
RH
372 XWINT (r, i) = 0;
373
0133b7d9
RH
374 return r;
375}
376
3b80f6ca
RH
377rtx
378gen_rtx_REG (mode, regno)
379 enum machine_mode mode;
380 int regno;
381{
382 /* In case the MD file explicitly references the frame pointer, have
383 all such references point to the same frame pointer. This is
384 used during frame pointer elimination to distinguish the explicit
385 references to these registers from pseudos that happened to be
386 assigned to them.
387
388 If we have eliminated the frame pointer or arg pointer, we will
389 be using it as a normal register, for example as a spill
390 register. In such cases, we might be accessing it in a mode that
391 is not Pmode and therefore cannot use the pre-allocated rtx.
392
393 Also don't do this when we are making new REGs in reload, since
394 we don't want to get confused with the real pointers. */
395
396 if (mode == Pmode && !reload_in_progress)
397 {
bcb33994 398 if (regno == FRAME_POINTER_REGNUM)
3b80f6ca
RH
399 return frame_pointer_rtx;
400#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
bcb33994 401 if (regno == HARD_FRAME_POINTER_REGNUM)
3b80f6ca
RH
402 return hard_frame_pointer_rtx;
403#endif
404#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 405 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
406 return arg_pointer_rtx;
407#endif
408#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 409 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
410 return return_address_pointer_rtx;
411#endif
bcb33994 412 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
413 return stack_pointer_rtx;
414 }
415
08394eef 416 return gen_raw_REG (mode, regno);
3b80f6ca
RH
417}
418
41472af8
MM
419rtx
420gen_rtx_MEM (mode, addr)
421 enum machine_mode mode;
422 rtx addr;
423{
424 rtx rt = gen_rtx_raw_MEM (mode, addr);
425
426 /* This field is not cleared by the mere allocation of the rtx, so
427 we clear it here. */
173b24b9 428 MEM_ATTRS (rt) = 0;
41472af8
MM
429
430 return rt;
431}
ddef6bc7
JJ
432
433rtx
434gen_rtx_SUBREG (mode, reg, offset)
435 enum machine_mode mode;
436 rtx reg;
437 int offset;
438{
439 /* This is the most common failure type.
440 Catch it early so we can see who does it. */
441 if ((offset % GET_MODE_SIZE (mode)) != 0)
442 abort ();
443
444 /* This check isn't usable right now because combine will
445 throw arbitrary crap like a CALL into a SUBREG in
446 gen_lowpart_for_combine so we must just eat it. */
447#if 0
448 /* Check for this too. */
449 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
450 abort ();
451#endif
452 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
453}
454
173b24b9
RK
455/* Generate a SUBREG representing the least-significant part of REG if MODE
456 is smaller than mode of REG, otherwise paradoxical SUBREG. */
457
ddef6bc7
JJ
458rtx
459gen_lowpart_SUBREG (mode, reg)
460 enum machine_mode mode;
461 rtx reg;
462{
463 enum machine_mode inmode;
ddef6bc7
JJ
464
465 inmode = GET_MODE (reg);
466 if (inmode == VOIDmode)
467 inmode = mode;
e0e08ac2
JH
468 return gen_rtx_SUBREG (mode, reg,
469 subreg_lowpart_offset (mode, inmode));
ddef6bc7 470}
c5c76735 471\f
23b2ce53
RS
472/* rtx gen_rtx (code, mode, [element1, ..., elementn])
473**
474** This routine generates an RTX of the size specified by
475** <code>, which is an RTX code. The RTX structure is initialized
476** from the arguments <element1> through <elementn>, which are
477** interpreted according to the specific RTX type's format. The
478** special machine mode associated with the rtx (if any) is specified
479** in <mode>.
480**
1632afca 481** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
482** rtx it will generate. For example, the following rtx structure:
483**
484** (plus:QI (mem:QI (reg:SI 1))
485** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
486**
487** ...would be generated by the following C code:
488**
750c9258 489** gen_rtx (PLUS, QImode,
23b2ce53
RS
490** gen_rtx (MEM, QImode,
491** gen_rtx (REG, SImode, 1)),
492** gen_rtx (MEM, QImode,
493** gen_rtx (PLUS, SImode,
494** gen_rtx (REG, SImode, 2),
495** gen_rtx (REG, SImode, 3)))),
496*/
497
498/*VARARGS2*/
499rtx
711d877c 500gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
23b2ce53 501{
b3694847
SS
502 int i; /* Array indices... */
503 const char *fmt; /* Current rtx's format... */
504 rtx rt_val; /* RTX to return to caller... */
23b2ce53 505
7a75edb7
AJ
506 VA_OPEN (p, mode);
507 VA_FIXEDARG (p, enum rtx_code, code);
508 VA_FIXEDARG (p, enum machine_mode, mode);
23b2ce53 509
0133b7d9 510 switch (code)
23b2ce53 511 {
0133b7d9
RH
512 case CONST_INT:
513 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
514 break;
515
516 case CONST_DOUBLE:
517 {
a79e3a45 518 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
0133b7d9 519 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
a79e3a45
RK
520
521 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1);
0133b7d9
RH
522 }
523 break;
524
525 case REG:
526 rt_val = gen_rtx_REG (mode, va_arg (p, int));
527 break;
528
529 case MEM:
530 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
531 break;
532
533 default:
23b2ce53
RS
534 rt_val = rtx_alloc (code); /* Allocate the storage space. */
535 rt_val->mode = mode; /* Store the machine mode... */
536
537 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
538 for (i = 0; i < GET_RTX_LENGTH (code); i++)
539 {
540 switch (*fmt++)
541 {
542 case '0': /* Unused field. */
543 break;
544
545 case 'i': /* An integer? */
546 XINT (rt_val, i) = va_arg (p, int);
547 break;
548
906c4e36
RK
549 case 'w': /* A wide integer? */
550 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
551 break;
552
23b2ce53
RS
553 case 's': /* A string? */
554 XSTR (rt_val, i) = va_arg (p, char *);
555 break;
556
557 case 'e': /* An expression? */
558 case 'u': /* An insn? Same except when printing. */
559 XEXP (rt_val, i) = va_arg (p, rtx);
560 break;
561
562 case 'E': /* An RTX vector? */
563 XVEC (rt_val, i) = va_arg (p, rtvec);
564 break;
565
0dfa1860
MM
566 case 'b': /* A bitmap? */
567 XBITMAP (rt_val, i) = va_arg (p, bitmap);
568 break;
569
570 case 't': /* A tree? */
571 XTREE (rt_val, i) = va_arg (p, tree);
572 break;
573
23b2ce53 574 default:
1632afca 575 abort ();
23b2ce53
RS
576 }
577 }
0133b7d9 578 break;
23b2ce53 579 }
0133b7d9 580
7a75edb7 581 VA_CLOSE (p);
0133b7d9 582 return rt_val;
23b2ce53
RS
583}
584
585/* gen_rtvec (n, [rt1, ..., rtn])
586**
587** This routine creates an rtvec and stores within it the
588** pointers to rtx's which are its arguments.
589*/
590
591/*VARARGS1*/
592rtvec
711d877c 593gen_rtvec VPARAMS ((int n, ...))
23b2ce53 594{
6268b922 595 int i, save_n;
23b2ce53
RS
596 rtx *vector;
597
7a75edb7
AJ
598 VA_OPEN (p, n);
599 VA_FIXEDARG (p, int, n);
23b2ce53
RS
600
601 if (n == 0)
602 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
603
604 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 605
23b2ce53
RS
606 for (i = 0; i < n; i++)
607 vector[i] = va_arg (p, rtx);
6268b922
KG
608
609 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
610 save_n = n;
7a75edb7 611 VA_CLOSE (p);
23b2ce53 612
6268b922 613 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
614}
615
616rtvec
617gen_rtvec_v (n, argp)
618 int n;
619 rtx *argp;
620{
b3694847
SS
621 int i;
622 rtvec rt_val;
23b2ce53
RS
623
624 if (n == 0)
625 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
626
627 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
628
629 for (i = 0; i < n; i++)
8f985ec4 630 rt_val->elem[i] = *argp++;
23b2ce53
RS
631
632 return rt_val;
633}
634\f
635/* Generate a REG rtx for a new pseudo register of mode MODE.
636 This pseudo is assigned the next sequential register number. */
637
638rtx
639gen_reg_rtx (mode)
640 enum machine_mode mode;
641{
01d939e8 642 struct function *f = cfun;
b3694847 643 rtx val;
23b2ce53 644
f1db3576
JL
645 /* Don't let anything called after initial flow analysis create new
646 registers. */
647 if (no_new_pseudos)
23b2ce53
RS
648 abort ();
649
1b3d8f8a
GK
650 if (generating_concat_p
651 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
652 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
653 {
654 /* For complex modes, don't make a single pseudo.
655 Instead, make a CONCAT of two pseudos.
656 This allows noncontiguous allocation of the real and imaginary parts,
657 which makes much better code. Besides, allocating DCmode
658 pseudos overstrains reload on some machines like the 386. */
659 rtx realpart, imagpart;
660 int size = GET_MODE_UNIT_SIZE (mode);
661 enum machine_mode partmode
662 = mode_for_size (size * BITS_PER_UNIT,
663 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
664 ? MODE_FLOAT : MODE_INT),
665 0);
666
667 realpart = gen_reg_rtx (partmode);
668 imagpart = gen_reg_rtx (partmode);
3b80f6ca 669 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
670 }
671
0d4903b8
RK
672 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
673 enough to have an element for this pseudo reg number. */
23b2ce53 674
3502dc9c 675 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 676 {
3502dc9c 677 int old_size = f->emit->regno_pointer_align_length;
e2ecd91c 678 char *new;
0d4903b8
RK
679 rtx *new1;
680 tree *new2;
681
e2ecd91c 682 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 683 memset (new + old_size, 0, old_size);
f9e158c3 684 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 685
e2ecd91c
BS
686 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
687 old_size * 2 * sizeof (rtx));
49ad7cfa 688 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
689 regno_reg_rtx = new1;
690
0d4903b8
RK
691 new2 = (tree *) xrealloc (f->emit->regno_decl,
692 old_size * 2 * sizeof (tree));
693 memset (new2 + old_size, 0, old_size * sizeof (tree));
694 f->emit->regno_decl = new2;
695
3502dc9c 696 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
697 }
698
08394eef 699 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
700 regno_reg_rtx[reg_rtx_no++] = val;
701 return val;
702}
703
754fdcca
RK
704/* Identify REG (which may be a CONCAT) as a user register. */
705
706void
707mark_user_reg (reg)
708 rtx reg;
709{
710 if (GET_CODE (reg) == CONCAT)
711 {
712 REG_USERVAR_P (XEXP (reg, 0)) = 1;
713 REG_USERVAR_P (XEXP (reg, 1)) = 1;
714 }
715 else if (GET_CODE (reg) == REG)
716 REG_USERVAR_P (reg) = 1;
717 else
718 abort ();
719}
720
86fe05e0
RK
721/* Identify REG as a probable pointer register and show its alignment
722 as ALIGN, if nonzero. */
23b2ce53
RS
723
724void
86fe05e0 725mark_reg_pointer (reg, align)
23b2ce53 726 rtx reg;
86fe05e0 727 int align;
23b2ce53 728{
3502dc9c 729 if (! REG_POINTER (reg))
00995e78 730 {
3502dc9c 731 REG_POINTER (reg) = 1;
86fe05e0 732
00995e78
RE
733 if (align)
734 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
735 }
736 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
737 /* We can no-longer be sure just how aligned this pointer is */
86fe05e0 738 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
739}
740
741/* Return 1 plus largest pseudo reg number used in the current function. */
742
743int
744max_reg_num ()
745{
746 return reg_rtx_no;
747}
748
749/* Return 1 + the largest label number used so far in the current function. */
750
751int
752max_label_num ()
753{
754 if (last_label_num && label_num == base_label_num)
755 return last_label_num;
756 return label_num;
757}
758
759/* Return first label number used in this function (if any were used). */
760
761int
762get_first_label_num ()
763{
764 return first_label_num;
765}
766\f
ddef6bc7
JJ
767/* Return the final regno of X, which is a SUBREG of a hard
768 register. */
769int
770subreg_hard_regno (x, check_mode)
b3694847 771 rtx x;
ddef6bc7
JJ
772 int check_mode;
773{
774 enum machine_mode mode = GET_MODE (x);
775 unsigned int byte_offset, base_regno, final_regno;
776 rtx reg = SUBREG_REG (x);
777
778 /* This is where we attempt to catch illegal subregs
779 created by the compiler. */
780 if (GET_CODE (x) != SUBREG
781 || GET_CODE (reg) != REG)
782 abort ();
783 base_regno = REGNO (reg);
784 if (base_regno >= FIRST_PSEUDO_REGISTER)
785 abort ();
0607953c 786 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
ddef6bc7
JJ
787 abort ();
788
789 /* Catch non-congruent offsets too. */
790 byte_offset = SUBREG_BYTE (x);
791 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
792 abort ();
793
794 final_regno = subreg_regno (x);
795
796 return final_regno;
797}
798
23b2ce53
RS
799/* Return a value representing some low-order bits of X, where the number
800 of low-order bits is given by MODE. Note that no conversion is done
750c9258 801 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
802 representation is returned.
803
804 This function handles the cases in common between gen_lowpart, below,
805 and two variants in cse.c and combine.c. These are the cases that can
806 be safely handled at all points in the compilation.
807
808 If this is not a case we can handle, return 0. */
809
810rtx
811gen_lowpart_common (mode, x)
812 enum machine_mode mode;
b3694847 813 rtx x;
23b2ce53 814{
ddef6bc7
JJ
815 int msize = GET_MODE_SIZE (mode);
816 int xsize = GET_MODE_SIZE (GET_MODE (x));
817 int offset = 0;
23b2ce53
RS
818
819 if (GET_MODE (x) == mode)
820 return x;
821
822 /* MODE must occupy no more words than the mode of X. */
823 if (GET_MODE (x) != VOIDmode
ddef6bc7
JJ
824 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
825 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
23b2ce53
RS
826 return 0;
827
e0e08ac2 828 offset = subreg_lowpart_offset (mode, GET_MODE (x));
23b2ce53
RS
829
830 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
831 && (GET_MODE_CLASS (mode) == MODE_INT
832 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
833 {
834 /* If we are getting the low-order part of something that has been
835 sign- or zero-extended, we can either just use the object being
836 extended or make a narrower extension. If we want an even smaller
837 piece than the size of the object being extended, call ourselves
838 recursively.
839
840 This case is used mostly by combine and cse. */
841
842 if (GET_MODE (XEXP (x, 0)) == mode)
843 return XEXP (x, 0);
844 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
845 return gen_lowpart_common (mode, XEXP (x, 0));
846 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3b80f6ca 847 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 848 }
76321db6
MH
849 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
850 || GET_CODE (x) == CONCAT)
e0e08ac2 851 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
23b2ce53
RS
852 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
853 from the low-order part of the constant. */
83e9c679
RK
854 else if ((GET_MODE_CLASS (mode) == MODE_INT
855 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
856 && GET_MODE (x) == VOIDmode
23b2ce53 857 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
858 {
859 /* If MODE is twice the host word size, X is already the desired
860 representation. Otherwise, if MODE is wider than a word, we can't
e1389cac 861 do this. If MODE is exactly a word, return just one CONST_INT. */
1a5b457d 862
a8dd0e73 863 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 864 return x;
906c4e36 865 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 866 return 0;
906c4e36 867 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 868 return (GET_CODE (x) == CONST_INT ? x
906c4e36 869 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
870 else
871 {
27eef9ce 872 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
906c4e36
RK
873 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
874 : CONST_DOUBLE_LOW (x));
1a5b457d 875
27eef9ce 876 /* Sign extend to HOST_WIDE_INT. */
e1389cac 877 val = trunc_int_for_mode (val, mode);
1a5b457d
RK
878
879 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 880 : GEN_INT (val));
1a5b457d
RK
881 }
882 }
23b2ce53 883
a2061c0d 884#ifndef REAL_ARITHMETIC
8aada4ad
RK
885 /* If X is an integral constant but we want it in floating-point, it
886 must be the case that we have a union of an integer and a floating-point
887 value. If the machine-parameters allow it, simulate that union here
750c9258 888 and return the result. The two-word and single-word cases are
d6020413 889 different. */
8aada4ad 890
b3bf132d 891 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 892 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 893 || flag_pretend_float)
8aada4ad 894 && GET_MODE_CLASS (mode) == MODE_FLOAT
d6020413
RK
895 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
896 && GET_CODE (x) == CONST_INT
906c4e36 897 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
d6020413 898 {
906c4e36 899 union {HOST_WIDE_INT i; float d; } u;
d6020413
RK
900
901 u.i = INTVAL (x);
53596fba 902 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
d6020413 903 }
d6020413 904 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 905 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
d6020413
RK
906 || flag_pretend_float)
907 && GET_MODE_CLASS (mode) == MODE_FLOAT
908 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
8aada4ad
RK
909 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
910 && GET_MODE (x) == VOIDmode
906c4e36
RK
911 && (sizeof (double) * HOST_BITS_PER_CHAR
912 == 2 * HOST_BITS_PER_WIDE_INT))
8aada4ad 913 {
906c4e36
RK
914 union {HOST_WIDE_INT i[2]; double d; } u;
915 HOST_WIDE_INT low, high;
8aada4ad
RK
916
917 if (GET_CODE (x) == CONST_INT)
906c4e36 918 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
8aada4ad
RK
919 else
920 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
921
922#ifdef HOST_WORDS_BIG_ENDIAN
923 u.i[0] = high, u.i[1] = low;
924#else
925 u.i[0] = low, u.i[1] = high;
926#endif
927
53596fba 928 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
8aada4ad 929 }
a6a503ed 930
b3bf132d
RK
931 /* Similarly, if this is converting a floating-point value into a
932 single-word integer. Only do this is the host and target parameters are
933 compatible. */
934
935 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 936 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 937 || flag_pretend_float)
83e9c679
RK
938 && (GET_MODE_CLASS (mode) == MODE_INT
939 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
b3bf132d
RK
940 && GET_CODE (x) == CONST_DOUBLE
941 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
942 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
ddef6bc7 943 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
b3bf132d 944
8aada4ad
RK
945 /* Similarly, if this is converting a floating-point value into a
946 two-word integer, we can do this one word at a time and make an
947 integer. Only do this is the host and target parameters are
948 compatible. */
949
b3bf132d 950 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 951 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 952 || flag_pretend_float)
83e9c679 953 && (GET_MODE_CLASS (mode) == MODE_INT
f5a2fb25 954 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
8aada4ad
RK
955 && GET_CODE (x) == CONST_DOUBLE
956 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
957 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
958 {
ddef6bc7
JJ
959 rtx lowpart, highpart;
960
961 lowpart = constant_subword (x,
962 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
963 GET_MODE (x));
964 highpart = constant_subword (x,
965 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
966 GET_MODE (x));
8aada4ad
RK
967 if (lowpart && GET_CODE (lowpart) == CONST_INT
968 && highpart && GET_CODE (highpart) == CONST_INT)
969 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
970 }
a2061c0d
GK
971#else /* ifndef REAL_ARITHMETIC */
972
973 /* When we have a FP emulator, we can handle all conversions between
974 FP and integer operands. This simplifies reload because it
975 doesn't have to deal with constructs like (subreg:DI
976 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
57dadce2
EC
977 /* Single-precision floats are always 32-bits and double-precision
978 floats are always 64-bits. */
a2061c0d 979
76321db6 980 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 981 && GET_MODE_BITSIZE (mode) == 32
a2061c0d 982 && GET_CODE (x) == CONST_INT)
76321db6 983 {
a2061c0d
GK
984 REAL_VALUE_TYPE r;
985 HOST_WIDE_INT i;
986
987 i = INTVAL (x);
988 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
989 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
76321db6
MH
990 }
991 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 992 && GET_MODE_BITSIZE (mode) == 64
a2061c0d
GK
993 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
994 && GET_MODE (x) == VOIDmode)
995 {
996 REAL_VALUE_TYPE r;
997 HOST_WIDE_INT i[2];
998 HOST_WIDE_INT low, high;
999
1000 if (GET_CODE (x) == CONST_INT)
1001 {
1002 low = INTVAL (x);
1003 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1004 }
1005 else
1006 {
750c9258 1007 low = CONST_DOUBLE_LOW (x);
a2061c0d
GK
1008 high = CONST_DOUBLE_HIGH (x);
1009 }
1010
1011 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1012 target machine. */
1013 if (WORDS_BIG_ENDIAN)
1014 i[0] = high, i[1] = low;
1015 else
1016 i[0] = low, i[1] = high;
1017
1018 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1019 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1020 }
1021 else if ((GET_MODE_CLASS (mode) == MODE_INT
1022 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1023 && GET_CODE (x) == CONST_DOUBLE
1024 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1025 {
1026 REAL_VALUE_TYPE r;
1027 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1028 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1029
8125704b
GK
1030 /* Convert 'r' into an array of four 32-bit words in target word
1031 order. */
a2061c0d 1032 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
57dadce2 1033 switch (GET_MODE_BITSIZE (GET_MODE (x)))
a2061c0d 1034 {
57dadce2 1035 case 32:
8125704b
GK
1036 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1037 i[1] = 0;
1038 i[2] = 0;
1039 i[3 - 3 * endian] = 0;
1040 break;
57dadce2 1041 case 64:
8125704b
GK
1042 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1043 i[2 - 2 * endian] = 0;
1044 i[3 - 2 * endian] = 0;
1045 break;
57dadce2 1046 case 96:
e389897b 1047 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
8125704b 1048 i[3 - 3 * endian] = 0;
76321db6 1049 break;
57dadce2 1050 case 128:
a2061c0d
GK
1051 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1052 break;
1053 default:
1156b23c 1054 abort ();
a2061c0d 1055 }
a2061c0d
GK
1056 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1057 and return it. */
1058#if HOST_BITS_PER_WIDE_INT == 32
8125704b 1059 return immed_double_const (i[3 * endian], i[1 + endian], mode);
a2061c0d 1060#else
8125704b
GK
1061 if (HOST_BITS_PER_WIDE_INT != 64)
1062 abort ();
50e60bc3 1063
931db8d2
DE
1064 return immed_double_const (i[3 * endian]
1065 | ((HOST_WIDE_INT) i[1 + endian] << 32),
1066 i[2 - endian]
1067 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32),
8125704b 1068 mode);
a2061c0d
GK
1069#endif
1070 }
1071#endif /* ifndef REAL_ARITHMETIC */
8aada4ad 1072
23b2ce53
RS
1073 /* Otherwise, we can't do this. */
1074 return 0;
1075}
1076\f
280194b0
RS
1077/* Return the real part (which has mode MODE) of a complex value X.
1078 This always comes at the low address in memory. */
1079
1080rtx
1081gen_realpart (mode, x)
1082 enum machine_mode mode;
b3694847 1083 rtx x;
280194b0 1084{
e0e08ac2
JH
1085 if (WORDS_BIG_ENDIAN
1086 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1087 && REG_P (x)
1088 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1089 internal_error
1090 ("Can't access real part of complex value in hard register");
dc139c90 1091 else if (WORDS_BIG_ENDIAN)
280194b0
RS
1092 return gen_highpart (mode, x);
1093 else
1094 return gen_lowpart (mode, x);
1095}
1096
1097/* Return the imaginary part (which has mode MODE) of a complex value X.
1098 This always comes at the high address in memory. */
1099
1100rtx
1101gen_imagpart (mode, x)
1102 enum machine_mode mode;
b3694847 1103 rtx x;
280194b0 1104{
e0e08ac2 1105 if (WORDS_BIG_ENDIAN)
280194b0 1106 return gen_lowpart (mode, x);
ddef6bc7 1107 else if (! WORDS_BIG_ENDIAN
40c0c3cf
JL
1108 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1109 && REG_P (x)
1110 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1111 internal_error
1112 ("can't access imaginary part of complex value in hard register");
280194b0
RS
1113 else
1114 return gen_highpart (mode, x);
1115}
81284a6a
JW
1116
1117/* Return 1 iff X, assumed to be a SUBREG,
1118 refers to the real part of the complex value in its containing reg.
1119 Complex values are always stored with the real part in the first word,
1120 regardless of WORDS_BIG_ENDIAN. */
1121
1122int
1123subreg_realpart_p (x)
1124 rtx x;
1125{
1126 if (GET_CODE (x) != SUBREG)
1127 abort ();
1128
ddef6bc7 1129 return ((unsigned int) SUBREG_BYTE (x)
770ae6cc 1130 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
81284a6a 1131}
280194b0 1132\f
23b2ce53
RS
1133/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1134 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1135 least-significant part of X.
1136 MODE specifies how big a part of X to return;
1137 it usually should not be larger than a word.
1138 If X is a MEM whose address is a QUEUED, the value may be so also. */
1139
1140rtx
1141gen_lowpart (mode, x)
1142 enum machine_mode mode;
b3694847 1143 rtx x;
23b2ce53
RS
1144{
1145 rtx result = gen_lowpart_common (mode, x);
1146
1147 if (result)
1148 return result;
ea8262b0
RK
1149 else if (GET_CODE (x) == REG)
1150 {
1151 /* Must be a hard reg that's not valid in MODE. */
1152 result = gen_lowpart_common (mode, copy_to_reg (x));
1153 if (result == 0)
1154 abort ();
72c3833b 1155 return result;
ea8262b0 1156 }
23b2ce53
RS
1157 else if (GET_CODE (x) == MEM)
1158 {
1159 /* The only additional case we can do is MEM. */
b3694847 1160 int offset = 0;
23b2ce53
RS
1161 if (WORDS_BIG_ENDIAN)
1162 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1163 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1164
1165 if (BYTES_BIG_ENDIAN)
1166 /* Adjust the address so that the address-after-the-data
1167 is unchanged. */
1168 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1169 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1170
f4ef873c 1171 return adjust_address (x, mode, offset);
23b2ce53 1172 }
e9a25f70
JL
1173 else if (GET_CODE (x) == ADDRESSOF)
1174 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
1175 else
1176 abort ();
1177}
1178
750c9258 1179/* Like `gen_lowpart', but refer to the most significant part.
ccba022b
RS
1180 This is used to access the imaginary part of a complex number. */
1181
1182rtx
1183gen_highpart (mode, x)
1184 enum machine_mode mode;
b3694847 1185 rtx x;
ccba022b 1186{
ddef6bc7 1187 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1188 rtx result;
ddef6bc7 1189
ccba022b
RS
1190 /* This case loses if X is a subreg. To catch bugs early,
1191 complain if an invalid MODE is used even in other cases. */
ddef6bc7
JJ
1192 if (msize > UNITS_PER_WORD
1193 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
ccba022b 1194 abort ();
ddef6bc7 1195
e0e08ac2
JH
1196 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1197 subreg_highpart_offset (mode, GET_MODE (x)));
09482e0d
JW
1198
1199 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1200 the target if we have a MEM. gen_highpart must return a valid operand,
1201 emitting code if necessary to do so. */
1202 if (GET_CODE (result) == MEM)
1203 result = validize_mem (result);
1204
e0e08ac2
JH
1205 if (!result)
1206 abort ();
1207 return result;
1208}
5222e470
JH
1209
1210/* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1211 be VOIDmode constant. */
1212rtx
1213gen_highpart_mode (outermode, innermode, exp)
1214 enum machine_mode outermode, innermode;
1215 rtx exp;
1216{
1217 if (GET_MODE (exp) != VOIDmode)
1218 {
1219 if (GET_MODE (exp) != innermode)
1220 abort ();
1221 return gen_highpart (outermode, exp);
1222 }
1223 return simplify_gen_subreg (outermode, exp, innermode,
1224 subreg_highpart_offset (outermode, innermode));
1225}
e0e08ac2
JH
1226/* Return offset in bytes to get OUTERMODE low part
1227 of the value in mode INNERMODE stored in memory in target format. */
8698cce3 1228
e0e08ac2
JH
1229unsigned int
1230subreg_lowpart_offset (outermode, innermode)
1231 enum machine_mode outermode, innermode;
1232{
1233 unsigned int offset = 0;
1234 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1235
e0e08ac2 1236 if (difference > 0)
ccba022b 1237 {
e0e08ac2
JH
1238 if (WORDS_BIG_ENDIAN)
1239 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1240 if (BYTES_BIG_ENDIAN)
1241 offset += difference % UNITS_PER_WORD;
ccba022b 1242 }
ddef6bc7 1243
e0e08ac2 1244 return offset;
ccba022b 1245}
eea50aa0 1246
e0e08ac2
JH
1247/* Return offset in bytes to get OUTERMODE high part
1248 of the value in mode INNERMODE stored in memory in target format. */
1249unsigned int
1250subreg_highpart_offset (outermode, innermode)
eea50aa0 1251 enum machine_mode outermode, innermode;
eea50aa0
JH
1252{
1253 unsigned int offset = 0;
1254 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1255
e0e08ac2
JH
1256 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1257 abort ();
1258
eea50aa0
JH
1259 if (difference > 0)
1260 {
e0e08ac2 1261 if (! WORDS_BIG_ENDIAN)
eea50aa0 1262 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1263 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1264 offset += difference % UNITS_PER_WORD;
1265 }
1266
e0e08ac2 1267 return offset;
eea50aa0 1268}
ccba022b 1269
23b2ce53
RS
1270/* Return 1 iff X, assumed to be a SUBREG,
1271 refers to the least significant part of its containing reg.
1272 If X is not a SUBREG, always return 1 (it is its own low part!). */
1273
1274int
1275subreg_lowpart_p (x)
1276 rtx x;
1277{
1278 if (GET_CODE (x) != SUBREG)
1279 return 1;
a3a03040
RK
1280 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1281 return 0;
23b2ce53 1282
e0e08ac2
JH
1283 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1284 == SUBREG_BYTE (x));
23b2ce53
RS
1285}
1286\f
23b2ce53 1287
ddef6bc7
JJ
1288/* Helper routine for all the constant cases of operand_subword.
1289 Some places invoke this directly. */
23b2ce53
RS
1290
1291rtx
ddef6bc7 1292constant_subword (op, offset, mode)
23b2ce53 1293 rtx op;
ddef6bc7 1294 int offset;
23b2ce53
RS
1295 enum machine_mode mode;
1296{
906c4e36 1297 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
ddef6bc7 1298 HOST_WIDE_INT val;
23b2ce53
RS
1299
1300 /* If OP is already an integer word, return it. */
1301 if (GET_MODE_CLASS (mode) == MODE_INT
1302 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1303 return op;
1304
1632afca 1305#ifdef REAL_ARITHMETIC
5495cc55
RH
1306 /* The output is some bits, the width of the target machine's word.
1307 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1308 host can't. */
9847c2f6 1309 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1310 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1311 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1312 && GET_CODE (op) == CONST_DOUBLE)
1313 {
9847c2f6 1314 long k[2];
1632afca
RS
1315 REAL_VALUE_TYPE rv;
1316
1317 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1318 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1319
9847c2f6 1320 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4 1321 which the words are written depends on the word endianness.
7677ffa4 1322 ??? This is a potential portability problem and should
7cae975e
RH
1323 be fixed at some point.
1324
a1f300c0 1325 We must exercise caution with the sign bit. By definition there
7cae975e
RH
1326 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1327 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1328 So we explicitly mask and sign-extend as necessary. */
9847c2f6 1329 if (BITS_PER_WORD == 32)
7cae975e 1330 {
ddef6bc7 1331 val = k[offset];
7cae975e
RH
1332 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1333 return GEN_INT (val);
1334 }
1335#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1336 else if (BITS_PER_WORD >= 64 && offset == 0)
7cae975e
RH
1337 {
1338 val = k[! WORDS_BIG_ENDIAN];
1339 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1340 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1341 return GEN_INT (val);
1342 }
9847c2f6 1343#endif
47b34d40
JW
1344 else if (BITS_PER_WORD == 16)
1345 {
ddef6bc7
JJ
1346 val = k[offset >> 1];
1347 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1348 val >>= 16;
73de376f 1349 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
7cae975e 1350 return GEN_INT (val);
47b34d40 1351 }
7677ffa4
RK
1352 else
1353 abort ();
1632afca 1354 }
a5559dbc
RE
1355 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1356 && GET_MODE_CLASS (mode) == MODE_FLOAT
1357 && GET_MODE_BITSIZE (mode) > 64
1358 && GET_CODE (op) == CONST_DOUBLE)
5495cc55
RH
1359 {
1360 long k[4];
1361 REAL_VALUE_TYPE rv;
a5559dbc 1362
5495cc55
RH
1363 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1364 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
a5559dbc 1365
5495cc55
RH
1366 if (BITS_PER_WORD == 32)
1367 {
ddef6bc7 1368 val = k[offset];
5495cc55
RH
1369 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1370 return GEN_INT (val);
1371 }
1372#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1373 else if (BITS_PER_WORD >= 64 && offset <= 1)
5495cc55 1374 {
ddef6bc7 1375 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
5495cc55 1376 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
ddef6bc7 1377 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
5495cc55
RH
1378 return GEN_INT (val);
1379 }
1380#endif
1381 else
1382 abort ();
1383 }
1632afca 1384#else /* no REAL_ARITHMETIC */
23b2ce53 1385 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1386 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53
RS
1387 || flag_pretend_float)
1388 && GET_MODE_CLASS (mode) == MODE_FLOAT
1389 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1390 && GET_CODE (op) == CONST_DOUBLE)
7529ac93
CH
1391 {
1392 /* The constant is stored in the host's word-ordering,
1393 but we want to access it in the target's word-ordering. Some
1394 compilers don't like a conditional inside macro args, so we have two
1395 copies of the return. */
2fe02d7e 1396#ifdef HOST_WORDS_BIG_ENDIAN
ddef6bc7 1397 return GEN_INT (offset == WORDS_BIG_ENDIAN
7529ac93 1398 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1399#else
ddef6bc7 1400 return GEN_INT (offset != WORDS_BIG_ENDIAN
7529ac93 1401 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1402#endif
7529ac93 1403 }
1632afca 1404#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1405
1406 /* Single word float is a little harder, since single- and double-word
1407 values often do not have the same high-order bits. We have already
1408 verified that we want the only defined word of the single-word value. */
1632afca 1409#ifdef REAL_ARITHMETIC
9847c2f6 1410 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1411 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1412 && GET_CODE (op) == CONST_DOUBLE)
1413 {
9847c2f6 1414 long l;
1632afca
RS
1415 REAL_VALUE_TYPE rv;
1416
1417 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1418 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
aa2ae679 1419
7cae975e
RH
1420 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1421 val = l;
1422 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
b5a3eb84 1423
aa2ae679
JL
1424 if (BITS_PER_WORD == 16)
1425 {
ddef6bc7 1426 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1427 val >>= 16;
73de376f 1428 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
aa2ae679 1429 }
7cae975e
RH
1430
1431 return GEN_INT (val);
1632afca
RS
1432 }
1433#else
23b2ce53 1434 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1435 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53 1436 || flag_pretend_float)
e01a2cec 1437 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
23b2ce53
RS
1438 && GET_MODE_CLASS (mode) == MODE_FLOAT
1439 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1440 && GET_CODE (op) == CONST_DOUBLE)
1441 {
1442 double d;
906c4e36 1443 union {float f; HOST_WIDE_INT i; } u;
23b2ce53
RS
1444
1445 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1446
1447 u.f = d;
906c4e36 1448 return GEN_INT (u.i);
23b2ce53 1449 }
e01a2cec
RK
1450 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1451 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1452 || flag_pretend_float)
1453 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1454 && GET_MODE_CLASS (mode) == MODE_FLOAT
1455 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1456 && GET_CODE (op) == CONST_DOUBLE)
1457 {
1458 double d;
1459 union {double d; HOST_WIDE_INT i; } u;
1460
1461 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1462
1463 u.d = d;
1464 return GEN_INT (u.i);
1465 }
1632afca 1466#endif /* no REAL_ARITHMETIC */
750c9258 1467
23b2ce53
RS
1468 /* The only remaining cases that we can handle are integers.
1469 Convert to proper endianness now since these cases need it.
750c9258 1470 At this point, offset == 0 means the low-order word.
23b2ce53 1471
2d4f57f8
RK
1472 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1473 in general. However, if OP is (const_int 0), we can just return
1474 it for any word. */
1475
1476 if (op == const0_rtx)
1477 return op;
23b2ce53
RS
1478
1479 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1480 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1481 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1482 return 0;
1483
1484 if (WORDS_BIG_ENDIAN)
ddef6bc7 1485 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
23b2ce53
RS
1486
1487 /* Find out which word on the host machine this value is in and get
1488 it from the constant. */
ddef6bc7 1489 val = (offset / size_ratio == 0
23b2ce53
RS
1490 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1491 : (GET_CODE (op) == CONST_INT
1492 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1493
3f518020 1494 /* Get the value we want into the low bits of val. */
906c4e36 1495 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
ddef6bc7 1496 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
3f518020 1497
7e4ce834 1498 val = trunc_int_for_mode (val, word_mode);
23b2ce53 1499
906c4e36 1500 return GEN_INT (val);
23b2ce53
RS
1501}
1502
ddef6bc7
JJ
1503/* Return subword OFFSET of operand OP.
1504 The word number, OFFSET, is interpreted as the word number starting
1505 at the low-order address. OFFSET 0 is the low-order word if not
1506 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1507
1508 If we cannot extract the required word, we return zero. Otherwise,
1509 an rtx corresponding to the requested word will be returned.
1510
1511 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1512 reload has completed, a valid address will always be returned. After
1513 reload, if a valid address cannot be returned, we return zero.
1514
1515 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1516 it is the responsibility of the caller.
1517
1518 MODE is the mode of OP in case it is a CONST_INT.
1519
1520 ??? This is still rather broken for some cases. The problem for the
1521 moment is that all callers of this thing provide no 'goal mode' to
1522 tell us to work with. This exists because all callers were written
0631e0bf
JH
1523 in a word based SUBREG world.
1524 Now use of this function can be deprecated by simplify_subreg in most
1525 cases.
1526 */
ddef6bc7
JJ
1527
1528rtx
1529operand_subword (op, offset, validate_address, mode)
1530 rtx op;
1531 unsigned int offset;
1532 int validate_address;
1533 enum machine_mode mode;
1534{
1535 if (mode == VOIDmode)
1536 mode = GET_MODE (op);
1537
1538 if (mode == VOIDmode)
1539 abort ();
1540
30f7a378 1541 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1542 if (mode != BLKmode
1543 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1544 return 0;
1545
30f7a378 1546 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1547 if (mode != BLKmode
1548 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1549 return const0_rtx;
1550
ddef6bc7
JJ
1551 /* Form a new MEM at the requested address. */
1552 if (GET_CODE (op) == MEM)
1553 {
f1ec5147 1554 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1555
f1ec5147
RK
1556 if (! validate_address)
1557 return new;
1558
1559 else if (reload_completed)
ddef6bc7 1560 {
f1ec5147
RK
1561 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1562 return 0;
ddef6bc7 1563 }
f1ec5147
RK
1564 else
1565 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1566 }
1567
0631e0bf
JH
1568 /* Rest can be handled by simplify_subreg. */
1569 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1570}
1571
23b2ce53
RS
1572/* Similar to `operand_subword', but never return 0. If we can't extract
1573 the required subword, put OP into a register and try again. If that fails,
750c9258 1574 abort. We always validate the address in this case.
23b2ce53
RS
1575
1576 MODE is the mode of OP, in case it is CONST_INT. */
1577
1578rtx
ddef6bc7 1579operand_subword_force (op, offset, mode)
23b2ce53 1580 rtx op;
ddef6bc7 1581 unsigned int offset;
23b2ce53
RS
1582 enum machine_mode mode;
1583{
ddef6bc7 1584 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1585
1586 if (result)
1587 return result;
1588
1589 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1590 {
1591 /* If this is a register which can not be accessed by words, copy it
1592 to a pseudo register. */
1593 if (GET_CODE (op) == REG)
1594 op = copy_to_reg (op);
1595 else
1596 op = force_reg (mode, op);
1597 }
23b2ce53 1598
ddef6bc7 1599 result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1600 if (result == 0)
1601 abort ();
1602
1603 return result;
1604}
1605\f
1606/* Given a compare instruction, swap the operands.
1607 A test instruction is changed into a compare of 0 against the operand. */
1608
1609void
1610reverse_comparison (insn)
1611 rtx insn;
1612{
1613 rtx body = PATTERN (insn);
1614 rtx comp;
1615
1616 if (GET_CODE (body) == SET)
1617 comp = SET_SRC (body);
1618 else
1619 comp = SET_SRC (XVECEXP (body, 0, 0));
1620
1621 if (GET_CODE (comp) == COMPARE)
1622 {
1623 rtx op0 = XEXP (comp, 0);
1624 rtx op1 = XEXP (comp, 1);
1625 XEXP (comp, 0) = op1;
1626 XEXP (comp, 1) = op0;
1627 }
1628 else
1629 {
c5c76735
JL
1630 rtx new = gen_rtx_COMPARE (VOIDmode,
1631 CONST0_RTX (GET_MODE (comp)), comp);
23b2ce53
RS
1632 if (GET_CODE (body) == SET)
1633 SET_SRC (body) = new;
1634 else
1635 SET_SRC (XVECEXP (body, 0, 0)) = new;
1636 }
1637}
1638\f
173b24b9
RK
1639
1640/* Given REF, a MEM, and T, either the type of X or the expression
1641 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1642 if we are making a new object of this type. */
1643
1644void
1645set_mem_attributes (ref, t, objectp)
1646 rtx ref;
1647 tree t;
1648 int objectp;
1649{
8ac61af7
RK
1650 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1651 tree decl = MEM_DECL (ref);
1652 rtx offset = MEM_OFFSET (ref);
1653 rtx size = MEM_SIZE (ref);
1654 unsigned int align = MEM_ALIGN (ref);
173b24b9
RK
1655 tree type;
1656
1657 /* It can happen that type_for_mode was given a mode for which there
1658 is no language-level type. In which case it returns NULL, which
1659 we can see here. */
1660 if (t == NULL_TREE)
1661 return;
1662
1663 type = TYPE_P (t) ? t : TREE_TYPE (t);
1664
173b24b9
RK
1665 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1666 wrong answer, as it assumes that DECL_RTL already has the right alias
1667 info. Callers should not set DECL_RTL until after the call to
1668 set_mem_attributes. */
1669 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1670 abort ();
1671
738cc472 1672 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1673 front-end routine) and use it. */
1674 alias = get_alias_set (t);
173b24b9
RK
1675
1676 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1677 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
03bf2c23 1678 RTX_UNCHANGING_P (ref)
1285011e
RK
1679 |= ((lang_hooks.honor_readonly
1680 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1681 || (! TYPE_P (t) && TREE_CONSTANT (t)));
173b24b9 1682
8ac61af7
RK
1683 /* If we are making an object of this type, or if this is a DECL, we know
1684 that it is a scalar if the type is not an aggregate. */
1685 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
173b24b9
RK
1686 MEM_SCALAR_P (ref) = 1;
1687
c3d32120
RK
1688 /* We can set the alignment from the type if we are making an object,
1689 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1690 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1691 align = MAX (align, TYPE_ALIGN (type));
40c0668b 1692
738cc472
RK
1693 /* If the size is known, we can set that. */
1694 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1695 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1696
80965c18
RK
1697 /* If T is not a type, we may be able to deduce some more information about
1698 the expression. */
1699 if (! TYPE_P (t))
8ac61af7
RK
1700 {
1701 maybe_set_unchanging (ref, t);
1702 if (TREE_THIS_VOLATILE (t))
1703 MEM_VOLATILE_P (ref) = 1;
173b24b9 1704
8ac61af7 1705 /* Now remove any NOPs: they don't change what the underlying object is.
80965c18 1706 Likewise for SAVE_EXPR. */
8ac61af7
RK
1707 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1708 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
1709 t = TREE_OPERAND (t, 0);
1710
10b76d73
RK
1711 /* If this expression can't be addressed (e.g., it contains a reference
1712 to a non-addressable field), show we don't change its alias set. */
1713 if (! can_address_p (t))
1714 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1715
8ac61af7
RK
1716 /* If this is a decl, set the attributes of the MEM from it. */
1717 if (DECL_P (t))
1718 {
1719 decl = t;
1720 offset = GEN_INT (0);
1721 size = (DECL_SIZE_UNIT (t)
1722 && host_integerp (DECL_SIZE_UNIT (t), 1)
1723 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1724 align = DECL_ALIGN (t);
1725 }
1726
40c0668b 1727 /* If this is a constant, we know the alignment. */
9ddfb1a7
RK
1728 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1729 {
1730 align = TYPE_ALIGN (type);
1731#ifdef CONSTANT_ALIGNMENT
1732 align = CONSTANT_ALIGNMENT (t, align);
1733#endif
1734 }
8ac61af7
RK
1735 }
1736
1737 /* Now set the attributes we computed above. */
10b76d73
RK
1738 MEM_ATTRS (ref)
1739 = get_mem_attrs (alias, decl, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1740
1741 /* If this is already known to be a scalar or aggregate, we are done. */
1742 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1743 return;
1744
8ac61af7
RK
1745 /* If it is a reference into an aggregate, this is part of an aggregate.
1746 Otherwise we don't know. */
173b24b9
RK
1747 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1748 || TREE_CODE (t) == ARRAY_RANGE_REF
1749 || TREE_CODE (t) == BIT_FIELD_REF)
1750 MEM_IN_STRUCT_P (ref) = 1;
1751}
1752
1753/* Set the alias set of MEM to SET. */
1754
1755void
1756set_mem_alias_set (mem, set)
1757 rtx mem;
1758 HOST_WIDE_INT set;
1759{
173b24b9
RK
1760#ifdef ENABLE_CHECKING
1761 /* If the new and old alias sets don't conflict, something is wrong. */
1762 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1763 abort ();
173b24b9
RK
1764#endif
1765
1766 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_DECL (mem), MEM_OFFSET (mem),
10b76d73
RK
1767 MEM_SIZE (mem), MEM_ALIGN (mem),
1768 GET_MODE (mem));
173b24b9 1769}
738cc472 1770
d022d93e 1771/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1772
1773void
1774set_mem_align (mem, align)
1775 rtx mem;
1776 unsigned int align;
1777{
1778 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_DECL (mem),
10b76d73
RK
1779 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1780 GET_MODE (mem));
738cc472 1781}
1285011e
RK
1782
1783/* Set the decl for MEM to DECL. */
1784
1785void
1786set_mem_decl (mem, decl)
1787 rtx mem;
1788 tree decl;
1789{
1790 MEM_ATTRS (mem)
1791 = get_mem_attrs (MEM_ALIAS_SET (mem), decl, MEM_OFFSET (mem),
1792 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1793}
173b24b9 1794\f
738cc472
RK
1795/* Return a memory reference like MEMREF, but with its mode changed to MODE
1796 and its address changed to ADDR. (VOIDmode means don't change the mode.
1797 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1798 returned memory location is required to be valid. The memory
1799 attributes are not changed. */
23b2ce53 1800
738cc472 1801static rtx
f1ec5147 1802change_address_1 (memref, mode, addr, validate)
23b2ce53
RS
1803 rtx memref;
1804 enum machine_mode mode;
1805 rtx addr;
f1ec5147 1806 int validate;
23b2ce53
RS
1807{
1808 rtx new;
1809
1810 if (GET_CODE (memref) != MEM)
1811 abort ();
1812 if (mode == VOIDmode)
1813 mode = GET_MODE (memref);
1814 if (addr == 0)
1815 addr = XEXP (memref, 0);
1816
f1ec5147 1817 if (validate)
23b2ce53 1818 {
f1ec5147
RK
1819 if (reload_in_progress || reload_completed)
1820 {
1821 if (! memory_address_p (mode, addr))
1822 abort ();
1823 }
1824 else
1825 addr = memory_address (mode, addr);
23b2ce53 1826 }
750c9258 1827
9b04c6a8
RK
1828 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1829 return memref;
1830
3b80f6ca 1831 new = gen_rtx_MEM (mode, addr);
c6df88cb 1832 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1833 return new;
1834}
792760b9 1835
738cc472
RK
1836/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1837 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1838
1839rtx
738cc472 1840change_address (memref, mode, addr)
f4ef873c
RK
1841 rtx memref;
1842 enum machine_mode mode;
738cc472 1843 rtx addr;
f4ef873c 1844{
738cc472
RK
1845 rtx new = change_address_1 (memref, mode, addr, 1);
1846 enum machine_mode mmode = GET_MODE (new);
c2f7bcc3 1847
738cc472
RK
1848 MEM_ATTRS (new)
1849 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1850 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
a06ef755
RK
1851 (mmode == BLKmode ? BITS_PER_UNIT
1852 : GET_MODE_ALIGNMENT (mmode)),
10b76d73 1853 mmode);
823e3574 1854
738cc472 1855 return new;
f4ef873c 1856}
792760b9 1857
738cc472
RK
1858/* Return a memory reference like MEMREF, but with its mode changed
1859 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1860 nonzero, the memory address is forced to be valid.
1861 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1862 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1863
1864rtx
630036c6 1865adjust_address_1 (memref, mode, offset, validate, adjust)
f1ec5147
RK
1866 rtx memref;
1867 enum machine_mode mode;
1868 HOST_WIDE_INT offset;
630036c6 1869 int validate, adjust;
f1ec5147 1870{
823e3574 1871 rtx addr = XEXP (memref, 0);
738cc472
RK
1872 rtx new;
1873 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1874 rtx size = 0;
738cc472 1875 unsigned int memalign = MEM_ALIGN (memref);
823e3574 1876
630036c6
JJ
1877 if (adjust == 0 || offset == 0)
1878 /* ??? Prefer to create garbage instead of creating shared rtl. */
1879 addr = copy_rtx (addr);
738cc472 1880 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
823e3574 1881 object, we can merge it into the LO_SUM. */
630036c6
JJ
1882 else if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1883 && offset >= 0
1884 && (unsigned HOST_WIDE_INT) offset
1885 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
738cc472 1886 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
823e3574
RK
1887 plus_constant (XEXP (addr, 1), offset));
1888 else
1889 addr = plus_constant (addr, offset);
1890
738cc472
RK
1891 new = change_address_1 (memref, mode, addr, validate);
1892
1893 /* Compute the new values of the memory attributes due to this adjustment.
1894 We add the offsets and update the alignment. */
1895 if (memoffset)
1896 memoffset = GEN_INT (offset + INTVAL (memoffset));
1897
03bf2c23
RK
1898 /* Compute the new alignment by taking the MIN of the alignment and the
1899 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1900 if zero. */
1901 if (offset != 0)
d022d93e 1902 memalign = MIN (memalign, (offset & -offset) * BITS_PER_UNIT);
738cc472 1903
10b76d73 1904 /* We can compute the size in a number of ways. */
a06ef755
RK
1905 if (GET_MODE (new) != BLKmode)
1906 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
1907 else if (MEM_SIZE (memref))
1908 size = plus_constant (MEM_SIZE (memref), -offset);
1909
1910 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_DECL (memref),
1911 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
1912
1913 /* At some point, we should validate that this offset is within the object,
1914 if all the appropriate values are known. */
1915 return new;
f1ec5147
RK
1916}
1917
630036c6
JJ
1918/* Return a memory reference like MEMREF, but with its mode changed
1919 to MODE and its address changed to ADDR, which is assumed to be
1920 MEMREF offseted by OFFSET bytes. If VALIDATE is
1921 nonzero, the memory address is forced to be valid. */
1922
1923rtx
1924adjust_automodify_address_1 (memref, mode, addr, offset, validate)
1925 rtx memref;
1926 enum machine_mode mode;
1927 rtx addr;
1928 HOST_WIDE_INT offset;
1929 int validate;
1930{
1931 memref = change_address_1 (memref, VOIDmode, addr, validate);
1932 return adjust_address_1 (memref, mode, offset, validate, 0);
1933}
1934
8ac61af7
RK
1935/* Return a memory reference like MEMREF, but whose address is changed by
1936 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1937 known to be in OFFSET (possibly 1). */
0d4903b8
RK
1938
1939rtx
1940offset_address (memref, offset, pow2)
1941 rtx memref;
1942 rtx offset;
1943 HOST_WIDE_INT pow2;
1944{
1945 rtx new = change_address_1 (memref, VOIDmode,
1946 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
1947 force_reg (Pmode, offset)), 1);
0d4903b8
RK
1948
1949 /* Update the alignment to reflect the offset. Reset the offset, which
1950 we don't know. */
0d4903b8 1951 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_DECL (memref),
d022d93e 1952 0, 0, MIN (MEM_ALIGN (memref),
10b76d73
RK
1953 pow2 * BITS_PER_UNIT),
1954 GET_MODE (new));
0d4903b8
RK
1955 return new;
1956}
1957
792760b9
RK
1958/* Return a memory reference like MEMREF, but with its address changed to
1959 ADDR. The caller is asserting that the actual piece of memory pointed
1960 to is the same, just the form of the address is being changed, such as
1961 by putting something into a register. */
1962
1963rtx
1964replace_equiv_address (memref, addr)
1965 rtx memref;
1966 rtx addr;
1967{
738cc472
RK
1968 /* change_address_1 copies the memory attribute structure without change
1969 and that's exactly what we want here. */
40c0668b 1970 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 1971 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 1972}
738cc472 1973
f1ec5147
RK
1974/* Likewise, but the reference is not required to be valid. */
1975
1976rtx
1977replace_equiv_address_nv (memref, addr)
1978 rtx memref;
1979 rtx addr;
1980{
f1ec5147
RK
1981 return change_address_1 (memref, VOIDmode, addr, 0);
1982}
23b2ce53
RS
1983\f
1984/* Return a newly created CODE_LABEL rtx with a unique label number. */
1985
1986rtx
1987gen_label_rtx ()
1988{
b3694847 1989 rtx label;
ca695ac9 1990
b93a436e 1991 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
9714cf43 1992 NULL_RTX, label_num++, NULL, NULL);
ca695ac9 1993
23b2ce53 1994 LABEL_NUSES (label) = 0;
8cd0faaf 1995 LABEL_ALTERNATE_NAME (label) = NULL;
23b2ce53
RS
1996 return label;
1997}
1998\f
1999/* For procedure integration. */
2000
23b2ce53 2001/* Install new pointers to the first and last insns in the chain.
86fe05e0 2002 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2003 Used for an inline-procedure after copying the insn chain. */
2004
2005void
2006set_new_first_and_last_insn (first, last)
2007 rtx first, last;
2008{
86fe05e0
RK
2009 rtx insn;
2010
23b2ce53
RS
2011 first_insn = first;
2012 last_insn = last;
86fe05e0
RK
2013 cur_insn_uid = 0;
2014
2015 for (insn = first; insn; insn = NEXT_INSN (insn))
2016 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2017
2018 cur_insn_uid++;
23b2ce53
RS
2019}
2020
2021/* Set the range of label numbers found in the current function.
2022 This is used when belatedly compiling an inline function. */
2023
2024void
2025set_new_first_and_last_label_num (first, last)
2026 int first, last;
2027{
2028 base_label_num = label_num;
2029 first_label_num = first;
2030 last_label_num = last;
2031}
49ad7cfa
BS
2032
2033/* Set the last label number found in the current function.
2034 This is used when belatedly compiling an inline function. */
23b2ce53
RS
2035
2036void
49ad7cfa
BS
2037set_new_last_label_num (last)
2038 int last;
23b2ce53 2039{
49ad7cfa
BS
2040 base_label_num = label_num;
2041 last_label_num = last;
23b2ce53 2042}
49ad7cfa 2043\f
23b2ce53
RS
2044/* Restore all variables describing the current status from the structure *P.
2045 This is used after a nested function. */
2046
2047void
2048restore_emit_status (p)
272df862 2049 struct function *p ATTRIBUTE_UNUSED;
23b2ce53 2050{
457a2d9c 2051 last_label_num = 0;
49ad7cfa 2052 clear_emit_caches ();
23b2ce53 2053}
e2ecd91c 2054
21cd906e 2055/* Clear out all parts of the state in F that can safely be discarded
e2ecd91c 2056 after the function has been compiled, to let garbage collection
0a8a198c 2057 reclaim the memory. */
21cd906e 2058
e2ecd91c 2059void
0a8a198c 2060free_emit_status (f)
e2ecd91c
BS
2061 struct function *f;
2062{
2063 free (f->emit->x_regno_reg_rtx);
e2ecd91c 2064 free (f->emit->regno_pointer_align);
0d4903b8 2065 free (f->emit->regno_decl);
fa51b01b
RH
2066 free (f->emit);
2067 f->emit = NULL;
e2ecd91c 2068}
23b2ce53 2069\f
750c9258 2070/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2071 structure. This routine should only be called once. */
23b2ce53
RS
2072
2073void
d1b81779
GK
2074unshare_all_rtl (fndecl, insn)
2075 tree fndecl;
2076 rtx insn;
23b2ce53 2077{
d1b81779 2078 tree decl;
23b2ce53 2079
d1b81779
GK
2080 /* Make sure that virtual parameters are not shared. */
2081 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
19e7881c 2082 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
d1b81779 2083
5c6df058
AO
2084 /* Make sure that virtual stack slots are not shared. */
2085 unshare_all_decls (DECL_INITIAL (fndecl));
2086
d1b81779
GK
2087 /* Unshare just about everything else. */
2088 unshare_all_rtl_1 (insn);
750c9258 2089
23b2ce53
RS
2090 /* Make sure the addresses of stack slots found outside the insn chain
2091 (such as, in DECL_RTL of a variable) are not shared
2092 with the insn chain.
2093
2094 This special care is necessary when the stack slot MEM does not
2095 actually appear in the insn chain. If it does appear, its address
2096 is unshared from all else at that point. */
242b0ce6 2097 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2098}
2099
750c9258 2100/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2101 structure, again. This is a fairly expensive thing to do so it
2102 should be done sparingly. */
2103
2104void
2105unshare_all_rtl_again (insn)
2106 rtx insn;
2107{
2108 rtx p;
624c87aa
RE
2109 tree decl;
2110
d1b81779 2111 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2112 if (INSN_P (p))
d1b81779
GK
2113 {
2114 reset_used_flags (PATTERN (p));
2115 reset_used_flags (REG_NOTES (p));
2116 reset_used_flags (LOG_LINKS (p));
2117 }
624c87aa 2118
2d4aecb3
AO
2119 /* Make sure that virtual stack slots are not shared. */
2120 reset_used_decls (DECL_INITIAL (cfun->decl));
2121
624c87aa
RE
2122 /* Make sure that virtual parameters are not shared. */
2123 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2124 reset_used_flags (DECL_RTL (decl));
2125
2126 reset_used_flags (stack_slot_list);
2127
2128 unshare_all_rtl (cfun->decl, insn);
d1b81779
GK
2129}
2130
2131/* Go through all the RTL insn bodies and copy any invalid shared structure.
2132 Assumes the mark bits are cleared at entry. */
2133
2134static void
2135unshare_all_rtl_1 (insn)
2136 rtx insn;
2137{
2138 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2139 if (INSN_P (insn))
d1b81779
GK
2140 {
2141 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2142 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2143 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2144 }
2145}
2146
5c6df058
AO
2147/* Go through all virtual stack slots of a function and copy any
2148 shared structure. */
2149static void
2150unshare_all_decls (blk)
2151 tree blk;
2152{
2153 tree t;
2154
2155 /* Copy shared decls. */
2156 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2157 if (DECL_RTL_SET_P (t))
2158 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
5c6df058
AO
2159
2160 /* Now process sub-blocks. */
2161 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2162 unshare_all_decls (t);
2163}
2164
2d4aecb3 2165/* Go through all virtual stack slots of a function and mark them as
30f7a378 2166 not shared. */
2d4aecb3
AO
2167static void
2168reset_used_decls (blk)
2169 tree blk;
2170{
2171 tree t;
2172
2173 /* Mark decls. */
2174 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2175 if (DECL_RTL_SET_P (t))
2176 reset_used_flags (DECL_RTL (t));
2d4aecb3
AO
2177
2178 /* Now process sub-blocks. */
2179 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2180 reset_used_decls (t);
2181}
2182
23b2ce53
RS
2183/* Mark ORIG as in use, and return a copy of it if it was already in use.
2184 Recursively does the same for subexpressions. */
2185
2186rtx
2187copy_rtx_if_shared (orig)
2188 rtx orig;
2189{
b3694847
SS
2190 rtx x = orig;
2191 int i;
2192 enum rtx_code code;
2193 const char *format_ptr;
23b2ce53
RS
2194 int copied = 0;
2195
2196 if (x == 0)
2197 return 0;
2198
2199 code = GET_CODE (x);
2200
2201 /* These types may be freely shared. */
2202
2203 switch (code)
2204 {
2205 case REG:
2206 case QUEUED:
2207 case CONST_INT:
2208 case CONST_DOUBLE:
2209 case SYMBOL_REF:
2210 case CODE_LABEL:
2211 case PC:
2212 case CC0:
2213 case SCRATCH:
0f41302f 2214 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
2215 return x;
2216
b851ea09
RK
2217 case CONST:
2218 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2219 a LABEL_REF, it isn't sharable. */
2220 if (GET_CODE (XEXP (x, 0)) == PLUS
2221 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2222 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2223 return x;
2224 break;
2225
23b2ce53
RS
2226 case INSN:
2227 case JUMP_INSN:
2228 case CALL_INSN:
2229 case NOTE:
23b2ce53
RS
2230 case BARRIER:
2231 /* The chain of insns is not being copied. */
2232 return x;
2233
2234 case MEM:
83512665
JL
2235 /* A MEM is allowed to be shared if its address is constant.
2236
750c9258 2237 We used to allow sharing of MEMs which referenced
83512665
JL
2238 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2239 that can lose. instantiate_virtual_regs will not unshare
2240 the MEMs, and combine may change the structure of the address
2241 because it looks safe and profitable in one context, but
2242 in some other context it creates unrecognizable RTL. */
2243 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
23b2ce53
RS
2244 return x;
2245
e9a25f70
JL
2246 break;
2247
2248 default:
2249 break;
23b2ce53
RS
2250 }
2251
2252 /* This rtx may not be shared. If it has already been seen,
2253 replace it with a copy of itself. */
2254
2255 if (x->used)
2256 {
b3694847 2257 rtx copy;
23b2ce53
RS
2258
2259 copy = rtx_alloc (code);
4e135bdd 2260 memcpy (copy, x,
4c9a05bc
RK
2261 (sizeof (*copy) - sizeof (copy->fld)
2262 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
2263 x = copy;
2264 copied = 1;
2265 }
2266 x->used = 1;
2267
2268 /* Now scan the subexpressions recursively.
2269 We can store any replaced subexpressions directly into X
2270 since we know X is not shared! Any vectors in X
2271 must be copied if X was copied. */
2272
2273 format_ptr = GET_RTX_FORMAT (code);
2274
2275 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2276 {
2277 switch (*format_ptr++)
2278 {
2279 case 'e':
2280 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2281 break;
2282
2283 case 'E':
2284 if (XVEC (x, i) != NULL)
2285 {
b3694847 2286 int j;
f0722107 2287 int len = XVECLEN (x, i);
23b2ce53 2288
f0722107 2289 if (copied && len > 0)
8f985ec4 2290 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
f0722107
RS
2291 for (j = 0; j < len; j++)
2292 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
2293 }
2294 break;
2295 }
2296 }
2297 return x;
2298}
2299
2300/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2301 to look for shared sub-parts. */
2302
2303void
2304reset_used_flags (x)
2305 rtx x;
2306{
b3694847
SS
2307 int i, j;
2308 enum rtx_code code;
2309 const char *format_ptr;
23b2ce53
RS
2310
2311 if (x == 0)
2312 return;
2313
2314 code = GET_CODE (x);
2315
9faa82d8 2316 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2317 for them. */
2318
2319 switch (code)
2320 {
2321 case REG:
2322 case QUEUED:
2323 case CONST_INT:
2324 case CONST_DOUBLE:
2325 case SYMBOL_REF:
2326 case CODE_LABEL:
2327 case PC:
2328 case CC0:
2329 return;
2330
2331 case INSN:
2332 case JUMP_INSN:
2333 case CALL_INSN:
2334 case NOTE:
2335 case LABEL_REF:
2336 case BARRIER:
2337 /* The chain of insns is not being copied. */
2338 return;
750c9258 2339
e9a25f70
JL
2340 default:
2341 break;
23b2ce53
RS
2342 }
2343
2344 x->used = 0;
2345
2346 format_ptr = GET_RTX_FORMAT (code);
2347 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2348 {
2349 switch (*format_ptr++)
2350 {
2351 case 'e':
2352 reset_used_flags (XEXP (x, i));
2353 break;
2354
2355 case 'E':
2356 for (j = 0; j < XVECLEN (x, i); j++)
2357 reset_used_flags (XVECEXP (x, i, j));
2358 break;
2359 }
2360 }
2361}
2362\f
2363/* Copy X if necessary so that it won't be altered by changes in OTHER.
2364 Return X or the rtx for the pseudo reg the value of X was copied into.
2365 OTHER must be valid as a SET_DEST. */
2366
2367rtx
2368make_safe_from (x, other)
2369 rtx x, other;
2370{
2371 while (1)
2372 switch (GET_CODE (other))
2373 {
2374 case SUBREG:
2375 other = SUBREG_REG (other);
2376 break;
2377 case STRICT_LOW_PART:
2378 case SIGN_EXTEND:
2379 case ZERO_EXTEND:
2380 other = XEXP (other, 0);
2381 break;
2382 default:
2383 goto done;
2384 }
2385 done:
2386 if ((GET_CODE (other) == MEM
2387 && ! CONSTANT_P (x)
2388 && GET_CODE (x) != REG
2389 && GET_CODE (x) != SUBREG)
2390 || (GET_CODE (other) == REG
2391 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2392 || reg_mentioned_p (other, x))))
2393 {
2394 rtx temp = gen_reg_rtx (GET_MODE (x));
2395 emit_move_insn (temp, x);
2396 return temp;
2397 }
2398 return x;
2399}
2400\f
2401/* Emission of insns (adding them to the doubly-linked list). */
2402
2403/* Return the first insn of the current sequence or current function. */
2404
2405rtx
2406get_insns ()
2407{
2408 return first_insn;
2409}
2410
2411/* Return the last insn emitted in current sequence or current function. */
2412
2413rtx
2414get_last_insn ()
2415{
2416 return last_insn;
2417}
2418
2419/* Specify a new insn as the last in the chain. */
2420
2421void
2422set_last_insn (insn)
2423 rtx insn;
2424{
2425 if (NEXT_INSN (insn) != 0)
2426 abort ();
2427 last_insn = insn;
2428}
2429
2430/* Return the last insn emitted, even if it is in a sequence now pushed. */
2431
2432rtx
2433get_last_insn_anywhere ()
2434{
2435 struct sequence_stack *stack;
2436 if (last_insn)
2437 return last_insn;
49ad7cfa 2438 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2439 if (stack->last != 0)
2440 return stack->last;
2441 return 0;
2442}
2443
2444/* Return a number larger than any instruction's uid in this function. */
2445
2446int
2447get_max_uid ()
2448{
2449 return cur_insn_uid;
2450}
aeeeda03 2451
673b5311
MM
2452/* Renumber instructions so that no instruction UIDs are wasted. */
2453
aeeeda03 2454void
673b5311
MM
2455renumber_insns (stream)
2456 FILE *stream;
aeeeda03
MM
2457{
2458 rtx insn;
aeeeda03 2459
673b5311
MM
2460 /* If we're not supposed to renumber instructions, don't. */
2461 if (!flag_renumber_insns)
2462 return;
2463
aeeeda03
MM
2464 /* If there aren't that many instructions, then it's not really
2465 worth renumbering them. */
673b5311 2466 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
aeeeda03
MM
2467 return;
2468
2469 cur_insn_uid = 1;
2470
2471 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
673b5311
MM
2472 {
2473 if (stream)
750c9258 2474 fprintf (stream, "Renumbering insn %d to %d\n",
673b5311
MM
2475 INSN_UID (insn), cur_insn_uid);
2476 INSN_UID (insn) = cur_insn_uid++;
2477 }
aeeeda03 2478}
23b2ce53
RS
2479\f
2480/* Return the next insn. If it is a SEQUENCE, return the first insn
2481 of the sequence. */
2482
2483rtx
2484next_insn (insn)
2485 rtx insn;
2486{
2487 if (insn)
2488 {
2489 insn = NEXT_INSN (insn);
2490 if (insn && GET_CODE (insn) == INSN
2491 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2492 insn = XVECEXP (PATTERN (insn), 0, 0);
2493 }
2494
2495 return insn;
2496}
2497
2498/* Return the previous insn. If it is a SEQUENCE, return the last insn
2499 of the sequence. */
2500
2501rtx
2502previous_insn (insn)
2503 rtx insn;
2504{
2505 if (insn)
2506 {
2507 insn = PREV_INSN (insn);
2508 if (insn && GET_CODE (insn) == INSN
2509 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2510 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2511 }
2512
2513 return insn;
2514}
2515
2516/* Return the next insn after INSN that is not a NOTE. This routine does not
2517 look inside SEQUENCEs. */
2518
2519rtx
2520next_nonnote_insn (insn)
2521 rtx insn;
2522{
2523 while (insn)
2524 {
2525 insn = NEXT_INSN (insn);
2526 if (insn == 0 || GET_CODE (insn) != NOTE)
2527 break;
2528 }
2529
2530 return insn;
2531}
2532
2533/* Return the previous insn before INSN that is not a NOTE. This routine does
2534 not look inside SEQUENCEs. */
2535
2536rtx
2537prev_nonnote_insn (insn)
2538 rtx insn;
2539{
2540 while (insn)
2541 {
2542 insn = PREV_INSN (insn);
2543 if (insn == 0 || GET_CODE (insn) != NOTE)
2544 break;
2545 }
2546
2547 return insn;
2548}
2549
2550/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2551 or 0, if there is none. This routine does not look inside
0f41302f 2552 SEQUENCEs. */
23b2ce53
RS
2553
2554rtx
2555next_real_insn (insn)
2556 rtx insn;
2557{
2558 while (insn)
2559 {
2560 insn = NEXT_INSN (insn);
2561 if (insn == 0 || GET_CODE (insn) == INSN
2562 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2563 break;
2564 }
2565
2566 return insn;
2567}
2568
2569/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2570 or 0, if there is none. This routine does not look inside
2571 SEQUENCEs. */
2572
2573rtx
2574prev_real_insn (insn)
2575 rtx insn;
2576{
2577 while (insn)
2578 {
2579 insn = PREV_INSN (insn);
2580 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2581 || GET_CODE (insn) == JUMP_INSN)
2582 break;
2583 }
2584
2585 return insn;
2586}
2587
2588/* Find the next insn after INSN that really does something. This routine
2589 does not look inside SEQUENCEs. Until reload has completed, this is the
2590 same as next_real_insn. */
2591
69732dcb
RH
2592int
2593active_insn_p (insn)
2594 rtx insn;
2595{
2596 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2597 || (GET_CODE (insn) == INSN
2598 && (! reload_completed
2599 || (GET_CODE (PATTERN (insn)) != USE
2600 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2601}
2602
23b2ce53
RS
2603rtx
2604next_active_insn (insn)
2605 rtx insn;
2606{
2607 while (insn)
2608 {
2609 insn = NEXT_INSN (insn);
69732dcb 2610 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2611 break;
2612 }
2613
2614 return insn;
2615}
2616
2617/* Find the last insn before INSN that really does something. This routine
2618 does not look inside SEQUENCEs. Until reload has completed, this is the
2619 same as prev_real_insn. */
2620
2621rtx
2622prev_active_insn (insn)
2623 rtx insn;
2624{
2625 while (insn)
2626 {
2627 insn = PREV_INSN (insn);
69732dcb 2628 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2629 break;
2630 }
2631
2632 return insn;
2633}
2634
2635/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2636
2637rtx
2638next_label (insn)
2639 rtx insn;
2640{
2641 while (insn)
2642 {
2643 insn = NEXT_INSN (insn);
2644 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2645 break;
2646 }
2647
2648 return insn;
2649}
2650
2651/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2652
2653rtx
2654prev_label (insn)
2655 rtx insn;
2656{
2657 while (insn)
2658 {
2659 insn = PREV_INSN (insn);
2660 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2661 break;
2662 }
2663
2664 return insn;
2665}
2666\f
2667#ifdef HAVE_cc0
c572e5ba
JVA
2668/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2669 and REG_CC_USER notes so we can find it. */
2670
2671void
2672link_cc0_insns (insn)
2673 rtx insn;
2674{
2675 rtx user = next_nonnote_insn (insn);
2676
2677 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2678 user = XVECEXP (PATTERN (user), 0, 0);
2679
c5c76735
JL
2680 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2681 REG_NOTES (user));
3b80f6ca 2682 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
2683}
2684
23b2ce53
RS
2685/* Return the next insn that uses CC0 after INSN, which is assumed to
2686 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2687 applied to the result of this function should yield INSN).
2688
2689 Normally, this is simply the next insn. However, if a REG_CC_USER note
2690 is present, it contains the insn that uses CC0.
2691
2692 Return 0 if we can't find the insn. */
2693
2694rtx
2695next_cc0_user (insn)
2696 rtx insn;
2697{
906c4e36 2698 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
2699
2700 if (note)
2701 return XEXP (note, 0);
2702
2703 insn = next_nonnote_insn (insn);
2704 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2705 insn = XVECEXP (PATTERN (insn), 0, 0);
2706
2c3c49de 2707 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
2708 return insn;
2709
2710 return 0;
2711}
2712
2713/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2714 note, it is the previous insn. */
2715
2716rtx
2717prev_cc0_setter (insn)
2718 rtx insn;
2719{
906c4e36 2720 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
2721
2722 if (note)
2723 return XEXP (note, 0);
2724
2725 insn = prev_nonnote_insn (insn);
2726 if (! sets_cc0_p (PATTERN (insn)))
2727 abort ();
2728
2729 return insn;
2730}
2731#endif
e5bef2e4
HB
2732
2733/* Increment the label uses for all labels present in rtx. */
2734
2735static void
2736mark_label_nuses(x)
2737 rtx x;
2738{
b3694847
SS
2739 enum rtx_code code;
2740 int i, j;
2741 const char *fmt;
e5bef2e4
HB
2742
2743 code = GET_CODE (x);
2744 if (code == LABEL_REF)
2745 LABEL_NUSES (XEXP (x, 0))++;
2746
2747 fmt = GET_RTX_FORMAT (code);
2748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2749 {
2750 if (fmt[i] == 'e')
2751 mark_label_nuses (XEXP (x, i));
2752 else if (fmt[i] == 'E')
2753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2754 mark_label_nuses (XVECEXP (x, i, j));
2755 }
2756}
2757
23b2ce53
RS
2758\f
2759/* Try splitting insns that can be split for better scheduling.
2760 PAT is the pattern which might split.
2761 TRIAL is the insn providing PAT.
11147ebe 2762 LAST is non-zero if we should return the last insn of the sequence produced.
23b2ce53
RS
2763
2764 If this routine succeeds in splitting, it returns the first or last
11147ebe 2765 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
2766 returns TRIAL. If the insn to be returned can be split, it will be. */
2767
2768rtx
11147ebe 2769try_split (pat, trial, last)
23b2ce53 2770 rtx pat, trial;
11147ebe 2771 int last;
23b2ce53
RS
2772{
2773 rtx before = PREV_INSN (trial);
2774 rtx after = NEXT_INSN (trial);
23b2ce53
RS
2775 int has_barrier = 0;
2776 rtx tem;
6b24c259
JH
2777 rtx note, seq;
2778 int probability;
2779
2780 if (any_condjump_p (trial)
2781 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2782 split_branch_probability = INTVAL (XEXP (note, 0));
2783 probability = split_branch_probability;
2784
2785 seq = split_insns (pat, trial);
2786
2787 split_branch_probability = -1;
23b2ce53
RS
2788
2789 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2790 We may need to handle this specially. */
2791 if (after && GET_CODE (after) == BARRIER)
2792 {
2793 has_barrier = 1;
2794 after = NEXT_INSN (after);
2795 }
2796
2797 if (seq)
2798 {
2799 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2800 The latter case will normally arise only when being done so that
2801 it, in turn, will be split (SFmode on the 29k is an example). */
2802 if (GET_CODE (seq) == SEQUENCE)
2803 {
6b24c259 2804 int i, njumps = 0;
750c9258
AJ
2805
2806 /* Avoid infinite loop if any insn of the result matches
4b5e8abe
CP
2807 the original pattern. */
2808 for (i = 0; i < XVECLEN (seq, 0); i++)
750c9258 2809 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
4b5e8abe 2810 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
750c9258 2811 return trial;
4b5e8abe 2812
90a74703
JH
2813 /* Mark labels. */
2814 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2815 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
6b24c259
JH
2816 {
2817 rtx insn = XVECEXP (seq, 0, i);
2818 mark_jump_label (PATTERN (insn),
2819 XVECEXP (seq, 0, i), 0);
2820 njumps++;
2821 if (probability != -1
2822 && any_condjump_p (insn)
2823 && !find_reg_note (insn, REG_BR_PROB, 0))
2824 {
2825 /* We can preserve the REG_BR_PROB notes only if exactly
a1f300c0 2826 one jump is created, otherwise the machine description
6b24c259
JH
2827 is responsible for this step using
2828 split_branch_probability variable. */
2829 if (njumps != 1)
2830 abort ();
2831 REG_NOTES (insn)
2832 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2833 GEN_INT (probability),
2834 REG_NOTES (insn));
2835 }
2836 }
216183ce 2837
2d01e445
AO
2838 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2839 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2840 if (GET_CODE (trial) == CALL_INSN)
2841 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2842 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2843 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2844 = CALL_INSN_FUNCTION_USAGE (trial);
2845
216183ce
RH
2846 /* Copy notes, particularly those related to the CFG. */
2847 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
2848 {
2849 switch (REG_NOTE_KIND (note))
2850 {
2851 case REG_EH_REGION:
2852 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2853 {
2854 rtx insn = XVECEXP (seq, 0, i);
2855 if (GET_CODE (insn) == CALL_INSN
2856 || (flag_non_call_exceptions
2857 && may_trap_p (PATTERN (insn))))
2858 REG_NOTES (insn)
2859 = gen_rtx_EXPR_LIST (REG_EH_REGION,
2860 XEXP (note, 0),
2861 REG_NOTES (insn));
2862 }
2863 break;
2864
2865 case REG_NORETURN:
2866 case REG_SETJMP:
2867 case REG_ALWAYS_RETURN:
2868 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2869 {
2870 rtx insn = XVECEXP (seq, 0, i);
2871 if (GET_CODE (insn) == CALL_INSN)
2872 REG_NOTES (insn)
2873 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2874 XEXP (note, 0),
2875 REG_NOTES (insn));
2876 }
2877 break;
2878
2879 case REG_NON_LOCAL_GOTO:
2880 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2881 {
2882 rtx insn = XVECEXP (seq, 0, i);
2883 if (GET_CODE (insn) == JUMP_INSN)
2884 REG_NOTES (insn)
2885 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2886 XEXP (note, 0),
2887 REG_NOTES (insn));
2888 }
2889 break;
2890
2891 default:
2892 break;
2893 }
2894 }
d6e95df8 2895
e5bef2e4
HB
2896 /* If there are LABELS inside the split insns increment the
2897 usage count so we don't delete the label. */
2898 if (GET_CODE (trial) == INSN)
2899 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2900 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2901 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2902
3c030e88 2903 tem = emit_insn_after (seq, trial);
23b2ce53 2904
53c17031 2905 delete_related_insns (trial);
23b2ce53
RS
2906 if (has_barrier)
2907 emit_barrier_after (tem);
11147ebe
RK
2908
2909 /* Recursively call try_split for each new insn created; by the
2910 time control returns here that insn will be fully split, so
2911 set LAST and continue from the insn after the one returned.
f4a3cd05 2912 We can't use next_active_insn here since AFTER may be a note.
23886015 2913 Ignore deleted insns, which can be occur if not optimizing. */
2c3c49de
RB
2914 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2915 if (! INSN_DELETED_P (tem) && INSN_P (tem))
f4a3cd05 2916 tem = try_split (PATTERN (tem), tem, 1);
23b2ce53
RS
2917 }
2918 /* Avoid infinite loop if the result matches the original pattern. */
2919 else if (rtx_equal_p (seq, pat))
2920 return trial;
2921 else
2922 {
2923 PATTERN (trial) = seq;
2924 INSN_CODE (trial) = -1;
11147ebe 2925 try_split (seq, trial, last);
23b2ce53
RS
2926 }
2927
11147ebe
RK
2928 /* Return either the first or the last insn, depending on which was
2929 requested. */
750c9258 2930 return last
6b24c259
JH
2931 ? (after ? PREV_INSN (after) : last_insn)
2932 : NEXT_INSN (before);
23b2ce53
RS
2933 }
2934
2935 return trial;
2936}
2937\f
2938/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 2939 Store PATTERN in the pattern slots. */
23b2ce53
RS
2940
2941rtx
4b1f5e8c 2942make_insn_raw (pattern)
23b2ce53 2943 rtx pattern;
23b2ce53 2944{
b3694847 2945 rtx insn;
23b2ce53 2946
1f8f4a0b 2947 insn = rtx_alloc (INSN);
23b2ce53 2948
43127294 2949 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2950 PATTERN (insn) = pattern;
2951 INSN_CODE (insn) = -1;
1632afca
RS
2952 LOG_LINKS (insn) = NULL;
2953 REG_NOTES (insn) = NULL;
23b2ce53 2954
47984720
NC
2955#ifdef ENABLE_RTL_CHECKING
2956 if (insn
2c3c49de 2957 && INSN_P (insn)
47984720
NC
2958 && (returnjump_p (insn)
2959 || (GET_CODE (insn) == SET
2960 && SET_DEST (insn) == pc_rtx)))
2961 {
2962 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2963 debug_rtx (insn);
2964 }
2965#endif
750c9258 2966
23b2ce53
RS
2967 return insn;
2968}
2969
2970/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2971
2972static rtx
4b1f5e8c 2973make_jump_insn_raw (pattern)
23b2ce53 2974 rtx pattern;
23b2ce53 2975{
b3694847 2976 rtx insn;
23b2ce53 2977
4b1f5e8c 2978 insn = rtx_alloc (JUMP_INSN);
1632afca 2979 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2980
2981 PATTERN (insn) = pattern;
2982 INSN_CODE (insn) = -1;
1632afca
RS
2983 LOG_LINKS (insn) = NULL;
2984 REG_NOTES (insn) = NULL;
2985 JUMP_LABEL (insn) = NULL;
23b2ce53
RS
2986
2987 return insn;
2988}
aff507f4
RK
2989
2990/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2991
2992static rtx
2993make_call_insn_raw (pattern)
2994 rtx pattern;
2995{
b3694847 2996 rtx insn;
aff507f4
RK
2997
2998 insn = rtx_alloc (CALL_INSN);
2999 INSN_UID (insn) = cur_insn_uid++;
3000
3001 PATTERN (insn) = pattern;
3002 INSN_CODE (insn) = -1;
3003 LOG_LINKS (insn) = NULL;
3004 REG_NOTES (insn) = NULL;
3005 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3006
3007 return insn;
3008}
23b2ce53
RS
3009\f
3010/* Add INSN to the end of the doubly-linked list.
3011 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3012
3013void
3014add_insn (insn)
b3694847 3015 rtx insn;
23b2ce53
RS
3016{
3017 PREV_INSN (insn) = last_insn;
3018 NEXT_INSN (insn) = 0;
3019
3020 if (NULL != last_insn)
3021 NEXT_INSN (last_insn) = insn;
3022
3023 if (NULL == first_insn)
3024 first_insn = insn;
3025
3026 last_insn = insn;
3027}
3028
a0ae8e8d
RK
3029/* Add INSN into the doubly-linked list after insn AFTER. This and
3030 the next should be the only functions called to insert an insn once
ba213285 3031 delay slots have been filled since only they know how to update a
a0ae8e8d 3032 SEQUENCE. */
23b2ce53
RS
3033
3034void
3035add_insn_after (insn, after)
3036 rtx insn, after;
3037{
3038 rtx next = NEXT_INSN (after);
3c030e88 3039 basic_block bb;
23b2ce53 3040
6782074d 3041 if (optimize && INSN_DELETED_P (after))
ba213285
RK
3042 abort ();
3043
23b2ce53
RS
3044 NEXT_INSN (insn) = next;
3045 PREV_INSN (insn) = after;
3046
3047 if (next)
3048 {
3049 PREV_INSN (next) = insn;
3050 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3051 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3052 }
3053 else if (last_insn == after)
3054 last_insn = insn;
3055 else
3056 {
49ad7cfa 3057 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3058 /* Scan all pending sequences too. */
3059 for (; stack; stack = stack->next)
3060 if (after == stack->last)
fef0509b
RK
3061 {
3062 stack->last = insn;
3063 break;
3064 }
a0ae8e8d
RK
3065
3066 if (stack == 0)
3067 abort ();
23b2ce53
RS
3068 }
3069
3c030e88
JH
3070 if (basic_block_for_insn
3071 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3072 && (bb = BLOCK_FOR_INSN (after)))
3073 {
3074 set_block_for_insn (insn, bb);
3075 /* Should not happen as first in the BB is always
a1f300c0 3076 either NOTE or LABEL. */
3c030e88
JH
3077 if (bb->end == after
3078 /* Avoid clobbering of structure when creating new BB. */
3079 && GET_CODE (insn) != BARRIER
3080 && (GET_CODE (insn) != NOTE
3081 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3082 bb->end = insn;
3083 }
3084
23b2ce53
RS
3085 NEXT_INSN (after) = insn;
3086 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3087 {
3088 rtx sequence = PATTERN (after);
3089 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3090 }
3091}
3092
a0ae8e8d
RK
3093/* Add INSN into the doubly-linked list before insn BEFORE. This and
3094 the previous should be the only functions called to insert an insn once
ba213285 3095 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
3096 SEQUENCE. */
3097
3098void
3099add_insn_before (insn, before)
3100 rtx insn, before;
3101{
3102 rtx prev = PREV_INSN (before);
3c030e88 3103 basic_block bb;
a0ae8e8d 3104
6782074d 3105 if (optimize && INSN_DELETED_P (before))
ba213285
RK
3106 abort ();
3107
a0ae8e8d
RK
3108 PREV_INSN (insn) = prev;
3109 NEXT_INSN (insn) = before;
3110
3111 if (prev)
3112 {
3113 NEXT_INSN (prev) = insn;
3114 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3115 {
3116 rtx sequence = PATTERN (prev);
3117 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3118 }
3119 }
3120 else if (first_insn == before)
3121 first_insn = insn;
3122 else
3123 {
49ad7cfa 3124 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3125 /* Scan all pending sequences too. */
3126 for (; stack; stack = stack->next)
3127 if (before == stack->first)
fef0509b
RK
3128 {
3129 stack->first = insn;
3130 break;
3131 }
a0ae8e8d
RK
3132
3133 if (stack == 0)
3134 abort ();
3135 }
3136
3c030e88
JH
3137 if (basic_block_for_insn
3138 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3139 && (bb = BLOCK_FOR_INSN (before)))
3140 {
3141 set_block_for_insn (insn, bb);
3142 /* Should not happen as first in the BB is always
a1f300c0 3143 either NOTE or LABEl. */
3c030e88
JH
3144 if (bb->head == insn
3145 /* Avoid clobbering of structure when creating new BB. */
3146 && GET_CODE (insn) != BARRIER
3147 && (GET_CODE (insn) != NOTE
3148 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3149 abort ();
3150 }
3151
a0ae8e8d
RK
3152 PREV_INSN (before) = insn;
3153 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3154 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3155}
3156
89e99eea
DB
3157/* Remove an insn from its doubly-linked list. This function knows how
3158 to handle sequences. */
3159void
3160remove_insn (insn)
3161 rtx insn;
3162{
3163 rtx next = NEXT_INSN (insn);
3164 rtx prev = PREV_INSN (insn);
53c17031
JH
3165 basic_block bb;
3166
89e99eea
DB
3167 if (prev)
3168 {
3169 NEXT_INSN (prev) = next;
3170 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3171 {
3172 rtx sequence = PATTERN (prev);
3173 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3174 }
3175 }
3176 else if (first_insn == insn)
3177 first_insn = next;
3178 else
3179 {
49ad7cfa 3180 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3181 /* Scan all pending sequences too. */
3182 for (; stack; stack = stack->next)
3183 if (insn == stack->first)
3184 {
3185 stack->first = next;
3186 break;
3187 }
3188
3189 if (stack == 0)
3190 abort ();
3191 }
3192
3193 if (next)
3194 {
3195 PREV_INSN (next) = prev;
3196 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3197 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3198 }
3199 else if (last_insn == insn)
3200 last_insn = prev;
3201 else
3202 {
49ad7cfa 3203 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3204 /* Scan all pending sequences too. */
3205 for (; stack; stack = stack->next)
3206 if (insn == stack->last)
3207 {
3208 stack->last = prev;
3209 break;
3210 }
3211
3212 if (stack == 0)
3213 abort ();
3214 }
53c17031
JH
3215 if (basic_block_for_insn
3216 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3217 && (bb = BLOCK_FOR_INSN (insn)))
3218 {
3219 if (bb->head == insn)
3220 {
3221 /* Never ever delete the basic block note without deleting whole basic
3222 block. */
3223 if (GET_CODE (insn) == NOTE)
3224 abort ();
3225 bb->head = next;
3226 }
3227 if (bb->end == insn)
3228 bb->end = prev;
3229 }
89e99eea
DB
3230}
3231
23b2ce53
RS
3232/* Delete all insns made since FROM.
3233 FROM becomes the new last instruction. */
3234
3235void
3236delete_insns_since (from)
3237 rtx from;
3238{
3239 if (from == 0)
3240 first_insn = 0;
3241 else
3242 NEXT_INSN (from) = 0;
3243 last_insn = from;
3244}
3245
5dab5552
MS
3246/* This function is deprecated, please use sequences instead.
3247
3248 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3249 The insns to be moved are those between FROM and TO.
3250 They are moved to a new position after the insn AFTER.
3251 AFTER must not be FROM or TO or any insn in between.
3252
3253 This function does not know about SEQUENCEs and hence should not be
3254 called after delay-slot filling has been done. */
3255
3256void
3c030e88 3257reorder_insns_nobb (from, to, after)
23b2ce53
RS
3258 rtx from, to, after;
3259{
3260 /* Splice this bunch out of where it is now. */
3261 if (PREV_INSN (from))
3262 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3263 if (NEXT_INSN (to))
3264 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3265 if (last_insn == to)
3266 last_insn = PREV_INSN (from);
3267 if (first_insn == from)
3268 first_insn = NEXT_INSN (to);
3269
3270 /* Make the new neighbors point to it and it to them. */
3271 if (NEXT_INSN (after))
3272 PREV_INSN (NEXT_INSN (after)) = to;
3273
3274 NEXT_INSN (to) = NEXT_INSN (after);
3275 PREV_INSN (from) = after;
3276 NEXT_INSN (after) = from;
3277 if (after == last_insn)
3278 last_insn = to;
3279}
3280
3c030e88
JH
3281/* Same as function above, but take care to update BB boundaries. */
3282void
3283reorder_insns (from, to, after)
3284 rtx from, to, after;
3285{
3286 rtx prev = PREV_INSN (from);
3287 basic_block bb, bb2;
3288
3289 reorder_insns_nobb (from, to, after);
3290
3291 if (basic_block_for_insn
3292 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3293 && (bb = BLOCK_FOR_INSN (after)))
3294 {
3295 rtx x;
3296
3297 if (basic_block_for_insn
3298 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3299 && (bb2 = BLOCK_FOR_INSN (from)))
3300 {
3301 if (bb2->end == to)
3302 bb2->end = prev;
3303 }
3304
3305 if (bb->end == after)
3306 bb->end = to;
3307
3308 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3309 set_block_for_insn (x, bb);
3310 }
3311}
3312
23b2ce53
RS
3313/* Return the line note insn preceding INSN. */
3314
3315static rtx
3316find_line_note (insn)
3317 rtx insn;
3318{
3319 if (no_line_numbers)
3320 return 0;
3321
3322 for (; insn; insn = PREV_INSN (insn))
3323 if (GET_CODE (insn) == NOTE
3324 && NOTE_LINE_NUMBER (insn) >= 0)
3325 break;
3326
3327 return insn;
3328}
3329
3330/* Like reorder_insns, but inserts line notes to preserve the line numbers
3331 of the moved insns when debugging. This may insert a note between AFTER
3332 and FROM, and another one after TO. */
3333
3334void
3335reorder_insns_with_line_notes (from, to, after)
3336 rtx from, to, after;
3337{
3338 rtx from_line = find_line_note (from);
3339 rtx after_line = find_line_note (after);
3340
3341 reorder_insns (from, to, after);
3342
3343 if (from_line == after_line)
3344 return;
3345
3346 if (from_line)
3347 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3348 NOTE_LINE_NUMBER (from_line),
3349 after);
3350 if (after_line)
3351 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3352 NOTE_LINE_NUMBER (after_line),
3353 to);
3354}
aeeeda03 3355
64b59a80 3356/* Remove unnecessary notes from the instruction stream. */
aeeeda03
MM
3357
3358void
64b59a80 3359remove_unnecessary_notes ()
aeeeda03 3360{
542d73ae
RH
3361 rtx block_stack = NULL_RTX;
3362 rtx eh_stack = NULL_RTX;
aeeeda03
MM
3363 rtx insn;
3364 rtx next;
542d73ae 3365 rtx tmp;
aeeeda03 3366
116eebd6
MM
3367 /* We must not remove the first instruction in the function because
3368 the compiler depends on the first instruction being a note. */
aeeeda03
MM
3369 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3370 {
3371 /* Remember what's next. */
3372 next = NEXT_INSN (insn);
3373
3374 /* We're only interested in notes. */
3375 if (GET_CODE (insn) != NOTE)
3376 continue;
3377
542d73ae 3378 switch (NOTE_LINE_NUMBER (insn))
18c038b9 3379 {
542d73ae
RH
3380 case NOTE_INSN_DELETED:
3381 remove_insn (insn);
3382 break;
3383
3384 case NOTE_INSN_EH_REGION_BEG:
3385 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3386 break;
3387
3388 case NOTE_INSN_EH_REGION_END:
3389 /* Too many end notes. */
3390 if (eh_stack == NULL_RTX)
3391 abort ();
3392 /* Mismatched nesting. */
3393 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3394 abort ();
3395 tmp = eh_stack;
3396 eh_stack = XEXP (eh_stack, 1);
3397 free_INSN_LIST_node (tmp);
3398 break;
3399
3400 case NOTE_INSN_BLOCK_BEG:
3401 /* By now, all notes indicating lexical blocks should have
3402 NOTE_BLOCK filled in. */
3403 if (NOTE_BLOCK (insn) == NULL_TREE)
3404 abort ();
3405 block_stack = alloc_INSN_LIST (insn, block_stack);
3406 break;
3407
3408 case NOTE_INSN_BLOCK_END:
3409 /* Too many end notes. */
3410 if (block_stack == NULL_RTX)
3411 abort ();
3412 /* Mismatched nesting. */
3413 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3414 abort ();
3415 tmp = block_stack;
3416 block_stack = XEXP (block_stack, 1);
3417 free_INSN_LIST_node (tmp);
3418
18c038b9
MM
3419 /* Scan back to see if there are any non-note instructions
3420 between INSN and the beginning of this block. If not,
3421 then there is no PC range in the generated code that will
3422 actually be in this block, so there's no point in
3423 remembering the existence of the block. */
542d73ae 3424 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
18c038b9
MM
3425 {
3426 /* This block contains a real instruction. Note that we
3427 don't include labels; if the only thing in the block
3428 is a label, then there are still no PC values that
3429 lie within the block. */
542d73ae 3430 if (INSN_P (tmp))
18c038b9
MM
3431 break;
3432
3433 /* We're only interested in NOTEs. */
542d73ae 3434 if (GET_CODE (tmp) != NOTE)
18c038b9
MM
3435 continue;
3436
542d73ae 3437 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
18c038b9 3438 {
e1772ac0
NB
3439 /* We just verified that this BLOCK matches us with
3440 the block_stack check above. Never delete the
3441 BLOCK for the outermost scope of the function; we
3442 can refer to names from that scope even if the
3443 block notes are messed up. */
3444 if (! is_body_block (NOTE_BLOCK (insn))
3445 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
deb5e280 3446 {
542d73ae 3447 remove_insn (tmp);
deb5e280
JM
3448 remove_insn (insn);
3449 }
18c038b9
MM
3450 break;
3451 }
542d73ae 3452 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
18c038b9
MM
3453 /* There's a nested block. We need to leave the
3454 current block in place since otherwise the debugger
3455 wouldn't be able to show symbols from our block in
3456 the nested block. */
3457 break;
3458 }
3459 }
aeeeda03 3460 }
542d73ae
RH
3461
3462 /* Too many begin notes. */
3463 if (block_stack || eh_stack)
3464 abort ();
aeeeda03
MM
3465}
3466
23b2ce53
RS
3467\f
3468/* Emit an insn of given code and pattern
3469 at a specified place within the doubly-linked list. */
3470
3471/* Make an instruction with body PATTERN
3472 and output it before the instruction BEFORE. */
3473
3474rtx
3475emit_insn_before (pattern, before)
b3694847 3476 rtx pattern, before;
23b2ce53 3477{
b3694847 3478 rtx insn = before;
23b2ce53
RS
3479
3480 if (GET_CODE (pattern) == SEQUENCE)
3481 {
b3694847 3482 int i;
23b2ce53
RS
3483
3484 for (i = 0; i < XVECLEN (pattern, 0); i++)
3485 {
3486 insn = XVECEXP (pattern, 0, i);
a0ae8e8d 3487 add_insn_before (insn, before);
23b2ce53 3488 }
23b2ce53
RS
3489 }
3490 else
3491 {
4b1f5e8c 3492 insn = make_insn_raw (pattern);
a0ae8e8d 3493 add_insn_before (insn, before);
23b2ce53
RS
3494 }
3495
3496 return insn;
3497}
3498
3499/* Make an instruction with body PATTERN and code JUMP_INSN
3500 and output it before the instruction BEFORE. */
3501
3502rtx
3503emit_jump_insn_before (pattern, before)
b3694847 3504 rtx pattern, before;
23b2ce53 3505{
b3694847 3506 rtx insn;
23b2ce53
RS
3507
3508 if (GET_CODE (pattern) == SEQUENCE)
3509 insn = emit_insn_before (pattern, before);
3510 else
3511 {
85cf32bc 3512 insn = make_jump_insn_raw (pattern);
a0ae8e8d 3513 add_insn_before (insn, before);
23b2ce53
RS
3514 }
3515
3516 return insn;
3517}
3518
3519/* Make an instruction with body PATTERN and code CALL_INSN
3520 and output it before the instruction BEFORE. */
3521
3522rtx
3523emit_call_insn_before (pattern, before)
b3694847 3524 rtx pattern, before;
23b2ce53 3525{
b3694847 3526 rtx insn;
aff507f4
RK
3527
3528 if (GET_CODE (pattern) == SEQUENCE)
3529 insn = emit_insn_before (pattern, before);
3530 else
3531 {
3532 insn = make_call_insn_raw (pattern);
a0ae8e8d 3533 add_insn_before (insn, before);
aff507f4
RK
3534 PUT_CODE (insn, CALL_INSN);
3535 }
3536
23b2ce53
RS
3537 return insn;
3538}
3539
3540/* Make an insn of code BARRIER
e881bb1b 3541 and output it before the insn BEFORE. */
23b2ce53
RS
3542
3543rtx
3544emit_barrier_before (before)
b3694847 3545 rtx before;
23b2ce53 3546{
b3694847 3547 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
3548
3549 INSN_UID (insn) = cur_insn_uid++;
3550
a0ae8e8d 3551 add_insn_before (insn, before);
23b2ce53
RS
3552 return insn;
3553}
3554
e881bb1b
RH
3555/* Emit the label LABEL before the insn BEFORE. */
3556
3557rtx
3558emit_label_before (label, before)
3559 rtx label, before;
3560{
3561 /* This can be called twice for the same label as a result of the
3562 confusion that follows a syntax error! So make it harmless. */
3563 if (INSN_UID (label) == 0)
3564 {
3565 INSN_UID (label) = cur_insn_uid++;
3566 add_insn_before (label, before);
3567 }
3568
3569 return label;
3570}
3571
23b2ce53
RS
3572/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3573
3574rtx
3575emit_note_before (subtype, before)
3576 int subtype;
3577 rtx before;
3578{
b3694847 3579 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
3580 INSN_UID (note) = cur_insn_uid++;
3581 NOTE_SOURCE_FILE (note) = 0;
3582 NOTE_LINE_NUMBER (note) = subtype;
3583
a0ae8e8d 3584 add_insn_before (note, before);
23b2ce53
RS
3585 return note;
3586}
3587\f
3588/* Make an insn of code INSN with body PATTERN
3589 and output it after the insn AFTER. */
3590
3591rtx
3592emit_insn_after (pattern, after)
b3694847 3593 rtx pattern, after;
23b2ce53 3594{
b3694847 3595 rtx insn = after;
23b2ce53
RS
3596
3597 if (GET_CODE (pattern) == SEQUENCE)
3598 {
b3694847 3599 int i;
23b2ce53
RS
3600
3601 for (i = 0; i < XVECLEN (pattern, 0); i++)
3602 {
3603 insn = XVECEXP (pattern, 0, i);
3604 add_insn_after (insn, after);
3605 after = insn;
3606 }
23b2ce53
RS
3607 }
3608 else
3609 {
4b1f5e8c 3610 insn = make_insn_raw (pattern);
23b2ce53
RS
3611 add_insn_after (insn, after);
3612 }
3613
3614 return insn;
3615}
3616
255680cf
RK
3617/* Similar to emit_insn_after, except that line notes are to be inserted so
3618 as to act as if this insn were at FROM. */
3619
3620void
3621emit_insn_after_with_line_notes (pattern, after, from)
3622 rtx pattern, after, from;
3623{
3624 rtx from_line = find_line_note (from);
3625 rtx after_line = find_line_note (after);
3626 rtx insn = emit_insn_after (pattern, after);
3627
3628 if (from_line)
3629 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3630 NOTE_LINE_NUMBER (from_line),
3631 after);
3632
3633 if (after_line)
3634 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3635 NOTE_LINE_NUMBER (after_line),
3636 insn);
3637}
3638
23b2ce53
RS
3639/* Make an insn of code JUMP_INSN with body PATTERN
3640 and output it after the insn AFTER. */
3641
3642rtx
3643emit_jump_insn_after (pattern, after)
b3694847 3644 rtx pattern, after;
23b2ce53 3645{
b3694847 3646 rtx insn;
23b2ce53
RS
3647
3648 if (GET_CODE (pattern) == SEQUENCE)
3649 insn = emit_insn_after (pattern, after);
3650 else
3651 {
85cf32bc 3652 insn = make_jump_insn_raw (pattern);
23b2ce53
RS
3653 add_insn_after (insn, after);
3654 }
3655
3656 return insn;
3657}
3658
3659/* Make an insn of code BARRIER
3660 and output it after the insn AFTER. */
3661
3662rtx
3663emit_barrier_after (after)
b3694847 3664 rtx after;
23b2ce53 3665{
b3694847 3666 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
3667
3668 INSN_UID (insn) = cur_insn_uid++;
3669
3670 add_insn_after (insn, after);
3671 return insn;
3672}
3673
3674/* Emit the label LABEL after the insn AFTER. */
3675
3676rtx
3677emit_label_after (label, after)
3678 rtx label, after;
3679{
3680 /* This can be called twice for the same label
3681 as a result of the confusion that follows a syntax error!
3682 So make it harmless. */
3683 if (INSN_UID (label) == 0)
3684 {
3685 INSN_UID (label) = cur_insn_uid++;
3686 add_insn_after (label, after);
3687 }
3688
3689 return label;
3690}
3691
3692/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3693
3694rtx
3695emit_note_after (subtype, after)
3696 int subtype;
3697 rtx after;
3698{
b3694847 3699 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
3700 INSN_UID (note) = cur_insn_uid++;
3701 NOTE_SOURCE_FILE (note) = 0;
3702 NOTE_LINE_NUMBER (note) = subtype;
3703 add_insn_after (note, after);
3704 return note;
3705}
3706
3707/* Emit a line note for FILE and LINE after the insn AFTER. */
3708
3709rtx
3710emit_line_note_after (file, line, after)
3cce094d 3711 const char *file;
23b2ce53
RS
3712 int line;
3713 rtx after;
3714{
b3694847 3715 rtx note;
23b2ce53
RS
3716
3717 if (no_line_numbers && line > 0)
3718 {
3719 cur_insn_uid++;
3720 return 0;
3721 }
3722
3723 note = rtx_alloc (NOTE);
3724 INSN_UID (note) = cur_insn_uid++;
3725 NOTE_SOURCE_FILE (note) = file;
3726 NOTE_LINE_NUMBER (note) = line;
3727 add_insn_after (note, after);
3728 return note;
3729}
3730\f
3731/* Make an insn of code INSN with pattern PATTERN
3732 and add it to the end of the doubly-linked list.
3733 If PATTERN is a SEQUENCE, take the elements of it
3734 and emit an insn for each element.
3735
3736 Returns the last insn emitted. */
3737
3738rtx
3739emit_insn (pattern)
3740 rtx pattern;
3741{
3742 rtx insn = last_insn;
3743
3744 if (GET_CODE (pattern) == SEQUENCE)
3745 {
b3694847 3746 int i;
23b2ce53
RS
3747
3748 for (i = 0; i < XVECLEN (pattern, 0); i++)
3749 {
3750 insn = XVECEXP (pattern, 0, i);
3751 add_insn (insn);
3752 }
23b2ce53
RS
3753 }
3754 else
3755 {
4b1f5e8c 3756 insn = make_insn_raw (pattern);
23b2ce53
RS
3757 add_insn (insn);
3758 }
3759
3760 return insn;
3761}
3762
3763/* Emit the insns in a chain starting with INSN.
3764 Return the last insn emitted. */
3765
3766rtx
3767emit_insns (insn)
3768 rtx insn;
3769{
3770 rtx last = 0;
3771
3772 while (insn)
3773 {
3774 rtx next = NEXT_INSN (insn);
3775 add_insn (insn);
3776 last = insn;
3777 insn = next;
3778 }
3779
3780 return last;
3781}
3782
3783/* Emit the insns in a chain starting with INSN and place them in front of
3784 the insn BEFORE. Return the last insn emitted. */
3785
3786rtx
3787emit_insns_before (insn, before)
3788 rtx insn;
3789 rtx before;
3790{
3791 rtx last = 0;
3792
3793 while (insn)
3794 {
3795 rtx next = NEXT_INSN (insn);
a0ae8e8d 3796 add_insn_before (insn, before);
23b2ce53
RS
3797 last = insn;
3798 insn = next;
3799 }
3800
3801 return last;
3802}
3803
e0a5c5eb
RS
3804/* Emit the insns in a chain starting with FIRST and place them in back of
3805 the insn AFTER. Return the last insn emitted. */
3806
3807rtx
3808emit_insns_after (first, after)
b3694847
SS
3809 rtx first;
3810 rtx after;
e0a5c5eb 3811{
b3694847
SS
3812 rtx last;
3813 rtx after_after;
3c030e88 3814 basic_block bb;
e0a5c5eb
RS
3815
3816 if (!after)
3817 abort ();
3818
3819 if (!first)
ca6c03ca 3820 return after;
e0a5c5eb 3821
3c030e88
JH
3822 if (basic_block_for_insn
3823 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3824 && (bb = BLOCK_FOR_INSN (after)))
3825 {
3826 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3827 set_block_for_insn (last, bb);
3828 set_block_for_insn (last, bb);
3829 if (bb->end == after)
3830 bb->end = last;
3831 }
3832 else
3833 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3834 continue;
e0a5c5eb
RS
3835
3836 after_after = NEXT_INSN (after);
3837
3838 NEXT_INSN (after) = first;
3839 PREV_INSN (first) = after;
3840 NEXT_INSN (last) = after_after;
3841 if (after_after)
3842 PREV_INSN (after_after) = last;
3843
c4d990db
RS
3844 if (after == last_insn)
3845 last_insn = last;
e0a5c5eb
RS
3846 return last;
3847}
3848
23b2ce53
RS
3849/* Make an insn of code JUMP_INSN with pattern PATTERN
3850 and add it to the end of the doubly-linked list. */
3851
3852rtx
3853emit_jump_insn (pattern)
3854 rtx pattern;
3855{
3856 if (GET_CODE (pattern) == SEQUENCE)
3857 return emit_insn (pattern);
3858 else
3859 {
b3694847 3860 rtx insn = make_jump_insn_raw (pattern);
23b2ce53
RS
3861 add_insn (insn);
3862 return insn;
3863 }
3864}
3865
3866/* Make an insn of code CALL_INSN with pattern PATTERN
3867 and add it to the end of the doubly-linked list. */
3868
3869rtx
3870emit_call_insn (pattern)
3871 rtx pattern;
3872{
3873 if (GET_CODE (pattern) == SEQUENCE)
3874 return emit_insn (pattern);
3875 else
3876 {
b3694847 3877 rtx insn = make_call_insn_raw (pattern);
23b2ce53
RS
3878 add_insn (insn);
3879 PUT_CODE (insn, CALL_INSN);
3880 return insn;
3881 }
3882}
3883
3884/* Add the label LABEL to the end of the doubly-linked list. */
3885
3886rtx
3887emit_label (label)
3888 rtx label;
3889{
3890 /* This can be called twice for the same label
3891 as a result of the confusion that follows a syntax error!
3892 So make it harmless. */
3893 if (INSN_UID (label) == 0)
3894 {
3895 INSN_UID (label) = cur_insn_uid++;
3896 add_insn (label);
3897 }
3898 return label;
3899}
3900
3901/* Make an insn of code BARRIER
3902 and add it to the end of the doubly-linked list. */
3903
3904rtx
3905emit_barrier ()
3906{
b3694847 3907 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
3908 INSN_UID (barrier) = cur_insn_uid++;
3909 add_insn (barrier);
3910 return barrier;
3911}
3912
3913/* Make an insn of code NOTE
3914 with data-fields specified by FILE and LINE
3915 and add it to the end of the doubly-linked list,
3916 but only if line-numbers are desired for debugging info. */
3917
3918rtx
3919emit_line_note (file, line)
3cce094d 3920 const char *file;
23b2ce53
RS
3921 int line;
3922{
3f1d071b 3923 set_file_and_line_for_stmt (file, line);
23b2ce53
RS
3924
3925#if 0
3926 if (no_line_numbers)
3927 return 0;
3928#endif
3929
3930 return emit_note (file, line);
3931}
3932
3933/* Make an insn of code NOTE
3934 with data-fields specified by FILE and LINE
3935 and add it to the end of the doubly-linked list.
3936 If it is a line-number NOTE, omit it if it matches the previous one. */
3937
3938rtx
3939emit_note (file, line)
3cce094d 3940 const char *file;
23b2ce53
RS
3941 int line;
3942{
b3694847 3943 rtx note;
23b2ce53
RS
3944
3945 if (line > 0)
3946 {
3947 if (file && last_filename && !strcmp (file, last_filename)
3948 && line == last_linenum)
3949 return 0;
3950 last_filename = file;
3951 last_linenum = line;
3952 }
3953
3954 if (no_line_numbers && line > 0)
3955 {
3956 cur_insn_uid++;
3957 return 0;
3958 }
3959
3960 note = rtx_alloc (NOTE);
3961 INSN_UID (note) = cur_insn_uid++;
3962 NOTE_SOURCE_FILE (note) = file;
3963 NOTE_LINE_NUMBER (note) = line;
3964 add_insn (note);
3965 return note;
3966}
3967
fe77a034 3968/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
23b2ce53
RS
3969
3970rtx
3971emit_line_note_force (file, line)
3cce094d 3972 const char *file;
23b2ce53
RS
3973 int line;
3974{
3975 last_linenum = -1;
3976 return emit_line_note (file, line);
3977}
3978
3979/* Cause next statement to emit a line note even if the line number
3980 has not changed. This is used at the beginning of a function. */
3981
3982void
3983force_next_line_note ()
3984{
3985 last_linenum = -1;
3986}
87b47c85
AM
3987
3988/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 3989 note of this type already exists, remove it first. */
87b47c85 3990
3d238248 3991rtx
87b47c85
AM
3992set_unique_reg_note (insn, kind, datum)
3993 rtx insn;
3994 enum reg_note kind;
3995 rtx datum;
3996{
3997 rtx note = find_reg_note (insn, kind, NULL_RTX);
3998
3d238248
JJ
3999 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4000 It serves no useful purpose and breaks eliminate_regs. */
4001 if ((kind == REG_EQUAL || kind == REG_EQUIV)
4002 && GET_CODE (datum) == ASM_OPERANDS)
4003 return NULL_RTX;
4004
750c9258 4005 if (note)
3d238248
JJ
4006 {
4007 XEXP (note, 0) = datum;
4008 return note;
4009 }
87b47c85
AM
4010
4011 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3d238248 4012 return REG_NOTES (insn);
87b47c85 4013}
23b2ce53
RS
4014\f
4015/* Return an indication of which type of insn should have X as a body.
4016 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4017
4018enum rtx_code
4019classify_insn (x)
4020 rtx x;
4021{
4022 if (GET_CODE (x) == CODE_LABEL)
4023 return CODE_LABEL;
4024 if (GET_CODE (x) == CALL)
4025 return CALL_INSN;
4026 if (GET_CODE (x) == RETURN)
4027 return JUMP_INSN;
4028 if (GET_CODE (x) == SET)
4029 {
4030 if (SET_DEST (x) == pc_rtx)
4031 return JUMP_INSN;
4032 else if (GET_CODE (SET_SRC (x)) == CALL)
4033 return CALL_INSN;
4034 else
4035 return INSN;
4036 }
4037 if (GET_CODE (x) == PARALLEL)
4038 {
b3694847 4039 int j;
23b2ce53
RS
4040 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4041 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4042 return CALL_INSN;
4043 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4044 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4045 return JUMP_INSN;
4046 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4047 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4048 return CALL_INSN;
4049 }
4050 return INSN;
4051}
4052
4053/* Emit the rtl pattern X as an appropriate kind of insn.
4054 If X is a label, it is simply added into the insn chain. */
4055
4056rtx
4057emit (x)
4058 rtx x;
4059{
4060 enum rtx_code code = classify_insn (x);
4061
4062 if (code == CODE_LABEL)
4063 return emit_label (x);
4064 else if (code == INSN)
4065 return emit_insn (x);
4066 else if (code == JUMP_INSN)
4067 {
b3694847 4068 rtx insn = emit_jump_insn (x);
7f1c097d 4069 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
23b2ce53
RS
4070 return emit_barrier ();
4071 return insn;
4072 }
4073 else if (code == CALL_INSN)
4074 return emit_call_insn (x);
4075 else
4076 abort ();
4077}
4078\f
5c7a310f
MM
4079/* Begin emitting insns to a sequence which can be packaged in an
4080 RTL_EXPR. If this sequence will contain something that might cause
4081 the compiler to pop arguments to function calls (because those
4082 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4083 details), use do_pending_stack_adjust before calling this function.
4084 That will ensure that the deferred pops are not accidentally
4eb00163 4085 emitted in the middle of this sequence. */
23b2ce53
RS
4086
4087void
4088start_sequence ()
4089{
4090 struct sequence_stack *tem;
4091
a3770a81 4092 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
23b2ce53 4093
49ad7cfa 4094 tem->next = seq_stack;
23b2ce53
RS
4095 tem->first = first_insn;
4096 tem->last = last_insn;
591ccf92 4097 tem->sequence_rtl_expr = seq_rtl_expr;
23b2ce53 4098
49ad7cfa 4099 seq_stack = tem;
23b2ce53
RS
4100
4101 first_insn = 0;
4102 last_insn = 0;
4103}
4104
591ccf92
MM
4105/* Similarly, but indicate that this sequence will be placed in T, an
4106 RTL_EXPR. See the documentation for start_sequence for more
4107 information about how to use this function. */
4108
4109void
4110start_sequence_for_rtl_expr (t)
4111 tree t;
4112{
4113 start_sequence ();
4114
4115 seq_rtl_expr = t;
4116}
4117
5c7a310f
MM
4118/* Set up the insn chain starting with FIRST as the current sequence,
4119 saving the previously current one. See the documentation for
4120 start_sequence for more information about how to use this function. */
23b2ce53
RS
4121
4122void
4123push_to_sequence (first)
4124 rtx first;
4125{
4126 rtx last;
4127
4128 start_sequence ();
4129
4130 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4131
4132 first_insn = first;
4133 last_insn = last;
4134}
4135
c14f7160
ML
4136/* Set up the insn chain from a chain stort in FIRST to LAST. */
4137
4138void
4139push_to_full_sequence (first, last)
4140 rtx first, last;
4141{
4142 start_sequence ();
4143 first_insn = first;
4144 last_insn = last;
4145 /* We really should have the end of the insn chain here. */
4146 if (last && NEXT_INSN (last))
4147 abort ();
4148}
4149
f15ae3a1
TW
4150/* Set up the outer-level insn chain
4151 as the current sequence, saving the previously current one. */
4152
4153void
4154push_topmost_sequence ()
4155{
aefdd5ab 4156 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4157
4158 start_sequence ();
4159
49ad7cfa 4160 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4161 top = stack;
4162
4163 first_insn = top->first;
4164 last_insn = top->last;
591ccf92 4165 seq_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
4166}
4167
4168/* After emitting to the outer-level insn chain, update the outer-level
4169 insn chain, and restore the previous saved state. */
4170
4171void
4172pop_topmost_sequence ()
4173{
aefdd5ab 4174 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4175
49ad7cfa 4176 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4177 top = stack;
4178
4179 top->first = first_insn;
4180 top->last = last_insn;
591ccf92 4181 /* ??? Why don't we save seq_rtl_expr here? */
f15ae3a1
TW
4182
4183 end_sequence ();
4184}
4185
23b2ce53
RS
4186/* After emitting to a sequence, restore previous saved state.
4187
5c7a310f 4188 To get the contents of the sequence just made, you must call
750c9258 4189 `gen_sequence' *before* calling here.
5c7a310f
MM
4190
4191 If the compiler might have deferred popping arguments while
4192 generating this sequence, and this sequence will not be immediately
4193 inserted into the instruction stream, use do_pending_stack_adjust
4194 before calling gen_sequence. That will ensure that the deferred
4195 pops are inserted into this sequence, and not into some random
4196 location in the instruction stream. See INHIBIT_DEFER_POP for more
4197 information about deferred popping of arguments. */
23b2ce53
RS
4198
4199void
4200end_sequence ()
4201{
49ad7cfa 4202 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4203
4204 first_insn = tem->first;
4205 last_insn = tem->last;
591ccf92 4206 seq_rtl_expr = tem->sequence_rtl_expr;
49ad7cfa 4207 seq_stack = tem->next;
23b2ce53 4208
a3770a81 4209 free (tem);
23b2ce53
RS
4210}
4211
c14f7160
ML
4212/* This works like end_sequence, but records the old sequence in FIRST
4213 and LAST. */
4214
4215void
4216end_full_sequence (first, last)
4217 rtx *first, *last;
4218{
4219 *first = first_insn;
4220 *last = last_insn;
4221 end_sequence();
4222}
4223
23b2ce53
RS
4224/* Return 1 if currently emitting into a sequence. */
4225
4226int
4227in_sequence_p ()
4228{
49ad7cfa 4229 return seq_stack != 0;
23b2ce53
RS
4230}
4231
4232/* Generate a SEQUENCE rtx containing the insns already emitted
4233 to the current sequence.
4234
4235 This is how the gen_... function from a DEFINE_EXPAND
4236 constructs the SEQUENCE that it returns. */
4237
4238rtx
4239gen_sequence ()
4240{
4241 rtx result;
4242 rtx tem;
23b2ce53
RS
4243 int i;
4244 int len;
4245
4246 /* Count the insns in the chain. */
4247 len = 0;
4248 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4249 len++;
4250
ee265800 4251 /* If only one insn, return it rather than a SEQUENCE.
23b2ce53 4252 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
750c9258 4253 the case of an empty list.)
ee265800
AH
4254 We only return the pattern of an insn if its code is INSN and it
4255 has no notes. This ensures that no information gets lost. */
23b2ce53 4256 if (len == 1
ca55abae 4257 && ! RTX_FRAME_RELATED_P (first_insn)
ee265800 4258 && GET_CODE (first_insn) == INSN
30f7a378 4259 /* Don't throw away any reg notes. */
ee265800 4260 && REG_NOTES (first_insn) == 0)
1f8f4a0b 4261 return PATTERN (first_insn);
23b2ce53 4262
1f8f4a0b 4263 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
23b2ce53
RS
4264
4265 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4266 XVECEXP (result, 0, i) = tem;
4267
4268 return result;
4269}
4270\f
59ec66dc
MM
4271/* Put the various virtual registers into REGNO_REG_RTX. */
4272
4273void
49ad7cfa
BS
4274init_virtual_regs (es)
4275 struct emit_status *es;
59ec66dc 4276{
49ad7cfa
BS
4277 rtx *ptr = es->x_regno_reg_rtx;
4278 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4279 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4280 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4281 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4282 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4283}
4284
4285void
4286clear_emit_caches ()
4287{
4288 int i;
4289
4290 /* Clear the start_sequence/gen_sequence cache. */
49ad7cfa
BS
4291 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4292 sequence_result[i] = 0;
4293 free_insn = 0;
59ec66dc 4294}
da43a810
BS
4295\f
4296/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4297static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4298static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4299static int copy_insn_n_scratches;
4300
4301/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4302 copied an ASM_OPERANDS.
4303 In that case, it is the original input-operand vector. */
4304static rtvec orig_asm_operands_vector;
4305
4306/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4307 copied an ASM_OPERANDS.
4308 In that case, it is the copied input-operand vector. */
4309static rtvec copy_asm_operands_vector;
4310
4311/* Likewise for the constraints vector. */
4312static rtvec orig_asm_constraints_vector;
4313static rtvec copy_asm_constraints_vector;
4314
4315/* Recursively create a new copy of an rtx for copy_insn.
4316 This function differs from copy_rtx in that it handles SCRATCHes and
4317 ASM_OPERANDs properly.
4318 Normally, this function is not used directly; use copy_insn as front end.
4319 However, you could first copy an insn pattern with copy_insn and then use
4320 this function afterwards to properly copy any REG_NOTEs containing
4321 SCRATCHes. */
4322
4323rtx
4324copy_insn_1 (orig)
b3694847 4325 rtx orig;
da43a810 4326{
b3694847
SS
4327 rtx copy;
4328 int i, j;
4329 RTX_CODE code;
4330 const char *format_ptr;
da43a810
BS
4331
4332 code = GET_CODE (orig);
4333
4334 switch (code)
4335 {
4336 case REG:
4337 case QUEUED:
4338 case CONST_INT:
4339 case CONST_DOUBLE:
4340 case SYMBOL_REF:
4341 case CODE_LABEL:
4342 case PC:
4343 case CC0:
4344 case ADDRESSOF:
4345 return orig;
4346
4347 case SCRATCH:
4348 for (i = 0; i < copy_insn_n_scratches; i++)
4349 if (copy_insn_scratch_in[i] == orig)
4350 return copy_insn_scratch_out[i];
4351 break;
4352
4353 case CONST:
4354 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4355 a LABEL_REF, it isn't sharable. */
4356 if (GET_CODE (XEXP (orig, 0)) == PLUS
4357 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4358 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4359 return orig;
4360 break;
750c9258 4361
da43a810
BS
4362 /* A MEM with a constant address is not sharable. The problem is that
4363 the constant address may need to be reloaded. If the mem is shared,
4364 then reloading one copy of this mem will cause all copies to appear
4365 to have been reloaded. */
4366
4367 default:
4368 break;
4369 }
4370
4371 copy = rtx_alloc (code);
4372
4373 /* Copy the various flags, and other information. We assume that
4374 all fields need copying, and then clear the fields that should
4375 not be copied. That is the sensible default behavior, and forces
4376 us to explicitly document why we are *not* copying a flag. */
4377 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4378
4379 /* We do not copy the USED flag, which is used as a mark bit during
4380 walks over the RTL. */
4381 copy->used = 0;
4382
4383 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4384 if (GET_RTX_CLASS (code) == 'i')
4385 {
4386 copy->jump = 0;
4387 copy->call = 0;
4388 copy->frame_related = 0;
4389 }
750c9258 4390
da43a810
BS
4391 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4392
4393 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4394 {
e63db8f6 4395 copy->fld[i] = orig->fld[i];
da43a810
BS
4396 switch (*format_ptr++)
4397 {
4398 case 'e':
da43a810
BS
4399 if (XEXP (orig, i) != NULL)
4400 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4401 break;
4402
da43a810
BS
4403 case 'E':
4404 case 'V':
da43a810
BS
4405 if (XVEC (orig, i) == orig_asm_constraints_vector)
4406 XVEC (copy, i) = copy_asm_constraints_vector;
4407 else if (XVEC (orig, i) == orig_asm_operands_vector)
4408 XVEC (copy, i) = copy_asm_operands_vector;
4409 else if (XVEC (orig, i) != NULL)
4410 {
4411 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4412 for (j = 0; j < XVECLEN (copy, i); j++)
4413 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4414 }
4415 break;
4416
da43a810 4417 case 't':
da43a810 4418 case 'w':
da43a810 4419 case 'i':
da43a810
BS
4420 case 's':
4421 case 'S':
e63db8f6
BS
4422 case 'u':
4423 case '0':
4424 /* These are left unchanged. */
da43a810
BS
4425 break;
4426
4427 default:
4428 abort ();
4429 }
4430 }
4431
4432 if (code == SCRATCH)
4433 {
4434 i = copy_insn_n_scratches++;
4435 if (i >= MAX_RECOG_OPERANDS)
4436 abort ();
4437 copy_insn_scratch_in[i] = orig;
4438 copy_insn_scratch_out[i] = copy;
4439 }
4440 else if (code == ASM_OPERANDS)
4441 {
6462bb43
AO
4442 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4443 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4444 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4445 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
4446 }
4447
4448 return copy;
4449}
4450
4451/* Create a new copy of an rtx.
4452 This function differs from copy_rtx in that it handles SCRATCHes and
4453 ASM_OPERANDs properly.
4454 INSN doesn't really have to be a full INSN; it could be just the
4455 pattern. */
4456rtx
4457copy_insn (insn)
4458 rtx insn;
4459{
4460 copy_insn_n_scratches = 0;
4461 orig_asm_operands_vector = 0;
4462 orig_asm_constraints_vector = 0;
4463 copy_asm_operands_vector = 0;
4464 copy_asm_constraints_vector = 0;
4465 return copy_insn_1 (insn);
4466}
59ec66dc 4467
23b2ce53
RS
4468/* Initialize data structures and variables in this file
4469 before generating rtl for each function. */
4470
4471void
4472init_emit ()
4473{
01d939e8 4474 struct function *f = cfun;
23b2ce53 4475
49ad7cfa 4476 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
23b2ce53
RS
4477 first_insn = NULL;
4478 last_insn = NULL;
591ccf92 4479 seq_rtl_expr = NULL;
23b2ce53
RS
4480 cur_insn_uid = 1;
4481 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4482 last_linenum = 0;
4483 last_filename = 0;
4484 first_label_num = label_num;
4485 last_label_num = 0;
49ad7cfa 4486 seq_stack = NULL;
23b2ce53 4487
49ad7cfa 4488 clear_emit_caches ();
23b2ce53
RS
4489
4490 /* Init the tables that describe all the pseudo regs. */
4491
3502dc9c 4492 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 4493
49ad7cfa 4494 f->emit->regno_pointer_align
3502dc9c 4495 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
f9e158c3 4496 sizeof (unsigned char));
86fe05e0 4497
750c9258 4498 regno_reg_rtx
0d4903b8
RK
4499 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4500
4501 f->emit->regno_decl
4502 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
23b2ce53
RS
4503
4504 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 4505 init_virtual_regs (f->emit);
740ab4a2
RK
4506
4507 /* Indicate that the virtual registers and stack locations are
4508 all pointers. */
3502dc9c
JDA
4509 REG_POINTER (stack_pointer_rtx) = 1;
4510 REG_POINTER (frame_pointer_rtx) = 1;
4511 REG_POINTER (hard_frame_pointer_rtx) = 1;
4512 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 4513
3502dc9c
JDA
4514 REG_POINTER (virtual_incoming_args_rtx) = 1;
4515 REG_POINTER (virtual_stack_vars_rtx) = 1;
4516 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4517 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4518 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 4519
86fe05e0 4520#ifdef STACK_BOUNDARY
bdb429a5
RK
4521 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4522 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4523 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4524 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4525
4526 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4527 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4528 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4529 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4530 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
4531#endif
4532
5e82e7bd
JVA
4533#ifdef INIT_EXPANDERS
4534 INIT_EXPANDERS;
4535#endif
23b2ce53
RS
4536}
4537
87ff9c8e
RH
4538/* Mark SS for GC. */
4539
4540static void
4541mark_sequence_stack (ss)
4542 struct sequence_stack *ss;
4543{
4544 while (ss)
4545 {
4546 ggc_mark_rtx (ss->first);
591ccf92 4547 ggc_mark_tree (ss->sequence_rtl_expr);
87ff9c8e
RH
4548 ss = ss->next;
4549 }
4550}
4551
4552/* Mark ES for GC. */
4553
4554void
fa51b01b 4555mark_emit_status (es)
87ff9c8e
RH
4556 struct emit_status *es;
4557{
4558 rtx *r;
0d4903b8 4559 tree *t;
87ff9c8e
RH
4560 int i;
4561
4562 if (es == 0)
4563 return;
4564
0d4903b8
RK
4565 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4566 t = es->regno_decl;
4567 i > 0; --i, ++r, ++t)
4568 {
4569 ggc_mark_rtx (*r);
4570 ggc_mark_tree (*t);
4571 }
87ff9c8e
RH
4572
4573 mark_sequence_stack (es->sequence_stack);
591ccf92 4574 ggc_mark_tree (es->sequence_rtl_expr);
87ff9c8e
RH
4575 ggc_mark_rtx (es->x_first_insn);
4576}
4577
23b2ce53
RS
4578/* Create some permanent unique rtl objects shared between all functions.
4579 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4580
4581void
4582init_emit_once (line_numbers)
4583 int line_numbers;
4584{
4585 int i;
4586 enum machine_mode mode;
9ec36da5 4587 enum machine_mode double_mode;
23b2ce53 4588
173b24b9 4589 /* Initialize the CONST_INT and memory attribute hash tables. */
750c9258 4590 const_int_htab = htab_create (37, const_int_htab_hash,
67673f5c 4591 const_int_htab_eq, NULL);
173b24b9
RK
4592 ggc_add_deletable_htab (const_int_htab, 0, 0);
4593
4594 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4595 mem_attrs_htab_eq, NULL);
4596 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
67673f5c 4597
23b2ce53
RS
4598 no_line_numbers = ! line_numbers;
4599
43fa6302
AS
4600 /* Compute the word and byte modes. */
4601
4602 byte_mode = VOIDmode;
4603 word_mode = VOIDmode;
4604 double_mode = VOIDmode;
4605
4606 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4607 mode = GET_MODE_WIDER_MODE (mode))
4608 {
4609 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4610 && byte_mode == VOIDmode)
4611 byte_mode = mode;
4612
4613 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4614 && word_mode == VOIDmode)
4615 word_mode = mode;
4616 }
4617
43fa6302
AS
4618 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4619 mode = GET_MODE_WIDER_MODE (mode))
4620 {
4621 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4622 && double_mode == VOIDmode)
4623 double_mode = mode;
4624 }
4625
4626 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4627
5da077de
AS
4628 /* Assign register numbers to the globally defined register rtx.
4629 This must be done at runtime because the register number field
4630 is in a union and some compilers can't initialize unions. */
4631
4632 pc_rtx = gen_rtx (PC, VOIDmode);
4633 cc0_rtx = gen_rtx (CC0, VOIDmode);
08394eef
BS
4634 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4635 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5da077de 4636 if (hard_frame_pointer_rtx == 0)
750c9258 4637 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
08394eef 4638 HARD_FRAME_POINTER_REGNUM);
5da077de 4639 if (arg_pointer_rtx == 0)
08394eef 4640 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
750c9258 4641 virtual_incoming_args_rtx =
08394eef 4642 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
750c9258 4643 virtual_stack_vars_rtx =
08394eef 4644 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
750c9258 4645 virtual_stack_dynamic_rtx =
08394eef 4646 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
750c9258
AJ
4647 virtual_outgoing_args_rtx =
4648 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
08394eef 4649 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5da077de
AS
4650
4651 /* These rtx must be roots if GC is enabled. */
1f8f4a0b 4652 ggc_add_rtx_root (global_rtl, GR_MAX);
5da077de 4653
5da077de 4654#ifdef INIT_EXPANDERS
414c4dc4
NC
4655 /* This is to initialize {init|mark|free}_machine_status before the first
4656 call to push_function_context_to. This is needed by the Chill front
a1f300c0 4657 end which calls push_function_context_to before the first call to
5da077de
AS
4658 init_function_start. */
4659 INIT_EXPANDERS;
4660#endif
4661
23b2ce53
RS
4662 /* Create the unique rtx's for certain rtx codes and operand values. */
4663
c5c76735
JL
4664 /* Don't use gen_rtx here since gen_rtx in this case
4665 tries to use these variables. */
23b2ce53 4666 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 4667 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5da077de 4668 gen_rtx_raw_CONST_INT (VOIDmode, i);
1f8f4a0b 4669 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
23b2ce53 4670
68d75312
JC
4671 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4672 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 4673 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 4674 else
3b80f6ca 4675 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 4676
9ec36da5
JL
4677 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4678 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4679 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4680 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
23b2ce53
RS
4681
4682 for (i = 0; i <= 2; i++)
4683 {
4684 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4685 mode = GET_MODE_WIDER_MODE (mode))
4686 {
4687 rtx tem = rtx_alloc (CONST_DOUBLE);
4688 union real_extract u;
4689
d425c5b0
RH
4690 /* Zero any holes in a structure. */
4691 memset ((char *) &u, 0, sizeof u);
23b2ce53
RS
4692 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4693
d425c5b0
RH
4694 /* Avoid trailing garbage in the rtx. */
4695 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4696 CONST_DOUBLE_LOW (tem) = 0;
4697 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4698 CONST_DOUBLE_HIGH (tem) = 0;
4699
4e135bdd 4700 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
f8a83ee3 4701 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
23b2ce53
RS
4702 PUT_MODE (tem, mode);
4703
4704 const_tiny_rtx[i][(int) mode] = tem;
4705 }
4706
906c4e36 4707 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
4708
4709 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4710 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 4711 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
4712
4713 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4714 mode != VOIDmode;
4715 mode = GET_MODE_WIDER_MODE (mode))
4716 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
4717 }
4718
dbbbbf3b
JDA
4719 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4720 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4721 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 4722
f0417c82
RH
4723 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4724 if (STORE_FLAG_VALUE == 1)
4725 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4726
b6a1cbae
GM
4727 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4728 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4729 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4730 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
21cd906e 4731 ggc_add_rtx_root (&const_true_rtx, 1);
a7e1e2ac
AO
4732
4733#ifdef RETURN_ADDRESS_POINTER_REGNUM
4734 return_address_pointer_rtx
08394eef 4735 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
a7e1e2ac
AO
4736#endif
4737
4738#ifdef STRUCT_VALUE
4739 struct_value_rtx = STRUCT_VALUE;
4740#else
4741 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4742#endif
4743
4744#ifdef STRUCT_VALUE_INCOMING
4745 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4746#else
4747#ifdef STRUCT_VALUE_INCOMING_REGNUM
4748 struct_value_incoming_rtx
4749 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4750#else
4751 struct_value_incoming_rtx = struct_value_rtx;
4752#endif
4753#endif
4754
4755#ifdef STATIC_CHAIN_REGNUM
4756 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4757
4758#ifdef STATIC_CHAIN_INCOMING_REGNUM
4759 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4760 static_chain_incoming_rtx
4761 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4762 else
4763#endif
4764 static_chain_incoming_rtx = static_chain_rtx;
4765#endif
4766
4767#ifdef STATIC_CHAIN
4768 static_chain_rtx = STATIC_CHAIN;
4769
4770#ifdef STATIC_CHAIN_INCOMING
4771 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4772#else
4773 static_chain_incoming_rtx = static_chain_rtx;
4774#endif
4775#endif
4776
848e0190
JH
4777 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4778 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
a7e1e2ac 4779
d7db6646
RH
4780 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4781 ggc_add_rtx_root (&struct_value_rtx, 1);
4782 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4783 ggc_add_rtx_root (&static_chain_rtx, 1);
4784 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4785 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
23b2ce53 4786}
a11759a3
JR
4787\f
4788/* Query and clear/ restore no_line_numbers. This is used by the
4789 switch / case handling in stmt.c to give proper line numbers in
4790 warnings about unreachable code. */
4791
4792int
4793force_line_numbers ()
4794{
4795 int old = no_line_numbers;
4796
4797 no_line_numbers = 0;
4798 if (old)
4799 force_next_line_note ();
4800 return old;
4801}
4802
4803void
4804restore_line_number_status (old_value)
4805 int old_value;
4806{
4807 no_line_numbers = old_value;
4808}